
HARDWARE SUPPORT FOR

EMBEDDED JAVA

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

January 2007

By

Paul Capewell

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 13
1.1 The Java Language and Runtime Environment 13
1.2 Accelerating the Java Virtual Machine 16
1.3 Thesis Overview . 17

2 Improving Java Virtual Machines 20
2.1 Software Acceleration Approaches . 21

2.1.1 Sun 1.x JVM . 21
2.1.2 HotspotTM . 21
2.1.3 Jikes . 22
2.1.4 Monty . 22
2.1.5 Other J2ME systems . 23

2.2 Java Acceleration Hardware . 23
2.2.1 PicoJava II . 24
2.2.2 JEMCoreTM . 27
2.2.3 Moon2 . 28
2.2.4 Lightfoot . 28
2.2.5 JOP . 29
2.2.6 JStar . 29
2.2.7 Jazelle . 31

2.3 Summary . 32

3 Architectural Techniques 34
3.1 Translation Techniques . 34

3.1.1 Direct Execution . 34
3.1.2 Assisted Interpretation . 35
3.1.3 Assisted Compilation . 36

2

3.2 System Partitioning . 36
3.2.1 Dedicated Processor . 36
3.2.2 Memory Bridge . 37
3.2.3 Cache Bridge . 38
3.2.4 Co-processor . 38
3.2.5 Java Decode Stage . 38
3.2.6 Other Processor Extensions 39

3.3 Implementation Strategies . 40
3.3.1 Asynchronous Logic . 40
3.3.2 Self-Timed Communications Protocols 44

3.4 Summary . 46
3.4.1 Candidate Architectures . 46
3.4.2 Improving Byte-code Translation 47
3.4.3 Application of Self-Timed Design 48
3.4.4 Conclusions . 48

4 JASPA 49
4.1 Self-Timed Design . 49
4.2 Architecture Overview . 51

4.2.1 Java Processing . 52
4.2.2 The Host Processor . 52

4.3 Integrating Java into SPA . 55
4.3.1 ARM Extensions . 55
4.3.2 Java Execution . 57
4.3.3 Decoder Block Interface . 61

4.4 The Java Decoder Unit . 62
4.4.1 Fetch Buffer . 62
4.4.2 Stack and Register Control . 63
4.4.3 Byte-code Decoder / Translator 64
4.4.4 Branch Control . 65
4.4.5 ARM Opcode Generator . 66

4.5 Balsa Implementation . 67
4.5.1 Synthesis . 67

4.6 Implementation Structure . 68
4.6.1 Communication and Integration 70

4.7 Debug and Test Software . 71
4.8 Circuit Implementation . 71
4.9 Simulation Results . 72

4.9.1 Code Generation . 73
4.9.2 Timings . 74

4.10 Summary . 75
4.10.1 Conclusions . 77

3

5 Architectural Simulation 78
5.0.2 Chapter Overview . 79

5.1 Requirements . 80
5.1.1 System Level Simulation . 81
5.1.2 Requirement Summary . 82

5.2 Implementation options . 84
5.2.1 Hardware Description Languages 85
5.2.2 Software Models and Programming Languages 86
5.2.3 Implementation . 87

5.3 Simulation System . 88
5.3.1 Modelling Problem . 88
5.3.2 Simulation Units . 90
5.3.3 Simulation Kernel . 91
5.3.4 Simulation Timing Model . 93

5.4 System Performance . 96
5.4.1 Performance Testing . 96

5.5 Summary . 97

6 Instruction Folding 99
6.1 Architectural Profiling . 100

6.1.1 Model of Java Processor Architecture 100
6.1.2 System Timing . 104
6.1.3 Profiling Byte-code Execution 104
6.1.4 Profiling Byte-code Folding Systems 107

6.2 Stack Cache Decoder . 108
6.2.1 Implementation . 109

6.3 Byte-Code Folding . 110
6.3.1 Achieving Folding . 110
6.3.2 Implementation . 111
6.3.3 Simulation and Testing . 115
6.3.4 Simulation Results . 116
6.3.5 Conclusions . 117

6.4 Summary . 117

7 Improved Instruction Folding 119
7.1 Branch Shadow Optimisation . 119

7.1.1 Implementation . 120
7.2 Further Optimisation . 120

7.2.1 Extending the Register Cache 120
7.2.2 Asynchronous Operation . 121

7.3 Simulation Results . 121
7.3.1 Comparison of Java Decoders 121
7.3.2 Memory Latency . 122
7.3.3 Asynchronous Timing . 124

4

7.3.4 Conclusions . 126
7.4 Improving Byte-Code Folding . 126
7.5 Summary . 127

8 Conclusion 129
8.1 Architectural Simulation . 129

8.1.1 Timing Model . 130
8.1.2 Profiling . 130
8.1.3 System Performance . 130

8.2 Instruction Folding . 130
8.2.1 JASPA . 130
8.2.2 Improving the Stack Cache . 131
8.2.3 Asynchronous Design . 131

8.3 Future Research . 131

A Simulation Data 133

Bibliography 158

5

List of Tables

4.1 Java to ARM Translation Table. 59

5.1 Table of Simulation Times. 97

6

List of Figures

1.1 Java Product Spectrum. 15

2.1 The PicoJava II Core. 24
2.2 The PicoJava II Pipeline. 24
2.3 Example of Java Byte-code Versus RISC Code. 26
2.4 Execution of the Code Sequence: No Folding. 26
2.5 Execution of the Code Sequence: With Folding. 27
2.6 JStar Co-processor Architecture. 30

3.1 A Clocked Pipeline Design. 40
3.2 A Self-Timed Pipeline Design. 42
3.3 Bundled Data (Push) Protocol. (a) Latches (b) 4-phase (c) 2-phase . 44
3.4 Dual Rail Protocol. (a) The communicating blocks. (b) 4 phase

protocol. 45

4.1 JASPA Architecture. 52
4.2 The SPA Architecture. 54
4.3 The JASPA Architecture. 56
4.4 The ARM Register Mapping for Java Execution. 57
4.5 Simple Translation Example. 58
4.6 The Java Decoder Unit. 62
4.7 The Main Balsa Interfaces for Decoder. 69
4.8 JASPA Standard Cell Layout. 72
4.9 Code Generation Comparison. 73
4.10 Cumulative Difference. 74

5.1 Example Processor Pipeline Model. 89
5.2 Modelling a Pipeline Using Ada. 91
5.3 Deadlock Prevention in Pipeline Model. 94

6.1 Simulated Architectural Processor Model. 101
6.2 Part of a latency description file. 104
6.3 Branch Profiling Queue System. 107
6.4 Complete Profiling System. 108
6.5 Folding Examples. 113
6.6 Validity Examples. 114

7

6.7 Results Relative to Stack Cache Decoder. 117

7.1 Simulation Benchmark Timings. 122
7.2 Arith1 Benchmark Timings. 123
7.3 Results Relative to Stack Cache Decoder. 123
7.4 Result of Varying Memory Latency. 124
7.5 Asynchronous Decoder Performance. 125

A.1 Arith Benchmark on JASPA, Single Byte-code Breakdown. 134
A.2 Arith Benchmark on JASPA, Grouped Byte-code Breakdown. 135
A.3 Arith Benchmark on Folding1, Single Byte-code Breakdown. 136
A.4 Arith Benchmark on Folding1, Grouped Byte-code Breakdown. 137
A.5 Arith Benchmark on Folding1-Branchopt, Single Byte-code Breakdown.138
A.6 Arith Benchmark on Folding1-Branchopt, Grouped Byte-code Break-

down. 139
A.7 Fib Benchmark on JASPA, Single Byte-code Breakdown. 140
A.8 Fib Benchmark on JASPA, Grouped Byte-code Breakdown. 141
A.9 Fib Benchmark on Folding1, Single Byte-code Breakdown. 142
A.10 Fib Benchmark on Folding1, Grouped Byte-code Breakdown. 143
A.11 Fib Benchmark on Folding1-Branchopt, Single Byte-code Breakdown. 144
A.12 Fib Benchmark on Folding1-Branchopt, Grouped Byte-code Break-

down. 145
A.13 NFib Benchmark on JASPA, Single Byte-code Breakdown. 146
A.14 NFib Benchmark on JASPA, Grouped Byte-code Breakdown. 147
A.15 NFib Benchmark on Folding1, Single Byte-code Breakdown. 148
A.16 NFib Benchmark on Folding1, Grouped Byte-code Breakdown. 149
A.17 NFib Benchmark on Folding1-Branchopt, Single Byte-code Breakdown.150
A.18 NFib Benchmark on Folding1-Branchopt, Grouped Byte-code Break-

down. 151
A.19 Sieve Benchmark on JASPA, Single Byte-code Breakdown. 152
A.20 Sieve Benchmark on JASPA, Grouped Byte-code Breakdown. 153
A.21 Sieve Benchmark on Folding1, Single Byte-code Breakdown. 154
A.22 Sieve Benchmark on Folding1, Grouped Byte-code Breakdown. 155
A.23 Sieve Benchmark on Folding1-Branchopt, Single Byte-code Breakdown.156
A.24 Sieve Benchmark on Folding1-Branchopt, Grouped Byte-code Break-

down. 157

8

Abstract

Java is a modern, general purpose object orientated programming language origi-

nally designed for embedded systems. Java first saw wide spread adoption in the

area of web-based distributed applications because of its portable binaries, security

features and convenient programming interfaces. These features also apply to mod-

ern mass market embedded and mobile systems. An increase in the power of such

devices has led to wide spread adoption of Java in this domain.

This thesis investigates the issues which arise when attempting to execute portable

Java binaries on embedded processor architectures. The central theme is acceleration

of Java binary translation through the extension of embedded processor pipelines.

This is an established method of efficiently reducing power consumption, memory

requirements and system cost while increasing Java execution speed.

Existing techniques for hardware assisted binary translation are investigated, and

novel approaches to the problem are suggested and evaluated. Current commercial

products in this space use simple translation techniques, this ensures low power

requirements and system cost. More elaborate translation mechanisms are proposed

that can increase execution rate while aiming to have low implementation costs.

Simulations of a simple asynchronous Java decoder design at silicon level cal-

ibrate and contrast to the results of higher level simulations of the new transla-

tion mechanisms employing asynchronous pipelines. Results show performance in-

creases when employing more advanced translation mechanisms and provide quan-

tified trade-off options which can aid designers of such systems in the future.

9

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

10

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the John Rylands University Library of Manchester. Details

may be obtained from the Librarian. This page must form part of any such copies

made. Further copies (by any process) of copies made in accordance with such

instructions may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions

of any such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the head of School of Computer Science.

11

Acknowledgements

I would like to thank Amy, my family, the APT group and the staff at Silistix for their

individual and invaluable support during the years spent working in Manchester.

12

Chapter 1

Introduction

1.1 The Java Language and Runtime Environment

The advent of the transistor meant that much larger, more reliable, systems be-

came feasible and design methods advanced to meet the needs to handle greater

complexity.

Java [45] is a general purpose object orientated programming language intro-

duced by Sun Microsystems. One of the main aims of the language and runtime

system was to allow for binary compatibility across multiple platforms. To facilitate

this feature an intermediate binary format was designed. To allow for compatibility

with Java binaries on any platform, a Java virtual machine (JVM) [32, 33] must be

implemented. The JVM interprets Java binaries (Java class files) and issues appro-

priate instructions to the host processor(s). It is usual to code a JVM in software,

however this is not mandatory, this choice is left to the implementer.

The JVM specifies an 8 bit instruction format capable of operating on various

data-types from 8 bit integers through to double precision floating-point numbers.

The JVM is stack based and hence has relatively high density binary files [35, 15].

High code density is a desirable quality in many of the markets which Java targets.

Java has achieved widespread use as a language for the Internet mainly due to bi-

nary compatibility between different systems, but also due to its compact binary

distribution format, resulting in reduced bandwidth requirements for program dis-

tribution. Interestingly, Java was originally designed for embedded systems where

code density is paramount. Compact Java byte-code facilitates reduced storage re-

quirements and therefore cheap, low power, feature rich systems. The advantages of

binary compatibility also apply to embedded systems which will have an extended

13

CHAPTER 1. INTRODUCTION 14

life-time and reduced support cost through shared binary software updates. The

compactness of Java binary files also comes into play when delivering over-air ap-

plications in mobile phones and other wireless connected devices which are becoming

increasingly common.

Aside from the characteristics of the JVM, Java itself is also a very practical pro-

gramming language with support for object orientated programming and large scale,

manageable projects. It has a well specified set of application programming inter-

faces (API’s) suitable for a large variety of target product areas, ranging from smart

cards to distributed server environments. These qualities are another important

factor in the widespread adoption of Java in embedded systems where, previously,

use of C and assembler have often resulted in poor code re-use and very platform

dependent, bespoke code. The main reason for this is that code must be optimised

to minimise code density and to interface with the target platform. The advantage

with such languages is that runtime performance targets may be easier to meet than

with a virtual machine based system such as Java, which will usually run slower than

native code.

A further important feature of Java is the inbuilt security of the language and

runtime environment. Firstly, as programs run in a virtual machine environment,

they never have direct access to the host machine, every instruction going through

the JVM. Java has several levels of security and allows code to be run with different

security levels. Untrusted binaries can be run in a sandbox environment, without

access to restricted library calls. Even trusted code does not run in a totally un-

protected environment like typical native code may, for example arrays are cleared

on allocation, and pointers to memory do not exist as such. On small embedded

systems without memory protection, achieving a reasonable level of security requires

little effort when adopting a Java implementation.

The simplest form of Java virtual machine is one which takes each incoming Java

byte-code, decodes its meaning and then issues appropriate native code (by calling

a subroutine or something similar) to carry out the task specified by that byte-code.

This is how the first generation of JVM’s typically worked, and this can be made

quite efficient, and can be optimised in many different ways, for example by the

inclusion of SUN’s _quick byte-codes [32] which can be substituted in the place of

some slow to interpret byte-codes at run time to speed up repeated interpretation.

Recent JVM implementations have taken a different approach, where blocks of Java

byte-codes are compiled into native code blocks which are then called directly when

CHAPTER 1. INTRODUCTION 15

needed. This process can be time consuming but once complete this compiled code

will execute very quickly, as JVM intervention is only needed as new parts of the

program are reached. This approach is referred to as just in time compilation, or

JIT compilation.

VM

API’s

Java 2
Enterprise

Edition
(J2EE)

API

Java 2
Standard
Edition
(J2SE)

API

Personal
Java

Profile

Other
Profiles

RMI
Profile

Device Profile
Mobile Information

Optional Packages

Optional Packages

Foundation Profile

Javacard API

JIT Compiler JVM Card JVMKilobyte JVMStandard JVM

J2ME Configurations

The Java Language

Target area for embedded JIT JVMs

Target area for embedded Java co−processors and microconrollers

Figure 1.1: Java Product Spectrum.

Figure 1.1 shows a matrix of the different flavours of Java currently available in

2005. The top portion of the diagram shows the API sets available to programmers,

each targeting different classes of systems. All of the API sets are shown to run

on the same Java language, with the different virtual machine types listed at the

bottom under the appropriate API. The API set is usually used to differentiate

between the different releases of Java which Sun distributes, but it is important

to note the suggested JVM as these are related to the type of system the API is

targeted at:

J2EE - Java 2 enterprise edition: for servers and distributed software architec-

tures. Systems running this environment usually have a server orientated JIT

JVM which creates native code for all (or a large percentage of) the Java bi-

naries it executes. This will aggressively optimise frequently used portions of

the code speculatively as soon as possible, as it is anticipated that in a server

environment the code will be run very repetitively and performance over a

longer period of time is more important than startup times or memory usage.

CHAPTER 1. INTRODUCTION 16

J2SE - Java 2 standard edition: for workstations, PC’s and Internet enabled

devices. This configuration usually runs with a JIT compiler virtual machine.

The current Sun implementation uses a technology called HotspotTM which

starts by interpreting byte-codes, then compiling basic blocks to native code

and applying progressively sophisticated optimisation to frequently executed

blocks. This results in fast startup times, important for interactive (usually

web based) applications and also eventually good performance, after profiling

and gradual optimisation have taken place. This method also has a reduced

memory footprint over some other JIT strategies, as much rarely used code

will never be compiled to native code and therefore not require further storage

space. Simpler interpreting JVM’s are also an option in this space, for reduced

memory devices such as small Internet appliances or hand-held computers

where J2SE functionality may be all that can be afforded within given memory

limitations.

J2ME - Java 2 micro edition: for embedded devices. This is one of the newer

Java editions, and is possibly becoming one of the broadest areas of Java use.

The specification of J2ME allows for many different API sets to be specified

to suit a particular product area. Standards exist for many types of devices

ranging from TV set-top boxes to mobile phones. The JVM used can vary

from a standard desktop JVM to smaller virtual machines suiting PDA’s and

mobile phones. This type of compact JVM is often called a kilobyte virtual

machine (KVM), meaning that it requires a memory footprint measurable in

kilobytes rather than megabytes when operational (normally around a few

hundred kilobytes).

Java Card: for smart-cards. The JVM specification for this version of Java does

not include floating point or long integer data-types, so is limited to integer

arithmetic, allowing for a minute virtual machine, which will run on small

system-on-chip smart-card processor cores with a small program ROM and

even less RAM, but still facilitating the desirable benefits Java can offer.

1.2 Accelerating the Java Virtual Machine

Accelerating Java implementations is important, just as accelerating computers in

general is important because people consistently expect more from their computer

CHAPTER 1. INTRODUCTION 17

systems in terms of performance and price per unit performance. In the case of

Java in particular, increasing performance relative to native software is important

in order for Java to compete and be a viable alternative to native programming

languages, enabling people to exploit the advantages Java has to offer.

Many options are available for improvements over a simple JVM implementation.

Ideally it would be nice to be able to increase performance of Java applications

wholly in software, in all application areas, but this is not always possible. A JVM

must always come at some cost, as it must emulate a machine architecture capable of

running Java byte-codes, a native application does not have to emulate anything. So

why not convert the whole Java program to native code? Firstly one key advantage of

Java is the portable binary format, so any translation would have to be done from the

binary byte-codes. After this realisation a fast virtual machine can be built, if a good

binary translator can be designed. It is now necessary to store two sets of binaries

at run time resulting in possibly excessive memory requirements. Fast software only

JVM environments will always be fighting memory requirements, although this is

only a big problem in the embedded application space, where memory is often very

limited.

The only case where there is no apparent cost to the JVM is when the underly-

ing machine architecture implements the JVM specification, or most of it. Taking

away the virtual from the JVM is the essence of all hardware approaches to Java

acceleration. However the costs here are in the implementation, it is expensive to

design new processors. The JVM is also designed as a good virtual machine archi-

tecture with compact binaries, not as a good instruction set architecture to actually

build hardware for. This approach also conflicts with the fact that there are already

established processors in almost all Java application areas, which would be very

difficult to compete against in terms of performance. A clever compromise is often

needed in the hardware acceleration space.

1.3 Thesis Overview

Chapter 1: Introduction

Chapter 1 contains a review of the Java language, application areas, virtual ma-

chine technologies and acceleration techniques. Rationale for the work carried out

CHAPTER 1. INTRODUCTION 18

is presented, justifying the need for improved efficiency Java virtual machine envi-

ronments, particularly for embedded systems with small memory footprints. The

introduction is concluded with a summary of each chapter in the thesis.

Chapter 2: Improving Java Virtual Machines

Chapter 2 takes an in depth look at techniques employed for improving Java virtual

machine performance. Firstly the chapter looks at existing software-only systems

running on general purpose processor architectures, mainly aimed at the workstation

market. Dedicated Java processor and acceleration co-processor hardware is then

evaluated. Comparison of implementation strategies, decoding techniques, complex-

ity and architectural partitioning is undertaken.

Chapter 3: Architectural Techniques

Chapter 3 looks at implementation options for processor hardware. This chapter

evaluates the benefits and drawbacks of using asynchronous design styles, different

decoding strategies and design partitioning in the construction of processor architec-

tures. This chapter focuses on developing an appropriate set of ideas for use in the

design and implementation of an embedded system suitable for efficiently running

Java code.

Chapter 4: JASPA

Chapter 4 gives an overview of the first prototype Java enabled architecture de-

signed to evaluate currently known translation techniques and asynchronous design

approaches. The design was realised into a gate level netlist and simulated as a

chip layout in 180 nanometre CMOS silicon. This chapter shows the feasibility of

design, advantages of asynchronous decoding approaches as-well as problems with

the implementation and naive decoding techniques.

Chapter 5: Architectural Simulation

Chapter 5 describes and justifies the simulation system constructed to evaluate novel

Java enabled processor architectures. The simulator architecture is described in de-

tail showing how it allows for rapid simulation at the architectural level (pipeline

CHAPTER 1. INTRODUCTION 19

stage is lowest level entity). Asynchronous communication between units is sup-

ported along with separate easily configurable timing models for a given design.

Implementation choices, system performance and features are evaluated.

Chapter 6: Instruction Folding

Chapter 6 introduces instruction folding as a technique for enhancing the perfor-

mance of Java translation suitable for rapid execution on a RISC processor core’s

ALU. Folding uses the registers available to cache local variables enabling operand

stack operations to be skipped, allowing multiple Java byte-codes to execute in a

single RISC processor cycle. Implementation strategies are explored and results

from simulation of a folding Java processor architecture are presented. This chapter

also describes the byte-code profiler implemented as a component of the simulated

processor.

Chapter 7: Improved Instruction Folding

Chapter 7 presents further techniques for instruction folding, allowing more efficient

use of registers in order to reduce hardware costs while reducing the memory access

overhead of hardware Java translation. Novel register allocation techniques are

presented along with an improved stack cache methodology permitting instruction

folding. Different configurations and numbers of processor registers are investigated

to compare the efficiency of different folding techniques along with varying memory

latency. The self-timed qualities of the folding decoder are examined here also.

Chapter 8: Conclusion

Chapter 8 concludes the thesis, providing summary and details of all techniques in-

vestigated and introduced through this research. A discussion of problems, possible

resolutions and future work inspired by this investigation of embedded architectures

for Java closes this chapter.

Chapter 2

Improving Java Virtual Machines

This chapter details the varied approaches taken to achieve improved JVM per-

formance introduced in both commercial products and research projects. The vast

majority, if not all, commercial desktop and server virtual machines are implemented

entirely in software. This is where most innovation has taken place in terms of gain-

ing high performance, mainly at the expense of memory usage and start-up times.

Making changes to general purpose hardware used in such workstation and server

systems where Java is not the dominant software implementation environment would

defy economics. Performance similar to pre-compiled code can already be achieved,

typically plenty of memory is available to the JVM.

Embedded environments, such as mobile phones have provided a niche where

Java is a standard, causing the establishment of many commercial hardware based

Java solutions. This is still an area of great activity, with products available for 5 or

more years continually evolving to suit the changing market place and performance

increases in processors aimed mainly at high end mobile consumer devices.

The Java virtual machine is defined by a set of stack based instructions, byte-

codes, operating on a small selection of data types. Data values can be stored in

local and global variables as single values, arrays or in compound object structures.

Access to all of these data storage containers is supported by dedicated byte-codes.

Integer and floating point types have a large set of arithmetic and logic byte-codes all

of which operate exclusively on an operand stack. Values must be loaded to this stack

as constants or from local or global variable spaces before they can be processed.

All instructions are 8 bits in length, hence the term byte-code. Some instructions

have further immediate data fields, although many single byte instructions have

been added for common values in order to improve code density.

20

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 21

2.1 Software Acceleration Approaches

The majority of Java code is currently run on software Java virtual machines such

as those readily available from Sun, Microsoft and under GNU licences, all of which

run on standard processors. Improving execution speed of Java in software only

implementations is therefore an important area of research.

The main cost of a simple interpreting JVM is the time spent in the interpretation

loop. Typically each Java byte-code will be fetched from memory in turn and

decoded, an appropriate handler routine is then found and called, hence there is

a decoding cost of several native machine instructions per Java instruction. This

results in a speed penalty of perhaps 5 to 50 times slower than equivalent native

code, dependent on the machine’s architecture. In order to increase the performance

of software JVM’s the time spent decoding byte-codes relative to the time spent in

handler routines must be decreased. The following Java implementations, which

are currently available, attempt to address this issue using a combination of smart

interpretation techniques, dynamic compilation and possibly architecture specific

optimisations.

2.1.1 Sun 1.x JVM

The first JVM’s made by Sun were purely interpreters and did not perform any just

in time compilation by default. The main feature added to increase interpretation

speed was a set of extra quick byte-codes. These byte-codes are not part of the JVM

specification, but are substituted at interpretation time to replace byte-codes where

constants must be looked up through the constant pool. A quick version of any

byte-code has a direct reference to the constant, known only at run-time, saving the

look-up process on future passes through processed code. There are 25 such quick

byte-codes specified [32].

2.1.2 HotspotTM

Sun’s HotspotTM [47] technology combines an optimised interpreter and JIT com-

piler in an attempt to offer fast start-up times and ultimately very high sustained

performance of Java code. Hotspot starts off by interpreting byte-codes, while per-

formance profiling information is gathered. When it is determined which sections of

code are being executed most frequently, these are gradually compiled, with a range

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 22

of increasing optimisations to achieve high performance but without large delays

as code first starts running. Profiling and the majority of compilation is done at

the method level, while other optimisation features can take place at boundaries

of basic blocks. Incremental garbage collection is a feature added in the Hotspot

JVM which spreads garbage collections over time resulting in reduced jitter in per-

formance, which is also important in many applications.

2.1.3 Jikes

Jikes [2] is a virtual machine in development at IBM. Jikes (previously called Jalepeño)

is a just in time Java compiler and unusually is written entirely in Java. The Jikes

JVM is aimed at high performance server systems and sets out to exploit modern

microprocessor architectures and SMP multiprocessing while providing server level

reliability and performance characteristics. As Jikes is aimed at servers, it does not

pay much attention to reducing memory usage. The virtual machine does not do any

interpretation but instead relies upon a set of three inter-operable compilers, in this

way execution performance can be traded off against compile time characteristics of

each compiler, response time of new code segments can therefore be controlled.

2.1.4 Monty

Monty [48] is a relatively new virtual machine for Java, and is aimed squarely at the

embedded systems market segment. Monty is made by Sun Microsystems and is a

commercially licenseable product. Monty currently targets only the ARM series of

microprocessors and is extensively optimised for this platform. The aim of project

Monty is to provide an order of magnitude performance gain over their previous

J2ME kilobyte virtual machine (KVM).

Sun realised that there is a new breed of embedded systems, such as smart

phones and palm-top computers, with increasing amounts of memory, where over-

air application deployment is important for software updates and distribution, Java

is often the chosen platform to facilitate this. Previously the KVM virtual machine

was being used, which is purely interpretive. Surveys showed that typically only 1

to 4 times performance could be achieved using interpretive optimisations, but 10

to 20 times speed up was possible with some form of dynamic compilation. Project

Monty was born, as an attempt to implement a customisable Hotspot style compiler

for embedded applications.

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 23

Monty is targeted at ARM systems only and takes advantage of the instruction

set, cache architecture as well as optimising the execution engine and resource allo-

cation specifically toward maintaining a small memory footprint. The main aims of

Monty are simplicity and compactness. A highly optimised interpreting engine, a

simple one pass compiler with relatively few optimising features and a highly efficient

garbage collector help to realise these goals.

2.1.5 Other J2ME systems

Other Java virtual machines are available which are hand optimised for specific

processor targets and achieve notable performance increases and size reduction in

comparison to more portable solutions. Some systems employ forms of advanced

dynamic compilation taking advantage of optimisations only possible at run-time,

giving further performance boosts, at the cost of a larger virtual machine and ap-

plication footprint. Another solution is needed in very low memory environments,

as software systems always trade off memory usage against performance.

2.2 Java Acceleration Hardware

Dedicated Hardware for the acceleration of Java becomes an option when software

approaches are too slow, and possibly require too much memory, both in terms

of runtime costs and the static size of the virtual machine. The idea of hardware

approaches is to implement parts, or all of the JVM functionality in fast dedicated

hardware, either attached to or integrated into a standard processor or as a Java

specific architecture.

Decoding of byte-codes and generation of small native code sequences can be

done in very little time and hardware for the majority of frequently used byte-codes,

this has a big impact on the performance of a JVM. This is the simplest approach

and allows a simple interpreter to decode the remaining byte-codes in software with

a reduced memory footprint over even a simple interpreting JVM. Adding more

functionality is a trade-off between memory usage, hardware complexity, hardware

compatibility and execution speed and has been explored in the following hardware

Java accelerators.

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 24

2.2.1 PicoJava II

2.2.1.1 Instruction Set Architecture

PicoJava II Core

Floating Point
Unit

Cache
Instruction

Cache
DataBu

s
In

te
rfa

ce
 U

ni
t

Integer Unit
+Instruction

Decode
Unit

St
ac

k
M

an
ag

em
en

t U
ni

t

Power/Clock/Scan Control

Figure 2.1: The PicoJava II Core.

PicoJava [35] is a micro-processor designed by Sun Microsystems which executes

Java binaries natively. PicoJava was the first hardware platform dedicated to exe-

cuting Java, and is now publicly available, as Synthesisable verilog RTL code, under

Sun’s community source licencing program. PicoJava is configurable and can has

a gate count ranging from around 100,000 to 400,000 gates depending on internal

cache configurations and the target circuit technology chosen. The core [46] is shown

at block level in figure 2.1. An overview of the pipeline structure is shown in figure

2.2.

Fetch

for decoding
Fetch Cache line Decode insructions

+ perform folding

Decode

Get operands from

bank

Register

(may be micro−coded
and take >1 cycle)

Execute

Access Data
Cache

Cache

do branch calculations
Write results to

register bank

Writeback

Execute instruction/
stack cache/register the stack cache/

Figure 2.2: The PicoJava II Pipeline.

PicoJava executes all 226 Java byte-codes as specified in the JVM specification

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 25

[32] (although 30 are actually handled by software traps) and also executes extra

instructions needed to control the processor at a hardware level. Low level func-

tionality is not specified or needed in a virtual machine specification, but is required

to construct an operating system and support the Java run-time environment. In

total 115 extra instructions are added in the PicoJava instruction set architecture

to directly control memory and internal register accesses, support the construction

of system software, support the use of other programming languages and allow for

system diagnosis. These extra instructions allow for the kind of hardware access

prevented in the Java security model, but are needed to facilitate a functional Java

implementation. For instance, it must be possible to control memory access explic-

itly in order to allocate space for objects at run time.

PicoJava partitions the Java byte-code space into sections depending on com-

plexity of implementation. Most byte-codes are executed in a single cycle, these

being the core arithmetic, stack and data access instructions. Around 30 moder-

ately complex and reasonably common byte-codes are executed in multiple cycles

by micro-coded instructions. The remaining 30 or so more complex byte-codes are

handled in software, which may take tens or hundreds of cycles to execute, but

these byte-codes are infrequent so little penalty is paid relative to the hardware sav-

ing. These complex instructions are also open to different implementation strategies

(when memory allocation and operating system issues come into play) making soft-

ware implementation the most sensible, flexible option.

2.2.1.2 Instruction Folding

A key feature of PicoJava is a technique employed at the instruction decode stage

called instruction folding. It is well known that although stack based instruction

sets like Java byte-code have a high code density due to their small instruction

lengths. Operand storage is implied by the current state of the stack, rather than

explicitly specified in each instruction, as addresses in memory or as indexes to

registers. Stack based instruction sets unfortunately compensate for this reduced

code density with the need for extra execution cycles to setup the stack as required

by the arithmetic instructions. Fortunately this problem is reduced as results from

previous computations are placed on the top of the stack. PicoJava attempts to

combat this problem by caching up to 64 of the top stack entries making them

randomly accessible as operands for the ALU. PicoJava takes advantage of the stack

cache, which is effectively a register file, with two read ports and a single write port,

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 26

to circumvent redundant stack manipulation. In Java much data processing occurs

on local variables, which are frequently loaded from their location around the start

of a stack frame, to the top of the operand stack, then operated on and stored back

to a local variable. PicoJava can spot this type of byte-code sequence and execute

the operation in a single cycle, so long as the local variables are cached within the

top 64 entries of the stack. Up to two cached local variables can be taken as input

to the ALU on the two read ports and the result written back on the write port

to either a variable or the top of stack if necessary. Sun claim that this instruction

folding system eliminates almost all of the overhead of a stack based instruction

set architecture, with 23 to 37 percent of all instruction executions being folded

into other instructions [35]. An example of successful instruction folding is shown

diagrammatically in Figures 2.3, 2.4 and 2.5.

Java Language Java Byte−Code RISC Machine−Code

a = a − b

ISUB

ISTORE_1

SUB R1, R1, R2ILOAD_2

ILOAD_1

Figure 2.3: Example of Java Byte-code Versus RISC Code.

...
Var 1
Var 2

...
Var 1
Var 2

Java Byte−Code

ILOAD_2

ILOAD_1

ISUB

ISTORE_1

...
Var 1
Var 2

...

Var 2

...
Var 1
Var 2

Temp 1
ResultTemp 1

Var 1

Temp 2

Clock Cycle Clock Cycle Clock Cycle Clock Cycle

Figure 2.4: Execution of the Code Sequence: No Folding.

The problem with this type of instruction folding is that this mechanism implies

complications over a simple processor design increasing the size and power consump-

tion requirements. Design concerns include a relatively large register file, with stack

spill and fill mechanisms. Instruction fetch and decode logic is also made somewhat

more complicated and must be capable of looking ahead in the instruction stream

and determining folding patterns. PicoJava looks at a window of 7 of 16 pre-fetched

bytes. Even if patterns are detected, they can only be executed in a single cycle

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 27

Java Byte−Code

ILOAD_2

ILOAD_1

ISUB

ISTORE_1

... ...
Var 1
Var 2

Var 1
Var 2

1 Clock Cycle

Figure 2.5: Execution of the Code Sequence: With Folding.

if indeed all needed operands are stored in the stack cache. Branch latency per-

formance may also be affected by this need for lookahead or pre-fetching, although

it is noted that Java byte-codes are typically shorter than RISC instructions, for

example, reducing buffering requirements.

Possibly as a result of the complexity of PicoJava, it has found fairly few applica-

tion areas and has not thus far been a big commercial success. For instance it is not

really suited to low-power embedded systems, where Java acceleration is highly de-

sirable. The system designer also has the problem of using Java exclusively to code

the system software, which is a big change to make if other established embedded

processors will have been used in the past. It does not make sense to throw away

existing system software, which may be written in assembly language to meet per-

formance and size requirements; such software may be difficult and time consuming

to recode in Java.

2.2.2 JEMCoreTM

JEMCore [49, 23] is a Java micro-processor by Ajile Systems which executes Java

byte-codes natively. It has a native implementation of threads, activated by an

extended set of byte-codes, simplifying the implementation of embedded operating

systems and also results in rapid context switching times, claimed to be under a

microsecond. JEMCore is designed to support J2ME applications where some level

of real-time performance is required. The real-time Java specification is directly

supported. JEMCore is an entire embedded processing system, in product form it

supports many interfaces allowing for a very compact solution to many embedded

system designs. The drawback of this type of product is that although it allows for

the construction of an entire Java enabled embedded system, with only one CPU

core, it requires a complete shift to Java, which could mean re-writing lots of well

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 28

tested and trusted code, this may often be too expensive to consider.

JEMCore is a simple microcoded processor architecture and claims to be im-

plemented in 25 to 35 thousand gates. Optimisation for speed is facilitated by

programmable custom instructions which can be micro-coded by a system designer

to replace invocations of library functions. Ajile claim 5 to 50 times speed up is pos-

sible, over the KVM, depending on how complex the algorithm being optimised. In

a system with a secondary or host microprocessor, this type of optimisation would

be achievable using Java’s native interface. This method of accelerating Java is

very labour intensive, and cannot really be seen as an architectural feature. This

processor is relatively small, by gate count, so clearly a decision has been made not

to over-complicate the implementation, and also to keep power consumption low.

JEMCore also does not have a cache, but instead on chip ROM and RAM, with

predictable latencies, to help support the Java real-time specification [9].

2.2.3 Moon2

Vulcan Machines’ Moon2 [34] is a stack based processor intended for direct execution

of Java byte-codes. It is available as an IP block, for fabrication or inclusion as a

soft-core targeting FPGA’s. The processor revolves around a microcoded control

unit, and integrated 256 entry embedded SRAM stack. The implementation cost is

27,000 gates, 3K microcode ROM and 1K single ported RAM.

It is reported [34] that by caching the stack, simple byte-code folding optimi-

sations can be carried out. Pushes to the top of stack from cached entries can be

factored out, resulting in a reduction in memory accesses. This is similar to the

approach taken in the PicoJava processor.

2.2.4 Lightfoot

The Lightfoot processor series [42, 50] is a stack based processor which claims 8

times acceleration over a RISC based processor interpreting Java. There is a one to

one mapping from selected byte-codes to Lightfoot instructions, in order to obtain

optimal performance.

The processor has instruction and data memory interfaces, and is based around

a three stage pipeline. Interestingly, the processor supports C and C# through the

Microsoft common run-time environment along with Java byte-codes, and is aimed

at FPGA implementation as well as inclusion as IP on customer’s silicon.

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 29

The Lightfoot has a 256 word register space, and has support for soft byte-

codes, which branch directly to handler code in memory. The register bank has four

parameter cache registers that can hold the first four parameters to a method. The

data stack is cached in 8 on chip registers. There is a return stack, which can be

used as an index register to access memory, auxiliary stack space or hold subroutine

return addresses.

2.2.5 JOP

JOP [40] is a Java byte-code direct execution core designed for minimal implemen-

tation cost. It has four pipeline stages: byte-code fetch, microcode fetch, decode

and execute. Each byte-code is implemented by a micro-code sequence, fetched in

a single pipeline cycle. Microcode is designed specifically to implement the Java

byte-code set, and has direct access to 16 local scratch variables to hold state. ALU

operations are performed only on the stack through two top of stack (TOS) regis-

ters. On chip memory acts as a stack cache of 128 entries, and reduces memory

stalls. The memory architecture takes advantage of the fact that results need not

be necessarily stored back to memory in the same cycle as being read, reducing the

hardware cost of the stack cache.

JOP was implemented on an Altera FPGA, and used only from only 1077 logic

cells, with a memory requirement of 3.25K. Speeds of 101MHz are reported in the

thesis, which is double the clock speed of the commercial Lightfoot, with roughly

one third of the implementation area. This is roughly 10 percent of the gate count of

the Sun PicoJava processor core. JOP is claimed to be the smallest hardware JVM

implementation to date, with the highest performance per gate, per cycle. Absolute

performance at 101MHz is still over 10 times slower than the Sun JIT compiler JVM

on a 266MHz Pentium MMX processor, running a set of arithmetic and networking

benchmarks.

2.2.6 JStar

JStar [11] is a Java processor system designed by Nazomi Communications. In con-

trast to the previously described Java hardware JStar is not a stand-alone processor.

The architecture of JStar is shown in Figure 2.6. JStar is shown at the interface

of a general purpose CPU and some level of memory hierarchy. JStar acts as a

translator between Java byte-codes stored in the memory or cache of a system and

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 30

Cache
Instruction

or
Memory

CP
U

In
te

rfa
ce

 U
ni

t

Un
it

St
ac

k
an

d
Tr

an
sla

tio
n

Bu
ffe

r

an
d

Pa
ra

lle
lis

m
 U

ni
t

In
sr

uc
tio

n
De

co
de

JStar Coprocessor Core

Host Processor Core

Pr
ef

et
ch

 U
ni

t

Figure 2.6: JStar Co-processor Architecture.

the system’s processor, which is expecting some other native instruction format.

JStar translates 160 of the 226 JVM byte-codes to native instruction sequences for

ARM, MIPS and other processors, depending on the particular product. This has

the benefit of speeding up execution of commonly used instructions, but also reduces

the memory footprint of the software part of the JVM as these byte-codes no longer

have to be trapped. Further memory reduction takes place as even unhandled byte-

codes are now at least detected in hardware, taking further work away from the slow

software, reducing the memory footprint and increasing system speed. JStar also

performs some level of byte-code folding.

The currently available incarnation, JA108, connects via a standard SRAM mem-

ory bus, as a bridge to memory. The chip runs at up to 104MHz and includes an

integrated 4K, 2-way set associative byte-code cache and 2K, 2-way set associa-

tive data cache. It is implemented in 180nm fully static CMOS, to reduce power

consumption.

JStar is an efficient solution to speeding up Java, as it is almost transparent

to the system. Software JVM components will need to be significantly changed

to enable the hardware acceleration, the benefit being a reduction in the number

of byte-code handlers necessary leading to reduced memory requirements. Power

consumption of the system is possibly altered with the introduction of extra logic.

JStar is available as a single chip package, or as IP for inclusion on custom silicon.

Power consumption will be far lower if the logic is integrated into the processor

chip, as no extra chip to chip communication will occur. One problem with JStar is

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 31

that it includes a relatively complex host interface and RAM interface at its inputs

and outputs; hardware which would be unnecessary if the translation stage was

integrated more tightly into the processor hardware. Accomplishing this would only

really be possible if the host processor core IP could be modified or re-designed.

2.2.7 Jazelle

2.2.7.1 Jazelle DBX

Jazelle [3] is a Java hardware product made by ARM ltd. This accelerator is different

to others in that it is very tightly coupled with a host ARM processor, in fact it

is a pipeline stage in the design. Jazelle is essentially a Java byte-code decoder

and simply translates byte-codes to native ARM instructions to be sent to the

processor’s execute unit. Thus Jazelle is an extra decode stage in the processor.

Initial descriptions of Jazelle suggest that the Java decode pipeline stage is only

connected into the pipeline when the processor enters Java mode, and this stage sits

before the standard ARM decode stage outputting sequences of ARM instructions

for each byte-code it encounters. An alternative strategy which may be used in

future versions is to add a parallel Java decoder which takes over from the ARM

decoder in Java mode and interfaces directly with the processor’s execute stage,

leaving the pipeline latency the same as when not in Java mode.

Jazelle has the advantage of being a relatively compact piece of hardware in

comparison to the others described here. It is simple, as it has very modest interface

logic and only performs simple translations of individual byte-codes. ARM quote

12,000 gates are required for a Jazelle implementation, much smaller than other Java

hardware. Much hardware is shared with the host processor, reducing costs over

even similar units like JStar. 134 byte-codes are directly handled in hardware (on

the ARM926EJ) and others are handled by ARM’s highly optimised JVM support

software, VMZ. ARM claims that software handled byte-codes only occur 5% of the

time, resulting in good performance figures and reduced power consumption over a

software JVM. Despite the extra hardware fewer cycles are needed to execute the

same Java code. Jazelle hardware also removes the need for an interpreter loop as

such, like JStar, implying further reductions in memory cost and decode time and

power consumption.

The main drawback with a Jazelle style system is the need to make changes to

the architecture of a processor core to support efficient integration with the Java

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 32

decoder. This is impossible for many system designers due to licensing issues, or

due to the cost of developing their own processor core. The processor core also has

to be one which is widely adopted in the target market, like the ARM architecture

is, otherwise there is little advantage over a stand alone Java core.

2.2.7.2 Jazelle RCT

While Jazelle DBX is short for Direct Byte-code Execution, Jazelle RCT [22] supports

Run-time Compilation Target code. The second generation Java acceleration solu-

tion from ARM provides support for JIT compilers in their new range of Cortex-A

and Cortex-R processors aimed at high performance embedded systems. The exten-

sions provided are minimal and are aimed at reducing start-up times and improving

code density and performance.

Essentially Jazelle RCT adds an alternative set of 16 bit Thumb instructions

which can be enabled by changing the processor mode. These instructions replace

some existing Thumb instructions with Java specific alternatives. Although primar-

ily aimed at Java, the extensions can be used by other operand stack based binary

translators such as those implementing Microsoft’s C# with Microsoft Intermedi-

ate language, MSIL. Only 12 new instructions are added: two to change processor

mode, one for array bounds checking, two to branch to handler routines, and seven

memory load and stores, enabling easy access to local variables and array indexing.

It is claimed that statically compiled Java code can be from 7 to 44 percent

larger than Java binaries. This compares with a figure of around 300 percent for 32

bit ARM code. This mode of Java extension has a very small hardware cost, but

makes JIT compilation more attractive, reducing memory requirements significantly.

It must be noted that the above code sizes are compiled ahead of time, a JIT

compilation environment along with original binaries is still a significant memory

overhead compared to a direct execution or interpreter based solution.

2.3 Summary

A series of approaches to Java acceleration have been reviewed, looking in detail

at implementation costs and specifically their suitability for embedded applications.

While software approaches have improved a great deal over the first generation

interpreter JVM environments, their memory requirements are large. This does not

make them very applicable to small embedded systems. Hardware approaches show

CHAPTER 2. IMPROVING JAVA VIRTUAL MACHINES 33

promise, the most efficient being processor decoder extensions which minimal extra

hardware but retain compatibility with existing embedded code and devices.

Chapter 3

Architectural Techniques

In order to improve on existing hardware support for Java run-time environments,

a decision was taken about what approach to take. The remainder of this thesis

introduces an acceleration system targeted at integration with embedded processor

pipelines. This chapter justifies the optimisation approaches taken, through evalu-

ation of the problem and proposed solutions.

3.1 Translation Techniques

Among the surveyed architectures in Chapter 2 were three broad categories of ap-

proach to Java acceleration. The key difference between these approaches is the

position of acceleration hardware in the system, discussed below in Section 3.2. The

potential design choices are described below.

3.1.1 Direct Execution

Direct execution of Java byte-codes is perhaps the most obvious to providing ac-

celeration for Java applications. Providing support for the decoding and execution

of each instruction defined in the specification of the JVM is not however a trivial

matter. The reason why it is difficult to implement a minimal embedded processor

supporting Java, is that the byte-code set was designed for interpretation in soft-

ware. Many byte-codes operate on quite abstract entities such as: objects, arrays

and memory allocation. There are also additional requirements, such as bounds

checking on array accesses, complicating matters further. The result is that, in or-

der to implement such a processor, a micro-coded architecture allowing for complex

34

CHAPTER 3. ARCHITECTURAL TECHNIQUES 35

multi-cycle instructions must be implemented. This conflicts with the typical profile

of low-power RISC processors which tend to have simple, efficient hardwired control

structures.

Along with the complexity of implementing the whole set of byte-codes, which

may additionally require operating support, there are further complications. The

byte-code set used in the JVM is not really suited to implementing low level code,

for device drivers and operating system functionality. The solution in direct Java

execution solutions is to add extra instructions for this purpose. The end result in

effect is an assisted interpretation solution, but with all of the disadvantages of the

bespoke instruction set for system code.

Cores such as JOP have shown that small implementations can be achieved,

overcoming some of the problems with cores such as PicoJava. In practice such

cores would be required in addition to other embedded processors in many applica-

tions, making them less attractive than a more minimal set of extensions to existing

processors. An extension solution could handle the more complex byte-codes in

software, and would be more efficient in terms of total silicon area.

3.1.2 Assisted Interpretation

Hardware support for an interpreter can be provided in many different ways. The

central idea being to add extra instructions, or provide some direct execution fea-

tures, to a processor in support of the JVM. This approach has been taken most

successfully with the Jazelle [3] extensions to ARM architectures.

Jazelle (DBX) supports direct execution of a subset of the Java byte-code set,

while allowing for branches direct to handler code for complex instructions. This

removes the standard interpreter loop, processing simple byte-codes very rapidly

without software intervention.

An alternative approach would be to provide extra instructions capable of im-

plementing interpreter loops very efficiently, and also instructions for complex op-

erations such as array access with bounds checking, or method resolution.

The drawback with this type of extension is that the host processor may not

have the best pipeline for executing even simple byte-codes, meaning some perfor-

mance would be lost to more dedicated processors. Key to this is the stack based

nature of the JVM, ideally suited to architectures with many registers. Changes

in Jazelle are restricted to the decode stages of the processor in order to minimise

implementation cost and aid portability between cores. In future systems, if Java

CHAPTER 3. ARCHITECTURAL TECHNIQUES 36

is a very important requirement, changes to the execution pipeline could be made

aiding the Java decoder, while remaining cheaper than adding a dedicated Java core

to a system.

3.1.3 Assisted Compilation

Assisted compilation is about supporting ahead of time and just in time compila-

tion. The only example of this documented here is the Jazelle RCT. The aim being

to reduce the size of compiled Java byte-code by providing a more compact rep-

resentation of commonly used operations, mainly indirect memory access to local

variables and arrays. The second aim is to support the efficient compilation and

reduce start-up times of Java applications. In the case of Jazelle RCT this involves

support for interpreting byte-codes through quick lookup and branching to software

handlers.

3.2 System Partitioning

Hardware supporting Java can be positioned at many points in the architecture of

a system. The following options are available, each implementation choice provid-

ing a range of benefits and problems. Important issues are: ease of integration,

performance, available bandwidth, latency of mode change and branches, power

consumption, complexity of implementation and manufacturing cost.

3.2.1 Dedicated Processor

A dedicated Java processor core could be a separate chip or integrated with other

system components on a single die. Integration would be relatively trivial, as no

changes are needed in the internals of other processor cores, and the core would

not need to be specific to a particular platform. The main issue would be access

to memory, and handover of control to the Java core. This would mainly be a

software integration issue, as the core could share the memory bus with the host

processor. Arbitration schemes could be an issue depending on how the processors

would operate in parallel and share memory.

The possibility for high performance, is greatest with a dedicated Java proces-

sor, as it will be tailored in every possible way to implement the JVM. Memory

CHAPTER 3. ARCHITECTURAL TECHNIQUES 37

bandwidth and latency are not an issue due to direct connection to the bus, also

there are few dependencies and communications with the host processor.

Power consumption is an issue for a stand alone core, as other approaches try

to minimise the gate count by sharing hardware with the host processor, this is

more of an issue if the trend of increasing static power consumption continues. A

separate chip solution will also incur extra power costs. All of this is offset against

the potential efficiency of a Java specific architecture.

Design effort and implementation cost, will likely both be greatest when taking

this approach. A complete processor pipeline, system interface and possibly caches

must be implemented. These features will require a large silicon area compared to

other types of acceleration hardware. The costs are also likely to be greater, as a

whole processor core will need to be licensed. If implemented as a separate chip,

implementation costs could become prohibitive.

3.2.2 Memory Bridge

A memory bridge is an elegant solution to the acceleration problem, targeting code

for the host processor from fetched Java binaries. The bridge is placed between

the processor and its instruction memory. Java byte-codes are intercepted as they

are fetched from memory by the host processor, the bridge then issues instructions

to the host processor implementing the functionality of the fetched byte-code. The

host processor need not be aware that the code at the fetch address is Java byte-code

as the bridge is translating to native instructions. The interface can be a standard

memory type, allowing for easy on chip and off-chip integration with a wide variety

of host cores. There is however the problem of managing caching at the host core,

which will be addressing bytes, and possibly receiving multiple words in response.

The main issue with this type of acceleration hardware is the extra latencies

incurred, in performing all operations. It is possible that the normal operation of

the host processor will be degraded by the extra memory interface logic. The main

performance hit would be taken when executing Java code, as latencies for branches

could be larger than in a more integrated approach, due to the Java decode stage

being behind both cache and fetch stages in the processing pipeline.

It is possible that some of the latency problem could be solved with an extra

layer of cache, and branch prediction in the bridge. Overcoming such problems takes

away much of the elegance of this design approach, which in a minimal form would

be small, easy to integrate and low power in comparison to a dedicated Java core.

CHAPTER 3. ARCHITECTURAL TECHNIQUES 38

3.2.3 Cache Bridge

A Cache bridge would bring many of the same advantages as the memory bridge.

Although restricted to an on-chip implementation, the latency between generation

and execution would be reduced for the translated code, improving branch latencies

slightly.

This approach provides some of the advantages of adding a Java decode stage

to the processor pipeline; in this case before rather than after the fetch unit. The

advantage being that it may not be necessary to alter the processor core at all to

design such an accelerator. This is advantageous to anybody does not have access

to the internals of the host processor design, which is typically almost everybody

outside of the manufacturer.

3.2.4 Co-processor

Some processors, such as ARM offer a coprocessor interface allowing a set of instruc-

tions to be implemented outside the regular pipeline. Normally this involves adding

some extra instructions, or an offload engine for processing blocks of data. This

approach would not typically suit a Java accelerator, as it is not usually possible

to add support for a whole new instruction set. There may also be problems with

fetching the required instructions with reasonable latency and at the required rate.

An example would be the ARM 7 co-processor interface [4], requiring a matching

three stage pipeline. This would not allow for the type of integration required for

an efficient accelerator, where sharing of the host processor’s resources is desirable.

The resulting hardware may also be larger than for a single stage solution. Extra

support instructions for compilers or interpreters could potentially be added using

this method, without needing to modify the host core.

3.2.5 Java Decode Stage

Adding a Java decoder stage to an existing processor, is a very neat solution to

improving embedded Java performance. The main obstacle to this being the ne-

cessity to modify the host processor core. This only really leaves this avenue open

to processor vendors. However embedded processor cores often need customisation

to suit different markets, making this a very sensible option to take for companies

supplying the mobile, televisual and smart-card space.

CHAPTER 3. ARCHITECTURAL TECHNIQUES 39

A Java decode stage is tightly integrated into a processor pipeline, allowing

for minimal latencies and takes advantage of existing branch prediction hardware,

without imposing additional restrictions on bandwidth or interfering with normal

processor operation. Selected byte-codes can be executed directly by generating

instructions for the host processor, or directly controlling the execution pipeline. A

big advantage here is the ability to manage state and registers without having to

store it in the general purpose processor registers, allowing better utilisation of the

host core. The second advantage is that unhandled byte-codes can trigger branches

to handler code, without the need for an explicit interpreter loop, making further

gains over software approaches.

The benefits of adding a Java decode stage to a processor over alternative solu-

tions are mainly about efficiency. Efficiency in terms of sharing the host processor’s

execution resources and minimising additional logic, which leads to savings in power

and implementation cost. Secondly efficiency in terms of performance, with the pos-

sibility of approaching the performance of a dedicated Java processor core, as this is

essentially what the modified core becomes. The advantage being the availability of

the host instruction set for implementing complex operations and low level operating

system code. The disadvantage being the execution unit and register architecture

not being specifically aimed at executing Java byte-codes.

3.2.6 Other Processor Extensions

It is possible to add extra instructions to a processor core to aid with implement-

ing features of the JVM. Such instructions are present in the ARM Jazelle RCT

extension set aimed at improving the performance and density of object code in a

JIT compilation environment. Such extensions could also be used to improve the

efficiency of interpreter loops and byte-code handlers, by supporting natively the

kind of indirect memory accesses and run-time checks necessary. Such an approach

certainly requires less implementation effort, as issues revolving around state and

interrupts generated by new processor modes are avoided. The resulting perfor-

mance and memory savings may not however be as compelling as in more direct

approaches.

CHAPTER 3. ARCHITECTURAL TECHNIQUES 40

3.3 Implementation Strategies

One of the central inspirations for this investigation of hardware support for embed-

ded Java, was the work at The University of Manchester on low power asynchronous

microprocessors [17, 18, 19, 20, 38]. In such self-timed processors aimed at embed-

ded applications, as the pipeline is free of a centralised clock it can operate with

timings natural to the current instruction stream rather than being locked to the

worst case period. This quality was deemed to suit the nature of binary transla-

tion well, and was a key factor in the design and exploration of Java acceleration

hardware presented here. These issues are discussed at length in Chapter 4, when

describing the initial Java support hardware.

Below follows a brief overview of asynchronous circuit styles, used to implement

such designs.

3.3.1 Asynchronous Logic

The majority of computing systems and digital circuits are currently designed using

a synchronous design methodology. This means that the whole circuit or system is

synchronised to a single clock signal. This clock signal is used as a reference for parts

of a circuit which must communicate with each other. This involves some form of

latches at each end of the communication, which assume the incoming signal is ready

to be sampled when the clock signal transitions. Other logic circuitry used to process

the data in some way is placed between latches. The clock period must be long

enough to allow the signal to propagate through the logic between communicating

stages and remain steady long enough to be sampled by the receiving latch. This

fundamental timing constraint must hold true for all communicating stages in a

clocked system.

Lo
gi

c
Co

m
bi

na
to

ria
l

Co
m

bi
na

to
ria

l
Lo

gi
c

Clk

Data Latch Latch Latch

Figure 3.1: A Clocked Pipeline Design.

A clocked pipeline is shown in figure 3.1, showing latches which sample data

CHAPTER 3. ARCHITECTURAL TECHNIQUES 41

on clock edges, connected via combinatorial logic, which processes data as it moves

between stages. Once data has been sampled, the newly sampled data is presented

on the output of the latch, which proceeds through the logic or to the output of the

circuit to be sampled on the subsequent clock edge. Although all clocked systems

are not built using edge triggered latches, this structure is common to all clocked

systems and serves here to demonstrate the advantages and problems with using a

synchronous design methodology.

The reason for using synchronous design methodologies is simplicity. The only

conditions which must be obeyed are the timing constraints at the latch, this means

making sure signals are correct and steady for the setup time and hold time of

the latch around the time of the clock edge. Logic is allowed to glitch so long as

output signals are steady in time for the next clock edge. Synchronous circuits can

be validated by finding the slowest path through all logic gates between each pair

of latches, and making sure that the clock frequency is low enough to meet this

constraint for the worst such path in the system. Once this has been verified, the

circuit will work, assuming the logic performs the correct function, and is fabricated

without error.

Serious problems only really start to arise in synchronous designs when they

become large. With increasingly small circuit features in silicon, clock distribution

becomes difficult as wire delays become larger relative to gate propagation delays.

This phenomenon is called clock skew, as it becomes almost impossible to distribute

a clock signal to all parts of a chip without intolerable phase differences between

the clock signal at different sections of the design. Communication between distant

parts of the chip, where the clock may be skewed must be carefully controlled. For

example, in the DEC Alpha [14] a signal would take 4 clock cycles to cross the

entire chip die. Distributing a fast clock, with low skew also requires lots of careful

buffering, custom layout, and more importantly power. The DEC Alpha also used

1/3 of its huge power budget on distributing the clock signal across the chip. More

recently the Intel Itanium 2 [41, 5] used a novel balanced H-tree for clocking, still

consuming 33% of the 130W system power. This is claimed to be an improvement

over a full grid approach, requiring fewer latching elements.

A further problem in large designs is that of IP reuse and integrating many large

sub-systems on a single chip. Synchronous designs are defined by their clock speed;

once a speed has been defined the design progresses around that, such that the

timing constraints can be met. This leads to partitioning of a problem into blocks

CHAPTER 3. ARCHITECTURAL TECHNIQUES 42

which can complete processing within a clock period. What happens if you plan to

solve a design problem you previously solved, but this time within a system clocked

at a different speed for some reason? If the new clock speed is too low, you may

not achieve necessary throughput with the old design. If your new clock speed is

too high, you can not even use the old design as timing constraints will not be met.

Either you must redesign the sub-system, generate a local clock for each module

and find a sensible way of communicating or use a different design methodology

altogether.

3.3.1.1 Introduction

Asynchronous or self-timed circuit design [8, 44] is any way of building circuits with-

out global synchronisation of components, such as a clock. In order for components

to communicate in a circuit, some level of synchronisation is necessary. Synchroni-

sation only really has to happen at the time communication happens, and only has

to involve the units involved in any particular communication. This means that the

synchronous design methodology involves a lot of potentially unnecessary communi-

cation, leading to power being wasted distributing clock signals to parts of the chip

which may be inactive.

Lo
gi

c
Co

m
bi

na
to

ria
l

Co
m

bi
na

to
ria

l
Lo

gi
c

Data Latch Latch Latch

Control Controller Controller Controller

Figure 3.2: A Self-Timed Pipeline Design.

Figure 3.2 shows a typical self-timed pipeline. Instead of a clock synchronising

all latches, each latch has a latch controller, which communicates locally with data

inputs and outputs. If data is being sent between stages, then a transaction called a

handshake occurs on the control signals, this determines when the data is valid, so

allows correct sampling of data and therefore successful communication without a

global clock. There are different approaches to generating this control information,

the critical point is that each control path is closely related to the data path, allow-

ing for fast communication to occur when logic between stages is fast and for stalling

when a slow path is encountered. In a synchronous design, the whole system would

CHAPTER 3. ARCHITECTURAL TECHNIQUES 43

be clocked at the speed of the worst case slowest transaction, in a self-timed equiva-

lent the system will run as fast as the data and logic will allow. The main overhead

of self-timed design styles, however, is in the need to generate control signals at each

communicating block.

Asynchronous circuits can possibly benefit from the following advantages:

Low Power Firstly there is no huge clock signal and distribution network. Also

there is automatic gating of redundant parts of a self-timed system, only logic

blocks where communication is taking place cause logic to switch. Logic which

is not switching does not consume power, at least in CMOS technology.

Low Peak EMI Synchronous systems produce bursts of electro-magnetic radia-

tion when logic switches, this is always on a clock edge, so large peaks are

generated at multiples of the clocks frequency. In self-timed systems, this is

not so as communication happens when it needs to, and when logic is ready,

resulting in a much lower peak EM output. This is useful where interference

may be an issue.

No Clock Distribution There is not the problem of distributing a global clock

signal the whole way across the chip with low skew. However asynchronous

control circuity is needed which will take up extra area.

High Throughput A self-timed circuit will run as fast as the blocks within it can

communicate and process the data it is given. This means the performance

will tend to that of the average-case. In synchronous designs the whole system

is clocked at the worst case processing time, meaning performance will always

be that of the worst-case behaviour.

Robustness Self-timed circuits will run in the presence of changing voltages, tem-

peratures and fabrication parameters. Performance will however vary accord-

ingly.

Composability Self-timed circuits present a standard interface and are designed

without clocking assumptions, so will integrate with other circuits easily en-

abling simple design re-use.

Security Self-timed circuits can possibly be difficult to attack by analysing power

signatures [54], as there is no clock reference signal to help the attacker. Also

CHAPTER 3. ARCHITECTURAL TECHNIQUES 44

delay-insensitive data encoding can hide data values as the same power will

be consumed transmitting a 0 or a 1.

3.3.2 Self-Timed Communications Protocols

Protocols for communications between logic stages are needed in asynchronous de-

sign, in order to replace the clock as a source of synchronisation. The two main

latch control styles are described below.

3.3.2.1 Bundled-data

X XXXXData DataX XXXXX

Data Valid Data Valid

Req

Ack

Data

Req

Ack

Data

Data

Req
Ack

Sender Receiver

(a)

(b) (c)

Figure 3.3: Bundled Data (Push) Protocol. (a) Latches (b) 4-phase (c) 2-phase

Figure 3.3 (a) depicts an example bundled-data communication channel. The

protocol name refers to the fact that the data is encoded in a standard boolean

fashion and synchronisation information covers the whole of the data bundle. This

means that when a request is detected at the receiver, it is assumed that all of the

data bits are now valid. It is possible to vary the protocols depending on when the

data is valid, and also if the sender or receiver requests a transaction, but these

examples show the main properties of such protocols.

Figure 3.3 (b) shows a 4-phase protocol, where the request (Req) and acknowl-

edge (Ack) signals are level sensitive, so both must return to 0 before the next

handshake can take place. In this handshake the sender issues a request to send

data by asserting the data and raising the Req wire when it will be valid after prop-

agating through the logic between the stages. Once the receiver is ready to receive

CHAPTER 3. ARCHITECTURAL TECHNIQUES 45

some data it waits for Req to be 1 and then samples the data, asserting Ack to

acknowledge this to the sender, who can now de-assert Req and start working on

the next data item. Ack is then de-asserted by the receiver and another transaction

is now free to take place.

Figure 3.3 (c) shows a 2-phase protocol, which follows the same principles as the

4-phase protocol, except that there is no need to return the control signals to zero

between transactions as the logic at each end is now sensitive to transitions rather

than levels. The transaction is complete when the receiver sends a transition on

Ack. Although fewer transitions are needed to communicate, transition signalling

tends to be slow and expensive to implement in technologies such as CMOS.

An issue with bundled-data protocols is that the timing of the request signal

and data is crucial, such that the order of events at the sender must be preserved at

the receiver. This is done by matching delays between wires by inserting buffers to

delay control with the data, care must be taken if data dependent timing (average

case performance) is to be preserved. In order to be more robust and not dependent

on a design’s layout for correctness, the data signals can be used to convey validity,

this is done with delay insensitive codes.

3.3.2.2 Delay Insensitive Codes

Sender Receiver

(a)

Ack

Data (Req)

NULL Data NULL

Data Valid

(b)

Ack

Data

Figure 3.4: Dual Rail Protocol. (a) The communicating blocks. (b) 4 phase protocol.

Figure 3.4 shows a 4-phase delay-insensitive protocol, where the values on the

data wires can be tested to check for validity, hence a request can be detected

from the data. Once acknowledged the data returns to a null state, and then the

CHAPTER 3. ARCHITECTURAL TECHNIQUES 46

next transaction can take place. The implementation of such a protocol requires

redundancy in the data, so that data values and also validity can be detected for

each bit. Delay insensitive (DI) codes are such encodings. The most common DI

codes are 1-of-2 (dual rail) and 1-of-4. Dual rail encodes each data bit on two wires,

raising one of the wires signifies a 1, raising the other signifies a 0 and setting both

to zero is the null state, setting both to 1 is illegal. 1-of-4 signalling uses 4 wires for

two bits of data, raising one of these for each of the four binary states, and all zeros

for null. The problem with such DI circuits is the need for extra decoding logic to

detect if data is complete on the input to a latch, and also there is the overhead of

having the extra wires. 1-of-4 logic potentially consumes less power than dual rail

as only one transition is needed to transmit two bits of data, although both usually

use return to zero coding doubling the number of transitions.

3.4 Summary

To support Java acceleration in an embedded system requires minimal implementa-

tion cost and power consumption, while providing maximum possible acceleration;

the goal being efficiency. Reducing the number of processor cycles taken to execute

Java code provides the required benefit to the user at the same time as potentially

reducing power consumption. In order to reduce power consumption, the best solu-

tion is one with a minimum impact upon the existing embedded system in terms of

unnecessarily replicating functionality.

3.4.1 Candidate Architectures

From the architectures surveyed at the beginning of this chapter, the most effective,

are the memory/cache bridge and instruction decoder processor extensions. The

reason being that less additional hardware is required for such solutions, as they take

advantage of the functionality of an existing embedded processor core. A general

purpose processor core will usually be required in such systems regardless of the Java

execution hardware. Integration of such designs on the same die as the processor

will further reduce power and implementation costs for large scale production runs.

Adding a byte-code decoder stage to an embedded processor pipeline is the most

attractive option, as it provides the tightest integration. Communications latencies

with the rest of the core, mainly concerning branches, are smallest at this point,

giving the best potential performance with minimal hardware costs. Memory bridge

CHAPTER 3. ARCHITECTURAL TECHNIQUES 47

designs are complicated by further integration issues, concerning efficient signalling

of state and management of latencies over the memory interface. Dealing with such

issues not only affects performance, but requires extra logic, further reducing power

efficiency.

The most efficient method of adding hardware support for Java in a wide class

of embedded systems seems to be the extension of existing cores with a native Java

instruction decoder. This approach satisfies the following requirements:

• Lowest additional hardware cost, while retaining existing advantages of host

core, due to optimal integration point.

• Potential for low power consumption, second only to a dedicated Java opti-

mised processor core.

• Potential for high performance, second only to a dedicated Java optimised

processor core.

• Simplicity of integration, no interface complications, no need to develop exten-

sions to JVM to support low level code and retains compatibility with libraries

of existing code for host processor.

The only real drawback of this option is the requirement of modifying the processor

pipeline. Changes are however almost entirely localised to the additional decode

pipeline stage, allowing for relatively simple integration with existing cores. This

was therefore the approach investigated in the remainder of this thesis.

3.4.2 Improving Byte-code Translation

Current embedded processor extension schemes such as Jazelle, are kept simple,

decoding individual byte-codes in sequence, to conserve power and silicon area. A

central aim of the research presented here, is to investigate the operation of processor

extensions for the direct execution of Java byte-code. To the author’s knowledge,

there are no existing publications of such an investigation. It is predicted that further

performance improvements can be demonstrated by applying techniques such as

instruction folding, without overly increasing complexity, all within the framework

of existing embedded processor cores.

CHAPTER 3. ARCHITECTURAL TECHNIQUES 48

3.4.3 Application of Self-Timed Design

Further to the investigation, it is thought that self-timed pipelines provide a perfect

implementation environment for such a processor. The key goal being the exploita-

tion of average case performance, for both processing time and power consumption.

In the simple case, the nature of Java execution will require the generation of many

simple stack management operations, without the need for instruction fetches. In

more elaborate approaches, such as when instruction folding, the potentially time-

consuming nature of applying optimisations can be accommodated without globally

modifying the timing of the pipeline, or complicating the implementation with fur-

ther stages. While stalls in the pipeline could possibly prevent any performance ad-

vantage being seen on this front, the advantage gained by retaining a simple pipeline

structure will potentially be valuable in terms of both design cost and importantly

for embedded systems, power consumption.

3.4.4 Conclusions

The following chapters of this thesis present an investigation into the implementation

and improvement of Java processor extensions through the addition of direct decode

and execution ability to existing RISC processors. This is deemed to be the most

efficient avenue for the acceleration of Java in the memory constrained embedded

application space. While work is based on existing commercial solutions, a full

investigation into the performance of such designs has not been carried out before.

Secondly there seem to be many areas where the execution of byte-codes can be

improved, both through better management of the stack based byte-code operations,

and by taking advantage of self-timed pipelining.

Chapter 4

JASPA

This chapter describes the design of the JASPA the Java Aware Synthesisable

Portable AMULET. JASPA is a modified self-timed ARM processor capable of ac-

celerated Java binary execution. The SPA [38] processor in development within

the AMULET group at the University of Manchester has been used as part of this

project and provides all the processor’s features aside from the Java specific ex-

tensions presented here. Work on this Java enabled architecture was inspired by

preliminary work by Ian Watson, who worked on the design and high level mod-

elling of an asynchronous Java co-processor architecture alongside an existing model

of an AMULET 3 [20] core. The previous accelerator design was described in the

LARD [16] modelling language, which can be used to simulate the activity of asyn-

chronous systems communicating through handshaking channels. The architecture

described here is a prototype system and is mainly intended to explore the design

space, and implementation options, in order to find areas worth researching in order

to build better designs in the future.

4.1 Self-Timed Design

From the outset is was decided that it would be interesting to design an asyn-

chronous Java accelerator/processor, firstly because to our knowledge it had not

been attempted before but also because of the benefits that an asynchronous design

style may bring to the architecture and implementation. The principal benefits of a

self-timed architecture in this instance are simplicity and efficiency. Decoding Java

byte-codes is a data dependent problem. The instruction set has been designed for

software interpretation, different sets of byte-codes require different amounts of work

49

CHAPTER 4. JASPA 50

to be executed. This is in opposition to most modern processor architectures which

have more orthogonal RISC type instruction sets making each cycle of execution as

evenly matched as possible to maximise hardware utilisation and efficiency of code.

In a self-timed system, this is not so important, only parts of the system in use at

any point in time have any side effects. As long as frequently executed instructions

are handled in an efficient manner, performance will be high and power consumption

low. Natural cycle times may vary when interpreting different Java byte-codes in an

accelerator, this will not pose a big problem at the architectural level in a self-timed

system as the cycle time of any unit is not fixed, partitioning of the architecture

would be necessary in a synchronous design.

The following features of asynchronous systems are hoped to be capitalised upon

in the architecture and implementation of the Java accelerator described here. There

is further explanation of these points on page 43. As well as being potential benefits

of self-timed systems, they are also very desirable as architectural features consider-

ing the target market of hardware Java accelerators is almost entirely in embedded

systems:

Average case performance High performance for simple, common byte-codes

will be natural, while more infrequently used complex translation and opti-

misation stages can be incorporated without compromising the simplicity of

the architecture.

Clean, simple and fast Flexibility of the asynchronous pipeline model should al-

low for a simple yet high performance architecture without compromise or

complexity which may be needed in an equivalent synchronous system.

Low power Parts of the architecture not in use will not be activated, so minimal

power will be consumed for any set of input data. Without extra power man-

agement features, power efficiency will naturally be a feature of the system.

Security Depending on the exact implementation technology, security against non-

invasive attacks inherent in asynchronous technology may be available without

extra work on the underlying architecture. One approach to this is to use the

balanced dual-rail logic SPA employs [38].

EMC Good electro-magnetic compliance should be achievable if processing is par-

allelised well. Absence of a common clock will reduce peaks of electro-magnetic

power output.

CHAPTER 4. JASPA 51

Composability Self-timed interfaces between blocks are not dependent on global

timing constraints or specific frequency requirements. The Java decoder mod-

ule will also not be constrained by a maximum latency. These features allow

for a flexible architecture which can be quickly implemented and integrated

with the asynchronous host processor core.

4.2 Architecture Overview

The main architectural qualities needed in the first version of a Java accelerator

were decided to be the following:

1. Small Size

2. Low Power

3. High Efficiency

4. Quickly Implementable

As Java accelerators are targeted at embedded systems, cost and power consumption

are always key factors. People can not charge a lot of money for embedded products

and volumes are large, hence making the architecture simple should allow for a cheap

to produce design. Low power is essential also, many embedded applications requir-

ing high levels of Java performance are battery powered and need to be practical.

Lower power means longer battery life, or physically smaller systems (as battery size

can be reduced) which are both desirable features in personal embedded systems,

such as mobile phones or palm-top computers. The architecture should also provide

a high level of performance for its size, otherwise there would be no advantage over

conventional processors other than the asynchronous implementation strategy, this

would not really be making the most of the research opportunity.

The first version of the architecture is intended as a prototype. An implementa-

tion can be used to reliably show that the idea is a viable one. The initial architecture

must therefore be quickly implementable in order to show architectural features are

possible to achieve and that realistic assumptions have been made about what can

be done in the future. One concern here is that asynchronous designs can typically

be larger than synchronous equivalent due to the extra control circuitry, it must be

seen if this can be balanced out through a simpler architecture and implementation

free of clocking concerns.

CHAPTER 4. JASPA 52

4.2.1 Java Processing

The decision was made that Java acceleration would be implemented as an embed-

ded unit in an existing processor. The accelerator would act as an extra decoder unit

taking much of the work away from a software JVM interpreter, generating native

instruction sequences for the host. One reason for this was that an embedded pro-

cessor was already in development within the group. Secondly, in order to minimise

the size and power consumption of such a unit, tight integration was important.

This reduces the cost of interfacing and provides maximum bandwidth to the Java

decoder. Having an established processor around the system also makes writing

support software, testing and debugging simpler. Finally, this option was seen as

relatively fast to implement, hence hopefully the most insight could be gained from

the experience as more progress would be made this way.

FE
TC

H

DE
CO

DE

EX
EC

UT
E

JA
VA

 D
EC

O
DE

Java Acceleration

Figure 4.1: JASPA Architecture.

The Java decoder unit sits as an extra stage in the pipeline of the processor,

this way it is decoupled from the rest of the processor, and has clean interfaces

requiring minimal modification of the surrounding hardware. The decoder interface

and general architectural structure is shown in Figure 4.1, the decoder unit is seen

between the fetch and ARM decode stages, just as in ARM’s Jazelle system. This

also makes sense as in the future it may be possible to use the same system software

as ARM’s system, if the software-hardware interface they use is adhered to, currently

this is only partially the case.

4.2.2 The Host Processor

The choice of host processor was very limited, as not many asynchronous processors

have been developed across the world, however, luckily within the AMULET group

in Manchester there were two choices. Either the AMULET 3 [20] which had been

CHAPTER 4. JASPA 53

used in Ian Watson’s original model, or the new SPA [38] processor. SPA was chosen,

not only because it was currently in active development, but also because it has a

simple pipeline structure with well defined communications protocols, making the

interfacing of extra Java components straightforward and helping make the effects

of the decoder more transparent to analysis. SPA is entirely synthesised using the

Balsa [6] hardware description language, unlike AMULET 3 which has a full custom

silicon data path design, alongside hand designed standard cell control logic. Using

Balsa would make modifications to the processor easier to implement and allow

rapid construction of the decoder architecture.

SPA is an ARM compatible self-timed microprocessor with a 3 stage pipeline.

Although still in development during the course of this project, it was mature enough

to be used as a basis for the construction of a Java aware embedded processor. Figure

4.2 shows a detailed view of the module structure and pipeline of SPA. Although

this architecture was chosen to be modified with Java extensions, it is thought that

modifying the Java decoder unit for use in other (ARM) processors should not be

a big problem, as most of the interfacing requirements should be constant between

architectures.

An interesting feature of SPA is the fact that it is designed with security as

its primary feature. Security is obtained by synthesising the processor with a spe-

cially developed dual-rail technology mapping. This technology mapping allows the

hardware description written in Balsa to be realised as a dual-rail circuit with ex-

tended security features. This circuit technology uses two wires to transmit a single

bit, one wire signalling a 1 and the other a 0. Combined with modified latch de-

signs and arithmetic components, in the library Balsa uses to generate circuits, this

should make power analysis attacks which are a common smart-card hacking tech-

nique much more difficult, if not impossible. Power analysis attacks look at tiny

variations in power supply consumption to extract information such as protected

encryption keys from hardware. Such variations are minimised in a dual rail system

where ideally the same power is consumed communicating zeros and ones. Further

research in this area is underway [54], exploring the use of asynchronous design styles

as a method to make secure chips. As Java is now being used more and more in

secure applications such as smart-cards, extra motivation is provided for the choice

of SPA as a host processor.

CHAPTER 4. JASPA 54

Un
ra

ve
l

ClassifyClassify
Un

ra
ve

l

Br
an

ch
 D

at
a

Br
an

ch
 C

on
tro

l
Decode

In
st

ru
ct

io
n

Ad
dr

es
s

AR
M

Th
um

b

Merge

Steer

Address Instruction

Copro Control

FIQ

IRQ
Fetch

InstructionsAddress

Execute

Address Data

Copro Data

Co
pr

o
Co

nt
ro

l
Co

pr
o

In
st

ru
ct

io
n

Address Decoded Instruction

Figure 4.2: The SPA Architecture.

CHAPTER 4. JASPA 55

4.3 Integrating Java into SPA

Figure 4.3 shows the whole Java aware JASPA architecture. The Java decoder

module is shown taking the output of the fetch stage in the pipeline. The result

gathered here is either forwarded directly to the ARM decode stage or latched for

processing by the Java decoder depending if the processor has been switched into

Java mode. When in Java mode the processor therefore gains an extra stage in its

pipeline to make translations from Java byte-codes to ARM instruction streams.

The decoder is placed as an extra decode stage in the pipeline in order to leave a

clean interface at the input and output. Java byte-codes arrive in groups of 4 at the

input, as the ARM processor has 32 bit instructions and SPA is single issue. ARM

instructions are needed at the output. If the decoder was placed in parallel with the

ARM and THUMB decoders shown in Figure 4.3, there would be less latency but

the decoder would have then been sensitive to changes made in the SPA execute

unit/ interface and would be less portable between different ARM cores.

4.3.1 ARM Extensions

As some information was available on the ARM Jazelle decoder system [3], it was

decided to make the decoder conform as much as possible to the specifications of

that system, in order that the system be comparable directly, and possibly in the

future be compatible with the Jazelle support software. This decision mainly made

the modifications to the ARM part of the processor more sensible, as designing a

new interface standard to do the same job as Jazelle’s would be fruitless. Only the

following changes were needed in the ARM core:

1. Java bit added in processor status register.

2. bxj instruction added to jump to a block of Java binary code.

3. ARM program counter must be able to store 32 bit byte address in Java mode.

The bx instruction was already present in the instruction set to jump to Thumb

mode (an extra 16 bit instruction set with high code density) from ARM mode, and

also used to return. A small modification therefore allowed entry to Java mode and

the corresponding return instruction was synthesised when an unsupported byte-

code was detected. Adding the Java mode flag to the status register and branch to

Java instruction also follow the same pattern as the Thumb extensions. As SPA is

CHAPTER 4. JASPA 56

Br
an

ch
 D

at
a

Br
an

ch
 C

on
tro

l

Decode

Steer

Address Instruction
Th

um
b

AR
M

Co
pr

o
Co

nt
ro

l
Co

pr
o

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Ad
dr

es
s

Merge

Decoded InstructionAddress

Execute Copro Control
Copro Data

Address Data

FIQ
IRQ

Fetch
Address Instructions

Java Decode

Steer

Merge

Fetch Control

Java UnitAddress Instruction

Figure 4.3: The JASPA Architecture.

CHAPTER 4. JASPA 57

a Thumb capable ARM compatible core adding these modifications was relatively

trivial, although it was necessary to ensure the ARM instruction decoder supported

the bxj instruction even if the Thumb decoder was absent. The instructions function

remained the same; returning the processor to ARM mode. This instruction remains

illegal in ARM mode when the Thumb decoder is not included in the design.

In order for the processor to support Java it must be able to support byte-

addressing, as the start of a block of Java code could be at any byte in memory,

as Java byte-codes are one byte in size and upward. As the ARM architecture has

32 bit instructions it only needs to fetch instructions from 32 bit word boundaries.

Luckily, the ARM program counter register is byte-addressed, so can be set to any

valid Java start address. Unfortunately the fetch behaviour of SPA is word aligned,

so a mechanism for extracting the correct byte-codes is needed. The decoder block

also has to cope with multi-byte byte-codes stretching over word boundaries.

4.3.2 Java Execution

As it was decided to accelerate Java solely through translation of byte-codes, Java

stack operations must be mapped onto the ARM load/store RISC instruction set.

Initially this mapping follows the convention adopted in ARM’s Jazelle system. This

is shown in Figure 4.4.

R0−R3
R4
R5
R6
R7
R8

Register(s)

R9 − R11
R12
R13
R14
R15

Usage
Stack Cache

Points to handler routines

Points to Java constants

Points to Java Stack
Points to Java variables

Points to ARM stack
Java link register
Java program counter

Local Variable 0

For software JVM use
For hardware JVM use

Figure 4.4: The ARM Register Mapping for Java Execution.

The most important feature of this register allocation is the use of registers R0

through to R3 as a stack cache. In order to perform any operation on data in a

RISC architecture such as ARM, the input operands and data must be stored in

the register file. In a stack based architecture such as the JVM the operands must

CHAPTER 4. JASPA 58

be popped from the top of the stack, with the result being pushed to the top of

the stack. In order for convenient rapid execution in this case, the data currently

being processed is stored in these four registers only requiring relatively slow loads

and stores from memory when this small cache overflows or underflows. In this way

single ARM instructions can perform the operation of simple arithmetic byte-codes,

in contrast to JVM software where many ARM instructions would be executed

decoding and handling such simple cases.

Figure 4.5 shows a sequence of four Java byte-codes which performs the Java

statement: local2 = local1 + 3;. This example shows that in such simple se-

quences Java byte-codes can map onto single ARM instructions, as the stack cache

is usually of adequate size for simple statements. This is the ideal case in this

mapping scheme, as no instruction folding is attempted in this version of the Java

decoder.

Java Byte-codes ARM Instructions

iload_1 ldr r3, [r7, +#4]

iconst_3 mov r2, #3

iadd add r3, r2, r3

istore_2 str r3, [r7, +#8]

Figure 4.5: Simple Translation Example.

Currently the JASPA Java decoder unit handles 80 byte-codes directly in hard-

ware generating ARM handler sequences in each case; currently only integer arith-

metic is dealt with. The basic handler routine for each byte-code is usually only one

or two ARM instructions, although these are supplemented by stack cache manage-

ment instructions when spills and fills are needed. Currently, when an unhandled

byte-code is encountered by the decoder, ARM instructions are generated to branch

to the appropriate handler code based on the value in ARM register R5. The cor-

rected program counter for the current byte-code is stored in R12 so the software

can return to the Java code if necessary. Table 4.1 shows the categories of Java

byte-codes alongside a description of the generated ARM handler code.

From Table 4.1, it is obvious to see how little overhead these few byte-codes have

when being translated by the decoder. In the future similar code generation can be

built at little extra cost for other common byte-codes such as stack manipulation,

type conversion and further arithmetic operations on different data types. The rea-

son the above byte-codes were chosen for acceleration, was that they occurred in

CHAPTER 4. JASPA 59

Java Byte-code Group ARM Handler

nop Single cycle

iconst_0..5, fconst_0..2 Single mov instruction

lconst_0..1 Two mov instructions

bipush, sipush Two mov instructions

iload, iload_0..3, fload, fload_0..3 Single ldr instruction

lload, lload_0..3, dload, dload_0..3 Two ldr instructions

aload, aload_0..3 Single ldr instruction

iaload, aaload Single ldr instruction

istore, istore_0..3 Single str instruction

astore, astore_0..3 Single str instruction

iastore, aastore Single str instruction

pop, pop2 No instructions, just state change

iadd, isub, imul, ineg, ishl, ishr Single arithmetic instruction
iushr, iand, ior, ixor, iinc

ifeq,ne,lt,ge,gt,le 4 to 5 instructions

if_icmpeq,ne,lt,ge,gt,le 4 to 5 instructions

if_acmpeq,ne 4 to 5 instructions

Unhandled byte-code 4 instructions, correct PC (1),
calculate handler address (2), bx (1)

Table 4.1: Java to ARM Translation Table.

a small set of test and benchmark programs working with integers and basic Java

language constructs using the SUN Java compiler, the ones implemented in soft-

ware were ones requiring memory allocation and more ambiguous implementation

strategies, for example method invocation with invoke. Further work is still to be

completed on more detailed profiling of Java binaries to assess what is sensible to

implement in future hardware, although other work at Manchester [15] has helped

provide some insight into this area.

4.3.2.1 Caching the Stack

The current hardware translation methods implemented rely on a stack cache to

maintain a working pool of data to operate on, stored in registers R0 to R3. The

problem with including this type of cache is that it implies state. Unless the top

entries of the stack are always in the same order and position, different instructions

must be generated depending on which registers contain the current top stack entries.

Even if the top stack entries were always stored in the same place, there would be

state concerning how full the stack cache was. This type of state can potentially

CHAPTER 4. JASPA 60

cause problems when taking branches and jumping back to ARM mode handler

routines.

As the processor is pipelined, some instructions get fetched by mistake in the

branch shadow as whether a conditional branch is taken is not decided until it gets

to the execute unit. If byte-codes are interpreted as normal in the shadow of a

branch which is taken, then the stack state in the hardware will be modified, but

instructions generated may be ignored by the execute unit causing inconsistencies in

the system. The stack state is also important when returning to ARM mode to deal

with unhandled byte-codes, only the decoder block has details of the stack cache

state, this is not currently accessible in ARM mode. The simple solution here is to

store any cached stack items back to the stack in memory when returning to ARM

mode, or when potentially taking a branch. Luckily this takes a maximum of four

memory cycles and in the case of branches the stack cache is almost always empty

when inside a method, at least with the compilation strategy taken by Sun’s javac

Java compiler.

4.3.2.2 Taking Interrupts

Having stack state also imposes problems when dealing with hardware interrupts

and exceptions. Many instruction sequences generated by the Java decoder can be

multi-cycle. Due to possible stack cache management an interrupt could be taken

at any time during such a sequence. If an interrupt is taken then it is possible that

the stack state may be left inconsistent, if an ARM sequence is not allowed to finish.

One solution is to disable interrupts until an instruction sequence has completed.

This may impose unacceptable latency on interrupt handling making it difficult

or impossible to interface with different hardware, or meet real-time constraints.

Because of this problem, it must be the case that instruction sequences generated

by the Java decoder are restartable. This means that when returning from an

interrupt to a partially completed byte-code sequence, the decoder should realise

this and allow for a restart, restoring a consistent stack cache state.

Although interrupt handling has not been implemented in the Java decoder

architecture yet, it is thought that this can be achieved through checkpoints with

relative ease. If the decoder can record the fact sequence generation has started for

a particular byte-code, this can be checked at each decode cycle, when returning

from an interrupt this problem can then be detected. To circumvent inconsistencies

in state, any potentially non-restartable operations need to be logged, so they can

CHAPTER 4. JASPA 61

be handled correctly on the second pass. This part of the decoder is very dependent

on the precise interrupt mechanism used in the host core.

In JASPA the only issue to deal with regarding returning from interrupts is

ensuring that the correct byte-code is restarted, as the PC is only updated at word

boundaries on each communication with the fetch stage. Internal state is not left

inconsistent through the ARM instruction sequences, as stack-cache updates happen

in a single atomic action with one ARM instruction which can only be aborted, not

interrupted, once issued. In this sense, all instruction sequences generated by the

decoder are restartable.

Figure 4.3 shows that in the SPA architecture interrupts are processed at the

fetch unit. An interrupt causes an ARM ‘instruction’ to be synthesised to save

the return address whilst the fetch unit begins supplying the service routine. A

mechanism is needed to ensure that the saved return address is the byte address of

the next pending byte-code in Java mode. However the Java instruction sequences

are atomic, reducing the state stored in the Java translator; the interrupt is stalled

by the Java decoder until a sequence is complete.

4.3.3 Decoder Block Interface

To interface the Java decoder block into the SPA processor is relatively trivial. The

SPA core does not have a central control unit, unlike many conventional clocked

processors, this allows for a very clean and manageable architecture. This architec-

tural style is perfect for adding easily integrated extensions such as the Java decoder

presented here.

Other than the addition of the extra Java mode and branch instruction dis-

cussed earlier, the only integration requirement at the Java decoder block is to take

the output from the fetch stage of the pipeline and provide output to the execute

stage. As well as data needed for processing at each stage, control information such

as processor mode and the PC at the time of fetch are communicated to avoid a

complex central controller, which would be difficult to design and maintain in an

asynchronous environment, as it could potentially add unnecessary synchronisation

between units reducing the advantages of asynchronous processing.

As the Java decoder was not intended to act as an extra pipeline stage at all

times, the steer unit at the fetch interface is also important. This forwards ARM

mode instructions from the fetch unit directly to the execute unit, only latching

Java mode words for processing by the decoder. This reduces branch latency when

CHAPTER 4. JASPA 62

executing ARM code by a cycle, which is significant as the SPA does not perform

any branch prediction.

4.4 The Java Decoder Unit

Fetch Buffer

St
ac

k
+

Re
gi

st
er

 C
on

tro
l

AR
M

 O
pc

od
e

G
en

er
at

or

O
p

O
p

O
p

Fetch ControlIndex

AR
M

 In
st

ru
ct

io
ns Byte

Address

Mispredict

Branch Control

Bytecode Decode

Instruction

M
UX

Figure 4.6: The Java Decoder Unit.

Figure 4.6 shows a decomposition of the decoder architecture into its main func-

tional component blocks. Each unit communicates through asynchronous channels,

with control originating at the fetch buffer and byte-code decoder. As soon as there

are valid bytes to be processed in the fetch buffer, the decoder starts to generate

appropriate instruction sequences, in a convenient internal format. These sequences

are generated with correct register allocation through the stack and register control

unit. Output is then fed to the ARM execute unit through the opcode generator.

The branch control unit ensures consistency of the stack when possibly interpreting

mispredicted instructions.

4.4.1 Fetch Buffer

The fetch buffer is present to latch a word from the fetch unit when in Java mode,

and then dispatch individual byte-codes to the decode unit. The fetch buffer hides

CHAPTER 4. JASPA 63

the complexities of instruction fetch from the rest of the Java decoder, such as the

fact that multi-byte Java byte-codes may run over word boundaries. The other

main job this unit does is to keep track of where in a word byte-codes were initially

fetched from, this information is needed as the ARM program counter can only be

modified by the fetch stage of the processor pipeline. When fetching bytes not at

the start of a word the PC will be incorrect and will need modification if a return

address needs to be calculated. This situation occurs when jumping to a software

byte-code handler as a bxj branch back to the subsequent byte-code must be issued

at the end of such a routine.

The fetch buffer also has to inform the branch control unit if a branch has been

taken, allowing for false state changes in the decoder to be corrected. Byte-codes in

the shadow of a branch could potentially alter the stack state, even though the ARM

instructions generated will not be executed if a previous branch is taken. The stack

cache state will always be modified on instruction issue from the Java decoder, as

the unit must assume instructions issued will be executed. The fetch buffer detects

that a branch has been taken by looking at a data tag attached to each fetched

word from the fetch unit, called instruction colour, this changes when a branch

has been taken and the fetch unit has jumped to a non-sequential address. The

fetch buffer can therefore only tell if a branch has been taken on word boundaries,

this has a negative effect on branch latency as many byte-codes can be processed

by the decoder in error on a Branch, a better system is really needed in a future

architecture. An approach for branch optimisation is described in Chapter 6.

4.4.2 Stack and Register Control

To implement efficient allocation of registers within the stack cache, a circular buffer

strategy is used. The state of the stack cache is maintained in this unit and is

supplied to the instruction issuing units to provide correct register allocation. As a

circular buffer strategy is used the state stored in this unit is: the position of the top

of the stack (a register between R0 and R3, currently), and the occupancy. These

must be updated accordingly when a stack operation is requested by the decode or

branch stage.

When the stack cache is empty or full, and stack items are required for processing,

extra ARM instructions are needed to manage the spill of fill respectively, as data

processing instructions can only act on registers. The information on spill and fill is

returned to the unit which requested a branch, the decoder unit is then responsible

CHAPTER 4. JASPA 64

for issuing the corrective instruction(s). When this happens, stack items are stored

or taken from the main operand stack in memory. This means that care must be

taken when dealing with software handler routines, as the stack in memory is not

always up to date and stack cache state is not observable externally. Currently this

is dealt with by flushing the stack cache when jumping to a software handler routine,

although the stack cache state could be transferred by storing this state in a register

when needed by software.

The only other concern in the stack and register control unit is that of restor-

ing consistent stack state after mispredicted instructions have passed through the

decoder. A mispredicted instruction in this case is one with incorrect colour mean-

ing it has been fetched in the shadow of a branch; currently SPA only pre-fetches

sequentially. In this event, when stack operations have been issued by the decoder

the internal stack cache state will be modified, although instructions issued to the

ARM decode stage will not be executed. To deal with this the branch control unit

issues stack operations to restore the stack state on a branch mispredict. Currently

the stack cache is emptied on a branch. This decision was made because the stack

cache is usually empty on branches in typical Java code, as the operand stack is not

typically used to continue calculations over branch boundaries.

4.4.3 Byte-code Decoder / Translator

This unit essentially performs the task of an interpreter loop. It takes bytes in a

Java instruction stream one at a time from the fetch buffer, then decodes them such

that instruction groups are identified. If the instruction is not handled then a branch

is taken to an appropriate handler otherwise an instruction sequence is generated to

for execution by the host processor.

The decode stage communicates with the fetch buffer, and is fed bytes and

indexes for PC correction. The decode unit simply requests bytes one at a time, the

fetch buffer taking care of word boundaries. The decoder can only ever request the

next byte in sequence, this may be from a non-sequential address if a branch has

taken place, which is why the branch control unit is required, to handle these cases.

Once the byte has been classified the appropriate instruction sequence is gen-

erated. Communication with the stack and register control unit allows for correct

register indexes to be placed in instructions, correlating with the current stack cache

state. If stack cache spill or fill operations are needed, this information is provided

in the results returned from a request to the stack and register control unit. In such

CHAPTER 4. JASPA 65

an event loads or stores to the memory are generated.

Instructions generated by the byte-code decoder and branch control unit are

stored and transmitted in an internal format. This allows for efficient implementa-

tion and a degree of portability between processors, either of the same architecture

or with differing, but similar instruction sets. In this way, the Java decoder archi-

tecture should be portable to new architectures if necessary in the future.

This decoder structure is a very elegant solution, particularly in a self-timed

processor. As instruction sequences are generated for frequently used byte-codes

without any cycles wasted on decode or register maintenance many times speed up

can be achieved over a software approach. However in this case when instruction

streams are decoded from a single fetched word, many ARM instructions can be

generated without the need for fetches from memory or cache. In an asynchronous

implementation this will allow the remaining pipeline stages in the processor to run

as fast as possible for the given instructions with no memory bottleneck. The fetch

unit’s operation should be absorbed by the time taken to issue multiple ARM in-

structions from the Java decoder. Even if the memory bottleneck is removed by

this operation, it is not as good a situation as it seems, as no instruction folding

takes place in the current architecture, more ARM instructions will be generated

than are strictly necessary. The situation would be worse in a synchronous decoder

as each unnecessary cycle will have a fixed worst case cost. Efficient folding mecha-

nisms presented in Chapter 6 and 7 show how improvements can be made to code

generation.

4.4.4 Branch Control

The branch control unit is required to deal with the effects of pipelining around

branch instructions. If a conditional branch is issued by the decoder unit then

subsequent byte-codes may be executed in error. These instructions in the shadow

of a branch are caused by the fact the processor architecture pre-fetches instructions,

and in the case of the Java decoder the fetch buffer can possibly contain up to three

extra byte-codes in a single fetched word. In SPA, a branch will only be evaluated

at the execute stage in the pipeline, the fetch unit will then be informed about the

program counter change. This means a non-deterministic number of instructions

may pass through in error if a branch is taken, due to an arbitrated choice at the

fetch stage between fetching another sequential word and being interrupted by the

execute stage.

CHAPTER 4. JASPA 66

Branches are detected through a colour tag bundled with each fetched instruction

word. This information is added at the fetch stage and colour change happens when

a branch is taken. The fact a colour change takes place is signalled by the fetch buffer

with a mispredict message, sent with each fetched byte. If this signal is true then the

branch control unit restores stack cache state to that when the branch was taken.

Currently this means the stack cache is reset entirely. The stack cache is flushed, by

issuing ARM memory operations before any branch is issued by the decoder block.

Colour is checked at the execute unit, byte-codes are dispatched from the Java

decoder with the same colour as the fetched word meaning only instructions with

the same colour currently set in the execute unit will be processed, hence branches

are correctly implemented.

Branch latency is a big issue with this system currently as colour change is

only detected on each fetched word. This needs to be improved as tens of ARM

instructions could be issued in error in the event of a mispredicted branch. The

branch will not be detected until all these instructions have been issued to the decode

and execute unit to be simply ignored. In a future version of the architecture a taken

branch signal should really be sent quickly and directly from the execute unit to

branch control to reduce the number of instructions issued in error. This mechanism

was not added as the processor core was in development and modifications needed

for the Java version were kept to a minimum. The current system would however

be reasonable if branch prediction did take place in the fetch unit, although early

forwarding of this information would be desirable, so it could take effect between

word boundaries.

4.4.5 ARM Opcode Generator

This unit translates from the internal opcode format to ARM instruction op-codes.

When the instructions are dispatched, necessary extra data fields such as instruction

colour are added and sent to the ARM processor for decode and execution. This

unit could be re-designed for other processor platforms, or for being embedded at

a different stage in the pipeline, for instance generating decoded ARM instructions

directly for the execute unit.

CHAPTER 4. JASPA 67

4.5 Balsa Implementation

Balsa is a high level synthesis tool and language developed within the AMULET

group at the University of Manchester. The Balsa language allows for the descrip-

tion of hardware which communicates through asynchronous channels. This is high

level in that details of the implementation are abstracted, lower level details are

specified from a number of options when circuits are generated at synthesis time.

The Balsa language is similar to imperative style programming languages such as C

and Ada. Units of hardware are described as procedures; procedures can have local

variable storage and can only communicate with other procedures through hand-

shaking channels. These are a basic primitive of Balsa, along with constructs for

sequential and parallel statement composition.

Balsa is used to synthesise large scale circuits and it works at a high level. It is

not possible to specify very low level behaviour such as signalling protocols. Balsa

has many features which support manageable and re-usable descriptions. Firstly the

fact that hardware is specified at a high level means that hardware is not tied to a

particular technology and can easily be integrated with different hardware styles in

the future through re-synthesis. As channels are the only method of communication

between hardware units, a clean interface must be provided to other units. Finally

hardware can be parametric at compile time with a flexible system of instantia-

tion, allowing even for recursive loops of instantiation making it possible to produce

hardware libraries of highly re-usable and cleanly described system blocks.

4.5.1 Synthesis

Synthesis of the Balsa language is currently achieved through a purely syntax di-

rected translation of the language to a data flow graph of communicating handshake

components [53]. Handshake components are a set of macro-modules which imple-

ment key language functions such as loops, communication, variable storage and

arithmetic. These components are all that is needed to implement a Balsa descrip-

tion, and must be implemented themselves in order to do so. These components

communicate asynchronously through handshaking channels but can be built in any

asynchronous design style. Handshake components can be implemented in schematic

form or using lower level synthesis systems such as Minimalist [37] or Petrify [12].

Some component descriptions must be parametric in order to cope with arbitrary

data widths and other such variables.

CHAPTER 4. JASPA 68

4.6 Implementation Structure

The Balsa implementation of the Java decoder architecture was mainly a problem of

organising communication and storage within the unit’s different components. As

the design is to be asynchronous in implementation communication between blocks of

hardware working in parallel must be explicitly synchronised through a handshaking

channel, there is obviously no clock to do this job as in the synchronous world. In

this sense, variables can not be shared between procedures or parallel blocks of

statements in a description. Arbitration can easily be built in the form of a wrapper

procedure, if such a resource is needed, thus the interface to a shared variable or

resource would be encapsulated by the wrapper using arbitrated communications

channels.

The design was partitioned as in the architectural description, although inter-

facing to the host processor and instantiation of the different procedures was done

in the fetch buffer block. The procedures were described with the Balsa interfaces

shown in Figure 4.7.

As can be seen from Figure 4.7 the implementation only consists of three separate

procedures, this is less than the five blocks shown in the architectural block diagram

in Figure 4.6. The procedures perform the following function:

jumbodecode() acts as the parent module, instantiating the rest of the decoder

unit and interfacing with the host processor. As the interface with the host

processor is established here it made sense to incorporate the fetch buffer to

reduce the interfacing requirements with the rest of the decoder procedures.

jumbo() (Java University of Manchester Byte-code Optimiser) This procedure im-

plements byte-code decode and instruction generation. The stack and register

control is also implemented here as shared procedures local to the jumbo pro-

cedure as they can never be called from parallel blocks of code. Branch control

is also situated here as this function happens only as bytes are fetched from

the fetch buffer, also taking place as part of the decode step.

armgen() This is the ARM opcode generator and converts instructions from the

internal format supplied by the jumbo procedure. The internal instruction for-

mat used is 30 bits in size, and is fully orthogonal, this allows implementation

as a Balsa record type where each component can be constructed or trans-

lated in parallel. If ARM instructions were constructed internally, as well as

CHAPTER 4. JASPA 69

procedure jumbodecode

(

-- the signals from the fetch unit

input i_Pc : address ; -- the instruction address

input i_Mode : spaMode ; -- the mode fetched under

input i_Colour : colour ;

input i_Instr : instruction ; -- the instruction itself

-- the signals to the arm decode unit

output o_Pc : address ; -- the instruction address

output o_Mode : spaMode ; -- the mode fetched under

output o_Colour : colour ;

output o_Instr : instruction -- the instruction itself

) is

...

procedure jumbo (

input bytecode : byte;

input byteindex : 2 bits; --offset relative to ARM PC

input mispredict : bit;

output status : jumbo_state;

output arm_output : instruction

) is

...

procedure armgen (

input operation : armgen_type;

output instruction : instruction

) is

...

Figure 4.7: The Main Balsa Interfaces for Decoder.

CHAPTER 4. JASPA 70

reducing portability, construction would be much more difficult as different in-

struction types have different layouts making sharing of hardware at different

points in the decoder (jumbo) block more difficult.

4.6.1 Communication and Integration

The jumbodecode procedure has the same interface as the SPA decode stage at both

its inputs and outputs. This means that the procedure can be inserted into the SPA

code at the top level when the pipeline is instantiated. Only minor modifications

to the SPA were needed to facilitate Java acceleration. Balsa enabled many of

these changes to be incorporated very efficiently, the abstract typing feature was

particularly useful, for instance the Java mode could be added by changing the type

for processor mode, this involved adding an extra bit, careful checks were needed

on the usage of this information to make sure usage was consistent throughout the

design though. Adding the bxj branch to Java instruction was the most work, but

followed the template provided in the bx branch to Thumb instruction previously

implemented by the SPA team.

The jumbo procedure requests single bytes at a time from the bytecode input

channel, a byte index is supplied in parallel along with a mispredicted branch flag.

The output of this unit is ARM instructions generated through the armgen unit

instantiated internally, and status on the current state of decoding. This instruction

passes out through the jumbodecode procedure to the host processor, the status

information being used to determine whether another byte-code is required, an ARM

instruction has been generated, or both. This instruction issue interface is quite

subtle and required many iterations to achieve a satisfactory, working result.

armgen simply takes an internal instruction word on input operation and gener-

ates an ARM instruction, based on the instruction type on output channel instruction.

This unit is connected directly back to the output of jumbo, the parent procedure.

This procedure could also have been instantiated within the top level jumbodecode

procedure, taking an internal format instruction from jumbo. The internal instruc-

tion format was designed to simplify the generation of ARM instructions in the

decoder module and secondly to simplify extension of the decoder or the switch to

another host processor.

CHAPTER 4. JASPA 71

4.7 Debug and Test Software

To test the Java decoder implementation, Balsa was used to create LARD output.

LARD and the LARD2C simulation environments were used to simulate initially

just the Java decoder within a test harness written in Balsa, and as the design

progressed the entire JASPA core. As the simulation tools are still in development

speed increases of an order of magnitude took place during development, making

debugging much more practical at around 5 to 10 byte-codes being processed per

second. Further speed increases were seen with a new simulator running with C

implementations of handshake components being developed in the group, with an

event driven scheduler optimised for asynchronous systems [28].

The software used to run a Java environment on the processor design was written

by Ian Watson for the previously designed LARD Java decoder. Slight modifications

were necessary for correct operation. This software takes a single static Java class file

and produces ARM assembler format containing the byte-code and data associated

with that class. The standard ARM assembler is used to assemble and link this code

to a start-up routine and the software handler routines needed for non-hardware

byte-codes. The resulting binary is then loaded into a memory model currently

written as a part of a LARD test harness for SPA and now JASPA.

4.8 Circuit Implementation

JASPA has been synthesised with Balsa as a single-rail bundled data circuit and

dual-rail QDI implementation. Balsa generates a gate-level Verilog netlist for simu-

lation, which has been successfully utilised to verify the design and implementation.

Although gate-level simulations do not give a totally accurate picture of how a sil-

icon implementation would perform, they can be used to find problem areas in the

design such as long critical paths of gates. Further work is needed in this area

to establish problems with the current implementation, and identify good ways of

expressing different primitives in Balsa.

As well as gate level simulation and implementation, a dual-rail design, but just

of the decoder block, has been taken through place and route to silicon layout. This

layout has been through an RC extraction process to find physical resistance and

capacitance characteristics of the implementation and this information can be used

to make the best guess at how a real implementation on a given technology will

CHAPTER 4. JASPA 72

perform. Simulation results are given in the following section.

As far as circuit area is concerned the current design synthesises to 45,000 transis-

tors in single-rail technology, and around 90,000 using a dual-rail technology map-

ping. These results use a cell library developed within the AMULET group in

Manchester targeting ST Microelectronics’ 0.18 micron process technology. A plot

of the layout is shown in Figure 4.8.

Figure 4.8: JASPA Standard Cell Layout.

4.9 Simulation Results

The following section presents a breakdown of where performance increases are

achieved by the hardware, in comparison to a minimal threaded software interpreter.

Such an embedded interpreter has similar memory requirements to the hardware so-

lution, but with additional handler code for each byte-code handled in hardware by

JASPA. This analysis is broken down into two sections: one dealing with a reduction

in RISC execution cycles, and the second looking at benefits gained through the use

of an elastic, self-timed, pipeline.

A more detailed breakdown of performance is given in Chapters 6 and 7 com-

paring the simple byte-code translation scheme with more optimised approaches.

CHAPTER 4. JASPA 73

4.9.1 Code Generation

When executing byte-codes in hardware stack management is handled internally. A

software interpreter must either manage such a cache with extra state maintaining

code, or use a stack stored in memory. Further to this, RISC code dispatched by

the Java decoder does not have to be fetched from memory, hence will not pollute

the cache and reduces memory traffic.

Figure 4.9 (from [10]), shows comparative performance in terms of the number

of RISC executions needed for a selection of byte-codes, ranging from the most

efficient, to the most problematic (goto). The software routines use main memory for

the operand stack, removing problems with state management. Instruction counts

shown in black are for best case timings, while the grey bars indicate the worst

case timing. The hardware timings often have poor worst case timings as there is

the possibility of stack cache spill and fill. The only case where this is worse than

software is for goto, when the stack cache must be flushed; this involves up to four

memory stores.

In reality, worst case timings are very rarely incurred. Importantly, the Sun Java

compiler tends to minimise operand stack depth for a given expression. In common

examples this will fit in the stack cache of four registers, or will require few extra

memory operations. As far as the goto byte-code is concerned, using Sun’s compiler

we have never experienced the need for a stack cache flush as it has always been

emptied by preceding code.

8
7
6
5
4
3
2
1
0 ba c d e

RI
SC

 In
st

ru
ct

io
ns

 Is
su

ed

a=iconst_x b=istore c=integer_op (add...) d=iinc e=goto

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

Figure 4.9: Code Generation Comparison.

A summary of overall performance, for the previous byte-codes, including the

handler dispatch overhead is shown in Figure 4.10. In practice instruction sequences

CHAPTER 4. JASPA 74

generated while executing simple arithmetic benchmarks resulted in typically a fac-

tor of 4 speed increase over interpretation. Including the effects of memory accesses

a factor 7 improvement has been observed with some Java code.

8
7
6
5
4
3
2
1
0 ba c d e

RI
SC

 In
st

ru
ct

io
ns

 Is
su

ed
a=iconst_x b=istore c=integer_op (add...) d=iinc e=goto

9
10

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

Figure 4.10: Cumulative Difference.

Figure 4.10 shows a big difference in instructions issued between the implemen-

tations. This is because the interpreter loop must fetch the byte-code from memory

in order to decode it and then branch to the correct handler routine; these branches

may introduce additional overheads, although it is possible to append the next in-

struction fetch to every handler, which removes one branch.

4.9.2 Timings

The elastic pipeline latency inherent in the self-timed design allows simple opera-

tions to complete faster than more complex ones. When little processing is required

to translate a byte-code then the time taken to produce the associated RISC in-

structions will be reduced. The main example observed during simulation was the

difference between operations requiring many operand stack operations and those

which do not. A difference is also experienced between when a fetch is required to

the word buffer, and when bytes are already available. The best possible timing for

each byte-code is achieved therefore resulting in overall average case performance.

Even with this simple scheme there is a big difference between fast and slow trans-

lations, this would make a synchronous design either more complicated or globally

slower.

Simulation results for the self-timed Java decoder were run using Nanosim, on

a Spice netlist extracted from silicon layout in Cadence. The Java decoder was

CHAPTER 4. JASPA 75

simulated in isolation to remove bottlenecks present in SPA and discover the best

possible performance of the unit.

Averaged timings over 100 repeated byte-code decode cycles showed a variation

in latency between 30ns and 99ns per issued RISC instruction. Repeated loads,

stores and arithmetic operations were used to time basic operations. Timing is

apparently mainly dependent on the stack management requirements of each byte-

code. Fetch latency seemingly has little impact, but was hard to test in isolation,

and may have more effect when simulated with the SPA design. When RISC output

was part of a sequence, latency hit the lower bound of 30ns, along with byte-codes

such as iconst_x (34ns). Surprisingly, simple byte-codes such as iadd took up to

99ns as usually a single RISC operation was issued, but after 3 internal stack cache

checks. The decision to implement serial stack operations was made to reduce gate

count and improve power figures in the average case. A parallel implementation

may improve performance in some cases although the complexity of such a unit

would potentially be too great a cost due to the large state space involved in up to

3 simultaneous stack operations. The parallel approach may be the only option in

a clocked design.

Unfortunately the Java decoder unit’s absolute performance was very slow, con-

sidering the 0.18 micron process used. However, it is faster than the SPA ARM

execute unit, and would suit usage in a secure smart card environment. Part of the

performance problem is related to the secure circuit style used, and mostly down to

the wholly non-hierarchical one pass place and route flow. No time could be afforded

for timing optimisation at the layout stage. Importantly it was shown that simple

byte-codes could produce RISC output 3 times faster than in more demanding cases.

4.10 Summary

The architecture presented in this chapter was designed with the aim of being simple,

efficient and simple to build. The result although not performing any complex

optimisation strategies is designed to be effective at accelerating Java by a factor of

4 and upward over a software interpreter. The cost of this speed up will be quite

minimal in terms of design effort and actual hardware, as a minimal approach has

been taken with the aim of assessing the impact of different features in the design.

Although simple, extension of the architecture is well provided for with the modular

approach taken in the design.

CHAPTER 4. JASPA 76

The self-timed nature of the architecture is hoped to provide additional increases

in performance while not causing any complications in the architecture. Average

case execution times provide the performance, but also due to simplicity and asyn-

chronous circuit operation low power, good EMC and security should also be key

beneficial features. More complex decoders described in Chapters 6 and 7 take

further advantage of self-timed design to allow infrequent but more complex optimi-

sation steps to happen as part of the decoder’s operation, without having a negative

effect on the clean design and cycle time of simpler operations. The fact the decoder

can issue instructions for Java through the processor with reduced memory accesses

possibly very rapidly is also an attractive feature.

The JASPA processor implementation has been presented detailing the small

and effective Java decoder unit acting as an extra pipeline stage feeding instruc-

tion sequences to the host SPA, ARM compatible host architecture. Design goals

and philosophy have been described, allowing for the design and construction of

a prototype system. The translation system and host processor architecture have

been described. Advantages over software interpretation have been made clear,

along with a detailed description of the decoder architecture. Self-timed design and

implementation have been taken into account and have been put across as an im-

portant feature of the architecture, resulting in good performance, simplicity and

implementability.

The reason for implementing the architecture is to show the advantages of the

self-timed design. Previously a similar system had been modelled in LARD [16]

by Ian Watson; LARD however only models the behavioural characteristics of such

a design. In order to see how the system would perform an implementation can

be simulated at many different levels, all the way down to layout with capacitance

effects. This option was much more accurate than writing a simulator or model, al-

though presented problems with analysing performance in detail. Balsa - a high level

synthesis system for asynchronous circuits made the implementation possible. Balsa

provides a rapid development route through a well structured high level language,

simulator and test interface. The problem however being the difficulty assessing the

detail in timing of the design, requiring an implementation down to silicon layout

(or at least gate level), in order to extract timing information.

CHAPTER 4. JASPA 77

Basis for Further Work

While much has been learnt from the hardware implementation presented, unfortu-

nately describing hardware for future designs, would consume an excessive amount

of time and resources. This realisation lead to the construction of a simulation

environment, described in chapter 5, designed explicitly to profile the execution of

such processor extensions. This approach allows for a wide variety of parameters to

be varied across the architecture without committing to time consuming low level

designs. Flexibility in the timing of different operations can also be experimented

with.

It is unclear from this work, whether in the 15 general purpose ARM registers

will be enough to explore more efficient mapping strategies, incorporating forms of

instruction folding. One of the aims of this work is to look at sequences of byte-codes

to determine an optimised strategy for execution. This issue is discussed further in

Chapters 6 and 7.

4.10.1 Conclusions

A Balsa implementation of the Java decoder architecture has been completed, this

has been implemented along side the SPA ARM core to form JASPA [10]. Although

further analysis is needed to assess performance issues, the design, implementation

and integration took only 6 to 8 months to complete showing a positive side to using

Balsa as an implementation strategy. Potential problems with branch latency have

been identified but on balance the design has been successful in meeting its aims

of simplicity, efficiency and being quickly implementable. Future work will assess

the detail behind the performance levels achieved, although there remains much

scope for improvement even in this implementation as more is learnt through the

experience. As it stands the implementation here is a good framework for future

decoders employing novel techniques for efficient embedded Java processing.

Chapter 5

Architectural Simulation

Detailed simulation, data collection and analysis is needed to understand how differ-

ent architectures will perform when executing Java code. It is not necessarily even

sufficient to be able to run benchmark programs with approximate timing informa-

tion, as this will not always give insight into where the architecture is succeeding or

failing.

In order to design an appropriate, efficient scheme for supporting the execution

of Java code in a RISC pipeline it was decided that a higher level of abstraction

was needed to allow rapid prototyping of designs. When implementing the Java

decoder described in chapter 4 a large proportion of time was spent dealing with

low level implementation issues, rather than on the architectural details necessary

for improving performance. If behavioural modelling was used, rather than imple-

menting the system down to the gate level using a synthesis too,l many more design

alternatives could be constructed. As well as more rapid prototyping, simulation

performance would be much greater as fewer low level, implementation dependent,

communications would need to be modelled.

Higher level simulation, while providing a means to evaluate new architectures,

must also make valid assumptions about issues which will come into play at the

implementation level. This is especially important with regards to system timing,

assigning realistic values based on correct assumptions or real data.

The circuit level implementation of JASPA provides concrete timing information

based on characterised timings of physical silicon gates. It is important to realise

that no information on system performance was available until the circuit had been

synthesised. This makes the design process very difficult, and has also proved a

problem in the design of the host SPA processor. Modelling at a higher level allows

78

CHAPTER 5. ARCHITECTURAL SIMULATION 79

for performance information to be available at all points in the systems design, even

if this information is only based on assumptions, it can be refined over time with ad-

ditional experiments and characterisation against implemented circuits. Moreover,

integrated, structured systems of data collection and analysis can be embedded in

higher level languages used for behavioural simulation, giving additional feedback

on how the design will perform.

Higher level languages provide the additional advantage of having thorough typ-

ing systems, and can provide for extension of types, or even object orientated mod-

elling of system components. These features greatly control the problems associated

with managing complexity during implementation. A further benefit of using such

language features is the extent to which designs can then be made configurable for

the evaluation of variations in architecture. Radically different alternative designs

for sections of the architecture can also be cleanly instantiated and tested under a

fixed framework with minimal interfacing effort.

The architectural level simulator, implemented for evaluation of hardware sup-

port for Java, was eventually constructed in the Ada language. The reasons for this

were primarily due to the features for programming in the large: modules, tasks and

data types. Importantly run-time performance and communication and scheduling

of parallel threads allowed for an efficient timed model of the asynchronous proces-

sor pipeline required. A more detailed description of why this approach was chosen

over using more established hardware description languages, or more recent system

level modelling tools is given in section 5.3 of this chapter.

5.0.2 Chapter Overview

This Chapter provides the rationale behind the construction of an architectural level

simulation environment. The following sections describe the detail behind choosing

this approach and an implementation strategy.

5.0.2.1 Requirements

This section gives a detailed description of the requirements of the simulation system.

Many of these requirements justify the construction of the simulator. The two

main areas of focus are: the ability to gather conclusive results about candidate

architectures, in terms of timing and implementation/performance issues.

CHAPTER 5. ARCHITECTURAL SIMULATION 80

5.0.2.2 Implementation Options

Many options were available with respect to the implementation of the simulation

environment, each able to provide the basic requirements, each with different positive

and negative qualities. This section describes alternative approaches and how Ada

was chosen to implement the system as a software system level model.

5.0.2.3 Simulation System

This section describes the detailed working of the simulation system used to eval-

uate embedded Java processor pipelines. A simplified event driven simulation is

described, designed to model a processor pipeline using Ada tasks, without the need

for an explicit event queue. An explanation is given of how the system meets the

requirements set out at the start of the chapter.

5.0.2.4 System Performance

An analysis of run-time performance of the simulation engine is undertaken. This

shows the performance of the simulator on a variety of computer platforms. Particu-

lar attention is payed to the optimisations incorporated into the simulator including

its inherent multi-threaded design.

5.0.2.5 Summary

Summarises the chapter, making conclusions about the benefits of the resulting

simulation system.

5.1 Requirements

In order to compare different approaches to the acceleration of Java execution within

a processor pipeline, an efficient approach to the problem was required. Many lessons

were learnt from the implementation of a JASPA. Not only were ideas generated for

the improvement of decoder design, but many issues were raised at the implemen-

tation and evaluation level. There were several key concerns at this stage:

Implementation time: The combination of using the Balsa synthesis system and

the pre-existing SPA core brought about the comparatively rapid development

of an asynchronous Java enabled processor. Unfortunately, a large proportion

CHAPTER 5. ARCHITECTURAL SIMULATION 81

of the development time was spent dealing with low level hardware design

issues, resulting in a rather fixed and rigid implementation. As almost all of

the planned improvements were at the code translation and register allocation

level, a more efficient system of evaluation was required. Flexibility and a

reduction in implementation time is of great importance.

Implementation quality: One of the drawbacks with the JASPA implementation

was the absolute performance, being very slow (around 10 to 20MHz cycle

rate). The Java part of the pipeline was being held back by the surrounding

RISC processor. Making modifications to this would have been prohibitive

in terms of time. Taking a higher level approach would remove this type of

problem, as control would be gained over the whole architecture. This would

allow different scenarios concerning other parts of the processor pipeline to be

tested, at a relatively small cost.

Simulation performance: The time taken to gather simulation results from lay-

out or even gate level simulations was costly when developing JASPA. This

situation had to be improved, in order to simulate representative benchmarks,

and allow differences to be seen between alternative architectures.

Fairness of comparison: In order to compare different Java decoders, a fair sys-

tem of testing was required. This would have been difficult to achieve when

designing each alternative in Balsa, as changes in implementation structure can

alter performance figures significantly. Additional variables such as variation

in layout provide further room for inaccuracy. When evaluating new decod-

ing styles, it is important not to introduce artificial barriers to performance.

A higher level model would factor out some of the low level implementation

differences which might well alter performance depending on time spent at

the implementation stage of each design. It is important to impose realistic

assumptions on the high level models to retain fairness, these assumptions can

at least be made with transparency.

5.1.1 System Level Simulation

After considering the issues explained above, the primary requirement of the sim-

ulation system is run-time performance. Work on improving the Java acceleration

system will be without purpose if it is not possible to run sufficient code to make

CHAPTER 5. ARCHITECTURAL SIMULATION 82

conclusions about different architectures strengths and weaknesses. There must

however be enough detail modelled to allow for the results to be useful and valid.

Secondary therefore to the performance concern, but also of high priority, is

modelling accuracy. Timing must be modelled at an arbitrary level of detail, as

required by each design. A level of configuration will be required to support the

analysis and evaluation of any assumptions made about timing. Simply counting

the number of RISC instructions generated for a particular Java program run is not

sufficient. It is a key requirement of the simulator to provide the ability to model the

processor pipeline as a synchronous, clocked system, and also as an asynchronous,

self-timed design. This must be tested as it is a key idea behind all of the improved

Java decoders described in this thesis.

The two primary issues identified above are related to the run-time simulation

engine. The simulation environment must also cater for the rapid implementation

of the Java enabled processor pipeline model, and the different decoder alternatives.

Modelling at a higher level will provide a large advantage over having to describe

low level implementation details as with JASPA.

Other implementation requirements are practical concerns, and relate to the

effort required to implement the final system. The primary point here is implemen-

tation time must be minimised by choosing an implementation strategy which can

cope well with the functional requirements of the simulator.

5.1.2 Requirement Summary

5.1.2.1 Performance

The simulation environment must be capable of allowing the execution of the order of

millions of Java byte-codes as part of the analysis of different architectures. The aim

being the realistic evaluation of each system, without imposing restrictive limitations

on what code can be run on the processor models.

5.1.2.2 System Level Modelling

The simulation environment must be able to model synchronous and asynchronous

processor pipelines, with delays associated with specific operations within each

pipeline stage. This will allow models to reflect the behaviour of circuit level imple-

mentations at a reasonable level of accuracy. Delays from existing implementations

CHAPTER 5. ARCHITECTURAL SIMULATION 83

such as JASPA or Amulet 3 could be used to calibrate such models to provide further

grounding in reality.

5.1.2.3 Configurability of Delays

The delays within different system level models should be configurable. With the

ability to customise delays for different operations within pipeline stages, many

important scenarios can be simulated. The impact of different timing assumptions

can be tested and quantified for transparency of results. This feature should also

allow for a degree of calibration against real circuits, such as JASPA, or existing

processor pipelines.

5.1.2.4 Pipeline timing

The simulation system must be able to model both clocked and self-timed pipelines

while maximising component re-use. This relates to the previous point about delays.

If delays can be controlled enough at each pipeline stage, synchronous versions of

self-timed models should be simple to synthesise. This would be done by adding a

fixed worst case delay and removing all data dependent delays within the component.

5.1.2.5 Configurability of Components

It is important for the simulated processor pipeline to be configurable where re-

quired. This will allow for evaluation of performance across a range of implementa-

tion options. Examples include the use of parameterisable buffer sizes, bus widths

and the size of the register file.

5.1.2.6 Profiling

One of the most important requirements of the simulation environment and pipeline

models, is its ability to be profiled in detail. The design and simulation of novel Java

aware processor pipelines will only be purposeful if conclusions can be made about

how the systems perform. The system should allow for the profiling of different

instructions and sequences of instructions for the duration of a program’s execution.

This will facilitate the analysis of how proposed systems are performing in a realistic

environment, while providing a detailed breakdown of positive and negative qualities

of an architecture.

CHAPTER 5. ARCHITECTURAL SIMULATION 84

5.2 Implementation options

An important practical decision regarding the simulation system had to be made,

regarding the implementation environment. This decision goes hand in hand with

the simulation techniques used to model the proposed new architectures. There

are many environments and languages suitable for the modelling the type of hard-

ware under consideration in this thesis. The main tradeoff is between providing the

required level of modelling detail in terms of timing and signalling, while giving flex-

ibility, simulation speed and simplicity. The requirements detailed are already above

the low level modelling usually associated with traditional hardware description lan-

guages. Modelling at a higher level in custom software is an accepted alternative

and could be a good choice here.

Traditionally, in synchronous hardware design, HDL’s have been used to design

behavioural, and synthesisable register transfer level designs. Behavioural level code

simulating much faster, and allowing rapid development without concern for encod-

ing of all state and sequencing in hardware. Both approaches require a full event

driven simulation model. Taking a higher level approach has become more common

in processor design, as people need to run as much code as possible on new designs

in order to evaluate possible improvements on realistic application code. Design of

the software tool set and application code can also begin before hardware is avail-

able. This works well in the synchronous world as cycle by cycle simulations can be

constructed in many languages, without the need for complex simulation models.

Indeed models can be constructed to an arbitrary level of detail, a good example is

the AMD K6-2 microprocessor, modelled and formally verified using C during its

development [43]. One problem with modelling in software is the lack of arbitrary

precision types often useful when modelling large registers, busses and signal values.

The remainder of this section describes alternatives considered for implementa-

tion of the simulation environment, used for the evaluation of Java aware processor

architectures in the remainder of this thesis. A brief description of each alternative

is given, along with rationale for its usage. Finally the reasoning behind the use of

Ada for the construction of the final solution is given.

CHAPTER 5. ARCHITECTURAL SIMULATION 85

5.2.1 Hardware Description Languages

5.2.1.1 VHDL

VHDL is a high level HDL, based on the Ada language, originating from the US

military [25]. This language facilitates the description of arbitrary hardware, not

restricted to clocked models, allowing for sensitivity of parallel units of hardware

to changes in signals on inputs. At its lowest level, it allows for the description of

networks of components, to be instanced in a netlist. VHDL has the advantage of

allowing declaration of types to simplify higher level modelling and improve code

clarity.

5.2.1.2 Verilog

Verilog [26], provides similar features to VHDL, with a more minimal C like syntax.

Verilog does not have as complete a type system as VHDL, although it is being

extended with features such as interfaces in the upcoming SystemVerilog standard

[1]. SystemVerilog was not known about at the time the choice was made, and tool

support is minimal even at the end of the project.

5.2.1.3 SystemC

SystemC [27] is an attempt at providing system level modelling and high perfor-

mance simulation using standard compilers and development software. The advan-

tage being that systems can be modelled at a very high level using existing soft-

ware libraries and achieve rapid simulation performance across multiple computing

platforms. SystemC provides a simulation kernel library, provided as source code,

which allows for management of time and parallelism in simulation models. Wave-

form dumping, arbitrary precision logic and arithmetic types and other features of

typical Verilog and VHDL environments are available, while supporting high level

features for programming in the large through C++. SystemC has evolved during

the course of this project to a level where it would now be considered for the imple-

mentation. Version 2.1 brings abstract channels, simplified tasking and more object

orientated design features making it an ideal choice.

There are problems with code clarity (mainly in thread control and synchroni-

sation, still present in later versions) and simulation kernel performance. SystemC

is still more suited for cycle based synchronous models, where it would bring the

benefit of a standard approach to the problem, where in the past bespoke solutions

CHAPTER 5. ARCHITECTURAL SIMULATION 86

were the norm. EDA software can also support integration of such models into lower

level tool flows.

5.2.1.4 LARD

Lard [16, 21] is a language and simulation kernel designed specifically for modelling

asynchronous circuits and systems. While providing the abstractions necessary for

investigating such designs as Amulet3 [20], clarity, modularity and support libraries

are limited. During investigation, support was being withdrawn and simulation

performance was very poor compared to the alternative choices.

5.2.1.5 Balsa

While Balsa [6, 7] was used to implement the JASPA hardware, it could also be

used to test alternative configurations and improvements to the architecture. In

order to do this, some higher level of timing would be needed, as synthesis and

gate level simulation would add many variables and cost dearly in time. The main

problem here was the performance of the simulator at the time of development. The

simulations ran through LARD, which while improving only provided under ten

simulated instructions per second on the SPA/JASPA test suite. During the course

of this research much work has been done to improve the situation [29, 28], making

it a much better system for this kind of design/prototyping activity.

5.2.2 Software Models and Programming Languages

In order to model micro-architectural features in software, a simulation environment

must be constructed. There are many approaches to this problem and different

compromises can be made depending on the level of timing detail required. When

modelling clocked units only, a cycle based model can be made, assuming no com-

munication between clock events. In such a model, each modelled unit can be run

in turn each cycle. Inter-module communication is biffered between clock events.

When modelling asynchronous modules, some form of discrete event simulation en-

gine is needed.

The main languages considered for building a software model were the following:

CHAPTER 5. ARCHITECTURAL SIMULATION 87

5.2.2.1 C

Low level language, providing a very minimal run-time environment, suitable for

maximum speed. Does not support function overloading or object orientated pro-

gramming directly. Generally complex to work with required features such as thread-

ing and large (over 64 bit) integer types.

5.2.2.2 C++

Similar high efficiency to C, but with object orientated features enabling better

clarity and extensibility of models. SystemC is an example of how a generalised

modelling environment can be built to exploit the flexibility of such a language.

5.2.2.3 Java

Java [32] could equally be used to model hardware, allowing extensibility through

its features for object orientated programming. Threading is handled in a standard

way allowing transparent portability between platforms. As with the other lan-

guages mentioned so far, abstractions for asynchronous communications channels

and synchronisation between modelled units would have to be built from existing

basic primitives in the language.

5.2.2.4 Ada

As with other high level languages considered, Ada [39] provides structures for data

abstraction. Also as with C++ and Java it supports generic programming and

object orientation. The advantage Ada brings is its mature support for threading,

or tasking in Ada terminology. Support for messaging and remote procedure calls

allow for a good mapping to asynchronous communication channels, used in the

hardware being modelled here. Especially of interest is the rendezvous [24] which

has similar behaviour to that of a four phase handshake.

5.2.3 Implementation

The decision was made to use Ada to make a high level software model of the Java

processor pipelines being considered in this thesis. In terms of the requirements set

out it was the best match for the following reasons:

CHAPTER 5. ARCHITECTURAL SIMULATION 88

• Performance: Similar performance to other compiled languages such as C can

be achieved with Ada, although it has the additional overhead of run-time

checks associated with ranges and tagged types. Combined with an appropri-

ate simulation model, Ada can provide good implementation performance.

• System Modelling: Ada provides language features such as synchronised chan-

nels and entries which can be used to directly model system level communica-

tions behaviour.

• Pipeline Timing: Simulation time can be modelled centrally in a distributed

fashion, abstracted in appropriate data structures, allowing modelling of ab-

stract synchronous and asynchronous designs.

• Delay Configuration: High level configuration can be read from file and en-

capsulated in abstracted form.

• Configurability and Commonality: Tagged, extensible types, tasks and mod-

ules allow for a flexible implementation, allowing re-use between different ar-

chitectural models.

• Profiling: Profiling can be integrated into the simulation system. The system

can be abstracted away from the simulation models in a higher level module.

5.3 Simulation System

The following section describes the structure and implementation of the simulation

system built to model Java enabled processor pipelines. The aim being to find a

good timing model, while achieving improved performance over a full blown discrete

event simulation, which would be more sensibly constructed in an existing HDL. Key

to the approach taken is the simplification of modelling relatively short processor

pipeline structures. Additional benefits of using the language features of Ada, in

the modelling process, are discussed.

5.3.1 Modelling Problem

Figure 5.1 shows the main components of an example high-level processor pipeline

model. The granularity of the model is the pipeline stage, which allows the parallel

behaviour of modern processors to be captured simply, with each pipeline stage

CHAPTER 5. ARCHITECTURAL SIMULATION 89

Figure 5.1: Example Processor Pipeline Model.

being modelled as a separate process, or thread. Each pipeline stage will process

the incoming data, and when complete, pass the results on to the next stage, so all

pipeline stages are processing data in parallel. Note that this example is illustrative

and an actual system would probably have many more forwarding paths.

As far as timing is concerned, in a clocked design, all units will accept com-

munication on the clock edge, in a synchronised fashion. In a self-timed system,

pipeline stages will forward processed data after the time taken for each individual

input data pattern, which may vary between cycles. The data will be read by the

receiving unit, when it is has finished processing its data. In the self-timed model

an acknowledge signal is required to tell the sender when the target has read the

data.

The black arrows between pipeline stages in Figure 5.1 show data flow. An

important detail to be noted is that the majority of communications are between

neighbouring pipeline stages, in a single direction. These pipeline stages are accept-

ing a single input from the previous stage. In a self-timed system, this allows for

a simplified modelling approach. The main points of interest are where a pipeline

has a choice between possible inputs. Where there is a choice, and both inputs may

not necessarily arrive together, arbitration or synchronisation is usually necessary.

This is an issue in both the approach to simulation and timing and also in any im-

plementation of the pipeline. Timing is the most important issue, as the ordering of

events taking place in the simulation must be preserved to reflect correct behaviour

CHAPTER 5. ARCHITECTURAL SIMULATION 90

of the design.

Processing time delays are shown as dotted arrows inside the simulation level

modules. In a synchronous pipeline, the system is clocked at the speed of the

slowest stage in the pipeline, in the worst possible data dependent case. All units

thus complete their computation and communicate in unison at each clock event. In

a self-timed model, these delays may vary in order to maximise performance for any

given instuction/data stream. Key to simplifying the simulation of time in this case

is the lack of external dependencies at each stage in the pipeline. When processing

data, a module need only know at what time it arrived, then add on processing

time for that stage. Each stage behaves deterministically in terms of function and

timing, so no central control of time is needed. The only exception is a point of

data dependent feedback, this would typically be in the branching mechanism of a

processor, if nowhere else. The simulation kernel described below attempts to take

advantage of this observation.

5.3.2 Simulation Units

To simplify the simulation system as much as possible and maximise the benefits of

using Ada, many units in the simulation mode map directly onto language primitives.

Figure 5.2 shows these mappings, in terms of the pipeline structure illustrated in

Figure 5.1. This mapping was chosen to minimise the run-time overhead of the sim-

ulator, while maintaining a clear implementation. Simulation level modules, which

are always pipeline stages, are distinct Ada tasks, which run in parallel. Handshak-

ing communication channels are handled by protected entry calls, which allow for

blocking and synchronisation of modules. Entries also provide input selection and

arbitration, when stages accept multiple inputs.

A non-deterministic (as far as the receiver is concerned) communication is also

shown in the simplified pipeline model of Figure 5.2. This represents a communica-

tion which may happen arbitrarily, affecting the behaviour of the receiver. The order

in which such events happen in the system must be maintained in the simulation,

in order to accurately model the pipeline. The task which receives such a message,

or is waiting to, must only progress when it is known that no interfering preceding

event could possibly be generated.

If multiple processors are available, this simulation model will run across them

so long as multiple units have work to do at a given time. The communications

between threads are minimised and occur only with data communications in the

CHAPTER 5. ARCHITECTURAL SIMULATION 91

simulated system. The fine grained nature of the pipeline stage models may not

however make the best of this possibility, due to latencies involved in synchronisation

between processors. When running on a multi-threaded single processor, a distinct

performance advantage should be seen, thread switching should be very cheap on

such systems.

Figure 5.2: Modelling a Pipeline Using Ada.

While the mapping to Ada language features provides an efficient implementation

for hardware modelling, one required feature present in Figure 5.1 is missing: a

model of system timing.

5.3.3 Simulation Kernel

Modelling systems involving a set of communicating processes are typically dealt

with using discrete event simulation. This simplifies the simulation by modelling

time as a discrete quantity, physical processes being simulated by logical processes

in the simulation environment, communicating via events. Events occurring at an

equal time stamp are resolved as required by the simulator. The simulation kernel

manages the progression time and events in the system. The traditional way to

manage time is to have a central event priority queue, where events are taken off

CHAPTER 5. ARCHITECTURAL SIMULATION 92

and processed in the order in which they occur. This guarantees correct simulated

behaviour [36].

5.3.3.1 Time-warping

Jefferson introduced the concept of virtual time [30, 13] in order to improve the

progress of simulation in the best case. This approach complicates the simulation

kernel with the notion of Time Warping. In such a simulation, at points of non-

determinism, such as when waiting for a possible input to arrive, a check-point is

stored encapsulating the current state of the simulation. This allows the simulation

to proceed speculatively, without switching or waiting on another process. If an

event does occur later in the simulation which interacts with a process which has

been run speculatively, simulation is rolled back to the point of this event, with the

new event having its proper effect. This approach was deemed to over complicate

the simulation engine within this project, designed for ease of instrumentation with

profiling code.

5.3.3.2 Distributed Discrete Event Simulation

A more appropriate optimisation for the simulation of pipelines is inspired by the use

of local clocks [31] to order events. This brings about a system of distributed discrete

event simulation. There are many ways of achieving a correct ordering of events

and sufficient progression, summarised by Misra in [36]. Deadlock avoidance in the

kernel and correctness of simulation become a problem when using this modelling

approach. In a distributed simulation environment, each logical process is modelled

as a task, as in Figure 5.2, with local communications localised to the routes of data

flow, as desired for more optimal performance and transparency of implementation.

Two necessary properties of discrete event simulation describe the problems of

moving to a distributed implementation:

Predictability The output of every process can be computed up to any time, given

an initial state.

Realisability No process can guess what messages it will receive in the future.

When the central event queue is removed, any point of uncertainty, where commu-

nications are being waited on must be resolved.

CHAPTER 5. ARCHITECTURAL SIMULATION 93

In the type of simple embedded processor pipeline proposed for simulation here,

there will only be a single point of uncertainty, waiting on a possible branch feed-

back event. The most simple method of dealing with this situation is the use of null

messages. Alternatives such as [51, 52] have been proposed, but require complica-

tions of simulation models to look ahead to determine expected feedback. A null

message establishes the absence of a message, so the receiver can then progress up

to the message time stamp. This is how the simulation of the processor pipelines

was managed in a distributed and efficient fashion. If care is not taken with null

message generation, deadlock can still occur, its avoidance is described below.

5.3.4 Simulation Timing Model

A distributed simulation ‘kernel’ was implemented to model Java enabled proces-

sor pipelines. Taking advantage of the linear nature of the pipeline, the following

structures were used:

• Pipeline stages are modelled as individual Ada tasks, which map to OS threads

• Communications, and events, are modelled with blocking protected entry calls,

without busy wait loops.

• Timing is managed by tagging messages and acknowledgements with local

times from the sender and receiver. When a message is received, the local

clock is updated as the maximum of the incoming time and the current local

value. This time is returned to the sender, so its local clock can be updated

similarly.

• Deadlock prevention is achieved using null messages. The only unit needing to

do this is the execute unit when signalling a branch. When no branch occurs,

a null message is sent to the fetch stage. The fetch unit can then proceed with

activities up until the time stamp on the null message.

5.3.4.1 Deadlock prevention

In order to prevent deadlock of the simulator, null messages are used in the branch

feedback path of the processor pipeline. Figure 5.3 shows the feedback path as

modelled in the processor simulation system.

The optimised processor model in the final implementation has only one point

of non-determinism, which is at the fetch unit, shown at the left of Figure 5.3. The

CHAPTER 5. ARCHITECTURAL SIMULATION 94

Figure 5.3: Deadlock Prevention in Pipeline Model.

situation is simplified further due to the behaviour of the fetch unit and the fact

that there are no other incoming communications apart from the branch feedback

information from the execute stage.

In order to make deadlock impossible in such a model, with only a single point of

feedback and indeed non-determinism, a single condition must be met at the fetch

stage. In order to guarantee progression, there must be an event, null or otherwise,

occurring on the feedback path with a time stamp in advance of the next scheduled

memory access. This enables fetches to occur up to the time stamp of the null

message, or a correctly timed branch to be acted upon, if appropriate.

This condition is guaranteed by taking the following actions:

1. The pipeline is initialised such that at startup a null message is sent on the

feedback path.

2. The fetch unit only takes any action when a message has been received on the

feedback path.

3. A memory access will take place if the time stamp received is greater than or

equal to that of the local clock (both will be 0 at startup).

CHAPTER 5. ARCHITECTURAL SIMULATION 95

4. After an instruction has been fetched, it is guaranteed to eventually reach the

execute unit, where it will trigger a feedback event (with an advanced time

stamp).

5. When the feedback is generated an appropriate number of fetches can take

place up to this point in time, along with a branch if not a null message.

6. An instruction will be fetched in either case, so progression is guaranteed

When running the pipeline in a clocked configuration, this in effect makes all

pipeline delays equal and synchronised. Therefore there is no change necessary in

the deadlock prevention mechanism. A simplification could be made by requiring a

valid feedback signal on each cycle determining the action of the fetch unit in the

next cycle. This would not be possible in the self-timed case as the pipeline is no

longer synchronised, or necessarily even fully occupied.

The introduction of null messages to the simulation does not in itself limit the

reachable state space of the simulation, it simply allows the correct ordering of simu-

lation events. In the processor model, if two events occur simultaneously at the point

of branch feedback, the branch event is favoured over the pre-fetched instruction.

In a silicon implementation, arbitration could favour either outcome leading to po-

tentially different branch shadow sizes. In the implementation there would be much

more variation in timings based on data dependencies leading to a greater number

of event orderings. A realisation of the design may suffer a slightly higher branch

penalty, this could vary depending on the branch feedback implementation. The

important point is that there is consistency between simulations of different Java

decoders. Alternative behaviours could easily be explored through modification of

the model.

5.3.4.2 Simulation Termination

Termination of simulations is initiated when address -1 is read from memory. This

causes a termination message to be propagated around the processor pipeline. Once

a pipeline task has forwarded this signal to all of its down stream units, the task

cleans up and exits. This procedure allows all processing of valid instructions to

complete before the simulation process dies.

CHAPTER 5. ARCHITECTURAL SIMULATION 96

5.4 System Performance

The performance of the final simulation environment while profiling the execution of

different Java aware architectures was approximately two orders of magnitude faster

than when simulating hardware. Later versions of the Balsa simulation environment

provided the fastest simulation option with JASPA but without any timing infor-

mation, at a rate of round 10-100 simulated Java byte-codes per second. Verilog

simulation providing timing information at the cost of performance; around 10-20

byte-codes per second. A major goal of this synthetic simulation environment was

to provide acceptable performance to run more meaningful tests. This goal was met,

with the simulator giving a throughput of around 10,000 to 100,000 byte-codes per

second.

5.4.1 Performance Testing

Simulations were run on a variety of workstation platforms available at the univer-

sity. These included multi-threaded and multi-processor PC’s with processors from

different vendors.

The benchmark was run on the simple Java decoder model, with byte-code pro-

filing enabled for sequences of length 1 to 4. Byte-code profiling is discussed in detail

in Chapter 6, and adds a large extra overhead to the simulation runs. This can slow

down simulation by a factor of 2 or more. Benchmark code consisted of 100000

iterations of an empty loop. This test will produce possibly the lowest simulated

byte-codes per second, as branch prediction is absent in the modelled processor.

A figure of simulated pipeline cycles will give a better idea of simulation kernel

efficiency.

The simulation benchmark was run in the following machines: rain (2.0 GHz

Athlon XP), lloyds (2.0GHz Athlon 64), jamaica (3.0GHz pentium 4, with multi-

threading (’hyper-threading’) enabled, and disabled), antigua (dual 2.8GHz Pentium

4 Xeon) and ringo (1.5GHz Pentium M). The intention being to evaluate the rate

of simulation on different platforms, and to determine if the threaded nature of the

simulation system brings any performance gains on multi-threaded CPU cores and

on multi-processor systems. The results are shown in Table 5.1.

The results show a marked difference when running on different architectures.

The most efficient being those with short pipelines, the AMD Athlon series and the

Pentium M. Running on a dual CPU system, no performance gain was observed

CHAPTER 5. ARCHITECTURAL SIMULATION 97

Workstation CPU Threads User Time Sys Time Total
rain Athlon XP (2000) 1 30.4 13.8 46.2

lloyds Athlon 64 (2000) 1 27.2 10.0 37.9
jamaica Pentium 4 (3000) 1 43.2 57.3 101.5
jamaica Pentium 4 (3000) 2 65.1 69.0 87.2
antigua P4 Xeon (x2) (2800) 2 62.0 63.6 85.5
ringo Pentium M (1500) 1 28.0 12.0 40.0

Table 5.1: Table of Simulation Times.

over equivalent speed uni-processors. Looking at kernel times on this system, shows

that any advantage of running parallel threads is countered by a heavy synchroni-

sation cost, due to the high frequency of communications between pipeline stage

threads/tasks.

The results clearly show an advantage is gained from the parallel, distributed

simulation kernel when running on multi-threaded processors. This is demonstrated

on the second generation Intel Pentium 4 ’prescott’ CPU based machine tested.

A gain of 16.5 percent is shown when enabling hyper-threading, allowing the long

processor pipeline to be filled with instructions from parallel threads when otherwise

stalled. Communication delays are reduced over the dual CPU case, although kernel

times show an increased operating system overhead when managing the multiple

logical CPU’s.

In terms of rate of simulation in pipeline cycles simulated per second, the final

simulation clock at the end of the benchmark was 270,017,600 time units. For the

benchmark, the delays were configured at 100 time units per cycle on all pipeline

stages. This gives a figure of 71,244 simulated cycles per second on lloyds, the fastest

machine tested. In comparison with the approximate figures given in terms of byte-

codes per second at the beginning of this section for other simulation environments,

this translates to 13,000 byte-codes per second, as each loop iteration of 5 byte-

codes was completed in 2700 time units, when memory, and misfetched instructions

are taken into consideration. This is due to the most basic translation hardware

being used, for fair comparison with earlier JASPA simulations.

5.5 Summary

An extensible simulation framework for simulating embedded processor pipelines has

been presented. The purpose being to evaluate Java extensions to such processors,

CHAPTER 5. ARCHITECTURAL SIMULATION 98

with minimum run-time overhead.

Essential to this simulation environment was the ability to model self-timed

pipelines, along with synchronous counterparts. This was achieved using a dis-

tributed simulation approach, and optimised around the tasking features of Ada, to

meet requirements set out at the beginning of this chapter.

Performance was a central requirement, and was met by modelling only the nec-

essary synchronisation between pipeline components. The overhead being reduced

over full blown discrete event simulation environments; such would be incurred using

Verilog and VHDL. A clear and concise implementation structure was maintained

through mapping to Ada tasks, allowing modelling shortcuts to be taken, along with

the introduction of simulation profiling features, detailed in Chapter 6.

The benefits of the bespoke simulation environment have been at the expense

of a simplified route to hardware implementation. This is not seen as an issue, as

the goals of this research are to improve high level architectural support for Java.

Having a route to implementation through the simulation environment would not

have helped in this respect, and could have possibly introduced variability into

resulting designs.

Chapter 6

Instruction Folding

This chapter details the implementation and analysis of attempts to improve the

performance of Java processor extensions through instruction folding. The idea

being to make efficiency gains over the translation techniques used in the JASPA

system detailed in Chapter 4. In order to investigate these techniques, the a high

level model of an embedded RISC pipeline was created in the Ada based simulation

environment, explained in Chapter 5 of this thesis.

While providing simple hardware decoder extensions based around a stack-cache

provides significant gains over software only interpreters, there are many potential

gains to be made over the approach taken in JASPA. A reoccurring pattern of

execution is that of loads from (local) variables onto the stack, followed by arithmetic

operations followed by storage back to the variable space, in our case memory.

Variables are often repeatedly processed in this way in close succession. This has

led to the adoption of a deep register file or local on chip memory specifically to

cache the top of stack, and local variable storage in more performance orientated

Java cores, such as PicoJava.

The aim of this chapter is to show, how such sequences of repeated memory

accesses can be made unnecessary by applying folding to sequences of byte-codes.

This can be done to some extent without needing to cache large amounts of the

Java stack, improving efficiency over the stack cache decoder used in JASPA but

without the hardware cost of additional registers. Such an approach will improve the

power efficiency of the Java decoder through reducing the number of processor cycles

needed per byte-code, at only the cost of slightly increased decoder complexity.

There are drawbacks with this approach in that there is less scope for folding

when the entire local variable pool is not available in registers for immediate access,

99

CHAPTER 6. INSTRUCTION FOLDING 100

in contrast to dedicated processors such as PicoJava. Improvements in efficiency

are however very much worth investigation, complementing the existing power and

silicon cost benefits of the Java decoder pipeline extension approach to acceleration.

In order to measure and test the introduction of folding approaches, a profiling

capability was added to the processor pipeline model. This allows timings to be

traced for each byte-code as it is processed and retired during execution. This en-

abled the effect of folding to be measured over the course of a benchmark program,

breaking down times and frequencies for individual byte-codes and more impor-

tantly groups of byte-codes processed during a simulation run. As well as providing

concrete information on where improvements had been made, through analysis of

which sequences of byte-codes took the most time to execute over the course of an

entire program run, it suggests other areas where optimisation can be applied.

6.1 Architectural Profiling

Profiling of the effectiveness of Java pipeline extensions is essential for the further

understanding of such systems. A better breakdown of what is being achieved by the

system is needed, over cumulative timings achieved running different benchmarks.

A benefit of modelling the system in software, is the ease of integration of profiling

code. This section discusses the final processor model used to experiment with

improved approaches to accelerating the execution of Java through processor pipeline

extensions, along with the profiling system used to analyse their performance.

6.1.1 Model of Java Processor Architecture

Chapter 5 describes the optimised approach taken to modelling processor pipelines

using Ada, the key simplification being the single point of feedback in control flow

present in the model, namely the branch feedback system. A single, extensible

architectural model was used to evaluate Java acceleration approaches within an

embedded RISC processor core. The main point of interest being the internals of

the Java decode pipeline stage, and how it produced translated RISC instructions

for the remainder of the pipeline to execute.

As previously described, the simulation environment models each pipeline stage

as an independent task or thread in the system. Timing information is passed along

with data in messages between modules, providing timing and a correct ordering of

events in the simulation.

CHAPTER 6. INSTRUCTION FOLDING 101

Figure 6.1: Simulated Architectural Processor Model.

Figure 6.1 shows the simplified processor pipeline model used to test enhance-

ments to the Java enabled architecture. The pipeline is simplified to a three stage

configuration, before addition of the Java decoder, common in low power embedded

cores. Although more advanced processors may have extra stages in order to in-

crease the maximum operating frequency, it is felt that a three stage system will be

totally adequate for investigating improvements to the Java processing subsystem.

Simulation speed will also be marginally improved as a side effect of the simplifica-

tion.

The pipeline stages are modelled in the following manner:

6.1.1.1 I Cache

Models a perfect instruction cache, with a configurable, fixed latency for instruction

fetch.

CHAPTER 6. INSTRUCTION FOLDING 102

6.1.1.2 Fetch

Fetches 32 bit quantities (RISC instructions) from memory via the instruction cache.

The instruction fetch unit can not handle misaligned fetches, only fetching the corre-

sponding word aligned data. This is to mirror the behaviour of the fetch unit present

in JASPA, and other embedded processors such as the ARM. This will slightly in-

crease the number of fetches needed when executing Java code, due to the non-word

aligned nature of Java byte-codes. This will only occur on branches to a new block

of byte-codes, subsequent sequential accesses be on word boundaries.

Branches are handled in the same way as in the AMULET [18] and (JA)SPA

[38, 10] processors. A colour is associated with each instruction fetch. The colour

is passed along with the instruction through the pipeline, where it is only executed

if it matches the current colour at the execute unit. This colour is inverted at the

execute unit when a branch is taken, and the branch information is sent back to the

fetch unit. When the fetch unit branches to the new address, its colour is changed

also. Any incorrectly fetched instructions in the pipeline will not be executed, as

their colour will no longer match at the execute stage.

6.1.1.3 Java Decode

This unit is where different approaches to decoding Java byte-codes can be imple-

mented and tested. This is placed logically in series with the RISC decode unit,

although its output passes through the RISC decode unit without processing, ex-

posing the decoded instruction interface to the execute unit. This modelling trick

allows for simulation of both serial and parallel decoder extensions and for more

interesting experiments to be carried out with different Java decoder models.

The execute unit and its interface is parametric, this allows more registers to be

simulated than available in the standard ARM instruction format and architecture.

Beyond exploring the possibilities of other embedded RISC platforms, the impact

of architectural limits can be assessed, possibly justifying extensions to the execute

unit for Java acceleration.

Within the Java decoder module, many different timings can be assigned to

operations, allowing the exploration of the effects of self-timed operation. Examples

include: the modification of stack cache state having an assigned cost, extraction of

a byte-code from the currently buffered word and the generation of an instruction

for the execute unit. These timings can be calibrated against measured values in

the JASPA core.

CHAPTER 6. INSTRUCTION FOLDING 103

The Java decoder passes thorough RISC instructions, with zero latency when

not in Java mode.

6.1.1.4 RISC Decode

This unit decodes a subset of the 32 bit ARM instruction set. This allows exist-

ing code from JASPA to run without modification on the new high level model.

Many simplifications have been made, such as the removal of supervisor modes,

asynchronous interrupt handling and 16 bit memory operations. This allowed for

rapid implementation and minimal run-time overhead, without putting restrictions

on the JVM environment under test.

The RISC decode stage is also responsible for passing through the output of the

Java decoder to the execute unit. This output is in the decoded instruction format

required by the execute unit. Through the variation in delay associated with this

operation either parallel or serial Java decoder operation can be simulated. In the

parallel case, zero latency is added, in the serial case the RISC instruction decode

latency can be added.

6.1.1.5 Execute

The execute unit essentially implements the features of the ARM execute unit, al-

lowing processing and storage to registers with the operations defined in the ARM

instruction set. This set of operations is typical of most embedded RISC cores.

In order to provide support for the simulation of other target architectures, and

to investigate the efficiency of Java acceleration approaches in a broader light, the

execute unit was made parametric, the parameter being the number of entries in

the register bank. A flat register bank was implemented, with an arbitrary number

of registers possible. The op-codes used to implement the subset of the ARM in-

struction set can be applied to any of these registers, the Java decoder being able

to issue all such operations through the decoded instruction interface.

The branch feedback mechanism, with null messages notification of the absence

of a branch, is implemented as in Chapter 5. This avoids the unnecessary pipeline

synchronisation and stalling associated with an actual simulated communication

back to the fetch unit on each execution cycle.

CHAPTER 6. INSTRUCTION FOLDING 104

6.1.1.6 D Cache

Models a perfect 32 bit wide data cache, with a configurable, fixed latency for data

accesses from the execute unit, allowing parallelism with instruction fetch.

6.1.2 System Timing

Delays are managed in the simulation system, described in Chapter 5, as defined

by individual pipeline models. A local clock stores the current observed simulation

time, in each simulation process. As processing on data is carried out, appropriate

delays are added onto this local clock, which is propagated through the system when

communications occur between modules. These delays can be made data dependent

in order to model self-timed design styles.

In order to allow more flexibility in the timing system, a delay description file

format was invented. This format allows for the assignment of delays within the

system at run-time, from a file, enabling different scenarios to be tested on the

same model with different timing profiles. The main purpose being to allow for the

removal of data dependent delays to simulate synchronous behaviour, applying a

global worst case cycle time to all pipeline stages. The file containing latencies is

loaded and parsed at start-up, latencies for all modules being stored in a central

database. Each module extracts the named times in turn, from the database passed

at instantiation time.

module RiscDecode

begin

riscDecodeTime := 100;

javaDecodeTime := 100;

end

Figure 6.2: Part of a latency description file.

An example of the delay format is shown in Figure 6.2. This case showing how

a serial or parallel decoder structure can be emulated, in the timing description for

the RISC decode stage, by replacing the Java decode latency with zero.

6.1.3 Profiling Byte-code Execution

For the purpose of better understanding the performance of different approaches to

Java execution a profiling system was designed and integrated with the processor

CHAPTER 6. INSTRUCTION FOLDING 105

model. This allows for the timings of each different byte-code’s execution to be

recorded over the duration of a simulation session. The idea behind this being to

extend this profiling approach to groups of byte-codes. Not only does this provide

the frequency of execution of different sequences, but also their contribution to

the execution time of a benchmark. Thus optimisations can be both targeted at

improving specific bottlenecks, and be analysed in a balanced and detailed way.

The profiling system was separated into a separate Ada package, or abstract

data type. This allowed a profile structure to be passed to a series of function calls

updating the profile based on new timing information about a byte-code. Abstract-

ing this part of the system caused minimal disturbance to the clarity of the code in

the Java decoder module, as well as making the profiler reusable between different

decoder implementations.

The collection of profiling information is complicated slightly by the fact that

multiple pipeline stages are involved in the execution of a Java byte-code, and this

may involve multiple execution cycles. A more serious problem is introduced by the

uncertainty of misfetched byte-codes, those in the shadow of a taken branch. These

issues become more of a problem when dealing with the profiling of sequences, as

it must be ensured that only the executed sequences are added to the profile, with

time spent processing the shadowed byte-codes being counted towards the branching

byte-code(s).

6.1.3.1 Profiling in a Pipelined Environment

The time taken to execute a byte-code can be determined at the Java decode stage

of the pipeline, by tracking the local clock time between the start of processing one

byte-code and the start of the subsequent one. These timings can be measured at the

time the byte-code is extracted from the currently buffered instruction word. The

only problem is visibility of whether the current instruction colour is valid, as this

information is only ever correct at the execute unit. This information is required, as

it determines whether the timing information is to be counted against the current

byte-code or as part of a branch shadow in a previous byte-code.

The branch problem is solved by introducing a system of queuing to the profiler

package. Two FIFO queues are used to buffer information:

Byte-code FIFO Stores information about byte-codes passing through the Java

decoder.

CHAPTER 6. INSTRUCTION FOLDING 106

Branch FIFO Stores information about branch results.

As each new byte-code is processed by the Java decoder module, a notification

along with details of the current local time is sent to the profiler. The profiler places

this information onto the byte-code queue, which will make a potential time profile

of the byte-code when the next byte-code is queued, giving a start and end time.

This information is only a potential profile, as it is not known whether the byte-code

in question is in the shadow of a branch or not.

In order to commit any timing information to the profile about how long a

byte-code has taken to execute, it must be known whether any branch results are

outstanding. In order to acquire this information, a flag is sent when informing the

profiler of a new byte- code, detailing whether it will issue a branch or not. This

is known in advance for all byte-codes in the decoders investigated here. This flag

causes an increase in a pending branch result counter in the profiler data structure.

If the pending branch count is zero, then items from the byte-code queue can be

committed to the profile as each byte-code is processed. When there are pending

branch results, only items up to the branch can be committed until the corresponding

branch result is known. An arbitrary number of pending branches can be present

using this system.

Although the Java decoder module has a knowledge of instruction colour, this is

not sufficient to determine if a branch has been taken or not, as no notification will

be given when a branch is not taken. If multiple possible branches are outstanding,

and a colour change is observed, it will be impossible to tell which one was taken

in a such a self-timed processor design. One proposed solution to this problem

was the introduction of colour shades, which change when a branch is not taken,

and can thus be observed by the Java decoder. Another solution would be to tag

times to instructions, only assigning these times as they are executed. The problem

with this tagging would be managing the split between profiling in the Java decoder

and execute unit tasks, running in parallel. A more simple solution was eventually

implemented, whereby on each branch in Java mode the execute unit communicates

directly with the profiler informing it of whether the branch was taken or not. This

information is placed in the branch FIFO queue and is accessed by the profiler as

each byte-code and associated time is sent from the Java decoder, this happens

when any pending branch results are used to commit information to the profile.

The FIFO is implemented as a protected object in Ada, assuring mutual exclusion

and atomic operation between the calls from the execute and Java decode threads.

CHAPTER 6. INSTRUCTION FOLDING 107

This structure is shown in Figure 6.3.

Figure 6.3: Branch Profiling Queue System.

6.1.4 Profiling Byte-code Folding Systems

The idea behind extending the Java decoder with folding systems was to improve the

performance of certain groups of byte-codes which can be executed more efficiently

by circumventing redundant memory operations. In order to assess the timings of

different groupings of byte-codes, the profiler was extended to store information not

only about the execution of each individual byte-code, but also arbitrary groupings

of byte-codes executed during simulation runs.

The approach taken was to constrain profiles to a range of byte-code sequence

lengths. The profiler can be set up to profile sequences in any continuous range of

sequence lengths. The mechanism for dealing with this was another buffer stage

before byte-code timing information is committed to the profile. When a byte-

code’s branch status and timing is resolved it is inserted into the profile buffer.

This is a circular buffer containing the last byte-code profiles up to the maximum

sequence length. At this point, any new sequences are added or modified in the

profile database, as appropriate. The buffering structure of the final profiling system

is shown in Figure 6.4.

There are different ways of measuring the timings of byte-code in sequences, when

folding is being applied in the Java decoder. As multiple byte-codes are combined

into a single cycle execution operation the time for each instruction in the batch

is effectively spread across the folded set of byte-codes. In order to cater for this

in the profiler, the concept of byte-code profile batches was introduced. The start

and end of a batch is signalled when informing the profiler of the execution of a

new byte-code, only committing information in a batch when it is complete. The

CHAPTER 6. INSTRUCTION FOLDING 108

Figure 6.4: Complete Profiling System.

profiler can then add up latencies as individual times or averaged over batches, which

makes more sense as it reflects the processing time as part of a folding operation.

Otherwise there would be spurious zero delay execution for folded byte-codes, with

the last byte-code in a batch being assigned the time taken for all instructions in

the batch.

6.1.4.1 Profiler Summary

The resulting byte-code profiler allows for the time spent executing each Java byte-

code, and different byte-code groups of arbitrary length to be recorded. This helps to

show where time is being spent in different benchmark runs, allowing for a detailed

analysis of architectural improvements to the embedded pipeline in support of Java

execution. This information can be used to explore further improvements and angles

of attack, in the quest for an efficient acceleration strategy, making the best use of

available resources in such processors.

6.2 Stack Cache Decoder

The stack cache decoder model was implemented as a cycle for cycle copy of the

Java decoder in JASPA, described in Chapter 4. This implementation is used as a

control to compare improved folding decoders against, within the same simulation

CHAPTER 6. INSTRUCTION FOLDING 109

framework, it has identical memory and instruction execution models. The re-

implementation also allowed for a slight extension of the original decoder, free from

the restrictions of the ARM compatible host core, with the potential to use more

registers for caching the stack in the parametric execution unit.

The translation mechanism is therefore exactly the same as in JASPA, caching

the top of the operand stack in registers (four by default). These registers can

then be operated on by the RISC execution unit, the load/store architecture not

able to operate directly on values in memory. The advantage of this approach is the

simplicity of the design. This has been shown to result in a small, low power solution,

easily integrated into an existing processor core. Performance is not optimal though,

as stack based instructions spend many cycles pushing and popping from the operand

stack, causing expensive memory operations in this decoder, which should ideally

be minimised to improve efficiency further.

6.2.1 Implementation

The implementation of the stack cache decoder can be decomposed into the following

stages of operation:

Byte-code Extract: Extract byte-code and operands from fetched word, this may

involve further fetch cycles due to alignment issues caused by variable length

immediate instruction operands.

Code Generation: Once byte-code is fetched, correct handler sequence is looked

up, and issued to the execute unit, this may be a branch to a software handler.

Stack Management: The stack cache is managed during code generation, as the

operand stack is stored in registers in order to be operated upon by the RISC

execute unit. This involves keeping track of current occupancy information.

Branch Handling: When branches are taken, stack cache state must be kept con-

sistent, this involves flushing the stack-cache as in JASPA.

Register assigment is also the same as in JASPA, making using four for the

operand stack cache and others in the management of the Java and RISC stacks.

Other registers are used to pass information to RISC handler code, and manage

jumps to and from Java mode. In practice, the four registers used for the stack

cache have been relocated to the end of the register space (from R16), so the cache

CHAPTER 6. INSTRUCTION FOLDING 110

size can be increased in future tests. This however does not change the observable

behaviour of the system when configured like JASPA, with four stack cache registers.

6.2.1.1 Performance

The stack cache decoder unit should perform exactly as JASPA did in earlier tests

as the decoder generates exactly the same code sequences. The aim being to show

the advantages that folding techniques can bring over this simple approach.

During the decoding process, many of the cycles which occur during extract and

code generation phases of operation have quite different complexity and timing. This

suits a self-timed implementation allowing such short cycles to complete quickly

and longer cycles only stalling the fetch unit. It may however be the case that

other stages in the pipeline will stall execution in some of these cases reducing such

perceived benefits.

6.3 Byte-Code Folding

The execution of multiple Java byte-codes in a single execution cycle is called in-

struction folding. PicoJava [35] and JEMCore [49, 23] both take the same approach

to the problem. These processors have access to local variables in registers, so they

can execute directly on them, without loading and storing to a temporary operand

stack. This can only be achieved for a small set of patterns which can be matched

as byte-codes are decoded.

6.3.1 Achieving Folding

Initial experiments with instruction folding added a second set of registers to cache

locals for direct access at the execution unit. This local variable cache was added

at the end of the ARM register space, adding eight new registers. Having this

dedicated local cache also freed r4, previously used to store local variable zero. The

stack cache could therefore be extended to five entries.

There were several limitations with this approach. The main problem was due

to the decoupled nature of the Java decoder and execute unit. As the Java decoder

is not aware of whether it is executing code in a branch shadow, the caches must

be flushed frequently, whenever a branch is issued. It became clear during imple-

mentation, that the cache brought only a small performance gain, in comparison to

CHAPTER 6. INSTRUCTION FOLDING 111

the cost of extra registers and increased complexity of code generation. Frequent

flushing of the caches to memory proved to be a problem, a cost not incurred if this

caching is managed at the execute stage. This is a problem dedicated Java execution

cores do not suffer from.

Although functionality for management of the stack cache could be added to

the execution unit, this would detract from the clean and portable nature of the

Java decoder extensions. The Java decoder would no longer be portable between

processor cores. Implementation effort would be much greater, adding complexity

to the performance critical execute stage. The result would be more like a dedicated

Java processor than an accelerator extension. A new approach to instruction folding

is required in this context to make better use of available registers.

6.3.1.1 Using the Stack Cache

An observation was made while looking at traces of byte-codes being executed by the

Java decoder. It appeared that local variables were often loaded onto the operand

stack repeatedly. Other cases showed that locals were stored and then re-loaded. In

the simple Java decoder such operations would result in fetches from memory, when

the value was already at another location in the stack cache, or even in the correct

register. Applying optimisations to remove these redundant memory operations on

locals allows for folding of byte-codes. This solution does not require further caching

structures makes efficient use of registers

The initial folding decoder took this optimised approach to implementation. The

penalty being storage of extra state at the decode stage regarding the local variable

status of stack cache registers. Checks before local load and store operations become

necessary, with the benefit being removal of redundant RISC instruction cycles when

folding can be achieved.

6.3.2 Implementation

The implementation of the first folding capable decoder is a direct extension of the

preceding stack cache based decoder stage. Essentially this cache is being extended

over the local zero register, r4. Information is kept about any valid local variables

being stored at each location in the cache. This was implemented in the simulation

environment in such a way that it could be mapped to any register range, enabling

tests to be carried out on larger cache sizes outside the ARM register space. This is

CHAPTER 6. INSTRUCTION FOLDING 112

thanks to the parametric execution unit described at the beginning of this chapter.

The decoder was implemented as a replacement for the stack cache decoder,

with all of the same advantages. All decoding logic is localised to the Java decoder

extensions, retaining the advantages of being a portable pipeline extension suitable

for embedded processors.

Parallelism could be increased by having a larger window of byte-codes available

to the decoder. In an asynchronous implementation this could be achieved by adding

an extra pipeline stage, without the need to modify the rest of the system. This

approach was not taken as integration with the synchronous model would require

modification to the rest of the pipeline, which is not desirable.

6.3.2.1 Folding Mechanism

The proposed folding mechanism works by eliminating redundant local variable loads

and stores by reusing values already in the stack cache registers. This approach is

not as costly as caching the local variable space directly. There is no requirement

for modification at the execute stage of the pipeline for efficient operation.

Keeping track of which local variables exist in an unmodified state is the key new

requirement for the folding Java decoder. This allows cached local variable loads

from memory to be replaced by a cheaper register copy, or removed completely if the

value happens to be at the top of the operand stack. Local variable stores can be

deferred until absolutely necessary, removing further redundant memory operations.

Examples of folding operation are shown in Figure 6.5.

6.3.2.2 Decoding State

In order to track which local variables are currently in the stack cache a table of 3

attributes per entry was devised. These attributes are summarised below:

Valid (Boolean) stating that a valid local variable is stored in the register associated

cache entry.

Variable (Integer) storing which Java local variable this stack cache entry is cur-

rently holding.

Modified (Boolean) stating that this entry has been stored as a local by a Java

byte-code, meaning it must be returned to memory before being overwritten.

CHAPTER 6. INSTRUCTION FOLDING 113

Figure 6.5: Folding Examples.

CHAPTER 6. INSTRUCTION FOLDING 114

The valid bit is set when a local variable is loaded from memory to the operand

stack. The register is now storing a valid local variable. The variable is invalidated as

soon as the register is modified by an instruction issued from the decoder. Examples

of how valid variables can be left in stack cache registers as a side effect of different

byte-code sequences are shown in Figure 6.6.

Figure 6.6: Validity Examples.

Multiple copies of a local variable can be present in the stack cache, this can

be reflected in the state table. Taking this approach maximises the retention of

local values in the cache, minimising memory accesses. The negative aspect of this

approach is the requirement to invalidate all duplicate entries when the local variable

in question is modified and stored back to the variable space.

The modified bit in the stack cache state table serves an important function

regarding deferral and folding of memory store operations. After a local variable

is loaded into a register and then modified by an arithmetic operation, it becomes

invalid. If the result is stored back to a local variable, the value must now be stored

back to memory. The modified flag, allows this to be deferred until the register

is needed (invalidated) by another operation. The flag also allows only modified

locals to be stored in the event of a stack cache flush, which is actually the common

case, reducing memory overhead to a minimum in this event. A stored local in

the stack cache is very likely to be quickly overwritten as the byte-code responsible

operates on the current top entry of the operand stack. In the event of a local store,

CHAPTER 6. INSTRUCTION FOLDING 115

duplicate entries of this local must be invalidated, as they will now potentially store

an incorrect previous value.

In the event of a stack cache flush, the operand stack is written back to mem-

ory, along with modified local variables. Unfortunately when the operand stack is

re-cached, any information on parity with local variables is lost. An option for fu-

ture implementations is to try and store this information in a modified stack frame

format, improving folding performance between flush events.

6.3.2.3 Implementation Options

A hardware implementation of the stack cache based folding algorithm, requires a

simple table of registers to store the required state. This table will be a fixed size,

dependent on stack cache size. A tradeoff can be made regarding the size of the

variable field, allowing up to n locals to be included in folding operations at the cost

of log2
n bits per table entry.

Performance of necessary operations on the table should not pose a problem to

implementors. Searches through the table can happen in parallel, due to the rela-

tively small number of stack cache entries. Other operations only involve addressing

and simple read and write operations. Stack cache based folding is very simple,

thus attractive in terms of implementation cost. Power consumption should not be

increased significantly over a simple stack cache decoder without folding, as the only

additional logic concerns the small state table, although it must be accessed for each

decoder operation.

6.3.3 Simulation and Testing

The folding capable Java decoder will always perform at least as well as the the stack

cache based JASPA design in terms of the RISC code generated. This is because

in the worst case, the decoder will perform exactly the same operations. In cases

where local variables are already present in the stack cache, memory operations will

be reduced, and RISC execute cycles eliminated.

6.3.3.1 Test Models

In order to test the efficiency of the new Java decoder, a series of benchmarks were

run. The new decoder can be compared against the existing stack cache design. Fur-

ther to this, a new decoder model was built to simulate idealised instruction folding.

CHAPTER 6. INSTRUCTION FOLDING 116

In this model, any memory load and store operations related to local variables do

not incur any time penalty. This is equivalent to a perfect variable cache, where

local variables are always available in a register for operation, in this case appearing

on the operand stack cache without delay. This model, referred to from now as the

perfect folding decoder, was built from the original stack cache decoder, modifying

the decoded instruction format to allow zero cycle time memory operations where

appropriate.

6.3.3.2 Simulation Timing

For this series of tests, the processor pipeline was set up with a synchronous timing

profile. Each pipeline stage has a cycle time of 100 simulation time units regardless

of the operation it performs. This also applies to the perfect memory cache units.

This timing profile was used to test the quality of the output RISC code generated

by each decoder without confusing results with any further variables.

6.3.3.3 Benchmarks

The following benchmark programs were used to test the Java enabled processor

pipelines:

1. Arith - a repeated mathematical integration applied across a range of values,

testing the ability to cache several local variables on each iteration.

2. Fib - An iterative loop calculating a value in the fibonacci sequence, using

several local variables.

3. NFib - A recursive version of Fib, using only expressions and return values

4. Sieve - A prime number sieve function, from an embedded Java benchmark,

used for testing the JOP processor [40].

6.3.4 Simulation Results

Figure 6.7 shows the relative performance of each of the Java decoder modules,

as a ratio of simulation time taken compared to the basic stack cache decoder.

The breakdown of timings can be seen in Appendix A, showing accumulated times

for individual byte-codes over each benchmark along with accumulated timings for

groups of four byte-codes, targeted by instruction folding.

CHAPTER 6. INSTRUCTION FOLDING 117

Figure 6.7: Results Relative to Stack Cache Decoder.

6.3.5 Conclusions

The results for the byte-code folding system appear to show little gain in perfor-

mance, the best case being in the order of a 5% reduction in processor cycles when

running the iterative Fibonacci benchmark. It was expected that the Arith bench-

mark would show a significant improvement, but this was not the case.

The breakdown of byte-codes and groupings for the folding decoder are in Ap-

pendix A, Figures A.3 and A.4. The problem, at least with the Arith benchmark, is

clearly caused by unacceptable branch latencies in both the goto and if icmpge byte-

code handlers. Both of these instructions are dealt with in the hardware decoder.

This issue is dealt with in Chapter 7.

6.4 Summary

This chapter has presented a new approach to folding of byte-code operations in

a RISC processor pipeline with a Java aware instruction decoder. This approach

improves upon existing stack cache based designs allowing for folding of memory

operations with local variable processing, when values are already cached in stack

CHAPTER 6. INSTRUCTION FOLDING 118

registers. The new Java decoder requires only a simple lookup table for imple-

mentation and has the same worst case execution profile as the simple stack cache

decoder.

An embedded profiling environment has been presented and has been used to

diagnose problems with branch behaviour in the Java decoders presented in this

chapter, prompting the work presented in the following chapter.

Chapter 7

Improved Instruction Folding

Chapter 6 introduced a new approach to byte-code folding within an embedded

Java aware microprocessor core. The limitations of this approach were quickly es-

tablished, the main problem being caused by branch latencies within the operation

of the decoder. This is compounded by the flushing of the cache when branches are

issued.

This chapter presents several optimisations to the folding Java decoder to address

performance issues. Firstly the branch shadow problem is addressed, making use of

available information about branches issued from the decoder to infer the shadow

state. The use of more registers is explored and also the impact of the self-timed

nature of the design.

A new system of folding is presented at the end of the chapter, aiming to increase

the efficiency of this combined stack and local variable cache approach to code

generation. The main problem with the first system is the redundancy of registers

and frequent overwriting of potentially useful cached local variable values.

7.1 Branch Shadow Optimisation

When a branch is issued from the Java decoder, the state of the decoder and any

cached registers are flushed. This is because code in the shadow of the branch

may corrupt these values if the branch is taken. Secondly, a serious problem is the

potentially large number of RISC instructions which can be issued in the shadow of

a branch. As each fetched word contains a maximum of four byte-codes, this can

lead to tens of erroneous RISC instruction issues per branch. This may be less of

an issue in an asynchronous implementation where instructions of incorrect colour

119

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 120

will be handled more quickly in the execute unit, but it is still a problem.

There are several pieces of information available to the Java decoder which can

help determine shadow state. Unfortunately, after issuing a conditional branch

the shadow state becomes completely unknown until an instruction colour change

occurs. When an unconditional branch is issued, the next instructions will always

be in shadow, assuming that the branch was not issued in the shadow of another

branch. When a colour change is seen at the decoder, this is the result of a taken

branch, the following instruction can never be in a branch shadow.

Using the above information, it can at least be determined if the next byte-code’s

shadow state is either: not in shadow, unknown or definitely shadowed. When it

is known that the fetched byte-codes are in shadow, decoding and RISC instruc-

tion generation can be skipped until the colour change occurs signalling the branch

has been acted upon and the instruction word was fetched from the branch target

address.

7.1.1 Implementation

This branch optimisation was implemented into the decoder, and had a definite

impact on performance, shown in Section 7.3. It particularly helped reduce the

effect of goto byte-codes commonly used by the Java compiler in conditional code

and loops.

The cost of implementation was a register recording current shadow status. This

register holds one of the three possible shadow status values. This flag is set when

issuing branches, including those to software handler routines. Once the shadow

status is unknown, it remains in this state until a colour change is observed, resetting

the state to being unshadowed. The flag is checked when fetching the next byte-

code from the fetched instruction word. In order to improve performance further,

this system could be extended with feedback from the execute unit or with other

mechanisms to increase the visibility of true shadow status.

7.2 Further Optimisation

7.2.1 Extending the Register Cache

As the folding-capable stack cache was designed in a parametric way, the benchmark

tests were run on a version of the processor pipeline with 8 stack cache registers for

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 121

comparison with the original size of 5. This test was designed to assess the scalability

of this folding approach.

7.2.2 Asynchronous Operation

All test runs so far have focussed on a synchronous timing model, where each pipeline

stage in the system operates with a cycle time of 100 simulation time units. In order

to show how the decoder can function in a self-timed manner, an synchronous timing

profile was devised, based upon a worst case cycle time of 100 time units. Each

operation within the Java decoder was assigned a time value, based upon evidence

from the Balsa JASPA implementation, described in Chapter 4.

7.3 Simulation Results

7.3.1 Comparison of Java Decoders

Figures 7.1, 7.2 and 7.3 show graphs of simulation times and relative performance of

the optimised Java decoders against the original JASPA decoder. This information

is supplemented by detailed breakdowns of byte-code timings in Appendix A. The

perfect folding decoder from Chapter 6 is also included for comparison.

It can be clearly seen that the effect of the branch optimisations, labelled as

’Folding1-branchopt’ have an noticeable impact on performance in some of the

benchmarks. The branch optimisation shows an increase in decoding performance

of around 10% over the original folding decoder. The timings in some benchmarks

improve upon those achieved with the perfect local cache model.

The effect of increasing the number of registers in the stack cache to 8 is shown

in the results labelled ’Folding1-branchopt8’. The benchmark times were reduced

in all cases, although not by any significant margin. It is thought that the folding

scheme used does not make the best use of these registers as caching is localised to

a small set of registers around the top of the stack. Potentially useful local values,

when modified and stored are overwritten by other operations very quickly, as they

occupy the top entry on the stack cache.

Interestingly the Arith1 benchmark shows no improvement in performance on

any of the optimised decoder modules. Figure A.6 in Appendix A, shows that the

branch optimisations are not effective due to the presence of a conditional branch

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 122

around the goto, this is where most of the execution time is spent in all decoder

models.

Figure 7.1: Simulation Benchmark Timings.

7.3.2 Memory Latency

All of the simulation runs so far have been carried out using the 100 time unit

synchronous timing model. The memory subsystem has been modelled, rather un-

realistically, as a single cycle perfect cache. The folding optimisations are not only

targeted at reducing the number of execution cycles per byte-code, but also the

number of memory operations. The simulation results graph in Figure 7.4 show

how the impact of increasing memory latency in the JASPA decoder and branch

optimised folding decoder while running the Sieve benchmark.

The labels in the Y-axis have a postfix denoting the number of execution cycles

that data cache access operations cost in each simulation model. The original models

had a memory timing of 1.0, while timings of 1.5 and 2.0 were also tested. These

figures accurately reflect the fact that memory in embedded systems is often clocked

at a similar rate to the processor core, and may even be on the same silicon die.

The changes were only applied to the data cache in order to highlight differences in

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 123

Figure 7.2: Arith1 Benchmark Timings.

Figure 7.3: Results Relative to Stack Cache Decoder.

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 124

memory accesses generated by the folding algorithm.

It was thought that the folding decoder would show increasing performance gains

over the stack cache decoder as memory latencies increased. This is clearly not shown

in the experimental results. This shows clearly that the number of memory opera-

tions saved by the folding decoder is not significant in comparison to the amount of

other memory traffic generated when executing the Java code.

The results in Figure 7.4 do not show the absolute timings, which did increase

by 35% over the single cycle model when running with a data memory latency of 2.

Figure 7.4: Result of Varying Memory Latency.

7.3.3 Asynchronous Timing

Figure 7.5 shows the result of applying an asynchronous timing profile to the Java

decoder. Previous simulations had a fixed cycle time for the Java decoder, 100 simu-

lation time units per RISC instruction generated. Timings were applied to individual

operations within the decoder, such as RISC instruction generation, fetching bytes

from the word buffer, updating stack cache state and decoding the byte-code. These

timings were based upon timings observed in the hardware JASPA implementation

described in Chapter 4. The worst case cycle time is still 100 simulation time units,

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 125

matching the synchronous model.

The results show quite clearly that relative to the synchronous model, the fold-

ing decoder with branch optimisations performs with increased efficiency using the

asynchronous timing profile. A 10% reduction in execution time is achieved over the

synchronous pipeline model. This is quite an achievement, as the improvement can

be observed even when combined with stalls in the pipeline caused by other stages.

Timing in the rest of the pipeline remains the same as in previous simulation runs,

and the execute unit timings do not take into account early completion of arithmetic

operations.

The reason for the efficiency gain is that operations within the self-timed Java

decoder now overlap better with communications with other pipeline stages. Incom-

ing instruction words from fetch, and output of RISC instructions to the execute

unit overlap when Java decode cycle times are small, hiding the decoding latency.

Instructions issued in the shadow of branches also are processed much more quickly.

Figure 7.5: Asynchronous Decoder Performance.

Timings for the asynchronous decoder involve the assumption that for some

cases it is possible to manage stack operations more efficiently. The reduction in

cycle time for the Java decoder block has allowed benchmarks to run faster than in

the synchronous pipeline. The timing assumption is based upon the synchronous

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 126

implementation not employing further parallelism to speed up the Java decoder. The

problem with any improved synchronous implementation is that the whole pipeline

would need to be clocked faster to see the improvement. Performance was improved

in the asynchronous pipeline without without modifying any other pipeline stages.

An asynchronous approach has provided the benefit of a reduced complexity

implementation, using a simple serial stack management unit, with an increase in

performance over an equivalent synchronous system. The serial approach also aims

to reduce the power consumed. A more parallel Java decoder block is possible

and is almost certainly necessary in a synchronous implementation. The details

of power consumption and complexity need to be explored at the circuit level to

clarify what performance benefits are achievable and at what power and area cost.

Any performance increase possible will likely come at a high cost as managing stack

operations would involve managing many more possible states. A more parallel

decoder may however be a viable approach to improving performance in both the

synchronous and asynchronous systems.

7.3.4 Conclusions

An increase in Java decoder efficiency of around 10% has been achieved with the

new folding branch optimisation. Simulation results show that this can be improved

by a further 10% by taking advantage of a self-timed decoder design.

Experiments with memory latencies showed that the current byte-code folding

scheme, does not really provide a significant reduction in memory operations over

the simple stack cache approach. Further reductions could possibly be achieved with

an improved approach to folding.

7.4 Improving Byte-Code Folding

Folding using the existing stack cache makes efficient use of registers compared to a

dedicated set of registers for local variables. A problem observed during simulations

is that these variables do not necessarily remain in the cache for very long, being

overwritten indiscriminately. The perfect variable cache model simulated, shows

a further 10 to 15% can be taken off execution times if the cost of local variable

accesses is minimised. In order to improve on this approach, local variables should

be protected as much as possible in the stack cache.

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 127

To avoid overwriting local variables in the stack cache a table of local variables

can be kept, as in the current folding decoder. This table can be checked before

writing temporary operand stack values so that they are not overwritten. This

approach requires that the operand stack to be cached in an arbitrary not necessarily

sequential set of registers. This can be achieved by maintaining a second table of

registers currently in use in the stack cache.

Duplication of local variables in the cache should also be avoided to improve the

usage of registers. In the original folding scheme, this was encouraged, to prolong

the existence of cached values. This would not be necessary in the new scheme, as

locals are preserved due to flexible allocation of registers for the operand stack.

This new approach to caching the stack and local variables in a shared register

space makes more efficient usage of any registers available for the cache. This is

especially important in architectures with more registers, or in an extended execute

unit made to support the Java decoder.

7.5 Summary

A series of branch optimisations has been presented, providing a 10% decrease in

execution time for the Java benchmarks. This optimisation provides some relief from

the problems caused by having a decoupled Java decoder, maintaining state early

in the processor pipeline. It may be better to implement a system of interlocking

between Java decode and execute when issuing branches, in order to reduce the

excessive cost of decoding in the shadow of taken branches. This is shown most

clearly in the Arith benchmark, where the goto byte-code takes an average of 15

Java decoder cycles to execute.

The self-timed Java decoder model, highlighted the varying complexity of Java

decode operations over different byte-codes. This has shown that a self-timed Java

enabled processor core can make efficiency gains over its synchronous counterpart,

even using the same translation algorithm.

The proposed new folding solution, with separate shared allocation of stack and

local variable registers makes much better use of available resources. Importantly the

scheme would scale better where more registers are available, this was shown to be

a drawback of the current folding approach. This technique should get closer to the

figures achieved with the perfect variable cache while retaining a low implementation

cost.

CHAPTER 7. IMPROVED INSTRUCTION FOLDING 128

In order to improve performance further, over the suggested methods in this

chapter, Java support is really needed in the execute unit. The philosophy of being

able to extend existing processors with a portable Java decoder extension brings

the limitation of not being able to observe execution state. This is most apparent

when dealing with branches. The shadowing issues determine that the stack and

local variable caches must be flushed to memory on all branches, so they are not

corrupted by shadowed byte-codes. If the execute unit maintained the state of

the cache, the flushes could be avoided as shadowed operations would not be of

the correct instruction colour. If flushes were removed, the number of memory

operations for loading and storing temporary stack values and local variables would

be reduced dramatically.

Chapter 8

Conclusion

Accelerating Java execution in embedded systems is important due to its widespread

use in many application areas. Hardware support for Java is important for systems

with small memory footprints and requiring low power operation. They can provide

increased execution efficiency, while maintaining a compact virtual machine infras-

tructure. Areas where Java is a standard in embedded systems include: mobile

phones, smart-cards and next generation video disc players.

Implementing acceleration as an extension to a processor architecture is an low

cost approach taken in the ARM architecture. This thesis has shown that the basic

decoding system can be extended to improve performance making better use of

registers in RISC load store architectures. It has also been shown that a self-timed

approach to processor design can be leveraged in this application area, due to the

nature of Java byte-code to RISC instruction translation.

Investigation into the nature of Java aware processor pipelines was supported by

the implementation of a custom simulation environment. This allowed for experi-

ments with varying synchronous and asynchronous timing models. The simulation

system devised provided support for these timing models but at simulation rates

two-orders of magnitude faster than the gate level simulations of the initial hard-

ware decoder design.

8.1 Architectural Simulation

Implementing a system level architectural simulation model provided support for

rapid construction, exploration and evaluation of Java decoder designs. Flexibility

was provided in terms of modelling timing for self-timed and synchronous models.

129

CHAPTER 8. CONCLUSION 130

8.1.1 Timing Model

A simplified discrete event simulation environment was implemented, without the

need for a centralised event queue. The event queue was replaced by a system of

communicating Ada tasks, synchronised with a null message system when required.

This distributed simulation environment is capable of running across multiple pro-

cessors, although during tests ran best on uni-processor machines. The parallel

nature however did provide increased throughput on multi-threaded Pentium 4 pro-

cessors.

8.1.2 Profiling

The software based environment used to implement the processor model, also allowed

for a sophisticated profiling system to be integrated with the model. This allowed

for the execution of byte-codes to be traced through the pipeline showing exactly

which individual and groups of byte-codes were executed during a simulation run.

Not only frequency of execution was recorded, but also the time spent executing

different sequences. A system was devised to correctly attribute time spent executing

byte-codes in the shadow of branches.

8.1.3 System Performance

Simulations of the fully profiled processor core provided typically simulated the

execution of tens of thousands of byte-codes per second. This is a vast improvement

over simulations of the JASPA hardware which proceeded at a rate of under ten per

second.

8.2 Instruction Folding

8.2.1 JASPA

Initial experiments with JASPA showed that there were weaknesses with the stack

cache translation system. It did not take advantage of the fact that local variables

loaded into registers were frequently not re-used when already cached.

CHAPTER 8. CONCLUSION 131

8.2.2 Improving the Stack Cache

Improvements to the stack cache system were implemented to keep track of local

variable values in the cache for re-use by other byte-codes. Further performance

gains were achieved through reducing the penalty associated with issuing branches.

These improvements led to a decrease in execution times of around 10% over a set

of simple benchmarks.

A new folding mechanism has been proposed, which will make better use of the

available registers, storing cached locals for as long as possible. This can be achieved

by allocating registers for the operand stack dynamically, around registers known

to contain local variables. It is predicted that this approach will be of benefit in

processors with more registers available for the stack and local cache.

To support Java execution in a processor pipeline with the best possible efficiency,

support in the execution unit is needed. Tests run throughout this thesis have shown

that problems with branch state, and the need to flush register caches at branches

puts a limit on what can be achieved with a decoupled Java decode unit. If stack and

local caching was handled in the execute unit, flushes could be avoided, as shadowed

instructions issued by the Java decoder would be ignored.

8.2.3 Asynchronous Design

Although the asynchronous folding decoder model was showed to give a further 10%

improvement in performance the main advantage to this implementation approach

is ease of system composition and design flexibility. A self-timed Java decoder is

free from worst-case timing constraints allowing much more exotic optimisations to

be carried out. This would simplify implementation of different folding algorithms,

and allow for performance trade-offs where complex folding operations could take

longer than the average decode cycle. Such optimisations are simply not possible in

a synchronous implementation without stalling for whole clock cycles.

8.3 Future Research

Areas of future research could include the following:

• Exploration of the proposed folding algorithm described at the end of Chapter

7. Is this approach more scalable, or do flushes at branches limit the efficiency

of any caching scheme.

CHAPTER 8. CONCLUSION 132

• Feedback of branch status from the execute unit to the Java decoder could be

looked at as a method of retaining cached operand stack and local variables

between branches. Such communications could be decoupled from the execute

stage, so not to interlock the pipeline.

• Extensions for managing Java decoder state at the execute unit could poten-

tially solve many of the problems with the current decoder model. Would this

be a viable approach or is the state required as byte-codes are decoded?

• Java extensions could be tested with accurate models of other embedded RISC

processor cores to assess suitability as a generic method for Java acceleration.

• Assessment of hardware implementation cost of the folding capable Java ac-

celerator.

Appendix A

Simulation Data

The following graphs show the cumulative time spent executing individual byte-

codes and groups of four byte-codes over the four benchmarks used in Chapter 6 and

Chapter 7. This information was extracted from the byte-code profiler implemented

as part of the simulated processor core, explained in detail at the start of Chapter

6.

The benchmarks, also described in Chapter 6, were run and detailed results

collected for the following cores:

JASPA An implementation of the standard stack cache decoder used in JASPA,

described in Chapter 4.

Folding1 The extended stack cache decoder described in Chapter 6.

Folding1-Branchopt The extended stack cache decoder with branch optimisations

described in Chapter 7.

Each core had uniform timing for pipeline stages, set at 100 simulation time units

per cycle.

133

APPENDIX A. SIMULATION DATA 134

Figure A.1: Arith Benchmark on JASPA, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 135

Figure A.2: Arith Benchmark on JASPA, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 136

Figure A.3: Arith Benchmark on Folding1, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 137

Figure A.4: Arith Benchmark on Folding1, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 138

Figure A.5: Arith Benchmark on Folding1-Branchopt, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 139

Figure A.6: Arith Benchmark on Folding1-Branchopt, Grouped Byte-code Break-
down.

APPENDIX A. SIMULATION DATA 140

Figure A.7: Fib Benchmark on JASPA, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 141

Figure A.8: Fib Benchmark on JASPA, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 142

Figure A.9: Fib Benchmark on Folding1, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 143

Figure A.10: Fib Benchmark on Folding1, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 144

Figure A.11: Fib Benchmark on Folding1-Branchopt, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 145

Figure A.12: Fib Benchmark on Folding1-Branchopt, Grouped Byte-code Break-
down.

APPENDIX A. SIMULATION DATA 146

Figure A.13: NFib Benchmark on JASPA, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 147

Figure A.14: NFib Benchmark on JASPA, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 148

Figure A.15: NFib Benchmark on Folding1, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 149

Figure A.16: NFib Benchmark on Folding1, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 150

Figure A.17: NFib Benchmark on Folding1-Branchopt, Single Byte-code Break-
down.

APPENDIX A. SIMULATION DATA 151

Figure A.18: NFib Benchmark on Folding1-Branchopt, Grouped Byte-code Break-
down.

APPENDIX A. SIMULATION DATA 152

Figure A.19: Sieve Benchmark on JASPA, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 153

Figure A.20: Sieve Benchmark on JASPA, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 154

Figure A.21: Sieve Benchmark on Folding1, Single Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 155

Figure A.22: Sieve Benchmark on Folding1, Grouped Byte-code Breakdown.

APPENDIX A. SIMULATION DATA 156

Figure A.23: Sieve Benchmark on Folding1-Branchopt, Single Byte-code Break-
down.

APPENDIX A. SIMULATION DATA 157

Figure A.24: Sieve Benchmark on Folding1-Branchopt, Grouped Byte-code Break-
down.

Bibliography

[1] Accelera. SystemVerilog Web Page. Accelera, 2005.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, J.-D. Choi P. Cheng,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, J. R. Russell T. Ngo, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño
virtual machine. IBM Systems Journal, 39(1):211–238, 2000.

[3] ARM ltd. Accelerating to Meet The Challenges of Embedded Java, 2002.

[4] ARM Ltd. ARM7TDMI (Rev 4) Technical Reference Manual, 2003.

[5] E. Fetzer B. Doyle, P. Mahoney and S. Naffziger. Clock distribution on a
dual-core, multi-threaded Itanium family microprocessor. In Proceedings of
International Conference on Integrated Circuit Design and Technology, 2005,
pages 1–6. IEEE Computer Society Press, may 2005. ISBN 0780390814.

[6] Andrew Bardsley. Balsa: An asynchronous circuit synthesis system. Master’s
thesis, Department of Computer Science, The University of Manchester, 1999.

[7] Andrew Bardsley. Implementing Balsa Handshake Circuits. PhD thesis, De-
partment of Computer Science, The University of Manchester, 2000.

[8] Graham Birtwistle and Al Davis, editors. Asynchronous Digital Circuit Design,
1995.

[9] Greg Bollella and James Gosling. The real-time specification for Java. Com-
puter, 33(6):47–54, 2000.

[10] P. Capewell and I. Watson. A RISC hardware platform for low power java.
In ”Proc VLSI Design 2005, 18th International Conference on VLSI Design”,
pages 138–143. IEEE Computer Society Press, jan 2005. ISBN 0769522645.

[11] Nazomi Communications. Nazomi communications web site.
http://www.nazomi.com/, 2002.

[12] Kishinevsky M. Kondratyev A. Lavagnao L. Yakovlev A. Cortadella, J. Petrify:
A tool for manipulating concurrent specifications and synthesis of asynchronous

158

BIBLIOGRAPHY 159

controllers. IEICE Transactions on Information and Systems, 80(3):315–325,
March 1997.

[13] F Wieland L Blume M DiLoreto P Hontalas P Laroche K Sturdevant J Tupman
V Warren J Wedel H Younger D Jefferson, B Beckman and S Bellenot. Dis-
tributed simulation and the time warp operating system. In 12th Symposium
on Operating Systems Principle, pages 77–93. IEEE Computer Society Press,
1987.

[14] Digital Equipment Corp. Alpha Architecture Handbook, 1992.

[15] Ahmed El-Mahdy, Ian Watson, and Greg Wright. Java virtual machine and
integrated circuit architecture (JAMAICA) - choosing the instruction set. In
Vijaykrishnan Narayanan and Mario L. Wolczko, editors, Java Microarchitec-
tures. Kluwer, 2002.

[16] P.B. Endecott and S.B. Furber. Modelling and simulation of asynchronous
systems using the LARD hardware description language. In 12th European
Simulation Multiconference, pages 39–43. Society for Computer Simulation In-
ternational, June 1994.

[17] S B Furber. The return of asynchronous logic. Technical report, Department
of Computer Science, University of Manchester, 1993.

[18] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. AMULET1:
A micropipelined ARM. In Proceedings IEEE Computer Conference, 1994.

[19] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver.
AMULET2e: An asynchronous embedded controller. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
290–299. IEEE Computer Society Press, 1997.

[20] J.D. Garside, W.J. Bainbridge, , D.A Edwards, S.B. Furber, J Liu, D.W. Lloyd,
S. Mohammadi, J.S. Pepper, O. Peltin, S Temple, and J.V. Woods. AMULET3i
- an asynchronous system-on-chip. In Sixth International Symposium on Asyn-
chronous Circuits and Systems, pages 162–175. IEEE Computer Society Press,
2000.

[21] APT Group. LARD homepage. http://www.cs.manchester.ac.uk/
apt/projects/tools/lard/, 2005.

[22] Tom R Halfhill. ARM strengthens Java compilers. Microprocessor Report, July
2005.

[23] David Hardin. Real-time objects on the bare metal: An efficient hardware
realization of the Javatm virtual machine. In ISORC, pages 53–59, 2001.

BIBLIOGRAPHY 160

[24] Jean D. Ichbiah, Bernd Krieg-Brueckner, Brian A. Wichmann, John G. P.
Barnes, Olivier Roubine, and Jean-Claude Heliard.

[25] IEEE. VHDL Language Reference Manual, IEEE Standard 1076. IEEE, 1988.

[26] IEEE. Verilog Language Reference Manual, IEEE Standard 1364. IEEE, 2001.

[27] The Open SystemC Initiative. Systemc homepage. http://www.systemc.org/,
2005.

[28] L Janin. Simulation and Visualisation for Debugging Large Scale Asynchronous
Handshake Circuits. PhD thesis, Department of Computer Science, The Uni-
versity of Manchester, 2005.

[29] L Janin and D Edwards. Software visualisation techniques adapted and ex-
tended for asynchronous hardware design. In 9th International Conference on
Information Visualisation, July 2005, London. IEEE Computer Society Press,
2005.

[30] D Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, July 1985.

[31] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[32] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification (First
Edition). Sun Microsystems, 1996.

[33] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification (Sec-
ond Edition). Sun Microsystems, 1999.

[34] Vulcan Machines Ltd. Vulcan machines ltd web site.
http://www.vulcanasic.com/, 2005.

[35] Harlan McGhan and Mike O’Connor. PicoJava: A direct execution engine for
Java bytecode. IEEE Computer, 31(10):22–30, October 1998.

[36] Jayadev Misra. Distributed discrete-event simulation. ACM Comput. Surv.,
18(1):39–65, 1986.

[37] S. M. Nowick. MIMIALIST: An environment for the synthesis, verification and
testability of burst-mode asynchronous machines. Technical report, Computer
Science Deptartment, Columbia University, 1999.

[38] L A Plana, P A Riocreux, W J Bainbridge, A Bardsley, J D Garside, and
S Temple. SPA - a synthesisable Amulet core for smartcard applications. In
Eighth International Symposium on Asynchronous Circuits and Systems, pages
201–210, 2002.

BIBLIOGRAPHY 161

[39] Robert A Duff (eds) S Tucker Taft. Ada 95 reference manual: Language and
standard libraries, international standard iso/iec 8652:1995(e). Lecture Notes
in Computer Science, 1246, 1997.

[40] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time
Systems. PhD thesis, Vienna University of Technology, 2005.

[41] T. Fischer R. Riedlinger T.J. Sullivan S.D. Naffziger, G .Colon-Bonet and
T. Grutkowski. The implementation of the Itanium 2 microprocessor. IEEE
Journal of Solid-State Circuits, 37(11):1448–1460, 2002.

[42] Velocity Semiconductor. Velocity semiconductor web site.
http://www.velocitysemi.com/, 2005.

[43] Bruce D. Shriver and Bennett Smith. The Anatomy of a High Perfor-
mance Microprocessor (Interactive Book/CD-ROM): A Systems Perspective
with CDROM. IEEE Computer Society Press, Los Alamitos, CA, USA, 1998.

[44] Jens Sparsø and Steve Furber, editors. Principles of Asynchronous Circuit
Design: A Systems Perspective. Kluwer Academic Publishers, 2001.

[45] Sun Microsystems Computer Corporation. The Java Language Specification,
1995.

[46] Sun Microsystems Inc. picoJava-IITM Microarchitecture Guide, 1999.

[47] Sun Microsystems Inc. The Java HotSpot Virtual Machine, 2001.

[48] Sun Microsystems Inc. Project Monty Virtual Machine, 2002.

[49] Ajile Systems. Ajile web site. http://www.ajile.com/, 2002.

[50] Digital Communication Technologies. Lightfoot 32-bit java processor core prod-
uct specification. http://www.xilinx.com/, 2001.

[51] G. Theodoropoulos and J. V. Woods. Analyzing the timing error in dis-
tributed simulations of asynchronous computer architectures. In Proceedings
1995 EUROSIM Conference, EUROSIM95, Vienna, Austria, pages 529–534.
IEEE Computer Society Press, sep 1995. ISBN 0444822410.

[52] Georgios K. Theodoropoulos. Distributed simulation of asynchronous hardware:
the program driven synchronization protocol. J. Parallel Distrib. Comput.,
62(4):622–655, 2002.

[53] Kees van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI
Systems. Cambridge University Press, 1994.

[54] Zhongchuan Yu. An Investigation into the Security of Self-timed Circuits. PhD
thesis, Department of Computer Science, The University of Manchester, 2004.

