
The Design of an Asynchronous VHDL Synthesizer

Sun-Yen Tan, Stephen B. Furber Wen-Fang Yen

Department of Computer Science Department of Electronic Engineering

University of Manchester National Taipei University of Technology

Manchester, M13 9PL, UK Taipei, Taiwan, R.O.C.

tansy@cs.man.ac.uk, sfurber@cs.man.ac.uk yen@ntut.edu.tw

Abstract

This paper presents a straightforward approach for

synthesizing a standard VHDL description of an asyn-

chronous circuit from a behavioural VHDL descrip-

tion. The asynchronous circuit style is based on `mi-

cropipelines', a style currently used to develop asyn-

chronous microprocessors at Manchester University.

The rules of partition and conversion which are used

to implement the synthesizer are also described. The

synthesizer greatly reduces the design time of a com-

plex micropipeline circuit.

1 Introduction

The design of asynchronous circuits generally fol-

lows a modular approach, where a system is designed

as an interconnection of modules. In the 1988 Turing

Award Lecture, Sutherland expounded a modular ap-

proach to building hardware systems based on data-

driven asynchronous self-timed logic elements called

micropipelines [1]. This micropipeline design method-

ology has attracted the attention of many researchers,

including those in the Department of Computer Sci-

ence at Manchester University. The modular approach

reduces design time and cost. It is being used to de-

velop high performance and low power microprocess-

ing systems by the AMULET group at Manchester

University [2, 3].

Asynchronous circuits are attracting renewed inter-

est because they avoid the problems caused by the

clock in synchronous circuits. The design of asyn-

chronous circuits is in general more di�cult than

that of synchronous circuits. The control circuits of

micropipelines are composed from event-driven logic

modules and their interconnections. To implement the

control circuits the designers only need to construct

the interconnections between the modules. The event-

driven logic modules may be designed by specialists in

advance, and replaced by new modules whenever bet-

ter designs become available. It is not necessary to

change the interconnections when such replacements

happen. Thus, the design of asynchronous circuits is

simpli�ed by the application of micropipeline design

techniques. Most micropipeline designs are presently

done by hand. An automatic synthesis tool can reduce

the design time required to obtain high performance

circuits. VHDL is an IEEE standard introduced in

1987 [4] which supports an environment within which

designs may be described using VHDL statements and

then simulated. It is easy to check the correctness of

the speci�cations and requirements of the designs at

an early stage. In this paper we introduce a straight-

forward approach in converting top level behavioural

VHDL models into structural VHDL models and Ver-

ilog models based on micropipelined asynchronous cir-

cuits.

Section 2 introduces Event-driven Logic Modules

and micropipelines. Section 3 describes the synthesis

method which is used by the synthesizer. A brief in-

troduction to VHDL models will be presented in Sec-

tion 4. Section 5 will present some rules and steps for

implementing the synthesizer. A test example used to

show how the synthesizer works is also included in sec-

tion 5. Finally, Section 6 will give a short conclusion

and suggestions for further research.

2 Micropipelines

Micropipelines are members of a class of asyn-

chronous pipelines whose operation is based on a two-

phase bundled data convention and are self-timed,

event-driven systems [1]. A "two-phase bundled data

convention" is a communication system where a two-

phase handshaking protocol is used and an arbitrary

number of data wires must be treated as a bundle

together with the request signal wire. In the two-

phase handshaking protocol, rising transitions and

falling transitions of either control wire have the same

meaning; they represent request events or acknowl-

edge events. In this signalling scheme, the operating

cycle is (1) data available (2) request event, and (3)

acknowledge event.

Various circuits have been devised for controlling

transition signals. These are called event-driven logic

modules [1]. Figure 1 shows the circuit symbols of

these event modules.

C(a) (b)

XOR:Muller C:

CALL

R1

D1

D2

R2

R

D

(e) (f)
ARBITER

D2

D1

G1

G2
R2

R1

ARBITER:CALL:

(d)
Bool SELECTTOGGLE

False True
(c)

SELECT:TOGGLE:

Figure 1: Circuit symbols of event-driven logic

modules.

The basic modules are :

Muller C-element: A C-element [5] performs the

rendezvous function for events.

XOR circuit: An XOR circuit performs the merge

function for events.

TOGGLE circuit: A TOGGLE circuit sends events

from an incoming stream alternately to one of two

outputs.

SELECT module: A SELECT module can be used

to deliver events to one of two outputs under the

control of a boolean signal.

CALL module: A CALL module can be used to give

shared access to a sub-process from two indepen-

dent (but mutually exclusive) higher-level pro-

cesses.

ARBITER module: When two events occur simul-

taneously or nearly simultaneously, an arbitration

element must be used to impose an ordering on

the events. Only one event is granted at a time.

An ARBITER element can be connected directly

to the CALL element to enforce mutual exclu-

sively. Arbiter trees can be used to implement

arbiters which have more than two inputs [6].

Figure 2 is an example of a micropipeline stage. A

micropipeline stage consists of control circuits, com-

binational logic circuits and storage elements. When

C

T

lt

Toggle

ri
Rin

w

b1

b2

a2

a1

ai

Din

Din

Din

Din

ao

Dout

Aout

y

b

a

c

Rout

Ain

dmy1

Figure 2: A micropipeline stage.

data is available on the inputs, there is an event called

`request' on `Rin' to enable the storage elements to

capture this valid data. When the storage elements

have latched the input data, there is an event called

`acknowledge' on `Ain' to inform the preceding stage

that the data has been accepted and an event called

`request' on `Rout' to enable the successor stage to

capture the data. When the successor stage holds

data, it will place an event on `Aout' to clear the

storage elements of the current stage and enable the

current stage to capture subsequent data.

The control circuits are composed from event-

driven logic modules, such as the Muller C, TOGGLE,

SELECT, CALL ... etc. In this example, the combi-

national logic circuit consists of two OR gates and one

AND gate. The storage element consists of an XOR,

an active-low transparent latch and a TOGGLE. The

control circuit here is only a Muller C. It is used to

implement the rule \if predecessor and successor di�er

in state then copy predecessor's state else hold present

state" [1]. This rule allows data to
ow through the

micropipeline stages. Such event-driven logic modules

can also be used to connect micropipeline stages in dif-

ferent con�gurations. For example, Figure 3 shows a

micropipeline stage which selectively connects to one

of two micropipeline stages which call the same output

micropipeline stage.

The communication between stages or storage ele-

ments in micropipelines is not fully delay-insensitive

if control and data signals are considered separately.

The delays in data transmission must be less than the

delays in transmitting the request signal. The com-

binational logic circuits for computations within the

micropipeline must be carefully designed. High speed

electronic techniques, such as dynamic CMOS tech-

select

true

false
R 1

A1

D(in)

B 3

B 2

B 4

R out

Aout

4A

R 4

R 4

A3A2 or
R3

R 2

B 1

A4

D(out)

r1 r

call

d

d1
arbiter

d2

d1r1

r2

g1

g2
d2
r2

Figure 3: One micropipeline stage(B1) selectively

connects to one of two micropipeline

stages(B2 or B3) which call the same

output micropipeline stage(B4).

niques, may be applied when designing this part. The

data signals must propagate through a micropipeline

faster than the control event through its control cir-

cuits. Therefore, special delays are sometimes re-

quired in the control path when signi�cant processing

logic is put between storage elements in the data path.

Previous work has been carried out in translation

from programs to circuits [7, 8, 9, 10, 11]. A synthesis

method of transforming concurrent programs based on

a variant of CSP [13] into self-timed circuits has been

developed by S. Burns in 1988 [7]. A subset of OC-

CAM [12] based on CSP is used to describe computa-

tions and a compiler has been constructed that auto-

matically performs the translation and transformation

[8, 9]. The translation of Tangram programs based on

CSP and guarded-command language [14] into hand-

shake circuits and then VLSI circuits has also been de-

veloped by Philips Research Laboratories [10]. A sili-

con compiler which converts a high-level programming

language, OCCAM(async), to asynchronous CMOS

circuits has been described [11]. However, previous

work has not used VHDL which is an IEEE standard

introduced in 1987 [4]; this supports an environment

within which designs may be described using VHDL

statements and then simulated easily. The authors are

interested in developing a novel method for translat-

ing VHDL behavioural descriptions into micropipeline

circuits. The research is ongoing and progress so far

is presented in this paper.

3 The method of synthesis

Figure 4 shows the structure of the synthesizer. The

input language of the synthesizer is a top level be-

havioural VHDL model. The VHDL statements

are partitioned into several blocks. Then the state-

ments within each block are converted into actual cir-

cuits which are denoted by objects of C++ classes.

The synthesizer has two kinds of output. The �rst

Cadence
Schematic

Behavioural VHDL model
Top level

Synthesizer

Structural VHDL models Structural Verilog models
(2nd kind of output)(1st kind of output)

Figure 4: Structure of the synthesizer.

 end process U1;
end BEHAVIOR;

 CARRY <= QC(2);

 QC := QA + QB;
 SUM <= QC(1 DOWNTO 0);

 QB := C + D;
 QA := A + B;
 begin

 SUM : OUT MVL_VECTOR(1 DOWNTO 0);
 CARRY : OUT MVL;
 RESET : IN MVL);
END ex1;
architecture BEHAVIOR of ex1 is
begin
 U1: process
 variable QA, QB : MVL_VECTOR(1 DOWNTO 0);
 variable QC : MVL_VECTOR(2 DOWNTO 0);

 A, B, C, D: IN MVL;
 AIN, ROUT : OUT MVL;
 PORT (RIN, AOUT : IN MVL;
ENTITY ex1 IS

Figure 5: A top level behavioural VHDL model.

kind of output are �les of structural VHDL models

of the components. These components are pre-de�ned

behavioural VHDL models of event-driven logic mod-

ules and VHDL models of standard logic elements.

The output may be simulated to check the correct-

ness of the synthesized circuits. The second kind of

output of the synthesizer are �les of structural Ver-

ilog models of the components. This output may

be imported into a Design Framework II database us-

ing Verilog In [21]. This is convenient for subsequent

design work in the Cadence environment.

The synthesis steps are summarized as follows:

1. Partition the statements into several stages. The

partition rules are described in Section 5. For ex-

ample, the statements of the behavioural VHDL

model shown in Fugure 5 are partitioned into

two stages. Statements QA := A + B; and

QB := C +D; are within the �rst stage. State-

ment QC := QA +QB; is within the second stage.

2. Analyse the statements within each stage to ob-

tain synthesis information. The synthesis infor-

mation is used to recognize whether the stage con-

tains IF, FOR, andWHILE statements or only as-

signments. The two stages which are partitioned

from the statements shown in Figure 5 contain

only assignments.

B:=A;

C:=A;

A
wire

wire

latch C

latch B

: denotes object of Device class.

: denotes object of Terminal class.

: The objects inside this area are the same.

latch

Figure 6: The denotation of components using objects

of Device and Terminal classes.

3. Convert all statements into internal circuit mod-

els which are denoted by objects of Device and

Terminal classes, as shown in Figure 6, for each

stage. These classes have been used to imple-

ment a micropipeline simulator [15, 16] based on

Petri net modelling techniques [17]. The conver-

sion rules are mentioned in Section 5. The inter-

nal circuit models of the data path for the above

two stages are shown in Figure 7.

4. Using the synthesis information from each stage

produce the relevant control circuits. Because the

above two stages only contain assignments, the

control circuits for these two stages are the same

as the control circuit shown in Figure 2. The

rules for producing control circuits are described

in Section 5.

5. Using information from the predecessor and suc-

cessor of each stage produce the interconnections

between stages. For the above two stages, the

predecessor of the �rst stage is the top level, i.e.

the external data inputs and RIN and AIN. The

successor of the �rst stage is the second stage, i.e.

the data inputs and RIN and AIN of the second

stage. Similarly, the predeccessor of the second

stage is the �rst stage, i.e. the data outputs and

ROUT and AOUT. The successor of the second

stage is the top level, i.e. the external data out-

puts and ROUT and AOUT.

6. Produce the structural VHDL model for each

stage and for the whole network. The steps for

producing structural VHDL output �les are pre-

sented in Section 5. The corresponding structural

VHDL model is shown in Figure 8.

A
dd

er

w
ir

e

la
tc

h
w

ir
e

w
ir

e

w
ir

e

in
pu

t

in
pu

t

’0
’

A B

in
pu

t

in
pu

t

C D

Q
B

1

Q
B

0

A
dd

er

w
ir

e

la
tc

h

Q
A

1

Q
A

0

w
ir

e

w
ir

e

w
ir

e
’0

’

w
ir

e

w
ir

e

’0
’

w
ir

e

w
ir

e

w
ir

e

w
ir

e

w
ir

e

la
tc

h
A

dd
er

Q
C

0

Q
C

2

Q
C

1

w
ir

e

bu
s

ou
tp

ut

ou
tp

ut

ca
rr

y

su
m

1

su
m

0

Figure 7: The internal circuit model of the data path

for the VHDL model of Figure 5.

4 VHDL
The reasons for choosing VHDL as the input and

output models are that :

� VHDL is IEEE standard 1076-1987 [4]. It is an

important industrial design tool for digital sys-

tems.

� The event-driven logic modules shown in Figure

1 have been modelled individually using VHDL.

These VHDL models have also been compiled and

entered into the library. Therefore, they can be

used as components in the synthesized circuits.

� Input or output models written using VHDL are

easily simulated and their functions veri�ed. The

bene�ts of VHDL are described elsewhere [18] and

VHDL synthesis examples are also given.

The �rst kind of output of the synthesizer is a set

of structural VHDL models of the components.

An entity and a structural architecture pair for each

architecture STRUCTURAL of EX1 is
 component stg1
 PORT (reset_stg1 : IN MVL;
 rin_stg1 : IN MVL; aout_stg1 : IN MVL;
 ain_stg1 : OUT MVL; rout_stg1 : OUT MVL;
 U11a0: IN MVL; U11b0: IN MVL;
 U12a0: IN MVL; U12b0: IN MVL;
 QA0: OUT MVL; QA1: OUT MVL;
 QB0: OUT MVL; QB1: OUT MVL);
 end component;
 for Ustg1: stg1 use entity work.stg1(behavioral);

 component stg2
 PORT (reset_stg2 : IN MVL;

 ain_stg2 : OUT MVL; rout_stg2 : OUT MVL;

 QC2: OUT MVL);

 rin_stg2 : IN MVL; aout_stg2 : IN MVL;

 U11a0: IN MVL; U11a1: IN MVL;
 U11b0: IN MVL; U11b1: IN MVL;
 QC0: OUT MVL; QC1: OUT MVL;

 end component;
 for Ustg2: stg2 use entity work.stg2(behavioral);

 signal wire11, wire12, wire13, wire14, wire15, wire16, wire17 : MVL;
 signal wire18, wire19, wire110, wire111, wire112 : MVL;

 begin

 ROUT <= wire112; AIN <= wire19;
 wire17 <= RESET; wire11 <= RIN; wire12 <= AOUT;

 Ustg1: stg1 PORT map (reset_stg1 => wire17,

 Ustg2: stg2 PORT map (reset_stg2 => wire17,

 end STRUCTURAL;
 QC2 => wire18);

 rin_stg1 => wire11, aout_stg1 => wire111,
 ain_stg1 => wire19, rout_stg1 => wire110,
 U11a0 => wire13, U11b0 => wire14,
 U12a0 => wire15, U12b0 => wire16,
 QA0 => bus21(0), QA1 => bus21(1),
 QB0 => bus22(0), QB1 => bus22(1));

 rin_stg2 => wire110, aout_stg2 => wire12,
 ain_stg2 => wire111, rout_stg2 => wire112,
 U11a0 => bus21(0), U11a1 => bus21(1),
 U11b0 => bus22(0), U11b1 => bus22(1),
 QC0 => bus23(0), QC1 => bus23(1),

 wire13 <= A; wire14 <= B; wire15 <= C; wire16 <= D;
 SUM(1) <= bus23(1); SUM(0) <= bus23(0); Carry <= wire18;

 signal bus21, bus22, bus23 : MVL_VECTOR(0 to 1);

Figure 8: The structural VHDL model for the be-

havioural VHDL model shown in Figure 5.

stage is written into separate output �les. A struc-

tural architecture for the whole system is also written

to an output �le. Only some of the VHDL statements

are used for describing the behaviour of the synthe-

sized system. They are the assignments of variables

and signals, the IF statement, the WHILE statement

and the FOR statement. The operators which can

be used to perform comparisons, form boolean equa-

tions and perform arithmetic at the right hand side

of assignments and the conditions of IF and WHILE

statements are as follows:

Boolean not, and, or, nand, nor, xor

Comparison =; = =; <;<=; >;>=

Arithmetic +;�; �; =

The Leapfrog VHDL simulator was used to simulate

the input and output �les as well as VHDL models of

each event-driven logic module shown in Figure 1.

The library contains standard gates and user-

de�ned gates, such as the event-driven logic modules

shown in Figure 1. The VHDL models for each of the

event-driven logic modules are implemented individ-

ually. They have been simulated and veri�ed inde-

pendently. The library also contains the components

which are generated during synthesizing.

5 The implementation

The synthesizer is implemented using C++.

Classes and their member functions are de�ned to

handle the input descriptions, such as String and

StringList. To represent the internal circuit mod-

els, classes and their members are also de�ned, such

as Terminal, Device, DeviceList, TerminalList, Stage,

StageList. Before implementing the synthesizer, rules

for partition, conversion, and the production of con-

trol circuits must be de�ned and followed. They are

introduced in the following subsections.

Partition rules

When the synthesizer reads the input �le, which

contains the behavioural descriptions written in

VHDL, the corresponding registers for the variables

are created. For example, as shown in Figure 7, the

registers for the variables QA, QB, and QC declared in

Figure 5 are created. They are denoted by the rectan-

gles labelled `latch'. Then the partition rules are ap-

plied to divide statements into di�erent blocks. Such

blocks are called stages. Figure 7 contains two stages.

The two latches at the left hand side, and the compu-

tations at the front of these two latches, are the �rst

stage. The right hand side latch and the computation

between the left hand side latches and the right hand

side latch are the second stage. The partition rules

are summarized as follows:

� If the output variables or the output signals from

a set of non-LOOP statements are not input vari-

ables or input signals to the other statements,

these statements can be evaluated concurrently.

This means they can be put into the same stage.

For example, the statements QA := A+B; and

QB := C +D; shown in Figure 5 are put into

the same stage. The input variables QA and QB

of the statement QC := QA+QB; are the out-

put variables of the statements QA := A + B;

and QB := C+D; respectively. Therefore, the

statement QC := QA + QB; is not put into

the same stage as the statements QA := A+B;

and QB := C +D;.

� If a statement contains shift operations it will be

put into a stage on it own. The reason is that a

special control circuit is required for shift opera-

tions. This control circuit is not able to handle

other functional statements at the same time.

� If a statement is a LOOP statement, such as FOR

or WHILE, it will be put into a stage on its own.

The reason is the same as for the shift operations.

� If an IF statement contains unbalanced assign-

ments on its THEN and ELSE branches it will be

put into its own stage. An IF statement with

balanced assignments on its THEN and ELSE

branches can easily be implemented by multiplex-

ers. However, an IF statement with unbalanced

assignments must be constructed with feedback

and the control circuits are more complex. There-

fore, an IF statement with unbalanced assign-

ments will be put into its own stage.

Conversion rules

After partitioning the statements into several

blocks the synthesizer starts one of main missions pre-

sented in this paper, the conversion of statements to

internal circuit models. There are also some conver-

sion rules which help to deal with the conversions.

They are illustrated as follows:

� The expression at the right hand side of an assign-

ment may be a value, a mathematical expression,

or a logical expression. To convert it just cre-

ate objects of Device class to denote each of the

values, mathematical or logical computations and

connections.

� An IF statement with balanced THEN and ELSE

branches can be converted into objects of Device

class to denote multiplexers and connections. To

convert multi-level IF statements into their in-

ternal circuit models a FILO method is used to

calculate the position of the multiplexer.

� In micropipeline circuits the input to a latch

may be from several di�erent sources at di�er-

ent times. This means one signal or variable may

appear at the left hand side of several di�erent as-

signments in the same description. A selector is

applied to connect di�erent sources to the input

of the corresponding latch if the number of as-

signments with the same left hand side is greater

than 1.

Rules for producing control circuits

Control circuits are required within each stage to

deliver the events to related latches for the capture of

data as well as to the predecessor and successor stages

for handshaking. They are as follows:

� If a stage does not contain any SHIFT operation,

LOOP statement or unbalanced `IF' statements

its control circuits are the same as that shown in

Figure 2. Otherwise, a control circuit similar to

that used in a previous 4-bit asynchronous mul-

tiplier circuit [19] will be used. Figures 9 and

10 show the control circuits which are used for

WHILE statements and SHIFT operations.

� Following the con�guration of a stage, it is neces-

sary to connect its control signals to its predeces-

sor and successor stages. Some event-driven logic

modules are required for these interconnections

between stages.

After the internal circuit models are constructed

the synthesizer produces the structural VHDL output

�les for each stage and for the whole system.

fra_h := fra_f; exp_h := exp_n;
while (fra_h(2) = ’0’) and (not exp_h = "0") loop

fra_r := sh_left(fra_h, 1); exp_r := exp_h - ’1’;
fra_h := fra_r; exp_h := exp_r;

end loop;
fra_x := fra_h;

Fra_h

exp_h

Fra_f

exp_n

fra_r1fra_h1mux

fra_h0mux

fra_f3

fra_f2

fra_f1

fra_f0

C

r1

CALL

d2

d1

r2

SELECT
truefalse

Rout

Ain

=

>
=
<

>

<
"0"

’0’

C

Rin Aout

r

d

sel

mux fra_h3 fra_r3

mux fra_h2 fra_r2

Data out

lt

fra_r0‘0’

pc

Toggle

pdcd

Figure 9: The control circuit for a WHILE loop.

Experimental results

All the rules and steps mentioned in previous sub-

sections were implemented. A test example of the be-

havioural description shown in Figure 11 was used to

test the synthesizer. This example is a small
oat-

ing point processor with a 4-bit exponent and a 5-bit

fra_h := fra_f;
fra_h := sh_left(fra_h, 1);

C

C

fra_f0

fra_f1

fra_f2

fra_f3

r1

CALL

d2

d1

r2

Ain

Rout

r

d

pc

Toggle

cd pd

lt

fra_h2 fra_h2’

fra_h3’fra_h3mux

Rin Aout

mux

Data out
mux fra_h1 fra_h1’

mux fra_h0 fra_h0’
‘0’

sel

Figure 10: The control circuit for a SHIFT loop.

mantissa. The external port de�nitions are RIN, AIN,

ROUT, AOUT, RESET, EA, EB, MA, MB, OP, EO,

MO1, and MO2. RIN, AIN, ROUT, and AOUT are

two-phase handshaking control signals. EA, EB, MA,

and MB are the exponents and mantissaes of two num-

ber repectively. OP is the operation, i.e. +;�. RE-

SET is the master clear signal. EO, MO1, and MO2

are the outputs. EO is the bigger of EA and EB.

One of the goals of designing the synthesizer is to syn-

thesize a micropipelined coprocessor. Therefore, this

example was chosen to test whether the basic oper-

ations of the synthesizer are correct. When the syn-

thesis was complete three structural VHDL �les and

their entity �les were automatically generated for the

three stages which are partitioned by the synthesizer

itself. A structural VHDL �le for the whole system is

also produced automatically. All the output �les were

executed on a leapfrog VHDL simulator without er-

ror. The expected output values and waveforms were

produced.

The structural architecture VHDL �les of the three

stages contain 286, 288, and 405 lines respectively. A

structural architecture VHDL �le for the whole sys-

tem contains 404 lines. As the �les are long it is not

possible to list all the output �les here. We only show

the number of the components and the internal signals

which were used inside each stage and the whole sys-

tem. These components are event-driven logic mod-

ules, active-low transparent latches, multiplexers, sub-

tractors, comparators, and some basic logic gates. The

numbers of components and internal signals which

were used inside each synthesized structural VHDL

end BEHAVIOR;

 fra_c(6 to 8) := "000"; fra_dd(6 to 8) := "000";
 MO1(0) <= fra_c(0); MO1(1 to 4) <= fra_c(2 to 5);
 MO2(0) <= fra_dd(0); MO2(1 to 4) <= fra_dd(2 to 5); EO <= exp_c;
 end process U1;

 end if;
 else exp_c := QEB; fra_c(0 to 5) := QMB; fra_dd(0 to 5) := QMA;

 begin
 QEA := EA; QEB := EB; QMA(0) := MA(0); QMB(0) := MB(0);
 QMA(2 to 5) := MA(1 to 4); QMB(2 to 5) := MB(1 to 4);
 if EA = "0000" then QMA(1) := ’0’; else QMA(1) := ’1’; end if;
 if EB = "0000" then QMB(1) := ’0’; else QMB(1) := ’1’; end if;
 exp_diff1 := QEA - QEB; exp_diff2 := QEB - QEA;
 if QEA >= QEB then comp := ’1’; else comp := ’0’; end if;
 if comp = ’1’ then exp_diff := exp_diff1; else exp_diff := exp_diff2; end if;
 if comp = ’1’ then exp_c := QEA; fra_c(0 to 5) := QMA; fra_dd(0 to 5) := QMB;

 variable FRA_C, FRA_DD : MVL_VECTOR (0 TO 8);
 variable QMA, QMB : MVL_VECTOR (0 TO 5);
 variable EXP_DIFF1, EXP_DIFF2, EXP_DIFF, EXP_C : MVL_VECTOR (0 TO 3);
 variable QEA, QEB : MVL_VECTOR (0 TO 3);
 variable comp : MVL;
 U1: process (RIN, AOUT, EA, EB, MA, MB, OP, RESET)
architecture BEHAVIOR of F_P_Processor1 is begin

 RESET :IN MVL);
END F_P_Processor1;

 MO1, MO2 :OUT MVL_VECTOR (0 TO 4);
 EO :OUT MVL_VECTOR (0 TO 3);
 OP :IN MVL_VECTOR (1 DOWNTO 0);
 MA, MB :IN MVL_VECTOR (0 TO 4);
 EA, EB :IN MVL_VECTOR (0 TO 3);
 PORT (RIN, AOUT :IN MVL; AIN, ROUT :OUT MVL;
ENTITY F_P_Processor1 IS

Figure 11: A test example.

�le are shown in Figure 12. The three stages, stg1,

stg2, and stg3, were treated as components inside the

structural VHDL �le for the whole system.

The structural Verilog �les of the three stages and

the whole system were successfully imported into the

Design Framework II database.

6 Conclusions
A synthesizer has been developed which con-

verts behavioural VHDL into asynchronous structural

VHDL and Verilog following the micropipeline design

style. The synthesizer can support addition, subtrac-

tion, multiplication, division, and some logical op-

erations. However, components which execute these

mathematical and logical operations must exist in the

library. The internal circuit model is similar to a DFG

[20]. To optimize synthesized circuits the method used

in DFG is proposed to eliminate the redundant circuits

and balance the computations within the datapaths.

The research presented in this paper demonstrates

that VHDL can be used to describe the behaviour of

micropipelined systems. It is also suitable for repre-

senting the circuits output from the synthesizer. At

the high level the computations of a whole system

can be treated as one computation block with mi-

cropipelined latches. This simple structure helps the

designer to estimate the expected behaviour of an ab-

stract system as early as possible using a VHDL sim-

ulator. The simulated results may be stored for com-

parison with the simulated results from the �nal syn-

thesized circuits to verify the correctness of the design.

Structural VHDL files Stg1 Stg2 Stg3 Network

Components & signals
c2 1 1 1

2
2
2 1

comparator1
comparator4
ltlatch1
ltlatch4

4

1
2

ltlatch6 2
ltlatch9 2
mux:2x1 2 1
mux:2x4 2
mux:2x6 2
inverter 1 1
or2
subtractor4
toggle 1 1
xor2 1 1
bus3 2
bus4 2 2 11
bus6 2
wire 16

1
1
2
1
1

2

16 16
2

16
Stg1 1
Stg2
Stg3

1
1

2

Figure 12: The numbers of components and internal

signals inside each synthesized VHDL �le.

Synthesis enables the design time to be greatly re-

duced. With careful partitioning of the system logic

functions into several stages, it is possible to improve

the system to achieve optimum performance.

References
[1] Sutherland, I.E., \Micropipelines", Communica-

tions of the ACM, Vol. 32, No. 6, Jun. 1989, pp.

720-738.

[2] Furber, S. B., Day, P., Garside, J.D., Paver,

N.C. andWoods, J.V., \AMicropipelined ARM",

1993 International Conference on VLSI, Greno-

ble, France, Sep. 6-10, 1993.

[3] Furber, S.B., Day, P., Garside, J.D., Paver, N.C.

and Temple, S., \AMULET2e", EMSYS'96 -

OMI Sixth Annual Conference, Berlin, 23-25 Sep.

1993, IOS Press ISBN 90 5199 300 5.

[4] IEEE Std, IEEE Standard VHDL Language Ref-

erence Manual, Standard 1076-1987, IEEE Inc.,

1988.

[5] Miller, R. E., \Switching Theory Vol. II: Sequen-

tial Circuits and Machines", John Wiley, 1965.

[6] Plummer, W. W., \Asynchronous Arbiters",

IEEE Transactions on Computers, Vol. c-21, Jan.

1972, pp. 37-42.

[7] Burns, S.M. and Martin, A.J., \Syntax-directed

Translation of Concurrent Programs into Self-

timed Circuits", Proceedings of the 5th MIT Con-

ference on Advanced Research in VLSI, edited by

J. Allen and F. Leighton, 1988, pp. 35-50.

[8] Brunvand, E.L. and Sproull, R.F., \Translat-

ing Concurrent Communicating Programs into

Delay-Insensitive Circuits", Carnegie Mellon,

CMU-CS-89-126, Apr. 1989.

[9] Brunvand, E.L., \Translating Concurrent Com-

municating Programs into Asynchronous Cir-

cuits", PhD Thesis, Carnegie Mellon, Sep. 1991.

[10] van Berkel, K., \Handshake Circuits { An Asyn-

chronous Architecture for VLSI programming,

1993, Cambridge University Press.

[11] Nedelchev, I. M., \Asynchronous VLSI Design",

Ph.D. Thesis, University of Surrey, UK, Jun.

1995.

[12] Inmos, Occam Programming Manual, 1983.

[13] Hoare, C. A. R., \Communicating Sequential

Processes", Prentice-Hall, 1985.

[14] Dijkstra, E.W., \Guarded commands, nondeter-

minacy and the formal derivation of programs",

Communications of the ACM, Vol.18, 1975, pp.

453-457.

[15] Tan, S.-Y., \High Level Modelling of Mi-

cropipelines", Master Thesis, University of

Manchester, UK, Oct. 1992.

[16] Tan, S.-Y., \A Simulation Model of Mi-

cropipelines", Journel of National Taipei Insti-

tute of Technology, Vol. 27-2, Taiwan, R.O.C, Jul.

1994, pp. 115-147.

[17] Peterson, J. L., \Petri Net Theory and the Mod-

eling of Systems", Prentice-Hall, 1981.

[18] Rushton, A., \VHDL For Logic Synthesis { An

Introductory Guide For Achieving Design Re-

quirements", McGraw-Haill, 1995.

[19] Day, P., \A Micropipelined Multiplier Design",

ACiD-WG/EXACT Workshop on Asynchronous

Data Processing, Eindhoven University of Tech-

nology, Veldhoven, The Netherlands, Dec. 1992.

[20] Gajski, D., Dutt, N., Wu, A. and Lin, S., \High-

Level Synthesis { Introduction to Chip and Sys-

tem Design", Kluwer Academic Publishers, 1992.

[21] Cadence, \Design Data Translators Reference",

Sep. 1994.

