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Abstract: Current interest in self-timed systems is 
motivated by the area, power and design effort 
required for the global clock of VLSI 
synchronous designs. A self-timed datapath, 
based on the ARM processor, using 
‘micropipeline’ control techniques has been 
developed for a newly updated high performance 
differential bipolar technology. The paper 
describes the architectural model produced to 
verify the correctness of the prototype design, and 
the use of the model in evaluating and enhancing 
the processor performance. Self-timed design 
comprises independent blocks whose operation 
depends solely on input data and unit availability. 
The modelling oi. the dynamic behaviour of 
blocks and the control structures required are 
presented. These illustrate how easily and well the 
self-timed operation is mapped onto the Verilog 
modelling language. Benchmark results on the 
processor indicate a factor-of-two performance 
improvement over a CMOS version. The system 
state at a particular instant is difficult to 
determine and the effects of interactions between 
modules are difficult to quantify. The use of the 
model to explore design changes, particularly to 
the buffering structures, is presented. This allows 
the design to be ‘tuned’ to the technology. It also 
enables a better understanding of total system 
behaviour. 

1 Introduction 

Renewed interest in self-timed systems has arisen as the 
problems associated with the design of the global clock 
used in synchronous systems are becoming severe. Cur- 
rently, significant silicon area and design effort are 
required for clock generation and distribution to main- 
tain skew within acceptable limits. These factors 
become progressively more difficult as feature sizes 
shrink. 
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Self-timed systems comprise independent modules 
which communicate when data is ready; there is no glo- 
bal clock. As a result, a self-timed design has the 
potential for reduced area and power consumption rel- 
ative to its synchronous counterpart. Furthermore, 
higher performance can also result since synchronous 
systems need to be designed for worst-case perform- 
ance whereas self-timed designs exhibit average-case 
performance. 

The framework used for self-timed design is that of 
Sutherland’s ‘micropipelines’ [ 11. This is an elastic, 
bounded delay, event driven pipeline where communi- 
cation between stages consists of a bundle of data 
accompanied by locally produced handshake control 
signals which control the flow of data. This approach, 
rather than a delay insensitive model, is adopted for its 
relative simplicity which minimises power and area. 
The feasibility of using this approach for designing a 
fully operational self-timed CMOS microprocessor 
based on the ARM architecture has already been dem- 
onstrated [2]. A follow-on project is aimed at trans- 
forming the self-timed CMOS microprocessor, 
AMULET1, into the recently updated high perform- 
ance differential bipolar technology manufactured by 
GEC Plessey Semiconductors (GPS). 

The technology transfer would demonstrate the 
applicability of a ‘micropipelines’ framework to tech- 
nologies other than CMOS and was also expected to 
demonstrate a performance improvement due to the 
inherently faster speed of the underlying technology. 

Due to the prototype nature of the architecture, 
design methodology and fabrication process, an essen- 
tial stage in the technology transformation was the 
development of a model for the self-timed microproces- 
sor in the target technology. This would verify that the 
proposed design was functionally correct, enable the 
design to be ‘tuned’ to the target technology and act as 
a tool with which to investigate architectural alterna- 
tives. 

2 Multilevel differential current mode logic 

The target technology is multilevel differential current 
mode logic (MDCML) using the newly updated proc- 
ess of GPS. It has complimentary inputs and outputs, 
allowing common mode noise to be rejected. High 
speed results from not saturating transistors and using 
signal swings of only 160mV. 

The logic is arranged in a current switch tree of up to 
three levels and operates from a 3V supply. This 
number of levels represents the best compromise 
between functionality, area and power [3]. 
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Fig. 1 shows a 3-input AND gate. The inputs at the 
top level, level 3, are compatible with output levels 
malting level shifters necessary to drive inputs at levels 
1 or 2. One current path always exists between either 
the true or the inverse output and ground causing this 
output to be pulled low and the other to remain high; 
the output pulled low corresponds to the path where all 
inputs are at a high level. This means that every input 
combination needs to be explicitly defined by the 
circuit. 

- I 

level 1 

Gnd 
Fig. 1 MDCML 3-input AND gate 

Multiple switch levels enable a complex function to 
be accommodated within a gate with a single current 
source. This includes a 4-10-1 multiplexer, a transpar- 
ent latch with reset (this copies the output to input 
when its enable is active), or any function of three vari- 
ables. The use of differential signals removes the 
requirement for inverters but extra silicon area is 
required for the differential routing of all signals. Extra 
power and area is also required for the level shifters. 
Since designing in terms of the highest gate functional- 
ity minimises the area, propagation delay and power, 
this approach characterises MDCML design at the gate 
level. 

3 The Verilog modelling language 

Verilog [4] is the modelling language adopted by GPS 
for its MDCML designs and this section gives an 
overview of the features used to model the self-timed 
processor. 

The processor is defined as a set of hierarchically 
instantiated modules. These modules are defined at a 
variety of levels, ranging from behavioural descriptions 
at the algorithmic and register transfer levels to struc- 
tural specifications at the gate level. Twenty-six availa- 
ble Verilog primitives (such as and, or etc.) are used to 
define the structural models and an example is given in 
the following Section. 

The syntax of Verilog for behavioural modelling is 
similar to that for the ‘C’ programming language. 
However, statements can be grouped together in a 
sequential or concurrent block. The former is indicated 
by the begin and end keywords and statements within 
these keywords execute sequentially; control passes out 
of the block when the last statement is executed. The 
beginning and end of concurrent blocks is indicated by 
the fork and join keywords. Statements within these 
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keywords execute in parallel; control passes out of the 
block when all statements have executed. 

In a self-timed system, there is no clock and actions 
are initiated by the occurrence of event(s). The initial 
statement, which is executed only once at the start of 
simulation time, is used to initialise signals and internal 
module variables. Thereafter, the basic Verilog con- 
struct used to define the behavioural model of a self- 
timed module is one or more 

always @ (event(s)) 
<block statementistatement> 

The always @ construct executes the block statement 
whenever the positive or negative edge of the specified 
event(s) occur. This is of particular use in the MDCML 
processor where two-phase signalling is used so that 
every transition on a control line signals an event. Pos- 
itive and negative edges can be selected for initiating 
actions using always @(posedge)/always @(negedge). In 
the MDCML processor modelling, they are used within 
(the few) modules where the two-phase timing needs to 
be converted to four-phase. 

always @ indicates an independent flow of activity 
enabling the system to be modelled as a set of inde- 
pendent, intercommunicating processes. In the self- 
timed processor model, all behavioural functionality is 
specified within always @ statements, as illustrated in 
the code for the signalling protocol in Section 6. 

Apart from the always @ timing control, the #<time 
units> <statement> is used in the processor model for 
local timing within a module. It specifies the time dura- 
tion between the activity flow reaching the statement 
and the time at which it is executed. A useful feature of 
Verilog behavioural modelling is the ability to include 
monitoring or error messages for the user. This greatly 
adds to the observability of the model and assists with 
debugging of the design. 

4 Gate modelling 

The propagation time of MDCML gates varies accord- 
ing to the level at which an input is applied. When typ- 
ically loaded, the difference between the top and 
bottom level delay is significant. This gives the designer 
an additional design parameter in formulating designs. 
For example, information can be transmitted on the 
lower levels in noncritical paths, or where extra delay is 
required to ensure that control signals arrive after valid 
data. In a similar way, signals on critical paths or fre- 
quently used paths are placed at the highest level to 
optimise performance. However, where more than one 
input would benefit from level-3 placement, then it is 
necessary to consider the expected sequence of signals 
to optimise performance. 

In implementing a Verilog model for each gate used 
in the model, HSPICE circuit simulations were first 
run. These used component models based on measure- 
ments made of test samples from the prototype line. 
The HSPICE simulations were used to establish the 
propagation delay at each level, to investigate the effect 
of output loading and input drive variations, and to 
observe the skew between true and inverse outputs. 

The results showed that under all driving conditions, 
the observed skew between true and inverse outputs 
was negligible. This enabled the Verilog modelling to 
be reduced to just defining the operation of the true 
phase of a signal. 
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The investigation of’ loading and drive effects showed 
that output loading dominated. The HSPICE equiva- 
lent load which reflects increased propagation delay 
due to gate loading was found empirically to be typi- 
cally equal to four 11:vel-3 BUFFER loads. This has 
been incorporated inta each Verilog gate model. When 
loading is taken into account, the propagation differ- 
ence between levels is significant, with the typical delay 
from level 2 and level 1 being, respectively, 1.5 and 2 
times that of the level-3 propagation time. 

Twenty structural models have been used for the 
gates in the processor and Fig. 2 shows the code for a 
two-input AND gate. The MDCML AND gate is mod- 
elled using the and (AND) and buf (BUFFER) primi- 
tives with user specified delays. Input a is applied at the 
top level and input b at level 2. 

buf 

out bB a and 

’timescale lps/lps 
module and2 (out, a, b): 
’define andZLdelay 263 
’define andZBdelay 424 

input a, b; 
output out; 
wire delb; 

and #(‘and2A-del.w) gl (out. a, delb) ; 
bufX(‘and28-delaf - ‘andZA-delay) 92 (delb, b); 

endmodule 

Modelling a two-input AND gate Fig.2 

The model uses an AND gate having a propagation 
delay of 263ps and a BUFFER gate which represents 
the additional propagation delay experienced by the 
lower level input. 

In practice the assign statement is used to replace the 
instantiations of (the and and buf) primitives in the 
structural models. This increases the simulator per- 
formance by directly assigning values to outputs of 
combinatorial primitives based on the current values 
on the inputs. 

5 Control 

The protocol uses a iwo-phase handshake signal con- 
vention and its operation between two blocks is sum- 
marised in Fig. 3. F[Fj-, receiver 

a 

Ack Req 3- data held stable 

f until Ack received 
bundling constraint 

b 
Fig.3 Block communication 
a Bundled data model 
6 Timing constraints 
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Data is accompanied by two control wires and transi- 
tions on these indicate events between blocks. Provided 
the receiver has acknowledged the receipt of the last 
bundle of data, the sender is free to send further data 
to the receiver. When valid data is assembled, Req 
changes state to inform the receiver that new data is 
present. The sender now holds the data lines stable 
until the receiver accepts the data and acknowledges 
this with an Ack transition. An essential requirement 
for the correct operation of the protocol is that, regard- 
less of the path taken, valid data arrives prior to the 
Request transition at the receiving module; this is 
known as the ‘bundling constraint’. 

In practice the coordination of activities between and 
within many modules of the processor is more complex 
than indicated in Fig. 3. The most typical examples in 
the design are when senders compete for the use of a 
bus, or when there is a choice of control path which is 
dependent upon internal conditions, or when a control 
transition needs to be converted to a level. 

At the gate implementation level, the transition pro- 
tocol and the coordination of activities within the proc- 
essor require a set of control elements. These are 
summarised in Fig. 4 and apart from the XOR gate 
need to be user defined. 

I 

XOR Muller C-Gate I 
toggle 

+ 

+ 

~~- Ack c 

select arbiter call 
Fig. 4 Transition control elements 

Fig.5 Example of use of the control elements 

The transition protocol described in Fig. 3 can be 
implemented with the 2-input Muller C-gate. This per- 
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forms an AND function of two events (transitions) and 
is extensively used in the control. The element contains 
storage which is placed at the bottom level so that the 
inputs can be placed at levels 2 and 3 to minimise path 
delays. The XOR gate is used to merge events as its 
output changes every time an input transition occurs. It 
can be used when inputs are guaranteed not to be 
simultaneous. The TOGGLE element steers an input 
transition alternatively to the two outputs; a positive 
input transition causes a transition on the ‘dot’ output 
while negative input transitions drive the ‘blank’ out- 
put. A TOGGLE is frequently used in conjunction with 
a Muller C-gate and an XOR gate to coiivert each 
input transition to a positive pulse which can be used 
to enable a transparent latch, as shown in Fig. 5 .  The 
transition on Req is converted to a positive pulse on 
the XOR output whose width is equal to the propaga- 
tion delay through the XOR and TOGGLE elements. 

The SELECT element directs the input transition to 
the output selected by the control input sel. It is used 
where there is a choice of actions dependent on internal 
conditions. The remaining two elements are used where 
it is necessary to synchronise activity within the proces- 
sor. The ARBITER selects between one of two asyn- 
chronous (transition) inputs. If it is unable to choose, 
because both arrived simultaneously, then neither is 
selected until the resulting metastability is resolved. The 
CALL element is used where two mutually exclusive 
sources request access to the same module. Since the 
ARBITER outputs are mutually exclusive, the ARBI- 
TER is normally used in conjunction with the CALL 
element. The input selected by the ARBITER is passed 
to the CALL element and is used to control any multi- 
plexer selection while the CALL element issues a Req 
to the receiving module. 

The more complex control elements, namely the 
TOGGLE, SELECT, ARBITER and CALL blocks, 
can be constructed from a combination of simpler 
structures comprising transparent latches, XOR gates, 
Muller C-gates and in the case of the ARBITER a 
comparator. Fig. 6 of the CALL element illustrates the 
typical complexity of these control structures 

I I 

D1 

I 
R2 L I 

Fig.6 CALL element 

The allocation of inputs to the different gate levels is 
performed on the basis of the expected sequence of sig- 
nals. In Fig. 6, the incoming transition request R1 or 
R2 will always precede the acknowledgement Ack from 
the called module. Thus the later event, Ack, is placed 
to propagate through the top level of the XOR and 
Muller C-gates to minimise the time to generate the 
done transition (D1 or D2). At a higher level, it is 
advantageous to connect the most frequently occurring 
calling source to R1 since the propagation delay to the 
Request transition (Req) to the called module is less 
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than for R2. Similar considerations determine input 
allocations in the other elements. 

Apart from the XOR gate, the control elements are 
modelled behaviourally based upon their constituent 
transistor composition and the allocation of input sig- 
nals to levels. 

Self-timing encourages a modular design style where 
the design is partitioned into independent, concurrent 
blocks. This approach has also been adopted for the 
processor timing and control. In the MDCML proces- 
sor, control comprises approximately one-third of the 
overall design and is partitioned into several modules 
which reflect the organisation of the major data blocks 
within the processor. Control modules are defined at 
the gate level using the control elements and conven- 
tional gates previously described. Programmable logic 
arrays are also used in many places to convert a set of 
input signals to the form required by a data block. 

6 Modelling data blocks 

The modelling of the dynamic behaviour of the data 
blocks of Fig. 3 is given in Fig. 7. All control signals 
are assumed to be initially at a low level. A time delay 
of one unit is used to ensure that the sender’s Request 
line occurs after valid data is placed on the bus. The 
handshaking is initiated by the Req of the first data 
sent. Thereafter Req and Ack alternate. 

sender.. . receiver. 

initial 

begin 

prepare-initial-data; 

#1 R e q  = 1; 

end 

always @ ( A c k )  

begin 

always @ (Req) 

begin 

prepare-new-data; consume-data-value; 

#1 Req = -Req; A c k  = -Ack;  

end; end; 
Fig.7 Dynamic block behuviour 

Consumption of data in the receiver normally 
involves capturing the data in its input register when 
this register becomes free. Newly prepared data in the 
sender is usually valid once the sender loads its output 
register. Its output register is released once the Ack sig- 
nal arrives from the receiver. It should be noted that 
both blocks operate at their natural rate when data is 
available. This is another advantage of a self-timed sys- 
tem over a clocked design. 

A self-timed approach encourages modularity in 
design and concurrent operation. The block structure 
outlined in Figs. 3 and 7 lends itself to a ‘micropipe- 
line’ implementation where the design is partitioned 
into pipeline register stages, termed event registers, 
without or with intervening combinatorial logic, Fig. 8. 
In the former case, which shows a 4-stage FIFO buffer, 
the data is accompanied by the Request and Acknowl- 
edge signals while in the latter case, the Request signal 
needs to be delayed until the data output from the 
combinatorial logic is valid. In practice this delay is 
usually best implemented by an additional data bit 
which experiences more propagation and line delay 
through the combinatorial logic than any other bit. 

The event register comprises transition latches. A 
transition on Rin is a request to capture the input data 
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while a transition on ,\out signifies that the held data is 
no longer required and the Register is free to enter the 
transparent or pass state. 

event event event event 
register register register register 

event 
register 

a 
event 

register 

I I /- I I 

b 
Fig. 8 Micropipeline structure 
a Without processing 
b With intervening processing 

32-bit event registe1 s are used extensively throughout 
the self-timed MDCML design. They provide the basic 
mechanism by which blocks are connected and also (as 
FIFOs) provide buffering between blocks to even out 
the flow of data. In the CMOS AMULET1 design, 
event registers are implemented using conventional 
transparent latches with control logic added to convert 
the input control edges to levels which clock the latch 
in the normal way. ‘This was chosen in preference to 
the Capture-Pass transition latch on the basis of both 
speed and area [5].  

However, in bipolar technology, the structure of the 
MDCML gate leads to an efficient and direct imple- 
mentation of a transi tion-controlled storage element in 
a single 4-to-1 multiplexer gate, Fig. 9a. 

cap pass 

_t 
pass 

a b 
Fig. 9 
a Logic 
6 Symbol 

Capture-pass storuge element in MDCML 

The data inputs to the multiplexer are placed at the 
top level with the control signals, Capture and Pass, 
placed on the lower levels of the gate. This assignment 
of signals, with control placed at lower levels than the 
data, is used throughout the MDCML design to pro- 
vide an inbuilt timing margin in order to meet the bun- 
dling constraint. Capture and Pass signals alternate. 
When the Capture and Pass states are the same the ele- 
ment is transparent, while it stores data when they are 
not equal. To provide the event register of Fig. 8, a 
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Muller C-gate needs to be included with the storage 
elements as shown in Fig. 10. 

Fig. 10 Event register 

The Muller C-gate only generates an output transi- 
tion when a new request is present and the succeeding 
stage has accepted the currently held data. The timing 
to meet the bundling constraint is inherent in the struc- 
ture, being provided by the propagation delay of the 
Muller C-gate. If Rin and Din arrive simultaneously 
and the event register is free to capture this data, the 
data immediately passes through to Dout on the fastest 
propagation path since the register is in the transparent 
state. The capture transition is then delayed by the 
Muller C-gate guaranteeing the capture of correct data 
in all circumstances and that Dout precedes Rout. 

When Aout is generated, it returns the register to the 
pass state allowing Din to pass to Dout. Even if a new 
request is waiting on the input at this time, Capture is 
again delayed by the Muller C-gate so that the output 
bundling constraint is met. Since the bundle timing can 
be smaller when Aout is returned, Aout is placed on 
level 2 of the Muller C-gate. 

In practice, further timing margin at the bundled 
interfaces is included as the Capture and Pass signals 
for a 32-bit register require buffering. 

pass=l; 

always 0 (in) 

if (pass) #(‘inpout) out=in; 

always @ (Rin) 

if (pass) 
fork 

# ( ‘ Din-Dout) out=in; 
#(’Rin-Rout) ROUt=-ROUt; 

#(‘Rin-Ain) Ain=-Ain; 

pass=O; 

join 

always @ (Aout) 
begin 

pass=l; 
if (Rin!=Aout) 
fork 

# (  ’Aout-Dout) out=in; 
#(‘Aout-Ain) Ah=-Ain; 

#(’Aout-Rout) Rout=-Rout; 

pass=O; 
join 

e lse  #(‘Aout-Dout) out-in; 
end 

Fig. 11 Functional codefor the event register 

375 



Fig. 11 shows the operational part of the behavioural 
model for an event register based on the underlying 
MDCML transistor structure. Because the relative 
arrival of Rin and Aout is unknown, an internal varia- 
ble pass is required to indicate the pasdcapture state of 
the register. It is assumed to be initialised to ‘1’ (trans- 
parent). The time delays (#) used are specified before 
initialisation and define the delays between inputs and 
outputs. These have been derived from HSPICE circuit 
simulation of the structure and show an in-built bun- 
dling margin of 1.211s at the output interface. 

The code illustrates the use of the always @, fork and 
join constructs to support independent and parallel 
activity within the module. These are used in a similar 
way in the behavioural modelling of the combinatorial 
logic blocks between event registers. These logic blocks 
are usually substantial, e.g. a multiplier, an address 
incrementer, an ALU, etc., and tend to be written at 
the algorithmic level. Although no detail is implied in 
this model about the underlying gate structure, this is 
usually known and used to define the block operation 
time. 

7 Self-timed ARM architecture 

The Advanced RISC Machine (ARM) microprocessor 
has a 32-bit loadistore RISC architecture with a three- 
address register-oriented instruction set [6]. The highest 
level of design of the MDCML self-timed ARM closely 
follows that of the AMULET1 and the processor 
organisation is shown in Fig. 12 

address 
interface 
7 
1 

execui 
unit 

data 
i n t e r f f  

register bank 

instr. 
decode 

Fi 9.1 2 Asynchronous processor organisation 

Four main units of the processor can be identified in 
Fig. 12: the register bank, the execution unit, the 
address interface and the data interface. 

The execute pipeline comprises the register bank fol- 
lowed by the execution unit. The register bank contains 
the processor’s general purpose and status registers. In 
addition, the register bank incorporates a lock FIFO 
[7]; this detects data dependencies and prevents a regis- 
ter from being read if it awaits an update by a previous 
instruction. It also enables read and write operations to 
proceed asynchronously and concurrently without the 
need to arbitrate. 

The execute unit contains the processor’s computa- 
tional logic. It comprises a multiplier, shifter and arith- 
metic and logic unit (ALU). Normally, instructions 
read one or two operands from the register bank. 
These pass to the multiplier which performs a bypass 
operation or an autonomous 2-bits-at-a-time multipli- 
cation forming partial sum and partial carry outputs 
for the ALU. The shifter is connected to the B bus 
allowing a register bank operand to be shifted. The 
ALU performs all other logical and arithmetic opera- 
tions; its adder is a ripple carry adder with data- 
dependent completion signalled when the carry propa- 
gation has ceased. The ALU result is normally written 
back to the register bank via the write bus. 

The interface between the external memory system 
and the processor consists of the address and data 
interfaces. The former handles all addresses sent to 
memory. It also generates addresses for the autono- 
mous instruction prefetching and the multiple load and 
store orders. The values of the program counter are 
kept in a FIFO buffer (PC pipe) within the address 
interface and its current value is available to the rest of 
the system as a general purpose register. 

Data to and from the memory passes through the 
data interface. Incoming instructions are stored in the 
Ipipe with any immediate value extracted by the imm. 
extr. block. Incoming data is manipulated as required 
by the data in block before being passed to the register 
bank. Data to be written to memory passes to the data 
out block which comprises a FIFO buffer and byte rep- 
lication logic. Data written to memory needs to be syn- 
chronised with the address and control information in 
the address interface before the request is sent to the 
memory as a single bundle. 

, 

rite 
ata 

=j==r22 control 

write bus 
Fig. 13 Block organisation of execute pipeline 

8 Architectural modelling 

As an aid to developing a full model of the processor, 
the four units were individually designed down to the 
RTL level. These were then behaviourally modelled in 
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terms of their constituent blocks and tested. As an 
example, Fig. 13 shows the main control and data 
blocks of the execute pipeline. 

Shaded blocks represent event registers. Each data 
block has an associated control block. The primary 
decode block decodes the instruction and this is then 
appropriately latched together with the value of PC. 
The accessing of the register bank now proceeds in par- 
allel with the decoding required for the later parts of 
the execution. Although event registers are placed in 
parallel in Fig. 13, they operate independently with 
synchronisation only performed between the control 
block and the data to which it is applied. Thus control 
2 coordinates with the multiplier and shifter data and 
control 3 with the ALU data. 

The individual unit is defined as a single module with 
an inputloutput signal interface which connects it to 
the other units of the processor and to the processor 
inputioutput pads. The unit module invokes a hierar- 
chy of module calls to the blocks of the unit, typically 
to a depth of three. Each hierarchical level contains 
instantiations of the primitive gates and control ele- 
ments for local timirig and control. The unit module 
calls its associated control blocks and for large units 
calls a module which in turn contains calls to all the 
datapath modules including any event registers. As pre- 
viously stated, the bottom level description for control 
modules is normally in terms of primitive gates and 
control elements while the bottom level for data mod- 
ules is usually behavioural. Modules are linked through 
the hierarchical levels by their input/output interface. 

Although traditionally associated with synchronous 
systems, Verilog proved to be a supportive environ- 
ment for the modelling and testing of modules and 
units of the self-timed MDCML design. The modular 
hierarchical structure of Verilog is well matched to the 
modelling of a self,.timed system comprising many 
inter-communicating independent modules, and the 
self-timed operation maps well onto its control con- 
structs. In particular, a high degree of concurrency is 
supported by the fork and join compound statements 
which allows nondeterministic ordering of the notion- 
ally parallel execution of individual statements. In 
addition, the always @ construct mapped well onto the 
transition signal protocol enabling many threads of 
execution to be simultaneously active throughout the 
model. 

Verilog also enables code to assist with fault finding 
to be included in the modules. In particular, a bundle 
checker has been used on data buses to check that 
there is a safe margin (typically Ins with this technol- 
ogy) between the Request In transition and the data 
arriving; this has enabled modules with insufficient tol- 
erance to be identified and modified. 

In general the units yielded a higher individual per- 
formance than their CMOS counterparts due to their 
higher inherent speed. However, in the places where 
advantage is taken ol' the CMOS technology to imple- 
ment functions such as a barrel shifter, or a wide 
wired-OR, both of which can be implemented in princi- 
ple in a single stage using pass transistors, then 
MDCML technology is at a disadvantage because con- 
ventional gates have lo be used. This is apparent in the 
MDCML ALU when: although the datapath operation 
is faster, the formaticin of the zero condition flag from 
the result slows the overall operatioil time down as it 
requires a multistage gate network to implement the 
32-bit wide NOR function. 
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The complete processor model consists of a single 
module which instantiates the major functional units. 
The processor is itself contained within a module which 
also consists of a simple memory management unit 
(MMU) and an external memory which supports the 
transition signalling protocol. The connection to the 
external environment is shown in Fig. 14. 
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I external; 

) MMU I devices; 
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read data 
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memory 

On initialisation, the memory model is loaded with 
the Verilog equivalent of the ARM instructions to be 
run. Following Reset, the processor self-starts by fetch- 
ing and executing the instruction at line 0 in memory. 

The self-timed MDCML processor model comprising 
a source file of over 100 Kbytes was tested by running 
the validation suite of test programs produced and 
used by Advanced RISC Machines (ARM) Limited for 
their synchronous processors. Confidence in the cor- 
rectness of the model was achieved when all internal 
tests and the test suite passed. 

The performance of the model was assessed by run- 
ning the Dhrystone benchmark [8]. This does not com- 
pute anything meaningful but is syntactically and 
semantically correct. Furthermore it has a representa- 
tive mix of instruction types which include a typical 
mixture of operator types, operand types and operand 
locations. Its results are dependent on factors such as 
compiler influence, the timing measurement method 
and cache interaction which makes comparisons 
between different processors difficult. However, it pro- 
vides a useful metric for the relative evaluation of 
design alternatives on the MDCML processor and also 
enables a comparison with the CMOS AMULET1 
design. 

The benchmark yielded a figure of 43 500 Dhrystones 
per second for the processor based on a 5ns external 
memory and typical figures for the underlying trench- 
isolated 1 . 2 ~  bipolar technology. Since the compara- 
ble figure for the l p n  AMULET1 design is 20500 
Dhrystones per second [9], this leads to the expectation 
that an MDCML processor will exhibit at least a factor 
of two improvement in performance over a comparable 
CMOS design. 

9 Performance investigations 

The effect that the interaction of the many intercom- 
municating self-timed modules of the system has on the 
overall performance is not well understood. This makes 
it difficult to predict the effectiveness of possible design 
changes. The processor model is a valuable tool in 
assisting the exploration of the dynamic behaviour of 
the system and enabling the assessment of design 
changes. 
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In order to gain a better understanding of the factors 
influencing the performance and their contribution to 
the efficiency, various aspects of the MDCML proces- 
sor were examined. 

9.7 Effect of nonsymmetrical propagation 
delay 
Changing the assignment of input levels of control ele- 
ments alters the system timing. To assess this, inputs 
were swapped on the XOR and Muller C-gates; these 
dominate the control elements used. The XOR gate 
generates an output event for every input event and in 
the original benchmark run, the input that changes 
most is assigned to the top (fastest) gate level. In the 
Muller C-gate, an output event is only generated when 
both input events have arrived leading to the placement 
of the input event which arrives later the most often 
being placed on the fastest gate level. 

Swapping the inputs on the XOR and rerunning the 
benchmark had only a small effect on the overall per- 
formance but did indicate that it was slightly more ben- 
eficial to connect the fastest gate level to the most 
active input (as might be expected). Swapping the 
inputs on the Muller C-gates, however, caused the sys- 
tem performance to drop off by 3% illustrating the 
contribution that the differing propagation delay of the 
gate makes when it causes the initiation of an action to 
be delayed. 

9.2 Block processing performance 
To investigate the effect that different, substantial 
blocks operating on each instruction have on the over- 
all performance, the times through the register bank 
and the ALU, which are both on the datapath and the 
primary decode PLA, which is in the control section, 
were individually varied. The results are shown in 
Fig. 15; the solid markers indicate the original block 
operation time. 
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The results indicate that both modules on the datap- 
ath can be considered to be on the critical path since an 
increase in block time from their nominal time 
degrades the overall performance. By comparison, the 
performance of the primary decode PLA is approxi- 
mately constant over the block delay range and it can 
therefore be assumed that its operation is overlapped 

378 

with the activity of the slower datapath elements. The 
graphs show that for the blocks considered, design 
effort to reduce the ALU time will make the greatest 
contribution to the overall performance. 

9.3 Pipeline occupancy efficiency 
Following the AMULET1 design, it was felt that some 
of the pipelines were longer than necessary. This led to 
inefficiency in the use of silicon area and in the time to 
progress data down the pipe since the pipe was often 
empty or only partially full. The lengths of some of the 
internal processor pipelines are fixed, since they per- 
form a particular function or are used to prevent 
potential deadlock situations. For example, the PC 
pipe in the address interface must be two stages long. 
The five-stage instruction FIFO pipeline in the data 
interface must be three stages longer than the PC pipe 
to prevent a complex deadlock state [5] .  Also, the mem- 
ory control pipe in the data interface must be the same 
length as the instruction FIFO pipeline. 

The operation of four remaining pipelines have been 
examined. These are the ALU and memory lock 
FIFOS in the register bank, used for storing the write 
(destination) register addresses of ALU result values or 
loaded memory values (respectively), the immediate 
field extraction pipe in the data interface, used for 
holding immediate operand values obtained from the 
instruction, and the write data buffer in the data inter- 
face which holds data values for transfer to memory; 
the only constraint on length is that the immediate field 
extraction pipe must contain at least one stage for cor- 
rect system operation. 
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Fig. 16 Pipeline occupancy 

The information regarding the dynamic operation of 
each of the FIFO buffering pipelines used throughout 
the design has been monitored by writing a Verilog sys- 
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tem instrumentation function. This pipeline occupancy 
monitor tool was connected to the external request and 
acknowledge signals of the pipelines under investiga- 
tion while the benchmark program was executed. The 
monitor provides an indication of when valid data is 
held in each stage of the pipeline to which it is 
attached. The results for the original benchmark tests, 
which used the same pipeline lengths as those in AMU- 
LET1, are displayed in Fig. 16. 

For each of the pipelines, the fraction of the total 
simulation time that 1 he pipeline occupancy is a partic- 
ular value is shown. For example, the ALU lock FIFO 
comprises three stages; for 89% of the total time the 
FIFO is empty and it contains one item for 10% of the 
time (rounding error’; account for the remaining 1%). 
The results suggest that the ALU lock FIFO, memory 
lock FIFO and write data buffer pipelines are too long 
and could be reduced to contain only 1 stage (or possi- 
bly removed altogether). The immediate field extraction 
pipe appears to be thl: correct length. 

The investigation was extended by modifying the 
length of each of the pipelines, in isolation, and noting 
the effect of rerunning the benchmark. These results 
are shown in Figs. i7 and 18 the ‘*’ in each graph 
shows the original pipe length. 
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These results indicate that on the MDCML proces- 
sor, the ALU lock FIFO should be shortened to one 
stage, the memory lock FIFO should be shortened to 
three stages, the imm1:diate field extraction pipe should 
be shortened to one stage and the write data buffer 
should contain only one stage. When simultaneously 
incorporated into the processor and the benchmark 
again executed, the r4:sulting performance is measured 
at 44045 Dhrystones per second. The increase in per- 
formance (1.25%) is approximately equal to the sum of 
the performance incr1:ases when the best case of each 
individual pipeline griiph is considered separately. 

Since the area occupied by an MDCML design is 
larger than its CM013 counterpart, the saving in area 
resulting from reducing pipe lengths is of greater signif- 
icance in this design than the modest performance gain. 
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9.4 Single-port register bank operation 
Considerations concerning the area of an MDCML 
design mean that an area-speed compromise may be 
required if an entire processor is to be integrated in a 
single chip using this technology and a minimum fea- 
ture size of 1 . 2 ~ .  

Significant area can be saved by adopting a single 
port for the read operand in the register bank rather 
than the dual-access bank which is standard on ARM 
microprocessors; two operand instructions would then 
require sequential accesses to the bank. 

Rerunning the benchmark with a single port read 
facility reveals a 7% loss of performance. Most of this 
loss could be recouped by directly forwarding the ALU 
result to the output of the register bank. Alternatively, 
Fig. 15 shows that improving the performance of the 
ALU would be sufficient to maintain the performance 
at the dual-port level. This latter improvement would 
be relatively easy as the current design uses a simple 
ripple technique in the adder. 

9.5 Summary 
Of the features examined, no single feature appears to 
dominate the performance. Furthermore, relatively 
large changes to the hardware seem to have only a rel- 
atively small effect on performance.These results illus- 
trate that it is difficult to relate the features of an 
architecture comprising many self-timed blocks to the 
performance measured or to predict the effect of design 
changes on the performance. The model is a valuable 
tool in allowing the design to be optimised to the tech- 
nology and to measure the effect of changes to the 
design. 

An understanding of total system operation in a 
large, complex self-timed design is at an early stage and 
clearly requires significant further research. Models 
such as the self- timed MDCML processor and the 
tools that can be constructed in Verilog will assist in 
such an investigation. 

10 Conclusions 

A model of a self-timed bipolar ARM processor has 
been developed and implemented in Verilog as a set of 
hierarchical intercommunicating self-timed control and 
data modules. The model incorporates an additional 
design parameter due to the nonsymmetrical propaga- 
tion delay of the gates; this affects the modelling pro- 
duced at all levels. The self-timed behaviour has been 
found to map well onto the structures provided by the 
Verilog language. This has also enabled checking and 
monitoring tools to be incorporated to assist with the 
debugging of the model. 

The correct functioning of such a model gives confi- 
dence in the prototype design and provides a valuable 
tool for investigating performance. The model indicates 
that the performance should be higher than that for a 
comparable CMOS design with a factor of two 
expected. The design changes proposed, particularly to 
optimise pipeline lengths, enable the design to be 
‘tuned’ to the technology to enhance performance as 
well as reducing silicon area. 
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