
Combining the strengths of UMIST and
The Victoria University of Manchester 1

Virtual Machines and
Chip Multiprocessors

The JAMAICA project

Ian Rogers

The Advanced Processor Technologies group

http://www.cs.man.ac.uk/apt

Combining the strengths of UMIST and
The Victoria University of Manchester 2

Presentation outline:

• The JAMAICA Chip Multiprocessor
architecture:

– overview

– a core and more cores

– work distribution

– future directions

• Software support:

– static compiler tools

– the Jikes RVM

– loop optimisations

– PearColator

– future directions

• Summary

CPU

L
1

$

CPU

L
1

$

L2 Cache

CPU

L
1

$

CPU

L
1

$

L2 Cache

CPU

L
1

$

CPU

L
1

$

L2 Cache

CPU

L 1 $

CPU

L 1 $

L2 Cache

CPU

L 1 $

CPU

L 1 $

L2 Cache

Combining the strengths of UMIST and
The Victoria University of Manchester 3

Overview of the JAMAICA architecture

• Java Machine and Integrated Circuit Architecture (JAMAICA)

• Design goals:

– how to use a billion transistor budget?

– targeted for Java programs

– high-level initial simulation, for flexibility and speed

– extends the work on the VAULT architecture (uniprocessor multiple contexts)

• Features:

– 2 tier architecture of CPU nodes and groups of nodes

– split transaction cache coherent bus protocol

– thread scheduling and work distribution support unit

– heap allocated register windows

– context switch on cache miss

– simulated in C

Combining the strengths of UMIST and
The Victoria University of Manchester 4

A core

4

/32 /32/1

IRPC

M
U
X

A
D
D NPC

/32

/32

Instruction Cache

BR_Offset_EX
BR_Offset_ID
BR_EX
BR_ID

/32
/32
/1
/1

ICACHE_MISS

M
U
X

M
U
X

/1/32
Stall
Inst.

CTX_ACCEPT
CTX_SEND
TIU_BUSY

DCACHE_MISS

LAZY_ALLOC
LOAD_DELAY
FILLSPILLTH

M
U
X

sx

sx

/32

/32
/32 Sx

/1
/1
/3
/1
/1
/1
/1

disp16 [0..15] /16

disp21 [0..20] /21

IR

bit12 [12] /1

rc* [0..4]

ra* [21..25]

rb* [16..20]

/5

/5

/5

/8imm [13..2]

opcode2 [5.. 11] /7

opcode [26..31] /6

Context
Table

rc

ra

rb

M
U
X

Load/FS
/2

dest/8

/8

/8

/8

Control
Logic

Register
File

/32Va

/32
Vb

M
U
X Vb

A
D
D

NPC

/32

Branch
/1

<<2
-ve

/1
Comparitor

Stall
PC

/1

Insert
Inst.

Stall Stall
LOAD_DELAY/1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

JAMAICA DATAPATH DIAGRAM

IF/ID ID/EX

M
U
X

M
U
X

Va

zero

ra'rb'

ra'

rb'

EX/MEM

ALUout /32

/13 Op

dest
NPC/32

Vb /32

Va /32 M
U
X

/32

Sx

A
L
U

Register/Other

/1 func.

ALUout

Cond?

Branch
Type

dest/8

Va/32

/1

/2

/4

BR_EX /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

MEM/WB
Control
Logic

Control
Logic

/13 Op

Op$TIU/2

/32 ALUout

Va/32

M/32

DCACHE_MISS /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

dest/8

Data Cache

Control
Logic

/13 Op

M
U
X

/32 ALUout

/1
Load/{LoadImm,Reg}

ra
rb

wb_res
dest
wen

/1
wen

LAZY_ALLOC/1

FILLSPILL/3

/3FST

/128
/128

/8FSTwin

M
U
X

Va

M
U
X

Spill Area

Vb

base
count

FillSpill
/1

<<5

/1

spill_en
sp_reg

/1

spill_en

sf2/1

fill_en

SPILL_OVERFLOW/1 SPILL_OVERFLOW/1

wb_res

A
D
D

quTm

1

CTX_SWITCH /1 CTX_SWITCH/1

ICACHE_MISS/1

ICACHE_MISS_EX/1ICACHE_MISS_EX /1

ICACHE_MISS/1

fill_en

sf2

M
U
X

M
U
X

Token

Rec'd Sent

Token

Trq/1

Trq/1

trq tok

Tok_Gaine d/1

Token Poo l

/1 /1

/1 Insert
Token

Context[/1,/4]

dctx

Fill/Spill/
THB/
Handler

TIU_BUSY/1

CTX_ACCEPT/1
CTX_SEND/1

CTX_ACCEPT /1

Token

CTX_SEND /1

CTX_SEND

/1

Heap allocated registers
and context management

Alpha based
instruction set

5 stage
MIPS
based

pipeline

Token ring
interface

Combining the strengths of UMIST and
The Victoria University of Manchester 5

Grouping cores

L2 cache

Core
L1 $

Core
L1 $

Core
L1 $

Core
L1 $

L2 cache

Core
L1 $

Core
L1 $

Core
L1 $

Core
L1 $

L3 cache+ MMU DRAMS

L1 bus

L2 bus

CMP CMP

Simulation
prototype interfaces
with memory here

Combining the strengths of UMIST and
The Victoria University of Manchester 6

• Idle threads distribute tokens on a
separate token ring bus

• Executing context on a core
requests to ship work to an idle
context or core and context

• Taking a token from ring grants the
use of a particular context

• Shipping of work between cores
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work
has been completed

• Thread unit monitors for
completion of forked work

Work distribution

Th
rea

d Re
qu

est

Thread dies

token

TIU

Core

L1 $

token

token

Token Pool

TIUTIU

Token Distribution Ring

Core

L1 $

Core

L1 $

Combining the strengths of UMIST and
The Victoria University of Manchester 7

Future directions

• Remove register windows

– doesn’t adhere to our initial KISS philosophy

• Floating point support

• Groups of groups of cores

– effect of tiers and bus configuration on the architecture

• Parallel and distributable simulator

• Consider improving instruction level parallelism (ILP)

– VLIW is appealing

– trade off between ILP and thread level parallelism (TLP) on chip

• Different work distribution interfaces

• Support for speculative execution (slide 8)

• Virtual memory system (slide 9)

Combining the strengths of UMIST and
The Victoria University of Manchester 8

Future directions: speculative execution

• Aim: increase number of parallel threads

• Range of speculative and non-speculative execution states

– tree rooted at non-speculative state with branches for every spawned
speculative context

– speculative contexts may spawn more speculative contexts

• If speculation goes wrong squash speculative state

– throw away values in cache or a buffer

• Detect speculation problems:

– in software: when a value isn’t that expected explicitly squash

– in hardware: when an address is loaded by a speculative context, ensure that
stores to the same address from a less speculative context cause a squash

• Problems with creating speculative threads and avoiding excessive squashing

• Mechanism may aid virtual machines, e.g. handling of unaligned memory accesses

Combining the strengths of UMIST and
The Victoria University of Manchester 9

Future directions: virtual memory system

• Aims:

– allow the emulation of multiple architectures or execution of virtual
machines on one underlying architecture

– keep hardware simple

• Prototype design:

– extend virtual address bus to contain a virtual machine identifier

• value 0 reserved to access physical memory

– loads, stores and instruction fetches are tagged with an identifier value
either from the instruction itself or from a special purpose register

– the MMU is simply a translation buffer that if a miss occurs raises a
software exception (it also provides read/write/modified information)

– software controls the contents of the translation buffer

• emulates segments and paging for legacy architectures

• provides full virtual address space for virtual machines

Combining the strengths of UMIST and
The Victoria University of Manchester 10

Software support for the JAMAICA architecture

• Static tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger

Combining the strengths of UMIST and
The Victoria University of Manchester 11

The Jikes RVM

• JVM written in
Java

• Support for IA32,
PowerPC and
Jamaica

• Baseline (quick)
and optimizing
compilers

• Adaptive
optimization and
feedback system

• Extended array
SSA form sub-
stages in HIR and
LIR optimization

Machine description
and parameters

Profile information

BURS
grammar

Hardware
parameters

HIR = High-level Intermediate Representation
LIR =Low-level Intermediate Representation
MIR =Machine-specific Intermediate Representation

BURS =Bottom-Up Rewrite System

Binary Code

FinalAssembly

Optimization of MIR

Optimized MIR

MIR

Optimized LIR

LIRto MIR

Optimization of LIR

LIR

Back End

HIRto LIR

Front End

Optimization of HIR

Bytecode to HIR

HIR

Optimized HIR

Jikes RVM
optimizing compiler

Combining the strengths of UMIST and
The Victoria University of Manchester 12

Loop optimisations

• Jikes RVM is good at removing dependencies:

– extended array SSA form models scalar and heap dependencies, SSA means all
dependencies are true dependencies

– pi nodes used to rename a variable following a comparison, to remove redundant
compares

• Wrote simple loop parallelisation optimisation that, to work, ignored dependencies
(javar style)

• Observation that loop parallelisation was being limited by bound and null check
instructions that defined and used exception states

• Writing new loop optimisation framework:

– annotated LST nodes describe the loop structure to the optimisations

– moving bound and null checks out of loops using explicit tests

• so far has yielded 3% speed up on certain SpecJVM benchmarks

– migrating parallelisation code to this framework

– future possibilities including cache and speculative compiler optimisations

Combining the strengths of UMIST and
The Victoria University of Manchester 13

PearColator

• PowerPC Dynamic Binary Translator (DBT) written (in Java) to use the Jikes
RVM optimising compiler

– Trace based

• trace length depends on optimisation level

• traces start and stop at procedure calls and returns

– HIR code can be converted to Java bytecode

– Lazy flag optimisations

– Adaptive/parallel recompilation

– Virtual memory system accurately emulated

• Translator not visible in translated code’s memory space

• Slow page then value look up

– Loop optimise page look ups in hot loops

– Hardware optimisation for Jamaica architecture

Combining the strengths of UMIST and
The Victoria University of Manchester 14

Future directions

• Java OS – preliminary work created a version of the Jikes RVM which will
boot the JNode class library and device drivers

• AI algorithms to drive optimisation framework

– Current optimisation phases have complex inter-relationships that
behave different depending on the code they’re optimising

• Integration of compiler and hardware systems:

– Virtual memory architecture and PearColator

– Loop optimisation and speculation support

Combining the strengths of UMIST and
The Victoria University of Manchester 15

Summary

• Silicon density has already brought about CMP systems

• The JAMAICA project is refining prototype CMP systems that rely on
software virtual machine support

• Simpler hardware, due to software support, increases flexibility and the
amount of available parallel resources

• Knowledge of the hardware only known by the virtual machine

– portable infrastructure

– virtualised CPU system

• Hardware and software assist to extract more, possibly speculative,
parallelism and to improve scheduling

