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Abstract

LOW OVERHEAD DYNAMIC BINARY TRANSLATION FOR ARM

Bernard Amanieu d’Antras

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016

Driven by Moore’s Law, many computer architectures — ARM, x86, MIPS,
PowerPC, SPARC — have evolved from 32-bit to 64-bit. To support existing ap-
plications, these have all kept support for a 32-bit compatibility mode. How-
ever, this comes at a cost in hardware complexity, power consumption and
development time.

Dynamic binary translation — recompiling binaries into the new instruction
set at runtime — can be used instead of specific hardware for this purpose.
While this approach has previously been used to assist architecture transition,
these translators have all traded-off performance and transparency, a measure
of how accurately they emulate the 32-bit environment.

This thesis addresses ARM’s transition from AArch32 to AArch64 through
MAMBO-X64, a dynamic binary translator developed to support this transi-
tion. A range of novel optimizations were devised to improve translation per-
formance while maintaining strict transparency. This follows a common theme
of exploiting existing hardware features such as hardware return prediction,
virtual memory and virtualization extensions to offset translation overheads.
HyperMAMBO-X64 — a variant of MAMBO-X64 integrated in a hypervisor —
was also developed to support system-level translation while remaining trans-
parent to guest operating systems.

Results demonstrate that the cost of binary translation is reduced, deliver-
ing performance competitive with the manufacturer’s hardware. Performance
in several benchmarks even exceeds that from the integrated compatibility mode.
Thus MAMBO-X64 not only provides a means for architectural upgrade, but
also an alternative to the expense of the legacy support currently employed.
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Chapter 1

Introduction

Computer architectures have always evolved following hardware and software

technology trends over time, driven by Moore’s Law [Moo65]. This evolution

generally takes the form of adding new instructions to accelerate certain algo-

rithms or implementing architectural features such as virtual memory. How-

ever, much like biological evolution, this process results in many features which

“seemed like a good idea at the time” but turned out to be poorly adapted to a

later software ecosystem.

For example, in early microprocessors (c. 1970) it was common to support

Binary Coded Decimal (BCD) operations, something which is rarely wanted

directly now. Such operations could be abandoned, but this renders old code

potentially inoperable and is generally unacceptable. Thus they must be sup-

ported in some way.

Two major ‘mainstream’ processor architectures — Intel x86 and ARM —

illustrate two contrasting approaches to this: Intel maintains full backwards

compatibility with all instructions since the 8086 by emulating legacy instruc-

tions using low-level microcode programmes embedded in the processor. ARM

has, instead, opted to support legacy instructions directly in hardware, while

15



simultaneously deprecating and removing old features (such as 26-bit address-

ing, Jazelle and ThumbEE) from newer versions of the ARM architecture. While

removing features was acceptable when ARM processors were primarily used

in embedded systems with tightly bound hardware and software, this is no

longer the case now that ARM is a widespread, general-purpose architecture.

These considerations extend to architecture transitions: current computer

architectures — ARM, MIPS, PowerPC, SPARC, x86 — have all evolved from a

32-bit architecture to a 64-bit one. Again, x86 and ARM take two contrasting

approaches to this: on one hand x86-64 provides a mostly straightforward

extension of the 32-bit instruction set to 64 bits, carrying over most of the

legacy 8086 instructions to the new execution mode. On the other hand ARM

exploited this opportunity to discard much of the ‘baggage’ it had accumulated

over seven versions and many variants of the architecture, thus producing a

‘clean’ instruction set which, in turn, potentially allows for simpler and more

efficient processor designs.

1.1 Binary translation

The desire to simplify and clean up the hardware architecture and the require-

ment to support software making use of legacy features can be bridged through

the use of binary translation.

Binary translation is a technology which allows a program to be translated

and modified transparently at the machine code level. It has numerous appli-

cations, such as dynamic instrumentation [MCGP07, SN05], program analy-

sis [SIN11, ZKR+11], virtualization [AA06, Wat08] and instruction set transla-

tion [Bel05, DGB+03]. A binary translator does not need access to the source

16



code of a program, which makes it particularly useful in cases where source

code is not available or is not portable enough to be simply recompiled.

Binary translation has previously been used successfully to assist archi-

tecture transitions: the best known example is Rosetta [App06], which was

used by Apple to transit their platform from PowerPC to x86, based on tech-

nology originally developed at the University of Manchester [Tra08]. IA-32

EL [BDE+03] and HP Aries [ZT00] both supported the transition to the IA-64

architecture from x86 and PA-RISC respectively. FX!32 [HH97, CHH+98] was

similarly used to help migrate x86 applications to the Alpha architecture. Bi-

nary translation has also been used to allow execution of code from existing

instruction sets on a Very Large Instruction Word (VLIW) architecture, such

as Nvidia Denver (ARM on VLIW) [BBTV15] and Transmeta Crusoe (x86 on

VLIW) [DGB+03].

While translation may be attempted statically (i.e. off-line by generating

a new, translated binary) there has been a trend back to self-modifying code

— particularly the use of Just-In-Time (JIT) compilers — which renders this

process inefficacious. Instead, dynamic binary translation — at runtime — must

be used for complete compatibility.

Binary translation typically suffers from some performance overhead com-

pared to recompiling an application from its source code. The sources of over-

head can be broadly categorized as follows:

Architectural mismatch While, fundamentally, the binary translation process

is quite straightforward — an ADD instruction in the source architecture

can be translated into an equivalent ADD instruction in the host archi-

tecture — complications can arise when the exact semantics of these

instructions differ, such as the exact set of condition flags modified by

such an ADD instruction (e.g. carry flag, overflow flag). While a source
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compiler only needs to translate the semantics of the source code and

is thus free to discard most of these flags, e.g. only using one of them

for a conditional branch, a binary translator works at a lower level and

must emulate all aspects of the host architecture accurately. This type of

overhead generally comes in the form of additional instructions required

to simulate all the effects of the source instruction, such as calculating

the correct values of all the condition flags.

Environment overhead In addition to the above, generating code to work

within the constraints of a binary translation environment brings its own

challenges. For example, processor registers from the source architec-

ture need to be mapped to those of the host architecture and, if the latter

resource is insufficient, source register values should be spilled to mem-

ory. Additionally, any operations involving the program counter, such

as branches, require special handling since the translated code may be

located at a different address from the source instructions.

Translation overhead Finally, for dynamic translators, the process of transla-

tion itself occupies a portion of the execution time. Unlike the previous

two sources of overhead, which are evenly distributed over the runtime

of an application, translation overhead mainly occurs during application

startup when no code has been translated yet. This overhead becomes in-

significant for long-running applications as it is amortized over the entire

runtime of the application, providing the translated code can be retained.
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1.2 Contributions

There has been incremental development of binary translation over the past

few decades, however the overheads outlined above still imply that the trans-

lated code runs slower than it could with hardware support.

In particular, while existing research has developed optimizations to deal

with the overheads of binary translation, many of these trade off transparency

in favor of performance. In other words, such optimizations make assump-

tions about the behavior of a program (e.g. “the program never accesses invalid

memory addresses” or “condition flags do not need to be preserved across func-

tion calls”), and cause the translated program to behave incorrectly if these

assumptions are violated.

This thesis enables the elimination of hardware support for a legacy instruc-

tion set in new processors by describing how to create dynamic binary transla-

tors which rival the performance of direct hardware support. This is achieved

through a series of novel optimizations which address various sources of per-

formance overhead involved in binary translation, all while maintaining the

transparency of the translation.

The focus of this thesis is on the ARM’s transition to a 64-bit architecture.

The ARMv8 architecture introduced AArch64, a 64-bit execution mode with a

new instruction set, in addition to the existing AArch32 32-bit instruction set.

Due to the need to support the large number of existing AArch32 applications,

current hardware implementations of ARMv8 processors support both AArch32

and AArch64. However, this situation is problematic since such support comes

at a cost in hardware complexity, power usage and development time.

MAMBO-X64, a dynamic binary translator which executes 32-bit ARM bi-

naries using only the AArch64 instruction set, was developed as a solution to

this problem. It opens a path for future processors to drop hardware support
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for the legacy 32-bit instruction set while retaining the ability to run AArch32

applications at realistic speeds. MAMBO-X64 is a mature piece of technology

which is able to run complex Linux and Android applications and has already

been licensed to at least one company.

The performance of MAMBO-X64 is competitive with that of the hardware

support in current ARMv8 processors: 32-bit builds of many benchmarks —

from suites such as SPEC CPU2006 and PARSEC — run faster under MAMBO-

X64 than natively on the processor. This is attributable to a number of new

techniques which have been developed to address the worst remaining ineffi-

ciencies of pre-existing translators.

It was reported some time ago that indirect branch handling was the

biggest source of performance overhead in a binary translator [KS03, HWH+07],

a problem which still had remained largely unsolved. An indirect branch is a

branch instruction with a target which is only known at execution time and

which can vary from one execution to the next, a common example being a

subroutine return. Unlike direct branches, which have a known target at trans-

lation time, an indirect branch requires translating a source program counter

address to a translated program counter address every time the branch is exe-

cuted. This translation can impose a serious runtime penalty if it is not handled

efficiently.

Chapter 3 describes three novel techniques for translating such branches.

The first, hardware-assisted function returns, uses a software return address

stack to predict the targets of function returns, making use of several novel

optimizations while also exploiting hardware return address prediction. The

second, branch table inference, is an algorithm for detecting and translating

branch tables into equivalent structures for the host architecture. The remain-

ing indirect branches are handled using a fast atomic hash table. This translates
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indirect branches using a single shared hash table which avoids expensive syn-

chronization in performance-critical lookup code. This chapter is based on the

paper Optimizing Indirect Branches in Dynamic Binary Translators [dGGL16]

which was published in Transactions on Architecture and Code Optimization.

Chapter 4 describes the other new optimization principles used by MAMBO-

X64 to achieve high performance without sacrificing accuracy. The most signif-

icant one, after indirect branch optimizations, is ReTrace, the trace generation

algorithm used by MAMBO-X64 which improves the layout of translated code

by further exploiting hardware return address prediction. MAMBO-X64 also

supports a wide range of optimizations, including an efficient system for map-

ping AArch32 floating-point registers to AArch64 registers dynamically and a

speculative optimization to improve the performance of certain ARM address-

ing modes.

Supporting legacy code through binary translation requires more than just

translating one instruction set to another: software is designed to work within

an environment, and the software-visible interfaces of this environment must

be translated as well. In the case of a user-level binary translator like MAMBO-

X64, this consists primarily of OS interfaces such as system calls and signals.

While system call translation is fairly straightforward, signals pose particular

challenges since some can occur at arbitrary points in the execution of a pro-

gram. Section 4.3 describes how MAMBO-X64 supports accurate delivery of

synchronous and asynchronous OS signals without sacrificing performance.

Dynamic binary translation generally comes in one of two forms: application-

level translators, which translate a single user mode process on top of a native

operating system, and system-level translators which translate an entire oper-

ating system and all its processes. Application-level translators can have good
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performance but are not totally transparent; system-level translators may be

100 % compatible but performance typically suffers.

Chapter 5 presents HyperMAMBO-X64, which uses a new approach that

gets the best of both worlds, being able to run the translator as an application

under the hypervisor but still react to the behavior of guest operating systems.

It works with complete transparency with regards to the virtualized system

whilst delivering performance close to that provided by hardware execution.

A key factor in the low overhead of HyperMAMBO-X64 is its deep inte-

gration with the virtualization and memory management features of ARMv8.

These are exploited to support the caching of translations across multiple ad-

dress spaces while ensuring that translated code remains consistent with the

source instructions it is based on. These attributes are achieved without sacri-

ficing either performance or accuracy.

Together this set of contributions has accelerated MAMBO-X64 such that

it delivers execution performance rivaling that of a hardware implementation.

This includes the translation time, which means that binary translation is not

only feasible but also becomes an attractive option for future backward com-

patibility and will allow silicon companies such as ARM to reduce their devel-

opment and verification overheads in future silicon implementations.
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Chapter 2

Dynamic Binary Translation

A static binary translator translates the entirety of the program object code

ahead of time. This is convenient because it may take time for optimization

without impacting runtime. However such translators are not always practi-

cal in the general case due to the code-discovery problem [HM80]: since it is

not always possible to determine which memory locations contain instructions

as opposed to inline or pre-loaded data, all addresses need to be treated as

potential branch targets to ensure full transparency. In modern systems this

problem is worse in that not all the code that will be executed is present ahead

of time, such as when a program imports shared libraries or generates new in-

structions using a Just-In-Time compiler. A Dynamic Binary Translator (DBT)

translates code only as it is about to be executed, which avoids these issues but

comes at a cost in overall runtime because code discovery and translation time

is included.

A significant disadvantage of dynamic binary translators is that, while they

are able to achieve good performance when executing translated code, they

suffer from poor startup times because of the need to translate new code when

an application begins. This has led to new types of DBTs which integrate
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some aspects of static translation to accelerate application startup times. This

comes either in the form of ahead-of-time translation which generates trans-

lated code by pre-processing an application binary, or in the form of persis-

tent code caches [BK08, RCCS07] which retain translated code across multi-

ple invocations of an application. Both of these methods provide a pre-existing

base of translated code which is available immediately on application startup,

while dynamic translation is still available to handle any remaining untrans-

lated code.

2.1 Code caches

Translating a block of code is more efficient than translating single instructions

in many ways, hence DBTs usually translate sequences of instructions as blocks,

called code fragments. Fragments can have many forms, depending on the de-

sign of the DBT, the most common of which is the basic block. A basic block

corresponds to a linear sequence of source instructions with a single entry point

and a single exit point. While this approach has the advantage of simplicity, it

can suffer from poor performance due to the need for branches between basic

blocks. Many DBTs therefore also use of some form of superblocks which still

have a single entry point but can have multiple exits. Larger fragments also al-

low a DBT more opportunities for optimizations such as dead code elimination

and constant propagation.

Since some code, such as loop and function bodies, is likely to be executed

many times, it is advantageous to preserve translated fragments so that they

can be used again, instead of re-translating each time they are encountered.

Rather than modifying the program code, translated fragments are stored in a

code cache, separate from the original instructions.
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A naïve DBT would schedule the execution of each fragment as it is needed

by jumping to the start of the fragment and having the fragment return control

to the DBT once it has finished running. A fragment typically ends when the

translation has encountered a branch instruction, at which point the DBT must

select the next fragment to execute. This approach is impractical because of

the high overhead of context switching between fragments and the DBT, and

the frequent changing of fragments in typical programs1.

Instead, a branch in one fragment can be linked to a different fragment by

having the translated branch transfer control to the target fragment directly.

Because source and translated fragments are not, necessarily, identical in size,

the address from the source cannot be used directly: some address translation

is necessary.

For direct branches, where the branch target is a constant encoded in the in-

struction itself, this translation can be performed statically at translation time,

resulting in a single branch instruction in the translated code that points to the

fragment for the target address. If a fragment has not yet been translated for

the branch target, the translated branch can point to an exit stub, which returns

control to the DBT while passing the current program counter value so that the

DBT knows what to execute next. When the target fragment is translated, any

branch instructions in other fragments that pointed to the exit stub are patched

and redirected to point to the newly translated fragment.

Indirect branches need to be handled differently because their target is only

known at execution time and can vary from one execution to the next. This

requires its own dynamic translation and imposes a serious runtime penalty.

Translation is typically implemented by using a hashed translation table to

find the translated fragment for a given target address at runtime. While this

1A typical basic block fragment has fewer than a dozen instructions.
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Figure 2.1: Direct and indirect branch handling in a DBT.

approach solves the translation problem, it is still many times slower than a

native indirect branch, which only consists of a single instruction. It also inter-

acts poorly with hardware branch prediction mechanisms that are optimized

for native code, often resulting in unnecessary branch mispredictions.

Figure 2.1 shows how fragment in a code cache are linked through direct

and indirect branches. While direct branches can be linked directly, every time

an indirect branch is executed in a DBT, a Source Program Counter (SPC) value

must be mapped to a Translated Program Counter (TPC) value, which is then

branched to. This figure illustrates how the translation of an indirect branch

can be much more costly than that of a direct branch.
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2.2 Multi-threading

Multi-threaded applications pose additional challenges to a DBT. In particular,

threads may share the source object code and different threads could ‘collide’ in

deciding to perform translations. These concerns are particularly relevant for

the design of the code cache, for which there exist two major models: thread-

private code caches and thread-shared code caches.

Thread-private code caches This model is the simplest to implement since

it involves each thread having a separate code cache. It also enables several

optimizations that exploit the fact that a code cache is only used by a single

thread, such as self-modifying code or embedding pointers to thread-local data

directly in the translated code. The main disadvantage of thread-private code

caches is that multi-threaded applications suffer from increased memory usage

and high overhead on thread creation to fill the code cache, particularly for

server applications which may create hundreds of threads. Additionally, the

need for synchronization is not completely eliminated since it is still necessary

to handle cases where one thread needs to invalidate a fragment in the code

cache of another thread.

Thread-shared code caches While this model is more complicated to imple-

ment, researchers have demonstrated [BKGB06, HLC09] that it scales signifi-

cantly better than thread-private code caches on multi-threaded applications.

In this model, all threads share the same code cache, which means that trans-

lated code cannot ‘hard-code’ pointers to thread-local data and must use some

form of indirection instead. Executing code in such a code cache does not re-

quire any synchronization and code translation can be performed concurrently

in multiple threads. Synchronization is only required when adding or remov-
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ing a fragment from the code cache, which is a rare operation compared to the

execution of translated code.

A key issue with thread-shared code caches is the handling of fragment

deletion: a fragment cannot be deleted from the code cache immediately since

there may be other threads concurrently executing that fragment. Instead, the

fragment must first be unlinked, which removes all branch instructions pointing

to the fragment and ensures that it cannot be re-entered. The fragment can

then be fully deleted once all other threads are known to have exited the code

cache at least once since the fragment was unlinked, as this indicates that other

threads can no longer be executing the deleted fragment.

2.3 Environment

DBTs can generally be split into two categories, shown in Figure 2.2, depending

on the type of environment that they inhabit:

Application-level translators These translators work at the level of a single

user-mode process, running an application compiled for a guest ISA on top of

an operating system for the host ISA. In addition to translating all the instruc-

tions executed by the user-mode process, such a DBT also needs to translate

the operating system Application Binary Interface (ABI), which can have signif-

icant variations from one ISA to another. This is usually done by intercepting

all interactions between the translated application and the host OS, such as sys-

tem calls and signals, and translating them from the format of the guest ABI

to that of the host ABI. Examples of DBTs in this category are QEMU [Bel05],

Aries [ZT00], IA-32 EL [BDE+03], FX!32 [HH97, CHH+98], Rosetta [App06]

and StarDBT [WHK+07].
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Figure 2.2: Overview of application-level and system-level translators.
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System-level translators These translators work at the level of a complete

system and, effectively, simulate a virtual machine running on a foreign archi-

tecture. These systems tend to be more complex than application-level trans-

lators because they need to be able to translate a larger portion of the guest

instruction set. Whereas an application-level translator only needs to support

user-mode, unprivileged instructions, a system-level translator must support

the full guest ISA including all privileged instructions and related operations.

An important part of this is efficiently simulating the guest ISA’s virtual memory

architecture, which involves translating page tables from one format to another

and correctly handling page table modifications. Examples of DBTs in this cat-

egory are MagiXen [CMR07], Transitive QuickTransit [Tra08], QEMU [Bel05],

Transmeta’s Code Morphing Software (CMS) [DGB+03] and Nvidia’s Project

Denver [BBTV15].

While the first part of this thesis focuses on application-level translators,

the topic of system-level translators will be revisited in Chapter 5.

2.4 Transparency

Transparency is a measure of how accurately a DBT emulates a target envi-

ronment. As a general rule, the more transparent a DBT is, the more details

of the target environment it emulates which, in turn, allows a wider range

of applications to function under the DBT successfully. Conversely, increased

transparency also comes at a cost in performance, since additional time needs

to be spent emulating these details.

A perfectly transparent DBT is functionally indistinguishable from the tar-

get environment in every way from the point of view of the translated appli-

cation, down to simulating details such as instruction timings. Such a level of
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transparency comes at a large performance cost, typically at least an order of

magnitude slower than the simpler behavioral transparency, which is an unac-

ceptably high cost in most situations.

A lesser form of transparency which is more commonly used by DBTs is

behavioral transparency, which involves only supporting features defined by

the ABI of the target environment. A DBT can exploit this by assuming that

applications never perform any operations which the ABI considers to have

undefined behavior. Examples of undefined behaviors in ABIs include using

undefined instruction encodings, writing data below the stack pointer and not

flushing the instruction cache after modifying instructions.

Despite this relative freedom, transparency requirements still have subtle

implications for the code generated by a DBT, for example:

• An application’s memory, including its code, should not be modified by

a DBT. This is necessary to ensure that applications which inspect their

own code memory see the original instructions, hence the use of a code

cache by DBTs instead of modifying application memory. This restriction

is further emphasized by the need to support applications that perform

self-modification of their own code.

• Faulting memory accesses must be precisely emulated since they can be

caught by an application fault handler which has the ability to inspect the

full processor register state at the fault point. Some applications make

use of this information to handle faults themselves, after which they re-

sume execution with a modified register state. Supporting this means

that a DBT must be able to recover the original values of all registers

every time a potentially faulting instruction is executed.
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• Even if memory accesses do not cause a fault, they may have side effects

if their addresses refer to memory-mapped I/O regions. This means that

a DBT cannot consider loads and stores to be free of side effects, which

limits its ability to reorder, merge or elide such instructions.

2.5 MAMBO-X64

ARM [Sea01] is a general purpose architecture widely used in both embedded

systems and consumer devices such as phones, tablets and TVs. While ARM

has traditionally been a 32-bit architecture, the ARMv8 version of the archi-

tecture [Gri11] introduced a new 64-bit execution mode and instruction set,

called AArch64. This 64-bit ISA has double the number of general-purpose

registers as the previous architecture and extends them to 64 bits, while also

increasing the size of the floating-point/SIMD register bank.

One of the key factors driving the design of AArch64 is the desire to return

to the RISC philosophy by cleaning up all the “clutter” that has accumulated

in the 32-bit ARM architecture through its various revisions, which have led,

among other things, to a convoluted and variable-width instruction encoding.

The new instruction set is therefore a better fit for ARM’s overall strategy by

enabling smaller and lower-power core implementations.

While AArch64 has many benefits, there is a large ecosystem of existing 32-

bit applications which need to be able to run on ARMv8 systems. The current

generation of ARMv8 processors is capable of running legacy 32-bit ARM code

directly in AArch32 mode, but maintaining this support comes at a cost:

• The AArch32 execution mode supports two instruction sets: a fixed-

width 32-bit instruction set (ARM) and a variable-length 16/32-bit in-

struction set (Thumb-2). This increases the complexity and power usage
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of the instruction decode unit compared to supporting just a single, fixed-

width instruction set. AArch64 instructions are always 32 bits long and

of regular format, which allows a simpler decoder design. On typical

ARM processors, the instruction decode unit alone can account for over

10 % of the overall CPU power consumption [NVI13].

• AArch32 contains legacy instructions that have not been carried forward

to AArch64. Many of these instructions are intended for specialized DSP

workloads and rarely appear in compiler-generated code. Supporting

these instructions requires additional complexity in the ALUs.

• Having to support two instruction sets in hardware can more than dou-

ble the cost of hardware verification due to the possible interactions be-

tween instruction sets. This, in turn, increases the development time

of a processor; it also increases the chance of a defect making its way

into released hardware, fixing which may require the creation of a new

processor revision.

MAMBO-X64 is a DBT developed by the author at the University of Manch-

ester which translates AArch32 Linux programs into AArch64 code. It is im-

plemented as a process-level virtual machine: a separate binary translator in-

stance is started for each 32-bit process, while the operating system kernel

and 64-bit processes run natively on the processor. The objective is to support

the running of legacy AArch32 code without the need for specific hardware

support, preferably at speeds competitive with hardware execution. No con-

temporary DBT which achieves a similar goal has been described.

When tested on existing ARMv8 systems which support both AArch32 and

AArch64 in hardware, a 32-bit build of SPEC CPU2006 [Cor] ran on average

1 % faster under MAMBO-X64 compared to running the same 32-bit binary na-
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tively on the processor. Particular benchmarks were also measured to run up

to 38 % faster under MAMBO-X64 than natively, although a few other bench-

marks suffer from a performance degradation of up to 19 %.

MAMBO-X64 is structured as three components, shown in Figure 2.3:

Binary translator The binary translator is an operating system-independent

module which performs the translation of AArch32 instructions into AArch64

code.

System emulator The system emulator handles all interactions with the op-

erating system, such as system calls and signals, and translates them

between the 32-bit and 64-bit Linux ABIs.

Support library The support library provides OS-specific utilities such as mem-

ory management and synchronization primitives to the binary translator

and system emulator.

This arrangement isolates OS-specific code from the binary translator, which

makes it easier to port MAMBO-X64 to other operating systems.

2.5.1 Binary translator

The binary translator component has the same basic structure as a typical DBT:

it works by scanning sequences of AArch32 instructions on demand and con-

verting them into AArch64 code fragments, stored in a thread-shared code

cache. Each fragment is either a single-entry, single-exit basic block or a single-

entry, multiple-exit trace formed by combining multiple basic blocks.

A key focus in the design of MAMBO-X64 was efficient handling of indirect

branches in translated code. For this purpose, three new techniques for trans-

lating indirect branches, each applying to a different class of indirect branch,

have been developed. These techniques are discussed in detail in Chapter 3.
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Figure 2.3: Overview of the different components in MAMBO-X64. The binary
translator translates sequences of instructions from the guest address space
into fragments in the code cache. The system emulator handles system inter-
actions such as system calls and signals, and manages the guest address space.
The code cache also contains various metadata associated with the translated
fragments.
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MAMBO-X64 also leverages a wide range of optimizations to improve the

performance of the translated code. Specific techniques developed during the

author’s research are described in detail in Chapter 4. These optimizations

include:

• An efficient scheme for mapping AArch32 floating-point registers to AArch64

registers dynamically.

• A method for efficiently translating AArch32 load/store addressing modes

into AArch64 by speculatively assuming that address calculations do not

overflow.

• A novel trace compilation algorithm that leverages hardware return ad-

dress prediction to improve performance.

MAMBO-X64 is able to precisely emulate the full AArch32 instruction set,

which includes both the traditional ARM instruction set as well as the newer

Thumb instruction set. The binary translator was extensively tested through

both manually written test suites and randomly generated instruction sequences,

each time ensuring that the tests run identically whether translated or run na-

tively.

2.5.2 System emulator

The system emulator has three main functions: managing the address space of

the translated program, translating system call parameters and handling sig-

nals. MAMBO-X64 takes advantage of the 64-bit address space by allocating a

4 GB ‘private’ address space for the translated application. The program image

is loaded into this address space on startup and all memory accesses performed

by the application are restricted to this address space since the original code
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uses 32-bit memory addresses. This layout, shown in Figure 2.4, isolates the

application from the DBT and ensures that it is impossible for faulty applica-

tions to affect the operation of the DBT.

The Linux system ABI for AArch64 differs from that for AArch32 in several

ways, such as the size and layout of data types used in system calls and the lay-

out of the stack frame when a signal handler is called. MAMBO-X64 therefore

needs to emulate the AArch32 Linux ABI by translating the AArch32 system

calls generated by the translated program into a format that can be handled

by the host kernel. However, Linux exposes a large number of system calls and

is constantly evolving2, which makes it impractical to create and maintain ABI

translation wrappers for each of them. Such wrappers are even more imprac-

tical for multiplexed system calls, such as ioctl, which exposes thousands of

device-specific sub-functions.

This complexity can be avoided by reusing the built-in compatibility layer

in the AArch64 kernel. This layer is used to support running native AArch32

applications and provides system call wrappers which translate 32-bit system

calls into their 64-bit equivalent. MAMBO-X64 intercepts some system calls

and handles them internally, such as those used for virtual memory manage-

ment and signal handling, and forwards the remaining ones to the compatibil-

ity layer in the host kernel.

MAMBO-X64 also intercepts all signals delivered to the translated program

using a master signal handler, which then handles the delivery of the signal to

the application. Signal handling in DBTs is complicated because they can occur

at any point while executing translated code and require a view of the untrans-

lated register state at the interrupted point to be given to the application signal

handler. MAMBO-X64 uses a scheme involving fragment unlinking and signal

2At the time of writing, Linux (version 4.5) has 387 different system calls.
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Figure 2.4: Address space layout of an application running under MAMBO-
X64.
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masking to achieve race-free and efficient signal delivery to the application,

which is described in Section 4.3.

2.6 Summary

This chapter has presented an overview of the various concepts underpinning

binary translation, such as code caches and transparency. It has also presented

MAMBO-X64, the DBT developed by the author, which translates code from

AArch32 to AArch64 with the aim of eliminating the need for AArch32 hard-

ware support in new processors. This is made possible through the various

optimization techniques implemented by MAMBO-X64, which are presented

in the following chapters.
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Chapter 3

Optimizing indirect branches in

dynamic binary translators

In a typical program, indirect branches mainly come from three sources, as

shown in Figure 3.1:

Branch tables Branch tables are an efficient way to branch to many targets

by using an array of code addresses in memory.

Function returns Because a function may be called from many places, func-

tions must use an indirect branch to return to their caller.

Function pointers Function pointers and virtual functions are used to dis-

patch execution to different functions dynamically.

When generated by a compiler, each of these classes has distinctive assem-

bly code signatures which a DBT can detect. This allows the DBT to perform

specialized optimizations depending on the branch type. This chapter presents

three novel techniques for translating indirect branches which handle each type

of indirect branch efficiently.
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caller:
...
BL callee ; Branch to callee and set link register

; to the address of the next instruction
...

callee:
...
BX LR ; Branch to address in link register (return)

(a) Function call and return

CMP R0, #3 ; Compare against limit
BHI default ; Branch to default case if higher
ADR R1, table ; Get base address of the table
LDR PC, [R1, R0, LSL #2] ; Load from (table + index << 2)

; into the program counter

table:
.word case0
.word case1
.word case2
.word case3

(b) Branch table

caller:
...
LDR R0, [R1] ; Load a pointer from [R1]
BLX R0 ; Branch to address in R0 and set link register

; to the address of the next instruction
...

callee:
...
BX LR ; Branch to address in link register (return)

(c) Function pointer call

Figure 3.1: Indirect branch types generated by GCC when compiling for
AArch32.
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The first, hardware-assisted function returns (Section 3.1), uses a stack of

translated return addresses to predict the target of function returns, thus avoid-

ing the need for a hash table lookup. While return address stacks have previ-

ously been used in some DBTs [HK06] to predict function returns, they have

not always resulted in performance improvements due to the increased num-

ber of memory operations and poor interactions with indirect branch predic-

tion hardware. Hardware-assisted function returns are designed to work with

the return address predictor of the host processor, while also including opti-

mizations to eliminate many return address stack operations and handle return

address mispredictions efficiently.

The second, branch table inference (Section 3.2), is a pattern-matching algo-

rithm to detect branch tables during translation and generate a corresponding

table in the code cache. Although ad-hoc branch table detection has been ex-

plored in DBTs [PG10], the proposed inference provides a systematic way of

detecting many variants of branch tables and extracting the bounds of the table

directly from the source instructions instead of guessing it.

A hash table is still necessary to handle the remaining indirect branches

that are not covered by the previously mentioned techniques. However, most

existing hash tables used for indirect branch translation are not designed to

work with multiple threads, and require either duplicating the hash table for

each thread or introducing expensive synchronization mechanisms. This chap-

ter presents fast atomic hash tables (Section 3.3) which take advantage of

cheap 64-bit atomic loads and stores to provide a thread-shared hash table

that matches the performance of single-threaded hash tables.

These techniques were implemented in MAMBO-X64 early in its develop-

ment, which allowed it to reach an average performance overhead of only

10 %. This overhead is measured by running a 32-bit build of SPEC CPU2006
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on an ARMv8 system both natively and under MAMBO-X64, and measuring

their relative performance.

In Section 3.4, these techniques are evaluated on an ARM Cortex-A57 sys-

tem using the SPEC CPU2006 benchmark suite. The results show that the

hardware-assisted function return optimization has the highest impact on per-

formance, with an average overhead reduction of 40 % and up to 90 % on

some benchmarks compared to hash table lookups. Branch table inference

has a significant effect on benchmarks which make frequent use of branch ta-

bles, reducing DBT overhead by up to 40 % in those benchmarks. Finally, fast

atomic hash tables are shown to reduce DBT overhead by 40 % compared to

existing thread-shared hash table designs, also matching the performance of

other indirect branch handling techniques while consuming significantly less

memory.

3.1 Hardware-assisted function returns

Research has shown that function returns are by far the most common type of

indirect branch [SKC+04]. Function returns are different from other indirect

branches in that they usually target the instruction following a previously exe-

cuted call instruction1. In some cases, a function may not return to the address

it was called from, but this is atypical, only occurring in exceptional cases such

as during stack unwinding after an exception is thrown or if the return address

of a function has been modified.

Hardware-assisted function returns take advantage of this property in two

ways, first by tracking the addresses of executed call instructions in a software

return address stack and secondly by laying out the translated code in a way

1Exceptions to this include functions which perform stack unwinding, such as with C++
exception or the C setjmp and longjmp functions.
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that can take advantage of hardware return address prediction logic built into

modern processors. While software return address stacks have been used pre-

viously in DBTs to optimize function returns [HK06, HH97], this technique ex-

tends them by efficiently handling stack overflows and underflows using mem-

ory protection hardware and by avoiding the return address stack entirely in

certain cases (e.g. ‘leaf’ functions).

3.1.1 Software return address stack

Hardware-assisted function returns work by maintaining a software Return Ad-

dress Stack (RAS) in memory which tracks previously executed call instructions.

Each thread is allocated its own RAS, and the current position in the stack is

tracked by dedicated RAS pointer register. To account for the possibility of

mispredicting returns, each RAS entry comprises a pair of values: the Source

Program Counter (SPC) of the expected return address and its correspond-

ing Translated Program Counter (TPC). An entry is pushed onto the RAS by a

translated call instruction and an entry is popped from the RAS by a translated

return instruction. The resulting RAS entries therefore mirror the call stack of

the program, as shown in Figure 3.2.

Translating a call instruction is simple since all it needs to do is push the

SPC and TPC of the assumed call return target, which is the instruction imme-

diately following the call instruction. Translating a return instruction is more

complicated due to the need to handle potential mispredictions, and requires

four operations:

1. An entry containing a SPC and TPC pair is popped from the return ad-

dress stack.
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void a() {
// currently executing

}

void b() {
a();

b2: // return target after call
}

void c() {
b();

c2: // return target after call
}

(a) Source code

SPC TPC

b2 b2’
c2 c2’

RAS pointer

(b) Return address stack contents

Figure 3.2: Return address stack contents while executing nested function
calls.

2. The SPC is compared with the program-visible return address used by

the return instruction.

3. If the values match then control branches to the TPC in the entry.

4. If the values do not match then control is returned to the DBT so that it

can determine the target of the return by translating the SPC.

3.1.2 Hardware return address prediction

Most modern processors include a return address prediction mechanism in

hardware to predict the targets of function returns. This specifically detects

‘call’ and ‘return’ instructions and passes them to the branch prediction sys-

tem. Unfortunately this is not used in most DBTs because code before and

after the call is treated separately for translation purposes, so they might not

place the target of a return immediately after the matching call instruction in

the code cache, which is required to exploit the hardware predictor.
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Hardware-assisted function returns exploit hardware return prediction by

including the return target in the same block as the call instruction. This is

done by not regarding a call as the end of a basic block, thus ensuring that

the return target is located immediately after the translated call instruction.

Translated code can then use native call and return instructions, which take

advantage of any return address predictor.

Figure 3.3 shows how a function call and return are translated in MAMBO-

X64. The source BL instruction is translated into a constant move to set the

source link register and a BL (call) instruction to branch to the translated func-

tion. The code takes advantage of the BL instruction to generate the TPC ad-

dress in the link register. In the translated function, the source link register

and translated link register are both saved to the return address stack. The

BX LR (return) instruction is translated into a return address stack pop and

compare. If the comparison succeeds then a RET instruction is used to branch

to the translated address from the stack. The RET instruction allows the pro-

cessor to use its return address predictor for this branch. Because the return

address stack contains the link register value generated by the BL instruction,

the processor will predict the target of the return correctly, thus avoiding any

penalty from pipeline flushing in the hardware.

3.1.3 Return address stack elision

Rather than pushing an entry to the RAS at the translated call instruction in

the caller block, the SPC and TPC of the return target are passed to the callee

block in registers. The SPC is passed in the application-visible link register for

the source architecture (R14 on AArch32), while the TPC is passed in the link

register for the host architecture (X30 on AArch64). This TPC value is hidden
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orig_caller:
BL function ; branch and set LR
orig_ret_target:
... ; rest of code

orig_function:
... ; contents of function
BX LR ; return using LR (R14)

(a) Original AArch32 code

translated_caller:
MOV W14, #orig_ret_target ; calculate return SPC
BL translated_function ; branch and set TPC
translated_ret_target:
... ; rest of code

translated_function:
STP X14, LR, [ras_ptr], #16 ; push SPC and TPC
... ; contents of function
... ; possibly spread over
... ; multiple blocks
LDP X16, LR, [ras_ptr, #-16]! ; pop SPC and TPC
SUB W16, W16, W14 ; compare SPC with LR
CBNZ W16, return_mispredict ; handle mispredicts
RET LR ; return using TPC

(b) Translated AArch64 code

Figure 3.3: Translated function call and return in MAMBO-X64. ras_ptr is
a register that holds the return address stack pointer, X16 is a scratch register
and W14 contains the AArch32 link register.
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from the target application and remains valid as long as the application link

register is not modified.

The relationship between these two values is broken when the application

link register is modified, either by explicitly overwriting the link register with

a different value or implicitly through a call instruction which overwrites this

register. In this situation, the SPC and TPC pair needs to be pushed to the RAS

just before the register holding the SPC is modified. When a function returns

by performing an indirect branch to the address in the source link register, a

RAS pop can be avoided if the link register is known to not have been modified

since the last executed call instruction. In this situation the host link register

already contains the correct TPC address to return to and can be branched to

directly.

Consider, as an example, the code in Figure 3.4 which consists of a func-

tion with two execution paths. In the first path, the source link register is not

modified, which means that a function return in this execution path can be

translated to a single branch to the address contained in the host link register,

effectively matching the performance of a native function return. This can be

done blindly since the DBT statically knows that the host link register holds the

TPC for the source link register SPC value. In the second path, the relationship

between the source and host link registers is broken when the source link reg-

ister is modified by a subroutine call, which means that these values need to

be preserved in the RAS rather than in registers.

The relationship between the host and source link registers is maintained

across block boundaries by creating two variants of every block: a normal vari-

ant and a callee variant. The latter variant has the property that, on entry, both

registers will contain valid values. Each variant is generated on demand since

in practice most blocks only ever use a single variant: for the SPEC2006 bench-
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function1:
CMP R0, #0 ; if R0 == 0
BEQ R0, ret ; skip the call

PUSH {LR} ; save link reg
BL function2 ; call function2
POP {LR} ; restore link reg
B ret ; branch to end

ret:
BX LR ; return to caller

function2:
BX LR ; return to caller

(a) Original AArch32 code

function1-callee:
CBZ W0, ret-callee (*)
STR W14, [X13, #-4]! (*)
STP X14, LR, [ras_ptr], #16 (*)
MOV W14, #return_target
BL function2-callee
LDR W14, [X13], #4
LDP X16, LR, [ras_ptr, #-16]!
SUB W16, W16, W14
CBNZ W16, return_mispredict
B ret-normal

ret-normal:
RET LR

ret-callee:
RET LR (*)

function2-callee:
RET LR (*)

(b) Translated AArch64 code

Figure 3.4: Example code showing RAS elision in MAMBO-X64. For instruc-
tions marked with (*), W14 contains the return target SPC and LR contains the
return target TPC. This property is preserved across branches by making them
target callee blocks instead of normal blocks, but is lost when the AArch32 link
register (W14) is modified, such as by the BL instruction, at which point the
SPC and TPC values must be saved to the RAS.
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marks, on average only 1.5 % of all blocks needed to have both a normal and

callee variant generated.

Three rules determine which variant of a block is targeted when a branch

instruction is translated:

1. If the instruction is a call then it will always target a callee variant.

2. If the instruction is a non-call branch, the block containing the branch is

a callee variant and the source link register has not been modified since

the start of the block then the branch will target a callee variant.

3. In all other cases, the branch will target a normal variant.

For indirect branches, two separate hash tables are used, one for normal

variants and one for callee variants. Although the target address of an indirect

branch can’t be determined at translation time, the target variant can be de-

termined because indirect calls (BLX on AArch32) can be distinguished from

other indirect branch types. The indirect branch is then translated to use one

of the two hash tables depending on the variant which needs to be targeted.

3.1.4 Overflow and underflow handling

Because the RAS is allocated as a block of memory of fixed size, it can overflow

it if a function call is executed when the stack is full. Similarly, it is possible

to underflow the RAS by attempting to return from a function when the RAS is

empty. The former usually occurs when searching through a deep tree structure

recursively, while the latter usually occurs when returning from such recursion.

A DBT must handle both of these situations to maintain transparency since they

could otherwise potentially result in incorrect code execution.

Many RAS implementations handle overflows and underflows by adding

bound-checking instructions to the RAS push and pop operations, but this
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comes at a significant cost due to the additional instructions required multi-

plied by the high frequency of calls and returns in many programs. A better

approach is to use memory protection hardware to trap overflows by allocating

a guard page at the end of the RAS. Underflows are caught using a guard entry

that is reserved at the bottom of the stack. Figure 3.5 shows an example of

how RAS overflows and underflow are handled.

When the RAS is full and a push is attempted, the write to the guard page

will trigger a page fault. The fault handler will shift the RAS contents down:

the top half of the stack is copied to the bottom half and the RAS pointer regis-

ter is adjusted to point to the new top of the stack. Although this discards the

bottom half of the RAS entries, which are the least recently used, correct exe-

cution is not affected because the RAS is only used as a prediction mechanism.

After the stack contents are moved, the push instruction is restarted with the

adjusted RAS pointer, which will cause it to push a value into the newly freed

space successfully.

To catch underflows, a guard entry is reserved at the bottom of the RAS.

This entry contains an SPC address of 0 and a TPC address pointing to a stub

that returns to the DBT, so that control returns to the DBT to handle the un-

likely event of a return instruction jumping to address zero due to a software

error correctly. Once control is returned to the DBT, the current RAS pointer

is checked and adjusted to ensure that it always points above the guard en-

try. A misprediction is unavoidable at this point because there is no prediction

information available in the RAS.

3.1.5 Misprediction handling

There are two reasons that can cause a function return to be mispredicted:

either the function did not return to its matching call instruction or the pre-
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SPC TPC
a a’
b b’
c c’
d d’
e e’
f f’
g g’
h h’
0 G

(a) Before overflow

SPC TPC

a a’
b b’
c c’
d d’
0 G

(b) After overflow

SPC TPC

0 G

(c) Before underflow

SPC TPC

0 G

(d) After underflow

Figure 3.5: Overflow and underflow handling for the return address stack. On
overflow, the contents of the RAS are shifted down, the RAS pointer is adjusted
and the push instruction is restarted. On underflow the RAS pointer is moved
above the guard entry so that the guard is not overwritten by a later push, and
the misprediction is handled by the DBT.
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dicted return address was lost due to a RAS overflow and subsequent under-

flow. These situations can be discerned by checking whether the entry that

was just popped from the RAS is the guard entry. Since these situations have

different causes, they are best handled separately.

Return misprediction A genuine return misprediction can occur for a variety

of reasons, such as stack unwinding when an exception is thrown, calling the

C longjmp function, switching stacks when invoking a coroutine or simply

having a function modify its return address. In many of these cases, program

execution will continue normally at an earlier point in the call stack, so it is

beneficial to avoid further mispredictions by unwinding the RAS to an earlier

point. Unwinding is done by scanning the RAS from the top down until an

entry matching the current SPC return target is found, and adjusting the RAS

pointer to remove that entry and all others above it from the RAS. If a matching

entry could not be found then the RAS is left unmodified so that its contents

are still available for a later attempt at unwinding.

RAS underflow A misprediction due to a RAS underflow can occur when

the call depth of a program exceeds the size of the RAS, causing the RAS to

overflow and lose some entries. This is more common than genuine mispredic-

tions and can happen in algorithms which make heavy use of recursion, such

as when searching through a very deep tree structure. In this situation it is

possible to take advantage of the fact that these algorithms tend to only call a

limited set of functions recursively: a small hash table is used to predict these

function returns, which contains SPC and TPC addresses of returns that were

previously mispredicted due to a RAS underflow. The hash table allows func-

tion returns to be predicted even when the relevant return address stack entry
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has been lost due to an overflow. This fallback avoids the need to perform an

expensive context switch back to the DBT, which can cost hundreds of cycles.

Note that while a return address misprediction can affect program perfor-

mance, it will never lead to incorrect code execution. This is guaranteed by

always tracking the SPC address for each predicted TPC return address and

checking that it matches the intended return target.

3.1.6 Unlinking

Hardware-assisted function returns have been designed to work in a thread-

shared code cache model [BKGB06, HLC09] where the same translated code is

shared among multiple threads because this model has been shown to scale

significantly better than thread-private code caches. One complication with

this model is that block invalidation is more complicated: a block which needs

to be deleted because its source assembly instructions have been modified may

still have other threads concurrently executing it. This is solved by using lazy

deletion: all incoming links to the block are removed so that is becomes un-

reachable and it is freed once all live threads have returned to the DBT at least

once since the block was unlinked since this indicates that other threads can

no longer be executing the deleted fragment.

There are three ways by which a block can be reached: direct branches

from one block to the next, the indirect branch lookup table and a thread’s

return address stack. Direct branches can be unlinked by having each block

maintain metadata about which other blocks have incoming direct branches

to it. The branch instructions can then be patched to point to an exit stub

which returns control to the DBT while passing the current program counter

value so that the DBT knows what to execute next. Removing an entry from a

thread-shared indirect branch lookup table is discussed in Section 3.3.1.
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Removing entries from the RAS of all live threads is more complicated be-

cause the RAS is a thread-private structure, which makes it impossible to mod-

ify from another thread safely. Using a lock or atomic operations to achieve

this is unacceptable as it would slow down normal RAS operations which are

performance-critical. Leaving the RAS unmodified is also unacceptable be-

cause it violates memory consistency: code returning into an invalidated func-

tion will expect to be executing the newly written code.

Rather than attempting to modify the RAS of all live threads, the invali-

dated block can be patched so that each instruction located immediately after

a call is replaced with a branch to an exit stub. This modification is safe to

perform while other threads are concurrently executing code in that block be-

cause each thread will either see the new code and return to the DBT or it will

see the old code and continue execution. Since a thread needs to execute a

synchronizing instruction (ISB on ARM, any branch on x86) to guarantee that

it will execute newly generated code, any thread that is expecting to see the

new code will always execute the patched branch and return to the DBT. Once

a thread has returned to the DBT, a simple scan of its RAS will remove any en-

tries pointing to invalidated blocks. Therefore, once all threads have returned

to the DBT at least once since the block was invalidated, the block can be safely

freed since it is not pointed to by the RAS of any thread.

3.2 Branch table inference

Branch tables are used to support multi-way branches efficiently by loading a

target code address from a table in memory. C compilers commonly generate

branch tables for large switch statements. As a whole, this structure is a multi-
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switch (val) {
case 0: ...
case 1: ...
case 2: ...
case 3: ...
default: ...

}

(a) Original C code

CMP R0, #3
BHI default
ADR R1, table
LSL R0, R0, #2
LDR PC, [R0, R1]
table:
.word case0
.word case1
.word case2
.word case3

(b) AArch32 branch table

CMP X0, #3
B.HI translated_default
ADR X16, table
LDR X16, [X16, X0, LSL #3]
BR X16
table:
.quad translated_case0
.quad translated_case1
.quad translated_case2
.quad translated_case3

(c) AArch64 branch table

Figure 3.6: AArch32 branch table generated by Clang/LLVM for a switch state-
ment, and an AArch64 translation of that branch table. Note that when exe-
cuted by a processor, the LDR instruction expands to the same micro-operations
as the LDR/BR sequence, so the translation introduces negligible performance
overhead.

way direct branch since its targets are fixed at a compile time, but, in detail, it

makes use of an indirect branch instruction to perform the actual jump.

While a naïve DBT encountering such a structure would simply translate

the indirect branch into a hash table lookup, a more advanced DBT could take

a holistic view of the structure and optimize it accordingly. Branch table infer-

ence is an algorithm to discover (Section 3.2.1) and translate (Section 3.2.2)

branch tables. An example of this optimization is shown in Figure 3.6.

3.2.1 Detecting branch tables

Code implementing a branch table comprises several operations:

1. An index register is compared to a constant value, which is the number

of entries in the table.

2. If the index register value is greater than or equal to the number of entries

in the table, control jumps to a default case handler. Otherwise, the index

register is known to be within the bounds of the table.
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3. The address of the table is loaded into a register, usually as a PC-relative

constant.

4. The address of the table entry that should be loaded is calculated by

multiplying the index register by the address size (4 bytes in AArch32)

using a shift and adding it to the table base.

5. A 32-bit value is loaded from the table using the calculated address.

6. The target address is jumped to using an indirect branch instruction.

While the specific instruction sequence used may vary depending on the

architecture, compiler and even compiler options, it always consists of the same

operations. In particular, depending on the instruction set, more than one of

the listed steps may be performed by a single instruction. For example, the

AArch32 branch table code generated by LLVM, shown in Figure 3.6, combines

the last three operations into a single instruction.

One significant variation is when branch tables are compiled as position-

independent code: in this case, rather than containing absolute target ad-

dresses, the table entries contain offsets from a known position, such as the

table address or the address of the branch instruction. In such a table the

loaded value would be added to base address before being branched to.

Branch table inference can recognize all these variations by scanning the

instructions in a block in reverse order once an indirect branch instruction is

encountered. During the scan, several conditions are checked:

1. The target of the indirect branch is the result of a word-sized load in-

struction, optionally added to a constant base address.

2. The address operand of load instruction is the sum of two values A and B.
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3. A is a constant value known at translation time. This is the base address

of the table in memory.

4. B is the value of a register R multiplied by the word size using a shift (2

places in the case of AArch32).

5. Before the load, there is an exit branch if the condition code indicated a

‘greater than or equal’ result.

6. The condition used by the branch is generated by comparing R to a con-

stant value. This constant value is the size of the table.

While this algorithm will detect most compiler-generated branch tables,

such as those generated by LLVM, some compilers use non-standard branch

table structures on some architectures, which follow a different pattern. One

particular example of this is the branch tables generated by GCC for AArch32

code, which is shown in Figure 3.7. The generated code makes use of sev-

eral features specific to the ARM architecture to make the branch table more

efficient. The branch table code generated in this case can be recognized by

simply looking for certain hard-coded instruction sequences.

If a very obscure instruction sequence is used, the table may not be recog-

nized and optimized, but it will still be accommodated by the default indirect

branch translation mechanism.

3.2.2 Translating branch tables

Once a branch table code sequence has been identified, the following informa-

tion needs to be extracted from the sequence so that it can be translated:

• The branch table type: fixed or position-independent.
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CMP R0, #3
LDRLS PC, [PC, R0, LSL #2]
B default
.word case0
.word case1
.word case2
.word case3

(a) Fixed branch table

CMP R0, #3
ADDLS PC, PC, R0, LSL #2
B default
B case0
B case1
B case2
B case3

(b) Position-independent branch table

Figure 3.7: AArch32 branch tables generated by GCC, which do not match
generic branch table patterns. These exploits several features of the AArch32
instruction set: almost all instructions can be predicated, the PC register reads
as a value 8 bytes past the current instruction, and writing to the PC register
causes an indirect branch.

• The index register (R) and its upper limit, which determines the table

size.

• The branch table base address (A).

• For position-independent tables, the indirect branch base address.

Once the address and size of a table are known, all possible targets can

be found at translation time, so there is no need to perform a SPC to TPC

translation every time the branch is executed. A new branch table is generated

which contains the addresses of translated blocks, shadowing each target of the

original branch table. Initially, the table only contains pointers to exit stubs that

return control to the DBT to translate a block, but these are gradually replaced

by the TPC addresses of the blocks as they are translated.

With branch table inference, a translated branch table performs exactly the

same operations as a native branch table: a compare, a load and a branch. This

results in branch table inference completely eliminating any DBT overhead for

this type of indirect branch. Another benefit is that branch table targets are

eliminated from the set of indirect branch targets which need to be considered

for generic indirect branch lookup. The latter typically uses a hash table lookup
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for SPC to TPC translation, which has poor performance when the target of the

indirect branch varies a lot from one execution to the next, as is often the case

with branch tables.

To ensure that the copy of the branch table in the code cache remains con-

sistent if the branch table entries are modified, this optimization is only per-

formed when the pages containing the branch table are mapped with read-only

permissions. This covers all compiler-generated branch tables since these are

located in the code or read-only data segments of the executable. Attempts to

change the permissions of pages containing a branch table to read-write are

caught and the code cache block containing the branch table is invalidated.

3.3 Fast atomic hash tables

When an indirect branch is encountered in translated code, the SPC target of

the branch must be translated into a TPC address to continue execution. The

standard method for doing this is to use a hash table to store a mapping of SPC

to TPC addresses. In a thread-shared code cache model, which has been shown

to scale significantly better than thread-private code caches [BKGB06, HLC09],

this hash table is shared among all running threads. Synchronization of hash

table accesses is complicated by the strict performance requirements of indi-

rect branch lookup: because these lookups can occur very frequently, adding

any kind of locking for synchronization comes at an unacceptable performance

cost.

3.3.1 Hash table operations

Fast atomic hash tables are based on open-addressing hash tables with linear

probing. To avoid the need for locks while reading, this technique makes use
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of the fact that aligned 64-bit loads and stores are guaranteed to be atomic

on many architectures. This is true for all 64-bit architectures and even some

32-bit architectures, such as ARMv7 with the Large Physical Address Extension

(LPAE). To take advantage of these instructions, each hash table entry, consist-

ing of an SPC and TPC pair, is packed into a 64-bit value, which allows them

to be loaded or stored together atomically.

The hash table supports four operations:

Lookup Hash table lookup performance is by far the most critical since it is

the most common operation: typical programs will have billions of hash table

reads for each hash table write. The hash table lookup algorithm, shown in

Figure 3.8, is simple: it loads entries from the hash table one at a time using

a 64-bit atomic load, stopping only when an entry with a matching SPC or

an empty entry is reached. The need for bound-checking or wrap-around is

eliminated by simply adding a terminating empty entry after the end of the

table. For correct execution, the lookup algorithm requires that, at any time,

all hash table entries must contain either a valid SPC and TPC pair or be empty.

This is guaranteed by having all hash table modifications use 64-bit atomic

stores. This algorithm can be efficiently implemented, as shown in Figure 3.9:

the implementation in MAMBO-X64 requires only 10 instructions, of which

only 8 are executed if a matching entry is found on the first iteration. These

instructions are inlined directly into the translated block to avoid call overhead

and allow the processor’s indirect branch predictor to track each translated

indirect branch separately.

Insertion Inserting an entry into the hash table requires only a single 64-bit

atomic store to add the entry, but it also requires holding a lock to prevent other

threads from modifying the table concurrently. This lock is acceptable because

61



Input: SPC address of the block that should be executed next.

Index = Hash(SPC) mod HashTableSize;
repeat

Ent r y = AtomicLoad64(HashTableBase, Index);
Ent r ySPC , Ent r yT PC = Unpack(Ent r y);
if IsEmpty(Ent r ySPC) then

BranchToDBT();
end
Index = Index + 1;

until Ent r ySPC == SPC;
BranchTo(Ent r yT PC);

Figure 3.8: Indirect branch lookup algorithm with fast atomic hash tables.

AND W18, mask, W15 ; mask the SPC to obtain the table offset
ADD X18, base, X18 ; get a pointer to the hash table entry

loop:
LDR X16, [X18], #8 ; read the entry with a 64b atomic load
SUB W17, W16, W15 ; compare low bits of the entry with SPC
CBZ W17, found ; break out of the loop if they match
CBNZ W16, loop ; loop while the entry is not empty
B indirect_branch_miss ; return to DBT to handle misses

found:
ADRP X17, code_cache_base ; get the base address of the code cache
ADD X17, X17, X16, LSR #32 ; extract TPC from high bits of the entry
BR X17 ; branch to TPC

Figure 3.9: AArch64 implementation of the indirect branch lookup algo-
rithm. On entry, W15 holds the SPC target of the branch. table_mask and
table_base are registers that hold the hash table mask and hash table base
respectively. All other registers are scratch registers.
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unlike lookups, hash table additions and removals are relatively rare in typical

programs, and using a lock while writing avoids the need for memory barriers

in lookup code. A thread, concurrently reading the table, will either see the

new entry or an empty entry. Potential races due to two threads attempting

to insert the same entry into the table are resolved once the hash table lock is

taken by checking if a matching entry already exists.

Removal An entry needs to be removed from the hash table when a block is

invalidated, such as when the instructions it is sourced from have been mod-

ified. Entry removal is similar to insertion in that it also requires holding the

hash table lock but differs in its effect on concurrent lookups. While the tar-

get entry can simply be replaced with a poisoned entry, which will always be

skipped by lookups, this causes lookup times to grow over time as the num-

ber of poisoned entries increases. A better solution is to shift the entries after

the target backwards, thus keeping lookup times low. In practice, this shifting

usually only consists of one or two swap operations. The shifting can induce

spurious failures in concurrent lookups since a lookup might miss its intended

target as it is shifted past. This will result in a lookup failure and a return to

the DBT, but the lookup can then be resolved by searching the hash table again

while holding its lock to prevent concurrent writes. This case rarely occurs in

practice and therefore has an insignificant impact on performance.

Growth Growing the hash table is necessary to allow a DBT to scale to a

wide range of applications. Since other threads may still be reading the table,

it cannot be freed immediately. Resizing instead creates a new, larger table

into which the entries of the previous table are copied. Just before a thread

starts executing translated code, it will copy a pointer to the latest version of

the indirect branch hash table into thread-local storage — which is used for
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lookups — and increment the table’s reference count. Once it returns to the

DBT, the thread will decrement the reference count and free the table if it

reaches zero, since that means that no more threads are using the table.

3.3.2 SPC and TPC packing

For fast atomic hash tables to work, both an SPC and a TPC address must be

packed into a 64-bit value. There are several ways of achieving this, depending

on two factors: the pointer size of the source architecture, which determines the

size of the SPC, and the pointer size of the host architecture, which determines

the size of the TPC.

The simplest case is when both the host and the source use 32-bit pointers,

in which case they can simply be appended to form a 64-bit value. For a 64-

bit host emulating a 32-bit source, the TPC can be turned into a code cache

offset from the start of the code cache, which can then fit in 32 bits, with the

limitation that the code cache cannot exceed 4 GB.

When both the host and the source are 64-bit, the situation is more com-

plicated. While the TPC can be compressed as a code cache offset, the SPC

needs to be fully represented to ensure transparency. Fortunately, most 64-bit

architectures do not support a full 64-bit address space yet, instead only using

a subset of those bits for virtual addresses. For example, the default configura-

tion of Linux on AArch64 restricts the virtual address space of a process to 39

bits, which leaves 25 bits for a code cache offset, allowing a maximum code

cache size of 32 MB. The TPC can then be reconstructed by simply adding the

25 bit offset to the starting address of the code cache.

If the source architecture uses more bits for virtual addresses than can fit

with this scheme, a DBT can still artificially reduce the address space of a pro-

cess by controlling memory allocation system calls such as mmap. By restricting
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all virtual memory allocations with an upper address limit, the DBT can guar-

antee that all valid SPC addresses can fit in a limited number of bits.

The case of a 32-bit host architecture emulating a 64-bit source architecture

is not discussed here because it is rarely used.

3.4 Evaluation

In this section the performance of the indirect branch handling techniques is

evaluated. Because the optimizations described in this chapter are designed to

reduce the runtime overhead of running a program under a DBT, performance

results are described in terms of “overhead reduction”. Overhead is defined as

the additional time a benchmark takes when running under a DBT compared

to running the 32-bit program natively on the CPU, and overhead reduction

is the percentage by which this overhead is reduced when the optimization

is applied. For example, if an optimization brings the performance overhead

relative to native execution from 10 % to 7 % then it is considered to reduce

DBT overhead by 30 %.

3.4.1 Experimental setup

All experiments were conducted on a Juno ARM Development Board with two

Cortex-A57 cores running at 1.1 GHz and four Cortex-A53 cores running at

850 MHz. The board comes with 8 GB of RAM and runs Debian with Linux

kernel version 3.17. To keep results consistent, all experiments were run on

one of the Cortex-A57 cores, which has 48 kB of L1 instruction cache, 32 kB of

L1 data cache and 2 MB of shared L2 cache.

The performance of the three techniques was analyzed using the SPEC

CPU2006 [Cor] benchmark suite. All benchmarks were compiled with GCC
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Figure 3.10: Dynamic distribution of indirect branch types in SPEC CPU2006.

4.9.1, optimization level -O2 and targeting 32-bit and 64-bit ARMv8-A. Fig-

ure 3.10 shows the distribution of indirect branch types in the SPEC CPU2006

benchmarks as a fraction of the total dynamic instruction count.

Indirect branches account for fewer than 3 % of dynamic instructions exe-

cuted, but they are a significant source of overhead for DBTs because they need

to be translated into a lookup routine that translates an SPC address to a TPC

address. While a native indirect branch instruction (BR) only requires a single

cycle to execute on a Cortex-A57, a DBT’s indirect branch lookup code usually

requires 10-20 cycles. This explains why so few instructions can have such a

significant impact on DBT performance.

These results also show that in all the benchmarks the majority of indirect

branches are function returns, which makes effective handling of returns an

important factor in DBT performance. In contrast, intensive use of branch

tables and other indirect branches is limited to only a few benchmarks and

optimization thereof is thus expected to have less impact on performance.

Because the ARMv8 processors used in these experiments are capable of

running AArch32 code directly, all benchmarks were executed natively on the
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processor and the results are used as a baseline for the experiments. All other

results are normalized to this baseline, showing the relative performance of

the DBT compared to native execution.

3.4.2 MAMBO-X64

To evaluate the three techniques, they were implemented on MAMBO-X64.

The version of MAMBO-X64 used in these experiments was an early one, which

did not yet include the optimizations described in Chapter 4.

Figure 3.11 shows the performance of the benchmarks translated from

AArch32 to AArch64 compared to executing the AArch32 code directly. Three

different translation methods are shown:

• The benchmarks can be translated using QEMU [Bel05], a generic DBT

which supports translating programs among many architectures.

• The benchmarks can be recompiled to AArch64 from source.

• The benchmarks can be translated using MAMBO-X64.

While recompiling the code for AArch64 results in the best performance in

most benchmarks, this requires that the source code be available and portable

to the new architecture, which may not always be the case. Additionally, point-

ers in AArch64 use two times more space than on AArch32, which can degrade

performance due to increased memory usage and cache pressure despite the

additional registers and new instructions in AArch64.

QEMU supports a large number of architectures, therefore it does not use

many architecture-specific optimizations and emulates all floating-point oper-

ations in software. Together, these design choices cause QEMU’s performance

to suffer significantly compared to native execution.
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Figure 3.11: Performance of various systems on SPEC CPU2006. These are:
QEMU translating AArch32 to AArch64, MAMBO-X64 translating AArch32 to
AArch64 and recompiling the benchmarks for AArch64. Performance numbers
are relative to the benchmark running natively in 32-bit mode. The results for
QEMU do not fit within the graph and are instead shown as percentages above
the graph.

MAMBO-X64 is specialized for AArch32 to AArch64 translation, which al-

lows it to reach near-native performance: it is only 10 % slower than native

execution on average, and even achieves faster speeds than native execution

in some cases. This is achieved by taking advantage of the new features of the

AArch64 instruction set which allow a wider range of immediate values to be

encoded in instructions and allow certain operations to be translated into in

fewer instructions.

3.4.3 Hardware-assisted function returns

Hardware-assisted function returns give a significant performance improve-

ment on about half of the benchmarks, as shown in Figure 3.12. To understand

the impact of hardware return address prediction on performance better, the

benchmarks were run in four configurations:
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Figure 3.12: MAMBO-X64 performance on SPEC CPU2006 with different ways
of handling function returns. Performance numbers are relative to the bench-
mark running natively in 32-bit mode.

Hash table lookup Function returns are handled using a hash table lookup,

just like other indirect branches.

Simple return address stack A return address stack is used, similar to the one

used by Pin on ARM [HK06]: it does not support RAS elision or support

advanced handling of mispredictions.

MAMBO-X64 All of the techniques described in Section 3.1 are used to opti-

mize function return handling.

MAMBO-X64 without hardware return prediction Similar to the previous,

but with the hardware return address predictor inhibited by using BR

instructions instead of RET instruction when translating function returns.

The results show that, while most of the performance improvement comes

from the use of a return address stack instead of a hash table, taking advan-

tage of hardware return prediction still accounts for about a third of the overall

speedup. Over all of the SPEC CPU2006 benchmarks, the use of a return ad-

dress stack reduces overhead by 27 % and the use of hardware return address
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prediction reduces overhead by a further 14 %. Of the former 27 %, 18.5 % is

due to the use of a RAS while the remaining 8.5 % comes from the RAS elision

and misprediction handling optimizations. On benchmarks which make heavy

use of function calls, such as h264ref, the difference is even more significant:

using a return address stack reduces overhead by 65 % and hardware return

address prediction reduces it by a further 23 %.

Figure 3.13 shows the hardware branch misprediction rate (fraction of

branch instructions that were mispredicted) when running MAMBO-X64 un-

der the same four configurations. Unfortunately, the Cortex-A57 does not use

separate performance counters for direct and indirect branches, so only the

combined branch misprediction rate is shown. These results match the previ-

ous ones, which shows that both aspects of hardware-assisted function returns

improve DBT performance by reducing branch mispredictions. The additional

mispredictions, when using a hash table instead of a RAS, are due to cases

where the hardware fails to predict the direct branch in the hash table lookup

loop in addition to the indirect branch after the loop.

The RAS can very accurately predict the targets of function returns: the

majority of benchmarks do not have any RAS mispredictions. Some bench-

marks (perlbench, omnetpp and povray) have RAS mispredictions due to the

use of stack unwinding through C++ exceptions and the C longjmp function,

but these are still extremely rare: the misprediction rate did not exceed one in

ten million for any benchmark, which makes the overhead insignificant.

Another set of benchmarks (perlbench, gcc, gobmk and xalancbmk) suffer

from RAS mispredictions due to RAS overflow. MAMBO-X64 allocates a single

4 kB page for the RAS, followed by a guard page. This allows the RAS to hold

512 entries, which is sufficient since few applications reach a call stack depth

of over 500. When the RAS overflows, its contents are shifted down, which
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Figure 3.13: Hardware branch misprediction rate of MAMBO-X64 on SPEC
CPU2006 with different ways of handling function returns. The numbers show
the number of branch mispredictions divided by the total number of branches
executed. Note that the misprediction rate includes both direct and indirect
branches.

causes it to lose some of its entries. This is most visible in xalancbmk, which

makes heavy use of recursive functions and overflows the RAS over 600000

times during its 25 minute runtime, causing a RAS misprediction rate of 0.3 %

due to the RAS entries lost to the overflows. To avoid context-switching back

to the DBT to handle each misprediction, MAMBO-X64 uses the hash table

mechanism described in section 3.1.4 to handle overflow-related mispredic-

tions efficiently. This significantly improves performance on xalancbmk, where

a third of the DBT overhead was due to time spent handling the misprediction

in the DBT.

A significant factor in the performance of MAMBO-X64 is the use of RAS

elision, which was applied to 51 % of all function returns executed in the bench-

marks. This optimization effectively eliminates the overhead of translated

function returns compared to native execution. On two benchmarks which

make heavy use of function calls and returns, h264ref and dealII, over 80 % of

function returns were optimized with RAS elision.
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Figure 3.14: MAMBO-X64 performance on SPEC CPU2006 with and without
branch table inference. Performance numbers are relative to the benchmark
running natively in 32-bit mode.

3.4.4 Branch table inference

Figure 3.14 shows the impact of branch table inference on the benchmarks

when run under MAMBO-X64. This optimization mainly affects benchmarks

which make heavy use of branch tables: perlbench benefits the most because

it is an interpreter structured around large switch statements, where branch

table inference reduces DBT overhead by 40 %. Despite this, the overhead

reduction over all of the benchmarks is only of 10 % because few benchmarks

rely extensively on branch tables.

3.4.5 Fast atomic hash tables

To evaluate the performance of fast atomic hash tables, three alternative in-

direct branch handling mechanism were implemented on MAMBO-X64. The

first, called “megatables”, is based on SPIRE [JYW+13] but is simplified by ex-

ploiting the fact that MAMBO-X64 runs in a 64-bit address space while the

program it is translating only uses a 32-bit address space. Instead of using a
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small hash table, a huge 16 GB table is allocated, which contains a 4-byte code

cache offset for every possible 32-bit address. Handling an indirect branch then

simply consists of a simple lookup with no need to handle masking or hash

collisions. While the table consumes a large amount of virtual memory, the

operating system will only allocate memory for pages which contain entries,

while pages with no entries will simply be mapped to a common, zero-filled

page. Table modifications are atomic because adding or removing an entry

is simply an aligned 32-bit store. As with fast atomic hash tables, entries are

added to the megatable lazily, only when an indirect branch lookup misses.

The second mechanism is a hash table that does not require 64-bit atomic

operations, similar to the one used by DynamoRIO [BKGB06]. Like fast atomic

hash tables, it also uses a single table shared among all threads, but only uses

32-bit loads and stores when accessing the hash table, writing to the SPC and

TPC parts of a hash table entry separately. Because of this, backward shift

deletion cannot be used to compact the hash table when an entry is deleted;

instead the deleted entry must be “poisoned” by replacing the TPC of the entry

with the address of a routine that returns control to the DBT. Once an entry has

been poisoned, it cannot be reused since another thread may be concurrently

reading that entry in a lookup. This causes the average number of entries

scanned during a hash table lookup to increase as entries are added and re-

moved, which can degrade performance. Another disadvantage of this method

is that, because of the ARM architecture’s weakly-ordered memory model, a

memory barrier is needed between reading the SPC of an entry and reading its

TPC. This memory barrier is part of the performance-critical lookup code and

therefore has a significant effect on performance.

The last mechanism is thread-private hash tables, which uses a separate

hash table for each thread and therefore does not require any synchronization
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during lookups. This is the mechanism most commonly implemented in DBT

due to its simplicity and because it works with thread-private code caches.

Despite these advantages, it has been shown to not scale well to large numbers

of threads [BKGB06, HLC09] since each thread requires its own table. Block

invalidation is also more complicated because a block needs to be removed

from the hash tables of all live threads although, unlike thread-shared hash

tables, this can be done without needing a memory barrier in the lookup code.

Figure 3.15 shows the performance of MAMBO-X64 with fast atomic hash

tables, non-atomic hash tables, thread-private hash tables and megatables. In

most benchmarks, the performance of these techniques is similar, but some

benchmarks which make heavy use of indirect branches, such as h264ref, suf-

fer a very large performance degradation due to the use of a memory barrier

in thread-shared hash tables. The other three techniques all have very close

performance, but some benchmarks, such as povray or dealII, suffer from hash

table collisions that megatables do not suffer from. These results show that fast

atomic hash tables have the performance of thread-private hash tables while

preserving the superior scalability of thread-shared hash tables.

While megatables and fast atomic hash tables have similar performance and

both use a single shared table, the memory usage of megatables is much higher

than fast atomic hash tables, as shown in Table 3.1. This is because megatables

cause the operating system to allocate a full 4 kB page for every page of the

table that contains entries, whereas the size of a hash table is proportional to

the total number of entries in that table. This shows that fast atomic hash

tables are competitive with existing indirect branch handling techniques while

consuming significantly less memory.
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Benchmark Indirect branch targets Hash table size Megatable size Ratio
(KB) (KB)

perlbench 316 7.1 431.6 60.7
bzip2 32 1.0 52.0 52.0
gcc 748 14.5 771.2 53.1
mcf 38 1.0 52.0 52.0
gobmk 1021 21.6 347.9 16.1
hmmer 51 1.0 75.9 75.9
sjeng 43 1.0 68.0 68.0
libquantum 29 1.0 48.0 48.0
h264ref 67 1.3 94.4 72.0
omnetpp 497 9.0 388.0 43.1
astar 38 1.0 60.0 60.0
xalancbmk 1120 18.0 1208.0 67.1
bwaves 46 1.0 60.0 60.0
gamess 59 1.0 80.0 80.0
milc 40 1.0 56.0 56.0
zeusmp 48 1.0 52.0 52.0
gromacs 59 1.0 96.0 96.0
cactusADM 127 2.5 200.0 80.0
leslie3d 55 1.0 76.0 76.0
namd 53 1.5 112.0 74.7
dealII 193 5.0 280.0 56.0
soplex 182 4.5 233.9 52.0
povray 175 4.0 248.0 62.0
calculix 65 1.5 68.0 45.3
GemsFDTD 53 1.0 68.0 68.0
tonto 69 1.5 104.0 69.3
lbm 36 1.0 56.0 56.0
wrf 64 1.5 76.0 50.7
sphinx 49 1.0 68.0 68.0

Geometric mean ratio 58.7

Table 3.1: Memory usage of megatables compare to fast atomic hash tables on
SPEC CPU2006. In both cases, indirect branches that are handled by branch
table inference and hardware-assisted function returns are not included in the
tables.
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Figure 3.15: MAMBO-X64 performance on SPEC CPU2006 with various in-
direct branch handling techniques. Performance numbers are relative to the
benchmark running natively in 32-bit mode.

3.5 Related work

Because of its significance, many approaches have been designed to reduce

the overhead of indirect branches in DBTs. Some of these are generic and can

be applied to all types of indirect branches while others only apply to a single

type.

3.5.1 Indirect branch handling

The most common way that DBTs handle indirect branches is by using a hash

table to map SPC addresses to TPC addresses. The lookup is typically done

using a heavily optimized assembly code routine, which can be either called

like a function or inlined directly inside a block. In some DBTs [BZA12], these

routines also need to save and restore registers to provide scratch registers to

work with.

DynamoRIO [BKGB06] implements support for thread-shared indirect branch

hash tables, but these are disabled by default because they result in lower per-
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formance than thread-private hash tables. This implementation is also specific

to x86 and will not work on architectures with a weakly ordered memory model

such as ARM without expensive memory barriers in the performance-critical

lookup code (Section 3.4.5).

The Indirect Branch Translation Cache (IBTC) [SKC+04] mechanism uses

per-branch hash tables instead of a global hash table shared by all indirect

branches. While it can potentially offer better hit rates, this approach suffers

from increased memory usage compared to a global hash table. It also suffers

from the same issues as DynamoRIO’s thread-shared hash tables on architec-

tures with a weakly-ordered memory model.

A different approach to handling indirect branches is to use software pre-

diction [LCM+05, BGA03]. This technique consists of comparing the branch

target with a pre-defined SPC and branching to the corresponding TPC if the

comparison succeeds. Multiple predicted targets can be checked this way, even-

tually falling back to a hash table lookup if none of the comparisons succeeds.

Software Prediction with Target Updating (SPTU) [JYHC14b] is an improve-

ment on this technique which updates the predicted targets according to their

frequency. While this approach works well on architectures like x86, which

can include an entire word-sized immediate operand with a compare instruc-

tion, it is less effective on RISC architectures such as ARM which only support

a limited set of immediate operands. Additionally, these comparisons cannot

be updated dynamically if the code cache is shared by multiple threads due to

the possibility of race conditions.

HDTrans [SSB05] uses a technique called SIEVE which combines software

prediction and hash tables. First, the branch target SPC is hashed and used

to index a branch table. Each entry in the branch table leads to a chain of

compare and branch instructions for all targets in that hash bucket. While
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SIEVE requires fewer registers than a standard hash table lookup and can take

advantage of hardware branch prediction, it suffers from the same issues as

software prediction on RISC architectures.

SPc-Indexed REdirecting (SPIRE) [JYW+13] handles indirect branches by

patching the instruction at the SPC in the original program to branch to the

TPC, thus allowing an indirect branch to jump to the SPC directly, avoiding

the need for address translation. However, an efficient implementation of this

scheme is complicated and, as mentioned by the authors, incorrect code exe-

cution may occur in certain edge cases.

The fastBT DBT [PG10] uses shadow jump tables to optimize handling

of branch tables, which are a subset of indirect branches. When an indirect

branch is recognized as a branch table instruction, fastBT will create a shadow

table in the code cache containing the TPC addresses of all the branch table

targets. The main downside of this technique is that it sometimes ends up cre-

ating shadow tables that are too large or too small because it uses fixed size

tables instead of inferring the size from the instructions.

Direct-TPC Tables (DTT) [JYHC14a] extend shadow jump tables to apply

to all indirect branches which load an address from an array, such as virtual

function calls. This is done by shadowing large blocks of program memory

and treating them as large branch tables. An indirect branch that loads from

an array can then be translated into a load from the shadow table, which will

contain the TPC address for the entry. While this technique can offer per-

formance improvements, maintaining transparency requires additional bound

and alignment checking code at each indirect branch, which offsets the perfor-

mance gains.

The Jump Target Lookup Table (JTLT) [KS03] proposed hardware exten-

sions which adds a small hardware cache containing a mapping of SPC ad-
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dresses to TPC addresses. When the processor executes an indirect branch

instruction, the JTLT is used to find the TPC address for the SPC branch target.

If a matching entry is found in the JTLT then the processor branches to the TPC

address in the entry. Unfortunately this technique requires special instructions

and therefore is not usable on existing architectures.

In summary, hash table-based techniques (DynamoRIO, IBTC) suffer from

performance issues in a thread-shared code cache model. Techniques based on

software prediction, including SPTU and SIEVE, do not work well with RISC

architectures and are incompatible with thread-shared code caches. DTT and

SPIRE both suffer from transparency issues, although in the case of DTT this

can be corrected at a performance cost. Finally, JTLT requires specialized hard-

ware support.

3.5.2 Function return handling

The results in this chapter (Section 3.4.1), as well as previous research [SKC+04],

show that that function returns are by far the most common type of indirect

branch. Function returns are different from most other indirect branches in

that they almost always return to a matching call instruction. Many techniques

have been designed to take advantage of this property to accelerate return han-

dling in DBTs.

While return address stacks have been used in existing DBTs [HK06], they

have used normal indirect branch instructions instead of return instructions

and thus do not take advantage of hardware return prediction. They also do

not implement the optimizations described in this chapter for eliding return

address stack operations and for efficient handling of return address stack mis-

predictions.
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An experimental version of DynamoRIO [Bru04] did attempt to combine a

software return address stack with hardware return prediction, but the result-

ing performance was worse than that of using a hash table lookup. This was

caused by excessive memory operations and because call return targets were

not kept in the same block as the call instruction itself.

Pin [LCM+05] uses function cloning to create a different translated copy

of a function for each site it is called from. Because each clone is specialized

for a single caller, which is known at translation time, a function return can be

translated to a compare and branch to the return target. While this provides an

accurate prediction of the return address in most cases, it comes at a significant

cost in memory, instruction cache locality and translation effort due to code

duplication since a new clone needs to be generated for each site a function is

called from.

Fast returns [SKC+04] consist of translating call instructions such that they

generate the TPC of the return target instead of the SPC for the program-visible

return address. This allows return instructions to avoid a SPC-to-TPC lookup

because the return address is a TPC value instead of an SPC value. Moore

et al. [MBC+09] proposed a variant of this called checked fast returns which

adds a check to the return instruction to ensure the address is a valid TPC

value. While these techniques offer near-native performance for translated

return instructions, they can cause applications to malfunction if they attempt

to read the return address of a function, for example when generating stack

traces or when unwinding the stack.

The return cache [SSB05, PG10] is a different approach which works by

using a direct mapped hash table which holds return target TPC addresses and

is indexed by a hash of the return target SPC address. A return instruction is

handled by simply branching to an entry in the return cache. Hash collisions
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are handled at the return target by comparing the SPC used for the lookup

with the SPC of the return target. The downsides of this approach are that hash

collisions are not handled efficiently and that it interacts poorly with hardware

branch prediction mechanisms.

The dual-address return address stack [KS03] is a technique that requires

modifying the processor hardware. It works by extending the hardware return

address predictor to track both SPC and TPC addresses. Since this technique

requires hardware support, it is not usable on existing architectures.

In summary, fast returns suffer from transparency issues, the dual-address

return address stack requires additional hardware and the remaining tech-

niques have performance overheads.

3.6 Summary

This chapter has presented three novel techniques that improve the perfor-

mance of indirect branches in DBTs. These techniques have been implemented

in MAMBO-X64, and their performance impact was evaluated using the SPEC

CPU2006 benchmarks. Together, these techniques allow MAMBO-X64 to achieve

a very low performance overhead of only 10 % on average compared to native

execution of 32-bit programs.

The first technique, hardware-assisted function returns, tracks the SPC and

TPC addresses of executed call instructions in a software return address stack

so that subsequent return instructions can use the last entry on the stack as

a predicted branch target, thus avoiding the overhead of SPC to TPC trans-

lation. This extends previous work on return address stacks by combining it

with a novel layout for translated code that allows the use of the hardware

return address predictor in translated code, as well as optimizations to elide
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return address stack operations and to better handle return address stack mis-

predictions. Of the three techniques presented in this chapter, this one has the

highest impact when applied to SPEC CPU2006 running under MAMBO-X64,

reducing DBT overhead by 40 % on average and by up to 90 % on some bench-

marks. This approach has significant benefits over techniques based on hash

tables due to the reduced the number of CPU branch mispredictions.

The second technique, branch table inference, is an algorithm for recog-

nizing and translating certain code patterns that are used for branch tables.

This allows branch tables to be translated as multi-way direct branches rather

than as indirect branches by reading the source branch table and generating

a corresponding branch table in the translated code. This optimization com-

pletely eliminates DBT overhead on branch tables, and significantly improves

the performance of benchmarks which make extensive use of branch tables,

achieving an overhead reduction of 40 % on some benchmarks. While detec-

tion of branch tables has previously been used in DBTs, branch table inference

provides a systematic way of detecting many variants of branch tables and ex-

tracting the bounds of the table directly from the source instructions instead

of guessing it.

The last technique, fast atomic hash tables, takes advantage of the fact that

aligned 64-bit loads are guaranteed to be atomic on 64-bit architectures and

some 32-bit architectures to perform fast indirect branch lookups on a thread-

shared hash table. This avoids the need for memory barriers in performance-

critical lookup code, which reduces DBT overhead by 40 % compared to a DBT

that uses memory barriers. It matches the performance of thread-private hash

tables while scaling much better to large numbers of threads. In experiments,

it was shown to match the performance of SPIRE, an existing indirect branch

handling technique, while consuming 50 times less memory.
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While these techniques have been shown to be effective on MAMBO-X64

for translation of AArch32 executables to AArch64, they are also applicable on

a wider range of architectures. Branch table inference can work on any ar-

chitecture as long as a branch table instruction sequence can be recognized.

Hardware-assisted function returns can also be generalized, although some

additional overhead may be introduced by the need to have scratch registers.

Finally, fast atomic hash tables can work on 64-bit architectures but has limi-

tations on 32-bit architectures as described earlier.
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Chapter 4

MAMBO-X64: Advanced

optimizations and general design

Although indirect branches were the major remaining inefficiency in DBT de-

velopment, there are a number of other aspects that may still be subject to

improvement. This chapter addresses some of these issues and demonstrates

that further optimizations can be made.

Section 4.1 describes several of the transformations used by MAMBO-X64

to translate AArch32 instructions into AArch64 code. Of particular note are

the scheme for translating AArch32 floating point registers, which builds upon

Pin’s register binding [LCM+05] optimization to allocate registers across mul-

tiple fragments dynamically, and the novel speculative address generation op-

timization which efficiently handles integer overflows in address calculations

for load/store instructions.

Section 4.2 describes ReTrace, a novel algorithm for trace compilation which

takes advantage of hardware return address prediction. This is done by in-

tegrating the hardware-assisted function returns algorithm (described in Sec-

tion 3.1) with the Next Executing Tail (NET) trace compilation scheme [DB00].
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Section 4.3 describes the mechanisms used by MAMBO-X64 to translate

operating system signals so that they can be handled by the translated ap-

plication. Signals are particularly tricky for DBTs because they can interrupt

the execution of translated code at arbitrary points, which makes handling

them susceptible to race conditions. Additionally, the application may rely on

highly specific architectural features such as register contents at the interrup-

tion point. While existing DBTs have attempted to address this problem in

various ways, many of these suffer from race conditions and a lack of trans-

parency. MAMBO-X64 combines several techniques to ensure that signals are

delivered to the application correctly and with minimal performance impact.

These techniques collectively reduce the overhead of binary translation,

and can even raise the performance above that which can be achieved through

hardware support: on an X-Gene XC-1 system, an AArch32 build of SPEC

CPU2006 runs 1 % faster under MAMBO-X64 than it does running natively

on the same processor, even with translation time included.

These techniques also scale to multiple threads thanks to MAMBO-X64’s

thread-shared code cache architecture. The overhead, compared to native ex-

ecution, of running the PARSEC benchmark suite on MAMBO-X64 on that same

system is of 2.1 % for 1, 2 and 4 threads, and 4.9 % with 8 threads.

4.1 Translation process

Upon reaching a code address for which there is no translated code fragment,

MAMBO-X64 will begin scanning the instructions of the source program until it

reaches a control flow instruction1. As instructions are gathered, the DBT will

also determine the set of input and output registers and condition flags for each

1This is typically a branch instruction, but it can also be a system call or other exception-
generating instruction.
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instruction, which are used in the later stages of the translation process. Once

a control flow instruction is encountered the fragment ends, and a reverse pass

is done through the instructions to determine register liveness and eliminate

instructions with no live outputs.

After the instruction analysis pass has completed, MAMBO-X64 begins trans-

lating the block of AArch32 instructions into AArch64 code. While doing so,

it also performs several optimizations to improve the generated code, some of

which are shown in Table 4.1:

Instruction merging MAMBO-X64 can take advantage of the new instruc-

tions in AArch64 to translate sequences of AArch32 instruction into a

single AArch64 instruction. For example, floating-point comparisons on

AArch32 require two instructions, one to perform the comparison and

one to load the result into the condition flags register. This same opera-

tion on AArch64 only requires a single instruction which performs both

operations. MAMBO-X64 can recognize the AArch32 VCMP and VMRS

pair of instructions and optimize it to a single AArch64 FCMP instruction.

Dead code elimination Some instructions can have more than one output,

such as an instruction both writing to a register and updating some con-

dition flags. In many cases, some of the condition flags are identifiably

‘dead’ (i.e. never used), in which case MAMBO-X64 can avoid computing

them.

Code layout optimization Some AArch32 instructions have complex behav-

ior that requires many AArch64 instructions to emulate accurately. A

large portion of the complexity is due to the need to handle edge-cases

which rarely occur in real applications, such as non-default rounding

modes or overlong bit shifts (shifting by a value greater than the register
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width). When translating these instructions, MAMBO-X64 moves these

cold paths outside the main fragment code, which allows the hot paths

to execute without needing to take branches.

Constant inlining A common way to load constants into a register in ARM

code is by using a PC-relative load instruction. Since this instruction

can only generate addresses within 4 kB of the PC, a compiler will mix

constants into the code pages of a program. When MAMBO-X64 detects

such a pattern, it will copy the constant into the code cache and translate

the load into a native PC-relative load of that constant. This is superior

to the naïve approach of loading the constant from the code pages of the

original program: this optimization helps to reduce data cache and TLB

pressure since the translated code no longer has to access the code pages

of the original program.

In experiments, the SPEC CPU2006 benchmarks running under MAMBO-

X64 executed on average 10 % more instructions than when running natively.

However, as shown in Section 4.4, this increased instruction count only has

minimal performance overhead. This is because many of these extra instruc-

tions do not introduce data dependency stalls and can thus be executed in

parallel with other instructions.

4.1.1 Conditional execution

Whereas most architectures tend to only support conditional execution in the

form of conditional branches, an unusual feature of AArch32 is the ability to

predicate almost all instructions. While this feature enables compact hand-

written assembly function, most compilers make limited use of predicated ex-

ecution and primarily rely on conditional branches instead. This feature was
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Original AArch32 code Translated AArch64 code

ADDS R0, R1, R2, LSL #2 ADDS W0, W1, W2, LSL #2

VCMP.F64 D0, D1
VMRS APSR_nzcv, FPSCR

FCMP D0, D1

LDR R0, [PC, #data - .]

data:
.word 0xabcd1234

LDR W0, [PC, #code_cache_data - .]

code_cache_data:
.word 0xabcd1234

MOVEQ R0, R1
MOVNE R0, R2

CSEL W0, W1, W2, EQ

MOV R0, R1, LSR R2 AND W17, W2, #0xe0
MOV W0, #0
CBNZ W17, .+8
LSRV W0, W1, W2

VCVTR.U32.F64 S0, D1
VMOV R0, S0

AND W16, W22, #0xc00000
CBNZ W16, cold_path
FCVTNU W0, D1
continue:
...

cold_path:
TBZ W16, #23, .+16
TBNZ W16, #22, .+20
FCVTMU W0, D1
B continue
FCVTPU W0, D1
B continue
FCVTZU W0, D1
B continue

Table 4.1: Examples of AArch32 instruction sequences translated by MAMBO-
X64.
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therefore not carried over to AArch64, which only supports three types of con-

ditional instructions: conditional select (CSEL and FCSEL), conditional com-

pare (CCMP) and conditional branch (B.cc).

A naïve translation is to simply jump over the translations of predicated in-

structions if their predicate is false. MAMBO-X64 performs a few optimizations

on top of that, such as grouping instructions with identical predicates together

and converting adjacent MOV instruction with the same destination register but

opposite predicates into conditional selects. An example of the latter is shown

in Table 4.1.

Conditional branches to other fragments present another difficulty: MAMBO-

X64 allocates its code cache as a single 128 MB segment of virtual memory,

which allows an AArch64 unconditional branch instruction to jump to any

point in the code cache since that instruction has a range of ±128 MB. How-

ever, AArch64 conditional branch instructions instead have a range of only

±1 MB, which means that a conditional branch cannot jump to a different frag-

ment directly if it is more than 1 MB away from the branch instruction in the

code cache.

To avoid this problem, MAMBO-X64 uses a two stage branch linking scheme.

First, the size of individual fragments is limited to 1 MB2, which guarantees that

a conditional branch within a fragment is able to target any instruction in that

same fragment. Each conditional branch that jumps to a different fragment is

then given an associated long branch, which is a single unconditional branch

instruction located at the end of the current fragment. MAMBO-X64 will point

the conditional branch to the target fragment directly if it is within the range

of the conditional branch instruction. If that is not the case then MAMBO-X64

2In practice, most fragments contain fewer than a dozen instructions. The largest fragments
observed in experiments only consisted of a few hundred instructions.
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will point the conditional branch to its associated long branch, and then point

the long branch to the target fragment.

A final complication is the handling of the IT (If-Then) instruction. This

instruction predicates the next one to four instructions, creating an “IT block”.

Two rules of the ARM architecture allow MAMBO-X64 to determine the pred-

icates of instructions in an IT block statically at translation time:

• A branch instruction is only allowed at the end of, or outside an IT block,

and

• A branch instruction may not jump into the middle of an IT block.

If code that violates these rules is executed then behavior is considered

unpredictable, which means that an implementation of the ARM architecture

is free to perform any action. MAMBO-X64 takes advantage to these rules to

assume that, in almost all cases, fragments do not begin in the middle of an IT

block.

There is only one situation in which control can be transferred into the

middle of an IT block: exception-generating instructions3 are allowed in IT

blocks, and an exception return from kernel mode is allowed to return into the

middle of an IT block by restoring a hidden ITSTATE register which holds the

state of the IT block when the exception occurred.

MAMBO-X64 handles this situation by statically determining the value of

the ITSTATE register at each exception-generating instruction and recording

it in the fragment metadata used for exception handling (see Section 4.3.1).

When an exception occurs, this value is passed to the application signal handler

as part of the register context. When the signal handler returns, the ITSTATE

3This includes the system call instruction, which the ARM architecture allows in an IT block,
although this is not fully supported by Linux.
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Figure 4.1: Floating-point register aliasing in AArch32 and AArch64.

value in the register context is used by MAMBO-X64 to create a special frag-

ment which resumes execution with the correct set of predicates for the rest of

the IT block.

4.1.2 Register allocation

Translation from AArch32 to AArch64 is interesting because it exposes the

problem of both an expanding register bank — general purpose registers — and

contracting register bank — floating-point and SIMD registers — as shown in

Table 4.2. Because the AArch64 general purpose registers are a strict superset

of the AArch32 ones, MAMBO-X64 uses a one-to-one mapping of each 32-bit

AArch32 register into a 64-bit AArch64 register. The remaining AArch64 regis-

ters are used to hold various AArch32 flags and pointers to DBT data structures,

or simply as scratch registers for emulating certain instructions.

However this approach does not work for floating-point registers because

AArch32 has more floating-point registers than AArch64: an AArch32 program

can — by virtue of treating some as single-precision and some as double-

precision – use up to 48 floating-point registers (D16 – D31 and S0 – S31),

while an AArch64 program is limited to a maximum of 32 floating-point reg-

isters (V0 – V31). MAMBO-X64 therefore keeps the AArch32 floating-point

register state in memory and dynamically allocates registers from V0 – V31 to
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Register Description

R0 – R14 32-bit general-purpose registers
SP 32-bit stack pointer, alias for R13
LR 32-bit link register, alias for R14
PC 32-bit exposed program counter
S0 – S31 32-bit floating-point registers (overlaps with D0 – D15)
D0 – D31 64-bit floating-point/SIMD registers (overlaps with Q0 – Q15)
Q0 – Q15 128-bit SIMD registers

(a) AArch32 registers

Register Description

X0 – X30 64-bit general-purpose registers
LR 64-bit link register, alias for X30
SP 64-bit stack pointer
XZR 64-bit zero register
V0 – V31 128-bit floating-point/SIMD registers

(b) AArch64 registers

Register Usage in MAMBO-X64

X0 – X14 Mapped to R0 – R14
X15 – X18 Scratch registers
X19 APSR.Q flag
X20 APSR.C and APSR.V flags
X21 FPSCR.NZCV flags
X22 Shadow copy of the FPCR register
X23 APSR.GE flags
X24 – X27 Hash table parameters for indirect branch lookup
X28 Return address stack pointer used for return prediction
X30 Translated link register used for return prediction
SP Pointer to DBT context on the stack
V0 – V31 Dynamically mapped to floating-point/SIMD registers

(c) AArch64 register usage in MAMBO-X64

Table 4.2: Comparison of AArch32 and AArch64 registers and how MAMBO-
X64 uses them.
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hold AArch32 floating-point/SIMD register values as they are needed, similarly

to register allocation of variables by a compiler.

This dynamic allocation is further complicated by the register aliasing be-

havior of AArch32, as shown in Figure 4.1. For example, a write to S0 or S1

will modify the value of D0 since these alias. MAMBO-X64 handles such a sit-

uation by invalidating any AArch64 register holding the value of D0 before the

write to S0/S1.

4.1.3 Dynamic register bindings

To avoid having to write modified floating-point register values back to memory

before branching to another fragment, MAMBO-X64 tries to keep values in

registers across fragment boundaries by using dynamic register bindings. This

optimization is based on the work previously done in Pin [LCM+05], but has

been improved in several ways to make it more suitable for AArch32 floating-

point register translation.

This optimization works by creating specialized versions of a fragment,

based on the same source AArch32 code but with different register bindings on

entry. The register bindings describe which value each AArch64 floating-point

register contains and whether it is ‘dirty’ (different from the in-memory register

state). For example, the bindings [V0=D1 V1=S15!] mean that the AArch64

register V0 contains the value of the AArch32 register D1, and AArch64 regis-

ter V1 contains the value of AArch32 register S15 which has not been written

back to the in-memory register state yet.

Since this requires both the source and target fragments of a branch to

agree on a set of register bindings, it is only possible to apply this optimization

within fragments or around direct branches. As the target of an indirect branch
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is not known in advance, all floating-point register values are written back to

memory before taking such branches.

Generating an excessive number of fragments can bloat code cache memory

usage and increase instruction cache pressure, which can outweigh the bene-

fits of register bindings. To avoid this, MAMBO-X64 has three mechanisms to

reduce the number of fragments that are generated:

Biased register allocation When floating-point registers are allocated, the reg-

ister allocator will look at all exit branches of the current fragment and

gather a list of all existing fragments for the branch targets. It will then

try to prefer registers which match the bindings for the branch targets,

which can avoid having to create a new fragment variant with different

bindings.

Liveness-aware binding matching When linking a fragment into the code

cache, MAMBO-X64 will take register liveness in the target block into ac-

count when trying to match the bindings of an exit branch with a target

block. For example, consider a branch with bindings [V0=D1 V1=S15!]

and a target fragment with bindings [V0=D1]. Normally these bindings

would be incompatible since the target fragment expects the value of

S15 to be in the in-memory register state. However if S15 is known to

be dead in the target fragment, then these bindings are compatible since

the value of S15 is never going to be read.

Register binding reconciliation If the number of fragment variants for a sin-

gle entry point address exceeds a threshold, then new fragments with

branches to that address will be forced to reconcile their register bind-

ings with those of one of the existing variant instead of creating a new

one.
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Type AArch32 AArch64

No offset LDR R0, [R1] LDR W0, [X1]
Immediate offset LDR R0, [R1, #8] LDR W0, [X1, #8]
Register offset LDR R0, [R1, R2] LDR W0, [X1, X2]
Shifted register offset LDR R0, [R1, R2, LSL #2] LDR W0, [X1, X2, LSL #2]

Table 4.3: Examples of memory addressing modes in AArch32 and AArch64.

4.1.4 Speculative address generation

Load and store instructions in both AArch32 and AArch64 support a similar

set of addressing modes4, of which a few examples are shown in Table 4.3.

Despite their similarity however, simply translating the AArch32 addressing

modes into their AArch64 equivalent will not always produce correct results.

This is due to the address width used by the processor when performing an

address calculation, which can affect the result if the calculation overflows.

For example, consider the case where R1 has the value 0xffff0000 and

R2 has the value 0x40000. On AArch32, adding these two registers together in

an address calculation will wrap around the 32-bit address space and result in

the address 0x30000. On AArch64 however, this will not overflow the 64-bit

address width and will instead result in the address 0x100030000, which is

outside the 32-bit address space.

The simplest solution is to use a separate 32-bit ADD instruction in the trans-

lated code to perform the addition, which will properly truncate the result to

32 bits. The resulting value can then be used as the address for the load/store

instruction. While this approach provides correct behavior for all address cal-

culations, it requires an additional instruction for each translated load/store,

4AArch32 also supports a variety of more obscure address modes that AArch64 does not,
such as indexing with right shifted or rotated registers, but these are rarely used and thus are
not a performance concern.
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which has a significant impact on performance due to the added data depen-

dency and additional instruction cache pressure.

The fact that AArch32 limits immediate offsets for load/store instructions to

±4095 bytes offers a partial solution to this problem since this limits potential

overflows to just 4 kB outside the 32-bit address space. By reserving a guard

page at the end of the address space, MAMBO-X64 ensures that out-of-bounds

accesses from immediate offset addressing will raise a SIGSEGV signal because

they will either hit the guard page after the 4 GB address space or wrap around

the 64-bit address space and hit inaccessible kernel addresses.

To maintain transparency, MAMBO-X64 also prevents the translated pro-

cess from mapping the first and last pages of the virtual address space, which

ensures that accessing an address both directly and through a wrap-around will

produce the same signal (e.g. accessing 0x400 and 0x100000400 both gener-

ate SIGSEGV). Once MAMBO-X64 catches the signal, it can adjust the faulting

address before passing it on to the signal handler of the translated application.

A more general solution, which also applies to register offset addressing,

is to use mirror mappings, which involve mapping the same physical pages at

multiple virtual addresses. Such mappings have been used in recent work to

support a variety of use cases [DA06, LWH11, NT14, HDBZ15]. However, cre-

ating such parallel mappings on mainstream operating systems such as Linux

is not always possible due to the existence of copy-on-write memory mappings,

such as those used for anonymous memory and private file mappings, for which

the operating system may not propagate modifications to mirror mappings.

A new, more general approach was developed which speculatively assumes

that the address calculation will not overflow, which is the case for the vast

majority of loads and stores. When translating a register offset load/store in-

struction, MAMBO-X64 takes advantage of a feature of the AArch64 instruction
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set which allows the second operand of a register offset load/store instruction

to be sign-extended from 32 bits to 64 bits. This matches the common conven-

tion on ARM, which is that the first operand is a base address and the second

operand is an offset from that base address. The sign-extension handles the

cases where the offset is negative, at the expense of the much-rarer cases where

the offset is over 2 GB.

MAMBO-X64 must detect situations where this assumption is invalid and

correct them. This is achieved by extending the range of memory reserved by

MAMBO-X64 to the first 12 GB of virtual memory. AArch64 allows the second

operand in a 32-bit register to be shifted left by one or two places after being

sign-extended, which gives it a potential range of ±8 GB. Combined with the

first operand, this results in such a load/store being able to access any address

from −8 GB to 12 GB. Any overflowing address computations will either fault

on the pages reserved by MAMBO-X64 or wrap around and fault in the kernel

address space.

Once MAMBO-X64 detects a fault due to mis-speculation, it performs sev-

eral steps:

1. First, the source address of the mis-translated instruction is recorded in

a ‘blacklist’ hash table which is used during translation to disable specu-

lative optimizations on instructions that are known to mis-speculate.

2. The translated fragment in which the fault occurred is then marked for

deletion and any incoming branches to it are redirected elsewhere. This

will force the DBT to re-translate the fragment if it is in a loop, this time

taking the blacklisted instruction into account.

3. The faulting instruction is emulated in the signal handler, with the re-

sulting address being properly truncated to 32 bits.
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4. Execution of the translated fragment is resumed after skipping the mis-

speculated instruction.

This system allows MAMBO-X64 to emulate 32-bit load/store addressing

modes efficiently while still handling edge cases that overflow the address cal-

culation correctly. Mis-speculation is rare: in experiments, mis-speculation

was only observed in the hand-written assembly code in glibc which converts

numbers to strings.

4.2 Return-aware trace generation

A significant optimization performed by MAMBO-X64 is trace generation, which

involves collecting a linear sequence of basic blocks and combining them into

a single large code fragment. This results in improved code layout and perfor-

mance improvements due to the elimination of inter-block branches as well as

additional opportunities for optimizations such as dead code elimination.

New code is initially translated into basic blocks, and frequently-executed

basic blocks are detected and translated into traces. MAMBO-X64 uses a vari-

ant of the Next Executing Tail (NET) scheme [DB00] from Dynamo [BDB00]

to generate traces. NET works by adding an execution counter to basic blocks

which are the target of a backwards branch or an exit from an existing trace,

which is incremented every time the basic block is executed.

Once a counter reaches a pre-defined threshold value, the DBT will begin

recording a trace. This involves following the execution flow of the translated

code one basic block at a time until control loops back to the start of the current

trace or reaches an existing trace5. The basic blocks are then collected and

compiled into a single-entry, multiple-exit trace.
5There are other conditions for terminating a trace, such as exceeding a size limit, but these

are rarely triggered.
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Since MAMBO-X64 uses a thread-shared code cache, all running threads

will share the same set of counters. Since these counters are only used to

detect hot code, they do not need to be exact. By exploiting this property,

MAMBO-X64 can avoid using expensive atomic add instructions to increment

these counters and use a non-atomic load-increment-store instruction sequence

instead. While data races could, in theory, delay trace creation for a basic block

indefinitely, this does not occur in practice and a trace is always eventually

created.

MAMBO-X64 allocates traces in a separate part of the code cache to keep

hot code close together and improve instruction cache locality. This also allows

fragments to be linked to each other using conditional branch instructions that

have a limited addressing range (±1 MB) rather than having to use an inter-

mediate ‘trampoline’ branch with a longer range.

4.2.1 Interactions with hardware-assisted function returns

Hardware-assisted function returns (Section 3.1) exploit hardware return pre-

diction by ensuring that the return target of a call is located immediately after

the corresponding translated call instruction. This is done by not ending a

basic block when a call instruction is encountered. Translated code can then

use native call and return instructions, which take advantage of hardware re-

turn address prediction automatically. This code layout is necessary because

the hardware return address predictor makes the assumption that a return in-

struction will jump to the address immediately after a call instruction.

One of the characteristics of traces generated by NET is that they can span

function calls and returns, which allows NET to inline a function call. However

this does not preserve the original call and return instructions, which precludes

the use of hardware return address prediction. This property significantly de-
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grades the effectiveness of hardware-assisted function returns when used with

NET.

Consider the example in Figure 4.2 which consists of a function containing

a loop that is called from two different places. The first trace that NET will

create is the inner loop (C D) after it has been executed a sufficient number

of times. After the call from A to C is executed a few times, two new traces

are created. The first (AC D) crosses over the call instruction to inline the first

half of the callee before looping into the C D trace, while the second one (EB)

crosses over the return instruction and continues in the caller.

The latter is able to trace across a return instruction by using a guard: if

the return address is different from the one when the trace was generated then

the code will fall back to a hash table lookup to handle the indirect branch.

However, this guard can be a big source of branch mispredictions if the function

is called from multiple places. This is shown by the traces generated when the

function is called from X : while the first block is similar, upon exiting C D

control will go to the EB trace, which will then fail its guard and jump to the

Y trace after a hash table lookup, thus incurring additional overhead.

4.2.2 Taking advantage of hardware return prediction

MAMBO-X64 introduces an improved version of NET which is compatible with

hardware-assisted function returns, called return-aware trace generation, or

simply ReTrace. The principle is that traces should not cross function calls

or returns. This is implemented by adding the following rules to NET:

• If a return instruction is reached while recording a trace, the trace is

stopped at that instruction.
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Figure 4.2: Example traces showing the differences between NET and the Re-
Trace algorithm used by MAMBO-X64. It consists of two pieces of code (AB
and X Y ) both calling a single function (C DE) which contains a loop (C D).
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• If a call instruction is reached while recording a trace, the DBT will save

the current state of the trace and stop recording. An entry is pushed

onto the RAS as would normally be done for any call instruction, how-

ever the code cache address in the RAS entry will point to a resume stub

instead. Control is then transferred to the call target normally (without

recording).

• Once control reaches a resume stub — which are only reachable through

a function return — the saved trace context is restored and trace record-

ing is resumed.

Going back to the example in Figure 4.2, this new algorithm will also create

the C D trace first, as it is the inner loop. However the trace starting at A will

be different: trace recording is paused after the call instruction and the trace

is pushed onto the stack of active traces. Control is then passed to the inner

loop trace. When the inner loop exits, it will create a trace E which stops at the

return instruction. The return will pop the address of the resume stub from the

RAS and resume recording of the trace started at A to form the AB trace. The

X Y trace is constructed in the same way as the AB trace. The resulting trace

layout is much closer to the original code layout than that generated by NET.

The main advantage of this trace layout is that it allows translated code to

make use of hardware return address prediction. This is possible because the

use of a resume stub allows the return target in the final trace to be located

immediately after the call instruction, which matches the expectations of the

hardware predictor.

This approach does have some downsides: the generated traces are shorter,

which gives MAMBO-X64 fewer opportunities for optimization, and return in-

structions force all bound registers to be flushed to memory. However, these
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disadvantages are outweighed by the performance improvement from hardware-

assisted functions returns, as shown in Section 4.4.4.

4.2.3 Avoiding memory leaks

A paused trace is pushed onto a stack when recording reaches a call instruction

and popped from that stack when a resume stub is executed. The address of

a resume stub is pushed onto the RAS when a trace is paused, which makes it

only reachable through a translated return instruction. However if an entry is

removed from the RAS through other means then the paused trace will never

be resumed. This can occur in two situations under MAMBO-X64:

RAS overflow When the RAS becomes full, attempts to push another entry

will trigger a fault on a guard page. The fault handler will free up space

by moving the top half of the RAS into the bottom half and adjusting the

RAS pointer register accordingly. Since this effectively drops the bottom

half of the RAS entries, a thread-local flag is set to indicate that the RAS

has overflowed. If the flag is set when control is returned to MAMBO-

X64 then any paused traces whose return stubs were dropped from the

RAS will be aborted.

RAS unwinding When a RAS misprediction occurs, MAMBO-X64 will attempt

to unwind the RAS by matching the given return address with one of the

entries in the RAS. If a match is found then all entries above it are dis-

carded, which avoids multiple return mispredictions when the translated

program performs stack unwinding (due to an exception, for example).

If any return stubs are discarded by this procedure then their matching

paused traces are aborted.
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4.3 Precise OS signal handling

A signal is a mechanism by which an OS can interrupt the execution of an

application process to notify it of some event. Such events include external

events, such as a timer (SIGALRM), or application-generated events such as an

unhandled page fault (SIGSEGV).

Precise handling of operating system signals is challenging in DBTs because

they can interrupt program execution at arbitrary points. When a signal is

delivered, the operating system invokes an application-defined signal handler

function and passes it the execution context at the interruption point. This

execution context contains the full register state of the processor at the point

where the code was interrupted and is used to resume execution of the in-

terrupted code if the application signal handler returns. This poses several

challenges for DBTs:

• Signals are delivered between two instructions, however instruction bound-

aries in translated code may not match those of the original application

code.

• The registers used by translated code will be different from those of the

original code, so a DBT must reconstruct the original application register

state from the register values of the translated code.

• A DBT may perform optimizations which eliminate writes to registers

that appear dead, however these registers must contain a correct value

in the context passed to the application signal handler.

• A signal should be delivered to the application in bounded time, other-

wise the application may remain stuck in an infinite loop while waiting

for a signal.
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4.3.1 State reconstruction

Signals can be separated into two types: synchronous and asynchronous. Syn-

chronous signals are delivered in response to a processor-generated exception

from a specific instruction, usually a load or store instruction. MAMBO-X64

tracks all potentially exception-generating instructions and ensures that, if an

exception occurs, the contents of all AArch32 registers are either directly avail-

able or can be derived from the values currently in AArch64 registers.

MAMBO-X64 also creates a table of all instructions that can generate an

exception (e.g. load/store instructions) within each fragment, containing the

original instruction address, the current register mappings and any other meta-

data necessary to recover the original execution context if a fault occurred at

that instruction. Since this metadata is rarely used, it uses a compact encoding

scheme to minimize memory overhead.

Asynchronous signals are delivered in response to an external event, usu-

ally outside the control of an application, which means that they can occur

at any instruction in the translated code. Extending the previously described

mechanism to record metadata for all instructions is impractical because it lim-

its optimization opportunities, increases memory usage and complicates the

translation of certain AArch32 instructions (e.g. LDM, STM) which require mul-

tiple AArch64 instructions to emulate. Since these signals are inexact, signal

delivery to the application is instead postponed until control leaves translated

code and returns to MAMBO-X64, at which point the full AArch32 register state

is available in a well-defined state.
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4.3.2 Fragment unlinking

While control will naturally return to MAMBO-X64 when the application code

tries to execute a system call or when a new block needs to be translated, wait-

ing for such an event to deliver a signal can be a problem if the application is

stuck in an infinite loop. To avoid postponing a signal for an unbounded time,

MAMBO-X64’s signal handler detects whether it has been interrupted in the

middle of a fragment and, if so, will unlink the exits of the interrupted frag-

ment. This will force any exit from that fragment to return control to MAMBO-

X64. There are four ways in which control can exit a fragment:

Direct branches These branches are unlinked by dynamically patching the

branch instruction to redirect it to a code stub which records which exit

was taken before returning control to MAMBO-X64.

Indirect branches These branches have been translated into an inline hash

table lookup. They are unlinked by replacing the hash table pointer with

that of an empty table, which will cause a miss and return control to

MAMBO-X64. If the signal was delivered in the middle of a lookup then

the program counter is rewound back to the start of the lookup so that

the new hash table is used.

Function returns MAMBO-X64 tracks function calls and returns using a re-

turn address stack to predict the target of return instructions. Unlinking

returns is done by replacing the top entry of the return address stack with

the address of a code stub, which guarantees that control is returned to

MAMBO-X64 whether the return address is correctly predicted or not.

Exception-generating instructions These instructions include system call (SVC)

and undefined instructions as well as normal loads and stores that may
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trigger a page fault. Since they are already translated into a branch

that returns to MAMBO-X64, nothing special needs to be done to handle

them.

Once control has exited the code cache and returned to MAMBO-X64, all

fragment exits are then re-linked to their previous state. Because multiple

threads may receive a signal while in the same fragment, a reference count

is used to track whether the direct branches in the fragment should be kept

unlinked. The fragment is only re-linked once no more threads have a pend-

ing signal while executing inside that fragment. Another thread executing an

unlinked fragment will only suffer a minor slowdown due to the forced exit to

MAMBO-X64, after which it will resume execution without any adverse effects.

Moreover, the window for this race condition is very small and has not been

observed in any of the tested benchmarks.

4.3.3 Race-free signal delivery

Delaying signal delivery until execution has reached a safe point can lead to

race conditions if certain events happen between the DBT receiving the signal

from the kernel and delivering that signal to the translated application. These

events are:

System call A system call must not be executed while a signal is being held

by the DBT, since this could lead to an application missing a signal en-

tirely if the system call involves waiting for a signal. Consider the case

of sigwait: invoking this system call during the delay would result in

the application blocking indefinitely since, from the point of view of the

kernel, the signal has already been delivered to the application.
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Asynchronous signal Receiving a second asynchronous signal during the de-

lay can be problematic since the application signal handler for the first

signal will execute with a different signal mask. If this signal mask would

have blocked the second signal then that signal must be kept in a list in

the DBT until the application signal mask is changed again to allow it

to be delivered to the application. However holding a signal for an ex-

tended period can lead to incorrect results from system calls that inspect

the set of pending signals in the kernel.

Synchronous signal A synchronous signal from an exception-generating in-

struction can also lead to similar issues, however this is complicated by

the fact that execution cannot continue after such a signal, since attempt-

ing to re-execute the exception-generating instruction would simply lead

to the same signal being raised again.

To preserve the Linux signal delivery semantics, MAMBO-X64 only delivers

a single signal at a time. All signals are blocked while the DBT signal handler is

executing, and all signals except those used for fault handling (e.g. SIGSEGV,

SIGBUS) are kept blocked until the signal is delivered to the application. The

blocked signals are restored immediately before the DBT starts executing the

signal handler set up by the translated program.

If a synchronous fault occurs while a signal is pending then the fault is not

delivered to the application. Instead, fragment metadata is used to recover the

register state at the fault point and this state is then used when delivering the

original signal to the application. The faulting instruction will execute again

once the application has finished handling the signal.

MAMBO-X64 handles system calls using an atomic check that only per-

forms a system call if there are no currently pending signals. The code for this

is shown in Figure 4.3: if a signal is waiting to be delivered to the application
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atomic_begin:
LDRB W9, signal_pending_flag
CBNZ W9, restart_syscall
SVC 0

atomic_end:
RET

restart_syscall:
MOV X0, #-ERESTARTSYS
RET

Figure 4.3: Code to atomically execute a system call only if there are no pend-
ing signals. If a signal is generated between atomic_begin and atomic_end
then the signal handler will rewind the program counter to atomic_begin.
The signal_pending_flag is set when an asynchronous signal has been re-
ceived by the DBT but not yet delivered to the application.

then the system call will not be executed and an error code indicating a system

call restart is returned. MAMBO-X64 will handle this error by immediately de-

livering the pending signal to the application as if it had occurred immediately

before the system call instruction.

Note that this mechanism handles system call restarting transparently, which

allows certain system calls that were interrupted by a signal to be restarted

automatically once the signal handler returns. The kernel supports this by

rewinding the program counter to the system call instruction in the context

structure passed to the signal handler. When MAMBO-X64’s signal handler in-

spects this context, it will see that it was interrupted just before the system call

instruction and handle it as if the system call had not been executed yet.

4.4 Evaluation

This section evaluates the performance of MAMBO-X64 and how the differ-

ent techniques contribute to its low performance overhead using the SPEC

CPU2006 [Cor] and PARSEC [Bie11] benchmark suites.
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Because the ARMv8 processors used in these experiments are capable of

running AArch32 code directly, all benchmarks were executed natively on the

same processor and the results are used as a baseline for the experiments. All

other results are normalized to this baseline, showing the relative performance

of the DBT compared to native execution. All benchmarks are compiled with

GCC 4.9.1 and optimization level -O2.

4.4.1 Experimental setup

The performance of MAMBO-X64 was evaluated on two 64-bit ARMv8 systems.

The first is an AppliedMicro X-Gene X-C1 development kit with 8 X-Gene pro-

cessor cores running at 2.4 GHz. Each core has a 32 kB L1 data cache, a 32 kB

L1 instruction cache, a 256 kB L2 cache shared between each pair of cores and

an 8 MB L3 cache. The machine comes with 16 GB of RAM and runs Debian

Unstable with Linux kernel version 4.6.

The second system is an Intrinsyc Dragonboard 810 with a Qualcomm

Snapdragon 810 processor. The processor is a big.LITTLE configuration with 4

Cortex-A57 out-of-order cores running at 1.96 GHz and 4 Cortex-A53 in-order

cores running at 1.56 GHz. The Cortex-A57 cores have 32 kB of L1 data cache,

48 kB of L1 instruction cache and 2 MB of shared L2 cache. The machine comes

with 4 GB of RAM and runs Android 5.0.2 Lollipop with Linux kernel version

3.10.49.

4.4.2 Overall performance

Figure 4.4 shows the performance of SPEC CPU2006 when running under

MAMBO-X64 on the two test systems. Since SPEC CPU2006 is a single-threaded
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Figure 4.4: Performance of SPEC CPU2006 on MAMBO-X64 on different pro-
cessors. Performance numbers are relative to the benchmark running natively
in 32-bit mode on the same processor.

benchmark suite, it was run twice on the Dragonboard 810: once on an out-

of-order Cortex-A57 core and once on an in-order Cortex-A53 core.

These results show that MAMBO-X64 reaches near-native performance on

out-of-order cores such as the Cortex-A57 or X-Gene, with a geometric mean

overhead of 2.5 % on the former, and a geometric mean performance improve-

ment of 1 % on the latter. The geometric mean overhead on the in-order

Cortex-A53 core is higher at 7.5 %, but this is likely to improve in the future as

MAMBO-X64 has not yet been fully optimized to target in-order cores.

MAMBO-X64 is able to run many 32-bit benchmarks faster than if they were

run natively on the processor. This is due to a combination of several factors:

• MAMBO-X64 takes advantage of the more flexible AArch64 instruction

encodings to translate certain AArch32 instruction sequences in to a sin-

gle AArch64 instruction.
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• Previous research in Dynamo [BDB00] has shown that effective trace

generation in a DBT can improve runtime performance compared to na-

tive execution.

• It has been observed that on certain combinations of benchmarks and

microarchitectures, such as the libquantum benchmark on X-Gene, the

AArch32 code generated by GCC causes processor pipeline stalls which

do not occur in the AArch64 translated code. Eliminating this outlier

brings the geometric mean performance down from a 1 % speedup to a

0.25 % slowdown.

Many of the floating-point benchmarks (such as povray, sphinx3, tonto and

gromacs) have significantly higher overhead on the Cortex-A57 than on the

other two micro-architectures. It has been determined that this is due to a

peculiarity in the floating-point pipeline of the Cortex-A57 which only affects

execution in AArch64 mode [ARM16]; the core will steer floating-point multi-

ply instructions to one of the two floating-point execution units depending on

whether the destination register of that instruction is odd or even, rather than

picking an idle execution unit, which can lead to load imbalance between the

two execution units. ARM has fixed this in newer revisions of the Cortex-A57.

The gobmk benchmark performs relatively poorly on all tested systems; it

is the only benchmark with an overhead of over 10 % on all systems. This is

because the gobmk benchmark is instruction cache-bound when run natively.

Running the benchmark under a DBT increases the instruction cache pressure

which contributes to the performance degradation.

The remaining results in this section are only shown for the X-Gene sys-

tem for brevity. Additionally, the Snapdragon system produces relatively noisy

results, with a typical variation of around ±2 % between runs, whereas the
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Figure 4.5: Performance of the PARSEC benchmarks running on MAMBO-X64
on the X-Gene system with different numbers of threads. Performance numbers
are relative to the benchmark running natively in 32-bit mode with the same
number of threads.

X-Gene system has much more stable results with a typical variantion of only

about 0.1 %.

4.4.3 Multi-threaded performance

Figure 4.5 shows the performance of the PARSEC multi-threaded benchmark

suite when running under MAMBO-X64 on the X-Gene system. The bench-

marks were run with 1, 2, 4 and 8 threads since the X-Gene system has 8

processor cores.

These results show that MAMBO-X64 scales well to multiple threads thanks

to its thread-shared code cache architecture. Since the code cache is shared

among all running threads, code only needs to be translated once instead of

having to be re-translated for each thread. This also allows significant savings

in memory usage because the code cache and its associated metadata is not

duplicated for all threads.
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Figure 4.6: Performance of SPEC CPU2006 running on MAMBO-X64 on the X-
Gene system with different trace generation techniques. Performance numbers
are relative to the benchmark running natively in 32-bit mode.

MAMBO-X64 achieves a low geometric mean overhead of 2.1 % when run-

ning PARSEC with 1, 2 and 4 threads, but this overhead climbs to 4.9 % when

running with 8 threads. This is mainly due to the dedup benchmark having

an overhead of over 30 %, which happens because the benchmark only runs

for about 16 seconds and does not allow execution of the translated code to

amortize the cost of translation. If dedup is excluded from the results then the

geometric mean overhead drops down to 3.0 %, which is closer to the results

with fewer threads.

4.4.4 ReTrace

The effects of trace generation and function call handling on the performance

of translated code was also investigated. Figure 4.6 shows the performance of

MAMBO-X64 in four configurations:

Return-aware trace generation Combines NET with hardware-assisted func-

tion returns using the ReTrace algorithm.
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Hardware-assisted function returns Extends basic blocks across call instruc-

tions, which allows the use of a return address stack and hardware return

address prediction.

Next Executing Tail Combines ‘hot’ sequences of basic blocks into traces using

the NET algorithm. However this does not make use of hardware-assisted

function returns because the call structure is not preserved.

Basic blocks only Only translates code into single-entry, single-exit basic blocks

and does not make use of the hardware return address prediction mech-

anism built into the processor.

By themselves, hardware-assisted function returns improve performance by

reducing the overhead from 11.1 % to 4.1 %. Similarly, NET alone reduces the

performance overhead from 11.1 % to 2.9 %. ReTrace is able to combine the

benefits of both of these techniques, allowing it to exceed the performance of

native execution.

4.4.5 Register bindings

The effect of inter-fragment register allocation on performance was measured

by disabling dynamic register bindings in MAMBO-X64. This is done by forc-

ing all floating-point register values to be written back to memory before any

fragment exits and reloading those values from memory as necessary in the

target fragment.

The results are shown in Figure 4.7. The effect is minimal on the SPEC in-

teger benchmarks since MAMBO-X64 uses static register bindings for general

purpose registers and therefore does not need to write them to memory. How-

ever there is significant performance degradation on the SPEC floating-point
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Figure 4.7: Performance of SPEC CPU2006 on MAMBO-X64 on the X-Gene sys-
tem with and without register bindings. Performance numbers are relative to
the benchmark running natively in 32-bit mode. Benchmarks up to xalancbmk
are part of SPECint, and benchmarks starting from bwaves are part of SPECfp.

benchmarks, which is mainly due to the extra memory traffic in the bench-

mark inner loops. These results show that register bindings offer a significant

performance improvement in floating-point applications.

4.4.6 Speculative address generation

The impact of speculative address generation in MAMBO-X64 was tested by

measuring the performance effect of disabling this optimization. This involves

translating all load/store instructions which use register offset addressing into

an ADD instruction to perform the address calculation, followed by a load/store

instruction using the resulting address.

Figure 4.8 shows that this optimization, unlike the previous one, primarily

impacts integer benchmarks as opposed to floating-point benchmarks. This

is due to a detail of the AArch32 instruction set: unlike loads and stores to

general-purpose registers, memory transfer instructions which target floating-

point registers only support a single, immediate offset addressing mode.
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Figure 4.8: Performance of SPEC CPU2006 on MAMBO-X64 on the X-Gene sys-
tem with and without speculative address generation. Performance numbers
are relative to the benchmark running natively in 32-bit mode. Benchmarks
up to xalancbmk are part of SPECint, and benchmarks starting from bwaves are
part of SPECfp.

The impact of this optimization is clearly shown in benchmarks such as bzip,

gcc and hmmer where the overhead is reduced to almost zero. The gcc bench-

mark has the largest gain due to speculative address generation, going from a

performance overhead of 11.1 % to a performance improvement of 0.4 %.

4.5 Related work

Dynamic binary translation is a mature technology, and many DBTs have been

created to target different use cases. This section explores some of these sys-

tems and compares them to MAMBO-X64.

4.5.1 Dynamic binary translation

QEMU [Bel05] is a sophisticated and detailed environment that allows boot-

ing up full operating systems using dynamic binary translation as a key en-
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abler. The basic mechanism translates from a source instruction set into the

native instruction set using an architecture-independent Intermediate Repre-

sentation (IR), which is then just-in-time compiled. Another research project,

HQEMU [HHY+12], has modified QEMU to use LLVM [LA04] as the IR to try

to improve performance by taking advantage of the LLVM JIT backends. How-

ever, even with these optimizations, QEMU remains many times slower than

native execution (Section 3.4.2). The IR used by MAMBO-X64 is closer to the

source architecture which enables performing ARM-specific optimizations such

as the handling of AArch32 floating-point registers (Section 4.1.2).

In a different setting, memTrace [PKG13] allows memory accesses in 32-

bit x86 programs to be instrumented, which enables the creation of tools for

detecting commonly occurring memory errors or watching certain addresses

for reads or writes. This tool is based on the fastBT [PG10] binary translation

framework which is designed to have low translation overhead. Similarly to

MAMBO-X64, it uses the 64-bit memory address space of x86-64 as an integral

part of the implementation, as well as translating from 32-bit x86 to x86-64.

However, even with instrumentation disabled, it has an average performance

overhead of about 17 % (as measured on SPEC CPU2000), unlike MAMBO-X64

which has close to native performance.

StarDBT [WHK+07] is a cross-platform dynamic binary translator which

translates 32-bit x86 programs into x86-64 code. It also has the ability to run

as a system-level translator which can translate an entire operating system. It

has slightly lower performance than memTrace, with an average performance

overhead of 27 % compared to native execution.

Binary translation has also been used previously to assist architecture tran-

sitions: IA-32 EL [BDE+03] is a tool which dynamically translates 32-bit x86

programs into Itanium instructions and has allowed Itanium processors to elim-
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inate hardware support for the x86 instruction set. IA-32 EL uses specialized

schemes to translate the x86 floating point register stack and emulate mis-

aligned memory accesses, but these concerns do not apply to the ARM ar-

chitecture. IA-32 EL uses a mechanism similar to MAMBO-X64 for state re-

construction when a synchronous signal occurs, which works by associating a

group of instructions with a commit point, which is typically inserted before

store and branch instructions. Each commit point has exception recovery meta-

data associated with it and instruction reordering is restricted across commit

points. MAMBO-X64 is different in that it effectively treats load instructions

as commit points, which is necessary to emulate accesses to memory-mapped

I/O correctly.

HP Aries [ZT00] is another tool, with a similar purpose to IA-32 EL, which

translates PA-RISC programs into Itanium code. Like MAMBO-X64, Aries is

also structured as multiple components, separating instruction set emulation

from system calls and signal translation, and improving portability to other

operating systems. One significant difference from the work presented in this

thesis is that Aries uses interpretation instead of translation when encountering

code for the first time; it switches to translation when it has identified hot

code through profiling in the interpreter. This allows the application to start

up faster since rarely used code does not need to be translated.

FX!32 [HH97, CHH+98] is an emulator combined with an offline binary

translator which was used to help migrate x86 Windows applications to the

Alpha architecture. Like Aries, this system works by first emulating an x86

application using an interpreter while generating profiling data. A background

process then generates translated Alpha code from the profile data and stores it

in a database. Unlike most similar tools, FX!32 does not translate the operating

system ABI at the system call layer. Instead, it provides wrapper libraries for
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the entire Windows API which forward to a native Alpha implementation of

these libraries, which requires a significant amount of work to maintain as the

Windows API evolves.

Rosetta [App06] is the product used by Apple to migrate from PowerPC to

x86, based on the QuickTransit [Tra08] technology. QuickTransit is an IR-based

dynamic binary translator with different ISA frontends as well as backends,

allowing increasing optimization levels to be applied to the most executed parts

of the code. Another key feature of QuickTransit is its support for mapping

system calls from the application into the native OS, such as when running a

Solaris application on a Linux system. MAMBO-X64 uses similar methods to

map Linux system calls from 32-bit to 64-bit.

The Transmeta Crusoe [DGB+03] is an x86-compatible processor which

uses a binary translator called the Code Morphing Software (CMS) to trans-

late x86 instructions into the VLIW instruction set used by Crusoe. The CMS

runs in a privileged execution mode and is completely transparent to the x86

operating system running on the processor. A key feature of the CMS and the

underlying Crusoe architecture is that each translated block generated by the

CMS acts as a transaction: if execution of a translated block is aborted (e.g.

due to a page fault) then the entire register state of the processor reverts to

its state at the start of the block, after which the block can be executed by an

interpreter, one instruction at a time. While this feature opens up many opti-

mization opportunities, it is not available to MAMBO-X64 because it requires

specialized hardware.

The Nvidia Project Denver [BBTV15] is another processor which is similar

to the Transmeta Crusoe in that it uses a binary translation layer to translate

ARM instructions to an internal VLIW instruction set. Unlike Crusoe, Project

Denver includes a simple hardware decoder for ARM instructions to reduce the
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performance penalty when encountering code for the first time. Additionally,

Denver uses hardware mechanisms to profile code as it runs in the ARM de-

coder and gathers information such as branch histories, thus avoiding the need

to run the code under an interpreter.

DynamoRIO [Bru04] is an open-source dynamic binary modification tool

which mainly focuses on x86, albeit initial efforts to support ARM have been

developed. Unlike MAMBO-X64, it does not perform instruction set translation

and is instead a framework for developing dynamic instrumentation tools. Dy-

namoRIO uses the NET algorithm for trace generation, but this chapter has

shown that NET traces interact poorly with return address prediction. A new

trace generation algorithm improving on NET was developed (Section 4.2),

which preserves the ability to work with return address prediction mechanisms.

Pin [LCM+05] is a product developed by Intel for dynamic binary trans-

lation on x86. It functions similarly to DynamoRIO in that it is a framework

which allows the creation of specialized tools which modify or instrument a

program as it runs. This is supported by a register renaming algorithm which

dynamically allocates registers for the original code and for the instrumenta-

tion code. Like MAMBO-X64, Pin makes use of dynamic register bindings and

register binding reconciliation to preserve allocated registers across multiple

translated blocks. MAMBO-X64 applies and improves upon techniques to em-

ulate the AArch32 floating-point registers on AArch64.

Valgrind [NS07] is an open-source dynamic binary modification tool (sim-

ilar to Pin and DynamoRIO). Although it only supports same-ISA translation,

Valgrind translates source instructions into an IR to make the implementation

of instrumentation tools easier. One characteristic of Valgrind is that it serial-

izes the execution of multi-threaded applications. This makes the implementa-

tion of instrumentation tools simpler by avoiding the need to deal with issues
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such as race conditions, but hurts the performance of multi-threaded applica-

tions. The main disadvantage of Valgrind is that applications running under it

incur a significant slowdown (4.3× on SPEC CPU2000).

HDTrans [SSB07] is another dynamic binary instrumentation tool which,

like fastBT, focuses on minimizing the overhead of code translation. This al-

lows it to be much faster than similar tools when executing short-running pro-

grams, where translation time is a significant proportion of the total runtime.

The key technique to achieve this is the use of table-driven translation rather

than code-driven translation. The translation process in MAMBO-X64 is more

complicated because it needs to translate between different instruction sets,

which makes it poorly suited to table-driven translation.

ArcSim [BFT10, BvKK+11] is an architectural simulator that uses dynamic

binary translation for acceleration. The binary translator takes instructions

from a given ISA and transforms them into LLVM IR. The JIT code generation

is parallelized and it applies optimizations specific for architectural simulation.

It has similar functionality to QEMU but with improved execution times. How-

ever, like QEMU, it is designed as a retargetable system which precludes it from

exploiting architecture-specific optimizations like MAMBO-X64.

Walkabout [CLU02] is a retargetable binary translation framework designed

for experimenting with new binary translation techniques. Walkabout achieves

retargetability through the use of a specification that describes the target in-

struction set. This specification is used to generate an assembler, disassembler

and emulator for the target architecture automatically. Walkabout also pro-

vides a dynamic binary rewriting tool called PathFinder which dynamically

translates between two architectures. However this retargetability comes at

the cost of about an order of magnitude slowdown compared to native execu-

tion in most benchmarks.
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4.5.2 Signal handling

The majority of existing DBTs can be split into two categories based on the way

they handle signals:

Signal queuing DBTs in this category include QEMU, DynamoRIO, Pin, Val-

grind, Aries and IA32-EL. These DBTs handle synchronous signals in a

similar manner to MAMBO-X64 by keeping track of all potentially fault-

ing instructions in a fragment and recovering the untranslated register

state at the fault point using fragment metadata. Asynchronous signals

are handled by appending the signal information to a queue. The exe-

cution translated code is then redirected to the DBT, either by setting a

flag that is periodically checked by translated code or by patching the

translated code directly like MAMBO-X64. While this approach provides

correct signal context information to application signal handlers, it suf-

fers from race conditions since the DBT may end up in a situation where

multiple signals are queued but cannot be delivered to the application

due to signal masking.

Untranslated signals DBTs in this category include HDTrans and fastBT. These

DBTs make no attempt to hide themselves from the application: when the

DBT receives a signal, it will simply pass on the signal context from the

OS to the application unmodified. Since the signal context is not trans-

lated, the context of a signal which occurred while executing translated

code will show the program counter pointing to a code cache address

rather than to the original application code. While this approach benefits

from simplicity and low overhead, it can cause applications that rely on

precise signal information, such as the Java Virtual Machine (JVM) [PVC01],

to malfunction. This approach is generally only viable on same-ISA DBTs

123



since it requires that the host signal context match the one that the ap-

plication is expecting.

DynamoRIO is slightly different in that it generates fragment metadata for

faulting instructions lazily by re-translating the fragment from its source in-

structions upon receiving a synchronous signal. While this approach allows

for some memory savings, since synchronous signals occur rarely, it requires

that fragment translation be deterministic, which precludes the use of certain

optimizations such as the biased register allocation technique.

Valgrind has another peculiarity: it blocks all asynchronous signals while

running translated code and, instead, periodically polls the kernel to check

whether any signals are pending for the current thread. While this model

avoids race conditions from delivering multiple signals simultaneously, it suf-

fers from poor performance because the check for pending signals usually re-

quires a relatively expensive system call.

4.6 Summary

The viability of MAMBO-X64 as a replacement for hardware-level AArch32

support is strengthened by its very low overhead compared to native execu-

tion on existing ARMv8 processors. MAMBO-X64 was evaluated by taking

32-bit benchmarks from the SPEC CPU2006 suite and comparing their exe-

cution times with those of the same benchmark binaries running natively in

the AArch32 mode on the same processor. Results show an average over-

head of 2.5 % on an out-of-order Cortex-A57 processor and 7.5 % on an in-

order Cortex-A53 processor, all of which are significantly lower than those of

pre-existing DBT systems. Additionally, MAMBO-X64 achieves an average 1 %

speedup when running SPEC on an X-Gene 1 processor.
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The thread-shared code cache architecture of MAMBO-X64 also allows it to

scale well with multi-threaded applications, which are becoming increasingly

common as the number of cores in the latest smartphones keeps growing. This

has been shown by evaluating the performance of MAMBO-X64 using the PAR-

SEC benchmark suite on an X-Gene 1 system. Results show that MAMBO-X64

achieves an average overhead of only 2.1 % when running with 1, 2, and 4

threads, which climbs to 4.9 % with 8 threads.

MAMBO-X64 is able to achieve such low overheads through the use of op-

timizations such as instruction merging, dead code elimination, code layout

optimization, constant inlining and speculative address generation, as well as

highly optimized indirect branch translation. A large part of the high perfor-

mance of MAMBO-X64 is due to the use of the novel return-aware trace gen-

eration algorithm, called ReTrace, which combines the benefits of hardware-

assisted function returns and next-executing tail trace generation. These two

techniques significantly reduce the overhead of MAMBO-X64 independently,

but ReTrace is able to combine the benefits of both to reach near-zero perfor-

mance overhead.

This chapter has also demonstrated an efficient scheme for mapping the

AArch32 floating-point/SIMD register bank onto the effectively smaller AArch64

one. This is done by dynamically allocating the values of AArch32 floating-

point registers into AArch64 registers and maintaining allocated registers across

multiple translation blocks using a technique called dynamic register bindings.

This involves creating specialized translated code fragments based on the same

source instructions that accept different sets of bound registers on entry. Un-

bounded growth of translated code size is avoided by limiting the number of

specialized fragments using biased register allocation, liveness-aware binding

matching and register binding reconciliation.
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Finally, a novel signal handling scheme was implemented, which allows

precise delivery of operating system signals while avoiding race conditions and

minimizing performance overhead. This works by using fragment unlinking

and signal masking to deliver asynchronous signals to the application’s signal

handler. Synchronous signals are handled by recording fragment metadata for

each potentially faulting instruction, allowing a signal context to be recovered

for that fault.

These results, without having modified hardware, constitute the best DBT

results published so far when moving from a 32-bit to a 64-bit architecture.

Such low overheads make the creation of pure 64-bit ARMv8 processors a vi-

able prospect.
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Chapter 5

Using hardware virtualization to

support high-performance

transparent binary translation

A DBT generally comes in one of two forms: application-level translators which

translate a single user mode process running under a native operating system,

and system-level translators which translate an entire operating system and all

its processes. While the former have been able to achieve performance levels

approaching that of native execution, they suffers from transparency issues: a

translated 32-bit process will still appear as a 64-bit process to the operating

system, and tools such as debuggers will see the state of the translator rather

than that of the translated process. System-level translators avoid these issues

since all processes are running natively from the point of view of the translated

OS, but these tend to have lower performance than similar application-level

translators.

A significant portion of the overhead of system-level translators comes from

the need to emulate the Memory Management Unit (MMU) of the source ar-
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chitecture. This requires mapping the guest OS page table into the format of

the host architecture and keeping these mappings consistent when the guest

modifies its page tables. Application-level translators do not suffer from this

overhead since page tables are managed by the host OS using the native MMU.

This chapter describes HyperMAMBO-X64, a new type of DBT which is

a hybrid of these two existing types, preserving the best attributes of each.

HyperMAMBO-X64 extends an existing hypervisor to allow an AArch64 guest

operating system to run AArch32 user mode processes even when the under-

lying processor only supports AArch64. This is achieved by having the hy-

pervisor trap attempts by the guest OS to switch to AArch32 user mode and

running the AArch32 code under a DBT. The DBT returns control to the guest

OS once an exception (syscall, page fault, interrupt) occurs by simulating an

exception coming from AArch32 mode. This process is completely transparent

to the guest OS: from its point of view, the user process was executing natively

in AArch32 mode. Yet, since the page tables are entirely controlled by the

guest OS which runs natively, HyperMAMBO-X64 can achieve similar levels of

performance to application-level translators.

A key challenge in the implementation of HyperMAMBO-X64 is keeping the

translated code generated by the DBT consistent with any changes to the source

AArch32 instructions. These modifications can come in the form of page table

modifications, such as loading or unloading a shared library, or direct modifi-

cations to the underlying code, such as in a JIT compiler. HyperMAMBO-X64

handles these by exploiting several features of the ARMv8 architecture and

virtualization extensions. Each translated code fragment is associated with a

user-mode process in the guest using the address space identifier (ASID) tags

which are used by the TLB hardware. Modifications to the address space of

a process are detected by trapping all TLB flush instructions to the hypervi-
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sor, which can then invalidate any translations affected by the changed virtual

memory mappings. Finally, memory pages from which code has been trans-

lated are write-protected by the hypervisor to detect any modifications.

A prototype of HyperMAMBO-X64 was built on top of the Linux Kernel Vir-

tual Machine (KVM) [DN14] hypervisor and its performance evaluated by run-

ning SPEC CPU2006 and several microbenchmarks. Results on SPEC CPU2006

show that HyperMAMBO-X64 is able to match the performance of MAMBO-

X64, an equivalent application-level translator. As with MAMBO-X64, exper-

iments measured a geometric mean performance improvement of about 1 %

by running the AArch32 version of SPEC CPU2006 under HyperMAMBO-X64

compared to running it natively on the ARMv8 processor.

Some existing system-level translators use techniques similar to those used

by HyperMAMBO-X64 to maintain code cache consistency. Such systems in-

clude MagiXen [CMR07] and PinOS [BL07]which both translate x86 operating

systems under the Xen hypervisor. A significant source of overhead in these sys-

tems comes from the need to emulate the page tables used by the guest operat-

ing system and detect changes to virtual memory mappings which would affect

translated code. HyperMAMBO-X64 is able to avoid this overhead by running

the guest operating system natively and exploiting ARM hardware virtualiza-

tion features to track page table modifications. In particular, HyperMAMBO-

X64 runs the guest kernel natively in AArch64 mode, which eliminates the need

to translate the guest OS page tables.

The rest of this chapter is organized as follows. Section 5.1 presents an

overview of binary translation technology and the ARM architecture. Sec-

tion 5.2 describes the design and implementation of the HyperMAMBO-X64

system. Section 5.3 presents performance results on a selection of bench-
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marks. Section 5.4 summarizes some related works and Section 5.5 concludes

the chapter.

5.1 ARMv8 virtualization extensions

The traditional ARM architecture is not classically virtualizable [PG74] because

it contains several sensitive instructions that have observably different behav-

ior depending on the current privilege level [PKR+13]. While there have been

several attempts to support virtualization for the ARM architecture through

hardware modifications [BRG+06], binary rewriting [SZP+13] or paravirtual-

ization [DLC+12], these have not seen widespread use. ARM introduced an

optional virtualization extension in ARMv7 which makes the ARM architec-

ture classically virtualizable through the introduction of a hypervisor mode

which executes at a higher privilege level than the existing privileged execu-

tion modes.

This virtualization capability was carried over to ARMv8, which also stream-

lined the various ARM execution modes. Figure 5.1 shows the four execution

modes supported by ARMv8, called exception levels and numbered from EL0 to

EL3:

• EL3 is the most privileged mode in ARMv8, called the “secure monitor”

mode, and is part of the ARM TrustZone extension. This mode allows

switching between the “secure world” and “non-secure world”. Trust-

Zone works by only allowing software access to secure RAM and secure

peripherals when the processor is running in EL3 or in secure EL1/EL0.

TrustZone is designed for specialized applications such as digital rights

management and is outside the scope of this chapter.
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Figure 5.1: ARMv8 exception levels.
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• EL2 is an execution mode designed for hypervisors: it supports an ex-

tensive set of configuration registers that allow it to trap certain classes

of privileged or sensitive instructions to EL2 for special handling. These

registers also allow configuring the exception level at which various ex-

ceptions are handled. This can be used to handle hardware interrupts in

the hypervisor while letting the guest kernel handle system calls directly.

• EL1 is a privileged execution mode typically used by operating system

kernels. On a system without virtualization extensions this would be the

level which manages hardware peripherals directly, but inside a virtual

machine it will manage virtual peripherals that are emulated by the hy-

pervisor instead. EL1 also supports many system registers to configure

various aspects of how user-mode processes execute in EL0.

• EL0 is the least privileged execution mode, which is intended for the

execution of normal user-mode processes. This mode has no access to

privileged instructions for operations such as page table and TLB man-

agement instructions, which means that it must perform system calls to

EL1 or above for such operations.

Transitions between exception levels are only possible through exceptions

(interrupts, system calls, page fault, etc.) and the exception return (ERET)

instruction. All exception levels except EL0 define an exception vector which

allows them to handle exceptions coming from the current exception level or

any level below it. Similarly, the ERET instruction is allowed to switch to an ex-

ception level equal to or below the current level. The specific exception level at

which a particular exception is handled is determined by special configuration

registers that are only accessible to higher exception levels.
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Figure 5.2: ARMv8 virtual memory address translation for different exception
levels.

Architectural support for the legacy 32-bit ARM instruction set is imple-

mented by allowing each exception level to run in either the 32-bit AArch32

mode or the 64-bit AArch64 mode. A transition between AArch32 and AArch64

is only possible through an exception or exception return, with two restrictions:

1. Only EL0 and EL1 support AArch32 mode. EL2 and EL3 must run in

AArch64 mode.

2. If an exception level is running in AArch32 mode then all exception levels

below it must also run in AArch32 mode. This means that while a 64-bit

OS can run 32-bit user mode processes and a 64-bit hypervisor can run

32-bit virtual machines, it is not possible for a 32-bit OS to run a 64-bit

user mode process.

The separation between exception levels is further supported by the ARMv8

virtual memory architecture, which supports specialized address translation

mechanisms depending on the current exception level, as shown in Figure 5.2.

EL2 and EL3 each has its own page table base register, which is used by the pro-

cessor when executing code in one of those exception levels. Code executing

at EL0 and EL1 share the same set of page tables but use a more complicated

address translation system which involves two sets of page tables. Stage 1

page tables controlled by EL1 are used to transform virtual addresses into in-

termediate physical addresses (IPAs), while stage 2 page tables controlled by
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EL2 are used to transform IPAs into physical addresses. This system allows a

hypervisor to control the physical memory used by a guest operating system

transparently, giving the guest kernel the illusion that it has full access to its

physical memory.

To avoid the need to perform a full TLB flush when context switching, the

ARM architecture has support for TLB tagging. This involves associating two

pieces of information with each TLB entry: a 16-bit address space identifier

(ASID) and a 16-bit virtual machine identifier (VMID). The ASID is set by the

kernel in EL1 when switching from one user-mode process to another by chang-

ing the stage 1 page tables. The VMID is set by the hypervisor in EL2 when

switching from one virtual machine to another by changing the stage 2 page

tables. This system effectively associates each set of stage 1 page tables with

an ASID and each set of stage 2 page tables with a VMID.

TLB invalidation is performed using privileged instructions which come in

several variants: a TLB flush can be directed to either remove only TLB entries

relating to a specific virtual address or to remove TLB entries for all virtual

addresses. A flush can be further restricted to remove only TLB entries associ-

ated with a specific ASID or VMID. The ARM architecture requires that ASIDs

and VMIDs be consistent across all processors in a system, which allows TLB

flushes to be broadcast across processors.

The TLB features of the ARM architecture are exploited to keep track of

the different user-mode processes in a virtual machine and handle code cache

invalidation efficiently.
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5.2 HyperMAMBO-X64

A binary translation system, called HyperMAMBO-X64, was developed. It inte-

grates with a hypervisor to allow a virtual machine to run AArch32 user mode

processes transparently under an AArch64 kernel even when the underlying

processor does not support AArch32 mode.

As described in Section 2.3, binary translators generally fit into one of two

categories, application-level translators and system-level translators, each of

which has benefits and disadvantages:

System-level translators are the most flexible since they emulate a full vir-

tual machine, including a full operating system. This allows a single translator

to run any guest OS without needing specialized support. However this flexi-

bility comes at a significant cost in performance, in particular due to the need

to handle virtual memory address translation within the guest. This requires

either translating guest page tables to the host page table format [CWH+14]

or performing guest page table walks in software and caching the results in a

software TLB [TKKM14].

While application-level translators are limited to translating a single user

mode process, they do not suffer from many of the disadvantages of system-

level translators because they work purely in a virtual address space managed

by the host OS. An application-level translator can also make assumptions

based on the OS ABI, such as determining which memory locations are read-

only1, and optimizing the generated code based on those assumptions. An-

other advantage is the ability to recognize memory locations that are mapped

from an on-disk file and using this information to support persistent code

caches [BK08, RCCS07] which allow faster startup and can be shared among

1Simple page table permissions are not a sufficient guarantee that data at a certain address
is constant due to the possibility of writable aliases of that memory.
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multiple processes. The main disadvantage of this type of translators is that

they are not fully transparent. For example, in the case of AArch32 to AArch64

translation, a translated process would still appear as a 64-bit process to the

operating system, and debuggers attached to that process would be debugging

the translator itself rather than the translated process.

5.2.1 Proposed approach

HyperMAMBO-X64 is a hybrid of these two types of translator: like a system-

level translator, it controls a guest operating system from a hypervisor running

at EL2, but it only translates AArch32 code running at EL0 as an application-

level translator.

The basic principle of HyperMAMBO-X64 is to allow 64-bit guest kernels

and 64-bit user-mode processes to run natively on the processor in AArch64

mode, while trapping attempts by the 64-bit kernel to switch to AArch32 user

mode. When such an attempt is detected, HyperMAMBO-X64 will run the 32-

bit process using binary translation until an exception (such as a system call)

occurs, at which point HyperMAMBO-X64 will return to the guest kernel. All

of this is done transparently: from the point of view of the guest kernel, the

user process was running natively in AArch32 mode.

The binary translator part of HyperMAMBO-X64 is based on MAMBO-X64,

an application-level translator designed to translate AArch32 Linux programs

into AArch64 code. The code of MAMBO-X64 was adapted to work in a hyper-

visor environment without any dependency on either the host or guest OS.

The main disadvantage of the proposed approach compared to a full system-

level translator is that it requires the guest kernel to run in AArch64 mode.

However, this problem is not a significant drawback because most AArch64

kernels, such as Linux, have strong support for running AArch32 user mode
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applications. This in turn makes it easy to replace an AArch32 kernel with an

AArch64 one since no other changes are required to the system: all existing

AArch32 applications will still be able to run on the new kernel.

Similarly, a disadvantage of the proposed approach compared to application-

level translators is its inability to recognize memory mapped files in a translated

process since that information is only known to the guest operating system.

However there exist other persistent code caching techniques which do not re-

quire this information and, instead, keep a cache of translated code indexed

by a hash of the code rather than the module it was loaded from [WYZM16],

albeit at a cost in performance.

In addition to providing a platform for running AArch32 programs on a

processor which only supports AArch64, HyperMAMBO-X64 can be used to

support more exotic systems:

• ARM’s big.LITTLE architecture [ARM13] combines a cluster of high-performance

“big” cores with a cluster of low-power “LITTLE” cores. This allows for

higher performance and lower power consumption than similar homo-

geneous architectures [CJE+12]. While both clusters typically support

the same ISA to allow an operating system to migrate processes from

one cluster to another transparently, HyperMAMBO-X64 would allow re-

laxing this restriction. For example, HyperMAMBO-X64 would allow a

“LITTLE” core to eliminate hardware support for AArch32 and reduce

its power usage, while still allowing an operating system to freely mi-

grate AArch32 tasks between the two core clusters. HyperMAMBO-X64

would then only perform translation on the “LITTLE” cores while running

AArch32 code natively on the “big” cores.

• ARM-based servers are a growing market and the availability of hard-

ware virtualization is a key factor driving this growth. While 64-bit ARM
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Figure 5.3: Overall architecture of HyperMAMBO-X64.

servers are starting to see widespread use, many need to run legacy

AArch32 applications. The need to keep supporting AArch32 applica-

tions is a barrier to the adoption of AArch64-only processors, but this

barrier can be eliminated by using HyperMAMBO-X64 to assist the mi-

gration of virtual machines to a physical server with AArch64-only pro-

cessors. HyperMAMBO-X64 can even be used to support live migration

of a virtual machine to an AArch64-only processor, as long as the virtual

machine is running an AArch64 kernel.

5.2.2 Architecture

Figure 5.3 gives an overview of the different components comprising HyperMAMBO-

X64. The basic principle is simple: the hypervisor traps attempts by a guest

kernel to switch to AArch32 user mode and injects a binary translator into the

address space of the 32-bit process. Control is then transferred to the DBT

which will translate and execute the AArch32 code in that process.
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The DBT and the translated code it generates run in EL0 under the direct

control of the hypervisor in EL2. This is necessary to ensure that memory

accesses performed by the translated code use the correct set of permissions

and that any permission faults are detected correctly.

Execution of the translated process continues until an exception occurs.

This can be a synchronous exception caused by the translated program itself,

such as a system call or a page fault, or an asynchronous exception caused

by a virtual interrupt from the hypervisor. In either case, control needs to be

returned to the guest OS so that it can handle the exception as if it came directly

from AArch32 mode.

Upon regaining control, the guest OS expects to see the register state of

the underlying AArch32 process rather than the AArch64 register state of the

translated code. HyperMAMBO-X64 reuses the signal handling mechanisms of

MAMBO-X64 to recover the AArch32 register state when an exception occurs:

• Some exceptions are detected at translation time, such as system calls

and undefined instructions. In those cases, specialized context recovery

code can be compiled directly into the translated fragment.

• Runtime faults such as data aborts are handled by maintaining metadata

for all potentially fault-generating instructions, such as load and store

instructions. For each fragment, HyperMAMBO-X64 builds a table con-

taining the addresses of these instructions and information on how to

recover the AArch32 register context if that instruction generates a fault.

• Virtual interrupts are generated by the hypervisor to notify the guest OS

of certain events such as virtual device interrupts. Keeping metadata for

all translated instructions is impractical since such interrupts can occur

at any point in the translated code. HyperMAMBO-X64 therefore uses
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a different strategy: after an interrupt is caught, the interrupted code is

resumed with interrupts disabled until it reaches the end of the current

fragment. The AArch32 context can then be recovered from the fragment

metadata used to link fragments together.

Control is returned to the guest kernel through a hypervisor call which

takes an AArch32 register context as a parameter. The hypervisor will restore

the page tables to their original state and simulate an exception entry in the

guest OS, which will make the guest kernel see an exception coming from an

AArch32 process.

5.2.3 Memory management

In addition to the usual RAM and memory-mapped virtual devices usually

present in a virtual machine, HyperMAMBO-X64 includes an area of RAM re-

served for use by the DBT in the guest physical address space which is separate

from the main RAM used by the guest OS. Each virtual machine managed by

HyperMAMBO-X64 has a separate instance of this memory area, into which

the DBT image is loaded when the virtual machine is created, and which holds

all the runtime data managed by the DBT, including its code cache.

A key feature of HyperMAMBO-X64 is its complete transparency with re-

gards to the guest OS: at no point does HyperMAMBO-X64 modify the contents

of the RAM used by the guest OS, except through the actions of a translated

AArch32 process. This presents an issue for injecting the DBT into the address

space of the AArch32 process since it must be done without modifying the page

tables of the guest OS. HyperMAMBO-X64 instead uses a shadow top-level page

table in DBT RAM which contains the virtual memory mappings used while

running a process under the DBT.
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Figure 5.4: Virtual memory map of a process running under the
HyperMAMBO-X64 DBT.
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When the hypervisor starts running a process under the DBT, it will initialize

the shadow top-level page table to contain the mappings shown in Figure 5.4

and then set the guest page table base register to point to it. The virtual mem-

ory map of an AArch32 process running under the HyperMAMBO-X64 DBT has

four main components:

32-bit process pages The page table entries for the lowest 4 GB of the address

space are copied directly from the page tables set up by the guest OS2.

Copying only the page table entries referring to the lowest 4 GB of the

address space is sufficient because the AArch32 process accesses memory

using 32-bit pointers which restricts it to the lowest 4 GB of the 64-bit

virtual address space. This portion of the address space is remapped

every time the DBT switches to running a different user process so that it

always contains the mappings for the process currently being translated.

DBT RAM The DBT reserved memory is mapped directly into the address space

of the translated process. This memory area contains the DBT code and

data, as well as the translated code fragments and their associated meta-

data.

Dynamic DBT mappings A portion of the address space is reserved for dy-

namic mapping of certain data structures used by the DBT. These typi-

cally consist of data structures that require memory protection features.

One example of such is the return address stack used for optimizing func-

tion returns in the translated code, which requires guard pages to catch

stack overflows, as described in Section 3.1.4.

2In practice, only the entries in the top-level page table need to be copied since the lower-
level page tables can be used directly.
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RAM identity map An identity map of the entire guest RAM is made available

to the DBT for the purpose of performing page table walks in software.

This is necessary to determine the access permissions for a particular

memory address and, in particular, to determine whether a certain page

has execute permission when translating code from it.

One of the key benefits of this binary translation model compared to a full

system translator is that page tables are entirely managed by the guest OS,

which avoids the need to perform expensive software TLB emulation. However

this requires ensuring that the shadow page tables used by the DBT always

match those set by the guest OS for the AArch32 process. In a virtual machine

with only a single virtual CPU, this is trivially handled by updating the shadow

page table entries every time the hypervisor enters the DBT.

The situation is more complicated in a multi-processor virtual machine

since the top-level page table of an AArch32 process may be modified by one

processor while that process is running in the DBT on another processor. HyperMAMBO-

X64 handles such cases by trapping guest execution of TLB invalidation instruc-

tions to the hypervisor, where it will update the shadow top-level page tables

for any processes running under a DBT on another processor. This is safe since

the ARM architecture requires a TLB flush to ensure that updated page table

entries are picked up by all processors. Trapping guest TLB flush instructions

is also exploited for the code cache consistency algorithm described in Sec-

tion 5.2.4.

5.2.4 Code cache consistency

A key aspect of a DBT is maintaining consistency between translated code frag-

ments and the original instructions they were translated from: if the original
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instructions are modified and the instruction cache is flushed appropriately

then the underlying architecture guarantees that the new code will be exe-

cuted, and this must be reflected in the code cache of a DBT by invalidating all

relevant translated fragments when such a modification occurs.

In an application-level translator such as MAMBO-X64, this problem is eas-

ily solved: there is only a single address space to deal with and keeping track

of any changes can be done by intercepting system calls. In Linux for exam-

ple, there are only 2 types of system calls which can affect translated code:

those which modify virtual memory mappings (mmap, mprotect, munmap,

etc.) and those which perform instruction cache invalidation on behalf of

the application3 to support self-modifying code and runtime code generation

(cacheflush).

This approach is not viable in HyperMAMBO-X64 because it has no knowl-

edge of the underlying guest OS and its system call interface. The guest OS

is free to perform an instruction cache invalidation or page table modification

affecting the translated process at any point. Instead, HyperMAMBO-X64 uses

a three-tiered approach to ensure that translated code remains consistent with

the instructions it is sourced from, shown in Figure 5.5.

ASID-based address space management A guest OS may have multiple

AArch32 processes running concurrently, each with its own address space.

HyperMAMBO-X64 is able to distinguish the different address spaces by read-

ing the ASID value from the system registers. The ASID is a 16-bit value set by

the guest kernel to identify the current address space. It is used by the hard-

ware to tag addresses in the TLB and avoid TLB flushes on context switches.

3Instruction cache flushing is a privileged operation in AArch32, thus requiring a system
call to perform from user mode.
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Figure 5.5: HyperMAMBO-X64’s data structures for tracking code cache inval-
idation. Note that a guest physical page may be mapped at multiple virtual
addresses or in multiple process address spaces, and fragments from all map-
pings of this page must be invalidated if that page is modified.

HyperMAMBO-X64 takes advantage of this ARM architecture feature by

tagging every translated code fragment with the ASID it originated from, and

uses this tag when looking up a code fragment to execute. This allows HyperMAMBO-

X64 to support two or more user processes with different code at the same

virtual address without requiring a full code cache flush when switching to a

different address space.

TLB invalidation tracking HyperMAMBO-X64 also needs to keep track of

changes within a particular address space: the guest kernel can modify the

page table entries of an AArch32 process at any time, even if that process is

concurrently executing on a different virtual CPU. HyperMAMBO-X64 exploits

the fact that any such modification requires a TLB flush and traps the execution

of any TLB flush instruction by the guest kernel to the hypervisor. The hypervi-

sor can then invoke a callback in the DBT to invalidate any code fragments that

were based on the pages affected by the TLB flush. Once the DBT invalidation

is complete, the hypervisor will perform the TLB flush on behalf of the guest

OS and then resume execution of the guest OS.
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Switching from the guest OS to the DBT via the hypervisor and back for

every TLB invalidation has significant overhead, especially considering that the

majority of TLB invalidations are due to memory allocation and deallocation

for data rather than code, so several optimizations were implemented to reduce

this overhead. As it translates code, the DBT tracks the set of virtual memory

addresses from which instructions are read for translation. These addresses

are tracked at a page granularity, tagged with the ASID of the process they

belongs to. When the translator reads instructions from a page for the first

time, it performs a hypervisor call to register the virtual address and ASID of

that page, which indicates to the hypervisor that the DBT has fragments which

are based on that page.

Since the hypervisor only needs to notify the DBT about TLB invalidations

which affect a previously registered virtual address and ASID combination, it

can filter out TLB invalidations which do not affect the DBT by using a hash

table lookup in the trap handler. Calling into the DBT to perform an invalida-

tion can thus be avoided if the lookup finds that the TLB invalidation does not

affect any virtual addresses registered by the DBT.

Code page write protection Even when the virtual memory mappings of an

AArch32 process are not modified, the contents of the underlying page can be

modified, invalidating any translated code derived from it. This can happen

when code is modified by a JIT compiler or simply because the guest OS is

reusing a page that previously contained code for another purpose. While the

ARM architecture requires an instruction cache flush in such cases, simply trap-

ping all instruction cache flushes to the hypervisor, as is done for TLB flushes,

is not viable for several reasons:
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• Unlike TLB flushes, ARMv8 does not provide a way for a hypervisor,

which uses EL2 page tables, to perform an instruction cache flush on

behalf of a guest kernel which uses EL1/EL0 page tables.

• There are many situations in which the guest OS needs to flush the entire

instruction cache, which would require the DBT to flush all translated

code for all address spaces.

• Translated fragments may be sourced from data as well as instructions,

but the former may be modified without an instruction cache invalida-

tion. One example of this is branch table translation (Section 3.2.2): an

entry of the source branch table may be modified without an instruc-

tion cache flush, yet the translated code must take this modification into

account the next time the branch table is executed.

HyperMAMBO-X64 instead makes use of the hypervisor-managed stage-2

page tables to detect code modifications: when the DBT registers a virtual

address for TLB invalidation tracking, the hypervisor will also write-protect

the underlying guest physical address for that page. If the guest attempts to

write to a protected page, the hypervisor will notify the DBT so that it can

invalidate any affected code fragments. Once the invalidation is complete, the

hypervisor will remove the write-protection on the page and remove it from the

set of watched pages since all translated fragments based on that page have

been invalidated.

5.2.5 Implementation

A prototype implementation of HyperMAMBO-X64 was built on top of the

Linux Kernel Virtual Machine (KVM) [DN14] hypervisor. However the gen-

eral concept is portable to other AArch64 hypervisors such as Xen [BDF+03] or
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Xvisor [Pat14]. Another possibility for consumer devices such as smartphones,

which do not need to run more than one OS, is to implement HyperMAMBO-

X64 as part of a minimal hypervisor which only performs binary translation

while allowing the guest OS full access to the underlying hardware.

One significant issue encountered while implementing HyperMAMBO-X64

is that there is no direct way to trap mode switches from an AArch64 guest

kernel to AArch32 user mode in current ARMv8 processors. In the prototype,

this issue was worked around by performing a small modification to the guest

kernel: the ERET instruction responsible for perform an exception return into

AArch32 mode was replaced with a HVC hypercall instruction. It is anticipated

that in an AArch64-only processor this instruction would generate an “Illegal

Mode” exception when trying to switch to the non-existent AArch32 mode,

which could be caught by the hypervisor.

5.3 Evaluation

This section evaluates the performance of HyperMAMBO-X64 and how it com-

pares to a similar application-level translator using a set of microbenchmarks

and the SPEC CPU2006 benchmark suite.

Because the ARMv8 processors used in these experiments are capable of

running AArch32 code directly, all benchmarks are executed natively on the

same processor and the results are used as a baseline for the experiments. All

other results are normalized to this baseline, showing the relative performance

of the DBT compared to native execution.

The same benchmarks are also run under MAMBO-X64, an application-

level translator which also translates code from AArch32 to AArch64, which

HyperMAMBO-X64 extends. Since HyperMAMBO-X64 and MAMBO-X64 share
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Benchmark Native MAMBO-X64 HyperMAMBO-X64

Integer 2.92 2.92 2.92
Syscall 1.00 8.39 10.63
Page fault 1.94 1.96 1.96
Signal 1.67 6.19 4.65

Table 5.1: Microbenchmark results under HyperMAMBO-X64 in the three
tested configurations. All results are in seconds.

the same DBT engine, they produce similar translated code. The differences

appear at the boundary between the translated application and the operating

system.

To ensure consistent results, the benchmarks executed in the three con-

figurations (Native, MAMBO-X64 and HyperMAMBO-X64) all use the same

statically linked AArch32 binaries.

The test system is an AppliedMicro X-Gene X-C1 development kit with 8 X-

Gene processor cores running at 2.4 GHz. Each core has a 32 kB L1 data cache,

a 32 kB L1 instruction cache, a 256 kB L2 cache shared between each pair of

cores and an 8 MB L3 cache. The machine comes with 16 GB of RAM and runs

Debian Unstable with Linux kernel version 4.6.

5.3.1 Microbenchmarks

First, some microbenchmarks which stress particular aspects of the implemen-

tation of HyperMAMBO-X64 were run. Four different benchmarks were run,

and their results are shown in Table 5.1. These microbenchmarks were chosen

because they exercise control transfers between the kernel and the translated

application, which require register state reconstruction and pass through the

hypervisor.
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Integer This benchmark simply increments an integer in memory one bil-

lion times. It aims to measure the overhead HyperMAMBO-X64’s handling of

interrupts that would otherwise be transparent to MAMBO-X64 or a native

application, such as timer interrupts. Because the guest OS needs to see the

AArch32 register state of the translated process upon receiving the interrupt,

HyperMAMBO-X64 needs to recover this state every time a virtual interrupt oc-

curs, unlike MAMBO-X64 which only needs to do this when an asynchronous

OS signal occurs. However, the results show no measurable difference in the

three tested configuration. This is due to interrupts being such a relatively rare

occurrence that any performance impact in their handling is negligible.

Syscall This benchmark measures the overhead of invoking a system call by

calling the ‘getppid‘ system call in a loop ten million times. This system call per-

forms very little work and effectively measures just the overhead of switching

into and out of the kernel. Both MAMBO-X64 and HyperMAMBO-X64 suffer in

this respect because they need to perform internal bookkeeping operations be-

fore performing the system call. HyperMAMBO-X64 additionally suffers from

the need to go through the hypervisor when switching into and out of the DBT.

Page fault This benchmark allocates 2 GB of virtual memory using mmap and

then touches every 4 kB page by writing one byte into each. The mmap call will

initially map every page to a copy-on-write zero page. Every write to such a

page will trigger a page fault which the OS will handle by allocating a new

writable page. As with interrupts, this process is transparent to native exe-

cutables and MAMBO-X64. HyperMAMBO-X64 however must catch the fault

and recover the AArch32 register state at the faulting instruction so that it can

be presented to the guest OS for fault handling. However the results show

that there is negligible difference in performance in the three tested configu-
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Figure 5.6: Performance of SPEC CPU2006 under HyperMAMBO-X64 and
MAMBO-X64. Performance numbers are relative to the benchmark running
natively in AArch32 mode.

rations, due to the cost of the page fault in the OS dwarfing any handling by

MAMBO-X64.

Signal This benchmark measures the overhead of signal handling by regis-

tering a signal handler for SIGSEGV and then dereferencing a null pointer one

million times. Each dereference causes a page fault which the guest OS reflects

back to the user process as a synchronous signal. The signal handler simply

skips the offending instruction and allows the program to continue. Although

HyperMAMBO-X64 and MAMBO-X64 both use the same algorithm for recov-

ering an AArch32 register state, MAMBO-X64 also needs to emulate the Linux

signal handling interface, which requires additional system calls to set the sig-

nal mask and leads to it having a higher overhead compared to HyperMAMBO-

X64.
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5.3.2 SPEC CPU2006

To evaluate the performance of HyperMAMBO-X64 with complex applications,

the SPEC CPU2006 [Cor] benchmark suite was run under HyperMAMBO-X64,

MAMBO-X64 and natively. Figure 5.6 shows the results of these experiments.

These show that, overall, both HyperMAMBO-X64 and MAMBO-X64 are able

to deliver a performance level comparable to and sometimes even exceeding

that of the processor’s hardware support for AArch32 code. The geometric

mean average of the results show that HyperMAMBO-X64 and MAMBO-X64

are 1.1 % and 1.0 % faster than native execution respectively.

Note that a few benchmarks have an overhead that is up to 13 % higher

under HyperMAMBO-X64 than under MAMBO-X64. This particularly affects

the gcc and cactusADM benchmarks, while also affecting the wrf benchmark to

a lesser extent.

Analysis of these benchmarks showed that the performance loss was indi-

rectly related to the way HyperMAMBO-X64 handles page faults. HyperMAMBO-

X64 and MAMBO-X64 both use a variant of the Next Executing Tail [DB00]

algorithm to generate traces, which are large single-entry multiple-exit frag-

ments. Traces are built by finding hot basic blocks and recording an execution

path through these blocks, which are then combined into a single fragment.

Page faults interfere with the recording of an execution path and cause traces

to terminate prematurely. This in turn results in a greater number of small

traces, thus limiting their effectiveness.

5.4 Related work

MagiXen [CMR07] is probably the closest work to HyperMAMBO-X64, which

also integrates a DBT with a hypervisor, in this case to translate a 32-bit x86 op-
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erating system on an Itanium system using the Xen hypervisor. Like HyperMAMBO-

X64, MagiXen reuses the core of an existing application-level translator (IA-32

EL) as the DBT, however MagiXen differs in that it is closer to a full system-level

translator. A limitation of MagiXen is that it only supports running paravirtu-

alized guest operating systems, which means that the guest runs in user mode

and does not make use of privileged instructions. Despite this, the performance

of MagiXen still suffers compared to native execution due to the need to trans-

late page tables in the hypervisor: although the guest OS is paravirtualized,

its page tables are still in the x86 format. Additionally, x86 does not support

tagged TLBs and ASIDs, which means that a full TLB flush is required on every

context switch. This TLB flush must necessarily invalidate all of the translated

code for the current process.

PinOS [BL07] is an extension of the Pin [LCM+05] dynamic instrumenta-

tion framework, which it adapts to instrument an entire operating system. Like

HyperMAMBO-X64, it builds on top of existing hardware virtualization plat-

forms (Xen for PinOS, KVM for HyperMAMBO-X64) to support transparent in-

strumentation of unmodified operating systems. While both face similar issues

with regards to detecting modifications of code pages, HyperMAMBO-X64 ex-

ploits ARM architectural features to detect such situations while PinOS requires

runtime checks for page table modifications. This is reflected in the overall

performance of the systems: while HyperMAMBO-X64 is able to achieve near-

native performance, applications under PinOS typically suffer from a slow-

down on the order of 50x.

QEMU [Bel05] is a DBT which supports a large number of architectures

both as host ISAs and as guest ISAs. A key feature of QEMU is its ability to

run both as a system-level translator and as an application-level translator.
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However it performs virtual address translation in software when running as

a system-level translator, which impacts its performance.

Nvidia’s Project Denver [BBTV15] and Transmeta’s Crusoe [DGB+03] are

two processors which use a DBT to translate code for a source architecture

(ARM for Denver, x86 for Crusoe) into the processor’s internal VLIW instruc-

tion set. While this puts them in the category of system-level translators, they

do not suffer from the overheads of page table translation since they include

specialized hardware support.

Finally, there have been many instances of application-level translators used

to assist an architecture transition. Examples include HP Aries [ZT00] (PA-

RISC to IA-64), IA-32 EL [BDE+03] (x86 to IA-64), FX!32 [HH97, CHH+98]

(x86 to Alpha) and Rosetta [App06] (PowerPC to x86).

5.5 Summary

This chapter proposed and evaluated HyperMAMBO-X64, a new type of DBT

which is a hybrid of existing types of translators and preserves the best at-

tributes of each. HyperMAMBO-X64 extends an existing hypervisor to allow

an AArch64 guest operating system to run AArch32 user mode processes even

when the underlying processor only supports AArch64. This is achieved by

having the hypervisor trap attempts by the guest OS to switch to AArch32 user

mode and running any AArch32 code under a DBT. The DBT returns control to

the guest OS once an exception (syscall, page fault, interrupt) occurs by sim-

ulating an exception coming from AArch32 mode. This process is completely

transparent to the guest OS: from its point of view, the user process was execut-

ing natively in AArch32 mode. Yet since the page tables are entirely controlled
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by the guest OS which runs natively, HyperMAMBO-X64 can achieve similar

levels of performance as application-level translators.

A key challenge in the implementation HyperMAMBO-X64 is keeping the

translated code generated by the DBT consistent with any changes to the source

instructions. HyperMAMBO-X64 solves this challenge by exploiting several fea-

tures of the ARMv8 architecture and virtualization extensions. Each translated

code fragment is associated with a user-mode process in the virtual machine

using the address space identifier (ASID) tags which are used by the TLB hard-

ware. Modifications to the address space of a process are detected by trap-

ping all TLB flush instructions to the hypervisor, which can then invalidate

any translations affected by the changed virtual memory mappings. Finally,

memory pages from which code has been translated are write-protected by the

hypervisor to detect any modifications.

The evaluation using microbenchmarks and SPEC CPU2006 shows that

HyperMAMBO-X64 introduces negligible performance overhead when com-

pared with MAMBO-X64, a similar application-level DBT for ARMv8, while

reaping the transparency benefits of system-level translators.

In addition to its applicability to virtual machine migration to new, AArch64-

only processors, HyperMAMBO-X64 can also be used to support specialized

situations. One such example is supporting ARM “big.LITTLE” single-ISA het-

erogeneous systems where HyperMAMBO-X64 will allow a “LITTLE” core to

eliminate hardware support for AArch32 and reduce its power usage, while

still allowing an operating system to freely migrate AArch32 tasks between the

clusters.

155



Chapter 6

Conclusions

Dynamic binary translation has been used in the past to support architecture

transition. Whilst providing functionality, there has always been a significant

performance overhead. This thesis has demonstrated that this overhead may

be reduced or eliminated, not only giving better performance during a transi-

tional period but also providing an alternative to the costly backwards compat-

ibility support currently provided by processor manufacturers.

This thesis has primarily focused on ARM’s transition from a 32-bit archi-

tecture to a 64-bit one, for which MAMBO-X64 — a Dynamic Binary Translator

(DBT) which translates AArch32 code into AArch64 code — was developed.

6.1 Summary of contributions

The design of DBTs has tended to be constrained by a trade-off between two

factors: transparency and performance. While DBT design has been an ac-

tive research area for many years and a multitude of techniques have been pro-

posed to address performance concerns, a large fraction of those have tended

to sacrifice transparency in some way (see Sections 3.5 and 4.5). MAMBO-X64
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— and the various optimizations described in this thesis — have been designed

specifically with transparency in mind and therefore maintain MAMBO-X64’s

behavioral transparency while still enabling a high performance.

Rather than focusing on a single optimization which brings a large per-

formance improvement, this thesis has presented a range of new optimiza-

tions with smaller individual impacts but which, overall, contribute to a large

reduction in DBT overhead by addressing the various inefficiencies of DBTs.

However, in particular, Chapter 3 has addressed the issue of indirect branch

translation, which previous research [KS03, HWH+07] has characterized as

the largest source of overhead in DBTs. Chapter 4 has described several other

optimizations, some of which are specific to MAMBO-X64, such as AArch32

floating-point register translation and speculative address generation, while

others are architecture-agnostic and applicable to any DBT, such as the ReTrace

algorithm and precise, transparent OS signal handling.

One of the key achievements of this thesis is MAMBO-X64’s ability to ex-

ceed the performance of native execution when compared to running the same

AArch32 benchmark directly on the same processor. While it is not uncommon

for a DBT to exceed native performance on one or two benchmarks, MAMBO-

X64 was able to achieve this on roughly half of the benchmarks tested on one

system, thus reaching an average performance on SPEC CPU2006 exceeding

that of native execution.

It should be noted that the relative performance of MAMBO-X64 depends

significantly on the underlying hardware it executes on, as shown in Table 6.1.

The general trend in these results seems to indicate that MAMBO-X64 benefits

significantly from processors that support out of order execution and higher

levels of instruction-level parallelism. These factors help to hide the higher in-

struction count in the code generated by MAMBO-X64 compared to the source
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Processor Characteristics Execution time relative to native

Cortex-A53 2-way superscalar, in-order 107.5 %
Cortex-A57 3-way superscalar, out-of-order 102.5 %
X-Gene 1 4-way superscalar, out-of-order 99.0 %

Table 6.1: Summary of the performance of SPEC CPU2006 on MAMBO-X64 on
different processors. The percentage indicates the geometric mean benchmark
execution time on MAMBO-X64 relative to native execution.

instructions it is based on. Many of the additional AArch64 instructions are

used to maintain transparency by emulating edge cases in certain AArch32 in-

structions and thus do not contribute to data dependencies which might block

application progress.

Despite MAMBO-X64’s focus on transparency, there are fundamental limi-

tations to the level of transparency that can be provided by an application-level

translator since it is treated as a 64-bit process by the operating system. Con-

versely, while system-level translators allow for better transparency, this typi-

cally comes at a cost in performance due to the overhead of address translation.

Chapter 5 presented HyperMAMBO-X64, a novel hybrid of these two types of

translators, which exploits the ARM virtualization extensions to provide full

OS-level transparency while preserving the performance of application-level

translators. This approach also has the benefit of being OS-independent, un-

like MAMBO-X64 which would have to be manually ported to non-Linux OSes.

While the current prototype of HyperMAMBO-X64 requires the guest kernel to

be modified, this restriction can be lifted on a pure AArch64 processor since

that would allow a hypervisor to trap attempted switches into AArch32 mode.

A common theme in the optimization techniques explored in this thesis is

the exploitation of hardware features to improve performance. The most ob-

vious examples are hardware-assisted function returns and ReTrace making

use of the processor’s return address prediction mechanism, but other exam-
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ples include the use of guard pages to catch return address stack overflows,

exploiting atomicity for indirect branch translation tables, taking advantage of

the larger 64-bit address space and using the ARMv8 virtualization extensions

to maintain code cache consistency in HyperMAMBO-X64.

6.2 Future research

While this research has demonstrated low overheads for a dynamic binary

translator, there remain several areas in which further performance improve-

ments may be gained.

6.2.1 Improved startup times through pre-translation

The optimizations explored in this thesis have largely focused on improving the

performance of translated code, but with relatively little regard for the perfor-

mance of the translation process itself. This works well for benchmarks and

long-running server applications, since time spent translating code is amor-

tized over the runtime of the application. Even then, some of the benchmarks

with shorter runtimes, such as dedup which runs only for a dozen seconds,

show a measurable overhead attributed to code translation (Section 4.4.3).

However, the effect of code translation overhead is the most visible in in-

teractive applications: in a test of a 32-bit Android application, the application

took over two minutes to start up under MAMBO-X64, compared to only ten

seconds when running natively. While the application ran smoothly once it

had finished loading, such a long loading time is unacceptable for an interac-

tive application and delivers a poor user experience.

The traditional approach for solving this problem is to use a persistent code

cache [BK08, RCCS07] which is built up incrementally as the application runs
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and preserves translated code across multiple executions of the application.

While this approach will indeed accelerate subsequent launches of the appli-

cation, the first launch will still suffer from a significant slowdown, which can

severely damage a user’s first impressions.

An alternative approach is to use a form of off-line ‘pre-translation’ where

an executable image is pre-processed to find all function entry points, for which

translated code can be generated and saved to a persistent code cache. This

pre-processing does not have to be precise — this is impossible to guarantee

due to the code discovery problem — since any ‘missing’ code will just be trans-

lated dynamically instead. This process can be performed when an application

is installed, where the translation delay is less likely to be noticed by the user.

6.2.2 Automatic vectorization

Most modern computer architectures feature some form of Single Instruction

Multiple Data (SIMD) [Fly72] processing functionality, which allows applica-

tions to exploit data level parallelism in processors. This functionality is typi-

cally exposed through dedicated SIMD instructions, which an application can

use explicitly through inline assembly and compiler intrinsic functions, or im-

plicitly through compiler-driven automatic vectorization [Wol96].

Automatic vectorization is typically performed by static source language

compilers since they have a high-level view of the source code and more free-

dom for code transformations than binary translators, but this is not the case

in AArch32. While scalar floating-point instructions (VFP1) in AArch32 fol-

low the IEEE 754 floating-point standard, this is not the case for AArch32

SIMD floating-point instructions (NEON) because they do not handle ‘denor-

1Despite VFP standing for “Vector Floating Point”, the vector functionality of this ISA exten-
sion has been deprecated and modern implementations of VFP only support scalar operations.
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mal’ values correctly, instead simply rounding them to zero. Because of this, a

standards-compliant compiler cannot make use of these instructions to vector-

ize floating-point operations2.

AArch64 is not subject to this limitation because its floating point instruc-

tions — both scalar and SIMD — fully support denormal values. Since AArch32

compilers are not able to perform automatic vectorization, this presents an op-

portunity for MAMBO-X64 to do so and, potentially, achieve significant perfor-

mance improvements compared to native execution.

While automatic vectorization in binary translators has been explored pre-

viously [NMO11, YF08], this work has not taken transparency into account,

particularly with regards to synchronous signals from faulting load/store in-

structions. Most existing auto-vectorization algorithms will reorder and merge

load/store instructions to exploit SIMD instructions which load multiple values

into a single vector register, but such transformations may violate transparency

when a fault occurs if the precise source register state at the fault point cannot

be reconstructed.

6.2.3 Improving the handling of dynamically generated code

in HyperMAMBO-X64

A disadvantage of the use of page permissions to detect code modifications is

their coarse granularity. This is not a problem for typical compiled applications

since code pages are generally mapped with read-only permissions and do not

contain any mutable data. However, the use of just-in-time (JIT) compilers,

which involves frequent modification of code pages, is becoming increasingly

common to accelerate the execution of scripting languages such as Javascript.

2GCC can be forced to use NEON instructions for auto-vectorization by enabling the
-funsafe-math-optimizations flag.
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The performance of JIT compilers could suffer under the basic HyperMAMBO-

X64 system when generating a high number of page faults due to code page

write protection in the hypervisor.

One approach to reducing this overhead would be to adapt the parallel

mapping technique developed by Hawkins et al. for DynamoRIO [HDBZ15].

This involves creating two “views” of the RAM in the guest physical address

space. The first view is used by the guest OS and most translated code. The

second view is a “mirror” which is identical except that writes to code pages in

this view are not trapped to the hypervisor.

HyperMAMBO-X64 can then identify memory write instructions which cause

frequent hypervisor traps and replace them with instrumented writes. The in-

strumented write can use a fast hash table lookup to check if the target address

points to a virtual page in the current process from which code has been trans-

lated and continue with a normal write if not. If the check passes then the

DBT invalidates any code fragments derived from the instructions at the target

address and performs the write in the mirror RAM to avoid a hypervisor trap.

6.2.4 Persistent code caching for system-level translators

Persistent code caching allows translated code to be re-used across multiple

executions of an application, and for multiple processes to share the same code

cache, thus reducing overall system memory usage. A key factor in existing

persistent code caching techniques is that they require associating a translated

fragment with a persistent version of the source instructions. In application-

level translators, this is typically the executable image or shared library file

that is mapped into the translated application’s address space. This approach

does not work for system-level translators since they work above the guest OS

and have no knowledge of its disk cache and file system.
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A ‘traditional’ file system copies its contents into RAM pages; however it is

increasingly feasible to implement large portions of the filestore in RAM. If this

has been done it makes little sense to load a file by copying from one part of

the RAM to another. The idea of virtual persistent memory has previously been

used in Intel’s Clear Containers [vdV15] and involves mapping an entire virtual

disk image directly as guest physical memory. If the guest OS supports it, such

as through Linux’s DAX subsystem [Cor14], pages from the disk can be mapped

directly into the address space of a guest process, thus entirely bypassing the

disk cache in the guest OS.

HyperMAMBO-X64 can exploit this feature to create persistent code caches

because it can associate translated code fragments directly with a page of the

virtual disk. This key piece of information allows translated code to be written

to a cache file and to persist across reboots of the virtual machine: once the

pages are mapped into a process running under the DBT, the translated code

can be ‘loaded’ immediately from the cache. This cache can even be shared

across multiple virtual machines, for example if they share a read-only virtual

disk containing the guest OS and applications.

6.3 Closing remarks

It appears that dynamic binary translation can be competitive with hardware-

level backward compatibility in supporting legacy ISAs. In view of this, and

the cost both in silicon area and verification effort in providing the hardware,

dynamic binary translation may be the way to provide ISA migration in the

future.
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