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Abstract

AMULET3 is a fully asynchronous implementation of
ARM architecture v4T and was designed at the University
of Manchester between 1996 and 1998. It is the third gen-
eration asynchronous ARM, and is aimed at a significantly
higher performance level than its predecessors. Achieving
this higher performance has required significant enhance-
ments to the internal micro-architecture, such as the intro-
duction of a reorder buffer to support efficient forwarding
while retaining exact exception handling.

In this paper we present an overview of the AMULET3
core, highlighting the issues which arise when striving for
high performance and instruction set compatibility in an
asynchronous design framework.

1: Introduction

Recent industrial electronic design practice has been
based predominantly around the use of clocked circuits.
Asynchronous techniques have been little used due to the
perceived difficulty of developing designs that can be relied
upon to work correctly. However, two factors have contrib-
uted to renewed interest in asynchronous techniques:
• as semiconductor process technologies advance clocked

design is becoming increasingly difficult, particularly
with respect to clock skew management, power-effi-
ciency and electromagnetic compatibility (EMC);

• asynchronous design techniques have been progressive-
ly advancing within adademia and certain industrial re-
search laboratories, and over the last decade new styles
have evolved which avoid most of the difficulties inher-
ent in the older approaches [1,2].
Since asynchronous designs are devoid of problems

with clock skew and have been shown to have very attrac-
tive EMC and power-efficiency properties [3], there is an
opportunity for these advantages to be translated for com-
mercial advantage and for asynchronous design to resume

its role in industrial design practice.
A number of research groups both in academia and in

industry are now producing self-timed processors targetted
at a variety of applications. Some recent examples include:
TITAC2 [4], the CalTech MIPS [5], the Philips 80C51 [6],
ASPRO-216 [7], the Cogency DSP [3] and the LSI Logic/
DTU TinyRISC [8].

The AMULET series of microprocessors has been
developed to demonstrate the feasibility, desirability and
practicability of employing asynchronous techniques in
embedded applications. The milestones so far include:
• AMULET1 [9,10], developed during 1991-93, showed

that complex asynchronous design is possible;
• AMULET2e [11] (1994-96) showed that the advantages

of asynchronous design can be realised in practice.
AMULET3 (1996-98) is being developed to establish

the commercial viability of asynchronous design. Like its
predecessors, AMULET3 is a full-functionality ARM-
compatible [12] microprocessor with support for interrupts
and memory faults. AMULET1 and AMULET2 imple-
mented the ARM6 architecture (ARM architecture version
3). AMULET3 supports the current ARM architecture, ver-
sion 4T, including the 16-bit Thumb instruction set [13], a
compressed representation of the 32-bit ARM instruction
set which improves code density and power-efficiency.

The objective of the AMULET3 project is to produce an
asynchronous implementation of ARM architecture v4T
which is competitive in terms of power-efficiency and per-
formance with the latest clocked ARM core, the
ARM9TDMI. This implies a performance target of well
over 100 MIPS (measured with Dhrystone 2.1) on a
0.35µm process, compared to the 40 MIPS delivered by
AMULET2e on a 0.5µm process. Increasing the perform-
ance by a factor of three or more required a radical change
to the core organisation.

In the next section we introduce the context in which
AMULET3 will be used. In section 3 we describe the
organisation of the AMULET3 core, and section 4 covers
the issues of maintaining compatibility with the existing



ARM instruction set. In section 5 the dual-ported memory
structure is described, and section 6 concludes the paper.

2: The AMULET3 subsystem

AMULET3 is being developed in the context of a micro-
controller application which requires that it be interfaced to
a range of synchronous peripheral controllers. To reap the
benefits of asynchronous operation the core must have
access to some memory that operates asynchronously, and
there are significant EMC benefits in having off-chip mem-
ory also operate asynchronously.

The organisation of the asynchronous subsystem is illus-
trated in figure 1. The AMULET3 core is connected
directly to a dual-ported RAM (discussed further in section
5) and then to the MARBLE on-chip bus [14]. MARBLE
is similar in concept to ARM’s AMBA bus [12], the major
difference being that it does not use a clock signal.

System components other than the local RAM are
accessed via the MARBLE bus. These include on-chip
ROM, a DMA controller, a bridge to the synchronous bus
where the application-specific peripheral controllers reside,
and an interface to external memory. The external memory
interface presents a conventional set of signals for off-chip
devices. It is similar to the AMULET2e interface, being
highly configurable and using a reference delay to time
external accesses [11].

Overall about half of the device will operate asynchro-

AMULET3

8 Kbyte
RAM

DMA
controller

8 Kbyte
ROM

Synchronous
peripheral
interface

Test
interface
controller

Synchronous
peripheral
subsystem

data

addr

chip
selects

DRAM
control

peripheral
I/Os

asynchronous

synchronous

MARBLE bus

DMArq

delay

test

Memory
interface

Figure 1. AMULET3 asynchronous subsystem.

nously, but as this includes all of the highest speed compo-
nents and most of the off-chip drivers, the EMC and power-
efficiency advantages of asynchronous operation should
not be too severely compromised by the presence of the
clocked peripheral controllers.

3: AMULET3 core organisation

The ARM instruction set is register-oriented, and the
register file organisation is central to the operation of the
processor. The AMULET3 register file follows the example
of the StrongARM (and subsequently ARM9TDMI) in
having three register read ports rather than the two used in
previous ARM (and AMULET) processors.

A simple examination of the ARM instruction set offers
little justification for this; the frequency of instructions that
require three source operands is too low to justify the cost
of a third port. However, this is not the whole story. Without
a third read port instructions which require three source
operands must be decoded out and controlled separately so
that they can access their operands in two cycles. This adds
complexity to, and slows down, the decode logic. Adding a
third register read port removes the need to handle these
instructions separately; this simplifies the decode and con-
trol logic in away which more than offsets the added cost
of the third port.

This means that almost all instructions are single cycle
on AMULET3, the exceptions being multiplications with
64-bit results which may requirefour operands and produce
two 32-bit results; these require two cycles. It is worth men-
tioning that the multiple register load/store operations
(LDM/STM) are executed as single cycle operations by the
execution path; whilst the data interface and part of the
decoder must cycle repeatedly the ALU is used only once
to calculate the required address offset and the instruction
prefetch is likely to fill up and stall. This is a simple conse-
quence of the asynchronous nature of the processor which
contributes to its low-power operation.

3.1: The reorder buffer

The performance of a pipelined processor depends crit-
ically on maintaining the smooth flow of the pipeline. This
flow is disturbed whenever pipeline stalls or flushes occur.

Many pipeline stalls are due to dependencies between
consecutive instructions, where an instruction cannot pro-
ceed until its predecessors have yielded their operands.
AMULET1 employs a register locking mechanism [15] to
handle dependencies; this ensures correct operation but
does nothing to minimise stalls. AMULET2 introduced for-
warding paths which remove stalls in some common cases,
but is complex to control. In AMULET3 a completely dif-
ferent approach has been adopted, based upon the use of a
reorder buffer [16] as shown in figure 2.



The reorder buffer is not a new idea – it has been used
before in synchronous processors. However, as with many
organisational features of clocked processors, transferring
the idea into an asynchronous framework requires a careful
rethink of the principles of operation since many of the tim-
ing assumptions upon which the synchronous use is based
are invalid in a system which does not employ global syn-
chronisation.

The basic operation of the AMULET3 reorder buffer is
straightforward. Results arrive from one of two (or, argua-
bly, three) streams: internally computed results are passed
directly from the Execution unit; values loaded from mem-
ory are passed from the Data Interface. Since these two
streams are unsynchronised, they generate results out of
order. Any result which has arrived can be forwarded to
enable a subsequent instruction to be issued speculatively.

Results are written back into the register file in order, in
the course of which they are checked for validity. An
attempted load from memory may have caused a memory
fault, in which case an exception is generated, subsequent
results are discarded, and the processor state upon excep-
tion entry is exactly that required for resumption once the
cause of the exception has been remedied.

So far the use of the reorder buffer is conventional. The
difficulty that must be addressed is to determine exactly
when values in the reorder buffer can be used for forward-
ing since the write-back process operates completely asyn-
chronously to the issue mechanism. The insight here is to
observe that writing a value back to the register file is a
copy process that doesnot invalidate the entry in the reor-
der buffer. The entry can continue to be forwarded until its
location is reallocated to a subsequent result. Since entry
allocation is carried out in the Decode stage where foward-
ing is also controlled, there is no synchronisation required.
In effect, forwarding takes place in complete ignorance of
whether or not the value being forwarded has already been
transferred back into the register file and the two operations
may even be concurrent.

Figure 2. Reorder buffer organisation.
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This last case could mean that the register is being
changed whilst it is being read, resulting in an indetermi-
nate output. However, whenever this is the case the register
value will always be replaced by a forwarded value. To
guarantee correct operation it is only necessary to ensure
that the indeterminate values (which may not even have
valid logic levels) cannot cause excess power consumption.

An added complication to the reorder buffer inherent in
the ARM instruction set is that any instruction may be con-
ditional, thus instructions may be issued which expect to
produce a value but subsequently do not. Unlike the case of
memory faults these instructions must interleave with valid
operations, marking only their own results as invalid. The
forwarding mechanism must then cope with cases where,
for example, several consecutive ARM instructions condi-
tionally modify a source register for a subsequent instruc-
tion. Here the reorder buffer must be searched, in the
correct order, for the first valid result for this register. At
each entry the search may have to wait for the result to
arrive before its validity can be checked. The typical case
is very simple; there will be zero or one entries to examine.
The worst case will involve all the entries being examined
in sequence. However, the asynchronous control structures
easily tolerate the variability in search time and, provided
it occurs infrequently, the occasional worst-case search will
have little impact on the processor’s overall throughput.

3.2: Branch prediction

Pipeline flushes happen as a result of branch instruc-
tions. AMULET3 will minimise the impact of these by
using a branch prediction mechanism which is an enhanced
version of the mechanism used on AMULET2e.

Although AMULET2e predicts branch operations, the
branch instructions are still fetched in order to determine
their conditional status and whether they save a return
address (for procedure entry). This means that a 32-bit
instruction is fetched to obtain five bits of information; this
is clearly inefficient. In AMULET3, therefore, these bits
are stored in the prefetch unit along with the branch target.
When a branch is predicted the instruction is already
present within the processor and therefore the memory
cycle can be avoided. As branches account for 10%-15% of
instructions [17], and the majority of these are cached [18],
this represents a considerable power saving. Furthermore,
this ‘prefetch’ cycle will be considerably faster than a
memory access and this will be exploited automatically by
the asynchronous pipeline.

3.3: Halting and Interrupts

Experience with AMULET2e has demonstrated the ben-
efits of a halt mechanism within an asynchronous system,
especially with regard to saving power [11]. To summarise,



stalling the pipeline at any point will cause the whole pipe-
line to stop extremely rapidly and power consumption to
drop to near zero (there being no clock signals causing fur-
ther transitions); recovery to full-speed operation is equally
rapid. AMULET2e and AMULET3 decode a branch to
itself as a ‘Halt’ instruction and use this to stall the pipeline.

Whereas AMULET2e stalls in the execution stage,
AMULET3 adopts a somewhat cleaner model to halting by
stalling at the prefetch stage. This means that the processor
restarts with an empty pipeline which provides the fastest
possible response, any “rubbish” being cleared out at halt
entry. Halt abrogation is caused by the arrival of an enabled
interrupt.

A reference to figure 3 shows an interesting conse-
quence of this operation – the interrupt signals are fed into
the prefetch unit rather than the instruction decoder. This
rather unusual architectural feature provides both a clean
interrupt model and a low interrupt latency. The assertion
of an interrupt signal is detected and arbitrated into the
prefetch stream in the same way as a new branch; because
the interrupt code begins at a predefined position, the
prefetch unit can then switch its instruction fetch stream in
a way similar to it predicting a branch. The interrupt thus
sends a marker to save the return address (which, like a pre-
dicted branch, can bypass the memory part of the prefetch)
and follows this immediately with the interrupt service
code.
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Figure 3. AMULET3 core organisation.
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3.4: Indirect branches

ARM programs often load the program counter (PC)
directly from memory as part of subroutine returns (and,
less frequently, jump table lookups). When the PC is loaded
from the stack during a subroutine return, it is loaded after
any working registers which are restored as part of the same
load multiple instruction. This ordering – necessary to
allow the processor to recover from a memory fault which
may arise during the load – delays the resumption of
instruction fetching, losing performance.

AMULET3 incorporates an optimisation which exploits
the separate instruction memory port (see figure 3). The
execution unit passes the address of the PC value back to
the Prefetch unit early in the transfer via the branch path,
allowing the Prefetch unit to fetch the PC value and then
start fetching from the return address. The Data Interface
must still perform the PC fetch later to check for a possible
memory fault.

Note that this optimisation requires that the separate
instruction and data ports connect to coherent memories as
the PC was saved through the data port but is loaded
through the instruction port (see section 5).

4: ARM v4T compatibility

Previous AMULET processors achieved full code-com-
patibility with the ARM6 processor, but this instruction set
architecture has been largely superseded by more recent
developments in the ARM family [19]. Particularly in the
market for portable embedded controllers, the 16-bit
Thumb instruction set [13] has been widely accepted
because of its beneficial effects on code density and hence
power-efficiency. In systems with 8- and 16-bit external
memories, Thumb code can also improve performance.

4.1: Thumb code

The Thumb instruction set does not define a complete
architecture; Thumb systems still depend on the underlying
processor supporting the full ARM instruction set for infre-
quent operations such as interrupt handling, and time-criti-
cal routines can run as standard ARM code (usually from
32-bit on-chip memory). Thumb can properly be seen as a
compressed representation of a carefully selected subset of
the ARM instruction set, and a processor which supports it
may do so by means of decompression hardware between
the instruction fetch and decode stages.

The ARM7TDMI supports Thumb in exactly this way.
It employs a 3-stage pipeline which has enough slack in the
decode stage to decompress Thumb code without incurring
any time penalty. The more recent ARM9TDMI has a
tighter 5-stage pipeline where decompression would
require an additional pipeline stage, so instead the design-



ers chose to decode Thumb instructions directly rather than
decompressing them into ARM instructions and then using
the standard ARM decode logic.

The AMULET3 strategy for Thumb code is intermedi-
ate between these two extremes. The elastic nature of the
asynchronous pipeline opens up some options which are
not available when a rigid clocked pipeline is used. The
Thumb decode logic is split into three aspects:
• the time-critical register operand selectors are decoded

directly;
• the immediate field extraction logic works directly on

the Thumb binary codes;
• the remaining decode work is done via decompression

and the ARM decode logic.
Where the depth of the Thumb decode logic is in danger

of compromising the cycle time of the decode pipeline
stage, parts of it can be pushed upstream into earlier buffer
stages. Here they will affect the latency but not the through-
put of the pipeline.

4.2: Program counter tracking

The ARM architecture defines the program counter (PC)
to appear in register 15 in the register file. Here it can be
read and written much like any other register, though the
architecture definition places some restrictions on its use.

The high visibility of the PC is a considerable program-
ming convenience. Position-independent code is easy to
generate, and literals can be picked up from pools near the
code using PC-relative loads (though this practice is dis-
couraged when a Harvard ARM core is used at it results in
inefficient use of the caches). One particularly powerful use
of the PC is illustrated by the standard procedure prologue
and epilogue, where on entry a single store multiple instruc-
tion pushes temporary work register values and the return
address onto the stack, and on exit a single load multiple
instruction restores the work registers and causes a return
by loading the PC directly from the stack.

The value that appears in register 15 is not, however, the
address of the current instruction. The 3-stage ARM pipe-
line increments the PC twice between fetching an instruc-
tion and executing it, so r15 yields the value PC+8 (where
here PCis the address of the current instruction). The ‘+8’
corresponds to the double increment where each increment
is the size of one ARM instruction, namely 4 bytes.

The ARM7TDMI pipeline behaves in exactly the same
way when executing Thumb code, but Thumb instructions
are only 2 bytes long, so r15 yields PC+4 in Thumb code.

In AMULET3, instruction fetching proceeds autono-
mously, independently from the register read process.
Therefore each instruction is associated with its fetch
address (see figure 3) when it is sent to the Decode stage.
The fetch address can then be modified (by adding 8 in
ARM code or 4 in Thumb code) to generate the appropriate

r15 value. This means that a consequence of the earlier,
synchronous ARM implementations imposes a noticable
cost on AMULET3.

There are several other places in the organisation where
adjustments must be made to the PC value to retain com-
patibility with the behaviour of the 3-stage pipeline clocked
ARM. Examples are:
• the procedure return address calculation (PC+4, or

PC+2 in Thumb mode) which is not calculated by the
ALU in AMULET3, and

• the address which is stored on a memory abort (PC+8,
Thumb mode independent).

5: AMULET3 memory organisation

The AMULET3 processor core has separate address and
data buses for instruction and data memory accesses. This
would normally require separate instruction and data mem-
ories; RISC systems frequently employ a ‘modified Har-
vard’ architecture where there are separate instruction and
data caches with a unified main memory.

The AMULET3 controller employs direct-mapped
RAM rather than cache memory as this is more cost-effec-
tive and has more deterministic behaviour for real-time
applications. It also avoids separate instruction and data
memories (and the associated difficulties of keeping them
coherent) through the use of a dual-ported memory struc-
ture (see figure 4). Dual-porting the memory at the individ-
ual bit level would be too costly, so instead the memory is
divided into eight 1 Kbyte blocks, each of which has two
ports which are arbitrated internally. When concurrent data
and instruction accesses are to different RAM blocks, each
can proceed unimpeded by the other; when they happen to
conflict on the same block, one access will suffer a delay
while it waits for the other to complete.
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Figure 4. AMULET3 memory organisation.



Conflicts (and average memory access times) are further
reduced by including separate quad-word instruction and
data buffers in each RAM block. Each access to a block first
checks to see whether the required data is in the buffer.
Only if it is not must the RAM be interrogated, with a risk
of conflict. Simulations suggest that about 60% of instruc-
tion fetches may be satisfied from within these buffers and
many short, time-critical loops will run entirely from here.

These buffers, in effect, form simple 128 byte first-level
caches in front of the RAM blocks. This is a particularly apt
analogy when it is observed that the avoidance of the RAM
array results in a faster read cycle, an occurrence which is
accepted automatically by the asynchronous pipeline.

6: Conclusions

AMULET3 is a third generation asynchronous imple-
mentation of the ARM instruction set architecture. It is
intended for use as a core macrocell to demonstrate the
commercial viability of asynchronous design. Particular
benefits are apparent where low-power consumption and
EMC are important, such as portable telecommunications,
palmtop computers and contactless smartcards.

In order to achieve the performance expected of current
embedded cores, the internal organisation of AMULET3
has been significantly enhanced over previous AMULET
designs. Stalls due to data dependencies are minimised
through the use of a reorder buffer which, while not a new
idea in itself, has required new insights in order to adapt it
to an asynchronous design framework. Circuit-level simu-
lation of those parts which are near completion suggest that
the performance should at least equal the ARM9TDMI.
Preliminary layout indicates a core area of around 4.0 mm2

(ARM9TDMI is 4.8 mm2).
Backwards instruction set compatibility is a source of

complexity in any new processor design. The ARM instruc-
tion set has evolved over the 15 years of its existence into
a dense encoding which, while well-suited to the power-
efficient applications for which it is intended, makes any
new implementation a difficult task. The exposure of the
original 3-stage pipeline in the instruction set definition is
also a source of difficulty for any implementation which
uses a different pipeline organisation. AMULET3 shows
that an asynchronous design framework does not prevent
these difficulties from being overcome.
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