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Abstract—A variant of a sparse distributed memory (SDM) is
shown to have the capability of storing and recalling patterns con-
taining rank-order information. These are patterns where infor-
mation is encoded not only in the subset of neuron outputs that fire,
but also in the order in which that subset fires. This is an interesting
companion to several recent works in the neuroscience literature,
showing that human memories may be stored in terms of neural
spike timings. In our model, the ordering is stored in static synaptic
weights using a Hebbian single-shot learning algorithm, and can
be reliably recovered whenever the associated input is supplied. It
is shown that the memory can operate using only unipolar binary
connections throughout. The behavior of the memory under noisy
input conditions is also investigated. It is shown that the memory
is capable of improving the quality of the data that passes through
it. That is, under appropriate conditions the output retrieved from
the memory is less noisy than the input used to retrieve it. Thus,
this memory architecture could be used as a component in a com-
plex system with stable noise properties and, we argue, it can be
implemented using spiking neurons.

Index Terms—Associative memory, neural networks (NNs),
rank-order codes, sparse distributed memory (SDM), spiking
neurons.

I. INTRODUCTION

THE sparse distributed memory (SDM) [1]–[3] is an inter-
esting form of associative memory [4], popular in both the

computer science [5] and psychology [6] literature as it repre-
sents both an interesting information storage device and a plau-
sible mathematical model of human long-term memory. The
SDM associates two binary vectors and by projecting into
a very high-dimensional intermediate vector , and then asso-
ciating and . The principle is founded on the
distribution of points in high-dimensional spaces, such that any
given point is relatively far from most of the rest of the space
and from other points of interest [1]. In this way, errors can be
made in the reproduction of in the intermediate space without
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significant errors in the reproduction of the final memory in
the output space. The details of this will be expanded upon later.

A. Motivation

Several authors have investigated how an SDM can be used to
store and recall temporal sequences of memories; this is conven-
tionally achieved in a heteroassociative manner, feeding succes-
sive outputs back as the next input. A recent example is the work
by Rehn and Sommer [7], who employ a Willshaw memory
[4] to store associations between successive sparse volleys of
spikes to encode a visual image. Alternatively, an autoassocia-
tive memory may be used to learn and store relative spike times,
as in the hippocampal model by Lengyel et al. [8] where neu-
rons learn to fire in phase patterns relative to the background
theta-wave rhythm.

The original SDM was proposed by Kanerva as a model of
human long-term memory; however, since this seminal work,
much has come to light on the coding of human memories in
terms of temporal properties, i.e., precisely when a neuron fires
relative to others—the rank order of the neurons [9], [10]. In
this paper, we investigate the viability of using the rank order
of firing of a group of neurons to represent information, and
then storing and recalling the firing sequence in an SDM frame-
work. The rank ordering is stored as a single memory, as op-
posed to using the feedback schemes described previously, and
the representation of the memories when stored is purely binary.
An attractive feature of rank-order encoding is its potentially
high information content compared with binary and unordered

-of- encoding.
This paper is part of an ongoing investigation into the feasi-

bility of building a large-scale hardware system for modeling
very large numbers (up to a billion) of spiking neurons, perhaps
using the leaky integrate and fire model [11] and employing
rank-order codes. In this paper, we will not focus on the imple-
mentation of the SDM using spiking neurons, though we will
offer pointers to such an implementation at the end of the paper.

B. Outline

In Section II, we give a brief review of Kanerva’s SDM and
related models. In Section III, we introduce our rank-order
coded SDM model, and present an analysis of its performance
in Section IV. In Section V, we look at the way the performance
of the memory depends on design parameters and scale, and
in Section VI, the memory performance with noisy inputs
is investigated. We discuss possible ways to implement the
memory using spiking neurons in Section VII, and present our
conclusions in Section VIII.
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Fig. 1. (a) CMM. The markers at the wire intersections show the result of a
single write operation, associating the shown input (x) and output (y) binary
vectors. (b) CMM showing a read operation. The markers lying on active input
lines are summed, and thresholded (in this case, the threshold is 3).

II. SDM AND RELATED MODELS

In this section, we review the SDM framework, introduce no-
tation that we will later expand for our own model, and set our
work in relation to the existing literature.

There are two ways to understand an SDM, first as two grids
of intersecting wires, and second in a pure algebraic framework.
Here, we will use both interpretations as this serves to provide
a better exposition of the ideas. The grids are correlation matrix
memories (CMM) [5] and an SDM is made up of two of these. A
CMM has input and output wires arranged in a grid. The task is
to associate two binary patterns and placed on its input and
output wires. If a wire has a bit set to 1, that wire is said to be ac-
tive. For a write operation [see Fig. 1(a)] to the CMM, a marker
is placed wherever two active wires cross. For a read operation
[see Fig. 1(b)], when a new is fed in, any markers that lie on
active input wires are summed and a threshold is applied—any
that reach/exceed the threshold have their output bits set to 1,
otherwise 0. Fig. 1(b) shows the original memory was recalled
in spite of the noise in the output (as a result of other memories
having been written). It has been shown that at asymptotically
large sizes and with sparse coding such memories can achieve a
capacity of 0.7 bits of information per binary synapse [12].

As mentioned, an SDM uses two CMMs, one of which is
fixed and the other is modified as data is loaded into the SDM.
The first CMM uses to recall a high-dimensional vector
which is used to read data out of the second CMM. The first
memory, which we call the address decoder memory (because
of the obvious analogy with a conventional computer random
access memory), associates . The second, which we call
the data memory, associates . In Kanerva’s original SDM
[1], the data memory used up/down counters at the wire inter-
sections; however, here, we restrict ourselves to discussing the
special case of binary connections. A write process consists of
associating to , then associating to . A read process is
simply the presentation of an , resulting in a word-line vector

, which is then used to read a value out of the data memory.
The same model can be described algebraically. The two

CMMs form an association between the input
and the output via the intermediate vector

, where the intermediate dimension . For
example, an input could be .

Note that is a column vector. This is a 3-of-10 code, i.e.,
bits are on, from the total of . The address

decoder matrix is a binary matrix, where is the
number of address decoders. Each row (decoder) in has a
fixed number of bits set chosen randomly from the total .
We note that the SDM address matrix has itself been a focus
of research, however, here it is not of concern to us, and we
default to a random initialization.

A read operation from the memory begins with the genera-
tion of the high-dimensional word-line vector . This is given
by

(1)

This is the inner (dot) product of with each row of , pro-
ducing a column vector, thresholded by the Heaviside function

, setting each element to 1 if it exceeds and to 0 otherwise;
this generates the binary column vector . The data memory
is again a binary matrix, though it is initially empty.
The recall operation from is

(2)

and the result can be evaluated for its fidelity by its Ham-
ming distance from the value originally associated with the input
vector . If we know that the final recalled value has a definite
number of bits set , recall could also be implemented as

(3)

where is the -max function (analogous to -winner-take-all
[13]), setting the largest elements to 1 and setting all other
elements to 0. The recall of the word-line vector could also be
performed with the -max function if required.

A write operation, which associates two such vectors and
, begins again with the recall of a word-line vector as in (1).

Then, the contents of the data memory matrix are updated by

(4)

where is an update operator; this is also known as the Hebbian
or outer product learning rule. The update operator in Kanerva’s
original SDM was simple addition, in which the word vector

was represented in binary unipolar form and the data
was represented in binary bipolar form. As men-

tioned, each connection in required an up/down counter, and
the precision could saturate at a small number of bits without
any degradation of performance in practice. Willshaw’s asso-
ciative memory [4] and Austin’s advanced distributed associa-
tive memory (ADAM) architecture [14] used logical OR as the
update, the latter also using an input preprocessing step called
n-tupling. We will introduce a novel threshold and update oper-
ator later; these form the cornerstone of the model presented in
this paper.

III. RANK-ORDER CODED SDM MODEL

We will now describe the operation of an SDM model that is
capable of storing and recalling rank-order significance vectors
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Fig. 2. Structure of an SDM that uses N -of-M codes. The address decoder
has W outputs that each receive inputs from a randomly selected a of the M
input address elements. For each input address, the v address decoder neurons
with the highest activation fire. The data memory is a fully connectedW �M

correlation matrix memory.

with good accuracy, the accuracy achieved depending on the
memory configuration and loading in a predictable way.

In order to build an SDM based upon rank-order codes we
can start from the structure of the SDM as illustrated in Fig. 2.
This structure is applicable to SDMs using unordered [15] or
ordered -of- codes. For a rank-order coded SDM the ad-
dress decoder layer should be sensitized to the rank order of the
input address and it should generate a rank-order output code on
the word lines (this term is taken from its analogous use in con-
ventional digital memories; word lines are the outputs from the
fixed address decoder logic that each activate a particular word
in the modifiable data array). The data memory layer should be
sensitive to the rank order of both the word-line inputs and the
input data, in order to store and recover the rank order of the
data.

In the course of describing the measures taken to achieve
rank-order sensitivity we will demonstrate two results that we
found surprising when we first encountered them.

— A simple binary-weighted address decoder can be config-
ured to have the required input rank-order sensitivity.

— A simple binary-weighted data memory can be employed
to capture and recover the rank order of the stored data.

Thus, the rank-order coded SDM can employ a structure with
a very similar cost to the unordered -of- SDM, and the ad-
ditional information content in the rank order can be stored and
recovered at very little additional cost.

A. Representing a Rank-Order Code

There are several alternative ways to represent the rank-order
firing sequence of a set of neurons. One way to represent a rank-
order code is as an ordered list of indices, each index having
a value in the range 1 to and no two indices having the same
value. The first list element represents the first firing neuron; the
last element represents the th firing neuron. For example, the
rank-ordered 3-of-6 code is used to represent a group
of six neurons in which neuron number 4 fires first, neuron 3
fires second and neuron 1 fires last.

The ordered list representation can be expanded into a fully
occupied rank vector of size where elements are set to the
relevant rank and ( - ) are 0. In the previous example, the

rank vector is third, 0, second, first, 0, 0 . More useful than
this representation is a similar rank vector where the elements
represent the significance of each firing neuron. The concept
of significance reflects the assumption in a rank-order model
that some positions in the order are more important than others.
Typically, the significance associated with a rank-order input re-
duces monotonically (but not necessarily linearly) as more neu-
rons fire, hence the first firing neuron is the most significant. In
general, we can associate a numerical significance with the
th firing neuron and employ the significance vector

(5)

to represent the rank-order code. We will generally assume that
the significance vector has been normalized, so that

(6)

An example of this is , which is
then scaled to unit length, yielding the normalized significance
vector .

Thus, all significance vectors lie on the surface of the first
quadrant of the unit sphere in an -dimensional space, though
their distribution on this surface is far from even—each vector
represents a different permutation of the same set of coordinates.
We will employ a geometric significance function where for all
, we have , where is the geometric significance

ratio and the ordered significance values form
a geometric series. Throughout the rest of this paper will take
the value 0.9 except where otherwise stated.

The normalized significance vector representation turns out
to be extremely useful in comparing two codes—we will de-
scribe the issues surrounding this in Section III-B.

B. Comparing Two Rank-Order Codes

Comparing two unordered -of- codes is straightfor-
ward—the number of bits that differ between the two codes
is simply the Hamming distance between them. It is therefore
easy to judge the quality of a recovered -of- code by
calculating the Hamming distance between it and the original
code stored.

Comparing rank-order codes is potentially more complex.
Here, errors may arise because of misplaced components
as with -of- codes, but in addition there can be errors
in the order of firing. For example, if the correct code is

an incorrect code with a misplaced
component is and an example of an
incorrect code with an order error is .
Both classes of error are captured if the measure of similarity
of two rank-order codes is based on the scalar (dot) product of
their respective (normalized) significance vectors. If and ’
are the significance vectors of two rank-order codes that we
wish to compare for equality, for example to establish whether
or not we have recovered a rank-order code from a memory
without error, we can use the test

(7)
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Similarly, if we wish to allow for a certain level of error in the
system, we can employ a weaker criterion by setting a threshold

and using the test

(8)

The dot-product threshold test is equivalent to using the
Euclidean distance between the significance vectors in the

-dimensional space they occupy as a similarity metric, and
for small distances this is very close to measuring their separa-
tion on the surface of the unit sphere in that space.

If we employ the threshold criterion to allow for errors, then
we are mapping a number of rank-order codes together, thereby
reducing the number of codes we view as distinct and the effec-
tive information content of each code. This is discussed in more
detail in Section III-C.

It is of interest to note that, in the case of unordered -of-
codes, the nonnormalized scalar product is linearly related to the
Hamming distance . The relationship is

(9)

which may be explained by observing that the number of jointly
active bits in and is equal to the total number of active bits

less the number of bits that are active in but not in
.

It may be useful to get a feel for the effect of different sorts
of coding errors on the scalar product. Here, we illustrate the is-
sues using an 11-of-256 rank-order code, which is the code we
use throughout this paper. The choice of
is not intended to be optimal, and is simply illustrative. It also
helps comparisons of this paper with our previous work on un-
ordered -of- codes, where we also used 11-of-256 codes
[15]. The memory is entirely functional beyond ; sev-
eral experiments were performed with larger . The limiting
factor is the calculation of the information efficiency, which we
describe in Section IV-A. Our current algorithm is computation-
ally intractable for values of much greater than 11.

Using an 11-of-256 rank-order code with a geometric signif-
icance ratio of 0.9, we observe the following.

— If the population of firing neurons is preserved but the
order information is lost, the expected scalar product is

. Thus, any re-
sult greater than 0.9 has preserved the firing order, at least
in part.

— If the last neuron in the rank order is lost but the order of
the others is preserved, the scalar product is 0.974. Any
result greater than this must have preserved the population
information in its entirety.

— An error in the order of firing of the two least-significant
neurons gives a scalar product of 0.9997; an error in the
order of firing of the two most significant neurons gives a
scalar product of 0.998. Local errors of order are therefore
minor compared to population errors or significant loss of
order.

We have illustrated that measuring the “distance” between
two rank-order codes is not as simple as with simple binary
codes, and that a dot product between significance vectors can

be a useful measure. In Section IV-A, we will consider an infor-
mation theoretic view and characterize the Shannon information
content contained in the different coding schemes.

C. Rank-Order Address Decoder Matrix

A problem noted earlier with the unordered -of- address
decoder was that it was not possible to control the precise
number of address decoders that fire [15]. This is because
the Hamming distance distribution is very coarsely stepped,
leading to a large and variable number of address decoders
sharing the same Hamming distance at the threshold level used
to discriminate those that are active. As there is no way to select
a subset of this group either all or none must be active, so sig-
nificant variation in the number of firing address decoders must
be accepted, with detrimental consequences for the efficiency
of the memory. Rank-order codes give a much smoother range
of dot-product values, enabling the number of address decoders
that fire to be controlled more precisely.

Earlier work on neurons sensitized to rank order [9] required
the neurons to have connection weights that can take a range of
values. This has a higher cost than the address decoder in the

-of- SDM which employs binary address decoder weights.
However, although an individual neuron requires multivalued
weights in order to be tuned to a particular input rank-order
code, the same is not true of a population of neurons. This is
because each member of the population samples from the input
set independently.

If the firing order of two address inputs with significances
and is reversed this will not be detected by a binary ad-

dress decoder neuron that samples both inputs since
. However, it will affect the relative activation levels of

address decoder neurons that sample only one of these two in-
puts, and their activation relative to a neuron that samples both.
Since far more neurons sample one than sample both this is suf-
ficient for the address decoder population to display strong sen-
sitivity to the input rank order.

For example, if there are 11-of-256 binary address
decoder neurons each sampling from an 11-of-256 rank-order
input address, on average, 338 decoders will sample only one
of any particular pair of inputs and seven decoders will sample
both. Only those decoders that receive among the highest total
activations will fire, and of the top 50, on average, just over 19
sample only one of the pair of inputs and two sample them both.

Thus, address rank-order sensitivity can be achieved with a
binary-weighted address decoder matrix with only minor ambi-
guities resulting from the use of binary rather than multivalued
weights.

D. Rank-Order Data Memory Matrix

The unordered -of- SDM uses single-bit connection
weights between address decoder neurons and data neurons,
and is able to store and retrieve unordered -of- data words
with a performance similar to the correlation matrix memory
that forms the basis of the data memory layer.

In order to store rank-ordered -of- codes, it is natural to
consider using multivalued connection weights. When an ac-
tive address decoder connects to an active data input, an ob-
vious approach is to set the connection weight between them
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to a function of both the rank of the firing address decoder and
the rank of the associated data input, for example the product of
the two significance values. If a subsequent write operation ac-
tivates the same address decoder and data input pair, a decision
must be taken whether and how the weight should be updated.
One possibility is to use a function that selects the maximum of
the existing weight and the new weight value, leading to weights
displaying a monotonic increasing behavior over time.

However, as with the address decoder, a data memory that can
store a range of different weight values will have higher cost
than the binary memory used in the -of- SDM. Therefore,
we sought an algorithm that allows rank-order codes to be stored
in a binary data memory.

Clearly, if rank-order information is to be recovered from a
binary memory, the order must be represented somehow in the
way a data value is stored. The technique used here is to write
that data into the memory in a way that causes the number of
memory bits that are set to depend on the rank of the data bit.
Thus, if the address decoder activates word lines, the most
significant data bit will be represented by , the second data
bit by , the third by , and so on. is the
skew—the difference in the number of set in data lines of
adjacent significances. If both input data and word-line codes
use the same geometric significance and the skew this
can be achieved by a weight update as follows:

(10)

if then (11)

where is the significance of the word line, is the sig-
nificance of the data bit, is the significance of the
least-significant active word line, is the significance of
the most significant active data bit, and is the strength of
the synapse connecting this word line to the data neuron in
question. Note that here we assume that the number of active
word lines is greater than the number of active data lines.

For skew , we can achieve the desired pattern of written
by setting a different significance ratio for the word lines.

It can be shown that, for skew , we must have

(12)

(for example, we will use and to give a
skew of 3 in Section VI) and then apply (10) and (11) as before.
If we imagine for a moment that the word lines and data bits are
reordered so that the most significant values are to the top-left
of the data memory and then decreasing significance moves us
right across the data bits and down across the word lines, then
the effect of a write operation is to set a trapezoidal area of the
data memory to 1 (where, in the equivalent -of- SDM, we
would have set the circumscribing rectangular area to 1). This
is illustrated in Fig. 3.

E. Reading and Writing Rank-Order Memories

Both reading and writing operations start with the recall of
a word-line significance vector , which is associated with an

Fig. 3. Write operation in the data store matrix. If the word-line inputs are
sorted so that the most significant is at the top, and the data input lines sorted
so that the most significant is at the left, then a write operation is performed by
setting all the data store locations within the trapezoid to one (whatever the value
was before the write operation). The slope on the bottom edge of the trapezoid
is the means of recording the order of the data inputs.

input address (also in significance vector form), through the
address decoder matrix

(13)

The function is the -max function described earlier except
that here it retains the values of the top elements rather
than replacing them with 1. The function is a novel compo-
nent of our model. It accepts a vector and replaces the nonzero
elements (here, there are 23) with their corresponding signifi-
cance values. Thus, the largest element is replaced with , the
second largest with , the third largest by , and so on, until
the 23rd element is replaced by . Then, the vector is normal-
ized to unit length. The value is the geometric significance
ratio introduced earlier.

Once the word-line vector has been recalled the read opera-
tion proceeds as follows:

(14)

This comprises taking the dot product of with each column
in , and then, applying the and operators as before to
yield an 11-of-256 significance (column) vector. The fidelity of
recall will be discussed in Section IV-C.

A write operation begins with the recall of the word-line sig-
nificance vector as in (13). Then, the write operation into the
data memory is

(15)

where indicates logical OR. We term this the thresholded outer
product learning rule. The threshold is defined in (10) in
order to create a trapezoidal area within . The use of logical
OR causes the occupancy of the data memory to increase mono-
tonically, which means that after a certain number of write op-
erations most of the weights will be set to 1, resulting in poor
recall performance. However, we will show that careful settings
for the parameters can maintain good performance for several
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TABLE I
NUMBER OF CODES REPRESENTABLE UNDER BINARY ANDN -OF-M SCHEMES

thousand write operations. This will be apparent in the results
presented in Section IV-C.

IV. ANALYSIS OF THE RANK-ORDER CODED SDM

A. Information Content of Rank-Order Codes

If rank-order codes are to be stored in an associative memory,
we require that they are recovered with little error; we will use
the dot product and threshold as the basis for comparisons as
discussed earlier. When a threshold less than 1 is used, given
any particular reference code, a number of rank-order codes will
have a dot product with that reference code that exceeds the
threshold. The information conveyed by a matching code will
be reduced accordingly. In this section, we analyze the informa-
tion content of rank-order codes under the dot-product threshold
matching criterion.

A valid -of- binary code consists of exactly asserted
bits selected from a total of bits. -of- encoding combines
a relatively high information capacity with intrinsic self-timing
properties [16]. Without external synchronization it is impos-
sible to detect when a binary code has stopped changing state
and is valid, whereas an -of- code is valid when exactly
of the bits have been asserted or, in the case of a neural layer,
when exactly of the neurons have fired. Furthermore, for
small values of , sparse codes provide relatively high repre-
sentational capacity with only a few active bits.

Rank-order codes share the same properties as unordered
-of- codes—intrinsic self-timing, and high information

capacity with a few active bits—with the addition that the
information capacity is greatly increased; there are times
as many rank-order -of- codes as there are unordered

-of- codes.
Table I shows formulas for the numbers of codes for -bit

binary, and unordered and ordered -of- schemes, to-
gether with the values these formulas yield for the examples of
11-of-256 codes (used in the rest of this paper) and 200-of-1000
codes. Taking the log of these values tells us the information
content of the coding scheme. The information content of
a rank-ordered -of- code is bits,
which is greater than the information content of
an unordered code. For example, an 11-of-256 rank-order
code carries 87.7 bits of information whereas the unordered
11-of-256 code carries 62.4 bits. The 200-of-1000 case il-
lustrates that a rank-order code may have more information
carrying capacity than a binary code of the same length.

Let us consider all possible rank order -of- codes. When
compared with a selected reference code each would have a def-
inite scalar product. We can find the information content (mea-
sured in bits) associated with a particular threshold by counting
the number of codes whose scalar product with the refer-
ence code is greater than or equal to the chosen threshold

(16)

If the threshold , then the number of codes
and the information content . Thus,
the information content can be increased by increasing while
holding constant, so keeping the activity and, in a physical
system, the power requirement constant.

In calculating the scalar product between the reference code
and the test code only the overlapping nonzero values need be
considered. We can divide the whole range of test codes into
groups determined by the number of overlapping values
ranging from down to zero. Within each group we can choose
the values from each code which overlap; there are dif-
ferent ways of choosing each set and these may be permuted
to yield different arrangements each having its own scalar
product. Thus, there are scalar products to
calculate. All we need now is to calculate the number of test
codes which give rise to each scalar product and this is de-
termined by the number of possible arrangements of the other
(zero) terms. There are ways of arranging the 0’s in
the reference code. In the test code, the number of ways we can
arrange the unused items among the
0’s is . Thus, each scalar product is
repeated times.

Fig. 4 shows how the information content of an 11-of-256
rank-order code with a geometric significance ratio of 0.9 varies
with the (normalized) dot product. The equivalent data is also
shown for an unordered 11-of-256 code for comparison—here,
the dependency of information content on dot product is stepped
due to the discrete nature of the Hamming distance metric.

B. Address Decoder Ambiguities

When multiple address decoders sample exactly the same
subset of the active address inputs they produce identical activa-
tions, thereby creating an ambiguity in the ensuing rank order.
The number of clashes in the address decoder activation levels is
illustrated in Fig. 5, where it can be seen that the problem shows
a decreasing trend as the number of 1’s in each address decoder
is increased, although the trend is by no means monotonic.

Fig. 5 was generated using statistical sampling, but we can
understand it by observing that it is displaying the expected
number of ambiguities in the top values from a random sample
of values taken from all possible address decoder activations.
More generally, we have an address input vector of length
where exactly of the inputs are nonzero and follow a geo-
metric progression with factor . We select of the values
and sum them to form the activation of one address decoder. The
sums from all possible arrangements are sorted into numerical
order and the top fraction are selected. Within this
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Fig. 4. Information content (in bits) of 11-of-256 rank-order (solid line) and
unordered (dashed line) codes versus the normalized mean dot product using a
geometric significance ratio of 0.9 for the rank-order codes. A dot product of
1 corresponds to an exact match with an information content of 87.7 bits for
the rank-order code, 62.4 bits for the unordered code; a threshold below 1 treats
codes that are close (as measured by their separation in the 256-dimensional
significance vector space) as conveying the same information, thereby reducing
the total number of distinguishable codes and, hence, the information content
of each code.

Fig. 5. Average number of duplicated address decoder activation levels among
the top v = 23 address decoders as a function of the number a of 1’s in each
address decoder. The inputs are rank-order 11-of-256 codes with a geometric
significance ratio of 0.9, the address decoders use a-of-256 binary weights, and
there are W = 4096 address decoders.

group, a random selection of is made. The number of dupli-
cates is the difference between the total number selected and
the number of distinct values represented in the selection.

We calculate all the possible sums, noting that each is a sum of
components (many of which are zero). Since the components

are sampled from a geometric series, each sum can be formed
only one way. If , the maximum number of distinct sums
is .

Next, we select the cases (where is the total number
of cases) with the highest sums by first sorting them in order
of value and then counting off the number of ways each sum
could be generated until the total comes to . This group has
a number of distinct sums, say for to , each with a
number of ways that the sum can be generated.

Now, let us consider the problem of counting duplicates when
sampling from a population. If the probability of a particular
object being chosen is , then, the probability of it being chosen

times in samples is given by the binomial distribution and the
expected number of samples for any particular object is .
If the object is chosen times, the number of duplicates is

unless , in which case . Therefore, the expected
number of duplicates is

(17)

From this, we can deduce the total number of duplicates in
our address decoder activation levels

(18)

This formula has been found to give the same results as the
numerical sampling method used to produce Fig. 5. In order to
reduce sorting ambiguities to a level that has minimal impact
on the memory performance we employ address decoders with

bits set; this value is not intended to be optimal.
The characteristic “humps” displayed in Fig. 5 arise from the

discrete nature of the calculation. For any given number of bits
set in the address decoder, only a fraction of these will match
the input word. The greatest contribution to the number of du-
plicates will tend to come from the set where, say, exactly
matches occur. A larger number of bits in the address decoder
will give rise to a case where the number of duplicates is dom-
inated by matches. Between these two cases both sets
with matches and sets with matches contribute signifi-
cantly. Thus, as the number of address decoder bits increases the
number of duplicates alternates between arising from a single
set and arising from a pair of adjacent sets, giving rise to the
oscillatory nature of the curve.

C. SDM Performance

The performance of a rank-order SDM under error-free input
conditions is shown in Fig. 6, along with the performance of
an equivalent memory optimized to use unordered codes [15].
The graph illustrates how the occupancy (the proportion of bits
in the data memory set to 1) increases as the number of stored
symbols increases. As the occupancy increases the quality of the
recovered data decreases, where quality is indicated by the mean
scalar product of the significance vectors of the data readout
with those of the data originally written. This quality can be con-
verted into a measure of the information per symbol (referring
back to Fig. 4) which, when multiplied by the number of stored
symbols, yields the usable information content of the memory.
This can in turn be divided by the number of bits in the data
memory to give an information efficiency measure

bits bit (19)
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Fig. 6. Performance of binary rank-order (solid lines) and unordered (dashed
lines) SDMs. The address and data symbols employ 11-of-256 codes and both
memories have 10 000 hard locations. In the rank order memory, the address
decoders employ 21-of-256 codes, 23 word lines are active in each read and
write operation, and a geometric significance ratio of 0.9 is used throughout.
The unordered memory uses address decoders with 24-of-256 codes and a match
threshold of 5 bits, resulting in an average of 15 active word lines. The infor-
mation efficiency is the number of bits of information stored per writable bit of
data memory; the mean dot product is a measure of the fidelity of the output
from the memory; the occupancy is the proportion of writable bits in the data
memory that have been set to 1.

where is the number of stored symbols, is the quality of
the output as defined previously, is the information content of
each symbol as a function of the output quality as given by (16),

is the number of rows, and is the number of columns in
the data memory.

The information efficiency displays a maximum value of
around 0.33 bits/bit, somewhat higher than the maximum
information efficiency of the unordered -of- SDM with the
same memory size. The maximum in the information efficiency
is a consequence of the quality of the recovered data falling
faster than the number of stored symbols increases, beyond a
certain memory loading.

The information content of a binary correlation matrix
memory is at a maximum when the occupancy is 50% [4], but
the information efficiency maximum here is at an occupancy of
around 65%. This suggests that the memory modeled here is
not optimized with respect to all of its parameters, but we have
not yet been able to improve on this performance.

V. SCALABILITY AND OPTIMIZATION

The performance of the rank-order SDM depends on several
parameters, and in this section, we explore the parameter space
and investigate the way the performance of the memory scales
with its size.

In Fig. 7, we see the effect of varying the number of ac-
tive address decoders. With 10 active decoders the output
quality is very low as there is insufficient redundancy in the
stored data for it to be recovered reliably. With 40 or more ac-
tive decoders the memory is filled too rapidly and interference
between stored symbols adversely affects performance. The op-
timum number of active decoders is around 20. (This result

Fig. 7. Output quality (mean dot product) of a binary rank-order SDM with
10 000 address decoders as a function of the number of stored symbols with
10–100 address decoders active in each read and write operation. With ten active
address decoders there is insufficient redundancy and the output quality is low.
With 40 or more active address decoders the memory fills up and interference
between stored symbols causes a loss of quality. The optimum number of active
decoders is around 20, reducing somewhat as the number of stored symbols
increases.

Fig. 8. Information efficiency of a binary rank-ordered SDM withW = 10 000
address decoders as a function of the number of symbols stored with v =
10–100 address decoders active in each read and write operation. With ten ac-
tive decoders the efficiency continues to rise, but at the expense of output quality
(see Fig. 7). The optimum number of active decoders is again in the region of
20.

depends only very weakly on the total number of address de-
coders.)

The impact of the number of active address decoders on
the information efficiency of the memory is illustrated in
Fig. 8. Again, we see the optimum performance is achieved
with around 20 active decoders, although the efficiency of the
memory with ten active decoders is continuing to improve at
the expense of a very low-quality output (as seen in Fig. 7). In
fact, the peak information efficiency occurs in a memory with

16 active address decoders, but this results in poor output
quality, and 23 active address decoders (as used to produce
the results shown in Fig. 6) gives a good compromise between
information efficiency and output quality.
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Fig. 9. Information efficiency of a binary rank-ordered SDM with v = 23 ac-
tive address decoders as a function of the number of stored symbols where the
memory has a total ofW = 2000 to 10 000 address decoders. The performance
is almost independent of the size of the memory, improving slightly with the
larger sizes. This demonstrates the scalability of the SDM.

The scalability of the memory is demonstrated in Fig. 9,
which shows how the information efficiency of an SDM with

23 active address decoders varies with the number of stored
symbols for several different memory sizes, from 2000
to 10 000 address decoders (and data storage locations)
in total. The peak information efficiency is almost independent
of the size of the memory, increasing slightly with the larger
memory sizes. The number of stored symbols at the peak effi-
ciency increases proportionately with the size of the memory.

VI. INPUT ERRORS

So far we have considered the operation of the rank-order
SDM only under error-free input conditions. If, for example,
the address used to recover information from the memory is not
identical to the address originally used to store the information,
but has been corrupted by some source of noise or error, then
how will the memory perform?

In order to assess the performance of the memory under error
conditions we need to define the sorts of errors that we might ex-
pect to arise. The approach we have taken is to test the memory
with a set of addresses whose quality is defined by the mean
scalar product of a (reference) set used to write the data with the
(noisy) set used to recover the data. We can then assess whether,
and under what conditions, the quality of the recovered data is
better than the quality of the set of addresses used to recover that
data. In an autoassociative memory, this will indicate whether
repeated cycling through the memory will result in convergent
or divergent behavior.

The generation of a set of addresses with a given mean scalar
product with a reference set is potentially problematic as order
and/or population errors can be used in any mix to reduce the
mean scalar product below 1. We approach this by employing
an autoassociative SDM where, as we increase its loading, we
read out sets of data (where the stored values were originally the
same as the addresses) with progressively decreasing quality.

Fig. 10. Quality of the output (measured as the mean dot product of the output
with the correct output) of a rank-order SDM versus the quality of the input ad-
dress set. The memory has 4096 hard locations and v = 50 word lines are active
in each read and write operation. Address and data symbols employ 11-of-256
codes. A geometric significance ratio of 0.9 is used throughout the memory
except for the word lines which use a geometric significance ratio of 0.9655 in
order to increase the order-preserving property of the memory in the presence of
noisy inputs. The diagonal line indicates equal input and output quality; the op-
erating region above and to the left of this line (where the memory has lower oc-
cupancy) is where the output from the memory is, on average, of higher quality
(i.e., contains fewer errors) than the input.

We then use these sets of data as the address sets for testing the
performance of a second SDM.

The results of this investigation are shown in Fig. 10. Here,
the input address quality is plotted against the output data
quality for a range of memory occupancies (corresponding to
the number of stored patterns increasing from 400 at 0.13
to 4000 at 0.66 in steps of 400). The results show that
the memory has convergent properties when the occupancy is
below 50%, with stable quality level (indicated by the inter-
section of the curve with the broken diagonal line) decreasing
as the occupancy increases towards this level. For occupancies
above 50%, the memory is divergent and the quality of the
output is always lower than the quality of the input under
the operating conditions investigated here. While some of the
curves at higher occupancies have shapes that suggest they may
intercept the diagonal in Fig. 10, this will be at input and output
qualities that are too low for the rank ordering to offer any
benefit over unordered codes, so this has not been investigated
further. The memory used to produce these results has a larger
number of active word lines (50 rather than 23) in order to
provide a greater redundancy of storage and, hence, of error
tolerance than the memory optimized for error-free addresses,
and uses a higher significance ratio for the word lines in the
data memory to cause the difference between the number of
bits set for any data bit and the number set for the adjacent
bits—the skew —to be 3 rather than 1, in order to offer greater
resilience to noise in the storing of the order information.

These results offer a different perspective on the useful in-
formation capacity of the memory. If the memory is viewed as
a component in a multilayer system operating on noisy data,
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Fig. 11. Performance of the rank-order SDM with input and output errors. The
memory has 4096 hard locations and v = 50 word lines are active in each read
and write operation. Address and data symbols employ 11-of-256 codes; the ad-
dress decoders employ a 21-of-256 code. A geometric significance ratio of 0.9
is used throughout the memory except for the word lines which use a geometric
significance ratio of 0.9655. The operating point of the memory for these tests is
where the input address and output data qualities are equal. The peak informa-
tion efficiency is 0.15 bits/bit when 2400 symbols are stored in the memory; at
this operating point the mean input and output quality is 0.967 and each symbol
stores 67.6 bits of information.

then it is important that it does not degrade the quality of the
information that passes through it. Thus, we can view the stable
quality point as indicative of the maximum usable information
content of the memory. Using this view, we obtain the results
shown in Fig. 11. The peak information efficiency is lower than
for the memory with error-free addressing, but 0.15 bits/bit is
still achieved.

VII. IMPLEMENTATION WITH SPIKING NEURONS

A. Spiking Rank-Order Neural Layer

A rank-order neural layer should display sensitivity to the
rank order of the address input and it should produce a rank-
order coded output. Sensitivity to the input address rank-order is
realized by shunt inhibition that causes the gain of every neuron
to diminish with each firing input [17] (see Fig. 12). In our SDM
model presented in this paper, this process is abstracted into the
significance vector representation of the input address. An in-
dividual neuron may be tuned to a particular input order by as-
signing a monotonic decreasing series of synaptic weights with
the largest connecting the first input neuron to fire, the second
largest the second to fire, and so on. However, as discussed in
Section III-C, a population of neurons can be sensitive to input
rank-order using simple binary weights.

The response of each neuron is the scalar (dot) product of the
input significance vector and the individual neuron’s synaptic
weight vector. The output rank order can then be generated
by ordering the individual responses with a cutoff after the re-
quired number. The output from the neuron most closely tuned
to the input will fire first, the second most closely tuned will fire

Fig. 12. Possible architecture capable of detecting and generating rank-ordered
N -of-M codes. The feedforward shunt inhibition on the input side is used to
reduce the gain of the main bank of neurons, thereby making them sensitive to
the rank order of the inputs. The feedback reset inhibition on the output side is
used to prevent the number of neurons that fire in each burst exceeding N .

second, and so on until the required number of neurons has fired.
The cutoff can be implemented using inhibitory feedback neu-
rons that count the firing outputs and then inhibit further firing
once the required number of outputs has fired [17] (again illus-
trated in Fig. 12), but, here, we again abstract the details into
the rank-order model by enforcing a cutoff. This is a form of
generalized winner-take-all circuit that has been studied in the
past [13]. We have shown elsewhere that the abstract rank-order
model can be implemented using systems of spiking neurons
with appropriately chosen dynamics [18].

Biological neurons are noisy and will not generally conform
strictly to the regimented rank-ordered firing scheme that is the
basis of the work described here. Erroneous spikes are likely to
upset our model significantly, so we cannot claim at this stage
that the model described here offers an accurate analogy of a bi-
ological memory system. Similarly, real data is unlikely to per-
form as well as the random data we have used as it will not be
distributed evenly in the high-dimensional space the data oc-
cupies, and data where the number of nonzero elements is not
fixed will create problems for the dot-product metric we have
used. Further work is required to investigate the possibility that
the rank-order model might offer a partial description of a bio-
logically plausible system.

B. Geometric Significance Ratio

The use of a geometric significance ratio, as described ear-
lier, can be supported (as a reasonable approximation) on the
following grounds. First, we require that the shunt inhibition
(see Fig. 12) has the effect of dividing the total excitory input
by some factor [19], which we will implement using multiplica-
tion by a factor less than 1. This means that the activation of
an individual neuron (here, we use the leaky integrate-and-fire
model) can be described in the following form:

(20)

where is the “leaky” time constant, are the input connec-
tion weights, are the inputs (assumed here each to be a time
series of delta function spikes), and is the shunting inhibition
factor.
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We assume further that the inhibition follows a similar leaky
integrating form

(21)

where the resting value (in the absence of inputs) is 1, is the
time constant, and is a scale factor.

If the input burst representing a rank-order code is equally-
spaced over time, with a separation between consecutive input
spikes, then, the th input will be modulated by

(22)

where, if we use and, then, set , we
obtain the geometric relationship , as required to
support the geometric significance ratio model. Now, clearly it
has required several assumptions to get to this result, but this
does show that the geometric significance ratio may be a rea-
sonable working approximation to a plausible implementation
using leaky integrate-and-fire neurons.

VIII. CONCLUSION

We have presented an SDM that is capable of storing and
recovering rank-order codes with a high degree of robustness.
The memory employs only binary synaptic weights, those in
the first (address decoder) layer being fixed and those in the
second (data memory) layer being updated to store data as it
is presented to the memory. For the toy learning problems we
used, such a memory can store data with an information effi-
ciency of over 0.33 bits/bit of data memory; it is expected that
when the memory is scaled up to inputs of several thousand
bits, efficiency will be higher still, though perhaps not as high
as the asymptotic efficiency of an unordered correlation matrix
memory [12].

We have adopted a measure of similarity between two rank-
order codes based on the dot product of their representations as
significance vectors, a measure that captures errors in both order
and population, and defined the quality of a set of codes in terms
of the mean of the dot product of each member of the set with
the corresponding member of an error-free reference set. Using
this measure, we have shown that under low load a memory can
produce output data that has higher quality than the input data,
i.e., it has error-correcting abilities in the presence of noise. The
information efficiency of the memory at the stable quality point
(where the output data quality is no worse than the input address
quality) can be over 0.15 bits/bit of data memory.

We have thus shown that a simple binary SDM can be used to
store and recover rank-ordered codes with good efficiency and
that the memory has appreciable error-recovery capabilities that
render it usable in complex noisy systems.
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