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1 Qutline:

[] memory organization
[ ARM data types
[] conditional statements & loop structures

(1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs
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Support for high-level languages

The University
of Manchester

1 ARM has a vanilla instruction set

[] it has no language specific support
[] the basic instruction set supports ...

— various data types

— expressions

— conditional statements
— loops

[] ... In straightforward ways

— see book Chapter 6
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Memory organization

0 Little-endian memory

The University
of Manchester

] least significant byte stored at lowest memory address
[ Big-endian memory

[] least significant byte stored at highest memory address
1 ARM can be configured either way

[1 we will stick to the little-endian organization,
as nature intended!
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Little- and big-endian memory
bit 31 bit O bit 31 bit O

Y Y Y Y

23 | 221 21| 20 20| 21 ] 22| 23

19 |1 18 | 17 | 16 16 | 17 | 18 | 19
word 16—— word 16——
15114 | 13 | 12 12 1 13 | 14 | 15
half-word 14 half-word 12 half-word 12 half-word 14
11110 9 8 8 9 [ 10 | 11

The University
of Manchester

word 8 —— word 8 ——
7 6 5 4 byte 4 5 6 7
byte6 half-word 4f address byte5 half-word 6

3 2 1 0 — 0 1 2 3
byte3 byte2 bytel byte0 byteQ bytel byte2 byted

(a) Little-endian (b) Big-endian
memory organisation memory organisation
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The University

6 ARM data types
; 1 ANSI C defines basic data types:
[ chars, at least 8 bits ARM: byte]
[ short ints, at least 16 bits ARM: half-word]
] Ints, at least 16 bits ARM: word]
[] long ints, at least 32 bits ARM: word]

(all the above signed or unsigned)

[] floating-point, double, long double,
enumerated types, bit fields
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e ARM data types

11 C defines arithmetic to be modulo 2N

The University
of Manchester

[] overflow cannot happen
[1 ARM 32-bit result multiply is correct

[] not standard arithmetic!

0 Enumerated types

[] are mapped onto the smallest integers with the necessary
range

1 Floating-point

[1 discussed later
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¢
Conditional statements

1 Example:

The University
of Manchester

If (a>b) c=a; else c=b;

(1 ifa,band careinr0, rl and r2;

CMP 0, rl , if (a>b)...
MOVGT r2,r0 ' ..C=a..
MOVLE r2,rl . ..else c=b

[] this code is very efficient

— It runs sequentially without branches

— If the then or else clause is longer than about 3 instructions a
branch may be better

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 10



- For loops
22 O Example:
for (i=0; i<10; i++) {a[i] = 0}
[] simple code:
MOV rl, #0 ; value for all]
ADR 2, a[0] ; r2 -> a[0]
MOV ro, #0 ; 1=0
LOOP CMP ro, #10 ;1<10 ?
BGE EXIT ; if 1>=10 finish
STR rl, [r2,r0,LSL #2]; a[i]=0
ADD ro, rO, #1 C 4+
B LOOP

EXIT
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While loops

1 Obvious code:

The University
of Manchester

LOOP . , evaluate expression
BEQ EXIT
. , loop body

B LOOP

EXIT

1 Improved code:

B TEST

LOOP . ; loop body

TEST . ; evaluate expression
BNE LOOP

EXIT
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Do ... while loops

The University
of Manchester

do {...} while (expression)
[] the loop body is always executed at least once:

LOOP . ; loop body

. ; evaluate expression
BNE LOOP
EXIT
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switch (expression) {

Switch statements

The University
of Manchester

case constant-expression 1. Statements 4
case constant-expression >. Statements
case constant-expression N- Statements
default: statements D

[] can be compiled into a sequence of ifs:

temp = expression;

If (temp==constant-expression 1) {statements 1}

else ...

else if (temp==constant-expression N {statements N
else {statements D}
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Switch statements

The University
of Manchester

0 A jump table might be more efficient:

; r0 contains value of expression
ADR rl, JUMPTABLE ; get base of jump table
CMP r0, #TABLEMAX ; check for overrun..
LDRLS pc, [r1,rO,LSL #2] ; .. if OK get pc

, statementsD ;.. otherwise default
B EXIT , break

JUMPTABLE DCD LO, L1 ... LN-1:destination addresses

LO , Statements 0
B EXIT ; break
LN-1 ; Statements N-1

EXIT
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Switch statements

The University
of Manchester

] Subroutine calls are easy to synthesize:

; r0 contains value of expression
ADR rl, JUMPTABLE ; get base of jump table
CMP r0, #TABLEMAX ; check for overrun..

ADRLS Ir, EXIT ; ‘return’ address
LDRLS pc, [r1,rO,LSL #2] ; .. if OK get pc
, Statements ;.. otherwise default
B EXIT ; break
JUMPTABLE DCD LO, L1, ... LN-1; Destination addresses
LO , Statements 0
MOV pc, Ir , break
LN-1 ; Statements N-1

EXIT
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1 Qutline:

[] memory organization

[ ARM data types

Support for high-level languages

[] conditional statements & loop structures

[1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs
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ARM Procedure Call Standard

The University
of Manchester

1 In some areas it is Iimportant to adopt software-defined
‘'standard’ solutions
[] the ARM Procedure Call Standard (APCS) is an example
— it provides a regular way for procedures to operate
[] Terminology:

— aleaf procedure is one which does not call any lower-level
routines
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‘ leaf I

Hierarchical program structure

main

‘ leaf I

)_I

‘ leaf I

[] A ‘leaf’ procedure calls nothing itself
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ARM Procedure Call Standard

1 The APCS defines:

The University
of Manchester

[ particular uses for the general-purpose registers
[] the form of stack to be used

[] a stack-based data structure for backtracing

[] an argument and result passing mechanism

[] support for shared (re-entrant) libraries
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APCS register use convention

The University

[
S Reqgister APCS name APCS role
"26 0 al Argument 1 / integer result / scratch register
1 a2 Argument 2 / scratch register
2 a3 Argument 3 / scratch register
3 ad Argument 4 / scratch register
4 vl Register variable 1
5 V2 Register variable 2
6 v3 Register variable 3
7 v4 Register variable 4
8 v5 Register variable 5
9 sb/v6 Static base / register variable 6
10 sliv7 Stack limit / reqgister variable 7
11 fp Frame pointer
12 ip Scratch reg. / new sb in inter-link-unit calls
13 sp Lower end of current stack frame
14 Ir Link address / scratch register
15 pc Program counter
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e APCS argument
and result passing

The University
of Manchester

1 The arguments are arranged into a list of words

[] the first 4 arguments are passed in al - a4

[] the remaining arguments are passed via the stack

1 A simple result is returned via al

[] more complex results are passed via memory,
using al as the pointer
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Function entry and exit

1 BL saves the return address in R14 (“LR”)

The University
of Manchester

[] Simple leaf routines:

BL leafl
leafl
MOV pc, Ir , return

— N0 memory operations required
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Function entry and exit

1 If the procedure calls another procedure ...

The University
of Manchester

(] Other routines (without backtrace, etc.)

BL sub2
sub2 STMFD sp!, {regs, Ir}; save registers

LDMFD sp!, {regs, pc}; restore & return

— l.e.the LR is pushed
* maybe with some ‘working’ registers
— the PC is popped instead
— LR can then be used as a ‘scratch’ register
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“28% The standard ARM C program
address space model

<—— top of memory

The University
of Manchester

-<—— stack pointer (sp)
-<—— stack limit (sl)

<«+— stack low water mark

-<+—top of heap

-<—— {op of application

application’s image

-<«—— application’s load address
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Hands-on: writing and
debugging ARM C programs

The University
of Manchester

0 Explore further the ARM software development tools

[] Build simple C programs
[] Check that they work as expected

[ Investigate the debugging facilities of the software
development toolkit

[] Follow the ‘Hands-on’ instructions (2 parts)
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	– it runs sequentially without branches
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	Example:
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	Do … while loops
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	Function entry and exit
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	Other routines (without backtrace, etc.)
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