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Presentation outline:

• The JAMAICA Chip Multiprocessor 
architecture:

– overview

– a core and more cores

– work distribution

• Memory management in the JAMAICA 
architecture (1)

• Software architecture:

– virtualization

– the Jikes RVM

– binary translation

– Java operating systems

• Memory management in the JAMAICA 
architecture (2)

• Summary
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Overview of the JAMAICA architecture

• Java Machine and Integrated Circuit Architecture (JAMAICA)

• Design goals:

– how to use a billion transistor budget?

– targeted for Java programs

– high-level initial simulation, for flexibility and speed

– cycle accurate simulation to explore architectural decisions

– extends the work on the VAULT architecture (uniprocessor multiple contexts)

• Features:

– 2 tier architecture of CPU nodes and groups of nodes

– split transaction cache coherent bus protocol

– thread scheduling and work distribution support unit

– heap allocated register windows

– context switch on cache miss

– simulators in both C and Java
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Overview of the JAMAICA architecture
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Some more detail

4

/32 /32/1

IRPC

M
U
X

A
D
D NPC

/32

/32

Instruction Cache

BR_Offset_EX
BR_Offset_ID
BR_EX
BR_ID

/32
/32
/1
/1

ICACHE_MISS

M
U
X

M
U
X

/1/32
Stall
Inst.

CTX_ACCEPT
CTX_SEND
TIU_BUSY

DCACHE_MISS

LAZY_ALLOC
LOAD_DELAY
FILLSPILLTH

M
U
X

sx

sx

/32

/32
/32 Sx

/1
/1
/3
/1
/1
/1
/1

disp16 [0..15] /16

disp21 [0..20] /21

IR

bit12 [12] /1

rc* [0..4]

ra* [21..25]

rb* [16..20]

/5

/5

/5

/8imm [13..2]

opcode2 [5.. 11] /7

opcode [26..31] /6

Context
Table

rc

ra

rb

M
U
X

Load/FS
/2

dest/8

/8

/8

/8

Control
Logic

Register
File

/32Va

/32
Vb

M
U
X Vb

A
D
D

NPC

/32

Branch
/1

<<2
-ve

/1
Comparitor

Stall
PC

/1

Insert
Inst.

Stall Stall
LOAD_DELAY/1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

JAMAICA DATAPATH DIAGRAM

IF/ID ID/EX

M
U
X

M
U
X

Va

zero

ra'rb'

ra'

rb'

EX/MEM

ALUout /32

/13 Op

dest
NPC/32

Vb /32

Va /32 M
U
X

/32

Sx

A
L
U

Register/Other

/1 func.

ALUout

Cond?

Branch
Type

dest/8

Va/32

/1

/2

/4

BR_EX /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

MEM/WB
Control
Logic

Control
Logic

/13 Op

Op$TIU/2

/32 ALUout

Va/32

M/32

DCACHE_MISS /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

dest/8

Data Cache

Control
Logic

/13 Op

M
U
X

/32 ALUout

/1
Load/{LoadImm,Reg}

ra
rb

wb_res
dest
wen

/1
wen

LAZY_ALLOC/1

FILLSPILL/3

/3FST

/128
/128

/8FSTwin

M
U
X

Va

M
U
X

Spill Area

Vb

base
count

FillSpill
/1

<<5

/1

spill_en
sp_reg

/1

spill_en

sf2/1

fill_en

SPILL_OVERFLOW/1 SPILL_OVERFLOW/1

wb_res

A
D
D

quTm

1

CTX_SWITCH /1 CTX_SWITCH/1

ICACHE_MISS/1

ICACHE_MISS_EX/1ICACHE_MISS_EX /1

ICACHE_MISS/1

fill_en

sf2

M
U
X

M
U
X

Token

Rec'd Sent

Token

Trq/1

Trq/1

trq tok

Tok_Gaine d/1

Token Poo l

/1 /1

/1 Insert
Token

Context[/1,/4]

dctx

Fill/Spill/
THB/
Handler

TIU_BUSY/1

CTX_ACCEPT/1
CTX_SEND/1

CTX_ACCEPT /1

Token

CTX_SEND /1

CTX_SEND

/1

Heap allocated registers 
and context management

Alpha based 
instruction set

5 stage 
MIPS based 

pipeline 
(without TLB 

stages)

Token ring 
interface



Combining the strengths of UMIST and
The Victoria University of Manchester 6

• Idle threads distribute tokens on a 
token ring bus

• Executing context on a core 
requests to ship work to an idle 
context or core and context

• Taking a token from ring grants the 
use of a particular context

• Shipping of work between cores 
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work 
has been completed

• Thread unit monitors for 
completion of forked work

Work distribution
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Status

• “Universities can’t design processors as they are too big, too complex and it 
requires too many resources”

– This is in part true, so we focus on “interesting areas”

– Use of text book or other research results to fill in the blanks

– Gradually filling in the blanks but in a way that allows us to reconsider our 
decisions in the simulator

– Slow development of hardware means compiler and hardware ideas can 
grow up together
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Memory management in the JAMAICA architecture (1)

• Work on buses is going on in 
parallel to design of the memory 
system

• Bus design is considering point-to-
point asynchronous buses

• Directory based coherency makes 
sense in this context

• Temporary measure is to have 
TLB and MMU in each core, 
coherency achieved by not having 
virtual caches and a snoopy bus 
protocol

• However, software is driving some 
interesting design decisions…
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Software support for the JAMAICA architecture

• Static tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger
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Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating 
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators …

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000 
processor all run IA32 code

• New compiler optimizations …
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The Jikes RVM

• JVM written in 
Java

• Support for IA32, 
PowerPC and 
JAMAICA

• Baseline (quick) 
and optimizing 
compilers

• Adaptive 
optimization and 
feedback system

• Extended array 
SSA form sub-
stages in HIR and 
LIR optimization
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Parallel loop optimisations

• Jikes RVM is good at removing dependencies:

– extended array SSA form models scalar and heap dependencies, SSA
means all dependencies are true dependencies

– pi nodes used to rename a variable following a comparison, to remove 
redundant compares

• Loop analysis adds annotated Loop Structure Trees (LSTs) to Jikes RVM IR

• Annotated LSTs describe loop structure to optimisations that:

– Explicitly test exceptions based on a loop iterator before a loop body

– Create loop bodies that don’t throw exceptions

– Create thread forking and joining code for do-all amenable loops

• Performance increase of 79% on a dual core setup for a simple kernel

• SpecJVM improved by 3.7% best case, 1.9% on average

• Analysis of break-out paths leads to speculative parallelisation
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Dynamic Binary Translation

• A technique with mixed fortunes

– FX!32 – IA32 � Alpha

– Dynamo – PA-RISC/IA32 � PA-RISC/IA32

– Rosetta – PowerPC � IA32

• PearColator - PowerPC Dynamic Binary Translator (DBT) written (in Java) to use the 
Jikes RVM optimising compiler

– Trace based

• trace length depends on optimisation level

• traces start and stop at procedure calls and returns

– HIR code can be converted to Java bytecode

– Lazy flag optimisations

– Adaptive/parallel recompilation

– Virtual memory system accurately emulated

• Translator not visible in translated code’s memory space

• Slow page then value look up
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Java operating systems

• Java OS –created a version of the Jikes RVM which will boot the JNode class 
library and device drivers

• Related works include MVM and JX OS
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Speculative execution

• Aim: increase number of parallel threads

• Range of speculative and non-speculative execution states

– tree rooted at non-speculative state with branches for every spawned 
speculative context

– speculative contexts may spawn more speculative contexts

• If speculation goes wrong squash speculative state

– throw away values in cache or a buffer

• Detect speculation problems:

– in software: when a value isn’t that expected explicitly squash

– in hardware: when an address is loaded by a speculative context, ensure that 
stores to the same address from a less speculative context cause a squash

• Problems with creating speculative threads and avoiding excessive squashing

• Mechanism may aid virtual machines, e.g. handling of unaligned memory accesses
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Memory management in the JAMAICA architecture (2):
support for virtualization

• All software is part of the same software system

– optimizations including parallelization between different running parts of 
the system

• No concept of processes at architectural level

– but concept of light-weight threads

• Data and instruction spaces can be separated

– detection of self-modifying code an issue

• Instruction and data spaces identified by an address space identifier (ASID) 
and is akin to conventional use of ASID to stop flushing the TLB on a context 
miss (although I$ and D$ have potentially different ASIDs)

• Separate address spaces enables binary translator to pass through load and 
store operations and remove PearColator performance bottle neck
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Summary

• Silicon density has already brought about CMP systems

• The JAMAICA project is refining a CMP system that relies on software virtual 
machine support

• Simpler hardware, due to software support, can increase flexibility and the 
amount of available parallel resources

• Knowledge of the hardware only known by the virtual machine

– portable infrastructure

– virtualised CPU system

• Hardware and software assist to extract more, possibly speculative, 
parallelism and to improve scheduling

• Operating and virtualization system amenable to runtime optimization

• Operating system and virtualization system prototyped on IA32 architecture –
some of which is already open source
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Thanks!

• … and any questions?


