MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

[] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions —v4 — 1

MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

[] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions —v4 — 2

- -
Instruction set extensions

(1 Since its introduction the ARM instruction set has been
extended several times

The University
of Manchester

[] extensions to v4 have been included already

— e.g. halfword support, Thumb, ...

[1 v5, VBTE and v6 extensions are described here

— better ARM/Thumb interworking
— more ‘endian’ support
— variety of minor enhancements

— DSP support — in following subsection

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 3

MANCHEStER
1824

Instruction set extensions — v5

L] BLX

The University
of Manchester

— Branch with Link and eXchange
1 CLZ
— Count Leading Zeros
[BKPT
— software breakpoint
1 PLD
— Cache PreLoaD
[] Extra coprocessor op-codes

— CDP2, MRC2, etc.

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 4

MANCHEStER
1824

Instruction set extensions — v5

] BLX - two forms

The University
of Manchester

[J BLX Rm
31 28 21 4 3 0
|C0nd‘000100101111111111110011‘ Rm |
[] BLX label
31 2821 2524 23 0

|1 11 1‘1 0) 1‘H1 24-bit signed word offset |
ffset: bit ‘1’ (gives half-word resolution)
— Note: no condition code always executes

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 5

MANCHEStER
1824

Instruction set extensions — v5

The University
of Manchester

1 CLZRd, Rm

31 28 21 16 15 1211 4 3 0
cond 000101101111] Rd (11110001 Rm

[] Returns number of Os from MSB (0-32)

0 BKPT

31 28 27 20 19 8 7 4 3 0
111000010010 12-bit iImmed 0111 Rm

[1 Allows user to force ‘prefetch abort’

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 6

MANCHEStER
1824

Instruction set extensions — v5

0 PLD <addressing mode>

31 28272625242322 2019 16 15 12 11 0
1111|01j1|11Y(1 01| Rd (1111 addressing mode

The University
of Manchester

] PreLoaD
— a hint to the memory that this address may be wanted, soon

[] has no effect on the programmer-visible state

[1 may cause a cache line fetch
— memory can choose to ignore this operation

(1 cannot generate aborts

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 7

- -
Instruction set extensions — v5/v6

The University
of Manchester

1 Several instructions to support DSP

[] mostly multiply and multiply-accumulate

[] most dealt with shortly

0 UMAAL (v6) is a long multiply with two accumulates

UMAAL R2, R3,R1, RO
R3:R2 := (R1 X R0O) + R2 + R3

— encoded in the ‘normal’ multiply set

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 8

MANCHEStER
1824

Instruction set extensions — v6

1 ARM v6 has extra control operations:

The University
of Manchester

] CPS

— Change Processor State (switch mode)
[SETEND

— Endian control bit appears in PSR
[SRS/RFE

— Save Return State (Push LR and SPSR)
— Return From Exception (Pop PC and CPSR)

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 9

MANCHEStER
1824

Semaphore operations

The University
of Manchester

1 All ARMs support “swap”

SWP R1, R2,[R3]

] New operations from v6

LDREX RO, [R]1]
— Load exclusive ... TLB notes processor ID
STREX R2, RO, [R1]

— Store exclusive ... fails if ‘wrong’ processor
— R2 holds failure flag

© 2005 PEVE; Unit — ARM System Design

Architectural extensions —v4 — 10

- -
Instruction set extensions — v6

J Unaligned memory accesses

The University
of Manchester

(] In earlier ARMs

— word and halfword accesses should be appropriately aligned
« unaligned accesses are ‘interesting’
— misalignment may cause a trap (via MMU - see later)

] on ARM v6

— unaligned accesses are supported in hardware
— still not a good idea!
* may reduce performance

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 11

MANCHEStER
1824

Instruction set extensions — v6

1 Endian control

The University
of Manchester

[on ARM v6 data ‘endianess’ is explicit in the CPSR

3130292827 2524 23 20 19 16 15 10987654 0
N|Z|C|V J GE[3:0 E[A[I|F]T] mode

— can be changed by SETEND BE|LE instructions
— instructions are still ‘little endian’
— can be modified by the MMU, if present

[] software also assisted by new instructions
REV REV16 REVSH

o X X X

S|gn extend

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 12

MANCHEStER
1824

Instruction set extensions — v6

] Data packing

The University
of Manchester

[] one 32-Dbit register may be used for two 16-bit variables
[J PKHBT Rd, Rn, Rm {, LSL #<0-31>}

[PKHTB Rd, Rn, Rm {, ASR #<1-32>}

31 28 21 20 19 16 15 1211 {6 43 0
cond [01111000[Rn Rd shift |?]0 1] Rm

0 PKHBT
1 PKHTB

[] two 16-bit quantities are packed together (with optional shift)
PKHBT ... PKHBT ...

Rn I_I_l_l RnIm_l_l_l

Rd | | | Rd| | |

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 13

MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

[] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions —v4 — 14

Digital signal processing

[] Many ARM applications require good 16-bit signal processing
performance

The University
of Manchester

— e.g. GSM mobile phone handset
[] One solution is ARM plus separate DSP core

— two software development toolkits
— difficulty producing integrated solution

[1 ARM has offered two solutions:

— Piccolo DSP coprocessor
 little commercial take-up
— Instruction set extensions
* began with v5TE; extended in v6

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 15

MANCHEStER
1824

v5TE signal processing extensions

The University
of Manchester

31 30 29 28 27 26 6 T L 0

6 5
|N‘Z‘CMQ‘ MF‘T‘ mode |

0 Q bit added to the CPSR (and SPSRS)

[] detects saturating arithmetic overflow
[] sticky:

— set by overflow
— reset only by an MSR instruction

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 16

v5TE signal processing extensions

The University
of Manchester

O Multiply instructions:

SMLAWYy{cond} Rd,Rm,Rs,Rn
SMULWy{cond} Rd,Rm,Rs
SMLALxy{cond} RdLo,RdHI,Rm,Rs
SMULxy{cond} Rd,Rm,Rs

[] provide various 16x16 and 16x32 multiply and multiply-
accumulate operations

— 16-bit operand can be selected from low or high half of register
— ‘X’ and 'y’ (above) are ‘B’ or ‘T’ for Bottom or Top 16 bits

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 17

v5TE signal processing extensions

The University
of Manchester

1 Saturating arithmetic instructions:

[1 32-bit saturating add/subtract:
QADD{cond} Rd,Rm,Rn
QSUB{cond} Rd,Rm,Rn

[] 32-bit saturating double then add/subtract

QDADD{cond} Rd,Rm,Rn
QDSUB{cond} Rd,Rm,Rn

— allows for coefficients > 1
— as required by some common algorithms

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 18

v5TE signal processing extensions

1 Example inner product:

The University
of Manchester

loop LDR r1,[r6],#4 ; get next two multipliers
LDR r2,[r7],#4 ; get next 2 multiplicands
SMULBB r3,r1,r2 ; 16x16 multiply
QDADD r5,15,r3 , saturating x2 accumulate
SMULTT r3,r1,r2 ; 16x16 multiply
QDADD r5,r5,r3 , saturating x2 accumulate
SUBS r4,r4,#2 , decrement loop counter
BNE loop ;

[] 32-bit loads use memory efficiently

© 2005 PEVE; Unit — ARM System Design Architectural extensions —v4 — 19

v5TE signal processing extensions

The University
of Manchester

[Inner product - reordered:

LDR rl,[r6],#4 ; get first two multipliers

LDR r2,[r7],#4 ; get first 2 multiplicands
loop SMULBB r3,r1,r2 ; 16x16 multiply

SUBS r4,r4,#2 , decrement loop counter

QDADD r5,r5,r3 , saturating x2 accumulate

SMULTT r3,r1,r2 ; 16x16 multiply

LDR rl,[r6],#4 ; get next two multipliers

QDADD r5,r5,r3 , saturating x2 accumulate

LDR r2,[r7],#4 ; get next 2 multiplicands

BNE loop ;

[instruction scheduling avoids pipeline stalls

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 20

: Complete v6 PSR
S 3030202827 252423 019 1615 0987654 0
s [N[Z[clv] GE[3:0 E[A[I[F[T] mode

The University

1 Q flag — saturating operation has saturated
1 J flag — Java support (see later)

0 GE flags (individual byte Greater than or Equal)

[affected by SIMD arithmetic
[] used by SEL to select bytes/halfwords

1 E flag — endianness of loads and stores (1 = big)
1 A flag — disable imprecise aborts

[] precise aborts allow code to recover (e.g. from page fault)
(1 ... but keeping state may impair performance

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 21

V6 sighal processing extensions

1 The majority of the v6 DSP extensions are
‘SIMD’ operations

The University
of Manchester

[] Single Instruction Multiple Data
— Similar to Intel MMX

[SIMD add & subtract

— two independent 16-bit operations, or
— four independent -bit operations

[] operands may be signed or unsigned
[in case of overflow

— operations may set GE flags
— results may saturate (and set Q flag)

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 22

MANCHEStER
1824

V6 sighal processing extensions

The University

o)

0

2 Saturating Non-saturating

S Data size Operation

g unsigned signed unsigned signed

© UQADDS QADDS UADDS8 SADD§4 x 8-bit |add corresponding bytes in Rn and Rm
UuQSuUBS8 QSuUBS8 USuUBS8 SSUBS|4 x 8-bit | subtract corresponding bytes in Rn and Rm

UQADD16 QADD16 UADD16 SADD1§2 x 16-bit |add corresponding halfwords in Rn and Rm
UQSUB16 QSUB16 USuUB16 SSUB14g 2 x 16-bit | subtract corresponding halfwords in Rn and Rm

UQADDSUBK QADDSUBX UADDSUBX SADDBUBNX%-bit |halfword op. with Rm halves swapped
then high halves added, low subtracted

UQSUBADDIK QSUBADDPX USUBADDX SSUBRADDDG-bit |halfword op. with Rm halves swapped

then high halves subtracted, low added

[] examples:
UQADDS USUB16 SSUBADDX

— also options to halve the result before writeback (e.g. UHSUBS

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 23

MANCHEStER
1824

V6 sighal processing extensions

The University

[
g
(&)
c 1 - .
§ [More 16 x 16 multiplies:
©
Instruction Effect
SMUAD Rd, Rm, Rs Rd :=Rmg x Rsg + Rmy x RSt
SMUSD Rd, Rm, Rs Rd :=Rmg x Rsg + Rmy x Rst
SMLAD Rd, Rm, Rs, Rn Rd := Rn + Rmg x Rsg + Rmy x Rsy
SMLSD Rd, Rm, Rs, Rn Rd := Rn + Rmg x Rsg - Rmy x Rsy
SMLALD RdLo, RdHi, Rm, Rs RdHi:RdLo := RdHi:RdLo + Rmg x Rsg + Rmy x Rst
SMLSLD RdLo, RdHi, Rm, Rs RdHi:RdLo := RdHi:RdLo + Rmg x Rsg - Rmy x Rst
— ‘T" and ‘B’ indicate the Top and SMUAD

Bottom halves of the register _|_|_|_|
— an ‘X’ can be added which swaps ; ; ; ;

+ +

the halfwords of Rs first i N
y
I‘#

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 24

V6 sighal processing extensions

The University
of Manchester

] Support instructions

[] sign extend/zero extend

e.g. UXTB Rd, Rm ; zero extend byte
SXTB16 Rd,Rm ; sign ext. 2 bytes [1 2 halfwords

— on 8- or 16-bit quantities
— with optional rotation (8, 16, 24 places) first
— with optional subsequent accumulate

| saturate

e.g. SSAT Rd, #n, Rm ; sighed saturation to n bits

— saturate (if necessary) to specified size (in bits)
— also allows preceding shift

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 25

V6 sighal processing extensions

] More support instructions

The University
of Manchester

[] select (SEL)

— chooses bytes in output according to corresponding GE flag
— would follow (e.g.) SADDS8
— could be used for (e.g.) clipping samples

[1 sum of differences

USAD8 Rd, Rm, Rs
— sum the absolute differences of the individual bytes in Rm, Rs

— pattern matching (e.g. in MPEG encoding)
— also available with accumulate

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 26

MANCHEStER
1824

V6 sighal processing extensions

[Example of use:

The University
of Manchester

[] complex numbers packed into 32 bits

31 16 15 0
Imagqginary part Real part

1 Add SADD16 RO, R1, R2
1 Modulus SMUAD RO, R1,R1

7 Multiply SMUSD R3,R1,R2 :Real
SMUADX RO, R1,R2 :Imag.
PKHBT RO, R3, RO, LSL #16

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 27

MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

[] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions — v4 — 28

The University

MANCHl%ggER

. TrustZone™

g Privileged

g“ mode I Secure

° privileged

Non-secure Secure mode
kernel kernel l
Secure Secure
device devi
evice

driver

Non-secure

Secure

application tasks

Secure

User mode user mode

1 “NS” (Non-secure) bit determines the security status
[] held in system coprocessor

[] can only be changed via (trusted) secure monitor code

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 29

MANCHEStER
1824

TrustZone™

1 Secure monitor mode

The University
of Manchester

[] processor operating mode — new to v6
[] privileged
(1 always secure

[] entered via SMI (Software Monitor Instruction)

— only works from privileged mode
— causes undefined instruction exception from user mode

[intended for switching security status

— change NS bit
— return

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 30

MANCHEStER
1824

TrustZone™

rl usable in user mode

The University
of Manchester
-
o

system modes only

r8_fiq = New mode =

9 :%f'?iq CPSR[4:0] = 10110

rll fiqg |
s | - rl3 und

rl12_fi ' rl13 irq -
rl12 |’13=f|3 r13=SVC r13=abt = r14 und
eV r14_SvC rl4 abt

secure monitor
user fig svC abort irq undefined

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 31

MANCHEStER
1824

TrustZone™

1 TrustZone affects the memory management (see later)

The University
of Manchester

1 Memory regions can be marked as:

[] Non-secure
— always available
] Secure

— available only to ‘secure’ code
— non-secure access attempt will abort

] Otherwise code iIs unaffected

[] reset [secure mode

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 32

MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

[] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions — v4 — 33

MANCHEStER
1824

Jazelle™

The University
of Manchester

1 Jazelle i1s a hardware instruction decoder

] Java byte codes are translated into ARM instructions

(] similar — in principle — to Thumb
[] translates some (140) Java byte codes
— translation is dynamic (e.g. register specifiers are not fixed)

[] the codes processed account for most of the codes
encountered in typical code

[1 non-translated codes (94) trap for software emulation

[] performance is 8x that of software JVM

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 34

MANCHEStER
1824

Jazelle™

The University
of Manchester

1 Jazelle mode indicated by a flag in CPSR

3130292827 252423 87654 0
N|Z|C|V J unused | |F[T] mode
0 Entered using BXJ Rm Instruction

3l 28 21 4 3 0

|cond ‘000100101111111111110010‘ Rm |

1 Exception processing done in ARM code

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 35

.
Jazelle™ register use

35 1 Many ARM registers have predefined functions In
- Jazelle
Register Jazelle™ role
0-3 Cache of Java expression stack
4 Local variable O (‘this’ pointer)
5 Pointer to table of SW handlers
6 Java stack pointer
7 Java variables pointer
8 Java constant pool pointer
9-11 Reserved for JVM (no HW function)
12 Scratch reg.
13 Stack pointer
14 Link address / scratch register
15 Program counter

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 36

MANCHEStER
1824

Architectural extensions

1 Qutline:

The University
of Manchester

[] Instruction set extensions

] digital signal processing instructions
[] security extensions

L1 Java support

] future instruction set developments

[1 hands-on: Thumb C and cycle counts

© 2005 PEVE; Unit — ARM System Design

Architectural extensions — v4 — 37

MANCHEStER

= Thumb 2

[1 Detalls not available

The University
of Manchester

] Claims:

[1 new Instruction set

— both 16- and 32-bit instructions
— ARM-like instructions
e some new operations {bitfield manipulation, jump tables, ...}

[ARM-like performance

[1 Thumb-like code size

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 38

MANCHEStER

— Hands-on: Thumb C
and cycle counts

The University
of Manchester

1 See how to compile C programs into Thumb code

] Look at performance evaluation within the ARM
software development tools

[] See how many clock cycles ARM and Thumb programs take

(1 Follow the ‘Hands-on’ instructions

© 2005 PEVE; Unit — ARM System Design Architectural extensions — v4 — 39

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Instruction set extensions
	Since its introduction the ARM instruction set has been extended several times
	extensions to v4 have been included already
	– e.g. halfword support, Thumb, …

	v5, v5TE and v6 extensions are described here
	– better ARM/Thumb interworking
	– more ‘endian’ support
	– variety of minor enhancements
	– DSP support – in following subsection

	 Instruction set extensions – v5
	BLX
	– Branch with Link and eXchange

	CLZ
	– Count Leading Zeros

	BKPT
	– software breakpoint

	PLD
	– Cache PreLoaD

	Extra coprocessor op-codes
	– CDP2, MRC2, etc.

	 Instruction set extensions – v5
	BLX - two forms
	BLX Rm
	BLX label
	– Note: no condition code always executes

	 Instruction set extensions – v5
	CLZ Rd, Rm
	Returns number of 0s from MSB (0-32)

	BKPT
	Allows user to force ‘prefetch abort’

	 Instruction set extensions – v5
	PLD <addressing mode>
	PreLoaD
	– a hint to the memory that this address may be wanted, soon

	has no effect on the programmer-visible state
	may cause a cache line fetch
	– memory can choose to ignore this operation

	cannot generate aborts

	 Instruction set extensions – v5/v6
	Several instructions to support DSP
	mostly multiply and multiply-accumulate
	most dealt with shortly

	UMAAL (v6) is a long multiply with two accumulates
	UMAAL R2, R3, R1, R0
	R3:R2 := (R1 X R0) + R2 + R3
	– encoded in the ‘normal’ multiply set

	 Instruction set extensions – v6
	ARM v6 has extra control operations:
	CPS
	– Change Processor State (switch mode)

	SETEND
	– Endian control bit appears in PSR

	SRS/RFE
	– Save Return State (Push LR and SPSR)
	– Return From Exception (Pop PC and CPSR)

	Semaphore operations
	All ARMs support “swap”
	SWP R1, R2, [R3]

	New operations from v6
	LDREX R0, [R1]
	– Load exclusive … TLB notes processor ID

	STREX R2, R0, [R1]
	– Store exclusive … fails if ‘wrong’ processor
	– R2 holds failure flag

	 Instruction set extensions – v6
	Unaligned memory accesses
	in earlier ARMs
	– word and halfword accesses should be appropriately aligned
	• unaligned accesses are ‘interesting’

	– misalignment may cause a trap (via MMU – see later)

	on ARM v6
	– unaligned accesses are supported in hardware
	– still not a good idea!
	• may reduce performance

	 Instruction set extensions – v6
	Endian control
	on ARM v6 data ‘endianess’ is explicit in the CPSR
	– can be changed by SETEND BE|LE instructions
	– instructions are still ‘little endian’
	– can be modified by the MMU, if present

	software also assisted by new instructions

	 Instruction set extensions – v6
	Data packing
	one 32-bit register may be used for two 16-bit variables
	PKHBT Rd, Rn, Rm {, LSL #<0-31>}
	PKHTB Rd, Rn, Rm {, ASR #<1-32>}
	two 16-bit quantities are packed together (with optional shift)

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Digital signal processing
	Many ARM applications require good 16-bit signal processing performance
	– e.g. GSM mobile phone handset

	One solution is ARM plus separate DSP core
	– two software development toolkits
	– difficulty producing integrated solution

	ARM has offered two solutions:
	– Piccolo DSP coprocessor
	• little commercial take-up

	– instruction set extensions
	• began with v5TE; extended in v6

	 v5TE signal processing extensions
	Q bit added to the CPSR (and SPSRs)
	detects saturating arithmetic overflow
	sticky:
	– set by overflow
	– reset only by an MSR instruction

	 v5TE signal processing extensions
	Multiply instructions:
	SMLAWy{cond} Rd,Rm,Rs,Rn
	SMULWy{cond} Rd,Rm,Rs
	SMLALxy{cond} RdLo,RdHi,Rm,Rs
	SMULxy{cond} Rd,Rm,Rs
	provide various 16x16 and 16x32 multiply and multiply- accumulate operations
	– 16-bit operand can be selected from low or high half of register
	– ‘x’ and ‘y’ (above) are ‘B’ or ‘T’ for Bottom or Top 16 bits

	 v5TE signal processing extensions
	Saturating arithmetic instructions:
	32-bit saturating add/subtract:
	QADD{cond} Rd,Rm,Rn
	QSUB{cond} Rd,Rm,Rn

	32-bit saturating double then add/subtract
	QDADD{cond} Rd,Rm,Rn
	QDSUB{cond} Rd,Rm,Rn
	– allows for coefficients > 1
	– as required by some common algorithms

	 v5TE signal processing extensions
	Example inner product:
	loop LDR r1,[r6],#4 ; get next two multipliers LDR r2,[r7],#4 ; get next 2 multiplicands SMULBB r...
	32-bit loads use memory efficiently

	 v5TE signal processing extensions
	Inner product - reordered:
	LDR r1,[r6],#4 ; get first two multipliers LDR r2,[r7],#4 ; get first 2 multiplicands loop SMULBB...
	instruction scheduling avoids pipeline stalls

	Complete v6 PSR
	Q flag – saturating operation has saturated
	J flag – Java support (see later)
	GE flags (individual byte Greater than or Equal)
	affected by SIMD arithmetic
	used by SEL to select bytes/halfwords

	E flag – endianness of loads and stores (1 = big)
	A flag – disable imprecise aborts
	precise aborts allow code to recover (e.g. from page fault)
	… but keeping state may impair performance

	 v6 signal processing extensions
	The majority of the v6 DSP extensions are ‘SIMD’ operations
	Single Instruction Multiple Data
	– Similar to Intel MMX

	SIMD add & subtract
	– two independent 16-bit operations, or
	– four independent -bit operations
	operands may be signed or unsigned
	in case of overflow
	– operations may set GE flags
	– results may saturate (and set Q flag)

	 v6 signal processing extensions
	examples:
	– also options to halve the result before writeback (e.g. UHSUB8)

	 v6 signal processing extensions
	More 16 x 16 multiplies:
	– ‘T’ and ‘B’ indicate the Top and Bottom halves of the register
	– an ‘X’ can be added which swaps the halfwords of Rs first

	 v6 signal processing extensions
	Support instructions
	sign extend/zero extend
	e.g. UXTB Rd, Rm ; zero extend byte SXTB16 Rd, Rm ; sign ext. 2 bytes ﬁ 2 halfwords
	– on 8- or 16-bit quantities
	– with optional rotation (8, 16, 24 places) first
	– with optional subsequent accumulate

	saturate
	e.g. SSAT Rd, #n, Rm ; signed saturation to n bits
	– saturate (if necessary) to specified size (in bits)
	– also allows preceding shift

	 v6 signal processing extensions
	More support instructions
	select (SEL)
	– chooses bytes in output according to corresponding GE flag
	– would follow (e.g.) SADD8
	– could be used for (e.g.) clipping samples

	sum of differences
	USAD8 Rd, Rm, Rs
	– sum the absolute differences of the individual bytes in Rm, Rs
	– pattern matching (e.g. in MPEG encoding)
	– also available with accumulate

	 v6 signal processing extensions
	Example of use:
	complex numbers packed into 32 bits

	Add SADD16 R0, R1, R2
	Modulus SMUAD R0, R1, R1
	Multiply SMUSD R3, R1, R2 ; Real SMUADX R0, R1, R2 ; Imag. PKHBT R0, R3, R0, LSL #16

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	TrustZone™
	“NS” (Non-secure) bit determines the security status
	held in system coprocessor
	can only be changed via (trusted) secure monitor code

	TrustZone™
	Secure monitor mode
	processor operating mode – new to v6
	privileged
	always secure
	entered via SMI (Software Monitor Instruction)
	– only works from privileged mode
	– causes undefined instruction exception from user mode

	intended for switching security status
	– change NS bit
	– return

	TrustZone™
	TrustZone™
	TrustZone affects the memory management (see later)
	Memory regions can be marked as:
	Non-secure
	– always available

	Secure
	– available only to ‘secure’ code
	– non-secure access attempt will abort

	Otherwise code is unaffected
	reset ﬁ secure mode

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Jazelle™
	Jazelle is a hardware instruction decoder
	Java byte codes are translated into ARM instructions
	similar – in principle – to Thumb
	translates some (140) Java byte codes
	– translation is dynamic (e.g. register specifiers are not fixed)

	the codes processed account for most of the codes encountered in typical code
	non-translated codes (94) trap for software emulation
	performance is 8x that of software JVM

	Jazelle™
	Jazelle mode indicated by a flag in CPSR
	Entered using BXJ Rm instruction
	Exception processing done in ARM code

	Jazelle™ register use
	Many ARM registers have predefined functions in Jazelle

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Thumb 2
	Details not available
	Claims:
	new instruction set
	– both 16- and 32-bit instructions
	– ARM-like instructions
	• some new operations {bitfield manipulation, jump tables, …}

	ARM-like performance
	Thumb-like code size

	Hands-on: Thumb C and cycle counts
	See how to compile C programs into Thumb code
	Look at performance evaluation within the ARM software development tools
	See how many clock cycles ARM and Thumb programs take
	Follow the ‘Hands-on’ instructions

