
Instruction set details – v4 – 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

ler
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ Outline:

❍ privileged modes and exceptions

❍ instruction set details

❍ system code example

☞ hands-on: system software - SWI hand

Instruction set details – v4 – 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

ler
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ Outline:

➜ privileged modes and exceptions

❍ instruction set details

❍ system code example

☞ hands-on: system software - SWI hand

Instruction set details – v4 – 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s:

rrupts

aps

ystem tasks
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes
and exceptions

❏ ARM has privileged operating mode

❍ SVC (supervisor) mode for software inte

❍ IRQ mode for (normal) interrupts

❍ FIQ mode for fast interrupts

❍ Abort mode for handling memory faults

❍ Undef mode for undefined instruction tr

❍ System mode for privileged operating s

Instruction set details – v4 – 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

lts.

 fetches

 ARM cores
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory faults

❏ ARM has full support for memory fau
Accesses may fail because of:

– virtual memory page faults

– memory protection violations

– soft memory errors

❍ Prefetch aborts are faults on instruction

❍ Data aborts are faults on data transfers

– both are recoverable (with a little work)

– details vary somewhat between different

Instruction set details – v4 – 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ystem mode) has:

pointer

rs to speed its operation

(SPSR)

red upon return
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes
and exceptions

❏ Each privileged mode (apart from S

❍ some private registers

– its own r14 for a return address

– its own r13, normally for a private stack

– FIQ mode has additional private registe

❍ its own Saved Program Status Register

– to preserve the CPSR so it can be resto

Instruction set details – v4 – 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

SPSR_undSPSR_irq

r13_und
r14_und

r13_irq
r14_irq

usable in user mode

system modes only

irq undefined
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

SPSR_abtSPSR_svcSPSR_fiq

r13_abt
r14_abt

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (pc)

r8_fiq
r9_fiq
r10_fiq
r11_fiq
r12_fiq
r13_fiq
r14_fiq

CPSR

r13_svc
r14_svc

user fiq svc abortMode:

Instruction set details – v4 – 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

er ARM versions.

05 47 6
TI F mode

8

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ The CPSR and SPSR format:

❍ bit 7 disables IRQ when set

❍ bit 6 disables FIQ when set

❍ bit 5 controls the instruction set

– ARM (T=0) or Thumb (T=1)

❍ bits 4 to 0 define the operating mode

Some of the “unused” bits have functions in lat

C VN Z unused
2831 2730 29

Instruction set details – v4 – 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

RMs (introduced later)

Registers

user

_fiq

_irq

WIs) _svc

_abt

ps _und

tem tasks user
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Register use:

– there is one more mode in a few recent A

CPSR
[4:0]

Mode Use

10000 User Normal user code

10001 FIQ Processing fast interrupts

10010 IRQ Processing standard interrupts

10011 SVC Processing software interrupts (S

10111 Abort Processing memory faults

11011 Undef Handling undefined instruction tra

11111 System Running privileged operating sys

Instruction set details – v4 – 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

 an instruction:
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Exceptions arise:

❍ as a direct effect of fetching or decoding

– software interrupts

– undefined instructions

– prefetch aborts

❍ as a side-effect of an instruction:

– aborts on data transfers

❍ unrelated to the instruction flow:

– Reset, IRQ, FIQ

Instruction set details – v4 – 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

de

n ‘vector’ address
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Exception entry sequence:

❍ change to the appropriate operating mo

❍ save the return address in r14_exc

❍ save the old CPSR in SPSR_exc

❍ disable IRQ

❍ on FIQ entry, disable FIQ

❍ force the PC to the appropriate exceptio

– these are not really vectors!

Instruction set details – v4 – 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

e Vector address

0x00000000

0x00000004

0x00000008

t 0x0000000C

t 0x00000010

0x00000014

0x00000018

0x0000001C
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Exception vector addresses:

Exception Mod

Reset SVC

Undefined instruction UND

Software interrupt (SWI) SVC

Prefetch abort (instruction fetch memory fault) Abor

Data abort (data access memory fault) Abor

– –

IRQ (normal interrupt) IRQ

FIQ (fast interrupt) FIQ

Instruction set details – v4 – 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

 branch to the

 (saves branching)

ndler
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Exception handling

❍ the ‘vector’ address normally contains a
exception handling code

B exception_handler
or LDR PC, =exception_handler

– the FIQ handler can start at 0x0000001C

❍ r13_exc usually points to a private stack

– can save work registers for use by the ha

– FIQ usually has enough private registers

❍ process exception

❍ restore work registers and return

Instruction set details – v4 – 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

processor mode

user mode regs.
user mode regs.

nd restore SPSR

R and SPSR @SPsvc
 and CPSR
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Privileged operations

MSR CPSR_c, <source>; Change

STMFD sp!, {r0-r15}^ ; Save
LDMFD sp!, {r0-r14}^ ; Load

– can also switch into system mode

LDMFD sp!, {r15}^ ; Pop PC a

❍ Also in ARM v6

SRSFD #svc! ; Push L
RFEFD SP! ; Pop PC

Instruction set details – v4 – 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ceptions

m

as well

fer:
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Privileged modes and ex

❏ Return from exception

❍ from a SWI or undefined instruction:

MOVS pc, r14

– data ops with S and pc are a special for

– they restore the CPSR from SPSR_exc

❍ from an IRQ, FIQ or prefetch abort:

SUBS pc, r14, #4

❍ from a data abort to retry the data trans

SUBS pc, r14, #8

Instruction set details – v4 – 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

dler

 addr.
g regs.
ine IRQ source
 to ISR

d return
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Example interrupt han

00000014 ...
00000018 B irq_handler ; “Vector”
0000001C ...

irq_handler SUB lr, lr, #4 ; ‘correct’ return
STMFD SP!, {r0-r2, lr} ; Save workin
... ; Determ
... ; Branch

...
LDMFD SP!, {r0-r2, pc}^ ; Restore an

❍ using a Branch at the ‘vector’ position

• limits range of jumps

• ‘tedious’ to modify

Instruction set details – v4 – 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ndler

f routine

n addr.
g regs.
 instruction

ilure address

ad page

d return
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Example data abort ha

0000000C ...
00000010 ldr pc, dabt_vector ; “Vector”
00000014 ...

...
dabt_vector DCD dabt_handler ; Address o

...

dabt_handler SUB lr, lr, #8 ; ‘correct’ retur
STMFD SP!, {r0-r2, lr} ; Save workin
LDR r14, [lr] ; Get failed
...
... ; Find fa
...
... ; (e.g.) lo
...
LDMFD SP!, {r0-r2, pc}^ ; Restore an

Instruction set details – v4 – 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

ler
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ Outline:

❍ privileged modes and exceptions

➜ instruction set details

❍ system code example

☞ hands-on: system software - SWI hand

Instruction set details – v4 – 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 field

e a condition added

V’ code for ‘always’

e condition is passed

, C and V flags in the

is assumed

0

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM condition code

❍ (almost) every ARM instruction may hav

– exceptions (later versions) use former ‘N

– the instruction will only be executed if th

– the conditions test the values of the N, Z
CPSR

❍ if no condition is specified ‘AL’ (always)

cond
2831 27

Instruction set details – v4 – 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s

n later ARM versions.

tus flag state for execution

et

lear

et

lear

et

lear

et

lear

et and Z clear

lear or Z set

quals V

s not equal to V

lear and N equals V

et or N is not equal to V

e

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM condition code

†NV (1111) is used to specify other, unconditional instructions i

Opcode
[31:28]

Mnemonic
extension

Interpretation Sta

0000 EQ Equal/equals zero Z s

0001 NE Not equal Z c

0010 CS/HS Carry set/unsigned Higher or same C s

0011 CC/LO Carry clear/unsigned lower C c

0100 MI Minus/negative N s

0101 PL Plus/positive or zero N c

0110 VS Overflow V s

0111 VC No Overflow V c

1000 HI Unsigned higher C s

1001 LS Unsigned lower or same C c

1010 GE Signed greater or equal N e

1011 LT Signed less than N i

1100 GT Signed greater than Z c

1001 LE Signed less or equal Z s

1110 AL Always any

1111 NV† Never non

Instruction set details – v4 – 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

at

ple

e been filled

ansfers

tions
tions
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM instruction form

❏ All ARM instructions are 32 bits long

❏ Originally the decoding was quite sim

❍ the model is no longer quite this simple!

❍ ‘holes’ in the instruction space have sinc

2831 27

cond 0…1 0
cond 1…1 0

cond …0 0
cond …0 1

cond 0…1 1
cond 1 …1 1
cond 1 …1 1

0
1

data operations
memory transfers
multiple memory tr
branches
coprocessor opera

system calls
coprocessor opera

25 2426

Instruction set details – v4 – 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 Link

ranch is placed into r14

rd offset
0

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Branch and Branch with

❍ the L bit selects Branch with Link

– the address of the instruction after the b

❍ the offset is scaled to word

– giving a range of ±32 Mbytes

❍ Assembler format:

B{L}{<cond>} <target address>

cond 1 L1 0 24-bit signed wo
2831 25 2427 23

Instruction set details – v4 – 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ge

X

nstruction set

Rm1 1 0 10 0
4 03
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Branch and eXchan

❍ recent ARM chips (v5T) also support BL

❍ used to switch execution to the Thumb i

– if Rm[0] = 1

❍ causes a branch to the address in Rm
Assembler format:

BX{<cond>} Rm

cond 0 10 0 1 00 0 1 11 1 1 11 1 1 1
2831 27

Instruction set details – v4 – 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ss operating system

immediate
0

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r SoftWare Interrupt

❍ this instruction is the normal way to acce
facilities; it:

– puts the processor into supervisor mode

– saves the CPSR in SPSR_svc

– saves the return address in r14_svc

– sets the PC to 0x00000008

❍ Assembler format:

SWI{<cond>} <24-bit immediate>

cond 1 11 1 24-bit (interpreted)
2831 2427 23

Instruction set details – v4 – 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tions

tion register

0
operand 2

ot 8-bit immediate

erand register
dition codes

etic/logic function

sh Rm0hift

sh Rm1s 0
8 5 47 6 03

5 47 6 03

8 7 0
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Data processing instruc
2831

cond # S0 0

destina

25 2427 26 21 20 1619 1215
opcode Rn Rd

#r1

first op
set con
arithm

immediate alignment

0

#s

R

immediate shift length

shift type

second operand register

25

11

11

11

register shift length

25

11

Instruction set details – v4 – 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s

Effect

:= (Rm * Rs) [31:0]

:= (Rm * Rs + Rn) [31:0]

i:RdLo := Rm * Rs + RdHi + RdLo

i:RdLo := Rm * Rs

i:RdLo += Rm * Rs

i:RdLo := Rm * Rs

i:RdLo += Rm * Rs

8 47 03
s Rm0 11 0
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Multiply instructions

MUL{<cond>}{S} Rd, Rm, Rs
MLA{<cond>}{S} Rd, Rm, Rs, Rn
<mul>{<cond>}{S} RdHi, RdLo, Rm, R

*UMAAL was introduced in ARM v6

Opcode
[23:21]

Mnemonic Meaning

000 MUL Multiply (32-bit result) Rd

001 MLA Multiply-accumulate (32-bit result) Rd

010 UMAAL* Unsigned multiply-accumulate-accumulate long RdH

011 – <unused> –

100 UMULL Unsigned multiply long RdH

101 UMLAL Unsigned multiply-accumulate long RdH

110 SMULL Signed multiply long RdH

111 SMLAL Signed multiply-accumulate long RdH

2831
cond 0 00 0

2427 21 2023 1619 1215 11
mul Rd/RdHi Rn/RdLo RS

Instruction set details – v4 – 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

d byte
ns

/destination register

0
offset

egister
ore
ack (auto-index)

2-bit immediate
0

ed byte/word
n
st-index

sh Rm0hift
5 47 6 03
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Single word and unsigne
data transfer instructio

2831
cond # L0 1

source

25 2427 26 21 2023 22 1619 1215
Rn Rd

0

base r
load/st
write-b

1
25 11

P BU W

unsign
up/dow
pre-/po

1 #s
immediate shift length

shift type
offset register

1125

Instruction set details – v4 – 27

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

yte
ns

/destination register

0

egister
ore
ack (auto-index)

0

n
st-index

Rm

8

03
[7:4] Imm[3:0]

3

8
00

etH offsetLS1 1H
7 68 35 4
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Half-word and signed b
data transfer instructio

2831
cond 0 L0 0

source

25 2427 21 2023 22 1619 1215
Rn Rd

1

base r
load/st
write-b

22 11

P #U W

up/dow
pre-/po

0

offset register

1122
Imm

00

offs
11

Instruction set details – v4 – 28

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

sfers
0

egister
ore
ack (auto-index)

n
st-index

gister list

 PSR and force user bit
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Multiple register data tran

❍ Assembler format:

LDM|STM{<cond>}<add> Rn{!},<regs>

<add> = IA etc, <regs> = {rn,..rm}

2831
cond 0 L1 0

25 2427 21 2023 22 1619 15
Rn

base r
load/st
write-b

P SU W

up/dow
pre-/po

re

restore

Instruction set details – v4 – 29

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ister

tion register

0

egister
ed byte/word

source register

Rm0 0 1 0 0 1
4 3
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Swap memory and reg

❍ Assembler format:

SWP{<cond>}{B} Rd,Rm,[Rn]

2831
cond 00 0

destina

23 2227 21 20 1619 1215
Rn Rd

base r
unsign

11
0 00 1 0 B 0

Instruction set details – v4 – 30

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

l register

tion register

0

/CPSR

0 0 0 0 0 0 0 0 0 0
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Status register to genera

❍ Assembler format:

MRS{<cond>} Rd, CPSR|SPSR

❍ and the reverse (see next slide):

MSR{<cond>} CPSR|SPSR, #32|Rm

❍ (with a few details about fields omitted)

2831
cond 00 0

destina

23 2227 21 16 1215
Rd

SPSR

11
0 00 1 0 R 0 1 1 1 1

Instruction set details – v4 – 31

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ster
0

operand

ot 8-bit immediate

ask

Rm
4 03

8 7 0

/CPSR

0 00 00 0
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Transfers to status regi
2831

cond # 00 0
25 2427 26 21 20 1619 1215

field

#r1

field m

immediate alignment

0

25

11

11

25

11
1 0 R 1 11 1 1

SPSR

0 0
second operand register

Instruction set details – v4 – 32

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

set

ler
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The ARM instruction

❏ Outline:

❍ privileged modes and exceptions

❍ instruction set details

➜ system code example

☞ hands-on: system software - SWI hand

Instruction set details – v4 – 33

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

le

)

b)

g

ck, inclusion of r15, and

efore a banked register
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r System code examp

❏ Process swap code (for 2 processes

❍ save full processor state (ARM or Thum

❍ restore alternate state

❍ switch process on interrupt

– e.g. from Timer for pre-emptive schedulin

❍ uses ‘force user mode’ form of LDM/STM

– has restrictions on base register write-ba
so on

– some ARM cores require 1 cycle delay b
may be used after ‘force user’

Instruction set details – v4 – 34

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

cture

. save area
rocess ID
as
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Process state data stru

r14Temp DCD 0x0 ; r14 temp
procNo DCD 0x0 ; current p
procTab DCD proc0save ; -> save are

DCD proc1save
proc0save DCD 0x00000000 ; pc

DCD 0x00000000 ; CPSR
DCD 0x00000000 ; r0
DCD 0x00000000 ; r1
...

DCD 0x00000000 ; r14
proc1save DCD proc1 ; pc

DCD 0x10 ; CPSR
DCD 0x00000000 ; r0
DCD 0x00000000 ; r1
...
DCD 0x00000000 ; r14

Instruction set details – v4 – 35

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rn address
e of r14
 is running?

n address

e [no pc/WB]
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Process save code

; save user process
SUB r14, r14, #4 ; adjust IRQ retu
STR r14, r14Temp ; temporary sav
LDR r13, procNo ; which process
ADR r14, procTab
LDR r13, [r14,r13,LSL #2]
LDR r14, r14Temp ; restore r14
STMIA r13!,{r14} ; user prog. retur
MRS r14, SPSR
STMIA r13!,{r14} ; save user CPSR
STMIA r13,{r0-r14}^ ; force user mod

Instruction set details – v4 – 36

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

e

 is running?
umber
 process ID

e [no pc/WB]
orce user
 and pc
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Process resume cod

; restore other user process
LDR r13, procNo ; which process
RSB r13, r13, #1 ; other process n
STR r13, procNo ; change stored
ADR r14, procTab
LDR r13, [r14,r13,LSL#2]
LDMIB r13!,{r14} ; get user CPSR
MSR SPSR, r14
LDMIB r13,{r0-r14}^ ; force user mod
MOV r0, r0 ; NOOP after f
LDMDB r13,{pc}^ ; restore CPSR

Instruction set details – v4 – 37

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

are

ams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Hands-on: system softw
– SWI handler

❏ Look at ARM system software progr

❍ Write a SWI handler

❍ Check that it works as expected

☞ Follow the ‘Hands-on’ instructions

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	Privileged modes and exceptions
	ARM has privileged operating modes:
	SVC (supervisor) mode for software interrupts
	IRQ mode for (normal) interrupts
	FIQ mode for fast interrupts
	Abort mode for handling memory faults
	Undef mode for undefined instruction traps
	System mode for privileged operating system tasks

	Memory faults
	ARM has full support for memory faults. Accesses may fail because of:
	– virtual memory page faults
	– memory protection violations
	– soft memory errors
	Prefetch aborts are faults on instruction fetches
	Data aborts are faults on data transfers
	– both are recoverable (with a little work)
	– details vary somewhat between different ARM cores

	Privileged modes and exceptions
	Each privileged mode (apart from System mode) has:
	some private registers
	– its own r14 for a return address
	– its own r13, normally for a private stack pointer
	– FIQ mode has additional private registers to speed its operation

	its own Saved Program Status Register (SPSR)
	– to preserve the CPSR so it can be restored upon return

	 Privileged modes and exceptions
	 Privileged modes and exceptions
	The CPSR and SPSR format:
	bit 7 disables IRQ when set
	bit 6 disables FIQ when set
	bit 5 controls the instruction set
	– ARM (T=0) or Thumb (T=1)

	bits 4 to 0 define the operating mode
	Some of the “unused” bits have functions in later ARM versions.

	 Privileged modes and exceptions
	Register use:
	– there is one more mode in a few recent ARMs (introduced later)

	 Privileged modes and exceptions
	Exceptions arise:
	as a direct effect of fetching or decoding an instruction:
	– software interrupts
	– undefined instructions
	– prefetch aborts

	as a side-effect of an instruction:
	– aborts on data transfers

	unrelated to the instruction flow:
	– Reset, IRQ, FIQ

	 Privileged modes and exceptions
	Exception entry sequence:
	change to the appropriate operating mode
	save the return address in r14_exc
	save the old CPSR in SPSR_exc
	disable IRQ
	on FIQ entry, disable FIQ
	force the PC to the appropriate exception ‘vector’ address
	– these are not really vectors!

	 Privileged modes and exceptions
	Exception vector addresses:

	 Privileged modes and exceptions
	Exception handling
	the ‘vector’ address normally contains a branch to the exception handling code
	B exception_handler or LDR PC, =exception_handler
	– the FIQ handler can start at 0x0000001C (saves branching)

	r13_exc usually points to a private stack
	– can save work registers for use by the handler
	– FIQ usually has enough private registers

	process exception
	restore work registers and return

	 Privileged modes and exceptions
	Privileged operations
	MSR CPSR_c, <source> ; Change processor mode
	STMFD sp!, {r0-r15}^ ; Save user mode regs. LDMFD sp!, {r0-r14}^ ; Load user mode regs.
	– can also switch into system mode

	LDMFD sp!, {r15}^ ; Pop PC and restore SPSR
	Also in ARM v6
	SRSFD #svc! ; Push LR and SPSR @SPsvc RFEFD SP! ; Pop PC and CPSR

	 Privileged modes and exceptions
	Return from exception
	from a SWI or undefined instruction:
	MOVS pc, r14
	– data ops with S and pc are a special form
	– they restore the CPSR from SPSR_exc as well

	from an IRQ, FIQ or prefetch abort:
	SUBS pc, r14, #4

	from a data abort to retry the data transfer:
	SUBS pc, r14, #8

	Example interrupt handler
	00000014 ... 00000018 B irq_handler ; “Vector” 0000001C ...
	irq_handler SUB lr, lr, #4 ; ‘correct’ return addr. STMFD SP!, {r0-r2, lr} ; Save working regs.
	... LDMFD SP!, {r0-r2, pc}^ ; Restore and return
	using a Branch at the ‘vector’ position
	• limits range of jumps
	• ‘tedious’ to modify

	Example data abort handler
	0000000C ... 00000010 ldr pc, dabt_vector ; “Vector” 00000014 ...
	... dabt_vector DCD dabt_handler ; Address of routine ...
	dabt_handler SUB lr, lr, #8 ; ‘correct’ return addr. STMFD SP!, {r0-r2, lr} ; Save working regs. ...

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	The ARM condition code field
	(almost) every ARM instruction may have a condition added
	– exceptions (later versions) use former ‘NV’ code for ‘always’
	– the instruction will only be executed if the condition is passed
	– the conditions test the values of the N, Z, C and V flags in the CPSR

	if no condition is specified ‘AL’ (always) is assumed

	ARM condition codes
	†NV (1111) is used to specify other, unconditional instructions in later ARM versions.

	ARM instruction format
	All ARM instructions are 32 bits long
	Originally the decoding was quite simple
	the model is no longer quite this simple!
	‘holes’ in the instruction space have since been filled

	Branch and Branch with Link
	the L bit selects Branch with Link
	– the address of the instruction after the branch is placed into r14

	the offset is scaled to word
	– giving a range of ±32 Mbytes

	Assembler format:
	B{L}{<cond>} <target address>

	Branch and eXchange
	recent ARM chips (v5T) also support BLX
	used to switch execution to the Thumb instruction set
	– if Rm[0] = 1

	causes a branch to the address in Rm Assembler format:
	BX{<cond>} Rm

	SoftWare Interrupt
	this instruction is the normal way to access operating system facilities; it:
	– puts the processor into supervisor mode
	– saves the CPSR in SPSR_svc
	– saves the return address in r14_svc
	– sets the PC to 0x00000008

	Assembler format:
	SWI{<cond>} <24-bit immediate>

	Data processing instructions
	Multiply instructions
	MUL{<cond>}{S} Rd, Rm, Rs MLA{<cond>}{S} Rd, Rm, Rs, Rn <mul>{<cond>}{S} RdHi, RdLo, Rm, Rs
	*UMAAL was introduced in ARM v6

	Single word and unsigned byte data transfer instructions
	Half-word and signed byte data transfer instructions
	Multiple register data transfers
	Assembler format:
	LDM|STM{<cond>}<add> Rn{!},<regs>
	<add> = IA etc, <regs> = {rn,..rm}

	Swap memory and register
	Assembler format:
	SWP{<cond>}{B} Rd,Rm,[Rn]

	 Status register to general register
	Assembler format:
	MRS{<cond>} Rd, CPSR|SPSR

	and the reverse (see next slide):
	MSR{<cond>} CPSR|SPSR, #32|Rm

	(with a few details about fields omitted)

	Transfers to status register
	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	System code example
	Process swap code (for 2 processes)
	save full processor state (ARM or Thumb)
	restore alternate state
	switch process on interrupt
	– e.g. from Timer for pre-emptive scheduling

	uses ‘force user mode’ form of LDM/STM
	– has restrictions on base register write-back, inclusion of r15, and so on
	– some ARM cores require 1 cycle delay before a banked register may be used after ‘force user’

	Process state data structure
	r14Temp DCD 0x0 ; r14 temp. save area procNo DCD 0x0 ; current process ID procTab DCD proc0save ;...
	DCD 0x00000000 ; r14 proc1save DCD proc1 ; pc DCD 0x10 ; CPSR DCD 0x00000000 ; r0 DCD 0x00000000 ...

	Process save code
	; save user process SUB r14, r14, #4 ; adjust IRQ return address STR r14, r14Temp ; temporary sav...

	Process resume code
	; restore other user process LDR r13, procNo ; which process is running? RSB r13, r13, #1 ; other...

	Hands-on: system software – SWI handler
	Look at ARM system software programs
	Write a SWI handler
	Check that it works as expected
	Follow the ‘Hands-on’ instructions

