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We argue that all embodied organisms, whether robots or animals, face the same
challenge: of adapting to bodies, brains and environments that undergo constant
and inevitable change. After highlighting the evidence for the universal role of a
class of molecular factors called neurotrophic factors in the response of animals to
this challenge, we suggest that implementing models of neurotrophic interactions on
robots may confer on them the adaptability and robustness exhibited by animals. We
brie°y review a mathematical model of neurotrophic interactions and then discuss
its application in a robotic context. Finally, we examine the potential, or otherwise,
of our approach to developmental robotics.
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1. Of robots and men: a manifesto

The Declaration of Independence asserts that `[w]e hold these truths to be self-
evident, that all men are created equal: : : ’. Yet, as any student of developmental
biology knows, conspeci¯cs of a given vertebrate species, and to a lesser extent of
a given invertebrate species, di®er often quite dramatically in their detailed mor-
phologies. And even if all conspeci¯cs were created equal, necessary di®erences in
experience and life would rapidly ensure that they do not remain equal in their
detailed morphologies for very long.

All animals, whether vertebrate or invertebrate, undergo an elaborate develop-
mental programme, during which their bodies and brains are built (and some-
times rebuilt during metamorphosis), with this programme often extending into
the post-embryonic period. In vertebrates, a quintessential feature of ontogenesis
is programmed cell death (Gilbert 2000); cell death also occurs during invertebrate
development (Truman 1984), but we shall focus here on vertebrate development. For
example, programmed cell death carves out the ¯ngers and toes of the developing
foetus. Small di®erences between the genetic programmes and embryonic environ-
ments of conspeci¯cs can lead to large di®erences in the resulting organisms (Edelman
1993), with, for example, skeletal and muscular structures often di®ering dramati-
cally: students new to the dissection room are frequently surprised by missing or
unusual muscles in their cadavers.

One contribution of 16 to a Theme `Biologically inspired robotics’.
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If the bodies of conspeci¯cs di®er, then their brains must accommodate these
di®erences in order to control them. Extensive cell death occurs during neuronal
development too (Purves & Lichtman 1985), with often up to half to three-quarters
of all neurons in a given structure dying during early development. This cell death
occurs principally during a phase of neuronal development called target innervation,
during which neurons send out axons to make synapses with their intended targets.
Their targets may be, for example, muscles or other neurons. Once contact is estab-
lished, their targets supply molecular factors, called neurotrophic factors, on which
the survival of the innervating neurons depends. If a neuron receives too little factor,
it dies. The target innervation and the neuronal death that result therefore consti-
tute an adaptive mechanism by which a brain can learn about its body. The neuronal
pool that innervates a muscle, for example, ends up at about the right size for that
muscle: had the muscle contained more ¯bres, more neurons would have survived;
had it contained fewer ¯bres, more neurons would have died.

But the need for the brain to adapt to its body does not end at birth. Vertebrates do
not emerge into the world fully grown. Mammals, for example, grow slowly during the
pre-pubescent phase and undergo explosive growth during puberty. As any pubescent
human male knows to his embarrassment, the growth of the vocal cords is so rapid
that strict control is lost. Yet the brain adapts, and eventually the cords are brought
back under control.

This kind of `programmed’ growth is not the only change that occurs during the
post-natal phase, though. Bodies experience wear and tear, minor accidents occur,
and perhaps new motor skills are required to survive environmental changes. For
example, in response to the loss of a limb or an eye, the neuronal maps representing
those parts of the body undergo change, with the neuronal representation of the
absent extremity shrinking. The sensory systems of animals also routinely deviate
from expected norms. This is well illustrated in the visual system. Animals can
su®er from: strabismus, in which the eyes do not look at the same point at the
same time; various degrees of myopia and hyperopia; and astigmatisms, in which
the cornea has an irregular shape and leads to problems in bringing objects into
focus, are common. Experimental studies have revealed that these di®erences in
sensory systems lead to changes in their underlying neuronal representations. To all
these day-to-day processes, then, the body adjusts, and the brain must adjust to
compensate, to regain precise control or representation of its body.

Myogenesis largely ends before birth, and the changes in muscular size and strength
that occur during a life-time take the form of changes in ¯bre size and physiology.
Thus, the pool of neurons that innervates a muscle does not need to change in
size during post-natal changes, but the neurons do need to adapt their control of
the muscle, changing motor pools and the detailed physiology of the neuromuscular
synapses. Similarly, post-natal changes in the sensory representation of the body
and in the sensory representation of the environment occur not by cell death, but
by synaptic rearrangement (Purves & Lichtman 1985). Synaptic rearrangement is
frequently competitive in character, and depends on neuronal activity. More active
neurons tend to be at an advantage during synaptic rearrangement and end up with
more complex axonal arborizations and greater numbers of synapses than less active
neurons innervating the same structure.

During these post-natal changes then, neuronal birth and death (largely) do not
occur, but synaptic birth and death do. Recent experimental evidence, reviewed,
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for example, in McAllister et al. (1999), indicates that neurotrophic factors are also
implicated in this later synaptic growth and rearrangement, in addition to their role
in earlier neuronal death. We are therefore presented with a view of neurotrophic
factors in which they are intimately involved during all stages of life in the tuning
of a nervous system to its body and to itself as the body and the brain undergo
development, growth, wear and tear, injury and decay (Purves 1988, 1994). Devel-
opment, plasticity, learning and adaptation, on this view, are not separate, distinct
processes, but form a continuum on the line of actions of neurotrophic factors at
di®erent phases in the life cycle.

Of what relevance are neurotrophic factors to robots? Man may try to create all
robots equal, but usually he fails. Di®erences in motor performance or sensory acuity
ensure that no robot is an exact `silicon copy’ of another. Robotic neurocontrollers
ideally should accommodate and exploit these di®erences. And even if man could
create all robots equal, components would change and degrade at di®erent rates
according to di®erent environmental circumstances. Although a robot’s body may
not necessarily develop and grow, in other respects the requirements for a robot’s
neurocontroller are similar to those for an animal’s brain: it should be able to adapt
to wear and tear, changing environmental factors, di®ering environmental histories
and injury and decay. Given these close similarities between robots and men, and
given that evolution appears to have found a powerful, adaptive mechanism in neuro-
trophic support, it appears natural to seek to implement at least a coarse model of
competition for neurotrophic support in a robot, in an attempt to confer on it some
degree of adaptability both to its own body and to its environment.

This, then, de¯nes our manifesto, and embodies truths that we hold to be self-
evident: that robots and men inhabit the same world; that robots and men must
respond to the same challenge of adapting to changing bodies, changing brains and
changing environments; and that robots and men should employ the same mechanism
to meet this challenge. Indeed, in this regard, robots and men are each and every
one of them unique.

We now put this manifesto into action by ¯rst discussing brie°y a well-studied
mathematical model of competition for neurotrophic support (Elliott & Shadbolt
1998a). We then review the application of this model in two robotic contexts. Finally,
we discuss whether or not our manifesto resembles most other manifestos: long on
promises but short on delivery.

2. A neurotrophic model

Let pre-synaptic or a®erent neurons be labelled by letters such as i and j, and post-
synaptic or target neurons be labelled by letters such as x and y. Let the number
of synapses between a®erent cell i and target cell x be denoted by sxi, and let the
activity of a®erent i be ai. We assume that target cells release a neurotrophic factor
(NTF) that sustains and promotes the growth of these a®erent synapses. Let the
uptake of NTF by a®erent cell i from target cell x be denoted by uxi, and let the
average uptake be ¹uxi. The central assumption of our neurotrophic model, consistent
with experimental data (e.g. Campenot 1982a,b), is that the time average uptake of
NTF by a®erent i from target x determines the number of synapses projected by i
to x,

sxi(t) = ¹uxi(t): (2.1)
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For the time average, we assume that it takes the form of the integral of the function
multiplied by a decaying exponential, where the rate of decay is itself time dependent,

¹uxi(t) =
Z t

¡1
dt0 ° i(t0)uxi(t0) exp

µ
¡

Z t

t 0
dt00 ° i(t00)

¶
: (2.2)

Here, ° i(t) = 1=½ i(t), and ½ i(t) is a time-dependent parameter that sets the instan-
taneous time-scale for the average for a®erent i. From this we obtain the di®erential
equation

dsxi

dt
= ° i(t)[uxi(t) ¡ sxi(t)]; (2.3)

determining the evolution of sxi. Thus, if the instantaneous uptake exceeds aver-
age uptake (which sets sxi), then more synapses are grown; otherwise synapses are
removed. The rate of evolution is set by ° i, whose form we take to be

° i(t) = ° ( ¬ +  ai(t)); (2.4)

where ° , ¬ and  are constants. A constant, activity-independent rate is set by ¬ ,
while activity in a®erent pathway i increases the rate of plasticity through the term
 ai(t).

As a model for uptake, uxi, we suppose, consistent with experimental data (e.g.
Bl�ochl & Thoenen 1996; Castren et al. 1992; Goodman et al. 1996; Koliatsos et al.
1993), that target cells produce and release NTF in an activity-dependent manner,
so that the release from target cell x is given by

rx = T0 + T1

P
i sxiaiP

i sxi
; (2.5)

where T0 sets an activity-independent level, and T1 determines a maximum, activity-
dependent release of NTF. This released NTF is assumed to di®use through the target
¯eld, so that the amount available for uptake at each target cell following di®usion
is given by

dx =
X

y

¢ xyry : (2.6)

This is just the convolution of rx with some characteristic di®usion function ¢ xy,
which we take for simplicity to be a Gaussian. This di®used NTF is then taken up
by a®erents according to the equation

uxi / sxig(ai) » idx; (2.7)

where the constant of proportionality is set by the requirement that
P

i uxi = dx,
i.e. total uptake by all a®erents exactly matches availability. This equation embodies
the requirements that the uptake by a®erent cell i from target cell x should be
proportional to the number of synapses projected from i to x, sxi; some function of
the activity of a®erent i, g(ai), which for simplicity we take to be g(ai) = a + ai; the
number of receptors for the factor supported by a®erent i, » i, which we take to be
» i = ¹ai=

P
x sxi; and the total amount of NTF available for uptake, dx.

Putting all these assumptions together, we ¯nally obtain

dsxi

dt
= ° i(t)sxi

·
(a + ai) » iP

j sxj(a + aj) » j

X

y

¢ xy

µ
T0 + T1

P
j syjajP

j syj

¶
¡ 1

¸
: (2.8)
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Figure 1. K-Team’ s Khepera robot.

For a fuller derivation and justi¯cation of the various assumptions behind this model,
see Elliott & Shadbolt (1998a). Although this model appears complex, it can be
shown to be equivalent to a nonlinear Hebbian model of synaptic plasticity with com-
petition between a®erent neurons implemented through multiplicative post-synaptic
normalization (Elliott & Shadbolt 2002b), and it can also be shown that the model
possesses an underlying spin-glass structure, in which the function ¢ xy provides the
`spin coupling’ between target cells (Elliott 2002). We have applied this model to
the development of the visual system (Elliott & Shadbolt 1998b, 1999, 2002a) and
the neuromuscular junction (Elliott et al. 2001) in simulation, and have coupled
the model to a silicon retina to provide realistic neuronal input (Elliott & Kramer
2002). Such applications have shown that this neurotrophic model robustly develops
neuronal maps, even in the presence of high levels of noise in the a®erent pathways.

Analysis shows that a critical parameter de¯ning the behaviour of the model is the
quantity c = T0=(aT1) (Elliott & Shadbolt 1998a). In the absence of NTF di®usion
between target cells, when c < 1 activity-dependent, competitive a®erent segrega-
tion occurs in the model, i.e. all but one of sxi for each target cell x go to zero,
leaving just one a®erent in control of cell x. When c > 1, a®erent segregation breaks
down: all a®erents innervate all target cells equally. In the presence of NTF di®u-
sion, the same results can be derived, but the critical threshold is reduced below
unity. The point c = 1 can be shown to be a transition point at which the model
changes from a classic Hebbian to a classic anti-Hebbian model of synaptic plasticity
(Elliott & Shadbolt 2002b). Up to the factor a, the quantity c is just the ratio of the
activity-independent to the activity-dependent release of NTF by target cells. Since
activity-independent release can equally be thought of as exogenous infusion, c > 1
simply states that if exogenous infusion is too great relative to cellular release, then
a®erent segregation breaks down. Thus, the model is consistent with experimental
data indicating that exogenous infusion or excess supply of NTFs does indeed lead
to a breakdown of normal developmental processes in the visual system and at the
neuromuscular junction (Cabelli et al. 1995; Nguyen et al. 1998).

3. Application to the Khepera robot

We discuss a previous application of this neurotrophic model to the development
of obstacle-avoidance behaviour in the Khepera robot (see ¯gure 1); for a fuller
treatment, see Elliott & Shadbolt (2001). For this study, we use two Khepera robots
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in order to demonstrate the intrinsic variability between allegedly identical, o®-the-
shelf robots, and to show the virtues of developing a nervous system tuned to a
particular robot’s morphology rather than using a generic nervous system.

The robots inhabit an A4-sized box, whose walls are lined with either plain white
paper or black-and-white-striped paper, the stripe width being 14 mm. A robot,
connected to a controlling computer through its serial port via a rotating contact,
is placed in this arena. Initially, the arti¯cial nervous system of the robot is unde-
veloped, so that it cannot avoid crashing into the walls. The robot is equipped with
three hard-wired, innate re°exes. The `withdrawal’ re°ex ensures that the robot
stops when its total infrared (IR) sensor input exceeds some threshold, turns ran-
domly and then moves away. This re°ex prevents physical damage to a robot by
stopping it from actually hitting a wall and can be thought of as a pain avoidance
re°ex. The `boredom’ re°ex ensures that if the robot remains stationary for more
than ca. 1 s, it turns randomly and moves away. Finally, the `explore’ re°ex ensures
approximately uniform coverage of the arena by the robot by occasionally randomly
changing the robot’s direction of motion when the robot is su±ciently distant from
a wall. The robot has an innate disposition to move forwards at constant speed. The
nervous system modi¯es this disposition by retarding the wheel speeds according
to the IR-sensor inputs. When the re°exes are activated, the output of the nervous
system is suppressed so that only the re°exes control the robot.

A robot’s nervous system consists in two sets of neurons. One set of six neurons
receives input from the six forward-pointing IR sensors (IRs) of the robot. For con-
venience, we refer to these neurons as the sensory neurons (SNs). We label these six
IRs (and six SNs) according to K-Team’s conventions, from a robot’s left to right,
as numbers 0 to 5. The synaptic projections from the IRs to the SNs are initially
topographically disordered. The degree of disorder is measured by the parameter
bt 2 [0; 1], with bt = 0 representing completely random initial topography and bt = 1
representing perfect initial topographic order. Our neurotrophic model is applied to
these synapses in order to develop re¯ned topography, so that a robot’s sensory neu-
ron layer learns the spatial relationships between its forward-pointing IRs through
the patterns of activation in these IRs. The second set of two neurons receives input
from the six SNs and these neurons’ outputs are fed directly to the wheel motors to
retard the forward motion of the robot, one neuron for each wheel motor. We refer to
these neurons as the motor neurons (MNs). All six SNs initially project to both MNs,
but a contralateral{ipsilateral distinction, commonly found in biological organisms,
is assumed for these projections. The contralateral SNs project initially a few more
synapses to an MN than the ipsilateral SNs (see Crair et al. 1998). This has the e®ect
of tilting the competition, implemented through the use of the neurotrophic model
on these synapses, in favour of the initially slightly dominating inputs. Hence, the
contralateral SNs ¯nally end up exclusively driving an MN. When sensory topog-
raphy is re¯ned, the net result is that activation of the IRs on, say, a robot’s left
side retards the contralateral (right) wheel, causing the robot to turn away, thus
mediating obstacle avoidance. For a full discussion of the parameter selections, etc.,
in the application of our model to this system, see Elliott & Shadbolt (2001).

A complete run for each robot comprises three phases. First, the program imple-
menting the plasticity algorithm and re°exes is run for 10 000 iterations (one iteration
being one complete update of the nervous system’s synapses). Then we deactivate,
in software, one or two of the robot’s IRs. In this deprived state, we continue to run
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K1 K2

Figure 2. IR response pro¯les for K1 and K2. The length of each line denotes the size of the
response of the IR to the stimulus. The arcs around each IR indicate the maximum possible
response. (Reproduced from Elliott & Shadbolt (2001).)

Table 1. Khepera crash rates under calibration

(Crash rates for K1 and K2 in the plain and striped environments running a standard Braitenberg
obstacle-avoidance algorithm.)

plain striped

K1 0.0 0.1

K2 43.3 43.2

K1 K2

Figure 3. Sensorimotor maps developed by K1 and K2 in the striped world with bt = 0:5. Black
circles denote IRs, grey circles SNs and white circles MNs; for clarity the left MN is shown on
the right and the right MN on the left. The thickness of a line indicates the number of synapses
projected. (Reproduced from Elliott & Shadbolt (2001).)

the plasticity algorithm for a further 5000 iterations in order to determine whether
the robot can restore some of the performance lost due to the inactive IR(s). Finally,
we restore the nervous system to its state immediately prior to IR deprivation, and
run the robot for 5000 iterations while disabling all synaptic plasticity, in order
to assess the robot’s deprived performance without the possibility of any recovery.
Crash rates (numbers of re°ex withdrawals per 1000 iterations) for all three phases
are determined when the crash rates stabilize.

Because the two Khepera robots (which we call K1 and K2 for convenience) di®er
quite markedly in their performances, we determine their sensory acuities by mea-
suring the responses of the robots to a small tube of white paper moved at a ¯xed
distance of 15 mm around each IR. Figure 2 shows that compared to K1, K2 is rather
myopic in its two front sensors, although K1’s left rear sensor barely responds at all
to the stimulus. These di®erences are re°ected in the two robots’ performances when
calibrated using a standard Braitenberg obstacle-avoidance algorithm (Braitenberg
1984), the results of which are shown in table 1. The myopic K2 crashes slightly over

Phil. Trans. R. Soc. Lond. A (2003)



2194 T. Elliott and N. R. Shadbolt

K1 K2

Figure 4. Sensorimotor maps developed by K1 and K2 in the striped world with bt = 0:5
following deprivation of one IR. (Reproduced from Elliott & Shadbolt (2001).)

Table 2. Crash rates for K1 in the two environments

(:D, crash rates for the non-deprived phase of learning; D:P, crash rates following depriva-
tion but with plasticity switched o® ; DP, crash rates following deprivation but with continued
plasticity. )

plain striped
z }| { z }| {

bt runs :D D:P DP runs :D D:P DP

0.25 5 9.3 15.1 10.5 8 10.2 18.6 11.1

0.50 5 6.9 8.6 5.4 5 5.6 13.6 9.0

0.75 5 4.7 7.4 5.5 5 6.5 13.8 6.9

1.00 5 8.4 10.4 6.7 5 6.9 11.4 9.7

43 times per 1000 iterations in both environments, while K1 hardly crashes at all.
This di®erence entirely re°ects the di®erences in IR responses of the two robots. Fig-
ure 3 shows typical examples of the sensorimotor maps developed by each robot after
10 000 iterations in the striped environment with an intermediate value of bt = 0:5.
For K1, maps developed in the plain environment are qualitatively identical but,
for K2, some systematic misprojections are observed, discussed more fully in Elliott
& Shadbolt (2001). Both robots’ sensory maps have developed re¯ned topography,
but K1’s topography is better than K2’s, with the latter’s sensory map exhibiting
some distortions. For both robots, contralateral SNs dominate MN input; with fur-
ther iterations, the few remaining ipsilateral synapses would be eliminated. Figure 4
shows the impact of depriving IR number 1 on these maps.

Having shown examples of the developed sensorimotor maps for both robots, we
can now discuss the quantitative aspects of our results by discussing the crash
rates for the two robots in both environments during all three phases of simula-
tion. Tables 2 and 3 summarize our data for both robots. During deprivation, IR
sensor 1 is deactivated in all cases. During the undeprived phase, K1 performs sim-
ilarly in both environments. Following deprivation without plasticity, K1 performs
better in the plain world than in the striped. With continued plasticity, K1 recovers
some performance in both environments, with the recovery in the plain world being
better than that in the striped. Nevertheless, the di®erence between the crash rates
in the plastic and implastic deprived phases for K1 is not statistically signi¯cant. For
K2, table 3 shows that its undeprived performance is actually better than its Brait-
enberg performance, with crash rates between a third and a half those seen during
calibration. However, due to the myopia of this robot, its undeprived performance
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Table 3. Crash rates for K2 in the two environments

(The format of this table is identical to that for table 2. In the column r̀uns’ , a ?̀ ’ next to the
number indicates a statistically signi¯cant di® erence (at the 1¼ level) between the D:P and the
DP data after some number of iterations.)

plain striped
z }| { z }| {

bt runs :D D:P DP runs :D D:P DP

0.25 5 20.0 65.0 44.6 5? 13.6 59.6 33.2

0.50 5? 15.2 68.9 38.3 5? 14.7 62.1 37.1

0.75 5 19.5 62.5 47.4 10? 13.7 67.0 32.1

1.00 5? 11.5 66.5 31.2 5? 15.8 59.3 36.3

Table 4. Crash rates for K1 in the two environments under double deprivation

(Crash rates for K1 for deprivation of the pair of IRs indicated in the ¯rst column. All data in
this table are generated with bt = 0:50.)

plain striped
z }| { z }| {

pair runs :D D:P DP runs :D D:P DP

1{2 10 7.6 14.1 6.7 20 6.9 13.0 9.2

2{3 5? 7.4 21.9 13.4 5? 6.3 33.5 16.0

is worse than that of K1. Following deprivation without plasticity, the crash rates
roughly quadruple. With plasticity, they are reduced to approximately half those
without plasticity. The di®erence between the deprived plastic and implastic regimes
is almost always statistically signi¯cant. Even with one IR sensor knocked out, in
the plastic phase K2 continues to perform better than its Braitenberg calibration
performance.

A statistically signi¯cant, robust recovery of performance is observed following
single-IR-sensor deprivation for K2, but not for K1. Because K1’s overall performance
is so much better than K2’s, it may be expected that single-receptor deprivation
would not have much impact on it anyway. We test this idea by instead depriving
pairs of adjacent IRs on K1. The results are shown in table 4. Depriving IRs 1 and 2
still produces no statistically signi¯cant recovery from deprivation, but depriving
IRs 2 and 3 does produce a statistically signi¯cant degree of recovery.

4. Application to the Koala robot

We now discuss the application of our neurotrophic model to the development of
visual maps in the Koala robot equipped with a binocular vision system (see ¯gure 5).
While the Khepera study discussed above reveals the role of a robot’s idiosyncratic
morphology and sensory acuity in map development, the Koala study emphasizes
the importance of environmental factors in map development.

The Koala robot occupies a well-illuminated o±ce furnished with standard items
such as a desk, tables, chairs and ¯ling cabinets. As the Koala essentially provides
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Figure 5. K-Team’ s Koala robot with Videre Design’ s
STH-V2 binocular-vision head mounted onboard.

(a)

(b)

Figure 6. (a) The raw p̀hotoreceptor’ images of instantaneously moving edges captured by the
binocular vision system and (b) the result of processing the images to extract ON and OFF data.

only a mobile platform for the binocular vision head, the robot is set to move contin-
uously in a circle of diameter ca. 1 m, thereby providing a constantly changing visual
scene to the visual system. The robot is linked to a computer through its serial
port via a rotating contact. Interlaced video images from the two cameras on the
binocular-vision head are sent down two spare wires in this tethering cable and fed
into a frame-grabber mounted on the same computer. These images are de-interlaced
and corrected for a systematic vertical misalignment in the two cameras. The result-
ing data consist of two eight-bit monochrome 160 £ 120 images captured from the
left and right cameras and are fed directly into a simulation of visual map devel-
opment. These images are too large for real-time processing, so we extract either a
26 £ 26 or a 16 £ 16 subregion, depending on the visual map that we develop, from
the centre of the left image and an identically sized region from the right image.
The right subimage is usually the central region, but it can also be subjected to a
horizontal o®set of 20 pixels with respect to the left subimage. These data can be
regarded as the raw `photoreceptor’ images. We also consider data corresponding
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Figure 7. The average cross-correlation function for (a) raw and (b) ON/OFF data. A key is
shown on the extreme right. The number associated with each box in the key indicates the value
of the function on the outer boundary of the enclosed region.
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Figure 8. The average autocorrelation function for (a) raw and (b) ON/OFF data.
A key is shown on the extreme right.

approximately to the ON and OFF outputs of retinal ganglion cells by threshold
subtracting consecutive frames. That is, consecutive pixel intensities are subtracted,
and only when the absolute di®erence exceeds some threshold is the pixel’s intensity
unchanged; otherwise it is set to zero. With a threshold of 32, we ¯nd that such a
procedure generates data in which only moving edges survive processing. Figure 6
shows the result of such processing on a set of moving edges.

Processing the raw data to generate ON and OFF data modi¯es the autocorrelation
function of an image with itself and also modi¯es the cross-correlation function
between left and right images. In order to understand some of our results on
visual map development, it is necessary to understand how these correlation func-
tions change in response to ON/OFF processing. Figure 7 shows the average cross-
correlation function between the left and right images for raw data and ON/OFF
data in the visual world inhabited by the Koala. Similarly, ¯gure 8 shows the average
autocorrelation function of the left image for raw and ON/OFF data. Although the
cross-correlation functions for raw and ON/OFF data are broadly similar in shape,
we see that the cross-correlation function for ON/OFF data has a smaller spatial
extent and considerably lower maximum. The maxima of both cross-correlation func-
tions occur at a horizontal o®set of ca. 20 pixels, hence our selection of a 20 pixel
o®set when we o®set the right subimage with respect to the left subimage. The auto-
correlation functions are also broadly similar for both datasets, although, for raw
data, the function is roughly symmetric with respect to either vertical or horizontal
o®sets, while that for ON/OFF data exhibits a considerable bias towards the verti-
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cal. This bias re°ects the horizontal motion of the robot, so that captured moving
edges tend to be vertically rather than horizontally orientated.

We consider the development of two types of visual map. The ¯rst is the devel-
opment of a topographic representation of one, say the left, retinal array on a sheet
of target cells. These target cells may represent the optic tectum in lower verte-
brates, or the lateral geniculate nucleus (LGN) in higher vertebrates. Such a process
is analogous to the re¯nement of the topographic representation of the IR cells on
the SN-cell layer in the above Khepera work, except that the representations develop
over a two-dimensional rather than a one-dimensional array of cells. For reasons of
computational speed only, we consider a 16 £ 16 array of pixels from the left camera
mapping onto the same-sized array of target cells. The topographic bias parameter
bt, de¯ned above for the Khepera maps, is set to bt = 0:5. Our results do not exhibit
much dependence on bt unless bt is close to zero, representing initially almost com-
pletely random topography. To visualize the representation of the retinal sheet on
the target sheet, we calculate the centre of mass of retinal projections to each target
cell,

Mx =
P

i isxiP
i sxi

; (4.1)

where the vector character of the indices has been made explicit. The positions
de¯ned by the vectors Mx and My are then connected by a line if, and only if, cells
x and y are nearest neighbours on the target sheet. If topography is perfect, then
the resulting pattern of lines forms a regular, square grid; increasing deviation away
from this pattern represents increasing disruption of the topographic projection.

The second type of visual map that we consider is the development of ocular dom-
inance columns (ODCs) in the primary visual cortex of higher vertebrates (Hubel &
Wiesel 1962). ODCs are formed through a competitive process in which LGN a®erent
cells representing the left and right eyes initially innervate the visual cortex roughly
uniformly, so that cortical cells are driven nearly equally strongly by both eyes. As
development proceeds, the a®erents segregate at the anatomical (and physiological)
level into a mosaic of interdigitated, alternating regions of control ca. 500 mm wide,
with one eye controlling any given region and the other eye controlling immediately
adjacent regions (LeVay et al. 1978, 1980). Experimental evidence suggests that neu-
rotrophic factors may be involved in the formation of ODCs (reviewed in McAllister
et al. 1999). To model the formation of ODCs, we take two 26 £ 26 arrays of cells,
one representing the left-camera pixels and the other the right-camera pixels, possi-
bly with a 20 pixel horizontal o®set for the right subimage. Such an o®set coarsely
resembles convergent strabismus, because the cross-correlations increase. These two
arrays innervate a 26 £ 26 array of cells representing the primary visual cortex. The
projections from each a®erent sheet to the target sheet are established as above for
topographic-map development, so that each target cells is initially controlled roughly
equally by both a®erent sheets. However, for reasons of computational tractability, we
restrict the spread of each a®erent cell’s connections on the cortex to a 5 £ 5 patch
of topographically appropriate cortex. Thus, we consider only the development of
ODCs through an activity-dependent, competitive process and not the simultaneous
co-development of ODCs and topography.

In ¯gure 9 we show the development of a topographic projection from the sensory,
retinal sheet to the target sheet for raw `photoreceptor’ images. Initially, the topo-
graphic map is tightly folded because most target cells’ inputs are skewed towards the
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0 × 105 1.0 × 105 2.0 × 105

3.0 × 105 4.0 × 105 5.0 × 105

Figure 9. The development of topography for raw p̀hotoreceptor’ data. Each map represents
the state of topography at the number of iterations indicated immediately above it.

0 × 104 4.0 × 104 8.0 × 104

1.2 × 105 1.6 × 105 2.0 × 105

Figure 10. The development of topography for ON/OFF data.
The format of this ¯gure is otherwise identical to that for ¯gure 9.

central retinal ¯eld (see Goodhill 1993). As development proceeds, the map unfolds
so that the ¯nal map is almost perfect, except for the presence of edge e®ects. Because
the autocorrelation function is approximately symmetric, the receptive ¯elds of the
target cells remain approximately symmetric throughout development, exhibiting no
systematic bias towards the horizontal or vertical orientations. However, in ¯gure 10,
which shows the development of a topographic map in the presence of ON/OFF data,
we see that the map is initially stretched in the horizontal direction. An examination
of the receptive ¯eld of a representative target cell, shown in ¯gure 11, reveals that
it is strongly biased towards vertical orientations during early development. This
biasing is a consequence of the autocorrelation function for ON/OFF data and is
therefore ultimately a function of the robot’s purely horizontal motion, which accen-
tuates vertical rather than horizontal structure in the environment. Despite this early
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min max

0 × 104 4.0 × 104 8.0 × 104

1.2 × 105 1.6 × 105 2.0 × 105

Figure 11. The development of the receptive ¯eld of a target cell near the centre of the sheet
shown in ¯gure 10. Each square represents an a® erent cell with its shade of grey indicating the
number of synapses projected to the target cell. A key is given above the maps.

biasing towards the vertical, maps for ON/OFF data develop and mature much more
rapidly than those for raw data, so much so that even edge e®ects are very nearly
removed from the ¯nal maps.

In ¯gures 12 and 13 we show the ¯nal patterns of ocular dominance produced with
raw and ON/OFF data, respectively, for either a zero-pixel or a 20 pixel o®set of the
right subimage with respect to the left subimage. In all cases, we see well-segregated
patterns of ocular dominance. For raw data (¯gure 12), we see that a 20 pixel o®-
set, which induces higher inter-ocular correlations between the left and right images,
results in a greater degree of binocularity in the mature maps. Such a result is consis-
tent with developmental work in animals (Hubel & Wiesel 1965; Shatz et al. 1977).
For ON/OFF data, the 20 pixel o®set induces a smaller increase in the inter-ocular
correlations, and the resulting map exhibits only slightly greater degrees of remaining
binocularity than the zero-pixel o®set data. Raw data runs require approximately
250 000 iterations to reach stable, mature maps, while ON/OFF data runs require
only 50 000 iterations. As with the development of topography, preprocessing the raw
`photoreceptor’ data to generate ON and OFF data therefore dramatically reduces
the time required to develop mature visual maps.

5. Discussion

The ¯rst application of the neuronal plasticity model to the Khepera robot shows the
extent to which we can accommodate variations in morphology and sensory acuity
between robots. It illustrates the ability of our models to develop neurocontrollers
tuned to the particular embodiments they encounter.

Using the neurotrophic model, both Khepera robots develop sensorimotor maps
that mediate obstacle-avoidance behaviour. When we look at K1’s Braitenberg per-
formance, it is near perfect, so it is not surprising that its self-grown-map performance
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R L

offset = 0 offset = 20

Figure 12. Ocular dominance maps generated by raw p̀hotoreceptor’ data for two di® erent
o® sets, indicated above the maps. Each square represents a target cell with its shade of grey
indicating the degree of control by the left camera. A black (white) square is completely domi-
nated by the left (right) camera. A key is given above the maps.

R L

offset = 0 offset = 20

Figure 13. Ocular dominance maps generated for ON/OFF data for two di® erent o® sets.
The format of this ¯gure is otherwise identical to that for ¯gure 12.

lags behind slightly. Nevertheless, K1’s crash rate using a self-grown map can be as
low as 4.7 re°ex withdrawals per 1000 iterations, and thus is actually pretty good.
K2’s self-grown-map performance is much better than its Braitenberg performance,
with crash rates less than half those seen during calibration. Even when one IR
sensor is knocked out and recovery is permitted, K2’s performance remains better
than Braitenberg. For both robots, therefore, self-grown maps perform near or better
than a standard Braitenberg algorithm. Why is this? As we argued at the outset,
allowing a system to develop its own nervous system using competitive interactions
allows it to develop maps tuned to its own particular morphological idiosyncrasies.
In the case of K2, its two front IRs are rather myopic, and therefore typically less
active than the other forward-pointing IRs. Such reduced activity causes these IRs
to be disadvantaged during map development, and inputs from neighbouring IRs will
compensate. The standard Braitenberg algorithm can make no allowance for these
de¯cits, and since its performance depends heavily on input from the two front IRs,
it is inevitable that it will perform poorly in a myopic robot. Activity-dependent,
competitive processes therefore tune a nervous system in a robot-speci¯c fashion
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without requiring any prior knowledge about the robot in which those processes are
instantiated.

Continuing plasticity permits continuing adaptation to ongoing environmental or
bodily changes. In particular, when we knock out an IR sensor, the nervous sys-
tem adjusts by strengthening connections from adjacent IRs. This has the e®ect of
essentially interpolating a missing IR sensor’s input from its neighbours’ inputs. For
both robots, deprivation of one IR followed by recovery restores some degree of lost
performance. For K1, this recovery is not statistically signi¯cant, but it is notewor-
thy that the recovered performance in the plain environment matches its undeprived
performance. For K2, the level of recovery is statistically signi¯cant although it does
not match pre-deprivation levels. Despite this, its deprived performance still exceeds
Braitenberg performance with all IRs functioning. The failure of K1 to exhibit a sig-
ni¯cant recovery from single-IR deprivation is a consequence of the overall superior
performance of this robot. Double-sensor deprivation does allow us to see a statis-
tically signi¯cant degree of recovery. It is remarkable that even when two IRs are
knocked out in K1, whether or not recovery is permitted, its performance exceeds
that of K2 running a Braitenberg algorithm without deprivation.

In addition to exhibiting a dependence on a robot’s morphology, our results also
exhibit a dependence on the particular environment inhabited by a robot, whether
plain or striped. K1’s undeprived performances are comparable in both worlds, but
with deprivation its performance is better in the plain world. This is clearer during
double-IR deprivation than single-IR deprivation. This di®erence is a consequence
of the similarity between the stripe spacing (14 mm) and the IR-sensor spacing for
the Kheperas (13 mm). In the striped world, when an IR senses a white stripe, its
neighbours sense black stripes. Under single-IR deprivation, when the deprived IR is
near a white stripe, its neighbours cannot interpolate its input because they are near
black stripes. But when the deprived IR is near a black stripe, its neighbours are
near white stripes and in such a case it is essentially irrelevant that the IR is knocked
out, because its output would have been low anyway. Under double-IR deprivation,
however, one of the two adjacent, active IRs is always near a black stripe, thus always
reducing the e®ectiveness of the interpolation. Hence, K1’s deprived performance in
the striped world is always worse than that in the plain world, and its double-IR
deprivation performance is worse than its single-IR deprivation performance.

The second application of our neuronal plasticity model to the Koala robot empha-
sizes the importance of environmental factors in map development and shows the
extent to which the model can accommodate variations in sensory input. We have
found that both re¯ned retinotopic projections and ODCs emerge robustly under a
range of environmental conditions and parameter regimes. We have also shown how
the statistics of the visual input play an important role in determining both the
nature and rate of development of these structures.

In the Koala experiments, the ON/OFF data attempt to capture something of
the temporal processing that occurs in the visual pathway, in particular, how retinal
ganglion cells respond to the dynamics of intensity change rather than simply encod-
ing a raw `photoreceptor’ intensity level. The e®ect of ON/OFF-data extraction is
dramatically to reduce the degree of correlation between images compared to the raw
`photoreceptor’ data. ON/OFF data also a®ect the intra-ocular or autocorrelation
function. The autocorrelation function is much more narrowly focused than that for
raw `photoreceptor’ data and strongly emphasizes vertical structure.
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Raw and ON/OFF data provide very di®erent statistical characterizations of the
visual world. These have a direct impact on our results. Topographic maps and
re¯ned receptive ¯elds form more rapidly for ON/OFF data and the receptive ¯elds
display a developmental pro¯le that re°ects the strong, vertical correlations present
in the ON/OFF data. These correlations arise due to the horizontal motion of the
robot, so that captured moving edges tend to be vertically rather than horizontally
orientated. The weaker horizontal correlations cause the receptive ¯elds to re¯ne
more quickly in the horizontal direction. We would predict that providing motion in
the vertical plane would lead to more rapidly re¯ned vertical components of the devel-
oping receptive ¯elds. Two other e®ects of the use of ON/OFF data were observed:
a greater remaining binocular control of cells at the boundaries of ODCs and much
faster ODC segregation.

Researchers have not previously implemented models of ODC and topographic
development on real robots with anything like semi-realistic, naturalistic visual input.
Our results from the Koala robot demonstrate that it is important to consider care-
fully the likely visual statistics that drive neuronal development, and also to consider
the sorts of environment in which systems develop.

We have shown that a biologically inspired model of neuronal development can be
transferred from computer simulation to robotic instantiation. In the ¯rst application
we have shown how the model allows the robot to develop sensorimotor maps tuned to
the particular characteristics of the robot. In the second application we demonstrate
that the model allows a robot to develop well-ordered neuronal maps that correspond
to structures found in the visual cortex of higher vertebrates. We have shown how the
nature of the visual experience determines important characteristics of these maps.

6. Conclusions and outlook

We hold this truth to be self-evident: that despite K-Team’s best intentions, no
two Khepera or Koala robots are created equal. In light of the stark di®erences
between the sensory acuities of our two Khepera robots, attempts to implement
a one-size-¯ts-all nervous system across a range of such robots, even for such a
deceptively simple behaviour as obstacle avoidance, without taking into account their
dramatically di®erent capacities, seem doomed to failure. Inter-individual variation
is a fact of life with which robotics must come to terms. Precision engineering may
seek to reduce this variation to a point at which it can be ignored, but in practice
this is infeasible and may for a variety of reasons be undesirable (Smithers 1994).

No two robots experience the same environmental inputs. This may arise from
immersion in di®erent environments, variations in acuity or because they are run-
ning di®erent early sensory-processing algorithms. We need mechanisms that allow
neurocontrollers to adapt to their particular morphologies, environmental inputs,
contexts and histories. Furthermore, unpredictable parts failure requires either the
discarding of the robot or the adaptation of its neurocontroller to recover acceptable
performance. Although throwing away a robot in some circumstances may be an
option, in others it may not be, such as a robot explorer on Mars or one operating
in an extreme environment. Besides, the mere throwing away of a robot is an `engi-
neering’ solution: it does not address the scienti¯c question of how, in principle, do
we build organisms that are robust, adaptable and can recover from minor accidents
or injury?
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This is a challenge that biology faced from the beginning and to which it had
to ¯nd a solution. Data indicate that its solution does not comprise a mere bag
of contingent tricks, one trick for one problem, but may be a universal solution
that de¯nes the very manner in which an organism is built and responds to change.
Given that biology is a notorious tinkerer, this is perhaps surprising. But when it
is recalled that the very ¯rst organisms were immediately faced with living in the
world, of adapting to it and recovering from damage, perhaps it is not so surprising
after all: it is one problem, not a series of problems faced incrementally over time
as organisms became more complex. A unitary problem demands a unitary solution.
In light of the possible existence of such a solution, it appears foolish to ignore its
potential for robotics.

Does the putting into action of our manifesto discussed above support this view?
We have only considered coarse-grained models running on basic robots inhabiting
simple worlds. Nevertheless, we have shown that a biologically inspired, neurotrophic
model facilitates in one case the development of a nervous system that is tuned to the
morphological idiosyncrasies of the particular robot in which it is instantiated, and
in the other produces well-organized maps between various components of a visual
system under a wide range of environmental inputs. In the ¯rst case the Khepera’s
sensorimotor maps perform nearly as well as or much better than what may have
been considered to be a roughly optimal algorithm for obstacle avoidance. When
the robot has developed a mature, stable map, the latent plasticity inherent in its
synapses allows the robot to be ready to accommodate change. In the second appli-
cation presented here, the Koala using the same basic model can accommodate a
wide range of changes and variations in its morphology, experience and environ-
ment. These include changing the inter-ocular spacing of cameras, ablating cells in
either the a®erent or cortical sheets, and varying the extent and nature of temporal
preprocessing in the robotic system.

The bene¯ts of such developmental accommodation, of competitive synaptic
growth and rearrangement are very substantial. They permit a nervous system to
tune itself to the body in which it ¯nds itself and the environment in which the
body resides. The bene¯t of maintaining plasticity throughout an animal’s lifespan
is that it allows the nervous system to adapt to changes that occur throughout a life-
time. Our fundamental equality may reside in the common mechanism of plasticity,
a mechanism that can give rise to endless di®erences and inequalities.

T.E. thanks The Royal Society for the support of a University Research Fellowship.
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