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Abstract

The increase of speed and the reduction of the memory footprint produced by the Java
Virtual Machines is one the of the most challenging things that todays software
engineers are dealing with. In the case of Jikes Research Virtual Machine one
approach towards these goals is the addition of an interpreter as an extra module to the
existing system. This thesis presents the theoretical background, the implementation

details and the results of such an attempt.
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Chapter 1

Introduction

In this thesis, the implementation of an interpreter as an extra module of the Jikes
RVM is demonstrated. The addition to the existing Jikes RVM virtual machine was
made as part of the work that is been done by the Jamaica research group of the

University of Manchester.

1.1 Background

It is widely claimed among the computer world, that one of the main reasons that Java
had such a big success was without doubt its capability to run the same piece of
software on a plethora of computer systems. The operating system as well as the
hardware architecture of each one of these systems can vary but at the same time they
can run exactly the same Java code and produce exactly the same output '. Java
achieves that because, in contrast to other popular languages (C, C++, Pascal, Visual
Basic,..), is a bytecode language. This means that instead of producing executable code
after the compilation or the interpretation of the source code, it produces an
intermediate code that is called bytecode. For the bytecode to be able to run on any
computer system and platform and produce the expected results, another piece of
software is needed. This software is a Virtual Machine (VM) written specifically for
the right combination of hardware architecture and operating system. So we can have a

Java VM (JVM) written for the Intel 32 architecture that runs on Win XP, a JVM for

1 One of the few exceptions is the Sun's Pluggable Look And Feel (PLAF) Java libraries that for legal
reasons restrict the users of a specific platform to use the GUI representation that belongs to another

platform.
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the Intel 64 architecture that runs on Linux, or even a JVM for a mobile phone
architecture that runs on Symbian OS. Based on the above we can say that JVMs are
an inextricable part of Java and are as old as the language itself”>. As a result of that the
development of JVMs has passed through many stages with many different designs
and implementations. In later chapters we will see in more detail how the JVMs have
evolved through time mainly by focusing on the different internal architecture. But it is
not only the differentiation in their internal structure that distinguishes the different
JVMs. It is also the legal license and what comes with them and the possibility that the
source code of such software is freely available. Here the main two categories are
JMVs that are proprietary software, and as such we can't have any view at the source
code, and JVMs that their source code is freely distributed (such softwares can have a
GPL license, or a FreeBSD license). This differentiation is very important because
only in the latter case do we have the opportunity to see the code and change it in any
way without being part of a software company that develops a specific JVM. In the
academic environment where this thesis was implemented that latter was the only
possibility if we wanted to do research on JVMs. The JVM that the Jamaica group uses
for research purposes is the Jikes Research Virtual Machine (Jikes RVM) an open
source JVM written in Java that is used by many research groups. In the next section
we will explain what were the specific goal and objectives behind this thesis and what

we wanted to achieve by adding an interpreter to the Jikes RVM.

1.2 Goals and Objectives

The original idea for the addition of an interpreter to the Jikes RVM was brought up by
the Jamaica research group. The research group among other things is concentrated

with experimenting on the Jikes RVM and tries to find ways that would increase its

2 The are nowadays some companies (eg. Imsys, alile) that produce processors that can natively run

bytecode without the use of a virtual machine.
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performance. The Jikes RVM was originally implemented in such a way that it would
use a compiler to make the translation between the bytecode and the native code.
Much of the effort, before this thesis, for the increase of the performance of the JVM,
was put on finding new ways to improve the speed of the compiler that runs inside
Jikes. One of the things that was discovered was that much of the time that is needed
by a computer system to execute a Java bytecode is spent during its compilation phase.
So in order to increase the performance the virtual machine had to be modified in such
a way that the cost from that phase would be as low as possible. The solution that was
found wasn't an new one. Instead it was an old one that is also a little bit “forgotten” by
the implementors of Jikes RVM. It was the interpreter.

The first generation of JVMs had an interpreter while the second had only a
compiler. The third generation was a hybrid implementation that used an interpreter
and a compiler. Today we can find commercial JVMs (IBM DK, Sun Hot Spot) that
have an interpreter and a compiler coexisting in the same environment. But as far as
we know there isn't any open source VM that takes advantage of that schema. Now
how the interpreter could alter the speed of the VM is something to be analyzed in
more detail later in this thesis.

After finding what should be done, several other things remained in order to
have the expected results.

e Insert the interpreter inside Jikes in such a way that it wouldn't alter its
architecture, but instead it should work without any problem with the rest of
the modules.

e Take results from the new Jikes counting its speed for various bytecodes.

e Compare the results with the ones taken before the insertion of the interpreter

and if they weren't they expected ones correct its implementation.
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1.3 Thesis layout

Below we show how the structure of the current thesis and we give a short abstract for

every chapter.

Chapter 2 describes the theoretical background of the bytecode interpreters. At the
beginning there is a description on how the bytecode interpreters fit into todays VMs.
Then the various interpreter implementations are presented along with the advantages

and disadvantages of every approach.

Chapter 3 is about Just In Time (JIT) Compilers. Firstly the JIT compilers are
compared to the traditional compilers. The history of the JIT compliler evolution
follows next and the chapter closes with a description of the dynamic compilation
system, which is the part of the JVM that determines the overall compilation strategy

of the system.

Chapter 4 describes that internals of the Jikes RVM. For all the subsystems of Jikes
the focus in on the Adaptive Optimization System (AOS) and the way that Jikes

organizes its objects. Finally there are some details on the way that Jikes is build.

Chapter 5 gives all the implementation details of the new system. There is
presentation of the new architecture of Jikes and the reason behind all the decisions
taken on the implementation phase. At the end there is a description on how the new

module was inserted into Jikes.

Chapter 6 gives some general conclusions for this thesis, describes the results of the
overall attempt to run Jikes with the interpreter enabled and some possible future work

that can be done to improve this work.
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Chapter 2

Bytecode Interpreters

“An interpreter is a program that executes other programs®”

. Starting from this general
definition of an interpreter it can easily be said what a bytecode interpreter is. So a
definition for the bytecode interpreter can be as “a program that executes the bytecode
representation of the program”. The bytecode representation is nothing more than the
intermediate code that is produced in bytecoded languages such as Java, Smalltalk and
Caml. These languages have major engineering advantages over the typical
conventional languages (C, Assembly, Lisp, ...) like their capability to run on a variety
of systems, their higher level of abstraction, increased debugging capabilities, and
runtime type checking. On the other hand their greatest disadvantage is the typically
poor performance of the bytecode interpreter compared to the compiled code. In the

next sections we will examine in more detail the bytecode interpreter and understand

how we can increase its performance.

2.1 VMs and Bytecode interpreters

It is already mentioned that the bytecode is in an indermediate step between the source
code and the native code which is executed by the processor and that in order to run
any bytecode we need a Virtual Machine. The bytecode itself is normally created by
the compilation of the source code, but the time it takes to produce the bytecode
almost never affects the execution speed of our program (some optimizations on the

bytecode may be able to alter in a small percentage the execution speed). What is

3 Free On-line Dictionary of Computing (http://foldoc.org/)
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really important for the performance of every bytecode language is the how fast
bytecode is executed as native code. As a result of that we need VMs that are fast in
this particular mapping. Unfortunately the first VMs weren't very fast and the reason
was that they used only a simple bytecode interpreter as their only means that would
achieve the effect of executing bytecode. Nowadays VMs have evolved and they use
more sophisticated interpreters accompanied by bytecode compilers. Now we will
present the various types of bytecode interpreters as they have evolved through time

and justify our decision to implement a particular type inside the Jikes RVM.

2.2 Pure bytecode interpreters

Before looking at the each different category of bytecode interpreters we will examine
the basic structure of a bytecode file. The basic structural elements for every bytecode
representation are the opcodes (Operation Codes) and the operands. The standard
opcodes for a given language is nothing more than an instruction set architecture (ISA)
that is interpreted by the VM, while the operands are the data that some of the opcodes
must act upon. In Figure 1 we see how the opcodes and the operands look inside a

Java bytecode file ( .class file).
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Figure 1: Opcodes and opcode operands

The opcodes and the operands that are stored inside a bytecode file are what
the interpreter will take as input in order to produce the expected native code. The
mechanism that is used for such a translation to take place varies nowadays but in the

first VM the interpreters had basically the following formation (Figure 2).

Figure 2: Switch based interpreter
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We can see that the main structure of the interpreter is nothing more than a big
infinite for loop that encloses a switch statement for all the possible language opcodes.
Inside each case we implement each opcode and at every end of this statement we put
a break condition so that the control will be passed outside the switch and return to the
beginning of the for loop. The instructionPointer is simply a pointer that points to the
next opcode to be executed. Every time that we jump from the end to the beginning of

the for loop the following steps are [Piumatra 98]:

e increment the instructionPointer;
e fetch the next opcode from the memory;
e aredundant range check on the argument of switch;
e fetch the address of the destination case label from a table;
e jump to that address;
and at the end of each opcode
e execute the requested opcode

e jump back to the start of the for body to fetch the next opcode;

From the above we can conclude that the pure bytecode interpreters have the
big advantage of been easily writable and understandable while at the same time can
be highly portable. But their major downside is their slow speed (compared to the

other types of bytecode interpreters).

2.3 Direct-threading bytecode interpreters

The second category of interpreters that is used by bytecode languages are the
threaded code interpreters. In these interpreters we don't have a big switch statement
that will look up and fetch the address of the destination case from a table, but instead
we will jump directly to the address of the next opcode. An example of such an

interpreter can be seen below [Piumatra 98].
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Figure 3: Direct-threading interpreter

Here the steps we have to make in order to execute the code are:

e increment the instuctionPointer
e fetch the next opcode address from the memory;
e jump to that address

e execute the opcode

From the above it is shown that there is a reduction to the half of steps that are
needed during the execution of a certain bytecode if a threaded interpreter is used,
which means that the speed is increased significantly. There has been a reduction in
running expensive instructions like the one jump instruction and the one memory
reference. Unfortunately this gain comes with a cost. The cost has to do with the

portability of the code and its simpleness. Here we must notice that what this
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implementation really achieves compared to the pure bytecode interpreter, is a way of
elimination the extra steps that the switch statement imposes. Moreover the recent
GCC 4.1 compiler can use the -fthread-jumps argument in order to achieve this
optimization and transform any switch statement to an optimized “threaded”

interpreter.

2.4 Inline-threading bytecode interpreters

An improved version of the direct-threading is inline-threading. The basic idea here is
that before we run any bytecode file we can find and replace basic blocks of opcodes
with their corresponding implementation. This will increase the file size but all the
fetches and jumps to the memory will disappear and the VM will simply execute the
bytecode. The disadvantage of this type of implementation is the increased size of the
bytecode as well as the extra time we have to spend in order to transform the bytecode
file. The next figure shows a part of an inline threaded compiler implemented in C

[Gagnon, 2001].

(a) Instruction Implementations (c) Inlined Instruction Sequence
ICONST_1_START: *sp++ = 1; ICONST_1 body: *sp++ = 1;
ICONST_1_END: goto **(pc++); INEG body : sp[-1] = -sp[-1];
INEG_START: sp[-1] = -sp[-1]; DISPATCH body: goto **(pc++);

INEG_END: goto **(pc++);
DISPATCH_START: goto **(pc++);
DISPATCH_END: ;

(b) Sequence Computation

/* Implement the sequence ICONST_1 INEG */

size_t iconst_size = (&&ICONST_1_END - &&ICONST_1_START);
size_t ineg_size = (&&INEG_END - &&INEG_START);

size_t dispatch_size = (&&DISPATCH_END - &&DISPATCH_START);
void *buf = malloc(iconst_size + ineg_size + dispatch_size);

void *current = buf;

memcpy(current, &&ICONST_START, iconst_size); current += iconst_size;
memcpy(current, &&INEG_START, ineg_size); current += ineg_size;
memcpy(current, &&DISPATCH_START, dispatch_size);

/* Now, it is possible to execute the sequence using: */
goto **buf;

Figure 4: Inline threading interpreter
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Writing an inline-threading interpreter in Java (like we wanted in this thesis
since Jikes RVM is written in Java) in a way similar to the above example is difficult,
are source of problems is there is no way to handle pointers like in C. However writing
an interpreter in Java using the threading technique can be achieved but the
implementation as well as the logic differs. In order to achieve inlining in Java we

could write the following code [Ian Rogers]:

class Interpreter {
static Interpreter interpretersNUM_INSTRUCTIONS];
static {
interpreters[NOP] = new Interpreter() {
Interpreter execute() {
1P +=4;
return interpreters [memory [IP]];
1
IE
interpreters[ADD] = new Interpreter() {
Interpreter execute() {
1P +=4;
// do add...
return interpreters [memory [IP]];

static void execute(Address IP) {
Interpreter currentInterpreter = interpreters[memory [IP]];
while(true) {
currentInterpreter = currentInterpreter.execute();
}
}

Figure 5: Java threaded interpreter

The basic logic we use for the Java implementation is that certain sequences of
bytecode instructions are more common that other (e.g. a compare is usually before a
branch). The above threaded interpreter is better than the pure that has a switch
statement since the branch predictor can predict where the next bytecode will be. The

compilation system can “predict” in a right way the most of times so we can have a
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speed up in the execution time. The acceleration in the speed that we will have after
using this kind of implementation inside a JVM is about 10% compared to the switch

based.
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Chapter 3
Just-In-Time (JIT) Compilers

Using an interpreter was the first and most simple way the first JVMs used in order to
execute bytecode. We have seen how interpreters evolved and the basic characteristics
that each of them has. Independently of the interpreter that is implemented inside the
JVM we are restricted on how fast the bytecode is executed. This is because the
interpreters are based on the idea that we execute each bytecode ignoring the fact that
the same bytecode could have been run previously or that it may be executed in the
future. So any acceleration is achieved if only if we “predict” the bytecodes that will
follow or if we improve our implementation[Piumarta and Riccardi, 1998]. A different
approach for executing bytecode is the use of JIT compilers. In the next sections we
will have a deeper look at this JVM component and examine how the JVM/IIT

interaction can be achieved.

3.1 JIT compilers vs traditional compilers

Being part of a JVM a JIT compiler has many characteristics that are similar to a
traditional one but also is unique in some things. Like the compilers that were
developed along with the first computer languages a JIT compiler eventually translates
some code to machine code. The difference this time is the source code, which is not a
common human written code but instead a machine produced bytecode. This is very
important since a JIT compiler will have a much simpler front-end and back-end.
There is no need for source language error reporting (a task done by the compiler that

produced the bytecode) and also there is no need for the generation of object files or



Chapter 3 Just-In-Time (JIT) Compilers 21

relocatable code. The JIT compilers don't compile the entire bytecode file, but only
what is needed by the runtime environment methods. As a result a JIT compiler may
never have a full view of the entire program. The final thing that distinguishes this
kind of compiler from tradition ones, is their significance to the execution time of a
bytecode program. The compilation time and space consumption are very important
since the JIT compiler will execute the needed methods on the fly and a good
performance is based mainly in this JVM component. A visualization of the structure

of a JIT compiler is shown in the next figure.

Figure 6: Structure of a JIT compiler
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3.2 JIT compiler evolution

The first JIT compilers that were implemented inside a JVM had a very simple
strategy on how to operate. They used a single level execution model and compiled
every method with a standard set of optimizations. This means they didn't use any kind
of dynamic execution of methods and they compiled the whole bytecode file regardless
of whether some of it was never used. As one can easily assume the outcome of this
approach wasn't very satisfactory since the level of optimization was trivial and the
compiled code size was quite big. More details on the research that was done during
the first years of JIT compilers can be found at [Adl-Tabatabai et al.1998], and Cacao
[Krall 1998].

The next step was to use dynamic compilation, instead of static, and more
sophisticated optimizations. Now the compiler wouldn't execute every method but only
the ones that really were needed during its runtime and at the same time would impose
more optimizations. The side effect that was noticed was the compilation overhead
which was increased noticeably. This has to do with delays in the application startup
and in the creation of code that had excessive size.

The workaround for the problems that were imposed by the previous
approaches was a dynamic compilation system that would define a better dynamic
compilation framework and also adapt a strategy that could use multiple levels of
optimizations. A two-level execution model consisting of one interpreter and one
compiler or two compilers with different optimization levels of compilation would
replace the previous one. The results that were achived with this type of JVMs were
better than before since the compilation overhead dropped.

Even though there was some progress, the results were not as good as expected.
The problem this time would be how to manage the equilibrium between the
optimization effectiveness and the compilation overhead caused by the increasing gap
of the trade-off level between the two execution modes. The solution to that was the

creation of a framework for online profile collection accompanied by a feedback
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system. Both of them are inserted inside the dynamic compilation system and
communicate with the rest of the modules. This generation of JVMs also uses multiple
execution modes (combination of interpreter or baseline compiler and optimizing
compiler), but moreover can track the mostly frequent methods (hot spots)*. The
information gathering is done by the profiler framework and depending on how often a
method is called or how important a method is, different optimization levels are used.
As a result the hot spot methods can be recompiled by the optimizing compiler while
the less significant ones can be run by the interpreter or the baseline compiler. The
most advanced JVMs in our days use this approach as the basic architecture of their
dynamic compilation system even though some differences can still exist. In the next
section we take a deeper look inside this system, since it is the heart of any JIT
compiler and the one that plays the most important role in the execution speed of the

bytecode.

3.3 Dynamic compilation system

The dynamic compilation system is the architecture that most JIT compilers use

nowadays. The basic targets that a good system should aim at are:

e to be as fast as possible
e to have a not very complicated framework so that various optimizations can be

added without resulting in a compilation overhead increase

The details of such system may vary depending on the JVM, but in general there are
three important characteristics that define the classification of the dynamic

compilation system.

4 Statistic analysis of programs has shown that most of the programs follow the 90/10 rule, which
means that for 90% of the execution time of a program 10% of the code is used [Hennesey & Patterson,
Quantitative Computer Architecture].
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The first characteristic has to do with the lack or not of an interpreter along
with one or more compilers. The interpreter is used in the first moments of the
execution of a bytecode where we don't apply any optimization to any method. The
same role can be played by a baseline compiler that is simpler than the optimizing one
and doesn't have a big compilation overheard. Another important thing is that the use
of a baseline compiler instead of an interpreter would mean a significantly bigger
memory footprint. On the other hand the integration of an interpreter and a compiler
would increase the complexity of the system and significantly more effort has to be
taken during implementation of such system in order to get the wanted results.

The second characteristic has to do with how the compilation system monitors
the behavior of a bytecode program and promotes a method from a lower optimization
level to a higher. Depending on the JVM we could have a variety of strategies. In one
of them we could have a mechanism system which uses a counter associated with each
method. The system can insert code to test the value of the counters. If the counter
reaches a specific value then the code is “upgraded” to a higher optimization level and
is recompiled by the optimizing compiler. An approach like this one is used by the
Intel Open Runtime Platform (ORP) [Cierniak et al. 2002]. A different strategy could
be the one that is used by the IBM DK for Java [Suganuma et al. 2005]. In this case a
sampling-based profiler is used which collects information about the programs' thread
execution. The profiler keeps track which program threads use the CPU most time and
then which methods inside these threads are currently executing. Based on the results
the profiler creates a list of all the “hot” methods sorted by the hotness counter (a
counter associated with every method indicating how “hot” each method is). After that
the profiler, which runs all the time that the program is been executed, sends the group
of the “hot” methods to the recompilation controller for recompilation at a higher
optimization level.

The third characteristic has to do with what kind of profile information is
collected by the dynamic compilation system in order to be passed to the higher

optimization levels. The instrumenting profiler used by the IBM DK for Java



Chapter 3 Just-In-Time (JIT) Compilers 25

[Suganuma et al. 2005], is used to collect data from the “hot” methods based on an
instrumentation plan from the recompilation controller. Later this data will be used by
the dynamic compiler to increase the optimization of the method. The way the profiler
takes out the desired data from a method is by inserting dynamic code inside the
compiled code and rewriting the entry code of the target. After collecting the desired
data the generated instrumentation code automatically uninstalls itself from the target

code.

3.4 JIT/JVM Interaction

The interaction of JIT compilers and JVMs is very important since the way they
communicate defines the implementation details of both programs. The runtime
services often require JIT support (memory management, exception delivery and
symbolic debugging) while at the same time the JITed code requires extensive runtime
support (type checking, memory allocation, use of hardware traps and signal handlers)
[Hind, ACACES 2006]. The collaboration of the two pieces of software will enable
optimization opportunities like effective inline code sequences and customizable
dynamic type checking code sequence. On the other hand a more general
implementation of a JIT compiler that will fit into several JVMs will make the system
more insensitive to changes that can be applied to any part of the JVM or the JIT. The
second approach of a more independent JIT is much more difficult to implement but

not impossible if very careful design is made.
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Chapter 4

The Jikes Research Virtual Machine
(RVM)

Undoubtedly the JIT compiler is among the most important modules that a modern
JVM uses for the execution of bytecode. Other modules play also a significant role,
like the class loader and the memory manager. But in order to have a better
understanding on the internal structure of a JVM the best way is to examine a real one.
This is also the scope of this chapter that takes an inside look at the internals of the
Jikes RVM, the open source JVM that was used in this thesis. Such a task is also an
inevitable process for somebody who wants to alter or add an extra feature to the

JVM. In our case the extra element was the interpreter.

4.1 The Jikes RVM structure

The Jikes RVM is an open source Java Virtual Machine written in the Java
programming language. The project was originally named Jalapefio and was initially
developed at the IBM® T.J. Watson Research Center [http://jikesrvm.sourceforge.net/].
In 2001 the project went open source and this was the right opportunity for the
community to explore its internals and contribute to its evolution. The basic

architecture of the JVM is represented in the following frame.
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User Methods

Optimizing Compiler
Baseline Compiler

Figure 7: Jikes' Basic Architecture

Jikes is constructed of four basic components:

e Core runtime, which includes, among other things, the thread scheduler, the
class loader, the library support and the verifier. The core runtime is generally

responsible for managing all the underlying data structures required to execute
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applications and interface with libraries.

e Compilers, that include the baseline compiler, the optimizing compiler and the
JNI (Java Native Interface) which is one of the few parts of Jikes not written in
Java’. This component is used for generating executable code from bytecodes.

e Memory managers, that are responsible for the allocation and collection of
objects during the execution of an application.

e AOS (Adaptive Optimization System), that has as its task the monitoring of
the execution of the bytecodes and dynamically uses the different kinds of

compiler in order to achieve the best execution performance.

The first module that runs when Jikes is loaded into memory is the Boot Image
Writer. This is a Java program that runs under an existing JVM. Then a list of “core”
Jikes classes is loaded and the init() method is invoked for these classes. The copies of
the loaded classes and the objects created by the JVM environment (reflection is used),
are transformed into a byte array and copied to the boot image. From this point on the
Boot Image Runner is called (it allocates memory for the virtual machine image, reads
the image from disk into memory, and branches to the image startup code) and the
boot image eventually runs. One important thing that should be mentioned here is that
everything in Jikes is an object (this also comes from the fact that Jikes is written in
Java). But not all objects are “genuine” Java objects instead some are Jikes objects. In
this category we can include the execution stacks and the Java Table Of Contents
(JTOC). The execution stacks are declared as int[] and it is the compiler's job to
identify locations within frames that hold references for later use by the garbage
collectors. The JTOC (which for our case is called Jikes Table Of Contents) contains
references to all the Jikes Objects as well as static fields of reference. The next figure

shows how JTOC is organized [Alpern et al. 2000].

5 The other parts of Jikes also not written in Java are the Boot Image Runner and two signal handlers
(one that captures hardware traps and trap instructions and one that passes timer interrupts to the
running Jikes system).
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Figure 8: JITOC organization

The TIB (Type Information Block) shown above is an array of Java object
references. Its first component describes the object’s class (including its superclass, the
interfaces it implements, offsets of any object reference fields, etc.). The other
components are compiled method bodies (executable code) for the virtual methods
(which is another building block of the Jikes object) of the class. As a result the TIB
serves as Jikes' virtual method table. The TIB along with a word called status word
comprise the object's header. The last pieces that form a Jikes object are the method
invocation stacks which are created for each method invocation of that object (more
details about the Jike's object are described in Alpern et al. 2000). All the above
information is necessary to understand the internals of Jikes since such knowledge is

used for the construction of the interpreter.
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4.2 The Java Stack

Another very important aspect of every JVM is the way that the Java stack is
organized. This has to do with the way each Java bytecode is executed but in the case
of Jikes its importance is bigger. Because Jikes itself is written in Java the
understanding of the Java stack is be very important for the better understanding of the
processes that take place inside the JVM.

Every time a Java method is called, the JVM creates a new Java stack frame for

that thread. The Java stack stores a thread's state in discrete frames (Figure 9).

Thread 1 Thread 2 Thread 3
stack frame stack frame stack frame
& stack Jf'rame Stackiframe
stack iame stack %rame
stack firame

Figure 9: Stack & Stack Frames [Inside the Java 2 Virtual Machine, Bill Venners]

The method that is currently running is called the thread's current method and the
stack frame for the current method is the called the current stack frame. Every stack
frame has three parts: the local variables, the operand stack and the frame data. The
local variable part is an array that stores all the method's local variables ( int, float,

char, byte, short, double, long, references, returnAddress). The local variable's array is
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accessed via array indices. Similar to that is the operand stack which is also an array
but this time the access to the array's values is done only by pushing and popping. The
operand stack is the basic data structure that is used for the execution of the opcodes
(the instruction set of the method's bytecode stream). What is meant by the last one is
that all the Java bytecodes are composed by a well defined set of instruction. These
instructions are executed by the JIT compilers or the interpreter of every JVM. Some
of Java's opcodes as they are defined in the language specification are: istore, dsub,
areturn, .... The opcodes and the data that accompanies them, are pushed and popped

from the operand stack. Below is an example of the addition of two local variables.

iload_ 0 //push the int inlocal variable 0
iload 1 //push the int inlocal variable 1

iadd //pop two ints, add them, push result
istore_2 // pop int, store into local variable 2

Figure 10: Adding two variables

The last part of the stack frame is the frame data which is used for support of the
constant pool resolution (a place where all the constants are stored), the normal

method return, and the exception dispatch.

4.3 The AOS system

Undoubtedly the part of the Jikes RVM that would be the most important for this
thesis would be the AOS subsystem. This is because is responsible for the compilation
strategy which is the the major speed factor of the JVM. The insertion of the
interpreter would mean an alteration to the AOS system. The “pre-interpreter” Jikes

AOS system is shown below [Jikes Tutorial 2001, Hind & Attanasio].
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Figure 11: The AOS system

In this system the bytecode is initially compiled by the baseline compiler. Jikes
doesn't have any information about hot methods and as a result all methods are treated
the same way. As time passes and the JVM executes code, Jikes' timer-based sampling
mechanism gathers information about the more often used methods and methods that
have greater significance for the execution speed. The sampling profiler collects this
information at yield points (method prologues and loop back edges) throughout the
entire program execution. This has as a result those methods which are declared hot
are passed to the optimizing compiler for further optimizations. Jikes has three
different levels that indicate how hot a method is. The profiling system that Jikes has is
very flexible and can adaptively adjust to changes in an application's dynamic
behavior. An extra optimization of the AOS system has to do with method inlining.
Here also a profiler, that periodically takes statistical samples , is used to decide which
methods should be inlined. The details of the AOS with the adaptive inlining is shown
delow [Jikes Tutorial 2001, Hind & Attanasio].
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Figure 12: The AOS with adaptive inlining

4.4 Building Jikes

For someone to be able to run Jikes what he needs to do is to execute a collection of
Unix shell scripts that contain configuration parameters. One of the most important
parameters that the user must define is the level of optimization that Jikes will use.
This is defined through the jconfigure script. There can be three different buildings of
Jikes. The first one is the prototype build that constructs the JVM with the baseline
compiler as the only compiler to be used for the execution of the bytecodes. The
second build is the production that has the baseline and the optimizing compiler and
the debugging information turned off. The last one is the development that is exactly
the same as the production but has the debugging information turned on. The way that

Jikes is built has an obvious speed impact with the production and development being
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significantly faster than the prototype. The major advantage of the prototype is the
build time that is much faster than the other two (almost 1 minute spent for the
prototype build on a 2.0Ghz Intel Centrino processor compared to 20 minutes for the

production and development).
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Chapter 5

Implementation Details

After the presentation of the theoretical background and the Jikes RVM environment,
more details are given on how the addition to the interpreter was achieved, what

strategy was followed, what were the problems and what was finally achieved.

5.1 The new approach for Jikes RVM

As already mentioned Jikes follows the compile-only approach. The baseline and the
optimizing compilers are used to run methods with varying significance. Both of them
cooperate with the rest of the Adaptive Optimization system to produce the best
results. This compiler-only use has a significant disadvantage that has to do with the
compilation overhead. The time that we need to read a method and compile it, is a slow
process compared to interpretation. The interpreter is faster than any complier at the
first moments of any bytecobe execution since the way it is implemented allows the
bytecode to be executed almost immediately. But as time passes and the compiler has
finished the bytecode reading and has applied the various optimizations, the execution
becomes faster using the compiler module. While the interpreter for every invocation
of the same method will do the same procedure as the first time the method was called,
the compiler will use the already existing code with all the optimizations applied. So it
becomes clear that for the first execution moments the interpreter is faster, while the
compiler becomes the best choice only after it has finished the reading and the analysis

of the needed bytecode. In order to achieve the best possible performance, an
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implementation that combines these two modules in the best possible way should be
written. As a result of the above, it was decided that an interpreter should be written as
an Jikes RVM extra module that would run before any compiler only for a certain

amount of time. The next figure shows exactly that.

B
output
delay

interpreter
compiler

Figure 13: Compilation vs Interpretation

The important thing in the above graph is to find the crossing point of the two lines.
This point indicates for how long the interpreter will be used and at the same time at
which moment the baseline compiler will take over. The dashed line shows the period
that the compiler doesn't produce any output and fulfills all the needed tasks in order
to produce some output. Another important thing here is that this optimization scheme
will only work in programs that aren't too small and have methods or structures within
methods (e.g. for and while loops) called more than one or two times. In the opposite
case the compiler shouldn't be used at all. But whatever the case the interpreter module

should be planned carefully inside the rest of the AOS system and cooperate
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harmonically with the rest of the JVM. Structurally the new system with the interpreter

added will look like the next figure:
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Figure 14: The new AOS system

It is seen from the above that the interpreter is put before the baseline compiler and it
is the first module that starts to execute bytecode. Now the criterion on which the
decision to move to the baseline compiler is based is something that can only be
decided after testing and experimenting. This means that the choice to jump to the next
module can be made after one, two, three or even more identical method invocations.
There isn't an obvious way to say beforehand what is the best number of times that the
interpreter has to be called before the baseline compiler comes in. Since many
suggestions can be made on that, what was decided to be done in this implementation
was to extend the arguments that Jikes RVM takes by adding a new one (-x
:interpret=[num]) in which the person that runs a .class file can explicitly give the
number of times that a method needs to be invoked before the execution control is

passed to the baseline compiler. In order to achieve such a modification
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VM_CommandLineArgs. java file needed to be changed accordingly. IBM DK,
that also uses an interpreter and a compiler inside its dynamic compilation system,
uses a slightly different approach [Suganuma et al OI, 05]. In this JVM also all
methods are initially executed by an interpreter (Mixed Mode Interpreter) but the
difference is that it uses an internal counter for accumulating both method invocation
frequencies and loop iterations. The counter is decremented whenever the method is
invoked or loops within the method are iterated and when the counter reaches zero the
first JIT compilation is triggered for that method. But the important thing here is no
information is given on how the initial value of the counter is given. Moreover IBM
BK passes the runtime information gathered during the interpreter run to the JIT
compilers so they can use it for their optimizations. Comparing this approach with the
one that was followed for Jikes RVM what can be said is that in the latter case a
simpler architecture was followed (no loop iteration counter, no runtime information
passed to JIT compilers) that probably wouldn't give the best possible results but on
the other hand it could give the user the possibility to explicitly define the counter
number that defines the number of times the interpreter runs for each method before

control is passed to the JIT compilers.

5.2 The VM_Interpreter

After defining the basic architecture of the “interpreting” Jikes, more details are given
on the actual implementation of the interpreter. Since the interpreter was a completely
new module for Jikes, a new Java file having the main body of the interpreter had to be
created. This file 1is called VM_Interpreter and 1is part of the
com.ibm.JikesRVM package. The main body of the VM_Interpreter is
basically a big switch statement for all the possible Java opcodes [Inside the Java
Virtual Mashine, Bill Venners]. The Java opcodes are the fundamental blocks of every

Java .class file and with the static variables and also some other data form the source
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bytecode file that will be created. Java has 228 possible opcodes and for each opcode a
different case branch was implemented. At this point what must be explained is the
reason why the pure bytecode implementation (see section 2.2) was chosen instead of a
faster direct-threading(see section 2.3) or inline-threading interpreter (see section 2.4).
The main reason for this choice was the implementation language. As mentioned there
is no way to implement a direct-threading bytecode interpreter using a safe language
such as Java. An inline- threaded interpreter can be written though but it needs a
“prediction” scheme for the next opcode that will be interpreted. Since such an
approach is significantly more complex than the “switched” interpreter, the decision
that was taken was in favor of the simpler and faster to be implemented pure bytecode
interpreter.

After deciding the interpreter's basic architecture, the thing that was needed to
be determined was how the operand stack would be implemented and the how the local
variables would be handled. This decision was very important since the operand stack
and the structure that would handle the local variables are the major data structures of
the interpreter. Since all the opcodes that would be executed would use them, the way
they are implemented plays a significant role on how the rest of the interpreter would
be written and an effective implementation would mean increased speed. For this
implementation the decision that was finally taken was based on the following logic.
Because Java can have two different kinds of variables (primitive types and objects),
probably the best approach would be to have two types of operands stacks and two
types of local variable handlers. As a result the int operandStack[] and int
localVariables[] were created for the primitive types and the Object
operandStackObjects[] and Object localVariablesObjects[] for the objects
respectively. It can be observed that the operandStack[] and localVariables[] are used
for all the different kind of primitive types (int, float, char, byte, short, double, long).
The problem here is that the bit size for different variable types varies (e.g ints are 32
bits long and doubles are 64 bits long). While the conversion of smaller primitive

types to int is a very easy process in Java (a simple cast is needed) the conversion of
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doubles and longs is not so trivial. The workaround for this problem was to divide the
64 bit long variables to two 32 bit chunks and store them in two consecutive places in
the int array. Similarly when there was a need to use a 64 bit variable the two 32 bit
parts were concatenated to give the original number. A slightly different approach to
this scheme would be to have as many operand stacks as the number of primitive types.
In this case there would be operand stacks like a double operandStack[] and a float
operandStack([]. In this case some time for the conversion of the various types would
be saved but more memory would be used. Which of the two approaches is the better is
something that has to tested in order to be determined. A future implementation of the
interpreter with the multiple operand stacks approach would determine the better
solution. A very important thing that should be mentioned here is the way that we
reference the objects or the primitive types that are stored inside the two stacks. The
way that we achieve that is by the use of an integer called stackPtr. This stack pointer
can be incremented or decremented by code inside the various cases of the which
statement but the key thing here is that stackPtr is a shared variable, used in common
by both operand stacks. In the next figure we give an example of how the above data

structures and variables are used in the interpreter for a random opcode.

I% oo™/

case JBC_iadd: {
stackPtr——;
int value2 = operandStack[stackPtr];
stackPtr—-—;

int valuel operandStack [stackPtr];

int result = valuel + value2;
operandStack [stackPtr] = result;
stackPtr++;
break;
}
VA

Figure 15 : Example of one of the interpreter's case branches
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It was mentioned before that Java uses a method based organization for the
execution of its code. As a result of that the interpreter also used a “per method”
approach and a new instance of the interpreter is created for a every method
invocation. Extra consideration has to be taken for static methods because they are
methods that don't have any local variables and have to be treated in a different way
from the rest. For non static methods a few other Java methods were written that were
used in various opcode cases and had to do with the reading of a method's arguments
(private static int readArgs(Object args[], ...)) , the insertion of the
result of a method back on the stack (private static int putResultOnStack (int
operandStack[], ...) and the conversion betwe,en the different Java primitive types

( private static long makeLong(int il, int i2) and private static

double makeDouble (int i1, int i2)).

5.3 Inserting the VM_Interpreter into Jikes

Writing the VM_Interpreter was only half of the job that needed to be handled so that
Jikes would have a new working module. The other half is how this module is inserted
inside an already working JVM and which files of the original Jikes have to be altered.
The most obvious alteration would have to be inside the VM_Runtime module and
more specifically inside the VM_DynamicLinker file. The static void
lazyMethodInvoker () method was changed in a way that after a method invocation
the VM_Interpreter would be called. But the way that this method was changed wasn't
a very simple one since some VM_Magic code had to be written. Basically the
implementation would be a special baseline IA32 compiler “hack” that would allow a
“magical” return value from a method even though the stack thinks this method returns
void and takes no parameters. The next figure shows exactly which objects are called

with every method invocation.
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Method A «

return result, next method invocation

Figure 13: VM_Interpreter interaction with other Jikes' objects

Apart from the VM_DynamicLinker a few other files were changed so that that
various opcodes would be executed properly. Below there is a list with all the files that

were modified.

File Comment
jconfigure Include the interpreter in Jikes' built
VM_NormalMethod.java Add some additional properties to

VM_ NormalMethod

OPT_GenerateMagic.java Add some more “magic” for the
optimizing compiler

VM_DynamicLinker Link the interpreter with the rest system
VM_Entrypoints.java Add some code so that the Jikes RVM
could use the interpreter module
VM_Magic.java Add more “magic” methods
VM_MagicNames.java Add some magic variables used in the

return on the methods
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File

Comment

VM_Reflection.java

Modify the reflection system of Jikes

VM_CommandLineArgs.java

Add the X:-interpret argument to Jikes
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Chapter 6

Conclusions

After giving the implementation details it is time for the conclusions for the addition
of the bytecode interpreter to the Jikes RVM presented. Obviously the heart of the
implementation is the VM_Interpreter.java file. Inside it is the implementation of all
the possible opcodes. In order to get any results and to check the effect of the addition
to the overall performance, we had to thoroughly examine the execution of different
kind of methods that would use all the possible Java opcodes. For this reason various
test files that checked all the possible aspects of the Java language were used. This task
was extremely difficult since the testing of the execution for a numerous of .class files
was very time consuming and the detection and correction of the various bugs proved

to be a really hard task. The outcome of this process was the following:

All the possible opcodes were tested and for the majority of the .class files the

interpreter produced the expected results.

Unfortunately some bugs still remain that prevent the evaluation of the overall
performance of new version of Jikes. From a group of available JVM benchmarks
(mtrt, jess, comp,db, mpeg, jack, javac, jcc, G.M,....) only one, the JavaLinPack could
be executed using the interpreter. Moreover this benchmark could only be run using
the prototype built of Jikes (the slowest build since it uses only the baseline compiler).
The
result for that was that the “interpreted” Jikes run the benchmark almost 15 times
slower than the non interpreter Jikes. Better performance is expected if the interpreter

ware build using a production configuration. Sadly this wasn't possible.
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The main reason that prevented the other benchmark bytecodes to run had to do
with the complexity of debugging the interpreter inside the Jikes' RVM environment.
In many cases significant code had to be altered in other files so that the interpreter
could cooperate harmonically with the rest of Jikes' modules. The debugging process
has reached a point at which other Jikes' modules have to be examined for bugs since
there are some indications that some implementation errors, that prevent the interpreter
running correctly for all the bytecodes, may be located in other files (there problem is
probably located on the part of Jikes that deals with reflection). The bad thing is that
probably an extra one man month or more for code debugging is required. The good
thing is that even at this stage the interpreter can have big GC advantages, as well as

being a useful research tool, to other Jikes RVM users.

FUTURE WORK

Since the implementation of the interpreter is not completely finished a list of things
can be done in the future to enhance the behavior of the interpreter and as a result the

behavior of Jikes RVM.

e The most important thing is to fix the remaining bugs so that proper
measurements can be taken.

e By adding an extra operand stack for the 64 bit long variables (long, doubles)
there could be an increase of the interpreter's speed. This could save processing
time since no conversion between 32 and 64 bit long variables would be
needed. On the other hand the memory footprint would be increased. The best
solution is to be could be determined through benchmark.

e Writing a different implementation of the the interpreter by using a threaded
approach instead of the switch — case could lead to a probable 10% increase in

the execution speed.
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EPILOGUE

This thesis is probably the most interesting and challenging programming task that the
author has ever taken. The road to the completion of the implementation of such a
demanding project was a long and tough one but it was truly unforgettable for the
experience that was gained and the lessons that were learned. Even though the project
isn't 100% finished the author would feel great satisfaction if he has helped in his way

in the research that is done in the area of JVMs.
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