
Memory hierarchy – v5 – 1

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rking
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Outline:

❍ memory hierarchy basics

❍ on-chip RAM and caches

❍ memory management

❍ operating systems

☞ hands-on: C and assembly code interwo

Memory hierarchy – v5 – 2

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rking
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Outline:

➜ memory hierarchy basics

❍ on-chip RAM and caches

❍ memory management

❍ operating systems

☞ hands-on: C and assembly code interwo

Memory hierarchy – v5 – 3

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

t memory

s

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ A typical system has several differen
subsystems:

❍ processor registers: ~100 bytes, 1 ns

– access is a small part of a clock cycle

❍ on-chip cache or RAM: ~10 Kbytes, 5 ns

– accessed at the processor clock rate

❍ off-chip ROM and RAM: ~ Mbytes, 50 n

– access costs several processor cycles

❍ backup store: ~ Gbytes, 5 ms

Memory hierarchy – v5 – 4

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ls of cache

faster
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❍ There may be more or fewer (or no) leve

Registers

Memory

L2 cache

CPU

L1 cache

bigger

Memory hierarchy – v5 – 5

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rs
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Efficient operation depends on:

❍ the right things

– the code and data

❍ being in the right place

– the on-chip memory or processor registe

❍ at the right time

– when they are in use

Memory hierarchy – v5 – 6

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

re
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Processor registers

❍ are managed directly by the compiler

❏ Cache

❍ is managed automatically by the hardwa

❏ On-chip RAM

❍ is managed by the programmer

❏ Off-chip RAM

❍ is managed by the operating system

Memory hierarchy – v5 – 7

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

…

me

ace
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ The objective is to approach:

❍ the performance of the fastest memory

❍ … at the cost/bit of the slowest memory

❏ Feasible because programs display:

❍ temporal locality

– accesses to a location are clustered in ti

❍ spatial locality

– accesses are clustered in the address sp

Memory hierarchy – v5 – 8

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rking
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Outline:

❍ memory hierarchy basics

➜ on-chip RAM and caches

❍ memory management

❍ operating systems

☞ hands-on: C and assembly code interwo

Memory hierarchy – v5 – 9

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ory”) is used in
dded systems:

er

t

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r On-chip RAM

❏ System benefits of on-chip memory:

❍ increased performance – no wait states

❍ reduced power consumption

❍ improved EMC

❏ On-chip RAM (“Tightly Coupled Mem
preference to a cache in some embe

❍ it is simpler, cheaper and uses less pow

❍ its behaviour is more deterministic

❍ however it requires explicit managemen

Memory hierarchy – v5 – 10

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

hich

alues

asks for them again

ess

 it is full
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Caches

❏ A cache is a small on-chip memory w
automatically:

❍ keeps copies of recently used memory v

❍ supplies these to the processor when it

– thereby avoiding an off-chip memory acc

❍ decides which values to over-write when

Memory hierarchy – v5 – 11

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ache:

?

 a cache miss?

he space be?
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Cache organization

❏ There are many ways to arrange a c

❍ separate or mixed instructions and data

❍ how much memory should be loaded on

❍ how flexible should the allocation of cac

❍ how should writes be handled?

Memory hierarchy – v5 – 12

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ata cache

0000000016

FFFFFFFF16
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Unified instruction and d

address

registers

processor

data

copies of

instructions

data

memory
cache

instructions

copies of

instructionsaddress
 &data

instructions
 &data

Memory hierarchy – v5 – 13

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

tion caches

0000000016

FFFFFFFF16
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Separate data and instruc

address

address

data

registers

processor

data

copies of

instructions

data

memory
cache

instructions

copies of

cache

address instructions

address data

data

Memory hierarchy – v5 – 14

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

e

Cache line
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Direct-mapped cach
Address

compare

tag RAM data RAM

de
co

de
r

hit

Memory hierarchy – v5 – 15

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ache

select

Address
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r 2-way set associative c

❍ two (smaller) cache
blocks

❍ two chances to store
any line

❍ better hit rate

❍ more expensive

❍ can extend to 4-way,
etc.

Memory hierarchy – v5 – 16

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

he

data RAM
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Fully associative cac

❍ more places to store
given line

❍ even better hit rate

❍ even more expensive

❍ (potentially) slower

❍ requires CAM
(Content
 Addressable
 Memory)

tag CAM

hit

Memory hierarchy – v5 – 17

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

arison
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Cache architecture comp

❍ Direct mapped

– simple, cheap, fast

– subject to ‘thrashing’

– choice for large caches

❍ Set associative

– compromise

– may be 2-, 4-, 8-, etc. way

– often preferred

❍ Fully associative

– best hit rate

– slow, expensive

– choice for small caches

Memory hierarchy – v5 – 18

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

es

te is performed

 memory is only
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Cache write strategi

❏ Write-through

❍ all data is written to memory;
matching cache locations are updated

❏ Write-through with write buffer

❍ all data is written to memory, but the wri
through a buffer

❏ Copy-back

❍ the processor writes to the cache - main
updated on flushes.

Memory hierarchy – v5 – 19

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

cy

 on power-

 4)

r

nse amplifiers

 power-hungry
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Cache power-efficien

❏ What is the influence of organization
efficiency?

❍ a high hit rate minimizes off-chip activity

– hit rate increases with associativity (up to

❍ set-associative caches burn more powe

– due to the increased number of active se

❍ CAM (in fully associative caches) is also

Memory hierarchy – v5 – 20

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

cy

improved?

t associative cache

cache
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Cache power-efficien

❏ How can cache power-efficiency be

❍ use serial tag and data accesses in a se

– enable only the relevant data RAM

❍ segment the CAM in a fully associative

❍ exploit sequential address sequences

Memory hierarchy – v5 – 21

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rking
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Outline:

❍ memory hierarchy basics

❍ on-chip RAM and caches

➜ memory management

❍ operating systems

☞ hands-on: C and assembly code interwo

Memory hierarchy – v5 – 22

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nt

n address space

ms
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory manageme

❏ Allows each program to run in its ow

❍ using address translation

– greatly simplifying programming

❏ protects programs from other progra

❍ using memory protection

– improving system reliability

❏ supports the memory hierarchy

❍ between the off-chip RAM and the disc

Memory hierarchy – v5 – 23

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ss …

s

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Address translation

❏ Translates

❍ the processor’s logical (or ‘virtual’) addre

❍ … into the physical memory address

❏ There are two main schemes:

❍ segmented memory management

– variable size (usually large) segments

❍ paged memory management

– fixed size pages, usually around 4 Kbyte

Memory hierarchy – v5 – 24

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

nagement

ault

ess
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Segmented memory ma

base limit

segment descriptor table

+ >?

access f

segment selector logical addr

physical address

Memory hierarchy – v5 – 25

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ment

concatenate

0

page
frame

data
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Paged memory manage

❏ Three stage look-up

logical address
31 2122 1112

page
directory

page
table

table base

Memory hierarchy – v5 – 26

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ep all relevant

slation data to

would be too slow!

lations is kept on-chip
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Address translation

❏ Segmentation schemes generally ke
registers on chip

❏ Paging schemes have too much tran
keep on chip

❍ three memory accesses per translation

❍ therefore a cache of recently-used trans

– a translation look-aside buffer (TLB)

Memory hierarchy – v5 – 27

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

uffer
0

0

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Translation look-aside b

logical address
31 1112

logical page
number

hit

physical page
number

physical address
31 1112

Memory hierarchy – v5 – 28

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

hes

or

tables change (e.g. on

ame physical address
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Virtual and physical cac

❏ A cache may use virtual (pre-MMU)
physical addresses

❍ physical caches

– have fewer coherency problems

– require a translation on every access

❍ virtual caches

– must be flushed whenever the translation
a process switch)

– do not support synonyms

– when two virtual addresses map to the s

Memory hierarchy – v5 – 29

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

rking
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Memory hierarchy

❏ Outline:

❍ memory hierarchy basics

❍ on-chip RAM and caches

❍ memory management

➜ operating systems

☞ hands-on: C and assembly code interwo

Memory hierarchy – v5 – 30

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

o run multiple

 others (to a greater
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Operating systems

❏ Scheduling

❍ an operating system allows a machine t
programs concurrently

– sometimes owned by different users

❏ Protection

❍ each program is protected from errors in
or lesser extent)

❏ Resource allocation

❍ limited resources, conflicting demands

Memory hierarchy – v5 – 31

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

MU

rogrammers!

ks
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Operating systems

❏ Hardware support is needed:

❍ memory management hardware

❍ a protected operating system mode

– to prevent unauthorized access to the M

❏ Single-user systems

❍ do not need protection from malicious p

– except, possibly, virus and network attac

❍ use protection to improve reliability

Memory hierarchy – v5 – 32

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

ating System (RTOS)

m

© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Operating systems

❏ Embedded systems

❍ usually run a fixed set of programs

– these can run in a single memory space

– MMU hardware is often not needed

❍ sometimes use a small Real Time Oper
for:

– scheduling

– hardware resource management

❍ sometimes run a single program

– no MMU; simple monitor operating syste

Memory hierarchy – v5 – 33

MANCHEstER
1824

T
he

 U
ni

ve
rs

ity

mbly

lled from a C program

sed
© 2005 PEVEIT Unit – ARM System Design

of
 M

an
ch

es
te

r Hands-on: C and asse
code interworking

❏ Closer look at the APCS

❍ see how assembly programs may be ca

❍ look at various ways the stack may be u

☞ Follow the ‘Hands-on’ instructions

	Memory hierarchy
	Outline:
	memory hierarchy basics
	on-chip RAM and caches
	memory management
	operating systems
	hands-on: C and assembly code interworking

	Memory hierarchy
	Outline:
	memory hierarchy basics
	on-chip RAM and caches
	memory management
	operating systems
	hands-on: C and assembly code interworking

	Memory hierarchy
	A typical system has several different memory subsystems:
	processor registers: ~100 bytes, 1 ns
	– access is a small part of a clock cycle

	on-chip cache or RAM: ~10 Kbytes, 5 ns
	– accessed at the processor clock rate

	off-chip ROM and RAM: ~ Mbytes, 50 ns
	– access costs several processor cycles

	backup store: ~ Gbytes, 5 ms

	Memory hierarchy
	There may be more or fewer (or no) levels of cache

	Memory hierarchy
	Efficient operation depends on:
	the right things
	– the code and data

	being in the right place
	– the on-chip memory or processor registers

	at the right time
	– when they are in use

	Memory hierarchy
	Processor registers
	are managed directly by the compiler

	Cache
	is managed automatically by the hardware

	On-chip RAM
	is managed by the programmer

	Off-chip RAM
	is managed by the operating system

	Memory hierarchy
	The objective is to approach:
	the performance of the fastest memory …
	… at the cost/bit of the slowest memory

	Feasible because programs display:
	temporal locality
	– accesses to a location are clustered in time

	spatial locality
	– accesses are clustered in the address space

	Memory hierarchy
	Outline:
	memory hierarchy basics
	on-chip RAM and caches
	memory management
	operating systems
	hands-on: C and assembly code interworking

	On-chip RAM
	System benefits of on-chip memory:
	increased performance – no wait states
	reduced power consumption
	improved EMC

	On-chip RAM (“Tightly Coupled Memory”) is used in preference to a cache in some embedded systems:
	it is simpler, cheaper and uses less power
	its behaviour is more deterministic
	however it requires explicit management

	Caches
	A cache is a small on-chip memory which automatically:
	keeps copies of recently used memory values
	supplies these to the processor when it asks for them again
	– thereby avoiding an off-chip memory access

	decides which values to over-write when it is full

	Cache organization
	There are many ways to arrange a cache:
	separate or mixed instructions and data?
	how much memory should be loaded on a cache miss?
	how flexible should the allocation of cache space be?
	how should writes be handled?

	 Unified instruction and data cache
	 Separate data and instruction caches
	Direct-mapped cache
	2-way set associative cache
	two (smaller) cache blocks
	two chances to store any line
	better hit rate
	more expensive
	can extend to 4-way, etc.

	Fully associative cache
	more places to store given line
	even better hit rate
	even more expensive
	(potentially) slower
	requires CAM (Content Addressable Memory)

	 Cache architecture comparison
	Direct mapped
	– simple, cheap, fast
	– subject to ‘thrashing’
	– choice for large caches

	Set associative
	– compromise
	– may be 2-, 4-, 8-, etc. way
	– often preferred

	Fully associative
	– best hit rate
	– slow, expensive
	– choice for small caches

	Cache write strategies
	Write-through
	all data is written to memory; matching cache locations are updated

	Write-through with write buffer
	all data is written to memory, but the write is performed through a buffer

	Copy-back
	the processor writes to the cache - main memory is only updated on flushes.

	Cache power-efficiency
	What is the influence of organization on power- efficiency?
	a high hit rate minimizes off-chip activity
	– hit rate increases with associativity (up to 4)

	set-associative caches burn more power
	– due to the increased number of active sense amplifiers

	CAM (in fully associative caches) is also power-hungry

	Cache power-efficiency
	How can cache power-efficiency be improved?
	use serial tag and data accesses in a set associative cache
	– enable only the relevant data RAM

	segment the CAM in a fully associative cache
	exploit sequential address sequences

	Memory hierarchy
	Outline:
	memory hierarchy basics
	on-chip RAM and caches
	memory management
	operating systems
	hands-on: C and assembly code interworking

	Memory management
	Allows each program to run in its own address space
	using address translation
	– greatly simplifying programming

	protects programs from other programs
	using memory protection
	– improving system reliability

	supports the memory hierarchy
	between the off-chip RAM and the disc

	Address translation
	Translates
	the processor’s logical (or ‘virtual’) address …
	… into the physical memory address

	There are two main schemes:
	segmented memory management
	– variable size (usually large) segments

	paged memory management
	– fixed size pages, usually around 4 Kbytes

	 Segmented memory management
	Paged memory management
	Three stage look-up

	Address translation
	Segmentation schemes generally keep all relevant registers on chip
	Paging schemes have too much translation data to keep on chip
	three memory accesses per translation would be too slow!
	therefore a cache of recently-used translations is kept on-chip
	– a translation look-aside buffer (TLB)

	Translation look-aside buffer
	Virtual and physical caches
	A cache may use virtual (pre-MMU) or physical addresses
	physical caches
	– have fewer coherency problems
	– require a translation on every access

	virtual caches
	– must be flushed whenever the translation tables change (e.g. on a process switch)
	– do not support synonyms
	– when two virtual addresses map to the same physical address

	Memory hierarchy
	Outline:
	memory hierarchy basics
	on-chip RAM and caches
	memory management
	operating systems
	hands-on: C and assembly code interworking

	Operating systems
	Scheduling
	an operating system allows a machine to run multiple programs concurrently
	– sometimes owned by different users

	Protection
	each program is protected from errors in others (to a greater or lesser extent)

	Resource allocation
	limited resources, conflicting demands

	Operating systems
	Hardware support is needed:
	memory management hardware
	a protected operating system mode
	– to prevent unauthorized access to the MMU

	Single-user systems
	do not need protection from malicious programmers!
	– except, possibly, virus and network attacks

	use protection to improve reliability

	Operating systems
	Embedded systems
	usually run a fixed set of programs
	– these can run in a single memory space
	– MMU hardware is often not needed

	sometimes use a small Real Time Operating System (RTOS) for:
	– scheduling
	– hardware resource management

	sometimes run a single program
	– no MMU; simple monitor operating system

	Hands-on: C and assembly code interworking
	Closer look at the APCS
	see how assembly programs may be called from a C program
	look at various ways the stack may be used
	Follow the ‘Hands-on’ instructions

