MANCHEStER

— The ARM instruction set

1 Qutline:

The University
of Manchester

[privileged modes and exceptions
[] Instruction set details

[] system code example

[] hands-on: system software - SWI handler

© 2005 PEVE; Unit — ARM System Design

Instruction set details —v4 — 1

MANCHEStER

— The ARM instruction set

1 Qutline:

The University
of Manchester

[] privileged modes and exceptions
[] Instruction set details

[] system code example

[] hands-on: system software - SWI handler

© 2005 PEVE; Unit — ARM System Design

Instruction set details —v4 — 2

MANCHEStER
1824

Privileged modes
and exceptions

The University
of Manchester

1 ARM has privileged operating modes:

[] SVC (supervisor) mode for software interrupts
[] IRQ mode for (normal) interrupts

[] FIQ mode for fast interrupts

[] Abort mode for handling memory faults

[] Undef mode for undefined instruction traps

[] System mode for privileged operating system tasks

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 3

MANCHEStER
1824

Memory faults

[ARM has full support for memory faults.
Accesses may fail because of:

The University
of Manchester

— virtual memory page faults
— memory protection violations
— soft memory errors

(1 Prefetch aborts are faults on instruction fetches
[1 Data aborts are faults on data transfers

— both are recoverable (with a little work)
— details vary somewhat between different ARM cores

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 4

MANCHEStER
1824

Privileged modes
and exceptions

The University
of Manchester

1 Each privileged mode (apart from System mode) has:

[] some private registers

— its own r14 for a return address
— its own rl13, normally for a private stack pointer
— FIQ mode has additional private registers to speed its operation

[] its own Saved Program Status Register (SPSR)

— to preserve the CPSR so it can be restored upon return

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 - 5

MANCHEStER
1824 - . .
n Privileged modes and exceptions
é% ro
E‘z% rl usable in user mode
s r2
r3
”) system modes only
5
ré
rv/
8 r8=fiq
9 r9=fiq
10 r10=fiq
11 fig I
r11 ro i . . r13 und
rl2 r12=ﬁq r£3 sSVC r13=abt r13=!rq r14=und
r13 8 fiq |—r=—"1 ri4_abt
r14 fi = —
ri4
rl5 (pc
| P
CPSR —1SPSR svc

Mode: user fig SvC abort irq undefined

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 6

MANCHEStER
1824

Privileged modes and exceptions

The University
of Manchester

3130 29 28 21 6 T L 0

6 5
|N\Z\CM unused MF\T\ mode |

1 The CPSR and SPSR format:

[1 bit 7 disables IRQ when set
[bit 6 disables FIQ when set
[bit 5 controls the instruction set
— ARM (T=0) or Thumb (T=1)
] bits 4 to O define the operating mode

Some of the “unused” bits have functions in later ARM versions.

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 7

Privileged modes and exceptions

2£ [Register use:

5
CEZ%? Mode Use Registers
10000 |User Normal user code user
10001 |FIQ Processing fast interrupts _fiqg
10010 |IRQ Processing standard interrupts _irg
10011 |SVvC Processing software interrupts (SWIs) _SvC
10111 |Abort Processing memory faults _abt
11011 |Undef Handling undefined instruction traps _und
11111 | System Running privileged operating system tasks | user

— there is one more mode in a few recent ARMs (introduced later)

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 8

Privileged modes and exceptions

The University
of Manchester

1 Exceptions arise:

] as a direct effect of fetching or decoding an instruction:

— software interrupts
— undefined instructions
— prefetch aborts

(1 as a side-effect of an instruction:
— aborts on data transfers
(1 unrelated to the instruction flow:

— Reset, IRQ, FIQ

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 9

Privileged modes and exceptions

1 EXxception entry sequence:

The University
of Manchester

[] change to the appropriate operating mode

[] save the return address in r14_exc

[] save the old CPSR in SPSR_exc

[disable IRQ

[] on FIQ entry, disable FIQ

] force the PC to the appropriate exception ‘vector’ address

— these are not really vectors!

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 10

Privileged modes and exceptions

] Exception vector addresses:

The University
of Manchester

Exception Mode | Vector address
Reset SVvC 0x00000000
Undefined instruction UND | 0x00000004
Software interrupt (SWI) SVC 0x00000008
Prefetch abort (instruction fetch memory fault) | Abort | 0x0000000C
Data abort (data access memory fault) Abort | 0x00000010
— — 0x00000014
IRQ (normal interrupt) IRQ 0x00000018
FIQ (fast interrupt) FIQ 0x0000001C

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 11

Privileged modes and exceptions

1 Exception handling

The University
of Manchester

[the ‘vector’ address normally contains a branch to the
exception handling code

B exception_handler
or LDR PC, =exception_handler

— the FIQ handler can start at 0x0O000001C (saves branching)
[] r13_exc usually points to a private stack

— can save work registers for use by the handler
— FIQ usually has enough private registers

[] process exception

[] restore work registers and return

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 12

Privileged modes and exceptions

The University
of Manchester

0 Privileged operations

MSR CPSR_c, <source>; Change processor mode

STMFD sp!, {rO-r15}* ; Save user mode regs.
LDMFD sp!, {rO-r14}* ; Load user mode regs.

— can also switch into system mode
LDMFD sp!, {r15}" , Pop PC and restore SPSR

(1 Also in ARM v6

SRSFD #svcl! , Push LR and SPSR @SP;,,
RFEFD SP! ; Pop PC and CPSR

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 13

Privileged modes and exceptions

[Return from exception

The University
of Manchester

(] from a SWI or undefined instruction:

MOVS pc, r14

— data ops with S and pc are a special form
— they restore the CPSR from SPSR_exc as well

[] from an IRQ, FIQ or prefetch abort:
SUBS pc, rl4, #4
[] from a data abort to retry the data transfer:

SUBS pc, r14, #8

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 14

-
Example interrupt handler

The University
of Manchester

00000014

00000018 B irq_handler ; “Vector”
0000001C

irg_handler SUB Ir,Ir, #4 ; ‘correct’ return addr.

STMFD SP!, {r0-r2, Ir} ; Save working regs.
; Determine IRQ source
; Branch to ISR

LDMFD SP!, {rO-r2, pc}" ; Restore and return
[] using a Branch at the ‘vector’ position

* limits range of jumps
e ‘tedious’ to modify

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 15

Example data abort handler

The University
of Manchester

0000000C

00000010 Idr pc, dabt_vector ; “Vector”

00000014

dabt vector DCD dabt handler . Address of routine

dabt_handler SUB Ir, Ir, #8 . ‘correct’ return addr.
STMFD SP!, {r0-r2, Ir} ; Save working regs.
LDR rl4, [Ir] , Get failed instruction

* Find failure address
. (e.g.) load page
LDMFD SP!, {r0-r2, pc}* ; Restore and return

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 16

MANCHEStER

— The ARM instruction set

1 Qutline:

The University
of Manchester

[privileged modes and exceptions
[Instruction set details

[] system code example

[] hands-on: system software - SWI handler

© 2005 PEVE; Unit — ARM System Design

Instruction set details —v4 — 17

MANCHEStER

=<8 The ARM condition code field
31 28 21 0

| cond ‘ |

The University
of Manchester

[] (almost) every ARM instruction may have a condition added

— exceptions (later versions) use former ‘NV’ code for ‘always’
— the instruction will only be executed if the condition is passed

— the conditions test the values of the N, Z, C and V flags in the
CPSR

[If no condition is specified ‘AL (always) is assumed

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 18

The University
of Manchester

MANCHEStER

1824

ARM condition codes

([)3plc:gg?|e '\él)?tir:;gl: Interpretation Status flag state for execution
0000 EQ Equal/equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set/unsigned Higher or same C set

0011 CC/LO Carry clear/unsigned lower C clear

0100 MI Minus/negative N set

0101 PL Plus/positive or zero N clear

0110 VS Overflow V set

0111 VC No Overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater or equal N equals V

1011 LT Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V
1001 LE Signed less or equal Z set or N is not equal to V
1110 AL Always any

1111 NVT Never none

TNV (1111) is used to specify other, unconditional instructions in later ARM versions.

© 2005 PEVE; Unit — ARM System Design

Instruction set details —v4 — 19

MANCHEStER
1824

ARM Instruction format

1 All ARM Instructions are 32 bits long

The University
of Manchester

1 Originally the decoding was quite simple
31 826524

cond |[00... data operations

cond [01... memory transfers

cond [100... multiple memory transfers
cond |101... branches

cond [110... coprocessor operations
cond [1110... coprocessor operations
cond [1111... systemcalls

[] the model is no longer quite this simple!

[] ‘holes’ in the instruction space have since been filled

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 20

MANCHEStER
1824

Branch and Branch with Link

The University
of Manchester

31 2821 252423 0

| cond \1 0 1\L\ 24-bit signed word offset |

[] the L bit selects Branch with Link

— the address of the instruction after the branch is placed into r14
[] the offset is scaled to word

— giving a range of £32 Mbytes
[] Assembler format:

B{L}{<cond>} <target address>

© 2005 PEVE; Unit — ARM System Design Instruction set details —v4 — 21

MANCHEStER
1824

Branch and eXchange

31 28 21 4 3 0

|C0nd ‘000100101111111111110001‘ Rm |

[] recent ARM chips (v5T) also support BLX

The University
of Manchester

[1 used to switch execution to the Thumb instruction set
— ifRm[0] =1

[1 causes a branch to the address in Rm
Assembler format:

BX{<cond>} Rm

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 22

MANCHEStER
1824

SoftWare Interrupt

The University
of Manchester

31 28 21 24 23 0

| cond \1 11 1\ 24-bit ginterEretedz Immediate |

[] this instruction is the normal way to access operating system
facilities; It:

— puts the processor into supervisor mode
— saves the CPSR in SPSR_svc

— saves the return address in r14_svc

— sets the PC to 0x00000008

(] Assembler format:

SWIl{<cond>} <24-bit immediate>

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 23

MANCHEStER
1824

Data processing instructions

31 282726 25 24 212019 16 15 12 11 0
cond |0 O|#|opcodel|S| Rn Rd operand 2

The University
of Manchester

destination register
first operand register
set condition codes

v arithmetic/logic function

25 11 87 v 0
lf====m=mmmmmmmmm o *_| #rot_|8-bit immediate|
E iImmediate alignment T 765 4 3 0
; ———————————————— >_| #shift [sh [0 Rm |
25 immediate shift length

ol shift type

second operand register

11 6§ 7 6]5 4 3 0

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 24

MANCHEStER
1824

Multiply instructions

31 28 27 2423 212019 16 15 12 11 8 7 4 3 0
cond [0 O O O mul |S|Rd/RdHI|Rn/RdLol Rs [1 00 1| Rm

The University
of Manchester

MUL{<cond>}S} Rd, Rm, Rs
MLA{<cond>}S} Rd, Rm, Rs, Rn
<mul>{<cond>}{S} RdHI, RdLo, Rm, Rs

C[)2p3c:(;(il]e Mnemonic Meaning Effect

000 MUL Multiply (32-bit result) Rd := (Rm * Rs) [31:0]

001 MLA Multiply-accumulate (32-bit result) Rd := (Rm * Rs + Rn) [31:0]

010 UMAAL” Unsigned multiply-accumulate-accumulate long | RdHi:RdLo := Rm * Rs + RdHi + RdLo
011 - <unused> —

100 UMULL Unsigned multiply long RdHi:RdLo ;= Rm * Rs

101 UMLAL Unsigned multiply-accumulate long RdHi:RdLo += Rm * Rs

110 SMULL Signed multiply long RdHi:RdLo :=Rm * Rs

111 SMLAL Signed multiply-accumulate long RdHi:RdLo += Rm * Rs

"UMAAL was introduced in ARM v6

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 25

s 8 -
iIngle word and unsigned byte

data transfer instructions

31 2827262524 2322212019 16 15 12 0
offset

The University
of Manchester

1
source/destination register 1

base register
load/store

write-back (auto-index)
unsigned byte/word

1
|
|
|
1
1
1
1
1
1
v pre-/post-index

%5 11 v 0

up/down
Of-----===----------- »|___12-bitimmediate |
25 11 16543 0

lp-=============---- #shift [sh [0] Rm
immediate shift length
shift type

offset register

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 26

MANCHEStER
1824

Half-word and signed byte

data transfer instructions

31 2821 25242322212019 16 15 12 11 876543 0
offsetH [1|S|H|1]| offsetL

1
source/destination register 1

base register :

The University
of Manchester

i load/store i

l write-back (auto-index) l

: up/down :

: pre-/post-index !

\ :

2 1 8 3§ 0
lf--=======---- >{Imm[7:4]| | -
22 11 8

mm|3 O||
3y 0
Of------------- *OOOO] Rm |

offset register

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 27

MANCHEStER
1824

Multiple reqister data transfers

31 2827 25242322212019 16 15 0
reqister list

The University
of Manchester

base register

load/store

write-back (auto-index)
restore PSR and force user bit
up/down

pre-/post-index

[1 Assembler format:

LDM|STM{<cond>}<add> Rn{!},<regs>

<add> = |A etc, <regs> = {rn,..rm}

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 28

MANCHEStER
1824

Swap memory and register

31 28 27 2322212019 16 15 12 11 4 3 0
cond |100010|B[00O|] Rn Rd 100001001 Rm

The University
of Manchester

source register
destination register

base register
unsigned byte/word

[1 Assembler format:

SWP{<cond>}{B} Rd,Rm,[Rn]

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 29

MANCHEStER
1824

Status register to general register
31 28 21 232221 16 15 1211 0

| cond ‘OOOlO‘R‘OOllll‘ Rd ‘OOOOOOOOOOOO'
destination register

SPSR/CPSR

The University
of Manchester

[] Assembler format:
MRS{<cond>} Rd, CPSR|SPSR

[] and the reverse (see next slide):
MSR{<cond>} CPSR|SPSR, #32|Rm

(] (with a few details about fields omitted)

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 30

MANCHEStER
1824

Transfers to status register

ES 31 »u%%M AN 165 121 0
o3 cond |0 O[#]1 O|R[1 O] field (1111
: field mask i
i SPSR/CPSR i
\ |
25 1 87 v 0
lf==-===m=mmmmmmm oo *_| #rot_|8-bit immediate|
; immediate alignment :
25 11 43y 0

Of-------mmmm o »[00000000] Rm |

second operand register:

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 31

MANCHEStER

— The ARM instruction set

1 Qutline:

The University
of Manchester

[privileged modes and exceptions
[] Instruction set details

[] system code example

[] hands-on: system software - SWI handler

© 2005 PEVE; Unit — ARM System Design

Instruction set details — v4 — 32

MANCHEStER
1824

System code example

The University
of Manchester

1 Process swap code (for 2 processes)

[save full processor state (ARM or Thumb)
[] restore alternate state
[] switch process on interrupt

— e.g. from Timer for pre-emptive scheduling
[] uses ‘force user mode’ form of LDM/STM

— has restrictions on base register write-back, inclusion of r15, and
SO on

— some ARM cores require 1 cycle delay before a banked register
may be used after ‘force user’

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 33

Process state data structure

The University
of Manchester

rl4Temp DCD 0xO , I'14 temp. save area
procNo DCD 0x0 ; current process ID
procTab DCD procOsave , -> save areas

DCD proclsave
procOsave DCD 0x00000000 ; pC

DCD 0x00000000 ; CPSR

DCD 0x00000000 ; 10

DCD 0x00000000 ;rl

DCD 0x00000000 ; r14
proclsave DCD procl ; pC

DCD 0x10 , CPSR

DCD 0x00000000 ; 10

DCD 0x00000000 ;rl

DCD 0x00000000 ; rl4

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 34

MANCHEStER
1824

Process save code

, save user process
SUB rl4, rl4, #4 ; adjust IRQ return address
STR rl4, rl4Temp , temporary save of r14
LDR rl3, procNo ; Which process is running?
ADR rl4, procTab

LDR r13, [r14,r13,LSL #2]

LDR rl4, rl4Temp ; restore r14

The University
of Manchester

STMIA r13!,{r14} , user prog. return address
MRS r14, SPSR
STMIA r13!,{r14} , save user CPSR

STMIA r13,{rO-r14}" ; force user mode [no pc/WB]

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 35

MANCHEStER
1824

Process resume code

, restore other user process

The University
of Manchester

LDR rl3, procNo ; which process is running?
RSB rl3, r13, #1 ; other process number
STR rl3, procNo ; change stored process ID

ADR rl4, procTab

LDR r13, [r14,r13,LSL#2]

LDMIB r13!{r14} ; get user CPSR

MSR SPSR, r14

LDMIB r13,{rO-r14}* ; force user mode [ho pc/WB]
MOV ro, r0 ; NOOP after force user
LDMDB r13,{pc}* , restore CPSR and pc

© 2005 PEVE; Unit — ARM System Design Instruction set details — v4 — 36

MANCHEStER
1824

Hands-on: system software
— SWI handler

The University
of Manchester

1 Look at ARM system software programs

(1 Write a SWI handler

[1 Check that it works as expected

(1 Follow the ‘Hands-on’ instructions

© 2005 PEVE; Unit — ARM System Design

Instruction set details — v4 — 37

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	Privileged modes and exceptions
	ARM has privileged operating modes:
	SVC (supervisor) mode for software interrupts
	IRQ mode for (normal) interrupts
	FIQ mode for fast interrupts
	Abort mode for handling memory faults
	Undef mode for undefined instruction traps
	System mode for privileged operating system tasks

	Memory faults
	ARM has full support for memory faults. Accesses may fail because of:
	– virtual memory page faults
	– memory protection violations
	– soft memory errors
	Prefetch aborts are faults on instruction fetches
	Data aborts are faults on data transfers
	– both are recoverable (with a little work)
	– details vary somewhat between different ARM cores

	Privileged modes and exceptions
	Each privileged mode (apart from System mode) has:
	some private registers
	– its own r14 for a return address
	– its own r13, normally for a private stack pointer
	– FIQ mode has additional private registers to speed its operation

	its own Saved Program Status Register (SPSR)
	– to preserve the CPSR so it can be restored upon return

	 Privileged modes and exceptions
	 Privileged modes and exceptions
	The CPSR and SPSR format:
	bit 7 disables IRQ when set
	bit 6 disables FIQ when set
	bit 5 controls the instruction set
	– ARM (T=0) or Thumb (T=1)

	bits 4 to 0 define the operating mode
	Some of the “unused” bits have functions in later ARM versions.

	 Privileged modes and exceptions
	Register use:
	– there is one more mode in a few recent ARMs (introduced later)

	 Privileged modes and exceptions
	Exceptions arise:
	as a direct effect of fetching or decoding an instruction:
	– software interrupts
	– undefined instructions
	– prefetch aborts

	as a side-effect of an instruction:
	– aborts on data transfers

	unrelated to the instruction flow:
	– Reset, IRQ, FIQ

	 Privileged modes and exceptions
	Exception entry sequence:
	change to the appropriate operating mode
	save the return address in r14_exc
	save the old CPSR in SPSR_exc
	disable IRQ
	on FIQ entry, disable FIQ
	force the PC to the appropriate exception ‘vector’ address
	– these are not really vectors!

	 Privileged modes and exceptions
	Exception vector addresses:

	 Privileged modes and exceptions
	Exception handling
	the ‘vector’ address normally contains a branch to the exception handling code
	B exception_handler or LDR PC, =exception_handler
	– the FIQ handler can start at 0x0000001C (saves branching)

	r13_exc usually points to a private stack
	– can save work registers for use by the handler
	– FIQ usually has enough private registers

	process exception
	restore work registers and return

	 Privileged modes and exceptions
	Privileged operations
	MSR CPSR_c, <source> ; Change processor mode
	STMFD sp!, {r0-r15}^ ; Save user mode regs. LDMFD sp!, {r0-r14}^ ; Load user mode regs.
	– can also switch into system mode

	LDMFD sp!, {r15}^ ; Pop PC and restore SPSR
	Also in ARM v6
	SRSFD #svc! ; Push LR and SPSR @SPsvc RFEFD SP! ; Pop PC and CPSR

	 Privileged modes and exceptions
	Return from exception
	from a SWI or undefined instruction:
	MOVS pc, r14
	– data ops with S and pc are a special form
	– they restore the CPSR from SPSR_exc as well

	from an IRQ, FIQ or prefetch abort:
	SUBS pc, r14, #4

	from a data abort to retry the data transfer:
	SUBS pc, r14, #8

	Example interrupt handler
	00000014 ... 00000018 B irq_handler ; “Vector” 0000001C ...
	irq_handler SUB lr, lr, #4 ; ‘correct’ return addr. STMFD SP!, {r0-r2, lr} ; Save working regs.
	... LDMFD SP!, {r0-r2, pc}^ ; Restore and return
	using a Branch at the ‘vector’ position
	• limits range of jumps
	• ‘tedious’ to modify

	Example data abort handler
	0000000C ... 00000010 ldr pc, dabt_vector ; “Vector” 00000014 ...
	... dabt_vector DCD dabt_handler ; Address of routine ...
	dabt_handler SUB lr, lr, #8 ; ‘correct’ return addr. STMFD SP!, {r0-r2, lr} ; Save working regs. ...

	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	The ARM condition code field
	(almost) every ARM instruction may have a condition added
	– exceptions (later versions) use former ‘NV’ code for ‘always’
	– the instruction will only be executed if the condition is passed
	– the conditions test the values of the N, Z, C and V flags in the CPSR

	if no condition is specified ‘AL’ (always) is assumed

	ARM condition codes
	†NV (1111) is used to specify other, unconditional instructions in later ARM versions.

	ARM instruction format
	All ARM instructions are 32 bits long
	Originally the decoding was quite simple
	the model is no longer quite this simple!
	‘holes’ in the instruction space have since been filled

	Branch and Branch with Link
	the L bit selects Branch with Link
	– the address of the instruction after the branch is placed into r14

	the offset is scaled to word
	– giving a range of ±32 Mbytes

	Assembler format:
	B{L}{<cond>} <target address>

	Branch and eXchange
	recent ARM chips (v5T) also support BLX
	used to switch execution to the Thumb instruction set
	– if Rm[0] = 1

	causes a branch to the address in Rm Assembler format:
	BX{<cond>} Rm

	SoftWare Interrupt
	this instruction is the normal way to access operating system facilities; it:
	– puts the processor into supervisor mode
	– saves the CPSR in SPSR_svc
	– saves the return address in r14_svc
	– sets the PC to 0x00000008

	Assembler format:
	SWI{<cond>} <24-bit immediate>

	Data processing instructions
	Multiply instructions
	MUL{<cond>}{S} Rd, Rm, Rs MLA{<cond>}{S} Rd, Rm, Rs, Rn <mul>{<cond>}{S} RdHi, RdLo, Rm, Rs
	*UMAAL was introduced in ARM v6

	Single word and unsigned byte data transfer instructions
	Half-word and signed byte data transfer instructions
	Multiple register data transfers
	Assembler format:
	LDM|STM{<cond>}<add> Rn{!},<regs>
	<add> = IA etc, <regs> = {rn,..rm}

	Swap memory and register
	Assembler format:
	SWP{<cond>}{B} Rd,Rm,[Rn]

	 Status register to general register
	Assembler format:
	MRS{<cond>} Rd, CPSR|SPSR

	and the reverse (see next slide):
	MSR{<cond>} CPSR|SPSR, #32|Rm

	(with a few details about fields omitted)

	Transfers to status register
	The ARM instruction set
	Outline:
	privileged modes and exceptions
	instruction set details
	system code example
	hands-on: system software - SWI handler

	System code example
	Process swap code (for 2 processes)
	save full processor state (ARM or Thumb)
	restore alternate state
	switch process on interrupt
	– e.g. from Timer for pre-emptive scheduling

	uses ‘force user mode’ form of LDM/STM
	– has restrictions on base register write-back, inclusion of r15, and so on
	– some ARM cores require 1 cycle delay before a banked register may be used after ‘force user’

	Process state data structure
	r14Temp DCD 0x0 ; r14 temp. save area procNo DCD 0x0 ; current process ID procTab DCD proc0save ;...
	DCD 0x00000000 ; r14 proc1save DCD proc1 ; pc DCD 0x10 ; CPSR DCD 0x00000000 ; r0 DCD 0x00000000 ...

	Process save code
	; save user process SUB r14, r14, #4 ; adjust IRQ return address STR r14, r14Temp ; temporary sav...

	Process resume code
	; restore other user process LDR r13, procNo ; which process is running? RSB r13, r13, #1 ; other...

	Hands-on: system software – SWI handler
	Look at ARM system software programs
	Write a SWI handler
	Check that it works as expected
	Follow the ‘Hands-on’ instructions

