MANCHEStER
1824

Support for high-level languages

The University
of Manchester

1 Qutline:

[] memory organization
[ARM data types
[] conditional statements & loop structures

(1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages —v5 — 1

.
Support for high-level languages

The University
of Manchester

1 ARM has a vanilla instruction set

[] it has no language specific support
[] the basic instruction set supports ...

— various data types

— expressions

— conditional statements
— loops

[] ... In straightforward ways

— see book Chapter 6

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 2

MANCHEStER
1824

Support for high-level languages

The University
of Manchester

1 Qutline:

[memory organization
[ARM data types
[] conditional statements & loop structures

(1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 3

MANCHEStER
1824

Memory organization

0 Little-endian memory

The University
of Manchester

] least significant byte stored at lowest memory address
[Big-endian memory

[] least significant byte stored at highest memory address
1 ARM can be configured either way

[1 we will stick to the little-endian organization,
as nature intended!

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 4

MANCHEStER
1824

Little- and big-endian memory
bit 31 bit O bit 31 bit O

Y Y Y Y

23 | 221 21| 20 20| 21] 22| 23

19 |1 18 | 17 | 16 16 | 17 | 18 | 19
word 16—— word 16——
15114 | 13 | 12 12 1 13 | 14 | 15
half-word 14 half-word 12 half-word 12 half-word 14
11110 9 8 8 9 [10 | 11

The University
of Manchester

word 8 —— word 8 ——
7 6 5 4 byte 4 5 6 7
byte6 half-word 4f address byte5 half-word 6

3 2 1 0 — 0 1 2 3
byte3 byte2 bytel byte0 byteQ bytel byte2 byted

(a) Little-endian (b) Big-endian
memory organisation memory organisation

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages —v5 -5

MANCHEStER
1824

Support for high-level languages

The University
of Manchester

1 Qutline:

[] memory organization
[ARM data types
[] conditional statements & loop structures

(1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 6

The University

6 ARM data types
; 1 ANSI C defines basic data types:
[chars, at least 8 bits ARM: byte]
[short ints, at least 16 bits ARM: half-word]
] Ints, at least 16 bits ARM: word]
[] long ints, at least 32 bits ARM: word]

(all the above signed or unsigned)

[] floating-point, double, long double,
enumerated types, bit fields

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages —v5 — 7

MANCHEStER

e ARM data types

11 C defines arithmetic to be modulo 2N

The University
of Manchester

[] overflow cannot happen
[1 ARM 32-bit result multiply is correct

[] not standard arithmetic!

0 Enumerated types

[] are mapped onto the smallest integers with the necessary
range

1 Floating-point

[1 discussed later

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 8

MANCHEStER
1824

Support for high-level languages

The University
of Manchester

1 Qutline:

[] memory organization
[ARM data types
[] conditional statements & loop structures

(1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages —v5 -9

¢
Conditional statements

1 Example:

The University
of Manchester

If (a>b) c=a; else c=b;

(1 ifa,band careinr0, rl and r2;

CMP 0, rl , if (a>b)...
MOVGT r2,r0 ' ..C=a..
MOVLE r2,rl . ..else c=b

[] this code is very efficient

— It runs sequentially without branches

— If the then or else clause is longer than about 3 instructions a
branch may be better

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 10

- For loops
22 O Example:
for (i=0; i<10; i++) {a[i] = 0}
[] simple code:
MOV rl, #0 ; value for all]
ADR 2, a[0] ; r2 -> a[0]
MOV ro, #0 ; 1=0
LOOP CMP ro, #10 ;1<10 ?
BGE EXIT ; if 1>=10 finish
STR rl, [r2,r0,LSL #2]; a[i]=0
ADD ro, rO, #1 C 4+
B LOOP

EXIT

© 2005 PEVE; Unit — ARM System Design

Architectural support for high-level languages — v5 — 11

MANCHEStER
1824

While loops

1 Obvious code:

The University
of Manchester

LOOP . , evaluate expression
BEQ EXIT
. , loop body

B LOOP

EXIT

1 Improved code:

B TEST

LOOP . ; loop body

TEST . ; evaluate expression
BNE LOOP

EXIT

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 12

MANCHEStER
1824

Do ... while loops

The University
of Manchester

do {...} while (expression)
[] the loop body is always executed at least once:

LOOP . ; loop body

. ; evaluate expression
BNE LOOP
EXIT

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 13

MANCHEStER
1824

switch (expression) {

Switch statements

The University
of Manchester

case constant-expression 1. Statements 4
case constant-expression >. Statements
case constant-expression N- Statements
default: statements D

[] can be compiled into a sequence of ifs:

temp = expression;

If (temp==constant-expression 1) {statements 1}

else ...

else if (temp==constant-expression N {statements N
else {statements D}

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 14

.
Switch statements

The University
of Manchester

0 A jump table might be more efficient:

; r0 contains value of expression
ADR rl, JUMPTABLE ; get base of jump table
CMP r0, #TABLEMAX ; check for overrun..
LDRLS pc, [r1,rO,LSL #2] ; .. if OK get pc

, statementsD ;.. otherwise default
B EXIT , break

JUMPTABLE DCD LO, L1 ... LN-1:destination addresses

LO , Statements 0
B EXIT ; break
LN-1 ; Statements N-1

EXIT

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 15

.
Switch statements

The University
of Manchester

] Subroutine calls are easy to synthesize:

; r0 contains value of expression
ADR rl, JUMPTABLE ; get base of jump table
CMP r0, #TABLEMAX ; check for overrun..

ADRLS Ir, EXIT ; ‘return’ address
LDRLS pc, [r1,rO,LSL #2] ; .. if OK get pc
, Statements ;.. otherwise default
B EXIT ; break
JUMPTABLE DCD LO, L1, ... LN-1; Destination addresses
LO , Statements 0
MOV pc, Ir , break
LN-1 ; Statements N-1

EXIT

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 16

MANCHEStER
1824

The University
of Manchester

1 Qutline:

[] memory organization

[ARM data types

Support for high-level languages

[] conditional statements & loop structures

[1 the ARM Procedure Call Standard

[1 hands-on: writing & debugging C programs

© 2005 PEVE; Unit — ARM System Design

Architectural support for high-level languages — v5 — 17

ARM Procedure Call Standard

The University
of Manchester

1 In some areas it is Iimportant to adopt software-defined
‘'standard’ solutions
[] the ARM Procedure Call Standard (APCS) is an example
— it provides a regular way for procedures to operate
[] Terminology:

— aleaf procedure is one which does not call any lower-level
routines

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 18

MANCHEStER
1824

The University
of Manchester

‘ leaf I

Hierarchical program structure

main

‘ leaf I

)_I

‘ leaf I

[] A ‘leaf’ procedure calls nothing itself

© 2005 PEVE; Unit — ARM System Design

Architectural support for high-level languages — v5 — 19

ARM Procedure Call Standard

1 The APCS defines:

The University
of Manchester

[particular uses for the general-purpose registers
[] the form of stack to be used

[] a stack-based data structure for backtracing

[] an argument and result passing mechanism

[] support for shared (re-entrant) libraries

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 20

MANCHEStER
1824

APCS register use convention

The University

[
S Reqgister APCS name APCS role
"26 0 al Argument 1 / integer result / scratch register
1 a2 Argument 2 / scratch register
2 a3 Argument 3 / scratch register
3 ad Argument 4 / scratch register
4 vl Register variable 1
5 V2 Register variable 2
6 v3 Register variable 3
7 v4 Register variable 4
8 v5 Register variable 5
9 sb/v6 Static base / register variable 6
10 sliv7 Stack limit / reqgister variable 7
11 fp Frame pointer
12 ip Scratch reg. / new sb in inter-link-unit calls
13 sp Lower end of current stack frame
14 Ir Link address / scratch register
15 pc Program counter

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 21

MANCHEStER

e APCS argument
and result passing

The University
of Manchester

1 The arguments are arranged into a list of words

[] the first 4 arguments are passed in al - a4

[] the remaining arguments are passed via the stack

1 A simple result is returned via al

[] more complex results are passed via memory,
using al as the pointer

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 22

MANCHEStER
1824

Function entry and exit

1 BL saves the return address in R14 (“LR”)

The University
of Manchester

[] Simple leaf routines:

BL leafl
leafl
MOV pc, Ir , return

— N0 memory operations required

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 23

MANCHEStER
1824

Function entry and exit

1 If the procedure calls another procedure ...

The University
of Manchester

(] Other routines (without backtrace, etc.)

BL sub2
sub2 STMFD sp!, {regs, Ir}; save registers

LDMFD sp!, {regs, pc}; restore & return

— l.e.the LR is pushed
* maybe with some ‘working’ registers
— the PC is popped instead
— LR can then be used as a ‘scratch’ register

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 24

MANCHEStER

“28% The standard ARM C program
address space model

<—— top of memory

The University
of Manchester

-<—— stack pointer (sp)
-<—— stack limit (sl)

<«+— stack low water mark

-<+—top of heap

-<—— {op of application

application’s image

-<«—— application’s load address

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 25

MANCHEStER
1824

Hands-on: writing and
debugging ARM C programs

The University
of Manchester

0 Explore further the ARM software development tools

[] Build simple C programs
[] Check that they work as expected

[Investigate the debugging facilities of the software
development toolkit

[] Follow the ‘Hands-on’ instructions (2 parts)

© 2005 PEVE; Unit — ARM System Design Architectural support for high-level languages — v5 — 26

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	 Support for high-level languages
	ARM has a vanilla instruction set
	it has no language specific support
	the basic instruction set supports …
	– various data types
	– expressions
	– conditional statements
	– loops

	… in straightforward ways
	– see book Chapter 6

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	Memory organization
	Little-endian memory
	least significant byte stored at lowest memory address

	Big-endian memory
	least significant byte stored at highest memory address

	ARM can be configured either way
	we will stick to the little-endian organization, as nature intended!

	Little- and big-endian memory
	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	ARM data types
	ANSI C defines basic data types:
	chars, at least 8 bits [ARM: byte]
	short ints, at least 16 bits [ARM: half-word]
	ints, at least 16 bits [ARM: word]
	long ints, at least 32 bits [ARM: word]
	(all the above signed or unsigned)
	floating-point, double, long double, enumerated types, bit fields

	ARM data types
	C defines arithmetic to be modulo 2N
	overflow cannot happen
	ARM 32-bit result multiply is correct
	not standard arithmetic!

	Enumerated types
	are mapped onto the smallest integers with the necessary range

	Floating-point
	discussed later

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	Conditional statements
	Example:
	if (a>b) c=a; else c=b;
	if a, b and c are in r0, r1 and r2:
	CMP r0, r1 ; if (a>b)... MOVGT r2, r0 ; ..c=a.. MOVLE r2, r1 ; ..else c=b

	this code is very efficient
	– it runs sequentially without branches
	– if the then or else clause is longer than about 3 instructions a branch may be better

	For loops
	Example:
	for (i=0; i<10; i++) {a[i] = 0}
	simple code:
	MOV r1, #0 ; value for a[i] ADR r2, a[0] ; r2 -> a[0] MOV r0, #0 ; i=0 LOOP CMP r0, #10 ; i<10 ? ...

	While loops
	Obvious code:
	LOOP .. ; evaluate expression BEQ EXIT .. ; loop body B LOOP EXIT ..

	Improved code:
	B TEST LOOP .. ; loop body TEST .. ; evaluate expression BNE LOOP EXIT ..

	Do … while loops
	do {…} while (expression)
	the loop body is always executed at least once:
	LOOP .. ; loop body .. ; evaluate expression BNE LOOP EXIT ..

	Switch statements
	switch (expression) { case constant-expression1: statements1 case constant-expression2: statement...
	can be compiled into a sequence of ifs:
	temp = expression; if (temp==constant-expression1) {statements1} else ... else if (temp==constant...

	Switch statements
	A jump table might be more efficient:
	; r0 contains value of expression ADR r1, JUMPTABLE ; get base of jump table CMP r0, #TABLEMAX ; ...

	Switch statements
	Subroutine calls are easy to synthesize:
	; r0 contains value of expression ADR r1, JUMPTABLE ; get base of jump table CMP r0, #TABLEMAX ; ...

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	ARM Procedure Call Standard
	In some areas it is important to adopt software-defined ‘standard’ solutions
	the ARM Procedure Call Standard (APCS) is an example
	– it provides a regular way for procedures to operate

	Terminology:
	– a leaf procedure is one which does not call any lower-level routines

	Hierarchical program structure
	A ‘leaf’ procedure calls nothing itself

	ARM Procedure Call Standard
	The APCS defines:
	particular uses for the general-purpose registers
	the form of stack to be used
	a stack-based data structure for backtracing
	an argument and result passing mechanism
	support for shared (re-entrant) libraries

	APCS register use convention
	APCS argument and result passing
	The arguments are arranged into a list of words
	the first 4 arguments are passed in a1 - a4
	the remaining arguments are passed via the stack

	A simple result is returned via a1
	more complex results are passed via memory, using a1 as the pointer

	Function entry and exit
	BL saves the return address in R14 (“LR”)
	Simple leaf routines:
	BL leaf1 .. leaf1 .. MOV pc, lr ; return
	– no memory operations required

	Function entry and exit
	If the procedure calls another procedure …
	Other routines (without backtrace, etc.)
	BL sub2 .. sub2 STMFD sp!, {regs, lr} ; save registers .. LDMFD sp!, {regs, pc} ; restore & return
	– i.e. the LR is pushed
	• maybe with some ‘working’ registers

	– the PC is popped instead
	– LR can then be used as a ‘scratch’ register

	The standard ARM C program address space model
	Hands-on: writing and debugging ARM C programs
	Explore further the ARM software development tools
	Build simple C programs
	Check that they work as expected
	Investigate the debugging facilities of the software development toolkit
	Follow the ‘Hands-on’ instructions (2 parts)

