
Combining the strengths of UMIST and
The Victoria University of Manchester 1

Virtualization and chip
multiprocessor memory
management:
the JAMAICA architecture

Dr. Ian Rogers, Mohammad Ansari,

Matthew Horsnell, Prof. Ian Watson

The Advanced Processor Technologies group

http://www.cs.manchester.ac.uk/apt

Combining the strengths of UMIST and
The Victoria University of Manchester 2

Presentation outline:

• The JAMAICA Chip Multiprocessor
architecture:

– overview

– a core and more cores

– work distribution

• Memory management in the JAMAICA
architecture (1)

• Software architecture:

– virtualization

– the Jikes RVM

– binary translation

– Java operating systems

• Memory management in the JAMAICA
architecture (2)

• Summary

Combining the strengths of UMIST and
The Victoria University of Manchester 3

Overview of the JAMAICA architecture

• Java Machine and Integrated Circuit Architecture (JAMAICA)

• Design goals:

– how to use a billion transistor budget?

– targeted for Java programs

– high-level initial simulation, for flexibility and speed

– cycle accurate simulation to explore architectural decisions

– extends the work on the VAULT architecture (uniprocessor multiple contexts)

• Features:

– 2 tier architecture of CPU nodes and groups of nodes

– split transaction cache coherent bus protocol

– thread scheduling and work distribution support unit

– heap allocated register windows

– context switch on cache miss

– simulators in both C and Java

Combining the strengths of UMIST and
The Victoria University of Manchester 4

Overview of the JAMAICA architecture

Combining the strengths of UMIST and
The Victoria University of Manchester 5

Some more detail

4

/32 /32/1

IRPC

M
U
X

A
D
D NPC

/32

/32

Instruction Cache

BR_Offset_EX
BR_Offset_ID
BR_EX
BR_ID

/32
/32
/1
/1

ICACHE_MISS

M
U
X

M
U
X

/1/32
Stall
Inst.

CTX_ACCEPT
CTX_SEND
TIU_BUSY

DCACHE_MISS

LAZY_ALLOC
LOAD_DELAY
FILLSPILLTH

M
U
X

sx

sx

/32

/32
/32 Sx

/1
/1
/3
/1
/1
/1
/1

disp16 [0..15] /16

disp21 [0..20] /21

IR

bit12 [12] /1

rc* [0..4]

ra* [21..25]

rb* [16..20]

/5

/5

/5

/8imm [13..2]

opcode2 [5.. 11] /7

opcode [26..31] /6

Context
Table

rc

ra

rb

M
U
X

Load/FS
/2

dest/8

/8

/8

/8

Control
Logic

Register
File

/32Va

/32
Vb

M
U
X Vb

A
D
D

NPC

/32

Branch
/1

<<2
-ve

/1
Comparitor

Stall
PC

/1

Insert
Inst.

Stall Stall
LOAD_DELAY/1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

JAMAICA DATAPATH DIAGRAM

IF/ID ID/EX

M
U
X

M
U
X

Va

zero

ra'rb'

ra'

rb'

EX/MEM

ALUout /32

/13 Op

dest
NPC/32

Vb /32

Va /32 M
U
X

/32

Sx

A
L
U

Register/Other

/1 func.

ALUout

Cond?

Branch
Type

dest/8

Va/32

/1

/2

/4

BR_EX /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

MEM/WB
Control
Logic

Control
Logic

/13 Op

Op$TIU/2

/32 ALUout

Va/32

M/32

DCACHE_MISS /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

dest/8

Data Cache

Control
Logic

/13 Op

M
U
X

/32 ALUout

/1
Load/{LoadImm,Reg}

ra
rb

wb_res
dest
wen

/1
wen

LAZY_ALLOC/1

FILLSPILL/3

/3FST

/128
/128

/8FSTwin

M
U
X

Va

M
U
X

Spill Area

Vb

base
count

FillSpill
/1

<<5

/1

spill_en
sp_reg

/1

spill_en

sf2/1

fill_en

SPILL_OVERFLOW/1 SPILL_OVERFLOW/1

wb_res

A
D
D

quTm

1

CTX_SWITCH /1 CTX_SWITCH/1

ICACHE_MISS/1

ICACHE_MISS_EX/1ICACHE_MISS_EX /1

ICACHE_MISS/1

fill_en

sf2

M
U
X

M
U
X

Token

Rec'd Sent

Token

Trq/1

Trq/1

trq tok

Tok_Gaine d/1

Token Poo l

/1 /1

/1 Insert
Token

Context[/1,/4]

dctx

Fill/Spill/
THB/
Handler

TIU_BUSY/1

CTX_ACCEPT/1
CTX_SEND/1

CTX_ACCEPT /1

Token

CTX_SEND /1

CTX_SEND

/1

Heap allocated registers
and context management

Alpha based
instruction set

5 stage
MIPS based

pipeline
(without TLB

stages)

Token ring
interface

Combining the strengths of UMIST and
The Victoria University of Manchester 6

• Idle threads distribute tokens on a
token ring bus

• Executing context on a core
requests to ship work to an idle
context or core and context

• Taking a token from ring grants the
use of a particular context

• Shipping of work between cores
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work
has been completed

• Thread unit monitors for
completion of forked work

Work distribution

Th
rea

d Re
qu

est

Thread dies

token

TIU

Core

L1 $

token

token

Token Pool

TIUTIU

Token Distribution Ring

Core

L1 $

Core

L1 $

Combining the strengths of UMIST and
The Victoria University of Manchester 7

Status

• “Universities can’t design processors as they are too big, too complex and it
requires too many resources”

– This is in part true, so we focus on “interesting areas”

– Use of text book or other research results to fill in the blanks

– Gradually filling in the blanks but in a way that allows us to reconsider our
decisions in the simulator

– Slow development of hardware means compiler and hardware ideas can
grow up together

Combining the strengths of UMIST and
The Victoria University of Manchester 8

Memory management in the JAMAICA architecture (1)

• Work on buses is going on in
parallel to design of the memory
system

• Bus design is considering point-to-
point asynchronous buses

• Directory based coherency makes
sense in this context

• Temporary measure is to have
TLB and MMU in each core,
coherency achieved by not having
virtual caches and a snoopy bus
protocol

• However, software is driving some
interesting design decisions…

Combining the strengths of UMIST and
The Victoria University of Manchester 9

Software support for the JAMAICA architecture

• Static tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger

Combining the strengths of UMIST and
The Victoria University of Manchester 10

Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators …

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000
processor all run IA32 code

• New compiler optimizations …

Combining the strengths of UMIST and
The Victoria University of Manchester 11

The Jikes RVM

• JVM written in
Java

• Support for IA32,
PowerPC and
JAMAICA

• Baseline (quick)
and optimizing
compilers

• Adaptive
optimization and
feedback system

• Extended array
SSA form sub-
stages in HIR and
LIR optimization

Machine description
and parameters

Profile information

BURS
grammar

Hardware
parameters

HIR = High-level Intermediate Representation
LIR =Low-level Intermediate Representation
MIR =Machine-specific Intermediate Representation

BURS =Bottom-Up Rewrite System

Binary Code

FinalAssembly

Optimization of MIR

Optimized MIR

MIR

Optimized LIR

LIRto MIR

Optimization of LIR

LIR

Back End

HIRto LIR

Front End

Optimization of HIR

Bytecode to HIR

HIR

Optimized HIR

Jikes RVM
optimizing compiler

Combining the strengths of UMIST and
The Victoria University of Manchester 12

Parallel loop optimisations

• Jikes RVM is good at removing dependencies:

– extended array SSA form models scalar and heap dependencies, SSA
means all dependencies are true dependencies

– pi nodes used to rename a variable following a comparison, to remove
redundant compares

• Loop analysis adds annotated Loop Structure Trees (LSTs) to Jikes RVM IR

• Annotated LSTs describe loop structure to optimisations that:

– Explicitly test exceptions based on a loop iterator before a loop body

– Create loop bodies that don’t throw exceptions

– Create thread forking and joining code for do-all amenable loops

• Performance increase of 79% on a dual core setup for a simple kernel

• SpecJVM improved by 3.7% best case, 1.9% on average

• Analysis of break-out paths leads to speculative parallelisation

Combining the strengths of UMIST and
The Victoria University of Manchester 13

Dynamic Binary Translation

• A technique with mixed fortunes

– FX!32 – IA32 � Alpha

– Dynamo – PA-RISC/IA32 � PA-RISC/IA32

– Rosetta – PowerPC � IA32

• PearColator - PowerPC Dynamic Binary Translator (DBT) written (in Java) to use the
Jikes RVM optimising compiler

– Trace based

• trace length depends on optimisation level

• traces start and stop at procedure calls and returns

– HIR code can be converted to Java bytecode

– Lazy flag optimisations

– Adaptive/parallel recompilation

– Virtual memory system accurately emulated

• Translator not visible in translated code’s memory space

• Slow page then value look up

Combining the strengths of UMIST and
The Victoria University of Manchester 14

Java operating systems

• Java OS –created a version of the Jikes RVM which will boot the JNode class
library and device drivers

• Related works include MVM and JX OS

Combining the strengths of UMIST and
The Victoria University of Manchester 15

Speculative execution

• Aim: increase number of parallel threads

• Range of speculative and non-speculative execution states

– tree rooted at non-speculative state with branches for every spawned
speculative context

– speculative contexts may spawn more speculative contexts

• If speculation goes wrong squash speculative state

– throw away values in cache or a buffer

• Detect speculation problems:

– in software: when a value isn’t that expected explicitly squash

– in hardware: when an address is loaded by a speculative context, ensure that
stores to the same address from a less speculative context cause a squash

• Problems with creating speculative threads and avoiding excessive squashing

• Mechanism may aid virtual machines, e.g. handling of unaligned memory accesses

Combining the strengths of UMIST and
The Victoria University of Manchester 16

Memory management in the JAMAICA architecture (2):
support for virtualization

• All software is part of the same software system

– optimizations including parallelization between different running parts of
the system

• No concept of processes at architectural level

– but concept of light-weight threads

• Data and instruction spaces can be separated

– detection of self-modifying code an issue

• Instruction and data spaces identified by an address space identifier (ASID)
and is akin to conventional use of ASID to stop flushing the TLB on a context
miss (although I$ and D$ have potentially different ASIDs)

• Separate address spaces enables binary translator to pass through load and
store operations and remove PearColator performance bottle neck

Combining the strengths of UMIST and
The Victoria University of Manchester 17

Summary

• Silicon density has already brought about CMP systems

• The JAMAICA project is refining a CMP system that relies on software virtual
machine support

• Simpler hardware, due to software support, can increase flexibility and the
amount of available parallel resources

• Knowledge of the hardware only known by the virtual machine

– portable infrastructure

– virtualised CPU system

• Hardware and software assist to extract more, possibly speculative,
parallelism and to improve scheduling

• Operating and virtualization system amenable to runtime optimization

• Operating system and virtualization system prototyped on IA32 architecture –
some of which is already open source

Combining the strengths of UMIST and
The Victoria University of Manchester 18

Thanks!

• … and any questions?

