

System Development

The University of Manchester

Outline:

- O system modelling
- O on-chip debug
- \bigcirc AMBA
- O rapid silicon prototyping
- O embedded ARM cores

hands-on: system modelling

System Development

Outline:

- → system modelling
- O on-chip debug
- O AMBA
- O rapid silicon prototyping
- O embedded ARM cores

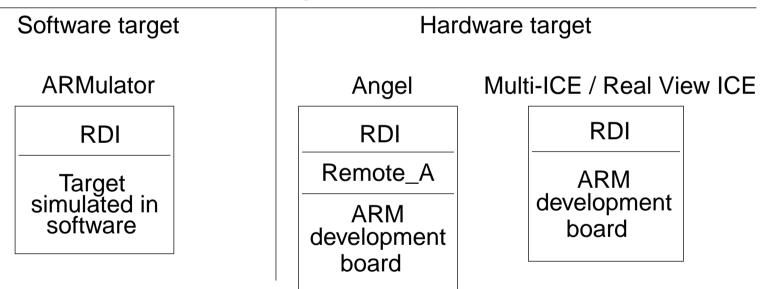
hands-on: system modelling

System Modelling

- The University of Manchester
- From prototype environment ...
 - O Undefined resources: Core, Memory, Cache
 - O C library use of hardware
 - O Debug libraries
- ... to final product
 - Standalone embedded application
 - O Specific memory layout of the target hardware
 - Initialisation sequence

System development & debugging

MANCHEstER


- A common set of debugger front-ends
 - armsd, AXD, RVD
- □ Same code can be debugged on:
 - O Software simulation targets
 - ARMulator
 - Hardware targets
 - RealView ICE, Multi-ICE, RV Trace, MultiTrace, Angel

Debugger-target interface

ARM Debugger	r
AXD	
RDI	

Remote Debug Interface (RDI)

Software debug: the ARMulator

A software model of an ARM core with:

- O support for Thumb instructions
- a programmable memory interface
 - for modelling the target memory system
 - various rapid prototyping tools are supplied
- a coprocessor interface
 - supporting custom coprocessor models
- O an operating system interface
 - system calls handled by host or emulation

MANCHEstER

The **ARMulator**

- The core of a complete system model
 - O clock-cycle accurate
 - O inspect registers and memory
 - O set breakpoints and watchpoints
- Supports software development
 - O concurrently with hardware development
 - O higher performance than detailed hardware models

From ARMulator to on-chip Debug

MANCHEstER

- Important to understand simulator's default behaviour
- Default build needs to be tailored to specific needs:
 - O Uses of ADS/RVDS C library
 - semi-hosted SWI calls
 - O Memory map and Linker placement rules
 - O Reset and initialisation

ADS/RVDS C Library

- Avoiding C library semihosting
 - O import __use_no_semihosting_swi (in C: #pragma import)
 - O linker reports any remaining SWI call
- Retargeting C library calls
 - O example: retargeting the printf() family of function to print out to a hardware UART

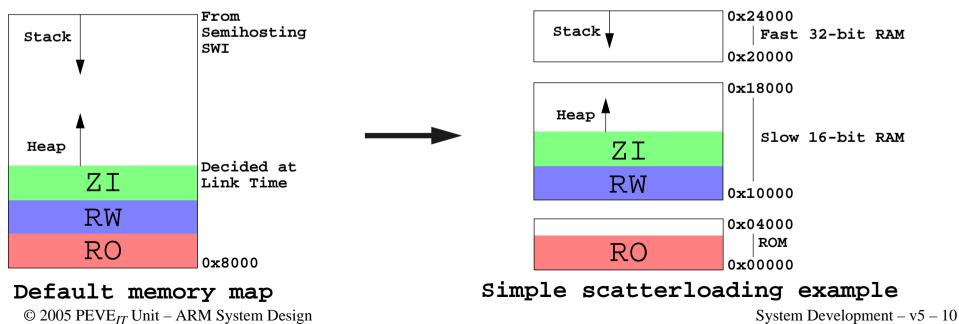
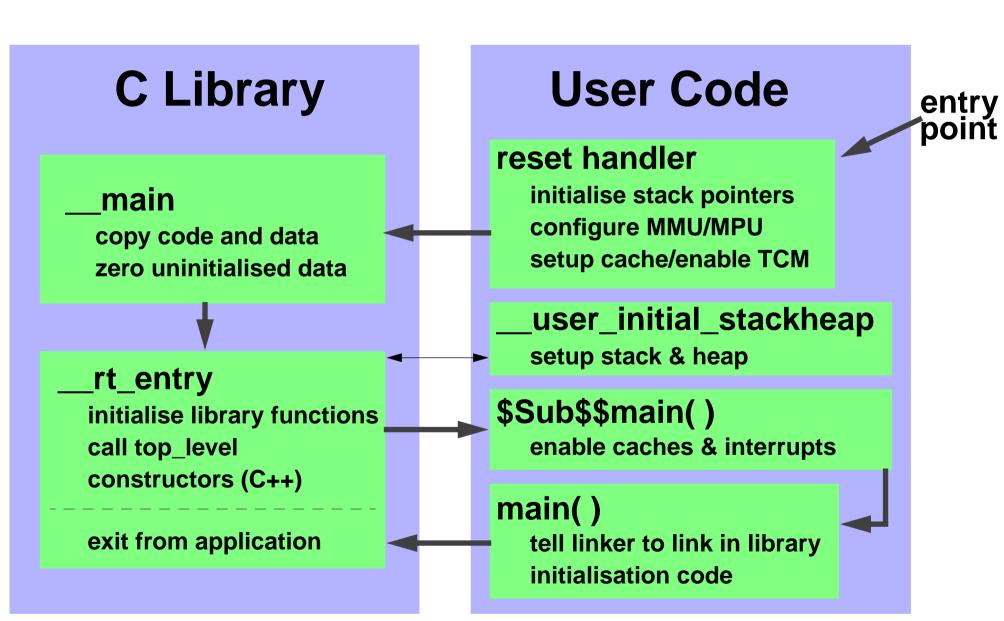

```
extern void sendchar (char *c); /* UART communications */
int fputc (int c, FILE *f)
{ /* redirect a char to the UART */
    sendchar (c);
    return c;
}
```


Image memory map

- Target hardware usually has several memory devices at different address ranges
- Scatterloading
 - O describes memory location of code&data at load&run-time

O armlink -scatter scatfile.scf file1.o file2.o



Reset and Initialisation

- Usually need to initialise:
 - vector table
 - O stack pointers in IRQ/FIQ modes
 - MMU/MPU
 - O other hardware

Initialisation sequence example

MANCHEstER

System Development

Outline:

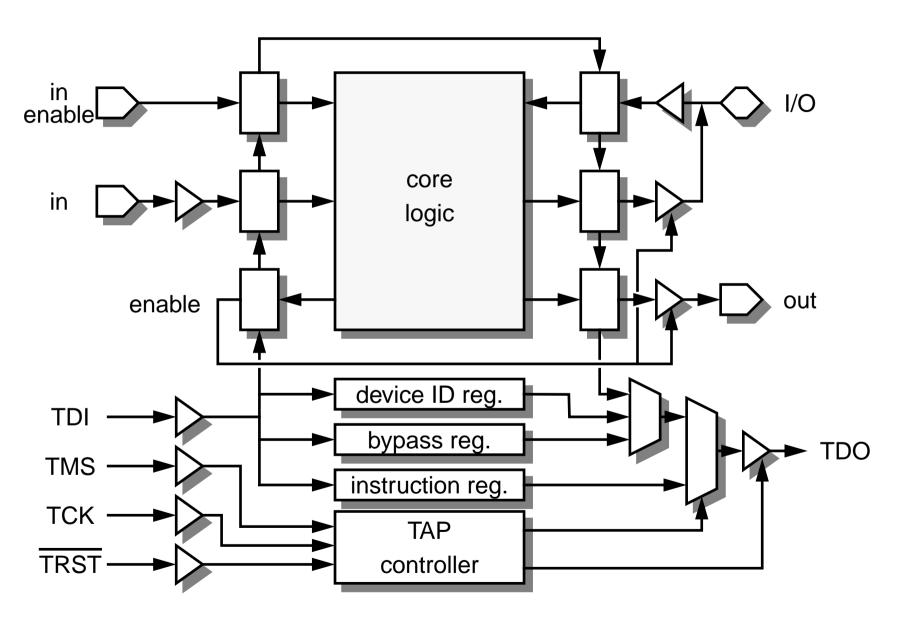
- O system modelling
- → on-chip debug
- O AMBA
- O rapid silicon prototyping
- O embedded ARM cores

hands-on: system modelling

On-chip debug

- The University of Manchester
- Debug monitor: Angel
 - O runs on target hardware with the application
 - requires target resources (memory, exception vectors, ...)
- Integrated on-chip debug: Multi-ICE / RealView ICE
 - O non intrusive, requires almost no resources
 - Instead, uses additional debug hardware within the core
 - ARM processor debug extension signals (main ones: BREAKPT, DBGRQ, DBGACK)
 - EmbeddedICE, Embedded Trace

EmbeddedICE


- Hardware registers controlled through:
 - JTAG boundary scan
 - O Debug coprocessor
- Two possible actions:
 - Halt debug-mode debugging
 - processor halts at debug events
 - unsuitable for real-time systems
 - Monitor debug-mode debugging
 - debug events generate exceptions (aborts)
 - non-intrusive mode, for debugging real-time systems

- Joint Test Action Group
 - Iooked especially at PCB production test
 - surface mount defeats bed of nails approach
 - O on-chip scan path gives access to pins
 - so chip to chip paths can be tested
 - other uses are a side benefit:
 - in-circuit testing of the chip core logic
 - chip debug support, e.g. EmbeddedICE
 - Note: not primarily for VLSI production test!

MANCHEstER

JTAG Boundary Scan Organization

MANCHEstER 1824

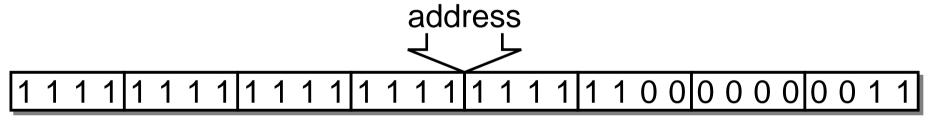
EmbeddedICE

MANCHEstER

□ ICE functions:

> breakpoints, watchpoints

- generate an event at a particular instruction/data access
- hardware can easily be included on chip
- N.B. ROM breakpoints require hardware!
- O trace buffer
 - retains interface state before and after trigger
 - Embedded Trace Macrocell now supported
 - uses hardware compression to reduce pin requirement

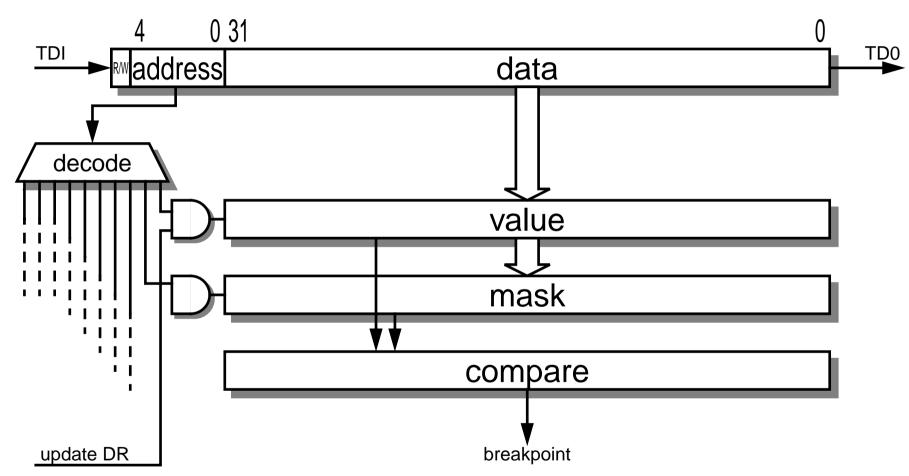

Breakpoints and Watchpoints

- Breakpoint
 - if this memory address is fetched as an instruction an exception occurs
 - may be inserted as an instruction (BKPT)
 - may be detected in hardware
- Watchpoint
 - if this memory address is accessed by a load or store an exception occurs
 - must be detected in hardware

MANCHEstER

Breakpoints and Watchpoints

- ARM break- watchpoint hardware
 - O mask and pattern
 - O trap if selected bits match desired pattern
 - example:



0000000000100110001110000000000000000

breaks on word addresses 0x00131C00 - 0x00131CFC

MANCHEstER

EmbeddedICE register read and write structure

O Registers accessed via scan chain

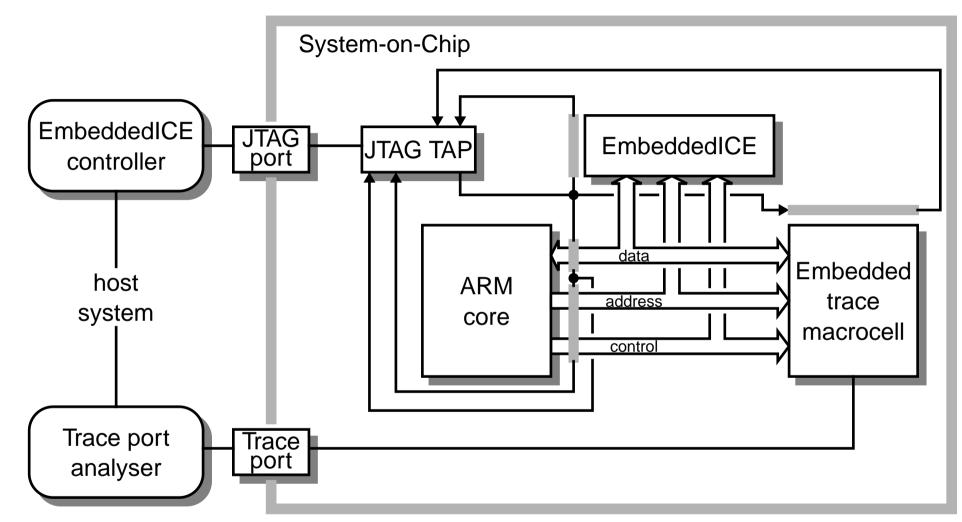
MANCHEstER

Address	Width	Function		
00000	3	Debug control		
00001	5	Debug status		
00100	6	Debug comms control register		
00101	32	Debug comms data register		
01000	32	Watchpoint 0 address value		
01001	32	Watchpoint 0 address mask		
01010	32	Watchpoint 0 data value		
01011	32	Watchpoint 0 data mask		
01100	9	Watchpoint 0 control value		
01101	8	Watchpoint 0 control mask		
10000	32	Watchpoint 1 address value		
10001	32	Watchpoint 1 address mask		
10010	32	Watchpoint 1 data value		
10011	32	Watchpoint 1 data mask		
10100	9	Watchpoint 1 control value		
10101	8	Watchpoint 1 control mask		

Embedded Trace

MANCHEstER

□ The **embedded trace macrocell** (ETM) comprises:


- Itrace port outputs processor signals
- filtering/triggering allows capture of wanted data
 - triggering allows capture from selected code
 - filtering disregards unwanted data saves storage/bandwitdh

□ these can make the processor behaviour *observable*

O signals available at trace port

Embedded Trace

Embedded Trace

A trace buffer can be added to store trace signals

- essential at high speeds!
- **Comprises:**
 - O trace interface
 - O JTAG interface
 - AHB bus interface
- Needs:
 - RAM to store traces

Debug Unit

Programmable through CP14 or scan chains

Characteristics

- instruction address comparators for triggering breakpoints
- O data address comparators for triggering watchpoints
- O bidirectional Debug Communication Channel
- O ability to disable caches and TLBs
- mode for debugging real-time systems (e.g. servo mechanisms)

Debug Unit

- Halt debug-mode debugging
 - O processor halts at debug events (breakpoints, ...)
 - when halted, external host can examine and modify its state using the DBGTAP pin
 - O unsuitable for real-time systems
 - O requires external hardware to control DBGTAP
- Monitor debug-mode debugging
 - O debug events generate exceptions
 - O handler can program new debug events through CP14

CP14 Registers

Register Opcode2:CRm	Abbreviation	Name	
0	DIDR	Debug ID Register	
1	DSCR	Debug Status and Control Register	
2-4	-	Reserved	
5	DTR	Data Transfer Register	
6	WFAR	Watchpoint Fault Address Register	
7	VCR	Vector Catch Register	
8-9	-	Reserved	
10	DSCCR	Debug State Cache Control Register	
11	DSMCR	Debug State MMU Control Register	
12-63	-	Reserved	
64-69	BVR _N	Breakpoint Value Registers	
70-79	_	Reserved	
80-85	BCR _N	Breakpoint Control Registers	
86-95	_	Reserved	
96-97	WVR _N	Watchpoint Value Registers	
98-111	-	Reserved	
112-113	BVR _N	Watchpoint Control Registers	
114-127	_	Reserved	

System Performance Monitoring

□ A small collection of counters, triggered by 'events'

- e.g. cache miss, TLB miss, dependency stall, branch mispredicted, …
- O configurable
- O can cause interrupts after a preset number of events
- Introduced in ARM11
- Can be used for code profiling
- Accessible via CP15

MANCHEstER

System Development

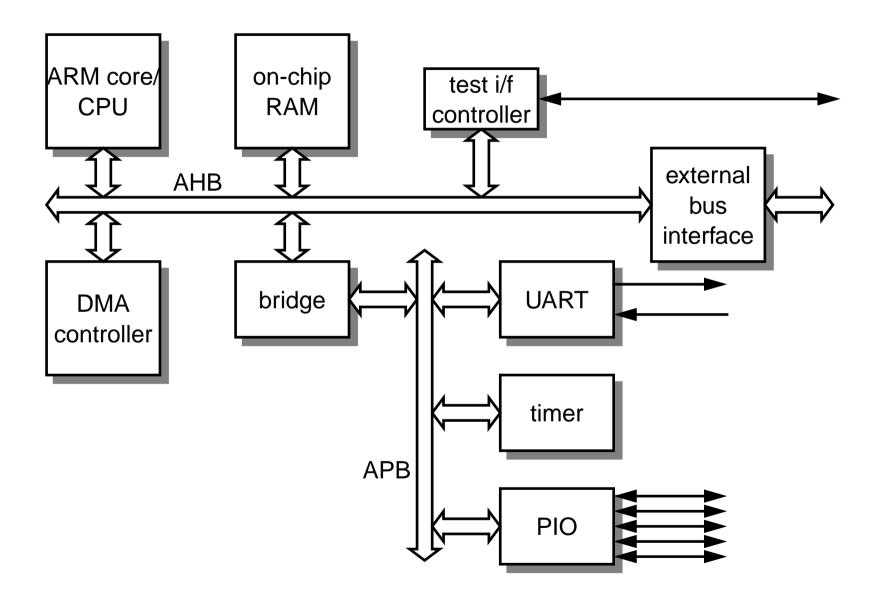
Outline:

- O system modelling
- O on-chip debug

→ AMBA

- O rapid silicon prototyping
- O embedded ARM cores

hands-on: system modelling


The University of Manchester

AMBA

Advanced Microprocessor Bus Architecture

- O a systematic solution to assembling macrocell-based systems
- O ARM Ltd's attempt to establish an on-chip bus standard
- □ AMBA structure:
 - Advanced High-performance Bus (AHB)
 - high-performance, multi-master
 - O Advanced Peripheral Bus (APB)
 - interface for low performance peripherals
 - O Advanced eXtensible Interface (AXI) (new)

A typical AMBA-based System

AMBA Test Interface

VLSI production test is an economically important issue

- macrocell based designs present problems
 - how can each macrocell be systematically tested?
- O AMBA offers a standardised solution
 - based on 32-bit parallel access, via the bus, to test registers

MANCHEstER

AMBA Standards

Bus	Master	Performance	pipelined/split transactions	Other
AHB	multi	high	yes	32- to 1024-bit data bus
APB	single	low	no	used to reduce main bus load
AXI	multi	high	yes	separate data buses out-of-order completion

□ AXI is intended as a replacement for the AHB bus

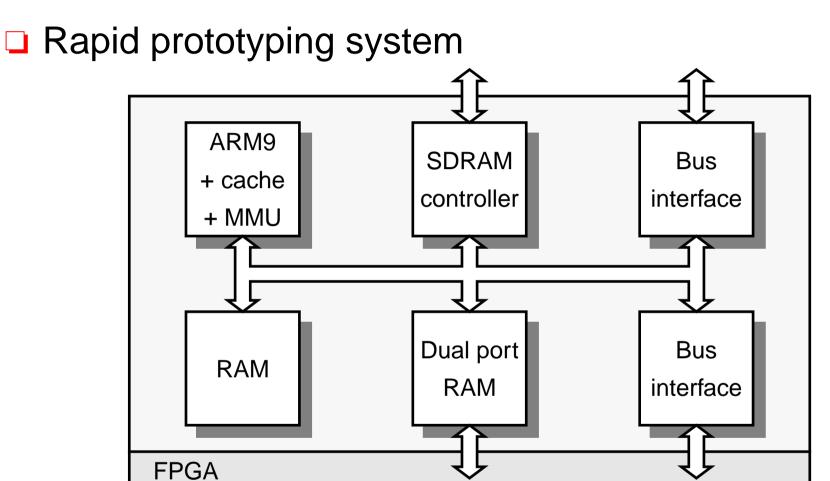
O used for future designs

Some components already developed:

- L220 level-2 cache controller
- PL300 configurable interconnect
- PL340 SDRAM controller

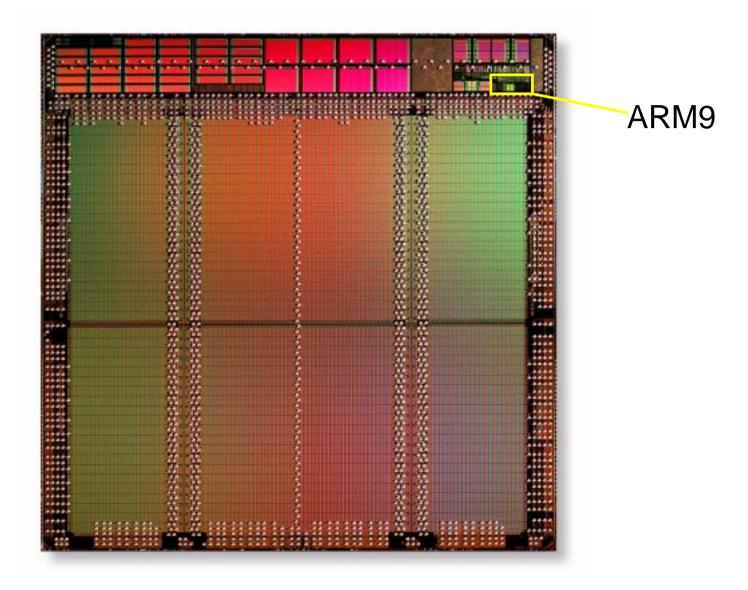
System Development

Outline:


- O system modelling
- O on-chip debug
- O AMBA
- rapid silicon prototyping
- O embedded ARM cores

hands-on: system modelling

Excalibur

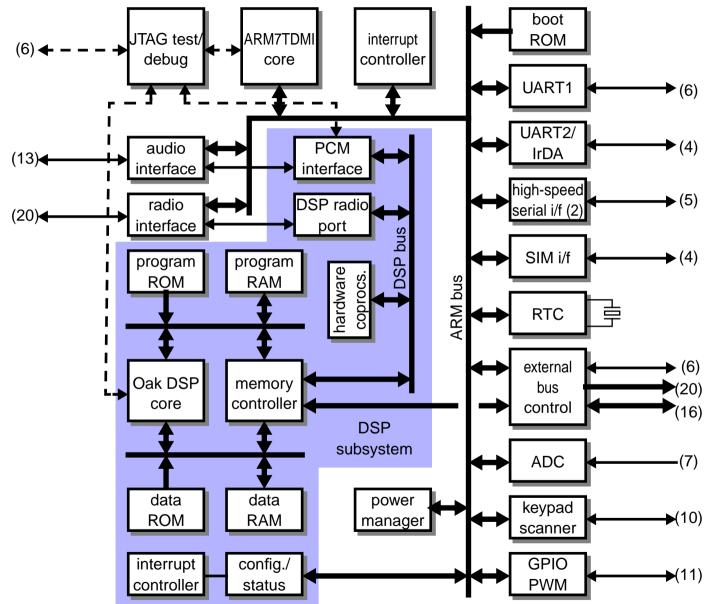


○ ARM-based computer ...

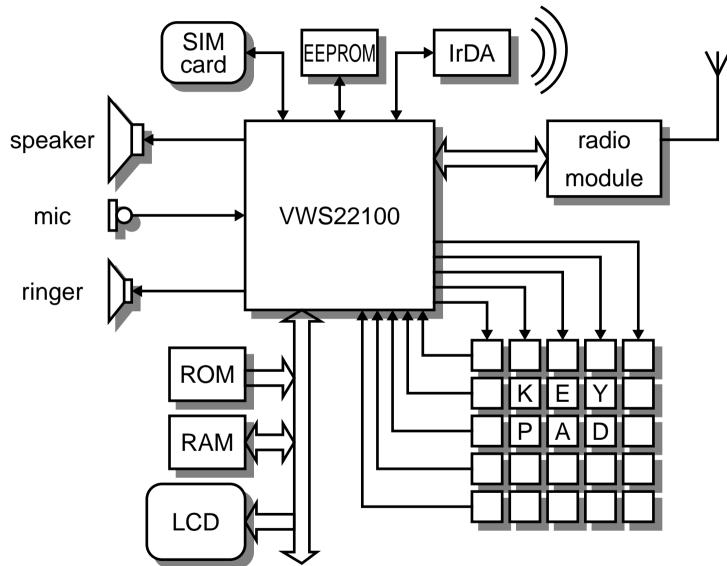
O ... plus LOTS of uncommitted gates

Excalibur

System Development


Outline:

- O system modelling
- O on-chip debug
- O AMBA
- O rapid silicon prototyping
- embedded ARM cores


hands-on: system modelling

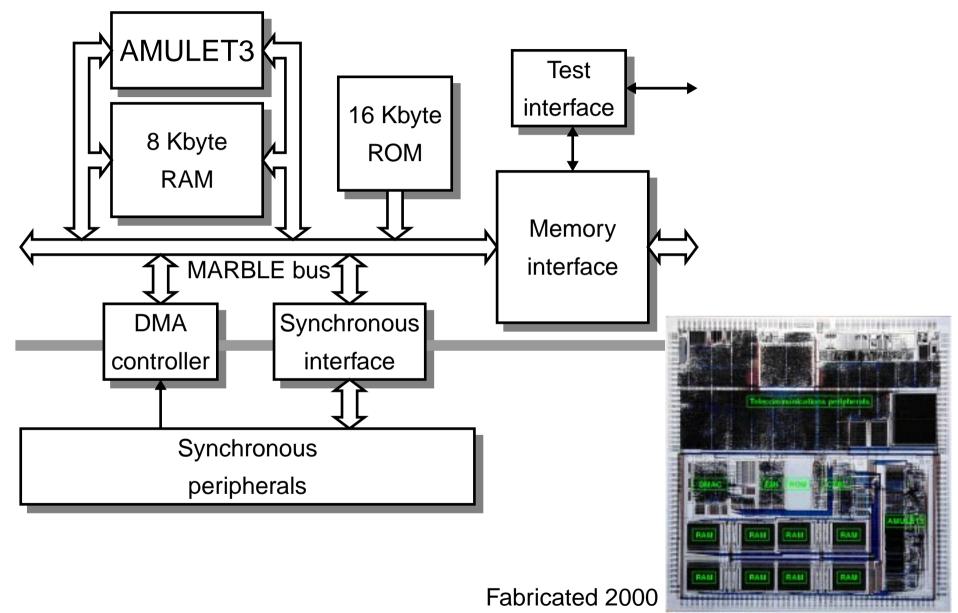
VLSI OneC GSM chip

Typical OneC system configuration

DRACO

DECT Radio Communications Controller

- In collaboration with Hagenuk GmbH
- O combines ISDN and DECT telecommunications systems
- world's first "commercial" 32-bit asynchronous SoC product
 - ... would have been ...


Process 0.35 µm Metal layers 3 Vdd 3.3 V Transistors 825,000 Die area 21 mm² Clock none

MIPS 100 Power 215 mW MIPS/W 465

The University of Manchester

DRACO

Hands-on: system modelling

MANCHEstER

- Using the ARMulator
 - to generate address traces
 - O to get performance estimates
 - using the memory map facility
 - O advanced configuration
 - adding your own system models
 - Follow the 'Hands-on' instructions