
HARDWARE LANGUAGES
AND PROOF

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

By
Dominic Anthony Richards
School of Computer Science

ii

Contents

Abstract ix

Declaration xi

Copyright xiii

Acknowledgments xv

1 Introduction 1
1.1 An Explosion of Complexity . 1

1.2 Modern Hardware Design . 4

1.2.1 The IC Design Flow . 7

1.2.2 Functional Verification . 7

1.3 Formal Methods . 9

1.3.1 Verification by Mathematical Proof 9

1.3.2 Clean Abstractions and Semantic Elegance 11

1.4 Synopsis . 12

1.5 Publications and Source Code . 14

2 Verifying a Network-on-Chip 15
2.1 Networks-on-Chip . 15

2.2 SpiNNaker: A Spiking Neural Network Architecture 16

2.2.1 Fault Tolerance and Emergency Routing 18

2.3 Concurrent Haskell . 22

2.4 Specifying a Network-on-Chip . 25

2.4.1 Packets and Physical Links 25

2.4.2 IP Blocks . 25

2.4.3 Arbiters . 25

iii

2.4.4 Routers . 26

2.5 Specifying the SpiNNaker NoC . 27

2.5.1 Packets and Inter-Chip Links 27

2.5.2 ARM Cores . 28

2.5.3 NoC Arbiters and Routers 28

2.6 Verifying the SpiNNaker NoC . 32

2.7 Related Work . 33

2.8 Summary . 35

3 Bluespec SystemVerilog 37
3.1 Syntax and Semantics . 37

3.1.1 One-Rule-at-a-Time Semantics 39

3.1.2 Static Elaboration and Staging 39

3.2 Peterson’s Algorithm . 40

3.3 Arbiter Control Circuit . 44

3.4 Summary . 48

4 Automated Reasoning for Bluespec SystemVerilog 49
4.1 Automated Reasoning . 49

4.2 Logics and Decidability . 50

4.3 Propositional, First Order and Higher Order Logic 51

4.4 Temporal Logics . 52

4.4.1 Kripke Structures and Computation Trees 53

4.4.2 Computation Tree Logic . 54

4.4.3 Linear Temporal Logic . 56

4.5 Automatic Proof Tools . 56

4.6 Automated Reasoning in the IC Design Flow 57

4.7 Functional Verification of ESL Specifications 59

4.7.1 How to Verify a State Machine 61

4.7.2 Tools for Scalable State Machine Verification 62

4.8 Summary . 63

5 Embedding Bluespec SystemVerilog in the PVS Logic 65
5.1 Embedding BSV in Logic . 65

5.2 Embedding the State of a BSV Module 66

5.3 Embedding the Semantics of a BSV Module 68

iv

5.4 Embedding Rules: A Primitive Approach 69

5.5 Embedding Rules: A Monadic Approach 71

5.5.1 Extensional Equivalence . 74

5.6 A Primer on Monads in PVS . 75

5.7 A Monadic Representation of BSV Methods 79

5.7.1 Implicit Conditions . 80

5.7.2 Embedding the Methods of the mkReg Module 80

5.7.3 Embedding the Methods of the mkFIFO1 Module 81

5.8 Monad Connectors for the BSV Monad 83

5.9 Monad Transformers . 83

5.10 Composing Monads to form Rules 87

5.11 Experimental Results . 88

5.12 Shallow, Deep and Reflective Embedding 91

5.13 Summary . 92

6 Verifying BSV Designs with the PVS Theorem Prover 93
6.1 Model Checking in PVS . 93

6.1.1 Limitations of the PVS Model Checker 95

6.2 Temporal Theorems for BSV Module Instances 95

6.2.1 Theorems for Peterson’s Protocol 96

6.2.2 Theorems for a Round-Robin Arbiter 98

6.3 Model Checking BSV Embeddings 99

6.3.1 A Worked Example of Proof with Expansion 101

6.3.2 A Worked Example of Proof with Rewriting 103

6.4 Proof Strategies . 104

6.5 Experimental Results . 108

6.5.1 Proof with Expansion versus Proof with Rewriting 109

6.6 Summary . 109

7 Verifying BSV Designs with the Symbolic Analysis Laboratory 111
7.1 The Symbolic Analysis Laboratory 111

7.2 Model Checking with SAL . 112

7.3 Embedding BSV in the SAL Language 114

7.3.1 Primitive Embedding of Rules 116

7.3.2 Monadic Embedding of Rules 116

7.4 Verifying BSV-to-SAL Translation 117

v

7.5 Verifying Peterson’s Protocol . 119
7.6 Verifying an Arbiter Control Circuit 121
7.7 Summary . 121

8 Related Work 125
8.1 Monads for Specification and Proof 125
8.2 Guarded Action Languages . 126

8.2.1 Bluespec SystemVerilog . 127
8.2.2 TLA+ . 127
8.2.3 Unity . 129
8.2.4 Event-B . 130
8.2.5 Languages for Model Checking 130

8.3 Functional Hardware Languages . 131
8.3.1 Behavioural Languages . 131
8.3.2 Structural Languages . 132
8.3.3 Synthesis from Logic . 132

8.4 Automated Reasoning for Ad Hoc Languages 132
8.4.1 Forte . 133
8.4.2 RuleBase . 134
8.4.3 DE2 . 135
8.4.4 AMD . 135

8.5 Summary . 135

9 Conclusion 137
9.1 Concurrent Haskell . 137
9.2 Bluespec SystemVerilog . 138

9.2.1 Topics for Further Work . 139
9.3 Final Thoughts . 141

Bibliography 143

vi

List of Figures

1.1 A Typical IC Design Flow, Including Functional Verification 6

2.1 A Mesh NoC Topology . 16

2.2 The SpiNNaker System Architecture 17

2.3 Organisation of the SpiNNaker Chip 19

2.4 Emergency Routing. 20

2.5 Emergency Routing Scenarios . 21

2.6 A Grammar of Process Types for Concurrent Haskell 22

2.7 A Reaction Relation for Concurrent Haskell 24

2.8 A component of the SpiNNaker NoC specification. 29

3.1 A Test Bench for mkArbiter . 47

4.1 A Grammar of Propositional Logic 51

4.2 A Grammar of First Order Logic . 52

4.3 A Grammar of Computation Tree Logic 54

4.4 Computation Tree Logic . 55

4.5 A Grammar of Linear Temporal Logic 56

4.6 Linear Temporal Logic . 57

4.7 Automated Reasoning for BSV: A Conceptual Design Flow 58

4.8 ITRS 2009 Formal Methods Roadmap. 60

5.1 Verification of a Primitive Embedding in PVS 71

5.2 Monadic Embeddings of the Peterson Rules in PVS 72

5.3 Monadic Embeddings of the mkTbArbiter Rules in PVS 73

5.4 Verification of a Monadic Embedding in PVS 74

5.5 A Monadic Embedding of the mkFIFO1 Module 82

5.6 Extracts from the Peterson PVS Embedding 89

5.7 Monadic Rules and Methods from the PVS Embedding of mkArbiter . 90

vii

6.1 Computation Tree Logic in PVS . 94
6.2 Verification Strategies for Monadic Specifications 100
6.3 Proof Strategies to Expand Monadic Transition Relations 105

7.1 The Transition Relation of the Primitive Peterson Embedding 115
7.2 BSV Verification with PVS and SAL 118
7.3 A BSV Rule and its Embeddings in PVS and SAL 120
7.4 Extracts from the Primitive Arbiter Embedding 122

viii

Abstract

HARDWARE LANGUAGES AND PROOF: A thesis submitted to the University of
Manchester for the degree of Doctor of Philosophy by Dominic Richards on 3rd April,
2011.

Formal methods play a significant and increasing role in hardware verification, but
their effectiveness can be impaired by the ac hoc nature of mainstream hardware
languages such as VHDL, Verilog and SystemC, which have convoluted semantics
that often necessitate contrived proof techniques. This dissertation investigates the
application of formal reasoning to hardware architectures expressed in an alternative
class of semantically elegant languages, which support efficient design, whilst also
having been developed with proof techniques in mind.

A network-on-chip architecture belonging to the SpiNNaker many-core processor
is specified in Concurrent Haskell, and a hand proof is presented which verifies a novel
routing mechanism by mathematical induction.

A subset of Bluespec SystemVerilog (BSV) is embedded in the higher order logic
of the PVS theorem prover. Owing to the clean semantics of BSV, application of
monadic techniques leads to a surprisingly elegant embedding, in which hardware
designs are translated into logic almost verbatim, preserving types and language con-
structs. Proof strategies are written in the PVS strategy language; these automatically
verify temporal logic theorems concerning the resulting monadic expressions, by
employing a combination of model checking and deductive reasoning. The subset
of BSV which is embedded includes module definition and instantiation, methods,
implicit conditions, scheduling attributes, and rule composition using methods from
instantiated modules.

The aforementioned subset of BSV is also embedded in the specification language
of the SAL model checker, and a verification strategy is presented which combines
the specialised model checking capabilities of SAL with the diverse proof strategies of
PVS.

ix

x

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

xi

xii

Copyright

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and may
be owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction
declarations deposited in the University Library, The University Library’s
regulations (see http://www.manchester.ac.uk/library/aboutus/

regulations) and in The University’s policy on presentation of Theses.

xiii

xiv

Acknowledgments

Thanks to David Lester for many engaging discussions, and for encouraging a spirit
of independence in research. Thanks also to Steve Furber, the SpiNNaker team and
the wider Advanced Processor Technologies group for a great deal of good advice.
Finally, a special mention to Andrew Bardsley, for sharing his extensive knowledge of
programming languages and enthusiasm for Haskell.

xv

xvi

To my family, for love and encouragement.

xvii

xviii

Chapter 1

Introduction

Without major breakthroughs, design verification will be a non-scalable,

show-stopping barrier to further progress in the semiconductor industry.

There is hope for breakthroughs to emerge via a shift from ad hoc
verification methods to more structured, formal processes.

2009 International Technology Roadmap for Semiconductors

The significant problems we face today cannot be solved at the same level

of thinking we were at when we created them.

Albert Einstein

1.1 An Explosion of Complexity

In 1965 – when Integrated Circuit (IC) design was in its infancy and chips contained
tens of transistors – Gordon Moore made a bold prediction: the number of transistors
that could be fabricated on a chip would grow exponentially, doubling every year for at
least the next decade [Moo65]. At the time he was criticised for “unrealistic optimism”,
but his prediction of exponential growth (with an adjusted time period of 11

2 – 2 years)
held true for long enough to be termed “Moore’s law” in the early 1970s and continues
to hold today, an astonishing 45 years later. Those 45 years have been the dawn of
the information age: commoditised computing; unprecedented connectivity; surging
advances across the sciences . . . and all of this fuelled by increasingly powerful –
and complex – silicon chips. When Moore made his prediction, chips contained tens
of transistors: today, industry giants such as Intel and AMD churn out processors

1

2 Chapter 1. Introduction

containing several billion, and thousands of smaller vendors produce application-
specific ICs (ASICs) with transistor counts ranging into the hundreds of millions.

Fabrication technologies now permit such high transistor counts that design
innovation is limited by the ability to exploit such potential complexity by arranging
the available transistors into correctly functioning designs. As fabrication technologies
evolved over the past half century, tools and techniques for designing integrated circuits
evolved simultaneously, in order to deliver increased design efficiency, and hence
enable the realisation of evermore complex designs: for several decades, however,
the rate of increase in design productivity has been consistently outstripped by the rate
of increase in transistor densities1, causing escalating design team head-counts and
spiralling design costs, which are coming to dominate the economics of IC production.
Design non-recurring engineering (NRE) costs now frequently exceed manufacturing
NRE costs by an order of magnitude [ITR09] and will likely increase further, as long
as Moore’s law continues to hold and consumers maintain their appetite for evermore
complex devices. In particular, design verification techniques are coming under
increasing strain; many ASIC teams now employ two or more verification engineers
for each designer [ITR09] and there is a real possibility of a “verification bottleneck”
in the near future, where the trend of burgeoning device complexity is halted, not by
the limits of fabrication technologies, but by the cost of design verification.

IC manufacturers now find themselves in a competitive environment which
is increasingly defined by the metric of design efficiency and, in response, are
investing heavily in research and development (R&D) for new design and verification
technologies. One champion of this R&D effort has been formal verification – a
mathematical paradigm which is fundamentally more rigorous than traditional test-
based approaches. Formal verification has developed over several decades as a sideline
in the hardware industry: however, spurred by the ongoing complexity crisis, it now
looks set to join the centre-stage. The 2009 International Technology Roadmap for
Semiconductors (ITRS ’09) [ITR09] – a definitive industry-wide consensus on R&D
priorities – found that 9.4% of design errors in the companies it surveyed were
identified with formal or semi-formal2 techniques, and stipulated that this should
increase to 45% over the following 15 years. For this to happen, however, a great

1Design productivity (measured as the number of logic gates per design-year) increased at an average
rate of 40% per year between 1990 and 2009, but over the same period the number of transistors that
could be fabricated onto a chip increased at 40% – 60% per year, in accordance with Moore’s Law
(historically doubling every 1 1

2 – 2 years) [ITR09].
2Combining formal techniques with traditional ad hoc approaches [BAWR07].

1.1. An Explosion of Complexity 3

deal of innovation will be required in the way that formal methods are applied in
the hardware design flow. This dissertation investigates one such innovation: the
application of formal reasoning to hardware designs expressed in semantically elegant

languages. . .

Thesis Contributions

Hardware is typically designed using ad hoc languages such as VHDL [IEE94],
Verilog [TM96] and SystemC [Gro02], which have evolved organically over the
lifetime of the industry and are therefore well integrated with current design flows,
but unfortunately sit poorly with proof-based verification techniques owing to their
convoluted, and often ambiguous, semantics [BGG+92, Gor95, Klo95, MRH+01]. In
contrast, an alternative class of semantically elegant languages allows efficient design,
whilst also having been developed with formal verification in mind. This dissertation
demonstrates the application of proof techniques to hardware designs expressed in two
such languages:

• Concurrent Haskell – a language for software design which combines func-
tional programming with channel-based concurrency [PJGF96]. It will be
used to develop a behavioural specification of a network-on-chip (NoC), for
subsequent verification with hand-proof.

• Bluespec SystemVerilog (BSV) – a language for hardware design and syn-
thesis which combines a guarded-action model of concurrency with language
constructs from the functional paradigm [Nik04]. A subset of BSV will
be embedded in the specification logics of the PVS theorem prover and the
SAL model checker, providing access to a wide variety of automated proof
techniques.

For both languages, we will find that the combination of functional programming with
a clean model of concurrency yields hardware descriptions which are highly amenable
to the application of proof. This result is particularly encouraging for BSV, which is
a relatively new language that has already been shown to reduce design time when
compared to hand-written VHDL or Verilog, whilst producing comparable hardware
for many applications [GW08, Nik04, WNRD04] – this dissertation will provide
evidence that it is also more amenable to automated reasoning. Furthermore, this
insight is timely, because BSV presently has no tool support for automated reasoning,
placing it very much behind the curve when compared to VHDL and Verilog.

4 Chapter 1. Introduction

The technical contributions of this thesis are:

• A novel application of lightweight formal methods to the SpiNNaker network-
on-chip architecture, which involves behavioural specification in Concurrent
Haskell, together with verification by hand-proof.

• A shallow embedding of a subset of Bluespec SystemVerilog in the higher
order logic of the PVS theorem prover. A novel application of monadic
techniques [Mog89, Wad92b] allows a surprisingly clean embedding, in which
BSV designs are translated into logic almost verbatim, preserving types and
language constructs. The subset which is embedded includes module definition
and instantiation, methods, implicit conditions, scheduling attributes, and rule
composition using methods from instantiated modules.

• Proof strategies, written in the PVS strategy language, which automatically
verify temporal logic theorems concerning the aforementioned monadic expres-
sions, by employing a combination of model checking and deductive reasoning.

• An embedding of the same subset of BSV in the SAL language, which provides
access to the wide array of model checking tools in the SAL suite.

Of particular note is the monadic embedding of BSV in the PVS logic. Whilst
monads have been used before to address the notoriously messy issue of verifying
state-based computation with theorem proving, their application to BSV yields surpris-
ingly clean results. BSV has its roots in a minimalist guarded action language (of the
kind used to specify state machines for model checking) and was expanded into a fully-
featured hardware language with strong influences from functional programming. As a
result, we will see that an environment such as PVS – which combines integrated model
checking and theorem proving with a higher order functional specification language
– allows the almost verbatim translation of BSV source code to a monadic form
which can be directly verified using a combination of model checking and automated
deduction.

1.2 Modern Hardware Design

When Gordon Moore made his prediction in the 1960s, hardware designers sat with
‘coloured rectangles’ and drew transistors by hand on graphical representations of
circuits. Through the 1970s and 1980s, transistor counts increased and designers

1.2. Modern Hardware Design 5

progressed to gate level languages for a large amount of design. These languages
abstracted away from individual transistors to the level of logic gates. They hid the de-
tail of transistor-level structure, which made designs more concise and understandable;
this increased design productivity by reducing design time, reducing the incidence of
errors and making errors easier to spot when they did occur. The new languages were
supported by place and route tools which automatically compiled gate-level designs
down to the transistor level, with a small performance penalty compared to hand-
crafted transistor level circuits.

By the mid 1980s, fabrication technologies allowed hundreds of thousands of
transistors per chip, and designers added another level of abstraction. Register
Transfer Level (RTL) languages provided types such as bounded integers, as well as
programming language constructs such as if-then-else statements, case expressions
and arithmetic operators. Designs expressed in these languages could be automatically
compiled down to gate level using synthesis software. RTL languages gained
widespread popularity because they employed simple abstractions to hide the detail
of standard circuit components, whilst allowing automatic synthesis of reasonably
efficient gate level circuits. Two RTL languages gained widespread acceptance; VHDL
[IEE94] and Verilog [TM96].

Alongside the development of RTL languages, tools emerged that raised the level of
abstraction further still by synthesizing from high-level imperative languages such as
C, C++ and SystemC [Gro02], which allow the functionality of a design to be specified
without fully defining the architecture that will produce this functionality. These high-

level synthesis approaches have seen a strong uptake for some applications, but have
not yet seen widespread adoption as a replacement for RTL languages; at present, they
do not produce hardware that is consistently competitive with hand-coded RTL (in
terms of speed, area and power) for most designs [ITR09, WNRD04].

High-level languages are, however, seeing extensive uptake for another use; to
specify design functionality, and produce executable prototypes at an early stage in the
design flow. The high level of abstraction provided by languages such as C is referred
to as the system level or electronic system level (ESL) [KMN+00]. System level models
can be used to experiment with design concepts, and to act as gold standards for testing
against the RTL designs that are synthesized to hardware.

6 Chapter 1. Introduction

Register
Transfer

Level

System Level

Functional
Requirements

C / C++ / SystemC

English /
Pseudo-code

Testing &
 R

eview
A

utom
atic Proof

Gate Level Netlist

All designs
continue to change

throughout the
design process

Im
plem

entation

(M
anual)

A
utom

atic Proof

Transistor
Level Layout

Testing &
 R

eview

M
odelling

(M
anual)

Synthesis

(A
utom

atic)

Place &
 R

oute

(A
utom

atic)

VHDL / Verilog

Figure 1.1: A Typical IC Design Flow, Including Functional Verification

1.2. Modern Hardware Design 7

1.2.1 The IC Design Flow

Figure 1.1 shows a modern IC design flow, by which simple initial concepts can be
transformed into sophisticated IC designs with hundreds of millions of transistors.
The design flow begins with a distillation of the design concept into a set of concrete
functional requirements, which are typically expressed with a mixture of natural
language prose, pseudo-code, tables, diagrams and so-on. This specification may be
incomplete and ambiguous, and tends to mature as time passes. Next, an executable
system level model is produced to animate the functional requirements at a high
level of abstraction; this allows experimentation with the design concept, or rapid

prototyping, which can stimulate modifications to the functional requirements. After
this, a synthesizable RTL design is produced which implements the system level model
in a way that attempts to meet any timing and power constraints. The development of
RTL serves as a further exploration of the design concept, which can stimulate changes
to the functional requirements and the system level model. From here, a gate level
netlist is synthesised from the RTL, and a transistor level layout is then automatically
compiled from the gate level design using a place and route tool. Finally, in a process
called spinout, the layout is converted to a mask, which is used in a lithography process
to fabricate the actual silicon chip. In order to ensure that the final chip satisfies
its timing, power and area constraints, the RTL, netlist and layout can be repeatedly
modified before spinout.

1.2.2 Functional Verification

Functional verification is the process of assuring that a transistor level layout is
functionally equivalent to its specification of requirements. At present, this is primarily
achieved using:

1. Testing and design review at the system and register transfer levels.

2. Formal equivalence checking at the gate and transistor levels.

Testing and design review are fundamentally limited because they cannot verify
designs rigorously and exhaustively, meaning that bugs can – and do – pass through
the verification process undetected:

• Testing involves simulating designs in software. Because of the complexity of
modern IC designs, they are typically simulated for only a small fraction of the

8 Chapter 1. Introduction

possible inputs and system states. Furthermore, as design complexity increases,
test coverage – the fraction inputs and system states that can feasibly be checked
– generally decreases.

• In the design review process, designs are manually compared to specifications
written in natural language prose, pseudo-code, tables, diagrams and so-on.
However, natural language specifications are often incomplete and ambiguous,
and human reasoning can make oversights and draw false conclusions.

Formal equivalence checking does not have these problems; it uses automated
proof to establish functional equivalence rigorously for all possible inputs. Clearly,
this would be preferable at the system and register transfer levels, but the application
of automated proof at these levels poses significant challenges (which motivate the
present work). Automated proof is currently a secondary activity at the system and
register transfer levels; it is applied in restricted areas to provide enhanced error
detection, but falls short of a complete solution for functional verification.

As long as we lack the means to achieve rigorous functional verification at the
system and register transfer levels, bugs will pass undetected into silicon chips. In
fact, they are surprisingly common in modern ICs. For example, the data-sheet for
Intel’s Core i7 processor lists 136 known errors [Int10]. To illustrate, the first three
are:

1. MCi Status overflow bit may be incorrectly set on a single instance of a DTLB
error;

2. Debug exception flags DR6.B0-B3 may be incorrect for disabled breakpoints;

3. MONITOR or CLFLUSH on the local XAPIC’s address space results in hang.

Bugs are currently a fact of life in chip production. Most of the time they are
relatively benign, and can be ‘worked around’ by programmers, but they can also cause
serious problems. In 1994 a bug was discovered in the floating point unit of Intel’s
Pentium processor, which caused Intel to replace the faulty chips on demand, with an
eventual cost of almost $500 million, as well as untold reputational damage [CB00].
Bugs can also be costly when they are discovered before the product is released. Chips
often have a marketing lifespan in the order of months before they are superseded
by the next generation of ICs fielded by the competition, and bugs found late in the
production cycle can delay fabrication, reducing the lifespan of the product or even

1.3. Formal Methods 9

rendering it obsolete before it ever enters the marketplace. Worse yet, bugs have the
potential to cause tragic consequences; chips are now used in safety critical systems
such as nuclear reactors, passenger aircraft and car engines, and a failure in one of
these could cause loss of life.

1.3 Formal Methods

In the battle against exploding design complexity, the hardware industry is increasingly
supplementing established ad hoc design practices with more rigorous mathematical
techniques. As we have seen, functional verification at the system level and register
transfer level is currently a flawed process; testing and code review allow design errors
to pass through the design process unchecked. Formal methods are less affected by the
inherent flaws that blight testing and code review, but there are significant unsolved
technical challenges which prevent them from being used pervasively at these levels,
as they are at the gate and transistor levels. Instead they are applied piecemeal, to raise
the quality of functional verification incrementally. There is a focused effort across
industry and academia to overcome these problems and thus increase the impact of
formal methods in the earlier stages of the design flow.

The term formal methods covers a broad range of approaches which apply
mathematical techniques to the design of computational systems. These include
verification by mathematical proof, design with semantically elegant languages and
a host of so-called semi-formal approaches that use formal techniques to enhance
existing informal design and verification practices. Our discussion of formal methods
begins with the notion of verification by mathematical proof, which is a primary
motivation of the field and also leads to an intuitive understanding of other concepts,
including semantically elegant languages.

1.3.1 Verification by Mathematical Proof

Proof can be applied to programs written in any language for which a semantics can
be precisely defined; for such languages, the behaviour of programs can be inferred
before they are actually run, using mathematical reasoning. Intended properties of
a given program can be expressed as theorems, and proof techniques can be used to
establish their validity under all conceivable external environments. This presents a
new approach to the functional verification of IC designs, which is potentially more

10 Chapter 1. Introduction

rigorous than design review and more exhaustive than testing. Proof can offer a more
systematic inspection of design functionality than ad hoc design review and, in contrast
to testing, can verify properties for all possible inputs to a system.

The format of theorems and proofs can vary. Theorems can be written in natural
language and proven with written prose, in the style which is common in text books and
academic papers. This kind of specification and proof can be viewed as a refinement
of the informal design review process. Instead of specifying a system with natural
language prose or pseudo code, the system’s requirements are partitioned into a set
of concise natural language theorems which can be proven with structured, rigorous
reasoning, in place of the unstructured ad hoc reasoning which is used in design
reviews. However, theorems and proofs which are formulated in natural language
inherit the intrinsic problems that were associated with design review in §1.2.2; natural
language is ambiguous, allowing imprecision and misinterpretation, and proofs written
in prose typically appeal to human reason, which can draw false conclusions and
make oversights. Moreover, proofs require human effort to construct, and owing to
the complex nature of IC designs, this can become extremely time consuming.

Alternatively, natural language can be abandoned in favour of a formal logic, which
is a mathematical system for performing precise and unambiguous reasoning. It will
typically include:

1. A specification language for describing systems and asserting theorems about
them: for example, higher-order logic provides a simple functional program-
ming language, together with universal and existential quantifiers (∀ and ∃)
which allow theorems to be expressed about the properties of functions and
variables.

2. A set of inference rules which are used to prove theorems written in the
specification language.

Formal logic reduces mathematical proof to a process of calculation. Whereas natural
language proofs appeal to human reason, their formal counterparts are composed
purely from the repetitive application of inference rules, which for many logics are
proven to be sound, meaning that they cannot possibly be used to establish the truth of
a theorem which is actually false or vice versa.

Formal logic has a long history in the literature. For example, the epic Principia

Mathematica of Whitehead and Russell (completed in 1913) was an attempt to

1.3. Formal Methods 11

derive all mathematical truths within formal logic3. However, formal proof was
impractical for most purposes until the advent of computers, which allowed proofs
to be mechanised, giving rise to the field of automated reasoning4.

1.3.2 Clean Abstractions and Semantic Elegance

In principle, proof can be applied to programs written in any language, as long
as the semantics of the language can be formally specified. However, languages
vary in terms of the ease with which formal semantics can be expressed, and the
tractability of proofs which use these semantics. Unfortunately, as we shall see in
later chapters, ad hoc languages such as VHDL, Verilog and SystemC perform poorly
in both respects: they have convoluted semantics [Klo95, Gor95, BGG+92, MRH+01]
which often necessitate contrived proof techniques. Spurred on by these challenges,
the formal methods community has developed an innovative class of languages which
are comparable to the popular ad hoc languages in terms of their utility for system
design, but also have elegant semantics for the purpose of simplifying proof. The subtle
attribute of semantic elegance has been achieved with a technique which is familiar
from our discussion of the evolution of hardware languages – abstraction.

Abstraction is the art of describing systems in a way which hides unwanted
detail whilst retaining the properties of interest. Hardware description languages
use abstraction to express hardware designs without describing the nitty-gritty details
of the gate and transistor levels. In a similar way, semantically elegant languages
use abstraction to express computational systems without describing implementation
details such as pointers, garbage collection and memory resources. This simplifies
the semantics without reducing the class of computations that can be described. In
the extreme, there are calculi such as the λ -calculus5 [Chu40], a minuscule language
which has just two primitive computational mechanisms (function parameterisation
and function application) but is Turing complete. The semantics of the λ -calculus can
be described with three simple rules; with these rules, one can evaluate any program
written in the language. In order to prove a property about the evaluation of a λ -
calculus program, one must only consider these three evaluation rules; in contrast, in
order to prove properties of a C program, one would need to consider the behaviour of

3In the event, it actually covered a fragment of set theory, cardinal numbers, ordinal numbers and
the reals.

4Excellent introductions to automated reasoning are provided in [Har09] (for automated deduction)
and [CGP00] (for model checking).

5For a comprehensive introduction, see [Pie02].

12 Chapter 1. Introduction

pointers, garbage collection and so-on.

Alongside the minimalist calculi, fully-featured programming languages have
emerged which adhere to the spirit of abstraction and semantic elegance, but are
usable for everyday programming tasks. For example, functional programming
[Bir98, OGS08, Pie02] is a paradigm that closely resembles the λ -calculus. It
is arguably the most well known programming formalism and is used extensively
throughout this thesis.

Are Semantically Elegant Languages Usable?

The promise of semantically elegant languages would by diminished if they were
not competitive with ad hoc languages in terms of utility for everyday design;
fortunately, there is a growing body of evidence to show that they are. Functional
languages, for example, are well-suited to formal proof, but are gaining popularity in
the programming community for other reasons:

• Their abstract nature makes functional programs concise, which increases design
efficiency by making programs less time-consuming to construct;

• Powerful type systems (which are another form of abstraction) make programs
inherently less error prone compared to the popular imperative languages such
as C [FSNB09, OGS08]. It is a truism that functional programs “tend to just
work” once they compile.

In the hardware domain too, semantically elegant languages are having an impact
on design productivity. For example, the language Bluespec SystemVerilog [Nik04],
which is considered at length in this dissertation, uses novel abstractions from
computer science to describe hardware in a way that is substantially more concise
than RTL, thus reducing line count and design time, whilst producing hardware that
is competitive with hand-written RTL in terms of time and area for many applications
[WNRD04, Nik04].

1.4 Synopsis

This thesis investigates the application of proof-based verification to hardware designs
expressed in two semantically elegant languages, namely Concurrent Haskell and
Bluespec SystemVerilog.

1.4. Synopsis 13

Chapter 2 employs Concurrent Haskell for the task of specifying and formally veri-
fying a novel network-on-chip architecture. A behavioural specification is constructed
for the SpiNNaker NoC, which can be executed and verified by hand-proof. A novel
routing mechanism is verified by mathematical induction.

Chapter 3 reviews Bluespec SystemVerilog, and introduces BSV implementations
of Peterson’s algorithm and the control circuitry of a round-robin arbiter, which serve
as running examples for the application of automated reasoning in the chapters that
follow.

Chapter 4 introduces the concept of automated reasoning and surveys the literature
for automated reasoning strategies of potential application to Bluespec SystemVerilog.
It is found that several automated theorem provers support experimentation with a
broad range of proof strategies, including model checking, automatic abstraction and
the full spectrum of deductive reasoning. These strategies can be applied to BSV
designs, if BSV can be embedded in the theorem prover’s logic.

Chapter 5 embeds a non-trivial subset of BSV in the higher order logic of the PVS
theorem prover. BSV is found to be naturally suited to expression in formal logic.
Its use of guarded actions as an underlying model of concurrency makes it similar to
a host of languages used for model checking, and its functionally-inspired language
constructs can be translated into logic almost verbatim, with a novel application of
monadic techniques. To demonstrate the proposed embedding strategy, the two BSV
examples from chapter 3 are translated by hand into the PVS logic.

Chapter 6 applies automated reasoning to PVS specifications produced with the
monadic embedding strategy of chapter 5. It is found that temporal logic theorems
concerning these specifications can be verified with a combination of model checking
and deductive reasoning. Proof strategies are written in the PVS strategy language to
automate this process.

Chapter 7 investigates the verification of BSV designs with a stand-alone model
checker. The monadic embedding strategy is used to translate BSV designs into
the specification language of the SAL model checker. It is found that SAL permits
monadic specifications, but fails to model check them efficiently, owing of their heavy
use of higher order functions. However, an equivalent but more verbose primitive

embedding strategy is found to be compatible with the SAL model checker, and a
verification strategy is presented which combines SAL model checking over primitive
specifications with deductive reasoning in PVS to establish the equivalence of primitive
and monadic BSV embeddings.

14 Chapter 1. Introduction

Chapter 8 presents a review of the literature which is related to the embeddings of
Bluespec SystemVerilog presented in earlier chapters. It is found that BSV presents
unique challenges in the application of automated reasoning, being more complex than
other guarded action languages, and exceptional amongst hardware languages in its
choice of guarded actions as the underlying model of concurrency.

Chapter 9 draws conclusions, and presents topics for further work. For BSV in
particular, a number of natural extensions to the present work are discussed, including
the application of automatic abstraction and compositional reasoning to monadic PVS
specifications. Furthermore, the overall direction of the present work is placed into
the context of an expansive – and mostly unexplored – research space concerning
automated reasoning for BSV.

1.5 Publications and Source Code

The research contributions of this dissertation have also been published in the
following papers:

1. DOMINIC RICHARDS AND DAVID LESTER. A monadic approach to automated
reasoning for Bluespec SystemVerilog. In Innovations in Systems and Software

Engineering: a NASA Journal, 7(2):85-95, 2011.

2. DOMINIC RICHARDS AND DAVID LESTER. A prototype embedding of
Bluespec SystemVerilog in the PVS theorem prover. In Proceedings of the 2 nd

NASA Formal Methods Symposium (NFM), 2010.

3. DOMINIC RICHARDS AND DAVID LESTER. A prototype embedding of
Bluespec SystemVerilog in the SAL model checker. In Proceedings of the 8 th

International Workshop on Designing Correct Circuits (DCC), 2010.

4. DOMINIC RICHARDS AND DAVID LESTER. Concurrent functions: a system
for the verification of networks-on-chip. In Proceedings of the 3 rd International

Workshop on Hardware Design and Functional Languages (HFL), 2009.

5. DAVID LESTER AND DOMINIC RICHARDS. Specification of a network-on-chip.
In Proceedings of the 20 th UK Asynchronous Forum (UK-ASYNC), 2008.

Accompanying source code can be found online [RL11].

Chapter 2

Verifying a Network-on-Chip

A network-on-chip architecture is specified and verified with a lightweight application

of formal methods. The NoC features in the SpiNNaker many-core processor, which is

being developed for efficient simulation of large scale neural networks. It supports

a complex and unbounded toroidal network, which disregards established design

conventions intended to ensure freedom from deadlock and livelock. A behavioural

specification is produced in Concurrent Haskell, and a proof is presented which verifies

a novel routing mechanism with mathematical induction.

2.1 Networks-on-Chip

As silicon feature sizes continue to shrink, it is becoming possible to fit entire systems
onto a single chip, giving rise to the System-on-Chip (SoC) design paradigm. Such
systems are typically composed of individually-designed intellectual property (IP)
blocks such as processor cores, memory elements, graphics processing units, hardware
accelerators and field-programmable gate arrays. Systems-on-Chip have complex
communications requirements which can be provided by networks-on-chip [KJS+02]
– scaled-down computer networks which allow IP blocks to communicate by routing
data through a system of data links and connecting nodes. NoCs can transmit data
either by creating direct communication links between IP blocks (an approach known
as circuit switching) or by routing data packets (referred to as packet switching). It is
with the latter that we are concerned.

Circuit switched NoCs can have various topologies depending on the specific
structure and purpose of the SoC; a popular topology, for example, is the mesh structure
shown in figure 2.1. A node in a packet-switched NoC typically consists of:

15

16 Chapter 2. Verifying a Network-on-Chip

Figure 2.1: A Mesh NoC Topology

• An arbiter which merges the streams of packets received from a node’s
incoming data links into a single stream.

• A router which reads packets from the arbiter’s output stream and forwards
them along one or more of the node’s outgoing data links.

NoC architectures can be highly complex and error prone, making them an
attractive target for the application of formal methods. They have large state spaces
and are often nondeterministic, which limits the effectiveness of traditional test-based
verification techniques. Furthermore, being highly concurrent they are also prone to
deadlock – a phenomenon that can stay hidden until late stage simulation or even post-
fabrication testing.

2.2 SpiNNaker: A Spiking Neural Network Architec-
ture

The SpiNNaker chip [FTB06b, FTB06a] is a novel many-core processor being
developed at the University of Manchester in collaboration with the University of
Southampton and ARM Ltd. It will support efficient real-time simulation of large-
scale spiking neural networks. At the time of writing, the first batch of SpiNNaker
chips is being fabricated.

2.2. SpiNNaker: A Spiking Neural Network Architecture 17

788 S. Furber and S. Temple

Fig. 7. SpiNNaker system architecture. Each of the chip multiprocessor nodes is
connected to its six nearest neighbours by bi-directional links. The left and right
sides of the mesh are connected, as are the top and bottom edges, to form a two-
dimensional toroidal surface

area to be folded into a convoluted shape in order to fit into a small three-
dimensional volume. On a small scale, the sheet does have a thickness which
is divided into a characteristic six-layer structure.

The SpiNNaker system architecture, as illustrated in Fig. 7, has a strongly
two-dimensional structure. However, this does not imply in any way that it can
only model two-dimensional neural structures. Indeed, SpiNNaker can model
neural networks that are formed in two, three or even more dimensions. The
key to this flexibility is to map each neuron into a virtual address space,
which means that each neuron is assigned a unique number. The assignment
can be arbitrary, though an assignment related to physical structure is likely
to improve the modeling efficiency. Then neurons are allocated to processors;
again in principle the allocation can be arbitrary, but a well-chosen allocation
will lead to improved efficiency. Finally, the routing tables must be config-
ured to send spike events from each neuron to all of the neurons to which it
connects, and this can be achieved using the neurons’ addresses.

The dissociation between the physical organization of the computer system
and the physical organization of the biological system it is being used to model
is possible owing to the very high speed of electronic communications relative
to the speed of propagation of biological signals. This means that the delays

Configuring a Large-Scale GALS System

M.M. Khan*, J. Navaridas†, L.A. Plana*, M. Luján*, J.V Woods*, J. Miguel-Alonso† and S.B. Furber*
*School of Computer Science, The University of Manchester, UK

†University of The Basque Country, Spain
email: khanm@cs.man.ac.uk

Abstract—The SpiNNaker massively parallel GALS system
has been designed to support large-scale simulations of bio-
logically inspired neural networks in real-time. The system is
built around the chip-multiprocessor (CMP) technology using
low-power ARM processors with an asynchronous network-on-
chip (NoC) to support high performance parallel distributed
processing. A novel asynchronous event-driven boot-up process
efficiently configures the SpiNNaker chips and loads the ap-
plication using a high-speed flood-fill mechanism to a system
consisting of up to a million embedded processors in a robust
and scalable way.

I. INTRODUCTION

SpiNNaker is an Application Specific Integrated Circuit
(ASIC) architecture designed to provide a hardware platform
for large-scale spiking neurons simulations in real-time [1].
A full-scale system contains up to a million processors
organized in small CMPs connected by an asynchronous
packet switching network (Figure 1). Each processing core
contains a local memory of 100KB to enable simulating
up to 1000 simple spiking neurons. Each processor is an
independently functional unit with dedicated resources such
as Timer, Interrupt Controller, Communication Controller
and DMA Controller; all synchronised to an AHB bus.
The processors share chip-level resources such as System
RAM, Boot ROM, System Controller etc. using an efficient
asynchronous NoC based on CHAIN [2] architecture as
shown in Figure 2. While 1000 neurons can be simulated
with the help of local memory in each processor, the synaptic
information related to these neurons (1000-10000 synapses
per neuron [3]) requires much more memory (minimum
4Bx1000(synapses)x1000(neurons)x20(processors)=80MB)
per chip. To meet this requirement an off-chip SDRAM of
up to 1GB has been provided with each chip. A specially
designed DMA with each processor uses the system NoC’s
efficient throughput (1Gb/sec) to provide a localized view
of this data to the neurons in each processor [4]. The
performance we achieve with this interconnect at a much
reduced energy consumption was never possible with most
synchronous bus architectures.
The neurons communicate with each other by sending
spikes. The spike communication in the SpiNNaker system
has been supported with the help of small packets travelling
over yet another fast asynchronous network called “Commu-
nication NoC” that connects all the processing cores to a
specially designed on-chip multicast router in each chip [5].
The Communication Controller with each processing core
provides a bridge between synchronous AHB communication

Fig. 1. Multi-chip SpiNNaker CMP.

and packet-switching asynchronous Communication NoC.
The router forms a chip-level subnet of the neurons in its
20 processing cores, besides providing a gateway to their
communication with the neurons on other chips. The router
extends this chip-level subnet of Communication NoC to six
neighbouring chips with the help of deadlock free TX/RX
interfaces. The global communication network wraps itself
around by connecting all the chips in the form of a toroidal
mesh as shown in Figure 1, and provides a throughput of
6Gb/s per node [5]. The router is capable of multicasting
a packet to any subset of its six neighbouring chips and
20 local processors. Along with the spike carrying multi-
cast packets, the router also supports nearest-neighbour(NN)
and point-to-point (P2P) packets that are used for diagnos-
tics/configuration and system-level management purposes.
The system is connected to a PC called the ‘Host’ with the
help of the Ethernet connection on the CMP.

The underlying objective is a robust and high-performance
architecture at low power consumption [6]. To achieve this
aim, SpiNNaker uses low power ARM968 processors and
asynchronous NoC along with a power-efficient event-driven
application model. The processing cores remain in sleep
mode to save energy, woken up by an event such as arrival
of a packet or the time to update the neurons’ state. The
configuration process, uses the same event-driven model to
load the application from the Host into the SpiNNaker system

Figure 2.2: SpiNNaker system architecture. Top: each SpiNNaker chip is connected
to its six nearest neighbours with bi-directional links. Bottom: the left and right sides
of the mesh are connected, as are the top and bottom edges, to form a toroid. From
[FT08].

18 Chapter 2. Verifying a Network-on-Chip

The SpiNNaker chip (along with associated SDRAM chip) forms a node in a
scalable parallel system, as shown in figure 2.2. On-chip processing power is provided
by 18 ARM968 cores; together, these provide the integer processing power of a
typical PC, but at much lower electrical power and in a compact physical form. The
ARM cores are connected with a packet-switched network-on-chip, which is also
connected to the NoCs of six neighbouring chips through inter-chip links, as shown
in figure 2.3. Of the 18 ARM cores, 17 are designated to be fascicle processors which
each model around 1,000 neurons in real time. The remaining core is designated as
a monitor processor, which carries out operating system functions and provides the
user with information concerning on-chip activity. A system-wide packet-switched
communications network is formed by the concurrent operation of the individual
networks-on-chip.

SpiNNaker systems will support neural simulations, in which neurons commu-
nicate by firing ‘spikes’ which are transmitted to other neurons. This is supported
in the physical system by allowing neurons to launch source addressed packets into
the system-wide communications fabric. When this happens, the NoCs distribute the
packets across the system with multicast, source addressed routing. Each NoC has a
content addressed memory unit (CAM), for which the packet’s source address is used
as a lookup key. The CAM of each NoC maintains a list of NoC outputs to which the
packet should be forwarded. In this way, packets representing ‘neural spikes’ can be
propagated throughout the system.

SpiNNaker chips adhere to the Globally Asynchronous, Locally Synchronous

(GALS) design paradigm, in which each ARM core is individually clocked and
connected to the rest of the chip by an asynchronous NoC [BF02]. Each chip, in
turn, is connected to its six nearest neighbours by asynchronous inter-chip links.

Work is currently underway to produce systems with 500 and 50,000 nodes; the
latter will provide approximately 200 teraIPS, which could simulate approximately 109

neurons, or 10% of the human cerebral cortex, using the initial target neural model.

2.2.1 Fault Tolerance and Emergency Routing

Owing to the vast size of planned SpiNNaker systems, component failure is a
significant issue. Consequently, SpiNNaker incorporates two novel fault-tolerance
mechanisms:

1. If a processor fails, its workload is migrated to other processors in real-time.

2.2. SpiNNaker: A Spiking Neural Network Architecture 19

Neural Systems Engineering 787

fascicle
processor

fascicle
processor

fascicle
processor

fascicle
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

monitor
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

system
NoC

arbiter

router

Fig. 6. Organization of a SpiNNaker chip multiprocessor node, illustrating the Com-
munications Network-on-Chip (NoC) that is used to carry spike event packets around
the system. Each fascicle processor models many neurons. Packets from other nodes
arrive through the receiver interfaces (‘Rx i/f’) and are merged with packets issued
by the fascicle processors into a sequential stream by the arbiter. Each packet is then
routed to one or several destinations, which may include other processing nodes (via
the transmit interfaces ‘Tx i/f’) and/or local fascicle processors. The monitor pro-
cessor carries out operating system functions and provides visibility to the user of
on-chip activity

Figure 2.3: The internal structure of a SpiNNaker chip, illustrating the network-on-
chip which is used to transmit ‘spike’ packets across the broader SpiNNaker system.
Each fascicle processor models a cluster of neurons. Packets from neighbouring
SpiNNaker chips arrive through the receiver interfaces (Rx i/f) and are merged with
packets issued by the fascicle processors into a sequential stream by the arbiter. Each
packet is then routed to one or more destinations, which may include neighbouring
SpiNNaker chips (via the transmit interfaces Tx i/f) and/or local fascicle processors.
The monitor processor carries out operating system functions and provides visibility to
the user of on-chip activity. Processors are also connected to a separate ‘system’ NoC,
which provides access to local memory, but is not discussed further in this thesis. From
[FT08].

20 Chapter 2. Verifying a Network-on-Chip

Figure 2.4: Emergency Routing.

2. If an inter-chip link fails (whether permanent or transient) traffic is handled in
the first instance at the hardware level, by redirecting packets automatically via
adjacent links, before invoking performance management software to carry out
a more permanent solution.

The automatic re-directing of traffic around unresponsive inter-chip links is achieved
by the concurrent operation of the surrounding chips’ NoCs, as shown in figure 2.4. If
an inter-chip link fails, packets are re-routed via a neighbouring chip. This mechanism
is called emergency routing and proceeds in the following way.

Observe the fragment of a SpiNNaker system shown in figure 2.5. Imagine that
chip A wants to send a packet down link AB to chip B, but link AB is broken. There
are three possible cases:

1. The NoC router of chip A attaches a label “E1” (emergency routing, stage
1) to the packet and attempts to send it along the clockwise neighbour of the
unresponsive link, which in this case is link AC. If link AC is broken, the packet
is dropped; this unusual choice of behaviour is acceptable because of the fault
tolerant nature of neural systems.

2. If link AC is functioning and chip C receives a packet with the label “E1”
attached, it automatically changes the label to “E2” and attempts to send it along
the clockwise neighbour of the link through which it entered the chip, which in
this case is link CB. If link CB is broken, the packet is dropped.

3. If the packet reaches chip B, its NoC router removes the “E2” label and treats
the packet as normal.

2.3. Concurrent Haskell 21

Figure 2.5: Emergency Routing Scenarios

If a packet is to be passed down an inter-chip link with the E1 label, it is possible that
the same packet should be passed down this link anyway, with the N (normal) label. If
this is the case, the router sends a single packet with type N E1. When a packet of this
type is received, it is split into an N packet and an E1 packet, which are then processed
independently.

SpiNNaker NoCs also implement a ‘default’ routing mechanism, which allows
packets to be routed through chips without entries being required in the chips’ look-up
tables. If a router receives a packet from an inter-chip link and the packet’s source-
address is not in the router’s look-up table, it forwards the packet to the diametrically
opposite inter-chip link. Because of this, look-up table entries are required only when
packets either originate on the chip, are destined for on-chip processors, or change
their ‘direction of travel’ at the chip.

22 Chapter 2. Verifying a Network-on-Chip

P ::= e Haskell expression of type IO()

| (P1 | P2) parallel composition
| 〈〉α empty memory element named α

| 〈x〉α memory element named α holding value x
| (ν α) P restriction of the name ‘α’ to P
| /0 the null process

Figure 2.6: A Grammar of Process Types for Concurrent Haskell

2.3 Concurrent Haskell

Concurrent Haskell [PJGF96] extends the lazy functional programming language
Haskell with channel-based concurrency. Its concurrency primitives are accompanied
by an elegant operational semantics, meaning that programs can serve as a basis
for formal reasoning. This section introduces a subset of Concurrent Haskell. A
comprehensive introduction to Haskell can be found in [Bir98].

Peyton-Jones et al. [PJGF96] present an operational semantics for Concurrent
Haskell, which is based on the “chemical abstract machine” presentation of π-calculus
[Mil93, Mil99]. The grammar of process types is given in figure 2.6. It tells us that the
following are valid Concurrent Haskell processes:

1. e, whenever e is a Haskell statement of type IO().

2. P1 | P2 – two processes executing concurrently.

3. 〈〉α – an empty memory location with pointer α . (Notice that memory locations
are defined as concurrent processes.)

4. 〈x〉α – a full memory location.

5. (ν α)P, where α is a pointer for a memory location. This restricts the scope of
α to P. The symbol ν is shorthand for ‘new’; α is a new pointer for use in P.

Concurrent Haskell is implemented as a standard Haskell library which provides
functions and types for creating concurrent processes and facilitating communication
between them. We now discuss the following:

2.3. Concurrent Haskell 23

data MVar a

forkIO :: IO () → IO ThreadId

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a → a → IO ()

takeMVar :: MVar a → IO a

mark

phil :: MVar α → MVar α → IO()
phil a b = loop (do

putMVar a 1
putMVar b 1
takeMVar a
takeMVar b

)

phil :: MVar Int → MVar Int → IO()
phil a b = loop (do

putMVar a 1
putMVar b 1
x ← takeMVar a
y ← takeMVar b
return ()

)

mark

2

Haskell

A value of type MVar a represents a pointer to a memory location that can hold one
element of type α . This memory location can be used as a channel for communication
between Concurrent Haskell processes. The semantics of the above functions are
formally defined with a reaction relation, which is shown in figure 2.7. The notation
M [f] can be read as “a monadic expression where the next function to be evaluated is
f ”. For our purposes, this can be one of three things:

1. The monadic function f on its own; for example, f orkIO a for some Haskell
function a.

2. A do statement of the form:

phil :: MVar Int → MVar Int → IO()
phil a b = loop (do

putMVar a 1
putMVar b 1
x ← takeMVar a
y ← takeMVar b
return ()

)

do
f
< more statements >

do
x ← f
< more statements >

7

3. A do statement of the form:

phil :: MVar Int → MVar Int → IO()
phil a b = loop (do

putMVar a 1
putMVar b 1
x ← takeMVar a
y ← takeMVar b
return ()

)

do
f
< more statements >

do
x ← f
< more statements >

7

With this in mind, the above Concurrent Haskell functions are defined by figure 2.7
and their type declarations to have the following behaviour:

• The function f orkIO takes a Haskell expression of type IO(), generates a new
thread for this expression to execute in, and returns a thread ID. Its behaviour is
described formally by the rule (Fork), which can be applied to any process of
the form:

M [f orkIO a]

24 Chapter 2. Verifying a Network-on-Chip

(Fork) M [f orkIO a] → a |M [return id]
where id :: T hreadId

(New) M [newEmptyMVar] → (ν α)(〈〉α |M [return α])

where α /∈ f ree names(M)

(Put) 〈〉α |M [putMVar α x] → 〈x〉α |M [return ()]

(Take) 〈 x 〉α |M [takeMVar α] → 〈〉α |M [return x]
(Par) P | Q → P′ | Q i f P→ P′

(Res) (ν α)(P) → (ν α)(P′) i f P→ P′

Figure 2.7: A Reaction Relation for Concurrent Haskell

and it would transform this process into a new process of the form:

a |M [return id]

Here, a new process is created with the function ‘a’ being evaluated inside it.

• newEmptyMVar creates a new empty memory location and returns a pointer to
it, wrapped in the IO Monad: this is specified by the rule (New).

• putMVar takes a pointer to a memory location and a value. If the memory
location is empty, the rule (Put) dictates that putMVar will place the value into
it. Note that there is no rule for the process:

〈y〉α |M [putMVar α x]

putMVar cannot write to a memory element which is already full. Hence, if it is
called to write to a full location, it waits until the location becomes empty.

• takeMVar takes a pointer to a memory location. If the location is full its contents
are removed, as specified by the rule (Take), and wrapped in the IO Monad.
There is no rule to read from an empty memory location, meaning that takeMVar

will not execute until the location in question becomes full.

2.4. Specifying a Network-on-Chip 25

2.4 Specifying a Network-on-Chip

This section introduces a novel framework for the behavioural specification of
packet-switched networks-on-chip using Concurrent Haskell. Generic abstractions are
presented for key NoC components, which can be modified to capture the behaviour
and topology of specific NoC architectures.

2.4.1 Packets and Physical Links

Packets are represented as instances of a Haskell datatype. The actual type is left
undefined here, to be implemented for specific NoC architectures. In keeping with
the behavioural (un-timed) level of abstraction, physical links are represented with
unbounded ‘first in, first out’ (FIFO) buffers, which have the type Chan in Concurrent
Haskell [Has11].

2.4.2 IP Blocks

Because we are concerned with the verification of NoCs, rather than the specific IP
blocks they serve, IP blocks are specified as simple non-terminating processes which
receive and generate NoC traffic:

ip :: Int → MVar Pkt → MVar Pkt → IO ()
ip id i o = loop $ do

pack ← takeMVar i
putMVar o (new pack id pack)

ip :: Int → Chan Packet → Chan Packet → IO ()
ip id input output = loop $ do

p ← readChan input
writeChan output (new pack id p)

mkIP :: Int → Chan Packet → Chan Packet → IO ThreadId
mkIP id input output

= forkIO $ loop $ do
p ← readChan input
writeChan output (new pack id p)

phil :: MVar Int → MVar Int → IO()
phil a b = loop (do

putMVar a 1
putMVar b 1
x ← takeMVar a
y ← takeMVar b
return ()

)

do
f
< more statements >

do
x ← f
< more statements >

7

Haskell

This function (“make IP”) initialises an IP block with a unique ID (id) and two Chans
(input and out put) which serve as its interface to the NoC. The IP block exists in
its own concurrent process, and continually reads packets from the NoC, creates new
packets with the new pack function, and launches them into the NoC to generate more
network traffic. The new pack function can be tailored to suit the individual NoC
architecture.

2.4.3 Arbiters

Arbiters merge the incoming packet streams of a NoC node into a single stream which
is input to the node’s router. This behaviour can be expressed as a collection of

26 Chapter 2. Verifying a Network-on-Chip

concurrent processes, one for each input stream, which read packets from the relevant
input and write them to a common output. The following function creates an arbiter
which merges packets, having first paired them with integers to indicate the input that
each packet came from:

arbiter :: [MVar Pkt] → MVar Pkt → IO ()
arbiter inputs output = mapM listener inputs

where
listener input = forkIO $ loop $ do

p ← takeMVar input
putMVar p output

arbiter :: [Chan Packet] → Chan Packet → IO ()
arbiter inputs output = mapM listener inputs

where
listener input = forkIO $ loop $ do

p ← readChan input
writeChan p output

arbiter :: [Chan Packet] → Chan (Packet , Int) → IO ()
arbiter inputs output = mapM listener $ zip inputs [0 ..]

where
listener (input , id) = forkIO $ loop $ do

p ← readChan input
writeChan (p, id) output

mkArbiter :: [Chan Packet] → Chan (Packet , Int) → IO [ThreadId]
mkArbiter inputs output = mapM listener $ zip inputs [0 ..]

where
listener (input , id) = forkIO $ loop $ do

p ← readChan input
writeChan (p, id) output

arbiter :: [MVar Pkt] → MVar Pkt → IO ()
arbiter os rIn = mapM listener [0.. length os − 1]

where
listener id = forkIO (loop (do

p ← takeMVar os !!id
putMVar p rIn

))

arbiter :: [MVar Pkt] → MVar Pkt → IO ()

9

Haskell

The function mkArbiter takes a list of Chans representing the NoC node’s inputs and
another Chan representing the arbiter’s output. It then calls the listener function for
each of the NoC node’s inputs: this is achieved using the standard Haskell function
mapM which takes a function of type a→ m b (for some monad m) and a list of type
[a] and applies the function to every element of the list, giving a new list of type [m b],
which it then converts to a value of type m [b].

Arbiters must generally satisfy a progress requirement – any continuously available
input value will always eventually be forwarded. The semantics of Concurrent Haskell
(§2.3) makes no guarantees about this kind of progress. However, for the purposes of
formal proof, we can show that certain theorems follow from an assumption of arbiter
progress. This assumption would then need to be justified for the RTL implementation
of the given arbiter.

2.4.4 Routers

Routers are specified as follows:

router :: (Packet →Maybe[Int]) →Chan(Packet , Int) → [Chan Packet] → IO()
router lookup input outputs = loop $ do

(p, id) ← readChan input
route (lookup p) outputs id p

mkRouter :: (Packet → Maybe [Int])
→ Chan (Packet , Int) → [Chan Packet] → IO ThreadId

mkRouter lookup input outputs
= forkIO $ loop $ do

(p, id) ← readChan input
route (lookup p) outputs id p

route :: Maybe [Int] → [Channel] → [Channel] → Int → Packet → IO()
route dests procIns iclIns src (id , state)

| badLocalPacket = badLocalPacketHandler
| state == N E1 = do

route dests procIns iclIns src (id ,N)
route dests procIns iclIns src (id ,E1)

| localMiss = localMissHandler
| forwardPacket = forward iclIns src (id , state)
| otherwise = multicast dests procIns iclIns src (id ,N)
where

badLocalPacket = src > 5 ∧ state ! = N
localMiss = dests == Nothing ∧ src > 5
forwardPacket = state == E1 ∨ dests == Nothing
iclDests dests = foldl keep icl [] dests
procDests dests = foldl keep proc [] dests
keep icl ps p = if p < 6 then p : ps else ps
keep proc ps p = if p ≥ 6 then (p − 6) : ps else ps

route :: Maybe [Int] → [Channel] → [Channel] → Int → Packet → IO()
route dests procIns iclIns src (id , state)

| badLocalPacket = badLocalPacketHandler
| state == N E1 = do

route dests procIns iclIns src (id ,N)
route dests procIns iclIns src (id ,E1)

| localMiss = localMissHandler

11

Haskell

This function takes the following arguments:

2.5. Specifying the SpiNNaker NoC 27

1. A lookup table which maps packets to values of type Maybe [Int] which can
be either Nothing, representing a lookup table miss, of Just xs, representing a
lookup table hit which provides a list of integers to indicate the NoC nodes to
which the packet in question should be forwarded.

2. A Chan representing the router’s input (which is also the arbiter’s output).

3. A list of Chans representing the inputs to the NoC nodes.

The functionality of mkRouter is to launch a new concurrent process which continually
reads packets from the arbiter’s output, consults the lookup table to obtain forwarding
information and calls the auxiliary function route to execute the actual forwarding.
The function route is left to be implemented for specific NoC architectures.

2.5 Specifying the SpiNNaker NoC

The toroidal structure of the system-wide communications network contains a myriad
of cyclic paths, from small circuits between neighbouring nodes to Hamiltonian cycles
along which the default routing mechanism will single-handedly carry packets through
every node in the system. If any one of these paths is ever used, deadlock and/or
livelock can ensue. Furthermore, two other novel features of SpiNNaker complicate
the task of ensuring that they are not used:

1. Packets are routed through the system according to the contents of NoC CAMs,
which are generated by third parties.

2. Emergency routing spontaneously alters the courses of packets.

Externally generated CAMs will be verified with software which checks for cyclic
routing paths, and each packet also carries a time stamp, allowing it to be dropped if
it remains in the system for too long. The emergency routing mechanism has been
verified with testing, code review and the formal approach presented here.

2.5.1 Packets and Inter-Chip Links

In the SpiNNaker system, packets are routed according to the unique ‘address’ of the
neuron which initiated them. However, we abstract away from the concept of neurons
and assign unique IDs to the ARM cores; this simplifies the specification of ARM core

28 Chapter 2. Verifying a Network-on-Chip

functionality, whilst still supporting the NoC’s source-addressed routing functionality.
Packets carry the ID of their originating core, and also a ‘packet type’ for emergency
routing:

type CoreID = Int
data PacketType = N | E1 | N E1 | E2

deriving (Show , Eq)

type Packet = (CoreID , PacketType)
type CoreID = Int
data PacketType = N | E1 | N E1 | E2

type Packet = (Int , PacketType)
data PacketType = N | E1 | N E1 | E2

data Channel = Working (Chan Packet) | Broken (Chan Packet)

new pack :: Int → Packet → Packet
new pack id (src,N) = (id ,N)

14

Haskell

On-chip and inter-chip links are represented as unbounded FIFO buffers, which can be
specified as Working or Broken:

forwardPacket = state == E1 || dests == Nothing

iclDests dests = foldl keep_icl [] dests

procDests dests = foldl keep_proc [] dests

keep_icl ps p = if p< 6 then p :ps else ps

keep_proc ps p = if p>=6 then (p-6):ps else ps

type Packet = (NeuronID , ChipID , PacketType)
type NeuronID = Int
type ChipID = Int
data PacketType = N | E1 | N E1 | E2

deriving (Show , Eq)

data Channel = Working (Chan Packet) | Broken (Chan Packet)

9

Haskell

2.5.2 ARM Cores

ARM cores are specified as IP blocks from §2.4.2. The new pack function is defined
as follows:

type CoreID = Int
data PacketType = N | E1 | N E1 | E2

deriving (Show , Eq)

type Packet = (CoreID , PacketType)
type CoreID = Int
data PacketType = N | E1 | N E1 | E2

type Packet = (Int , PacketType)
data PacketType = N | E1 | N E1 | E2

data Channel = Working (Chan Packet) | Broken (Chan Packet)

new pack :: Int → Packet → Packet
new pack id (src,N) = (id ,N)

14

Haskell

The behaviour of an ARM core is to receive packets form the NoC and issue new
packets, carrying its own unique ID, back into the NoC.

2.5.3 NoC Arbiters and Routers

Arbiters and routers are specified with the approaches presented in §2.4.3 and §2.4.4
respectively. The function route, which was left undefined in §2.4.4, is given in
figure 2.8 along with its auxiliary function writeToICLs; route takes slightly different
arguments to its counterpart in §2.4.4, as explained below.

The route function is responsible for copying packets to the appropriate inter-chip
links and on-chip ARM cores, as well as initiating and handling emergency routing,
and detecting erroneous packets. It takes the following arguments:

• dests :: Maybe[Int] – the information returned by the lookup table. Nothing

represents a lookup table miss; Just ds indicates the on-chip and inter-chip links

2.5. Specifying the SpiNNaker NoC 29
47 Chapter 2. Verifying a Network-on-Chip

route :: Maybe [Int] → [Channel] → [Channel] → Int → Packet → IO()
route dests procIns iclIns src (id , state)

| state == N E1 = do
route dests procIns iclIns src (id ,N)
route dests procIns iclIns src (id ,E1)

| localMiss = localMissHandler
| forwardPacket = forward iclIns src (id , state)
| otherwise = let Just ds = dests in

do
writeToICLs iclIns (filter (< 6) ds) (id , state)
writeToProcs procIns (filter (≥ 6) ds) (id , state)

where
localMiss = dests == Nothing ∧ src > 5
forwardPacket = state == E1 ∨ dests == Nothing

type Packet = (CoreID , PacketType)
type CoreID = Int
data PacketType = N | E1 | N E1 | E2

deriving (Show , Eq)

type Packet = (CoreID , PacketType)
type CoreID = Int
data PacketType = N | E1 | N E1 | E2

type Packet = (Int , PacketType)
data PacketType = N | E1 | N E1 | E2

data Channel = Working (Chan Packet) | Broken (Chan Packet)

new pack :: Int → Packet → Packet
new pack id (src,N) = (id ,N)

14

writeToICLs :: [Channel] → [Int] → Packet → IO ()
writeToICLs iclIns dests pack = mapM (writeToICL pack) [0 .. 5]

where
writeToICL (id ,N) node

| normalPacket node = writeToChan (iclIns !!node) (id ,N)
| emergencyPacket node = writeToChan (iclIns !!node) (id ,E1)
| normAndEmerg node = writeToChan (iclIns !!node) (id ,N E1)
| dropped node = drop (id ,N)
| otherwise = return ()
where

normalPacket node = (busy node) ∧ (¬ (jammed (node + 1))
emergencyPacket node = (quiet node) ∧ (jammed (node + 1))
normAndEmerg node = (busy node) ∧ (jammed (node + 1))
dropped node = (jammed node) ∧ (broken (node − 1))
quiet node = ¬(receiving node) ∧ ¬ (broken node)
jammed node = receiving node ∧ broken node
busy node = receiving node ∧ ¬ (broken node)

new pack :: Int → Pkt → Pkt
new pack id (type, src, dest , data) = (type, id , src, data)

new pack :: Int → Packet → Packet
new pack id (type, src, dest , data) = (type, id , src, data)

arbiter :: [MVar Pkt] → MVar Pkt → IO ()
arbiter inputs routerIn = mapM listener [0 .. length inputs − 1]

where
listener id = forkIO $ loop $ do

p ← takeMVar inputs !!id
putMVar p routerIn

arbiter :: [MVar Pkt] → MVar Pkt → IO ()
arbiter inputs output = mapM listener [0 .. length inputs − 1]

where
listener id = forkIO $ loop $ do

p ← takeMVar inputs !!id
putMVar p output

8

Figure 2.8: A component of the SpiNNaker NoC specification.

Haskell

Figure 2.8: A component of the SpiNNaker NoC specification.

30 Chapter 2. Verifying a Network-on-Chip

that the packet should be forwarded to. The six inter-chip links are indexed [0..5]
and the 18 ARM cores are indexed [6..23].

• procIns :: [Channel] – a list of channels used for communication with ARM
cores.

• iclIns :: [Channel] – a list of channels used as inter-chip links.

• src :: Int – an integer representing the NoC node (ARM core or inter-chip link)
from which the packet entered the NoC.

• (id,state) :: Packet – the packet.

Note that route takes separate Channel lists for on-chip and inter-chip links, whereas
its counterpart in §2.4.4 took only one list containing all links; this small difference
simplifies the definition of route and its auxiliary functions.

The function route evaluates as follows:

• If the packet has type N E1, it is split into two packets. Both are identical to
the original except that one has packet type N and one E1: route is then called
recursively on each of these.

• If the lookup table returns Nothing and the packet came from an on-chip
processor, the predicate localMiss evaluates to true, indicating that an error has
been detected. This situation should never happen, because the lookup table
should only return Nothing for default routing when a packet enters the chip
through an inter-chip link, and is forwarded to the diametrically opposite inter-
chip link. The function localMissHandler is called.

• Whenever the state is not N or the lookup returns Nothing, f orwardPacket

evaluates to true and we have one of two scenarios:

1. If the state is not N, we have a packet which is being passed from an inter-
chip link for emergency routing. (We know from the definition of new pack

that only N-type packets originate from the on-chip ARM cores.)

2. If dests == Nothing, we know from the falsity of localMiss that the
packet came from an inter-chip link, and so we have a valid case for default
routing.

2.5. Specifying the SpiNNaker NoC 31

The cases for default and emergency routing have in common the fact that they
can be handled without referring to the lookup table. For this reason, they are
both passed to a function f orward which deals with this scenario.

• otherwise: if none of the guards evaluate to true, we know that we have a packet
with type N, for which the lookup returned Just ds. In this case, writeToICLs is
called to write to the appropriate inter-chip links, and writeToProcs is called to
write to the appropriate ARM cores.

The function writeToProcs is trivial and has been omitted here. However,
writeToICLs performs an important role in emergency routing, and is shown in
figure 2.8. When it is called to forward a packet, writeToICLs iterates through the
inter-chip links (using the mapM function1) looking for the following conditions on
each link:

• If the link is working but should not receive the packet, it may still have to carry
an emergency routing packet. The anti-clockwise neighbour is inspected; if it is
broken and should receive the packet, the emergency-routing procedure dictates
that the packet should be sent down the present link. This condition is recognised
by the predicate emergencyPacket.

• If the link is working and the packet should be passed down it, the anti-clockwise
neighbour is inspected;

1. If it is broken and should receive the packet, we have a case for emergency
routing. An N E1 packet should be sent down the present link. This
condition is recognised by the predicate normAndEmerg.

2. If it is working, or not due to receive a packet, an N packet is sent down the
present link. This condition is recognised by the predicate normalPacket.

• If the link is broken, the anti-clockwise neighbour is inspected; if it is broken
and should receive the packet, the emergency-routing procedure dictates that
the packet should be dropped. This condition is recognised by the predicate
dropped.

• If none of the above conditions have occurred, no action should be taken for the
link in question.

1mapM is similar to mapM, except that it returns an instance of IO ().

32 Chapter 2. Verifying a Network-on-Chip

2.6 Verifying the SpiNNaker NoC

It will now be shown that a packet passing through the SpiNNaker system-wide
communications network will never enter a cyclic path as a result of emergency
routing. When a packet is launched into the network, we define the intended path as
the path which it will take in the absence of broken inter-chip links (henceforth links)
and the realised path as the actual path it takes, which may deviate from the intended
path because of broken links. To avoid livelock, intended routing paths are checked
at compile time to ensure they are acyclic. Because SpiNNaker supports multicast
routing, (acyclic) intended routing paths are trees. We define a hop as the traversal of a
single link. Breaks are assumed to be constant: links which are broken at the creation
of the system will remain so, and links which are functioning at the creation of the
system will not break.

Lemma 1: No realised path will deviate from its intended path for more than one hop.

Proof: A realised path will only deviate from its intended path if a link on the intended
path is broken. In this case, the packet will diverge for one hop with the type E1. When
a SpiNNaker NoC receives an E1 packet, it will either return it to its intended path or
drop it. (These scenarios are shown graphically in figure 2.5.) �

Theorem 1: For an acyclic intended path, every realised path will also be acyclic.

Proof: We proceed by mathematical induction on the number of broken links in the
system.

Base Case: No broken links. The realised path will be identical to the intended path,
which is acyclic.

Induction hypothesis: If the realised path is acyclic in a given system with n broken
links (henceforth the (n)-system) then it will also be acyclic in a system which is
identical, except that it contains one extra broken link (henceforth the (n+1)-system).

Inductive Step: We have an acyclic realised path through a system with n broken
links, and we wish to show that insertion of new break anywhere in the system would
not produce a cyclic realised path. From Lemma 1 and the earlier system description,
we know that the realised path must follow the intended path except that:

• It may deviate from the intended path any number of times, although each

2.7. Related Work 33

deviation will be for at most one hop;

• Any branch of the intended path may terminate early in the realised path, if the
packet is dropped because of broken links;

• A packet will only be dropped by a chip which is on the intended path, or deviates
from it by one hop.

We have the following cases:

1. If the new break is not on the realised path in the (n)-system, then the realised
path in the (n+1)-system will be identical to the realised path in the (n)-system,
which is acyclic.

2. If the new break is on the realised path, but not the intended path, of the (n)-
system, then it must have been an E1 hop. If such a link is broken, the packet
will be dropped, meaning that one branch of the realised path in the (n+ 1)-
system will terminate immediately before the new break, but elsewhere it will be
identical to the acyclic realised path in the (n)-system.

3. If the new break is on both the realised and intended paths of the (n)-system,
then it is an N hop. We have two cases:

(a) If both of the links required for emergency routing are functioning, the
realised path in the (n+ 1)-system will be identical to the acyclic realised
path in the (n)-system, except for the two new emergency routing hops
which are also acyclic.

(b) If either of the links required for emergency routing is broken, the packet
will be dropped, meaning that one branch of the realised path in the (n+1)-
system will terminate immediately before the new break, but elsewhere it
will be identical to the acyclic realised path in the (n)-system. �

2.7 Related Work

The work presented in this chapter is novel in its application of Concurrent Haskell
for the specification of NoCs, and also in its verification of an innovative routing
mechanism belonging to the SpiNNaker NoC, which was achieved by mathematical
induction.

34 Chapter 2. Verifying a Network-on-Chip

A number of hand-based formalisms exist for specifying and formally verifying
concurrent systems such as NoCs. Examples include the π-calculus [Mil93], TLA+

[Lam02], UNITY [CM88] and Event-B [AH07]. When compared to these formalisms,
Concurrent Haskell has the advantage of being fully executable, and also provides
the expressivity of a mature functional language. In these respects, it is a convenient
language for rapid-prototyping at the system-level and, as we have seen, is amenable
to verification by deductive proof.

There have been several attempts to verify NoC architectures with mechanised
deduction, all of which have used pure functional languages to form abstract spec-
ifications of the systems in question. Gebremichael et al. [GVZ+05] use the PVS
theorem prover [ORS92] to establish the absence of a class of deadlock scenarios
in the Æthereal NoC protocol [GDR05]. They achieved this by identifying cyclic
resource dependencies for buffers in the NoC, and verifying that if such a cycle exists,
one or more of the resources will be unused, thus preventing deadlock. The first
general framework for the application of theorem proving to NoC verification was the
GeNoC system [BHPS07, SB08], which used the ACL2 theorem prover to provide a
generic functional description of NoC architectures. This generic specification can
be tailored to specific architectures by providing details such as network topology
and routing algorithms. It has been used to verify properties of the HERMES
and Octagon architectures. Böhm and Melham [BM08] present a refinement-based
approach for the design of on-chip communication protocols, in which protocols are
specified in Isabelle/HOL and refinement steps are proven to maintain correctness.
When compared to these approaches, the present mothodology provides less robust
formal assurances, because proof is conducted by hand. However, specification with
Concurrent Haskell has the following advantages:

1. Its expressive concurrency primitives allow direct behavioural specification of
NoC architectures, whereas the input logics of theorem provers require more
abstract formulations.

2. It is executable, meaning that formal specifications can also serve as rapid
prototypes.

3. It is convenient. Models are straightforward to construct, and verification with
hand-proof is comparatively painless. In contrast, specification and verification
with an automated theorem prover requires a good deal more expertise, and time.

2.8. Summary 35

2.8 Summary

A novel network-on-chip architecture belonging to the SpiNNaker many-core pro-
cessor has been specified in Concurrent Haskell, and an induction proof has been
presented for the verification of a novel emergency routing protocol. Concurrent
Haskell has been shown to provide a suitable basis for the application of lightweight
formal methods to NoC verification. Owing to its clean semantics, it allows the
construction of elegant behavioural specifications which can be executed (Concurrent
Haskell is a mature software language) and also subjected to formal reasoning with
hand proof. The work presented in this chapter was carried out as a component of the
SpiNNaker design cycle, in response to verification concerns expressed by the design
team. It was found that a lightweight application of formal methods stimulated a closer
inspection of the relevant NoC design concepts, which provided timely and valuable
reassurances for the design team.

36 Chapter 2. Verifying a Network-on-Chip

Chapter 3

Bluespec SystemVerilog

A review is presented of the hardware language Bluespec SystemVerilog. BSV is used

to design two hardware components, which implement Peterson’s algorithm and an

arbiter control circuit, and will serve as running examples in later chapters when

automated reasoning techniques are developed for the language.

BSV is a hardware description language based on guarded atomic actions.

It has been shown to reduce design time when compared to hand-written RTL

whilst producing comparable hardware for many applications [Nik04, WNRD04].

It is an industrially-mature language, being owned and developed by Bluespec Inc.

and used by companies including Intel, IBM, Qualcomm, Panasonic, Fujitsu and

STMicroelectronics.

3.1 Syntax and Semantics

BSV expresses hardware in terms of guarded atomic actions. The basic structural unit
of a BSV design is the module, which defines a state type, an initialisation of that
state, and a number of methods and rules. Modules can be instantiated by creating a
new instance of the state type, with all values set to the correct initial values (in the
same way that a Java object is instantiated from a class, for example). Methods are
side-effecting functions which are used to access the state of a module instance, and
possibly transform it in the process (as with the methods of a Java object). Rules are
guarded atomic actions which can fire spontaneously to change the state of a module
instance. Each rule has:

1. A guard which is a predicate on the state.

37

38 Chapter 3. Bluespec SystemVerilog

2. An action which is a sequence of statements that can be formed from the methods
provided by local instantiations of other modules.

A rule can fire if its guard evaluates to True for the current state. When a rule fires, the
statements in the action transform the state. The state updates occur atomically; they
are applied in unison, and no other rule can change the state while this happens.

A simple example of a module is mkReg, which ‘makes’ a register that implements
the following interface:

interface Reg #(type a_type);

method Action _write(a_type x1);

method a_type _read();

endinterface: Reg

BSV

This interface has the type parameter a_type and declares two methods, _read and
_write. Other modules can instantiate mkReg to create a register, and use its methods
in their own rules and methods. For example, we can instantiate two Bool registers
called request and acknowledge:

Reg#(Bool) request <- mkReg(False);

Reg#(Bool) acknowledge <- mkReg(False);

BSV

We can then write a simple rule that initiates a handshake protocol using these two
registers by checking to see whether they are both set to False, and when they are,
changing the state of request to True:

rule request_rl (!(request._read() || acknowledge._read()));

request._write(True);

endrule

BSV

BSV users will notice that method calls for registers do not use the standard syntactic
sugar; this relatively trivial point simplifies the semantics for embedding in later
chapters.

3.1. Syntax and Semantics 39

In general, a rule has the form:

rule my_rule (rl_guard);

statement_1;

statement_2;

...

endrule

BSV

When a rule fires, its statements are applied in parallel; each acts on the state as it was
immediately before the rule fired, meaning that the changes made by statement_1

are not seen by statement_2. To permit this parallel application, statements are not
allowed to conflict with each other by writing to the same elements of state.

3.1.1 One-Rule-at-a-Time Semantics

The behaviour of module instances is defined by an exceedingly simple one-rule-at-a-

time semantics; a module instance evolves from a given state by allowing any one rule
to fire. If more than one rule is ready to fire, an unspecified choice is made; there is
no fairness condition placed on this choice, so a rule is not guaranteed to fire if there
are always competing rules. When hardware is generated, a number of optimisations
are made (for example, a clock is introduced and multiple rules are executed per clock
cycle) but the behaviour will always comply with the one-rule-at-a-time semantics.

The one-rule-at-a-time semantics provides a binary transition relation for module
instances. As we shall see in chapter 4, these are used extensively in the formal
methods community to specify state machines for automated proof. This makes BSV
naturally amenable to verification with such tools. In contrast, the mainstream ad

hoc languages such as VHDL, Verilog and SystemC have convoluted simulation cycle

semantics, which are difficult to describe in formal logic [BGG+92, Gor95, Klo95,
MRH+01].

3.1.2 Static Elaboration and Staging

BSV provides language constructs for static elaboration, which allow the definition of
sets of module instances, interfaces, rules and so-on for expansion before synthesis.
For example, the following expression creates several instance of request_rl to
operate on different sets of registers which are held in two lists, req and ack:

40 Chapter 3. Bluespec SystemVerilog

Integer i; // a compile time variable

for (i = 0 ; i < 10 ; i = i + 1) begin

rule request_rl (!(req[i]._read() || ack[i]._read()));

req[i]._write(True);

endrule

end

BSV

There are two stages in processing a BSV design:

1. The Static Stage – static elaboration is performed by executing the static

semantics;

2. The Dynamic Stage – the design is executed according to the dynamic

semantics, which is guaranteed to be consistent with the one-rule-at-a-time
semantics from § 3.1.1. The design is executed either in a simulator or as real
hardware.

Later chapters will see the dynamic semantics embedded in several proof tools.
However, the static semantics will not be considered further in this dissertation, except
in relation to further work. It should be noted that perfectly legal BSV code can be
written without the use of static constructs.

3.2 Peterson’s Algorithm

This section and the one following it introduce BSV hardware designs which will
serve as running examples in later chapters, as automated reasoning techniques are
developed for the language. We begin with Peterson’s algorithm [Pet81] – a protocol
which allows two processes to share a common resource without conflict, as defined
by the following properties:

1. Safety – at most one process should have access to the shared resource at a given
time.

2. Progress – a process which attempts to access the shared resource should always
eventually succeed.

3.2. Peterson’s Algorithm 41

In addition to these properties, an implementation of Peterson’s algorithm should not
be able to enter a deadlock state from which it cannot progress. If this were to happen,
the above properties might become true by default, although the system would no
longer be functioning.

The two processes coordinate their actions by inspecting and modifying three
elements of state: two program counters (one for each process) and a boolean turn

flag. The program counters can be in one of three states: sleeping, trying, or critical.
A process begins life in the sleeping state, and thereafter has the following behaviour:

1. A sleeping process remains inactive for an undetermined (and possibly infinite)
period of time, until it wakes up and enters the trying state.

2. A trying process attempts to gain access to the resource continuously until it
succeeds, whereupon it enters the critical state.

3. A critical process has gained access to the resource. It retains access for an
undetermined (but finite) amount of time and then relinquishes it to return to the
sleeping state.

Safety is achieved by ensuring that neither process becomes critical while the other is
already critical. Progress is ensured by manipulating the turn flag to ensure that the
processes are alternately given priority in the case of a resource-access conflict.

We now implement Peterson’s algorithm as a BSV module; in later chapters, this
module will be translated into logic and verified with respect to the above safety and
progress properties using automated reasoning. We begin by defining an enumerated
type for the program counters:

typedef enum {Sleeping, Trying, Critical} PC

deriving (Bits, Eq);

BSV

The deriving clause instructs the compiler to produce a bit-level representation and
test for equality. We now create two instances of the Reg module to hold the program
counters:

Reg#(PC) pcp <- mkReg(Sleeping);

Reg#(PC) pcq <- mkReg(Sleeping);

BSV

42 Chapter 3. Bluespec SystemVerilog

We call our two processes p and q. We also create two more module instances, namely
a Boolean register to hold the turn flag and a single element Boolean FIFO register
which represents the shared resource:

Reg#(Bool) turn <- mkReg(True);

FIFO1#(Bool) fifo <- mkFIFO1;

BSV

The FIFO will be accessed by processes which have entered the Critical state – it is
not strictly necessary for a formulation of Peterson’s algorithm, but is added to create
extra complexity for the embeddings presented in later chapters.

We now create rules to define the behaviour of the two processes:

1. If a process is Sleeping, it enters the Trying state and sets the turn register to
give the other process priority. (Process p has priority when the turn register
holds the value True, and process q has priority otherwise.) For p and q

respectively:

rule wake_p (pcp._read == Sleeping);

pcp._write (Trying);

turn._write (False);

endrule

rule wake_q (pcq._read == Sleeping);

pcq._write (Trying);

turn._write (True);

endrule

BSV

2. If a process is Trying, and either has priority or the other process is Sleeping,
it can enter the Critical state:

rule grant_p (pcp._read == Trying

&& (turn._read || pcq._read == Sleeping));

pcp._write (Critical);

endrule

BSV

3.2. Peterson’s Algorithm 43

rule grant_q (pcq._read == Trying

&& (!turn._read || pcp._read == Sleeping));

pcq._write (Critical);

endrule

BSV

3. If a process is Critical and fifo is not full, it writes an element of data to
fifo and returns to the Sleeping state, whilst also setting turn to give the
other process priority:

rule p_critical (pcp._read == Critical);

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

endrule

rule q_critical (pcq._read == Critical);

fifo.enq (False);

pcq._write (Sleeping);

turn._write (True);

endrule

BSV

The FIFO _write method carries an implicit condition which permits it to be
called only when the FIFO is not full. Any rule which uses this method can only
fire when the implicit condition is satisfied.

4. We also have a rule to empty the FIFO whenever an element is placed into it:

rule read_fifo;

fifo.deq;

endrule

BSV

The FIFO deq method carries an implicit condition which permits it to be called
only when the FIFO is not empty.

44 Chapter 3. Bluespec SystemVerilog

3.3 Arbiter Control Circuit

We now consider a BSV design for the control circuit of a 3-input arbiter, which should
have the following properties:

1. Safety – at most one input should have access to the output at a given time.

2. Progress – an input which requests access to the output should always eventually
gain it, as long as no input retains the output indefinitely.

3. Deadlock freedom – the arbiter should never reach a state from which it cannot
progress, as long as its inputs are active.

Our arbiter control circuit will implement the following interface:

interface Arbiter;

method Action request1 ();

method Action request2 ();

method Action request3 ();

method Action relinquish1 ();

method Action relinquish2 ();

method Action relinquish3 ();

endinterface

BSV

An input will be able to request control of the output when it does not have it, and
relinquish the output when it does. Note there are no methods to remove a request
which has been placed but not yet granted.

We define a module to implement the above interface:

module mkArbiter (Arbiter);

...

endmodule

BSV

Within this module, each input is assigned a Boolean ‘request’ register, which is used
to record requests when they are made. The arbiter also has a Boolean ‘acknowledge’
register for each input, which is used to record the fact that a request made by the
relevant input has been acknowledged, and that it has exclusive access to the output.

3.3. Arbiter Control Circuit 45

Reg#(Bool) req1 <- mkReg(False);

Reg#(Bool) req2 <- mkReg(False);

Reg#(Bool) req3 <- mkReg(False);

Reg#(Bool) ack1 <- mkReg(False);

Reg#(Bool) ack2 <- mkReg(False);

Reg#(Bool) ack3 <- mkReg(False);

BSV

Request methods have the following form:

method Action request1 () if (!(req1._read || ack1._read));

req1._write (True);

endmethod

BSV

The ‘if’ statement on the first line is an implicit condition which prevents any rule that
uses this method from firing when either req1 or ack1 hold the value True. Methods
to relinquish the output have the following form:

method Action relinquish1 () if (ack1._read && req1._read);

req1._write (False);

endmethod

BSV

In order to guarantee progress, the arbiter also has a separate Boolean ‘token’
register for each input. Of the three ‘token’ registers, only one is set to True at any
time. When an input ‘has the token’, the arbiter gives it priority over all other incoming
requests. Each time a request is granted, the token is cycled round to another input.

Reg#(Bool) tok1 <- mkReg(True);

Reg#(Bool) tok2 <- mkReg(False);

Reg#(Bool) tok3 <- mkReg(False);

BSV

These registers are accompanied by a local action to permute the token (remember that
the statements will be executed in parallel):

46 Chapter 3. Bluespec SystemVerilog

Action move_token = (action tok1 <= tok3;

tok2 <= tok1;

tok3 <= tok2;

endaction);

BSV

We create rules to say that an input’s request can be acknowledged if it holds the
token and the output is not currently occupied:

rule ack1_with_tok (tok1 && req1 && !(ack1 || ack2 || ack3));

ack1._write (True);

move_token;

endrule

BSV

When an input’s request is granted, the token is permuted with move_token. We
now create rules to say that an input’s request can be acknowledged whenever the
output is not currently occupied, regardless of the token position, and constrain these
rules to fire only when the above rules do not, by use of a scheduling attribute:

rule ack1_without_tok (req1 && !(ack1 || ack2 || ack3));

move_token;

ack1._write (True);

endrule

(* descending_urgency

= "ack1_with_tok, ack2_with_tok, ack3_with_tok,

ack1_without_tok, ack2_without_tok, ack3_without_tok" *)

BSV

We also create rules to lower the acknowledge flag for an input when it no longer
requires access to the output:

rule arbiter1_hs (ack1 && !req1);

ack1._write (False);

endrule

BSV

3.3. Arbiter Control Circuit 47

import Arbiter::*; // Package containing Arbiter and mkArbiter

module mkTbArbiter (Empty);

Arbiter arb <- mkArbiter();

//-- Client Requests --

rule client1_req;

arb.request1();

endrule

rule client2_req;

arb.request2();

endrule

rule client3_req;

arb.request3();

endrule

//-- Client-Side Handshakes ---------------------------------

rule client1_hs;

arb.relinquish1();

endrule

rule client2_hs;

arb.relinquish2();

endrule

rule client3_hs;

arb.relinquish3();

endrule

endmodule

BSV

Figure 3.1: A Test Bench for mkArbiter

48 Chapter 3. Bluespec SystemVerilog

This concludes the description of mkArbiter. Figure 3.1 presents a test bench
that creates an instance of mkArbiter and invokes its methods. For each input,
mkTbArbiter provides a rule which calls the relevant request method whenever
possible (i.e. whenever the implicit condition for the method is satisfied, which occurs
when the relevant req and ack flags are low). According to the one-rule-at-a-time
semantics of BSV (§3.1.1) the system will always execute a rule when there are rules
to be executed; it turns out that whenever all of the request and acknowledge flags are
low, one of the client_req rules will fire. This will be proven in later chapters.

We also create a rule for each input to relinquish the output once it has been granted.
It will be proven in later chapters that a client_hs rule will always eventually fire
once access to the output has been granted.

It should be noted that the above system could be described in a more succinct (and
unbounded) form with static elaboration, which is not discussed here because it will
not be supported in the theorem prover and model checker embeddings presented in
later chapters. It does seem possible to represent static elaboration with the embedding
approach that will be presented, but this is left as a topic for further work.

3.4 Summary

A review has been conducted of the semantically elegant hardware language Bluespec
SystemVerilog. Two examples have been presented, which implement Peterson’s
algorithm and the control circuit of an arbiter . They will serve as running examples in
later chapters as automated reasoning techniques are developed for BSV, and are well
suited to this investigation for two reasons:

1. They demonstrate a number of advanced language features: module definition
and instantiation, side-effecting methods with and without implicit conditions,
rule composition using methods from instantiated modules, scheduling at-
tributes.

2. They exhibit interesting and well-defined temporal properties, which can be
specified in logic and verified with automated proof.

Chapter 4

Automated Reasoning for Bluespec
SystemVerilog

The concept of automated reasoning is introduced, and the literature is surveyed for

automated reasoning strategies of potential application to Bluespec SystemVerilog.

4.1 Automated Reasoning

Reasoning is part of the creative brilliance that sets us apart as humans, namely
the ability to assimilate information from our surroundings, and use it to discover
truths that would not otherwise be apparent. It allows us to undertake abstract
endeavours such as the construction of complex computational systems, which we
achieve by manipulation of semiconducting materials. It is an astonishing virtue,
but also a fallible one; we can err and draw false conclusions, unaware of our
incomplete knowledge, oversight, miscomprehension or miscalculation. In hardware
design, for example, highly qualified verification engineers can pore over a design and
meticulously, but erroneously, arrive at the conclusion of its correctness. Thus, the
towering achievements of our reason can be undone by its fallibility. In our creativity
then, can we overcome the fallibility of our own reason? Can we reduce reasoning to
calculation?

The challenge of reducing reasoning to calculation has been studied for millennia
in the field of logic. The Greek word logos, which was used by Plato and Aristotle to
mean reason, can also mean computation. The link between reason and computation
was made concrete by Gottfried Wilhelm von Leibniz (1664-1716), who suggested
that a framework for systematic reasoning could be constructed with two components:

49

50 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

1. A universal language in which knowledge can be captured, and assertions about
that knowledge can be expressed;

2. A calculus of reasoning which can be used to established the truth or falsity of
assertions written in the universal language.

Leibniz suggested that such a system could be used to resolve disputes. He imagined
a time when disagreements would culminate with a proclamation of “calculamus!”

(let us calculate) whereupon the relevant background information and the point of
contention would be translated into the universal language, and from this the truth
would be computed. Logic has fallen short of this lofty aspiration! Remarkably,
however, his approach is followed almost to the letter in the more restricted sphere
of automated reasoning. . .

4.2 Logics and Decidability

Leibniz was remarkably accurate in his prediction of logical reasoning, but its modern
incarnation differs on one point – rather than having a single universal language, we
have a collection of logics, any of which may be preferable for a given reasoning task.
Whatever its nature, however, a formal logic will conform to Leibniz’s model, having
a specification language for describing systems and asserting theorems about them and
a set of inference rules which are used to prove theorems written in the specification
language. Furthermore, we have the additional nuance that logics can be unsound

(theorems can be proven which are, in fact, false), although this can be avoided by
introducing a type system: from this point onwards, all logics are assumed to be typed.

Logics vary in terms of the properties they can express (their expressivity) and the
ease with which proofs of those properties can be automated. In terms of automation,
we have the following distinction:

• For some logics, a single decision procedure can be written to automatically
prove or disprove any theorem; we call such logics decidable.

• For other logics, a semi-decision procedure can be written to prove any true
theorem, although it may fail to terminate for theorems which are false; we call
such logics semi-decidable.

• Other logics are undecidable, meaning that some degree of human innovation is
required to construct proofs, which can either be encoded into a proof procedure

4.3. Propositional, First Order and Higher Order Logic 51

p ::= x (boolean variable)
| true
| f alse
| ¬p1

| p1∧ p2

| p1∨ p2

| p1⇒ p2

| p1⇔ p2

Figure 4.1: A Grammar of Propositional Logic

before the proof is attempted, or provided during the proof by human interaction.

As we shall see, expressivity and automation are often inversely related, creating an
important design tradeoff when automated proof is considered for a given verification
task: expressivity can be sacrificed for ease of automation, or a more expressive
logic can be chosen at the cost of increased human input into the proof process.
Decidability is clearly an attractive property when it comes to automated reasoning.
However, high levels of automation can often be achieved for subsets of undecidable
logics. Applications will often use a fragment of the logic in question. Typically,
some fragments of an undecidable logic will be decidable, whilst other fragments
will be semi-decidable, and customised proof strategies can be constructed for
undecidable fragments, which use heuristics to assemble proofs, either autonomously
or in combination with human guidance.

A extensive introduction to logic and automated reasoning can be found in John
Harrison’s engaging book [Har09]1. This dissertation will feature propositional, first
order and higher order logic, as well as several temporal logics.

4.3 Propositional, First Order and Higher Order Logic

Propositional, first order and higher order logic are closely related. Propositional logic
is a subset of first order logic, which is a subset of higher order logic; consequently,
propositional logic is less expressive than first order logic, which is less expressive
than higher order logic.

1From which the above historical notes were taken.

52 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

p ::= t
| true
| f alse
| ¬p1

| p1∧ p2

| p1∨ p2

| p1⇒ p2

| p1⇔ p2

| ∀x.p1

| ∃x.p1

t ::= x
| f (t1, . . . , tn), for n≥ 0

Figure 4.2: A Grammar of First Order Logic

• Propositional Logic is shown in Fig 4.1. It contains the boolean literals
(true and f alse), boolean variables, negation, conjunction, disjunction and
implication. Propositional logic is decidable.

• First Order Logic is shown in Fig 4.2. It extends propositional logic by re-
placing the boolean values with predicates on expressions written in a functional

specification language, and also allows universal and existential quantification
(∀ and ∃) over the input values of functions. First order logic is undecidable,
although some fragments are decidable and others are semi-decidable.

• Higher Order Logic extends first order logic by allowing quantification over
functions, rather than simply the input values of functions. As with first order
logic, higher order logic is undecidable, although some fragments are decidable
and others are semi-decidable.

4.4 Temporal Logics

Temporal logics allow the formulation and proof of theorems concerning the evolution
of state-based systems. For example, we can prove that from a given initial state,

4.4. Temporal Logics 53

a given proposition will hold in all future states, or will become true within a
bounded or unbounded number of state transitions. An important class of temporal
logic theorems is decidable, and many others theorems can be efficiently reduced
to decidable theorems with the use of techniques such as abstraction. This section
provides a brief introduction to temporal logic that will suffice for the present work:
alternatively, a comprehensive introduction can be found in [CGP00].

4.4.1 Kripke Structures and Computation Trees

A nondeterministic state machine can be formally specified with a Kripke structure. A
Kripke structure M over a set of atomic propositions AP is a 4-tuple (S,S0,R,L) where:

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R⊆ S×S is a nondeterministic transition relation on the state type.

• L : S→ 2AP is a function that labels each state with a set of atomic propositions
which are true in that state. Atomic propositions are primitive truths about the
state.

For model checking, a general restriction is that:

Transition relations must be left-total on S

That is to say, for a given transition relation R ⊆ S× S, for every state s ∈ S, there
must exist at least one s′ ∈ S such that R(s,s′). Model checking algorithms can
give unpredictable results if they are applied to transition relations which violate
this condition [CGP00]. Some model checking algorithms require the less restrictive
condition that R must be left-total only for the reachable states (which are defined as
the transitive closure of R on the initial states S0).

We can think of the evolution of a nondeterministic state machine as a computation

tree, which is a branching sequence of states formed by starting from an initial state
and applying the transition relation recursively to give sequences of states. Because
transition relations can be nondeterministic, a given state can map to more than one
next state, creating branches in the computation tree.

54 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

p ::= AP
| ¬p1

| p1∧ p2

| p1∨ p2

| p1⇒ p2

| p1⇔ p2

| AX p1

| EX p1

| AF p1

| EF p1

| AG p1

| EG p1

| A [p1 U p2]

| E [p1 U p2]

| A [p1 R p2]

| E [p1 R p2]

Figure 4.3: A Grammar of Computation Tree Logic

4.4.2 Computation Tree Logic

A temporal logic theorem has the form:

M,s |= p

Here, p is a temporal logic formula, written in Computation Tree Logic (CTL), or
another temporal logic. This theorem asserts that p is true for the Kripke structure M

in state s.

Fig. 4.3 presents a grammar for CTL formulas. We have atomic propositions,
negation, conjunction, disjunction, implication and eight path quantifiers. The path
quantifiers have the following meanings:

• M,s |= AX p1 means that p1 holds in all next states from state s.

• M,s |= EX p1 means that p1 holds in at least one next state from state s.

• M,s |= AF p1 means that p1 holds at some point along all paths from state s.

4.4. Temporal Logics 55

LTL

Xp

Fp

Gp

pUq

...

...

...

...

p holds q holdsLEGEND: don’t care

qRp ...

CTL

EXp EFp EGp E[pUq]

AXp AFp AGp A[pUq]

p holds q holdsLEGEND: don’t care

Figure 4.4: Computation Tree Logic (from [Sim07])

• M,s |= EF p1 means that p1 holds at some point along at least one path from
state s.

• M,s |= AG p1 means that p1 holds continuously along all paths from state s.

• M,s |= EG p1 means that p1 holds continuously along at least one path from
state s.

• M,s |= A [p1 U p2] means that p1 holds continuously until p2 holds, along all
paths from state s.

• M,s |= E [p1 U p2] means that p1 holds continuously until p2 holds, along at
least one path from state s.

• M,s |= A [p1 R p2] means that p1 holds continuously up to and including the
first state in which p2 holds, along all paths from state s.

• M,s |= E [p1 R p2] means that p1 holds continuously up to and including the
first state in which p2 holds, along at least one path from state s.

Fig. 4.4 provides some illustrative examples of CTL formulas. To clarify their
meaning, we discuss the top left example, which demonstrates a computation tree for
which the theorem EX p is true for a given state (there exists a next state for which p

56 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

p ::= AP
| ¬p1

| p1∧ p2

| p1∨ p2

| p1∨ p2

| p1⇒ p2

| p1⇔ p2

| X p1

| F p1

| G p1

| p1 U p2

| p1 R p2

Figure 4.5: A Grammar of Linear Temporal Logic

holds). The state in question is represented by the root node in the tree, which has three
branches to represent the transitions that are permitted by the transition relation. One
of these transitions leads to a state in which p is satisfied, as represented by the black
node.

4.4.3 Linear Temporal Logic

Linear Temporal Logic (LTL) is equivalent to the subset of CTL that excludes
existential path quantifiers (EX, EF, EG, EU and ER). Because we only have universal
quantifiers, we drop the A, and use simply X, F, G, U and R. Fig. 4.5 presents a
grammar for LTL, and Fig. 4.6 provides illustrative examples.

4.5 Automatic Proof Tools

A variety of proof tools have been developed to automate reasoning in the different
logics:

• For propositional logic we have satisfiability (SAT) solvers [GN02] and satis-

fiability modulo theories (SMT) solvers [DM06, DMB08], which provide fully
automated solution of the boolean satisfiability problem. Many important prob-
lems reduce to satisfiability problems, including model checking [BCC+99],

4.6. Automated Reasoning in the IC Design Flow 57
LTL

Xp

Fp

Gp

pUq

...

...

...

...

p holds q holdsLEGEND: don’t care

qRp ...

CTL

EXp EFp EGp E[pUq]

AXp AFp AGp A[pUq]

p holds q holdsLEGEND: don’t care

Figure 4.6: Linear Temporal Logic (from [Sim07])

logic synthesis [BSVMH84] and equivalence checking [GPB01]. Popular SMT
solvers include Z3 [DMB08] and Yices [DM06].

• For first order logic we have first order theorem provers which aim to automate
decidable fragments of first order logic (including propositional logic) whilst
allowing user-guided proof for theorems expressed in the undecidable parts of
the logic. A widely used first order theorem prover is ACL2 [KSM96]. SAT and
SMT solvers can also provide automated reasoning for some fragments of first
order logic.

• For higher order logic we have higher order theorem provers which aim
to automate decidable fragments of higher order logic, whilst allowing user-
guided proof for theorems expressed in the undecidable parts of the logic.
Popular higher order theorem provers include PVS [ORS92], HOL [GM93] and
Isabelle/HOL [NWP02].

• For temporal logics we have model checkers which provide fully automated
reasoning for decidable theorems. Popular model checkers include SAL
[dMOR+04], SPIN [Hol03] and NuSMV [CCGR99].

4.6 Automated Reasoning in the IC Design Flow

BSV supports design by refinement, in which electronic system level specifications
are incrementally refined into implementations which can be synthesised to efficient

58 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

BSV

Register

Transfer

Level

System Level

Functional V&V in a

Hybrid BSV Design Flow

Functional

Requirements
Logic

Assertions

BSV

Synthesis

Level
BSV

BSV

BSV

C / C++ / SystemC

VHDL / Verilog /

SystemVerilog
Verilog

A
u

to
m

a
tic

T
ra

n
s

la
tio

n

P
ro

o
f

Functional V&V in a

Traditional Design Flow

Manual

Translation

English /

Pseudo-code

English /

Pseudo-code

E
q

u
iv

a
le

n
c

e
 P

ro
o

f

T
e

s
tin

g
 &

 R
e

v
ie

w

T
e

s
tin

g
 &

 R
e

v
ie

w

T
e

s
tin

g
 &

 R
e

v
ie

w

Te
s
tin

g
 &

 R
e
v
ie

w

E
q

u
iv

a
le

n
c

e
 P

ro
o

fs

Figure 4.7: Automated Reasoning for BSV: A Conceptual Design Flow

4.7. Functional Verification of ESL Specifications 59

hardware. Refinement-based design provides an excellent basis for the application of
formal methods, as illustrated by the conceptual design flow in figure 4.7. This design
flow satisfies a number of recommendations made by the International Technology
Roadmap for Semiconductors for innovation over coming years [ITR09]:

1. Formal verification early in the design flow to identify errors in ESL specifi-
cations, when the cost of correction is lowest.

2. Complete proof of functional equivalence between ESL specifications and
RTL designs.

3. Design for verifiability to render tractable goals (1) and (2):

• ESL specifications should be structured in a hierarchical way, to enable the
decomposition of complex systems into smaller blocks which are suitable
for formal verification;

• RTL designs should be derived from ESL specifications by incremental
refinement, where each step in the refinement can be proven to preserve
functional correctness.

ITRS sees these developments as integral to its suggested aggressive scale-up in formal
verification, the timetable for which is shown in figure 4.8.

The design flow in figure 4.7 requires two kinds of proof:

1. Functional verification of ESL specifications against theorems expressed in
logic.

2. Proof of refinement between increasingly detailed designs.

This dissertation focuses on the former: the latter is left as a topic for further work. We
now review the current state-of-the-art in automated reasoning tools and techniques
for high-level functional verification of hardware designs. This will lead us to a
verification strategy for BSV, which will be partially implemented in the following
chapters.

4.7 Functional Verification of ESL Specifications

Many languages express hardware as state machines; this is true for the BSV, and also
for VHDL, Verilog and SystemC. Therefore, the task of verifying a given hardware

60 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

!
"
#
$%
&'
(
)
*
+
&&&'

%
,
-.
/
&0
%
1-2-3

"
4-5
/
&6
%
7
8
-1%
9
%
/
4,

!
:
%
&;/
4%
1/
"
4-5
/
"
$&!
%
3
:
/
5
$5
.
<
&6
5
"
=
9
"
>
&25
1&)
%
9
-3
5
/
=
8
3
45
1,
?&@
A
A
B
&(
=
-4-5
/

!
"#
$%&
'%(
$&
)
*
+,-&
.

!
"
"
#

!
"
$
"

!
"
$
$

!
"
$
!

!
"
$
%

!
"
$
&

!
"
$
'

!
"
$
(

!
"#

$
$
"%

$
#
"$

$
&
"'

$
%
"%

(
$
"(

(
)
"'

(
'
"!

!
"
#$%"
&
'"
('$)
*'+
*,%-

&
',.
*/%(%/0$%"

&
'("
#1
02%3*+

'("
#'4
*#%(%05

%2%$6
'78
9

$
)
"%

$
'
"*

$
&
")

$
+
"'

$
%
"%

(
*
"*

(
$
")

(
(
"'

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%"3-2,4%#

.
)
%#
$"%0

"-.
5
%&
6
,-7
-8")

%%

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%9.

&
:
.
%%

;.
,"$-7

%2&
1*
,-&
.
2%#
$"%9.

&
:
.
%%!

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%<

=
>
%9.
&
:
.
%%

:
*,%-

&
'*##"

#,'*;
.
"
,*+
'<
,%&
-
'("
#1
02'"
#',*1

%=("
#1
02'4
*#%(%/0$%"

&
'78
>'

4
*#,<

,',%1
<
20$%"

&
9

!
"
#
$%
&'
(
)
*
+
&&&'

%
,
-.
/
&0
%
1-2-3

"
4-5
/
&6
%
7
8
-1%
9
%
/
4,

!
:
%
&;/
4%
1/
"
4-5
/
"
$&!
%
3
:
/
5
$5
.
<
&6
5
"
=
9
"
>
&25
1&)
%
9
-3
5
/
=
8
3
45
1,
?&@
A
A
B
&(
=
-4-5
/

!
"#
$%&
'%(
$&
)
*
+,-&
.

!
"
#$%"
&
'"
('$)
*'+
*,%-

&
',.
*/%(%/0$%"

&
'("
#1
02%3*+

'("
#'4
*#%(%05

%2%$6
'78
9

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%"3-2,4%#

.
)
%#
$"%0

"-.
5
%&
6
,-7
-8")

%%

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%9.

&
:
.
%%

;.
,"$-7

%2&
1*
,-&
.
2%#
$"%9.

&
:
.
%%

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%<

=
>
%9.
&
:
.
%%

:
*,%-

&
'*##"

#,'*;
.
"
,*+
'<
,%&
-
'("
#1
02'"
#',*1

%=("
#1
02'4
*#%(%/0$%"

&
'78
>'

4
*#,<

,',%1
<
20$%"

&
9

!
"
#
$

!
"
#
%

!
"
#
&

!
"
!
"

!
"
!
#

!
"
!
!

!
"
!
'

!
"
!
(

!
"
#!

$
%
#&

$
!
#'

$
(
#$

$
)
#&

*
%

*
$

*
(

!
$
#"

!
(
#%

!
&
#$

!
)
#(

!
"
#"

$
%
#%

$
+
#$

$
!
#(

!
"
#
$%
&'
(
)
*
+
&&&'

%
,
-.
/
&0
%
1-2-3

"
4-5
/
&6
%
7
8
-1%
9
%
/
4,

!
:
%
&;/
4%
1/
"
4-5
/
"
$&!
%
3
:
/
5
$5
.
<
&6
5
"
=
9
"
>
&25
1&)
%
9
-3
5
/
=
8
3
45
1,
?&@
A
A
B
&(
=
-4-5
/

!
"#
$%&
'%(
$&
)
*
+,-&
.

!
"
"
#

!
"
$
"

!
"
$
$

!
"
$
!

!
"
$
%

!
"
$
&

!
"
$
'

!
"
$
(

!
"#

$
$
"%

$
#
"$

$
&
"'

$
%
"%

(
$
"(

(
)
"'

(
'
"!

!
"
#$%"
&
'"
('$)
*'+
*,%-

&
',.
*/%(%/0$%"

&
'("
#1
02%3*+

'("
#'4
*#%(%05

%2%$6
'78
9

$
)
"%

$
'
"*

$
&
")

$
+
"'

$
%
"%

(
*
"*

(
$
")

(
(
"'

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%"3-2,4%#

.
)
%#
$"%0

"-.
5
%&
6
,-7
-8")

%%

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%9.

&
:
.
%%

;.
,"$-7

%2&
1*
,-&
.
2%#
$"%9.

&
:
.
%%!

/
#
.
*
'#
+,*
$#
0
1"%2&

1*
,-&
.
2%#
$"%<

=
>
%9.
&
:
.
%%

:
*,%-

&
'*##"

#,'*;
.
"
,*+
'<
,%&
-
'("
#1
02'"
#',*1

%=("
#1
02'4
*#%(%/0$%"

&
'78
>'

4
*#,<

,',%1
<
20$%"

&
9

Figure
4.8:

IT
R

S
2009

Form
alM

ethods
R

oadm
ap.

T
he

firstrow
sets

targets
for

the
increasing

role
of

form
alm

ethods
in

functional
verification,and

the
second

row
refers

to
the

existence
ofa

system
levelspecification

in
a

language
w

hich
is

suitable
forform

alproof;
i.e.

a
sem

antically
elegantlanguage

w
hich

is
supported

by
the

appropriate
proof

tool(s).
N

ote
thatm

anufacturable
solutions

as
of

2009
can

only
m

aintain
the

proposed
schedule

until
2012,and

that
there

are
no

know
n

solutions
to

m
aintain

the
schedule

beyond
2016.A

llfigures
referto

designs
w

hich
are

new
ly

developed
in

the
relevantyear,and

exclude
design

com
ponents

w
hich

are
re-used

from
earlierprojects.From

[IT
R

09],table
D

E
SN

6.

4.7. Functional Verification of ESL Specifications 61

design in a given language often reduces to a more generic problem of verifying
a certain type of state machine. Over recent years, automated reasoning has made
great advances in its capacity to verify logic properties for complex hardware designs,
fuelled by a stream of new techniques for verifying state machines. It is now used by a
host of companies to verify substantial design components, as discussed in chapter 8.
Interestingly, the software used by these companies is often built around off-the-shelf
proof tools for verifying state machines.

4.7.1 How to Verify a State Machine

We can verify a state machine by specifying the desired properties in temporal logic
and proving that they hold for all reachable states. When the state space is finite, we
can determine whether the properties hold by exhaustive exploration of the reachable
states. This is the idea of model checking. Model checking is attractive because
it is fully automatic and returns counter-examples when theorems transpire to be
false. These counter examples can then be used as a starting point to identify the
underlying bugs that invalidate the theorems (as discussed in Rushby’s illuminating
paper [Rus00a]).

For systems with large state spaces, checking every state can become intractable.
This is referred to as state space explosion and occurs in parameterised systems,
systems with large numbers of concurrent interacting processes, and systems which
contain data structures that can assume many different states (for example in data

paths, which are circuits that transport data between storage locations). We must
therefore look beyond model checking alone if we wish to verify systems with these
attributes, all of which are common in hardware designs. Two popular methods are:

1. State Space Reduction – the state space is reduced to a size that can be model
checked. A common technique is abstraction [CC77, CGP00, GS97].

2. Compositional Reasoning – a system’s subcomponents are verified automati-
cally (often using model checking with state space reduction) and the results are
composed by user-guided deduction to verify larger systems [SJO+05].

There has also been a small amount of work on mathematical induction over state
machines [BLO98], although it is challenging in practice because many state machine
invariants are not inductive, and need to be strengthened by adding extra conditions.

62 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

4.7.2 Tools for Scalable State Machine Verification

We now investigate the possibilities for applying the above proof strategies for the
verification of BSV designs. These strategies have been implemented in a number
of interactive theorem provers, which combine powerful state-based verification
techniques with the full spectrum of deductive reasoning (from complex mathematical
induction2 strategies down to simple operations such as skolemization and term rewrit-
ing) within proof environments which allow rapid experimentation and customisation.
These theorem provers can be used for the verification of BVS designs if we can find
a way to translate the designs of interest into a form which is accepted by such tools.

PVS

PVS is a higher order theorem prover which supports automatic deduction, model
checking [RSS95], automatic predicate abstraction [SS99], automatic invariant strength-
ening [BLO98] (for mathematical induction over state machines) and SMT solving (via
Yices [DM06]). All of these features are closely integrated into an interactive proof
environment, and can be applied during interactive proof sessions by the invocation of
proof strategies, or combined before a proof is attempted thanks to an expressive proof
scripting language.

HOL

HOL is a higher order theorem prover, which is comparable in many ways to
PVS. It also supports model checking and automatic abstraction [PTC+00, Amj03].
These capabilities have been applied to verify the Advanced Microcontroller Bus
Architecture (AMBA) of ARM Limited [Amj06].

Forte and HOL-VOSS

Intel carries out formal verification with a proprietary tool called Forte [SJO+05],
which is freely available for non-commercial use. Forte combines model checking with
lightweight theorem proving in higher order logic. The model checker uses symbolic
trajectory evaluation (STE) [Seg93] and supports a limited subset of Linear Temporal
Logic, which has only the ‘next state’ and ‘requires’ path quantifiers. State space
reduction is achieved by the use of a three valued logic, in which digital signals can be

2Mathematical induction – not to be confused with induction – is a form of deductive reasoning.

4.8. Summary 63

high, low or ‘don’t care’; this can dramatically reduce the number of cases that must
be considered by the model checker.

Forte was heavily influenced by the earlier work of Joyce and Seger [JS93] on
combining the HOL theorem prover with the VOSS STE model checker [Seg93]. In
this system, VOSS establishes properties of manageable subcomponents of a design
with model checking. These properties are then used in HOL, during interactive proof
for the verification of larger design components.

Other Approaches

The ACL2 theorem prover supports deductive reasoning over first order logic, as well
as fully automated SAT and Binary Decision Diagram (BDD) techniques. It has been
used by Centaur and AMD to verify substantial hardware components [HR05, HS09,
Obe99, Rus00b].

Dingel and Filkorn [DF95] apply the SVE model checker [FSS+94] together with
the SEDUCT first order theorem prover [SN94] to verify LTL assertions for systems
with transition relations specified in a VHDL-like imperative language. Their method
uses data abstraction to verify large and unbounded systems.

Kurshan and Lamport [KL93] present an approach that combines the COSPAN
model checker [HK90] with TLP [EGL93], a theorem prover based on the Temporal
Logic of Actions. They verify a 64-bit multiplier by first model checking an 8-bit
sub-component and extending the result to hold for an N-bit multiplier using TLP.

The Stanford Temporal Prover (STeP) [BBC+96, BBC+95] combines model
checking with first order theorem proving to verify linear temporal logic specifications
for finite-state and infinite-state transition systems.

Müller and Nipkow [MN95] combine model checking with the Isabelle theorem
prover. Isabelle is used to form verified abstractions of finite and infinite state systems,
which have sufficiently small state spaces to be verified by a prototype model checker.

4.8 Summary

We have discussed the practice of automated reasoning, from logics to proof tools,
and reviewed the literature to find proof strategies of potential application to BSV.
We have seen that a number of proof tools exist which combine powerful state-based
verification techniques with the full spectrum of deductive reasoning, all within proof
environments which allow rapid experimentation and customisation. Chapter 5 will

64 Chapter 4. Automated Reasoning for Bluespec SystemVerilog

present a translation strategy for expressing BSV designs in the input logic of one such
tool – the PVS theorem prover.

Chapter 5

Embedding Bluespec SystemVerilog in
the PVS Logic

A subset of Bluespec SystemVerilog is embedded in the higher order logic of the

PVS theorem prover. Owing to the clean semantics of BSV, application of monadic

techniques leads to a surprisingly elegant embedding, in which hardware designs are

translated into logic almost verbatim, preserving types and language constructs. The

subset of BSV which is embedded includes module definition and instantiation, meth-

ods, implicit conditions, rule composition using methods from instantiated modules,

and scheduling attributes.

5.1 Embedding BSV in Logic

Bluespec SystemVerilog is a formally inspired language, which evolved from research
using Term Rewriting Systems (TRS) to produce hardware specifications which
could be synthesised and formally verified [AS99]. In common with TRS, BSV is
semantically elegant, which suggests that it is well suited for automated reasoning. To
date, however, little work has been done to apply automated reasoning to BSV designs.

This chapter presents a shallow embedding of a subset of BSV in the specification
logic of the PVS theorem prover. This provides access to the powerful automated
reasoning capabilities of PVS (§4.7.2) including automatic deduction, model checking,
automatic predicate abstraction, automatic invariant strengthening (for mathematical
induction over state machines) and a versatile proof scripting language.

A novel application of monadic techniques allows BSV code to be translated
almost verbatim, preserving types and language constructs (witness figures 5.2

65

66 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

and 5.3). The narrow semantic gap between BSV code and corresponding logic
specifications reduces the risk of undetected errors in the BSV-to-PVS translation
process. Furthermore, monadic embedding maintains the clean partitioning of
state and functionality from BSV designs, which raises the possibility of applying
compositional reasoning at the source code level, in which small design components
are verified automatically (using model checking with abstraction, for example) and
the results are composed by user-guided deduction to verify larger systems.

Monads have been used before to address the notoriously messy issue of verifying
state-based computation with theorem proving. However, their application to BSV
has yielded surprisingly clean results. BSV has its roots in a minimalist guarded
action language (of the kind used to specify state machines for model checking) and
was expanded into a fully-featured hardware language with strong influences from
functional programming, which is essentially typed first-order or higher-order logic
without quantification. As a result, we shall find that an environment such as PVS
(which integrates model checking with higher order theorem proving) allows an almost
verbatim translation of BSV source code to a monadic form which can be directly
verified using standard proof strategies. These findings support the truism that a well
designed language saves a great deal of elbow grease when automated reasoning is to
be applied.

This chapter presents the first theorem prover embedding of BSV. In chapter 6, the
embedding will be used to verify BSV designs using a combination of model checking
and deductive reasoning. The application of automatic abstraction to BSV designs was
unfortunately beyond the scope of this dissertation, although PVS was chosen above
other proof tools because of its close integration of model checking and automatic
abstraction [SS99]; capitalising on this would be a natural direction for further work.

5.2 Embedding the State of a BSV Module

The state type of a BSV module can be expressed as a PVS record. To take a
simple example, the state type of a register (the module mkReg from §3.1) which holds
elements of type Bool can be specified as:

5.2. Embedding the State of a BSV Module 67

.

Dom Richards

June 9, 2010

BoolReg: type =
�
#val: bool#

�

mark

1

PVS

The type of ‘val’ can be left unspecified by adding a type parameter to the
containing PVS theory:

.

Dom Richards

June 9, 2010

RegState
�
T: type

�
: theory

begin

Reg: type =
�
#val: T#

�

end RegState

mark

1

PVS

Other theories can import ‘RegState’ and generate Boolean registers, for example,
with the shorthand ‘Reg

[
bool

]
’, which is expanded to ‘RegState

[
bool

]
.Reg’ behind

the scenes.

The states of more complex BSV modules can be defined in this way. For example,
the state of a one element FIFO buffer (mkFIFO1 from §3.2):

.

Dom Richards

March 26, 2011

FIFOF1State
�
T: type

�
: theory

begin

FIFOF1: type =
�
#notFull: bool, notEmpty: bool, val: T#

�

end FIFOF1State

FIFO1State
�
T: type

�
: theory

begin

FIFO1: type =
�
#notFull: bool, notEmpty: bool, val: T#

�

end FIFO1State

mark

1

PVS

Note that a one-element FIFO does not actually need two boolean fields, because
‘notEmpty’ should always be ‘¬ notFull’. However, this is not the case for n-element
FIFOs, so the two fields are defined for generality.

The states of modules which instantiate other modules can also be specified as
records. For example, the module from the Peterson example of §3.2:

68 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

PetersonState: theory
begin

importing RegState, FIFO1State

PC: type = {Sleeping, Trying, Critical}

Peterson: type =�
#pcp : Reg

�
PC

�
,

pcq : Reg
�
PC

�
,

turn: Reg
�
bool

�
,

fifo : FIFO1
�
bool

�
#
�

end PetersonState

mark

2

PVS

5.3 Embedding the Semantics of a BSV Module

The one-rule-at-a-time semantics for module instances (§3.1.1) can be expressed as
a nondeterministic transition relation of the kind used to form Kripke structures for
model checking (§4.4.1). First, rules must be specified as binary relations on the
module state. For example:

.

Dom Richards

June 9, 2010

myRule(pre, post: ModuleState): bool = ...

mark

1

PVS

The internal structure of this function will be considered shortly; for now, note that
it should evaluate to ‘TRUE’ whenever the ‘post’ state can be reached from the ‘pre’
state by a single application of the rule (i.e. whenever the guard evaluates to ‘TRUE’
for ‘pre’ and the action creates ‘post’ when applied to ‘pre’). We can then express the
one-rule-at-a-time semantics of a module instance as the disjunction of the module’s
rules:

.

Dom Richards

February 18, 2011

stutter (pre, post: ModuleState): bool = pre = post

left total (pre, post: ModuleState): bool
= stutter (pre, post) ∨ rule1 (pre, post) ∨ rule2 (pre, post) ∨ ...

transitions (pre, post: ModuleState): bool
= rule 1 (pre, post) ∨ rule 2 (pre, post) ∨ ...

left total (pre, post: State): bool
= transitions (pre, post) ∨ pre = post

transitions (pre, post: Peterson) : bool = wake p (pre, post) ∨
grant p (pre, post) ∨
p critical (pre, post) ∨ ...

mark

1

PVS

Recall from §3.1.1 that model checkers require transition relations to be either (i)
left-total over the state type or (ii) left-total over the reachable states, depending on

5.4. Embedding Rules: A Primitive Approach 69

the specific model checking algorithm used. Some model checkers provide deadlock

checkers to verify this property for user-supplied transition relations: however, the PVS
model checker does not. Furthermore, the PVS documentation does not elaborate on
whether left-totality is required for all states or just the reachable states. Fortunately,
it is relatively simple to ensure left-totality for all states by adding a stutter term to the
transition relation, which maps every state to itself:

.

Dom Richards

March 26, 2011

stutter (pre, post: ModuleState): bool = pre = post

left total (pre, post: ModuleState): bool
= stutter (pre, post) ∨ rule1 (pre, post) ∨ rule2 (pre, post) ∨ ...

transitions (pre, post: ModuleState): bool
= rule 1 (pre, post) ∨ rule 2 (pre, post) ∨ ...

trans : var [[ModuleState, ModuleState] → bool]

left total (trans) (pre, post: ModuleState): bool
= trans (pre, post) ∨ pre = post

transitions (pre, post: Peterson) : bool = wake p (pre, post) ∨
grant p (pre, post) ∨
p critical (pre, post) ∨ ...

mark

1

PVS

When applied to a transition relation, ‘left total’ returns a new transition relation which
contains a stutter term. Adding a stutter term gives the PVS specification a subtly
different behaviour to the BSV code it represents, although this is OK for the proofs
that we will conduct. Alternative solutions which do not have this effect are discussed
in §6.2.

5.4 Embedding Rules: A Primitive Approach

Consider the following rule from the Peterson example of §3.2:

rule p_critical (pcp._read == Critical);

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

endrule
BSV

The guard is a predicate on the state of a mkPeterson module instance, and the action
changes the state of the module instance in some way. Recall from §3.2 that the FIFO
method enq carries an implicit condition which will prevent p_critical from firing
when fifo is full. This is enforced by allowing the guard of p_critical to inherit

the implicit condition of enq. In general, we define a rule’s composite condition to
be the conjunction of its explicitly-declared guard and the implicit conditions of all
the methods it invokes [Blu08]. A rule can only fire when its composite condition is
satisfied.

70 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

With this in mind, we can represent p_critical with a PVS function of the form:

.

Dom Richards

March 26, 2011

p critical(pre, post: Peterson): bool =
guard(pre) ∧ post = action(pre)

mark

p critical (pre, post: Peterson): bool =
composite condition (pre) ∧ post = action (pre)

mark

1

PVS

Here, ‘composite condition (pre)’ should evaluate to true if and only if the composite
condition of p_critical evaluates to true in the BSV code, and ‘action (pre)’ should
return a value of type ‘Peterson’ which is identical to ‘pre’, except with the updates
that are prescribed by the action part of the BSV rule. Because module states are
represented as records, ‘composite condition’ will be a predicate on the fields of ‘pre’,
and ‘action’ will make updates to the fields of ‘pre’. For example, the above rule can
be written as:

.

Dom Richards

June 9, 2010

p critical primitive(pre, post: Peterson): bool =
pre‘pcp‘val = Critical ∧ pre‘fifo‘notFull
∧ post = pre with

�
(fifo) := (#val := true,

notFull := false,
notEmpty := true#),

(pcp) := (#val := Sleeping#),
(turn) := (#val := false#)

�

mark

1

PVS

This is a straightforward way to express rules, and is suitable for model checking (as
we shall see in chapters 6 and 7). We specify the state of a module with a record,
and for each rule, we express the composite condition as a predicate over the fields
of this record and the action as a record update. When we do this, we are effectively
eliminating all of the methods that are used in the rule by expanding them in-place.

This approach seems quite simple, but it creates a problem. If we express a rule by
fully expanding all of its method calls, we expose its full complexity. BSV provides the
module and method constructs to avoid just this. If we specify a more complex module
in this way (for example, one where rules and methods call methods which themselves
call methods, all returning values and producing side-effects) we end up with a long-
winded specification that bears little resemblance to the BSV code it represents. It then
becomes difficult to provide assurance that the translation is accurate, which makes
it difficult to rule out false positives when a property is proven, or conversely false
negatives when a property is disproved.

Figure 5.1 shows the problem pictorially. We could automatically translate BSV
code to an instance of the primitive PVS embedding (although no such tool exists at

5.5. Embedding Rules: A Monadic Approach 71

p_critical_primitive (pre, post : Peterson) : bool

 = pre‘pcp‘val = Critical ! pre‘fifo‘notFull

 ! post = pre with [(fifo) := (# val := true,

 notFull := false,

 notEmpty := true #),

 (pcp) := (# val := Sleeping #),

 (turn) := (# val := false #)]

rule p_critical (pcp._read == Critical);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

MODEL CHECKED

UNVERIFIED

UNVERIFIED

UNVERIFIED

Figure 5.1: Verification of a Primitive Embedding in PVS

present) by parsing the BSV to get an abstract syntax tree (AST), and then transforming
this AST to produce a new ‘expanded’ AST in which all method calls have been
expanded in-place to expose their full complexity. We could then use this expanded
AST to compile our primitive PVS embedding, and verify it with the proof strategies
of PVS. However, the entire BSV-to-PVS translation process, which involves fully
expanding every method call in-place, remains unverified. Of course, the same problem
exists when compilation is carried out by hand, as it is currently.

We would like to have a PVS representation that relates back to the BSV system in
a simple and transparent way. This can be achieved by applying the concept of monads
to produce concise, high-level specifications.

5.5 Embedding Rules: A Monadic Approach

Monads [Mog91, Wad92a] provide a method of specifying ‘impure’ computations
(such as state manipulation, nondeterminism and I/O operations) in functional lan-
guages. We will use them in the following sections to embed BSV rules and methods
in the functional subset of the PVS logic.

72 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

wake p: Rule = rule (pcp‘read = Sleeping)
(pcp‘write (Trying) �
turn‘write (false))

wake q: Rule = rule (pcq‘read = Sleeping)
(pcq‘write (Trying) �
turn‘write (true))

grant p: Rule = rule (pcp‘read = Trying
∧ (turn‘read ∨ pcq‘read = Sleeping))

(pcp‘write (Critical))

grant q: Rule = rule (pcq‘read = Trying
∧ (¬ turn‘read ∨ pcp‘read = Sleeping))

(pcq‘write (Critical))

p critical: Rule = rule (pcp‘read = Critical ∧ fifo‘enq cond)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

q critical: Rule = rule (pcq‘read = Critical ∧ fifo‘enq cond)
(fifo‘enq (true) �
pcq‘write (Sleeping) �
turn‘write (true))

read fifo: Rule = rule (fifo‘deq cond)
(fifo‘deq)

2

PVS

Figure 5.2: Monadic Embeddings of the Peterson Rules in PVS

5.5. Embedding Rules: A Monadic Approach 73

Before getting into the details, let us take a look at the results. Figures 5.2
and 5.3 show monadic embeddings of rules from the Peterson example and the Arbiter
test bench. In contrast to the primitive embedding strategy of §5.4, the complexity
of methods is factored out into monads. This yields rule specifications which are
almost identical to the BSV rules they represent. The only non-trivial syntactic
difference between BSV and the monadic PVS in these examples is the explicit
inclusion of implicit conditions in the guards of rules (for example, note the expression
‘fifo‘enq cond’ in the ‘p critical’ rule of figure 5.2 and ‘arb‘request1 cond’ in the
‘client1 req’ rule of figure 5.3). With monadic PVS specifications being syntactically
close to the BSV designs they represent, errors in the BSV-to-PVS translation process
are discernible by inspection.

The monadic embedding strategy offers another potential advantage. Because a
method is specified in a single place using a monadic function (rather than being
expanded in-place whenever it is called, as occurs in the primitive embedding strategy)
it may be possible to prove properties of methods, and use these properties to establish
more complex properties of larger systems that use the methods, thus enabling
compositional reasoning at the source code level. Compositional reasoning is not
investigated in this dissertation, but presents an interesting possibility for further work.

client1 req: Rule = rule (arb‘request1 cond) (arb‘request1)

client2 req: Rule = rule (arb‘request2 cond) (arb‘request2)

client3 req: Rule = rule (arb‘request3 cond) (arb‘request3)

client1 hs: Rule = rule (arb‘relinquish1 cond) (arb‘relinquish1)

client2 hs: Rule = rule (arb‘relinquish2 cond) (arb‘relinquish2)

client3 hs: Rule = rule (arb‘relinquish3 cond) (arb‘relinquish3)

transitions(pre, post): bool =
Arbiter.transitions(pre‘arb, post‘arb) ∨
client1 req(pre, post) ∨
client1 hs(pre, post) ∨
client2 req(pre, post) ∨
client2 hs(pre, post) ∨
client3 req(pre, post) ∨
client3 hs(pre, post)

2

PVS

Figure 5.3: Monadic Embeddings of the mkTbArbiter Rules in PVS

74 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

5.5.1 Extensional Equivalence

Monadic rule specifications are actually functions; in the Peterson example, the type
‘Rule’ is a synonym for

[[
Peterson, Peterson

]
→ bool

]
. In fact, monadic rule

specifications are extensionally equivalent1 to their primitive counterparts from §5.4:
monads simply provide a more concise way of writing the same functions. For
example, if we fully expand all of the function calls in the definition of ‘p critical’
in figure 5.2 (which can be done automatically in PVS with the (expand*) proof
strategy [SORSC01]) we end up with the definition of ‘p critical primitive’ – a first
order function which involves record updates and functions over record fields.

A BSV module can be specified in monadic form by: (i) defining a module state
type and initial state; (ii) creating monadic specifications of its rules and methods;
(iii) combining the monadic rule specifications using the ‘left total’ function of §5.3
to form a transition relation for module instances. The PVS model checker fails when
called directly on a monadic transition relation. (Interestingly, this is also true for
the SAL model checker, as we shall see in chapter 7.) This is possibly because of
the extensive use of higher order functions, which is uncommon in the formation of

1Functions are said to be extensionally equivalent if they provide the same outputs for all possible
inputs.

 p_critical : Rule = rule (pcp‘read = Critical ! fifo‘enq_cond)

 (fifo‘enq (true) "

 pcp‘write (Sleeping) "

 turn‘write (false))

rule p_critical (pcp._read == Critical);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

UNVERIFIED

 pre‘pcp‘val = Critical ! pre‘fifo‘notFull

 ! post = pre with [(fifo) := (# val := true,

 notFull := false,

 notEmpty := true #),

 (pcp) := (# val := Sleeping #),

 (turn) := (# val := false #)]

MODEL CHECKED

VERIFIED
EXPANSION

UNVERIFIED

Figure 5.4: Verification of a Monadic Embedding in PVS

5.6. A Primer on Monads in PVS 75

specifications for model checking. However, this problem can be circumvented in
PVS with a small amount of deductive reasoning: the (expand*) proof strategy can
automatically expand monadic transition relations into equivalent primitive transition
relations, which are suitable for model checking. This verification strategy is shown in
figure 5.4.

The remainder of this chapter elaborates on the technical details involved in
producing monadic specifications of the kind shown in figures 5.2 and 5.3.

5.6 A Primer on Monads in PVS

This section implements the well-known state monad in the PVS logic. For further
reading on monads, see [Bir98, OGS08]. The state monad is used to replicate side-
effecting operations (which change the state of the environment in some way) with
pure (side-effect free) functions. Imagine that we have a state of type ‘S’, and we want
to write a function that returns some value from the state, and also changes the state in
some way. We can describe the type of this function with the following PVS theory:

StateMonadThy

Dom Richards

June 9, 2010

StMonadType
�
S, A: type

�
: theory

begin

StMonad: type =
�
S →

�
A, S

��

end StMonadType

mark

1

PVS

A function of type ‘StMonad’ takes an instance of the state type, and returns a value of
type ‘A’ and a new instance of the state; this is the well-known state monad from
functional programming. When we want to specify a function that is side-effect
free (i.e. it has no effect on the state) the output state will be identical to the input
state. When we want to specify a function that is entirely side-effecting (so that no
meaningful value is returned) the return value can have type ‘Null’:

.

Dom Richards

March 26, 2011

NullType: theory
begin

Null: type+

null: Null

end NullType

mark

NullType: theory
begin

Null: type+
null: Null

end NullType

mark

1

PVS

76 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

This theory declares ‘Null’ to be a non-empty type (‘TYPE+’), and declares an element
of the type called ‘null’.

The following theory defines a concrete state type, together with monadic functions
which operate on it:

StateMonadThy

Dom Richards

June 9, 2010

StMonadExample: theory
begin

importing StMonadType, NullType

MyRecord: type =
�
#field1: int, field2: int#

�

read1: StMonad
�
MyRecord, int

�
=

λ (myRec: MyRecord): (myRec‘field1, myRec)

read2: StMonad
�
MyRecord, int

�
=

λ (myRec: MyRecord): (myRec‘field2, myRec)

write1(i: int): StMonad
�
MyRecord, Null

�
=

λ (myRec: MyRecord): (null, myRec with
�
field1 := i

�
)

write2(i: int): StMonad
�
MyRecord, Null

�
=

λ (myRec: MyRecord): (null, myRec with
�
field2 := i

�
)

end StMonadExample

mark

1

PVS

‘MyRecord’ is a record type with two fields called ‘field1’ and ‘field2’. Four monadic
functions are defined for the ‘MyRecord’ type which return values from instances of
‘MyRecord’, and perform side-effects by ‘writing over’ the contents of the two fields:

• The function ‘read1’ reads the ‘field1’ field of a record. It has type:

StMonad [MyRecord, int]

which is a type synonym for:

[
MyRecord→

[
int, MyRecord

]]

• The function ‘read2’ reads the ‘field2’ field of a record.

• The function ‘write1 (i : int)’ writes the value ‘i’ to the ‘field1’ field of a record.

5.6. A Primer on Monads in PVS 77

• The function ‘write2 (i : int)’ writes the value ‘i’ to the ‘field2’ field of a record.

We would like to be able to compose these monadic functions sequentially, in the same
way that we use semi-colons to compose statements in an imperative language. We can
achieve this with monad connectors, which are defined in the following theory:

StateMonadThy

Dom Richards

June 9, 2010

StMonadConnectors
�
S, A, B: type

�
: theory

begin

importing StMonadType

�(m: StMonad
�
S, A

�
, k:

�
A → StMonad

�
S, B

��
): StMonad

�
S, B

�
=

λ (s: S): let (a, s1) = m(s) in k(a)(s1);

�>(m: StMonad
�
S, A

�
, n: StMonad

�
S, B

�
): StMonad

�
S, B

�
=

m � (λ (a: A): n)

end StMonadConnectors

mark

1

PVS

Both ‘B’ and ‘B>’ are infix operators. Note the subtle semi-colon after the ‘B’
function; this is a delimiter, and is required for the PVS parser when defining infix
operators [OSRSC01]. The functions ‘B’ and ‘B>’ are actually quite intuitive to use,
once you understand their internal workings.

The function ‘B’ is infix, taking two arguments:

1. A state monad ‘m’ (for example ‘read1’ or ‘read2’ from ‘StMonadExample’
above) which takes an instance of the state type S and returns a pair of type [A,S]
(representing a value and a new state).

2. A function ‘k’ from the type ‘A’ to a state monad of type ‘StMonad[S, B]’ (for
example ‘write1’ or ‘write2’ from above).

When these two arguments are applied to ‘B’, we have a new monad ‘m B k’, which:

1. Takes an instance of the state type and passes it to ‘m’, in order to retrieve a value
and create a new state;

2. Applies the value obtained by ‘m’ to ‘k’, which returns a new state monad;

3. Passes the new state created by ‘m’ to the new state monad created by ‘k’.

What is the purpose of this? It allows us to compose monadic functions sequentially:

78 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

StateMonadThy

Dom Richards

June 9, 2010

MonadConnectorsExample: theory
begin

importing StMonadExample, StMonadConnectors

copy1to2: StMonad
�
MyRecord, Null

�
= read1 � write2

end MonadConnectorsExample

mark

1

PVS

The function ‘B>’ is another infix operator. It is similar to ‘B’, but takes two state
monads, called ‘m’ and ‘n’. The monadic function ‘m B> n’ will take a value of the
state type, apply it to ‘m’, to get a value and a new state, throw away the value but keep
the state and apply it to ‘n’. ‘B>’ is similar to the semi-colon in imperative languages.

Monad connectors allow us to write ‘imperative style’ functions, such as the
following:

.

Dom Richards

June 9, 2010

MonadConnectorsExample2: theory
begin

importing StMonadExample, StMonadConnectors

swapValues: StMonad
�
MyRecord, Null

�
=

read1 � (λ (i: int):
read2 � (λ (j: int):
write1(j) �>
write2(i)))

end MonadConnectorsExample2

mark

1

PVS

The theory ‘MonadConnectorsExample2’ does not need to import the theories ‘StMon-
adType’ and ‘NullType’ because it imports ‘StMonadExample’, which imports them
both. The function ‘swapValues’ has type:

StMonad [MyRecord, Null]

which is a type synonym for:
[
MyRecord→

[
Null, MyRecord

]]

It takes an instance of ‘MyRecord’ and returns a pair, in which the first element is
‘null’ and the second is a new record with the values of the fields swapped round.

5.7. A Monadic Representation of BSV Methods 79

5.7 A Monadic Representation of BSV Methods

We can represent BSV methods using a variation of the state monad. Consider the
body of the rule p_critical from the mkPeterson module in §3.2:

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

BSV

We have three method calls composed together in a single statement. Ignoring implicit
conditions for the time being, the meaning we want to capture for the whole statement
is that an initial state is transformed independently by each of the three methods, and

the changes made by each are combined to give a new state. We can actually achieve
the same effect by applying the methods sequentially, in the style that we created with
the ‘StMonad’ and its connectors. We can apply the first method to get a partially
updated state, then apply the second method to update this new state, and the third
method to update the result. This is possible because the methods are conflict-free –
the BSV compiler guarantees that no two method calls in a rule body will update the
same element of state, so we need not worry about later method calls over-writing the
updates made by earlier method calls. However, each method needs access to the state
as it was immediately before the rule was executed, because earlier methods might
update elements of state that later methods need to read. This suggests that we specify
methods as instances of the type:

.

Dom Richards

June 9, 2010

BSVMonadType
�
S, A: type

�
: theory

begin

BSVMonad: type =
��

S, S
�
→

�
A, S

��

end BSVMonadType

mark

1

PVS

Here, ‘S’ is the type of the module’s state (in the case of p_critical, it is ‘Peterson’
from §5.2). ‘A’ is the type of some return value. Instances of ‘BSVMonad’ take two
values of the state type (representing the state as it was immediately before the rule
was executed, and a partially updated state) and return a value and a new instance of
the state, with any additional updates added to those of the partially updated state.

80 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

5.7.1 Implicit Conditions

Recall from §5.4 that a method can contain an implicit condition, which is a predicate
on the state of the containing module. Any rule which invokes a given method can only
fire when the implicit condition of the method is satisfied (in addition, of course, to its
own guard being satisfied). We say that the rule has a composite condition, which
is the conjunction of its explicitly-declared guard and the implicit conditions of all
the methods it invokes. In the monadic embedding strategy presented here, a method’s
implicit condition is embedded in PVS as a separate monad, and added to the guards of
any rules that call the method. For example, see the implicit condition ‘fifo‘enq cond’
in the ‘p critical’ rule of figure 5.2 and the implicit condition ‘arb‘request1 cond’ in
the ‘client1 req’ rule of figure 5.3.

5.7.2 Embedding the Methods of the mkReg Module

We can use this new monad type to define the methods of the mkReg module – namely,
_read and _write. These methods do not have implicit conditions.

.

Dom Richards

June 9, 2010

Reg
�
T: type

�
: theory

begin

importing BSVMonadType, NullType

Reg: type =
�
#val: T#

�

mkReg(init: T): Reg = (#val := init#)

read: BSVMonad
�
Reg, T

�
= λ (pre, post : Reg): (pre‘val, post)

write(d: T): BSVMonad
�
Reg, Null

�
=

λ (pre, post: Reg): (null, (#val := d#))

end Reg

mark

1

PVS

We use the name ‘read’ rather than ‘ read’ because the latter is illegal in PVS. Notice
that ‘read’ reads the contents of ‘pre’, but passes ‘post’ on. We have also defined a
function ‘mkReg’, which constructs instances of the type ‘Reg’.

5.7. A Monadic Representation of BSV Methods 81

5.7.3 Embedding the Methods of the mkFIFO1 Module

We can also embed the methods of the mkFIFO1 module using the BSV monad.
mkFIFO implements the FIFO interface:

interface FIFO #(type element_type);

method Action enq(element_type x1);

method Action deq();

method element_type first();

method Action clear();

endinterface: FIFO
BSV

The return type Action is analogous to the Void type in Java: it signifies that no
meaningful value will be returned, so the method is entirely side-effecting. The method
first has return type element_type; it is not denoted as an action, meaning that it is
entirely side-effect free. Methods which perform a side-effect and also return a value
are given the return type ActionValue#(element_type) [Blu08].

FIFO methods have the following behaviours:

• enq – places a value into the FIFO. This method has an implicit condition which
prevents it from being called on a full FIFO.

• deq – removes the first value from the FIFO. It has an implicit condition which
prevents it from being called called on an empty FIFO.

• first – returns the first value from the FIFO, without removing it. It has an
implicit condition which prevents it from being called called on an empty FIFO.

• clear – clears all entries from the FIFO. It has no implicit condition.

Because FIFO1 is a one-element FIFO, clear and deq have the same effect, apart from
the fact that deq carries an implicit condition. However, for an n-element FIFO, deq
removes a single element and clear clears the whole FIFO.

Figure 5.5 shows a monadic PVS embedding for the methods of the mkFIFO1

module. Notice that the PVS function ‘mkFIFO1’ defines a valid initial state as
any instance of the ‘FIFO1’ type for which the ‘notFull’ field is ‘TRUE’ and the
‘notEmpty’ field is ‘FALSE’; the ‘val’ field is left undefined. The BSV methods enq,
deq and clear are all split into two components:

82 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

FIFO1
�
T: type

�
: theory

begin

importing FIFO1State, BSVMonadType, NullType

pre, post, fifo: var FIFO1

mkFIFO1(fifo): bool = fifo‘notFull ∧ ¬ fifo‘notEmpty

enq cond: BSVMonad
�
FIFO1, bool

�
=

λ (pre, post): (pre‘notFull, post)

enq(t: T): BSVMonad
�
FIFO1, Null

�
=

λ (pre, post):
(null, (#notFull := false, notEmpty := true, val := t#))

deq cond: BSVMonad
�
FIFO1, bool

�
=

λ (pre, post): (pre‘notEmpty, post)

deq: BSVMonad
�
FIFO1, Null

�
=

λ (pre, post):
(null, (# notFull := true, notEmpty := false, val := pre‘val #))

first cond: BSVMonad
�
FIFO1, bool

�
=

λ (pre, post): (pre‘notEmpty, post)

first: BSVMonad
�
FIFO1, T

�
= λ (pre, post): (pre‘val, post)

clear: BSVMonad
�
FIFO1, Null

�
= deq

end FIFO1

2

PVS

Figure 5.5: A Monadic Embedding of the mkFIFO1 Module

5.8. Monad Connectors for the BSV Monad 83

1. An implicit condition (e.g. ‘enq cond’) which is a function of type ‘BSVMonad
[FIFO1, bool]’.

2. The method body (e.g. ‘enq’) which is a function of type ‘BSVMonad[FIFO1,α]’,
where α is the return type of the method (where ‘Null’ in PVS corresponds to
the Action return type in BSV).

5.8 Monad Connectors for the BSV Monad

We can compose instances of the ‘BSVMonad’ type sequentially, using the monad
connectors ‘�= ’ (pronounced bind) and ‘�’ (seq) which are slight variations of the
functions ‘B’ and ‘B>’ from §5.6:

.

Dom Richards

June 10, 2010

BSVConnectors
�
S, A, B: type

�
: theory

begin

importing BSVMonadType

�=(m: BSVMonad
�
S, A

�
, k:

�
A → state

�
S, B

��
): BSVMonad

�
S, B

�
=

λ (pre, post: S):
let (a, post1) = m(pre, post) in k(a)(pre, post1);

�(m: BSVMonad
�
S, A

�
, n: BSVMonad

�
S, B

�
): BSVMonad

�
S, B

�
=

m �= (λ (a: A): n)

end BSVConnectors

mark

1

PVS

Notice the subtle semi-colon, which was discussed in §5.6. Readers who are familiar
with monads may be interested to know that the three monad laws have been stated
and proven (in PVS) for these monad connectors, as part of the online code distribution
[RL11].

5.9 Monad Transformers

Both of the functions ‘�= ’ and ‘�’ combine monads that have the same state type

(the type parameter S). For our BSV embedding, this means that we can only combine
methods that operate on a single instance of a single module type. For example, we
can construct the following ‘negate’ function:

84 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

TrivialFIFOFunction: theory
begin

importing FIFO1

negate: BSVMonad
�
FIFO1

�
bool

�
, Null

�
=

first �= (λ (b: bool):
deq �
enq (¬b))

end TrivialFIFOFunction

FIFO1FunRecord
�
S, T: type

�
: theory

begin

importing FIFO1
�
T
�

pre: var S

FIFO1Functions: type =�
enq :

�
T → BSVMonad

�
S, Null

��
,

deq : BSVMonad
�
S, Null

�
,

first : BSVMonad
�
S, T

�
,

clear : BSVMonad
�
S, Null

�
,

enq gd : BSVMonad
�
S, bool

�
,

deq gd : BSVMonad
�
S, bool

�
,

first gd : BSVMonad
�
S, bool

�
#
�

getFIFO1Functions(t trans: Transformer
�
FIFO1, S, T

�
,

bool trans: Transformer
�
FIFO1, S, bool

�
,

null trans: Transformer
�
FIFO1, S, Null

�
):

FIFO1Functions =
(#enq := λ (t: T): null trans(enq(t)),

deq := null trans(deq),
first := t trans(first),

clear := null trans(clear),
enq gd := bool trans(enq gd),
deq gd := bool trans(deq gd),

2

PVS

This elegant function negates the value held in an instance of the type ‘FIFO1[bool]’
(ignoring implicit conditions for the moment). However, we could not use our monad
connectors to construct a comparable function which copied a value from one FIFO
to another, or from a FIFO to a register. With this in mind, how could we embed the
following?

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

BSV

This is the body of the p_critical rule from the Peterson example (which is
contained within a BSV module called mkPeterson). It calls methods for one instance
of the FIFO1 module and two instances of the Reg module. In reality, all of these
module instances belong to a single instance of the mkPeterson module. We have
already seen a PVS datatype that represents the state of a mkPeterson instance: the
‘Peterson’ type of §5.2.

Ideally, we would like to apply the monads that we have already created for the
‘Reg’ and ‘FIFO1’ states to the fields of an instance of the ‘Peterson’ state. We would
like to transform our ‘Reg’ and ‘FIFO1’ monads into ‘Peterson’ monads. In fact, this is
a common requirement when programming with monads, and has a standard solution
in the form of monad transformers.

We could imagine a rather intuitive way to write the monad transformers we need.
For the ‘pcp’ register, for example, we could write a function that took an instance of
‘Peterson’, extracted the ‘pcp’ field (which has type ‘Reg[PC]’), applied the ‘write’
monad from the ‘Reg’ theory to get a new state, and returned a new ‘Peterson’ record,

5.9. Monad Transformers 85

with the ‘pcp’ field set to this new state. We say that this function lifts the ‘write’
monad of ‘Reg’ to operate on the ‘Peterson’ type. We could write a function like this
whenever we wanted to lift a monad from one state type to another. However, this
would involve writing boilerplate (unnecessarily repetitive code).

We can avoid boilerplate by factoring out the common functionality of monad
transformers into more general functions. This is done in the following theory, which
defines a type for monad transformers, together with a function for creating them:

.

Dom Richards

June 10, 2010

MonadTransformer
�
R, S, A: type

�
: theory

begin

importing BSVMonadType

Transformer: type =
�
BSVMonad

�
R, A

�
→ BSVMonad

�
S, A

��

transform(get R:
�
S → R

�
, update R:

��
S, R

�
→ S

�
): Transformer =

λ (m: BSVMonad
�
R, A

�
):

λ (pre, post: S):
let (val, post1) = m(get R(pre), get R(post)) in

(val, update R(post, post1))

end MonadTransformer

mark

1

PVS

A function that has type ‘Transformer’ takes a monad over state type R and lifts it to
become a monad over state type S. The function ‘transform’ constructs instances of
the ‘Transformer’ type from two arguments:

• ‘get R’ – a function that takes an instance of S and retrieves the appropriate field
from it. For the ‘pcp’ field of the ‘Peterson’ type, this is simply:

get pcp (p: Peterson): Reg[PC] = p‘pcp

• ‘update R’ – a function that takes an instance of S and an instance of R, and
writes the instance of R to the appropriate field in the instance of S. For the ‘pcp’
field of the ‘Peterson’ type, this is:

update pcp (p: Peterson, r: Reg[PC]): Peterson = p with [(pcp) := r]

86 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

The newly created ‘Transformer’ function then takes a monad called m, which operates
on type R, and produces a new monad which operates on type S. The new monad takes
a pair of elements of type S and uses ‘get R’ to extract the appropriate R fields from
them. It then applies m to the newly aquired R fields to get a value of type A and a new
state of type R. Finally, it returns the value and places the updated R state back into the
appropriate S state using ‘update R’.

These transformers are created for every ‘Reg’ and ‘FIFO’ field in the ‘Peterson’
type, and called ‘pcpT’, ‘pcqT’, ‘turnT’ etc. Once this has been done, the monadic
functions for ‘Reg’ and ‘FIFO’ can be lifted to operate on the individual fields of a
‘Peterson’ instance. For example, the action component of the p_critical rule can
be represented as:

.

Dom Richards

June 10, 2010

my peterson monad: BSVMonad
�
Peterson, Null

�
=

fifoT
�
Null

�
(enq(true)) �

pcpT
�
Null

�
(write(Sleeping)) �

turnT
�
Null

�
(write(false))

mark

1

PVS

With a little more work, this can be cleaned up to look almost identical to the actual
BSV code. A record can be created for each individual register and FIFO instance, to
hold the associated transformers, allowing monadic functions such as the following:

.

Dom Richards

June 10, 2010

my neater peterson monad: BSVMonad
�
Peterson, Null

�
=

fifo‘enq(true) �
pcp‘write(Sleeping) �
turn‘write(false)

mark

1

PVS

In this example, the lifted ‘Reg’ and ‘FIFO’ monads are contained in records, which
have the names of the fields within a ‘Peterson’ instance upon which they operate. In
the case of ‘Reg’ instances, for example, these records are created with the following
theory:

5.10. Composing Monads to form Rules 87

.

Dom Richards

June 4, 2010

RegFunRecord
�
S, T: type

�
: theory

begin

importing Reg

RegFunctions: type =
�
read : BSVMonad

�
S, T

�
,

write:
�
T → BSVMonad

�
S, Null

��
#
�

getRegFunctions (t trans : Transformer
�
Reg

�
T
�
, S, T

�
,

null trans: Transformer
�
Reg

�
T
�
, S, Null

�
): RegFunctions

= (# read := t trans(read),
write := λ (t: T): null trans(write(t)) #)

end RegFunRecord

mark

1

PVS

This theory is parameterised by the types S and T . S represents the type of a module
which instantiates a register (e.g. ‘Peterson’) and T represents the type of elements
that will be held by the register in question (e.g. ‘bool’ or ‘PC’).

5.10 Composing Monads to form Rules

We can use lifted monads directly in the guard if we overload the standard boolean and
equality operators with functions over monads. For example:

.

Dom Richards

February 19, 2011

mark

∧ (m, n: BSVMonad
�
S, bool

�
): Monad

�
S, bool

�

= λ (pre, post : S): let b1 = (m (pre, post))‘1,
b2 = (n (pre, post))‘1

in (b1 ∧ b2, post)

1

PVS

Here, the ∧ operator used in the line ‘IN (b1 ∧ b2, post)’ is the actual Boolean operator:
b1 and b2 are both Booleans, which have been produced by the monads m and n.
Placing monads in the guard allows predicates to be constructed in a readable way,
having a concrete syntax which is similar to the actual guards in BSV.

Finally, when we have monadic specifications of a rule’s guard and body, we can
form a ‘rule’ that is a predicate over pairs of states. This is achieved with the function:

88 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

.

Dom Richards

February 19, 2011

mark

∧ (m, n: BSVMonad
�
S, bool

�
): Monad

�
S, bool

�

= λ (pre, post : S): let b1 = (m (pre, post))‘1,
b2 = (n (pre, post))‘1

in (b1 ∧ b2, post)

Break

rule (guard: BSVMonad
�
S, bool

�
) (action: BSVMonad

�
S, Null

�
) (pre, post: S): bool =

(guard (pre, pre))‘1 ∧ post = (action (pre, pre))‘2

Break

rule (guard: BSVMonad
�
S, bool

�
) (action: BSVMonad

�
S, Null

�
) : Rule =

(guard (pre, pre))‘1 ∧ post = (action (pre, pre))‘2

Break

rule (guard: BSVMonad
�
S,bool

�
) (action: BSVMonad

�
S,Null

�
): Rule =

(guard (pre, pre))‘1 ∧ post = (action (pre, pre))‘2

1

PVS

5.11 Experimental Results

The BSV examples of §3.2 and §3.3 have been translated into PVS using the primitive
and monadic embedding strategies presented in this chapter. The full embeddings are
available online [RL11].

Figure 5.2 shows the monadic embeddings of the Peterson rules. Furthermore,
figure 5.6 shows three monadic rules together with their primitive counterparts, as well
as extracts from the primitive and monadic transition relations and a lemma which
asserts their equivalence. This lemma will be proven in chapter 6. Because the entire
Peterson example was expressed in a single BSV module (mkPeterson), only FIFO
and register methods required lifting with monad transformers.

The BSV arbiter example has a more complicated structure, being composed of
two modules:

1. mkArbiter – which specifies the actual arbiter control circuit.

2. mkTbArbiter – a test bench which instantiates mkArbiter and invokes its
methods.

In the PVS embedding, the mkArbiter module was embedded as a PVS theory, and
lifted with monad transformers to allow instantiation within a separate theory that
embedded the mkTbArbiter module.

Extracts from the monadic embedding of mkArbiter are provided in Figure 5.7.
Note the guards of rules ‘ack1 with tok’ and ‘ack2 with tok’. The module mkArbiter
contains a scheduling attribute which specifies that ‘ack1 with tok’ should always have
priority over ‘ack2 with tok’ – this is captured in PVS by referring explicitly to the
guard of the former within the guard of the latter.

The state of a mkTbArbiter module is represented with the following record:

first gd := bool trans(first gd) #)

end FIFO1FunRecord

TbArbiterState: theory
begin

importing Arbiter

TbArbiter: type =
�
arb: Arbiter

�

mkTbArbiter: TbArbiter = (# arb := mkArbiter #)

end TbArbiterState

pre, post: var TbArbiter

transitions (pre, post): bool =
Arbiter.transitions (pre‘arb, post‘arb)

∨ client1 req (pre, post)
∨ client1 hs (pre, post)
∨ client2 req (pre, post)
∨ client2 hs (pre, post)
∨ client3 req (pre, post)
∨ client3 hs (pre, post)

3

PVS

5.11. Experimental Results 89

wake p : Rule = rule (pcp‘read = Sleeping)
(pcp‘write (Trying) �
turn‘write (false))

grant p : Rule = rule (pcp‘read = Trying
∧ (turn‘read ∨ pcq‘read = Sleeping))

(pcp‘write (Critical))

p critical: Rule = rule (pcp‘read = Critical ∧ fifo‘enq cond)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

...

wake p primitive (pre, post: Peterson) : bool
= pre‘pcp‘val = Sleeping

∧ post = pre with
�
(pcp) := (# val := Trying #),

(turn) := (# val := false #)
�

grant p primitive(pre, post: Peterson): bool
= pre‘pcp‘val = Trying ∧ (pre‘turn‘val ∨ pre‘pcq‘val = Sleeping)

∧ post = pre with
�
(pcp) := (# val := Critical #)

�

p critical primitive (pre, post: Peterson) : bool
= pre‘pcp‘val = Critical ∧ pre‘fifo‘notFull

∧ post = pre with
�
(fifo) := (# val := true,

notFull := false,
notEmpty := true #),

(pcp) := (# val := Sleeping #),
(turn) := (# val := false #)

�

...

trans (pre, post: Peterson) : bool = wake p (pre, post) ∨
grant p (pre, post) ∨
p critical (pre, post) ∨ ...

primitive trans (pre,post: Peterson) : bool =
wake p primitive (pre, post) ∨
grant p primitive (pre, post) ∨
p critical primitive (pre, post) ∨ ...

transitions lem: lemma trans = primitive trans

2

PVS

Figure 5.6: Extracts from the Peterson PVS Embedding

90 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

move token: BSVMonad
�
Arbiter, Null

�
=

tok1‘read �= tok2‘write �
tok2‘read �= tok3‘write �
tok3‘read �= tok1‘write

ack1 with tok guard : BSVMonad
�
Arbiter, bool

�

= tok1‘read ∧ req1‘read
∧ ¬ (ack1‘read ∨ ack2‘read ∨ ack3‘read)

ack1 with tok : Rule = rule (ack1 with tok guard)
(move token �
ack1‘write(true))

ack2 with tok guard: BSVMonad
�
Arbiter, bool

�

= tok2‘read ∧ req2‘read
∧ ¬ (ack1‘read ∨ ack2‘read ∨ ack3‘read)

ack2 with tok : Rule = rule (ack2 with tok guard
∧ ¬ ack1 with tok guard)
(move token �
ack2‘write(true))

request1 cond : BSVMonad
�
Arbiter, bool

�

= ¬ (req1‘read ∨ ack1‘read)

request1 : BSVMonad
�
Arbiter, Null

�

= req1‘write(true)

request2 cond : BSVMonad
�
Arbiter, bool

�

= ¬ (req2‘read ∨ ack2‘read)

request2 : BSVMonad
�
Arbiter, Null

�

= req2‘write(true)

ack1: Rule =
rule(¬ (ack1 with tok guard ∨ ack2 with tok guard ∨ ack3 with tok guard) ∧

2

PVS

Figure 5.7: Monadic Rules and Methods from the PVS Embedding of mkArbiter

5.12. Shallow, Deep and Reflective Embedding 91

The ‘Arbiter’ type is similar in structure to ‘Peterson’ of §5.2, except that its fields
represent the nine registers instantiated in the mkArbiter BSV module of §3.3.

Figure 5.3 presents monadic embeddings of the mkTbArbiter rules. Note that
‘arb’ in this figure refers to a record of ‘Arbiter’ monads which have been lifted to
operate on the ‘TbArbiter’ type (in the same way, for example, that ‘pcp’ and ‘pcq’ in
figure 5.2 refer to records of ‘Reg’ monads which have been lifted to operate on the
‘Peterson’ type). Because the module mkArbiter contains rules which spontaneously
alter the state of a module instance, the PVS embedding of mkTbArbiter must include
these rules in its own transition relation:

first gd := bool trans(first gd) #)

end FIFO1FunRecord

TbArbiterState: theory
begin

importing Arbiter

TbArbiter: type =
�
arb: Arbiter

�

mkTbArbiter: TbArbiter = (# arb := mkArbiter #)

end TbArbiterState

pre, post: var TbArbiter

transitions (pre, post): bool =
Arbiter.transitions (pre‘arb, post‘arb)

∨ client1 req (pre, post)
∨ client1 hs (pre, post)
∨ client2 req (pre, post)
∨ client2 hs (pre, post)
∨ client3 req (pre, post)
∨ client3 hs (pre, post)

3

PVS

5.12 Shallow, Deep and Reflective Embedding

There are two approaches for embedding languages in the specification logics of proof
tools [BGG+92, GMO06]:

1. Deep Embedding – the syntax of a language can be represented as a datatype
in the logic, so that programs are instances of this type. The semantics of the
language can then be specified with a function which transforms values of the
“program” type.

2. Shallow Embedding – because the functional subset of a logic will have its own
semantics, functions can be written which replicate the behaviour of programs
in the language of interest.

This thesis is concerned with shallow embedding, which is often the simpler choice
because it avoids the need to define the language’s semantics explicitly – this is
achieved by “piggy backing” on the semantics of the logic. In the case of BSV, we

92 Chapter 5. Embedding Bluespec SystemVerilog in the PVS Logic

have used the functional subset of the PVS logic to construct expressions which mimic
BSV programs.

Shallow embedding is often the most convenient choice, but this convenience can
come at a price. Shallow embedding allows reasoning about programs written in a
language, but not about the language itself. Deep embedding, on the other hand, allows
reasoning about both programs and language. The advantages of both approaches can
be gained by producing a shallow embedding in a reflective language [GMO06] (that
is, a language in which programs can be executed or manipulated by other programs).
Reflection is supported, for example, by the ACL2 theorem prover [KSM96] and
Intel’s reFLect language [GMO06]. The capabilities of deep, shallow and reflective
embeddings are summarised in the following table:

Verification Language Program Program
of. . . Properties Properties Transformation

Shallow × X X
Deep X X X

Reflective X X X

In further work, it may be interesting to produce deep and reflective embeddings of
BSV in proof tools, in order to investigate the value of automated reasoning at the
language level, and also to compare the efficiency of automated proof strategies for
BSV programs expressed with deep, shallow and reflective embedding.

5.13 Summary

A shallow embedding has been presented of a non-trivial subset of Bluespec Sys-
temVerilog in the higher order logic of the PVS theorem prover. The embedding uses
monads and monad transformers to recreate BSV code almost verbatim in the PVS
logic. Chapter 6 will investigate the verification of PVS specifications produced with
this embedding strategy.

Chapter 6

Verifying BSV Designs with the PVS
Theorem Prover

Automated reasoning is applied to PVS specifications which are produced with the

monadic embedding strategy of chapter 5. In particular, two approaches are presented

for the verification of temporal logic theorems: (i) monadic specifications are

expanded within the PVS proof environment into equivalent primitive specifications,

which are then model checked; (ii) separate monadic and primitive specifications are

written in the PVS logic, and proven to be extensionally equivalent, allowing the former

to be verified by rewriting and model checking. Scripts are written in the PVS proof

strategy language; these implement the above approaches, to provide fully-automatic

verification of temporal logic theorems concerning monadic specifications.

6.1 Model Checking in PVS

The PVS model checker requires that state machines are specified with:

1. A state type defined inductively from boolean and scalar types, using tuples,
records or arrays over subranges.

2. An initial state or a predicate specifying a set of initial states.

3. A transition relation which is defined as a binary relation on the state type. As
discussed in §4.4.1 and §5.3, this relation must be left-total over the state type.

The monadic and primitive embeddings presented in chapter 5 adhere to this format,
as long as all types used in the BSV source code conform to the above state

93

94 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

ctlops
�
state: type

�
: theory

begin

u: var state
f, g: var pred

�
state

�

N: var
�
state, state → bool

�

EX(N, f)(u): bool = ...

EG(N, f): pred
�
state

�
= ...

EU(N, f, g): pred
�
state

�
= ...

EF(N, f): pred
�
state

�
= ...

AX(N, f): pred
�
state

�
= ...

AF(N, f): pred
�
state

�
= ...

AG(N, f): pred
�
state

�
= ...

AU(N, f, g): pred
�
state

�
= ...

end ctlops

2

PVS

Figure 6.1: Computation Tree Logic in PVS

type restriction (in which case, the representations of module states described in
§5.2 will also conform). The automatic boolean abstraction capability of PVS
can be used to reduce other types (such as integers, for example) to a model
checkable form. Furthermore, automatic abstraction is well integrated with the PVS
model checker (both can be applied with a single invocation of the proof strategy
(abstract-and-mc) [SORSC01]). However, the present work is concerned only with
model checking, leaving abstraction as a topic for further work.

Theorems for the PVS model checker can be written in CTL (§4.4.2), fair CTL or
µ-calculus [RSS95]. In this work, theorems will be written in CTL. Fig. 6.1 provides
extracts from the theory that defines CTL in PVS. The variable ‘N’ is a binary relation
on the state type, and is used represent the transition relation. The variables ‘ f ’ and ‘g’
are predicates on the state type (‘pred[A]’ is a synonym for ‘[A→ bool]’).

The functions ‘AX’, ‘AG’, ‘AF’, ‘EX’, ‘EG’ and ‘EF’ all take a transition relation
and a predicate (which should hold in some or all of the reachable states, as required
by the particular function) and return a predicate on the initial state1 which can be
evaluated by the PVS model checker. For example, the model checker will evaluate

1This is the case for ‘AX’, although it is written differently to the other functions.

6.2. Temporal Theorems for BSV Module Instances 95

‘AX (N, f) (init)’ to ‘TRUE’ if and only if ‘ f ’ holds for all states which are reachable
from ‘init’ by a single application of the transition relation ‘N’.

The function ‘AU’ takes a transition relation ‘N’ and two predicates, ‘ f ’ and ‘g’.
It returns a predicate on the initial state which the model checker will evaluate to true
if and only if ‘ f ’ holds along all paths from the initial state until ‘g’ holds – this is a
standard definition of the AU operator, as discussed in §4.4.2. The function ‘EU’ takes
the same arguments as ‘AU’, but returns a predicate which evaluates to true if and only
if ‘ f ’ holds along at least one path from the initial state until ‘g’ holds.

6.1.1 Limitations of the PVS Model Checker

The concept of theorem proving with integrated model checking is very powerful,
as demonstrated by Intel for example, who use their Forte system (§4.7.2, §8.4.1) to
verify substantial design components. However, it should be noted that the PVS model
checker is currently a prototype tool which lacks features that are common in more
mature model checkers, such as deadlock checking, counter-example generation (the
‘crown jewel’ of the model checking paradigm [Rus00a]) and alternative back ends for
explicit model checking, bounded model checking and so-on. These limitations can
impact on the utility of PVS as a verification tool. For example, we saw in §5.3 that
the lack of a deadlock checker in PVS necessitates a kludge to ensure that transition
relations are left-total.

The research presented in this thesis has not been hindered by the above limitations
because it is primarily focussed on the challenge of translating BSV to logic in a form
which is suitable for model checking, irrespective of the particular tool. However,
further work on the application of automated reasoning to BSV may benefit from a
re-evaluation of the PVS model checker (which, one hopes, will mature over time) and
an investigation of alternative tools (which were surveyed in §4.7.2).

6.2 Temporal Theorems for BSV Module Instances

We now use the computation tree logic of PVS to construct theorems for the monadic
embeddings discussed in §5.11. These theorems will later be verified using the PVS
model checker, together with a small amount of automatic deduction. Notice that
temporal logic theorems are only ever written for left-total transition relations.

96 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

6.2.1 Theorems for Peterson’s Protocol

We would like to establish the following properties for the monadic embedding of
Peterson’s protocol:

• Deadlock freedom – the system will never enter a state from which it cannot
progress.

• Safety – at most one ‘process’ will have access to the ‘critical’ region at any one
time.

• Progress – a process which enters the ‘trying’ phase will always eventually be
granted access to the ‘critical’ region.

As we shall see, theorems (i) and (ii) can be captured in the CTL of PVS and verified
with the PVS model checker. However, proof of theorem (iii) is complicated by the
fact that we add a stutter term to transition relations to ensure left-totality (discussed in
§5.3 and §6.1.1). Adding a stutter term gives the PVS specification a subtly different
behaviour to the BSV code it represents – systems which stutter will not necessarily
‘progress’ in the sense defined above.

There are other ways to ensure left-totality. For example, one might add a
boolean ‘reachable’ variable to the state of a module, and construct a transition
relation in which ‘reachable’ states can progress to other ‘reachable’ states by valid
BSV transitions, and all states can also progress to a designated ‘unreachable’ state
which can stutter. Progress properties could then be proven for the reachable states
(perhaps using the ‘fair CTL’ of PVS [ORR+96]). However, because the focus of
this thesis is to investigate the broader concept of automated reasoning strategies for
BSV, it implements the simple ‘stutter’ approach in order to avoid refocussing on
how to address the idiosyncrasies of one particular tool (in this case, the lack of a
deadlock checker in PVS – §6.1.1). In making this decision, we sacrifice proof of
progress (although progress is, in fact, proven for both Peterson and Arbiter examples
in chapter 7, using the SAL model checker).

We establish deadlock freedom with two theorems, the first of which states that an
instance of the Peterson embedding will never stutter:

6.2. Temporal Theorems for BSV Module Instances 97

.

Dom Richards

February 25, 2011

p, p1, p2, pre, post: var Peterson

N: var
��

Peterson, Peterson
�
→ bool

�

total(N)(pre, post): bool = N(pre, post) ∨ pre = post

deadlock freedom with total: theorem
mkPeterson(p) ⇒
AG(total(transitions), λ(p1): EX(total(transitions), λ(p2): p1 �= p2)(p1))

(p)

mark

pre, post : var Peterson

no stutter : theorem trans (pre, post) ⇒pre �= post

p, p1, p2: var Peterson

deadlock freedom: theorem
mkPeterson(p) ⇒
AG(left total(trans), λ(p1): EX(left total(trans), λ(p2): p1 �= p2)(p1))

(p)

mark

1

PVS

This can be proven with a single invocation of the powerful (grind) strategy. With
this established, we assert in CTL that the left-total transition relation will never reach
a state from which it cannot reach another (different) state:

.

Dom Richards

February 25, 2011

p, p1, p2, pre, post: var Peterson

N: var
��

Peterson, Peterson
�
→ bool

�

total(N)(pre, post): bool = N(pre, post) ∨ pre = post

deadlock freedom with total: theorem
mkPeterson(p) ⇒
AG(total(transitions), λ(p1): EX(total(transitions), λ(p2): p1 �= p2)(p1))

(p)

mark

p, p1, p2: var Peterson

deadlock freedom: theorem
mkPeterson(p) ⇒
AG(left total(trans), λ(p1): EX(left total(trans), λ(p2): p1 �= p2)(p1))

(p)

mark

1

PVS

The meaning of this theorem is quite simple: having declared a predicate for the valid
initial states of the Peterson module (‘mkPeterson’) as well as a transition relation
(‘trans’) which is made left-total (as discussed in §4.4.1 and §5.3), we assert that for
each state which is reachable from a valid initial state, there exists at least one other
state to which it is not equal, and which can be reached by a single application of the
transition relation (remember that the function ‘left total’ ensures that all states can
reach themselves by a single application of the transition relation).

Together, ‘no stutter’ and ‘deadlock freedom’ tell us that an instance of the
Peterson BSV module will never enter a state from which it will not assuredly progress
to another – different – state. The safety property can be expressed with a single CTL
theorem on the left-total transition relation:

(p‘pcq‘val = Trying ⇒
AF(transitions, λ p1: p1‘pcq‘val = Critical)

(p))

end Peterson

mark

p: var Peterson

safety: theorem mkPeterson(p) ⇒ AG(left total(trans), safe)(p)
where safe(p) =

¬ (p‘pcp‘val = Critical ∧ p‘pcq‘val = Critical)

5

PVS

This theorem asserts that for all states which are reachable from a valid initial state,
‘pcp’ and ‘pcq’ will not both be ‘Critical’.

98 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

6.2.2 Theorems for a Round-Robin Arbiter

For the monadic arbiter embedding, we would like to establish three properties:

• Deadlock freedom – the system will never enter a state from which it cannot
progress.

• Safety – at most one input will have access to the output at any one time. (This
could also be called mutual exclusion).

• Progress – an input which raises a request will always eventually be granted
access to the output.

As with the Peterson embedding, we sacrifice proof of progress for a simpler assurance
of left-totality. Deadlock freedom is again specified with two theorems, which this time
are written for the ‘TbArbiter’ type:

tb: var TbArbiter

safety: theorem AG (total(trans), safe)(mkTbArbiter)
where safe (tb) = ¬ (tb‘arb‘ack1‘val ∧ tb‘arb‘ack2‘val

∨ tb‘arb‘ack2‘val ∧ tb‘arb‘ack3‘val
∨ tb‘arb‘ack3‘val ∧ tb‘arb‘ack1‘val)

tb, tb1, pre, post: var TbArbiter

no stutter: theorem trans (pre, post) ⇒ pre �= post

deadlock freedom: theorem
AG (left total (trans), λ (tb): EX(left total (trans), λ (tb1): tb �= tb1)(tb))

(mkTbArbiter)

4

PVS

As an aside, notice that ‘mkTbArbiter’ is a unique value of type ‘TbArbiter’, whereas
‘mkPeterson’ is a predicate which defines a set of values of type ‘Peterson’. These
are both acceptable ways to define the initial state(s) for the PVS model checker, so
the choice is purely a matter of convenience. In the present work, ‘mkPeterson’ is a
predicate because it uses ‘mkFIFO’, which was expressed as a predicate in §5.7.3, in
order to avoid over-specifying the initial conditions of a FIFO buffer.

The above ‘no stutter’ theorem can be proven with a single invocation of the
(grind). The ‘deadlock freedom’ theorem will be proven below with model
checking. Safety is defined as follows:

6.3. Model Checking BSV Embeddings 99

tb: var TbArbiter

safety: theorem AG (left total(trans), safe)(mkTbArbiter)
where safe (tb) = ¬ (tb‘arb‘ack1‘val ∧ tb‘arb‘ack2‘val

∨ tb‘arb‘ack2‘val ∧ tb‘arb‘ack3‘val
∨ tb‘arb‘ack3‘val ∧ tb‘arb‘ack1‘val)

tb, tb1, pre, post: var TbArbiter

no stutter: theorem trans (pre, post) ⇒ pre �= post

deadlock freedom: theorem
AG (left total (trans), λ (tb): EX(left total (trans), λ (tb1): tb �= tb1)(tb))

(mkTbArbiter)

4

PVS

6.3 Model Checking BSV Embeddings

When BSV modules are specified using the primitive embedding strategy of §5.4,
temporal logic theorems can be proven with model checking (provided the modules
have a manageable state space). However, as discussed in §5.4, instances of the
primitive embedding strategy can be long-winded and bear little resemblance to the
BSV code they represent, which makes it difficult to rule out errors in the BSV-to-PVS
translation process.

Although monadic transition relations are written in the subset of the PVS logic
that is accepted by the PVS model checker, the model checker fails to handle these
specifications. This is possibly because of the extensive use of higher-order functions.
Interestingly, the same problem occurs with the more mature SAL model checker, as
we discuss in chapter 7.

Model checking can still be used to prove theorems concerning monadic transition
relations, but a small amount of deductive reasoning must be applied first. As
was mentioned in §5.5, the monadic embedding of a BSV module is extensionally
equivalent to the primitive embedding of the same module. If we expand all of the
function calls in a monadic embedding, we get a primitive embedding. Because of
this, we can use either of two approaches to verify temporal logic theorems that refer
to monadic transition relations:

1. Proof with expansion – we can expand all of the functions in a monadic
embedding to get an equivalent primitive embedding. This can be done auto-
matically inside the PVS proof environment with the proof strategy (expand*)

[SORSC01]. We can then call the model checker on the resulting primitive
embedding.

2. Proof with rewriting – we can construct a PVS theory which contains both a
monadic embedding and an equivalent primitive embedding. We can then state

100 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

Verification with Expansion

 p_critical : Rule = rule (pcp‘read = Critical ! fifo‘enq_cond)

 (fifo‘enq (true) "

 pcp‘write (Sleeping) "

 turn‘write (false))

rule p_critical (pcp._read == Critical);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

UNVERIFIED

 pre‘pcp‘val = Critical ! pre‘fifo‘notFull

 ! post = pre with [(fifo) := (# val := true,

 notFull := false,

 notEmpty := true #),

 (pcp) := (# val := Sleeping #),

 (turn) := (# val := false #)]

MODEL CHECKED

VERIFIED
EXPANSION

UNVERIFIED

Verification with Rewriting

 p_critical : Rule = rule (pcp‘read = Critical ! fifo‘enq_cond)

 (fifo‘enq (true) "

 pcp‘write (Sleeping) "

 turn‘write (false))

rule p_critical (pcp._read == Critical);

 fifo.enq (True);

 pcp._write (Sleeping);

 turn._write (False);

endrule

UNVERIFIED

p_critical_primitive (pre, post : Peterson) : bool

 = pre‘pcp‘val = Critical ! pre‘fifo‘notFull

 ! post = pre with [(fifo) := (# val := true,

 notFull := false,

 notEmpty := true #),

 (pcp) := (# val := Sleeping #),

 (turn) := (# val := false #)]

EXTENSIONAL
EQUIVALENCE

UNVERIFIED

MODEL CHECKED

Figure 6.2: Verification Strategies for Monadic Specifications

6.3. Model Checking BSV Embeddings 101

that they are extensionally equivalent with a lemma:

.

Dom Richards

April 2, 2011

transitions theorem: theorem transitions = primitive transitions

transitions theorem: theorem trans = primitive trans

transitions lem: lemma trans = primitive trans

mark

1

PVS

The keyword ‘LEMMA’ is synonymous with ‘THEOREM’. This lemma can
be proven automatically with the deductive proof strategy (grind-with-ext)

[Owr08]. Once this has been done, any occurrences of the monadic tran-
sition relation in a given theorem can be eliminated with the proof strategy
(rewrite "transitions_lem"). This produces a new theorem concerning
the primitive transition relation, to which model checking can be applied.

These two approaches are shown pictorially in figure 6.2. The blue trees represent
abstract syntax trees (ASTs) which would be constructed during BSV-to-PVS transla-
tion (although the PVS specifications in this dissertation have been compiled by hand).
In order to produce a monadic PVS embedding, a high-level AST would be extracted
from the BSV and compiled straight to PVS, using monads to represent method calls,
module instantiation and so-on. In order to compile from BSV to primitive PVS,
the high-level AST would first need to be transformed, to eliminate the nodes which
represent method calls, module instantiation and so-on, by expanding them in-place.

6.3.1 A Worked Example of Proof with Expansion

We now walk through a session in the PVS proof environment, in which deadlock
freedom is proven for the monadic Peterson embedding, using the expansion approach
introduced above. PVS employs the Emacs text editor as its user interface. A
proof is initiated by placing the cursor on a theorem of interest and typing ‘M-x pr’,
whereupon a separate Emacs tab opens containing an interactive proof session. For the
‘deadlock freedom’ theorem, we are presented with the following:

deadlock_freedom :

|-------

{1} FORALL (p: Peterson): mkPeterson(p) =>

AG(left_total(trans), LAMBDA (p1):

EX(left_total(trans), LAMBDA (p2): p1 /= p2) (p1)

) (p)

Rule?

PVS Proof Environment

102 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

We proceed by expanding all of the functions in the monadic transition relation,
in order to produce an equivalent primitive transition relation. This is achieved by
repeatedly applying the (expand*) proof strategy [SORSC01], which expands the
functions identified in its argument list:

Rule? (expand* "left_total" "trans" "wake_p" "wake_q"

< . . . other monadic functions . . . >
)

this simplifies to:

|-------

1 < deadlock freedom theorem with a partially expanded
transition relation >

Rule?

mark

Rule? (repeat (expand* "left_total" "trans" "wake_p" "wake_q"

< . . . other monadic functions . . . >))

this simplifies to:

|-------

1 < deadlock freedom theorem with a fully expanded
transition relation >

Rule?

mark

Rule? (model-check)

...

Starting least fixed-point calculation....

Fixed-point found in 4 steps.

Formula amounts to 4 BDD nodes.

MU simplification took 0.09 real, 0.07 cpu seconds

model-checking took 0.36 real, 0.26 cpu seconds total

By rewriting and mu-simplifying,

this simplifies to:

3

PVS Proof Environment

The (repeat) strategy applies (expand*) repeatedly, until no further changes can be
made to the proof goal under consideration. We now have a temporal logic theorem
concerning a fully-expanded transition relation, to which the PVS model checker can
be applied:

Rule? (model-check)

this simplifies to:

{-1} mkPeterson(p!1)

|-------

{1} p!1‘fifo‘notEmpty

{2} p!1‘fifo‘notFull

Rule?

PVS Proof Environment

The model checker creates a trivial subgoal, which can be read as:

mkPeterson(p!1)⇒ p!1‘fifo‘notEmpty ∨ p!1‘fifo‘notFull

Here, p!1 represents any value of type ‘Peterson’2, so the subgoal is saying that in any
valid initial state, the FIFO will be not full or not empty (or both). We can discharge
this subgoal to complete the proof, using the proof strategy (grind):

2See (skolem) in [SORSC01].

6.3. Model Checking BSV Embeddings 103

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

mark

5

PVS Proof Environment

6.3.2 A Worked Example of Proof with Rewriting

We now prove ‘deadlock freedom’ with the ‘rewriting’ approach discussed above.
First we must prove ‘transitions lem’, which can be done with a single application
of (grind-with-ext) [Owr08]:

transitions_lem :

|-------

[1] trans = primitive_trans

Rule? (grind-with-ext)

Trying repeated skolemization, instantiation, if-lifting,

and extensionality,

Q.E.D.

PVS Proof Environment

The strategy (grind-with-ext) is similar to (grind), but also performs extension-
ality. Once ‘transition lem’ has been proven, it can be used as a rewrite rule in other
proofs. For example:

deadlock_freedom :

|-------

{1} FORALL (p: Peterson): mkPeterson(p) =>

AG(left_total(trans), LAMBDA (p1):

EX(left_total(trans), LAMBDA(p2): p1/=p2)(p1)

) (p)

Rule?
PVS Proof Environment

104 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

Rule? (rewrite "transitions_lem")

this simplifies to:

deadlock_freedom :

|-------

{1} FORALL (p: Peterson): mkPeterson(p) =>

AG(left_total(primitive_trans), LAMBDA(p1):

EX(left_total(primitive_trans), LAMBDA(p2): p1/=p2)(p1)

) (p)

Rule?
PVS Proof Environment

This theorem can be proven with (model-check) and (grind), as in §6.3.1.

6.4 Proof Strategies

PVS provides a proof strategy language [SORSC01], which can be used to automate
recurrent proof tactics, such as the ‘expansion’ and ‘equivalence’ approaches discussed
in §6.3. Strategies are defined with the following lisp-like expression:

(defstep name

(required-parameters

&optional optional-parameters

&rest parameter)

strategy-expression

documentation-string

format-string)

Parameter definition has the standard lisp syntax, with required and optional pa-
rameters, as well as a catch-all ‘&rest’ parameter. The ‘strategy-expression’ is the
actual strategy, and is formed by combining existing proof strategies, using the
control strategies (try), (if) and (let), which will be discussed shortly. The
‘documentation-string’ is displayed in response to a (help) request, and the ‘format-

string’ is displayed whenever the strategy is invoked. User-defined strategies are
placed into a file called ‘pvs-strategies’, which is located in either the home
directory or the working directory. This file is imported by PVS at the beginning of
each proof session.

6.4. Proof Strategies 105

(defstep peterson-exp ()

(repeat

(expand* "trans" "left_total" "wake_p" "wake_q" "p_critical"

"q_critical" "grant_p" "grant_q" "read_fifo" "rule" "pcq"

"pcp" "turn" "fifo" "getRegFunctions" "getFIFO1Functions"

"pcqT" "pcpT" "turnT" "fifoT" "transform" "read" "write"

"enq" "enq_cond" "deq" "deq_cond" ">>" ">>=" "update_pcp"

"update_pcq" "get_turn" "update_turn" "get_pcp" "get_pcq"

"get_fifo" "update_fifo" "NOT" "AND" "OR" "=" "run" "exec"))

"A strategy to expand the monadic transition relation of

Peterson.pvs"

"(peterson-exp)")

(defstep tbarbiter-exp ()

(repeat

(expand* "left_total" "trans" "client1_req" "client1_hs"

"client2_req" "client2_hs" "client3_req" "client3_hs" "rule"

"arb" "getArbiterFunctions" "arbT" "get_arb" "update_arb"

"transitions" "ack1_with_tok" "ack2_with_tok" "ack3_with_tok"

"ack1" "ack2" "ack3" "ack1_with_tok_guard"

"ack2_with_tok_guard" "ack3_with_tok_guard"

"move_tok" "ack1_guard" "ack2_guard" "client1_req"

"client1_hs" "client2_req" "client2_hs" "client3_req"

"client3_hs" "arbiter_hs_1" "arbiter_hs_2" "arbiter_hs_3"

"request1_cond" "request1" "request2_cond" "request2"

"request3_cond" "request3" "relinquish1_cond" "relinquish1"

"relinquish2_cond" "relinquish2" "relinquish3_cond"

"relinquish3" "rule" "transform" "tok1" "tok2" "tok3" "req1"

"req2" "req3" "ack1" "ack2" "ack3" "getRegFunctions" "tok1T"

"tok2T" "tok3T" "ack1T" "ack2T" "ack3T" "req1T" "req2T"

"req3T" "transform" "update_ack1" "update_ack2" "update_ack3"

"update_req1" "update_req2" "update_req3" "update_tok1"

"update_tok2" "update_tok3" "get_ack1" "get_ack2" "get_ack3"

"get_req1" "get_req2" "get_req3" "get_tok1" "get_tok2"

"get_tok3" "read" "notFull" "notEmpty" "write" "enq" "deq"

"AND" "OR" "NOT" "=" ">>" ">>=" "exec" "run"))

"A strategy to expand the monadic transition relation of

TbArbiter.pvs"

"(tbarbiter-exp)")

PVS Strategy Language

Figure 6.3: Proof strategies to expand monadic transition relations.

106 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

Figure 6.3 presents strategies for converting monadic transition relations into
equivalent primitive transition relations. The arguments of (expand*) are the names
of functions used in the relevant monadic embedding. As seen in §6.3.1, the effect
of (repeat (expand* ...)) is to expand these functions repeatedly until no further
changes can be made. Although monadic embeddings make extensive use of higher-
order functions, they use no recursion whatsoever. Because of this, the expansion
strategies in figure 6.3 will always terminate.

These strategies are relatively simple, but they spare the user from the tedium of
providing a list of monadic functions each time an expansion is required. Instead, a
single invocation of (peterson-exp) in the ‘Peterson’ theory or (tbarbiter-exp)
in the ‘TbArbiter’ theory will effect a full expansion. An automatic BSV-to-PVS
compiler could construct these strategies alongside the actual PVS theories, and write
them to a ‘pvs-strategies’ file in the relevant working directory.

As an aside, it should be noted that the order of the function names will affect
the computational efficiency of this proof strategy. (expand*) iterates through the
supplied list of function names, expanding each one that appears in the proof goal to
generate a new goal. Care should be taken to ensure that top level functions are placed
first in the list, so that their expansion will expose sub-functions, which in turn can be
expanded as the list of identifiers is iterated through. In the worst case, when functions
are listed in reverse order to their order of appearance, the number of repetitions of
(expand*) will scale with the number of arguments that are passed to it. In-fact,
it should be possible to find an ordering of the (expand*) argument list for which
an application of (repeat) is not necessary, because PVS imposes a total order on
function invocation3. However, practical experience suggests that this order can be
difficult to find, and the computational expense of (repeat) is acceptable within the
scope of the present work.

We can use the the control strategies of PVS to compose simple strategies such
as (peterson-exp) and (tbarbiter-exp) into more sophisticated proof tactics.
There are three control strategies, which derive from familiar constructs in software
languages: (if), (let) and (try). We will make use of the latter, which has the
following syntax:

(try step1 step2 step3)

3A given function can only call other functions that are defined above it in the containing PVS
theory, or are imported from other theories. Furthermore, the ‘IMPORTING’ chain of a theory must form
a directed acyclic graph, meaning that no theory can import itself, either directly or indirectly.

6.4. Proof Strategies 107

When a (try) strategy is invoked, it will apply step1 to the current proof goal. If step1

succeeds (i.e. generates new sub-goals), then step2 will be applied to all of the new
sub-goals. If step1 fails (i.e. generates no change in the proof goal) then step3 will be
applied.

The following proof strategy automates the ‘expand and model check’ tactic of
§6.3, which allows verification of temporal logic formulas concerning monadic BSV
embeddings:

(defstep bsv-prove-with-exp (exp)

(try (exp)

(try (model-check)

(grind)

(skip))

(skip))

"" "")

PVS Strategy Language

The documentation and format strings have been omitted for simplicity. The
required parameter, exp, is a strategy to expand the monadic transition relation under
consideration – in the ‘Peterson’ theory, for example, this will be (peterson-exp).
The strategy (bsv-prove-with-exp exp) will first apply (exp) to expand the
monadic transition relation. If this produces a new sub-goal (which we expect to be a
temporal logic formula concerning a fully-expanded transition relation) then the PVS
model checker will be applied to it, and any sub-goals resulting from this application
will be dispatched with (grind).

The following proof strategy automates the ‘rewrite and model check’ tactic of
§6.3:

(defstep bsv-prove-with-lem (lem)

(try (rewrite lem)

(try (model-check)

(grind)

(skip))

(skip))

"" "")

PVS Strategy Language

108 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

This strategy differs from (bsv-prove-with-exp) only in its method of producing
a tractable transition relation for model checking. Rather than expanding the
monadic transition relation, the proof strategy (rewrite) is used to replace it with
a pre-compiled primitive transition relation. In both ‘Peterson’ and ‘TbArbiter’
theories, a single invocation of (bsv-prove-with-lem "transitions_lem") will
automatically prove the safety and deadlock freedom theorems.

6.5 Experimental Results

The temporal logic theorems presented in §6.2 can be proven automatically using the
the proof strategies (bsv-prove-with-exp) and (bsv-prove-with-lem) of §6.4.
For the Peterson example, we obtain the following results:

Theorem Proof with Expansion Proof with Rewrite Deduction

deadlock freedom 1.27 secs 0.25 secs –
safety 0.85 secs 0.18 secs –
transitions lem – – 26.70 secs
no stutter – – 0.24 secs

Here, ‘proof with expansion’ refers to an invocation of:

(bsv-prove-with-exp peterson-exp)

and ‘proof with rewrite’ refers to an invocation of:

(bsv-prove-with-lem "transitions_lem")

For the arbiter example, we have:

Theorem Proof with Expansion Proof with Rewrite Deduction

deadlock freedom 13.80 secs 0.42 secs –
safety 7.01 secs 0.32 secs –
transitions lem – – 82.66 secs
no stutter – – 0.78 secs

Here, ‘proof with expansion’ refers to an invocation of:

(bsv-prove-with-exp tbarbiter-exp)

6.6. Summary 109

and ‘proof with rewrite’ refers to an invocation of:

(bsv-prove-with-lem "transitions_lem")

These figures are indicative only, and are intended to give a feel for the relative
computational requirements of the various proof techniques. Figures were obtained
on a MacBook Pro with an Intel Core 2 Duo 2.53 GHz processor and 2 GB 1067
MHz DDR3 memory. The extra CPU time required to compile the primitive transition
relation in the ‘rewrite’ approach could not be quantified because compilation is
currently performed by hand. As discussed in §6.3, the extensional equality theorems
(‘transitions lem’) were proven in using the (grind-with-ext) strategy, and the
‘no stutter’ theorems were proven with (grind).

6.5.1 Proof with Expansion versus Proof with Rewriting

Proof with expansion offers the advantage that it is not necessary to compile a primitive
embedding to PVS. On the other hand, an equivalence proof need only be carried out
once for a given pair of monadic and primitive transition relations, and can be applied
thereafter as a rewrite rule in all subsequent proofs, thus avoiding the need to expand
the monadic transition relation.

Proofs of equivalence between primitive and monadic transition relations can easily
be divided into smaller sub-proofs which are less computationally demanding. For
example, we can write a theorem to express the extensional equivalence between a
monadic rule and its primitive equivalent:

p critical lem : LEMMA p critical = p critical primitive

PVS

(As mentioned in §6.3, the keyword ‘LEMMA’ is synonymous with ‘THEOREM’.) This
can be proven using (grind-with-ext) and takes 0.28 seconds of CPU time. Once
proven, this theorem can be applied as a rewrite rule during later proofs.

6.6 Summary

This chapter has presented two approaches for verifying monadic BSV embeddings
with the PVS theorem prover:

110 Chapter 6. Verifying BSV Designs with the PVS Theorem Prover

1. Proof with expansion, in which monadic specifications are expanded within the
PVS proof environment into equivalent primitive specifications that can then be
model checked.

2. Proof with rewriting, in which separate monadic and primitive specifications can
be compiled to logic and proven to be extensionally equivalent, allowing the
former to be rewritten as the latter before model checking.

These approaches have been automated with strategies written in the PVS strategy
language.

Chapter 7

Verifying BSV Designs with the
Symbolic Analysis Laboratory

This short chapter evaluates the primitive and monadic embedding strategies of

chapter 5 for compatibility with the SAL language and model checking suite. It is

found that primitive embeddings can be expressed in the SAL language and can be

model checked by the various SAL back ends. In contrast, monadic embeddings can

be constructed in the SAL language but cannot be model checked. Deadlock freedom,

safety and progress properties are verified for primitive SAL embeddings of the running

BSV examples.

7.1 The Symbolic Analysis Laboratory

The Symbolic Analysis Laboratory (SAL) [dMOR+04] is a suite of model checking
tools, comprising an expressive specification language and a number of independent
back ends which include a well-formedness checker, a simulator, a deadlock checker,
an automatic test generator and model checkers that implement symbolic, explicit,
witness, bounded and infinite bounded model checking algorithms.

Chapters 5 and 6 have shown that BSV designs can be translated to the input
logic of the PVS theorem prover, which provides access to the PVS model checker, in
addition to a host of complementary proof techniques, including automatic abstraction.
However, the PVS model checker is currently a relatively primitive tool, and there are
a number of potential advantages in the ability to analyse BSV designs with a mature
model checker such as SAL:

1. SAL provides counter-examples, simulation, automated test generation and a

111

112 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

deadlock checker, whereas the PVS model checker currently provides none of
these.

2. The PVS model checker is symbolic, but it is often useful to have access
to explicit, bounded, infinite bounded and/or witness model checking – SAL
provides all of these, in addition to symbolic model checking.

7.2 Model Checking with SAL

The SAL language allows definition of nondeterministic state machines, using guarded
action transition relations. In this way, its underlying model of computation is similar
to BSV. A state machine is specified in a module, which declares a state type, a
predicate to define the set of valid initial states and a transition relation. The following
is a simple module, which is slightly adapted from [dM04]:

short: CONTEXT =

BEGIN

Status: type = {ready, busy};

main: MODULE =

BEGIN

INPUT request : bool

OUTPUT status : Status

INITIALIZATION

status = ready

TRANSITION

[

t1: status = ready AND request --> status’ = busy

[]

t2: not (status = ready) or not request --> status’ = ready

[]

t3: not (status = ready) or not request --> status’ = busy

]

END;

END
SAL

7.2. Model Checking with SAL 113

This example defines a context, which contains an enumerated type called Status and
a module called main. The module main has an input called request, which is a
boolean value that can be set by other modules, and an output called status, which is
a value that can be set by the module main.

The transition relation declares three guarded actions: t1, t2 and t3. The
module evolves from a given state by choosing one guarded action for which the
guard is true, and executing the associated action. As with the one-rule-at-a-
time semantics of BSV, when more than one guard is true for a given state, a
nondeterministic choice is made, with no fairness condition being placed on the
choice. In the initial state, status is set to ready. Notice that t2 and t3 have
the same guard, so that we have a nondeterministic choice whenever the predicate
‘not (status = ready) or not request’ is true. Because SAL has no inbuilt
concept of fairness, it is possible for t3 to fire continuously once status is set to
busy.

SAL allows properties to be specified in Linear Temporal Logic (§4.4.3). For
example:

th1: theorem main |- G(request => F(status = busy));

SAL

We can see informally that this is true: whenever ‘status = ready AND request’
evaluates to true, t1 will fire (setting status to busy), and whenever the status

is not ready, it must be busy. Hence, whenever request = true, the status will
always be busy at some point in the future. We can prove th1 with model checking,
but we must first invoke the deadlock checker to prove that the transition relation is
left-total, as discussed in §4.4.1:

% sal-deadlock-checker short main

ok (module does NOT contain deadlock states).

Command Line

SAL only requires transition relations to be total for the reachable states, rather than
the entire state type. Having established left-totality, we can now prove th1 with the
SAL symbolic model checker:

114 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

% sal-smc short th1

proved.

WARNING: Your property is only true if it is deadlock free.

You should run sal-deadlock-checker for that.

Command Line

7.3 Embedding BSV in the SAL Language

BSV modules can be embedded in the SAL language using both the primitive and
monadic strategies presented in chapter 5. We can specify the states of modules
using the approach presented in §5.2. In place of parameterised PVS theories, we
use parameterised SAL contexts. For the Peterson example, we have:

Reg {T : type} : CONTEXT =

BEGIN

State : type = [# val : T #];

END

FIFO1 {T : type} : CONTEXT =

BEGIN

State : type = [# notFull : bool,

notEmpty : bool,

val : T #];

END

PetersonState : CONTEXT =

BEGIN

PC : type = {Sleeping, Trying, Critical};

State : type = [# pcp : Reg{PC}!State,

pcq : Reg{PC}!State,

turn : Reg{bool}!State,

fifo : FIFO1{bool}!State #];

END

SAL

7.3. Embedding BSV in the SAL Language 115

[

wake_p : pcp.val = Sleeping

--> pcp’ = (# val := Trying #);

turn’ = (# val := false #)

[]

wake_q : pcq.val = Sleeping

--> pcq’ = (# val := Trying #);

turn’ = (# val := true #)

[]

grant_p : pcp.val = Trying

and (turn.val or (pcq.val = Sleeping))

--> pcp’ = (# val := Critical #)

[]

grant_q : pcq.val = Trying

and (not turn.val or (pcp.val = Sleeping))

--> pcq’ = (# val := Critical #)

[]

p_critical : pcp.val = Critical and fifo.notFull

--> fifo’ = (# val := true,

notFull := false,

notEmpty := true #);

pcp’ = (# val := Sleeping #);

turn’ = (# val := false #)

[]

q_critical : pcq.val = Critical and fifo.notFull

--> fifo’ = (# val := true,

notFull := false,

notEmpty := true #);

pcq’ = (# val := Sleeping #);

turn’ = (# val := true #)

[]

read_fifo : fifo.notEmpty

--> fifo’ = (# val := fifo.val,

notFull := true,

notEmpty := false #)

]

SAL

Figure 7.1: The Transition Relation of the Primitive Peterson Embedding

116 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

7.3.1 Primitive Embedding of Rules

BSV rules can be expressed as guarded actions in a SAL transition relation, using the
primitive embedding strategy of §5.4, in which all method calls are expanded in-place.
For the Peterson module of §3.2, this creates the transition relation shown in figure 7.1.
As we shall see, these transition relations can be model checked with the various SAL
back-ends.

7.3.2 Monadic Embedding of Rules

SAL has an expressive specification language which permits higher order functions,
and hence supports the monadic embedding strategy of §5.5. For example, the
following is a monadic SAL embedding of the p_critical rule from the Peterson
example of §3.2 (also shown here for comparison):

p_critical = (pcp_read = Critical and fifo_enq_cond,

bool_bool!seq (fifo.enq (true),

PC_bool!seq (pcp.write (Sleeping),

turn.write (false))))

SAL

rule p_critical (pcp._read == Critical);

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

endrule

BSV

This rule is expressed as a pair, in which the first element is a predicate on the state
of the module and the second is a monad that can be applied to the state of the
module to produce a new state. SAL does not support type inference or user-defined
infix operators, so monadic specifications are a little less concise in SAL compared
to PVS (for example, the standard monadic function seq is initialised once for each
combination of types it is called with – in this case bool_bool and PC_bool) but the
basic monadic form is preserved, including the use of monad transformers.

When monadic embedding is used, the transition relation is reduced to ‘boilerplate’
(simple, repetitive expressions), where the rules’ monads are applied to the current

7.4. Verifying BSV-to-SAL Translation 117

state:

[

p_critical: p_critical.1 --> s’ = bool_!exec (p_critical.2,s)

[]

q_critical: q_critical.1 --> s’ = bool_!exec (q_critical.2,s)

[]

...

]

SAL

The function bool_!exec takes a pair, where the first element is a monad (for example,
p_critical.2) and the second element is the state of the module. It then applies the
state to the monad and returns the updated state.

The various SAL back ends (deadlock checker, symbolic model checker etc.)
will accept monadic specifications, but fail to reduce them to a tractable BDD form
(typically terminating with a segmentation fault). Whilst extensive use of higher-
order functional programming (for example, the implementation of monads and monad
transformers) is not fundamentally incompatible with the algorithms used for model
checking, it is presently uncommon in the formation of model checking transition
relations, and consequently appears to be poorly supported by the various SAL back
ends. Because the monadic embedding approach did not produce workable SAL
specifications, a discussion is not provided of the various kludges required to support
monadic programming in the SAL language. However, a complete monadic SAL
embedding of the Peterson example is provided online for reference [RL11].

7.4 Verifying BSV-to-SAL Translation

We have seen that primitive embeddings of BSV modules can be expressed in the SAL
language and processed by the various SAL back ends. This creates the possibility of
a hybrid verification approach for BSV, which combines the specialist model checking
capabilities of SAL with the versatility of a deductive tool such as PVS. Primitive
SAL embeddings could be verified with model checking, and the deductive tool
could establish extensional equivalence between primitive and monadic embeddings,
and possibly also apply techniques such as automatic abstraction and compositional
reasoning.

118 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

U
N

V
ER

IFIED

p_critical_prim
itive (pre, post : P

eterson) : bool

 = pre‘pcp‘data = C
ritical !

 pre‘fifo‘notFull

 !
 post = pre w

ith [(fifo) := (# val := true,

 notFull := false,

 notE
m

pty := true #),

 (pcp) := (# val := S
leeping #),

 (turn) := (# val := false #)]

EX
TEN

SIO
N

A
L

EQ
U

IVA
LEN

C
E

U
N

V
ER

IFIED

p_critical : pcp.data = C
ritical and fifo.notFull

 --> fifo’ = (# val := true,
 notFull := false,
 notE

m
pty := true #);

 pcp’ = (# val := S
leeping #);

 turn’ = (# val := false #)

M
O

D
EL C

H
EC

K
ED

M
O

N
A

D
IC

 PV
S

B
SV

PR
IM

ITIV
E SA

L

PR
IM

ITIV
E PV

S

rule p_critical (pcp._read == C
ritical);

 fifo.enq (True);

 pcp._w
rite (S

leeping);

 turn._w
rite (False);

endrule

 p_critical : R
ule = rule (pcp‘read = C

ritical !
 fifo‘enq_cond)

 (fifo‘enq (true) "

 pcp‘w
rite (S

leeping) "

 turn‘w
rite (false)) Figure

7.2:B
SV

V
erification

w
ith

PV
S

and
SA

L

7.5. Verifying Peterson’s Protocol 119

This approach is outlined in figure 7.2. A BSV-to-PVS/SAL translation tool would
parse BSV to produce an abstract syntax tree (call it the BSV AST) which could be
converted to a monadic PVS embedding. The BSV AST would then be converted into
a more complex AST by expanding out all method calls, module instantiations and so-
on. This new AST (call it the expanded AST) could then be used to produce the nearly-
identical primitive embeddings in PVS and SAL. The monadic and primitive PVS
embeddings could then be proven extensionally equivalent, and the SAL embedding
could be verified with model checking.

To give an idea of how the two PVS embeddings align with BSV and the SAL
embedding, figure 7.3 shows the BSV rule p_critical along with its embeddings
in PVS and SAL. Notice the strong syntactic resemblance between the BSV rule and
its monadic PVS embedding, and also between the primitive PVS embedding and the
SAL embedding.

7.5 Verifying Peterson’s Protocol

SAL supports linear temporal logic, which can be used to construct safety and progress
theorems for the primitive Peterson embedding:

safety: THEOREM

System |- G (NOT(pcp.val = Critical AND pcq.val = Critical));

progress: THEOREM

System |- (G(pcp.val = Trying => F(pcp.val = Critical)))

and (G(pcq.val = Trying => F(pcq.val = Critical)));

SAL

The safety theorem states that processes p and q will never simultaneously have access
to the ‘critical’ section. The progress theorem states that a Trying process will always
eventually gain access to the ‘critical’ section.

The SAL deadlock checker establishes deadlock freedom for the primitive Peterson
embedding in 0.1 seconds. Once this has been done, the safety and progress theorems
can be proven by the SAL symbolic model checker in 0.1 and 0.2 seconds respectively.
Extensional equivalence between primitive and monadic PVS embeddings of the
Peterson example was proven in chapter 6. As with the experimental results of §6.5,
these figures are indicative only.

120 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

The BSV rule:

rule p_critical (pcp._read == Critical);

fifo.enq (True);

pcp._write (Sleeping);

turn._write (False);

endrule

BSV

A monadic embedding in PVS:

.

Dom Richards

March 26, 2011

p critical: Rule = rule (pcp‘read = Critical ∧ fifo‘notFull)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

mark

p critical: Rule = rule (pcp‘read = Critical ∧ fifo‘enq cond)
(fifo‘enq (true) �
pcp‘write (Sleeping) �
turn‘write (false))

mark

1

PVS

A primitive embedding in PVS:

.

Dom Richards

June 9, 2010

p critical primitive(pre, post: Peterson): bool =
pre‘pcp‘val = Critical ∧ pre‘fifo‘notFull
∧ post = pre with

�
(fifo) := (#val := true,

notFull := false,
notEmpty := true#),

(pcp) := (#val := Sleeping#),
(turn) := (#val := false#)

�

mark

1

PVS

A primitive embedding in SAL:

p_critical : pcp.val = Critical and fifo.notFull

--> fifo’ = (# val := true,

notFull := false,

notEmpty := true #);

pcp’ = (# val := Sleeping #);

turn’ = (# val := false #)

SAL

Figure 7.3: A BSV Rule and its Embeddings in PVS and SAL

7.6. Verifying an Arbiter Control Circuit 121

7.6 Verifying an Arbiter Control Circuit

Figure 7.4 presents extracts from the primitive SAL embedding of the arbiter test
bench. Safety and progress are defined as follows:

safety: THEOREM System |- G(NOT((arb.ack1.val AND arb.ack2.val)

OR (arb.ack2.val AND arb.ack3.val)

OR (arb.ack1.val AND arb.ack3.val)));

progress: THEOREM System |- (G(arb.req1.val => F(arb.ack1.val)))

AND (G(arb.req2.val => F(arb.ack2.val)))

AND (G(arb.req3.val => F(arb.ack3.val)));

SAL

Deadlock checking requires 0.2 seconds, whilst proof of safety and progress require
0.2 and 0.3 seconds respectively.

We can also verify that at least one input will always eventually raise a request,
from any given future state:

infinite_requests: THEOREM System |- G(F(arb.req1.val

OR arb.req2.val

OR arb.req3.val));

SAL

This theorem is proven in 0.2 seconds.

7.7 Summary

BSV designs have been translated to the SAL language using the monadic and
primitive embedding strategies of chapter 5. It has been found that primitive
embedding yields model checkable SAL specifications, thus providing access to the
extensive suite of verification tools provided by SAL. Furthermore, a technique has
been presented for verifying ‘BSV to primitive SAL’ translation with the PVS theorem
prover, by producing both monadic and primitive embeddings in the PVS logic, and
proving them to be extensionally equivalent using the powerful deductive capabilities
of PVS.

Whilst PVS provides an integrated model checker, there are a number of advan-
tages in compiling to a mature model checker such as SAL:

122 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

TbArbiterPrimitive : context = BEGIN

System : MODULE = BEGIN

LOCAL arb : Arbiter!State,

ack1_with_tok_guard : bool,

ack2_with_tok_guard : bool,

ack3_with_tok_guard : bool,

ack1_guard : bool,

ack2_guard : bool,

ack3_guard : bool

INITIALIZATION arb = Arbiter!mkArbiter;

DEFINITION

ack1_with_tok_guard

= arb.tok1.val and arb.req1.val

and not (arb.ack1.val or arb.ack2.val or arb.ack3.val);

ack2_with_tok_guard

= arb.tok2.val and arb.req2.val

and not (arb.ack1.val or arb.ack2.val or arb.ack3.val);

...

TRANSITION

[ack_1_with_tok : ack1_with_tok_guard

--> arb’.ack1 = (# val := true #);

arb’.tok1 = (# val := arb.tok3.val #);

arb’.tok2 = (# val := arb.tok1.val #);

arb’.tok3 = (# val := arb.tok2.val #)

[] ack_2_with_tok : ack2_with_tok_guard

and not ack1_with_tok_guard

--> arb’.ack2 = (# val := true #);

arb’.tok1 = (# val := arb.tok3.val #);

arb’.tok2 = (# val := arb.tok1.val #);

arb’.tok3 = (# val := arb.tok2.val #)

[] ...

]

END;

END

SAL

Figure 7.4: Extracts from the Primitive Arbiter Embedding

7.7. Summary 123

1. SAL provides counter-examples, simulation, automated test generation and a
deadlock checker, whereas the PVS model checker currently provides none of
these.

2. The PVS model checker is symbolic, but it is often useful to have access
to explicit, bounded, infinite bounded and/or witness model checking – SAL
provides all of these, in addition to symbolic model checking.

124 Chapter 7. Verifying BSV Designs with the Symbolic Analysis Laboratory

Chapter 8

Related Work

A discussion is presented of work related to the BSV embeddings of earlier chapters,

focussing in particular on the application of automated reasoning to: monadic

functions, guarded action languages, functional and functionally-embedded hardware

languages, and ad hoc hardware languages. BSV is found to present unique challenges

for the application of automated reasoning, being more complex than most guarded

action languages, and exceptional amongst hardware languages in its choice of

guarded actions as the underlying model of concurrency.

8.1 Monads for Specification and Proof

Monads were introduced into functional programming by Moggi and Wadler [Mog91,
Wad92a] as a method of specifying ‘impure’ computations, such as state manipulation,
non-determinism and I/O operations. They were first used in association with theorem
proving by Filliâtre [Fil03]. Subsequently, monads have been used a number of times
in the context of theorem proving, most commonly to represent side-effects in the
functional subsets of theorem prover logics for the abstract specification of state-based
systems [BKH+08, FM10, HMW05, SB07], but also to produce shallow embeddings
for subsets of the C language and Java [JP00, KM02].

The present work is unique in its application of monads for the embedding in
logic of a hardware description language, and also in its support for the verification
of a general class of temporal logic theorems over monadic specifications using
combined model checking and mechanical deduction. The more common verification
approach is to use Hoare logic and weakest precondition calculus, which are popular
for the verification of software programs and were introduced to monadic verification

125

126 Chapter 8. Related Work

by Moggi [Mog91]. Exceptions to this trend are Bishop et al. [BFN+06], who
employ a special-purpose path checker to establish that simulation runs comply
with monadic HOL specifications, and also Sprenger and Basin [SB07], who verify
monadic functions with a custom-embedding of linear temporal logic (LTL) in
Isabelle/HOL, along with proof rules which reduce temporal reasoning to pre-
condition/post-condition reasoning.

Of the existing literature concerning monads and theorem proving, research on
embedding C and Java is most closely related to the present work, having been focused
on the faithful representation of language semantics, in a form which is conducive to
efficient automated reasoning. However, there are three important distinctions:

1. C and Java are ac hoc languages with complex semantics, which were developed
without a view to formal verification: in contrast, BSV was designed with
intentionally elegant semantics.

2. C and Java are software languages, meaning that an embedding must address
complications such as non-termination, exceptions, memory management and
so-on. BSV, being a hardware language, does not include such complexities.

3. C and Java have fundamentally different underlying models of computation
when compared to BSV (imperative and object-oriented respectively, versus the
guarded action model of BSV).

Krstic and Matthews [KM02] embed a subset of C in Isabelle/HOL for the
purpose of verifying binary decision diagram (BDD) algorithms. Due to the semantic
complexity of C, they omit underlying implementation details such as the concrete
representation of state and garbage collection. Correctness theorems are specified
in higher order logic and proven with interactive deduction. Jacobs and Poll [JP00]
specify the denotational semantics of a subset of Java in PVS by defining a state monad
with exceptions. This embedding is used by Huisman et al. [HJvdB01] to verify a
safety property for the Vector class of the Java standard library, using Hoare Logic and
interactive proof.

8.2 Guarded Action Languages

BSV is unique as a guarded action language which supports general purpose hardware
design and synthesis. However, guarded actions are widely used in the field of formal

8.2. Guarded Action Languages 127

methods for specifying concurrent systems. They provide a natural way to express
transition relations for model checking, and are also used as a basis for deductive proof
in formalisms such as TLA+ [Lam02], UNITY [CM88] and Event-B [AH07].

8.2.1 Bluespec SystemVerilog

Singh and Shukla [SS08] provide the only previous investigation into automated
reasoning for BSV. They embed a subset of BSV in Promela, the specification language
of the SPIN model checker. The subset of BSV is restricted to modules which
instantiate only base modules such as registers. This essentially limits the syntax of
BSV to the subset which is common with Promela. In contrast, the present work
employs monadic techniques to specify advanced language features, and verifies the
resulting logic expressions with a combination of model checking and automatic
deduction.

Stoy et al. [SSA01] use hand-proof to verify an implementation of the cache-
coherence protocol Cachet, which was constructed in TRS (the predecessor of BSV).
In the same paper, they provide a separate specification of Cachet in the Temporal
Logic of Actions [Lam94], which they translate into the PVS logic and verify with the
PVS theorem prover.

8.2.2 TLA+

TLA+ is a logic for specifying concurrent systems and proving properties about them.
Systems are typically described with:

1. A state type;

2. An initial state predicate;

3. A collection of state transitions, which are expressed as first order logic formulas
on primed and unprimed variables;

4. Temporal formulas written in a subset of LTL which assert safety and liveness
properties.

Transitions can be specified as guarded actions. For example, consider the following
first order formula on integer variables x and y:

x+ y≤ 100︸ ︷︷ ︸
guard

∧ x′ = x+ y ∧ y′ = y+1︸ ︷︷ ︸
action

128 Chapter 8. Related Work

However, first order logic also permits more abstract transition formulas. For example:

x+ y′ ≤ 100 ∧ ∃ z ∈ 0..10 : y′ = y+ z

TLA+ has a module structure which is similar to that of BSV. Modules contain
state, transition formulas and temporal formulas, and can also instantiate other
modules. The internal state of a module instance can be accessed and updated by
invoking parameterised state formulas.

TLA+ originated as a hand-based formalism, but several mechanical proof tools
have been developed to support model checking and deductive reasoning for various
subsets of the logic.

The TLA+ Proof System

The TLA+ Proof System (TLAPS) [CDLM08, CDLM10] checks the validity of
manually-constructed deduction proofs. This is achieved by decomposing the proofs
into collections of proof obligations, which are sent to the Zenon first-order tableau
prover [BDD07] for automatic verification and, if this is unsuccessful, to Isabelle for
interactive verification. TLAPS can be used to verify non-temporal theorems as well
as the temporal theorems which express safety, but not liveness.

Module instances are expanded in-place, in a manner that is comparable to the
‘primitive’ embedding strategy for BSV, which was presented in chapter 5. The
disadvantages of in-place expansion were discussed in chapter 5, and addressed for
BSV by monadic embedding. However, it is unclear whether monadic techniques
would be applicable to TLA+, owing to its expression of transitions as first order logic
formulas rather than the more restricted guarded actions of BSV. It is interesting that
TLA+ makes such direct use of first order logic, and yet appears not to permit verbatim
translation into the specification logic of a theorem prover, whereas BSV, which instead
opts for functionally-inspired syntax, permits direct translation into higher order logic
by the application of monads.

TLC

TLC [YML99] is model checker and simulator for a subset of TLA+. The specific
subset is not clearly defined in the literature, but seems to be essentially the class of
finite-state specifications in which transitions are specified in guarded action form.

8.2. Guarded Action Languages 129

TLC is custom-built in Java, and uses an explicit model checking algorithm to verify
deadlock freedom and safety properties. It does not address module instantiation.

Other Approaches

The Temporal Logic of Actions (TLA) [Lam94] is a formalism which predates TLA+.
It is a more primitive language, which does not possess the module structure of its
successor – in this sense, it bears only a passing resemblance to BSV. TLA has been
embedded in the specification logics of a number of proof tools: the Larch Prover
[EGL93]; COSPAN/Larch [KL93]; PVS [SSA01]; Isabelle [Kal95]; HOL [L9̊4].

8.2.3 Unity

UNITY is another logic for concurrent systems, which provides a minimal guarded
action language together with a fragment of linear temporal logic for expressing safety
and liveness properties. Systems are specified with:

1. A single global state;

2. A set of valid initial states;

3. A set of guarded actions which transform the global state.

A simple notion of program composition is provided. Systems which operate on the
same global state can be composed by taking the intersection of their sets of initial
states and the union of their sets of guarded actions. This is significantly more primitive
than the constructs provided by BSV for program composition.

As with TLA and TLA+, UNITY was originally developed as a formalism for
hand-proof, but has subsequently been embedded in several proof tools. Paulson
[Pau00] embeds UNITY in the higher order logic of the Isabelle theorem prover, using
a set-based formalism. Individual guarded actions are specified as binary relations
on the state type (as with the formalisation of BSV rules presented in §5.3) and
are collected into a set. Together with a state type and a set of initial states, this
completes the formalisation of a UNITY program. Composition is defined in terms of
set operations, as described above. Programs are verified with interactive deduction,
where proof effort is reduced by the use of Isabelle’s proof tactics. These include
a simplifier which performs conditional, contextual and permutative rewriting and a
classical reasoner which applies tableau methods. Heyd and Crégut [HC96] encode

130 Chapter 8. Related Work

a subset of UNITY in the type theory tool Coq. They achieve composition of safety
and progress properties by associating programs with ‘contexts’, which specify the
transitions that can be performed by other programs that operate concurrently with
the program in question. Andersen et al. [APP94] provide an embedding of UNITY
in the HOL theorem prover, together with a deductive proof tactic for discharging
manageable proof sub-goals. However, they do not consider compositional reasoning.
Kaltenbach [Kal96] presents symbolic model checking algorithms for verifying safety
and progress theorems concerning finite-state UNITY programs.

8.2.4 Event-B

Event-B is another guarded action formalism for high-level modelling of concurrent
systems. In contrast to TLA, TLA+ and UNITY, it does not provide a temporal
logic for specifying system properties, but instead focuses on proof of refinement.
Systems are described in the standard guarded action format (state type, initial state(s)
and guarded actions). In addition to this, language features are provided to express
program refinement. One system can be declared as a refinement of another, and
individual guarded actions belonging to the former can be declared as refinements
of corresponding guarded actions in the latter. The core Event-B language does
not provide constructs for modular design, although a ‘plug-in’ has been created to
achieve this [Wik10]. Event-B specifications are developed and refined using the
Rodin platform [Rod10, ABHV06]. We do not elaborate on this work, because it is
concerned with refinement proof, whereas the present work is concerned with property
verification. However, we have seen that BSV supports a refinement based design
cycle, which means that the approach taken by Event-B to implement mechanical
refinement proof may be of interest for further work.

8.2.5 Languages for Model Checking

As discussed in chapter 4, guarded actions are widely used in model checking
formalisms, for a host of stand-alone model checkers such as SAL, SPIN and Murphi,
in addition to hybrid model checking and theorem proving tools. As with the hand-
based formalisms UNITY, TLA and Event-B, these languages are kept intentionally
simple in order to reduce the effort of proof.

The technical challenge in applying automated reasoning to BSV lies to a
large extent in the translation of BSV programs to the simpler guarded action

8.3. Functional Hardware Languages 131

languages which are provided by automated proof tools. In this respect, the technical
contributions of the present work are not directly related to the literature of languages
for model checking, which are purpose-built to reduce the effort of mechanical
verification.

8.3 Functional Hardware Languages

A common theme among semantically elegant hardware languages is the use of
functional programming, either to describe circuits directly or to embed hardware
languages which, in turn, often have a functional flavour. In fact, BSV is an embedded
domain-specific language (EDSL) within Haskell, and also shows strong influences
from the functional paradigm in its language features.

BSV is unique among functional and functionally-embedded hardware languages
in the fundamental issue of its underlying model of concurrency, meaning that it
presents a distinct set of challenges for the application of automated reasoning. For
example, stream transformer languages (such as Cryptol) specify hardware in terms of
functions over infinite streams; this creates a challenge for proof tools, which generally
prohibit non-terminating functions. In contrast, BSV designs specify hardware using
guarded actions (which allow direct translation to logic, in the form of binary transition
relations) but present other challenges, such as a heavy reliance upon side-effects
(which we have addressed with an application of monads).

8.3.1 Behavioural Languages

Cryptol is an EDSL within Haskell which allows cryptographic algorithms to be
specified and compiled to C, Verilog or VHDL. Systems are described at the
behavioural level, as functions which operate on streams of input values. Cryptol
was designed by Galois Inc. for the US National Security Agency, to act as a public
standard for specifying cryptographic algorithms. Because of its information-critical
nature, it is well supported by automated proof tools, which provide two verification
approaches [EM09]:

1. For a subset of the language, SAT and SMT techniques implement fully auto-
mated safety-checking, as well as proof of equivalence between incrementally
refined Cryptol designs, and also between Cryptol and corresponding VHDL.

132 Chapter 8. Related Work

2. For programs which cannot be verified automatically with SAT and SMT
techniques, Cryptol can be compiled to Isabelle/HOL for verification with
interactive theorem proving.

In both cases, Cryptol programs are first translated to expressions in a simpler symbolic
bit-vector language, which are then translated to the input logic of the proof tool in
question.

8.3.2 Structural Languages

A number of functional and functionally-embedded languages define hardware at the
structural level: these include Hawk [MCL98], Ruby [She90] and Lava [BCSS98].

Matthews and Launchbury [ML99, Mat00] embed Hawk in the higher order logic
of Isabelle. Hawk is a functional language, which extends Haskell with domain-
specific features for hardware design. It describes hardware with functions, which
Matthews and Launchbury translate directly into logic. A complication arises in
formalising recursive functions, which have a domain-theoretic definition in Hawk.
This is captured in logic with converging equivalence relations.

A subset of Ruby has also been embedded in Isabelle [Ras96, SR97]. A shallow
embedding is formed in Zermelo-Fraenkel set theory (which is well supported in
Isabelle) and proofs are performed by structural induction.

Lava [BCSS98] provides automatic compilation of logic specifications and theo-
rems for the propositional tautology checker Prover [Sta89] and the first order theorem
provers Otter [MW97] and Gandalf [Tam97]. The theorems can then be proven to
establish equivalence between designs.

8.3.3 Synthesis from Logic

A number of investigations have been made into the feasibility of synthesising
hardware from functional descriptions written in the specification logics of theorem
provers. These include: LAMBDA (Logic And Mathematics Behind Design Automa-
tion) [FFFH89]; VERITAS+ [HDL89]; Gropius [Blu99]; HOL synthesis [GIOS06].

8.4 Automated Reasoning for Ad Hoc Languages

Automated reasoning has been used extensively to verify designs in the common ad

hoc hardware languages, but its effectiveness is impaired by two factors:

8.4. Automated Reasoning for Ad Hoc Languages 133

1. Convoluted Semantics – languages such as VHDL, Verilog and SystemC have
convoluted simulation cycle semantics [BGG+92, Gor95, Klo95, MRH+01],
which complicate the task of translating programs into tractable logic expres-
sions.

2. Unrelated System Models – design flows commonly produce two system
models: a concise ESL specification and a synthesizable RTL implementation.
These are often written in different languages, and constructed independently,
rather than being linked by a process of refinement.

In contrast, BSV has an intentionally elegant semantics, and supports a design flow in
which ESL specifications are incrementally refined until designs are produced which
can be synthesised to efficient hardware.

There is an extensive body of literature on the application of automated reasoning to
ad hoc hardware languages. However, because it is tangential to the present work, we
restrict our discussion to four of the larger projects – undertaken by Intel, AMD, IBM
and Centaur – in order to outline the central themes of automated reasoning for this
style of language. Further to this, it is informative to gain a picture of how automated
reasoning is applied by the big players in IC design.

The aforementioned companies have independently developed proof tools for RTL
verification, which have a number of similarities:

1. They verify RTL code against high-level logic specifications.

2. RTL code is first translated to a semantically elegant state machine language,
which is then embedded in logic.

3. High-level logic specifications are formed by manually translating informal
requirement specifications and ESL specifications.

4. Intel and Centaur use compositional reasoning, where automatic techniques are
used to efficiently verify low-level temporal logic properties, which are then
used during interactive deduction to prove correctness against a high-level logic
specification.

8.4.1 Forte

The Forte verification system [SJO+05] combines model checking with lightweight
theorem proving in higher order logic, in order to verify RTL designs. It is owned

134 Chapter 8. Related Work

and developed by Intel, although it is freely available for non-commercial use. Forte
evolved from earlier work [JS93] on combining the HOL theorem prover [GM93]
with the VOSS symbolic trajectory evaluation (STE) model checker [Seg93]. RTL
is translated to gate-level descriptions, which are automatically translated to a finite
state machine (FSM) representation in FL [AJS99], a strongly typed, higher-order
functional programming language. The STE model checker is then used to verify
these finite state machines against low-level temporal logic properties, which are used
during interactive proof to verify that the FSMs are complicit with high-level logic
specifications. The STE model checker can verify large design fragments for a limited
temporal logic, which includes the ‘next state’ and ‘requires’ path quantifiers (§4.4).
State space reduction is achieved by using a three valued logic, where digital signals
can be ‘high’, ‘low’ or ‘don’t care’; this can dramatically reduce the number of cases
that must be considered by the model checker. Successful industrial-scale applications
include [AJS98, KA00, OZGS99].

8.4.2 RuleBase

IBM has produced the RuleBase symbolic model checker [BDEGW03], which is
based on the Symbolic Model Verifier (SMV) [McM93], and makes extensive use
of state space reduction techniques, including cone of influence reduction, flip-flop
equivalence, constant propagation and abstraction-refinement. RuleBase supports two
design flows:

1. System level specifications can be produced in a subset of Java, and verified
against temporal logic specifications [ESH+00, AVARB+01]. RTL code can
then be automatically synthesised from the Java specification.

2. RTL can be hand-coded as part of a conventional design flow, and then verified
directly against temporal logic specifications.

Properties are expressed in a temporal logic called the Property Specification Language
(PSL) [EF06], which provides CTL and LTL operators, along with user-friendly
syntactic sugar. Six separate back-ends are available for verification, each based on a
different algorithmic approach, using binary decision diagrams (BDDs), SAT-solving
and semi-formal techniques.

RuleBase has been widely used at IBM, and also at a number of other companies
including STMicroelectronics, Galileo Technology, Mellanox Technologies and Zoran

8.5. Summary 135

Corporation. Successful industrial-scale applications include [BH98, AVARB+01,
BHSA99, GL00, Par00].

8.4.3 DE2

Centaur Technology and the University of Texas have developed an approach for
verifying Verilog circuits with the ACL2 first order theorem prover. Verilog designs
are automatically translated to equivalent descriptions in a semantically elegant state
machine language called DE2, which has been deeply embedded in the ACL2 logic
[HR05]. During the Verilog-to-DE2 translation, cone of influence reduction is applied
to reduce the state space. High-level ACL2 specifications are manually constructed
from ESL designs and informal requirement specifications.

The DE2 system achieves scalable verification in much the same way as Forte.
Finite state machines specified in DE2 are automatically verified against low-level
temporal logic assertions, which are used during interactive proof to establish com-
plicity with high-level ACL2 specifications. Centaur has used its system to verify
floating-point addition and subtraction instructions for the media unit of a 64-bit, X86-
compatible microprocessor [HS09].

8.4.4 AMD

AMD has also employed ACL2, for the verification of hardware designs expressed
in its proprietary RTL language [Obe99, RF00, Rus00b], in an approach which bears
a strong resemblance to Forte and the DE2 system. RTL is translated to a Lisp-like
finite state machine language with clean semantics, which is embedded in the ACL2
logic. The resulting ACL2 specifications are verified with interactive proof, using
mathematical induction, conditional rewriting and decision procedures. This approach
has been used to verify floating point algorithms which are used in the AMD Athlon
processor and its derivatives.

8.5 Summary

A survey has been conducted of the literature which applies automated reasoning
to: monadic specifications, guarded action languages, functional and functionally-
embedded hardware languages, and ad hoc hardware languages. We have seen that
BSV is a unique language when considered with respect to automated reasoning, being

136 Chapter 8. Related Work

unusually complex for a guarded action language, and exceptional amongst hardware
languages in its choice of guarded actions as the underlying model of concurrency.

Chapter 9

Conclusion

The themes and contributions of this dissertation are summarised, and a discussion is

presented of possible topics for further work.

9.1 Concurrent Haskell

A novel approach has been presented for applying lightweight formal methods
to packet-switched networks-on-chip, which involves behavioural specification in
Concurrent Haskell, and verification by simulation and hand-proof. This approach has
been used to specify and verify a novel NoC architecture belonging to the SpiNNaker
many-core processor.

This work was motivated by a requirement of the SpiNNaker design team for
rigorous verification of the system-wide communications network, which contains
a myriad of cyclic paths, as well as a novel emergency routing protocol that
spontaneously redirects packets in real-time. The combination of these two features
created a tangible concern over the possibility of livelock. A behavioural specification
has been developed for the SpiNNaker NoC, which focusses in particular on the novel
emergency routing mechanism. Furthermore, a hand proof has been presented which
verifies an aspect of the emergency routing protocol with mathematical induction.

It has been shown that Concurrent Haskell provides a suitable basis for the
application of lightweight formal methods to NoC verification. Owing to its clean
semantics, it allows the construction of elegant behavioural specifications which can
be executed (Concurrent Haskell is a mature software language) and also subjected to
formal reasoning with hand proof.

137

138 Chapter 9. Conclusion

9.2 Bluespec SystemVerilog

A subset of Bluespec SystemVerilog has been embedded in the PVS theorem prover
and the SAL model checker. The subset which has been embedded includes module
definition and instantiation, methods, implicit conditions, scheduling attributes, and
rule composition using methods from instantiated modules.

In the case of PVS, a novel application of monadic techniques led to a surprisingly
elegant embedding, in which BSV is translated into logic almost verbatim, preserving
types and language constructs. Proof strategies have been presented in the PVS
strategy language, which automatically verify an important class of temporal logic the-
orems concerning instances of the monadic embedding strategy, using a combination
of model checking and automated deduction.

The SAL language was found to permit monadic programming. However, whilst
monadic BSV specifications are accepted by the SAL type checker, the various model
checking back-ends fail to reduce them to a tractable form. Despite this, SAL was
found to be compatible with a simpler ‘primitive’ embedding strategy, in which
BSV constructs such as module instantiation and method invocation are eliminated
by in-place expansion. This raises the possibility of hybrid verification, in which
primitive specifications are model checked by SAL, and other proof techniques, such
as automatic abstraction and compositional reasoning, are applied with a tool such as
PVS.

The contributions of this dissertation represent a step in the journey towards
scalable automated reasoning for BSV. Model checking, together with a small amount
of automated deduction, was sufficient to verify the BSV examples considered,
whereas more sophisticated proof techniques will be required to verify designs of
real-world complexity. However, before automated reasoning can be applied to any
BSV design, it must first be translated into the logic of an appropriate proof tool, and
the choices of both tool and translation strategy can have a significant impact on the
applicability of proof techniques. It has been shown here that a considered approach
to embedding, in a versatile proof tool such as PVS, produces surprisingly elegant
specifications which can be directly verified with a combination of model checking
and deductive reasoning, whilst also being apparently well-disposed for extension in
further work with automatic predicate abstraction, compositional reasoning and a host
of other proof techniques. In this respect, the present work has aimed to make a first
step which, however modest, is a step in the right direction.

9.2. Bluespec SystemVerilog 139

9.2.1 Topics for Further Work

The embeddings of BSV in PVS and SAL create a number of possibilities for further
research. PVS, in particular, was chosen because of its seamless integration of model
checking, automatic abstraction and deductive reasoning. This dissertation, however,
has only scratched the surface of its potential for BSV verification. A natural next
step would be the application of automatic predicate abstraction to monadic BSV
specifications. This facility was developed in PVS to complement its model checker
[SS99], and the two proof techniques can, in fact, be applied with a single invocation
of the proof strategy (abstract-and-mc) [SORSC01]. An application of automatic
abstraction could dramatically increase the class of BSV designs that can be efficiently
verified within PVS.

Compositional reasoning is another avenue for investigation. Monadic embedding
maintains the clean partitioning of state and functionality from the original source
code, which raises the possibility of applying compositional reasoning to BSV designs,
essentially at the source code level. Temporal logic properties could be automatically
proven for the methods of small modules (using model checking with abstraction)
and composed by user-guided deduction to verify the behaviour of more complex
modules which invoke the methods. Intel’s Forte tool (§4.7.2, §8.4.1), for example,
makes extensive use of compositional reasoning, although the technical difficulty of
formalising RTL necessitates a more contrived path, in which RTL is first compiled
to the gate-level, before low-level temporal properties are verified with STE model
checking and composed by interactive deduction to verify higher-level properties.

Automatic BSV-to-logic translation would provide a useful building block for
further work, and might also serve to stimulate new research in the area, because it
would lower the technical barrier for experimentation with automated reasoning for
BSV. Experimentation in this dissertation with the PVS strategy language suggests
that compilation of BSV to monadic PVS could be accompanied by the automatic
generation of proof strategies, which would further increase the usability of such a
tool. It would be interesting to see how the concept of strategy creation will scale as
more sophisticated verification approaches are considered.

The concept of extensional equivalence between monadic and primitive embed-
dings has another potential application: construction of a verifying compiler. BSV
compilation begins with a reduction of the source code to a simpler ‘abstract transition
system’ (ATS) form, which is similar to the expressions generated by the primitive

140 Chapter 9. Conclusion

embedding strategy proposed in the present work. It might be possible to simultane-
ously compile BSV source code to monadic form in PVS, whilst also compiling the
corresponding abstract transition system to a primitive form. Extensional equivalence
could then be proven between the two PVS specifications, thus verifying the BSV-to-
ATS compilation. Proof of extensional equivalence between monadic and primitive
specifications can be achieved automatically in PVS, with a single application of the
strategy (grind-with-ext). It may be possible to employ a SAT or SMT solver
(§4.5) for this task, in order to produce a fully automatic, command line driven verifier
for BSV-to-ATS compilation.

The present work has produced encouraging results with PVS and SAL, although
both tools have their limitations. SAL is an effective model checker, but does not
support proof techniques such as abstraction and deduction, which seem to be essential
for the verification of large-scale BSV designs. PVS, on the other hand, provides close
integration of a broad range of proof techniques, but its model checker is somewhat
unrefined (§6.1.1). This may warrant a thorough evaluation of alternative tools,
which were discussed in §4.7.2. An obvious alternative to PVS is HOL, which also
supports higher order theorem proving with integrated model checking and automatic
abstraction. HOL is a mature tool which is being actively developed at the University
of Cambridge, and is employed in a number of academic institutions.

This dissertation has investigated one area of an expansive – and mostly unexplored
– research space concerning automated reasoning for Bluespec SystemVerilog. BSV
programs are naturally amenable to expression in formal logic, which raises the
possibility of relatively painless experimentation with a broad range of automated
formal and semi-formal methods. Possibilities for further work include:

• Semi-formal methods: for example, automatic test pattern generation or
reachability analysis. An interesting discussion of semi-formal methods can be
found in [BAWR07].

• Automatic refinement proof from ESL specifications down to efficiently
synthesizable implementations – perhaps based on Event-B style refinement
(§8.2.4).

• Evaluation of deep and reflective embeddings, to investigate the utility of
reasoning at the language level (as discussed in §5.12) and also to compare the
efficiency of automated reasoning for BSV programs expressed using shallow,
deep and reflective embedding strategies.

9.3. Final Thoughts 141

9.3 Final Thoughts

Formal methods play a significant role in hardware verification, and their presence
is set to increase as designs exhibit greater complexity and traditional verification
techniques become progressively less effective. In 2009, ITRS reported that 9.4% of
design errors in the companies it surveyed were identified with formal or semi-formal
methods, and stipulated that this should increase to 45% over the following 15 years
[ITR09].

One impediment to the achievement of this target is the ad hoc nature of
mainstream design languages – such as VHDL, Verilog and SystemC – which have
evolved organically as the industry has matured, but now seem ill-suited to the
oncoming influx of formal methods. This thesis investigated an alternative class of
semantically elegant languages, which allow efficient design and synthesis, whilst
having also been developed with formal reasoning in mind.

A particularly promising result has been the application of automated reasoning
to the semantically elegant language Bluespec SystemVerilog. BSV has already
been shown to increase design efficiency by reducing design time when compared
to hand-written VHDL or Verilog, whilst producing comparable hardware for many
applications [GW08, Nik04, WNRD04]. In addition to this, the present work has
shown that it also provides an efficient basis for the application of automated reasoning.

To some extent, the notion of migrating towards semantically elegant languages
is revolutionary, in an industry which favours evolution. Traditional design and
verification techniques have become entrenched, and the cost of transition to alternative
methodologies will be high. However, IC production is a highly competitive
activity, where the commercial advantage is gained by realising sophisticated designs
at the lowest cost. With Moore’s law consistently out-pacing improvements in
design efficiency, design non-recurring engineering costs now frequently exceed
manufacturing non-recurring engineering costs by an order of magnitude, meaning
that production costs are increasingly determined by the metric of design efficiency
[ITR09]. As we have seen, ITRS predicts that increasing design efficiency will
be achieved over the coming decades from innovation in the application of formal
methods.

142 Chapter 9. Conclusion

Bibliography

[ABHV06] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open
extensible tool environment for Event-B. In Formal Methods and

Software Engineering, volume 4260 of Lecture Notes in Computer

Science, pages 588–605. 2006.

[AH07] J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta

Informaticae, 77(1-2):1–28, 2007.

[AJS98] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem proving and
trajectory evaluation in an industrial environment. In Proceedings of

the 35th annual Design Automation Conference, pages 538–541. ACM,
1998.

[AJS99] M. Aagaard, R. Jones, and C.-J. Seger. Lifted-FL: A pragmatic
implementation of combined model checking and theorem proving. In
Proceedings of the 12th International Conference on Theorem Proving

in Higher Order Logics, pages 323–340. Springer-Verlag, 1999.

[Amj03] H. Amjad. Programming a symbolic model checker in a fully expansive
theorem prover. In Proceedings of the 16th International Conference

on Theorem Proving in Higher Order Logics, volume 2758 of Lecture

Notes in Computer Science, pages 171–187. Springer-Verlag, 2003.

[Amj06] H. Amjad. Verification of AMBA using a combination of model
checking and theorem proving. Electronic Notes in Theoretical

Computer Science, 145:45–61, 2006.

[APP94] F. Andersen, K. Petersen, and J. Pettersson. Program verification using
HOL-UNITY. In Proceedings of the 6th International Workshop on

143

144 Bibliography

Higher Order Logic Theorem Proving and its Applications, pages 1–
15. Springer-Verlag, 1994.

[AS99] Arvind and X. Shen. Using term rewriting systems to design and verify
processors. IEEE Micro, 19(3), 1999.

[AVARB+01] Y. Abarbanel-Vinov, N. Aizenbud-Reshef, I. Beer, C. Eisner, D. Geist,
T. Heyman, I. Reuveni, E. Rippel, I. Shitsevalov, Y. Wolfsthal, and
T. Yatzkar-Haham. On the effective deployment of functional formal
verification. Formal Methods in System Design, 19(1):35–44, 2001.

[BAWR07] J. Bhadra, M.. Abadir, L.-C. Wang, and S. Ray. A survey of hybrid
techniques for functional verification. IEEE Design and Test of

Computers, 24(2):112–122, 2007.

[BBC+95] N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z Manna,
H. Sipma, and T. Uribe. STeP: The stanford temporal prover
(educational release) user’s manual. Technical report, 1995.

[BBC+96] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna,
H. Sipma, and T. Uribe. STeP: Deductive-algorithmic verification of
reactive and real-time systems. In Proceedings of the 8th International

Conference on Computer Aided Verification, pages 415–418. Springer-
Verlag, 1996.

[BCC+99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of BDDs.
In Proceedings of the 36th annual ACM/IEEE Design Automation

Conference, pages 317–320, New York, NY, USA, 1999. ACM.

[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell. In International Conference on Functional

Programming, pages 174–184, 1998.

[BDD07] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: an extensible
automated theorem prover producing checkable proofs. In Proceedings

of the 14th International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, pages 151–165. Springer-Verlag,
2007.

Bibliography 145

[BDEGW03] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking
at IBM. Formal Methods in System Design, 22(2):101–108, 2003.

[BF02] J. Bainbridge and S. Furber. Chain: A delay-insensitive chip area
interconnect. IEEE Micro, 22(5):16–23, 2002.

[BFN+06] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and
K. Wansbrough. Engineering with logic: HOL specification and
symbolic-evaluation testing for TCP implementations. In 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2006.

[BGG+92] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and
J. Van Tassel. Experience with embedding hardware description
languages in HOL. In Proceedings of the IFIP TC10/WG 10.2

International Conference on Theorem Provers in Circuit Design, pages
129–156. North-Holland Publishing Co., 1992.

[BH98] J. Baumgartner and T. Heyman. An overview and application of
model reduction techniques in formal verification. In Proceedings of

the IEEE International Conference on Performance, Computing and

Communications, pages 165–171, 1998.

[BHPS07] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A generic model for
formally verifying NoC communication architectures: A case study.
Networks-on-Chip, 2007. NOCS 2007. First International Symposium

on, pages 127–136, May 2007.

[BHSA99] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model
checking the IBM gigahertz processor: An abstraction algorithm for
high-performance netlists. In Proceedings of the 11th International

Conference on Computer Aided Verification, pages 72–83. Springer-
Verlag, 1999.

[Bir98] R. Bird. Introduction to Functional Programming using Haskell.
Prentice Hall, 2nd edition, 1998.

[BKH+08] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews.
Imperative functional programming with Isabelle/HOL. In Proceedings

146 Bibliography

of the 21st International Conference on Theorem Proving in Higher

Order Logics. Springer-Verlag, 2008.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Invest: A tool for the
verification of invariants. In Computer Aided Verification, volume 1427

of LNCS, pages 505–510. Springer-Verlag, 1998.

[Blu99] C. Blumenröhr. A formal approach to specify and synthesize at the
system level. In GI Workshop Modellierung und Verifikation von

Systemen. Shaker-Verlag, 1999.

[Blu08] Bluespec, Inc. Bluespec SystemVerilog Reference Guide, 2008.

[BM08] P. Böhm and T. Melham. A refinement approach to design and
verification of on-chip communication protocols. In Proceedings of the

2008 International Conference on Formal Methods in Computer-Aided

Design. IEEE Press, 2008.

[BSVMH84] R. Brayton, A. Sangiovanni-Vincentelli, C. McMullen, and G. Hachtel.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[CB00] R. Colwell and R. Brennan. Intel’s formal verification experience on
the Willamette development. In Proceedings of the 13th International

Conference on Theorem Proving in Higher Order Logics, pages 106–
107. Springer-Verlag, 2000.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pages 238–252.
ACM, 1977.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A
new symbolic model verifier. In Proceedings of the 11th International

Conference on Computer Aided Verification, pages 495–499. Springer-
Verlag, 1999.

Bibliography 147

[CDLM08] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. A TLA+ proof
system. In Proceedings of the LPAR Workshop Knowledge Exchange:

Automated Provers and Proof Assistants, 2008.

[CDLM10] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety
properties with the TLA+ proof system. In Automated Reasoning,
volume 6173 of Lecture Notes in Computer Science, pages 142–148.
2010.

[CGP00] E. Clarke, Jnr., O. Grumberg, and D. Peled. Model Checking. MIT
Press, 2000.

[Chu40] A. Church. A formulation of the simple theory of types. The Journal

of Symbolic Logic, 5(2):56–68, 1940.

[CM88] K. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley Longman Publishing Co., Inc., 1988.

[DF95] J. Dingel and T. Filkorn. Model checking for infinite state systems
using data abstraction, assumption-commitment style reasoning and
theorem proving. In Proceedings of the 7th International Conference

on Computer Aided Verification, pages 54–69. Springer-Verlag, 1995.

[dM04] L. de Moura. SAL: Tutorial. Technical report, SRI International,
November 2004.

[DM06] Bruno D. and L. De Moura. The Yices SMT solver. Technical report,
SRI International, 2006.

[DMB08] L. De Moura and N. Bjørner. Z3: an efficient SMT solver.
In Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–
340. Springer-Verlag, 2008.

[dMOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari. SAL 2. In Proceedings of the 16th International Conference

on Computer Aided Verification, 2004.

[EF06] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer-
Verlag New York, Inc., 2006.

148 Bibliography

[EGL93] U. Engberg, P. Grønning, and L. Lamport. Mechanical verification of
concurrent systems with TLA. In Proceedings of the First International

Workshop on Larch, pages 86–97. Springer-Verlag, 1993.

[EM09] L. Erkök and J. Matthews. Pragmatic equivalence and safety checking
in Cryptol. In Proceedings of the 3rd Workshop on Programming

Languages Meets Program Verification. ACM, 2009.

[ESH+00] C. Eisner, I. Shitsevalov, R. Hoover, W. Nation, K. Nelson, and K. Valk.
A methodology for formal design of hardware control with application
to cache coherence protocols. In Proceedings of the 37th Annual Design

Automation Conference, pages 724–729. ACM, 2000.

[FFFH89] S. Finn, M. Fourman, M. Francis, and R. Harris. Formal system design
– interactive synthesis based on computer-assisted formal reasoning.
In Proceedings of the IMEC-IFIP International Workshop on Applied

Formal Methods for Correct VLSI Design, 1989.

[Fil03] J.-C. Filliâtre. Verification of non-functional programs using
interpretations in type theory. Journal of Functional Programming,
13(4), 2003.

[FM10] A. Fox and M. Myreen. A trustworthy monadic formalization of the
ARMv7 instruction set architecture. In Interactive Theorem Proving,
volume 6172 of Lecture Notes in Computer Science, pages 243–258.
Springer Berlin / Heidelberg, 2010.

[FSNB09] S. Frankau, D. Spinellis, N. Nassuphis, and C. Burgard. Commercial
uses: Going functional on exotic trades. Journal of Functional

Programming, 19(1):27–45, 2009.

[FSS+94] T. Filkorn, H. Schneider, A. Scholz, A. Strasser, and P. Warkentin. SVE
user’s guide. Technical Report ZFE BT SE 1-SVE-1, 1994.

[FT08] S. Furber and S. Temple. Neural systems engineering. In
Computational Intelligence: A Compendium, volume 115 of Studies

in Computational Intelligence, pages 763–796. Springer, 2008.

Bibliography 149

[FTB06a] S. Furber, S. Temple, and A. Brown. High performance computing
for systems of spiking neurons. In Proceedings of the Workshop on

Adaptation in Artificial and Biological Systems, 2006.

[FTB06b] S. Furber, S. Temple, and A. Brown. On-chip and inter-chip networks
for modeling large-scale neural systems. In Proceedings of the

2006 IEEE International Symposium on Circuits and Systems. IEEE
Computer Society Press, 2006.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on
chip: Concepts, architectures, and implementations. IEEE Design and

Test of Computers, 22:414–421, September 2005.

[GIOS06] M. Gordon, J. Iyoda, S. Owens, and K. Slind. Automatic formal
synthesis of hardware from higher order logic. Electronic Notes in

Theoretical Computer Science, 145:27–43, 2006.

[GL00] A. Goel and W. Lee. Formal verification of an IBM CoreConnect
processor local bus arbiter core. In Proceedings of the 37th Annual

Design Automation Conference, pages 196–200. ACM, 2000.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:

a theorem proving environment for higher order logic. Cambridge
University Press, 1993.

[GMO06] J. Grundy, T. Melham, and J. O’leary. A reflective functional language
for hardware design and theorem proving. Journal of Functional

Programming, 16(2):157–196, 2006.

[GN02] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.
In Proceedings of the Conference on Design, Automation and Test in

Europe, page 142. IEEE Computer Society, 2002.

[Gor95] M. Gordon. The semantic challenge of Verilog HDL. In Proceedings of

the 10th Annual IEEE Symposium on Logic in Computer Science, page
136. IEEE Computer Society, 1995.

[GPB01] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for combinational
equivalence checking. In Proceedings of the Conference on Design,

Automation and Test in Europe, pages 114–121. IEEE Press, 2001.

150 Bibliography

[Gro02] T. Grotker. System Design with SystemC. Kluwer Academic Publishers,
2002.

[GS97] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Proceedings of the 9th International Conference on Computer Aided

Verification, pages 72–83. Springer-Verlag, 1997.

[GVZ+05] B. Gebremichael, F. Vaandrager, M. Zhang, K. Goossens, Edwin
Rijpkema, and Andrei R. Deadlock prevention in the Æthereal protocol.
In Correct Hardware Design and Verification Methods, volume 3725 of
Lecture Notes in Computer Science, pages 345–348. Springer Berlin /
Heidelberg, 2005.

[GW08] F. Gruian and M. Westmijze. VHDL vs. Bluespec SystemVerilog: a
case study on a Java embedded architecture. In Proceedings of the 2008

ACM Symposium on Applied Computing. ACM, 2008.

[Har09] J. Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

[Has11] Haskell.org. Haskell standard library: Control.concurrent.chan.
http://www.haskell.org/ghc/docs/latest/html/libraries/

base/Control-Concurrent-Chan.html, 2011.

[HC96] B. Heyd and P. Crégut. A modular coding of UNITY in COQ.
In Theorem Proving in Higher Order Logics, volume 1125 of
Lecture Notes in Computer Science, pages 251–266. Springer Berlin
/ Heidelberg, 1996.

[HDL89] F. Hanna, N. Daeche, and M. Longley. Formal synthesis of digital
systems. In IFIP International Workshop on Applied Formal Methods

for Correct VLSI Design., 1989.

[HJvdB01] M. Huisman, B. Jacobs, and J. van den Berg. A case study in class
library verification: Java’s vector class. International Journal on

Software Tools for Technology Transfer, 3:332–352, 2001.

[HK90] Z. Har’El and R. P. Kurshan. Software for analytical development of
communication protocols. A T & T Technical Journal, 69(1):44 – 59,
1990.

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Concurrent-Chan.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Concurrent-Chan.html

Bibliography 151

[HMW05] B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes
in Isabelle/HOLCF. In Theorem Proving in Higher Order Logics,
volume 3603 of Lecture Notes in Computer Science, pages 147–162.
Springer Berlin / Heidelberg, 2005.

[Hol03] G. Holzmann. The SPIN model checker: primer and reference manual.
Addison-Wesley, 2003.

[HR05] Warren A. Hunt and Erik Reeber. Formalization of the DE2 language.
In Proceedings of the 13th Working Conference on Correct Hardware

Design and Verification Methods, pages 20–34. Springer-Verlag, 2005.

[HS09] W. Hunt and S. Swords. Centaur technology media unit verification. In
Proceedings of the 21st International Conference on Computer Aided

Verification, pages 353–367. Springer-Verlag, 2009.

[IEE94] IEEE. IEEE standard VHDL language reference manual: ANSI/IEEE
std 1076-1993. Technical report, 1994.

[Int10] Intel Corp. Intel R© CoreTM i7-900 desktop processor extreme
edition series and Intel R© CoreTM i7-900 desktop processor series
specification update, January 2010.

[ITR09] ITRS. International Technology Roadmap for Semiconductors, 2009

Edition, chapter Design. 2009.

[JP00] B. Jacobs and E. Poll. A monad for basic Java semantics.
In Proceedings of the 8th International Conference on Algebraic

Methodology and Software Technology. Springer-Verlag, 2000.

[JS93] J. Joyce and C.-J. Seger. Linking BDD-based symbolic evaluation to
interactive theorem-proving. In Proceedings of the 30th international

Design Automation Conference, pages 469–474. ACM, 1993.

[KA00] R. Kaivola and M. Aagaard. Divider circuit verification with model
checking and theorem proving. In Proceedings of the 13th International

Conference on Theorem Proving in Higher Order Logics, pages 338–
355. Springer-Verlag, 2000.

152 Bibliography

[Kal95] S. Kalvala. A formulation of TLA in Isabelle. In Higher Order Logic

Theorem Proving and Its Applications, volume 971 of Lecture Notes in

Computer Science, pages 214–228. 1995.

[Kal96] M. Kaltenbach. Interactive verification exploiting program design

knowledge: a model-checker for UNITY. PhD thesis, 1996.

[KJS+02] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani. A network on chip architecture and
design methodology. In Proceedings. IEEE Computer Society Annual

Symposium on VLSI. IEEE Computer Society Press, 2002.

[KL93] R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits
and beyond. In Proceedings of the 5th International Conference on

Computer Aided Verification, pages 166–179. Springer-Verlag, 1993.

[Klo95] C. Kloos. Formal Semantics for VHDL. Kluwer Academic Publishers,
1995.

[KM02] S. Krstic and J. Matthews. Verifying BDD algorithms through
monadic interpretation. In Verification, Model Checking, and Abstract

Interpretation, volume 2294 of Lecture Notes in Computer Science,
pages 317–320. Springer Berlin / Heidelberg, 2002.

[KMN+00] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 19:1523–1543, 2000.

[KSM96] M. Kaufmann and J. Strother Moore. ACL2: an industrial strength
version of Nqthm. Proceedings of the Eleventh Annual Conference on

Computer Assurance, pages 23–34, Jun 1996.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3):872–923, 1994.

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and Tools

for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., 2002.

Bibliography 153

[L9̊4] T. Långbacka. A HOL formalisation of the temporal logic of actions.
In Higher Order Logic Theorem Proving and Its Applications, volume
859 of Lecture Notes in Computer Science, pages 332–345. 1994.

[Mat00] J. Matthews. Algebraic Specification and Verification of Processor

Microarchitectures. PhD thesis, 2000.

[MCL98] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification
in Hawk. In Proceedings of the 1998 International Conference on

Computer Languages. IEEE Computer Society, 1998.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[Mil93] R. Milner. Logic and Algebra of Specification, chapter The polyadic
pi-calculus: a tutorial, pages 203–246. Springer-Verlag, 1993.

[Mil99] R. Milner. Communicating and mobile systems: the π-calculus.
Cambridge University Press, 1999.

[ML99] J. Matthews and J. Launchbury. Elementary microarchitecture algebra.
In Proceedings of the 11th International Conference on Computer

Aided Verification, pages 288–300. Springer-Verlag, 1999.

[MN95] Olaf Müller and Tobias Nipkow. Combining model checking and
deduction for I/O-automata. In Proceedings of the First International

Workshop on Tools and Algorithms for Construction and Analysis of

Systems, pages 1–16. Springer-Verlag, 1995.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings

of the Fourth Annual Symposium on Logic in computer science, pages
14–23. IEEE Press, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Information and

Computation, 93:55–92, 1991.

[Moo65] G. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, April 1965.

154 Bibliography

[MRH+01] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and
W. Rosenstiehl. The simulation semantics of SystemC. In Proceedings

of the conference on Design, automation and test in Europe, pages 64–
70. IEEE Press, 2001.

[MW97] William McCune and Larry Wos. Otter. Journal of Automated

Reasoning, 18(2):211–220, 1997.

[Nik04] R. Nikhil. Bluespec SystemVerilog: efficient, correct RTL from high
level specifications. In Proceedings of the Second ACM and IEEE

International Conference on Formal Methods and Models for Co-

Design. IEEE Press, 2004.

[NWP02] T. Nipkow, M. Wenzel, and L. Paulson. Isabelle/HOL: a proof assistant

for higher-order logic. Springer-Verlag, 2002.

[Obe99] S. Oberman. Floating point division and square root algorithms and
implementation in the AMD-K7 microprocessor. In Proceedings of

the 14th IEEE Symposium on Computer Arithmetic, page 106. IEEE
Computer Society, 1999.

[OGS08] B. O’Sullivan, J. Goerzen, and . Stewart. Real World Haskell. O’Reilly
Media, Inc., 2008.

[ORR+96] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS:
Combining specification, proof checking, and model checking. In
Computer Aided Verification, volume 1102 of Lecture Notes in

Computer Science, pages 411–414. Springer Berlin / Heidelberg, 1996.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification
system. In Proceedings of the 11th International Conference on

Automated Deduction, pages 748–752. Springer-Verlag, 1992.

[OSRSC01] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. PVS language
reference. Technical report, SRI International, 2001.

[Owr08] S. Owre. PVS 3.2 release notes: grind-with-ext and reduce-
with-ext. http://pvs.csl.sri.com/pvs-release-notes/

pvs-release-notes_4.html#SEC37, 2008.

http://pvs.csl.sri.com/pvs-release-notes/pvs-release-notes_4.html#SEC37
http://pvs.csl.sri.com/pvs-release-notes/pvs-release-notes_4.html#SEC37

Bibliography 155

[OZGS99] J. O’Leary, X. Zhao, R. Gerth, and C.-J. Seger. Formally verifying
IEEE compliance of floating-point hardware. Intel Technology Journal,
(Q1):10, February 1999.

[Par00] A. Parash. Formal verification of an MPEG decoder chip - a case study
in the industrial use of formal methods. In Proceedings of the Workshop

on Advances in Verification, 2000.

[Pau00] L. Paulson. Mechanizing UNITY in Isabelle. ACM Transactions on

Computational Logic, 1:3–32, July 2000.

[Pet81] J. Peterson. Myths about the mutual exclusion problem. Information

Processing Letters, 12(3):115–116, 1981.

[Pie02] B. Pierce. Types and programming languages. MIT Press, 2002.

[PJGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 295–308. ACM, 1996.

[PTC+00] V. Pisini, S. Tahar, P. Curzon, O. Ait-Mohamed, and X. Song. Formal
hardware verification by integrating HOL and MDG. In Proceedings of

the 10th Great Lakes Symposium on VLSI, pages 23–28. ACM, 2000.

[Ras96] O. Rasmussen. An embedding of Ruby in Isabelle. In Proceedings

of the 13th International Conference on Automated Deduction, pages
186–200. Springer-Verlag, 1996.

[RF00] D. Russinoff and A. Flatau. RTL verification: a floating-point
multiplier. pages 201–231, 2000.

[RL11] D. Richards and D. Lester. Source code for primitive and monadic
embeddings of BSV in PVS and SAL. https://sourceforge.net/

projects/ar4bluespec, 2011.

[Rod10] Rodin. Rodin project homepage. http://rodin.cs.ncl.ac.uk/

index.htm, 2010.

[RSS95] S. Rajan, N. Shankar, and M. Srivas. An integration of model checking
with automated proof checking. In Proceedings of the 7th International

https://sourceforge.net/projects/ar4bluespec
https://sourceforge.net/projects/ar4bluespec
 http://rodin.cs.ncl.ac.uk/index.htm
 http://rodin.cs.ncl.ac.uk/index.htm

156 Bibliography

Conference on Computer Aided Verification, pages 84–97. Springer-
Verlag, 1995.

[Rus00a] J. Rushby. From refutation to verification. In Proceedings of the

FIP TC6 WG6.1 Joint International Conference on Formal Description

Techniques for Distributed Systems and Communication Protocols

(FORTE XIII) and Protocol Specification, Testing and Verification

(PSTV XX). Kluwer, B.V., 2000.

[Rus00b] D. Russinoff. A case study in fomal verification of register-transfer
logic with ACL2: The floating point adder of the AMD Athlon
processor. In Proceedings of the Third International Conference on

Formal Methods in Computer-Aided Design, pages 3–36. Springer-
Verlag, 2000.

[SB07] C. Sprenger and D. Basin. A monad-based modeling and verification
toolbox with application to security protocols. In Theorem Proving

in Higher Order Logics, volume 4732 of Lecture Notes in Computer

Science, pages 302–318. Springer Berlin / Heidelberg, 2007.

[SB08] J. Schmaltz and D. Borrione. A functional formalization of on chip
communications. Formal Aspects of Computing, 20:241–258, May
2008.

[Seg93] C. Seger. VOSS - a formal hardware verification system user’s guide.
Technical report, 1993.

[She90] M. Sheeran. Describing butterfly networks in Ruby. In Proceedings

of the 1989 Glasgow Workshop on Functional Programming. Springer-
Verlag, 1990.

[Sim07] R. Siminiceanu. Model checking in SAL. In LaRC PVS Class. National
Institute of Aerospace, November 2007.

[SJO+05] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C. Barrett,
and D. Syme. An industrially effective environment for formal
hardware verification. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 24(9):1381–1405, September 2005.

Bibliography 157

[SN94] K. Stroetmann and C. Nielsen, editors. A Guide to SEDUCT. Siemens
AG, 1994.

[SORSC01] N. Shankar, S. Owre, J. Rushby, and D. Stringer-Calvert. PVS prover
guide. Technical report, SRI International, 2001.

[SR97] R. Sharp and O. Rasmussen. The T-Ruby design system. Formal

Methods in System Design, 11:239–264, 1997.

[SS99] H. Saı̈di and N. Shankar. Abstract and model check while you prove. In
Proceedings of the 11th International Conference on Computer Aided

Verification, pages 443–454. Springer-Verlag, 1999.

[SS08] G. Singh and S. Shukla. Verifying compiler based refinement of
Bluespec specifications using the SPIN model checker. In Proceedings

of the 15th International Workshop on Model Checking Software, pages
250–269. Springer-Verlag, 2008.

[SSA01] J. Stoy, X. Shen, and Arvind. Proofs of correctness of cache-
coherence protocols. In Proceedings of the International Symposium

of Formal Methods Europe on Formal Methods for Increasing Software

Productivity. Springer-Verlag, 2001.

[Sta89] G. Stalmarck. A system for determining propositional logic theorems by

applying values and rules to triplets that are generated from a formula.
Swedish Patent No. 467 076, 1989.

[Tam97] T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204,
1997.

[TM96] D. Thomas and P. Moorby. The Verilog Hardware Description

Language. Kluwer Academic Publishers, 1996.

[Wad92a] P. Wadler. Comprehending Monads. Mathematical Structures in

Computer Science, 2:61–78, 1992.

[Wad92b] P. Wadler. The essence of functional programming. In Proceedings

of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 1–14. ACM, 1992.

158 Bibliography

[Wik10] Event-B Wiki. Event-B D23 modularisation plug-in. http://wiki.

event-b.org/index.php/D23_Modularisation_Plug-in, 2010.

[WNRD04] W. Wong, R. Nikhil, D. Rosenband, and N. Dave. High-level synthesis:
an essential ingredient for designing complex ASICs. In Proceedings

of the 2004 IEEE/ACM International Conference on Computer-Aided

Design, pages 775–782. IEEE Computer Society, 2004.

[YML99] Y Yu, P. Manolios, and L. Lamport. Model checking TLA+
specifications. In Proceedings of the 10th IFIP WG 10.5 Advanced

Research Working Conference on Correct Hardware Design and

Verification Methods, pages 54–66. Springer-Verlag, 1999.

http://wiki.event-b.org/index.php/D23_Modularisation_Plug-in
http://wiki.event-b.org/index.php/D23_Modularisation_Plug-in

	Abstract
	Declaration
	Copyright
	Acknowledgments
	Introduction
	An Explosion of Complexity
	Modern Hardware Design
	The IC Design Flow
	Functional Verification

	Formal Methods
	Verification by Mathematical Proof
	Clean Abstractions and Semantic Elegance

	Synopsis
	Publications and Source Code

	Verifying a Network-on-Chip
	Networks-on-Chip
	SpiNNaker: A Spiking Neural Network Architecture
	Fault Tolerance and Emergency Routing

	Concurrent Haskell
	Specifying a Network-on-Chip
	Packets and Physical Links
	IP Blocks
	Arbiters
	Routers

	Specifying the SpiNNaker NoC
	Packets and Inter-Chip Links
	ARM Cores
	NoC Arbiters and Routers

	Verifying the SpiNNaker NoC
	Related Work
	Summary

	Bluespec SystemVerilog
	Syntax and Semantics
	One-Rule-at-a-Time Semantics
	Static Elaboration and Staging

	Peterson's Algorithm
	Arbiter Control Circuit
	Summary

	Automated Reasoning for Bluespec SystemVerilog
	Automated Reasoning
	Logics and Decidability
	Propositional, First Order and Higher Order Logic
	Temporal Logics
	Kripke Structures and Computation Trees
	Computation Tree Logic
	Linear Temporal Logic

	Automatic Proof Tools
	Automated Reasoning in the IC Design Flow
	Functional Verification of ESL Specifications
	How to Verify a State Machine
	Tools for Scalable State Machine Verification

	Summary

	Embedding Bluespec SystemVerilog in the PVS Logic
	Embedding BSV in Logic
	Embedding the State of a BSV Module
	Embedding the Semantics of a BSV Module
	Embedding Rules: A Primitive Approach
	Embedding Rules: A Monadic Approach
	Extensional Equivalence

	A Primer on Monads in PVS
	A Monadic Representation of BSV Methods
	Implicit Conditions
	Embedding the Methods of the mkReg Module
	Embedding the Methods of the mkFIFO1 Module

	Monad Connectors for the BSV Monad
	Monad Transformers
	Composing Monads to form Rules
	Experimental Results
	Shallow, Deep and Reflective Embedding
	Summary

	Verifying BSV Designs with the PVS Theorem Prover
	Model Checking in PVS
	Limitations of the PVS Model Checker

	Temporal Theorems for BSV Module Instances
	Theorems for Peterson's Protocol
	Theorems for a Round-Robin Arbiter

	Model Checking BSV Embeddings
	A Worked Example of Proof with Expansion
	A Worked Example of Proof with Rewriting

	Proof Strategies
	Experimental Results
	Proof with Expansion versus Proof with Rewriting

	Summary

	Verifying BSV Designs with the Symbolic Analysis Laboratory
	The Symbolic Analysis Laboratory
	Model Checking with SAL
	Embedding BSV in the SAL Language
	Primitive Embedding of Rules
	Monadic Embedding of Rules

	Verifying BSV-to-SAL Translation
	Verifying Peterson's Protocol
	Verifying an Arbiter Control Circuit
	Summary

	Related Work
	Monads for Specification and Proof
	Guarded Action Languages
	Bluespec SystemVerilog
	TLA+
	Unity
	Event-B
	Languages for Model Checking

	Functional Hardware Languages
	Behavioural Languages
	Structural Languages
	Synthesis from Logic

	Automated Reasoning for Ad Hoc Languages
	Forte
	RuleBase
	DE2
	AMD

	Summary

	Conclusion
	Concurrent Haskell
	Bluespec SystemVerilog
	Topics for Further Work

	Final Thoughts

	Bibliography

