
ARM assembly language – v6– 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

age

 programs
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM Assembly Langu
Programming

❏ Outline:

❍ the ARM instruction set

❍ writing simple programs

❍ examples

☞ hands-on: writing simple ARM assembly

ARM assembly language – v6– 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

gories:

ters
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ ARM instructions fall into three cate

❍ data processing instructions

– operate on values in registers

❍ data transfer instructions

– move values between memory and regis

❍ control flow instructions

– change the program counter (PC)

ARM assembly language – v6– 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

gories:

ters
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ ARM instructions fall into three cate

➜ data processing instructions

– operate on values in registers

❍ data transfer instructions

– move values between memory and regis

❍ control flow instructions

– change the program counter (PC)

ARM assembly language – v6– 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

her:

d in the instruction

 goes into a

sults

ndependently
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ All operands are 32-bits wide and eit

❍ come from registers, or

❍ are literals (‘immediate’ values) specifie

❏ The result, if any, is 32-bits wide and
register

❍ except long multiplies generate 64-bit re

❏ All operand and result registers are i
specified

ARM assembly language – v6– 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

nvenience
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Examples:

ADD r0, r1, r2 ; r0 := r1 + r2

SUB r0, r1, #2 ; r0 := r1 - 2

❏ Note:

❍ everything after the ‘;’ is a comment

– it is there solely for the programmer’s co

❍ the result register (r0) is listed first

ARM assembly language – v6– 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

 C

 C - 1

 C - 1

d or 2’s complement
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Arithmetic operations:

ADD r0, r1, r2 ; r0 := r1 + r2
ADC r0, r1, r2 ; r0 := r1 + r2 +
SUB r0, r1, r2 ; r0 := r1 - r2
SBC r0, r1, r2 ; r0 := r1 - r2 +
RSB r0, r1, r2 ; r0 := r2 - r1
RSC r0, r1, r2 ; r0 := r2 - r1 +

❍ C is the C bit in the CPSR

❍ the operation may be viewed as unsigne
signed

ARM assembly language – v6– 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

2

2
ot r2

performed on each bit

it in r1
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Bit-wise logical operations:

AND r0, r1, r2 ; r0 := r1 and r
ORR r0, r1, r2 ; r0 := r1 or r2
EOR r0, r1, r2 ; r0 := r1 xor r
BIC r0, r1, r2 ; r0 := r1 and n

❍ the specified Boolean logic operation is
from 0 to 31

❍ BIC stands for ‘bit clear’

– each ‘1’ in r2 clears the corresponding b

ARM assembly language – v6– 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

 these are unary
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Register movement operations:

MOV r0, r2 ; r0 := r2
MVN r0, r2 ; r0 := not r2

❍ MVN stands for ‘move negated’

❍ there is no first operand (r1) specified as
operations

ARM assembly language – v6– 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

1 - r2
1 + r2
 and r2

1 xor r2

n codes (N, Z, C, V) in
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❍ Comparison operations:

CMP r1, r2 ; set cc on r
CMN r1, r2 ; set cc on r
TST r1, r2 ; set cc on r1
TEQ r1, r2 ; set cc on r

❍ these instructions just affect the conditio
the CPSR

– there is no result register (r0)

ARM assembly language – v6– 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

 replaced by a

[7:0]

l): (0 → 255) x 22n
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Immediate operands

❍ the second source operand (r2) may be
constant:

ADD r3, r3, #1 ; r3 := r3 + 1

AND r8, r7, #&ff ; r8 := r7

❍ # indicates an immediate value

– & indicates hexadecimal notation

– C-style notation (#0xff) is also supported

❍ allowed immediate values are (in genera

ARM assembly language – v6– 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

ted

<3

:

l shift right’

right’

bit
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Shifted register operands

❍ the second source operand may be shif

– by a constant number of bit positions:

ADD r3, r2, r1, LSL #3; r3 := r2+r1<

❍ or by a register-specified number of bits

ADD r5, r5, r3, LSL r2; r5 += r3<<r2

– LSL, LSR mean ‘logical shift left’, ‘logica

– ASL, ASR mean ‘arithmetic shift left’, ‘ …

– ROR means ‘rotate right’

– RRX means ‘rotate right extended’ by 1

ARM assembly language – v6– 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s
0

C

0

C

0

LSR # 5

RRX

– negative operand
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM shift operation

– setting the ‘C’ flag is optional

31 0

0 0 0 0 0C

31 0

0 0 0 0 0 C

0

0

31

0 0 0 0 0

31

1 1 1 1 1

1

1

31 0

C

31
C

C

LSL # 5

ASR # 5 – positive operand

ROR # 5

ASR # 5

ARM assembly language – v6– 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

 the condition codes.

d:

ut -> C
p 32 bits

rithmetic operations
logical operations

s in control flow
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Setting the condition codes

❍ all data processing instructions may set

– the comparison operations always do so

❍ For example, here is code for a 64-bit ad

ADDS r2, r2, r0 ; 32-bit carry-o
ADC r3, r3, r1 ; added into to

– S means ‘Set condition codes’

❍ The C flag comes from: the adder in a
the shifter in

❍ the primary use of the condition codes i
– see later

ARM assembly language – v6– 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

[31:0]

st done with a short

:

[31:0]
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc

❏ Multiplication

❍ ARM has special multiply instructions

MUL r4, r3, r2 ; r4 := (r3 x r2)

– only the bottom 32 bits are returned

– immediate operands are not supported

– multiplication by a constant is usually be
series of adds and subtracts with shifts

❍ there is also a multiply-accumulate form

MLA r4, r3, r2, r1 ; r4 := (r3xr2+r1)

❍ 64-bit result forms are supported too

ARM assembly language – v6– 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

gories:

ters
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ ARM instructions fall into three cate

❍ data processing instructions

– operate on values in registers

➜ data transfer instructions

– move values between memory and regis

❍ control flow instructions

– change the program counter (PC)

ARM assembly language – v6– 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

er instruction:

rs

fer rate
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ The ARM has 3 types of data transf

❍ single register loads and stores

– flexible byte, half-word and word transfe

❍ multiple register loads and stores

– less flexible, multiple words, higher trans

❍ single register - memory swap

– mainly for system use, so ignore for now

ARM assembly language – v6– 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

gister indirect

:

]

0

sible:
ress close to the
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Addressing memory

❍ all ARM data transfer instructions use re
addressing.

❍ Examples of load and store instructions

LDR r0, [r1] ; r0 := mem[r1

STR r0, [r1] ; mem[r1] := r

❍ therefore before any data transfer is pos
a register must be initialized with an add
target

ARM assembly language – v6– 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

uctions’ to initialise

o TABLE1

on
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Initializing an address pointer

❍ any register can be used for an address

❍ the assembler has special ‘pseudo instr
address registers:

ADR r1, TABLE1 ; r1 points t
..

TABLE1 ; LABEL

– ADR will result in a single ARM instructi

ADRL r1, TABLE1

– ADRL will handle cases that ADR can’t

ARM assembly language – v6– 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

:

]

:

4]

4]
 4
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Single register loads and stores

❍ the simplest form is just register indirect

LDR r0, [r1] ; r0 := mem[r1

❍ this is a special form of base plus offset

LDR r0, [r1,#4] ; r0 := mem[r1+

❍ the offset is within 4 Kbytes

❍ auto-indexing is also possible:

LDR r0, [r1,#4]! ; r0 := mem[r1+
; r1 := r1 +

ARM assembly language – v6– 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

td)

 4

 instead of a word

r1]

16[r1](signed)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Single register loads and stores (…c

❍ another form uses post-indexing

LDR r0, [r1],#4 ; r0 := mem[r1]
; r1 := r1 +

❍ finally, a byte or half-word can be loaded
(with some restrictions):

LDRB r0, [r1] ; r0 := mem8[

LDRSH r0, [r1] ; r0 := mem

❍ stores (STR) have the same forms

ARM assembly language – v6– 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

ansfer several

m[r1+4]
m[r1+8]

 r15

est address, and so on,

dered in {…}
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Multiple register loads and stores

❍ ARM also supports instructions which tr
registers:

LDMIA r1, {r0,r2,r5} ; r0 := mem[r1]
; r2 := me
; r5 := me

– the {…} list may contain any or all of r0 -

– the lowest register always uses the low
in increasing order

– it doesn’t matter how the registers are or

ARM assembly language – v6– 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

ctd)

y

all forms of stack

t

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data transfer instructio

❏ Multiple register loads and stores (…

❍ stack addressing:

– stacks can Ascend or Descend memor

– stacks can be Full or Empty

– ARM multiple register transfers support

❍ block copy addressing

– addresses can Increment or Decremen

– Before or After each transfer

ARM assembly language – v6– 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

fer

r5
r1
r0

r5
r1
r0

IB r9!, {r0,r1,r5}

B r9!, {r0,r1,r5}

101816

100C16

100016

101816

100C16

100016
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Multiple register trans
addressing modes

r9

r5
r9´

r1
r0

r9 r5

r9´

r1
r0

r9

r9´

r9

r9´

STMIA r9!, {r0,r1,r5} STM

STMDA r9!, {r0,r1,r5} STMD

101816

100C16

100016

101816

100C16

100016

ARM assembly language – v6– 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

iews
structions

LDMIB

DMED

TMDA

TMFD

Empty

ding

Standard

stack

sfers
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Stack and block copy v
of the load and store multiple in

STMIB

STMFA

STMIA

STMEA

LDMDB

LDMEA

LDMDA

LDMFA

LDMIA

LDMFD

STMDB

STMFD

L

S

S

Before

After

Before

After

Full FullEmpty

Descen

Increment

Decrement

Most common block tran

ARM assembly language – v6– 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

gories:

ters
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ ARM instructions fall into three cate

❍ data processing instructions

– operate on values in registers

❍ data transfer instructions

– move values between memory and regis

➜ control flow instructions

– change the program counter (PC)

ARM assembly language – v6– 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

cution around the

ge the PC!
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Control flow instructio

❍ Control flow instructions just switch exe
program:

B LABEL
.. ; these instructions are skipped

LABEL ..

❍ normal execution is sequential

❍ branches are used to change this

– to move forwards or backwards

❍ Note: data ops and loads can also chan

ARM assembly language – v6– 27

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

ken depends on the

ounter

unter
ith limit

if not equal
ue

ets Z
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Control flow instructio

❏ Conditional branches

❍ sometimes whether or not a branch is ta
condition codes:

MOV r0, #0 ; initialise c
LOOP ..

ADD r0, r0, #1 ; increment co
CMP r0, #10 ; compare w
BNE LOOP ; repeat
.. ; else contin

– here the branch depends on how CMP s

ARM assembly language – v6– 28

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s

o result

arry-out

ut
r or same

flow occurred

 occurred

reater than

reater or equal

ess than

ess than or equal

r

 or same
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Branch conditions
Branch Interpretation Normal use

B
BAL

Unconditional
Always

Always take this branch
Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zer

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC
BLO

Carry clear
Lower

Arithmetic operation did not give c
Unsigned comparison gave lower

BCS
BHS

Carry set
Higher or same

Arithmetic operation gave carry-o
Unsigned comparison gave highe

BVC Overflow clear Signed integer operation; no over

BVS Overflow set Signed integer operation; overflow

BGT Greater than Signed integer comparison gave g

BGE Greater or equal Signed integer comparison gave g

BLT Less than Signed integer comparison gave l

BLE Less or equal Signed integer comparison gave l

BHI Higher Unsigned comparison gave highe

BLS Lower or same Unsigned comparison gave lower

ARM assembly language – v6– 29

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

to SUBR
ere
e entry point

ction for return

the PC
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Control flow instructio

❏ Branch and link

❍ ARM’s subroutine call mechanism

❍ saves the return address in r14

BL SUBR ; branch
.. ; return to h

SUBR .. ; subroutin
MOV pc, r14 ; return

– note the use of a data processing instru

❍ r14 is often called the link register (lr)

– the only special register use other than

ARM assembly language – v6– 30

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

ctions may be

 {
- r2

anches

y

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Control flow instructio

❏ Conditional execution

❍ an unusual ARM feature is that all instru
conditional:

CMP r0, #5 ; if (r0 != 5)
ADDNE r1, r1, r0 ; r1 := r1 + r0
SUBNE r1, r1, r2 ; }

❍ this removes the need for some short br

– improving performance and code densit

ARM assembly language – v6– 31

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

tions such as input

l monitor

pendent

e system function
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Control flow instructio

❏ Supervisor calls

❍ these are calls to operating system func
and output:

SWI SWI_Angel ; call Ange

❍ the range of available calls is system de

– Angel uses a single SWI number with th
specified in r0

ARM assembly language – v6– 32

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s

e ARM instructions:

; R0 := not(R0)

; R0 := 0 - R0

; ‘Leaf’ return
; Unstack PC

h

;
; etc.

 other operations too.
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r “Missing” instruction

Some familiar mnemonics are not present in th

❍ NOT MVN R0, R0

❍ NEG RSB R0, R0, #0

❍ RET MOV PC, LR
or (e.g.) LDR PC, [SP], #4

❍ PUSH & POP STMFD SP!, {register list}; Pus
LDMFD SP!, {register list}; Pop

❍ LSL, etc. MOV R0, R0, LSL #5
MOV R0, R0, ASR R1

– Note that the shift can be combined with

ARM assembly language – v6– 33

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ms

y

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Writing simple progra

❏ Assembler details to note:

❍ AREA - declaration of code area

❍ EQU - initialising constants

– used here to define SWI number

❍ ENTRY - code entry point

❍ =, DCB, DCD - ways to initialise memor

❍ END - the end of the program source

❍ labels are aligned left

– opcodes are indented

ARM assembly language – v6– 34

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 declare area
I number
try point
lo World” -1
ite char in [r1]
yte
text end
 print ..

oop back
eption call

ecution

rogram source
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Examples

‘Hello World’ assembly program:

AREA HelloW,CODE,READONLY;
SWI_Angel EQU 0x123456 ; Angel SW

ENTRY ; code en
START ADR r1, TEXT-1 ; r1 -> “Hel

LOOP MOV r0, #0x3 ; Angel wr
LDRB r2, [r1,#1]! ; get the next b
CMP r2, #0 ; check for
SWINE SWI_Angel ; if not end
BNE LOOP ; .. and l
MOV r0, #0x18 ; Angel exc
LDR r1, =0x20026 ; Exit reason
SWI SWI_Angel ; end of ex

TEXT = “Hello World”,0xA,0xD,0
END ; end of p

ARM assembly language – v6– 35

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nt = 8
rite char

le
?
tic

in buffer
te char in [r1]
acter
nibble
ibble count
 do next nibble
urn
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Examples

Subroutine to print r2 in hexadecimal

HexOut MOV r3, #8 ; nibble cou
ADR r1, ChOut ; buffer for w

LOOP MOV r0, r2, LSR #28; get top nibb
CMP r0, #9 ; 0-9 or A-F
ADDGT r0, r0, #’A’-10; ASCII alphabe
ADDLE r0, r0, #’0’ ; ASCII numeric
STR r0, [r1] ; store ASCII
MOV r0, #0x3 ; Angel wri
SWI SWI_Angel ; print char
MOV r2, r2, LSL #4 ; shift left one
SUBS r3, r3, #1 ; decrement n
BNE LOOP ; if more
MOV pc, r14 ; ... else ret

ChOut DCD 0

ARM assembly language – v6– 36

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 programs

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Hands-on:
writing simple ARM assembly

❏ Look at example ARM assembly pro

❍ Check that they work as expected

❏ Write extensions to the programs

❍ Check that they work as expected

☞ Follow the ‘Hands-on’ instructions

	ARM Assembly Language Programming
	Outline:
	the ARM instruction set
	writing simple programs
	examples
	hands-on: writing simple ARM assembly programs

	The ARM instruction set
	ARM instructions fall into three categories:
	data processing instructions
	– operate on values in registers

	data transfer instructions
	– move values between memory and registers

	control flow instructions
	– change the program counter (PC)

	The ARM instruction set
	ARM instructions fall into three categories:
	data processing instructions
	– operate on values in registers
	data transfer instructions
	– move values between memory and registers

	control flow instructions
	– change the program counter (PC)

	Data processing instructions
	All operands are 32-bits wide and either:
	come from registers, or
	are literals (‘immediate’ values) specified in the instruction

	The result, if any, is 32-bits wide and goes into a register
	except long multiplies generate 64-bit results

	All operand and result registers are independently specified

	Data processing instructions
	Examples:
	ADD r0, r1, r2 ; r0 := r1 + r2
	SUB r0, r1, #2 ; r0 := r1 - 2

	Note:
	everything after the ‘;’ is a comment
	– it is there solely for the programmer’s convenience

	the result register (r0) is listed first

	Data processing instructions
	Arithmetic operations:
	ADD r0, r1, r2 ; r0 := r1 + r2 ADC r0, r1, r2 ; r0 := r1 + r2 + C SUB r0, r1, r2 ; r0 := r1 - r2 ...
	C is the C bit in the CPSR
	the operation may be viewed as unsigned or 2’s complement signed

	Data processing instructions
	Bit-wise logical operations:
	AND r0, r1, r2 ; r0 := r1 and r2 ORR r0, r1, r2 ; r0 := r1 or r2 EOR r0, r1, r2 ; r0 := r1 xor r2...
	the specified Boolean logic operation is performed on each bit from 0 to 31
	BIC stands for ‘bit clear’
	– each ‘1’ in r2 clears the corresponding bit in r1

	Data processing instructions
	Register movement operations:
	MOV r0, r2 ; r0 := r2 MVN r0, r2 ; r0 := not r2
	MVN stands for ‘move negated’
	there is no first operand (r1) specified as these are unary operations

	Data processing instructions
	Comparison operations:
	CMP r1, r2 ; set cc on r1 - r2 CMN r1, r2 ; set cc on r1 + r2 TST r1, r2 ; set cc on r1 and r2 TE...

	these instructions just affect the condition codes (N, Z, C, V) in the CPSR
	– there is no result register (r0)

	Data processing instructions
	Immediate operands
	the second source operand (r2) may be replaced by a constant:
	ADD r3, r3, #1 ; r3 := r3 + 1
	AND r8, r7, #&ff ; r8 := r7[7:0]

	# indicates an immediate value
	– & indicates hexadecimal notation
	– C-style notation (#0xff) is also supported

	allowed immediate values are (in general): (0 Æ 255) x 22n

	Data processing instructions
	Shifted register operands
	the second source operand may be shifted
	– by a constant number of bit positions:
	ADD r3, r2, r1, LSL #3 ; r3 := r2+r1<<3

	or by a register-specified number of bits:
	ADD r5, r5, r3, LSL r2 ; r5 += r3<<r2
	– LSL, LSR mean ‘logical shift left’, ‘logical shift right’
	– ASL, ASR mean ‘arithmetic shift left’, ‘ …right’
	– ROR means ‘rotate right’
	– RRX means ‘rotate right extended’ by 1 bit

	ARM shift operations
	– setting the ‘C’ flag is optional

	Data processing instructions
	Setting the condition codes
	all data processing instructions may set the condition codes.
	– the comparison operations always do so

	For example, here is code for a 64-bit add:
	ADDS r2, r2, r0 ; 32-bit carry-out -> C ADC r3, r3, r1 ; added into top 32 bits
	– S means ‘Set condition codes’

	The C flag comes from: the adder in arithmetic operations the shifter in logical operations
	the primary use of the condition codes is in control flow – see later

	Data processing instructions
	Multiplication
	ARM has special multiply instructions
	MUL r4, r3, r2 ; r4 := (r3 x r2)[31:0]
	– only the bottom 32 bits are returned
	– immediate operands are not supported
	– multiplication by a constant is usually best done with a short series of adds and subtracts wit...

	there is also a multiply-accumulate form:
	MLA r4, r3, r2, r1 ; r4 := (r3xr2+r1)[31:0]

	64-bit result forms are supported too

	The ARM instruction set
	ARM instructions fall into three categories:
	data processing instructions
	– operate on values in registers

	data transfer instructions
	– move values between memory and registers
	control flow instructions
	– change the program counter (PC)

	Data transfer instructions
	The ARM has 3 types of data transfer instruction:
	single register loads and stores
	– flexible byte, half-word and word transfers

	multiple register loads and stores
	– less flexible, multiple words, higher transfer rate

	single register - memory swap
	– mainly for system use, so ignore for now

	Data transfer instructions
	Addressing memory
	all ARM data transfer instructions use register indirect addressing.
	Examples of load and store instructions:
	LDR r0, [r1] ; r0 := mem[r1]
	STR r0, [r1] ; mem[r1] := r0

	therefore before any data transfer is possible: a register must be initialized with an address cl...

	Data transfer instructions
	Initializing an address pointer
	any register can be used for an address
	the assembler has special ‘pseudo instructions’ to initialise address registers:
	ADR r1, TABLE1 ; r1 points to TABLE1 .. TABLE1 ; LABEL
	– ADR will result in a single ARM instruction

	ADRL r1, TABLE1
	– ADRL will handle cases that ADR can’t

	Data transfer instructions
	Single register loads and stores
	the simplest form is just register indirect:
	LDR r0, [r1] ; r0 := mem[r1]

	this is a special form of base plus offset:
	LDR r0, [r1,#4] ; r0 := mem[r1+4]

	the offset is within 4 Kbytes
	auto-indexing is also possible:
	LDR r0, [r1,#4]! ; r0 := mem[r1+4] ; r1 := r1 + 4

	Data transfer instructions
	Single register loads and stores (…ctd)
	another form uses post-indexing
	LDR r0, [r1],#4 ; r0 := mem[r1] ; r1 := r1 + 4

	finally, a byte or half-word can be loaded instead of a word (with some restrictions):
	LDRB r0, [r1] ; r0 := mem8[r1]
	LDRSH r0, [r1] ; r0 := mem16[r1](signed)

	stores (STR) have the same forms

	Data transfer instructions
	Multiple register loads and stores
	ARM also supports instructions which transfer several registers:
	LDMIA r1, {r0,r2,r5} ; r0 := mem[r1] ; r2 := mem[r1+4] ; r5 := mem[r1+8]
	– the {…} list may contain any or all of r0 - r15
	– the lowest register always uses the lowest address, and so on, in increasing order
	– it doesn’t matter how the registers are ordered in {…}

	Data transfer instructions
	Multiple register loads and stores (…ctd)
	stack addressing:
	– stacks can Ascend or Descend memory
	– stacks can be Full or Empty
	– ARM multiple register transfers support all forms of stack

	block copy addressing
	– addresses can Increment or Decrement
	– Before or After each transfer

	Multiple register transfer addressing modes
	Stack and block copy views of the load and store multiple instructions
	The ARM instruction set
	ARM instructions fall into three categories:
	data processing instructions
	– operate on values in registers

	data transfer instructions
	– move values between memory and registers

	control flow instructions
	– change the program counter (PC)

	Control flow instructions
	Control flow instructions just switch execution around the program:
	B LABEL .. ; these instructions are skipped LABEL ..

	normal execution is sequential
	branches are used to change this
	– to move forwards or backwards

	Note: data ops and loads can also change the PC!

	Control flow instructions
	Conditional branches
	sometimes whether or not a branch is taken depends on the condition codes:
	MOV r0, #0 ; initialise counter LOOP .. ADD r0, r0, #1 ; increment counter CMP r0, #10 ; compare ...
	– here the branch depends on how CMP sets Z

	Branch conditions
	Control flow instructions
	Branch and link
	ARM’s subroutine call mechanism
	saves the return address in r14
	BL SUBR ; branch to SUBR .. ; return to here SUBR .. ; subroutine entry point MOV pc, r14 ; return
	– note the use of a data processing instruction for return

	r14 is often called the link register (lr)
	– the only special register use other than the PC

	Control flow instructions
	Conditional execution
	an unusual ARM feature is that all instructions may be conditional:
	CMP r0, #5 ; if (r0 != 5) { ADDNE r1, r1, r0 ; r1 := r1 + r0 - r2 SUBNE r1, r1, r2 ; }

	this removes the need for some short branches
	– improving performance and code density

	Control flow instructions
	Supervisor calls
	these are calls to operating system functions such as input and output:
	SWI SWI_Angel ; call Angel monitor

	the range of available calls is system dependent
	– Angel uses a single SWI number with the system function specified in r0

	“Missing” instructions
	Some familiar mnemonics are not present in the ARM instructions:
	NOT MVN R0, R0 ; R0 := not(R0)
	NEG RSB R0, R0, #0 ; R0 := 0 - R0
	RET MOV PC, LR ; ‘Leaf’ return or (e.g.) LDR PC, [SP], #4 ; Unstack PC
	PUSH & POP STMFD SP!, {register list}; Push LDMFD SP!, {register list}; Pop
	LSL, etc. MOV R0, R0, LSL #5 ; MOV R0, R0, ASR R1 ; etc.
	– Note that the shift can be combined with other operations too.

	Writing simple programs
	Assembler details to note:
	AREA - declaration of code area
	EQU - initialising constants
	– used here to define SWI number

	ENTRY - code entry point
	=, DCB, DCD - ways to initialise memory
	END - the end of the program source
	labels are aligned left
	– opcodes are indented

	Examples
	‘Hello World’ assembly program:
	AREA HelloW,CODE,READONLY ; declare area SWI_Angel EQU 0x123456 ; Angel SWI number ENTRY ; code e...

	Examples
	Subroutine to print r2 in hexadecimal
	HexOut MOV r3, #8 ; nibble count = 8 ADR r1, ChOut ; buffer for write char LOOP MOV r0, r2, LSR #...

	Hands-on: writing simple ARM assembly programs
	Look at example ARM assembly programs
	Check that they work as expected

	Write extensions to the programs
	Check that they work as expected
	Follow the ‘Hands-on’ instructions

