

Outline:

- O the ARM710T, 720T and 740T
- O the SA-110 StrongARM
- O the ARM920T and 940T
- O the ARM1020E
- the ARM1176JZF

hands-on: code profiling

- This section contains ARM macrocells examples
- Many variants exist in each family
 - O this should give the broad picture
 - See product manuals for specific details
- Variations:
 - O cache size (and organisation)
 - especially in synthesizable macrocells ("-s")
 - Instruction set enhancements included
 - O coprocessors etc. included

Outline:

→ the ARM710T, 720T and 740T

- O the SA-110 StrongARM
- O the ARM920T and 940T
- O the ARM1020E
- O the ARM1176JZF

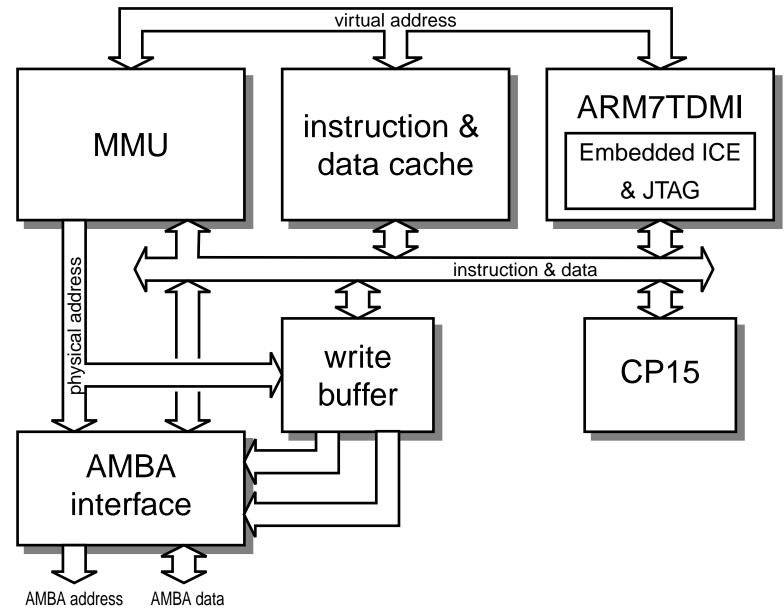
hands-on: code profiling

ARM710T, 720T and 740T

All have ...

• an ARM7TDMI processor core, with:

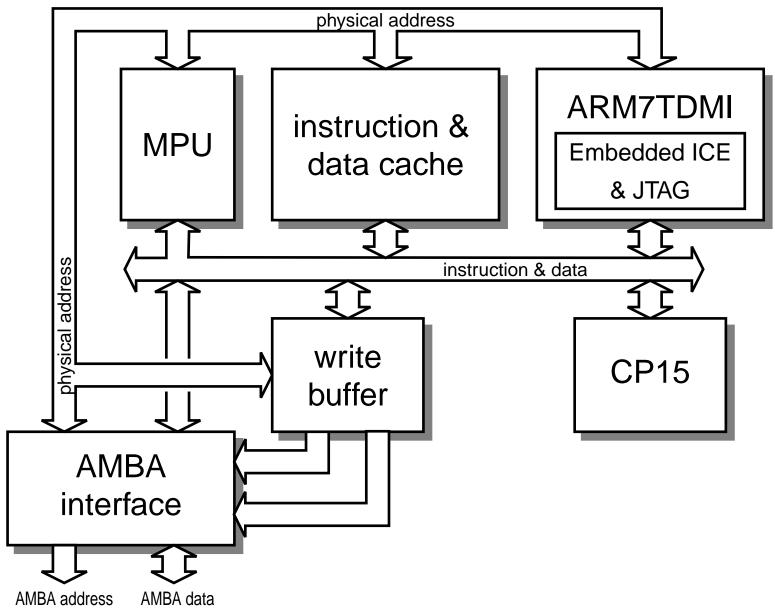
• an 8 Kbyte instruction & data cache


- 4-way set-associative, 16-byte lines
- write-through
- an AMBA interface
 - shared by instruction and data ports
- an 8 data word, 4 address write buffer

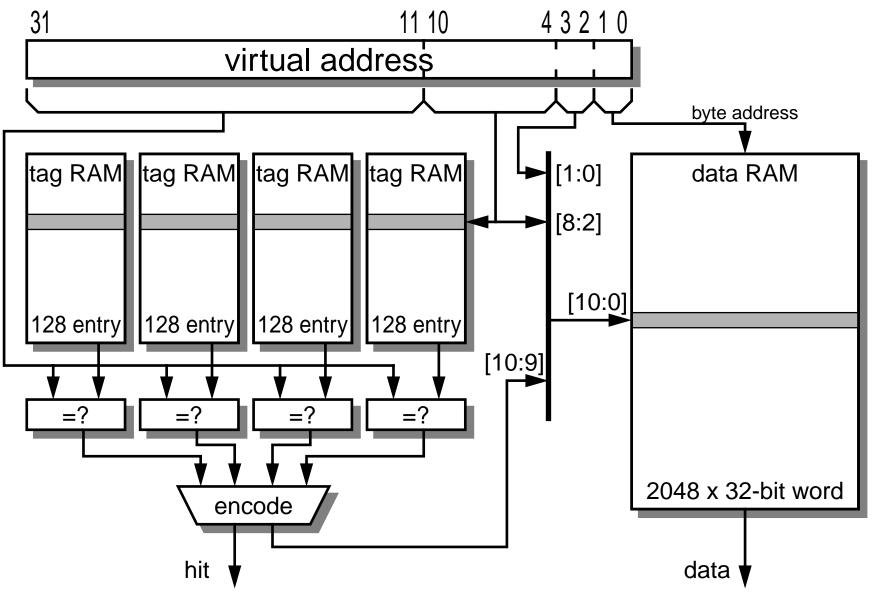
ARM710T, 720T and 740T

- □ The ARM710T and 720T have ...
 - O an MMU with a 64-entry TLB
- □ The ARM720T also has WinCE support
 - O ProcessID register relocates the 1st 32 Mbytes of memory
 - exception vectors relocatable to 0xffff0000
- □ The ARM740T has ...
 - a simple memory protection unit
 - there is no address translation system

ARM710T and 720T organization



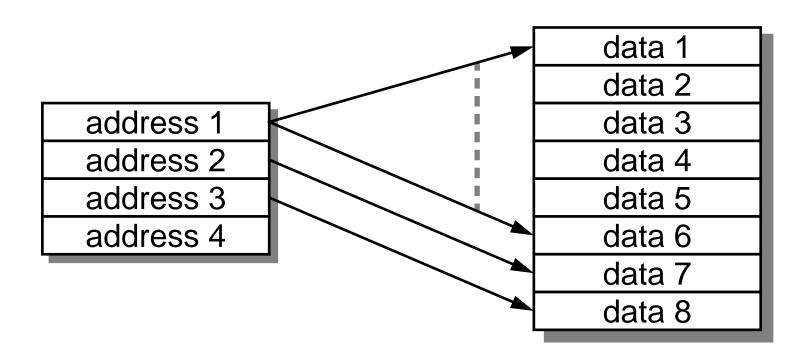
MANCHEstER 1824



The University of Manchester

ARM740T organization

The ARM7x0T cache organization



The University of Manchester

ARM CPUs - v5 - 8

The ARM7x0T write buffer

One address can be associated with several data elements

O accommodates STM

MANCHEstER

1824

ARM710T, 720T:

Process 0.35 µm Metal layers 3 Vdd 3.3V

Transistors N/A Core area 11.7 mm² Clock 0 to 59 MHz MIPS 53 Power 240 mW MIPS/W 220

ARM740T:

Process 0.35 um Metal layers 3 Vdd 3.3V Transistors N/A Core area 9.8 mm² Clock 0 to 59 MHz MIPS 53 Power 175 mW MIPS/W 300

Outline:

- O the ARM710T, 720T and 740T
- the SA-110 StrongARM
- O the ARM920T and 940T
- O the ARM1020E
- the ARM1176JZF

hands-on: code profiling

StrongARM

- The University of Manchester
- Developed by Digital
 - O in collaboration with ARM Ltd; later bought by Intel
- **Given Seatured:**
 - O 5-stage pipeline
 - O 16 Kbyte I cache, 16 Kbyte D cache
 - both 32-way associative, 8 word line
 - high clock rate
 - O low power consumption
 - due to low voltage (down to 1.5 V) operation

Now obsolete but demonstrated that ARMs need not be slow!

Outline:

- O the ARM710T, 720T and 740T
- O the SA-110 StrongARM
- the ARM920T and 940T
- O the ARM1020E
- O the ARM1176JZF

hands-on: code profiling

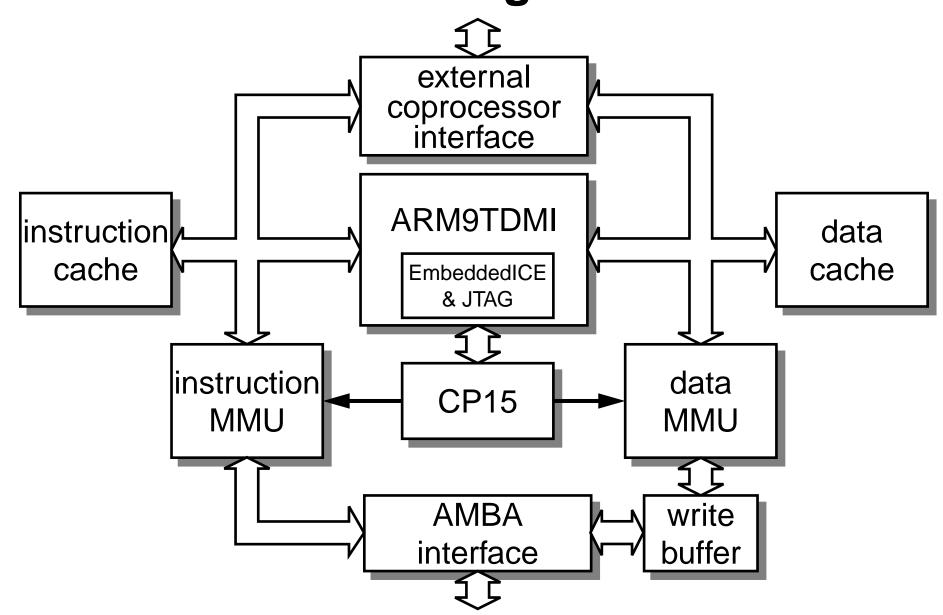
ARM920T

The ARM920T is ...

• an ARM9TDMI processor core, with:

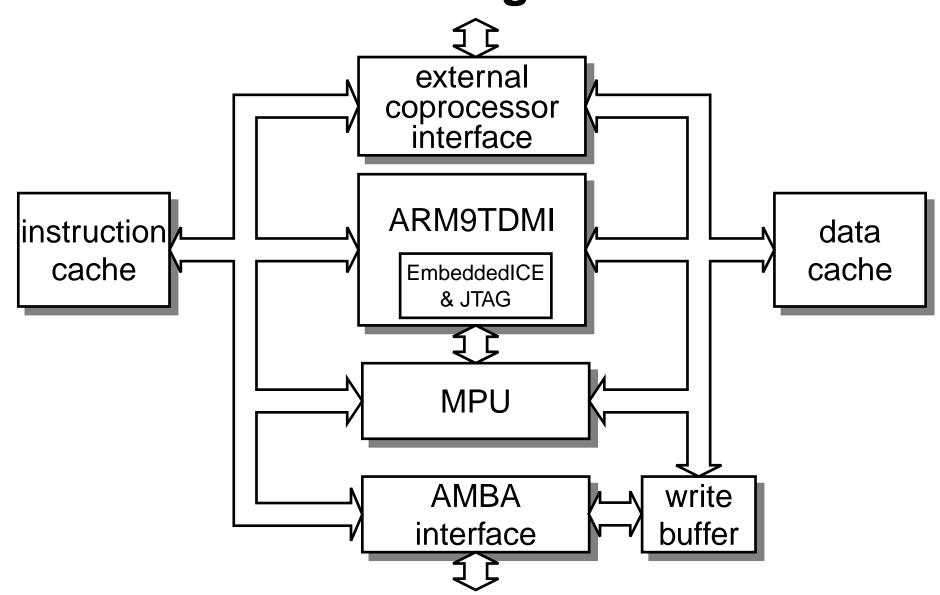
- a **16** Kbyte instruction cache
 - 64-way associative, 8 words/line
- a **16** Kbyte copy-back data cache
 - 64-way associative, 8 words/line
- an AMBA interface
 - shared by instruction and data ports
- an 8 word, 4 address write buffer
- an **MMU** with a 64-entry TLB
- CP14 debug coprocessor

ARM940T


The ARM940T is ...

• an ARM9TDMI processor core, with:

- a 4 Kbyte instruction cache
 - smaller, but otherwise similar to ARM920T
- a 4 Kbyte copy-back data cache
- an AMBA interface
 - shared by instruction and data ports
- an 8 word, 4 address write buffer
- a simple memory protection unit
 - there is no address translation system
- CP14 debug coprocessor


ARM920T organization

The University of Manchester

ARM940T organization

Characteristics

□ ARM920T:

Process 0.25 µm Metal layers 4 Vdd 2.5V Transistors 2,500,000 Core area 23-25 mm² Clock 0 to 200 MHz

MIPS 220 Power 560 mW MIPS/W 390

ARM940T:

Process 0.25 µm Metal layers 3 Vdd 2.5V Transistors 802,000 Core area 8.1 mm² Clock 0 to 200 MHz MIPS 220 Power 385 mW MIPS/W 570

Outline:

- the ARM710T, 720T and 740T
- O the SA-110 StrongARM
- O the ARM920T and 940T

the ARM1020E

• the ARM1176JZF

hands-on: code profiling

ARM1020E

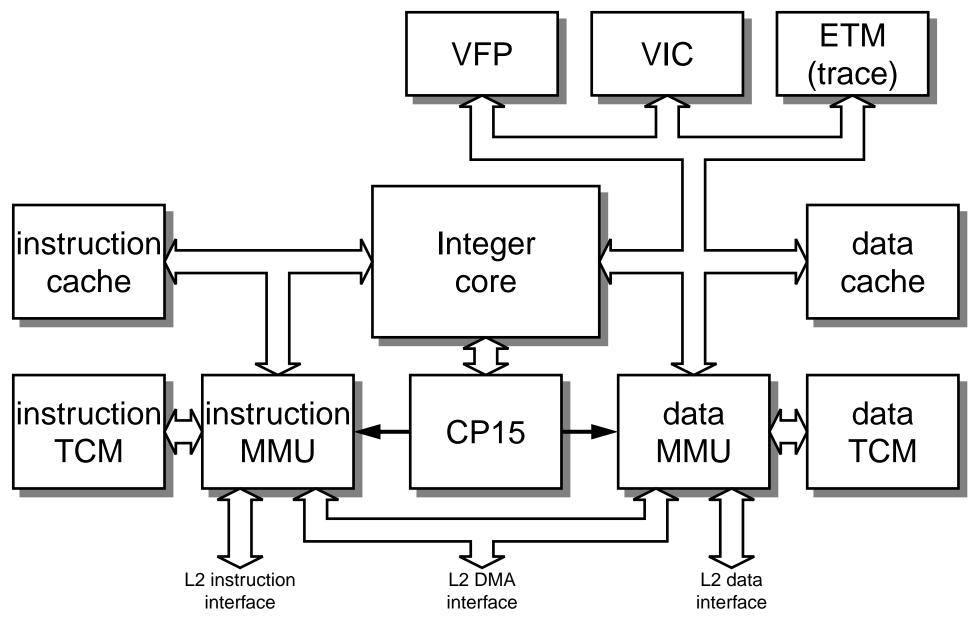
A CPU macrocell based on the ARM10TDMI

O 32 Kbyte 64-bit I- and copy-back D-caches

- 64-way associative, 8 words/line
- O AMBA AHB bus interface
- O < … list of other things assumed …>

□ ARM1020E target characteristics:

Process 0.18 µm Metal layers 5 Vdd 1.5V Transistors 7,000,000 Core area 12 mm² Clock 0 to 400 MHz MIPS 500 Power 400 mW MIPS/W 1250


Outline:

- O the ARM710T, 720T and 740T
- O the SA-110 StrongARM
- O the ARM920T and 940T
- O the ARM1020E
- → the ARM1176JZF

hands-on: code profiling

The University of Manchester

MANCHEstER 1824

- The University of Manchester
- ARM11 processor core
 - O separate instruction and data buses
 - O EmbeddedICE
 - O debug coprocessor (CP14)
- Instruction and data MMUs
 - O two-level TLB
- Vector floating point coprocessor
- Vectored interrupt controller
- Embedded trace

- Up to 64 Kbytes of L1 instruction and data caches
 - 64-bit wide interface
 - 4-way set-associative (less than previous ARMs)
 - O 8 words/line
 - O write through or copy back
 - O pseudo-random or round-robin replacement
 - O lockdown each 'way' can be locked
 - sequential access mode (to save power)

- The University of Manchester
- Tightly coupled memory (TCM)
 - O configuration of part/all of cache memory {4, 8, 16, 32, 64KB}
 - O physically addressed
 - O supported by internal DMA
 - 2 channels (only one active at once)
 - fast transfer between TCM and memory (*not* L1 cache)

XScale[®] features

- An ARM v5TE implementation designed by Intel
 - "7-8 stage Superpipelined RISC"
- Some additional features:
 - O a DSP coprocessor (CP0)
 - contains a 40-bit accumulator
 - eight new instructions.
 - O new page attributes
 - O coprocessor 15 additional functionality
 - coprocessor 14 (performance monitoring/software debug)

XScale[®] features

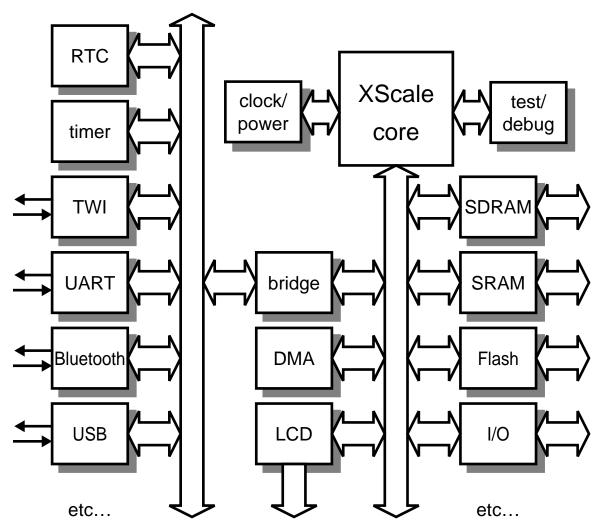
• ARM v5TE (plus extensions)

- dynamic voltage/frequency scaling
- multiply-accumulate coprocessor
- 128-entry static 2-level BTB
- 32 KB instruction cache
- 32 KB data cache
 - 2 KB mini-data cache
 - hit-under-miss operation with data caches
- performance monitoring unit
 - two 32-bit event counters
 - one 32-bit cycle counter
- debug unit trace buffer

MANCHEstER

Some XScale variants

PXA255


O 32KB data and instruction caches

- plus 2KB 'mini data cache'
- **O** 200MHz 400 MHz
- SDRAM/Flash interfaces
- **)** I/O
 - USB client
 - 1.84MHz cellular interface
 - PCMCIA controller
 - etc.

The University of Manchester

PXA255

Some XScale variants

□ PXA27x

- PXA270 up to 624 MHz
- PXA271 32MB Flash 32MB SDRAM 416MHz
- PXA272 64MB up to 520MHz
 - stacked, multichip modules
- Wireless MMX
- O lots of peripherals
 - clearly aimed at telephone/PDA applications

The University of Manchester

XScale DSP extensions

DSP coprocessor (CP0)

• separate multiply accumulate with 40-bit accumulator

Wireless MMX

- O 43 new SIMD instructions
- O 64-bit datapath
- O for "multimedia" and games

Different evolutionary path from ARM Ltd.

ARM CPUs - v5 - 31

Dynamic voltage/ frequency scaling

In CMOS:

- O speed is roughly proportional to supply voltage
- O power consumption is *roughly* proportional to supply voltage squared
 - therefore a lower supply voltage gives **better energy efficiency**

Xscale exploits this:

Clock frequency	"MIPS"	Power (mW)	MIPS/W
150MHz	185	40	4600
600MHz	750	450	1700
800MHz	1000	900	1100

Discussion

- Speed needs memory bandwidth:
 - Single 32-bit I/D cache on ARM7x0T
 - Split 32-bit I- & D-caches on ARM9x0T
 - Split 64-bit I- & D-caches on ARM1020E
 - Split 64-bit I- & D-caches on ARM1176JFZ
 - plus provision for split L2 cache
- Memory management is high cost
 - O greater silicon area
 - O protection unit on ARMx40T is cheaper

Discussion

Cache & TLB lock-down helps real-time operation

- O easier to support with CAM-RAM cache
- TCM aids performance *predictability*
 - enhanced by DMA
- Many parts now highly integrated

Can trade ultimate performance for *energy* efficiency
XScale

Hands-on: code profiling

- Investigate the profiling facilities in the ARM toolkit
 - see what proportion of time a program spends in different routines

Follow the 'Hands-on' instructions