
Architectural extensions – v4 – 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

❍ instruction set extensions

❍ digital signal processing instructions

❍ security extensions

❍ Java support

❍ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

➜ instruction set extensions

❍ digital signal processing instructions

❍ security extensions

❍ Java support

❍ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

ction set has been

eady

ed here
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extensio

❏ Since its introduction the ARM instru
extended several times

❍ extensions to v4 have been included alr

– e.g. halfword support, Thumb, …

❍ v5, v5TE and v6 extensions are describ

– better ARM/Thumb interworking

– more ‘endian’ support

– variety of minor enhancements

– DSP support – in following subsection

Architectural extensions – v4 – 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v5
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❍ BLX

– Branch with Link and eXchange

❍ CLZ

– Count Leading Zeros

❍ BKPT

– software breakpoint

❍ PLD

– Cache PreLoaD

❍ Extra coprocessor op-codes

– CDP2, MRC2, etc.

Architectural extensions – v4 – 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v5

0
Rm

4 3
1 1 100 1

0
rd offset

olution)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ BLX - two forms

❍ BLX Rm

❍ BLX label

– Note: no condition code always executes

2831
cond 00 0

27
1 000 1 11 1 1 111 1 1 1

2831
11 0

27
H 24-bit signed wo11 1 1

232425

offset: bit ‘1’ (gives half-word res

Architectural extensions – v4 – 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v5

0
Rm

4 3
1 1 100 0

0
Rm

4 3
110 1

8 7
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ CLZ Rd, Rm

❍ Returns number of 0s from MSB (0-32)

❏ BKPT

❍ Allows user to force ‘prefetch abort’

2831
cond 00 0

27
1 010 1 11 1 1 1 1Rd

121516 11

2831
00 0

27
1 000 1 12-bit immed11 1 0

20 19

Architectural extensions – v4 – 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v5

ay be wanted, soon

 state

tion

0
ddressing mode
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ PLD <addressing mode>

❍ PreLoaD

– a hint to the memory that this address m

❍ has no effect on the programmer-visible

❍ may cause a cache line fetch

– memory can choose to ignore this opera

❍ cannot generate aborts

2831
10 1

27
1 a11U 0 11 1 1Rd

121516 11
11 1 1

26 25 24 23 22 20 19

Architectural extensions – v4 – 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v5/v6

o accumulates
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ Several instructions to support DSP

❍ mostly multiply and multiply-accumulate

❍ most dealt with shortly

❏ UMAAL (v6) is a long multiply with tw

UMAAL R2, R3, R1, R0

R3:R2 := (R1 X R0) + R2 + R3

– encoded in the ‘normal’ multiply set

Architectural extensions – v4 – 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v6

:

PSR)

SR)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ ARM v6 has extra control operations

❍ CPS

– Change Processor State (switch mode)

❍ SETEND

– Endian control bit appears in PSR

❍ SRS/RFE

– Save Return State (Push LR and S

– Return From Exception (Pop PC and CP

Architectural extensions – v4 – 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns

D

or
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Semaphore operatio

❏ All ARMs support “swap”

SWP R1, R2, [R3]

❏ New operations from v6

LDREX R0, [R1]

– Load exclusive … TLB notes processor I

STREX R2, R0, [R1]

– Store exclusive … fails if ‘wrong’ process

– R2 holds failure flag

Architectural extensions – v4 – 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v6

ppropriately aligned

 – see later)

rdware
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ Unaligned memory accesses

❍ in earlier ARMs

– word and halfword accesses should be a

• unaligned accesses are ‘interesting’

– misalignment may cause a trap (via MMU

❍ on ARM v6

– unaligned accesses are supported in ha

– still not a good idea!

• may reduce performance

Architectural extensions – v4 – 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v6

in the CPSR

tructions

ns

05 47 6
TI F mode

89
E A

REVSH

sign extend
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ Endian control

❍ on ARM v6 data ‘endianess’ is explicit

– can be changed by SETEND BE|LE ins

– instructions are still ‘little endian’

– can be modified by the MMU, if present

❍ software also assisted by new instructio

2831 2730 29
C VN Z

2425 23
J

1019 1620 15
Q GE[3:0]

REV REV16

Architectural extensions – v4 – 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

s – v6

16-bit variables

r (with optional shift)

0
Rm

4 3
1? 0hift

7 6

0
1

PKHBT
PKHTB

BT ...
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Instruction set extension

❏ Data packing

❍ one 32-bit register may be used for two

❍ PKHBT Rd, Rn, Rm {, LSL #<0-31>}

❍ PKHTB Rd, Rn, Rm {, ASR #<1-32>}

❍ two 16-bit quantities are packed togethe

2831
cond 10 1

27
1 001 0 Rd

121516 11
Rn s

20 19

PKHBT ...
Rn

Rm

Rd

Rn

Rm

Rd

PKH

Architectural extensions – v4 – 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

❍ instruction set extensions

➜ digital signal processing instructions

❍ security extensions

❍ Java support

❍ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ing

-bit signal processing

 core
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Digital signal process

❍ Many ARM applications require good 16
performance

– e.g. GSM mobile phone handset

❍ One solution is ARM plus separate DSP

– two software development toolkits

– difficulty producing integrated solution

❍ ARM has offered two solutions:

– Piccolo DSP coprocessor

• little commercial take-up

– instruction set extensions

• began with v5TE; extended in v6

Architectural extensions – v4 – 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xtensions

s)

05 47 6
TI F mode

8

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v5TE signal processing e

❏ Q bit added to the CPSR (and SPSR

❍ detects saturating arithmetic overflow

❍ sticky:

– set by overflow

– reset only by an MSR instruction

2831 2730 29
C VN Z

26
Q

Architectural extensions – v4 – 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xtensions

ly and multiply-

 or high half of register

 or Top 16 bits
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v5TE signal processing e

❏ Multiply instructions:

SMLAWy{cond} Rd,Rm,Rs,Rn

SMULWy{cond} Rd,Rm,Rs

SMLALxy{cond} RdLo,RdHi,Rm,Rs

SMULxy{cond} Rd,Rm,Rs

❍ provide various 16x16 and 16x32 multip
accumulate operations

– 16-bit operand can be selected from low

– ‘x’ and ‘y’ (above) are ‘B’ or ‘T’ for Bottom

Architectural extensions – v4 – 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xtensions

ct
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v5TE signal processing e

❏ Saturating arithmetic instructions:

❍ 32-bit saturating add/subtract:

QADD{cond} Rd,Rm,Rn

QSUB{cond} Rd,Rm,Rn

❍ 32-bit saturating double then add/subtra

QDADD{cond} Rd,Rm,Rn

QDSUB{cond} Rd,Rm,Rn

– allows for coefficients > 1

– as required by some common algorithms

Architectural extensions – v4 – 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xtensions

tipliers
plicands

accumulate

accumulate
p counter
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v5TE signal processing e

❏ Example inner product:

loop LDR r1,[r6],#4 ; get next two mul
LDR r2,[r7],#4 ; get next 2 multi
SMULBB r3,r1,r2 ; 16x16 multiply
QDADD r5,r5,r3 ; saturating x2
SMULTT r3,r1,r2 ; 16x16 multiply
QDADD r5,r5,r3 ; saturating x2
SUBS r4,r4,#2 ; decrement loo
BNE loop ;

❍ 32-bit loads use memory efficiently

Architectural extensions – v4 – 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

xtensions

ltipliers
licands

p counter
accumulate

ltipliers
accumulate
plicands

talls
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v5TE signal processing e

❏ Inner product - reordered:

LDR r1,[r6],#4 ; get first two mu
LDR r2,[r7],#4 ; get first 2 multip

loop SMULBB r3,r1,r2 ; 16x16 multiply
SUBS r4,r4,#2 ; decrement loo
QDADD r5,r5,r3 ; saturating x2
SMULTT r3,r1,r2 ; 16x16 multiply
LDR r1,[r6],#4 ; get next two mu
QDADD r5,r5,r3 ; saturating x2
LDR r2,[r7],#4 ; get next 2 multi
BNE loop ;

❍ instruction scheduling avoids pipeline s

Architectural extensions – v4 – 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

urated

n or Equal)

res (1 = big)

g. from page fault)

ance

05 47 6
TI F mode

89
E A
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Complete v6 PSR

❏ Q flag – saturating operation has sat

❏ J flag – Java support (see later)

❏ GE flags (individual byte Greater tha

❍ affected by SIMD arithmetic

❍ used by SEL to select bytes/halfwords

❏ E flag – endianness of loads and sto

❏ A flag – disable imprecise aborts

❍ precise aborts allow code to recover (e.

❍ … but keeping state may impair perform

2831 2730 29
C VN Z

2425 23
J

1019 1620 15
Q GE[3:0]

Architectural extensions – v4 – 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

ns are
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❏ The majority of the v6 DSP extensio
‘SIMD’ operations

❍ Single Instruction Multiple Data

– Similar to Intel MMX

❏ SIMD add & subtract

– two independent 16-bit operations, or

– four independent -bit operations

❍ operands may be signed or unsigned

❍ in case of overflow

– operations may set GE flags

– results may saturate (and set Q flag)

Architectural extensions – v4 – 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

iteback (e.g. UHSUB8)

Operation

onding bytes in Rn and Rm

responding bytes in Rn and Rm

onding halfwords in Rn and Rm

responding halfwords in Rn and Rm

 with Rm halves swapped
lves added, low subtracted

 with Rm halves swapped
lves subtracted, low added

+–

SSUBADDX
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❍ examples:

– also options to halve the result before wr

Saturating Non-saturating
Data size

unsigned signed unsigned signed

UQADD8 QADD8 UADD8 SADD84 x 8-bit add corresp

UQSUB8 QSUB8 USUB8 SSUB8 4 x 8-bit subtract cor

UQADD16 QADD16 UADD16 SADD162 x 16-bit add corresp

UQSUB16 QSUB16 USUB16 SSUB16 2 x 16-bit subtract cor

UQADDSUBX QADDSUBX UADDSUBX SADDSUBX2 x 16-bit halfword op.
then high ha

UQSUBADDX QSUBADDX USUBADDX SSUBADDX2 x 16-bit halfword op.
then high ha

––

UQADD8 USUB16

++ ++

Architectural extensions – v4 – 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

t

sT

sT

 RsB + RmT × RsT

 RsB - RmT × RsT

SMUAD

++
x

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❏ More 16 x 16 multiplies:

– ‘T’ and ‘B’ indicate the Top and
Bottom halves of the register

– an ‘X’ can be added which swaps
the halfwords of Rs first

Instruction Effec

SMUAD Rd, Rm, Rs Rd :=RmB × RsB + RmT × RsT

SMUSD Rd, Rm, Rs Rd :=RmB × RsB + RmT × RsT

SMLAD Rd, Rm, Rs, Rn Rd := Rn + RmB × RsB + RmT × R

SMLSD Rd, Rm, Rs, Rn Rd := Rn + RmB × RsB - RmT × R

SMLALD RdLo, RdHi, Rm, Rs RdHi:RdLo := RdHi:RdLo + RmB ×

SMLSLD RdLo, RdHi, Rm, Rs RdHi:RdLo := RdHi:RdLo + RmB ×

Architectural extensions – v4 – 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

⇒ 2 halfwords

rst

n to n bits

in bits)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❏ Support instructions

❍ sign extend/zero extend

e.g. UXTB Rd, Rm ; zero extend byte
SXTB16 Rd, Rm ; sign ext. 2 bytes

– on 8- or 16-bit quantities

– with optional rotation (8, 16, 24 places) fi

– with optional subsequent accumulate

❍ saturate

e.g. SSAT Rd, #n, Rm ; signed saturatio

– saturate (if necessary) to specified size (

– also allows preceding shift

Architectural extensions – v4 – 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

responding GE flag

idual bytes in Rm, Rs

g)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❏ More support instructions

❍ select (SEL)

– chooses bytes in output according to cor

– would follow (e.g.) SADD8

– could be used for (e.g.) clipping samples

❍ sum of differences

USAD8 Rd, Rm, Rs

– sum the absolute differences of the indiv

– pattern matching (e.g. in MPEG encodin

– also available with accumulate

Architectural extensions – v4 – 27

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ensions

; Real
; Imag.

 LSL #16

0
eal part
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r v6 signal processing ext

❏ Example of use:

❍ complex numbers packed into 32 bits

❏ Add SADD16 R0, R1, R2

❏ Modulus SMUAD R0, R1, R1

❏ Multiply SMUSD R3, R1, R2
SMUADX R0, R1, R2
PKHBT R0, R3, R0,

31 1516
RImaginary part

Architectural extensions – v4 – 28

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

❍ instruction set extensions

❍ digital signal processing instructions

➜ security extensions

❍ Java support

❍ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 29

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

e security status

e monitor code

Secure

device

cure
evice
river

Secure

er mode

Secure

privileged

mode
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r TrustZone™

❏ “NS” (Non-secure) bit determines th

❍ held in system coprocessor

❍ can only be changed via (trusted) secur

Non-secure

kernel

Non-secure

application

Secure

kernel

Secure

tasks

Monitor

Se
d
d

us

Privileged

mode

User mode

Architectural extensions – v4 – 30

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

uction)

rom user mode
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r TrustZone™

❏ Secure monitor mode

❍ processor operating mode – new to v6

❍ privileged

❍ always secure

❍ entered via SMI (Software Monitor Instr

– only works from privileged mode

– causes undefined instruction exception f

❍ intended for switching security status

– change NS bit

– return

Architectural extensions – v4 – 31

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

SPSR_monSPSR_undirq

r13_und
r14_und

q
q

usable in user mode

system modes only

undefined

CPSR[4:0] = 10110

r13_mon
r14_mon

secure monitor

= New mode =
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r TrustZone™

SPSR_SPSR_abtSPSR_svcSPSR_fiq

r13_ir
r14_ir

r13_abt
r14_abt

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (pc)

r8_fiq
r9_fiq
r10_fiq
r11_fiq
r12_fiq
r13_fiq
r14_fiq

CPSR

r13_svc
r14_svc

user fiq svc abort irq

Architectural extensions – v4 – 32

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

gement (see later)
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r TrustZone™

❏ TrustZone affects the memory mana

❏ Memory regions can be marked as:

❍ Non-secure

– always available

❍ Secure

– available only to ‘secure’ code

– non-secure access attempt will abort

❏ Otherwise code is unaffected

❍ reset ⇒ secure mode

Architectural extensions – v4 – 33

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

❍ instruction set extensions

❍ digital signal processing instructions

❍ security extensions

➜ Java support

❍ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 34

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

oder

RM instructions

ifiers are not fixed)

f the codes

re emulation
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Jazelle™

❏ Jazelle is a hardware instruction dec

❏ Java byte codes are translated into A

❍ similar – in principle – to Thumb

❍ translates some (140) Java byte codes

– translation is dynamic (e.g. register spec

❍ the codes processed account for most o
encountered in typical code

❍ non-translated codes (94) trap for softwa

❍ performance is 8x that of software JVM

Architectural extensions – v4 – 35

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

PSR

code

05 47 6
TI F mode

8

0
Rm

4 3
1 1 000 1
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Jazelle™

❏ Jazelle mode indicated by a flag in C

❏ Entered using BXJ Rm instruction

❏ Exception processing done in ARM

unused
2831 2730 29

C VN Z
2425 23
J

2831
cond 00 0

27
1 000 1 11 1 1 111 1 1 1

Architectural extensions – v4 – 36

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

e

d functions in

ck

rs

ction)

r

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Jazelle™ register us

❏ Many ARM registers have predefine
Jazelle

Register Jazelle™ role

0-3 Cache of Java expression sta

4 Local variable 0 (‘this’ pointer)

5 Pointer to table of SW handle

6 Java stack pointer

7 Java variables pointer

8 Java constant pool pointer

9-11 Reserved for JVM (no HW fun

12 Scratch reg.

13 Stack pointer

14 Link address / scratch registe

15 Program counter

Architectural extensions – v4 – 37

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ns
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Architectural extensio

❏ Outline:

❍ instruction set extensions

❍ digital signal processing instructions

❍ security extensions

❍ Java support

➜ future instruction set developments

☞ hands-on: Thumb C and cycle counts

Architectural extensions – v4 – 38

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

lation, jump tables, …}
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Thumb 2

❏ Details not available

❏ Claims:

❍ new instruction set

– both 16- and 32-bit instructions

– ARM-like instructions

• some new operations {bitfield manipu

❍ ARM-like performance

❍ Thumb-like code size

Architectural extensions – v4 – 39

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

C

 Thumb code

in the ARM

humb programs take
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Hands-on: Thumb
and cycle counts

❏ See how to compile C programs into

❏ Look at performance evaluation with
software development tools

❍ See how many clock cycles ARM and T

☞ Follow the ‘Hands-on’ instructions

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Instruction set extensions
	Since its introduction the ARM instruction set has been extended several times
	extensions to v4 have been included already
	– e.g. halfword support, Thumb, …

	v5, v5TE and v6 extensions are described here
	– better ARM/Thumb interworking
	– more ‘endian’ support
	– variety of minor enhancements
	– DSP support – in following subsection

	 Instruction set extensions – v5
	BLX
	– Branch with Link and eXchange

	CLZ
	– Count Leading Zeros

	BKPT
	– software breakpoint

	PLD
	– Cache PreLoaD

	Extra coprocessor op-codes
	– CDP2, MRC2, etc.

	 Instruction set extensions – v5
	BLX - two forms
	BLX Rm
	BLX label
	– Note: no condition code always executes

	 Instruction set extensions – v5
	CLZ Rd, Rm
	Returns number of 0s from MSB (0-32)

	BKPT
	Allows user to force ‘prefetch abort’

	 Instruction set extensions – v5
	PLD <addressing mode>
	PreLoaD
	– a hint to the memory that this address may be wanted, soon

	has no effect on the programmer-visible state
	may cause a cache line fetch
	– memory can choose to ignore this operation

	cannot generate aborts

	 Instruction set extensions – v5/v6
	Several instructions to support DSP
	mostly multiply and multiply-accumulate
	most dealt with shortly

	UMAAL (v6) is a long multiply with two accumulates
	UMAAL R2, R3, R1, R0
	R3:R2 := (R1 X R0) + R2 + R3
	– encoded in the ‘normal’ multiply set

	 Instruction set extensions – v6
	ARM v6 has extra control operations:
	CPS
	– Change Processor State (switch mode)

	SETEND
	– Endian control bit appears in PSR

	SRS/RFE
	– Save Return State (Push LR and SPSR)
	– Return From Exception (Pop PC and CPSR)

	Semaphore operations
	All ARMs support “swap”
	SWP R1, R2, [R3]

	New operations from v6
	LDREX R0, [R1]
	– Load exclusive … TLB notes processor ID

	STREX R2, R0, [R1]
	– Store exclusive … fails if ‘wrong’ processor
	– R2 holds failure flag

	 Instruction set extensions – v6
	Unaligned memory accesses
	in earlier ARMs
	– word and halfword accesses should be appropriately aligned
	• unaligned accesses are ‘interesting’

	– misalignment may cause a trap (via MMU – see later)

	on ARM v6
	– unaligned accesses are supported in hardware
	– still not a good idea!
	• may reduce performance

	 Instruction set extensions – v6
	Endian control
	on ARM v6 data ‘endianess’ is explicit in the CPSR
	– can be changed by SETEND BE|LE instructions
	– instructions are still ‘little endian’
	– can be modified by the MMU, if present

	software also assisted by new instructions

	 Instruction set extensions – v6
	Data packing
	one 32-bit register may be used for two 16-bit variables
	PKHBT Rd, Rn, Rm {, LSL #<0-31>}
	PKHTB Rd, Rn, Rm {, ASR #<1-32>}
	two 16-bit quantities are packed together (with optional shift)

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Digital signal processing
	Many ARM applications require good 16-bit signal processing performance
	– e.g. GSM mobile phone handset

	One solution is ARM plus separate DSP core
	– two software development toolkits
	– difficulty producing integrated solution

	ARM has offered two solutions:
	– Piccolo DSP coprocessor
	• little commercial take-up

	– instruction set extensions
	• began with v5TE; extended in v6

	 v5TE signal processing extensions
	Q bit added to the CPSR (and SPSRs)
	detects saturating arithmetic overflow
	sticky:
	– set by overflow
	– reset only by an MSR instruction

	 v5TE signal processing extensions
	Multiply instructions:
	SMLAWy{cond} Rd,Rm,Rs,Rn
	SMULWy{cond} Rd,Rm,Rs
	SMLALxy{cond} RdLo,RdHi,Rm,Rs
	SMULxy{cond} Rd,Rm,Rs
	provide various 16x16 and 16x32 multiply and multiply- accumulate operations
	– 16-bit operand can be selected from low or high half of register
	– ‘x’ and ‘y’ (above) are ‘B’ or ‘T’ for Bottom or Top 16 bits

	 v5TE signal processing extensions
	Saturating arithmetic instructions:
	32-bit saturating add/subtract:
	QADD{cond} Rd,Rm,Rn
	QSUB{cond} Rd,Rm,Rn

	32-bit saturating double then add/subtract
	QDADD{cond} Rd,Rm,Rn
	QDSUB{cond} Rd,Rm,Rn
	– allows for coefficients > 1
	– as required by some common algorithms

	 v5TE signal processing extensions
	Example inner product:
	loop LDR r1,[r6],#4 ; get next two multipliers LDR r2,[r7],#4 ; get next 2 multiplicands SMULBB r...
	32-bit loads use memory efficiently

	 v5TE signal processing extensions
	Inner product - reordered:
	LDR r1,[r6],#4 ; get first two multipliers LDR r2,[r7],#4 ; get first 2 multiplicands loop SMULBB...
	instruction scheduling avoids pipeline stalls

	Complete v6 PSR
	Q flag – saturating operation has saturated
	J flag – Java support (see later)
	GE flags (individual byte Greater than or Equal)
	affected by SIMD arithmetic
	used by SEL to select bytes/halfwords

	E flag – endianness of loads and stores (1 = big)
	A flag – disable imprecise aborts
	precise aborts allow code to recover (e.g. from page fault)
	… but keeping state may impair performance

	 v6 signal processing extensions
	The majority of the v6 DSP extensions are ‘SIMD’ operations
	Single Instruction Multiple Data
	– Similar to Intel MMX

	SIMD add & subtract
	– two independent 16-bit operations, or
	– four independent -bit operations
	operands may be signed or unsigned
	in case of overflow
	– operations may set GE flags
	– results may saturate (and set Q flag)

	 v6 signal processing extensions
	examples:
	– also options to halve the result before writeback (e.g. UHSUB8)

	 v6 signal processing extensions
	More 16 x 16 multiplies:
	– ‘T’ and ‘B’ indicate the Top and Bottom halves of the register
	– an ‘X’ can be added which swaps the halfwords of Rs first

	 v6 signal processing extensions
	Support instructions
	sign extend/zero extend
	e.g. UXTB Rd, Rm ; zero extend byte SXTB16 Rd, Rm ; sign ext. 2 bytes ﬁ 2 halfwords
	– on 8- or 16-bit quantities
	– with optional rotation (8, 16, 24 places) first
	– with optional subsequent accumulate

	saturate
	e.g. SSAT Rd, #n, Rm ; signed saturation to n bits
	– saturate (if necessary) to specified size (in bits)
	– also allows preceding shift

	 v6 signal processing extensions
	More support instructions
	select (SEL)
	– chooses bytes in output according to corresponding GE flag
	– would follow (e.g.) SADD8
	– could be used for (e.g.) clipping samples

	sum of differences
	USAD8 Rd, Rm, Rs
	– sum the absolute differences of the individual bytes in Rm, Rs
	– pattern matching (e.g. in MPEG encoding)
	– also available with accumulate

	 v6 signal processing extensions
	Example of use:
	complex numbers packed into 32 bits

	Add SADD16 R0, R1, R2
	Modulus SMUAD R0, R1, R1
	Multiply SMUSD R3, R1, R2 ; Real SMUADX R0, R1, R2 ; Imag. PKHBT R0, R3, R0, LSL #16

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	TrustZone™
	“NS” (Non-secure) bit determines the security status
	held in system coprocessor
	can only be changed via (trusted) secure monitor code

	TrustZone™
	Secure monitor mode
	processor operating mode – new to v6
	privileged
	always secure
	entered via SMI (Software Monitor Instruction)
	– only works from privileged mode
	– causes undefined instruction exception from user mode

	intended for switching security status
	– change NS bit
	– return

	TrustZone™
	TrustZone™
	TrustZone affects the memory management (see later)
	Memory regions can be marked as:
	Non-secure
	– always available

	Secure
	– available only to ‘secure’ code
	– non-secure access attempt will abort

	Otherwise code is unaffected
	reset ﬁ secure mode

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Jazelle™
	Jazelle is a hardware instruction decoder
	Java byte codes are translated into ARM instructions
	similar – in principle – to Thumb
	translates some (140) Java byte codes
	– translation is dynamic (e.g. register specifiers are not fixed)

	the codes processed account for most of the codes encountered in typical code
	non-translated codes (94) trap for software emulation
	performance is 8x that of software JVM

	Jazelle™
	Jazelle mode indicated by a flag in CPSR
	Entered using BXJ Rm instruction
	Exception processing done in ARM code

	Jazelle™ register use
	Many ARM registers have predefined functions in Jazelle

	Architectural extensions
	Outline:
	instruction set extensions
	digital signal processing instructions
	security extensions
	Java support
	future instruction set developments
	hands-on: Thumb C and cycle counts

	Thumb 2
	Details not available
	Claims:
	new instruction set
	– both 16- and 32-bit instructions
	– ARM-like instructions
	• some new operations {bitfield manipulation, jump tables, …}

	ARM-like performance
	Thumb-like code size

	Hands-on: Thumb C and cycle counts
	See how to compile C programs into Thumb code
	Look at performance evaluation within the ARM software development tools
	See how many clock cycles ARM and Thumb programs take
	Follow the ‘Hands-on’ instructions

