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Presentation outline:

• The JAMAICA Chip Multiprocessor 
architecture:

– overview

– a core and more cores

– work distribution

– future directions

• Software support:

– static compiler tools

– the Jikes RVM

– loop optimisations

– PearColator

– future directions

• Summary
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Overview of the JAMAICA architecture

• Java Machine and Integrated Circuit Architecture (JAMAICA)

• Design goals:

– how to use a billion transistor budget?

– targeted for Java programs

– high-level initial simulation, for flexibility and speed

– extends the work on the VAULT architecture (uniprocessor multiple contexts)

• Features:

– 2 tier architecture of CPU nodes and groups of nodes

– split transaction cache coherent bus protocol

– thread scheduling and work distribution support unit

– heap allocated register windows

– context switch on cache miss

– simulated in C
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A core
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Grouping cores
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• Idle threads distribute tokens on a 
separate token ring bus

• Executing context on a core 
requests to ship work to an idle 
context or core and context

• Taking a token from ring grants the 
use of a particular context

• Shipping of work between cores 
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work 
has been completed

• Thread unit monitors for 
completion of forked work
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Future directions

• Remove register windows

– doesn’t adhere to our initial KISS philosophy

• Floating point support

• Groups of groups of cores

– effect of tiers and bus configuration on the architecture

• Parallel and distributable simulator

• Consider improving instruction level parallelism (ILP)

– VLIW is appealing

– trade off between ILP and thread level parallelism (TLP) on chip

• Different work distribution interfaces

• Support for speculative execution (slide 8)

• Virtual memory system (slide 9)
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Future directions: speculative execution

• Aim: increase number of parallel threads

• Range of speculative and non-speculative execution states

– tree rooted at non-speculative state with branches for every spawned 
speculative context

– speculative contexts may spawn more speculative contexts

• If speculation goes wrong squash speculative state

– throw away values in cache or a buffer

• Detect speculation problems:

– in software: when a value isn’t that expected explicitly squash

– in hardware: when an address is loaded by a speculative context, ensure that 
stores to the same address from a less speculative context cause a squash

• Problems with creating speculative threads and avoiding excessive squashing

• Mechanism may aid virtual machines, e.g. handling of unaligned memory accesses
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Future directions: virtual memory system

• Aims:

– allow the emulation of multiple architectures or execution of virtual 
machines on one underlying architecture

– keep hardware simple

• Prototype design:

– extend virtual address bus to contain a virtual machine identifier

• value 0 reserved to access physical memory

– loads, stores and instruction fetches are tagged with an identifier value 
either from the instruction itself or from a special purpose register

– the MMU is simply a translation buffer that if a miss occurs raises a 
software exception (it also provides read/write/modified information)

– software controls the contents of the translation buffer

• emulates segments and paging for legacy architectures

• provides full virtual address space for virtual machines
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Software support for the JAMAICA architecture

• Static tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger
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The Jikes RVM

• JVM written in 
Java

• Support for IA32, 
PowerPC and 
Jamaica

• Baseline (quick) 
and optimizing 
compilers

• Adaptive 
optimization and 
feedback system

• Extended array 
SSA form sub-
stages in HIR and 
LIR optimization
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Loop optimisations

• Jikes RVM is good at removing dependencies:

– extended array SSA form models scalar and heap dependencies, SSA means all 
dependencies are true dependencies

– pi nodes used to rename a variable following a comparison, to remove redundant 
compares

• Wrote simple loop parallelisation optimisation that, to work, ignored dependencies 
(javar style)

• Observation that loop parallelisation was being limited by bound and null check 
instructions that defined and used exception states

• Writing new loop optimisation framework:

– annotated LST nodes describe the loop structure to the optimisations

– moving bound and null checks out of loops using explicit tests

• so far has yielded 3% speed up on certain SpecJVM benchmarks

– migrating parallelisation code to this framework

– future possibilities including cache and speculative compiler optimisations
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PearColator

• PowerPC Dynamic Binary Translator (DBT) written (in Java) to use the Jikes 
RVM optimising compiler

– Trace based

• trace length depends on optimisation level

• traces start and stop at procedure calls and returns

– HIR code can be converted to Java bytecode

– Lazy flag optimisations

– Adaptive/parallel recompilation

– Virtual memory system accurately emulated

• Translator not visible in translated code’s memory space

• Slow page then value look up

– Loop optimise page look ups in hot loops

– Hardware optimisation for Jamaica architecture
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Future directions

• Java OS – preliminary work created a version of the Jikes RVM which will 
boot the JNode class library and device drivers

• AI algorithms to drive optimisation framework

– Current optimisation phases have complex inter-relationships that 
behave different depending on the code they’re optimising

• Integration of compiler and hardware systems:

– Virtual memory architecture and PearColator

– Loop optimisation and speculation support
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Summary

• Silicon density has already brought about CMP systems

• The JAMAICA project is refining prototype CMP systems that rely on 
software virtual machine support

• Simpler hardware, due to software support, increases flexibility and the 
amount of available parallel resources

• Knowledge of the hardware only known by the virtual machine

– portable infrastructure

– virtualised CPU system

• Hardware and software assist to extract more, possibly speculative, 
parallelism and to improve scheduling


