
An Asynchronous Victim Cache

D. Hormdee, J.D. Garside, S.B. Furber
Department of Computer Science,

The University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{hormdeed,jdg,sbf}@cs.man.ac.uk

Abstract

Memory bandwidth is a limiting factor with many mod-
ern microprocessors and it is usual to include a cache to
reduce the amount of memory traffic.Of the two commonly
used cache write-policies, the copy-back approach is bet-
ter than the write-through approach in this respect. The
performance of both approaches can be further aided by
the inclusion of a small buffer in the path of outgoing
writes to the main memory, especially if this buffer is
capable of forwarding its contents back into the main
cache if they are needed again before they are emptied
from the buffer. This is what is known as a victim cache.

For an asynchronous microprocessor it is logical that
the cache system should be asynchronous as well; since a
large degree of the flexibility of an asynchronous micro-
processor would be lost if it were to use a standard syn-
chronous memory interface. However, implementing a
forwarding mechanism in an asynchronous system is more
difficult because the data to be forwarded is flowing in a
manner unsynchronised to the process which requires it.

This paper presents an architecture for a victim cache
to resolve forwarding in a totally asynchronous environ-
ment. The resultant structure forms a key part of an asyn-
chronous copy-back cache system for the Amulet3, a third
generation asynchronous implementation of the ARM
processor.

Keywords: {victim cache, copy-back cache architec-
ture, asynchronous design}

1. Introduction

The function of a cache is to alleviate the disparity
between the processor’s memory bandwidth requirement
and the bandwidth provided by the main memory devices.
It does this very effectively. However as the speed mis-
match increases it becomes more important to reduce the
traffic between the cache and the memory especially if the
primary cache resides on-chip and the memory does not.

Many early caches used a write-through policy, where
every write operation was conducted to the memory
whether the addresses were cached or not. As many loca-
tions are written to several times in close succession this
traffic can be reduced by suppressing all but the ‘last’write
operation. This is implemented by the copy-back policy
which defers writing to memory until the cached copy is
about to be overwritten. Multiple successive write opera-
tions are therefore combined, with a consequent reduction
in memory bandwidth requirement. Previous studies have
proved that the copy-back policy provides superior per-
formance by reducing write traffic and power in a uniproc-
essor system [11] though it imposes an increased hardware
cost.

Further advantage may be gained by using a write buffer
[7] to defer write operations until the bus is not needed for
a (more urgent) read operation without delaying the proc-
essor; this does not diminish the bus traffic but helps to
reduce average read latency.

Another method of reducing memory traffic is to
improve the cache hit rate. This can be done by:

• increasing the cache size

• increasing the associativity

• improving the cache utilisation

The first of these is easy, but has a significant cost. Stud-
ies have shown that the hit rate increases very gradually
with increasing associativity above 8-ways [7]. However
even if both of these parameters are fixed the hit rate can
still be improved by using the cache more effectively; this
is primarily controlled by the choice of which lines are
cached, which is in turn determined by the choice of which
lines are rejected from the cache when a new line is fetched.

Various selection algorithms have been tried but perhaps
the most often cited ‘best’policy is the Least Recently Used
(LRU). Unfortunately LRU is difficult to implement effi-
ciently for high-associativity caches and simpler algo-
rithms are often adopted. One very easy-to-implement
algorithm is to use pseudo-random rejection; this can work
surprisingly well, but suffers as it can arbitrarily select a

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

much-used line for rejection, imposing both a bandwidth
and latency penalty as the line is written out and then
refetched.

A victim cache [10] can vastly alleviate this by storing a
small selection of ‘rejected’lines which can be brought
back into the main cache with very little penalty if they are
required again. Thus if the ‘wrong’line is chosen (by any
allocation algorithm) it is likely to be salvaged before it is
lost altogether from the cache system. The net effect is an
improvement in the overall choice made in cache line rejec-
tion. The victim cache can also double as a write buffer,
holding rejected lines until the bus is available.

Victim caching and forwarding mechanisms have been
implemented in many synchronous systems. In an asyn-
chronous cache system other new implementational prob-
lems are introduced as the processor may be completely
desynchronised with the bus traffic. This paper describes a
justification for, and a possible implementation of, a victim
cache and write buffer in an asynchronous environment.

2. Asynchronous cache systems

There is much literature from the past two decades
describing synchronous cache organisations across the
whole range of complexity and many strategies, mecha-
nisms and architectures. However there are very few asyn-
chronous caches and little is understood about this area.

Recent research [3] has shown that asynchronous micro-
processors can offer lower power consumption and better
electromagnetic emission profiles than their synchronous
counterparts, but there have been few attempts to construct
the supporting asynchronous memory systems needed to
exploit these to the full. Such systems, including the one
presented here, display data-dependent behaviour which
often allows the system to approach average case perform-
ance. For instance, when a request is sent from the proces-
sor to the cache, the response time can be different (and
unrelated to the system bus speed) depending on where in
the cache system the data currently resides.

There are only a few related previous implementations in
this area including the Amulet2e cache system [5], the
TITAC-2 cache system [17] and the pipelined caches in
asynchronous MIPS R3000 Microprocessor [13], all of
which were single-ported and used a write-through strat-
egy.

3. Cache architecture and its operation

To investigate a victim cache in an asynchronous envi-
ronment a previously developed copy-back cache architec-
ture [9] is used. This is briefly described below.

Some constraints are placed on the cache by the proces-
sor architecture and its usage. The on-chip cache system
(figure 1) employed here has to be unified but dual-ported
to accommodate the Amulet3 processor [4], a third gener-
ation asynchronous implementation of the ARM architec-
ture [1]. This has a Harvard-style memory interface but
requires a unified memory map.

To save power and reduce the possibility of instruction
and data conflicts the cache is subdivided into eight
addressable 1-kilobyte blocks. Each block is identical com-
prising a number of cache lines and, in this model, is a fully
associative CAM-RAM structure.

Within each block there are two line-buffers [8], one for
each port. These effectively form another, split cache which
can return data faster than the main cache, reduce the prob-
ability of conflicts further and reduce the energy dissipated
by a cache access.

The other unusual feature of the cache –inherited from
an earlier design –is the Line Fetch Latch (LFL) [14] which
is used to allow the desynchronisation of the processor and
line fetch process. The LFL acts as an extra cache line and
has its own tag. When data is fetched it is streamed into this
latch and picked up as required by the processor. The proc-
essor can then continue to use other parts of the cache
unhindered. Therefore the cache is non-blocking [12][15]
and implements hit-under-miss, meaning cache hits can be
serviced even if a line fetch is still progress.

When a subsequent line fetch is needed the LFL must be
copied into the main cache. In the write-through cache
developed for Amulet2e [5] the line fetch simply overwrites
an existing line in the RAM. In a copy-back cache the line
to be overwritten must first be read so that –if necessary –
it can be copied back to the main memory. It can then be
determined if this line is ‘dirty’,i.e. if it has been modified
whilst cached, and therefore needs to be copied back into
memory. While waiting for the bus to be free, this line must
be buffered.

Figure 1. Cache block organisation (after [4])

1kilobyte

LFL LFL

1kilobyte

arbiter arbiter

LFL

arbiter

1kilobyte
cache RAMcache RAMcache RAM

system bus

AMULET3 microprocessor (via MMUs)

instruction bus

data bus

DbufferIbufferDbufferIbuffer DbufferIbuffer

...

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

4. Write buffering

By definition, a copy-back cache only writes data to the
main memory when a cache miss occurs, which requires a
(possibly ‘dirty’)line to be emptied to create space for the
newly fetched data. For obvious performance reasons any
write should be performed after the read since the processor
is waiting for the new data. This requires additional storage
to hold the ejected line which is known as a write buffer [7].

The simplest write-buffer scheme has storage for a single
cache line. Each time there is a cache miss this is updated
whilst a new line is fetched; it is subsequently emptied into
memory if it is ‘dirty’or simply marked as ‘done’if the
write would be superfluous.

To reduce processor stalls further, when two or more line
fetches are required in close succession, memory accesses
can be reordered so that all outstanding reads are performed
before the writes begin (a read-overtake-write scheme).
Clearly this requires more than one slot in the write buffer.
Whilst fairly straightforward to implement in the synchro-
nous domain, overtaking can cause problems in an asyn-
chronous implementation where it can be difficult to
determine if a read operation has been requested before a
write burst begins. Arbitration is required to make this deci-
sion which leads to non-deterministic (but correct) behav-
iour.

Allowing reads to overtake writes also risks incurring
Read After Write (RAW) hazards [7]. This is not a problem
with a single evicted line because –by definition –the out-
going line cannot conflict with the line being fetched to
replace it. However if more than one entry is allowed in the
write buffer this protection is no longer assured and must be
provided explicitly.

Solutions to this problem include draining the write
buffer before a read is performed or forwarding the required
data to the processor directly from the write buffer. For-
warding not only solves the coherency problem but, by vir-
tue of storing and returning recently ejected lines locally,
turns the write buffer into a victim cache (figure 2).

5. Victim cache

The victim cache was proposed by Jouppi [10] as a
method to reduce the impact of conflict misses in direct-
mapped cache structures, but is easy to generalise to any
cache architecture. It is loaded only with items ejected from
the main cache. In the case of a cache miss that hits in the
victim cache the LFL can therefore be filled without the
penalty of a memory-read burst.

The victim cache can be considered as a memory with
three different functions acting upon it:

• Cache eviction – a cache miss occurs and the main
cache empties a line into the victim cache. The victim
cache has to provide an empty storage location for the
line at this time.

• Buffered writes –the victim cache autonomously cop-
ies ‘dirty’lines into the main system memory, freeing
space for re-use.

• Line-fetch and forwarding –a main cache miss occurs
so the miss address is passed to the victim cache, which
must supply (forward) the requested line if it can.

However, there are only two independent, concurrent
processes among these activities (filling and draining the
victim cache) since a line fetch causes a cache eviction.

The difficulty in an asynchronous implementation is that
the data flowing into/out of the victim cache is entering/
leaving in an unsynchronised manner from the line-fetch/
forwarding process that may require it.

5.1. Victim cache implementation

Gilbert presented an asynchronous implementation of a
reorder buffer [6] intended for use in a processor register
bank, which accepts input data with arbitrary ordering and
outputs them in a pre-assigned order. Forwarding of any
entry is allowed from the time it is written to the time it is
overwritten. A similar approach can be used here, with the
simplification that inputs and outputs are always in the
same order.

The write buffer is a circular FIFO; write operations are
made to the ‘head’of the buffer and the write process strips
entries from the ‘tail’whenever the bus goes idle. The use-
ful property of the circular buffer is that the data does not
move and so can be read and forwarded despite the fact than
another asynchronous process may be reading the data con-
currently. This lifetime of the ‘forwardable’data is fixed by
the number write buffer entries and is entirely independent
of the copy back process.

Although the mechanism used here is similar to Gil-
bert’s, there are some differences in the details. In particular
the possibility of forwarding is determined by a CAM look
up in both cases: in the original this is maintained by the

da
ta

write buffer/victim cache

main cache

fe
tc

h
ad

dr
es

s

processor

main memory

ad
dr

es
s

w
ri

te fe
tc

h
da

ta

forward

ev
ic

tio
n

Figure 2. Write buffer/victim cache position

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

instruction decoder but here the CAM contains the ejected
lines’addresses and therefore must be local. This is feasible
because the write buffer is only modified when a line fetch
is needed and thus the write and forward processes are
inherently synchronised.

In practice even this synchronisation is not necessary and
the two processes may be run in parallel. This is because,
as observed earlier, there cannot be a match between the
requested and evicted lines. If the implementor desires to
exploit this extra concurrency the ‘head’of the queue must
be excluded from the comparison because the contents of
this location may be changing during the comparison proc-
ess. Note that, in either case, the victim cache holds one
fewer valid line than it has storage locations.

Figure 3 illustrates the control flow of the victim cache
operation. The victim cache itself is a fully associative
cache composed of two main parts. Addresses are held in a
tag store (CAM) and their corresponding data are held in
the data store (RAM). Before reading external memory a
line fetch must be compared with these address tags and, if
a match occurs, the data can be forwarded instead of fetch-
ing the line from the memory. This does not interfere with
the (asynchronous) process of writing to the memory which
may not have started, may be in progress or may have com-
pleted at this time. The cache line is therefore ‘cleaned’and
does not need writing again unless subsequently modified.

When forwarding, the line fetch process appears ‘short
circuited’and can occur in a single, on-chip cycle rather
than four, slow bus cycles. This makes line fetch an asyn-
chronous process with a highly variable delay!

Figure 4 shows an entire cache read control flow in this
architecture including forwarding from the victim cache.

5.2. Victim cache storage

Three types of information are stored in each line of the
victim cache: the address is held in a tag CAM allowing fast
parallel look-up checks; the data are held in RAM, and a
number of additional control markers, such as the ‘dirty’bit
must also be kept. There are also global ‘head’and ‘tail’
pointers.

Two of the main independent processes, writing into and
emptying out the victim cache, are steered by the head and
tail respectively. Three extra bits for each data entry
describe the data held:

• Full – the entry has been filled but not yet copied-out

• Dirty – the entry should be copied into the memory

• Valid – the entry may be considered for forwarding

When a line of data –along with its ‘dirtiness’–arrives
it is stored in an empty slot indicated by head. Head then
moves on to the next slot. The valid and full bits are set.

The concurrent tail process waits for an entry to be full
and then checks its ‘dirtiness’.If it is dirty the process com-
petes for the bus and updates the memory, otherwise this
phase can be skipped. Lastly the full bit is cleared to indi-
cate that the write phase is complete and the tail moves for-
ward to the next entry. Note that this proceeds regardless of
any, possibly concurrent, forwarding.

The function of the valid bit is to prevent the wrong data
being forwarded. It is cleared at start-up when the victim
cache is empty and the tag fields are undefined. However
the valid bit is also cleared when the line is forwarded; this
prevents different versions of the same cache line being
valid in the victim cache at the same time, so there can be,
at most, one forwardable line. This removes the need for
prioritisation logic to guard against the (unlikely, but possi-

line fetch

refill LFL

forward

no

BUS

yes
dirty?

misshit

victim cache

fill VCC

line fetch request

fetch arbiter
iterate

C

empty LFL

previous

CAMRAM

complete

dr
ai

n
V

C

Figure 3. Victim cache operation

main memory

line-buffer

LFL hit

same as in AMULET2e cache system

R
ea

dA
ck

F

T

T

se
le

ct
se

le
ct

se
le

ct

da
ta

ad
dr

se
le

ct

R
ea

dR
eq T LB hit

forward

F

F

cache RAM

LFL

victim cache

LF engineF

miss

RAM hit

sync

T

Figure 4. Cache read control flow

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

ble) chance that a line is evicted, forwarded and evicted
again in close succession. The forwarding process can
safely clear the valid bit because forwarding is not possible
from the entry currently used for eviction (when the valid
flag is set).

This approach still retains the independence between
forwarding (accessing and modifying the valid bit) and
copying data out (accessing and modifying only the full
bit). This means the forwarding scheme always returns
clean data to the cache whilst the copying out process has
to be performed (depending on the dirty bit) regardless
whether the data has been forwarded.

There is an important difference between this forwarding
scheme and a conventional register forwarding scheme. In
the victim cache forwarding moves the data back to the
cache rather than copying it, thus forwarding can occur only
once per entry. A register forwarding scheme may duplicate
the data an unlimited number of times.

In this approach forwarding reduces the processor stall
period and avoids a full line fetch from the memory but
does not reduce the write traffic. It is possible to cancel the
copy-back process if a victim cache line is salvaged; this is
discussed briefly in section 5.4.

The eviction and copy back processes are independent
and largely decoupled, although the head must not ‘lap’the
tail. In practice the constraint is slightly more strict as is
illustrated below.

5.3. Avoiding deadlock by using token queue

Once reads are allowed to overtake writes, there is a
potential deadlock on cache line allocation in a copy-back
cache because the victim cache can fill up. When the line
fetch engine asks for data from the memory, the memory
tries to send the data to the LFL. However the LFL must be
emptied before it can store the newly fetched line. To empty
the LFL requires allocation of a line in the cache RAM
which must first be emptied into the victim cache before the
LFL can be read. If the victim cache is full, a line must be
written from it into the main memory, requiring the mem-
ory bus. This results in deadlock if the memory is busy per-
forming the read.

The solution to this problem is to keep at least one slot
in the victim cache empty. In an asynchronous environment
a standard way to implement this solution is to use a token
queue [6] where tokens corresponding to the victim cache
locations are circulated (figure 3). Initially the allowed
number of tokens are placed in a buffer and one is claimed
before each eviction can begin. The tokens then reside in
the victim cache until the copy out process returns them to
the pending queue. As there is one fewer token than victim
cache locations eviction will always stall before the last vic-
tim cache entry is filled.

5.4. Arbitration for the output bus

If a line fetch has evicted a dirty line there will be data in
the write buffer waiting to be written. In a simple system
this could be queued to be the next bus transaction, and this
would be a wholly deterministic (i.e. arbitration free) mech-
anism. However, it is quite plausible that a second cache
miss could occur before the first line fetch is finished. In this
circumstance it is desirable for the fetch to overtake the
write to reduce read latency.

In an asynchronous system it is possible for the second
fetch to arrive at the instant the previous fetch completes.
This therefore requires an arbiter [16] to decide whether it
preempted the write starting. Because most standard asyn-
chronous arbiters work on a ‘first-come-first-served’basis
–and the write will certainly have arrived first –this circuit
needs to be specially biased to grant a read if at all possible.
This arbiter is the only point of non-determinism needed in
this scheme.

An extra optimisation could be made by detecting that
forwarding has been performed before a write out (copy-
back) has begun. In this case it would be possible cancel the
write and instead return a dirty line to the cache. This would
reduce the bus traffic a little more, but the cost in complex-
ity is considerable. Although it has not been thoroughly
investigated it seems probable that the extra cost is unlikely
to be justifiable.

5.5. Distribution of the victim cache

As described in section 3 the cache is partitioned into
blocks although there is only a single memory bus upon
which evicted data can be written. This means that there are
two alternative positions for the victim cache: centralised
and shared (figure 5a) or distributed amongst the blocks
(figure 5b).

The choice for implementation is not an obvious one,
both schemes have advantages (white) and disadvantages
(shaded) as shown in table 1, some of which will only be
quantifiable when layout is produced. In order to provide
more data for comparison both styles have been simulated
in the following section.

6. Modelling and simulation

Different cache designs (along with the Amulet3 core)
were modelled and simulated using a functional model
written in LARD [2]. LARD is a language with communi-
cation primitives, and it is less cumbersome to model asyn-
chronous systems in such a language than it is to model the
timing information of each communication path (provided
by local request and acknowledge signals) as is required by

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

conventional hardware description languages such as
VHDL and Verilog.

Absolute calibration of the models is difficult because
the relationship between unit delay and the overall system
performance is much more complicated in asynchronous
systems. Dependencies between units mean that some
delays can affect performance in other parts of the system
so that their effects are magnified, whilst others are masked
and have no overall effect. Moreover, delays can have one
effect at one time and a different one at another time
depending on the characteristics of the tasks.

When working with behavioural models early in the

design process, measuring absolute performance is less sig-
nificant than being able to understand the underlying influ-
ences on the system performance. It is most important to be
able to identify those units which have the greatest effect on
overall performance and focus on those regions.

6.1. Simulation environment

The cache is to be divided into eight 1-Kbyte cache
blocks with lines of 4-words in length. Each block contains
separate instruction and data line-buffers and a LFL. Ran-
dom replacement algorithm is used to choose evicted lines.
A copy-back scheme and write allocate policy are adopted.

6.2. Benchmark programs

Table 2 gives a brief description of C benchmark pro-
grams used in the simulations presented here. These pro-
grams were chosen for a number of reasons including the
facts that they are fairly simple programs that, whilst easily
compiled with existing ARM libraries, display a range of
different memory access behaviour and reasonable miss
rates. Also they are small enough to be representative of
embedded applications and they are not too large for use
with LARD simulations.

32

32 32 32

128 128 128
128

...
128 128

victim cachevictim cache

MUX

BUS

victim cache

cache blockcache block cache block

128 128

128
128

128128

32

128128

...cache block

MUX

victim cache

BUS

cache blockcache block

Figure 5a. Central victim cache

Figure 5b. Local victim cache

N blocks with a central victim cache of V lines N blocks each with a local victim cache of V/N lines

tag comparison bigger, hence slower tag array faster

restriction on V V can be any size, minimum of 1 line V must be an integer multiple (minimum of 1) of N

wiring cost 128-bit buses connecting blocks to victim cache
are expensive

short local forwarding paths are much cheaper

forwarding ability (V -1) lines can be considered for forwarding (V - N) lines

stalls due filling
victim cache

very rare as victim cache unlikely to be full
of entries waiting for copying to main memory,

and easily recovered.

likely, and possibly of long duration as the main memory
arbiter may be servicing a different blocks (non-critical)

victim cache drain

multiplexing in critical path everything is local

Table 1: Benefits of distributing the victim cache

program name description

Espresso a two-level Boolean function minimisation program

STcompiler a C compiler program

Sim a program for local similarities with affine weights

Da a heap implementation of Dijkstra’s algorithm

DES a fast and portable DES en/decryption program

Blackjack a playing and betting strategies in blackjack program

Whetstone a converted Whetstone double precision benchmark

MM a matrix multiply program

Table 2: Benchmark descriptions

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

7. Results and evaluations

This section illustrates the advantages of a victim cache
architecture with dual-ported asynchronous block-based
copy-back caches, and investigates the distribution of such
a victim cache. These are described below.

The advantages of having a victim cache depend on sev-
eral issues including the main cache miss rate, the organi-
sation of the victim cache itself and the behaviour of the
application programs. Moreover the miss rate depends on
the cache size, organisation and replacement strategy. Since
the total cache size here is fixed to 8 kilobytes as described
earlier, and a range of programs are to be run, the focus of
this section is on how the effects of the victim cache vary
with different set associativity in the main cache and on the
effects of distributing the victim cache.

Figure 6 contains five sets of results for a variety of total
victim cache sizes. The six bars in each set show (from left
to right) the results for the following formats:

• direct-mapped cache with central victim cache

• direct-mapped cache with local victim caches

• 8-way cache and a central victim cache

• 8-way cache and local victim caches

• 64-way cache1 and a central victim cache

• 64-way cache1 and local victim caches.

Each bar shows the miss rate of the bare cache, and the
overall miss rate of the combination of the cache and the
victim cache.

The rightmost bar in each set shows the behaviour if,
instead of having a victim cache, the storage it would have
used is distributed evenly between the blocks to make each
block slightly larger. Each of these bars shows the miss rate
of direct-mapped cache and of the fully-associative (in each
block) cache.

All of the set-associative caches use pseudo-random
replacement strategy to choose victim lines.

• Direct-mapped vs set-associative caches - It is obvi-
ous that high associativity caches provide much better
(original) miss rate compared to direct-mapped caches
with the same victim cache style since there are fewer
conflict misses, however, the effect of having a victim
cache is more dramatic on direct-mapped caches. This is
simply because there are more conflict misses in direct-
mapped caches causing rejection of lines that are likely
to be required later. Nonetheless, as shown in figure 6,
the advantage of the victim cache also reduces the miss
rate of the 64-way caches by up to 0.25%. This, com-

bined with the additional simplicity of implementing
cache lock-down (where critical code is loaded into the
cache and prevented from being ejected), makes the
block-based associative cache the preferred choice.

• Victim cache distribution - The results show what
would have been expected from table 1. With only a sin-
gle line victim cache in each block (8-line local victim
cache), no forwarding can occur, hence the benefit of
having the central victim cache over local victim caches
of this size is at its maximum. Away from this extreme
situation, a small difference in miss rate between these
two styles is observed, with the local victim cache
scheme marginally lagging (in performance terms) the
centralised approach. This should be traded against the
performance benefit of using short, localised forward-
ing paths giving a faster (lower latency) forwarding
route, which can be fully exploited in an asynchronous
environment.

• Efficient use of resource - In fully-associative caches,
using a few extra lines as a victim cache gives more ben-
efit than extending the cache with them. Although the
difference appears small the effect of the victim cache is
magnified when considered as a proportion of the miss
rate (inset, figure 6). Using a few extra lines of store as
a victim cache rather than adding them to the main
cache can give reduce the proportionate miss rate by an
extra ~5%, the benefit increasing as the victim cache
size increases.
As shown by the dark bars in figure 6, increasing the
size of a direct mapped cache only slightly has strange
effects on the miss rate, as might be expected in a direct
mapped cache which is not a power of two in size.1. 64-way cache comprised of 8 memory interleaved fully-associa-

tive 64-line blocks block

Larger fully-associative (in each block) cache
Larger direct-mapped cache

Miss rate
Miss rate with forwardings

7% reduction in miss rate

5% reduction in miss rate

2% reduction in miss rate

24-line 32-line 40-line
0

1

2

3

4

55

4

3

2

1

0
8-line 16-line

Total victim cache size
M

is
s

R
at

e
(%

)

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

Figure 6. The effect of the victim cache

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

8. Conclusions

An architecture of a self-timed victim cache with a for-
warding mechanism suitable for use with a dual-ported,
block-based, copy-back cache within an asynchronous
environment has been presented. The victim cache has been
designed as a key part of the asynchronous copy-back cache
system to work with the Amulet3 microprocessor. It is
believed to be the first such design.

A forwarding mechanism is used to overcome the coher-
ence problems caused by allowing memory reads to over-
take writes, and gives a performance benefit too. In order to
forward asynchronously the data in the victim cache cannot
be removed by the write process without introducing haz-
ards. This means the last few rejected lines are retained
until they are overwritten. Adapting the queue technique, as
used in the Amulet3 reorder buffer, makes data forwarding
from the victim cache feasible without imposing undue
synchronisation in an asynchronous environment.

Although studies are continuing, along with the asyn-
chronous copy-back cache, it is clear that this design will
be used in any future Amulet3 cache designs and we hope,
in other asynchronous processors. We strongly believe that
this is another step in bringing asynchronous processing
into parity with the synchronous world.

9. Acknowledgements

The authors would like to thank the other member of the
Amulet group for their contributions. D. Hormdee is sup-
ported by a scholarship from the Royal Thai Government.
This support is gratefully appreciated.

10. References

[1] ARM Ltd., “ARM Architecture Reference Manual” ARM
DDI 0100D 2000.

[2] P.B. Endecott, “LARDDocumentation Home Page”,URL
http:// www.cs.man.ac.uk/amulet/projects/lard/index.html.

[3] S.B. Furber, J.D. Garside, P. Riocreux and S. Tem-
ple,“AMULET2e: An Asynchronous Embedded Controller”,
Proc. of the IEEE, 87(2), pp. 243-256, February 1999.

[4] J.D. Garside et al., “AMULET3i - an Asynchronous System-
on-Chip”,In Proc. Int. Symp. Advanced Research in Asynchro-
nous Circuits and Systems (Async’2000), pp. 162-175 IEEE
Computer Society Press, April 2000.

[5] J.D. Garside, S. Temple and R. Mehra, “TheAMULET2e
Cache System”,In Proc. Int. Symp. Advanced Research in Asyn-
chronous Circuits and Systems (Async’96), pp. 208-217, IEEE
Computer Society Press, March 1996.

[6] D.A. Gilbert and J.D. Garside “A Result Forwarding Mecha-

nism for Asynchronous Pipelined Systems”,In Proc. Int. Symp.
Advanced Research in Asynchronous Circuits and Systems
(Async’97), pp. 2-11, IEEE Computer Society Press, April 1997.

[7] J.L. Hennessy and D.A. Patterson, “ComputerArchitecture:
A Quantitative Approach”,Morgan Kaufmann, Second Edition,
1996.

[8] M.D. Hill et al., “Design Decisions for SPUR”, In IEEE
Computer, 19(11), pp. 8-22, November 1986.

[9] D. Hormdee and J.D. Garside, “AMULET3i Cache Archi-
tecture”,In Proc. Int. Symp. Advanced Research in Asynchronous
Circuits and Systems (Async’2001), pp. 152-161 IEEE Computer
Society Press, March, 2001.

[10] N.P. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and Prefetch
Buffers”, In Proc. Int. Symp. on Computer Architecture
(ISCA’90), pp. 364-373, 1990.

[11] N. Jouppi, “Cache Write Policies and Performance”, In
Proc. Int. Symp. Computer Architecture (ISCA’93), 21(2), pp.
191-201, 1993.

[12] D. Kroft, “Lockup-free instruction fetch/prefetch cache
organization”, In Proc. Int. Symp. Computer Architecture
(ISCA’81), pp. 81-85, 1981.

[13] A.J. Martin et al., “TheDesign of an Asynchronous MIPS
R3000 Microprocessor”, In Proc. Advanced Research in VLSI,
MIT Press, pp. 164-181, September 1997.

[14] R. Mehra and J.D. Garside, “A Cache Line Fill Circuit for a
Micropipelined Asynchronous Microprocessor”,IEEE Technical
Committee on Computer Architecture Newsletter, October 1995.

[15] K. Önerand M. Dubois, “Effects of Main Memory Laten-
cies on the Performance of Non-blocking Caches”, Technical
Report #CENG-92-34, University of Southern California, 1992.

[16] C. Seitz, “System Timing“, Chapter 7 of Introduction to
VLSI Systems by C. Mead and L. Comway, Addison Wesley, Sec-
ond Edition, 1980.

[17] A. Takamura et al., “TITAC-2: A 32-bit Asynchronous
Microprocessor based on Scalable-Delay-Insensitive Model”,In
Proc. Int. Conf. Computer Design (ICCD’97), pp. 288-294,
October 1997.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02)
0-7695-1790-0/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

