
Thumb instruction set – v5 – 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 set

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb instruction

❏ Outline:

❍ the Thumb programmers’ model

❍ Thumb instructions

❍ Thumb implementation

❍ Thumb applications

☞ hands-on: writing Thumb assembly pro

Thumb instruction set – v5 – 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 set

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb instruction

❏ Outline:

➜ the Thumb programmers’ model

❍ Thumb instructions

❍ Thumb implementation

❍ Thumb applications

☞ hands-on: writing Thumb assembly pro

Thumb instruction set – v5 – 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

a subset of the ARM

es

e ARM instruction set

nly support common
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r What is Thumb?

❏ Thumb is:

❍ a compressed, 16-bit representation of
instruction set

– primarily to increase code density

– also increases performance in some cas

❏ It is not a complete architecture

❍ all ‘Thumb-aware’ cores also support th

– therefore the Thumb architecture need o
functions

Thumb instruction set – v5 – 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

interpretation of

y executing BX

de

ode

!

05 47 6
F modeTI
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb bit

❏ The ‘T’ bit in the CPSR controls the
the instruction stream

❍ switch from ARM to Thumb (and back) b
instruction

❍ exceptions also cause switch to ARM co

– return symmetrically to ARM or Thumb c

❍ Note: do not change the T bit with MSR

C VN Z
2831 2730 29

unused

Thumb instruction set – v5 – 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s’ model
shaded registers have
restricted access
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb programmer
r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
SP (r13)
LR (r14)
PC (r15)

CPSR

Hi registers

Lo registers

Thumb instruction set – v5 – 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s’ model

n

ing instructions &
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb programmer

❏ Thumb register use:

❍ r0 - r7 are general purpose registers

❍ r13 is used implicitly as a stack pointer

– in ARM code this is a software conventio

❍ r14 is used as the link register

– implicitly, as in the ARM instruction set

❍ a few instructions can access r8 - r15

❍ the CPSR flags are set by data process
control conditional branches

Thumb instruction set – v5 – 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s’ model

ontrol flow instructions

nd 32-bit data types

ries
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb programmer

❏ Thumb-ARM similarities:

❍ load-store architecture

– with data processing, data transfer and c

❍ support for 8-bit byte, 16-bit half-word a

– half-words are aligned on 2-byte bounda

– words are aligned on 4-byte boundaries

❍ 32-bit unsegmented memory

Thumb instruction set – v5 – 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s’ model

nal

s format

format

lar

ifiers
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb programmer

❏ Thumb-ARM differences:

❍ most Thumb instructions are unconditio

– all ARM instructions are conditional

❍ most Thumb instructions use a 2-addres

– most ARM instructions use a 3-address

❍ Thumb instruction formats are less regu

– a result of the denser encoding

❍ Thumb has explicit shift opcodes

– ARM implements shifts as operand mod

Thumb instruction set – v5 – 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 set

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb instruction

❏ Outline:

❍ the Thumb programmers’ model

➜ Thumb instructions

❍ Thumb implementation

❍ Thumb applications

☞ hands-on: writing Thumb assembly pro

Thumb instruction set – v5 – 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ons

cond> <label>

label>

 <label>

 Rm
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb branch instructi

cond
1215 0

8-bit offset
11

(1) B<0 11 1

1 01 1 0 11-bit offset

1 11 1 H 11-bit offset

0 00 1 1 10 1 0 H 0 00

1215 011

1215 011

1215 011

78

10

3 257 6

(2) B <

(3) BL

(4) BX

Thumb instruction set – v5 – 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ons

s except:

2)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb branch instructi

❏ These are similar to ARM instruction

❍ offsets are scaled to half-word, not word

❍ range is reduced to fit into 16 bits

❍ BL works in two stages:

H=0: LR := PC + signextend(offset << 1

H=1: PC := LR + (offset << 1)
LR := oldPC + 3

❍ the assembler generates both halves

❍ LR bit[0] is set to facilitate return via BX

Thumb instruction set – v5 – 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ons

OV pc, lr

r Thumb mode
dress
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb branch instructi

❏ Branch and eXchange (BX)

❍ to return to ARM or Thumb caller:

BX lr ; replaces M

❏ Subroutine calls

❍ later ARMs support BLX instruction

❍ to synthesize BLX or earlier ARM:

ADR r0, subr + 1 ; “+ 1” to ente
ADR lr, return ; save return ad
BX r0 ; calls subr

return ... ;

Thumb instruction set – v5 – 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

pts

e the ARM SWI

Thumb

0
iate
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb software interru

❏ The Thumb SWI operates exactly lik

❍ the (interpreted) immediate is just 8 bits

– Thumb Angel SWI uses value 0xAB
r0 call value is exactly as in ARM code

❍ the SWI handler is entered in ARM code

– the return automatically selects ARM or

15
8-bit immed0 11 1
78

1 11 1

Thumb instruction set – v5 – 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nstructions

d,Rn,Rm

d,Rn,#imm3

|ADD|SUB Rd/Rn,#imm8

SR Rd,Rn,#shift
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb data processing i

15 0
(1) ADD|SUB R0 10 0

10 0 imm8

00 0

1215 011

1215 011

8

10

3 256

1 0 A
910

RdRnRm
56 23

15 0
0 10 0

8
1 1 A

910
RdRnimm3

56 23

op Rd/Rn

op

8 7

#sh
1013

(2) ADD|SUB R

(3) MOV|CMP

(4) LSL|LSR|A

Thumb instruction set – v5 – 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nstructions

nic CPY after v6)

n,Rm/Rs

MOV Rd/Rn,Rm

|PC,#imm8

P,SP,#imm7
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb data processing i

❍ In case (6):

– MOV does not affect the flags
(it can be distinguished using the mnemo

15 0
(5) <Op> Rd/R0 00 1

1 0 imm8
15 0

15 06

0 0
910

Rd/RnRm/Rsop
56 23

15 0
0 00 1

8
0 1 op

910
Rd/RnRm

56 23

8 7

(6) ADD|CMP|

(7) ADD Rd,SP

(8) ADD|SUB S

MD
7

1 0 R

1 0
8

imm71 1 0 0 0 0
7
A

Rd
11 1012

Thumb instruction set – v5 – 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nstructions

rate from general

th an

’ registers set the

rom CMP which only
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb data processing i

❏ Notes:

❍ in Thumb code shift operations are sepa
ALU functions

– in ARM code a shift can be combined wi

❍ ALU function in a single instruction

❍ all data processing operations on the ‘Lo
condition codes

– those on the ‘Hi’ registers do not, apart f
changes the condition codes

Thumb instruction set – v5 – 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ta transfers

} Rd,[Rn,#off5]

H Rd,[Rn,#off5]

}{H|B} Rd,[Rn,Rm]

C,#off8]

d,[SP,#off8]
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb single register da

15 0
(1) LDR|STR{B1 B0 1

0 1
15 0

15 0

L
10 56 23

15 0
0 01 0 L

10
off5

56 23

8

(2) LDRH|STR

(3) LDR|STR{S

(4) LDR Rd,[P

0 1

0 1
8

0 0 1
7

Rd
11 9

(5) LDR|STR R1 0 off8
15 08 7

0 1 Rd
11 1012
L

Rd
11 10

off8

RnRmop

RdRn

off5 RdRn
1213 11

1213 11

12 56 23

Thumb instruction set – v5 – 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ter

:

 modes compared with

IA Rn!,

 {<reg list>{,R}}
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb multiple regis
data transfers

❍ These map directly onto the ARM forms

PUSH: STMFD SP!, {<regs>{, lr}}

POP: LDMFD SP!, {<regs>{, pc}}

– note restrictions on available addressing
ARM code

15 0
(1) LDMIA|STM0 01 1 L

10 7

15 0
1 11 0 1

10
(2) POP|PUSH

reg. listRn
12 11

89

8

1
7

reg. listL R

Thumb instruction set – v5 – 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nics

M:
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Unique Thumb mnemo

❏ Most significant differences from AR

PUSH ; STMFD sp!,{&}

POP ; LDMFD sp!,{&}

NEG ; RSB Rd, Rs, #0

LSR ; MOV Rd, Rd, LSR <Rs | #5>

ASR ; MOV Rd, Rd, ASR <Rs | #5>

LSL ; MOV Rd, Rd, LSL <Rs | #5>

ROR ; MOV Rd, Rd, ROR Rs

Thumb instruction set – v5 – 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s (from v5)

e as BL)

2)

FFFFFC

X <label>

X Rm
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Newer Thumb instruction

❏ BLX works in two stages; (first is sam

H=0: LR := PC + signextend(offset << 1

H=1: PC := (LR + (offset << 2)) AND FF
LR := oldPC + 3
T flag := 0

❍ There is also a register-based BLX

❏ BKPT (Breakpoint)

1 01 1 1
1215 011 10

(1) BL10-bit offset 0
1

0 00 1
15 0

(2) BL00 1 Rm1 1 1
7

00
3 26

Thumb instruction set – v5 – 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s (from v6)

ut affecting flags

ges)

 in later ARM session.
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Newer Thumb instruction

❍ CPY

– Mnemonic allowing register moves witho

❍ SXTB/SXTH/UXTB/UXTH

– Sign extension (no shifts)

❍ REV/REV16/REVSH

– Byte swaps

❍ SETEND

❍ CPSIE/CPSID

– Interrupt enable/disables (no mode chan

More about these

Thumb instruction set – v5 – 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ing

mode specified by

e) moves to the

BX)

 ARM and Thumb
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM/Thumb interwork

❏ BX (Branch eXchange) moves to the
the address LSB (in register)

❏ BLX (Branch with Link and eXchang
other mode (common case)

❍ the LSB of LR retains the ‘parent’ mode

❍ BLX Rm can move to either mode (like

❏ The ‘correct’ subroutine return is:

BX LR

❍ the routine can then be called from both
code

Thumb instruction set – v5 – 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ing
n set

RM or Thumb

ets ‘T’

ere’ + 4
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r ARM/Thumb interwork
❏ Calling procedures in other instructio

❍ ARM v5 or later

BLX procedure ; A

❍ ARM v4T

– from ARM

ADR lr, return_addr ;
ADR r0, procedure + 1 ; + 1 s
BX r0 ;

return_addr ...

– from Thumb

LDR r0, =procedure ;
MOV lr, pc ; ‘h
BX r0 ;
...

Thumb instruction set – v5 – 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 set

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb instruction

❏ Outline:

❍ the Thumb programmers’ model

❍ Thumb instructions

➜ Thumb implementation

❍ Thumb applications

☞ hands-on: writing Thumb assembly pro

Thumb instruction set – v5 – 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

translated the

M instructions are the

fsets/immediates)

s)

b directly
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb decoding

❏ The original Thumb implementation
opcodes into ARM opcodes.

❍ This means the effect of Thumb and AR
same

– Thumb is more restricted (e.g. smaller of

– One or two new functions (e.g. BL detail

❏ Later implementations decode Thum

Thumb instruction set – v5 – 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

0

imm8
08 7

0 0

zero
shift

immediate
value

ADD Rd, #imm8
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb - ARM
instruction mapping

10 0 imm8
1215 11 10
op Rd/Rn

8 7

11 1
2831 1627 26 2425 1215 1121

Rd01
20

Rd0 0 000101000
19

denoting ADD
& set CC

minor opcode
format 3: MOV/
CMP/ADD/SUB

ma jor opcode,

with immediate

condition
‘always’

and source
register

destination

Thumb instruction set – v5 – 27

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 set

grams
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r The Thumb instruction

❏ Outline:

❍ the Thumb programmer’s model

❍ Thumb instructions

❍ Thumb implementation

➜ Thumb applications

☞ hands-on: writing Thumb assembly pro

Thumb instruction set – v5 – 28

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

e

e

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb applications

❏ Thumb code properties:

❍ 70% of the size of ARM code

– 30% less external memory power

– 40% more instructions

❍ With 32-bit memory:

– ARM code is 40% faster than Thumb cod

❍ With 16-bit memory:

– Thumb code is 45% faster than ARM cod

Thumb instruction set – v5 – 29

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

 for small speed-

ry for large non-
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb applications

❏ For the best performance:

❍ use 32-bit memory and ARM code

❏ For best cost and power-efficiency:

❍ use 16-bit memory and Thumb code

❏ In a typical embedded system:

❍ use ARM code in 32-bit on-chip memory
critical routines

❍ use Thumb code in 16-bit off-chip memo
critical control routines

Thumb instruction set – v5 – 30

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

mb

velopment tools
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Hands-on: writing Thu
assembly programs

❏ Explore further the ARM software de

❍ Write Thumb assembly programs

❍ Check that they work as expected

☞ Follow the ‘Hands-on’ instructions

	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs

	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs

	What is Thumb?
	Thumb is:
	a compressed, 16-bit representation of a subset of the ARM instruction set
	– primarily to increase code density
	– also increases performance in some cases

	It is not a complete architecture
	all ‘Thumb-aware’ cores also support the ARM instruction set
	– therefore the Thumb architecture need only support common functions

	The Thumb bit
	The ‘T’ bit in the CPSR controls the interpretation of the instruction stream
	switch from ARM to Thumb (and back) by executing BX instruction
	exceptions also cause switch to ARM code
	– return symmetrically to ARM or Thumb code

	Note: do not change the T bit with MSR!

	 The Thumb programmers’ model
	 The Thumb programmers’ model
	Thumb register use:
	r0 - r7 are general purpose registers
	r13 is used implicitly as a stack pointer
	– in ARM code this is a software convention

	r14 is used as the link register
	– implicitly, as in the ARM instruction set

	a few instructions can access r8 - r15
	the CPSR flags are set by data processing instructions & control conditional branches

	 The Thumb programmers’ model
	Thumb-ARM similarities:
	load-store architecture
	– with data processing, data transfer and control flow instructions

	support for 8-bit byte, 16-bit half-word and 32-bit data types
	– half-words are aligned on 2-byte boundaries
	– words are aligned on 4-byte boundaries

	32-bit unsegmented memory

	 The Thumb programmers’ model
	Thumb-ARM differences:
	most Thumb instructions are unconditional
	– all ARM instructions are conditional

	most Thumb instructions use a 2-address format
	– most ARM instructions use a 3-address format

	Thumb instruction formats are less regular
	– a result of the denser encoding

	Thumb has explicit shift opcodes
	– ARM implements shifts as operand modifiers

	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs

	Thumb branch instructions
	Thumb branch instructions
	These are similar to ARM instructions except:
	offsets are scaled to half-word, not word
	range is reduced to fit into 16 bits
	BL works in two stages:
	H=0: LR := PC + signextend(offset << 12)
	H=1: PC := LR + (offset << 1) LR := oldPC + 3

	the assembler generates both halves
	LR bit[0] is set to facilitate return via BX

	Thumb branch instructions
	Branch and eXchange (BX)
	to return to ARM or Thumb caller:
	BX lr ; replaces MOV pc, lr

	Subroutine calls
	later ARMs support BLX instruction
	to synthesize BLX or earlier ARM:
	ADR r0, subr + 1 ; “+ 1” to enter Thumb mode ADR lr, return ; save return address BX r0 ; calls s...

	Thumb software interrupts
	The Thumb SWI operates exactly like the ARM SWI
	the (interpreted) immediate is just 8 bits
	– Thumb Angel SWI uses value 0xAB r0 call value is exactly as in ARM code

	the SWI handler is entered in ARM code
	– the return automatically selects ARM or Thumb

	 Thumb data processing instructions
	 Thumb data processing instructions
	In case (6):
	– MOV does not affect the flags (it can be distinguished using the mnemonic CPY after v6)

	 Thumb data processing instructions
	Notes:
	in Thumb code shift operations are separate from general ALU functions
	– in ARM code a shift can be combined with an

	ALU function in a single instruction
	all data processing operations on the ‘Lo’ registers set the condition codes
	– those on the ‘Hi’ registers do not, apart from CMP which only changes the condition codes

	 Thumb single register data transfers
	Thumb multiple register data transfers
	These map directly onto the ARM forms:
	PUSH: STMFD SP!, {<regs>{, lr}}
	POP: LDMFD SP!, {<regs>{, pc}}
	– note restrictions on available addressing modes compared with ARM code

	Unique Thumb mnemonics
	Most significant differences from ARM:
	PUSH ; STMFD sp!,{&}
	POP ; LDMFD sp!,{&}
	NEG ; RSB Rd, Rs, #0
	LSR ; MOV Rd, Rd, LSR <Rs | #5>
	ASR ; MOV Rd, Rd, ASR <Rs | #5>
	LSL ; MOV Rd, Rd, LSL <Rs | #5>
	ROR ; MOV Rd, Rd, ROR Rs

	 Newer Thumb instructions (from v5)
	BLX works in two stages; (first is same as BL)
	H=0: LR := PC + signextend(offset << 12)
	H=1: PC := (LR + (offset << 2)) AND FFFFFFFC LR := oldPC + 3 T flag := 0
	There is also a register-based BLX

	BKPT (Breakpoint)

	 Newer Thumb instructions (from v6)
	CPY
	– Mnemonic allowing register moves without affecting flags

	SXTB/SXTH/UXTB/UXTH
	– Sign extension (no shifts)

	REV/REV16/REVSH
	– Byte swaps

	SETEND
	CPSIE/CPSID
	– Interrupt enable/disables (no mode changes)

	More about these in later ARM session.

	ARM/Thumb interworking
	BX (Branch eXchange) moves to the mode specified by the address LSB (in register)
	BLX (Branch with Link and eXchange) moves to the other mode (common case)
	the LSB of LR retains the ‘parent’ mode
	BLX Rm can move to either mode (like BX)

	The ‘correct’ subroutine return is:
	BX LR
	the routine can then be called from both ARM and Thumb code

	ARM/Thumb interworking
	Calling procedures in other instruction set
	ARM v5 or later
	BLX procedure ; ARM or Thumb

	ARM v4T
	– from ARM
	ADR lr, return_addr ; ADR r0, procedure + 1 ; + 1 sets ‘T’ BX r0 ; return_addr ...
	– from Thumb

	LDR r0, =procedure ; MOV lr, pc ; ‘here’ + 4 BX r0 ; ...

	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs

	Thumb decoding
	The original Thumb implementation translated the opcodes into ARM opcodes.
	This means the effect of Thumb and ARM instructions are the same
	– Thumb is more restricted (e.g. smaller offsets/immediates)
	– One or two new functions (e.g. BL details)

	Later implementations decode Thumb directly

	Thumb - ARM instruction mapping
	The Thumb instruction set
	Outline:
	the Thumb programmer’s model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs

	Thumb applications
	Thumb code properties:
	70% of the size of ARM code
	– 30% less external memory power
	– 40% more instructions

	With 32-bit memory:
	– ARM code is 40% faster than Thumb code

	With 16-bit memory:
	– Thumb code is 45% faster than ARM code

	Thumb applications
	For the best performance:
	use 32-bit memory and ARM code

	For best cost and power-efficiency:
	use 16-bit memory and Thumb code

	In a typical embedded system:
	use ARM code in 32-bit on-chip memory for small speed- critical routines
	use Thumb code in 16-bit off-chip memory for large non- critical control routines

	Hands-on: writing Thumb assembly programs
	Explore further the ARM software development tools
	Write Thumb assembly programs
	Check that they work as expected
	Follow the ‘Hands-on’ instructions

