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Abstract

Sequence memories play an important role in biological systems. For example,

the mammalian brain continuously processes, learns and predicts spatio-temporal

sequences of sensory inputs. The work described in this dissertation demonstrates

how a sequence memory may be built from biologically plausible spiking neural

components. The memory is incorporated in a sequence machine, an automaton

that can perform on-line learning and prediction of sequences of symbols.

The sequence machine comprises an associative memory which is a variant of

Pentti Kanerva’s Sparse Distributed Memory, together with a separate memory

for storing the sequence context or history. The associative memory has at its

core a scalable correlation matrix memory employing a localised learning rule

which can be implemented with spiking neurons.

The symbols constituting a sequence are encoded as rank-ordered N-of-M

codes, each code being implemented as a burst of spikes emitted by a layer of

neurons. When appropriate neural structures are used the spike bursts maintain

coherence and stability as they pass through successive neural layers. The system

is modelled using a representation of order that abstracts time, and the abstracted

system is shown to perform equivalently to a low-level spiking neural system. The

spiking neural implementation of the sequence memory model highlights issues

that arise when engineering high-level systems with asynchronous spiking neurons

as building blocks.

Finally, the sequence learning framework is used to simulate different sequence

machine models. The new model proposed here is tested under varied param-

eters to characterise its performance in terms of the accuracy of its sequence

predictions.
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Chapter 1

Introduction

Understanding the functioning of the brain and how it encodes and transmits

information has been a subject of great interest. The human brain can perform

functions such as sensory-motor coordination, visual recognition of moving ob-

jects, auditory frequency discrimination, etc with great speed and accuracy, which

seem trivial for humans but difficult to be modelled on computers. The brain is

built of component cells called neurons. Information is transmitted through the

neurons in the brain largely in the form of action potentials or spikes [2, 44],

which are generated by an electrochemical process and regenerated from neuron

to neuron. The spikes are similar in shape and size, so the information conveyed

by a spike is primarily in the identity of the neuron generating the spike and its

time of arrival. These stereotypical spikes act as the communication mechanism

for the brain. We constantly take inputs from our senses, recognise familiar ob-

jects and learn new associations. These inputs are sequences of spikes in time

and space.

In this dissertation, we focus on modelling a particular function of the brain,

that of sequence learning. Sequence learning is a phenomenon that is ongoing

in mammalian brains almost all the time: we learn and remember sequences of

sights (such as moving images), sounds (such as songs), events, names, numbers,

etc. In this work, we have developed a model of on-line sequence learning and

implemented it using spiking neurons. The model can learn a new sequence of

symbols in a single presentation and can complete previously learnt sequences by

predicting the next symbols in the sequence. We model the engineering aspects of

information transmission in a dynamical system built out of asynchronous spiking

neurons, in which the symbols are encoded as spatio-temporal bursts of spikes
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emitted by layers of neurons (not to be confused with the term ‘burst’ used in

neurophysiology referring to a number of spikes emitted from a single neuron in

a short time interval).

1.1 Motivation

The primary motivation for this research is to gain a better understanding of

how a robust neural system can be engineered through low-level asynchronous

components, by taking a concrete example of a sequence machine built using

spiking neurons. It is intended to contribute to the understanding of the dynamics

of interactions between artificial spiking neurons in a complex system, and give

some ideas as to how biological neurons also might interact. Although part of our

motivation is biology, we deal with the problem strictly as an engineering task.

Another motivation is to implement the spiking neural system in custom-built

hardware [68].

There have been many previous models that can perform sequence learning,

some of which use spiking neurons, including work by Berthouze et al [12]. Details

of these models are described in chapter 2. However, these models assume that the

generative model of the sequences is fixed, and the task of the system is to learn

the generative model after many trials and on this basis predict the sequence. We,

on the other hand, have concentrated on the problem of one-shot learning with no

assumptions being made about the model generating the sequences. We consider

this problem to be more biologically realistic than those problems that the other

models attempt to solve. It can also be beneficial in a number of applications in

various areas such as visual motion processing, speech, robotics, some of which

will be discussed in detail in chapter 9. Another difference of our approach from

these approaches is that we deal with the problem at different levels of abstraction,

starting from a high-level solution (using an associative memory) and coming

down to a low-level, spiking neural implementation that exactly implements the

high-level abstraction, thus implementing our goal of engineering a high-level

system using low-level neural components. The other models have dealt with

the problem of sequence learning using spiking neurons directly. There are also

differences with other models in the specific coding scheme (rank order coding

[77]) and associative memory architecture (N-of-M SDM [27]) that we have used

in our model.
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This work can be thought as a proof of concept, showing that a functioning on-

line sequence machine that does not assume the model generating the sequences

can be engineered out of spiking neurons. The scope of this work is multidisci-

plinary, and we seek to take inspiration from biology and utilise knowledge from

diverse fields such as computational neuroscience, neural associative memories,

asynchronous logic, etc. to build our model.

Developing functional models of parts of the brain is essential to neurosci-

entists, as it helps them to make sense of the large mass of data gathered from

experiments, and also to get a better understanding of how the brain works.

We hope that this work will prove useful to both hardware and software neural

modellers, as it highlights the problems they are likely to face, and offers some

solutions.

1.2 Aim

The primary aim of the work described in this dissertation is to design an on-line

sequence machine using spiking neurons that does not make any assumptions

about the generative model of the sequences (unlike similar models such as by

Berthouze et al [12]), and uses an explicit context neural layer with feedback to

store the context of the sequence dynamically. Our model uses rank order codes

(first used by Thorpe [77]) as the encoding scheme and a version of Kanerva’s

Sparse Distributed Memory [45] using ordered N-of-M codes [27] as the associative

memory.

By spiking neurons we refer to point neurons (with no spatial characteristics)

which make a decision to fire based on only local input spikes, the only information

transmitted by the spikes being the time of firing. In accomplishing this task, we

seek to study the dynamics of propagation of bursts of spikes in complex neural

systems with feedback, such as the coherence and stability of the propagated

symbols. We aim to build a suitable associative memory using spiking neurons

to be used in the sequence machine, and a suitable way to encode the context

or history of the sequence. We also seek ways of abstracting out the temporal

behaviour of a spiking system into a suitable coding scheme that is convenient to

use.

One thing we would like to clarify is that we have approached this problem

from an engineering perspective, which is to build a system that does what it is
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supposed to do, and does it well. Although our sequence memory has features that

model biological memories, we do not claim that this is the exact way our brains

handle sequences or that the spiking neural model we have used can capture the

huge variety of neural behaviour or the range of interactions between biological

neurons. Our primary motivation is to highlight issues in modelling high-level

systems using spiking neurons, and we have chosen the particular task as an

interesting and relevant example of the modelling. For the same reason we do not

claim our model to be the best possible way sequences can be learnt, although

we have tried to optimise our model and shown that it performs the sequence

learning task quite efficiently.

1.3 Approach

In this work, we have built the sequence machine using a top-down approach,

starting with the high-level problem and then implementing its functionality using

low-level components. In our model, we have two levels of sequences: the higher

level of sequences of symbols and the lower level of spatio-temporal sequences

of spikes which constitute the symbols. We have an associative memory, also

formed out of spiking neurons, which can learn associations between the lower-

level spatio-temporal spike sequences that form symbols.

A neural associative memory can store associations between encoded symbols,

and can be read from and written to in a single pass. We build an associative

memory using rank-ordered N-of-M codes as the encoding scheme codes to use

in our on-line sequence machine. The type of memory we have chosen is a vari-

ant of Kanerva’s sparse distributed memory (SDM) [45] using N-of-M codes [27]

with rank-ordering. The learning rule used in the memory, based on setting the

connection weights to the maximum of the old weights and the outer product of

the two vectors to be associated, is similar to the learning rule used in binary

correlation matrix memories, that is based on local information rather than error

signals propagated by an external teacher. We investigate the suitability of two

spiking neuron models to implement our system, namely the rate-driven leaky

integrate and fire model and the wheel or firefly model [46]. In implementing the

memory out of spiking neurons, modelling issues such as coherence, stability and

learning are studied in detail in chapter 6.

In building the sequence machine in this way, there are multiple levels of
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abstraction. For ease of modelling we have abstracted out time (which is how the

spiking neurons convey information) as a rank-order code [77] and also represent

a rank-order code as a vector. After that, we have analysed the efficiency of

rank-ordered coding in sparse distributed memories, implemented by using this

abstraction of the temporal behaviour. Properties of these memories such as

information density, scalability and error tolerance have been studied. Finally,

the developed optimum memory has been used to build a sequence machine,

which we then implement using spiking neurons and perform tests to measure its

performance. We also justified the temporal abstraction used earlier by showing

that equivalent results are obtained using the abstraction and using a system

built out of spiking neurons.

Concepts that the reader may be unfamiliar with, such as sparse distributed

memory, N-of-M coding etc [27]. are explained in detail in chapter 3.

1.3.1 Levels of organisation

The work described in this dissertation is primarily concerned with neural mod-

elling. We model a predictive on-line sequence machine using spiking neurons as

building blocks. It is useful to think of any modelling task in terms of levels of or-

ganisation or abstraction, which reduces unnecessary complexity and enables one

to focus on the task at hand. Abstraction keeps the different levels of complexity

separate from each other so that we can relate to each level in a convenient way,

yet maintain an overview of how the levels relate to each other.

The levels of organisation in the sequence machine proceed in a top-down

fashion from the highest level (the sequence machine interface visualised as a

blackbox, and possible applications of the machine) down to the structural level

(structure of the blackbox sequence memory including an associative memory

with a context layer) to the component level (including the context neural layer

and the neural layers used as components to build the associative memory, i.e

address decoder and data store) to the level of neural layer (which uses a coding

scheme called rank-ordered [77] N-of-M [27] on its inputs and outputs) to the

lowest level (model of spiking neuron). An illustration of these levels is given in

figure 1.1.

Each of the levels encapsulates a different degree of abstraction, which we fol-

lowed in our work. Accordingly, we approached the sequence learning problem in

a top-down way as well, starting with the high level description of the problem in
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Interface level

(Black box with online learning)

Structural level

(associative memory with context)

Component level

(Rank−ordered N−of−M neural layer)

(Wheel model)

Neuron level

Neural Layer level

(CMM, address decoder, context)

(Music, time series, etc)

Sequence machine application

Figure 1.1: Levels of organisation in the sequence machine, from application level
to the neuron level

chapter 2, followed by a description of the behaviour of the system as a blackbox

in chapter 5. In chapters 4 (where we discussed the associative memory used)

and 5 (where we described the context layer) we described the components of the

system to implement the blackbox behaviour. In the following chapters we came

down to the lowest levels, first describing a model of spiking neuron that can im-

plement the coding scheme in chapter 6, and then describing the implementation

of the system using spiking neurons in chapter 7.

1.4 Research issues and questions

In the course of this dissertation, we seek to highlight relevant issues and provide

solutions to a number of problems, some of which are related to each other. Some

research questions that this work aims to address are the following:

1. What are the different ways in which the performance of an associative

neural memory can be measured?

2. What is a useful way to represent the concept of ‘distance’ or similarity

between symbols encoded as vectors (which in turn represents a sequence
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of firing times by a neural layer) in the system?

3. In a given sequence, how can the entire past history or context of the

sequence be encoded in the best possible way in a vector of finite length?

4. How can we build a system where the spike firing times in a layer of neu-

rons are represented and stored spatially (i.e. in the connections between

neurons) in such a way that we can learn the firing order and reproduce it

when needed?

5. What kind of spiking neural model should we choose for implementing spe-

cific networks, and why?

6. What are the factors influencing the stability of a burst of spikes passing

through neural layers and what are the principles of designing a system to

be more stable?

7. How best can we characterise the performance of a sequence memory?

1.5 Contributions

The key contribution of this research is that it implements an on-line predictive

sequence machine with spiking neurons and uses rank order coding as the

coding scheme. To the best of our knowledge, these three concepts of rank order

coding, spiking neurons and sequence memory have never been used together in

any work prior to this.

The contributions made in the three different areas mentioned in the key

contribution are listed below.

Contributions in the area of rank order coding

• Using rank order coding (first used by Thorpe [77]) in a spiking neural sys-

tem implementing a sequence memory, constructed using an implemention

of Kanerva’s sparse distributed memory (SDM) [45] with N-of-M coding

and real valued weights. (See Chapter 7)

• Implementing a rank-ordered N-of-M SDM associative and a study of its

performance with regards to its capacity, error tolerance and behaviour at

different sensitivity values (see Chapter 4). This extends earlier work on

N-of-M SDMs using unordered or binary codes, by Furber et al [27].
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Contributions in the area of spiking neurons

• An understanding of issues involved in modelling a high-level engineering

task (a sequence machine) using low-level spiking neurons (see Chapters 6

and 7).

• A novel spiking neural model, called Rate Driven Leaky Integrate and Fire

or RDLIF, which has the activation driving function increased by incoming

spikes and activation decay with time in the absence of spikes, a kernel

function similar to Gerstner’s Spike Response Model ([28]) and is a modifi-

cation of the commonly used Leaky Integrate and Fire model [53], proposed

in Chapter 6, and showing how this model is not suitable for implementing

the abstraction of firing times as a vector of significances mentioned above

(see Appendix A).

• Demonstrating that a spiking neural system operating in real time performs

equivalently to a system implemented using a rank order abstraction of

firing times (see Chapter 7).

Contributions in the area of sequence learning

• A novel framework for the asynchronous updating of the context during on-

line predictive sequence learning where no assumptions are made about the

generating model of the sequences, and its use to build an on-line sequence

memory (see Chapter 5, section 1).

• A “combined model” of context encoding, combining the features of a neural

layer (such as those used in Elman [23] and Jordan [43] models) and shift

register (used in time delay neural network models [51], [83]) by means of

a scaling parameter λ to modulate the influence of the context relative to

the input in deciding the next prediction and to switch between the two

behaviours. (see Chapter 5)

• Tests on the properties of the implemented on-line, predictive sequence

memory, varying different parameters including sequence lengths and al-

phabet sizes and finding optimal values for scaling parameter λ for different

distributions (see Chapter 8).
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1.6 Dissertation structure

The dissertation is divided into nine chapters, including this introductory chapter.

A summary of the remaining chapters is presented below.

Chapters 2 and 3 are literature review chapters. Chapter 2 defines key con-

cepts and gives an introduction to the problem of sequence learning. It also

provides the biological motivation and surveys various previous approaches to

the problem. Chapter 3 provides an introduction to models of spiking neurons

and associative memories including sparse distributed memories.

Chapter 4 is the first novel contribution of this dissertation. It describes the

associative memory used in our model, which is a version of sparse associative

memory [45] using N-of-M codes [27], adapted with real valued weights to facili-

tate later spiking implementation and is capable of reading and writing rank order

codes. It presents the results of some experiments to measure the performance

of the memory.

Chapter 5 is the second novel contribution made in this dissertation. It de-

scribes a framework for asynchronous updating of context in the sequence ma-

chine. It then implements a sequence machine in accordance with this framework,

using a new combined model of context encoding and using the associative mem-

ory developed in Chapter 4.

Chapter 6 is the third novel contribution of the dissertation. It describes a

new model of spiking neuron with first order dynamics, called rate driven leaky

integrate and fire (RDLIF) model, that is suitable for implementing rank order

codes. It also presents a simpler linear model called the wheel model that we

have used to build our system. The chapter also discusses different issues in

modelling through spiking neurons, such as the use of feed-forward and feedback

inhibition, and shows through simulation how a spike burst could be transmitted

stably through different layers of a feed-forward neural network.

Chapter 7 discusses the different components of the sequence machine and

how each of them can be implemented through spiking neurons. It also discusses

timing and other issues in the integration of all these components. The system is

simulated using a suitable spiking neural simulator. It is demonstrated that the

spiking system can learn a given sequence correctly and in a single pass, while

observing all the timing constraints.

Chapter 8 presents the results of different experiments performed on the se-

quence machine in order to understand how its performance varies with different



CHAPTER 1. INTRODUCTION 32

parameters used.

Chapter 9 concludes and summarises the entire dissertation and gives pointers

to directions in various related areas in which further work might be pursued. It

also looks at some applications in which the model might be utilised.
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of spiking neurons”, by J. Bose, S. B. Furber and J. L. Shapiro, published in

proceedings of 16th Italian workshop on Neural nets (WIRN 2005), Vietri

sul Mare, Italy, 8-11 June 2005.

• “An associative memory for the on-line recognition and prediction of tem-

poral sequences”, by J. Bose, S. B. Furber and J. L. Shapiro, published in

proceedings of International Joint Conference of Neural Networks (IJCNN

2005), Montreal, Canada, 31 July - 4 August 2005.

• “A sequence machine built with an asynchronous spiking neural network”,

by J. Bose, published in proceedings of 17th UK Asynchronous Forum,

Southampton, UK, 5-6 September 2005.

• “A spiking neural sparse distributed memory implementation for learning

and predicting temporal sequences”, by J. Bose, S. B. Furber and J. L.

Shapiro, published in proceedings of International Conference on Artificial

Neural Networks (ICANN 2005), Warsaw, Poland, 11-15 September 2005.

• “An asynchronous spiking neural network which can learn temporal se-

quences”, by J. Bose, S. B. Furber and M. Cumpstey, published in pro-
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Chapter 2

Sequences and sequence learning

In the first chapter we gave a general introduction to the thesis, and mentioned

that the specific goal of our research is to build an on-line sequence machine

that can do sequence prediction and can be implemented using spiking neurons.

In this chapter we define and discuss the problem of sequence learning in detail,

including various machine learning approaches to the problem. We shall detail the

spiking neural implementation of the machine with a suitable hetero-associative

memory in later chapters.

2.1 Defining some terms

In this section, we define a few terms we use throughout the thesis.

2.1.1 Defining a sequence

We define a sequence in our system as a temporally ordered list of symbols from

a finite alphabet. The symbols constituting a sequence can be anything from

characters or notes of a tune to stock market data. If we use symbols from the

English alphabet, ‘abc’ is an example of a sequence of three symbols, of which

the symbol ‘a’ is first in time order, followed by the symbols ‘b’ and ‘c’. Since

time can only go in the forward direction, we do not treat the ordered sequence

‘ab’ the same as the ordered sequence ‘ba’.

We take the entirety of the symbols presented to the system from the start till

present as constituting the whole sequence. We are building a predictive model

based on the past inputs to the sequence machine, which means that the system

34
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predicts what the next symbol should be based on the entire sequence of symbols

that has been presented to it so far. Therefore, a sequence in our system is simply

all the symbols that are explicitly presented to the system from the beginning.

2.1.2 The sequence learning problem

Learning a sequence means learning the temporal relationship between the con-

stituents of the sequence. For example, if a sequence of letters ‘abcde’ is learnt

by the machine, the machine will know that ‘b’ follows ‘a’, ‘c’ follows ‘ab’, ‘d’

follows ‘abc’ and so on.

The problem of learning sequences is harder than learning single associations,

such as associating symbols ‘a’ and ‘b’. To learn a sequence, a neural network

must have some way of representing and storing the temporal information of the

sequence spatially, in the connection weights. To learn a sequence such as ‘abc’,

a machine must learn to associate ‘b’ to ‘a’ and ‘c’ to ‘ab’. Thus, the context

of any symbol in a sequence, representing where the symbol occurs relative to

other symbols presented so far, must also be learnt. The memory has a finite

size, therefore we need to store the context in a suitably compressed way.

The way we can verify whether the system has successfully learnt a sequence

is through prediction: if we enter the symbols of the previously learnt sequence

to the system one by one, it can successfully predict the next symbols in the

sequence based on what it has learnt. A brute force method to solving the problem

of predictive sequence learning would be to store the entire past history of the

presented inputs. During recall, as we give it the symbols of a given sequence

it has seen and stored previously, the system narrows down the search space

of possible candidate sequences to which the given input symbols may belong,

until it has just enough information to identify the sequence and if possible,

unambiguously predict the next symbols correctly. There may be cases where

unambiguous prediction of the symbol may not be possible. In case of such

conflicts, the system should be able to predict the most likely (as per the prior

probabilities, also known as Base rate) next symbol.

2.1.3 Defining a sequence machine

A sequence machine is a system that can learn sequences of symbols.

Symbols can be made up of images, sound, music notes, numbers, etc. We
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Figure 2.1: Basic design of a sequence machine

assume here that we have a finite alphabet and the sequences are formed of

symbols from this alphabet. We are interested in on-line sequence learning, which

means that there is no separation between training the system to learn new

sequences and recall of a previously learnt sequence on presenting a few symbols

as cue, and a single presentation of the sequence is sufficient for learning.

In sequence memories, the context of a symbol is important in recognising

a sequence, as the same symbol can appear in different contexts. For example,

two different sequences ABCDE and ZBCXF have the symbols BC in common,

so the successor of C cannot be predicted unless its context in the sequence is

also known. So the machine must have some mechanism to store the history or

context of the sequence. This can be in the form of an explicit neural memory to

store the context in the neural connections, a dynamic memory where the context

is stored as the activity pattern of a neural layer with feedback, or an implicit way

in which the context is built into the structure of the memory (such as by using

delayed connections, an activity trace, a convolution or some other mechanism).

We have chosen to use a dynamic context using a neural layer with feedback.

Also, it must have a memory that associates a symbol with its successor, so that

on being given an input symbol, it can make a prediction of what the next symbol

should be. For this purpose we have chosen an associative memory.

Therefore, every neural sequence machine must have the following compo-

nents: an input symbol, an encoder to encode the symbol into a suitable dis-

tributed neural code for storing in the memory, a memory to store the associa-

tions between encoded symbols, a memory to store the context of the symbol, a

decoder and the predicted output symbol. Figure 2.1 shows the structure of a

basic sequence memory. The structure of the sequence machine we have designed
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will be explained in more detail in chapter 5.

2.1.4 Defining a symbol and a sequence in a spiking neural

system

Our intention is to build our system using spiking neurons as components. Ac-

cordingly, the symbols constituting the sequences are encoded as spike bursts

emitted by layers of spiking neurons firing asynchronously. We need first to de-

fine a symbol in terms of the fired spikes. Here we define a symbol to be encoded

in the choice and temporal order of firing of spikes emitted by a layer of neurons.

The encoding using the time order (or rank) of firing is called rank-order coding

and was first used by Thorpe [77]. The number of firing neurons out of the total

number of neurons in the layer might be fixed, in what is called N-of-M encoding,

in which the choice of N firing neurons in a firing burst out of a total of M neurons

in the layer is used to encode the symbol [27]. We have used an ordered N-of-M

encoding as the scheme for encoding symbols in our system, as a combination of

N-of-M encoding and rank-order codes.

Decoding is the reverse of the encoding process. A particular sequence of

firings of the neurons in a layer is decoded as a symbol by identifying the encoded

symbol that is closest or most similar to it. We have a fixed alphabet of symbols

and the number of symbols in our alphabet is less than the maximum possible

number of codes (combinations of neural firings that make up our symbols).

Therefore we can afford some degree of redundancy in identifying a spike sequence

as a symbol in the alphabet. We have also defined a way to measure similarity

between symbols, in order to identify the output sequence of spikes with one of

the symbols in our alphabet.

The encoding and decoding schemes will be explained in more detail in chapter

4.

In implementing the sequence machine using spiking neurons, there are two

levels of temporal sequences in the system: the sequence of spikes output by a

layer of neurons forming a burst which encodes a symbol and the sequence of

symbols. In this and later chapters where we refer to the term ‘sequence’ we will

take it to mean the sequence of symbols only.
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TIME

Figure 2.2: A spike wave front propagating through a series of neural layers in
time, representing symbols propagating across different layers. The ellipses rep-
resent layers of neurons, and the bursts of spikes emitted by each layer (between
the dotted parallel lines) are shown between the layers in the shape of a wave
(represented in the dotted S-shaped curve) travelling forward in time. This figure
illustrates what we mean by the terms ‘burst’ and ‘wave’.

2.1.5 Defining a wave and burst

The spiking activities in the system occur in waves. First, an input spike is

fired, which causes a wave of corresponding spikes to fire in all the other layers

of the system, until the output spikes are fired, similar to the functioning of a

synfire chain [1]. This is followed by the next wave and so on. A so-called wave

is propagated by successive layers in a system firing bursts of spikes (forming a

rank-ordered N-of-M code) into the next layer in a feed-forward fashion, which in

turn fires another burst of spikes, and so on, as shown in figure 2.2. In this and

successive chapters, we will use the term ‘burst’ to refer to the spikes emitted by

a neural layer forming an ordered N-of-M code, and ‘wave’ to refer to a series of

successive bursts in different layers of the system triggered by an input spike.

2.1.6 Defining neural and non-neural

In this dissertation, we shall use the term ‘neural model’ to mean local point

units or nodes arranged in a weighted directed graph structure (with weighted

connections between the nodes, which can be both forward and recurrent), each

node having a quantity called activation that is incremented when it gets inputs

from other nodes. If the activation of a node exceeds a threshold, it is said to

have fired and the activations of all the nodes connected to it are incremented.

All models that do not consist of nodes with weighed connections and activation

shall be referred to as ‘non neural’ models.
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2.2 Problem formulation

In this section, we define our sequence learning problem precisely.

In a sentence, we can state that our problem is to build a context neural

layer based predictive model of on-line sequence learning with a finite memory

that can be implemented using asynchronous point spiking neurons and does not

make any assumptions about the generative model of the sequence. We shall now

describe in detail what this means.

We want to build a system that can learn any given sequence, which it has

not learnt before, on a single presentation of that sequence, and predict the next

characters of a previously learnt sequence as accurately as possible. The system

has a finite memory to which associations are written and from which they are

read. The learning is on-line, which means that the machine works in one mode

only and there is no separation between the learning (write) and recall (read)

modes. When we speak of a predictive sequence machine, we can imagine a

black-box such that we enter the symbols constituting the sequence one by one,

and the machine learns the relation between the symbols. On every successive

symbol that is entered, the machine gives a prediction of the next symbol (after

reading from the memory). The behaviour of the machine in the ideal case is

as follows: If the symbol is part of a sequence that has been previously learnt by

the machine, the prediction will be correct and no new learning will take place.

If the symbol is not part of a previously learnt sequence, the prediction will be a

random symbol but the machine will write the new association of the old context

and the new symbol to the memory, and predict it correctly the next time the

same sequence is presented. Thus the learning and prediction are integrated, and

the machine knows when to learn a new association.

The problem we have in mind is getting the best prediction of the next symbol

in the sequence based on the associations written earlier to the memory. The

prediction of the next symbol depends on the context of the present symbol

in the sequence as well as the current symbol presented. The machine should

be able to disambiguate the next symbol and predict it correctly, with as few

input symbols as necessary for it to reconstruct the context and identify the next

symbol uniquely. The context should be more influenced by recent inputs than

by the past history. Yet it must not forget history completely, to enable it to

disambiguate between two very similar looking sequences.

The system learns the association between the old context and the current
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symbol, and based on this the new symbol is predicted. If a similar looking

context and the same symbol are presented to the machine as an association that

was learnt previously, it would be able to predict the next symbol correctly. In

an ideal case with infinite memory, the system should be able to look back in its

memory from the current state as far as necessary to find the association between

the closest looking context and current symbol that was learnt previously, and

predict the unambiguous next symbol accordingly. In case of ambiguities, the

system should give preference to the association that was learnt more recently.

This resembles features found in a human memory, since we generally tend to

remember sequences learnt more recently and forget those we learnt long time

ago. However, this approach would fail where subsequences are repeated as part

of a bigger sequence, for example in the sequence ‘abcabdabcabd...’, where the

repeated subsequence is ‘abcabd’.

Since the machine associates the context with the current input, it should be

noted that it cannot concatenate sequences automatically. For example, giving

it the sequences ‘abc’ and ‘cde’ separately at different times does not mean that

the machine has automatically learnt the sequence ‘abcde’. It may or may not

predict ‘d’ for ‘abc’ depending on the context at that time.

We now describe the behaviour of the sequence machine with an example,

assuming an infinite memory and no errors in the presented sequence. Suppose

we have a sequence much as ‘abcabdab’. The machine has to make the best

prediction for the next input symbol (the successor of the last ‘b’) based on what

it has seen so far. The way it can do so is this:

1. The machine scans the whole sequence from the start to see the instances

where this symbol has occurred earlier in the sequence. In this case, it will

scan for instances of ‘b’. If there is only one other instance, it can state

the prediction based on that instance. Since ‘b’ is followed by ‘d’ and ‘c’ at

different times, we cannot determine the successor based on this alone.

2. If we cannot deduce the unambiguous prediction based on step 1 alone, we

increase the length of the window until we can find an earlier instance of the

same sequence. For example, if the length of the window is 2, it has seen

‘bc’ and ‘bd’. But here too there are two instances and each is followed by

a different character. Therefore we increase the length of the time window

to 3, and here too we have ‘abc’ and ‘abd’ so here too the unambiguous

prediction of the successor of ‘b’ cannot be determined.
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3. In instances like above where we cannot develop an unambiguous prediction,

the more recently presented sequences will take precedence. For example

since ‘abd’ was the more recently presented subsequence among the two

possible predictions ‘c’ and ‘d’, the machine will predict ‘d’ as the successor

of ‘b’.

The above example illustrates how some ambiguous cases of prediction can

be resolved. The example assumed that we had no errors and the memory to

store the sequence was infinite. If, however, we implement the machine using a

neural hetero-associative memory, where the entire sequence until now is treated

as the cue and the prediction of the next symbol is based on this cue, there is the

possibility of errors in the sequence such as missing characters. In case of missing

symbols in the larger sequence, a neural memory would still be able to make the

best guess although the above algorithm would still be ambiguous.

2.2.1 Extension to the problem formulation

In recalling a previously learnt sequence, we make an extension to the basic model

by stipulating that the machine should be able to work with errors in the cue

which is used to recall the previously learnt sequence. In the case of such errors

such as incomplete cues, the machine should be able to predict the next symbols

on being given as few new inputs as possible i.e. it should be able to reconstruct

the original context by ‘closing in’ to the context as more characters are input.

For example, if the sequence ‘abcr’ is learnt, and the symbols given after learning

are ‘bc’, it should be able to deduce that ‘bc’ is a part of the old context ‘abc’

(in the absence of an alternative learnt association) and therefore the predicted

symbol should be ‘r’. Also, the context formed by ‘bc’ should get closer to the

original context as more symbols are added. For example the context formed

by ‘bcde’ should be closer to the context formed by ‘abcde’ than ‘bc’ is to ‘abc’.

This would enable us to remember any sequence from the middle as well, and thus

make the system more tolerant of errors in the sequence. In case of such mistakes

in the recall cue, the system should be able to lock on to the correct sequence and

hence predict correctly on being given a minimum number of additional inputs.
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2.2.2 Using a hetero-associative memory implemented in

spiking neurons

Since we intend to implement this system using spiking neurons, we want a neu-

ral equivalent of this ideal case, that has the added features a neural memory

can bring, such as robustness to failure of some components. The type of neural

network we have used for this task is a hetero-associative memory. The memory

associates a symbol with another, and the stored association can be retrieved us-

ing one of the symbols as a cue. As described in the previous chapter, associative

memories learn associations, and they can do it in a single pass or single training

cycle, i.e. on a single presentation of the two symbols to be associated. This

one-pass learning is suitable for our requirement of on-line memories, and this is

why we chose associative memories for the task.

Using a neural associative memory presents a few additional constraints: the

number of sequences the system can learn is limited by the dimensions of the

memory. Since the size of the memory is finite, the system will inevitably have

errors in the prediction as the memory fills up. Also, the neural network has

no way of knowing what it knows, unless it is explicitly programmed for that

purpose (for example, by defining a way to measure similarity or distance between

encodings, and then defining a threshold of similarity which is the confidence level

above which the system determines that it has recognised the sequence the symbol

belonged to).

2.2.3 Some notes on the functionality of the high-level

system

In our model, we treat the sequence as a continuous long chain of symbols, with

each learnt sequence such as ‘abc’ being a part (or sub-sequence) of this long

sequence. There is no way in the system to separate sub-sequences (although the

blank character can be a part of the alphabet) or to indicate the beginning or end

of a sequence such as ‘abc’. This is intuitive to the way humans learn sequences,

because we do not have any memory from the beginning and recall previously

learnt sequences based on the totality of the history we have learnt so far. If we

wish to learn separate sub-sequences, we could have a simple extension to the

system to incorporate this feature, by simply clearing the context when such a

special “end” character is input. The system we are implementing, however, will
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deal with a continuous chain of symbols without any special characters.

2.3 Motivation: Biological neurons, networks and

spikes

The brain is made up of cells known as neurons. The human brain contains more

than 1011 neurons, according to the Scientific American Book of the Brain [3]. It

also has around 1015 synapses (connections between neurons).

Biological neurons generally have a similar structure although with variable

morphology, consisting of a number of dendrites, a cell body called the soma and

one or more long axons. The shape of a neuron is shown in figure 2.3.

DENDRITE

NUCLEUS
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AXON

SYNAPTIC CLEFT

AXON TERMINAL

NEUROTRANSMITTERS

STRUCTURE OF A NEURON

Synapse

Figure 2.3: Structure of a neuron (adapted from Longstaff [52])

Information is transmitted between neurons through electrical impulses called

action potentials, also referred to as spikes. The dendrites connect to other neu-

rons and take input spikes from them. Output spikes generated by a neuron

travel through its long axon to be transmitted to the dendrites of the neurons
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connected to it through the synaptic cleft, which is the name given to the gap

between neurons.

There is great diversity in the behaviour of spikes emitted by neurons, such

as bursting or spiking in phases or without phase, spiking in response to different

kinds of inputs in different ways, spiking with different response times, etc. The

type of spiking behaviour varies with the type of the neuron, its location and the

type of input it receives. The time frame for the firing of a spike is of the order

of milliseconds.

2.3.1 Mechanism of spike production

Action potentials or spikes are electrical impulses caused by electrochemical mech-

anisms and causing the transfer of chemical messengers called neurotransmitters

from the axon of one neuron to the dendrite of another. They change the electri-

cal potential of neurons through the transfer of various ions (mainly potassium,

sodium, calcium and chlorine) due to the concentration differences of these ions

across the cell membrane of the neuron, and the resulting difference of electrical

potential. Neurotransmitters released from the axon of one neuron travel across

the synaptic cleft and bind to receptors in the dendrites of the connecting neuron,

causing its electrical potential to change which may lead to the generation of an

output spike by that neuron.

Neurons at rest have a specific negative electrical potential in the cell body

called the resting potential, which is of the order of a few tens of millivolts. In-

coming spikes can increase or decrease this potential. Presynaptic spikes (spike

transmitted from the synapse of a neuron to another receiving neuron) can be

either excitatory or inhibitory. When an excitatory presynaptic spike arrives at

the synaptic cleft, it causes a depolarisation of the synaptic terminal, i.e. the

resting potential becomes less negative. This induces neurotransmitter molecules

to be released, which change the membrane potential (also called cell potential)

of the postsynaptic neuron (the neuron which receives the neurotransmitters) by

causing positive sodium ions to be released through voltage-gated ion channels.

If the membrane potential happens to exceed a threshold, a spike is emitted,

marked by a sharp, transient increase in the membrane potential, which is known

as depolarisation. Depolarisation is followed by inactivation of the sodium chan-

nel and the opening of the potassium channel, and the membrane potential goes
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down again, below the resting potential of the neuron, in what is termed hyperpo-

larisation. Hyperpolarisation causes deactivation of the ion channels and a return

to the resting potential of the cell and this completes the spike. Spikes generated

at the soma are transmitted across the axon of the neuron at a constant speed

which varies with the type of neuron, ranging from 2 to 400 km per hour. These

mechanisms can be studied in more detail in books such as “Principles of Neural

Science” by Kandel, Schwartz and Jessell [44].

The moment when the membrane potential crosses the threshold from below

(during depolarisation) is termed the firing time of the spike. After the spike

firing time, when the membrane potential is reset below the resting potential,

the neuron is unable to fire another spike for some time, which is known as the

refractory period of the neuron.

A neuron can have either inhibitory or excitatory outputs, but cannot have

both (Dale’s law, [18]). In biological neurons, excitatory synapses are more nu-

merous, but inhibitory synapses are located closer to the cell body, are stronger

and typically work on faster time scales.

2.4 Sequence learning in biology

Most organisms in nature have to learn, remember and predict sequences. For

example, we constantly remember and recall sequences of sights, sounds, events,

etc. The human memory is capable of sequence learning. As babies, we know

almost nothing about the world. As we grow up, we learn all kinds of sequences

that help us form a picture of the world, including phone numbers, names etc. We

learn things by association: we associate people with events, events with other

events, etc. In this section, we examine the relevance of the sequence learning

problem by reviewing a variety of such biological phenomena related to sequence

learning that have been studied and modelled.

2.4.1 Working memory

Baddeley [8] et al postulated models of human memory, including short-term,

medium-term (also called working memory) and long-term memory. They pro-

posed that as a sequence gets repeated, it gradually shifts from dynamical short-

term memory to long-term memory. According to this model, there are three

main components of human working memory: the phonological loop (which acts
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as a rehearsal system for words), visuo-spatial sketch pad (which is responsible

for things such as remembering spatial orientation and interfacing between visual

and spatial elements of our sensory and motor organs) and the central executive

(which interfaces between these systems and also performs attention switching).

This model postulated the existence of some way to store the context or history

in a sequence, but did not specify its exact mechanism.

2.4.2 Episodic memory

Episodic memory, which is responsible for remembering of episodes by the brain, is

another biological phenomenon involving the learning of sequences, since episodes

are connected sequences of sights, sounds, etc that are remembered and recalled

as a whole. The hippocampus is the part of the brain involved with episodic

memory. Shastri [69] developed a model of episodic memory in the hippocampus,

in which short-term memory represented by a transient pattern of activity gets

transformed into long-term memory as a persistent memory trace by long-term

potentiation.

2.4.3 Sequence learning and prediction in the neocortex

There is a theory, recently put forward by Hawkins in his book “On Intelligence”

[31], that the neocortex (a part of the mammalian forebrain) acts as an on-

line sequence learner and predictor. This theory is based on observations by

Mountcastle [56] that parts of the brain dealing with processing of different senses

should have similar principles. Our senses such as the eye, ear etc constantly

receive inputs from the outside world, which are then converted into spike trains.

As per the theory, the higher layers in the hierarchical neocortex form predictions

of the world, which are propagated below and matched with the sensory inputs

at the lower layers, ending with the sense receptors such as the eyes. When a

prediction in a layer matches the sensory input, the input is identified and a

label is propagated to the higher layers, thus reducing unnecessary details at the

higher layers. If the prediction does not match, a more detailed representation is

propagated, causing the higher layers to form new labels if necessary and generate

new predictions, such that the predictions of similar sensory inputs will be correct

in the future.

For example, if we see an object on our desk one morning that we are not used
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to seeing regularly, say a new vase, we immediately take notice because it does not

match our prediction based on familiarity of how our desk should look like. After

some time we get used to the new information and when we see the vase again, we

do not notice it since it agrees with our visual prediction. Hawkins claimed that

this memory-prediction framework was basis of intelligence. However, it should

be noted that this theory is highly speculative, nevertheless it is an interesting

model of how predictive sequence learning might be of use in the brain, which is

similar to the problem we are considering.

2.4.4 Sequence learning in songbirds

Another interesting biological phenomena involving sequence learning that has

been studied and modelled is song learning and recall in young songbirds. Troyer

et al have studied how songbirds such as male Zebra Finches learn and repro-

duce sequences of sounds [80, 81]. They found that young songbirds repeat a

heard song to themselves until they can reproduce it correctly and learn the song

syllable sequence as a chain of sensory and motor representations. They identi-

fied different areas of the songbird brain such as the anterior forebrain pathway

(AFP), high vocal centre (HVC) and robust nucleus of the archistriatum (RA)

as responsible for different aspects of sequence learning. The temporal structure

of the song syllables is encoded and stored in the RA region. An internal repre-

sentation of the context of a syllable in a song is formed in the HVc area of the

brain, and that is associated with the motor signal in the RA area by a simple

plasticity-based algorithm implementing the associative memory. This learning

of associations with feedback acting as teaching signals has been postulated as a

model of sequence learning in the songbirds.

2.4.5 Relation of the sequence machine to the biological

mechanisms

We see that in the biological models of sequence learning described above, some

mechanism to store a representation of the temporal context is common. The

sequence memory that we have developed uses an explicit neural layer to store

the past context. In our model, the output is a prediction of the following input

symbol in the sequence, as in Hawkins’ memory prediction framework.
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2.5 Modelling learning

This section introduces some of biochemical mechanisms proposed to model learn-

ing or the change of the behaviour (of individual neurons or the organism as a

whole) over different time scales in neurons in response to inputs.

The brains of mammals and lower animals store both short-term and long-

term memories. Short-term memories store dynamic activity and last for a short

time ranging from milliseconds to a few hours, while long-term memories last days

or longer and are caused by more permanent changes in the synaptic connection

strengths. A variety of phenomena can be characterised as learning. Studies

have been done on the behavioural responses of neurons in a variety of organisms

such as Aplysia, which is a type of sea slug [5, 44]. Such experiments have been

conducted not only by neuroscientists but also by behavioural psychologists. The

phenomena studied and modelled include conditioning, starting from Pavlov’s

experiments [61] on dogs at the behavioural level (classical conditioning) to more

recent studies of phenomena at the cellular level.

Some simple phenomena which can be considered as short-term memory are

habituation (decreased response of a neuron with time with persistent application

of a stimulus) and sensitivity (heightened or increased level of response of a neuron

to a new input stimulus). Conditioning, in which an organism can be trained or

conditioned to respond in a certain way to a given stimulus, is another example

of learning.

Sometimes long-term learning takes place, causing the strength of the synap-

tic connection to be increased or decreased. Hebb’s rule [33] is an important

localised learning principle for the long-term change of the connection strengths

between neurons. It states that if a neuron persistently takes part in the firing

of another, the connection strength between them is increased. Hebbian leaning

requires both temporal correlation (both the neurons should fire close to each

other in time) and spatial proximity for the connection strength change to be

possible. In recent times, biologists have found evidence of this mechanism in

real neurons. Two phenomena are commonly cited as evidence: Long-term po-

tentiation (LTP) and long-term depression (LTD). LTP happens when there is a

significantly correlational and perhaps causal relationship between two neurons,

i.e a neuron ‘causes’ another to fire, which means that it fires just before the other

one, and is characterised by an increase in the connection strength. LTD is the

reverse of LTP, and refers to a decrease of connection strength when a neuron
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fires just after another.

Below we briefly review some of these mechanisms, to provide a context for

our work.

2.5.1 Classical conditioning and eligibility traces

Classical conditioning [5] models the higher-level behavioural aspect of learning,

and is based on experiments performed by Pavlov in the 1890’s [61]. In the

original experiment, a dog was trained by ringing a bell (Conditioned Stimulus

or CS) before it was given some food (Unconditioned Stimulus or US). After this

training was repeated a few times, the dog learnt to salivate on the ringing of

the bell (Conditioned Response or CR) expecting food to be provided, even when

there was no food accompanying the bell.

In a variation of Pavlov’s experiment, the dog learnt to salivate on the ringing

of the bell although the food was only provided upon a delay after the ringing

of the bell. To model this, a decaying variable called eligibility trace (to store

the eligibility of learning during the delay) was proposed, and during learning

the association was learnt between this eligibility trace and the response (food

being provided), instead of the original stimulus (ringing the bell) and response.

Therefore, the eligibility trace is a mechanism to explain delayed reward learning

in situations where the phenomena to be associated do not occur at the same time

(i.e. there is a time lag between the stimulus and the response, such as between

the ringing of the bell and the providing of food). A recent paper [59] has shown

evidence for the presence of eligibility traces at the cellular level in neurons.

In our associative memory model implemented in spiking neurons, since the

spikes to be associated arrive at different times, we have used a mechanism (the

significance vectors stored in the synapses of a neuron) that can be considered

similar to eligibility traces. It will be explained in more detail in chapters 4 and

6.

2.5.2 STDP mechanism

Spike Time Dependent Plasticity (STDP) is a combination of LTP and LTD,

which were mentioned earlier in this section. Plasticity refers to the property by

which synapses are changed in the long term. STDP is a biologically plausible
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mechanism to explain the Hebbian phenomena, and is more biologically accu-

rate and realistic than the traditional Hebbian learning rule, which takes into

account the correlation between pre and post synaptic spikes but misses out on

the temporal aspects of it. The intention is to establish causality for learning to

take place, i.e. an event happening just before another can be argued as having

caused it. STDP is modelled as a relation between change of connection weight

and the time difference between presynaptic and postsynaptic spikes [13].

2.6 Relation of our work to other approaches

Sequence learning is not a new topic, and a lot of work has been done previously

to build neural and non-neural models to perform sequence learning. In general,

the sequence learning problem can be divided into sequence generation, recog-

nition and prediction [74]. Sequence generation refers to the generation of new

sequences from a specified grammar. Recognition refers to the identification of a

sequence that has been learnt previously. Prediction means the ability to predict

the next symbols in a sequence learnt previously. Another common sequence

learning problem is sequence completion [74], which is completing a previously

learnt sequence on being given a few inputs belonging to a sequence. Sequence

completion is essentially the same as sequence prediction, once the model has

successfully learnt a sequence.

In this work, we concentrate primarily on building a model to perform the

sequence prediction task. However, as an aside, we can argue that sequence

recognition is an added functionality of our model, if we feed back the predicted

characters as inputs until the whole sequence is recalled. In such a case, we

consider a previously learnt sequence to be recognised if the machine can predict

all the symbols accurately.

One important feature of our system should be mentioned here: the system

can learn only what has been presented to it explicitly, it cannot deduce and learn

higher-level relationships between symbols, such as the model that generates the

sequence. Since we make no assumptions about the generative function, our

model is not constrained in the type of sequence it can recognise. For example,

learning a sequence such as ‘aba’ in our model is not the same as learning the

sequence ‘cdc’, even though the structure of these two sequences is the same.

Our memory cannot deduce the equivalence of such different relations because
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it treats all encoded symbols equally (it cannot learn that ‘b’ comes after ‘a’ in

the alphabet or similar relations, but can only learn that ‘b’ follows ‘a’ in the

sequence that is explicitly presented to it).

Our idea of the problem of sequence prediction is different from common

problems involving learning a grammar or time series prediction. In problems of

grammar induction, the main task is to build an internal model of the grammar

based on given training sets (which are generated by that grammar) after going

through many training iterations, so that the system can predict as accurately

as possible the next symbols in the sequence in the test set. In time series

prediction, the problem is to predict as acurately as possible the future data in

a time series, based on past data. Such problems can be solved by a system that

can deduce higher-level relations between data presented to it while building its

internal model of the generative function based on the training data, assuming

that the data is generated by a single process and that process can somehow be

learnt and modelled. On the other hand, in our model we are only interested

in remembering those sequences that are presented before it, not in learning to

generalise a class of sequences. The other difference in our model compared to

existing predictive models is that we are building it out of spiking neurons and

training it in one shot.

Related work on predictive models of sequence learning (i.e. those models

which generate a prediction of the next symbol in a sequence) can be divided into

neural and non-neural approaches, or into approaches which have a representation

of context or some way to encode and store the past history and those that do

not. Some approaches use a mixture of neural and non-neural methods, and it

is difficult to classify them as belonging to an exclusive category or paradigm. It

should be noted that even models in the literature that sound similar to ours, i.e.

which claim to perform context based predictive on-line sequence learning, do

not necessarily deal with the same problem or have the same aims. However, it

is still beneficial to analyse them as some of the issues involved are very similar,

and we would benefit from the insights in those approaches.

2.6.1 Sequence learning using neural networks

Sequence learning models using artificial neural networks can be classified based

on the neural model used (its network architecture or learning rule), the way we

represent and store the context or history, etc. Mozer [57] and Sun [74] have
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proposed classification schemes and classified many of the existing models in this

way. Sequence learning models need not be neural: Hidden Markov Models [9] are

examples of non-neural (statistical and probabilistic) approaches to the problem.

Sequence machines have been developed for a number of applications such as

music composition [58], protein sequence classification [16], robot movement [4],

grammar learning [23], time series analysis (for example, stock market prediction

or weather forecasting), etc. A review of existing approaches to sequence learning

in a variety of domains can be seen in the book on sequence learning edited by

Sun [74] and the recent paper by Worgotter et al [86].

Some of the major neural approaches to sequence learning are listed below,

along with instances where they have been used:

• Reinforcement learning and temporal difference learning [75, 86]

• Traditional recurrent models such as Time delayed neural networks (TDNNs)

or Elman networks [23]

• State of the art recurrent nets such as Long Short Term Memory (LSTM)

[34]

• Hopfield nets ([29])

• Self organising maps [73]

• Competitive nets [4]

A brief description of some of these models follows.

Reinforcement learning and Temporal Difference learning

Reinforcement learning was based on earlier work on optimal control by Bellman

in the 1950s [11] and Q-learning by Watkins et al in the 1990s [82], and reviewed

in detail in a textbook by Sutton and Barto [75]. It is a model in which an agent

learns from the environment, which acts as a teacher. The agent builds an internal

model of the environment and uses it to interact with it through outputs called

‘actions’, which generate ‘rewards’ which the agent seeks to maximise. This differs

from supervised learning in that there are no explicit ‘correct’ outputs which the

agent can use to train itself. If we consider the environment as the generative
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process of the sequence which the agent has to model as accurately as possible,

this is similar to the sequence learning problem.

Temporal difference learning [79] is a model for learning in case of delayed

rewards (i.e. when the feedback from the environment does not come at the same

time when the action takes place, and the agent has to associate the action with

the reward), using eligibility traces. As mentioned in the previous chapter, an

eligibility trace is a term that represents how much the neuron is ‘eligible’ to

learn, and is a way of remembering over time. The model can learn a sequence

by associating an eligibility trace of one encoded symbol with the other encoded

symbol, where the symbols to be associated arrive at different points in time.

Recurrent neural networks

Recurrent nets (artificial neural networks with feedback connections) which com-

monly use gradient descent to minimise errors at the output (usually with error

backpropagation as the learning algorithm), have long been used as models of

sequence learning. These are commonly used in supervised learning, where the

network is first trained via a training set of sequences and is then used for pre-

dicting the future values in the sequence in a different test set.

Time delayed neural networks (TDNN) [32] are a model of sequence learning

with a recurrent neural net. The network has three layers: the input, hidden and

output layers. The input vector is composed of the present input and a series of

snapshots of the values of the last few discrete inputs in the sequence. The system

learns to predict the next output based on the last few inputs in the sequence.

Training of the network is done with the usual gradient descent algorithm.

The Jordan [43] and Elman [23] models, which we describe later in this chapter

in the section on context based models, are also based on a recurrent architecture.

Long Short Term Memory (LSTM)

Schmidhuber’s method of Long Short Term memory [34] is a state of the art

RNN (recurrent neural net) which can be trained very efficiently and which can

remember error signals over long time lags of up to 1000 time steps. The novelty

of this approach lies in having threshold gates to stop the error signals from being

forgotten. The key component of this model is the LSTM cell, made up of linear

and nonlinear units with gating to prevent important error signals from escaping,

and irrelevant signals from entering the cell. It is thus a version of short term



CHAPTER 2. SEQUENCES AND SEQUENCE LEARNING 54

memory (with recurrent connections) or a dynamic representation of the state,

that could maintain the state over long time lags, hence the name. It was used

for a number of applications, and shown to solve benchmark problems such as

learning an embedded Reber grammar [64], noise free and noisy sequences with

long time lags [34].

Reinforcement learning (using actor critic methods, where the machine adapts

itself to a changing external environment by correcting its internal state based

on feedback error signals from an internal critic) and gradient methods (based on

algorithms similar to backpropagation to train the model using several training

cycles) have been generally favoured in most of the literature, especially where

practical applications are concerned.

2.6.2 Non-neural approaches to sequence learning

An important non-neural approach to the sequence learning problem is using

Hidden Markov Models or HMMs [5]. HMMs have a limited number of discrete

internal states. For each new input in the sequence, there is a transition from one

state to another. The transition probabilities between different states are learnt

from the training data. From the transition probabilities we can calculate the

probability that a given sequence is generated.

Bayesian nets have been used extensively in studying time series. They are

based on statistical probabilities and seek to predict the next item in the sequence

with the maximum probability.

There are many models of context free and context sensitive languages for

grammar generalisation according to predefined rules. The models seek to re-

member the rules for generating permissible sequences by the grammar or to

identify if a sequence belongs to that grammar.

For prediction of a learnt sequence, tree pruning, hash tables and other search

algorithms can be ways to predict the next symbol in the sequence given any

symbol. The search tree or graph is built while training the system.

Fractal machines

Tino [78] described a predictive model of sequences (the problem of predicting

the next symbol in a sequence given any sequence) similar to a variable length

Markov model. His approach was based on the principle of holographic crystals.
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He used a fractal representation of the sequence, where the entire sequence was

encoded as a structure of points on a hypercube. The common feature of this

approach and our work is that both are building a predictive model where we

encode the context in a way that uses information from the entire sequence,

although in our model the context vector has a finite length. Another difference

of Tino’s predictive model from ours is that Tino’s model was first trained using

training sets of data, and then was used to predict the next symbol, while in our

case the training and prediction happen simultaneously.

2.6.3 Spiking neural models to learn spatio-temporal se-

quences

Recently, a few people have put forward models that can learn and reproduce

spatio-temporal sequences of spikes [12, 53, 38], or perform other computations

on them. It must be remembered here that our definition of sequences refers not

merely to sequences of spikes, but to sequences formed by these spike sequences.

In our model, every spatio-temporal spike sequence encodes a symbol, and our

machine learns and predicts sequences of symbols. Below we look at some biolog-

ically plausible spiking neural models that have been proposed that are capable

of sequence learning.

Cell assemblies and synfire chains

The cell assembly is a model put forward originally by Hebb [33] in 1949 as a

possible mechanism of learning in the brain. A cell assembly is a group of neurons

that fire together due to having strong feed-forward and recurrent connections

between them, and their firing together can be thought to represent a particular

concept (for example thought) in the brain dynamically or used to perform a task.

The connection structure is such that these firings are largely self sustaining.

A cell assembly is formed through the application of Hebb’s rule, which states

that if two neurons fire in spatial (they are located close to each other) as well as

temporal proximity (fire very closely in time and one of them causes the firing of

the other) then some kind of physiological mechanism takes place such that the

capacity of one neuron to make the other fire is strengthened. With this rule, the

three conditions: spatial and temporal proximity and causality, must be fulfilled

for effective learning to take place. Hebbian learning is localised, in the sense
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that the neurons learn based only on information available locally to them: there

is no global feedback or any other regulatory mechanism to control their firing.

A similar model to a cell assembly was proposed by Izhikevich, which he called

polysynchronous groups [37], in which groups of oscillators in a network fire in

synchrony.

A synfire chain can be considered a subset of a cell assembly, having only

feed-forward connections between layers and no recurrent connections. Synfire

chains were proposed by Abeles as a model of information transmission through

cortical neurons in the brain [1]. A synfire chain is a chain of neuronal layers of

comparable size with feed-forward connections, capable of sustaining and trans-

mitting a sequence of spike firings across the neural layers. It is a logical chain,

not necessarily a physical one, and the neurons constituting a chain might not

have spatial proximity. A single neuron can be a member of more than one synfire

chain, so such chains can store more than one spike sequence. Cell firings in one

layer of the chain cause a synchronised firing activity in the next layer. Abeles

also proposed some restrictions on the converging and diverging connectivity pat-

tern of the chain in order to sustain a uniform level of firings from one layer to

the next.

Sterratt [72] has studied various properties of synfire chains including training

algorithms, dynamics and speed of recall and developed a model of the olfactory

system based on these. Jin [41] has used a synfire chain with inhibitory and exci-

tatory connections to build a model to recognise spatiotemporal spike sequences.

Liquid state machines and echo state networks

Interesting new paradigms have also been explored to solve the problem of com-

putation on input spike sequences, or to extract information from fast-changing

spike trains. A suitable example is Maass’ approach based on the dynamics of

learning waves in liquids, used in his liquid state machine (inspired by neocortical

columnar memories) [54].

Liquid state machines (LSMs) were proposed by Maass [54, 5] as a biologically

plausible model that could learn or perform computations on spatio-temporal

sequences of spikes. An LSM has an internal representation of system state stored

in a recurrent circuit, which can change continuously or in a ‘liquid’ manner as

it gets new inputs. The model has the input, hidden and output layers, which

could be built of integrate and fire neurons. The hidden layer of the model is a
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recurrent nonlinear filter circuit which transforms the time varying input into a

trajectory of internal states. It serves to project the input and the present state

into a very high dimensional space so as to make it linearly separable. This linear

separation is performed by the output layer, which is made of a linear memoryless

readout map trained for a particular task. Maass showed that such a model could

in principle approximate any real-time computational task on continuous input

streams. Different readout units in the output layer can be trained to perform

different computations on the input train, such as temporal integration of input

spikes, coincidence detection, etc.

ESNs or echo state networks were proposed by Jaeger [38]. They are like a

discrete version of the liquid state machines. The principle is the same as the

LSM, which is having a first layer which is large and heavily recurrent and which

can be seen as a reservoir of complex dynamics. The outputs are ‘tapped’ from the

reservoir of excited signals from the recurrent layer by a trainable linear output

layer. The echo state network, like the LSM, consists of three layers of neurons,

with one hidden layer apart from an input and output layer. Connectivity is

stochastic and weights are set in the output layer with a one-step learning rule

involving linear regression.

2.7 Context-based sequence learning

There have been a few studies of context-based sequence learning, where the

output of an explicit context neural layer is used as a cue for the prediction of

the next symbol in the sequence [12, 23, 43].

Context Units

Output Units

Hidden Units

Input Units

Figure 2.4: Structure of the Elman model

Jordan’s model [43] used a recurrent neural network with separate input,

output, hidden and context neural layers. The outputs were fed back via recurrent

connections to the context layer. The output of the context layer served as a
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representation of the dynamic state or history of the sequence.

Elman’s model [23] was quite similar to Jordan’s model, except that in this

case the hidden layer output was fed back into the context layer. This model

was shown to solve problems like XOR and discover syntactic features for words.

This model is illustrated in figure 2.4.

In both the above models, the context layer output was fed to the hidden

layer, and the hidden layer outputs were fed to the output layer via feed-forward

connections. Both models had recurrent connections to the context (from the

output and hidden layer respectively), and were trained using supervised learning

based on minimisation of the output error. Our model is different from them

in the sense that it is based on an associative memory and uses unsupervised

learning. These models operate in an offline mode, involving first training the

model for a number of training cycles, and then (after the training is completed)

presenting incomplete parts of the sequence and expecting the model to complete

them correctly.

Berthouze’s model [12] had a structure similar to the above two models, with

a central module (similar to a hidden layer) consisting of multiple layers of leaky

integrate and fire [53] spiking neurons and four other neural layers: input, context,

predicted context and output. The dimensions of the central module layers was

equal to that of the input and output, and the dimension of the context was the

same as that of the predicted context layer, which was not necessarily equal to

the input layer dimensions. The input layer was connected with unit weights

and one-to-one connections to each layer in the central module, and so was the

output layer and the layers in the central module. Similarly, the previous context

was connected to the context layer with unit weight one-to-one connections. The

context layer had fixed all-to-all connections with each layer in the central module.

The neurons in the layers of the central module had variable connections to the

output layer and the predicted context layer. The spiking neural model used for

the central module neurons was the spike accumulation model, similar to the LIF

model.

This model is similar to ours, in the sense that it too deals with predictive

sequence learning, where the output is a prediction of the next input. However,

the learning rule in this model was supervised, based on the minimisation of the

error between the current output and the next input. In our model, we use an

associative memory and unsupervised learning. Berthouze’s model is suitable
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for the case where sequences are generated using a specific grammar, and the

objective is to efficiently train the model such that it can predict correctly the

next symbol from sequences generated from that grammar. Our model, on the

other hand, makes no assumptions about the generative model of the sequence,

and should perform better in the on-line mode, where there is no separation

between the training and the recall stages.

2.8 Representing a sequence: coding theories

In this section, we discuss various theories of how information is coded in neurons.

2.8.1 Rate codes and temporal codes

The brain decodes the enormous volume of spike information that comes from

the senses, stores some of it as memories, and transmits commands to the motor

and limbic systems also through spikes, all in real time. What is the language

used by the brain to encode and decode the spiking information? This problem of

neural coding has generated much interest, both among those studying biological

mechanisms [65] and those interested in building robots to perform human-like

functions.

From the time of Adrian [2] in 1926 until today, various theories have been

proposed to explain coding by spikes. Most of them use rate coding, which has

been a dominant theory for the past 100 years. Rate coding postulates that

information transmitted by neurons is encoded in the rate of firing of spikes. The

rate can be expressed in various ways such as averaging over a number of neurons

in a specific time window, averaging over a number of runs, averaging for one

neuron over a length of time, etc [53].

Temporal coding is another theory which can explain how neurons code in-

formation. In temporal coding, the actual timing of the spikes is said to carry

information rather than just the firing rate as in rate coding. A number of tem-

poral coding theories have been proposed, such as time to first spike, synchrony

between different neurons, and timing of the spike with respect to the phase of

the neural oscillation, etc. These can be read in more detail in books by Maass

[53] and Arbib [5].
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2.8.2 Biological evidence for temporal codes

More recently, Thorpe et al have argued [77] that the timing of the spikes cannot

be ignored (as in rate coding) as it is important in processing in the brain. Thorpe

showed that in some experiments involving fast object recognition in the visual

system from the retina to the layers of the cortex, the spikes from the retina

had to pass through a number of layers, and the processing time to recognise

images was only of the order of a few hundred milliseconds. This meant that for

some layers in the brain, there is only enough time for at most a single spike per

neuron to pass, thus making rate coding unlikely. Thorpe argued on this basis

that the first few spikes were the most important in encoding and decoding the

image in cases of object recognition through layers of the visual system including

the retina, and proposed a model of visual processing that encoded information

based on the relative temporal order of spikes and giving more importance to

earlier spikes.

In our model, we have used the same temporal coding scheme as Thorpe,

called rank-order coding [76], to encode our symbol vectors as bursts of spikes

in the sequence machine. This code is an abstraction of true temporal coding,

because it is not concerned with the exact timing of the spikes but only with their

relative order of firing in a layer.

Panzeri et al [60] conducted some experiments on the somatosensory system of

a rat, deflecting the whiskers using materials of different levels of coarseness. They

found that most of the information transmitted about the identity of the material,

based on the firing of the whiskers, could be extracted from the first spike after

the stimulation. The second and later spikes also transmitted some information,

but in most cases the stimulus could be deduced from the first spike only. This

can be considered as additional supporting evidence for Thorpe’s hypothesis that

the first few spikes are the most important in transmitting information about a

new stimulus.

Johansson et al [42] found evidence for coding by the earlier spikes of the

tactile signals at the human fingertips. They found that in some cases, the use of

the tactile information at the fingertips was faster than could be explained if the

information had been transmitted by rate coding alone. They also found that

the first spikes transmitted the most information about the stimulus.
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2.9 Context in the sequence memory

In building a memory to remember sequences, we need to have some represen-

tation of the context of the symbol in the sequence. We have seen previously

that many biological as well as artificial neural network models have some way

to store the context. This context memory can be stored either as an internal

neural state or given an external explicit representation (some separate neurons

to represent the context). In our model, the use of context is primarily inspired

by the Elman model [23] as well as the presence of some form of context storage

in most biological models of memory.

In some models such as Hawkins’ model of the neocortex [31] and also Kan-

erva’s sparse distributed memory [45], hierarchical memories are used to store

sequences of sequences instead of a separate memory for context. However, we

choose to use a separate context memory for our problem rather than a hierarchy

of memories, which is a simple solution for our on-line learning problem. Also, in

our model we will store the context as a short-term rather than long-term mem-

ory, i.e. we will have a neural layer with fixed weights for the context rather than

having learning for the context layer too. Learning will be confined to the main

associative memory, which will associate the context (history) with the present

input.

2.10 The context encoding problem

In chapter 2 we explained why it is necessary to have some representation of

the context or past history of the sequence in the sequence machine in order to

associate it with the new input. In this section, we examine how to encode the

context efficiently in our context memory.

The context encoding problem is to determine the representation or encoding

of the context or history of the sequence in the most efficient way possible, so

that we can recover the whole sequence in an associative memory, on presenting

this context as a cue.

2.10.1 Encoding the context: previous approaches

The problem of how to encode the past history efficiently has been investigated

in the past. Plate [62] proposed some ways to encode higher-level associations as
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a fixed-length vector. He used circular convolutions to associate items (a convo-

lution of two vectors involves a compression of their outer product, by summing

along the trans diagonals of the outer product, and a circular convolution is a spe-

cial type of convolution that does not lead to an increase in dimensionality of the

result), resulting in a vector of fixed length to represent the past context, which

he called a reduced representation. Circular correlation was used to decode the

convoluted vector into its constituent vectors. The compression of several vectors

into a vector of fixed length was possible because a convolution trace only stored

information sufficient for distinguishing the constituent vectors, but not enough

to reconstruct them accurately by itself, needing input cues to recall the stored

data accurately.

For storing sequences, Plate proposed several methods including storing the

entire previous sequence as context, using a fixed cue for each position of the se-

quence, chunking sequences by storing a combination of symbols constituting the

sequence, or storing a convoluted version of the previous sequence. For example

to store the sequence abc, the convolution trace would be a+a∗b+a∗b∗c (where

the * represents convolution) if the entire sequence is used as context, and the

retrieval cue would need to be built up also using convolutions.

In our case, since our vectors are coded as ordered N-of-M codes (such as

11-of-256 codes), the result of any convolution of the past input ordered N-of-M

vectors to represent the context would have to keep the N same as the constituent

codes (a restriction not necessary in Plate’s model), thus losing some information.

As discussed earlier in chapter 2, we have two restrictions in choosing an

appropriate way to represent the context: one is that it should give priority to

nearest inputs to be tolerant to errors. Second, it should be able to disambiguate

similar looking sequences and therefore should not forget the past completely.

We want a machine that can balance these two considerations.

In the next two sections, we will look at two possible ways of encoding the

context, which encapsulates the past history of the sequence. We will examine

the models in light of the on-line sequence learning framework that we described

in chapter 2.

2.10.2 Context as a shift register

One way to encode the context or the history of the sequence is as a fixed-length

sliding time window (or lag vector) of the past, and associate the next output
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Figure 2.5: Using delay lines to represent time explicitly in a Time delay Neural
Network (TDNN)

with inputs in the time window, as is done in Time Delay Neural Nets (TDNN)

([51], [83]), as shown in figure 2.5. The input is stored in some form of memory

and fed back with some delay to form the lag vector. Such a memory acts like

a shift register, in the sense that the part of the previous input it remembers

is ‘shifted’ with each discrete time interval. Relating this model to the on-line

learning framework described earlier, here in Step 2 the new context will be

obtained by adding the input to a shifted version of the old context.

New Context

Old contextInput

IP(N)=Input at time N

IP(N)

Delay

IP(N−2)IP(N−1)

IP(N) IP(N−1)

Figure 2.6: Creation of the new context from the old context and the input, using
a shift register with a time window of 2. The context at discrete time N is formed
by the input IP(N) and the shifted version of the old context, which stores the
past input IP(N-1). During the shifting of the old context, the other half of the
old context is discarded. The present context vector is fed back to the context
layer after the delay of one timestep.

Fig. 2.6 shows the design of a shift register model. Let us suppose the two

sequences to be learnt are ABCDE and WXYDZ, and the length of the window is

two discrete time units (i.e. the memory stores the past two inputs as the context).

The memory will then learn the associations AB → C, BC → D, CD → E in
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the first sequence, and WX → Y , XY → D, Y D → Z in the second. So it can

successfully disambiguate the successor of D in the two sequences. An advantage

of using a shift register model is that it can retrieve the rest of a stored sequence

of any length by giving any inputs from the middle of a sequence, not necessarily

from the beginning. Also, we can have hierarchical contexts, by having higher

level time windows, as in the approach taken by Kanerva [45]. The disadvantage

in using this model is that the time window is of fixed size, and the number of

common patterns might be greater or smaller than the size. The shift register

forgets the old context beyond the look-back, which is the size of the time window.

For example, in storing the sequences ABCDE and UVCDW, if we use a time

window of 2 in the shift register, the machine cannot disambiguate the successor

of CD.

In the shift register model, let us assume we have a shift register having a time

window of 2, which remembers the value of the inputs from the two previous time

instances. If the size of the input vector is M, the size of the context vector will

be 2M (double the size of the input vector, representing the value of the input

at the two previous time instances). In such a model, F is a nonlinear function

representing the shifting of the first M bits from the context vector (representing

the old input) to the back and M bits from the new input to the front of the new

context vector.

The algorithm for the formation of the new context in a shift register model

with lookback of 2 is shown in figure 2.7.

2.10.3 Context as a nonlinear encoding

Another approach is to use a separate ‘context’ neural layer to encode the context,

rather than a fixed-length time window. This separate neural layer stores a

representation of the entire context or past history of the sequence, rather than

just the last few patterns as in a shift register model. A neural layer with fixed

weights gives a nonlinear encoding, and thus can be used to produce the context.

In such a memory, when we give an input pattern and want the output according

to the sequences previously learnt by the memory, it is determined by the present

input as well as the output of this context layer. The present output from the

context layer is a function of the present input and the fed back previous context

representing all past inputs.

Such a model resembles a finite state machine or FSM (see figure 2.8) in
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Time is in discrete timesteps t ǫ {1,2,3,...,n,...}

If the following notation is used to represent the input and
context vectors:
In = input vector at the end of the nth timestep, whose dimension is M.
Cn = context vector at the end of the nth timestep, whose dimension
is 2M.

In a shift register with lookback of 2,
Cn = F (Cn−1, In)

where the function F : [0, 1]3M → [0, 1]2M representing the mapping
from the input and the context to the new context is defined as :
[Cn]k = [In]k if 1 <= k <= M
[Cn]k = [Cn−1]k−M , if M + 1 <= k <= 2M

The expression for an L-shift register, where L is the lookback, is:
Cn+1 = F (In−1, In−2, In−3, ..., In−L+1)

Figure 2.7: Formation of new context as a function of the previous context and
input, in shift register models such as TDNN’s [51, 32]

FSM

State

I/P O/P

Figure 2.8: Structure of a finite state machine

the sense that the output is a function of the context (representing the internal

state of the FSM) and the new input. As described earlier in this chapter, such

models were used by Elman [23] and Jordan [43], both of which ran on supervised

learning, based on minimising the error in the output when the context was

presented.

However, we can use a context neural layer with unsupervised learning as well,

for example by having an associative memory that writes the association of the

context and the input.

The algorithm for the formation of the new context in the context memory

model is shown in figure 2.9.
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Time is in discrete timesteps t ǫ {1,2,3,...,n,...}

If the following notation is used to represent the input and
context vectors :
In = input vector at the end of the nth timestep.
Cn = context vector at the end of the nth timestep.

In the context memory model,
Cn = Θ(WIn + Cn−1)
where
W is the weight matrix connecting the input to the context.
Θ is the threshold function of the context layer.

Figure 2.9: Formation of new context as a function of the previous context and
input, in the context memory model, similar to that used by Elman [23]

Relating the context neural layer model to the on-line sequence learning frame-

work described in chapter 2, here in Step 2 the new context is the output of the

context neural layer, whose inputs are the old context and the present input sym-

bol. The new context will be the output of the context neural layer with fixed

weights whose inputs are the fed-back previous context and the input. Thus the

context encodes the entire past history or ‘state’ of the sequence.

Such a model should theoretically give unlimited look-back, since the context

is a function of all the past inputs, but practically the activation patterns will

decay over a few cycles [34]. However, a problem with this model is that to

retrieve a previously stored sequence, we need to start the retrieval from the

beginning of the sequence. A learnt sequence cannot be predicted by giving a

symbol from the middle of the sequence as cue. This is because the nonlinear

encoding of the context neural layer gives equal weighting to all the inputs, not

biased towards the more recent inputs as we might desire if we need to retrieve a

sequence from the middle. Thus, there is a trade-off between giving precedence

to the more recent inputs (thus slowly forgetting the past) and remembering the

past context (in order to predict accurately based on the past).
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2.11 Conclusion

In this chapter, we have provided an introduction to our problem and reviewed

models of sequence learning. In the next chapter, we shall cover spiking neuron

models and associative neural memories, including the sparse distributed memory.



Chapter 3

Neural models of learning

This chapter gives a short introduction to spiking neural models and associative

memories, including the unordered N-of-M SDM memory that is relevant to our

work.

3.1 Artificial neural networks

Artificial neural networks seek to model natural neurons by abstracting some

features of their behaviour. There are many models of artificial neurons depending

on their connection structure, the algorithm used for learning or changing the

connection values etc. Artificial neural network models can be classified in various

ways, depending on the architecture, encoding (linear or non-linear) or decoding

(closest match or others) schemes, static (does not learn) or adaptive memory,

learning rule used (correlation or reward based), closed loop (recurrent) or open,

connection weights based or weightless models, etc. Artificial neural networks

have many useful applications in fields as varied as weather forecasting, face,

handwriting or voice recognition, time series, sequence and structure analysis,

and so on.

An useful introduction to common artificial neural network models can be

found in the book by Haykin [32]. Some common types of artificial neural net-

works are self-organising maps, associative memories, multilayer perceptrons us-

ing gradient-based learning rules such as backpropagation, radial basis function

(RBF) networks etc. Most of these can be implemented by using nonlinear neural

models such as sigmoidal neurons, which are based on rate coding (introduced in

Chapter 2). However, many of these models can be implemented using spiking

68
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neurons as well. Most neural networks store a nonlinear function of the encoded

inputs, and use it to compute the outputs.

An artificial neural network can be used as a classifier (to group data into

classes), as a memory (to store and retrieve associations of items of data), as con-

trol logic elements, as predictors (building an internal model of a time series and

using it to predict subsequent items in the series), etc. In our sequence learning

model, we use an artificial neural network as an associative memory implemented

in spiking neurons and use it to predict the next terms in the sequence. We will

concentrate on associative memories in the following section.

3.2 Modelling of spiking neurons

Various spiking neuron models have been used to abstract the essential elements

of the spiking behaviour. These vary in the level of abstraction and the variety of

spiking phenomena modelled, ranging from very simple models (such as the stan-

dard leaky integrate and fire neural model [53]) to very complex compartmental

models (which model the behaviour of various regions of the neuron as compart-

ments with the help of cable theory (originally studied in 1850s by Lord Kelvin

for application to transatlantic cables and later by Rall [63]) and differential equa-

tions to model the dynamics of ion channels, such as the Hodgkin Huxley model).

A popular generic spiking neuron model is Gerstner’s spike response model [28].

The dynamical systems approach is to treat the spiking neuron as a dynam-

ical system and have a set of equations to model the most essential behaviour

without worrying about the accuracy of the biological structure in the modelling,

as in the pulse-coupled models of Wilson [85]. Another of these models is Izhike-

vich’s model [36] which can simulate a wide variety of spiking phenomena such

as bursting.

More information about spiking neural models of differing complexity can be

found in books by Koch and Segev [48], Maass [53], etc. Books by Wilson [85]

and Feng [25] give an overview of the pulse-coupled and other dynamical models.
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3.2.1 Choosing a spiking neural model: assumptions and

tradeoffs

In our modelling of spiking neurons, we have made a few simplifying assumptions.

We are not concerned with the shape of the neuron and treat them as point

neurons. We assume that all spikes look alike (in the sense that the activation

increases until the threshold is exceeded and then it is reset) and so the shape of

the spike does not matter. We also assume a spike generation mechanism, whose

low-level details we are not concerned with.

The choice of spiking model to use usually depends on the application. Simple

models abstract all but the most essential characteristics of real neurons and are

fast to compute. However, it is debatable which characteristics are essential to

the computation being performed by the neuron, so there is the danger of leaving

out essential behaviour in oversimplification when using the simple models. On

the other hand, more complex models such as the compartmental models are

more biologically accurate and capture most of the known spiking behaviours,

but are very slow to run and are complicated to model with. Genesis [14] and

NEURON [15] are common spiking neuron simulators, that can model a variety

of low-level behaviours like the dynamics of different ion channels.

For our purposes, all we require is a simple model having few parameters that

is easy to work with. The leaky integrate and fire model is a candidate to model

our neural behaviour. It is discussed in the next subsection.

3.2.2 Leaky integrate and fire model

In the leaky integrate and fire (LIF) model [53], the activity of a neuron can

be described as an analogy with an electrical circuit, consisting of a capacitor

C in parallel with a resistor R driven by a time varying driving current I(t),

as illustrated in figure 3.1. The membrane potential or activation of the neu-

ron is represented by the quantity u(t), which is the potential difference across

the capacitor or resistor. The current I(t) splits between the capacitor and the

resistor.

I(t) =
u(t)

R
+ C

du

dt
(3.1)

Multiplying the above equation by R, if we call the quantity RC as the driving

constant τ (representing the membrane time constant of the neuron), we get:
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R C

I(t)

V

Figure 3.1: Leaky integrate and fire (LIF) model of a neuron, represented as an
electrical circuit

τ
du

dt
= −u(t) + RI(t) (3.2)

If we take the resetting membrane potential as 0, the input driving current

I(t) as a constant value I, we get the expression for the activation of potential at

time t as a result of an incoming spike at time t0

u(t) = RI[1 − exp(−
t − t0

τ
)] (3.3)

Incoming spikes to a neuron increase its activation, which decays back to the

resting potential with time in the LIF model. Thus, the model ‘integrates’ input

spikes.

When the membrane potential u(t) exceeds a threshold Θ, the neuron is said

to have fired and the membrane potential u(t) is reset to a low value called the

resting potential. Let us say the neuron fires at time T.

u(T ) = Θ (3.4)

Solving the equations we get the value for the firing time T, when the mem-

brane potential equals threshold Θ as follows:
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T = τln
RI

RI − υ
(3.5)

However, we need a neuron model with more complex dynamics than the

leaky integrate and fire model for our work. We will examine two different neural

models for suitability in chapter 6: the first being a variant of the leaky integrate

and fire model with nonlinear dynamics called rate driven leaky integrate and

fire (RDLIF) model, and the second being a simpler model with linear dynamics,

called the Wheel or firefly model.

3.3 Associative memories

A neural network can be used to store information, and can thus be considered as a

memory. An associative memory is a system that stores and retrieves associations

of suitably encoded symbols or patterns. It functions in two stages: it learns or

writes an association of two encoded symbols, say ‘A’ and ‘B’ to the memory

during the writing stage, and can read or retrieve a the other half ‘B’ of the

previously written association on presentation of the first half ‘A’ during the

reading stage. A computer memory, where data are stored at specific hardware

addresses, can be considered as associating the data with the addresses, and so

is also a type of associative memory. Associative memories can be implemented

in neurons, and neural associative memories have some added features compared

to conventional computer memories. From this point on, we shall use the term

‘associative memory’ to refer to neural associative memories only, unless specified

otherwise.

Associative memories have a finite capacity for the number of associations

that can be written, beyond which they can no longer retrieve previously written

associations accurately, however the forgetting is gradual rather than abrupt.

These memories are also tolerant to input noise to a certain extent. The storage

of associations of symbols in these memories is done in a distributed way, with

each item of data being stored and retrieved from multiple neural locations.

Associative memories can be used in two ways: auto-associative and hetero-

associative. If used as auto-associative memories, they associate patterns

to themselves, and can improve the quality of noisy patterns. For example,

such a memory can associate a pattern ‘A’ with itself, and on being given a

corrupted version of ‘A’ as input, it can output a version of ‘A’ that is closer
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to the original ‘A’ than the corrupted version. The Hopfield model [35] is an

example of an auto-associative memory having bipolar weights (+1 and -1). If

used as hetero-associative memories, the two items to be associated do not

need to be the same, either in content or in dimension, and one of them can be

used as a cue to retrieve the other. Correlation matrix memories [49, 84] are

examples of such memories. Associative memories can be unidirectional, with

only forward connections from one neural layer to another, or bidirectional, with

connections both ways between neural layers, with equal connection strengths in

both directions. These memories have also been described as content addressable

memories or CAMs, because the address where the data is stored depends on the

content of the data to be stored.

A good introduction to associative memories can be found in books by Beale

[10] or Haykin [32]. For interested readers there is a detailed theory of associative

memories (with respect to their memory capacity and other properties) in papers

by Palm et al [66].

In the following subsections, we shall discuss some important associative mem-

ory models on which our model is based, namely the correlation matrix memory,

the ADAM system with N-tupling, the sparse distributed memory and its imple-

mentation using N-of-M codes.

3.3.1 Correlation matrix memories

Correlation matrix memories (CMMs) are a type of hetero-associative memory

that store the correlations between pattern vectors to be associated in the connec-

tion weight matrix and superimpose multiple correlations. These memories were

proposed by David Willshaw [84] in 1969 and a linear version of the memory by

Kohonen [49] in 1972. These memories are based on a localised Hebbian learning

rule, and learn and recall in a single pass. In these models, neurons have binary

states 1 and 0.

Willshaw memories [84] are a type of CMM having binary weights. CMMs

are popular due to their good information capacity, that has been shown to be

higher than that of the standard Hopfield model [7, 39].

Let W be the connection weight matrix of the CMM and the nth pair of

encoded vectors of the symbols whose association is to be written to the memory.

In writing the association Xn → Yn to the CMM, the weight matrix Wn
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will be given by:

Wn = Wn−1 ⊕ XnY
T
n (3.6)

where Y T
n refers to the transpose of the vector Yn, Wn−1 refers to the state of

the weight matrix after n − 1 associations have been written and ⊕ refers to the

logical OR operation (in case of a binary CMM) or addition (in case of a linear

CMM). If Xn is a vector of dimension A× 1 and Yn a vector of dimension B × 1,

the dimensions of the weight matrix W would be A × B.

In reading from the CMM, the first half of the stored association Xn is

presented as a cue to retrieve the other half Yn.

Yn = Θ(W T Xn, T ) (3.7)

where W T refers to the transpose of the weight matrix W, Θ refers to the thresh-

olding operation if the product exceeds a threshold T. For a binary CMM, Θ will

be equivalent to the Heaviside function, setting the vector component to 1 if it

exceeds T and 0 if it does not.

3.3.2 Associative memories using spiking neurons

Implementations of associative memories using spiking neurons have also been

proposed [47, 72, 50]. In this subsection, we consider some of these models.

Knoblauch’s model[47] used a spiking associative memory constructed using

three populations of neurons, one excitatory (the actual associative memory) and

two inhibitory. An addressing group of neurons gave inputs to the excitory and

one of the inhibitory populations, while the other inhibitory population received

input from within the excitatory population. It used the spike counter model of

spiking neuron, and implemented a Willshaw associative memory [84].

Kustrin et al developed a model of spiking correlation matrix memory [50],

based on a direct implementation of the CMM recall equation using the spike

response model [28] of spiking neurons. The model had two neural layers, a

summing layer, which was fully connected to all the inputs, and a thresholding

layer which was fed output spikes from the summing layer and also connected to

an auxilliary threshold neuron that was fed input spikes and fired on receiving

a certain level of input activity. Willshaw thresholding was performed by using

coincidence detection by the neurons of the thresholding layer, the threshold being

set to the number of synchronised input spikes.
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3.3.3 N-tupling

N-tupling refers to selecting the N highest outputs from a layer of neurons. The

Advanced Distributed Associative Memory (ADAM) system, developed by Austin

et al [6] was a CMM based associative memory with N-tupling. It used a binary

N-tuple preprocessor and two binary CMM layers, the first of which associated the

input pattern, pre-processed by an N-tuple decoder, with a class pattern chosen

from a list of available mutually orthogonal class codes, and the second associated

the chosen class pattern with the desired output. The mappings of both the

CMMs were many to one, i.e many inputs could be associated to a single class

code, and many class codes could be associated to a single output. During recall,

the output class pattern was determined using L-max thresholding, meaning that

exactly L highest summed components were set to 1 and the rest to 0. The

output of the second CMM was determined using Willshaw encoding. The N-

tuple decoder functioned as an application-specific lookup table (no associations

were written in this layer) to translate the first half of the association into an

N-tuple. The system was used to efficiently store and retrieve images.

The N-of-M SDM associative memory (on which our model is based) used a

binary N-tuple address decoder as in the ADAM system, and applied an L-max

thresholding to select the maximum components and set them to 1, but had only

one CMM layer instead of 2, and used random connection weights instead of a

designed lookup table to pre-process images.

3.3.4 Sparse distributed memory

The sparse distributed memory (SDM) is a type of associative memory that has

the features of distributed storage, scalability and error tolerance. Since the

associative memory in our sequence machine is an implementation of the SDM,

an understanding of how the SDM works would help with the understanding of

our system as well. The original model was developed by Pentti Kanerva [45] in

his book of the same name.

The SDM is like a conventional random access memory (RAM) in that it stores

address-data associations. RAMs store a piece of data at a particular address,

and the data can be retrieved on giving the address as a cue. Similarly the SDM

also associates a ‘data’ pattern to an ‘address’ pattern, and given an address as

cue the corresponding data can be retrieved. It differs from a RAM in that even
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if the address given was noisy or partially incorrect, the data retrieved by the

memory is more similar to the original data than the noisy address was to the

original one. On being given a random ‘address’ pattern, the memory retrieved

the data pattern closest in distance to that address.

The SDM can be seen as a two-layer feed-forward neural network. The first

layer, called address decoder, has fixed connection weights. The second layer, data

store, has changeable weights as a result of learning. While retrieving stored data

from conventional RAMs, a given binary address is first decoded and the data

is then read out from the hard location corresponding to that address. The two

neural layers of the SDM work with similar principles.

Address and data patterns are encoded as high dimensional binary numbers.

Now, a RAM having a long address would require an exponential number of

locations to store all the possible addresses in the address space. However in

the SDM the number of required address locations (which Kanerva called hard

locations, referring to hardware needed for the storage) is sparse compared to the

theoretical maximum. This is possible since storage is distributed: one item of

data is stored at many hard locations, and each hard location stores more than

one item of data. Each of these hard locations has an array of up-down counters,

one for each bit of the data. While retrieving a piece of stored data corresponding

to a given address, all the hard locations within a given Hamming distance from

the address are considered.

The principle behind the SDM is that if we think of the address space as a

high dimensional binary hypercube where every binary address is a point on the

hypercube, most of the points would be at the edge of the hypercube and very

distant from each other (average of n/2 distance where n is the dimensionality

of the hypercube, [45]). Any two given addresses in the address space would be

nearly orthogonal. For any two address points that are distant, typically one can

find a point that is close (their Hamming distance is below a threshold) to both.

Therefore we can have only a limited number of hard locations and store and

retrieve data, in a distributed way, from all the hard locations that are close to

the address of the location to be read.

Let the address length in bits (input dimension) be N and data length (output

dimension) be U. There are a fixed number M of hard locations that is much less

than the size of the address space 2N . Each of the hard locations will then have

U up-down counters, each counter being initially set to 0.
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The method for writing to the memory is as follows:

When an N-bit binary address A is presented to the address decoder, it ac-

tivates all the hard locations Mi which are in the access circle of A, i.e. whose

address is within a specified Hamming distance Θ (number of bits in which they

differ) from A (i.e d(A, Mi) = A.Mi ≤ Θ, where the ‘.’ represents the inner or

dot product of the two binary vectors A and Mi), and writes the U bit data word

into each of those locations. It does this by incrementing or decrementing the

U counters connected to those hard locations as follows: if the kth bit of binary

input data Dk to be written at the address A is 1, the kth counter of each ac-

tivated hard location is incremented by 1. If the kth bit is 0, the kth counter is

decremented by 1.

While reading from the memory, a similar procedure is followed. The

N-bit address cue A is presented to the memory as before, and also activates

all the hard locations Mi that are within the access circle of A (d(A, Mi) ≤ Θ).

The counters corresponding to these activated hard locations are summed and

thresholded to retrieve the binary output data. For example, if the sum of the

kth counters of all the activated hard locations is S, and S exceeds a threshold T,

then the kth output bit is set to 1, else it is set to 0.

3.3.5 SDM using N-of-M codes

In this subsection, we describe an implementation of the SDM using an encoding

called N-of-M codes. This implementation was originally proposed by Furber et

al [27]. We have used a modified form of this model in the associative memory

part of our sequence machine, which we shall describe in chapter 4.

An N-of-M code has a total of M components, out of which exactly N are active

at any given time to form a valid symbol, and the choice of the N determines the

code. Such a code is self timing or self error-detecting, as codewords with errors

in the number of active components can be detected. Sparse codes are used for

this memory, with N << M , similar to Kanerva’s original model. Sparse codes

have been shown to have high information capacity [66]. The N-of-M coding was

inspired by Austin [7] who used the N-of-M codes (or N-tupling) in the ADAM

system as described earlier.

The N-of-M SDM model combines the standard SDM with a correlation ma-

trix memory layer. It consists of two layers of neurons as in the original Kanerva

SDM: an address decoder layer and a data store layer. Both the address and
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Figure 3.2: The N-of-M neural memory model

the data pattern vectors are encoded as N-of-M codes. The number of address

decoder neurons is much greater than the number of bits in the address, and the

primary purpose of the address decoder layer is to cast the input address sym-

bol into a high dimensional space to make it more linearly separable. The data

store layer in the N-of-M SDM is different from Kanerva’s second layer. In Kan-

erva’s model, the data store layer consisted of a number of up-down counters. In

Furber’s model, the data store is a correlation-matrix memory which associates

the first symbol as decoded by the address decoder layer with the second symbol.

Learning takes place only in the data store layer, while the weights of the first

address decoder layer stay constant. Furber’s paper also demonstrated that such

memories were scalable and error tolerant [27].

Working of the N-of-M SDM

Let us assume that the memory consists of W address decoders and the input

data is a d-of-D coded pattern. There are D neurons in the data memory. To

cast the address into high dimensional space, the number of address decoders W

is chosen to be much larger than A, the dimensionality of the address pattern.

The input address is an i-of-A code. Here i may or may not be equal to d and A
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to D.

Write operation

In writing an association x → y to the memory, an i-of-A coded address word

x is associated with a d-of-D coded data word y. The address word x is input

to the address decoder layer, whose weights are set to a random a-of-A code.

A threshold tA on the activations of the address decoder neurons is chosen such

that approximately w out of the total of W address decoders fire, or selecting w

neurons with the highest activation, and in case of ties selecting all the neurons

whose activations are equal to the activation of the wth neuron.

w = Θ(Ax, tA) (3.8)

where Θ is the heaviside function, setting the vector component to 1 if it exceeds

threshold tA and 0 if it does not.

Initially the data memory, which is the second layer in the model, is empty,

so its weights are set to 0. The d-of-D coded input data is presented to the D

data memory neurons. Writing to the memory takes place by the following rule:

if the kth data memory neuron is ‘active’, meaning that if the kth bit of the data

input has been set, and the ith address decoder neuron fired, the ith weight of the

kth neuron is set to 1, if it was not set earlier. Thus it uses the OR function to

set the weights (the new connection weight is the OR of the corresponding input

bit and the address decoder bit), as in binary CMMs.

D = D ⊕ wyT (3.9)

where ⊕ indicates logical OR, and yT denotes the transpose of the row vector

y.

Read operation

First the i-of-A input address word x is presented to the W address decoder

neurons, resulting in w of them firing.

w = Θ(Ax, tA) (3.10)

where w is the binary high dimensional word line vector that is output by the

address decoder, A is the address decoder binary matrix of dimensionality W×M ,

Θ is the threshold heaviside function which sets each element of the matrix to 1

if it exceeds threshold tA and to 0 otherwise.
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The data memory output y is computed by taking the dot product of the

address decoder firing array with the data memory weight matrix. Since the

output data has to be a d-of-D code as well, the resulting activations are sorted

and the d maximum activations chosen.

w = L(DT w, d) (3.11)

where L is the l-max function, setting the largest d elements to 1 and all others

to 0.

The N-of-M modification to Kanerva’s SDM has been shown to be more

information-efficient [27] than the original SDM.

3.4 Conclusion

In this chapter, we reviewed the LIF model of spiking neuron and different kinds of

associative memories, introducing an N-of-M SDM memory. In the next chapter

we shall introduce a novel associative memory using the N-of-M SDM and rank

ordered codes, which we shall use in the construction of the sequence machine.



Chapter 4

A Novel rank ordered N-of-M

SDM memory

In this chapter the associative memory model used in the sequence machine is

described. Our chosen model is a sparse distributed memory (SDM) using rank-

ordered N-of-M codes. It is a further modification to the unordered N-of-M

implementation [27] of Kanerva’s SDM [45] which we described in chapter 3. Our

modification to Furber’s model is in using rank-ordered [77] N-of-M codes and

real-valued weights for the memory instead of unordered N-of-M codes and binary

weights. This modification facilitates the implementation of the memory using

spiking neurons.

We examine factors that effect the performance of the memory, and examine

the suitability of rank-order codes in the memory as compared to unordered codes.

First of all, we shall describe the coding scheme itself, and how to represent it.

4.1 Rank-order codes

Rank-order codes were first used by Thorpe [76]. The concept of rank-order is

simple: the relative temporal order of firing of neurons in a layer makes the code.

As an illustration, if a neural layer has 5 neurons numbered 1 to 5, an example of a

valid code representing an output burst of spikes fired by the layer is [4, 2, 1, 5, 3],

which stands for neuron 4 firing first in the burst, followed by neuron 2, followed

by 1 etc. Rank-order coding is a simpler or abstracted version of temporal coding,

in which we consider only the order of firing of the neurons in a layer rather than

their actual times of firing. However, rank-order codes do have more temporal

81
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information than rate codes, since they take into account the temporal order of

firing of neurons in the layer.

In chapter 3, we mentioned that Thorpe et al postulated that the earlier

spikes were the most important in recognition of an image, because in certain

cases the brain has time to fire at most a single spike through each layer, making

rate coding infeasible [77]. Based on that they described a decoding scheme

for making a neuron sensitive to a particular input order of spikes, by giving

more importance to earlier input spikes and progressively less importance (by

desensitising the layer) to later input spikes from a layer, engineering the input

weights and modulating the threshold of the neuron to be receptive to the specific

input order [76]. They used such a scheme in a biologically-plausible model of the

visual system for efficient face recognition from a huge database of face images.

4.1.1 Rank-ordered N-of-M codes

In chapter 3 we described Kanerva’s Sparse Distributed Memory and an imple-

mentation of it based on N-of-M codes, as used by Furber et al [27]. N-of-M codes

are unordered codes of M bits, out of which only N are active (N << M). For

example, an unordered 11-of-256 code will be represented using a binary vector

of 256 bits, out of which only 11 are 1 and the rest are 0 in a valid code. Rank-

ordered N-of-M codes are similar to unordered N-of-M codes, with the rank of

the selected bits taken into account as well. An example of a 3-of-5 ordered code

representing 3 neurons firing in order in a layer of 5 neurons (numbered from 1

to 5) is [2,4,1].

Rank-order codes have good information content, based on the number of

possible permutations from such a code. The number of possible ordered N-of-M

codes is the number of ways one can choose N items in order from a total of M

items, which is M !
(M−N)!

. The information content of a word, measured in bits,

would be log to the base 2 of this value. The information content of an unordered

N-of-M code is log to the base 2 of the number of ways one can choose N items out

of M without caring for their order, which is
(

M
N

)

or CM
N or M !

N !(M−N)!
. This is less

than the information content of the corresponding ordered code, as illustrated in

figure 4.1.

Our reason for our choosing to use rank-order coding in addition to N-of-

M coding, apart from the increased information content, is that we intend to

implement the memory using spiking neurons. Spikes fire in real time, therefore
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Figure 4.1: Plot of the information content in bits of an unordered (red) and
ordered (blue) N-of-256 code, when N is varied from 1 to 255. The unordered
memory curve peaks at the half way point of N=128, where the value of the
information content is 251.673 bits. The ordered memory curve rises constantly,
reaching 1684 bits at N=255.

encoding a vector representing firing times of a group of spikes as a binary code,

which would lose the timing information, is not appropriate. Besides, real-valued

connection weights can better store the graded effect of the rank-order sensitivities

of neurons than binary weights.

4.1.2 Representation of the code using significance vec-

tors

In the implementation of the sequence machine, we shall use rank-ordered N-of-M

codes to encode the symbols being associated in the memory. We need a way to

represent an ordered N-of-M encoded symbol representing an order of firings in

a burst emitted by a layer of spiking neurons, in order to store the symbols as

vectors in the memory. This would be useful in converting a temporal code into a

spatial code by abstracting out time from the burst of spikes. Using this method,

we can perform calculations as in conventional neural networks (not using spiking

neurons), where we multiply the input vector with the connection weight matrix

of the neural layer to obtain the activation or output vector.
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We encode a rank-ordered N-of-M codeword representing an output order of

firings such that the effect of earlier spikes is more significant than later ones in

increasing the activation of the target neuron, as per the method first described by

Delorme et al [76]. We do this by having a quantity called significance for each

component of the encoded vector, and using a monotonically decreasing function

of the order of neural firings to calculate the significance of each component. The

significance represents the sensitivity or effect of incoming spikes in increasing the

activation of the target neuron. There can be a number of choices of this signifi-

cance function. Using an arithmetic progression to encode a symbol as a vector

of significances, the first neuron to fire is given a significance of 1, the second one

a significance of 1−x, where x < 1, the third neuron to fire 1−2x, and so on. In

a geometric progression the significances would be in a decreasing geometric ratio

such as 1, α, α2 and so on, where α < 1 is the significance ratio (or desensitisation

factor, as it is the factor by which the layer gets desensitised to successive input

spikes). One advantage of using a geometric progression to encode vectors in the

system is that the component values cannot go below zero (and we would like

to keep the effect of inputs positive, unless the connection weights themselves

are negative), as is possible with the arithmetic progression choice. Therefore,

for the purpose of our work, we choose to encode the significances via geometric

progression.

As an example to illustrate the geometric significance ratio, if we are using

an ordered 3-of-5 code in a layer of 5 neurons numbered 1 to 5, we can represent

neurons 3,2,4 firing in order as the vector [0,α,1,α2,0]. We intend the effect

of this time abstraction to be the same as a spiking neural system. In other

words, we want the output order of spikes of a layer when it gets a particular

input order (in a real spiking system) to be equivalent to the output vector

calculated on multiplying the time-abstracted input vector (as determined in the

way mentioned) with the connection weight matrix of that layer.

Together with this encoding scheme, we also need a way of comparing any two

ordered N-of-M codewords, as a metric to determine the ‘similarity’ or ‘closeness’

of the two codes. This is needed to decode or identify one of the symbols of our

alphabet as being closest to the encoded vector. We choose the dot product of

the significance vectors as a measure of similarity. Hence, the similarity between

two ordered N-of-M codes X and Y is defined as having the value X.Y, where

X.Y = Σn
i=1XiYi refers to the dot product of the components. The reason we
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chose the dot product to measure similarity is because it is similar to the way

the activation is calculated: the activation of a neuron or a neural layer is usually

calculated as the dot product A = W.X of the input vector X and weight vector W

(taking the sum of the products of the corresponding components). We normalise

the dot product to standardise the similarity value. Thus, the expression for the

normalised dot product will be as follows:

X̄Ȳ =
Σn

i=1XiYi

Σn
i=1X

2
i Σn

i=1Y
2
i

(4.1)

The normalised dot product of two vectors is equal to the cosine of angle

between the vectors, or the degree of overlap. If two vectors are identical, their

normalised dot product is 1 and so the similarity metric calculated in this way

will also be 1. If the two vectors are not identical, their calculated similarity

metric will be less than 1 (and proportional to the degree of their overlap), which

is what we would expect.

The normalised dot product measure of similarity is related to the commonly

used Hamming distance as well. The Hamming distance H(x, x′) between two

binary codewords x and x′ is the number of bits where they differ, and the dot

product of binary codewords x.x′ gives the number of corresponding bits they

are similar. So there is a linear relation between both schemes in the case of

unordered (binary) codes, which is as follows:

x.x′ = 1 −
H(x; x′)

2N
(4.2)

4.1.3 Some notes on using the significance vector and nor-

malised dot product

Using a significance ratio of 1.0 is equivalent to having an unordered memory.

Any value of the ratio less than 1.0 can distinguish the ordering information.

Using a small value for the significance ratio α in the significance vector would

decrease the importance given to later bits, since the significance would decrease

faster and have small values for later bits, and the similarity of two vectors would

be heavily influenced by the first few bits. Therefore, in our memories, we have

typically used the value of α between 0.9 and 1, as we seek to maximise the

information content of the memory.

In our sequence memory model, we have a fixed alphabet from which symbols
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are chosen, and the number of permissible ordered N-of-M codes is much greater

than the size of the alphabet. This allows us some redundancy in identifying

which symbol the output is closest to, as we can select the symbol which is

closest to the output if the output does not match any of the symbols exactly.

4.2 N-of-M SDM using rank-ordered codes

In chapter 3 we described the operation of an SDM using unordered N-of-M codes

[27]. In the implementation of the sequence machine, we are using rank-ordered

codes. The reason we chose to use rank-ordered codes instead of unordered codes

is the higher information capacity of rank-ordered codes, as shown in section

4.1.1. Also, rank ordering is suitable for implementation using spiking neurons,

as shown in papers by Thorpe et al [76, 21].

For implementing an SDM using rank ordered N-of-M codes, we use a similar

memory as in the unordered model, but make the following two changes:

1. The symbols are encoded as ordered N-of-M codes rather than unordered

codes.

2. The connection weights in the memory have real values rather than binary

values as in the original N-of-M SDM. This is to enable the memory to

store rank-ordered codes and also to facilitate implementation by spiking

neurons.

The ordered N-of-M SDM has two layers of neurons as in the original un-

ordered model: an address decoder layer of high dimensionality (whose weights

are fixed) and the data store which is a correlation matrix memory (CMM) but

with real weights, which are set during learning. There is one difference between

the CMM used in the rank-ordered memory and the one used in the original un-

ordered memory: the unordered memory used the OR function to set the weights,

with the new weight component Wij being the OR of the respective components

of the vectors being associated, Xi and Yj. For real-valued weights, however, the

OR function is replaced by the MAX function, with the new weight component

the maximum of the old weight and the product of the components of the vectors

to be associated. The MAX function we use in this case has the same effect as

the OR function when used for binary weights (since the maximum of two binary
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numbers is the same as the OR of both), so the unordered and ordered memories

are functionally similar.

Let σi = Significance of the ith bit of the address decoder word line

σj = Significance of the jth bit of the data word line

The weight matrix component wij after writing the association

wij = max(wij , σiσj)

where max(i, j) = i if i >= j and j if i < j

Figure 4.2: The learning rule used in the data store layer of the ordered N-of-M
SDM

The learning rule for updating the weights of the data store layer is shown in

figure 4.2.

The operation of the SDM can be described as follows: Suppose we have to

associate symbol ‘B’ with the symbol ‘A’, such that if during memory read we give

‘A’ as input, we should get ‘B’ as output. The symbols are encoded as ordered N-

of-M codes using significance vectors. The address decoder first gets the ordered

d-of-D vector corresponding to the encoded symbol ‘A’, and the data store gets

the ordered d-of-D vector corresponding to the symbol ‘B’. The address decoder

layer (having in total W address decoder neurons) has fixed weights (each address

decoder being connected to d out of D input neurons, with the weight matrix also

following ordered d-of-D code), and outputs a much longer word (following an

ordered w-of-W code) which is fed as input to the data store. The data store

writes the association between the address decoder output and the input data

using the MAX function as described above. The process of reading from the

memory is similar to writing. We first give the encoded ordered d-of-D vector

corresponding to the symbol ‘A’ to the address decoder, whose ordered w-of-W

output is fed to the data store as during the write operation. Since the data

store has already written the association A → B, it outputs the encoded ordered

d-of-D vector (if we sort and order d neurons with the maximum activations from

the output layer) corresponding to the symbol ‘B’ when it receives the address
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decoder outputs.

4.2.1 Tradeoffs of using rank-ordering

Using rank-ordered codes N-of-M in the SDM has the following advantages over

unordered (binary) N-of-M codes :

1. Higher information capacity: the information content of a rank ordered N-

of-M code is higher than that of a comparable unordered code, as shown in

Section 4.1.1.

2. More flexibility to the memory: Using rank ordered codes gives a larger

memory space than unordered codes. The number of possible ordered N-of-

M codes is P N
M , which is higher than the CN

M number of unordered N-of-M

codes.

The disadvantage of using rank ordered codes as opposed to unordered codes

is the greater hardware cost of using real-valued weights instead of binary weights.

Binary weights need only a single bit of hardware for each memory location, while

rank order codes would need 8 or 16 bits or higher, depending on the desired

precision.

4.3 Performance of the memory

In this section we attempt to measure the performance of the sparse distributed

memory using rank-ordered N-of-M codes.

The unordered N-of-M SDM using binary N-of-M codes [27] has been shown

to have the properties of good information density, scalability and error tolerance,

both analytically as well as empirically through experiments. As described earlier,

the SDM using ordered N-of-M codes is similar to the unordered N-of-M SDM

and is therefore expected to have similar features. The experiments we perform

will be to verify these properties of the memory.

In the context of the implementation of the sequence machine, performing

tests on the ordered N-of-M SDM memory is relevant in order to study the factors

which effect the memory performance of the sequence machine as well, since it

forms the associative memory component of the sequence machine.
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4.3.1 Parameters to measure performance

To measure the memory performance, we write a number of address-data pairs to

the memory and then try to recall the data vectors by giving the address vectors

as cues, each time measuring how accurate is the recovery (measured by a number

of parameters), how many address-data pairs can be stored and recalled correctly

before the memory saturates and also how the performance degrades after this

point. There are two parameters we can use to measure the performance in this

way:

• Perfect match capacity (or absolute capacity): This measures the

maximum number of stored symbols that can be retrieved to a specified

accuracy (a symbol is said to be retrieved correctly if the similarity of the

retrieved symbol and what was originally stored in the memory is greater

than a specified threshold) before the memory saturates (i.e. the number

of words correctly retrieved does not increase as more words are written to

the memory, but rather starts decreasing). An interesting experiment is to

determine how this measure scales with increasing memory size.

• Average recovery capacity (or average quality or average simi-

larity): This measures the average accuracy of recall of the stored words

(measured by finding the similarity between the retrieved word and what

was originally stored in the memory, and taking the average of these sim-

ilarities over all the address-data pairs that were written to the memory).

We can also determine how the average similarity changes with increased

number of words put in the memory of a given size, and how it scales with

increasing memory size.

• Information density: This is measured by the amount of information

(Shannon information) stored per unit memory (weight matrix) size, in “bits

per synapse”, a synapse standing for a connection between two neurons or

an element of the connection weight matrix. The amount of information in

each codeword can measured by the Shannon information measure, which

is log to the base 2 of the total number of codewords possible.

Iw = log2W (4.3)

where
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Iw=Information content of codeword W

W=total number of codewords that can be formed from the alphabet.

Thus, we choose to define the bit-per-synapse information density of the

memory as the maximum perfect match capacity (which is the peak of the

absolute capacity curve defined above) times the information content of a

codeword, divided by the memory size.

In our experiments, we will plot the memory capacity with respect to the first

two parameters of perfect match capacity and average quality.

4.3.2 Memory properties that can be measured

There are a few properties of the memory we can measure with the help of the

above mentioned parameters:

• Scalability: This is determined by how well the performance of the mem-

ory (perfect match capacity or the average quality) scales as the dimensions

of the memory are increased. In the ordered N-of-M SDM, the dimensions

are d, D (from the d-of-D code used to encode the address and data pairs

and also the size of the outputs), w and W (from the w-of-W code used

for the outputs of the address decoders). In our experiments we will plot

the memory performance with varying memory sizes on a graph and then

determine if the memory can be considered to be scalable.

• Effect of ordering: This is determined by how the memory performance

(either as the perfect match capacity or the average quality) depends on

the choice of significance ratio. In the experiments, we vary the significance

ratio α giving it values ranging between 0 and 1.0 (α 1.0 represents an

unordered code, and other values of alpha represent ordered codes) and

plot the memory performance of the ordered N-of-M SDM, keeping all the

other SDM parameters (d, D, w, W) constant.

• Error tolerance: This can be measured either by increasing the number

of bit errors in the address input to a memory of given size, or by putting

one bit error in different positions and measuring how well the memory per-

forms with respect to the two parameters mentioned earlier. An alternative

method to determine the error tolerance could be to calculate the average
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dot product of the significance vectors corresponding to the erroneous words

input to the memory and the words without error, and compare it to the

average dot product on the output, in order to determine if the memory can

improve the average quality of the input words. Such a measure has been

used in another paper [26] on N-of-M SDMs (that used a binary memory

to store ordered codes). However, in this dissertation we shall stick to the

first method of varying bit errors.

Therefore, in the experiments, we have varied the following three parameters:

(each time plotting both absolute memory capacity up to similarity 0.9, and

average dot product)

1. The memory size: to determine if the memory is scalable.

2. The significance ratio (or desensitisation factor): to compare ordered

vs. unordered codes and see how the choice of this ratio effects the memory

performance.

3. The number of errors in the composition of the address vectors given

to the memory when the memory is being read out: to determine the error

tolerance of the memory.

4.3.3 Experimental procedure for the performance tests

We have performed a number of numerical experiments to measure the memory

capacity according to various parameters. They are performed using the following

steps:

1. We initialise the network parameters (dimensions of the address or

data vectors such as 11-of-256, dimensions of the address decoder vector

such as 16-of-4096, value of significance ratio α etc). We then generate the

weight matrix of the address decoder layer based on an ordered d-of-D code

for the input weight array of each of the W address decoders. In other

words, each address decoder has non-zero weights for exactly d out of the D

input neurons it is connected to, and these non-zero weights are randomly

set as per the [ 1, α, α2, ..] significance vector. Exactly d random values

between 0 and 1 are generated from a uniform distribution and then sorted

to find a random order for the input weights in each case. The weight matrix

of the data store memory is initialised to 0, since it is initially empty.
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2. We generate n random address-data pairs as encoded significance

vectors. The n address-data pairs are generated according to the d-of-D

code with the same α as significance ratio (The value of α can be different

from the ratio used to initialise the input weights of the address decoder

layer, but for the sake of simplicity we have kept them the same).

3. Writing step: We write each of the n address-data pairs to the memory

as per the following procedure: first we pass the address vector through

the address decoder and the address decoder output vector through the

data store layer, where it is associated with the data vector using the MAX

function as the learning rule. At the end of this step the memory is filled

with n associations of address-data pairs that were generated in Step 2.

We measure the memory occupancy at the end of this step (which will

not change in the next step because the memory is not written to during

the reading phase) by noting the number of non-zero elements in the data

store weight matrix. It should be noted that using real valued or binary

weights makes no difference on the number of zero or non zero elements (1

in the case of binary weights) in the memory, because in each case the same

memory locations are written to.

4. Reading or testing step: Once all the n associations between the address-

data pairs are written, we read in the n address cues one by one to the

memory by passing each address vector through the address decoder and

the output of the address decoder through the data store. This time the

weights of the data store remain unchanged, and the store output vector is

calculated by multiplying the address decoder vector with the store weight

matrix and taking the d highest elements of the resulting output. This store

output vector, consisting of these d maximum indices in order, is compared

with the corresponding data vector which was associated to this address

vector in step 3. The similarity of these two vectors (the data vector that

was associated in step 3 and the present output vector) is found through

the usual method of calculating the normalised dot product. We repeat

this process for each of the n addresses. For measuring the perfect match

capacity, we count the data vector as having been retrieved correctly if the

similarity exceeds a predetermined threshold, and total the number of cor-

rectly retrieved data vectors out of the n vectors that were written. For
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measuring the average quality or average normalised dot product, the simi-

larity values of output and original data vectors for each of the n addresses

are added and divided by n to find the average similarity. At the end of

this step we have the average similarity over n address-data pairs, as well

as the count of how many associations were successfully retrieved.

5. We then repeat steps 2-4 for many trials, each time clearing the data

store memory completely between trials. We can vary various parameters in

different trials and plot the performance of the particular property or aspect

of the memory that we are testing on a graph (for example scalability).

4.3.4 Issues in choosing the simulation parameters

Since there are so many parameters in the model, we need to decide which pa-

rameters to set to appropriate fixed values and which to vary in each memory

experiment. We have tried to make intelligent guesses on the parameters to op-

timise the memory behaviour, using some insights from the unordered N-of-M

SDM studied earlier [27].

For example, we need to set the values of the significance ratio used for

generating significance vectors and the ratio used for determining the similarity

of two vectors. The second significance ratio (for measuring similarity) needs

to be kept constant in the experiments, so that we have a uniform standard

for measurement of similarity. The threshold we use to measure perfect match

(as per the perfect match capacity parameter introduced earlier) also depends

on the choice of the significance ratio α, since a low threshold compared to α

would allow for more errors to be tolerated in the retrieved vector to certify an

output codeword as correct, and vice versa. A high value of significance ratio α

is expected to have better memory capacity, since the encoded codewords can be

‘packed’ more closely in the memory.

An ordered N-of-M code can have two kinds of errors, errors in choice (choice

of the N elements out of M) and errors in order. We would like to penalise

errors in choice more than errors in order, if they occur at the same position of

significance. This is because having the wrong choice of N neurons firing (out of

M) is considered a more serious error (since it would be counted as an error in

both the ordered and unordered cases) than having the correct neurons firing but

only in the wrong order. Also, since in rank-order codes the earlier spikes to fire
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have more effect than later spikes, we would like to penalise choice or order errors

at the start more than those towards the end, because the significance of the first

neurons to fire is higher in rank-order codes than the significance of later neurons.

The second of these conditions has been handled by using the significance vectors

with geometrically decreasing significance values, therefore the threshold has to

be set keeping in mind the constraint that choice errors should be penalised more

than order errors (i.e. the value of the similarity between two ordered N-of-M

vectors if some of the components in the N-of-M code of one vector are wrongly

chosen should be less than the similarity value if the components are all chosen

correctly but the order of some elements is incorrect).

In the N-of-M code for the SDM as a whole, having a very large d (number

of activated input neurons in each input word) compared to D is not good for

the memory performance, because more weights would have to be set for every

codeword written to the data store and so the memory would fill up quickly. The

same effect holds for having a large w compared to W.

An unordered memory (where all symbols are encoded as binary N-of-M codes)

comes at a lower cost of hardware (because only binary weights are needed), but

also has a reduced information efficiency, while an ordered memory (where sym-

bols are encoded using significance vectors) comes at a higher cost of implemen-

tation (with real-valued weights) but should give a better information efficiency

in bits per synapse. Also, a memory implemented in ordered codes can be tuned

in a finer way than unordered codes (because the address space in ordered codes

is higher) by changing the matching threshold to recognise if an association has

been recovered or read out correctly.

4.3.5 Default parameters in the experiments

In our simulations, the input address and data words are encoded as ordered 11-

of-256 codes, the ordering being imposed by taking a significance ratio of α=0.99

and encoding the input as a vector as described earlier. The address decoder

layer has 4096 neurons, and the output of the address decoder is encoded as an

ordered 16-of-4096 vector. In testing for similarity, we choose a value of 0.9 as

the threshold for the normalised dot product in order to count an association

as correctly recovered. The reason for selecting 0.9 as the threshold is that it is

the value at which we would have at most one choice error (the normalised dot

product of two ordered 11-of-256 codes with 0.99 as the significance ratio that
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differ in only the choice of the least significant component is 0.91).

In the following sections, we will plot the results of experiments to measure

different properties such as scalability and error tolerance of the rank-ordered and

unordered N-of-M SDM, with varying memory parameters (such as dimensions of

the memory n, N, w and W, significance factor α) and using different parameters

to measure the performance as mentioned. In the graphs, we will plot the number

of associations correctly recovered (in case of perfect match recovery) or the

average dot product (in case of average recovery capacity) on the Y-axis against

the numbers of associations written to the memory on the X-axis.

In our graphs we have also plotted the memory occupancy to show how the

performance varies as the memory gets progressively filled up. For simplicity we

defined the memory occupancy as the number of memory locations that were

non-zero (i.e. the number of elements in the data store matrix of the SDM

that have been written to). By this definition the occupancy in the ordered and

unordered memory should be exactly the same (because the same number of

memory locations get written to in both the ordered and unordered cases, and

we are counting only the number of locations that are non-zero, rather than the

actual values stored in the memory locations), and we can then make a fairer

comparison.

4.4 Testing for scalability

For testing the scalability of the memory, we keep the remaining parameters

constant and vary only the input size D (in the d-of-D code, whose default value

is 11-of-256) by from 128 to 768, keeping d constant. Accordingly, we fill the

memory with words from ordered 11-of-128, 11-of-256, 11-of-512, 11-of-768 codes,

and check how the perfect match capacity as well as the average recovery or

average dot product scales with the input size.

Figure 4.3(a) gives the perfect match capacity scaled with increasing memory

size, and figure 4.3(b) gives the average recovery scaled with increasing memory

size. We can see that the memory is scalable, since the peak of the perfect match

capacity curve rises with the rise in size of the memory, approximately in the

same ratio as the memory size.

We then repeated the experiment, this time varying the address decoder size

W. The results are plotted in figure 4.4. Here we find the number of words
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Figure 4.3: (a) Plot of the memory capacity for perfect match (with threshold
0.9) with varying memory size D. (b) Average recovery capacity as memory size
increases. The performance is plotted with D as 128(black), 256(blue), 512(green)
and 768(red), with d=11 throughout. The significance ratio α for reading or
writing to the memory is 0.99 and for measuring output similarity is 0.9. w-of-W
is 16-of-4096.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

No of associations stored

A
ss

oc
ia

tio
ns

 r
ec

ov
er

ed

w−of−W 16−of−512
w−of−W 16−of−1024
w−of−W 16−of−2048
w−of−W 16−of−4096
w−of−W 16−of−8192

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of associations stored

A
ve

ra
ge

 d
ot

 p
ro

du
ct

w−of−W 16−of−512
w−of−W 16−of−1024
w−of−W 16−of−2048
w−of−W 16−of−4096
w−of−W 16−of−8192

Figure 4.4: (a) Plot of the memory capacity for perfect match (threshold 0.9)
with varying address decoder size W. (b) Average recovery capacity as address
decoder size increases. The memory performance is plotted with W varying from
512(black), 1024(blue), 2048(green), 4096(red) and 8192(cyan), with w kept as
16. The significance ratio α for reading or writing to the memory is 0.99 and for
measuring output similarity is 0.9. d-of-D is 11-of-256.

recovered approximately doubles as the address decoder size doubles. Hence the

memory is scalable to the address decoder size.
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4.5 Effect of significance ratio α on memory per-

formance

The memory used for this test has same parameters as in the default case. The

significance ratio α (also called desensitisation factor) is varied between 1.0 (rep-

resenting an unordered code), 0.99, 0.9 and 0.5.
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Figure 4.5: (a) Plot of the number of associations recovered (absolute capacity)
Vs the associations written to the memory, for different values of the significance
ratio α 0.5 (red), 0.9 (blue), 0.99 (green) and 1.0 (black). The significance ratio
for measuring similarity is kept constant at 0.99. (b) The recovery capacity of
the memory varying with α. The pink line shows the occupancy of the memory.

Figure 4.5 is a plot of how the memory capacity (perfect match capacity)

varies with the number of words written to the memory, for different values of

the significance ratio α. A value of α=0.99 is used in all cases for measuring the

dot product accuracy of the predictions. As we can see, the memory with α=0.5

(in red) performs poorly. The α of 0.5 is low compared to the significance ratio of

0.9 used to calculate the similarity and also the threshold of 0.9 to determine the

correct match, which could be the reason for its poor performance. The memory

with α= 0.99 (in green) gives the best performance, better than the memory

using unordered codes (α=1.0).
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4.6 Testing for error tolerance

To test the memory’s tolerance to input errors, we use a rank-ordered sparse

distributed memory with real weights and standard parameters as described ear-

lier. We first feed it associations (address-data pairs) without any error. Once

a certain number of words have been written to the memory using the method

described earlier, we insert errors in the input address and see how many data

words we get out correctly. Errors in the input address can be either choice

errors (wrong bits selected out of the d chosen bits following the d-of-D code)

or order errors (right bits chosen but the order is wrong) or a combination of

both. In our experiment we take the least significant bit out of d chosen bits

(following an ordered d-of-D code), and set it to a random value between 1 and

D, calling it a bit error. We introduce one or more bit errors in the addresses

that were previously associated to data vectors in the memory, then read out the

corresponding outputs from the memory and compare them to the data vectors

written earlier. We use the normalised dot product to measure accuracy of the

output, and plot both the average accuracy (average normalised dot product)

of retrieval and the count of how many words are accurately retrieved over a

threshold.
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Figure 4.6: (a) Memory capacity (upto 0.9 similarity) and (b) Recovery capacity
for varying input error, no error to 3 erroneous input bits. The memory used
has real-valued weights and stores ordered ordered N-of-M codes, with α=0.99.
d-of-D is 11-of-256, w-of-W is 16-of-4096.

We perform the experiment with the number of bit errors varying from 0 to

3, and plot the absolute capacity and average recovery capacity of the memory.

The results of which are shown in figure 4.6.
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From the figure, we find that the memory performance degrades when bit-

errors are injected, therefore we cannot claim the memory to be error tolerant.

However, in the original paper of N-of-M SDMs [27], the unordered version of

the memory had been shown to be error tolerant. Perhaps testing with different

parameters might give us better results.

4.7 Conclusion

As we can see from the graphs of memory performance, the ordered N-of-M SDM

has the following properties:

Scalability: The number of associations correctly recovered scales well with

both the SDM memory dimensions D and W. Therefore, the memory can be

claimed to be scalable.

Graceful performance degradation: The performance of the memory de-

grades gradually rather than abruptly when the memory reaches its capacity limit

(beyond which writing more words leads to fewer words read out correctly).

Optimal sensitivity factor: Using a sensitivity factor around 0.99 gives the

best results in terms of memory capacity.

An ordered memory is more expensive to implement in hardware than an

unordered memory because it needs to store real values for the memory connection

weights, while the unordered memory needs only a single bit per synapse for the

binary weights. This is a weakness of the ordered N-of-M SDM as compared to

the unordered N-of-M SDM. However, recent work by Furber et al [26] has shown

that it is possible to get an N-of-M SDM with binary weights to store an ordered

code, as long as extra memory bits (on top of the memory size required to store

the unordered code) are available to store the added rank-order information, and

the information is stored with an efficient encoding called rank-order coding, so

as to ensure least expense of storage space.

In the next chapter, we shall discuss a framework to update different com-

ponents of the sequence memory asynchronously, and use that framework (along

with the memory described in this chapter) to build the sequence machine.



Chapter 5

Designing a sequence machine

In chapter 2 we introduced the problem of sequence learning and described various

approaches to the problem. In this chapter we build a sequence machine that is

capable of on-line operation and whose output is a prediction of the following

input. We use the sparse distributed memory with rank-ordered N-of-M codes,

discussed in chapter 4, to construct the associative memory part of the sequence

machine, and combine it with a context memory to build the final sequence

machine. In the following two chapters, we shall look at an implementation of

this system using spiking neurons.

5.1 A novel asynchronous updating framework

for on-line predictive sequence learning

Before we develop our neural model, it is useful for us to define a framework

for on-line predictive sequence learning, consisting of the order of presentation

of symbols and associations, using which we will develop our algorithm. The

purpose is to abstract the finer implementation details and dissect the high-level

problem into sequential steps, so regardless of the algorithm or model used for

the problem, this framework should be valid.

The associative memory used in the machine should be able to learn the

associations between the past history or context and the new encoded input.

On being presented with a new input, if the machine recognises the input to be

part of a sequence it has seen before (i.e. the association between the present

context and the past input has previously been written to the memory), it should

100
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correctly predict the next input (in this case it will not write any new association

to the memory, or the writing will not affect the memory significantly), else it will

write the association to the memory such that the prediction will be correct the

next time the same sequence is presented. The context, which is a function of the

past context and the new input, also has to be updated with the presentation of

each input, and the output prediction will depend on the updated context rather

than the old context.

We can divide the process into the following three steps in temporal order

within each timestep, where time t is measured in discrete steps tǫ{1, 2, .., n, n +

1, ..}

1. The machine associates the new input symbol In at timestep n with the

context at the previous timestep Cn−1, and writes the association to the

associative memory Mn.

Mn = W (Mn−1, In, Cn−1) (5.1)

where W (M, I, C) is an update function that takes the value of the memory

matrix Mn−1 at the past timestep (n-1) and outputs the memory at timestep

n, which is the result of writing the new association of the new input In

and the past context Cn−1.

2. Based on the input In and the context Cn−1, the machine creates a new

context Cn.

Cn = cxt(In, Cn−1) (5.2)

where cxt(I, C) is an update function that takes in the value of the past

context Cn−1 and the input In and outputs the new context Cn.

3. The machine calculates the output by presenting the modified context to

the memory.

On = R(Mn, Cn) (5.3)

where R(M, C) is a read function that reads the memory Mn updated in

step 1 and the context Cn updated in step 2 and gives the output On at the

end of the nth timestep, which is a prediction of the input In+1 during the

next timestep.
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The above three steps incorporate both prediction (step 3) and learning (step

1), and are a convenient way of dividing the sequence of operations during each

discrete timestep n such that the functionality we desire (on-line predictive se-

quence learning) is implemented.

This framework can also be extended to off-line learning (separate reading

and writing phases), simply by fixing the content of the memory at the end of

steps 1 and 2 (during the writing phrase), and having only step 3 for the reading

phase. By having a special ‘end of sequence’ input character that clears the old

context, we can extend the model to recognise words or groups of symbols in the

sequence. However, in this dissertation we have dealt with online learning only.

5.1.1 An example using the framework

Let us assume we are storing the sequence ‘ABCABC’ in the machine. We expect

the machine to learn the sequence ‘ABC’ the first time and predict the next input

letters correctly the second time we present the same sequence ‘ABC’. We use this

example to illustrate how the memory learns and predicts sequences on-line (i.e.

at a single presentation of the sequence), according to the framework described

above.

The processing steps are as follows:

1. When we give the first symbol A as input, the initial context output is φ

(which can either be a special fixed random value or zero) so the association

written to the memory is φ → A. The new context is a function of the old

context and input, which can be represented by cxt(φ,A). Let us call this

A1, representing the fact that the value is most influenced by the input

symbol A. The predicted output when this new context A1 is presented to

the associative memory (now in read mode) is a function of A1, which can

be written as mem(A1). Since the memory has never seen such a context

before, its prediction will be a random value with no information (let us

call this X), or zero (depending on our choice of initial context and the way

we implement the context layer).

2. When we input the second symbol B, the association written to the mem-

ory is A1 → B, which is equivalent to saying that A gives B. The new

context becomes a function of old context A1 and input B, represented by

cxt(A1, B). Let us represent this new context as A2B1, denoting that it
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is influenced more by the present input B and less by the past input A.

Finally, the predicted output on presenting this new context to the asso-

ciative memory in read mode will be mem(A2B1). Since the memory has

never seen a similar context before, it will predict another random value,

say Y.

3. When we input the C, the association written is A2B1 → C, which is

equivalent to saying that A followed by B gives C. The new context is

cxt(A2B1, C). Let us call this A3B2C1 (which is most influenced by C, less

by B and least by A). The predicted value by the associative memory in

read mode will be mem(A3B2C1). Here too the memory has not seen this

context before, and so will predict another random value, say Z.

4. Now when we input the symbol A to the machine the second time, the

memory writes the association between the context and the input. The

association written is A3B2C1 → A. As mentioned earlier, A3B2C1 denotes

that the context is influenced most by C, less by B and least by A, so this

indicates that A followed by B followed by C gives an A, or approximately,

C gives A. The new context formed from the old context and the input will

be cxt(A3B2C1, A) which will be approximately B3C2A1. On presenting this

to the memory, the output of the memory will be a function of the present

context, represented as mem(B3C2A1). Now since it had learnt previously

in step 2 the association A1 → B, and this present context B3C2A1 is most

influenced by A, it will correctly predict the next input to be B.

5. When we give B the second time, the same procedure is repeated. The

association written is B3C2A1 → B. The new context is cxt(B3C2A1, B)

which can be represented as C3A2B1 representing the relative influence of

A, B and C. The output of the associative memory on presentation of this

new context will be mem(C3A2B1) which will be C (because the machine

has learnt previously in step 3 that A followed by B gives C).

6. Finally, when we give C the second time, the association it writes is C3A2B →

C, the new context is cxt(C3A2B, C) which will be A3B2C. The predicted

next input is given by mem(A3B2C), which will be A, based on the associ-

ation written to the memory in step 4.

Thus we can see how the sequence machine would predict the future B,C.A
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(in steps 4,5,6) inputs correctly after a single presentation of the sequence A,B,C

(in steps 1,2,3).

5.2 Encoding the context: Combined model

In chapter 2, we discussed the context neural layer and shift register models as

ways to create the context as a function of the past context and the input. Both

these models both have their advantages and disadvantages, which we discussed

in chapter 2. Our goal is to have a model that combines the best of the two and

minimises their defects.

In creating a new context, our aim is that it should not be overly influenced

by past inputs, but should still be able to remember enough of the past to dis-

criminate the context when ‘locking on’ to a sequence it has recognised (in order

to predict the new symbol in the sequence). The chosen model should be at least

as good as a shift register, and perhaps a bit better, in the sense that forgetting

of the past context or look-back should be gradual, rather than a shift register

where forgetting of the past (beyond its time window) is abrupt.

We create a model that combines the advantages of both the earlier models

by having a modulation factor which can be tuned as a knob to produce the effect

of both systems, and facilitate a smooth transition between them. In doing so,

we expect that for some value of the factor which is between these two systems,

we can combine the best features of both.

The modulation factor λ is a mechanism by which we can control the influence

of the past history in determining the prediction of the next symbol. The effect

of the context is modulated by this factor. For a certain range of λ, we can

ensure that the past history is slowly forgotten, and the present inputs have a

greater role than the past history in predicting the next inputs. For another

range of λ, the effect of the past history will be predominant in the prediction.

For an intermediate range, the prediction will depend somewhat on the past and

somewhat on the present inputs.

We combine the shift register and neural layer by using a separate context

layer with this modulated context.

Figure 5.1 shows how the new context is formed from the old context and

input.

The context is modified in the following two steps:
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Figure 5.1: Creation of the new context from the old context and the input, in
the combined model.

1. The old context is projected into high dimensional space, by passing

it through a neural layer with fixed weights.

2. The projected version of the old context is then multiplied by the con-

text modulation factor (λ) which is less than 1, and is then added to

the expanded input code (which has been expanded by another projec-

tive function to produce a rank ordered N-of-M vector of the same size as

the context), and K maximum components of the sum are chosen to

make the new context. This ensures that the most important bits of the

input replace those of the old context, and the old context bits get shifted

to less important bits of the new context. Thus the input bits are shifted

up and context bits down. This part represents a shift register.

If the value of λ is 0, the new context will be the same as the new input,

and this will be like a pure associative memory where the past history plays no

role in determining the next predicted symbol. As the factor is slowly increased,

the effect of the context increases. Since we use rank-ordered N-of-M codes with

the vector of significances as described earlier, keeping the scaling factor equal to

αN+1, where α is the significance ratio, will ensure that the most important bit

of the old context is given a weight less than the least important bit of the new

context, thus enabling it to forget the old context gradually, and the expansion

acts as a shift register in that the old context is ‘shifted’ to the less important bit

of the new context and the present input takes prominence in determining the

value of the new context. As the scaling factor is further increased, the relative
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importance of the old context increases, until the old context becomes equally

important to the present input (similar to a pure neural layer) at λ=1.

5.2.1 A mathematical description of the combined model

As per the notation used earlier, In represents the input vector of dimension

[D,1] at the end of discrete timestep n and Cn represents the context vector of

dimension [M,1] at the end of the nth timestep. Since we are using ordered N-of-

M codes in our memory model, In is encoded as an ordered d-of-D code and Cn

as an ordered m-of-M code.

In the combined model, the context Cn at timestep n can be represented as:

Cn = nofm(λscale(P1Cn−1) + scale(P2In), m, M, α) (5.4)

Where

scale is the scaling function, scaling the vectors such that the sum of compo-

nents equals 1.

P1 is the weight matrix of dimension [M,M] connecting the context output of

the previous timestep to the context layer.

P2 is the weight matrix of dimension [M,D] connecting the input to the context

layer.

nofm is the function representing the transformation of the result as an or-

dered m-of-M vector with significance ratio α.

In this model, a value of λ = 1.0 implies that the present input as equal in

importance to the past context in determining the new context value, and λ = 0.0

implies that the new context is determined purely by the present input, without

any importance given to the past context. A value of λ > 1.0 means that the

present input is more important than the past context in determining the new

context.

5.2.2 Context sensitivity factor as a convex combination

An alternative way to encode the context could be to use a convex combination

of the input and context. Let the context sensitivity parameter in this case be

represented by the symbol Λ. Hence the expression for the context Cn at the end

of timestep n is as follows :
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Figure 5.2: Relationship between λ and Λ

Cn = nofm(Λscale(P1Cn−1) + (1 − Λ)scale(P2In), m, M, α) (5.5)

Here, 0 ≤ Λ ≤ 1

Such an arrangement, for the context sensitivity parameter Λ=1.0, means

that the new context is purely a function of the past context (no influence of the

input). Λ = 0 represents the case where the new context is determined purely by

the present input (no influence of the past context). Lambda = 0.5 represents the

case when the present input and context are equally important in determining

the new context (equivalent to λ=1.0 in the previous model)

The relative influence of the context and input is λ : 1 in the first combined

model and Λ : (1−Λ) in the convex combination model. The relationship between

λ and Λ is as follows :

λ =
Λ

1 − Λ
(5.6)

Λ =
λ

1 + λ
(whenΛ 6= 1.0) (5.7)

Λ = 1.0 represents the case where the influence of the input is negligible in

determining the new context, and is equivalent to an infinitely large λ. In effect,

Λ is equivalent to a squashing function on λ, limiting its allowable range from

[0,∞) to the range [0, 1]. The relationship between λ and Λ is illustrated in figure

5.2.

In our tests of the sequence machine performance described in chapter 8, we

shall investigate both of these models.
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5.3 The complete sequence machine

By using the rank-ordered N-of-M SDM as described in chapter 4 as the associa-

tive memory, and using the encoding of the context as described earlier in this

chapter (combining the neural layer and shift register models of context encoding)

we have the complete model of the sequence machine. We also need to have an

encoder to encode the input symbols (which would be 1-of-A code, representing

one symbol from the alphabet of A symbols) to the appropriate ordered N-of-M

code and a decoder to decode the output of the associative memory, which is an

ordered N-of-M code, to a 1-of-A code representing the output symbol which is

a prediction for the next input. The sequence machine thus developed will have

both short term memory (represented by the dynamic representation of the con-

text in the context layer) and long term memory (represented by the data store

layer of the SDM, which is a memory of finite size into which the associations are

written).

Thus, the complete sequence machine has three primary components: an

encoder, the neural sequence memory, and a decoder. The characters of the

sequence are fed, one at a time, into the encoder. The encoder has a unique

encoding for each character in the input alphabet. If implemented in neurons,

the encoder can be represented by a single neural layer having fixed weights, such

that the mappings of the characters to the neural code are fixed: it behaves like

a lookup table. The decoder is similar to the encoder, except that the inputs and

outputs are reversed.

As described in chapter 4, the associative memory used in the sequence ma-

chine has real-valued weights and associates the context cue with the input sym-

bol. It is made of two layers, the address decoder and the data memory, as in

the N-of-M SDM. The context layer is separate from the associative memory. It

is also made of neurons and has fixed weights, and implements the combination

of neural layer and shift register. We use the max function as the training algo-

rithm for the weights in the data store layer of the ordered N-of-M SDM. Learning

(change of weights) takes place in the data store layer of the SDM only, and the

weights of the context layer and the address decoder layer remain fixed.

The figure 5.3 gives the structure of the complete sequence machine showing

its various components.
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Figure 5.3: Structure of the complete sequence machine having the SDM memory
(composed of address decoder and data store), context, encoder and decoder
layers



CHAPTER 5. DESIGNING A SEQUENCE MACHINE 110

5.3.1 Operation of the sequence machine

The operation of the sequence machine during each discrete timestep n can be

described by the following algorithm:

1. Encode the input symbol In (a vector of 1-of-A code representing a chosen

symbol from the alphabet A) as an ordered d-of-D code I ′

n by passing it

through an N-of-M encoder.

2. Feed the resulting ordered d-of-D code I ′

n to the data store layer of the SDM

(at the data inputs) as well as to the context layer.

3. Feed the delayed context layer output Cn−1 from the previous timestep into

the address decoder layer of the SDM, and to the context layer (via feedback

connections). The address decoder takes the old context Cn−1 as input and

calculates the ordered w-of-W decoded address Wn−1.

4. Input the address decoder output Wn−1 to the data store.

5. Write the association of the address decoder output Wn−1 and the en-

coded input I ′

n to the data store layer (by setting its weight matrix to the

max of the outer products of the vectors and the previous matrix value) .

6. Generate the new context Cn in the context layer from the previous

context Cn−1 and the ordered d-of-D input code I ′

n.

7. In reading from the SDM, feed the new context Cn into the address

decoder, which generates a w-of-W coded output Wn. Feed the output Wn

into the data store.

8. The data store, in the read mode, reads the address Wn and computes the

output O′

n as an ordered d-of-D code.

9. The ordered d-of-D code O′

n is passed through an N-of-M decoder (whose

weights are transpose of the encoder used in step 1), which generates the

output On as a 1-of-A code, representing the chosen output symbol from

alphabet A, which is a prediction of In+1.

Thus, the whole operation proceeds discretely with each input character.
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5.4 Conclusion

In this chapter, we described a framework to describe on-line predictive sequence

learning, and designed an on-line sequence machine based on that framework,

using the combined model of encoding the context. The sequence machine de-

scribed operates with time-abstracted significance vectors to encode outputs of

various components.

In a model with spiking neurons, we have to work with spike timings, and the

processing becomes more complicated than simply calculating products of vectors

and matrices. In the next chapter, we shall consider issues in implementation with

spiking neurons.



Chapter 6

Modelling with spiking neurons

In the previous chapter the implementation of the sequence machine was described

assuming the abstraction of time through the use of significance vectors. In this

chapter and the next, the implementation of the machine using spiking neurons

will be explored.

The principal aim of this dissertation is to use low-level spiking neural com-

ponents to build a sequence machine. In doing so, we need to consider a number

of problems, such as how to keep spike bursts, which are emitted by different

layers and encode symbols, well separated in time. This is needed if we are to

have stable dynamics to make sense of them as coherent symbols and prevent

inter-symbol interference. We look at the use of feed-forward and feedback inhi-

bition to solve some of these problems. Our intention is to show that it is feasible

to have a system that can transmit a coherent and stable burst of spikes across

different neural layers.

In this chapter we consider issues that are commonly encountered in modelling

spiking neural systems in general (with proposed solutions), and in the next

chapter we shall examine issues related to the sequence machine, especially the

integration of various neural layer components to form a coherent working system.

6.1 Issues in spiking implementation

In implementing the sequence machine using low-level asynchronous spiking neu-

rons, there are some issues we need to consider. These issues can be grouped into

the following types:

112
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1. General issues connected with modelling any high-level function using asyn-

chronous spiking neural systems (including implementing the encoding scheme

in 6.2.1, defining the beginning and end of a burst in subsection 6.2.2, and

issues relating to the burst coherence and stability in subsection 6.2.3)

2. Issues concerning the implementation of different components of the system

using spiking neurons (including implementing the learning rule in subsec-

tion 6.2.4)

3. Issues regarding the functioning of the sequence machine as a whole (includ-

ing timing issues such as keeping timing dependencies between components

in subsection 6.2.5)

4. Issues connected with the spiking neural model (including choice of a suit-

able model to implement the desired functionality in subsection 6.2.6).

In the following subsections, we discuss the different issues and suggest our

solutions to enable the system to work correctly.

6.1.1 Implementing the rank-ordered ordered N-of-M en-

coding scheme

First of all, we need to specify how to treat the spike bursts transmitting infor-

mation in the system implemented with spiking neurons, and understand their

relation with the time-abstracted symbolic system (described in chapter 4) we

have been using so far in the SDM memory and in the sequence machine, in

which we considered the symbols to be encoded as ordered N-of-M significance

vectors. With the system implemented in spiking neurons, we assume that the

symbols are encoded as bursts of spikes emitted by neural layers. The output

burst from one neural layer is input to the next layer, which generates another

burst on its output, and so on. The ordered N-of-M code is followed in the spike

bursts, meaning that code transmitted is in the choice and relative temporal order

of firing of N spikes out of M neurons in the layer forming a burst. We assume

that a spike emitted by a neuron is immediately transported to the inputs of all

neurons that it is connected to. However, we do have delays between the input

and output spikes of a neuron, that are caused due to the dynamics of the chosen

neural model (described in a later section), and use neurons in our systems that

utilise such delays to synchronise different bursts.
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Figure 6.1: (a) Feed-forward shunt inhibition to make a layer sensitive to a tem-
poral order of input spikes. (b) Imposing an N-of-M code in a layer of spiking
neurons through feedback reset inhibition to control spiking activity when a cer-
tain number of output spikes have fired.

The coding scheme we are implementing is rank-ordered N-of-M code, which

is transmitted as the choice as well as the rank of spikes in a burst. Such a code

can be generated by having a feedback reset inhibition neuron that takes inputs

from the M outputs of the layer and feeds back to the neurons in the layer. The

feedback neuron acts as a counter and has a threshold of N. When N output

spikes have fired in that layer, this feedback neuron fires a resetting spike that

resets all the neurons in the layer, thus ensuring that exactly N neurons can fire

spikes in a burst. We assume here that two neurons do not fire at exactly the

same time, or the feedback neuron has a deterministic way to choose an arbitrary

order between two simultaneous outputs. We only need to make sure that the

output order of spikes from a layer in response to a given input order is equivalent

in the case of the time-abstracted and spiking neural models.

A neuron or a layer can be made sensitive to a particular order of spikes

by employing a feed-forward shunt inhibition neuron (FFSI) or a population of

interneurons, following the method used in Thorpe’s model [77, 22, 76] to de-

sensitise a layer with each additional spike in the burst. The shunt inhibition

neuron, which has a different time constant than the neuron it inhibits, takes

inputs from all the inputs to the layer (to which it is connected as a shunt) and

outputs an inhibitory spike to all the neurons in that layer.

A quantity called input sensitivity or significance of a neural layer is defined as

the effect on the activation increase of the neurons of a layer in response to input

spikes to that layer. The spike emitted by the FFSI neuron decreases this quantity.

This inhibitory spike can decrease the significance in two ways: additively or
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multiplicatively. If we assume it to act additively, the inhibitory spike to a neuron

would set its sensitivity down by a fixed value with each additional input spike.

If the effect of the FFSI spike is multiplicative, each inhibitory spike causes the

sensitivity of the neuron to be multiplicatively reduced by a fixed constant. The

multiplicative sensitivity can be considered a special case of the additive if we

consider decaying activations and equally spaced input spikes [26], so we shall be

using it in our spiking implementation.

Therefore, each inhibitory spike decreases the sensitivity of a layer multiplica-

tively by a constant ratio α, which is less than 1 and which we call the desensi-

tisation factor. Decreasing the sensitivity by a constant ratio α each time makes

the rise of the activation of the neuron in response to future input spikes reduce

by the same ratio. The FFSI neuron is different from common spiking neuron

models such as LIF [53] in the sense that the effect of its spikes is multiplicative

rather than additive, and it affects the significance value of the neurons in the

layer rather than the activation.

The FFSI neuron fires an inhibitory spike to all the neurons in the layer with

each successive input spike. The inhibitory spike sets the input sensitivity of each

neuron in the layer to the same amount, regardless of whether the neuron receives

the input spike. Since the first input spike strikes the layer directly before the

shunt inhibitory spike has time to decrease the sensitivity, the first spike will have

maximum effect (due to absence of inhibition) in increasing the activation. The

shunt inhibition spike strikes the layer immediately after and multiplicatively

decreases the sensitivity of all neurons in the layer to α, therefore the second

input spike will have its effect decreased by a ratio of α, the third input spike

will have an effect proportional to α2 and so on. This is similar to the vector of

significances [1, α, α2, ...] that we used in chapter 4 to encode symbols in the

time-abstracted model.

Thus, a rank-ordered neural layer can be implemented by a combination of

feed-forward shunt inhibition and feedback reset inhibition, as illustrated in figure

6.1.

6.1.2 Beginning and end of a burst

One of the questions we need to consider when implementing such a system is

the identity of the burst of spikes. Since the choice and order of firing of the

neurons in a burst of spikes represents the code being transmitted, we have to
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be careful not to let errors such as extra spikes from a different burst or wrong

timing order creep in. Therefore, we need to define how to identify the beginning

or end of a burst. Since we have stipulated that all bursts follow the N-of-M

code, we can have counter neurons to count the number of spikes at the output

of a layer. We make the convention that the first spike of an input burst signals

the start of the burst, thus activating all neurons in the layer to receive the input

code being transmitted. The end of an output burst is signalled by the output

counter neuron connected to all the outputs of the layer firing a resetting spike

when a total of N output spikes have fired, which resets all the neurons in the

layer.

6.1.3 Coherence and stability of the burst

To have a well-behaved system, we need to ensure that the spike bursts which

transmit the code are stable and coherent. This means the following things:

1. The intra-burst separation (the temporal separation between the

first and last spikes within a burst) should be within bounds as

the burst propagates through the system. It should not progressively in-

crease or decrease as the bursts travel through successive neural layers in

the system, else the bursts may interfere with other neighbouring bursts

in the system (leading to inter-symbol interference). Specifically, the intra-

burst separation should be small compared to the inter-burst separation, to

enable the system to distinguish different bursts clearly. The bursts should

be coherent and their integrity should be maintained as they pass though

the system.

2. The bursts should not fade out. Since the bursts are regenerated by

each layer, there is a danger that there may be fewer spikes in the output

burst of a layer than in the input burst, and after a few layers the spikes

may die out completely, since we need a certain degree of neural activity to

sustain the burst.

3. The spike activity should not increase with each successive layer

till it reaches a very high level. This is the reverse of the fading out

phenomenon. The number of spikes constituting the burst can increase as

the burst propagates through successive layers, leading to an unacceptably

high level of spiking activity and destroying the code being propagated.
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4. The code being propagated should be correct. This means that the

order of firings should be computed correctly in each burst that is prop-

agated. An input spike burst to a neural layer should produce an output

burst corresponding the output significance vector in the time-abstracted

model.

The stability problem can also be considered in a wider context of control

theory [70], where stability is a standard problem. To have stability in a system,

some mechanism is needed to control the output (usually implemented through

negative feedback). In our case where we have a system with multiple neural lay-

ers, since we have the problem of controlling the burst activity within a specified

level, we need to have some inhibition mechanism to control the output spiking

activity of the layer.

In a later section, we will implement a neural system that has the property of

stable propagation of burst activity through a feed-forward network.

6.1.4 Timing issues

In the sequence machine design, there are strict timing requirements between the

symbols. For example, since the output of the system is a prediction for the next

input, it is essential that the outputs of the sequence machine fire before the next

inputs arrive.

Another timing problem is the control and synchronisation of the firing times

of spike bursts across different layers, in order to fine-tune the system to perform

a specific function. For example, the sequence machine has two kinds of inputs

to the context layer, one of which is the fed back previous context from the delay

layer and the other is the present encoded input from the encoder layer. If the

feedback time of the old context through the delay layer is too fast compared to

the time separation between different waves of inputs, the context spikes could

circulate around the feedback loop before the next inputs come in, thus spoiling

the code to be transmitted. Therefore, it is important that both inputs to the

context layer arrive at approximately the same time. The delay layer latency and

the time gap between successive inputs can be matched to fulfill this requirement.

We also need to make sure that the neurons in a layer do not fire until all the

inputs to that layer have arrived. If they start firing before all the inputs have

arrived, the code transmitted, which is based on the timing order of the spikes,
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will not be correct.

In our implementation with spiking neurons, we have met the mentioned

timing constraints by inserting extra delays through delay layers whose neurons

have long time constants. The delays inserted by these delay layers are only due

to the internal dynamics of the neurons, because of their long time constants. By

engineering the time constants to a suitable value, we have tuned the system to

perform in a precise way keeping all the required timing constraints.

6.1.5 Implementing the learning rule in spiking neurons

For the learning rule in the correlation matrix memory component of the sequence

machine, which is part of the rank-ordered N-of-M SDM implementation, we used

the max function as described in chapter 4. In the time-abstracted model, the

association of two significance vectors representing the address and the data was

written to the memory as follows: the new weight matrix is the maximum of the

old weight matrix and the outer product of the significance vectors (refer to the

formula in section 4.2 of chapter 4).

Implementing this algorithm in spiking neurons presents a problem: the two

bursts of spikes from the learning inputs (the data inputs of the SDM) and normal

inputs (the address inputs of the SDM) do not arrive at the same time. In the

sequence machine design, the old context spikes (from the previous wave) which

arrive earlier are to be associated with the present encoded input spikes, which

arrive later. Therefore the significance vector representing the order of spikes

in the burst corresponding to the old context must somehow be stored until

the learning inputs arrive in the next wave. We accomplish this by storing the

significances in the synapses of the neurons of the data store layer. This is only

possible if we assume the neurons in the layer to have a synaptic memory, which

can store the respective significance vector components to associate with the

components of the learning input spikes. We can think of this synaptic storage

as equivalent to an eligibility trace (mentioned in chapter 3), which is used to

determine the change of connection weight when the other part of the association

arrives later. These eligibility traces stored in the synapses of the neurons have

to be cleared when the writing of the association to the memory is concluded, in

order to prepare for the next burst.

The local neurons obtain the global information of the rank of the inputs (in

order to calculate the significance components to store in the synapses) through
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the FFSI neurons, that keep track of the current rank of the firing in the form of

the sensitivity or significance values. When an input spike to a neuron fires, it

sets its sensitivity value in the synaptic memory to the current value of the FFSI

significance representing its firing rank. In this way the shunt inhibition acts as

a mechanism to communicate global order information to the individual neurons

in the neural layer.

Another problem is implementing the max function in the learning rule (the

new weight component being the maximum of the old weight and the product

of the respective components of the significance vectors being associated) using

spiking neurons. We can treat the max function as a dynamic threshold set to

the present value of the connection weight, the connection weight being written

or modified only if the product of the eligibility trace (i.e. the significance vector

component) of the old context and the significance of the encoded new input is

above this threshold. Therefore, the STDP-style learning rule corresponding to

the max function in the SDM is as follows: The data inputs serve as the teaching

signal, and the weight change is a nonlinear function of the old weight, input

eligibility and teacher signal, such that the max function is implemented (i.e. a

change of connection weights happens only if the product of the corresponding

significance components is more than the existing connection weight, and the new

weight is set to this product).

6.1.6 Choosing a spiking neuron model

In this subsection we describe our criteria for choosing a suitable model of spiking

neuron.

We need the simplest, fastest and most flexible spiking neural model that can

achieve the functionality we require, which is to model the dynamical behaviour

of the sequence machine. We want a model that can implement the ordered N-

of-M code and can produce an output equivalent to the time-abstracted model

using significance vectors. We are modelling using point spiking neurons (neurons

without spatial properties) that make the decision to fire based only on local

information of the input spikes, not on any global variables. The guidelines and

assumptions regarding the spiking neuron model implementing the system are

summarised below.

• The spiking neural model must be biologically plausible. In other words,
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any assumptions we make regarding the model ought to be at least partly

justifiable in the behaviour of biological neurons.

• The decision of a neuron to fire must be based on its input spikes only.

Therefore, any global parameters in the system, such as the desensitisation

factor, will also have to appear to each neuron as a separate local input

spike.

• The neuron fires when an internal quantity of the neuron known as acti-

vation exceeds a threshold. The threshold can be fixed or dynamic. The

activation represents the integration of the effect of all the input spikes to

the neuron, weighed by the strength of the input connections. The integra-

tion function may be nonlinear.

• All spikes are assumed to be identical. The only information in them is in

their time of firing.

• As a simplification, we assume that the neurons are point neurons, i.e. they

have no spatial properties (such as are used in compartmental models of

spiking neurons [48]).

• The neuron can have different kinds of inputs, i.e. it can have input spikes

from different layers, and can distinguish between them if necessary. This

is needed to model the context layer of the sequence machine, which is fed

both the current input and the fed back past context through a delay layer.

• The neuron may have delays built into it, i.e. a time delay between the

input and output spike due to its internal dynamics. However, we assume

the neuron to have no wire delays in the transmission of the spikes to the

next layer. The output spikes from one layer appear immediately to the

inputs of the next layer connected to it.

• The neuron can have some special inputs, which it can be programmed to

treat differently from normal inputs. For example, there can be some inputs

which are meant for learning, by modifying the connection weights.

We will need the spiking neuron model to be able to model properties such

as sensitivity to inputs (in order to implement rank-order codes), the ability to

write an association of two rank ordered codes to the memory in the form of
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connection weights (to implement the learning rule), etc. The model should be

able to implement the functionality of the sequence machine network (including

feedback layers such as from the context layer) and to produce an equivalent

effect to the time-abstracted model with significance vectors.

In the next sections, we will describe two spiking neuron models that fulfill the

above basic requirements, and examine their suitability for modelling our system.

6.2 RDLIF model

The rate-driven leaky integrate and fire (RDLIF) model is a variant of the stan-

dard leaky integrate and fire (LIF) model [53]. The only difference is that incom-

ing spikes in the standard leaky integrate and fire model increment the activation

value, while in the RDLIF model they increment the rate or the first derivative

of the activation value.

In this model, the behaviour of a neuron can be described by two variables:

the activation, a, which is the quantity which induces the neuron to emit a spike

if it exceeds a threshold, and the activation driving force, r, which controls the

rate of increase of the activation. Both activation and driving force decay with

time, and the rate of decay is governed by their respective time constants τa

and τr. Here, the activation is a dimensionless variable, the time constants have

dimensions of time, and the activation driving force has the dimension of one over

time.

The driving force of the ith neuron increases with incoming spikes and decays

with time t, until it reaches a resting value r0.

ri(0) = r0 (6.1)

dri

dt
= ṙi =

∑

j

wijxj − (ri − r0)/τr (6.2)

Here xj =
∑

n δ(t − tn) is the sum total of impulse functions (i.e. integrating

this with time will give the total area under the impulse curves representing the

spikes) of the input spikes emitted from the jth input neuron and wij is the

connection strength.

The driving force drives the activation, which itself decays with time to a

resting value a0.
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dai

dt
= ȧi = ri − (ai − a0)/τa (6.3)

If the activation of the neuron exceeds its local threshold, it fires a spike and

immediately its activation is reset to a refractory level, and its driving force is

reset to r0 to prevent the activation from increasing.

ai >= Θi => (yi = δ(t − now)) ∧ (ai = aref , ri = r0) (6.4)

Solving the above equations, we arrive at the following expression for activa-

tion of a neuron having a single input spike at time t=0.

a = Ae−t/τa(1 − e−t/κ) (6.5)

where κ = τaτr/(τa − τr) and A = r0κ are constants.

If τr = τa = τ , and asymptotic values r0 and a0 are set to 0, and all the

weights are normalised to 1 i.e. the increase in the activation rate due to an

impulse input spike is 1, for a single RDLIF neuron that has an input spike at

time t=0, the expressions for the four state variables of the neuron: r, ṙ, a, ȧ are:

r = e−t/τ (6.6)

dr

dt
= ṙ = −1/τe−t/τ (6.7)

a = te−t/τ (6.8)

da

dt
= ȧ = e−t/τ (1 − t/τ) (6.9)

Figure 6.2(a) shows the shape of the activation curve following a single input

spike at time 0. We see that the activation at first increases due to the increased

driving force caused by the incoming spike, but after a time the decay becomes

dominant. For an RDLIF neuron to fire, it should get a sufficient number of

input spikes within a specified time to enable it to reach the threshold before it

‘dies out’ because of the decay of the activation and activation rate. There is an

inherent time lag between the input spike and the maximum activation reached

by the neuron. Such an intrinsic delay between an input and output spike is
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Figure 6.2: (a)The plot of a typical RDLIF neural activation with time, when the
neuron receives a single input spike at time t=0.(b)Plot of activations of three
identical RDLIF neurons which get input spikes at 20,40 msec (shown in black),
40,80 msec (shown in blue), 80,160 msec (shown in red). The neuron (with black
activation) which gets most closely spaced input spikes has the highest activation.

useful in a feedback system to stop potential interference between different spike

bursts. Without such a delay (as in a standard leaky integrate and fire neural

model [53]) at least one output spike from each neural layer would have to fire

at the same time as an input spike from that layer (to enable a neuron in that

layer to cross the threshold and fire the last spike of that burst), which can cause

problems if a feedback loop exists in the system (since this condition holds true

for each neural layer in the loop).

Another characteristic of the RDLIF model is that closely occurring input

spikes reach the threshold quicker than those spread out, because if the aver-

age inter-spike interval is greater, the decay becomes more important. This is

illustrated in figure 6.2(b).

6.2.1 Comparison of the RDLIF model with the standard

models

The standard leaky integrate and fire (LIF) model [53] can be considered a special

case of our rate driven LIF model, if the activation rate time constant is very low

and the activation time constant is very high. In addition, it is possible to model

characteristics such as habituation (decreased response to a repeated stimulus),

sensitization (heightened response after a painful stimulus), refractoriness (the

neuron not being able to fire another spike immediately after spiking), etc in this
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model.

It can also be considered as an implementation of Gerstner’s spike response

model (SRM) [28], although the SRM model is more general. The kernel function

a(t) in response to an input in the RDLIF model implements the time course of

the response to an input spike ǫ in the SRM model. The family of curves generated

by the above equations (when the time constants of rate and activation decay are

varied) is very similar to the family of curves of the build-up of the activation in

response to an input spike in the SRM model.

It should also be mentioned that the RDLIF model is more biologically plau-

sible than the standard LIF model. The conductance of the cell membrane of

the neuron can be thought of as representing the rate of activation, as it passes

through a resistor (the resistance of the cell as represented by the ion channels

and neurotransmitters) and the current is similar to the activation.

6.2.2 Suitability of the RDLIF model for implementing

the time-abstracted model

We need to make sure that the effect of an input burst of spikes on a layer of

neurons (i.e. the order of spikes in the output burst of that layer) is equivalent to

the effect in the time-abstracted model (which is the order of output spikes as can

be deduced from the output significance vector). In the time-abstracted model,

each symbol is encoded as a vector of significances in the geometric progression

1, α,α2 etc, where α is the significance factor.

In the RDLIF model, the increase of activation of the neuron in response to an

input spike is a function of the time of the input spike, as well as the connection

weight and the input sensitivity. This is because the input spike increases the

rate of the activation, which is the slope in the activation-time graph, rather than

the activation itself. In the time-abstracted model, the increase of activation in

response to an input spike is a function of the connection weight and the input

sensitivity alone. Therefore, the addition of time in the equation of the activation

makes it difficult to ensure that both the models will behave identically and will

give the same output order of spikes in response to a given input order.

An analysis of a simple two-layered network with two RDLIF neurons in each

layer, in which the outputs of the time-abstracted and timed models have been
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compared, can be found in Appendix A. As we see from the appendix, the con-

dition for the model implemented with RDLIF neurons to perform equivalently

to the time-abstracted model is a function of the connection weights and the

significance ratio, and tuning the two models to work identically will require us

to tune these parameters for each combination of the input and output firing

order. Therefore, generally speaking, implementing the temporal abstraction by

the RDLIF model of spiking neuron is not feasible. We have to choose an alter-

native spiking model which can perform exactly as the abstracted model. One

such model with simpler dynamics is described in the next section.

6.3 The Wheel model

The wheel or spin model of a spiking neuron is a simple linear model with sponta-

neous linear activation (say as a result of a tonic input) and no activation leakage,

in which the neuron can be visualised as a spinning wheel. This model is also

known as the firefly model, and was originally proposed to model the synchro-

nised flashing of fireflies [46]. The neuron has a quantity called activation or

phase (which can be compared to the membrane potential of the neuron), which

keeps on increasing, as the neuron ‘spins’, at a constant rate which can be con-

sidered as the angular velocity of spin. When the neuron gets an input spike, its

activation rises by an amount proportional to the connection weight of the input.

In-between input spikes, the neural activation spontaneously increases linearly as

per the rate of spin or angular velocity. When the neural activation reaches a

threshold value, it fires an output spike and the activation gets reset to 0 again,

just like the phase of a spinning wheel gets reset to 0 as soon as it completes a

rotation of 360◦. In an activation-time graph of the neuron, the activation has

a default slope and will therefore hit the threshold eventually even if the neu-

ron gets no input spikes (which is similar to the behaviour of biological neurons,

which fire spikes randomly at a low rate even if they get no input spikes). If the

threshold value is Θ and the default slope of the neuron is m, the time when it

reaches the threshold will be t = t0 + Θ/m where t0 is the current time.

The dynamics of this model are linear, and can be described as follows: Input

spikes to the wheel model give a phase shift to the neuron, increasing its activation

or phase by an amount equal to the product of the connection strength and the

input sensitivity or significance of the neuron α. If the input connection weight
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Figure 6.3: (a) The activation increase with respect to time in a spiking neuron
following the wheel model. Once the neuron is activated, the activation normally
increases at a constant slope. The neuron has two input spikes from Neuron 1
and Neuron 2 which cause its activation to jump by an amount corresponding to
the product of the connection weight w and the sensitivity or significance s. (b)
The equivalent plot in the RDLIF model for comparison.

between the jth input neuron and the given ith neuron is wij , the input sensitivity

or significance of this ith neuron when the jth input fired was αj , and the input

neuron fires at time tj then the activation of the ith neuron at time t (assuming

the neuron was activated at time t0 , meaning that its activation slope started

increasing from 0, say after a reset, at this time) is given by:

ai(t) = m(t − t0) + Σjwijαj (6.10)

Now, this activation will reach the threshold Θ at time T (say).

ai(T ) = Θ (6.11)

Θ = m(T − t0) + Σjwijαj (6.12)

Solving for T, we get:

T =
Θ − Σjwijαj

m
+ t0 (6.13)

Figure 6.3(a) gives an illustration of how the activation of the wheel model

increases in response to successive inputs, until it reaches the threshold. Part

(b) of the same figure shows how an RDLIF model with decaying activation and

decaying activation rate would behave. As we can see, the models have some

similarity in the shape of activation, although the wheel model is linear and the
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RDLIF model is not.

6.3.1 Biological basis for the wheel model

The wheel model is a simple linear model and biological neurons generally have

more complex dynamics. However, similar models have been used by modellers of

the dynamical behaviour of complex systems, both biological and non-biological,

such as synchronisation of flashing in fireflies [46] and desynchronisation in pace-

makers [24], and communication networks such as sensor networks and pulse

coupled oscillators (research in this is pursued by the DESYNC subgroup of Self

Organising Systems group at Harvard University, among others).

6.3.2 Comparison of the wheel model with RDLIF model

A version of the wheel model (in which the default rate of activation increase is

very low) can be considered a special case of the RDLIF model, if we assume

(for the RDLIF model) the activation time constant τa to be very large (i.e. the

rate of decay of activation is negligible) and the rate time constant τr to be very

small (i.e. the rate is like an impulse function, it stays for a short time and then

disappears, so the input spike in effect increases the activation rather than the

rate).

In such a case, with an RDLIF neuron, assuming r0 and a0 in the RDLIF equa-

tions to be 0 the expression for the activation rate r, which is ṙ =
∑

j wjxj − r/τr

where x is an impulse function representing input spikes, can be considered as

an impulse function itself (since τr is small, the value of r decays almost instan-

taneously after giving a phase shift or jump to the activation a corresponding to

the weighted input wjxj) giving a phase shift to the input as in the wheel model.

The RDLIF expression for neuron activation ȧ = r−a/τa becomes on integration

a = wjδ(t) because the rate r decays almost instantaneously and 1/τa ≈ 0. This

case (activation a is constant except for rises due to impulses proportional to the

input connection weight) is similar to the activation for the wheel model when

the default slope m is 0.
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6.3.3 Suitability of the wheel model for implementing the

time-abstracted model

As long as the threshold is large enough so that the neurons strike the threshold

on the slope rather than on receiving the input, i.e. assuming that all the neurons

in a layer get their input spikes before reaching the threshold, and that all the

neurons are in phase initially, we can guarantee that the Wheel model will give

an output order that is identical to what we would get from the time-abstracted

model. This is because the increase of activations in the wheel model, in response

to an input, is identical to the corresponding increase in the time-abstracted

model. The slope of the neuron only serves as a way to add time to the system

without affecting the equation of the increase of activation in response to input

spikes.

However, for this to happen, we need to ensure that all neurons in a layer are

in phase when the layer gets the first spike from a burst. We do this by having

an ‘active’ and ‘inactive’ mode for the wheel neurons, such that the phase or

activation starts rising as per the default spin or slope only when the neuron is

‘active’. We can assume all neurons in a layer to be in the ‘inactive’ mode initially,

and program the first spike of an input burst to set all the neurons to the ‘active’

mode. When all the neurons in that layer have finished firing (i.e. when the

N-of-M counter neuron on the output of the layer fires to reset all the neurons

in the layer) the status of the whole layer is again set to ‘inactive’ until the next

burst. We can justify this global status variable by assuming a weak connection

from the input to all the neurons in the layer, such that all the neurons ‘know’

immediately when the first input spike fires (even those neurons with which the

input neuron is not connected) and can change their mode to ‘active’ with the

first input firing.

One problem with this model is the property that once activated, every single

neuron has to fire at some time even if it gets no input spike, since the default rate

of spin will ensure that the activation will equal the threshold eventually. We get

round the problem by having a very low default slope (or rate of spin) relative to

the threshold, and resetting all the neurons in the layer by using feedback reset

inhibition, when the requisite number of them have fired (following the ordered

N-of-M code).

An added property of the wheel model is that there are no explicit refractory

periods (the period after firing a spike, when the firing neuron does not increase
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its activation above the reset value) or latency between input and output. It is

possible that the firing of an input spike will take the activation of the neuron

above its threshold, which can create problems in maintaining the relative order

of spikes in a burst. However, we can engineer the model to ensure that such a

case does not happen.

In the remainder of this chapter, we will switch back to using the RDLIF

model in some simulations on the stability of spike bursts, as the RDLIF model

is more general, more accurately models a biological neuron and is similar to

many standard spiking neural models such as leaky integrate and fire and spike

response model. However, we will use the wheel model to simulate the complete

spiking machine in the next chapter, as it is easier to tune it to behave precisely

as we need.

6.4 Simulation of a spiking neural system to

study stability issues

In this section we will examine, primarily through simulation, issues concerning

modelling with spiking neurons, especially the stability of a burst of spikes in a

feed-forward system. Our objective is to study the dynamics of the spike burst

when it is propagated across many layers, and show that it is feasible to have

stable burst propagation.

We simulated a feed-forward network consisting of partially connected neural

layers of RDLIF neurons (similar to a synfire chain [1, 5, 40]). We fed the first

layer a uniformly distributed random set of spikes, then fed the output spikes from

the first layer into the second layer, the second layer spikes into the third layer and

so on. There are no delays in the connection wires, apart from the delays inherent

in the neural model. We then measured and plotted the temporal separation of

the spike burst when passing through different layers. The architecture of the

system is shown in figure 6.4.

6.4.1 Simulation method

For the simulation, we have a loop to model an array of feed-forward layers. Each

iteration of the loop represents a propagation of a spike burst from layer i to layer

(i+1). There is a different weight matrix in each iteration, representing different
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Layer 1 Layer 2 Layer 3 Layer n

Figure 6.4: Architecture of the simulated network of a number of layers of 256
identical RDLIF neurons each. The neurons in each layer are connected to those
in the next layer with 10% connectivity and random excitatory weights. The first
layer fires a burst of spikes, which is fed to the second layer, whose outputs are
fed to the third layer and so on. The temporal widths of the output spike bursts
are measured.

neural layers but with the same average connectivity. The first layer is given a

random set of spike firing times. We have an inner loop to count the time in

time-steps in each such iteration, and in each time-step we check if any input or

output neuron has fired. Each input spike increases the gain of the connected

neuron proportional to the connection, as per the RDLIF model. The firings in

the ith layer cause spikes to fire in the (i + 1)th layer. We wait for a specific

time which is sufficient for all the neurons to fire. This time is chosen such that

above this time, the gain and activation of all the neurons in a layer would decay

and there would not be sufficient stimulus for any neuron to fire. The input and

output spike firings occur simultaneously over this time period. We argue that

this method (using time-steps and waiting for a specified time in each layer before

moving on to the next layer) is equivalent to a pure event-driven system.

The process of propagating the spike firings from one layer on to the next is

repeated for the next iteration after copying the output vector of spike timings

to the input layer, and so on. Thus, in each iteration, the input is simply a

vector of firing times and we get an output vector of firing times. We measure

the temporal dispersion by taking the difference between the first and last neuron

firing times in that burst. We then repeated the experiment for different values

of input spreads, different values of network parameters, etc.

6.4.2 Sustaining stable activity in a population of neurons

One important issue in modelling a system of spiking neurons is sustaining stable

activity over many layers, and preventing the spike burst from blowing up or dying



CHAPTER 6. MODELLING WITH SPIKING NEURONS 131

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

N
o.

 o
f n

eu
ro

ns
 fi

rin
g

Layer number

T=50
T=60
T=70
T=80
T=85
T=86
T=87
T=88
T=89
T=90
T=100

Figure 6.5: Plot of the variation of the number of neurons firing in each layer
with varying threshold values, in a feed-forward network of 11 layers (including
the input layer) of 256 RDLIF neurons each following 11-of-256 code, with 10%
connectivity in each layer. The neurons have activation and activation rate time
constants of 1 s each. The system behaviour switches abruptly from spiking
activity increasing with each successive layer to dying out, as the threshold is
progressively increased. The switch occurs at the threshold value of 87.

out as it passes through the layers. In our simulation, we have the same problem.

The stability of the burst has some connection with the neural threshold, as

modulating the threshold leads to change in behaviour of the spike burst. If the

threshold is given an abnormally high value, the spiking activity dies out within

a few layers, while if it is too low, the activity may increase with each layer to an

unacceptably high level. We found that in our simulation, for a given network,

there was no threshold such that the system could sustain a desired average level

of spiking activity over infinitely many layers. The behaviour of the network

abruptly switched from dying out of the spiking activity to an increase in activity

with each successive layer as the threshold was progressively decreased, as shown

in figure 6.5, with the switch occuring at a threshold of 87. It is interesting to

note that the information content of a rank ordered 11-of-256 code is 87.6857 bits

(as per the formula mentioned in section 4.1.1) which is also between 87 and 88,

but this is just a coincidence, since the actual switch occurs between threshold

values 87.693 and 87.694.

One of the ways of getting over this problem is through the use of feedback

reset inhibition to control output activity. We keep the threshold in each layer

such that activity at the output layer is slightly higher than the activity at the
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Figure 6.6: Plot of the average output dispersion, with initial input dispersion 0,
of a burst of spikes passing through the 100-layer network, (a) averaged over 48
runs (b) plotted without taking averages

input, then we limit the activity by using reset inhibition and feed the spikes to

the next layer. This can enable us to have a stable system in which a desired

range of activity of firings could be sustained over a number of layers.

6.4.3 Effect of feedback reset inhibition

Feedback inhibition can be used to control the output activity of a layer, by

suppressing output activity once a certain number of outputs have fired. As

mentioned above, such feedback reset inhibition can be implemented by a neuron

that is fed the output spikes from a layer, and fires an inhibitory spike once it gets

a certain number of input spikes. This strong inhibitory spike resets all of the

neurons in the layer. An RDLIF neuron with a threshold equal to the maximum

number of spikes per burst (according to the code used) is equivalent to such a

counter, provided the activation rate time constant is small and activation time

constant large with respect to the input dispersion. This is what we described

earlier as the method to implement N-of-M codes on the output of any neural

layer.

In our simulation, we implemented an 11-of-256 code by using a counter to

count spikes and resetting all neurons in the layer once 11 spikes have fired.

6.4.4 Simulation results

The parameters in our system are the individual neuron parameters (time con-

stants, threshold) and system parameters (input time spreads and connectivity).

Our base model has 100 layers with 10% connectivity from layer to layer. The
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Figure 6.7: (a) Plot of the average output dispersion over 200 layers with varying
input dispersions of a burst of spikes. (b) Plot of the variation of average output
dispersion over 100 layers, averaged over 100 runs, with average network connec-
tivity varying from 0.1 (sparsely connected network) to 1.0 (fully connected). As
the connectivity increases, the dispersion decreases.

weights are real values between 0 and 0.1, chosen from a uniform distribution.

The neural parameters are: threshold = 50, reset value = -1, time-step width =

10 ms, activation time constant = 1 second, activation rate time constant = 1

second. Each layer has 256 RDLIF neurons, out of which 11 are allowed to fire

before the burst is propagated on to the next layer.

Figure 6.6(a) shows the average output dispersion (averaged over 48 runs)

against layer when the initial temporal dispersion was 0. The plot is for a network

of 100 layers, with average connectivity of 0.1 (which means that only 10% of the

connections between successive layers are non-zero). Figure 6.6(b) shows the

same plot without taking averages. We find that the temporal dispersion quickly

tends to settle down into a narrow range, from its input value of 0, and does not

vary much. As we can see, there is a value which is common to all the error bars.

So we can claim that the spike temporal dispersion is within a controlled range.

We repeated this experiment with different values of initial input dispersion and

found that this range does not depend on the initial input dispersion. Thus, it is

quite a stable and robust system.

Fig 6.7(a) shows the variation of the average output dispersion (averaged over

all the layers) with the initial dispersion we gave to the first layer. We see that

there is no appreciable change in the average dispersion, regardless of the input

dispersion value.
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6.4.5 Analysing the effect of network connectivity on tem-

poral dispersion of spikes

In more realistic networks, it does not usually happen that all the layers are of

similar dimensions or have the same average connectivity. Another interesting

experiment is to investigate what happens to the temporal dispersion when we

vary the average network connectivity. Figure 6.7(b) shows the average disper-

sion against network connectivity. We see a very interesting result: the average

dispersion curve has a shape that is approximately inversely proportional to the

connectivity of the network. When the connectivity is low, the neurons have

difficulty reaching the threshold and so the average time spread or dispersion is

higher. When the connectivity becomes higher, the average time spread of a burst

becomes lower because the neurons can reach the threshold faster. Knowing this,

in our model we set the parameters of different layers such that the average tem-

poral dispersion of the spike bursts remains comparable across layers of different

connectivity, which helps in making the system stable. We synchronise different

bursts by ‘padding’ them with delays. Also, keeping the threshold higher for a

specific layer increases the time it takes for the neurons in the layer to fire spikes.

We will analyse these issues in the specific context of the sequence machine

in the following chapter.

6.5 Conclusion

From the simulations we can conclude that it is indeed feasible to have a system

with stable dynamics of the burst propagation (input and output time dispersion)

in a network of many feed-forward layers. The method to achieve these stable

dynamics is to have feedback reset inhibition to control the spiking activity to a

manageable level.

There are two important system-level time constants in our model, one for

the temporal separation within a burst (our waiting time in each iteration from

layer i to i+1) and the other for the separation between bursts. Since the average

burst dispersion time in our experiments stayed within a defined range over many

feed-forward layers, we could add external delays in the network to ensure that

the inter-burst time interval is kept much larger than the burst dispersion time, so

that successive waves of spikes do not impinge on each other. This would help to
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ensure that the bursts are well-defined. We could also modulate the delays to help

synchronise two different bursts, such as those in the input of the context layer

in the sequence machine model. On the basis of this, we argue that a rank order

code can be transmitted reliably and stably using a system of spiking neurons

with feedforward and feedback reset inhibition.

In the next chapter, we shall consider the sequence machine system as a whole

and implement a sequence machine using the wheel model of spiking neurons that

behaves exactly like a time-abstracted system.



Chapter 7

A spiking sequence machine

In chapter 5 we described the model of a sequence machine consisting of an

associative memory (a Sparse Distributed Memory using rank-ordered N-of-M

codes) with a separate mechanism (a combination of a shift register and a context

neural layer) to store the context or history of the symbol in the sequence. In this

chapter we implement the complete sequence machine using spiking neurons. In

the previous chapter we discussed various issues regarding implementation with

spiking neurons, and showed how it is feasible to propagate a coherent and stable

burst of spikes across many neural layers in a feed-forward manner. Here we

use the wheel model of spiking neuron as described in the previous chapter, and

implement a sequence machine that performs exactly as the system using time

abstracted vectors.

The rest of this chapter is arranged in the following way: first we summarise

the working of the sequence machine in terms of bursts of spikes. Then we indicate

how to implement each component using spiking neurons, and how to make sure

that the timing dependencies between different components are followed. After

that we describe a spiking neural simulator suitably modified to accommodate

some features specific to the sequence machine, and a method to visualise spikes

emitted by different neural layers in the system. Finally, we use the simulator

to learn a sequence with repeated characters, visualise the simulator output and

verify that it is same as an equivalent system using significance vectors.

136
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7.1 Functioning of the system implemented us-

ing spiking neurons

Input
Address
Decoder

Data
Store Output

L

Encoder

Delay

Context

+

Figure 7.1: The complete network implementing the sequence machine

In chapter 5, we mentioned the structure of the sequence machine and the

working of its various components, including the order in which the output vectors

from one layer go to the inputs of another. In that description, we assumed the

output ordered N-of-M vectors from different layers to be transmitted neatly from

one layer to another, without any conflicts.

In the system implemented using asynchronous spiking neurons, each layer

of neurons implements a component of the sequence machine, and interacts with

other components. While implementing the system, we have to make sure that

the firing of the bursts follows exactly the order of vectors in the time abstracted

model and that the interaction between different components is smooth in order

for the complete system to function correctly.

Figure 7.1 gives the structure of the complete sequence machine network,

showing the various component neural layers (input, encoder, context, delay,

address decoder, data store, output) and the connections between them. Below

we will summarise the functioning of different layers of the system.

1. First of all, a single spike is fed into the neuron corresponding to

the input symbol (thus following a 1-of-A code, A being the size of the

alphabet). For example, if the input symbol is ‘D’ from the English alphabet

and the input layer follows a 1-of-26 code, the fourth neuron gets a single

input spike.

2. The input spike is fed to the encoder layer, which outputs a burst of

N spikes corresponding to an ordered N-of-M code. These are fed to two
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places which are connected to the encoder: the data store neurons (through

the data inputs) and the context layer.

3. (The first of three cyclic steps of the sequence memory, as mentioned in

chapter 5) The encoder outputs are fed to the data store layer

through the data inputs. Initially, all the input connection weights of

the data store layer of the SDM (with the address decoder layer) are zero.

With the arrival of the first learning spike, the data store layer goes into the

learning mode, which enables it to set the connection weights between the

address decoder and data store layers of the SDM memory. However, since

there is no stored order of the address decoder outputs from the previous

wave in the synapses of the data store neurons, no learning takes place and

the connection weights remain zero.

4. (The second of three cyclic steps of the sequence memory) Simultaneously

with step 3, the encoder outputs also feed to the context layer. The

context layer gets inputs from two layers, the encoder and the delay, but

at this point the delay layer neurons (which feed back the old context from

the previous wave) do not fire. Therefore the new context output is created

by the context layer based on the encoded input only. The context outputs

are computed following the combined model of encoding the context. The

outputs of the context layer feed to the address decoder and the delay layer.

5. The address decoder receives spikes from the context layer, which

enable it to produce its own output burst of spikes. The outputs of the

address decoder are input to the normal (non-learning) inputs of the data

store layer.

6. Simultaneously with step 5, the context layer outputs also go to the

inputs of the delay layer. The delay layer has been explicitly pro-

grammed to have a high latency, so the output spikes from the delay layer,

which are fed back to the inputs of the context layer, are not emitted until

the next wave of firings from the input layer are started.

7. (The third of three cyclic steps of the sequence memory) The outputs

of the address decoder are fed to the data store neurons, each of

which stores the order of spikes in its synapses, in preparation for setting the

weights. The weights are set when the data store gets data inputs from the
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encoder neurons during the next wave. At this point the connection weights

of the data store are still zero, as they were when initialised. Therefore, no

data store neuron are expected to fire on receiving input spikes from the

address decoder neurons. However, since the data store neurons follow

the wheel model as described in chapter 6, they eventually fire when the

spontaneous activation of the wheel neurons crosses the threshold. The

feedback reset inhibition shuts off the data store layer after N of the M

neurons have fired.

8. The output spikes from the data store are passed through the

output layer, whose weights are the transpose of the encoder weights and

which therefore acts as a decoder to translate the N-of-M code back to a 1-

of-A code representing an output symbol from the given alphabet. Only one

output neuron fires representing the output symbol, which is a prediction

of the next input symbol. However, since no learning has taken place, this

prediction is meaningless.

9. The above cycle of steps (1-8) is repeated with each new input

symbol. The input spike, representing the start of the next wave, fires

after the output spike from the last wave has fired (since the output is a

prediction of the next input). The input spike is fed to the encoder layer,

which fires N spikes. The encoder outputs and the delay outputs from the

first wave (from step 6) are fed to the inputs of the context layer, which

generates the new context as per the combined model. The encoder outputs

also go to the data inputs of the data store, which set the connection weights

between the data store and encoder to associate the data input spikes with

the address decoder spikes from the previous burst (which it had stored in

the synapses in step 7) as per the learning rule. The context outputs go into

the address decoder, whose outputs go into the data store (whose synapses

again store the order of significances for the next wave) and the data store

neurons fire their output spikes. Finally the data store outputs go into the

output layer which generates the prediction for the next input symbol.

Figure 7.2 illustrates the various processing steps in the sequence machine, as

described above.

The above steps describe how we expect the system implemented in spiking

neurons to behave. In the actual implementation, there are some issues (mainly
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Figure 7.2: Flowchart of the information flow in the system, showing the sequen-
tial steps in time
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regarding the timing relations) we need to resolve before the system can function

in this precise order, some of which were mentioned in the previous chapter. In

the following sections we will examine them in more detail.

7.2 Timing relationships between components

In implementing a system using spiking neurons, the only information conveyed

is in the timing (or relative timing in the case of rank-order codes) of the spikes

emitted by any layer. Therefore it is important to ensure that the relative timings

of different layers of spikes are controlled precisely.

We define the latency of a given neural layer as the time between the middle

of the input burst and the middle of the output burst (where the middle of a

burst refers to the mean of the firing times of the burst).

7.2.1 Timing dependencies on signals external to the sys-

tem

1. The output spike must occur before the first spike of the next

input burst, since the output is the prediction of the next input. This

could be accomplished if there is some kind of handshaking communication

between the output and input layers, such that the input layer knows when

the output layer spike has fired and it can fire the next input spike. However,

for simplicity we will assume that the inputs are all equally spaced, and will

engineer the time gap between successive input spikes in such a way that this

constraint is met. Therefore, the temporal gap between inputs should be

bigger than the time taken for a spike burst to propagate through all layers

of the system in the forward direction (excluding the feedback through the

delay layer).

2. The delay latency should be such that the delay spikes input to the

context layer from the last wave of spike firings arrive at approx-

imately the same time as the encoder spikes from the current

wave. This means synchronising an internal variable (the delay latency)

with a signal that is outside the system (the input spikes) in such a way

that the encoder spikes fire at around the same time as the delay spikes.
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We do this by engineering the delay layer latency to synchronise with the

time gap between inputs.

The constraints mentioned above concern input timings, which are external to

the system. However, inside the system, we assume that the input spikes coming

in are already synchronised to the delay and outputs, so we will not worry about

the problem.

7.2.2 Timing dependencies between spike bursts from var-

ious layers

1. In the learning mode, we have to make sure that the store neurons re-

ceive all the spikes from data inputs (and complete writing the

association by setting the connection weights) before receiving the

spikes from the context through the address decoder (which have to be

stored until the next input wave arrives). We can assume that this condi-

tion is fulfilled because of the structure of the network, since the encoder

spikes go directly to the data inputs of the data store, while the address

decoders fire only when the encoder spikes have passed through two more

layers, which are the context and the address decoder.

2. Initially the delay layer has no inputs (because there is no previous context)

and consequently the context layer will fire more slowly (since its delay

inputs are missing) than it would normally. We have to ensure that this does

not destabilise the system, and the inter-burst interval should stabilise

after passing through a few layers. However, from the previous chapter

we saw that in a feed-forward system of neurons with a feedback inhibition

mechanism, the time dispersion of a burst does stabilise when it passes

through many layers. Therefore, we can assume that this condition would

be met.

Figure 7.3 shows the connections between the major components of the system

(input, context, delay and data store layers) and the timing dependencies between

them.

In order to engineer a neuron to have a predetermined latency (the time lag

between its input and output spikes), we can control the threshold to increase

or decrease its latency. Increasing the threshold of a neuron will make it spike
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Figure 7.3: A graph showing the timing relation between a few major layers of
the system, with time on the X-axis. Connections between these layers are shown
on the left

later, thus slowing down the whole system. Decreasing the threshold will have

the reverse effect. For the wheel model, another such control could be the default

rate of spin, or slope of the activation: slower the spin rate, higher will be the

latency.

In setting up the parameters related to the component timings, we have to

observe the following conditions:

1. If we increase the time gap between successive inputs, the delay needs to

be increased correspondingly (by increasing the threshold appropriately) to

make sure that the two inputs to the context arrive at nearly the same

time. A similar condition holds true if we wish to decrease the gap between

successive inputs.

2. If we increase the delay layer latency, then in order to balance it, we will

have to also increase the gap between successive inputs.

3. If we increase the latency of any layer between input and context (i.e. the

input or encoder), we need to proportionately increase the next input fir-

ing time keeping input output latency constant (because firing times of all

successive layers will be shifted by same amount)

4. If we increase the latency of any layer between context and output (i.e. the

address decoder, data store or output) we need to proportionately increase

the next input firing time, for which we also must increase the delay layer

latency as mentioned earlier.

5. Layers which have more inputs are expected to fire quicker. In order to

enhance the stability of the system, we want the latency across layers to be
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comparable. Therefore, these layers should have their neural thresholds set

to higher values. In our system, the context layer has inputs from both the

encoder and delay layers, so its threshold is set higher.

In our simulation experiments with the spiking neural system, we have made

sure that these conditions are met. The latency of a neural layer can be set to a

higher or lower value where needed by tweaking the time constants of the spiking

model. The timing of the input spikes to the system is within our control, so

we have ensured in the simulation that the timing restrictions are followed and

the spikes are input to the system with regular time intervals corresponding to

the latency of the whole system (total latency of all the layers in the sequence

machine).

7.3 Issues specific to the sequence machine

Apart from the timing issues mentioned above, there are some other issues specific

to the sequence machine system, that we had not covered earlier. These issues

are briefly summarised below.

1. We need to store the rank-ordering of the two input bursts to the

context from the delay and input layers separately, since the increase

of activation of the context on receiving any input (which is a function of

the sensitivity of the layer, which decreases with each additional input spike

in the burst) depends on the position of that input in its respective burst.

This is done by having two different feed-forward shunt inhibition (FFSI)

neurons on the two kinds of inputs to the context, which keep track of the

rank of the input spikes from both the layers.

2. We have to ensure that output spikes of any layer do not start

firing before all the input spikes from the layer before it have

arrived, else it will spoil the code being transmitted. This can be arranged

by having large thresholds and low default rate of spin, along with extra

axonal (between an input and output) or wire delays.

3. The system is sensitive to noise in the spike trains and a few random spikes

have the potential to upset the outputs (mainly because it waits for N neu-

rons in a layer out of M to fire until it resets a neural layer, in accordance
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with the strict N-of-M code we are using), so it needs to be carefully en-

gineered so that the times of firing are synchronised. In simulating

the system, we have assumed that there is no noise in the system. However,

since we are using ordered N-of-M code and the number of actual codes used

in the alphabet is far less compared to the total possible number of codes,

there is some degree of redundancy and therefore some error is tolerable.

For example, using an alphabet of 26 symbols taken from an ordered 11-of-

256 code, the total number of possible ordered codes is 256!
245!

which is to the

order of 1026, while the number of symbols used is only 26.

4. The layers have control over their output spikes, but have no knowledge of

how many input spikes are going to arrive and when (unless each layer asks

the layer before it). Therefore we have to ensure that the output spikes

follow the correct code and there are no errors in the generation

of the output spikes, else the neurons in the next layer could keep waiting

indefinitely for the expected number of input spikes.

5. Initially, the context layer has no inputs from the delay layer. Since we

are using a counter on the inputs to determine when to reset the inputs

to a layer and also to determine the significance (just as we have another

counter on the outputs to enforce the N-of-M code) and since the model

cannot distinguish between different kinds of inputs unless we specifically

program it to do so, we need to initialise this counter to the number of

delay layer outputs (i.e. treating it as if the delay neurons have already

fired).

6. In the data store memory, we write the connection weights to the memory

based on the associations between two significance vectors: the vector cor-

responding to the spike burst from the encoder layer to the data inputs of

the data store (this burst is current and so need not be stored), and the

stored vector corresponding to the previous burst (during the last wave)

from the from the address decoder layer to the normal inputs of the data

store (which needs to be stored till the next wave). Therefore, we have to

store the significance vector from the last wave in the synapses of

the data store neurons, until the data inputs come and learning takes

place. After the learning is completed (signalled by the N-of-M counter
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neuron at the inputs firing to indicate it has received all the expected N in-

put spikes in the current burst) the stored synapses are reset in preparation

for the next burst.

7.4 Implementation of the individual components

of the system

Below are some added observations on the implementation of some individual

components of the system using spiking neurons.

7.4.1 Implementing the context layer

(First N spikes)

Expanded context

Fed back context from delay layer Encoded inputs from the encoder

Feedback reset
inhibition

Figure 7.4: Formation of the new context from the input and old context, imple-
mented in neurons

‘Addition’ of two bursts of spikes may be implemented in neurons by having

both the bursts (whose corresponding significance vectors are to be added) input

to a neural layer at the same time. The output of such a layer will effectively

represent the sum of the bursts. In the combined model, the context is modified in

the following way: the fed back previous context spikes from the delay layer are fed

to the context neural layer in order to project the context into higher-dimensional

space. Spikes from the encoder layer, representing the encoded present input, are

also fed to the context layer. The effect of the spike bursts from the encoder and

delay layers on the activations of the context neurons is additive. N output spikes

are selected from the context layer in order by means of feed-back reset inhibition

(to implement the ordered N-of-M code on the new context).

The context sensitivity λ can be implemented by multiplying the weights of

the delay layer (that feeds back the old context) by λ, so that the effect of an
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Figure 7.5: (a) Design of the encoder network to convert the input symbol (1-of-A
code where A is the length of the alphabet) into an ordered N-of-M code. (b) The
decoder network to convert the output of the memory (N-of-M code) back into
a 1-of-A code (by means of feedback reset inhibition) and thus find the closest
symbol match, which is the output prediction for the next symbol in the sequence

encoder layer spike on the activation of the context neuron is proportionately

higher than the effect of a delay spike. Another way to implement the context

sensitivity factor could be to weight the increase of activation of context neurons

in response to delayed old context spikes by the value λ, thus ensuring that an

encoder spike (representing the new input) has a proportionately higher effect on

increasing the activation of a context neuron than a delay spike (representing the

old context).

7.4.2 Encoder and decoder

The purpose of the encoder is to translate a 1-of-A code (corresponding to an

input symbol in the alphabet) into an ordered N-of-M code. Our encoder is

a neural layer with fixed weights (no learning of the weights is involved) and

therefore functions as a lookup table. The purpose of the decoder is to convert

the data memory (or data store) outputs (which is an ordered N-of-M code) back

to a 1-of-A code, representing one of the symbols in the alphabet which is the

prediction of the next input symbol. Figure 7.5 shows the structure of the encoder

and decoder layers when implemented using spiking neurons.

The decoder layer has an ordered N-of-M code as input and outputs a single

spike corresponding to a 1-of-A code. By a 1-of-A code we mean that only one

neuron fires a spike at the output layer, which is the symbol in the alphabet

corresponding to the identity of the neuron, in the same way as the input layer.
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The decoder is layer is implemented by having a feedback reset inhibition neuron

that cuts off the output activity after the first neuron in the layer has fired. The

decoder weights are the transpose of the encoder weights, so in effect it performs

a reverse lookup of the code.

7.4.3 The data store layer and the learning rule

The data store layer is the only component in the sequence machine where learn-

ing takes place. The other layers input, accumulate and output spikes by per-

forming calculations involving significance vectors, but do not have any long term

learning component involved in them. The layer stores associations between sig-

nificance vectors corresponding to the spike bursts in its inputs from the encoder

and address decoder. We have assumed throughout that the spiking neurons have

a localised learning mechanism (all information needed to decide when to spike is

stored locally, either through the input spikes or stored in the synapses) and fire

asynchronously (there is no global clock synchronising the whole system, timing

each component precisely).

The learning rule for setting the weights is summarised below:

wij(new) = max[wij(old), σiσ
′

j ] (7.1)

where wij = weight component between the ith data store neuron and the jth

address decoder.

σi = ith component of the significance vector corresponding to the spike burst

from the encoder layer, which form the data inputs of the address decoder.

σ
′

j = jth component of the significance vector corresponding to the spike burst

from the address decoder layer.

What this formula means is that the new connection (weight) between the ith

address decoder and the jth data store neuron is set to the maximum of the old

weight and the product of the significance vector components of the ith address

decoder neuron and the jth data input neuron.

Although the max operator is strictly not biologically plausible, it can be

understood as a kind of dynamic threshold set to the old value of the connection

weight, such that if the product of significance vector components of the address

decoder and data store exceed this threshold, the connection weight is set to the

new value.
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The weight change algorithm requires each data store neuron to store the

significances of the data inputs from the encoders and the normal inputs from

the address decoders. However, this depends on the order in which its two types

of inputs fire. If the data inputs had fired before the address decoders, we would

have to simply store the data input significances and when each address decoder

fires, the weights are set at that moment to the maximum of the old weight

and product of significances. However, in our case, we have the address decoder

neurons firing first. This presents a problem of storing all the significances of

address decoder outputs in the data store neurons. The only place we can

store the significances until the next input wave are the synapses of

the neurons, therefore each synapse must have a memory to store the

input sensitivity.

Another issue we need to consider is: how does the data store layer know

when to switch modes from learning (setting the connection weights) to

recall (calculating the outputs)? For this purpose, we stipulate that the learning

mode is triggered on the firing of the first encoder spike on the data inputs of

the data store, and is finished when the last encoder spike has fired (when the

feed back reset inhibition neurons on the output of the encoder implementing the

N-of-M code fires, signalling that the last encoder spike has fired in the present

burst).

Output

Feedback reset
inhibition spike

Input
synapses

Feedforward shunt inhibition
Inputs

Data store
neurons

Outputs

Address 
Decoders

Shunt inhibition

inhibition
Shunt

Figure 7.6: (a) A data store neuron (b) The data store memory implemented
using spiking neurons

Figure 7.6 shows how the data store layer can be implemented using spiking

neurons.

The learning rule we implemented using spiking neurons was de-

scribed in chapter 4. This is not a standard algorithm for spiking neurons, but
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this is the one that is used in the SDM memory [27, 26] and is also based on

a localised Hebbian-style learning rule. This is applicable in the case when the

two inputs to be associated arrive at different times (as is the case in the se-

quence machine), so there has to be some kind of learning eligibility, akin to a

standard eligibility trace mechanism in neural systems and classical conditioning

[79, 19, 86], that is stored when the first input has passed away, which we have

implemented by the significances stored in the synapses. This is the algorithm

we have implemented using spiking neurons.

We postulate that the learning sensitivity, or eligibility trace of the

neuron stays constant unless changed externally. This is the quantity that

is stored in the neural synapses of the data store layers when the first wave of

spikes has passed. During the first wave, the address decoder spike burst arrives

at the data store, and the neurons store the significance vectors or eligibility

traces corresponding to this burst in their synapses. When the data inputs arrive

during the next burst, the weight change takes place as per the learning rule, and

the stored eligibility traces are cleared.

The kth data store neuron has one feed forward shunt inhibition or FFSI

neuron (and one significance or sensitivity value) corresponding to the data input

neurons, which takes input spikes from all the data input neurons and outputs

an inhibitory spike to the kth data store neuron every time one of the data input

neurons fire. The effect of this inhibitory spike is to turn down the sensitivity

corresponding to data inputs by the significance ratio α. This neuron also has

another FFSI neuron (and another significance or sensitivity value) corresponding

to the address decoder neurons, which takes input spikes from all the address

decoder neurons and outputs an inhibitory spike to the kth data store neuron

every time one of the address decoders fire. The effect of this inhibitory spike is

to turn down the sensitivity corresponding to data inputs by a factor, say β.

Apart from this special mechanism of feed forward shunt inhibitions, the rest is

simply an implementation of localised Hebbian learning (as in the unordered

case as described in Furber et al [27]): the weight component (i,j) between the ith

address decoder and the jth data store neuron is changed only when both the ith

address decoder and the jth data input neuron have fired (in some fixed order, say

address decoders before the data inputs). Also, the neuron needs to determine

when both its data input and address decoder have fired. This weight component

is set to the maximum of the old value of the weight component and the product
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of the address decoder and data input sensitivities (which are both stored in the

jth data store neuron by the mechanism that is described above).

Finally, there is another small issue: the significances of all the neurons

in the layer should be reset when the firing burst is set, in order to enable

it to start storing the next burst of sensitivities. This will need yet another kind

of feedback reset inhibition, which will be triggered in the appropriate case. The

first feedback reset inhibition is triggered when it has counted N spikes, and fires

a resetting spike to shut off the whole layer.

7.5 Implementation of the simulation

There are quite a few neural simulators available, such as GENESIS, NEURON,

SNNS (Stuttgart neural network simulator), Matlab neural network toolbox,

SpikeNNS, etc. They have varied functionality and complexity. For the pur-

poses of implementing the sequence machine, we chose to use a locally designed

spiking neural simulator called ‘SpikeNetwork’ designed by Mike Cumpstey, a

researcher working in the APT group of Manchester University [17], that was

quite suitable for our purposes and for the model described. The reason we used

a locally built simulator rather than a more standard one was because we had

to modify the simulator code to suit the application, and having a locally built

simulator made the modification task easier.

7.5.1 Features of the simulator

The main features of the simulator are described below.

• The simulator has reusable components, both low-level and high-level.

It can easily be configured to implement any kind of system, with any

number of neural layers, connection structure, or neuron parameters, and

so is highly flexible. All we need to do is to specify all the configuration

information in a configuration file.

• It can work with a wide variety of spiking neuron models such as leaky

integrate and fire, RDLIF model, Izhikevich model [36] and wheel model.

It is relatively simple to implement new spiking neuron models if necessary,

since the code is modular and object oriented.
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• The simulator can be programmed to process different model of neu-

rons within the same network, as specified in the configuration file.

• Each neural layer can function in two modes: learning or recall.

The learning mode is triggered by special ‘learning’ inputs, although the

simulator works in the recall mode by default.

• Each layer can have more than one type of input. In the sequence

machine, only the data store layer goes into the learning mode and only the

context layer has input spikes from more than one layer.

7.5.2 Working of the simulator

The simulator is given a configuration file for the network and another file speci-

fying the timing of the input spikes. The system starts up with spikes from the

input layer (with firing times and input configuration specified in the network

configuration file and the simulation file) and gives as output a series of spikes

with firing times. Each input spike sets off a wave of firings in different layers of

the system.

We have developed a plotting program in Matlab, which then takes in the

series of output spikes and plots them with annotations and labelling to show

clearly the timing relations between spike bursts from different layers.

The format of the input configuration file, simulator output and other details

are described in Appendix B.

7.5.3 Simulator features specific to the sequence machine

model

A few changes had to be made in the design of the basic simulator to incorporate

features specific to the sequence machine and make it work exactly as in the time

abstracted model.

One problem that arises in the case of context layer is that it has two sets

of input spikes coming in from the encoder and delay layers. In determining the

respective significance values to calculate the increase in activation, we need to

know the temporal rank-order of each input spike in its respective input burst.

Therefore, we need to keep two separate counters for knowing the ranks of input

spikes to the context layer coming from the encoder and delay layers.
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A different vector is needed to store the learning significance vector in the

synapses of each neuron, which is not reset until the next wave of spikes.

Since all inputs to the context layer have a unique ID and there is no explicit

way to remember which of the input layers emitted the spike, the layer has to be

deduced from the identity of the input spike, and after that the rank of inputs

from that layer has to be incremented. Only then can the significance value and

the increase in activation of the context neuron be computed. This illustrates

a problem regarding passing of information across different classes in the object

oriented simulator. In the neural layer class, we need to keep an array of learning

significances, which we have to make sure is not reset when the rest of the layer

is reset (i.e. when the output spikes of that layer have been fired, determined by

the counter corresponding to the number of output spikes equals the maximum

number as per the output N-of-M code of that layer). We need to do this because

the setting of connection weights in the data store layer takes place when the

current wave passes and the next bursts of inputs propagate through the system.

In order to make the system implemented using the wheel model work exactly

as the system implemented using the significance vectors, we have to make sure

that all neurons in the neural layer have their phase synchronised. Therefore,

we ‘activate’ the layer with the first spike of every burst such that the neural

activation starts rising only after such an activation signal is received.

Each layer in the system has the following counter neurons:

1. An input counter neuron, connected to all inputs to the layer, to count

the rank of input spikes in order to compute the significance, which also

activates all the neurons in the layer on receiving the first spike of any

burst. This counter neuron is used for decreasing the input sensitivity or

significance progressively by multiplying the present significance value for

the layer by a constant significance factor α which is less than 1. Since

the rank counted by this neuron does not need to be stored but is used up

immediately to calculate the significance, having only one counter for the

whole input layer is sufficient instead of a separate counter for each neuron

in the layer.

2. A second input counter neuron, in case of layers with two types of

inputs such as the context layer, which counts the rank of the input spike

in the burst coming from the second input layer, and uses it to compute
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the significance and increase of activation in the same way as for the first

counter neuron.

3. A learning counter neuron for the data inputs (from the encoder) of

the data store layer, to count the rank of the data spike and the learning

sensitivity or eligibility, which is not reset when the whole layer is reset

(when the resetting spike from the output counter neuron has fired). In

case of learning the change of weights takes place when the data inputs

strike the encoder, because the significances of the address decoder neurons

from the last burst has already been stored in the synapses of the neurons.

Therefore in this case too, only one learning counter neuron is needed for the

whole layer (instead of a separate counter for each data input) because the

significances are calculated instantly and used for changing the connection

weight, and do not need to be stored. Whenever a normal input spike from

the address decoder to the data store fires, no learning takes place, and

when a data input spike from the encoder fires, change of the weights takes

place. This is how the system automatically decides when to change the

weights (in write mode) and when to simply increase the activations (in

read mode).

4. An output counter neuron, which is connected to all the outputs of the

layer and fires a resetting spike to reset the activations of all neurons in the

layer and also deactivate the layer (so that the wheel neurons do not start

spinning with the default rate, thus spontaneously increasing the activation,

unless the layer is activated).

The N-of-M code is ensured for each layer by the input and output counter

neurons, the input counters for enforcing rank-order sensitivity by decreasing the

significance value multiplicatively for each successive input spike, which is used to

calculate the rise in activation, and the output counters for ensuring that exactly

N neurons fire on the output layer out of a total of M neurons, thus enforcing

N-of-M coding.

7.5.4 Using time steps and event queues in simulation

There are two ways to go about the simulation of neural systems: using an event

queue and using timesteps.
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The timestep model

As the name indicates, the timestep model of simulation of a system involves

having a global clock counter, and recomputing the state (with state variables

such as activation, learning sensitivity or eligibility, input sensitivity, activation

rate, etc) of every neuron in the system at each timestep. Implementing a simu-

lator following this model is quite simple, but it is not efficient to recompute the

state of the system at each timestep, especially when the system is large and the

number of firings per timestep is small compared to the size of the system. Also,

if the firing times are quite close to each other, the timestep has to be sufficiently

small to fire them in the right order.

The event queue model

Another way to simulate a spiking system is to have continuous time instead of

timesteps, and have an event queue. The firing of a spike at a specific time is

defined as an event. An event stores two items of information: the identity of the

neuron which is to fire, and the expected time of firing. The recomputing of the

neurons takes place only when an event is fired. Events are stored into a queue

for processing, which is kept sorted in order of firing times. The queue has two

main operations:

1. Insert an event into the queue in its correct position such that the queue

remains sorted in its order of firing times

2. Remove an event from the front of queue and process it. Processing a

firing event means re-calculating the expected firing times of all the neurons

connected to the firing neuron, because these are the neurons that receive

the input spike, so their expected firing time will be closer to the initial

value.

The queue is initialised by the firing of a spike from the input layer. It is

operated by removing events from the top of the queue one by one and processing

them, until the queue becomes empty.

In some neuron models, it is not possible to compute the exact time of firing

accurately, because their kernel equations are not invertible. For such models we

can still compute the expected firing time within an adequate degree of accuracy
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by using numerical methods. This problem does not occur with the wheel model,

which is linear.

The event queue model, although more complex to implement than the time

step model of simulation, is more efficient in case of small networks with sparse

firing activity, because there is no need to keep a global time counter or to recom-

pute the state of every neuron in the system at each time step, but only when

the spikes actually fire. However, a problem with using an event queue is that

it can become quite long, and it may not be efficient to recompute firing times

and delete and insert event nodes from a long queue. This also depends partly

on which data structure (such as a sorted array or linked list) is used for the

implementation of the queue. Also, when the expected time of firing is far from

the current time, there is a possibility of having to perform this delete and insert

operation a number of times before the firing event takes place.

The SpikeNetwork simulator is implemented using a time step model in com-

bination with a small event queue for events whose firing time is in the near

future.

7.6 Simulating the complete system

We simulated a sequence machine using the SpikeNetwork simulator, using the

Wheel model of a spiking neuron and the context encoded using a combination of

neural layer and shift register. The sequence machine had a structure as shown

in figure 7.1, and all the assumptions and modifications discussed earlier were

followed. Since we used the linear wheel model, we could calculate the approxi-

mate latency of each layer, and change the latency if necessary (by changing the

threshold or the slope of the wheel model representing the spontaneous rate of

increase of activation). Based on this, we designed the input timings and the

delay latency so that the timing dependencies between various layers are main-

tained. The input and output layers follow a 1-of-20 code, the encoder and data

store layers follow an ordered 3-of-20 code while the other layers follow an ordered

6-of-40 code, each with significance ratio α equal to 0.97. The context sensitivity

factor λ is kept at 0.97 as well. The default wheel neurons were set to have an

activation rate of 0.1 and threshold equal to 6.0, although these parameters were

set differently for the context, delay and data store layers, in order to make their

average latency approximately same as the other layers.
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Figure 7.7: Plot of spikes emitted by different layers in the sequence machine
against simulated time (actual time to run the complete simulation is about
4 minutes). Spikes of the same colour, encircled by coloured ellipses, belong
to the same layer. The brown arrows denote causality, how a burst of spikes
causes firing of another burst in the next layer after a delay, and the orange
dotted line links the prediction on the output to the next input. The figure plots
12 different waves of spikes each triggered by an input spike, and forming the
sequence 7,1,5,1,7,1,5,1,7,1,5,1. After the first 7,1,5,1 input (when the predicted
output is 18,1,5,1 which is incorrect but the system learns the sequence), the
predictions 1,5,1,7,1,5,1,7 of the next input symbols are correct. The input spikes
are uniformly spaced in time.

Figure 7.7 shows the output of the simulator (with spike outputs of differ-

ent neural layers across time) following the combined model, on being given a

repeated input sequence ‘715171517151’. The first time the sequence ‘7151’ is

given the output prediction is incorrect, but the system learns to predict cor-

rectly and the next time the ‘7151’ is entered the prediction is correct. The

sequence ‘7151’ is used because it is the simplest sequence where we need to

have knowledge of context to determine the successor of the symbol ‘1’ (since the

symbol ‘1’ is repeated with two different successors, the correct prediction of the
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successor of ‘1’ depends on its context).

In the diagram, spikes from different layers are plotted on the Y-axis and time

on the X-axis. Spikes of the same colour and in the same horizontal band belong

to the same layer (which is labelled on the right), and the arrows show how a burst

of spikes from one layer causes the next layer to fire a burst after some time. We

can see from the diagram that the spike bursts from different layers are coherent,

stable, well behaved, and follow the timing dependencies mentioned. They also

implement the high-level sequence machine by learning the given sequence 7151

in a single pass, and predict it correctly in the second and third presentation of

7151.

7.6.1 General observations from the sequence machine be-

haviour in the given example

From a detailed examination of the time and identity of spikes fired in different

layers (we can get a rough idea from the diagram) we can make the following

observations:

1. The prediction of the next input is correct the second time (and also the

third time) the sequence 7151 is input after it learns them the first time,

thus confirming that the sequence machine has successfully learnt to predict

the sequence.

2. The input-output latency (time taken for a burst of spikes to propagate

through the whole system from the input to the output layer) is higher

during the first wave of spikes, because the delay inputs to the context do

not fire (so it takes a bit longer for the context neurons to fire). However

the latency stabilises in the next few waves.

3. In each layer the last input fires before the first output, fulfilling the con-

dition that all inputs to a layer must fire before the first outputs of the

layer start firing, and the time gap between the last input and first output

stabilises in all the three waves (i.e. the inputs are not “catching up” on

the outputs).

Thus we can conclude that the sequence machine based on the combined

model is behaving stably for all the layers and is learning the input sequence

correctly after a single presentation.
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We then repeated the experiment using the neural model of context encoding

instead of the combined model. Here too we used a similar network as the earlier

experiment (but used four delay layers with latency, measured by the default

slope of the wheel model, equal to all other layers, instead of one delay layer with

a big latency).
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Figure 7.8: Spiking sequence machine output, with different neural layers on the
Y-axis and simulated time on the X-axis (actual time to run the simulation is
approximately 3 minutes), using an context neural layer model of the sequence
machine and four delay feedback layers instead of one. The ellipses denote dif-
ferent layers of neurons, black arrows denote causality, orange arrows prediction.
The input sequence is 01410141, which the machine learns to predict correctly
after a single pass.

Figure 7.8 shows the output of the simulator (with spike outputs of different

neural layers across time) following the context neural layer model.

An ordered 3-of-20 code is used for each layer except the input and output,

which follow a 1-of-20 code. The input sequence given to the machine is 0141

0141, the repetition of the 0141 sequence is to enable it to learn it the first time

and predict correctly the second time. Here too we can verify that a sequence of

0141 (for which the successor symbol of 1 depends on its context) gets predicted

perfectly the second time after it is learnt the first time. For this experiment the
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value of λ (context sensitivity factor) is kept at 0.2, and a significance ratio of

0.97 is used throughout.

7.7 Verification of equivalence with the time ab-

stracted model

In order to verify that the output of the spiking neural simulator is exactly the

same as the equivalent machine using time abstracted significance vectors, we

have developed a Matlab program that takes the same weight matrices as used

in the simulator and the same parameters (neural layers, connection structure,

values of the significance ratio α and context sensitivity factor λ, N-of-M code,

etc) and outputs the order and choices of neural firings (as per the ordered N-of-M

code) for each neural layer in the network, and for each wave. The program uses

the time abstracted significance vector model to calculate its outputs, instead of

using the wheel model as in the spiking neuron simulator.

Comparing the spike timings output by the neural simulator and the Matlab

code, we have verified that the time abstracted model performs exactly as the

spiking neuron simulator, i.e. the choices and orders of neurons firing in each

layer in the system are exactly the same for both the cases, for the experiment

repeated with different parameters and even for different models of context en-

coding including the context neural layer and combined model.

While it is not unexpected to have the simulator and time abstracted model

behaving exactly the same, since we have explicitly designed them to do so, it still

shows that the time abstracted model can be implemented using spiking neurons,

and that the spike bursts in the neural system remain stable and coherent while

passing through many layers and also many waves.

7.8 Conclusion

In this chapter, we have described the design and operation of the sequence

machine using spiking neurons, and demonstrated that the spiking neural imple-

mentation performs equivalently to an implementation using significance vectors.

In the next chapter, we present the results of some experiments performed to

determine the behaviour of the sequence memory in different conditions.



Chapter 8

Tests on the sequence machine

In the previous chapters, we developed a sequence machine in which the context

was stored using a combination of a neural layer and a shift register, and then

showed how to implement the machine using the wheel or firefly model of spiking

neuron. In this chapter, we first test the tolerance of the spiking neural sequence

machine to noise in the spike timings. Then we use the time abstracted model

(because it is simpler and easier to use than the spiking neural simulator) to

conduct some experiments on the performance of the sequence machine. Finally,

we present the results of performance tests done on the machine.

8.1 Performance of the system with non-uniform

input spike timings

The experiments we performed using the spiking neural simulator in the previ-

ous chapter had the input spikes equally spaced in time. In order to study the

behaviour of the system when the spike timings are not uniform, we varied the

timings in the following way: we generated random numbers between +1 and

-1 from a uniform distribution, multiplied them by a fraction η of the original

timing between inputs (say T), and added this value to the input times in the

original uniform timing model to create new timings. We varied the spike timings

with the sequence 715171517151, whose uniform-timing version was illustrated in

Figure 7.7. We repeated the experiment for η =0.001, 0.01, 0.1 and 0.2.

Figure 8.1 shows the output of the experiment when 10% irregularity (η=0.1)

is added to the input temporal spacing. We see that the spike bursts from different

161
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Figure 8.1: Plot of spikes in different layers of the sequence machine for the input
sequence 715171517151 against simulated time, when 10% irregularity is added
to the input temporal spacing. After the first presentation of 7151 when it learns
the sequence, it is able to predict the next symbols in the sequence correctly. The
system can cope with the irregularity in spike timings.

layers are still coherent and well-behaved, and the sequence machine predicts the

next outputs correctly. Thus the addition of the irregularity in the input spike

timings does not have any significant effect on the performance of the machine.

Figure 8.2 shows the output with η=0.2, i.e. 20% irregularity in input tem-

poral spacing. If the input spikes arrive earlier than expected, they will induce

encoder spikes to fire, which will then cause firings in the context layer. Normally

the context layer output spikes are expected to fire only when both the encoder

and delay spikes have arrived, but here the encoder spikes arrive earlier causing

the context neurons to fire before the delay spikes, and when the delay neurons

fire they cause another set of context spikes. Therefore the spike bursts start to

diverge because of the added irregularity, as we can see in the figure after the

715171 input. However, the machine seems to recover in this case with the next

wave of inputs, and manages to predict the following inputs correctly. However,
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Figure 8.2: Plot of spikes for the input sequence 715171517151 against simulated
time, when 20% irregularity is added to the input temporal spacing. Here, the
addition of the irregularity disturbs the well-behaved timing behaviour of different
layers, causing two bursts to be emitted from the context layer (encircled by the
two blue ellipses) in response to the two sets of input spikes from delay (green
ellipse) and encoder (red ellipse). However the system recovers and is still able
to predict the next inputs 7151 correctly.

with 30% irregularity as shown in figure 8.3, the context layer mixes the spike

bursts from encoder and delayed previous context and so machine seems to fail

completely. Therefore, we can conclude that the machine is tolerant to a certain

degree of irregularity in the input spike timings, and fails only if the irregularity

is more than this threshold.

8.2 The time-abstracted and spiking neural im-

plementations

In the time-abstracted model, all inputs and outputs are encoded as ordered N-

of-M significance vectors. The purpose of using the vectors was to abstract the

firing times of the neurons of a layer during a burst. Using the time-abstracted

model simplifies many of the complications that we face when using a model of
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Figure 8.3: Plot of spikes for the input sequence 715171517151 against simulated
time, when 30% irregularity is added to the input temporal spacing. Here the
context gets confused due to the non-uniform timings of the spike bursts from
the encoder and delay layers, and the system does not recover.

spiking neurons. We can input the vectors in functions and perform operations

on them without worrying about how and when the spikes are generated, how

they get signals, when to start and stop firing and how we ensure two spike bursts

do not interfere. We have already shown that simulating the sequence machine

using the wheel model of spiking neurons gives equivalent results to the system

simulated using the abstracted model. Therefore, from this point on we will use

only the time abstracted model for our experiments on the performance of the

sequence machine.

8.3 Summary of the model and testing method

In chapter 4 we conducted some tests on the performance of a rank-ordered N-of-

M Sparse Distributed Memory (SDM) and showed that it had good efficiency and

scalability properties. In the sequence machine, we use the same ordered N-of-M
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SDM memory as the associative memory component. We explored in chapter

5 three ways to encode the past history of the sequence in the context using

our framework, namely the context neural layer, shift register and the combined

model. The last of these combines both the other methods and it is possible to

switch from one to the other using the context sensitivity factor λ as the control

variable.

During the tests on memory performance, we shall use the framework men-

tioned in chapter 2 to feed the sequence to the machine, which includes first

associating the old context and the input and writing the association to the

SDM, forming the new context from the old context and the encoded input and

finally generating the output prediction as a function of the new context and the

input. This machine can learn a sequence in a single presentation, and when

the same sequence is presented again it can predict it correctly. Therefore, to

measure the performance of the memory we input each sequence twice into the

machine (using the three steps mentioned each time), the first time to write the

sequence to the memory and the second time to read it and check if the predicted

output is the same as the sequence which was written in earlier. We repeat this

for different lengths of the sequence (clearing the memory after each sequence of

a specified length) starting with a sequence of length 2, and plot the graph of

the number of symbols in the sequence predicted correctly verses the length of

the sequence. We perform this experiment for the three kinds of model we de-

scribed (the context neural layer, the shift register and the combined model) and

also varying different memory parameters to observe how the memory behaves in

different circumstances.

In the sequence memory experiments, we perform the following steps:

1. We initialise the sequence memory by generating the connection weight

matrices for various components in the system. We generate the weight

matrices of the address decoder layer, the context layer in the neural layer

model, and the context scrambler (the connection weights between the de-

lay layer presenting the old context to the new context layer) and input

expander (the connection weights from the input to the new context layer)

in the combined model.

2. We then generate a random sequence of specified length (say l) com-

posed of symbols from the alphabet. The symbols forming the sequence
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are chosen randomly from an uniform distribution (meaning that each of

the symbols in the alphabet has equal possibility of being chosen) in most

experiments. In some experiments we vary the distribution and note the

performance of the memory with different distributions.

3. Training phase: We feed this generated sequence to the sequence ma-

chine, symbol by symbol, where the associations between each encoded

input symbol and the present context are written to the memory as per

the algorithm described. The machine generates an output prediction for

each input symbol, but since this is the training epoch these predictions are

ignored.

4. Testing phase: We now re-input the sequence generated in Step 2 to the

machine, one symbol at a time. This time we expect the predictions for the

next symbols to be correct. Therefore, with each input symbol, we compare

the output (which is a prediction for the next input symbol) to the next

symbol in the sequence. When the complete sequence is finished, we count

the total number of symbols in the sequence that are predicted correctly.

5. We vary different parameters and repeat steps 1-3, each time count-

ing the number of symbols predicted correctly, and clearing the sequence

memory between trials. We then plot the performance of the machine.

8.4 Testing method in related approaches

The testing method in most other approaches to sequence learning (such as the

approaches of Hochreiter [34], Berthouze [12], Tino [30], Elman [23] etc) followed

a common procedure: they first trained the model over sequences generated by

a grammar or time series for a number of epochs or training cycles. Then they

used the same or a different test data set generated by the same grammar and

tested the trained network to correctly predict or classify the test data on the

basis of what it learnt during training.

For example, in Schmidhuber’s approach of training a machine to learn an

embedded Reber grammar ([34]), variable length strings were generated using

this grammar. 256 such random strings from the grammar were generated for the

training set and 256 different strings for the testing set. Then the performance of

the system was measured and compared with other common approaches such as
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the Elman net trained by the Elman procedure [23]. In Tino’s predictive model

built using a method similar to a variable length markov model ([78]), the model

was tested by using the daily values from the Dow Jones Industrial average over

a period of time, the data being transformed into a time series. The model was

trained using a number of training cycles and tested on other data. In Berthouze

et al’s approach [12] to context dependent sequence learning, the testing was

done on sequences of specific length generated randomly by a grammar used in

a game called Tekken. The grammar was like a tree containing a character on

each node, and a sequence could be generated by traversing the tree. Sequences

having specific properties (such as certain characters being repeated) were first

generated using the grammar and the system was then trained and tested on

these sequences to see if it could remember the grammar or recall any sequence

generated by this grammar.

In most of the above tests, the objective was to make the machine learn the

generating process or grammar during training, so that it could predict correctly

the next elements in the sequence generated by the same process. However, as

mentioned before, we make no assumptions about the generating grammar and

our sequence machine is expected to learn and predict any sequence of symbols

that is explicitly presented to it. Therefore, in our tests we generate random

sequences from a finite alphabet and feed them twice to the machine, the first

time for learning the sequence and the second time for testing. During the testing,

we evaluate how many predictions are correct by comparing them to the original

sequence.

8.5 Setting the parameters

The sequence machine has a large number of parameters which can be varied.

To facilitate a fair comparison of the three models (the context neural layer, the

2-shift register and the combined model) we shall keep most of the parameters the

same across the three models and only vary those that we are actually measuring.

The parameters we keep constant over the three models of context encoding are

the SDM memory parameters (the dimensions of N-of-M, the number of address

decoders, significance ratio, etc) in order to study the performance for a specific

memory. The parameters we vary are the context sensitivity factor and the size

of the sequence. To be fair in comparing the three different kinds of models, we
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optimise each of them separately (with respect to the variable parameters) before

comparing them.

The parameters that we keep fixed for the sequence machine performance tests

are as follows:

• The significance factor α is kept as 0.99, which is the optimal value used in

the SDM memory in Chapter 4

• We use an SDM with dimensions 22-of-512 as the d-of-D (instead of using

11-of-256 as in Chapter 4) and 16-of-4096 as the w-of-W code for the address

decoder.

The reason we used a 22-of-512 code instead of 11-of-256 for the address

and data inputs to the SDM is that in the sequence machine, the context

vector is input as the address to the address decoder layer of the SDM. In

the 2-shift register, the context output (22-of-512) has to be double of the

input vector (11-of-256) because the look-back time window size is 2. To

compare the 2-shift register with the neural layer and combined models, we

kept the size of the context vector same (22-of-512) in all the three models.

The parameters we vary during the memory performance tests are as follows:

• Size A of the alphabet from which the input sequences are created

• The distribution of the sequences from the alphabet. For example we may

have binary sequences with uniform distribution of 1’s and 0’s, or we may

have non-uniform distributions such as 0.9 probability of 1’s and 0.1 prob-

ability of 0’s. We have used a parameter p to denote the distribution of

the first symbol in the alphabet (assuming the remaining symbols of the

alphabet are chosen randomly from an uniform distribution). For example,

if we have a binary alphabet (0’s and 1’s) with distribution p, it would mean

that 0 is selected with a probability of p and 1 with a probability of (1-p)

• Length of the input sequences created using a given alphabet and a given

distribution

• The context sensitivity parameter λ, denoting the relative influence of the

past context and the input in determining the new context
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• The method used to generate the new context from the past context and

input. As already mentioned, we have used three models, the neural layer,

shift register and combined models

8.6 Tests of the memory performance

We conducted experiments on the sequence machine, to analyse its performance

against different criteria. The tests are to establish what kinds of sequences the

memory can store and how well it performs the storing and recalling sequences

of different lengths. Here we are especially interested in sequences which have

characters in common or sequences with repeated characters. The effect of the

context sensitivity on the types of sequences the machine can recognise is also an

interesting observation. In these tests, we compare the memory performance of

the predictive on-line sequence machine using three ways to encode the context,

namely the shift register, context neural layer and combined model of the neural

layer and shift register.

8.6.1 Effect of the context sensitivity parameter λ in the

neural layer and combined models

In this experiment, we vary the context sensitivity parameter λ for the different

models of context encoding, in order to determine the optimal value of λ. We

keep the sequence length fixed at 2000, and alphabet size fixed at 10.

The results are shown in figure 8.4. As we can see, the optimal value of λ

for the context neural layer model is 0.2 and for the combined model is 0.9, for a

sequence length of 2000 drawn from an alphabet size of 10. Hence, we shall use

these optimal values in future experiments where needed.

We conducted another experiment to see how the memory performance in the

combined model varied with λ when the input sequence length was also varied

between 100 and 500, with the alphabet size kept fixed at 10.

The results are plotted in figure 8.5. We see that the number of symbols in the

sequence that are recalled correctly rises with an increase in the input sequence

length. For an input sequence length of 500, using λ values of 0.7, 0.8 and 0.9 give

nearly the same number of correct recalls, which is the best among all λ values

tested. The memory performance worsens appreciably for λ=1.0 and higher, as
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Figure 8.4: (a) Plot of the sequence machine performance with the context sen-
sitivity λ varying from 0 to 1.5 for the combined model, averaged over 5 trials.
The input sequence length is kept fixed at 2000 and alphabet size at 10. A value
of λ=0.9 gives the best performance. (b) Performance of the sequence machine
with varying λ for the context neural layer model, with input sequence length
also fixed at 2000. Here the performance is optimal for λ=0.2
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Figure 8.5: (a) Plot of the sequence machine performance with the context sen-
sitivity parameter λ varying from 0 to 0.6 for the combined model, averaged over
5 trials. The input sequence length is varied from 100 to 500, and the alphabet
size is 10. (b) Performance of the sequence machine with varying input sequence
lengths and λ varied from 0.7 to 1.2 for the combined model.

the past context becomes more important than the present input in determining

the new context. In the earlier experiment plotted in figure 8.4, using λ=0.9 gave

the best performance for a sequence length of 2000, which is more than 500 and

so is more reliable. Hence we shall use the value of 0.9 as the optimal λ value for

the combined model in future experiments.

We then tested how the memory performance changes with varying lamba and

input sequence length for a binary alphabet. We varied the context sensitivity
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Figure 8.6: Performance of the sequence machine with symbols drawn with a
uniform distribution from a binary alphabet, averaged over 5 trials and plotted
with symmetric error bars. The input sequence length is varied from 50 to 500.

factor λ from 0.0 to 1.5, and the input sequence length from 50 to 500. The

results are plotted in figure 8.6. The chance level for a sequence of length L

drawn from a binary alphabet with uniform distribution (1 and 0 chosen with

equal probability) is L/2. As we can see from the figure, the performance of

the machine at λ=0.0 (when the new context is determined based solely on the

input) and λ=1.5 (when the past context is more important than the present

input in determining the new context) is almost equal to the chance level. The

performance is slightly better at λ=0.5 and is best at λ=1.0. The performance is

generally quite poor, which is expected since there are bound to be many repeated

subsequences and ambiguities when the alphabet size is 2 and the sequence length

is significantly larger than 2.

8.6.2 Effect of alphabet size on memory performance of

the combined model

In this experiment, we vary the alphabet size for the combined model, keeping

the context sensitivity parameter fixed λ at 0.9 (the optimised value) and see how

it effects the memory performance.

Symbols constituting the sequence are selected from an uniform distribution.

The sequence length is kept at 500. The alphabet size is varied from 2 (repre-

senting a binary alphabet) to 15. For symbols chosen from a binary alphabet,

the chance level score for retrieval (if the symbols were chosen randomly) would
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Figure 8.7: Performance of the sequence machine with varying alphabet size A
(from which symbols are chosen with a uniform distribution) ranging from 2 to 15,
averaged over 5 trials and plotted with symmetric error bars. The input sequence
length is 500. The machine uses ordered N-of-M SDM parameters d-of-D 11-256
and w-of-W 16-4096, with context sensitivity factor λ kept at 0.9 and significance
ratio α kept at 0.99

be half of the sequence length, i.e. 250 out of 500.

The results are shown in figure 8.7. We see that for a low alphabet sizes of 2

and 3, the number of symbols out of 500 (which is the sequence length) correctly

recalled is low, the reason being that the number of repeated symbols in the

sequence is far too many in case of sequences generated from small alphabet

sizes. However, performance gradually improves as the alphabet size increases,

reaching saturation close to perfect recall for alphabet size 10 or higher. The

reason for this could be that as the alphabet size gets bigger, the probability of

symbols getting repeated in the generated sequence decreases.

8.6.3 Effect of λ and distribution on memory performance

In this experiment, we vary the distribution of the symbols from the given alpha-

bet constituting the sequence, and see how it effects the memory performance, as

a function of the context sensitivity factor λ.

In the experiments so far we have only dealt with uniform distributions, where

each symbol in the alphabet has equal probability of being selected to form the

sequence. If A is the alphabet size, a symbol s in the alphabet can be denoted

by the following relation:
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s ∈ {s1, ..., sA} (8.1)

Let p(sn) be the probability that symbol sn is chosen from the alphabet. For

an uniform distribution, the probability of every symbol getting chosen is equal.

Therefore

p(sn) = 1/A (8.2)

In a skewed distribution, let us define the parameter pdist as the probability

of the first symbol in the alphabet getting selected, assuming the rest of the

symbols are chosen with equal probability. Therefore, p(s1) = pdist. Let q

denote the probability of each of the remaining symbols getting selected. Hence,

p(s2) = p(s3) = .. = p(sA) = q

The relation between p and q in such a skewed distribution can be expressed

as follows:

pdist + (A − 1)q = 1 (8.3)

since the total probability of any symbol getting selected is 1.

Solving the above equation, we get the following expression for q in terms of

p:

q =
1 − pdist

A − 1
(8.4)

For example, for a binary alphabet (A=2), q = 1 − pdist. For an alphabet of

size 10, q = (1 − pdist)/9.

We now perform some experiments using skewed distributions, characterised

by the parameter pdist.

We vary the context sensitivity factor λ between 0.0 and 1.5, with a step of

0.5. The sequence length is kept constant at 50.

We perform this experiment first with a binary alphabet. There are only

two possible symbols in the alphabet, 0 and 1. We first generate sequences with

symbols chosen from an uniform distribution, i.e. the probability of symbol 0

getting chosen is the same as of symbol 1 (q=pdist=0.5). We then repeat the

experiment with pdist=0.1 (meaning p(0)=0.1 and p(1)=0.9) and pdist=0.3.

The results are plotted in figure 8.8.

We see that the skewed distribution performs slightly better than the binary

distribution, for a higher value of λ (close to 1). This is because in a binary

sequence with uniform distribution, the probability of symbols 0 and 1 getting
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Figure 8.8: Performance of the sequence machine with symbols selected from a
binary alphabet with varied distribution factor pdist, averaged over 5 runs with
error bars and plotted against the context sensitivity factor λ. The sequences are
of length 50. Distribution factor pdist of 0.5 represents uniform distribution and
0.3 and 0.1 are skewed distributions.

selected are equal, so there is less possibility of the sequence being distinguishable

to be recalled. With skewed distribution, there are more 1’s than 0’s, so there will

be more repeats but also the sequence will have more chance to be remembered.
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Figure 8.9: (a) Performance of the sequence machine with symbols selected from
a binary alphabet with varied distribution factor pdist, averaged over 5 runs with
error bars and plotted against the context sensitivity factor λ. The sequences
are of length 500. Distribution factor pdist of 0.5 represents uniform distribution
and 0.3 and 0.1 are skewed distributions. (b) Plot of the performance for a pdist
of 0.1 for a binary alphabet, with sequence length varied from 100 to 500.

Figure 8.9(a) plots the performance of the sequence machine with symbols

chosen from a binary alphabet for a sequence length of 500, with lambda varied
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from 0.0 to 1.5 and pdist varied between 0.1 and 0.5. We see that a skewed

distribution with pdist=0.1 gives optimal performance, which is much better

than an uniform distribution with pdist=0.5. Figure 8.9(b) varies the sequence

length for the same, keeping pdist at 0.1. We see that apart from λ=0.0, which

performs quite poorly, the rest of the λ values perform very well.
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Figure 8.10: Performance of the sequence machine with varied distribution fac-
tor pdist, averaged over 5 runs and plotted against the context sensitivity factor
λ, varied between 0.0 and 1.5. The generated sequences are of length 50, with
symbols selected from an alphabet of size 10. The value of pdist=0.1 represents
uniform distribution and the values of 0.3, 0.5, 0.7 and 0.9 are skewed distribu-
tions.

We then repeat this experiment for an alphabet of size 10, and the distribution

parameter pdist given values 0.1 (representing the uniform distribution where the

first symbol, as well as the remaining symbols, are chosen with 0.1 probability),

0.3, 0.5, 0.7 and 0.9.

The probability of choosing a specific symbol out of the alphabet of 10 symbols

can be calculated from the equation above. For example pdist=0.5 represents

a skewed distribution where symbol 0 is chosen with probability 0.5 and the

remaining symbols 1 to 9 are each chosen with a probability of 0.5/9=0.056.

The results are plotted in figure 8.10.

We see that the most skewed distribution (most dominated by the first symbol)

at pdist=0.9 performs generally the best across different values of λ, except at

the case of λ=0.5, when the uniform distribution (pdist=0.1) performed the best.

We repeated the same experiment (varying both pdist and λ for an alphabet
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Figure 8.11: Performance of the sequence machine with varied distribution factor
pdist, averaged over 5 runs and plotted against the context sensitivity factor λ,
varied between 0.0 and 1.5. The generated sequences are of length 500, with
symbols selected from an alphabet of size 10. The value of pdist=0.1 represents
uniform distribution and the values of 0.3, 0.5, 0.7 and 0.9 are skewed distribu-
tions. Using pdist=0.9 gives the best performance.

size of 10), this time with the input sequence length kept constant at 500. The re-

sults are plotted in figure 8.11. We see that here again, using a value of pdist=0.9

(representing the most skewed distribution) gives the best results across different

values of λ.
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Figure 8.12: Plot of the sequence machine performance with varying distribution
parameter pdist for different alphabet length A, averaged over 3 runs. Context
sensitivity parameter λ is kept at 0.9. Input sequence length is 500.

We then conducted another experiment to measure how the alphabet size
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effected the memory performance at different values of the skewed parameter

pdist. The results are plotted in figure 8.12. The context sensitivity factor λ is

kept constant at 0.9, although the optimal value of λ as 0.9 was tested only for

an alphabet length of 10 and for a uniform distribution. We found that pdist of

0.5 performed the worst, regardless of alphabet size. The machine using pdist =

0.1 performed worse than the one using pdist=0.9 for alphabet length A=5, but

performed better at higher alphabet lengths. A reason for this could be that at

alphabet length A=5, pdist (the probability that the first symbol gets chosen) for

an uniform distribution would be 1/5=0.2, so using pdist=0.1 for alphabet length

5 means less than average probability of the first symbol getting selected. We

saw earlier that more skewed distributions (higher pdist than average) generally

performed better than uniform distributions.

8.6.4 Comparison of different models of context encoding

In this experiment, we compare the three models of context encoding in the

sequence machine (i.e. neural layer, shift register and combined model) and

analyse their performance for different sequence lengths from 100 to 2000. The

alphabet size is 10, and symbols are chosen from a uniform distribution. In this

experiment, we use the optimised values of context sensitivity parameter λ for

the context neural layer (optimised value=0.2) and combined model (optimised

value=0.9). The shift register does not use the λ parameter.

Figure 8.13 shows the results of the experiment. We see that the combined

model performs the best of the three consistently, even for sequences of the length

of 2000, which is 20 times the alphabet size of 10 (causing many symbols to repeat

in the sequence).

The 2-shift register performs worst of the three, possibly because its maximum

look-back is 2, and with higher sequence lengths, there is an increasing possibility

of more than 2 characters been in common within the generated sequence, leading

to ambiguities in the recall.

8.6.5 Comparison of the three models while varying the

alphabet size

In this experiment, we compare the performance of the neural layer, shift register

and combined model for different alphabet sizes. The input sequence length is
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Figure 8.13: Performance of the sequence machine with three kinds of context
encoding : context neural layer, 2- shift register and the combined model. The
alphabet length is 10, and the sequence length is varied between 100 and 2000,
with steps of 100. The optimised combined model (with λ=0.9) performs better
(least number of errors) than the others.

varied from 100 to 500, and symbols constituting the sequence are chosen from

the alphabet with a uniform distribution.
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Figure 8.14: Plot of the sequence machine comparing the performance of the shift
register, neural layer and combined models of context encoding, when symbols
are chosen from a binary alphabet with an uniform distribution

Figure 8.14 compares the three models when using an alphabet length of 2,

averaged over 5 runs. The input sequence length is varied from 100 to 500.

The chance level (the expected value of the number of output symbols correctly

recovered if the output symbols are generated randomly from the alphabet) is half
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of the input sequence length for a binary alphabet. We see that the combined

model is better than the context neural layer model, whose performance is nearly

the same as the shift register model. However, all three models perform quite

poorly, because there is a high probability of ambiguities in determining the next

output symbol due to many repeated symbols in a sequence generated from a

small alphabet.
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Figure 8.15: (a) Plot of the sequence machine performance for the neural layer,
shift register and combined models, with input sequence length varying from
100 to 500 and alphabet size of 5, averaged over 5 runs. (b) Performance of the
sequence machine for the three models when the alphabet size is 15. Performance
of the combined and context layer models is close to perfect recall.

Figure 8.15 compares the three models when using varying alphabet lengths

of 5 and 15. We see that for an alphabet of 5, the combined model performs much

better than a context layer model (diverging more for a higher sequence length),

which in turn performs better than a shift register. For an alphabet size of 15,

the combined and neural layer models perform nearly the same, which is close to

perfect recall and much better than that of the shift register. The reason is that

the memory performance saturates at larger alphabet sizes, since there are fewer

ambiguities caused by repeated symbols.

8.6.6 Investigation of the effect of convex combination Λ

on memory performance

In this experiment, we plot the performance of the sequence machine for the

combined model using the convex combination Λ as the context scaling factor.

We had mentioned the use of Λ in chapter 5. The input sequence length is varied
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between 50 and 500. Symbols are chosen from an uniform distribution from an

alphabet of size 10.
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Figure 8.16: (a) Plot of the sequence machine performance for the combined
model for Λ varying from 0.0 to 0.5, with the input sequence length varying from
50 to 500 and alphabet size kept constant at 10, averaged over 5 runs and plotted
with error bars. (b) Performance of the sequence machine with Λ varying from
0.6 to 1.0.

The results are shown in figure 8.16. As we can see from the figure, the

memory performance is quite poor at Λ=0.0 (corresponding to λ=0.0), peaks at

Λ=0.4 (corresponding to λ=0.67), and becomes worse for Λ=0.5 (corresponding

to λ=1.0) and higher, going down to nearly 0 (hardly any symbol correctly recov-

ered) at Λ=1.0 (where the input plays no part in determining the new context).

This is roughly equivalant to the performance we plotted in figure 8.7 (where

we plotted the performance varying both λ and input sequence length) for the

corresponding values of λ and Λ.

8.7 Conclusion

From the tests on the sequence machine described in this chapter, we can conclude

the following:

Tolerance of the spiking model to irregularity in input temporal

spacing: the spiking model is tolerant to an irregularity of 20% in input spacing,

beyond which the context is unable to distinguish the next outputs correctly.

Optimal value of context sensitivity parameter λ: for the combined

model, the optimal value for a uniform distribution is 0.9, when the input sequence

length was varied. For the context neural layer the optimal λ value is 0.2.
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Optimal value of λ for varying distribution: using a distribution param-

eter pdist of 0.1 gave best results for a binary sequence, and a pdist value of 0.9

gave the best results for sequences chosen from an alphabet size of 10. In both

cases, using the most skewed values of pdist gave the best results.

Comparison of the context neural layer, shift register and combined

model: the combined model performs better than the neural layer and shift

register consistently across different alphabet sizes, when the sequence length

was varied. The context layer model performed better than the 2-shift register.

Optimal value of the convex combination parameter Λ across different

input sequence lengths is 0.4. Using values of Λ from 0.6 to 1.0 perform quite

poorly.

In the next chapter, we shall conclude the dissertation by discussing what we

have achieved and the ways in which this work can be improved.



Chapter 9

Conclusion

9.1 Summarising the research

In the previous chapters the design and implementation of a sequence machine

built out of spiking neurons was described. The implementation was done in

the following steps: First of all, we proposed a framework for on-line predictive

sequence learning with asynchronous updating of the sequence context in cases

where the generative model of the sequence was unknown (in chapter 5), and used

it to build a sequence machine that employed a rank-ordered N-of-M SDM as the

associative memory, along with a combination of an context neural layer and shift

register to encode the context or past history of the sequence (in chapter 5). We

did some tests to measure the performance of the ordered N-of-M SDM memory

according to various parameters (in chapter 4). We then developed a sequence

machine that used an abstraction of timing information of a spike burst by using

significance vectors, and later developed an equivalent model implemented using

spiking neurons following the wheel model (also known as the firefly model) in

chapter 6. We described issues related to the stability and coherence of spike

bursts emitted by various neural layers in the system, and examined in detail

the timing constraints in the system. Then we simulated a system implemented

in spiking neurons that followed these timing constraints and showed that it

could successfully learn a sequence online. Finally, we performed some tests

on the sequence machine to measure its performance qualitatively as well as

quantitatively in learning sequences.

Throughout this dissertation, we have examined a variety of issues relating

to spatial encoding of temporal information, distance between two neural codes,

182
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efficiency of associative memories, dynamics of spike trains and building a high-

level model out of asynchronous spiking neural components.

9.2 Achievements and contributions

In chapter 1 we had laid out some research questions to answer during the course

of the dissertation. In this section we shall examine to what extent have we

answered those research questions.

• We have shown that it is feasible to build a sequence machine out of spiking

neural components, that can learn and predict sequences of symbols online,

each symbol being encoded as a burst of spikes emitted by a neural layer.

We have shown that a system can be built that can stably and reliably

transmit a burst of spikes across different layers in the system. We have

also shown that having unevenly spaced input spikes does not significantly

impede the performance of the system to the extent of 20% noise, beyond

which the context gets confused. (in Chapter 8)

• We have shown how a system implemented in spiking neurons (using a sim-

ple linear spiking neural model) can perform exactly as an equivalent system

implemented using the temporal abstraction (as a vector of significances)

from a burst of spikes encoded using rank-order codes. (in Chapter 7)

• We have proposed a way to build a system that can combine the features

of the neural layer and shift register models, by using a control variable λ

to modulate the relative importance of the context, (in Chapter 5)

• We have studied and proposed first solutions to different issues relating

to modelling with spiking neurons. In particular, we have shown through

simulation that it is feasible to have a stable and coherent burst of spikes

propagating through many neural layers, as long as the noise level is less

than 20%. (in Chapter 7)

• We have proposed an asynchronous update rule for updating the various

components of the system during online predictive sequence learning (in

chapter 5)
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• We have characterised the sequence machine performance for various situa-

tions and found the optimal value of context sensitivity parameter lambda

for different types of uniform distributions (with parameter p), different

lengths of the alphabet and different sequence lengths. (in chapter 8) We

found that the combined model performs better than the context neural

layer and shift register models for a range of input sequence lengths and

alphabet sizes, that the optimal value of the context sensitivity parame-

ter λ was 0.9 for the combined model and 0.4 for the neural layer model

across different input sequence lengths, the optimal context sensitivity con-

vex combination Λ was 0.4, and that using a more skewed distribution gave

a better performance for a binary code (optimal pdist=0.1) and a code

with alphabet size 10 (optimal pdist=0.9) than the corresponding uniform

distribution. We also found that the sequence machine implemented with

spiking neurons was tolerant to 20% irregularity in the temporal spacing of

input spikes. (in chapter 8)

Thus we have successfully accomplished most of the aims of the work, which

were laid down at the start of the dissertation.

We have engineered an online predictive sequence machine system from the

top down with spiking neurons. Thus, we have built a working system that

accomplishes a high-level task within all the constraints mentioned. Our model

can be thought of as a combination of long-term and short-term memory, as an

example of an application that can be implemented using spiking neurons or as

an associative memory implemented in spiking neurons using a localised learning

rule where the items to be associated are not simultaneous but arrive at different

times.

9.2.1 Answering thesis questions

In section 1.4 of chapter 1, we had proposed a number of thesis questions. Here

we mention to what extent have we been able to answer those questions during

the course of this research.

1. What are the different ways in which the performance of an associative neu-

ral memory can be measured? In chapter 4 in section 4.3.1, we mentioned

three ways to characterise the performance of an associative memory: its

perfect match capacity, average recovery capacity and information density.
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We then performed experiments on the ordered N-of-M SDM to determine

whether the memory exhibits the properties of scalability, error tolerance

and what is the effect of ordering on the memory performance.

2. What is a useful way to represent the concept of ‘distance’ or similarity

between symbols encoded as vectors (which in turn represents a sequence

of firing times by a neural layer) in the system? In chapter 4 , in section

4.1.2, we described the concept of distance as measured by the cosine or

the normalised dot product, for which we plotted the memory experiments

in chapter 4.

3. In a given sequence, how can the entire past history or context of the

sequence be encoded in the best possible way in a vector of finite length?

In chapter 2, section 2.10, we discussed different models to encode the

past context, including plate’s holographic method [62], shift register model

[32] and elman networks [23]. In chapter 5, section 5.2, we proposed the

combined model of context encoding.

4. How can we build a system where the spike firing times in a layer of neu-

rons are represented and stored spatially (i.e. in the connections between

neurons) in such a way that we can learn the firing order and reproduce

it when needed? In chapter 6, section 6.4, we showed through simulations

that it was possible to have a stable burst propagation across many layers

of a feed-forward system of neurons by using a combination of feed-forward

shunt inhibition and feedback reset inhibition. In chapter 7, we imple-

mented such a system using spiking neurons in section 7.6, and showed in

chapter 8 section 8.1 that such a system was resistant to 20% irregularity

in input spike timings.

5. What are the factors influencing the stability of a burst of spikes passing

through neural layers and what are the principles of designing a system to

be more stable? In chapter 6, section 6.4, we discussed different issues that

influence burst stability.

6. What kind of spiking neural model should we choose for implementing spe-

cific networks, and why? In chapter 6, in section 6.1 we discussed various

considerations while choosing a suitable spiking model. In section 6.2, we

proposed a novel RDLIF model that was like the standard LIF model [53]
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but had richer dynamics and in appendix A, we showed how the RDLIF

model was unsuitable to implement our system. After that, in section 6.3

we chose a simpler linear model called wheel model and showed in chapter

7 section 7.6 that the high level sequence machine could be simulated by

spiking neurons following the wheel model.

7. How best can we characterise the performance of a sequence memory? In

chapter 8 section 8.6 we discussed various ways to characterise the perfor-

mance of a sequence machine and performed experiments to learn how our

model performed under various conditions. We offered guidance on what

kind of lambda values would be suitable to use for varied distributions of the

sequences of different lengths generated from symbols taken from different

sizes of alphabets.

9.3 Analysis of the model

In this section, we analyse the sequence machine model in more detail, by review-

ing the strengths and weaknesses of the model.

9.3.1 Strengths of the sequence machine

The sequence machine is a distributed and flexible system that can be imple-

mented using spiking neurons. Accordingly, it has all the advantages that come

from using a neural memory and a memory implemented using asynchronous

spiking neural components, such as the ability to keep functioning when the in-

put spike timings are not uniform. It has both short-term (the context layer)

and long-term (hetero-associative memory) components. The machine should be

useful wherever there is a need for an application that has similar features. Some

possible applications of the model will be examined in a later section. However,

it must be noted here that although the application space is huge, much work is

required before the present model can be applied to any of these applications.

The other strengths of the model lie in the development of the framework

for on-line sequence learning, which can be adapted to most learning rules. The

system can also be adapted to model parts of the brain or different natural or

biological phenomena having similar structures to our design using spiking neu-

rons.
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We can make application-specific modifications to the sequence machine (while

keeping its structure the same) to enhance its capability and functionality. For

example, once the machine has been trained on a long sequence of characters such

as the entire text of a dictionary, we can fix the weights and turn off any further

training, although it will still be able to form a context from the past symbols

and predict the next symbols in the sequence. We can thus modify the machine

to have offline learning (where we first train it to remember sequences and then

switch off the learning and use purely for prediction) as well as on-line learning.

We can enhance the functionality of the machine by having a special symbol to

clear the context while keeping the memory intact, and thus make the machine

able to recognise multiple sequences rather than one continuous long sequence.

We can also have a special character to clear the whole memory if needed. We can

also add the functionality to weaken or un-learn a previously learnt association

from the memory (because of the nonlinear max algorithm used in learning, it is

difficult to erase the previously learnt association completely because subsequent

writes to the memory are also affected by a previous written association).

9.3.2 Limitations and weaknesses of the sequence machine

In the implementation with spiking neurons, the way we imposed the restriction

that exactly N out of M neurons in each layer should fire was by designing the

machine such that in each layer slightly more neurons than N fire in the output,

then using feedback inhibition to restrict the output activity to the desired level.

One case where this will fail is if the output activity of each layer falls below the

required activity of N neurons firing, and the reset inhibition would not know

when to stop waiting for the N th output spike from that layer.

Another potential problem is in the case when we are dealing with a layer

such as context which takes inputs from multiple layers. The system has to

wait for the required number of inputs from each layer because it

cannot distinguish the different input layers for the purpose of counting

the input spikes. If either of its input layers do not fire the required number

of spikes, the context layer will keep waiting indefinitely and could classify the

first spike of a new burst as belonging to the previous burst, thus spoiling the

computations for further layers as well. However, since the context machine is

designed to start up at a single input only (a 1-of-A code representing a single

letter from the input alphabet) errors such as random spikes are not likely to
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occur. The wheel model is linear and so it is possible to precisely tune the

behaviour of the system to avoid unwanted errors.

Another weaknesses in our implementation is that we used the simple lin-

ear wheel model of spiking neuron rather than a more biologically

plausible model such as the RDLIF model (which in turn is an implementation

of the kernel of the spike response model developed by Gerstner [28]). We had

to do so because of our constraint of making the model function exactly as the

time-abstracted model (desirable because of our top-down engineering goal that

the lower layers must perform to the exact specifications of th higher layers), and

we found that it was not feasible to have it reproduce exactly the behaviour of the

time-abstracted model using the RDLIF model of spiking neuron (in keeping with

our aim of engineering a top-down system, in which the low-level components ac-

complish the functionality that is specified by the higher level components). In

future we can rethink this issue more closely and develop a model that can per-

form more robustly, even if it does not perform exactly as the time-abstracted

model but only approximately.

One weakness of the wheel model is that it does not have an explicit

delay between input and output spikes, and we would like the neurons to

touch the threshold on the activation slope rather than on receiving an input

spike (in order to obtain the same relative firing order with the spiking model

and the abstracted model). Although we have tried to design the system so that

this condition is fulfilled, there may be cases when this will not hold and the

order will be lost.

The memory capacity of our model is limited by the choices we have made

in our design. Certain other models such as long short term memory [34] are

claimed to be quite efficient in remembering past errors in sequence learning and

can also do it efficiently. However, this is just a question of changing the training

algorithm and the network structure appropriately. The asynchronous update

rule framework we have used so far in developing the predictive sequence machine,

the criteria we use to judge similarity and the performance measures can still be

the same regardless of the learning rule or the structure of the network. We can

adapt our on-line asynchronous updating framework (mentioned in chapter 5) to

implement other models.
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An interesting question regarding the sequence machine is: if the dimen-

sions of the memory are infinite, what are the computation capabil-

ities of the model? Will the infinite context have the ability to distinguish

very similar sub-sequences, in spite of the ordered N-of-M encoding of the sym-

bols destroying the similarities and magnifying the differences? In the N-of-M

SDM, the same address decoders can get activated for two very similar context

vectors (because the number of address decoders is small compared to the size of

the address space), so the capacity of the memory to distinguish between similar

looking contexts is not expected to be good. Such theoretical capabilities of the

memory has not been analysed as yet, and the issue is a potential weakness.

The sequence machine has been designed to remember those sequences that

are explicitly presented to it. However the ability of the model to accurately

predict outputs for sequences that have not been explicitly presented to it for

training has not yet been tested, and is another potential weakness.

9.4 Applications of the sequence machine

As mentioned in the discussion of the strengths of the model, the sequence ma-

chine can be useful in a variety of applications. The model can be utilised in one

of the two ways: either using the sequence machine model in its present form, or

tailoring certain components of the model to a specific application.

The sequence machine in its present form, whether implemented using the

time-abstracted significance vectors or by using spiking neurons, is useful for

applications where we may need to use on-line or one-shot predictive sequence

learning (where the system has to learn on a single presentation of the inputs),

with gradual rather than abrupt forgetting, in an environment with errors and

where an associative memory would be beneficial.

However, the model is unsuitable for applications involving sequences which

are generated by a specific grammar or follow a specific pattern, and where the

task of the machine is to deduce the grammar and predict future values of a time

series after being trained with a number of trials, such as predicting trends in

stock market data or robots learning to play baseball or cricket. This is because

we did not build the sequence machine assuming any type of generative grammar,

and also because it has not been designed to remember higher-level associations

or meanings of the symbols involved (although this capability has not yet been
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tested, and it may be possible to modify the design of the machine to enhance

this functionality). It is designed to remember those sequences that are explicitly

presented before it.

In the dissertation, all our experiments involving the sequence machine have

been using sequences of alphabets or English characters. However, the sequence

machine can be designed to recognise other, more complex sequences such as

notes of a tune or images or data chunks. In order to deal with more sophisticated

sequences in applications (such as sequences of images), we need to have encoders

capable of rotation and translation invariant transformations before a symbol in

such a sequence is encoded as an ordered N-of-M vector for use in the sequence

machine.

Below we mention some possible applications and some thoughts on how the

sequence memory may be used to implement them.

9.4.1 Learning and completion of a sequence of tunes

An interesting application could be to build a machine that is fed a series of

songs (each song being learnt as a sequence of tunes). In this application, the

symbols constituting the sequence are the tunes of the song. The user hums a

few notes of his or her favourite song and the machine can identify to which song

the sequence of tunes belongs to, and complete the song. Such an application

is possible because of the property in the machine of being able to lock on to

a context on being given a few symbols from the middle of a previously learnt

sequence, and predict the remaining symbols. However, in order to encode a tune

in a proper way, we need to find an appropriate time invariant representation of

each tune.

9.4.2 Sequences of characters from any language

If we have a shift register model of sequence machine with a variable register such

that the length of time window is equal to the total length of the sequence, it can

recognise a sequence of any length. We have already shown that the combined

model can perform better than an equivalent shift register. Therefore, given

a large enough memory and a large size of context vector, we can claim that

the machine would be able to learn and predict any long sequence such as the

complete works of Shakespeare. In such a case, we could give it a phrase from the
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middle of any of Shakespeare’s writings and it should be able to complete that

phrase.

A possible application in this field is a prompter (similar to text prompters

in mobile phones) that can prompt the completion of words or sentences based

on a few input characters. Since the sequence machine also takes the context

into account when making a prediction and learns on the go, it could take into

account the context of the letters in the word as well as the context of the word

in the sentence, when prompting the next letter.

9.4.3 Sequence of images

A movie is a sequence of still images. The sequence machine can be trained

to learn a particular sequence of images in a single training epoch, and then

predict the next images in a movie using the training set. This could be useful

in software rendering in a simple computer game, where we may be required to

‘fill in’ between image frames which are slow to arrive, and the same scenarios

are repeated many times. Learning in a single pass is especially significant here

because the images are constantly changing in a real movie and it may be required

to learn very fast.

9.4.4 Copying robot gestures

A model of sequence learning developed using a Hopfield net as an auto-associative

memory has been used to train a robot to learn and reproduce 50 different types

of hand gestures such as the letters of the alphabet [55]. Every gesture was con-

densed into a sequence of 16 feature vectors that stood for the angle of the hand

movement of the robot. It was found that the model could generalise the learnt

gestures to previously unlearnt combinations or to variations in the training set.

The correlation matrix memory in the data store layer of the ordered N-of-M

SDM that we have used in our model is similar to a Hopfield net (which can

also learn in a single pass and can act as a hetero-associative memory) as far as

an associative memory and on-line learning is concerned. Therefore, it may be

possible to use our model for a similar application. Some interesting applications

in this domain would be a robotic traffic controller or a toy robot that can be

trained to learn a sequence of simple gestures by a child. However, the ability of

our model to generalise unknown sequences has not been properly investigated
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yet. Such an investigation and possible extensions to the design of the machine

to enhance this ability, is an avenue of further work.

9.4.5 Sequence of phonemes

Another possible application for the sequence machine is learning a sequence of

phonemes. NetTalk [67] is a feed-forward neural network trained using back-

propagation that was used to associate a letter in a word with its corresponding

phoneme sound (a phoneme is the smallest distinguishable phonetic unit in a

language). Although the model was not strictly a sequence machine because it

could be trained with inverted sequences and the output would still be valid, the

solution used similar principles to sequence learning since the pronunciation of

any letter depends on its context in the word where its used. Speech can be con-

sidered as a sequence of phonemes. As an extension to the NetTalk application,

our sequence machine could theoretically be trained to hear any speech or indi-

vidual sentences and complete them for the speaker (through prediction). Such

an application could be useful in helping people with speaking difficulties. An-

other possible application could be a pre-trained voice prompter in any language,

which could be useful in learning a foreign language.

9.4.6 Thorpe’s application of SpikeNET

Thorpe’s SpikeNET [22] is a concrete example of a model implemented using

spiking neurons implementing rank-order codes that is used to recognise a face

image in real time from a given database of faces (built using a model of the human

visual system). The success of the SpikeNET model shows that it is feasible to

build an efficient large-scale system that uses spiking neurons transmitting spikes

over multiple layers, and works in an event-driven way, with each spike firing

treated as an event in the system. Thorpe’s model is different from our sequence

machine, however, in that it does not have an associative memory and cannot

store what it has learnt separately. It works on a simple model of learning,

involving sensitising different neurons to respond to particular input sequences of

spikes by keeping the threshold of each neuron so as to be receptive to a specific

input rank-order (thus acting as a receptive field). Our model, which uses an

associative memory to write associations between symbols, can sensitise a layer

of neurons to an input sequence and therefore is more flexible than Thorpe’s
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model. Therefore, there is scope for adapting it for use in similar applications.

9.5 Extensions to the model and future direc-

tions

Given the multidisciplinary scope of this work, there are a number of directions in

which the model can be extended and further work can be done. Here we present

some suggested avenues where future work may be pursued, including continued

research on the core sequence machine and developing extensions.

9.5.1 Better sequence machine

One direction in which this work can be extended is to improve the performance

of the sequence machine, either by encoding the context in a more efficient way,

or by using models that can train more efficiently. We can explore different

architectures for the purpose, while using the same the predictive on-line sequence

learning framework.

In developing the sequence machine, we had to make a number of choices

about the spiking neural model, the memory architecture, etc. We could explore

different parameters and architectures to the model than the ones we have chosen,

and study if we can get better memory performance or easier spiking neural or

hardware implementation by using those architectures. For example, we could

have N-max of M or approximately N-of-M coding instead of strict N-of-M, or

use a probabilistic function instead of the max function as the learning rule, or

have lateral inputs and negative weights in our model, or a function more similar

to the STDP function for connection weight change.

9.5.2 More tests on the sequence machine

There is potential for conducting more tests on the sequence machine, to deter-

mine how its performance is effected by different variables from the parameter

space. Because of computational constraints, we could not explore the parameter

space very thoroughly. We could use these tests to study how to optimise and

further improve its performance.

Some of the future experiments can be the following:
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Sequences with non-uniform distributions: we can have different distri-

butions for different parts of the sequence, such as parts of the sequence being

generated from different alphabets or from different distributions. We can mea-

sure the conditions under which the recall of the stored sequence is accurate.

Sequences with varying levels of noise: we can vary the noise in the

sequences and measure how the system performs, and what amount of noise

can break the system for a specific configuration (context sensitivity parameter,

distribution, sequence length, etc).

Measuring the kind of errors in case of wrong recalls: recall errors in

the sequence machine can be of various types. For example, the error may be

caused due to too much weightage being given to the context as opposed to the

input, or vice versa. Errors can be caused due to low activity, with the system

being unable to make an informed guess as to what the next prediction should be.

Sometimes, the chosen symbol may be incorrect but the output symbol whose

activity was second highest or third highest may be the correct symbol. We can

list the various types of errors and can measure what is the most common type

of errors that we get under different conditions.

Other tests: Other tests could be to determine the highest length of a sin-

gle sequence that can be recalled correctly and the number of sequences of this

length that can be stored, the effective look-back length of symbols over which

the machine can distinguish the context, the number of iterations taken by the

machine to forget a previously learnt sequence due to a different association being

written to the memory, etc.

9.5.3 A more robust spiking neural implementation

In the current spiking neural model, we had to precisely engineer the system

to perform correctly. A real world system would not have components that are

precisely engineered in this way, so we could take steps to make our model more

robust. Some possible ways this can be accomplished are mentioned below.

We could use a larger encoding (bigger value of M in N-of-M), since a system

with larger codes is likely to be more stable with respect to temporal dispersion

in spike bursts. We could use an alternative neural model with higher order dy-

namics rather than the wheel model. For example, the RDLIF model with decay

is more biologically plausible, and a layer of RDLIF neurons should behave more

robustly and stably in response to input spikes, as shown in chapter 6. We could
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have an approximate N-of-M code, which could be easier and more realistic to

implement with neurons without needing the crude method of feedback reset inhi-

bition. Not having the strict requirement that the spiking neural implementation

should perform exactly as the implementation using time-abstracted significance

vectors would greatly simplify matters and would also be more realistic. Also,

we assume all the spiking neurons of one layer to be homogenous in the present

model, i.e. they have the same parameters. It would be interesting to observe if

de-homogenising the neurons of a layer, while keeping their parameters within a

certain range, makes the whole system more robust to noise.

9.5.4 Different learning rule in spiking neurons

Instead of implementing the max function as the learning rule, we could use a

more biologically plausible learning rule such as spike time dependent plasticity

[13]. In STDP, the weight change is a function of the time difference between the

input and output spikes (as in the standard STDP diagram in the first quadrant).

This is more biologically realistic but more complex to implement. Delorme et al

[20, 21] have explored modelling with STDP in their SpikeNet simulator.

9.5.5 Avoiding redundancy in the learning rule implemen-

tation by spiking neurons

Since the address decoder outputs go to all the neurons of the data store layer,

there is redundancy in the memory storage of all the address decoder sensitivities

in the data store neurons. A way to avoid redundancy could be to either store the

significances of the address decoder outputs in the address decoders themselves,

or to store them in a layer of intermediate neurons, each of which connects to

exactly one address decoder neuron. Such intermediate neurons can be considered

part of the data store layer.

9.5.6 Alternative way to encode significance vectors

An alternate method of encoding the significance vector, instead of using a ge-

ometrical progression as we have implemented during this work, could be as a

vector of probabilities, where each component represents the probability that the

corresponding neuron fires before the neuron after it in the spike burst, where the



CHAPTER 9. CONCLUSION 196

firing times are generated by a Poisson process. For example, if the firing order

of a burst in a four neuron layer is [A,B,C,D] representing A fires before B, B

before C and so on, and the firing times are generated by a Poisson process, then

p(A) is the probability that A fires before B in the burst, then the significance

value of the component A will be equal to p(A).

9.5.7 Extensions to the combined model

One extension to the combined model could be to make the context sensitivity

factor λ dynamic rather then static, enabling us to modulate the relative influence

of the context in determining the prediction of the next input. The factor can be

changed dynamically based on the confidence of the output prediction or some

other suitable mechanism.

Another extension could be to expand the old context and input to a vector of

large size in order to make them more linearly separable before adding them, and

then adding an extra neural layer to contract the expanded sum of the weighed

context and the encoded input to the original size of the context. However, such

an extra contract layer following an N-of-M code might reduce the capacity of

the memory by destroying information about the old context.

Instead of using N-of-M codes to encode the vectors in the sequence machine,

we could use a vector of A elements (A being the size of the alphabet) whose

elements encode the relative importance of each symbol in the alphabet, and

normalise the vector to have the sum of all elements equal to 1. Such an encoding

scheme would make it convenient to identify the relative composition of each input

symbol in the context.

9.5.8 Hardware implementation

Implementing a neural system in hardware rather than software has the advan-

tage that components can be processed in parallel using hardware and hence can

be faster if large scale neural circuits are used (small circuits would have commu-

nication overheads which would reduce the speedup due to the parallelisation).

Neural networks, including the sequence machine, have a parallel architecture

(since the neurons in a layer are supposed to be processed in parallel) and are

therefore suitable for hardware implementation. The spikes could be treated as

events and transmitted across different components through common buses. The
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neural function can be thought of as a processing element, processed separately

from the memory where all the connection weights are stored. Using sparse N-

of-M codes to communicate across components consumes low power. The event

driven nature of the spiking neural implementation, where computation needs to

be performed only when a spike is fired, can also save power and is suitable for

large systems if the number of events per unit time is small relative to the size of

the system.

The SpiNNaker project at the University of Manchester [68], funded by an

EPSRC grant, is exploring scalable hardware implementations of neural networks

(aiming to build a large scale neural platform involving millions of neurons that

can process calculations in real time and work much faster than a comparable

software implementation), working on similar principles of having different com-

ponents in the system communicate through spike events. It could be a possible

hardware platform to test many of the ideas presented in this dissertation.

9.5.9 Modelling parts of the brain

Although the sequence machine model is not biologically accurate in its present

form, it can be adapted to implement parts or areas of the brain having similar

structure or function, in both hardware and software, with minor modifications.

In chapter 3 we had studied different biological systems related to sequence learn-

ing. The sequence machine could potentially be adapted to model many of those.

As mentioned earlier, this model is a concrete implementation of the specu-

lative but nevertheless interesting prediction model of the neocortex as proposed

by Jeff Hawkins [31]. The model of the neocortex as per the predictive learning

framework presented in his book, is functionally similar (although not structurally

because we do not use hierarchical structures as proposed in that book) to the

way the sequence machine learns associations and predicts the next symbols in

a given sequence on-line. A modified version of the sequence machine can thus

lead to a hardware or software implementation of neocortical function according

to that model.

Our model also has both short-term and long-term memory components. It

can be explored whether it can implement some component of a model of working

memory in humans as proposed by Baddeley [8].



CHAPTER 9. CONCLUSION 198

Input 
neuron (store the spike by oscillation)

(inputs a spike)

Release neuron
(signals release of stored spike)

Inhibitory neuron
(resets the system)

Output neuron

neurons
Oscillator

1

1

1.5

1

1

1
1.2 1.2

Figure 9.1: A coupled oscillator network to store a spike and release it on getting
another spike. The numbers in the circles denote neural thresholds, and the
connection weights are shown beside the arrows connecting different neurons

9.5.10 Alternative ways to implement the spike timing

constraints

We could have alternative ways to synchronise the firing times in different layers

of neurons, as mentioned below.

Adding axonal delays

One method to ensure that spike firings are synchronised is to fine-tune the neural

parameters such as axonal delays. Axonal delays are delays in the transmission

of a spike through the axon of a neuron. In effect, they translate to a fixed

temporal delay between a neuron firing and the sensing of that spike at the

inputs of the next layer. We can design the system by engineering the axonal

delays (or inserting extra delay neurons if necessary) to ensure that the timing

relations between different spike bursts are maintained.

Latching a spike

One way to synchronise firings could be to freeze or latch the spikes of a layer

and release them in response to spikes acting as control signals, similar to latches
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used in standard asynchronous circuit design [71]. However, latching a spike

is a problem in neural systems, because we assume the spike to be generated

immediately (or with a fixed axonal delay) as the neural activation exceeds the

threshold.

A way to implement a neural latch, that can store a spike and release it on

receiving a signal, could be by using a coupled oscillator network, consisting of

a pair of neurons connected to each other, as shown in figure 9.1. An input

spike to the first neuron is transmitted to the second and from the second to

the first. The spike to be stored is input to the first neuron of the pair through

an unidirectional connection, where it keeps oscillating between the two neurons

and is thus ‘stored’ until the system gets a ‘release’ spike from a third neuron.

A fourth neuron is fed input spikes from one of the pair of oscillatory neurons

as well as this third neuron, and fires a spike only if both spikes occur (which

can be possible, for example, if its threshold is 1.5 and the connection weights

from both these neurons are equal to 1). We can assume that the spiking model

used is the standard leaky integrate and fire model [53], so if a neuron does not

get a spike for sometime its activation decays to a resting value, and if the two

input spikes to the fourth neuron are not coincident the neuron can integrate

the spikes and fire when the activation exceeds its threshold. When the fourth

neuron fires and ‘releases’ the stored spike, both the oscillatory neurons can be

reset through a fifth resetting neuron. Alternatively, the third ‘release’ neuron

can itself be connected to the pair of oscillating neurons and resets them, or can

itself act as a gate (similar to gated ion channels in biological neurons) to shut

down the oscillatory pathway and open the pathway to the output, without the

need of a fourth neuron. We have not actually implemented this system, but the

above explanation is illustrative of how it might be used.

The problem with such a coupled arrangement to store a spike is that we

need also to maintain the ranks of the spikes in the burst (in addition to freezing

a burst and releasing it on getting a signal) as this forms the neural code being

transmitted. A coupled oscillator network as explained above can lose the relative

rank because the phases of the oscillating neurons and the time of firing of the

released spike in such a network cannot be predicted, although we can guarantee

that they will fire some time after receiving the control signal to release the spike.

One way we can freeze the relative timings of a burst of spikes emitted by a

layer and release them on getting a release signal is by using a dynamic threshold.
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As per the rank-order code, we need to maintain the order of spikes in the burst.

We can keep the threshold initially to a high level so none of the neurons in

the layer fire, yet the order of their activations is maintained. When we need

to release the spikes of that layer, we gradually decrease the threshold of all the

neurons, which will lead to them firing one by one in the order of their activation,

the neuron with the highest activation firing first (because it reaches the steadily

decreasing threshold earliest).

9.5.11 Similarities with asynchronous logic

This work has many similarities to standard asynchronous logic design [71], es-

pecially to a family of asynchronous logic circuits called self-resetting logic, and

it may be worth considering the similarities and their implications.

In asynchronous logic design, communication takes place by transmission of

electrical signals through wires, which can be considered similar to transmission

of spikes in our neural model. The electrical signals transmitted are in one of

the two levels 0 or 1 (following binary logic), and the switching of levels could

be considered as an event similar to firing a spike. A standard asynchronous

logic circuit has the handshake as its defining constituent to synchronise timing

between components interacting with each other and passing data signals. If

we consider groups of spiking neurons interacting with each other, they show

interactions similar to handshaking, in the sense that they can excite each other

to generate corresponding bursts of spikes, which may be thought as the ‘request’

and ‘acknowledge’ signals. Also, we have considered in chapter 6 how a neural

circuit could implement a latch, which is a standard component in asynchronous

logic design that holds a signal and releases it on receiving a control signal. Such

a circuit could be designed to hold a spike indefinitely and release it on getting a

‘request’ spike from another neuron. The released spike can be considered as the

‘acknowledge’ signal in response to the ‘request’ signal.

Apart from the above mentioned similarities of asynchronous logic circuits

with spiking neural systems in general, the sequence machine that we imple-

mented using spiking neurons is essentially asynchronous in nature, since there

is no global synchronising mechanism such as a clock. In the development of the

system using spiking neurons, we have dealt with issues common to asynchronous

circuits such as timing issues involving synchronising different autonomous com-

ponents without the use of a global clock.
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If we can show how each component in traditional asynchronous design, such

as the latch and the handshake protocol, can be implemented in neurons, and

adapt traditional asynchronous design components such as latches to take into

account the additional constraints of spiking neural implementation, we could po-

tentially reach a stage where it is possible to translate any spiking neural network

into its equivalent asynchronous logic circuit. There are a number of tools for

timing analysis and synthesis of asynchronous circuits available in asynchronous

design that can potentially be adapted for engineering or analysing spiking neu-

ral circuits. For example, there are synthesis tools such as Balsa [71] that can

perform automated synthesis from a high level description of the functionality

of the system (in a suitable description language) to low level implementation

using asynchronous components. In the neural case, at some stage it might be

possible to have a similar tool to code the high level functionality of the system

(such as a sequence machine) in a suitable way and automate the synthesis of

the system using spiking neurons, with their connections and other parameters

optimised automatically.

9.6 Significance of the research and deeper im-

plications

To summarise, this dissertation describes a constructionist way to develop in-

sights into how a high-level system can be built using low-level spiking neurons

as components. Our primary achievements are in designing a working model that

successfully accomplishes a high-level task using spiking neurons, and highlight-

ing the problems and issues that arise at different stages of the modelling. The

solutions that we have proposed to many of the problems may not be ideal, but

we hope they will stimulate interested researchers to find better solutions.

Since our framework for on-line predictive learning is independent of the actual

implementation of the learning rule, it can theoretically be used for any algorithm

or architecture with the same aim. Also, issues related to the dynamics of neural

interactions (such as the stability and coherence of spike bursts), timing relations

(such as the synchronisation of different bursts) and learning (such as storing

order information using eligibility vectors) are independent of the spiking neuron

model used.

Rather than being just an implementation of a sequence machine in spiking
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neurons, this work could be seen in a wider context of developing large real-

time systems to perform useful tasks using spiking neurons as components. In

our modelling of the sequence machine, we have highlighted some problems in

our task and proposed solutions. Although our solutions may be specific to the

task, many problems we have highlighted are universal to any system trying to

perform a high-level task using low-level components. Therefore, the insights

from our work should be useful for modellers of biological neural systems or of

complex or emergent phenomena in general.

This work can be considered in the context of developing spiking neural im-

plementations of different kinds of high-level systems (not only the sequence ma-

chine). It can be considered the first step in the direction of building a computing

paradigm that utilises the connectionist structure of neural models in building

distributed, error-tolerant and robust systems, in both hardware and software,

which can be utilised to perform higher-level computing functions.
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Appendix A

Implementing the temporal

abstraction

A.1 Introduction

We want to examine if it is possible to implement the temporal rank order ab-

straction (encoding a symbol, made of a sequence of spike firings in a layer of

neurons, as a vector of significances) using the rate based leaky integrate and fire

(RDLIF) model of spiking neuron as described in chapter 6.

We consider a network of two layers with two neurons in each layer, as shown

in figure 1. Layer 1 has neurons 1 and 2 and layer 2 has neurons 3 and 4. The

two layers are connected with their respective connection weights w31, w32, w41

and w42 as shown in figure A.1.

1

2

3

4
w42

w32

w41

w31

Figure A.1: A simple 2-layer network
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A.1.1 Problem statement

It is given that neuron 1 fires (at time t1) before neuron 2 (at time t2). It is also

given that the parameters of the system (such as neural connection weights and

significance ratios) are such that according to the time abstracted model, neuron

3 is calculated to fire before neuron 4. We want to determine the condition in

which neuron 3 will fire before neuron 4 in the equivalent RDLIF model using

the same parameters.

A.1.2 Abstracted model

As per the rank order abstracted model, let s1 be the initial significance and α is

the significance ratio common to both the neural layers. For example, when the

first input to a neuron fires its effect is weighed by a significance of s1, and the

second input by a significance of s2 = αs1.

A.1.3 Simplified RDLIF model

We use a simplified RDLIF model with no decay of activation or activation rate.

Every time a neuron gets an input spike, its activation is linearly increased by a

slope that which is the product of the connection weight and sensitivity to the

input spike (which is a function of the order of the input spike). For simplification

we assume that the slope stays constant until an input fires, in which case either

the slope gets incremented, or the neuron itself fires and is reset, or else the whole

neural layer is reset. We can see how the activation of the neurons changes with

time in figure A.2.

A.1.4 Calculation

Since it is given that according to the time abstracted model, neuron 3 fires before

neuron 4, the calculated activation of neuron 3 would have to be more than that

of 4.

w31s1 + w32s2 > w41s1 + w42s2 (A.1)

Now, in the simplified RDLIF model, the activation a3 and a4 of the neurons 3

and 4 as a function of time t is given as follows:

a3(t) = w31s1(t − t1) + w32s2(t − t2) (A.2)
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w41

w42
w32

w31

Neuron 1

Neuron 2

Activation

Threshold

Time

Neuron 4Neuron 3

Figure A.2: Simplified RDLIF model of the network

a4(t) = w41s1(t − t1) + w42s2(t − t2) (A.3)

Now if neuron 3 fires at time t3, its activation at that time a3(t3) will be equal to

the threshold Θ.

Θ = a3(t3) = w31s1(t3 − t1) + w32s2(t3 − t2) (A.4)

Solving for t3 we get:

t3 =
Θ + w31s1t1 + w32s2t2

w31s1 + w32s2

(A.5)

Similarly for neuron 4, which fires at time t4, solving for t4 we have:

t4 =
Θ + w41s1t1 + w42s2t2

w41s1 + w42s2
(A.6)

The condition for t3 < t4 is the following:

Θ + w31s1t1 + w32s2t2
w31s1 + w32s2

<
Θ + w41s1t1 + w42s2t2

w41s1 + w42s2
(A.7)

Now, we know that t1 < t2 since it is given that neuron 1 fires earlier than neuron

2. So let t2 = t1 + k where k is a positive value. Therefore we have

Θ + w31s1t1 + w32s2(t1 + k)

w31s1 + w32s2

<
Θ + w41s1t1 + w42s2(t1 + k)

w41s1 + w42s2

(A.8)
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Simplifying and removing common terms, we get:

Θ

w31s1 + w32s2
+

w31s1 + w32s2

w31s1 + w32s2
t1 +

k

w31s1 + w32s2
<

Θ

w41s1 + w42s2
+

w41s1 + w42s2

w41s1 + w42s2
t1 +

k

w41s1 + w42s2
(A.9)

Cancelling t1 on both sides, we have:

Θ + k

w31s1 + w32s2
<

Θ + k

w41s1 + w42s2
(A.10)

The above equation has the term Θ + k common in the numerator, so we cancel

it out reversing the inequality sign. Also, since the sensitivity factor α is mul-

tiplicative (as per our model), we have s2 = αs1. Therefore, substituting and

cancelling s1 on both sides, we have:

w31 + w32α > w41 + w42α (A.11)

The above equation cannot be simplified any further. We can see that we are

unable to cancel out the terms α (the significance factor or sensitivity factor)

or the connection weights (w31,w32,w41,w42, which are the slopes in the RDLIF

model).

f(w31, w32, w41, w42, α) > 0 (A.12)

A.2 Conclusion

We have shown that the condition for a simple 2-neuron network following the

RDLIF neural model to behave equivalently as a similar network using the time

abstracted significance vectors is not independent of the connection weights and

the significance ratio. It is not feasible for us to ensure that such a condition

is met for every pair of neurons. Therefore, we argue that implementing the

temporal abstraction by the RDLIF model of spiking neuron is not feasible in the

general case.



Appendix B

Using the SpikeNetwork neural

simulator

B.1 The Simulator

The SpikeNetwork spiking neural simulator[17] uses a combination of the event

queue model along with a timestep model for a small time window of firing. The

simulator is quite modular and flexible, and written in an object oriented way,

so it is fairly easy to incorporate new neural models, both simple and complex

as long as the interfaces with the other parts of the code remain the same. The

model can incorporate features such as synaptic memory and can be used with

different spiking neural models suitable for implementing the sequence machine

such as rate driven leaky integrate and fire (RDLIF model) and wheel (or firefly)

model.

The simulator takes as input a network configuration file and a simulation file.

The simulation file starts off the simulation by specifying the firing times of input

spikes. The network configuration file takes in the specifications of different types

of neurons in the system (which can follow the same model with same or differ-

ent parameters such as wheel model, or can follow different models such as one

neuron following leaky integrate and fire and another neuron following the wheel

model), neural layers, connection information between different neural layers, in-

put connection weight matrices of different neural layers and some added layer

specific parameters such as significance ratio, and neuron sensitive parameters.

The output file gives a series of firing times of neurons in different layers.
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B.2 Using the simulator

B.2.1 Input and simulation file format

An example of a typical input file to the simulator is given below to illustrate the

format. It represents a network of two neural layers (input and encoder) with 3

wheel neurons in each layer.

neuron wheel {

actrate 0.1;

threshold 3.0;

threshtau 100000000;

threshfix 0.00;

refractory 0.00;

significance 0.97;

sigdec 0.0;

ffsidata 0.97;

inputstep 1.00;

} fast;

fascicle medium {

fast 3;

} input,encoder;

encoder.connect(input);

input.nofm = 1;

encoder.nofm = 3;

input.ffsiinput = 0.97;

encoder.ffsiinput = 0.97;

encoder.weight 0 dense 0.97000 1.00000 0.94090;

encoder.weight 1 dense 0.94090 0.97000 1.00000;

encoder.weight 2 dense 1.00000 0.94090 0.97000;

The simulation file format is given below. The first line specifies the time

step size and how long should the simulation run. The following lines specify the
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initial spikes with their time of spiking.

simulate(0,35.0,0.2);

input.spike(7,0.0);

B.2.2 Running the simulator

The command to run the simulator is: java SpikeNetwork -pg -nnetwork file -

fsimulation file

B.2.3 Format of the output file

An example of the output of the simulator is as follows:

0.0000 input:7

50.0000 encoder:11

50.3000 encoder:6

50.5910 encoder:15

B.3 Plotting the outputs

Plotting the outputs is done by another Perl script which translates the neural

firing times in the simulator output from a lookup table into a form more suitable

for processing (with absolute numbers rather than names of the neural layers).

The output of this Perl script is, in turn, fed to a Matlab code which then plots the

firing times of neurons different layers with respect to time, so we can clearly see

the relations between different firing times and how a wave of spikes propagates

across different layers in the system.


