
ectural support for high-level languages – v5 – 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages

ms
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Support for high-level lan

❏ Outline:

❍ memory organization

❍ ARM data types

❍ conditional statements & loop structures

❍ the ARM Procedure Call Standard

☞ hands-on: writing & debugging C progra

ectural support for high-level languages – v5 – 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Support for high-level lan

❏ ARM has a vanilla instruction set

❍ it has no language specific support

❍ the basic instruction set supports …

– various data types

– expressions

– conditional statements

– loops

❍ … in straightforward ways

– see book Chapter 6

ectural support for high-level languages – v5 – 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages

ms
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Support for high-level lan

❏ Outline:

➜ memory organization

❍ ARM data types

❍ conditional statements & loop structures

❍ the ARM Procedure Call Standard

☞ hands-on: writing & debugging C progra

ectural support for high-level languages – v5 – 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

n

mory address

emory address

tion,
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Memory organizatio

❏ Little-endian memory

❍ least significant byte stored at lowest me

❏ Big-endian memory

❍ least significant byte stored at highest m

❏ ARM can be configured either way

❍ we will stick to the little-endian organiza
as nature intended!

ectural support for high-level languages – v5 – 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

mory

(b) Big-endian
mory organisation

bit 0

21 22 23

17 18 19

9 10 11

6 7

1 2 3
half-word 6

word 8

word 12
13 14 15

half-word 14

word 16

0 byte1 byte2 byte3

byte5
5

© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Little- and big-endian me

23 22 21 20

19 18 17 16

11 10 9 8

7 5 4

3 2 1 0
half-word 4

word 8

half-word 14
15 14 13 12

half-word 12

word 16

byte3 byte2 byte1 byte0

byte6
byte

address

(a) Little-endian
memory organisation me

bit 31 bit 0 bit 31

6

20

16

8

4

0

half-
12

byte

ectural support for high-level languages – v5 – 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages

ms
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Support for high-level lan

❏ Outline:

❍ memory organization

➜ ARM data types

❍ conditional statements & loop structures

❍ the ARM Procedure Call Standard

☞ hands-on: writing & debugging C progra

ectural support for high-level languages – v5 – 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

te]

lf-word]

rd]

rd]
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r ARM data types

❏ ANSI C defines basic data types:

❍ chars, at least 8 bits [ARM: by

❍ short ints, at least 16 bits [ARM: ha

❍ ints, at least 16 bits [ARM: wo

❍ long ints, at least 32 bits [ARM: wo

(all the above signed or unsigned)

❍ floating-point, double, long double,
enumerated types, bit fields

ectural support for high-level languages – v5 – 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

N

ith the necessary
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r ARM data types

❏ C defines arithmetic to be modulo 2

❍ overflow cannot happen

❍ ARM 32-bit result multiply is correct

❍ not standard arithmetic!

❏ Enumerated types

❍ are mapped onto the smallest integers w
range

❏ Floating-point

❍ discussed later

ectural support for high-level languages – v5 – 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages

ms
© 2005 PEVEIT Unit – ARM System Design Archit

of
 M

an
ch

es
te

r Support for high-level lan

❏ Outline:

❍ memory organization

❍ ARM data types

➜ conditional statements & loop structures

❍ the ARM Procedure Call Standard

☞ hands-on: writing & debugging C progra

ctural support for high-level languages – v5 – 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ts

bout 3 instructions a
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Conditional statemen

❏ Example:

if (a>b) c=a; else c=b;

❍ if a, b and c are in r0, r1 and r2:

CMP r0, r1 ; if (a>b)...
MOVGT r2, r0 ; ..c=a..
MOVLE r2, r1 ; ..else c=b

❍ this code is very efficient

– it runs sequentially without branches

– if the then or else clause is longer than a
branch may be better

ctural support for high-level languages – v5 – 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

[i]

finish
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r For loops

❏ Example:

for (i=0; i<10; i++) {a[i] = 0}

❍ simple code:

MOV r1, #0 ; value for a
ADR r2, a[0] ; r2 -> a[0]
MOV r0, #0 ; i=0

LOOP CMP r0, #10 ; i<10 ?
BGE EXIT ; if i>=10
STR r1, [r2,r0,LSL #2]; a[i]=0
ADD r0, r0, #1 ; i++
B LOOP

EXIT ..

ctural support for high-level languages – v5 – 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

expression

xpression
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r While loops

❏ Obvious code:

LOOP .. ; evaluate
BEQ EXIT
.. ; loop body

B LOOP
EXIT ..

❏ Improved code:

B TEST
LOOP .. ; loop body
TEST .. ; evaluate e

BNE LOOP
EXIT ..

ctural support for high-level languages – v5 – 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

t once:

xpression
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Do … while loops

 do {…} while (expression)

❍ the loop body is always executed at leas

LOOP .. ; loop body
.. ; evaluate e
BNE LOOP

EXIT ..

ctural support for high-level languages – v5 – 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

1

2

N

nts 1}

tatements N}
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Switch statements

switch (expression) {
case constant-expression 1: statements
case constant-expression 2: statements

...
case constant-expression N: statements
default: statements D
}

❍ can be compiled into a sequence of ifs:

temp = expression;
if (temp==constant-expression 1) {stateme
else ...
else if (temp==constant-expression N) {s
else {statements D}

ctural support for high-level languages – v5 – 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

t:

se of jump table
or overrun..
et pc
 default

addresses
ts 0

s N-1
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Switch statements

❏ A jump table might be more efficien

; r0 contains value of expression
ADR r1, JUMPTABLE ; get ba
CMP r0, #TABLEMAX ; check f
LDRLS pc, [r1,r0,LSL #2] ; .. if OK g

; statementsD ; .. otherwise
B EXIT ; break

JUMPTABLE DCD L0, L1 ... LN-1;destination
L0 ... ; statemen
B EXIT ; break
...

LN-1 ... ; statement
EXIT ...

ctural support for high-level languages – v5 – 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ize:

 of jump table
r overrun..
ress
 pc
ise default

resses

0

N-1
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Switch statements

❏ Subroutine calls are easy to synthes

; r0 contains value of expression
ADR r1, JUMPTABLE ; get base
CMP r0, #TABLEMAX ; check fo
ADRLS lr, EXIT ; ‘return’ add
LDRLS pc, [r1,r0,LSL #2] ; .. if OK get

; statements D ; .. otherw
B EXIT ; break

JUMPTABLE DCD L0, L1, ... LN-1; Destination add
L0 ... ; statements

MOV pc, lr ; break
...

LN-1 ... ; statements
EXIT ...

ctural support for high-level languages – v5 – 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

guages

ms
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Support for high-level lan

❏ Outline:

❍ memory organization

❍ ARM data types

❍ conditional statements & loop structures

➜ the ARM Procedure Call Standard

☞ hands-on: writing & debugging C progra

ctural support for high-level languages – v5 – 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ndard

t software-defined

S) is an example

to operate

all any lower-level
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r ARM Procedure Call Sta

❏ In some areas it is important to adop
‘standard’ solutions

❍ the ARM Procedure Call Standard (APC

– it provides a regular way for procedures

❍ Terminology:

– a leaf procedure is one which does not c
routines

ctural support for high-level languages – v5 – 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

cture

leaf
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Hierarchical program stru

❍ A ‘leaf’ procedure calls nothing itself

leaf leaf

main

leaf

ctural support for high-level languages – v5 – 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ndard

registers

cing

ism
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r ARM Procedure Call Sta

❏ The APCS defines:

❍ particular uses for the general-purpose

❍ the form of stack to be used

❍ a stack-based data structure for backtra

❍ an argument and result passing mechan

❍ support for shared (re-entrant) libraries

ctural support for high-level languages – v5 – 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ntion

gister

calls
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r APCS register use conve
Register APCS name APCS role

0 a1 Argument 1 / integer result / scratch re

1 a2 Argument 2 / scratch register

2 a3 Argument 3 / scratch register

3 a4 Argument 4 / scratch register

4 v1 Register variable 1

5 v2 Register variable 2

6 v3 Register variable 3

7 v4 Register variable 4

8 v5 Register variable 5

9 sb/v6 Static base / register variable 6

10 sl/v7 Stack limit / register variable 7

11 fp Frame pointer

12 ip Scratch reg. / new sb in inter-link-unit

13 sp Lower end of current stack frame

14 lr Link address / scratch register

15 pc Program counter

ctural support for high-level languages – v5 – 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

list of words

 a4

 the stack

mory,
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r APCS argument
and result passing

❏ The arguments are arranged into a

❍ the first 4 arguments are passed in a1 -

❍ the remaining arguments are passed via

❏ A simple result is returned via a1

❍ more complex results are passed via me
using a1 as the pointer

ctural support for high-level languages – v5 – 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xit

(“LR”)
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Function entry and e

❏ BL saves the return address in R14

❍ Simple leaf routines:

BL leaf1
..

leaf1 ..
MOV pc, lr ; return

– no memory operations required

ctural support for high-level languages – v5 – 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xit

ure …

rn

ter
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Function entry and e

❏ If the procedure calls another proced

❍ Other routines (without backtrace, etc.)

BL sub2
..

sub2 STMFD sp!, {regs, lr}; save registers
..
LDMFD sp!, {regs, pc}; restore & retu

– i.e. the LR is pushed

• maybe with some ‘working’ registers

– the PC is popped instead

– LR can then be used as a ‘scratch’ regis

ctural support for high-level languages – v5 – 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

gram
el

ad address

on

r mark

sp)
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r The standard ARM C pro
address space mod

 code

 stack

 static data

 heap

 unused

 application’s image

 application’s lo

 top of applicati

 top of heap

 stack low wate

 top of memory

 stack pointer (
 stack limit (sl)

ctural support for high-level languages – v5 – 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

d
rams

velopment tools

e software

rts)
© 2005 PEVEIT Unit – ARM System Design Archite

of
 M

an
ch

es
te

r Hands-on: writing an
debugging ARM C prog

❏ Explore further the ARM software de

❍ Build simple C programs

❍ Check that they work as expected

❍ Investigate the debugging facilities of th
development toolkit

☞ Follow the ‘Hands-on’ instructions (2 pa

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	 Support for high-level languages
	ARM has a vanilla instruction set
	it has no language specific support
	the basic instruction set supports …
	– various data types
	– expressions
	– conditional statements
	– loops

	… in straightforward ways
	– see book Chapter 6

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	Memory organization
	Little-endian memory
	least significant byte stored at lowest memory address

	Big-endian memory
	least significant byte stored at highest memory address

	ARM can be configured either way
	we will stick to the little-endian organization, as nature intended!

	Little- and big-endian memory
	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	ARM data types
	ANSI C defines basic data types:
	chars, at least 8 bits [ARM: byte]
	short ints, at least 16 bits [ARM: half-word]
	ints, at least 16 bits [ARM: word]
	long ints, at least 32 bits [ARM: word]
	(all the above signed or unsigned)
	floating-point, double, long double, enumerated types, bit fields

	ARM data types
	C defines arithmetic to be modulo 2N
	overflow cannot happen
	ARM 32-bit result multiply is correct
	not standard arithmetic!

	Enumerated types
	are mapped onto the smallest integers with the necessary range

	Floating-point
	discussed later

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	Conditional statements
	Example:
	if (a>b) c=a; else c=b;
	if a, b and c are in r0, r1 and r2:
	CMP r0, r1 ; if (a>b)... MOVGT r2, r0 ; ..c=a.. MOVLE r2, r1 ; ..else c=b

	this code is very efficient
	– it runs sequentially without branches
	– if the then or else clause is longer than about 3 instructions a branch may be better

	For loops
	Example:
	for (i=0; i<10; i++) {a[i] = 0}
	simple code:
	MOV r1, #0 ; value for a[i] ADR r2, a[0] ; r2 -> a[0] MOV r0, #0 ; i=0 LOOP CMP r0, #10 ; i<10 ? ...

	While loops
	Obvious code:
	LOOP .. ; evaluate expression BEQ EXIT .. ; loop body B LOOP EXIT ..

	Improved code:
	B TEST LOOP .. ; loop body TEST .. ; evaluate expression BNE LOOP EXIT ..

	Do … while loops
	do {…} while (expression)
	the loop body is always executed at least once:
	LOOP .. ; loop body .. ; evaluate expression BNE LOOP EXIT ..

	Switch statements
	switch (expression) { case constant-expression1: statements1 case constant-expression2: statement...
	can be compiled into a sequence of ifs:
	temp = expression; if (temp==constant-expression1) {statements1} else ... else if (temp==constant...

	Switch statements
	A jump table might be more efficient:
	; r0 contains value of expression ADR r1, JUMPTABLE ; get base of jump table CMP r0, #TABLEMAX ; ...

	Switch statements
	Subroutine calls are easy to synthesize:
	; r0 contains value of expression ADR r1, JUMPTABLE ; get base of jump table CMP r0, #TABLEMAX ; ...

	 Support for high-level languages
	Outline:
	memory organization
	ARM data types
	conditional statements & loop structures
	the ARM Procedure Call Standard
	hands-on: writing & debugging C programs

	ARM Procedure Call Standard
	In some areas it is important to adopt software-defined ‘standard’ solutions
	the ARM Procedure Call Standard (APCS) is an example
	– it provides a regular way for procedures to operate

	Terminology:
	– a leaf procedure is one which does not call any lower-level routines

	Hierarchical program structure
	A ‘leaf’ procedure calls nothing itself

	ARM Procedure Call Standard
	The APCS defines:
	particular uses for the general-purpose registers
	the form of stack to be used
	a stack-based data structure for backtracing
	an argument and result passing mechanism
	support for shared (re-entrant) libraries

	APCS register use convention
	APCS argument and result passing
	The arguments are arranged into a list of words
	the first 4 arguments are passed in a1 - a4
	the remaining arguments are passed via the stack

	A simple result is returned via a1
	more complex results are passed via memory, using a1 as the pointer

	Function entry and exit
	BL saves the return address in R14 (“LR”)
	Simple leaf routines:
	BL leaf1 .. leaf1 .. MOV pc, lr ; return
	– no memory operations required

	Function entry and exit
	If the procedure calls another procedure …
	Other routines (without backtrace, etc.)
	BL sub2 .. sub2 STMFD sp!, {regs, lr} ; save registers .. LDMFD sp!, {regs, pc} ; restore & return
	– i.e. the LR is pushed
	• maybe with some ‘working’ registers

	– the PC is popped instead
	– LR can then be used as a ‘scratch’ register

	The standard ARM C program address space model
	Hands-on: writing and debugging ARM C programs
	Explore further the ARM software development tools
	Build simple C programs
	Check that they work as expected
	Investigate the debugging facilities of the software development toolkit
	Follow the ‘Hands-on’ instructions (2 parts)

