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Abstract

Compilers have been an area of research since the early stage of computers’ development.

The introduction of multicore and multiprocessor architectures creates a new field of

research. Modern Compilers and Virtual Machines can benefit from these architectures.

The introduction of parallelism during compilation can improve significantly the

performance of Virtual Machines. This thesis examines the advantages of parallelizing

the Jikes Research Virtual Machine. The parallelization will be applied in two different

parts. The first part is the BootImage creation and the second part is the Runtime

compiler.
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1. Introduction

This thesis introduces the functionality of the Jikes Research Virtual Machine (Jikes

RVM) [1, 20] as well as the subsystems that can be parallelized in order to achieve better

performance. The work has been carried out in the Jamaica Research Group at the

University of Manchester.

1.1 Scope and Objectives

The recent development of multicore and multiprocessor computers has defined new

requirements for the software to be implemented. Programmers now must take advantage

of these high performance computers by embedding parallelism in their programs. An

attempt was made to detect the segments of code that could be executed in parallel in

order to improve Jikes RVM’s performance. The two main parts which were rewritten to

be parallel are the BootImage creation and the Runtime Compiler. An effort was made

in order to enhance not only the performance during the bootstrap of the Jikes RVM but

also the performance of the Runtime System which results in faster compilation of source

code due to parallelism. The objectives of the work were to examine the behavior of the

Jikes RVM in multithreaded environments while using various techniques. The factors

that influence our results had to be analyzed and solutions to any potential drawbacks had

to be implemented.
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1.2 Organization of the thesis

Chapter 2 discusses the structure of the Jikes RVM focusing on the optimizing compiler,

the BootImage Writer and the Adaptive Optimization System.

Chapter 3 discusses in detail the parallelization of the BootImageWriter as well as the

parallelization of the Optimizing compiler.

Chapter 4 discusses in detail the parallelization of the Runtime Compiler including the

results.

Chapter 5 states the conclusions and the considerations about the work. It also suggests

potential future work that maybe done, derived from the results.
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2. The Jikes Research Virtual Machine

The Jikes Research Virtual Machine is derived from IBM’s internal project called

Jalapeno [2]. In 2001 IBM donated the software to the Open Source Community.

Currently it comprises an Open Source testbed virtual machine for Java written in

Java. It encompasses a variety of sophisticated features such as an optimizing

compiler, adaptive optimization system (AOS) [4], Garbage Collection framework

and Thread Scheduling scheme.

Currently Jikes RVM comprises an important system where new techniques

concerning virtual machines can be applied. A significant number of Universities

and Institutions use it in order to employ innovative techniques on dynamic

compilation, garbage collection and thread scheduling.

2.1 Structure Overview

The Jikes RVM consists of four core subsystems [19, 3]:

The Run-time subsystem provides functionality concerning the run-time aspects of

Jikes RVM. It is mostly written in Java providing services such as I/O, exception

handling, dynamic class loading, reflection, etc. All the services are provided

through Jikes RVM Magic class.

The Thread and Synchronization subsystem provides functionality concerning

the threads implementation and scheduling in Jikes RVM. The Jikes RVM creates

pthreads and assigns a Virtual Processor object on each one of them. All java

threads are then multiplexed on the virtual processors. Shared queues are held in

order to support the interconnection among the threads.
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The Memory Management subsystem provides the functionality necessary for the

allocation and collection of the system’s objects. All the memory management tools

are integrated in a single unified library called MMTK [11, 17] which includes a

variety of GC mechanisms.

The Compiler subsystem includes the various compilers of the Jikes RVM. Two

types of compiler exist. Firstly, the bytecode to native code compiler which is fast

but performs no optimization (Baseline/Quick compiler) and secondly the

optimizing compiler which compiles segments of code using optimization

techniques with the use of Intermediate Representation (IR) [10, 13]. The

optimizing compiler is part of the adaptive optimization system (AOS) which

performs dynamic optimization while executing source code.

The fact that Jikes RVM [14] is written in Java results in its incapability to bootstrap

itself. To provide a solution to this problem Jikes RVM constructs the BootImage

which is a set of predefined core classes necessary to initialize the rest of the

system. An ordinary Java program called BootImageWriter constructs a snapshot of

the entire system by compiling and writing the core services’ classes in a file called

BootImage. An external pre-installed Virtual Machine is used in order to construct

the BootImage.
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2.1.1 Runtime System
2.1.1.1 Exception Handling

Depending on the nature of the exception, Jikes RVM responds accordingly. If the

exception is a normal Java Exception, Jikes RVM can handle it internally [7]. If the

exception is generated from the hardware (division by zero, null pointer exception,

array index out of bounds) then a hardware interrupt is created and a C handler

delivers it to Jikes RVM. The corresponding exception is built and then it is

delivered to the deliverException method. The tasks that this method

performs are to save the object’s state and data in order to retrieve them later and to

deliver the exception to the appropriate catch block.

2.1.1.2 The MAGIC Class

In order for the Jikes RVM to communicate with the underlying Operating System

(OS) a special MAGIC class is used. The methods in the MAGIC class have empty

bodies and are identifiable by the compilers. While compiling, the correspondent

machine code of every MAGIC method is inserted in order to bypass the type

system. Users can not invoke MAGIC methods which consequently guarantee Jikes

RVM’s integrity. Some services that MAGIC methods can implement are: Object

Allocation, Garbage Collection, Dynamic Linking, Exception Handling, Reflection

and I/O.

2.1.2 Thread and Synchronization System

The Jikes RVM multiplexes Virtual Processor objects (VM_VirtualProcessor)

on operating system’s pthreads. A Virtual Processor object is assigned for each

pthread. Java threads are then multiplexed on the Virtual Processor objects.

Various queues are held on every Virtual Processor. The total number of the VPs

can be defined either by passing an argument while running the Jikes RVM or by

editing the source code. A number of queues containing the threads that are not

running are held on every Virtual Processor.
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Such queues are:

• idlequeue contains an idle thread which runs when the VP does not have

any other thread to execute.

• readyqueue contains threads ready to be executed.

• transferqueue, which can be accessed from other VPs too, contains the

threads that are transferred to a particular VP from other VPs. It is used for

load balancing.

Considering thread scheduling, Jikes RVM does not use any particular time slicing

algorithm. Each running thread stops either after a voluntarily call to a yield method

or if it is blocked by a lock. Jikes RVM supports three kinds of locks:

• Processor locks are Java objects (VM_ProcessorLock) which contain a

single field that states the VP that owns the lock. It is mostly used for load

balancing.

• Thin locks are bits stored in the header of an object. They are used as a

locking mechanism in case multiple threads contest for a particular object.

• Thick locks are Java objects. They are "heavyweight" implemented

containing numerous queues and are used when multiple requests from

multiple users exist for a specific object.

2.1.3 Memory Management System
As already mentioned, Jikes RVM integrates all the GC mechanisms and memory

managers in a unified platform called MMTK. Numerous Garbage Collectors such

as incremental, conservative, real-time and concurrent are contained in the MMTK.

In general 55 collector-neutral mechanisms, 5 GC sub-components and 8 GC

algorithms are included in the MMTK.
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2.1.4 Compiler System
Two types of compilers exist in the Jikes RVM [1, 19].

• The Baseline compiler compiles the source code into native code without

performing any optimizations. The compiled code is generated through one

pass. The VM_BaselineCompiler class contains switch statements that

generate the bytecodes through the architecture specific VM_Compiler

methods.

• The Optimizing compiler provides high level optimizations. It constructs

an Intermediate Representation (IR) on which various optimization phases

are performed until the optimized IR will be translated into machine code.

The parallelization of the Optimizing compiler is one of the key issues this

thesis will examine and therefore it is presented in detail in section 2.3.

Another type of compiler, which is implemented only for PPC architecture, of the

Jikes RVM is referenced in its documentation:

• The Quick compiler is a middle solution between the Baseline and the

Optimizing Compilers. It generates code through one pass, like the Baseline

compiler, performing some primitive optimizations.

2.2 The BootImageWriter
As already mentioned, the BootImageWriter is an ordinary Java program that

constructs the BootImage. The BootImage is a file which contains compiled core

classes of the Jikes RVM necessary for its bootstrap. During the build of the Jikes

RVM the BootImageWriter compiles and writes into a file all these core classes.

The way the core classes (primordials) are compiled is defined by the type of build

selected while running the jconfigure command. Currently there are four main

configurations for the Jikes RVM:

• The prototype configuration excludes the optimizing compiler and the

adaptive optimization system. Therefore is simple and fast but provides

poor performance.
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• The prototype-opt is similar to the prototype configuration including the

optimizing compiler and the adaptive optimization system.

• The development configuration includes the optimizing compiler and the

adaptive optimization system resulting in a fully functional RVM. Building

the system using this configuration will significantly prolong the build time.

The compilation of the BootImage is performed by the optimizing compiler.

This fact differentiate the development configuration from the prototype-opt

configuration where the BootImage is build by the baseline compiler.

• The production configuration is similar to the development one excluding

all the assertions. This configuration is the one with the highest performance

and takes approximately the same time to build as the development

configuration.

2.3 The Optimizing Compiler
The optimizing compiler [4, 12] is one of the core elements that compose the Jikes

RVM. It provides high level optimizations with the use of the Intermediate

Representation (IR).

2.3.1 The Intermediate Representation
The fundamental unit of compilation and optimization in the Jikes RVM is a single

method. Each method’s bytecodes are translated into the IR and all the optimization

phases are applied to it until the method is finally translated to machine code. Three

categories of IR exist in the Jikes RVM:

• High-Level IR (HIR) is similar to bytecodes. The operations applied to HIR

are similar to those applied on bytecodes. It is a register-based representation

providing more flexibility than tree or stack based representations.

• Low-Level IR (LIR) introduces the Jikes RVM details into the IR. Such

details are the Jikes RVM object model, the write barriers, etc.

• Machine-Level IR (MIR) is similar to the target assembly language. It is the

last step before the code is translated to machine code.
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Optimizations are performed in each of these IRs.

The sequence of the steps that are applied into a single method is depicted in figure

2.1.

Figure 2.1: IR flow from Bytecode to Final Assembly

2.3.2 Method Compilation

All the optimization phases performed on a method during its compilation are called

Compiler Phases. An instance of the OPT_CompilationPlan class contains all

the necessary information to compile a method. The necessary elements for a

compilation to be performed are:

• The optimization plan which contains all the optimization plan elements.

Each individual optimization plan element is an instance of the

OPT_CompilerPhase class. Each element represents one optimization

phase that might be performed on the IR of a method. The optimization

plans then are wrapped in the
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OPT_OptimizationPlanAtomicElement or

OPT_OptimizationPlanCompositeElement class (both classes

are subclasses of the OPT_OptimizationPlanElement abstract

class).

• The IR of a method. The IR of a method is an instance of the OPT_IR class.

All the optimizations are performed on this object which is altered until its

final transformation which is the machine code.

• The method compiled which is an instance of the VM_NormalMethod

class.

• The Options object that is used for the compilation which is an instance of

the OPT_Options class.

The steps that Jikes RVM does in order to compile a method are the following:

1. It retrieves a new Optimization Plan. The Optimization Plan is an array

which contains OPT_OptimizationPlanElement objects

(OPT_OptimizationPlanElement[]).The retrieval of the

Optimization plan is performed by the OPT_OptimizationPlanner

class. This class contains the createOptimizationPlan() method which

returns a new Optimization Plan. It encloses all the

OPT_OptimizationPlanElement objects in an array under the

guidance of the OPT_Options object that is passed as an argument to

the method. For each element its shouldPerform() method is invoked in

order for the optimization planner to decide if that compiler phase must

be included in the optimization plan or not. The shouldPerform() method

checks in the OPT_Options object if a specific compiler phase has to

be encountered or not.

2. It constructs the OPT_CompilationPlan object which contains the

method to be compiled, the optimization plan and the compilation

options.
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3. It invokes the optimizing compiler to compile the compilation plan and

to return the compiled method (OPT_Compiler.compile(cp)).

The above procedure is performed for all the methods that have to be compiled.

Figure 2.2 depicts the compilation procedure.

Figure 2.2: Optimized compilation of a single method

Having that specific architecture in the optimizing compiler, it is obvious that

multiple optimization plans for different methods will share the same optimization

elements. To avoid interference among the states of different compiler phases, when

we want to create a new optimization plan for a new method, the newExecution()

method of each compiler phase is invoked. As will be demonstrated in section 3.2,

the original implementation of the newExecution() method was causing problems

during the parallelization of the optimizing compiler.
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2.4 The Adaptive Optimization System (AOS)

The optimizing compiler discussed in section 2.3 is the key component of the heart

of Jikes RVM which is the Adaptive Optimization System [1, 4, 5]. The AOS

performs on line monitoring and measuring of the methods that are being compiled.

The general idea behind it is to track "hot" methods (methods that are being used

frequently) and to recompile them using progressive optimization levels. The

general architecture of the AOS is illustrated in figure 2.3.

Figure 2.3: Overview of the AOS [1]

• The On-Line Measurement System monitors the methods’ execution using

sampling and profiling techniques. Information about methods is written in

the AOS Database. The profiling information is forwarded to the controller

subsystem which in turn decides the actions that must be performed for a

particular method (Optimizing recompilation or Modification of the profiling

techniques).

• The Controller System then constructs the recompilation optimization plan

and passes it to the optimizing compiler for recompilation. The Controller

System determines which methods should be recompiled and at what

optimization level.
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The AOS of the Jikes RVM is composed of five Java threads [6]:

• Three organizer threads that perform the monitoring and are part of the on-

line measurement system.

• The controller thread which is the main thread for the controller system and

performs all the coordination between the on-line measurement system and

the recompilation system.

• The compilation thread which performs the recompilation of "hot" methods.

The communication among the various threads is performed via shared blocking

priority queues.

The following sections will discuss the components of the AOS in more detail.

2.4.1 The Controller Subsystem
The Controller system [5] is the coordinator of the AOS. It organizes the

Runtime Measurement system along with the Recompilation system. It

initializes all the profilers used by the measurement system defining the form of

profiling, the duration and the rules. It also constructs recompilation plans

according to the information gathered from the AOS Database and the Profiling

subsystem. These recompilation plans are forwarded to the recompilation system

which performs the compilation of "hot" methods.

Depending on the information gathered by the AOS Database and the Runtime

Measurement Subsystem the controller may decide either to continue profiling

using a different strategy or to recompile the method.

The main part of the Controller Subsystem is the Controller Thread. This is a

normal Java thread whose primary task is to run an infinitive loop and dequeue

events the On-line Measurement subsystem has placed. If no events are placed

in the queue then the controller thread is blocked until a new event is placed. All

the events implement an interface which provides the process method which the

controller calls.
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2.4.2 The Runtime Measurement Subsystem
The role of the Runtime Measurement subsystem is to monitor the execution of

the methods and to gather information regarding each individual method. After

that, it forwards the information either to the AOS database for storage or to the

controller subsystem for the decision making. A more detailed view of the

Runtime Measurement System is illustrated in figure 2.4.

Figure 2.4: Overview of the Runtime Measurement System [1]

As shown in figure 2.4 the Runtime Measurement System encloses several

subsystems that perform data profiling. These systems perform instrumentation

of the executing code, VM and hardware performance monitoring. The outcome

of these subsystems is raw profiling data which in turn are analyzed by separate

threads, called organizers. The organizer threads (VM_Organizer) are

created by the Controller.
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2.4.3 The Recompilation Subsystem
The Recompilation subsystem consists of a single recompilation thread

(VM_CompilationThread). As already mentioned the controller system

places compilation plans of methods to be executed in the compilation queue.

The compilation thread extracts these compilation plans from the queue and

executes them. The main components of a compilation plan are:

• The optimization plan, which defines the nature of the optimizations

that must be applied on a method during its recompilation.

• The profiling data, derived from the Runtime Measurement system,

which directs the feedback-directed optimizations created by the

optimizing compiler.

• The instrumentation plans, which indicate any potential intrusive

instrumentation that should be inserted to the generated code by the

optimizing compiler.

The controller thread runs an infinitive loop checking the compilation queue. If

any available plan exists then the controller thread retrieves it and executes it. If

not then the thread is blocked until the controller places a plan in the queue.

2.4.4 The AOS Database
The AOS Database acts as the repository of the adaptive optimization system.

The various subsystems that comprise the AOS store in the AOS Database

decisions that have been taken concerning certain methods, events or analysis

results.
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3. Parallelizing the BootImageWriter

The parallelization of the BootImageWriter is the first step that has to be taken

in order to parallelize the Runtime Compiler. While building the Jikes RVM

using the development mode the optimizing compiler is compiled and used for

the compilation of the primordials. An attempt to parallelize the

BootImageWriter would benefit us in the following two aspects:

• Firstly, we would achieve a speedup during the compilation of the Jikes

RVM using the time consuming development mode. It takes

approximately 13 minutes when compiled single-threaded.

• Secondly, the parallelization of the BootImageWriter would provide

sufficient debugging mechanisms while attempting to parallelize the

optimizing compiler. During the BootImage compilation, the threads

created are pure Java threads and an external virtual machine is used.

Therefore the debugging mechanisms provided by the VM can be used

in order for errors to be traced and fixed.

3.1 Previous Work
Initially, the BootImageWriter was made parallel for the baseline compiler.

Unfortunately, this support became broken and the system was never made to

run for the optimizing compiler. The main reason behind the incapability of the

optimizing compiler to run in parallel was the original implementation of the

newExecution() method of the OPT_CompilerPhase class as explained in

section 3.2.
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3.2 The Clone Problem
As explained in section 2.3.2, during the compilation of a method by the

optimizing compiler, an optimization plan is created and applied on each

individual method. Apparently, different methods will need to share the same

optimization phases (OPT_CompilerPhase). In order to achieve that, the

original implementation of Jikes RVM was calling the newExecution() method

of each compiler phase that has to be shared among different optimization plans.

The newExecution() method returned a clone instance of the compiler phase as

shown in figure 3.1.

Figure 3.1: Former implementation of the newExecution method

The use of the clone() method [15, 16] in order to return a new compiler phase

was the reason why the optimizing compiler could not run in parallel. The

clone() method as implemented in the Java programming language returns

shallow copies of fields instead of deep copies.
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The problem caused by the shallow copy is illustrated in figure 3.2.

Figure 3.2: Problem caused by clone’s shallow copies

In a potential case, we have two threads: T1 and T2. A compiler phase is created on

T1 which references an object a. With the original implementation of the

newInstance() method, if thread T2 wants to create a new compiler phase similar to

the compiler phase of T1 then a new compiler phase will be created by the clone

method but the reference to object a will remain the same. This results in the two

threads accessing and modifying the same object a.

The compiler phases reference other objects which are shared among cloned

versions. This causes severe problems during compilation with the optimizing

compiler as shared objects are modified among different compiler phases. For

example instances of the OPT_Options class are referenced by compiler phases.

Using clone, multiple threads change the fields of these objects which consequently

results in methods compiled with different options than they were supposed to.

http://www.go2pdf.com


CHAPTER 3 PARALLELIZING THE BOOTIMAGE WRITER 28

3.3 Implementation
In order to enable proper separation of the compiler phases, so they can be compiled

in parallel, we had to replace the clone method’s shallow copies with deep copies.

The solution implemented to deal with this problem is the use of the newInstance()

method which returns deep copies.

An abstract method getClassContructor() has been added to the

OPT_CompilerPhase class. Each compiler phase overrides that method returning the

Constructor object of the specific compiler phase. The Class(“…”).forName()

method returns the runtime class descriptor of a class. Then we call the

getContructors() method in order to retrieve the constructor of the particular

compiler phase. The implementation of the newExecution() method in the

OPT_CompilerPhase is shown in figure 3.3.

Figure 3.3: Current implementation of the newExecution method

The newExecution() method now returns a new instance of the compiler phase. The

deep copy is achieved by assigning all the fields of the returned classes to separate

objects. Every compiler phase that does not require a deep copy because it has no

fields, overrides the newExecution method returning this (i.e. compiler phases with

no fields are shared among threads as they pose no hazard).
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Other implementation details in order to succeed in the parallelization of the

optimizing compiler are:

• Extra segments of synchronization had to be added on shared variables and

data structures. The most important synchronization occurs in the BURS

algorithm [18].

• In order to enable the separation of the methods being compiled in order to

compile them in parallel, discrete optimization plans for every method must

be formulated. This is implemented by creating two vectors. The first vector

stores the optimization plan of every method while the second stores the

compilation options for every method. The access to these two vectors is

synchronized. When a method needs to be compiled by the optimizing

compiler, a new optimization plan is created by the optimization planner

which is stored in the first vector. A cloned version of the master options is

also stored in the second vector at the same index as the optimization plan

was stored in the first vector. If a free optimization plan exists then it is

locked and used by the method being compiled. Otherwise the pre

mentioned procedure takes place.

• Redeclaration of the static variables to non-static in order not to be shared by

different compiler phases.

• Extra minor fixes had to be added too such as the report of additional

statistics (3.3.1) method and redeclaration of inner classes to outer.
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3.3.1 Jikes RVM design deficiencies

Objects which are instances of the OPT_CompilerPhase class implement the

reportAdditionalStats() method. The role of this method is to report additional

statistics concerning the optimized compilation of a method. The original

implementation of this method is:

• As already stated, each compiler phase (OPT_CompilerPhase) is

wrapped in an Atomic Element object

(OPT_OptimizationPlanAtomicElement). Each Atomic Element

has a reference to the compiler phase it contains through an instance

variable. The Atomic Element in turn contains two double instance variables

which are used to measure some additional statistics (counter1, counter2).

When the reportAdditionalStats() method is implemented in the compiler

phases, access to these double variables is made via the Atomic Element.

The first time the method is called, it works correctly. When the

newExecution() method is called then the link between the Compiler Phase

and the Atomic Element is lost due to re-initialization of all the fields in the

compiler phase. Therefore, during the compilation of the BootImage,

NullPointer Exceptions were indicating the lost of the connection between

the Compiler Phases and their Atomic Elements.

The solution implemented to solve that problem is the creation of a

HashMap which will contain the values of these two variables for all the

compiler phases. The HashMap will be initialized once during the creation

of the optimization plan and afterwards all the compiler phases will store in

this HashMap pair values (key: Name of the Compiler Phase, data: The

values of the two variables).

The above changes has been made in all the Compiler Phases that implement the

reportAdditionalStats() method.
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3.4 Results and Performance Issues
This section includes all the results and the performance issues obtained during the

study of the multithreaded BootImage compilation.

3.4.1 Hardware and Software
All the experiments have been carried out on the Antigua computer in the labs of the

Jamaica Research Group at the University of Manchester. Antigua is a dual CPU

Xeon hyper-threaded computer and therefore we could take advantage of its four

processor contexts.

The external JVMs used are: Sun’s VM version 1.5 and IBM’s JVM.

3.4.2 Results
The results gathered after compiling the BootImage single and multithreaded using

Sun’s VM are shown in table 3.1.

Table 3.1: Results of compiling the BootImage with

single or multiple threads (Sun JVM)

1 thread 2 threads 3 threads

Real time 13m21.241s 10m53.217s 10m24.801s

User time 17m27.601s 24m7.286s 28m58.989s

Sys time 0m17.701s 0m18.061s 0m17.805s

The results gathered after compiling the BootImage single and multithreaded using

IBM’s VM are shown in table 3.2.
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Table 3.2: Results of compiling the BootImage with

single or multiple threads (IBM’JVM)

1 thread 2 threads 3 threads

Real time 13m11.274s 10m12.808s 9m10.064s

User time 16m29.602s 21m57.422s 26m22.739s

Sys time 0m21.189s 0m23.793s 0m25.458s

These results are gathered by the application of Linux time command during the

compilation. The Real time is the actual clock time that passed from the start of the

compilation until its completion. The User time is the time the CPUs worked during

the compilation. Since the BootImage is compiled on a multicore environment, the

User time is the sum of all the times on each core.

Sun JVM

An approximate 20% decrease of the real time is achieved while compiling the

BootImage multithreaded. However, a 43% increase of the User time while

compiling with two threads and a 65% increase while compiling using three threads

is noticed.

IBM JVM

An approximate 20% decrease of the real time is achieved while compiling the

BootImage with two threads and an additional 10% decrease while compiling with

three threads. However, a 32% increase of the User time while compiling with two

threads and a 60% increase while compiling using three threads is noticed.

The behavior of the multi threaded model is better while using the IBM’s JVM. This

may be due to a better thread scheduling and synchronization scheme that IBM’s

JVM may use.
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3.4.3 Performance Issues
A first explanation of why we have this increase in the system’s user time was the

synchronization of the Java threads. In order to test our assumption we profiled the

compilation using the Netbeans profiler [23]. The output of the profiling is

illustrated in figure 3.4.

Figure 3.4: Netbeans profiler snapshot during BootImage Compilation

The two threads used for the BootImage compilation (BootImageWriter, Thread

0/1) are indeed run in parallel. The green color represents the threads in their run

state while the red color represents the threads in their monitor state. The overall

time the threads are in monitor state is approximately 1% of the overall execution

time which means that the synchronization segment of code added does not slow

down the compilation. Besides the Netbeans profiler, other commercial profilers

such as JProfiler [22] were used in order to confirm our results. All the profilers

produced the same output.

The profilers that profile Java programs reflect the situation and the synchronization

in the application level. They do not reveal what is happening on the actual contexts

of the computer. The output depicted in figure 3.4 is the same on multicore and on

single core computers. That fact indicates that although the threads in the

application level run in parallel, they do not necessarily run in parallel on the

hardware level. We tried to find profiling tools to research the compilation behavior

on the actual hardware but unfortunately no tools were available.
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Another noticeable element is that the Java runtime system understands when

executed in a multicore environment and automatically takes advantage of all the

available CPUs. This behavior was tested with the use of Linux mpstat command.

This command outputs the utilization on each core individually providing a clearer

image about the contexts’ utilization. While compiling using one thread, all the

contexts showed a utilization of 30% on average. These results confirmed that Java

uses all the available contexts while compiling in a multicore environment. When

the BootImage was compiled using more than one thread the utilization of the

contexts increased significantly. The corresponding contexts on which the separate

compilation threads were assigned produced a 99.9% utilization while the remaining

contexts had an average utilization of 70%. The Linux kernel was scheduling the

threads, cycling them on the contexts.

Another idea that could justify this increase in the user time might be a race

condition that was taking place among the running threads. The initial assumption

was the following: A thread (T1) is compiling one method which a second thread

(T2) tries to access at the same time. T2 can not realize that the method that it wants

to compile is being compiled by T1 and instead of waiting until the compilation

finishes and access the compiled method, it recompiles again the same method. In

order to check the validity of the assumption the total number of the methods being

compiled during the compilation of the BootImage was counted. Both for single and

multithreaded compilation the number of methods were equal (17999 methods).

This fact shows that no race condition takes place. If a race condition was taking

place the number of methods compiled would be greater in the multithreaded

compilation.

The next step was to find the distribution of the extra time on the compiling

methods. The strategy followed was moving from general compilation times to

more detailed compilation times. The result of this approach was the observation of

an increase of the compilation time of each compiler phase of each method while

compiling with multiple threads. Having in mind the amount of compiler phases
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applied on each method of every class being compiled, we can conclude that the

overall increase of the user time is the sum of the extra time spent on each compiler

phase.

Two other explanations of the increase of the user time during the multi-threaded

compilation may be:

1. The fact that Java takes advantage of all the available contexts while

compiling on multicore environment adds an overhead due to the thread

synchronization among the contexts.

2. The machine on which the measurements were taken has a shared cache

memory between its contexts. The fact that the compilation threads loads

data from the memory to the cache memory may cause the problem of cache

thrashing.

The BootImage writer is an ordinary Java program which means that the threads

created during the parallel compilation are ordinary Java threads. The VM used for

the BootImage compilation is the external VM that has to be preinstalled in order to

initialize the Jikes RVM. This results in the fact that all the scheduling and

synchronization mechanisms are not transparent compared to the Jikes RVM. Java

acts as a black box providing us with limited opportunities of investigating threads’

behavior.

The availability of a proper multiprocessor computer with shared cache memories

may have solved our questions concerning the multithreaded model.
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4. Parallelizing the Runtime Compiler
The parallelization of the optimizing compiler in the context of the BootImage

compilation was the first step for the parallelization of the Runtime Compiler. The

Runtime compiler in its current implementation uses one compilation thread to

recompile at a pre-specified optimization level the "hot" methods. The aim here is to

create multiple compilation threads in order to take advantage of multicore or

multiprocessor systems. The architecture of the AOS along with the changes made

in order to create multiple compilation threads will be introduced in the later

sections.

4.1 The AOS Architecture
As already introduced in section 2.4, the AOS is the framework that Jikes RVM

uses for adaptive compilation. The AOS encompasses four subsystems as shown in

figure 4.1.

Figure 4.1: Overview of the AOS [1]
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• The Runtime Measurement Subsystem profiles the execution of the

application producing data for the decision making regarding the

recompilation of frequent compiled (hot) methods.

• The Controller Subsystem is the backbone of the AOS. All the decisions,

regarding the nature of the profiling data gathered from the Runtime

Measurement subsystem along with the actions that have to be performed

concerning "hot" segments of code, are included in this subsystem.

• The Recompilation Subsystem performs the recompilation of "hot"

methods. This research focuses on this particular subsystem. The

Recompilation Subsystem includes the compilation threads which we want

to study. Currently a single compilation thread is initialized and run. The aim

is to create more that one and to find an efficient way of deciding their

number.

• The AOS Database which acts the role of the knowledge repository of the

AOS. Profiling data concerning execution code and recompilation plans are

stored in the database for future retrieval and study.

The communication between the sub-components of the AOS is made via

blocking priority queues. The subsystems communicate asynchronously via a

producer-consumer model.

The Adaptive Optimization System performs two major tasks: selective

optimization [6] (4.1.1) and feedback-directed inlining [6].
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4.1.1 Selective Optimization

The general idea behind the selective optimization is the discovery of segments of

code on which significant execution time is spent. The fundamental unit of

compilation and optimization in the Jikes RVM is a single method. Hence, all the

segments of code that will be optimized concern methods.

If these methods were compiled at an optimization level by the optimizing compiler,

then a significant speed-up of the system’s performance would be achieved.

Therefore, the AOS tries to find these "hot" methods and recompiles them with the

optimizing compiler. The new compiled methods are then installed in the system

and any potential future calls to these methods will invoke the optimized code.

In order for the Jikes RVM to identify "hot" methods, it installs a listener which

checks the executed code and records the methods that are being executed. The

listener checks the thread’s call stack at every yield point and records into a buffer

the method’s id that is being executed. When the buffer is full then the organizers

start working with the raw data the listener has gathered.

When the buffer becomes full, the listener suspends and the Hot Method Organizer

(VM_HotMethodOrganizer) starts processing the data. The Hot Method

Organizer holds a structure in which it stores the processed data. The data structure

(VM_MethodSampleData) records for every method (id) the number of times it

has been executed. When this task is completed for all the methods included in the

buffer, the Hot Method Organizer constructs an event for each method and places

them into the controller’s input queue. The events contain the total number of times

a method has been executed since the beginning of the execution. The Hot Method

Organizer then re-registers the listener and become suspended until the next buffer

is ready to be processed.
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The Controller, which periodically checks its input queue, dequeues the events and

processes them. The decisions that should be taken for each method are defined by a

cost-benefit model (VM_AnalyticalModel). The Controller may decide either

to recompile the particular method at an optimization level or to continue profiling

the method using a different strategy.

Two classes compose the controller. The VM_Controller class contains the

options of the controller subsystem. The VM_ControllerThread class which is

an ordinary Java thread, runs an infinitive loop dequeueing and processing events

placed in the controller input queue.

All the controller events implement an interface which provides the proccess

method. This fact provides a significant level of abstraction and extensibility to the

AOS. Any new events need only implement that interface in order to be added to the

AOS.

The cost-benefit model that governs the AOS is represented by an abstract class

(VM_AnalyticalModel) with several subclasses. Furthermore the recompilation

strategies are all implemented by extending the VM_RecompilationStrategy

or the VM_AnalyticalModel class.

If the controller decides to recompile a method, it creates an event and places it into

the recompilation queue. The event includes the method to be recompiled and the

optimization plan which will be applied.

The recompilation thread, which is the focus of this thesis, dequeues the event and

recompiles the method using the optimization plan included in the event. After the

recompilation of the method is finished, it installs the new compiled method for

future calls.
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Cost Benefit Model

The decision of whether or not a method should be recompiled at an optimized level

is taken according to a Cost Benefit Model [8]. The model is contained in the

VM_AnalyticalModel class. The following three measures are used for the

decision making:

For a method compiled at level i:

• Ti is the time that will be spent executing the method at that particular level

i.e. without performing any or more optimizations.

• Cj is the time spent recompiling the method at optimization level j.

• Tj is the time that the program will spend in executing a method after it has

been recompiled at optimization level j.

Then the comparison made is the following:

Cj + Tj < Ti

If the sum of the time spent while recompiling the method at optimization level j

and the future execution time of the method (after recompiled at level j) is less than

the execution time spent for the method without any recompilation, then the

controller recompiles the method. In other case the controller chooses not to

recompile the method.

The quantities that have to be calculated are unknowable in practice. The Controller

calculates these quantities using a simple model (VM_CompilerDNA). The

efficient estimation of Cost-Benefit values is still a subject of research.
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4.2 Implementation
The former implementation of the Jikes RVM uses one compilation thread to

perform the optimized recompilation of "hot" methods. The way that Jikes RVM

may take advantage of a multicore or multiprocessor machine is by creating

multiple recompilation threads. An effort was made to create multiple recompilation

threads using different methodologies. In order to decide the strategy that should be

followed concerning the creation of the multiple threads, the thread model of the

AOS had to be studied.

4.2.1 AOS Thread Model

When the AOS starts, five major threads are created. Apart from the various other

threads such as the application thread and the GC threads, three monitor threads,

one controller thread and one recompilation thread are created. The monitor threads

are mostly suspended on a wait queue. They are woken thanks to execution of

adaptive metric code inserted into the compiled code by the AOS. In general the

monitor loading is very light due to its role which is the incrementation of counters

and the insertion of data into tables.

The recompilation thread is most of the time suspended. It is woken when a lazily

compiled method is invoked or the AOS decides to recompile a "hot" method. The

invocation of a lazily compiled method is rare and may occur when the system is

bootstrapping. Therefore the loading is light. When the AOS decides to recompile a

method at an optimization level, the caller will be suspended until the end of the

compilation.

Regarding the other daemons that exist in the system, a finalizer thread, a debugger

thread and GC threads (one per Virtual Processor) are created. All of them are

mostly suspended in wait queues. The GC threads run only when everything else is

stopped. Therefore, they can be ignored when measuring the occupied VPs. The

finalizer threads run only after GC and only if a class requires their functionality.
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The debugger thread currently does not work, so it also can be ignored while

measuring the available VPs.

In conclusion, the threads that occupy the system most of the time are the

application threads and idle threads executing.

4.2.2 Techniques of creating multiple compilation threads

In order to create multiple compilation threads two techniques have been

implemented. The first technique is to measure the VPs that currently run idle

threads. Compilation threads will be created and assigned on these available idle

VPs. The second technique is the creation of custom threads. Considering the first

method an efficient way of measuring the available free VPs had to be found.

4.2.3.1 Measuring the available idle VPs

The scheduler of the AOS includes a mechanism that allows the identification of the

non-deamon threads (application threads) in the system. It has a counter which

shows the number of the active application threads in the system. If the counter hits

zero then the VM is terminated. Unfortunately, this mechanism does not reveal if

the active application threads are in running or in suspended state and therefore it

can not be used for measuring the free VPs.

Java [16] provides a method which returns the available processors of a system.

However, this method (Runtime.getAvailableProcessors()) returns the

total number of the processors that exist in the system.

Each VP contains a field that stores the active thread which currently runs on it. If

the active thread field is an instance of the VM_IdleThread,it means that this

particular VP currently runs no threads and therefore a new thread can be assigned

on it. This approach however has some drawbacks too. If a VP runs a daemon

thread such as a monitor thread and does not have any other threads in its wait

queue, the idle count will give a value which is an underestimate. The monitor
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thread after a short time will be suspended and the VP will be idle. Consequently a

better solution concerning the calculation of the idle VPs would be the measurement

of the daemons too, besides the idle threads. However two problems associated with

this solution does not allow us to use this technique. Firstly, the compilation threads

have to be excluded because of the amount of time they run and also because these

are the threads that have to be counted as running threads. Secondly, a running

daemon may be masking an application thread in the VP’s runnable queue. In order

to be able to count the daemons running on each VP and the application threads in

the runnable queue, a locking mechanism has to be used while checking the queues.

A VM_VirtualProcessorLock must be assigned to each VP while examining

its state. Due to performance issues, because of the load added by using the locking

mechanism, this solution is not recommended.

Considering the above issues, the most efficient solution in order to decide the

available VPs is the measurement of the VPs that currently run threads which are

instances of the VM_IdleThread.

A method has been added to the VM_Scheduler class which returns the number

of the available idle processors. The method added is the

getCurrentAvailableProcessors() which checks the processors[] vector and

increments a counter when a processor’s current thread is the idle thread. If no

processors are available one processor is returned in order for the compilation thread

to run.
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4.2.3.2 Using custom compilation threads

A new class has been added to the Jikes RVM. The class

VM_CompilationController is used in order to be able to define the way the

compilation threads are created. Concerning the creation of custom compilation

threads, the user simply sets the number of the desired compilation threads. A loop

creates the compilation threads. All the compilation threads retrieve methods for

recompilation from a shared compilation queue where the controller places the "hot"

methods. The access to this queue is synchronized to avoid multiple compilations of

same methods.

4.3 Results and Performance Issues
Two benchmarks have been used (SpecJBB05 and SpecJVM98) to measure the

performance of the multithreaded model. The benchmarks have been run using a

variety of combinations between VPs and compilation threads.

All the compilations took place on Antigua computer. The measurements are the

average of three measurements for each result. The executions were carefully tested

in order to avoid interferences with processes running on the machine. Therefore all

the Benchmarks were run when the machine was not executing any other users’

processes.
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Tables 4.1 and 4.2 contain the results gathered for SpecJVM98 using one and two

compilation threads.

Table 4.1: Results after running SpecJVM98 Benchmarks

using one compilation thread

Number of Virtual Processors usedBenchmarks

(100 iterations) 1 VP 2 VPs 3 VPs 4VPs

compress

real 9m43.735s

user 9m4.934s

sys 0m16.165s

real 9m45.623s

user 9m 4.238s

sys 0m16.345s

real 10m36.913s

user 10m25.507s

sys 0m16.677s

real 24m25.190s

user 54m21.176s

sys 0m16.169s

jess

real 3m32.184s

user 3m14.396s

sys 0m16.113s

real 3m44.947s

user 3m29.805s

sys 0m16.397s

real 4m7.219s

user 3m37.938s

sys 0m16.625s

real 97m13.490s

user 283m1.922s

sys 0m19.833s

db

real 25m8.733s

user 24m4.638s

sys 0m26.142s

real 25m23.741s

user 24m39.544s

sys 0m26.134s

real 25m35.012s

user 25m10.990s

sys 0m25.694s

-

mpegaudio

real 7m24.500s

user 7m7.475s

sys 0m2.792s

real 8m58.802s

user 8m12.955s

sys 0m2.704s

real 7m44.866s

user 7m8.915s

sys 0m2.744s

real 11m52.713s

user 19m9.336s

sys 0m3.188s

jack

real 9m50.184s

user 6m7.179s

sys 3m27.089s

real 10m8.025s

user 6m35.621s

sys 3m36.706s

real 9m50.625s

user 6m32.321s

sys 3m38.074s

-

Some benchmarks could not run using 4 VPs. A first observation from the results is

that when more than one VP is used, the real time increases. The time increases by a

small extent moving from one to two or three VPs. However, when trying to use

four VPs the programs slow down significantly in most cases while in other cases

they even could not complete. This is probably caused by the scheduling scheme

Jikes RVM uses.
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The Jikes RVM sits on top of the underlying OS which means that two scheduling

mechanisms work simultaneously. Firstly, the OS schedules the running threads on

the different contexts and secondly, the Jikes RVM’s schedules the threads

multiplexed on the VPs.

The behavior of the running threads was observed with the mpstat command. The

threads were cycling on the available contexts (4) of the Antigua computer.

The benchmarks were tested again under the same conditions using two compilation

threads. Table 4.2 illustrates the results.

Table 4.2: Results after running SpecJVM98 Benchmarks

using two compilation threads

Number of Virtual Processors usedBenchmarks

(100 iterations) 1 VP 2 VPs 3 VPs 4VPs

compress

real 8m59.256s

user 8m39.124s

sys 0m16.201s

real 9m30.931s

user 9m29.160s

sys 0m15.977s

real 8m54.462s

user 9m11.118s

sys 0m15.989s

real 20m56.295s

user 41m2.898s

sys 0m16.677s

jess

real 3m31.057s

user 3m14.684s

sys 0m15.701s

real 4m58.099s

user 3m28.421s

sys 0m15.833s

real 3m40.168s

user 3m31.644s

sys 0m15.737s

-

db

real 24m39.942s

user 24m9.687s

sys 0m26.086s

real 26m11.862s

user 25m4.890s

sys 0m25.262s

real 25m41.302s

user 25m41.420s

sys 0m25.598s

-

mpegaudio

real 7m58.566s

user 7m51.281s

sys 0m2.932s

real 7m33.637s

user 7m26.592s

sys 0m3.524s

real 7m32.44s

user 7m21.104s

sys 0m2.916s

real 11m27.664s

user 17m12.525s

sys 0m3.176s

jack

real 10m9.253s

user 6m9.591s

sys 3m28.493s

real 10m14.448s

user 6m32.609s

sys 3m36.174s

real 10m36.853s

user 6m42.509s

sys 3m38.870s

-
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A first noticeable element is the behavior of the Benchmarks when run with two

VPs. Both the real and the user time increases. While compiling with one, three or

four VPs the time varies but in small percentages. In general a speedup is achieved

in these cases.

The percentage of the improvement of the performance is determined by the number

of "hot" methods found in every run along with their size. According to IBM’s

papers, the optimized recompilation on a single run of SpecJVM98 takes

approximately the 6.5% of the execution time. Therefore the portion of time that we

try to speed-up using parallel compilation threads is relatively small compared to the

total time of the execution. The parallelization of the recompilation occurs only

when the compilation queue is loaded enough so both the compilation threads can

recompile a method at the same time. If the recompilation of methods occurs rarely

during execution or if it is spread among the execution time then it is more possible

that only one compilation thread will be used.

The size of the methods being recompiled plays an important role too. If the

methods are small then either one recompilation thread will recompile them,

because the second would never manage to get one, or even if they were recompiled

in parallel the actual time that the threads would run in parallel would be very small.

Furthermore, the fact that the machine used is a dual-core hyperthreaded Xeon (four

contexts) with shared cache memory between the processor contexts may influence

the results. Cache thrashing problems may be a factor negatively affecting the

results.

The presence of a benchmark in which plenty of heavy methods had to be compiled

so the parallel recompilation would occur in a significant extent would be a better

indicator of the performance. On the other hand, testing the Jikes RVM in this

situation may not be a good indicator concerning real applications.
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The load of the schedulers (OS and Jikes RVM) has to be considered when studying

the performance of the Jikes RVM. As shown in table 4.1 the real time increases

when more than one VP is used. The reason is the load added by the scheduler. In

some cases the Benchmarks had problems even for completing properly. Hence, in

order to find the most efficient way of creating multiple compilation threads Jikes

RVM has to be tested in real situations.

As explained in section 4.1.1, an equation is used in order to determine whether a

method should be recompiled or not. In the equation used (Cj + Tj < Ti), Cj is the

time spent for recompiling the method at optimization level j. The calculated time is

based on tests made while using one compilation thread. Adjustments have to be

made to the values if compiling with multiple compilation threads.

The SpecJBB05 benchmark behaved differently to the SpecJVM98. The results are

shown in table 4.3.

Table 4.3: Results after running SpecJBB05 Benchmark

using one and two compilation threads

Number of Virtual Processors used
SpecJBB05

1 VP 2 VPs 3 VPs 4VPs

1 compilation

thread

real 32m27.358s
user 20m3.967s
sys 2m11.262s

real 31m9.448s
user 37m0.027s
sys 18m49.111s

real 25m25.948s
user 43m50.804s
sys 28m22.234s

-

2 compilation

threads

real 32m18.336s
user 18m4.688s
sys 14m9.081s

real 28m48.697s
user 33m43.302s
sys 19m31.217s

real 25m21.519s
user 43m31.447s
sys 28m42.232s

-

The real time decreases while using more VPs. A speedup is achieved while

compiling with two compilation threads. The speedup is minor while using one and

three VPs. When two VPs is used the real time decreased by three minutes. Besides

the decrease of the real time, a decrease of the user time is achieved too. However,

the system time increases dramatically. The results can vary considerably with the

Benchmarks.
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5. Conclusions
Modern Compilers and Virtual Machines can benefit by the introduction of

multicore and multiprocessor architectures. Parallel compilation on multiple cores

or processors should improve significantly the execution time of applications. This

thesis examined the potential of parallelizing the Jikes Research Virtual Machine.

Parallelism was embedded in two parts of the Jikes RVM. The first part was the

BootImage creation while the second was the Runtime Compiler. The main

component of the two pre-mentioned parts is the optimizing compiler. An effort was

made in order to parallelize the optimizing compiler.

The main reason behind the incapability of the optimizing compiler to run in

parallel was the original implementation of compiler phases. Specifically, the use of

the clone() method while creating new compiler phases caused severe problems

resulting in the optimizing compiler crashing. The newExecution() method was

rewritten replacing the clone() method’s shallow copies with deep copies.

Reflection was used in order to create new instances (deep copies) of the compiler

phases. Extra fixes had to be added too in order to allow parallel execution of the

optimizing compiler.

After successfully parallelizing the optimizing compiler, the BootImage creation of

the Jikes RVM was tested. A 20% decrease of the real time achieved while

compiling the BootImage using two threads. However, a significant increase of the

user time is observed. The increase of the user time may be caused by the

scheduling of the threads on the contexts and the synchronization between them.

The threads used for the BootImage compilation are pure Java threads. Java acts as

a black box providing limited opportunities while investigating threads’ behavior.

Some of the assumptions made about the threads’ behavior were tested and various

scenarios have been excluded.
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The next step was the parallelization of the Runtime Compiler. The optimizing

compiler as part of the Adaptive Optimization System (AOS) is used when "hot"

methods have to be recompiled at an optimization level. Formerly, the Jikes RVM

was using one compilation thread to perform the recompilation. An effort was made

to create multiple compilation threads. Two techniques of creating multiple

compilation threads have been implemented. The first technique concerns the

creation of custom compilation threads while the second concerns the creation of

compilation threads according to the availability of idle processors. The available

Virtual Processors are sampled and the number of the recompilation threads created

is equal to the idle VPs (Virtual Processors whose current thread is instance of the

VM_IdleThread).

In order to study the behavior and the performance of the Jikes RVM two

benchmarks were used. Both SpecJVM98 and SpecJBB05 produced similar results.

The performance was slightly improved in most cases. However, there were cases

where the execution time increased probably due to scheduling issues.

Future Work
The research carried out as part of this thesis can act as a starting point for future

work concerning the parallelization of the Jikes RVM. Several design deficiencies

of the optimizing compiler have been discovered along with the scheduling

problems.

A further study of Jikes RVM’s scheduler would reveal any problems concerning

the thread scheduling on the Virtual Processors. The execution time increased

significantly while using more than one Virtual Processor. That may be due to

problems caused by Jikes RVM’s inefficient scheduling. Furthermore, while testing

the Benchmarks warning messages concerning the Virtual Processors and the

Garbage Collection indicate that Jikes RVM can not function efficiently with

multiple Virtual Processors.
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Concerning the hardware used while measuring Jikes RVM’s performance, a proper

multiprocessor machine without shared cache memory between the processors could

exclude some of the possible factors affecting the performance. In order to

determine if problems caused by shared cache memory such as cache thrashing

affect the performance Jikes RVM has to be tested on a multiprocessor machine.

The development of a proper Benchmark may provide a clearer image of the

benefits of parallel compilation. In section 4.3 the disadvantages of the Benchmarks

used for the measurements are explained.
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Acronyms
Definitions for most acronyms were taken from the WikiPedia [9] project.

GC Garbage Collection. A system of automatic memory management which seeks
to reclaim memory used by objects which will never be referenced in the future.

Jikes RVM Jikes Research Virtual Machine. A JVM implemented by IBM as a
research program and released under an open source licence.

JVM Java Virtual Machine. A VM that executes Java bytecodes.

OS Operating System. A basic set of programs that communicate with the computer
harware and share resources in order to enable user programs to run.

VM Virtual Machine. An environment between the computer platform and the
end user which allows the execution of programs not designed for the current
architecture.

IR Intermediate Represenation. A form of representing the bytecodes on which

optimization techniques can be applied.

MMTk Memory Management Toolkit. A framework that includes all the Garbage

Collection mechanisms in the Jikes RVM.

VP Virtual Processor. A Java object that represents a physical processor of the

system. Java Threads in the Jikes RVM are multiplexed on Virtual Processors. A

Virtual Processor object is assigned for each pthread.

AOS Adaptive Optimization System. A framework which performs adaptive

optimizing recompilation during a program’s execution.
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