
EXPLOITING CONCURRENCY IN A

GENERAL-PURPOSE

ONE-INSTRUCTION COMPUTER

ARCHITECTURE

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

By

Christopher Daniel Emmons

School of Computer Science

Contents

Abstract 14

Declaration 15

Copyright 16

Acknowledgements 17

The author 18

I Introduction and background 19

1 Introduction 20

1.1 Motivation . 20

1.2 Research objectives . 21

1.3 Research contributions . 23

1.4 Thesis structure . 24

2 General-purpose computer architecture 25

2.1 General-purpose computer requirements 25

2.2 Challenges in computer architecture 26

2.2.1 Design complexity and productivity gap 26

2.2.2 Power consumption . 27

2.2.3 Processor and memory performance gap 28

2.2.4 Cost of communication . 29

2.3 Research directions . 30

2.3.1 Exploiting parallelism . 30

2.3.2 Increasing cache sizes . 35

2

2.3.3 Designing at higher levels of abstraction 35

2.3.4 Communication-centric architectures 36

2.4 Conclusion . 37

3 The Fleet architecture 38

3.1 Architecture overview . 38

3.2 Instruction set architecture . 39

3.2.1 Native hardware data types 39

3.2.2 One instruction . 40

3.2.3 Code bags . 43

3.2.4 A simple Fleet program 44

3.3 Concurrency . 45

3.4 Hardware organization . 45

3.4.1 Instruction fetch and dispatch 45

3.4.2 Switch fabric . 46

3.4.3 Ships . 46

3.5 Early findings . 46

3.6 Limitations . 47

3.7 Conclusion . 47

II The Armada architecture 49

4 The Armada architecture 50

4.1 Differences from Fleet . 50

4.2 Architecture enhancements . 53

4.2.1 Independent code bags . 53

4.2.2 Enhanced local register file 54

4.2.3 Context synchronizers . 55

4.2.4 Flow caching . 55

4.3 Instruction set architecture . 56

4.3.1 Memory model . 56

4.3.2 One instruction . 56

4.3.3 Choosing the code bag type 58

4.3.4 Fetching code bags . 60

4.3.5 Freeing Fleet cores . 66

3

4.3.6 Virtual pipelines . 66

4.3.7 Handling state in Ships . 68

4.3.8 Context synchronizers . 69

4.3.9 Flow caching . 70

4.3.10 Hardware reset behavior 72

4.3.11 Event handling . 73

4.3.12 Fleet prototype core ISA 73

4.4 Related work . 74

4.4.1 Transport-triggered architectures 74

4.4.2 Dataflow machines . 74

4.4.3 WaveScalar architecture 75

4.4.4 Independence architectures 75

4.4.5 SCALP and Vortex asynchronous processors 76

4.4.6 TRIPS architecture . 76

4.4.7 Fleet at Sun Microsystems and U.C. Berkeley 77

4.5 Conclusion . 77

5 The Armada-1 microarchitecture 78

5.1 Overview . 78

5.2 Memory subsystem . 78

5.3 Fleet cores . 79

5.3.1 Simultaneous multithreading 79

5.3.2 Data size . 80

5.3.3 Instruction horn . 81

5.3.4 Instruction pool and reservation stations 81

5.3.5 Switch fabric . 82

5.3.6 Ships . 83

5.4 Fetch and dispatch unit . 84

5.4.1 Code bag fetch unit . 84

5.4.2 Instruction dispatch unit 87

5.5 Context synchronizers . 88

5.6 Communication . 88

5.7 Conclusion . 88

6 Evaluation of Armada-1 90

6.1 ArmadaSim . 90

4

6.1.1 Structural configuration 90

6.1.2 Timing model . 91

6.1.3 Statistics gathering . 91

6.1.4 Fleet state checker . 91

6.1.5 Value-change dump output 92

6.1.6 Verification . 92

6.1.7 Design complexity . 93

6.1.8 Limitations . 94

6.2 Mandelbrot . 94

6.2.1 Computation . 94

6.2.2 Parallelism . 95

6.2.3 Mapping to Armada . 98

6.3 Conclusion . 101

7 Microarchitecture results and discussion 102

7.1 Performance overview . 102

7.2 Exploiting concurrency . 106

7.2.1 Instruction-level concurrency 106

7.2.2 Thread-level concurrency 108

7.3 Code density . 108

7.4 Code bag organization . 109

7.5 Asynchronous system performance 110

7.6 Resource multiplexing . 111

7.7 Conclusion . 111

III An Armada compiler 113

8 Armada Procedure Call Standard 114

8.1 Overview . 114

8.2 Register file . 115

8.2.1 Behavior . 115

8.2.2 Listing . 115

8.3 Stack . 116

8.3.1 Allocation policy . 116

8.3.2 Choosing the allocation policy 117

5

8.4 Data placement . 118

8.4.1 Argument passing . 118

8.4.2 Automatic variables . 120

8.4.3 Return values . 121

8.5 Procedure calls . 121

8.5.1 Serial procedure calls . 121

8.5.2 Concurrent procedure calls 122

8.6 Conclusion . 126

9 Compiling for Armada 127

9.1 Modern optimizing compilers . 127

9.2 LLVM IR . 128

9.2.1 Basic blocks . 129

9.2.2 Instructions . 129

9.3 Armada code generator . 132

9.3.1 Data types . 132

9.3.2 Pre-processing . 133

9.3.3 Code bag formation . 135

9.3.4 Ship type and instruction selection 137

9.3.5 Instruction merging . 137

9.3.6 Instruction splitting . 138

9.3.7 Stray token cleanup . 138

9.3.8 Ship allocation . 140

9.4 Assembler . 141

9.5 Limitations . 141

9.6 Conclusion . 142

10 ArmadaSim debugger 143

10.1 Trace replay . 143

10.2 Message view . 143

10.3 Source code view . 144

10.4 State tracking view . 145

10.5 Limitations . 147

10.6 Conclusion . 148

6

11 Testing the Armada compiler 149

11.1 Objectives . 149

11.2 Method and metrics . 149

11.2.1 Code structure . 150

11.2.2 Code density . 150

11.2.3 Instructions fetched . 150

11.2.4 Instructions executed . 151

11.2.5 Instruction traffic . 151

11.2.6 Concurrency . 151

11.3 Results . 152

11.3.1 Performance . 152

11.3.2 Code structure . 153

11.3.3 Code density . 153

11.3.4 Instructions fetched and instruction traffic 155

11.3.5 Instructions executed . 155

11.3.6 Concurrency . 156

11.4 Conclusion . 157

IV Discussion and conclusion 158

12 Discussion and conclusion 159

12.1 Fleet changes . 160

12.2 Architecture enhancements . 160

12.2.1 Proposed extensions and motivating factors 160

12.2.2 Conclusions . 161

12.3 Compiler and tools . 162

12.4 Limitations of described work . 163

12.4.1 Few benchmarks . 163

12.4.2 Performance comparison to modern architectures 163

12.4.3 Compiler maturity . 163

12.5 Areas for future work . 163

12.5.1 Memory subsystem . 164

12.5.2 Higher granularity Ship functionality 164

12.5.3 Armada as an application-specific processor architecture . 164

12.5.4 Flow-control fabric . 164

7

12.5.5 Flow caching . 165

12.5.6 Compiler enhancements 165

12.6 Final remarks . 165

Bibliography 166

A Ships in Armada-1 173

A.1 Register . 173

A.2 IntAdd64 . 173

A.3 IntDiv64 . 174

A.4 IntMul64 . 174

A.5 FPAdd64 . 174

A.6 FPDiv64 . 175

A.7 FPMul64 . 175

A.8 BitShift . 175

A.9 BitOp . 176

A.10 IntToFP . 176

A.11 SExt . 177

A.12 Counter . 177

A.13 Stride . 177

A.14 Cmp . 178

A.15 Join . 179

A.16 Selector . 179

A.17 Toggle . 179

A.18 Fetch . 180

A.19 Memory . 180

A.20 ContextSynchronizer . 181

A.21 Stack . 181

B Hardware stack allocation support 183

B.1 Overview . 183

B.2 Priming the ring . 184

B.3 Stack allocation . 185

B.4 Stack release . 185

B.5 Testing . 185

8

C Code listings 186

C.1 Mandelbrot, hand-coded . 186

C.2 Mandelbrot, LLVM-generated . 189

D LLVM instruction mapping to Armada 196

D.1 Terminator class . 196

D.1.1 ret . 196

D.1.2 br . 196

D.1.3 switch . 197

D.1.4 invoke . 197

D.1.5 unwind . 197

D.1.6 unreachable . 197

D.2 Binary class . 197

D.2.1 add . 197

D.2.2 sub . 197

D.2.3 mul . 198

D.2.4 udiv . 198

D.2.5 sdiv . 198

D.2.6 fdiv . 198

D.2.7 urem . 199

D.2.8 srem . 199

D.2.9 frem . 199

D.3 Bitwise binary class . 199

D.3.1 shl . 199

D.3.2 lshr . 200

D.3.3 ashr . 200

D.3.4 and . 200

D.3.5 or . 200

D.3.6 xor . 201

D.4 Vector class . 201

D.4.1 extractelement . 201

D.4.2 insertelement . 201

D.4.3 shufflevector . 201

D.5 Memory class . 201

D.5.1 malloc . 201

D.5.2 free . 201

9

D.5.3 alloca . 202

D.5.4 load . 202

D.5.5 store . 202

D.5.6 getelementptr . 202

D.6 Conversion class . 203

D.6.1 trunc . . to . 203

D.6.2 sext. . . to . 203

D.6.3 zext. . . to . 203

D.6.4 fptrunc. . . to . 203

D.6.5 fpext. . . to . 203

D.6.6 fptoui. . . to . 203

D.6.7 fptosi. . . to . 203

D.6.8 uitofp. . . to . 204

D.6.9 sitofp. . . to . 204

D.6.10 ptrtoint. . . to . 204

D.6.11 inttoptr. . . to . 204

D.6.12 bitcast. . . to . 204

D.7 Miscellaneous class . 204

D.7.1 icmp . 204

D.7.2 fcmp . 205

D.7.3 phi . 205

D.7.4 select . 205

D.7.5 call . 205

D.7.6 va arg . 205

D.7.7 getresult . 205

10

List of Tables

3.1 Fleet native data types . 39

3.2 Comparison of Fleet and RISC instructions 40

3.3 Move instruction syntax and graphical representation 41

4.1 Code bag comparison . 59

4.2 Code bag descriptor syntax and representation 61

7.1 Code size and instruction fetch traffic comparison 109

8.1 Armada-1 register file listing . 116

9.1 LLVM instruction classes . 130

11.1 Hand-coded versus compiled Mandelbrot 152

11.2 Mandelbrot comparison on various ISA’s 155

A.1 Cmp Ship in op input port values 178

11

List of Figures

2.1 Design complexity and productivity gap. 27

2.2 Memory and CPU performance gap. 29

2.3 Cache size versus performance in Itanium2 35

3.1 Sum of squares Fleet code snippet. 44

3.2 Fleet architecture organization . 45

4.1 Gating fetch of a successor code bag on token cleanup 52

4.2 Move instruction encoding overview. 57

4.3 Code bag descriptor format . 60

4.4 Register forwarding example . 64

4.5 Painting a horizontal line example 65

4.6 Virtual pipeline example . 67

4.7 Color conversion cacheable flow. 72

4.8 Color conversion cleanup code. 73

5.1 Block diagram of a dual-core Armada-1 processor 79

5.2 Instruction horn and pool . 81

5.3 Switch fabric . 83

5.4 Fetch and dispatch unit . 85

6.1 Mandelbrot benchmark inner loops in Java 96

6.2 Mandelbrot inner loop operations 97

6.3 Mandelbrot code bags . 98

6.4 Mandelbrot code bag fetch scheme 99

6.5 InnerLoop control flow . 100

7.1 Overview of Mandelbrot performance on Armada-1 103

7.2 Resource utilization of performance-limiting units 104

12

7.3 Mandelbrot performance on optimized Armada-1 105

7.4 Concurrently active Ships in Armada-1, Mandelbrot 107

7.5 Effect of code bag instruction arrangement on performance 110

8.1 Argument passing example with native and aggregate types. . . . 119

8.2 Stack layout for a serial procedure call 123

8.3 Stack layout for a concurrent procedure call 125

9.1 Modern optimizing compiler architecture 128

9.2 Control flow graph of a simple LLVM loop 131

9.3 LLVM add and store instructions. 131

9.4 Translation of an LLVM branch to Armada move instructions . . 137

10.1 ArmadaSim Debugger messages view 144

10.2 Debugging multiple threads . 145

10.3 Stepping through a program . 146

10.4 Tracking Fleet state . 147

11.1 Hand-coded and compiled Mandelbrot 154

11.2 ILC comparison between hand-coded and compiled Mandelbrot . 156

B.1 Hardware stack allocation scheme 184

13

Abstract

The University of Manchester
Christopher Daniel Emmons
Doctor of Philosophy
Exploiting Concurrency in a General-Purpose One-Instruction Computer

Architecture
December 2009

Computer performance is suffering greatly from diminishing returns as the
increasing cost of implementing complex hardware optimizations and of increasing
clock frequency no longer yields the gains in computational ability and power
efficiency consumers demand. Notable products including a generation of Intel
Pentium 4 processors have been cancelled as a result. This sudden hiccup in an
historically predictable performance road map has inspired research and industrial
communities to investigate architectures, some rather unorthodox, that complete
work more quickly and more efficiently.

One such computer architecture under development, Fleet, exposes fine-grain
instruction level concurrency, addresses the growing costs of on-chip commu-
nications, and promotes simplicity in the underlying hardware design. This
one-instruction computer transports data using simple move operations. The
globally-asynchronous architecture promotes high modularity allowing special-
ized configurations of the architecture to be generated quickly with low hardware
and software complexity.

The Armada architecture presented in this thesis expands on Fleet by intro-
ducing constructs that exploit thread-level concurrency. The proposals herein
aim to increase the performance efficiency of Fleet and other communication-
centric architectures. Trade-offs between software and hardware complexity and
between the static and dynamic division of labor are investigated through the
implementation and study of an Armada microarchitecture and an Armada com-
piler created for this research. This thesis explores the merits and pitfalls of this
unique architecture as the basis for general-purpose computers for the future.

14

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

15

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

16

Acknowledgements

I would like to thank my supervisor Prof. Steve Furber for providing me with

an opportunity to study in Manchester, for being an ever-insightful sounding

board, and for imparting expert direction and advice throughout the course of

my research. Ivan Sutherland clearly motivated this work with his wacky Fleet

architecture. I would like to thank him, Igor Benko, Wesley Clark, and Sun

Microsystems for supporting my efforts with an internship in California and with

good discourse that helped me find focus and refine my ideas. Thank you family

and friends who have provided the best of support and encouragement while being

a steady reminder that there is a world outside of the Ph.D. – which can be quite

easy to forget. Finally, this work would have certainly been left uncompleted

without the surprise reemergence of an old friend. Thank you, Erin, for knowing

exactly what I needed when I needed it and for pushing me through the final

months.

17

The author

Christopher Emmons obtained a Bachelor of Science degree in Computer Sciences

from the University of Texas at Austin in 2003. While studying at Texas, he

worked for Intel Corporation’s Cellular and Handheld Group on XScale processors

as an Applications Engineer intern. After graduating, he assumed Performance

Validation Engineer and, subsequently, System-on-Chip Microarchitect roles at

Intel. Leaving Intel in September 2005, Christopher began this Ph.D. work at the

University of Manchester. He held two internship positions during the course of

his research at ARM Holdings in Austin, Texas, and at Sun Labs in Menlo Park,

California. He is currently working for ARM in Austin, Texas, in the Research

and Development Group.

18

Part I

Introduction and background

19

Chapter 1

Introduction

In 2004, the means for increasing computer processor performance for over a

decade reached an inflection point. Facing power inefficiency, difficulties designing

increasingly complex hardware, growing costs of on-chip communication, and

other barriers, the computer industry shifted focus to new ways of achieving

more computing power more efficiently. This thesis presents one such computer

architecture that attempts to overcome the contemporary performance, power,

and design constraints that are inhibiting the progress of more typical computer

processor designs. This architecture, called Armada, aims to create a power-

efficient and reconfigurable computer useful for general purpose computing.

1.1 Motivation

For the past two decades, we have enjoyed large and predictable increases in

computer performance. This improvement has largely been sustained by increas-

ing utilization of hardware components as the processor operating frequency is

increased. Intel unintentionally affirmed this trend is at an end by its highly pub-

licized cancellation of a line of 4+ gigahertz processors in 2004 due to difficulty

controlling the heat generated as an unwelcomed byproduct of such fast clock

rates.

Designers are also having an increasingly difficult time putting additional

transistors on a chip, made available each year by improvements in fabrication

technology, to work. The density of transistors on a single chip roughly doubles

20

1.2. RESEARCH OBJECTIVES 21

every two years. This trend has proven very consistent over time and is com-

monly referred to as Moore’s Law1 [Moo65]. However, a more recent observation

indicates that these additional resources are being used less and less efficiently;

growth in performance of new processors is roughly the square root of their growth

in density on any given chip process technology [Gel01]. The International Tech-

nology Roadmap for Semiconductors (ITRS) views this productivity gap as a

great challenge for processor development over the coming years [ITR05].

Additionally, logic is becoming less expensive in terms of area and power

consumption while communication is increasingly costly. The majority of proces-

sors have been designed to reuse once expensive logic as efficiently as possible.

This reuse often requires moving large amounts of data through a minimal set

of computation units. Although these computational units reside within close

proximity to each other, controls spanning across the chip are greatly affected

by the increasing wire delays that result from shrinking processor feature sizes

[HMH01, AHKB00].

1.2 Research objectives

The overall goal of the research undertaken is to demonstrate a novel computer

architecture with high power efficiency that addresses the modern challenges in

processor design and manufacture. Computer architectures provide the frame-

work on which processors are built and programmed. Architectures describe

the programmer’s view of the hardware – the instruction set architecture (ISA).

They also describe the microarchitecture or hardware organization of the proces-

sor: what high-level blocks the hardware is composed of, what purposes they

serve, and how they are interfaced together. Finally, computer architecture also

encompasses the low-level implementation of the microarchitecture aptly referred

to as the hardware implementation. Two or more implementations of the same

microarchitecture may differ in characteristics such as size, performance, and

clock frequency though they will share the same overall structure. This the-

sis will primarily focus on the ISA and microarchitectural aspects of computer

architecture.

The soundness or goodness of a computer is largely judged on three factors:

1Gordon Moore’s original observation was that the number of transistors on a die doubled
every 24 months, and he projected that the trend would continue for at least the next ten years.
That prediction was made nearly 45 years ago.

22 CHAPTER 1. INTRODUCTION

performance, power consumption, and cost. The computer must minimally pro-

vide enough functionality and performance to meet the demands of the target

application and, preferably, leave room to spare for increasingly demanding tasks

of the future. The performance provided must not come at the expense of un-

reasonable power consumption. Mobile devices often have the most strict power

requirements while consumers of high performance computer servers increasingly

consider the cost of ownership of the machine before making their purchases. This

cost of ownership includes the energy requirements of the server and the external

cooling required to keep it functioning reliably. Finally, the cost of the finished

computer must fit within the budget of the target products’ requirements and be

price-competitive with alternative designs for the computer to be successful.

The Armada architecture presented in this thesis is based on a one-instruction

computer architecture called Fleet currently under development by Sun Labs

and a handful of students from the University of California, Berkeley. Fleet

addresses new challenges in processor design and fabrication and also provides

a unique instruction set architecture that frees programmers and the hardware

from common sequential programming paradigms. Specifically, it supports the

concurrent execution of many instructions and supplies software with a clean

method of representing this concurrency. The power of this architecture appears

to stem from its unique representation of programs and the implications this

has on the partitioning of complexity both between hardware and software and

between static compile-time and dynamic run-time responsibilities. One goal of

this research is to understand how this new representation affects hardware and

software synergy compared to other prominent architecture designs.

The Armada architecture extends Fleet by supporting a coarser granularity of

concurrency. Whereas Fleet provides the software representation of instruction

level concurrency and capability required to execute many instructions at one

time, Armada additionally provides the representation of task or thread level

concurrency and capability required to execute many contexts at the same time.

The proposed microarchitecture contains multiple Fleet cores on a single chip.

Furthermore, each Fleet core is given new capabilities to run multiple tasks at

the same time. These hardware enhancements are supported by a small but

significant addition to the ISA that enables the spawning and management of

these tasks.

To explore the benefits and disadvantages of this representation, a model of an

1.3. RESEARCH CONTRIBUTIONS 23

Armada microarchitecture implementation and an Armada imperative language

compiler were created enabling insight into both hardware and software aspects of

the architecture. The hope is to use the simple concurrency constructs in the ISA

and the modular, decentralized microarchitecture to cheaply exploit concurrency

and to create a scalable general purpose architecture for the future.

1.3 Research contributions

The following contributions were produced from this research:

• Method of representing and spawning threads in Fleet-based architectures

• Method of graphically representing Fleet and Armada architecture assembly

language programs

• Method of hardware virtualization for one-instruction, asynchronous trans-

port architectures that:

– enables simultaneous multithreading

– enables software performance to scale with the increasing number of

functional units that may be placed on a chip each year

– enables increased resource utilization of processing elements in imple-

mentations with large numbers of such elements to decrease impact of

rising static leakage power costs and to improve throughput

• An Armada microarchitecture: a multicore, globally asynchronous, simulta-

neous multithreading Fleet-based microarchitecture with thread level con-

currency extensions

• Timing approximate simulation model of an Armada microarchitecture

• An assembler for Armada programs

• A trace-replay debugger for debugging highly concurrent Armada assembly

language programs

• An Armada code generator for the Low Level Virtual Machine compiler

infrastructure supporting high level imperative languages

24 CHAPTER 1. INTRODUCTION

1.4 Thesis structure

The thesis is divided into four parts. The remainder of part one describes the cur-

rent challenges in computer architecture introduced here in more detail. Various

types of general purpose computer architectures explored in the past and current

research directions are discussed. Finally, an overview of the Fleet architecture

upon which Armada is largely derived is given.

Part two discusses proposed enhancements to the Fleet architecture that form

the Armada architecture. A microarchitecture implementation of Armada is pre-

sented, and a low-level simulator for the design is described. A discussion of how

a benchmark was mapped to the architecture and some analysis of the microar-

chitecture’s performance running this benchmark is provided.

Part three describes a procedure call standard that defines how software blocks

are written for Armada so that they are interoperable with other software. A

compiler code generator is described that transforms programs written in high-

level imperative languages such as C++ and Java into instructions for the Armada

architecture. Code generated for Armada is compared to code generated for

other more typical architectures. Additionally, a tool for debugging the highly-

concurrent architecture is described.

The final part of the report discusses the results, considers further work, and

provides concluding remarks on this research.

Chapter 2

General-purpose computer

architecture

This chapter provides an introduction to the area of general purpose computer

architecture with a focus on major challenges of today and tomorrow. Some

methods and research directions taken to confront these challenges are discussed.

Exploiting concurrency is given special focus.

2.1 General-purpose computer requirements

Computer processors have widely varying applications from controlling kitchen

appliances and children’s toys to handling millions of secure transactions per

minute in online store servers. Due to the enormous number of applications

processors have, the design space for architectures is also large. This research

focuses on the development and analysis of a new architecture to design general

purpose computer processors.

General purpose processors may be found in powerful computer servers, home

desktop and notebook computers, and in hand-held devices. Typical applications

include gaming, media playback and editing, web browsing, data serving, and sci-

entific workload processing. Successful processors will balance price-performance

carefully; thus, semiconductor companies produce different flavors of general pur-

pose processors to better meet the needs of the various target segments. For

example, although one ISA may be used for all segments, a differentiation in

microarchitecture for processors used in high-end desktop PC’s and servers may

25

26 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

be made from those processors used in mobile, power-constrained devices. Im-

plementation differences such as clock frequency, chip fabrication technology, or

cache sizes may be used to target more specific demands of applications and to

satisfy a variety of customers with varying budgets while maximizing profits for

the processor manufacturer.

General purpose architectures generally have long lifetimes because they serve

as the rough blueprints for multiple generations of processors. Pre-compiled pro-

grams are expected to retain binary compatibility with these different processors.

Therefore, programs should ideally benefit from any performance improvements

made between each generation without having to recompile them.

An increasing number of applications in the traditionally general purpose com-

puting design space have common and demanding tasks that they are expected to

perform efficiently. For example, high-resolution video capture and compression

on a desktop PC requires fast video encoding of a large amount of raw image data.

Cryptography algorithms are used to securely transfer data and to enable digital

rights management of protected media. The specialization of microprocessors for

target applications such as these is enabled by reconfigurable architectures and

by the addition of hardware accelerators for common and demanding tasks. As

transistor budgets grow, processor manufacturers are able to integrate such re-

configurable logic and specialized accelerators into traditionally general purpose

processors.

2.2 Challenges in computer architecture

Optimizing processors for performance, power, and cost requires a carefully bal-

anced architecture which addresses numerous challenges. The following sections

describe some of the contemporary challenges architects face.

2.2.1 Design complexity and productivity gap

Improving chip process technologies allow more transistors to be crammed onto

processors with each generation. As foretold by Moore’s Law, billion transistor

chips have arrived; Intel’s Itanium 2 processor in production in 2006, codenamed

“Montecito,” encompasses 1.72 billion transistors. Sun Microsystems’ “Niagara”

processor, shipping since late 2005, combines eight processing cores to tackle

2.2. CHALLENGES IN COMPUTER ARCHITECTURE 27

challenging applications. Managing such large numbers of resources effectively

has become a formidable challenge.

Design complexity is a metric that refers to the number of devices a chip

contains or to the amount of behavior that a design exhibits. As design complexity

has steadily risen at a rate of approximately 58% per year, design productivity,

the rate at which design engineers and their tools can build new processors, has

only risen at a rate of 21% per year as shown in figure 2.1 [ITR05]. Therefore,

more than a twofold increase in productivity in the coming years is required to

make efficient use of increasing transistor density.

Figure 2.1: Design complexity and productivity gap. (from Sematech)

2.2.2 Power consumption

In recent years, maximizing processor performance has taken a back seat to limit-

ing processor power consumption and increasing processing efficiency. High pro-

cessor power consumption increases the cost of ownership of computers, limits

the run time of mobile devices between charges, and stunts the growth potential

of computer processors as the chips reach thermal package limits.

Power consumption in computer processors consists of a static component,

called leakage power, and a dynamic component, called switching power (equa-

tion 2.1). Static power loss occurs when the circuit is in a steady-state. The

switching power component captures the power loss due to the charging and dis-

charging of the circuits as well as short-circuit power.1 Short-circuit power is

1In complementary metal oxide semiconductor technology, or CMOS, short-circuit power

28 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

generally a small portion of dynamic power in well-designed circuits and is not

discussed here.

Powertotal = Powerstatic + Powerdynamic
= (Ileakage ∗ Vdd) + [α ∗ C ∗ V 2

dd ∗ fclk]
(2.1)

Although static leakage power has historically been small compared to dy-

namic switching power, the situation is changing as feature sizes decrease. The

smallest feature size of a chip process technology refers to the smallest size of

transistors, wires, or gaps between them that can be created onto the chip die

with that technology. As these sizes decrease, the capacitance of the system of

transistors, C, is lowered. This reduced capacitance decreases the switching time

of those transistors, or gate delay, resulting in faster logic performance accommo-

dating faster processor clock frequencies (fclk). The activity factor, α|0 ≤ α ≤ 1,

approximates the average switching activity of the circuit for each clock edge.2

The supply voltage, Vdd, is lowered to reduce interference with the ever-closer

neighboring components and to meet thermal requirements. Lowering Vdd greatly

reduces dynamic power consumption since the dynamic power is proportional to

the square of this supply voltage. However, lowering the supply voltage in turn

often requires a lowering of the threshold voltage, the voltage level at which tran-

sistors switch, to maintain fast clock rates. Lowering the threshold voltage and

moving the threshold closer to ground causes a disproportionate increase in the

static leakage current, Ileakage, and thus an increase in static power consumption

[KAB+03].

2.2.3 Processor and memory performance gap

The computer processor is only one of the factors in computer system perfor-

mance. Access to memory for instructions and data is often the bottleneck in

today’s systems. Computer processor performance has increased at a rate of

roughly 55% per year while memory performance has increased at a rate of less

than 10% per year as shown in figure 2.2 [HP03].

loss occurs when both n and p transistors are simultaneously enabled during a transition. The
power lost is dependent on the slope of the rising and falling transition edges.

2The activity factor for a clocked flip-flop, for example, is 1
2 since it toggles at most once

per clock cycle and, thus, toggles once for every two clock edges. Techniques like clock-gating
which decrease the number of logic transitions aim to keep this activity factor low.

2.2. CHALLENGES IN COMPUTER ARCHITECTURE 29

Figure 2.2: Memory and CPU performance gap. (Hennessy and Patterson)

Memory caches are used to store frequently accessed data closer to the pro-

cessor core for faster lookup to help alleviate this problem. Small, local, simple

caches can be accessed with very low latency and the data used very quickly by

the processing core. As cache sizes grow, the access latency increases, and the

benefits of a larger cache may not compensate for this increased lookup time.

For this reason, architectures often have a hierarchy of caches with small, fast,

level one (L1) caches close to the processor supported by one or more increasingly

slower, larger caches (L2, L3, and so on). Though slower than an L1 cache, these

larger caches still provide much faster access to data than off-chip memory with

less power consumption. Much research has been conducted on the trade-offs of

different cache hierarchy schemes [Jou90, FPT94].

2.2.4 Cost of communication

In early computers, state-holding logic took the form of large and expensive vac-

uum tubes. Communication was handled by small and relatively cheap wires.

Today’s trends show that logic in the modern form of transistors is cheap and

continually getting cheaper; communication costs, however, are growing in signif-

icance.

As mentioned in section 2.2.2, wires and transistors on-chip are becoming

smaller. Although smaller feature sizes result in decreases in gate delay, the same

is not necessarily true for wire delay. Thinner wires with some material resistivity,

30 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

ρ, have increased resistance per unit length, Rw

l
, due to lower cross-sectional area,

A (equation 2.2). Wire delay, τ , is a product of both this resistance and of wire

capacitance (equation 2.3). The capacitance is not decreasing proportionally to

the resistance; even reducing the length, width, and height of a wire by some

common factor will not necessarily change the wire delay significantly since one

component of the wire capacitance, fringing capacitance, does not scale with

feature size. Therefore, decreasing feature sizes are resulting in an increase in

the ratio of wire delay to gate delay and ultimately in communication-bound

performance.

Rw

l
= ρ

A
(2.2)

τ = RwCw (2.3)

2.3 Research directions

Computer architects and engineers have responded to the challenges of designing

general purpose computer processors in many different ways. Some of the most

successful and interesting approaches are described here.

2.3.1 Exploiting parallelism

Parallelism in computer architectures is the ability for multiple actions to occur

simultaneously. Parallelism is often categorized into the three types discussed

here.

Data level parallelism (DLP)

General purpose architectures often support data-level parallelism (DLP), the

parallelism found in the application of identical operations across many different

data elements [HGLS86]. Some scientific applications and many multimedia ap-

plications exhibit large levels of DLP. Vector processors such as Cray Research’s

Cray-1 and Cray-2 use single instructions to operate on vectors of data elements

at a time. Vector machines continue to be applied to scientific applications with

2.3. RESEARCH DIRECTIONS 31

high DLP, and research projects such as VIRAM show promise in applying vec-

tor processing to embedded markets [KP02, BG04]. Other common approaches

for exploiting DLP are single-instruction multiple-data (SIMD) architecture ex-

tensions. SIMD instructions allow programmers to specify a single operation to

apply to multiple, distinct data elements. Unlike vector processors, generally only

a small number of elements that can fit in a single register at one time are op-

erated on simultaneously. SIMD is fairly ubiquitous and has been supported by

many commercial general-purpose processors since the mid-1990’s in architecture

extensions such as the Apple-IBM-Motorola alliance’s AltiVec3; Digital’s MAX;

Intel’s MMX, SSE, and WMMX; Sun’s VIS; AMD’s 3DNOW; MIPS’s MDMX;

and ARM’s NEON.

Instruction level parallelism (ILP)

Many processors today also support instruction-level parallelism (ILP) by taking

advantage of resource and data independence between instructions and execut-

ing multiple operations at one time. Superscalar processors (or superscalars)

are capable of fetching and executing more than one instruction simultaneously

and thus exploit some level of ILP. Statically-scheduled superscalars may exe-

cute several instructions in program order if there are no hazards between the

instructions. These superscalars stop executing later instructions when any haz-

ard is first encountered which limits ILP. Another class of architectures, very long

instruction word architectures (VLIW), contain multiple operations in a single

instruction. The compiler attempts to resolve dependencies and places indepen-

dent instructions into slots of the instruction word for parallel execution by the

hardware. This approach reduces hardware complexity versus superscalars since

the independencies are discovered at compile-time and are explicitly specified to

the hardware. More comparisons between superscalars and VLIW processors will

be given later in this section.

Dynamic scheduling allows processors to find independences that cannot be

found at compile time or through static run-time methods. Out-of-order super-

scalars are capable of examining many instructions at once, determining inde-

pendences among those instructions, and executing multiple operations simul-

taneously and potentially out of order. Out-of-order superscalars can look past

3Also known as Velocity Engine and VMX depending on which company is referring to the
extensions

32 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

instructions that cause hazards and execute one or more of the later instructions

immediately. However, the hardware resources involved in finding ILP dynami-

cally are large. Structures such as reorder buffers, rename register files, and in-

struction windows must grow in size and complexity with instruction issue width

and the number of supported instructions in flight. Furthermore, dependency

tracking logic grows quadratically in the number of instructions [HP03].

The limits of attainable ILP have been explored many times over with re-

searchers drawing different conclusions [Wal91, Wal95, GG98]. The general con-

sensus is that dynamic scheduling and employing speculative techniques of control

and data value prediction are necessary to create large opportunities for exploiting

ILP, but hardware overhead must be controlled. The latter proves difficult.

Thread level parallelism (TLP)

Some programming languages allow programmers to explicitly define threads of

control in a program that may be executed concurrently. Additionally, multi-

processing operating systems may have several programs to execute each having

its own set of threads that may also be executed concurrently. The parallelism

made available by executing multiple threads at a time is called thread-level par-

allelism (TLP). Hardware support for TLP typically comes in two forms, multi-

processing and multithreading. Multiprocessing involves two or more processing

cores either on a single chip or connected with an external interconnect. The

most common type of single chip multiprocessor, or CMP, is called a symmetric

multiprocessor, or SMP, which contains two or more identical cores connected to

shared memory. SMP’s are commercially available today on entry-level systems

with the introduction of Intel Pentium D and AMD Athlon X2 processors. Com-

mercial systems have widely been available for years that interconnect multiple

single core processors to create a multiprocessing system.

Multithreading refers to hardware-supported execution of multiple program

threads. Multithreaded processors hold the state of two or more threads at a time.

These processors appear as multiple single processor cores to most operating sys-

tems though the execution resources in the hardware are actually shared among

the threads. Sharing these resources versus duplicating them such as in CMP

designs saves die area which helps to contain static, leakage power and chip fab-

rication costs. Early approaches to multithreading executed a single thread at a

time, switching between contexts on long latency operations like memory accesses

2.3. RESEARCH DIRECTIONS 33

or at regular, statically-defined intervals. These techniques helped to eliminate

wasted cycles but did not improve utilization of idle hardware resources. Simul-

taneous multithreading (SMT) enables multiple threads to dynamically allocate

and use available hardware resources concurrently providing opportunities for

higher levels of resource utilization than CMP designs. Under high load, wide in-

struction issue SMT processors show similar performance to CMP’s with several

processing cores and smaller supported instruction widths [TEL98]; SMT’s with

more modest complexity and thus smaller issue widths and numbers of supported

threads like those in commercially available processors to date see less improve-

ment. Intel’s SMT technology is marketed as Hyper-Threading or HT. SMT die

area overhead in Pentium 4 HT processors supporting two threads is 5–6%, and

performance gains are from 15–25% for a variety of common desktop applications

[KM03]. Despite low die area overhead, design cost for the implementation was

considerable due to supporting two logical contexts, changing micro-op prioritiza-

tion schemes, and validating the permutations of the x86 architecture’s operating

modes possible among the contexts [KM03].

Finding ILP in programs

The previous sections identified several types of parallelism, and many different

approaches have been made to exploit it. Special attention is given to ILP here as

the relationship between the hardware and software for making use of it is complex

and requires many trade-offs. Architectures can be classified into three types

based on hardware and software partitioning to find ILP: sequential, dependence,

and independence [RF93].

As discussed, superscalar processors are given programs in the form of streams

of instructions that are expected to execute one after another. ILP extraction

from the stream must be performed in the hardware without any guarantees

from software. However, a compiler may attempt to help hardware exploit ILP

by applying any knowledge it has of the hardware implementation to schedule

independent instructions next to one another in the code it generates. Such

architectures are called sequential architectures. Of the three classes, hardware

complexity for exploiting ILP is the greatest, hardware-software coupling is the

loosest, and software’s responsibility in finding ILP is the lowest.

In another class of architectures called dependence architectures, software

34 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

communicates dependencies to the hardware directly. To execute instructions si-

multaneously, the hardware must still find independent operations, but the task is

made easier than in sequential architectures due to the additional information the

software provides. Data flow architectures are primary examples of dependence

architectures. In data flow machines, an instruction typically contains a pointer

to its successor instruction, the place to send the result of the current operation;

this information expresses the dependence between the instructions. Dependence

architectures have an easier task of finding parallelism than do sequential archi-

tectures, have loose hardware-software coupling, and rely on software to provide

some information for exploiting ILP.

Finally, independence architectures may rely entirely on software to discover

exploitable concurrency. VLIW architectures, for example, require software to fill

slots in long instruction words with independent operations that may be executed

in parallel. Generally, the compiler does most if not all of the scheduling work,

and hardware in independence architectures can therefore be relatively simple

and still exploit ILP. However, a hardware implementation may choose to search

for additional independent operations at run time transparent to software like a

superscalar processor does; this would of course result in an increase in hardware

complexity. In independence architectures, hardware-software coupling is high as

the compiler must often be aware of the hardware microarchitecture in order to

determine instruction independences. Software and compilers for independence

architectures are the most complex out of the three architecture classes presented

here.

Independence architectures are becoming increasingly popular as a means to

curb hardware complexity. VLIW independence architectures have been em-

braced in embedded markets as application-specific processors. TriMedia CPU64

VLIW processors can be found in set-top boxes and other embedded multimedia

systems [vESV+99]. Explicitly parallel instruction computing architectures, or

EPIC architectures, are a variant of VLIW developed by Hewlett Packard Labs

that combine instruction independence discovery in software with traditionally

superscalar approaches to dynamic exploitation of ILP [SR00]. The family of

Itanium processors use this architecture.

2.3. RESEARCH DIRECTIONS 35

2.3.2 Increasing cache sizes

Today’s high-performance processors are employing larger caches to help close

the CPU and memory performance gap as shown in figure 2.3 [FH05]. Intel’s

“Montecito” Itanium 2 processor released in 2006 contains nearly 27MB of total

cache memory on-die [MB05]. In addition to performance improving characteris-

tics, caches have been optimized in ways to limit both dynamic and static power

requirements thus providing power-efficient use of die area [FKM+02].

Figure 2.3: Cache size versus performance in Itanium2. (from Flynn)

2.3.3 Designing at higher levels of abstraction

A primary method of attacking the design complexity problem is to design archi-

tectures at higher levels of abstraction. Tools such as SystemC allow architects

to develop high level models of architecture components and to explore the de-

sign space more quickly. SystemC-to-Verilog translators are becoming available

to bridge the gap from the object oriented simulation environment to register

transfer level (RTL) modeling and realization in hardware.

Another method of designing at a higher level of abstraction is the reuse of

hardware and software blocks. SMP’s, for example, copy multiple instances of

identical cores into processors to exploit thread-level parallelism; the core is de-

signed and validated once and reused many times. Tiled architectures are more

extreme examples of this type of hardware reuse. Tiled architectures provide

36 CHAPTER 2. GENERAL-PURPOSE COMPUTER ARCHITECTURE

a framework for designing processors by copying a large number of logic and

memory blocks in a regular fashion across the die. Raw architectures, for exam-

ple, are built using multiple tiles containing a MIPS-style pipeline, a pipelined

floating-point unit, several caches, and routers for communication with other

tiles [TLM+02]. Despite exhibiting lower performance on sequential applications

than traditional superscalar processors, some evaluations show a 2–9x improve-

ment with Raw for applications with high ILP and a 10–100x improvement when

highly parallel algorithms are carefully optimized for the architecture [TLM+04].

Unlike Raw architectures, Smart Memories have a heterogeneous mix of tiles that

may be chosen for targeting specific applications and thus are also a type of recon-

figurable architecture [MPJ+00]. The TRIPs architecture is a grid architecture

composed of homogeneous but polymorphic resources [SNL+03]. Thus, unlike the

Smart Memories approach, TRIPs uses identical processing elements and mem-

ories, but the behavior of these components can be dynamically reconfigured to

enhance the performance of applications executing at the time by favoring ILP,

TLP, or DLP at the software’s discretion. These designs all reuse hardware blocks

to minimize hardware complexity and development time.

2.3.4 Communication-centric architectures

In addition to tackling the problem of how to make use of growing transistor bud-

gets, tiled architectures are also directly addressing the problem of increasing wire

delays as a first order design constraint. This thesis refers to such architectures as

communication-centric. The Raw and Smart Memories architectures both limit

maximum tile sizes such that intra-tile communications require no more than one

clock cycle [TLM+02, MPJ+00]. This requirement helps ensure that the tiled

processors will scale with smaller feature sizes.

Some architectures place data movements directly in the hands of the com-

piler and programmer. MOVE architectures explicitly describe transports among

functional units rather than the operations to perform [CM91]. The operations

occur as side-effects of the transport. For example, if two data elements get sent

to the two input ports of a dyadic multiplication functional unit, the values will

be multiplied together. The result can then be moved directly from the multiplier

to another functional unit; register files may be completely bypassed in favor of

the shortest route to the successor operation. Forsell shows that MOVE archi-

tectures do well in reducing hardware complexity but do not compete with the

2.4. CONCLUSION 37

performance of traditional general-purpose architectures [For03].

2.4 Conclusion

This chapter discussed some of the contemporary challenges in computer archi-

tecture and also some of the current approaches to address these issues. The next

chapter describes the Fleet architecture designed to target these challenges. It

is the foundation for the Armada architecture discussed in the remainder of the

thesis.

Chapter 3

The Fleet architecture

The previous chapter discussed some of the problems today’s computer archi-

tectures will face in the foreseeable future. This chapter introduces the Fleet

architecture and discusses how it proposes to address those concerns. A descrip-

tion of the instruction set architecture is given followed by an overview of the

hardware organization. Finally, some initial observations on working with Fleet

and some of the architecture’s constraints are discussed.

Note that much of this material may be found in a research memo [Sut05];

however, that document may not be readily available. Thus, this chapter has been

included to introduce the Fleet ideas developed by Sutherland, Benko, students

from UC Berkeley, and others in the context of this research. Additionally, Fleet

has continued to evolve in tandem with this research. The snapshot described

here served as the basis of this study and does not reflect the latest updates to

the architecture made by the other contributors.

3.1 Architecture overview

Computer architects have reacted to changing design and fabrication technology

trends by proposing new architectures to accommodate and also benefit from

these developments. Ivan Sutherland has proposed one such architecture called

Fleet. Fleet:

• applies the increasing quantity of transistors available each year to integrat-

ing more functional units as opposed to complicated control logic

• simplifies hardware design by employing a very modular approach to the

38

3.2. INSTRUCTION SET ARCHITECTURE 39

system architecture

• puts expensive communication in the hands of the compiler and programmer

where optimizations can be made without complex hardware

The next sections describe Fleet’s ISA and organization and present some results

from initial testing. Fleet is a work in progress, and some behaviors and specifi-

cations have not been concretely established. These loose ends are noted in the

chapter as the topics are discussed.

3.2 Instruction set architecture

The Fleet ISA differs from those of ubiquitous architectures in several ways. Here,

Fleet hardware data typing support is discussed followed by a description of the

one Fleet instruction, the move instruction.

3.2.1 Native hardware data types

Fleet natively supports several hardware data types (figure 3.1). Data of any

type may have an out-of-band, or OOB, value. OOB values indicate special error

or termination conditions such as the end of an array or a memory parity error.

Each native type supports at least one OOB value, last. In order to represent

last, each data type must therefore have at least one additional bit. If multiple

OOB values are supported, more bits are needed to represent the type. Different

uses for OOB will be elaborated on in subsequent sections.

Type Description

token a dataless event useful for sequencing
boolean true or false
character unsigned 16 bits
integer 32 bit signed value
long 64 bit signed value
code bag descriptor a reference to a bag of code
memory pointer memory address (size currently unspecified)

Table 3.1: Fleet native data types. All types additionally support at least the OOB value
“last” and thus require at least one additional bit to represent this (not shown).

40 CHAPTER 3. THE FLEET ARCHITECTURE

3.2.2 One instruction

Fleet instructions describe transports that the hardware should perform rather

than operations. Reduced Instruction Set Computer (RISC) ISA’s are some of

the most common programming interfaces in today’s processors. RISC instruc-

tions describe an operation to perform, the operands required for that operation,

and where to write the result. Architectures that employ such an ISA are known

as operation triggered architectures (OTA’s). In contrast, Fleet instructions are

more closely related to instructions characteristic of transport triggered architec-

tures (TTA’s). Instructions for TTA’s describe a source location of data and one

or more destination places to move that data to; the operation performed is a

side-effect of the transport. Table 3.2 shows code for a simple dyadic addition

operation in both generic RISC and equivalent Fleet instructions.

pseudo-code RISC Fleet

r1 -> add.in1

r0 := r1 + r2 add r0, r1, r2 r2 -> add.in2

add.out -> r0

Table 3.2: Comparison of Fleet and RISC instructions.

The general form of the Fleet move instruction takes one input from a source

port and delivers it to one or more destinations1. From this template, several

embellishments to the instruction have been suggested. One such addition is

that of a mini-opcode that is context-specific to each destination. For example, a

mini-opcode may instruct an adder unit destination port to negate one datum on

arrival perhaps changing the addition operation to a subtraction operation. An

assembly language syntax for other proposed variants of the instruction is given

in Table 3.3. As it is useful to describe Fleet programs graphically, the table also

describes how move instructions are drawn in program diagrams throughout this

thesis. These variations are described in the following sections.

One-shot

One-shot instructions transport one item of data from a source loca-

tion to one or more destinations.
1The number of possible destinations per instruction has not been established though Suther-

land has recommended three as a starting point.

3.2. INSTRUCTION SET ARCHITECTURE 41

Description Text Syntax Graphical Form

One-shot (arrow shaft
is -)

src -> dst

Standing (arrow shaft
is =)

src => dst

Consume data at
source (no * before

arrow)
src -> dst

Copy data at source (*
before arrow)

src *-> dst

Consume data at
destination (no *

before dst)
src -> dst

Reuse data at
destination (* before

dst)
src -> *dst

Pass a mini-op to a
destination

src -> dst(4)

Multiple destinations
(the destination

options may vary
independently)

src -> *dst1, dst2

Examples

One-shot preserving
data at source and
consuming data at

destination

src *-> dst

One-shot consuming
data at source and

reusing data at
destination

src -> *dst

Multiple destinations,
input consumed, dest1
reuses data and dest1

accepts a mini-op, data
consumed at dest2

src -> *dst1(3), dst2

Table 3.3: Move instruction syntax and graphical representation.

42 CHAPTER 3. THE FLEET ARCHITECTURE

Standing

Standing instructions repeatedly move data from a source location

to one or more destinations as data at the source becomes available.

If multiple destinations are specified and one destination is blocked

for a period of time, the other destinations may still receive transfers

from the source. The data will queue up for the blocked destination;

no data will ever be lost. A standing instruction breaks down when

the source data being transferred is OOB; the instruction carries that

OOB value then expires.

Consume input

The data is consumed at its source location by the move instruction

and transported to one or more destinations.

Copy input

The data is copied from its source location by the move instruction,

and the copy is transported to one or more destinations. The data

remains valid at the source, and the next transport from this location

will reuse the data.

Write once

The data is consumed at the destination.

Write persist

The data persists at the destination. This form of move is useful for

supplying constants to destinations; the source data is communicated

only once and is continuously reused.

Fleet move instructions may specify direct transfers between functional units

allowing any register file in the system to be bypassed completely. This decen-

tralization of data flow allows Fleet to use simpler, faster register files or perhaps

to eliminate the use of a register file altogether.

3.2. INSTRUCTION SET ARCHITECTURE 43

Programmers can create virtual pipelines between functional units by issuing

chains of standing instructions. Standing instructions bind a source to one or

more destinations indefinitely. Data is repeatedly forwarded to the destination

or destinations as soon as input data at the source is available and space to write

this data at the destination is available. Standing instructions are broken when

the data being carried is OOB. OOB values may be explicitly introduced by

software or be produced as the output of a functional or storage unit based on

specific conditions. For example, an arithmetic unit may produce an OOB value

if any of its inputs are OOB or if an overflow or underflow condition occurs. A

standing instruction that encounters OOB data will deliver this OOB value then

expire. OOB status can be propagated in this way, breaking down lengthy virtual

pipelines.

3.2.3 Code bags

In most ISA’s including the RISC ISA, programmers may assume instructions

are executed in the order they are specified in the program. Fleet does not

follow this model of inherently sequential processing. Concurrently executable

move instructions are placed into units called code bags. The programmer or

compiler ensures that transports in code bags may be executed in any order and,

despite the execution order, will always produce the desired result. Thus, Fleet

is a type of independence architecture. Recall from chapter 2 that independence

architectures require software to specify which instructions are independent from

each other and, therefore, which instructions may be executed concurrently. A

particularly capable hardware implementation may issue all instructions in a code

bag at one time.

In sequential architectures like RISC architectures, a program counter (PC)

keeps track of which instruction should be executed next. Fleet does not have

a PC. Instead, a code bag is responsible for fetching its successor bags, if any,

by moving code bag descriptors defining those successors to a fetch unit. This

operation will be described further in a following section.

44 CHAPTER 3. THE FLEET ARCHITECTURE

3.2.4 A simple Fleet program

Listing 3.1 shows a code bag that produces the sum-of-squares for a range of

numbers2. A stride unit generates the integers 1–100. It is connected to both

inputs of a multiplier via a single standing instruction. The multiplier will, there-

fore, generate the squares 1∗1, 2∗2, 3∗3, . . . 100∗100. The multiplier’s output is

connected to an accumulator, also via a standing instruction, that will compute

the sum of all inputs received. The stride unit will produce a final last − OOB
value after producing the last valid count — 100 in this example. The multiplier

will respond to last inputs by generating a final last value at its output. At this

point, the standing instruction connecting the stride unit to the multiplier inputs

expires. The last output from the multiplier is then carried to the accumula-

tor. This connection will also expire once the last value is delivered. Finally,

the accumulator is implemented to respond to a last input by producing the

current accumulated amount as an output, the sum of squares in this example.

Note that the instruction moving the accumulator output to the register may

have been waiting for the accumulator to generate output for a long period of

time. Additionally, the order of the instructions in this code bag, like every code

bag, is of no consequence. The programmer should ensure that the output will

be the same regardless of any particular hardware implementation’s instruction

execution order.

1 codebag sumOfSquares {
2 1 −> s t r i d e . s t a r t , s t r i d e . s tep ; // one-shot instruction to

3 // multiple destinations

4 100 −> s t r i d e . stop , s t r i d e . next ; // last number to produce

5 s t r i d e . out => mul . in0 , mul . in1 ; // send 1, 2, ...100 to mul

6 mul . out => acc . in , s t r i d e . next ; // standing instruction

7 acc . out −> r0 ; // write result when count

8 } sumOfSquares ; // complete(OOB received)

Figure 3.1: Fleet code that computes the sum-of-squares for the numbers 1–100. One-
time instructions are specified by the single arrow operator, and standing instructions are
specified by a double arrow. Sending a token to stride.next causes the next number in the
sequence to appear at stride.out.

2If you follow the program and are concerned about left-over state when the program com-
pletes, good observation! Cleanup will be discussed in a later section.

3.3. CONCURRENCY 45

3.3 Concurrency

As demonstrated by the ISA, Fleet requires the programmer to explicitly find

instruction level concurrency (ILC). Programmers and compilers describe ILC to

Fleet hardware by finding independences among instructions and by grouping the

independent transports into code bags. Finding independences at compile-time

allows hardware to exploit ILC easily at run-time with no processing overhead

spent or hardware complexity required to search for candidate instructions.

3.4 Hardware organization

A Fleet processor contains three main types of components. The fetch and dis-

patch unit fetches code bags from memory and dispatches the instructions to

another primary component, the switch fabric. The switch fabric, or intercon-

nect, moves data from sources to destinations based on the instructions it receives.

The sources and destinations are the output ports and input ports, respectively,

of the third and final type of primary components, Ships. Ships are the functional

units and storage units that may generate and receive data, usually performing

some action on the inputs. Figure 3.2 shows the high level organization of a Fleet

computer.

Figure 3.2: Fleet architecture organization.

3.4.1 Instruction fetch and dispatch

The fetch and dispatch unit receives code bag descriptors as an input and pro-

duces Fleet instructions loaded from memory as an output. The code bag de-

scriptors are received from a special fetch Ship in the Fleet. The descriptors

46 CHAPTER 3. THE FLEET ARCHITECTURE

are then translated into the set of contiguous memory addresses that hold the

instructions in the code bag. These instructions are fetched from memory and

await dispatching to the switch fabric in an instruction pool.

3.4.2 Switch fabric

The switch fabric receives routing instructions from the fetch and dispatch unit

and routes data amongst Ships as directed by those instructions. There are

many possible interconnect implementations such as a fully connected crossbar

connecting every Ship output port to every Ship input port, a simple bus, or a

heterogeneous mix of designs. As reflected in the ISA, the interconnect must hold

instructions indefinitely and wait for data to appear at sources. Likewise, it must

hold transported data indefinitely until the destination Ship accepts it.

3.4.3 Ships

Ships may be functional units such as adders and multipliers as well as sequencing

units or register files. Many Ships receive data at one or more inputs and produce

data at one or more outputs. However, not all Ships will contain both input and

output ports. An example of a Ship that produces data but does not receive

inputs is a random number generator. Similarly, a bit bucket receives inputs but

does not generate any outputs. Ships may be implemented in numerous ways; as

with the interconnect, how Ships accomplish their tasks is loosely defined. For

example, Ships may be pipelined or not and be synchronous or asynchronous.

As reflected in the ISA, Ships must only wait for inputs to arrive and wait for

outputs to be picked up.

3.5 Early findings

Currently, few quantitative results have been gathered about the Fleet architec-

ture. The Fleet instruction set architecture is unique, and it is taking some time

for researchers to grasp the implications of it. A Java simulator of the Fleet

architecture has been built by Sun Microsystems and students from U.C. Berke-

ley that has primarily been used to explore how programs might be written for

Fleet. Most programs require specific Ships to be present in the system that

exhibit behavior tailored to the task. Some program and hardware pairs include

3.6. LIMITATIONS 47

an accumulator of the Fibonacci sequence [Hol05], an eight-element bubble sort

[Isa06], an implementation of Euclid’s algorithm [Mey06a], and vector-matrix

multiplication [Mey06b].

Typical problems encountered were congestion in the switch fabric and diffi-

culties with programming the cleanup of orphan tokens left in the system after

algorithm completion [Hol05][Mey06b]. Identification of some sources of conges-

tion and some remedies are presented in [Hol05], but a general solution has not

been found.

3.6 Limitations

Although a basic Fleet microprocessor may tackle application-specific tasks well,

the architecture is not well-suited for general purpose computing. First, the

software’s additional responsibilities of mapping transports to hardware ports

require programs to know details about the microarchitecture. Specifically, soft-

ware must be aware of the port addresses for every Ship to make full use of the

available resources. Thus, any significant change to the hardware may result in

changes required to the software for it to utilize the hardware efficiently. This

coupling ultimately leads to either software incompatibility between generations

of processors or the inability for legacy code to benefit from new resources that

become available in the future. Secondly, perhaps the greatest inhibiting factor

to realizing a general purpose Fleet processor is the inability to easily run multi-

ple programs or multiple threads. The current architecture requires programs to

share Ships cooperatively. Fleet programs must therefore yield control to other

programs in order to multi-program, an archaic programming model. Addition-

ally, the amount of parallelism that can be found statically in a program in the

form of ILP has practical limits. TLP offers additional potential for concurrency

of operations that Fleet is currently unable to efficiently capitalize on.

3.7 Conclusion

The basic Fleet architecture promotes modularity, flexibility, and concurrency

which confront many of the current challenges in computer architecture. Fleet is

globally asynchronous, freeing components from implementation restrictions com-

mon in synchronous systems. The hardware blocks are easily interchangeable and

48 CHAPTER 3. THE FLEET ARCHITECTURE

coupled with other units only through a common asynchronous protocol. Fur-

thermore, the programmer and compiler are given the responsibility of ensuring

optimal communication between components; static, compile-time optimization

allows thorough analysis to replace complex and inflexible hardware controls and

optimizations. Ships may easily be added as more transistors become available on

chip. Software may make use of the additional computational units and increase

the achievable amount of instruction level parallelism. Finally, the compiler and

programmer find the independences among instructions in Fleet; thus, the hard-

ware has no overhead in discovering ILP as it is explicitly provided by software.

However, Fleet does not appear to apply well to general purpose applications.

Strong coupling between hardware and software may create binary compatibility

problems as more Ships are added to Fleet processors at new address ports. New

resources will go unused by legacy software limiting the amount of parallelism

exploited by these applications. Additionally, multi-programming and exploiting

TLP are not practical in Fleet as all processes would be required to cooperate

and share Ships through inflexible compile-time partitioning.

Part II introduces new architectural improvements that attempt to remove the

aforementioned limitations. Using Fleet as a great stepping stone toward reaching

the goal of a scalable, more power-efficient general computer architecture for the

future, the proposed enhancements are integrated with this previous work to form

the Armada architecture.

Part II

The Armada architecture

49

Chapter 4

The Armada architecture

The Fleet architecture provides a unique instruction set architecture which al-

lows software to express independence among instructions in a simple and useful

way; hardware can profit from this instruction-level concurrency easily with little

complexity. However, Fleet lacks similar methods of extracting and programming

for thread-level concurrency.

Armada is a multicore architecture composed of simultaneously-multithreaded

Fleet cores. The constructs introduced in Armada attempt to enable exploitation

of thread-level concurrency similarly to how Fleet currently takes advantage of

instruction-level concurrency. With more concurrency available supported by the

many multithreaded Fleet cores on a single chip, the Armada architecture will

hopefully demonstrate higher throughput than Fleet with minimal complexity

and hardware overhead. To keep the complexity low, a cautious division of labor

between software and hardware and between static and dynamic responsibilities

is taken.

4.1 Differences from Fleet

Several deviations from the Fleet architecture were made during the early stages

of this research. These changes and the rationale for altering the original speci-

fication are discussed here.

First, some proposed features of Fleet are orthogonal to its more radical pro-

posals of dismissing the program counter and exposing ILC to hardware through

code bags. To focus on these more unexplored frontiers of Fleet, some of these

features were removed. Hardware enforcement of data-typing is not supported in

50

4.1. DIFFERENCES FROM FLEET 51

Armada. Additionally, the range of out-of-band values is essentially eliminated;

only the last token behavior is retained to support virtual pipeline destruction

and Ship reset.

Fleet’s move instructions contain a count field to support a specific number of

repetitions of an instruction before it expires. Armada generalizes this behavior

supporting only single and unbounded, standing-instruction types. Supporting a

specific repeat count is a specialization left for future study.

The Fleet memo also refers to some flow-control mechanism for facilitating

communication between pipelined Ships. Although such a mechanism is probably

crucial in achieving high single-thread performance, it is not strictly necessary

for a Fleet processor to operate. Armada does not contain such a mechanism.

Programming with virtual pipelines is discussed in more detail in the instruction

set architecture section of this chapter.

The Fleet proposal refers to a hardware master-clear capability to bring a

Fleet processor back to its clean, reset state. As such a system has not been

devised, Armada relies on software to manage Fleet state and to detect when

Fleet cores are clear of data and instructions. Software can then make the Fleet

available for reuse by other programs or threads.

Additionally, the memo describes some Fleet Ships as pure sources and pure

sinks. Pure source Ships may be possible depending upon the capabilities of the

pipeline communication layer used between such Ships in the processor imple-

mentation. As Armada does not contain such a layer, a source Ship must be

instructed to generate output by passing it a token. It must therefore expose at

least one input trigger port to software, and, consequently, it is not a pure source.

Armada contains only one Ship that may operate as a pure sink, the fetch Ship.

The memo describes another pure sink Ship that this research has found unusable.

As discussed earlier, Armada requires software to manage token movements in

order to prevent deadlock and to detect when a Fleet is free of all state after

performing some computation. The memo suggests disposing unneeded stray

data tokens into a pure sink bit bucket Ship. Without an output port to deliver a

token indicating when stray tokens have reached the bit bucket, software cannot

know when these tokens have been removed from Ship output ports and have

cleared the switch fabric. Therefore, in Armada, a counter Ship takes the place

of the bit bucket in collecting stray tokens. The counter generates a single output

after it receives the software-specified number of tokens to dispose of. This output

52 CHAPTER 4. THE ARMADA ARCHITECTURE

token can then be used to gate the fetch of a successor code bag using some

synchronization Ship like a join Ship as shown in figure 4.1. Appendix A details

the behavior of these Ships and all others mentioned in this thesis.

Figure 4.1: Gating fetch of a successor code bag on token cleanup. This example demon-
strates a way to ensure stray tokens are cleaned up prior to fetching a successor code bag.
The counter Ship produces an output token once all of the stray tokens arrive. The join
Ship waits for both inputs in1 and in2 to arrive. It then consumes in2 and forwards in1 to
the fetch Ship. Software must know which tokens are stray and where those stray tokens
are located.

Fleet proposes specialized register Ships that allow software to overwrite their

contents. While this behavior is undoubtedly useful as it would decrease the num-

ber of stray tokens and eliminate the accompanying data movements required to

dispose of them, the implementation and use of such Ships in an asynchronous,

highly concurrent environment is unclear. Armada does not provide such capa-

bility in its register Ships.

Finally, this research branches off the Fleet architecture as it was defined

three years ago. Fleet has continued to grow independently in a different direc-

tion through continued development at Sun Microsystems. Analysis of the Fleet

architecture as it exists now is generally beyond the scope of this research. How-

ever, some aspects of the latest version of Fleet are discussed in terms of related

work at the end of this chapter.

4.2. ARCHITECTURE ENHANCEMENTS 53

4.2 Architecture enhancements

The many, possibly heterogeneous Fleet cores that compose an Armada processor

provide the hardware needed to run multiple threads simultaneously. These cores

may differ in Ship composition, port mappings, switch fabric design, performance,

power consumption, or any number of other characteristics to target specific

workloads and to provide flexibility for future enhancements.

To capitalize on these additional hardware resources Armada makes avail-

able, four ISA modifications are proposed. The modifications are not orthogonal

to each other; several of the constructs work together to exploit thread-level con-

currency while balancing complexity. First, the ability to distinguish resource-

dependent code bags from resource-independent ones is proposed. This delin-

eation allows software to express which threads are concurrently-executable thus

providing hardware with the ability to take advantage of TLC with minimal com-

plexity. The second proposal consists of the mandatory use of a register file for

centralizing the largely distributed state in a Fleet and a mechanism to forward

this state to other cores as a way to support multithreading. Additionally, Ar-

mada introduces context synchronizers that allow many branches of a program’s

flow to merge before continuing past a barrier point. The final scheme aims to

enhance processor performance when executing common code sequences through

the use of cacheable software-generated flows based upon the virtual pipelines

in Fleet. These flows are systems of virtual pipelines among Ships designed to

perform some specific task. Caching flows reduces instruction fetches and aver-

age task run-time by reusing these systems and amortizing their setup cost over

time. The hardware performs the cache management, autonomously reacting

to dynamic run-time conditions, effectively making Armada a self-reconfiguring

architecture.

The following sections discuss these proposals in more depth. Subsequently,

the instruction set architecture is explored more rigorously, and details on writing

software that uses these enhancements are given.

4.2.1 Independent code bags

Code bags in the basic Fleet architecture are all resource-dependent bags; the

execution of any such code bag is dependent on the Ships, switch fabric, and

other hardware resources retaining state from the execution of instructions in

54 CHAPTER 4. THE ARMADA ARCHITECTURE

predecessor bags. Armada introduces resource-independent code bags to express

an executable context’s independence from any particular set of resources and

associated state. These bags have types associated with them that correspond to

the different types of the heterogeneous Fleet cores present in an Armada. The

hardware can execute independent bags on any unallocated Fleet of a matching

type in the system. State like a stack pointer or function arguments may be sent

forward from a predecessor bag to an independent code bag successor through

the local register file. The Armada hardware will load this data into the register

file of the Fleet core allocated to run that successor bag.

4.2.2 Enhanced local register file

The ability to capture and restore system state allows an unbounded number

of processes to execute on general-purpose processors.1 The state is typically

captured and restored by an operating system to support multiprogramming and

multithreading. Furthermore, state can be replicated to spawn new programs

or threads from an active process. In traditional architectures, the state of the

system largely resides in the register file and program counter.2 In contrast, state

in Fleet is widely distributed among Ships and the interconnect. Capturing this

distributed state is a difficult chore and may require costly hardware support.

As an alternative solution, software can use the local register file to centralize

a Fleet core’s state at various points in a program. Armada adds a mechanism

allowing hardware to package the code bag descriptor of the next independent

code bag to fetch along with any arguments that are to be forwarded to that bag.

This package can be stored to memory and later recalled for execution.

Note that hardware can only capture thread state at independent code bag

fetch boundaries in a program; it cannot capture the state arbitrarily at any mo-

ment. Therefore, in the current implementation, a malicious program can spawn

many threads that never free the Fleet cores allocated to them and livelock the

system. This problem can be solved by the hardware reset mechanism described

earlier which is left as future work.

1The number of processes that may be executed on modern computers is limited only by
the memory available to store the state for each of the processes.

2Threads typically only have hardware state in the register file and the program counter.
Processes, however, have hardware state that may include page tables and other resources.

4.2. ARCHITECTURE ENHANCEMENTS 55

4.2.3 Context synchronizers

Armada exposes context synchronizers to software that provide thread barriers

in multithreaded program flow; programmers configure synchronizers to wait for

multiple threads of a program to complete before continuing on with that pro-

gram’s execution. Hardware support is proposed because many programs will

likely require thread synchronization. Additionally, threads in Armada may have

quite short lifetimes relative to the time software-only methods would require to

support the same barrier behavior.

4.2.4 Flow caching

Fleet already provides one way to speed up the execution of serial code by pro-

viding virtual pipelines to connect Ships. Flow caching is an extension of this

idea aimed at exploiting a commonly occurring pattern in programs where the

same instructions are repeatedly applied to different data. Flows are a specialized

subset of independent code bags that setup a network of virtual pipelines once

and allow this configuration to be applied to different data elements over time.

Flows reduce the number of instruction fetches by amortizing the pipeline network

setup cost over future invocations of the same code. Fetching a cacheable flow,

like fetching an independent code bag, starts a new thread on a free, compatible

Fleet core.

Armada hardware may cache a flow in a Fleet core if that core is not needed by

other programs. When software fetches a flow’s descriptor, the Armada hardware,

at its discretion, would attempt to find a free, cached instance of the flow to

run the thread on. If successful, the register file contents are sent to the flow;

instruction fetches are largely or completely avoided. If a free instance of the flow

is not found, the hardware may either wait for a busy instance of the specified

flow to become free, or it may load another copy of the flow onto an empty core

as it would load any other independent code bag. If a particular flow can be

applied to several data sets at once, Armada may cache multiple instances of the

code on different cores at the same time.

The proposed system is self-reconfiguring as the hardware-controlled caching

frees the programmer from micromanaging the allocation and eviction of flows.

However, software may provide hardware with hints on caching policy and also

lock time-sensitive flows like interrupt handlers onto a core. These behaviors and

56 CHAPTER 4. THE ARMADA ARCHITECTURE

the mechanisms to support them are similar to instruction cache policies and

cacheline locking features in traditional architectures.

The following section discusses the software view of how to program with flow

caching and the other proposed features of Armada.

4.3 Instruction set architecture

This section describes the Armada ISA in enough detail for programmers to

write simple programs using the aforementioned features. General programming

concepts are discussed, and a prototype Fleet core is described.

4.3.1 Memory model

This research does not address the instruction and data memory subsystems in

any detail. Although Armada may be better matched with a different type of

memory model, it currently employs a uniform memory access architecture for

simplicity. Memory is byte-addressable, and both instruction and data addresses

are 64-bit. Reads and writes of multi-byte data types must be aligned according

to their respective sizes in bytes. For example, a four-byte word must begin at

an address divisible by four.

4.3.2 One instruction

The move instruction is mostly unchanged from that of the basic Fleet archi-

tecture (recall section 3.2.2). However, as mentioned earlier in this chapter, the

count field is not present in Armada.

Armada defines several opcodes for the different variants of the instruction

and fills in the gaps left in the Fleet-overview memo. In particular, a method

of handling constants generated at compile-time is given. Figure 4.2 shows a

summary of the encodings for the different variations of move.

The move variant in figure 4.2(d) is the most complex. While the other moves

are a fixed size of 32 bits, this instruction opcode must be directly followed

in memory by a constant that may be 4, 8, or 12 bytes long.3 Fleet allows the

hardware to fetch and issue instructions in a code bag in any order; that flexibility

3The TY PE field encodes the size of the trailing constant. This field is larger than necessary;
it originally described the hardware data type of the constant which has since been defeatured.

4.3. INSTRUCTION SET ARCHITECTURE 57

Figure 4.2: The encoding in (a) is the commonly used port-to-port move instruction
variant. The C bit indicates whether the source data is consumed or copied. The S bit
indicates whether this is a standing instruction that repeatedly moves source data as it
becomes available. The D bits indicate whether the moved data should persist at the des-
tination ports, DESTx. The P bits pass along destination-specific mini-opcodes. Finally,
SOURCE identifies the source port where the data is read from. Encodings (b) and (c)
allow small immediate values generated at compile-time to be delivered to Ship input ports.
The final encoding (d) moves large constants generated at compile-time that do not fit
within the 32-bit instruction opcode. Software places a large constant immediately after
the instruction opcode describing it in memory. The TY PE field indicates the constant’s
length.

58 CHAPTER 4. THE ARMADA ARCHITECTURE

allows the hardware to fetch and dispatch instructions that may be in a nearby

cache, for example, before those instructions that are stored further away in

the system regardless of their location in the bag. Variable-length instructions

complicate how the hardware can take advantage of that instruction issue freedom

as it must perform a sequential linear scan of the bag to identify the variable-

length moves and handle them appropriately.

Armada fetches instructions in a code bag in 32-byte cacheline chunks. The

instruction fetch unit decodes instructions within each cacheline and handles

variable-length instructions as necessary. Armada does not allow variable-length

instructions to cross cacheline boundaries. This restriction allows Armada to

issue all instructions within a cacheline that falls in the middle of a code bag

without needing the surrounding cachelines. By imposing this cacheline-boundary

restriction on long instructions, Armada retains the spirit of Fleet’s ability to

fetch and execute whichever instructions in a code bag are most readily available

though not with the finest level of granularity. However, as microarchitectures

commonly move instructions around in groups of cachelines anyway, there is little

impact of such a restriction.

4.3.3 Choosing the code bag type

Programs issue instructions by fetching code bags. Armada provides program-

mers and compilers with three different types of code bags. The characteristics

of the different bags make them suitable for different parts of a program as sum-

marized in table 4.1.

Resource-dependent bags

Resource-dependent bags continue a current thread of execution. Small, sequen-

tial tasks that rarely execute should be defined in dependent bags to avoid the

time and energy costs of allocating a Fleet core for infrequent and short-lived

computations.

Resource-independent bags

Resource-independent bags spawn new threads of execution. Software should use

independent bags to describe any tasks that can execute concurrently. Armada

programmers and compilers should not be shy about spawning threads. The

4.3. INSTRUCTION SET ARCHITECTURE 59

Type
Spawns
thread

Run-time
overhead

Software
complexity

Uses

dependent no lowest lowest
infrequently-executed, se-
quential segments of a pro-
gram

independent yes highest medium

concurrently executable
segments of a program;
ability to switch core
types in a heterogenous
Armada to accommodate
or optimize for different
subroutine character-
istics (eg. ILC, TLC,
control-flow, etc)

independent
flow

yes medium highest

concurrently executable
segments of a program
that are repeated often,
eg. inner loops

Table 4.1: Code bag comparison.

number of threads a program may spawn is ultimately only restricted by the

amount of physical memory available to store the independent tasks. However,

an Armada operating system may choose to impose limits on the number of

active threads a program can have similar to how operating systems on traditional

architectures impose limits on a program’s stack size. These limits are typically

never reached by a correctly written program.

Additionally, fetching an independent bag allows a program to choose a dif-

ferent type of Fleet core to execute code on in heterogeneous-multicore Armadas.

For example, a program entering a segment rich in floating-point computations

may stop the current thread and continue with a new thread on a type of core

containing many floating-point units. When that computation is complete, the

program may switch back to a Fleet type that has more control-flow Ships to

determine what to do next.

Cacheable independent flow bags

Cacheable flow bags are a subset of resource-independent bags that spawn new

threads of execution on a software-selected type of Fleet core like independent

60 CHAPTER 4. THE ARMADA ARCHITECTURE

bags. However, their special property of being reusable with amortized instruc-

tion fetch and setup costs makes them especially attractive for programs that

execute the same instructions often. Flows typically have higher overhead than

independent code bags as they must be specially coded to ready themselves for

new data and to self-destruct when hardware commands them to. Thus these

bags should only be used when the code sequence they describe is expected to be

reused often.

Examples using each code bag type are given in the following sections.

4.3.4 Fetching code bags

Programs refer to code bags using descriptors. Table 4.2 describes the syntax and

graphical representation for dependent, independent, and cacheable flow code bag

descriptors.

Code bag descriptors

Fleet cores must support independent and dependent code bags. Flow support is

optional. The 96-bit descriptors that describe these bags are shown in figure 4.3.

Figure 4.3: Code bag descriptor format.

Code bag descriptors describe a code bag’s location in memory with a 64-bit

physical start address and an 8-bit length field. The hardware uses these fields

to load the appropriate instructions from memory.

Certain registers’ contents may be forwarded to successor code bags. There is

one 2-bit field for each such register that indicates whether the register’s contents

are ignored, copied, or moved to the successor. When the fetch Ship in a Fleet

receives a code bag descriptor, it checks these fields and packages the contents of

4.3. INSTRUCTION SET ARCHITECTURE 61

Description Text syntax Graphical form

dependent codebag f {

Dependent code
bag

...

} f;

independent codebag g {

Independent code
bag that does not

take any input
arguments from
the register file

...

} g;

independent codebag h(*r0, r4) {

Independent code
bag that copies
the contents of

r0 and moves the
contents of r4

from the fetching
Fleet and uses
them as inputs

...

} h;

independent flow codebag j(r1) {

Independent
cacheable flow
that moves the
contents of r1

from the fetching
Fleet and uses it

as an input

...

} j;

Table 4.2: Code bag descriptor syntax and representation.

62 CHAPTER 4. THE ARMADA ARCHITECTURE

any marked registers with the descriptor. This package is sent to the local fetch

unit for dispatching.

The BT field identifies whether the referenced code bag is dependent, indepen-

dent, or independent-flow cacheable. Finally, the CORE TY PE field specifies

which type of Fleet core in a heterogeneous multicore Armada that the described

code bag is designed to execute on. The hardware uses this field to map the code

bag onto an appropriate core at run time. If the descriptor describes a depen-

dent bag, the CORE TY PE field is ignored; in this case, the type is implicit as

dependent bags must execute on the same core as their predecessor bag.

The fetch Ship

Software fetches a code bag by sending a descriptor for the bag to a special fetch

Ship in the Fleet. Every Fleet core is required to contain one of these Ships.

The fetch Ship first looks at the descriptor to see if any register values should be

forwarded. The descriptor and any forwarded register values are packaged as a

code bag fetch request to the Armada hardware.

The fetch Ship communicates the request to a centralized fetch unit, described

in the next chapter, which then fetches the code bag. If the bag is dependent,

the instructions are sent to the same Fleet that issued the request. If the bag

is independent, the hardware finds a free Fleet core of the appropriate type as

encoded in the descriptor’s CORE TY PE field and sends the instructions and

forwarded registers there. Finally, if the bag is an independent cacheable flow,

the hardware will attempt to find a free, cached instance of the flow and only

forward the register values. If it cannot find a free instance of the flow, it can

load the instructions and registers into an appropriately-typed Fleet core as it

would when fetching a normal independent code bag.

Register forwarding

In addition to being used as temporary data storage, the register file is also used

to forward arguments to successor code bags. By pushing all forwarded state in a

Fleet into this one area, the hardware can store context state easily providing it

with flexibility on when and where to execute successor bags. The proposed use

of the register file and the encapsulation of state have the following requirements

and implications:

4.3. INSTRUCTION SET ARCHITECTURE 63

1. Code bags that fetch independent successor bags must pass any arguments

for those successors through the register file. If successor bags do not require

arguments, the register file does not have to contain data. If there are more

arguments than registers available, some of the arguments may be written

to memory and a pointer to that set of data passed using a single register.

2. Register values can be copied or consumed as they are passed to independent

successor bags. For example, a constant that is reused and passed to many

code bags may simply be copied while a disposable index variable may be

consumed as it is transferred. Unused registers are ignored. The desired

forwarding option is selected individually for each register by marking bits

in the descriptor of the successor code bag.

3. Independent code bags (including cacheable flow code bags) that require

input from their predecessors receive these arguments in their local register

file; the hardware will populate the register file with the forwarded argu-

ments provided by the predecessor. The predecessor and independent child

code bags they fetch must cooperate on what data is forwarded and how it

is forwarded — which registers are used and what data each register holds.

The Armada Procedure Call Standard, described in chapter 8, defines a

contract that ensures all compliant code will interface correctly.

Registers have two states, empty and filled. A read from an empty register

will block until that register is filled with data. A write to a filled register will

block until the existing register data is consumed and the register made empty.

When the fetch Ship receives a code bag descriptor that requests register

forwarding, the Ship waits for the specified registers to enter the filled state. At

any point when all specified registers are filled, it may fetch the next bag. Software

must therefore ensure that the registers are filled or will be filled with the intended

data prior to fetching the successor. The fetch Ship will read forwarded registers

at a single time; if some forwarded registers are filled yet others are still empty, it

will wait for the remaining registers to be filled before reading any of the values.

This behavior implies that forwarded registers can be read from and written to

freely until any time where they might possibly all reach the filled state at once.

Figure 4.4 shows two examples of a code bag attempting to call Func2(k+1).

k has been forwarded into r0 prior to this code bag’s execution. Figure 4.4(a)

contains a race condition between the readout of k from the register file and

64 CHAPTER 4. THE ARMADA ARCHITECTURE

the fetch of Func2. If k is read and consumed from r0 prior to the fetch unit

receiving the code bag descriptor for Func2, the operation is correct. However,

it is also possible for the code bag descriptor to reach the fetch unit before k is

read from the register resulting in an incorrect call of Func2(k). Figure 4.4(b)

corrects this hazard by ensuring that k is read out of the register file and that r0

is empty prior to releasing the code bag descriptor for Func2. The join Ship waits

for both inputs to arrive at ports in1 and in2 then passes the value from in1

through to its output. If the Func2 descriptor reaches the fetch unit before k+ 1

is written, the fetch unit will block until r0 is in the filled state before consuming

the argument and passing Func2(k + 1) forward for execution. The toggle Ship

passes the input from in1 before passing the data at port in2. The fetch unit

will accept last, software’s indication to the hardware that the Fleet is clear and

ready for reuse, only after Func2 has been fetched.

Figure 4.4: Passing a variable to an independent successor bag. (a) incorrectly attempts
to call Func2(k + 1). Since r0 initially contains a value and is in the filled state, it is
possible for the fetch of Func2 to occur before k is read out of the register file. This results
in an undesired call to Func2(k) and stray state in the Fleet after termination. (b) shows
a correct implementation that waits for k to be read out of the register file before fetching
Func2.

In many cases, some register values may be consumed by a successor bag

while other values are copied. Figure 4.5 shows a code bag designed to draw

a horizontal line to a frame buffer. The code bag calls the paint function for

constant row I over columns 0-2047 with the constant color C.

4.3. INSTRUCTION SET ARCHITECTURE 65

Figure 4.5: Painting a horizontal line. (a) shows a code bag designed to paint a horizontal
line pixel by pixel by calling the paint function. The code bag is passed the row, I, and the
color, C, in r0 and r2 respectively. The paint code bag requires that the arguments row,
column, and color occupy registers r0, r1, and r2 respectively. (b) shows the corresponding
cleanup code.

66 CHAPTER 4. THE ARMADA ARCHITECTURE

In the line drawing example, the row I and the color C are constants received

as arguments to the code bag shown in figure 4.5(a). The stride Ship4 produces

the column numbers to paint which are sent to both r1 and the comparator.

Given a start value s, a stop value t, and a step size i, a stride Ship generates a

series of outputs:

outputx = s+ xi {∀x | 0 ≤ x ≤ t
i
}

The paint code bag descriptor is fetched for all columns in the specified range.

Note how the descriptor for paint makes copies of the constants I and C. These

values are sent as arguments to paint but left in the line drawer’s register file

for reuse. The column number in r1 is consumed by each call to paint and

subsequently filled by the next column number from the stride Ship. Once all

columns are painted, the dependent cleanup bag is fetched. cleanup, shown

in Figure 4.5(b), empties the registers and subsequently frees the Fleet core for

reuse.

4.3.5 Freeing Fleet cores

When a thread terminates, it must free the Fleet core it is running on so it may

be reused. Software must ensure that the Ships are free of state5 and that the

switch fabric is clear of tokens. Once the core is back in its reset set, software

releases the core by sending a last token to the fetch Ship’s code bag descriptor

input, cbd. Once the fetch Ship receives this token, it signals to the Armada

hardware that the core is free and may be used to execute other threads.

4.3.6 Virtual pipelines

Virtual pipelines connect multiple Ships together using standing instructions.

The number of instruction fetches are reduced, and, ideally, single-thread perfor-

mance improves by sending tokens through the pipeline quickly without poten-

tially saturating and deadlocking the switch fabric. Virtual pipelines are one of

the rare constructs in Fleet and Armada where the sequencing of data is guar-

anteed; data that enters a pipeline will never be overtaken by data subsequently

pushed into that same pipeline.

4Originally proposed in [Sut05]
5This topic is discussed in section 4.3.7.

4.3. INSTRUCTION SET ARCHITECTURE 67

As previously mentioned, Armada does not have a dedicated flow control

mechanism for virtual pipelines. In this research, a regular standing instruction

between some input trigger port on the first Ship in the pipeline and the last

Ship output port in the pipeline regulates the flow of data to avoid switch fabric

deadlock. For example, figure 4.6 shows how a virtual pipeline can be used to

connect a stride Ship that is producing sequential addresses to a memory Ship

that will write 0’s to clear the contents of those addresses. In Armada, the stride

Ship will only generate one output at a time. Receiving any data on the next

input port of the Ship will trigger the production of another output. In the

example, a standing instruction connects the memory Ship’s write complete

output port to the stride Ship’s next input port. The stride Ship waits until the

write is complete before generating the next address.

Figure 4.6: Virtual pipeline example. These instructions will clear 1,024 contiguous bytes
of memory starting at address 0. 64 BIT is a mini-opcode encoded in the move instruction
that expresses the size of the data to write.

Software must ensure that tokens are not generated more quickly than they

can be consumed by the slowest Ship in the pipeline. As Fleet does not impose

any timing requirements on Ships, software cannot make any assumptions on

when or where tokens may possibly pile up in the pipeline. In Armada, the only

way to guarantee tokens will not saturate the switch fabric is to ensure that all

of the outputs generated directly and indirectly from the initial input token set

reach the end of the pipeline prior to inserting any new inputs.

Without a flow-control fabric, this simple pipeline implementation in Armada

is not ideal for performance as the latency of the switch fabric is fully exposed

unnecessarily. In the previous example, the write complete token takes one trip

through the switch fabric before triggering the stride Ship to produce the next

address. The next address must also take a trip through the fabric to reach the

memory Ship. Thus, the latency from requesting the next address to receiving it

is at least twice the latency of the fabric. In the general case, the period between

68 CHAPTER 4. THE ARMADA ARCHITECTURE

tokens in a virtual pipeline is linearly proportional to the total length of that

pipeline; only one data set may flow through it at once.

The tokens flowing in a virtual pipeline in this implementation of Armada

are effectively not pipelined at all. Therefore, the primary benefit of virtual

pipelines in this first design is the reduction of instruction fetches attributed to

the use of standing instructions. A flow-control system can considerably increase

the throughput of a virtual pipeline by allowing multiple input data sets to flow

through the pipeline at once. As previously mentioned, this system is left as

future work.

4.3.7 Handling state in Ships

Some Ships retain state for lengthy periods of time and even indefinitely. This

state retention can be very useful as it reduces the amount of data that must be

communicated through the switch fabric. Without a hardware reset capability,

software must ensure that all state-retentive Ships are in the reset state before

releasing the core for reuse. Ships may have internal state like the stride and

counter Ships, and they may have persistent inputs like constants that are reused

in calculations indefinitely.

Software forces a Ship to clear its state in different ways according to Ship

type. Arithmetic Ships accept a persistent input on at most one of their input

ports at a time.6 The persistence is cleared by sending a last token to the other

input port. The memory Ship behaves in a similar way. For example, a persistent

constant may be sent to the write address port to repeatedly address a first-in-

first-out buffer (FIFO), or a constant may be sent to the write data port when

repeatedly writing a specific pattern to a region of memory as in figure 4.6. The

persistence is cleared and the Ship reset by sending last to the non-persistent

input.

Other Ships may have an input port that does not accept persistent inputs.

For example, stride Ships do not accept persistent inputs on next input ports,

and selector Ships do not accept them on select input ports. Sending a last

token to one of these ports will consume the data on the other input ports.

Finally, some Ships like the comparator Ship provide a special reset port for

6This constraint is in place for good reason. If both inputs to a multiplier were persistent,
for example, the unit would repeatedly generate the same output and flood the switch fabric.

4.3. INSTRUCTION SET ARCHITECTURE 69

the sole purpose of clearing Ship state.7 In Armada, it is reasonable to compare

two tokens to determine if they are both last. Whereas other Ships typically react

to last tokens by generating a last result, the comparator will produce a normal

boolean result. The reset port provides an escape from standing instructions

and clears persistent inputs by consuming all tokens at the input ports.

Upon receipt of a clear signal by any of the three means described, a Ship

will wait for all relevant inputs to arrive before clearing those input tokens. For

example, a comparator Ship that receives a reset directive will not reset until

valid inputs are in place on its lhs, rhs, and op input ports. Likewise, an

arithmetic Ship that receives last on its rhs port will wait indefinitely for an

input to appear on its lhs port before freeing the Ship. A last token sent to a

memory Ship wr addr will cause the Ship to wait for a matching input on its

wr data port; however, it will not wait for an input at its rd addr input as this

input port is not relevant to a write operation.

Waiting for the other input tokens before clearing the Ship is required to avoid

a race condition between the Ship clear signal and the input tokens arriving

at that Ship. If a Ship only clears inputs that have already arrived, another

potentially complex mechanism would be required to intercept tokens in-flight in

the switch fabric destined for that Ship.

For similar reasons, a Ship that has received a clear signal will only remove

one token per relevant input port. Software must track and handle cases where

several inputs are queued up at one port.

Once a Ship is clear, it will generate a final last token on the relevant output

port. Again using the memory Ship as an example, a clear signal sent to a write

input port would cause a last token to appear at the wr comp output port, but no

token would be generated at the rd data output port. This last token indicates

that the Ship has been successfully reset and will also break down any standing

instruction connected that port.

4.3.8 Context synchronizers

Software will often issue many threads and need to ensure those threads are

complete before continuing with other tasks. Programmers and compilers interact

with Armada’s context synchronizers to provide this barrier control.

7The comparator is the only Ship that behaves this way in Armada.

70 CHAPTER 4. THE ARMADA ARCHITECTURE

A program requests a synchronizer by sending an independent code bag de-

scriptor for the post-barrier successor code and any forwarded register contents

it requires to the context synchronizer Ship. This step is similar to fetching an

independent code bag. Additionally, the program sends the synchronizer Ship a

count indicating how many threads must complete before fetching the successor

code. The synchronizer Ship responds with a unique reference for the synchro-

nization request. At this point, the program can fetch independent code bags for

all of the threads it wants to spawn passing them the synchronizer reference as

an input. This parent thread then frees the core it is running on.

The child threads execute, and, just prior to terminating, each thread sends

the synchronizer reference received from its parent to the decrement input of the

local context synchronizer Ship. When the Armada hardware determines that

the last child thread associated with that reference has completed, it sends the

post-barrier independent successor code bag and forwarded register contents to a

free Fleet core for execution.

4.3.9 Flow caching

Cacheable flows consist of instructions and data cached onto a Fleet core. The

flow can be applied to different data elements over time reducing instruction

fetches and amortizing the setup cost of any virtual pipelines and persistent Ship

inputs.

Flows are generated from specially designed independent code bags that must:

1. Use one or more forwarded input data elements from the register file

2. Indicate readiness for the next set of inputs when the current computation

is complete by passing a special code bag descriptor to the fetch Ship

3. Maintain a predictable flow over multiple sets of input arguments delivered

through the register file; the state of the Fleet core before operating on a

set of valid input data should be equivalent to the state of the core after

operating on the data

4. Cleanup and free the allocated core when any input data set is encountered

that irreversibly alters the flow through the system such that condition

three is not met

4.3. INSTRUCTION SET ARCHITECTURE 71

5. Cleanup and free the allocated core when all the input arguments are last.

The hardware uses this method to evict any cacheable flow on demand.

Cacheable flows are fetched like any other independent code bag. The bag

descriptor has a bit which identifies it as cacheable. Unlike threads created from

independent code bags, flows do not generally reset the underlying resources when

they have finished working on a set of data. Instead, they ready themselves for

another input data set. Whereas threads will signal hardware once the underlying

Fleet core is guaranteed to be back in the reset state, flows signal hardware when

they are ready for the next data set. Additionally, hardware may need to evict

flows when the Fleet cores they occupy are needed for other purposes. As there

is currently not a core reset function implemented in hardware, flows must be

carefully defined by software to self-destruct and release the occupied resource

upon receiving an indication from the hardware. If the hardware needs to reclaim

a Fleet used by a flow, it fills all of the input arguments in the register file of that

Fleet with last values and waits for the flow to release the core.

Flows must indicate to the hardware when they are ready to accept new

inputs. Therefore, it is necessary to introduce a way of differentiating between

indicators of when the resources are freed versus when the flow is ready for the

next set of arguments. Like other code bags, flows indicate resources are freed by

sending last to the fetch Ship’s cbd input port. Flows must additionally indicate

when they are ready for another set of inputs by passing a special code bag

descriptor, distinguished by a unique BT field (recall figure 4.3), to the cbd port.

Hardware will not reuse a flow until it has received this ready signal.

Unless hardware signals a flow to destruct, flows ideally set themselves up for

the next input data set when they complete their work. However, if an exceptional

set of inputs arrive that breaks down the flow making it difficult to reset for the

next data, a flow may choose to clean up all resources and release the underlying

Fleet core; flows have no obligation to always ready themselves for more data,

though that is their most useful behavior.

One example where a cacheable flow may prove useful is in the color conversion

from the red, green, and blue color space (RGB) to the luminance and color

difference space (YUV) commonly found in many image and video compression

algorithms. A conversion operation, defined by equation 4.1, is performed on

every pixel of an image.

72 CHAPTER 4. THE ARMADA ARCHITECTURE


Y

U

V

 =


0.299 0.587 0.114

−0.299 −0.587 0.886

0.701 −0.587 −0.114

 ·

R

G

B

 (4.1)

The flow defined by the code bags in figure 4.7 performs this color space

conversion. Transports marked with a minus sign pass a mini-opcode indicating

to the destination Ship that the value should be negated prior to performing the

arithmetic operation. If any of the RGB color inputs are last, the flow will clean

itself up and terminate, freeing the Fleet core as in figure 4.8. Note that this

implementation assumes either all or none of inputs are last.

Figure 4.7: Color conversion cacheable flow.

4.3.10 Hardware reset behavior

At hardware reset, Armada will automatically fetch a special code bag from

address 0. This initial code bag must only have one move instruction inside of

it which software programs to fetch the code bag of reset handler code. In that

reset handler bag, software can configure the system and launch programs or an

operating system.

4.3. INSTRUCTION SET ARCHITECTURE 73

Figure 4.8: Color conversion cleanup code.

4.3.11 Event handling

Traditional architectures have interrupt handlers that react to events caused by

I/O devices, on-chip monitors, software, and other sources. Armada supports

such events with event handlers. Special registers in an Armada processor are

set aside for each handled event. Software programs these registers at reset with

independent code bag descriptors for the hardware to fetch in the case that the

event occurs.

To prioritize the handling of such events over normal program execution, the

OS may assign a Fleet core a special CORE TY PE that only event handler code

bags use. Thus, normal program code will never occupy those cores increasing the

likelihood that the event handling code is assigned to a free Fleet immediately.

4.3.12 Fleet prototype core ISA

Armada is intended to support a heterogeneous mix of Fleet cores. Some cores

may have Ship compositions ideal for handling complex program control flow.

Others may aim to efficiently run demanding floating-point programs or to per-

form specialized functions like video encoding.

For this research, only one type of Fleet core was created with the purpose

of being able to execute all general-purpose programs. There are many different

Ship compositions that would achieve such a goal. This particular configuration

74 CHAPTER 4. THE ARMADA ARCHITECTURE

was largely influenced by the functional unit requirements of the first hand-coded

benchmark written for Armada (described in chapter 6); no effort was made to

create the “best” Fleet core for general-purpose computing.

The Ships are fully connected by the switch fabric in this core; every destina-

tion port is reachable from every source port.

4.4 Related work

Although Fleet and Armada are very unique in their own right, they do share

similarities with some aspects of other types of architectures. This prior work is

described in the following sections.

4.4.1 Transport-triggered architectures

Transport-triggered architectures, or TTA’s, also have a single move instruction

[CM91]. However, all known TTA designs maintain use of the program counter

and also use synchronous logic. The compiler or low-level programmer must

therefore manage the scheduling of instructions such that pipeline and result

latencies are accounted for. Additionally, TTA operations are triggered when

an input is sent to a particular trigger port of a functional unit. Conversely, in

Fleet a unit is enabled when all of its activation inputs are present. In TTA’s,

a fixed number of move operations may occur in parallel by packing them into

a single instruction word as in VLIW architectures; however, Fleet’s code bags

are variable length and allow the programmer to express much larger amounts of

instruction-level concurrency.

4.4.2 Dataflow machines

Fleet functional units are activated in dataflow fashion enabled by the asyn-

chronous interfaces of the units to the switch fabric. The resulting behavior,

though similar to the class of dataflow architectures derived from work by Den-

nis [DM75], is different in several ways. First, in pure dataflow, instructions are

encoded with a type of operation to perform and a destination instruction to

forward the result of that operation to. In Fleet, no operation is explicitly speci-

fied as that is a consequence of where the data is sent. Additionally, Fleet does

not require that the destination address of an operation’s result be encoded in

4.4. RELATED WORK 75

an instruction. Thus, unlike pure dataflow, Fleet requires control instructions to

pick up data at the output of functional units and to forward that data to its

destinations. Fleet also allows side-effects, changes to program state anywhere in

a function other than the function’s return value, which are not allowed in pure

dataflow. Therefore, in addition to being easily targeted by a functional lan-

guage compiler typically associated with dataflow machines, Fleet is more easily

targeted by compilers for ubiquitous imperative languages such as C, C++, Java,

and Fortran which often contain such side-effects.

4.4.3 WaveScalar architecture

The WaveScalar architecture from the University of Washington has similar aims

to Fleet and Armada. It attempts to confront growing design complexity and

communication delays. Like Armada, it is strongly dataflow oriented, abandons

the program counter, and has traditional memory semantics [SMSO03]. Unlike

Armada, WaveScalar is synchronous. WaveScalar originally focused on exploit-

ing data-level parallelism. In WaveScalar, data are tagged uniquely for each

iteration of a loop allowing the same instructions to operate on different itera-

tions of a loop at once. This behavior is very similar to dynamic, tagged-token

dataflow machines of past [GKW85]. In Armada, instructions are also tagged al-

lowing the same functional units to execute entirely different instructions on data

from different threads. Armada may benefit from dynamic dataflow-like DLP

extensions in the future. Proposed enhancements to WaveScalar, specifically the

SpMT WaveCache, aim to also exploit thread-level parallelism including specu-

lative threads [PWD+09]. This behavior is supported by a transactional memory

and hardware threading extensions.

4.4.4 Independence architectures

Unlike programs for dataflow architectures which encode the dependences between

instructions, programs for independence architectures indicate which instructions

are independent from each other [RF93]. Fleet is in this class of independence

architectures as Fleet compilers place sets of independent instructions that may

execute concurrently into code bags. Some other members of the class of in-

dependence architectures include VLIW processors and the Horizon processor.

76 CHAPTER 4. THE ARMADA ARCHITECTURE

VLIW processors typically have fixed-length instruction words that contain sev-

eral smaller, concurrently-executable instruction slots within it. Each instruction

slot in a long instruction word corresponds to a particular pipeline and set of hard-

ware resources. If a set of hardware resources cannot be used at a particular time,

the corresponding slot is filled with a no-op instruction. Fleet code bags do not

require this space-consuming waste. Horizon programs encode a lookahead field

within memory-access instructions indicating how many subsequent instructions

may be executed before the current instruction must complete [TS88]. Unlike the

potentially very large code bags in Fleet, Horizon programs may only specify up

to seven independent instructions as concurrently executable.

4.4.5 SCALP and Vortex asynchronous processors

Both Endecott’s SCALP and Fulcrum Microsystems’ Vortex processor share

many similarities with Fleet [End95][Lin07]. The functional units in both proces-

sors have result and operand ports interfaced with an interconnect that may also

bypass any register file and communicate directly with other functional units. The

units share similar asynchronous connections with the interconnect and, there-

fore, also exhibit dataflow behavior like Fleet. However, the hardware in both

designs is responsible for ensuring program-order execution of instructions like in

traditional superscalar processors.

The Vortex units may also store state internally as in Fleet. Vortex has two

classes of instructions of which one is equivalent to the Fleet move instruction

including a vector or count field though lacking a form of standing instruction.

The other class of instructions provide operations for functional units to perform.

In Fleet, either the destination ports and destination opcodes dictate the behavior

of the functional unit or an operation may be sent to a functional unit’s port

directly by encoding the function to perform as data within the standard move

instruction. Also unlike Fleet, Vortex has a sophisticated branch unit that handles

high level control-flow constructs which are handled with primitive Ships in Fleet.

4.4.6 TRIPS architecture

The Fleet and Armada architectures are similar to EDGE instruction set ar-

chitectures that perform explicit dataflow graph execution [BG04]. The TRIPS

architecture is one such implementation of an EDGE architecture developed at

4.5. CONCLUSION 77

the University of Texas at Austin. The synchronous TRIPS architecture sched-

ules hyperblocks of VLIW instructions that execute in dataflow-determined fash-

ion [SNL+03]. A program counter is used to jump between the hyperblocks.

The dataflow-oriented hyperblocks behave similarly to Fleet’s code bags, and

instructions within a block are executed as soon as the required inputs are avail-

able. TRIPS can execute multiple hyperblocks simultaneously. In some cases,

the concurrently-executing hyperblocks are speculative continuations of the ac-

tive thread. TRIPS can also be tuned to support more general thread-level paral-

lelism and execute hyperblocks from multiple threads concurrently. This behavior

is similar to the threading extensions to Fleet proposed in this work. The TRIPS

implementation is more restrictive than Fleet and ARMADA by requiring fixed

sized hyperblocks, a fixed number of loads and stores per block, a fixed number

of register file accesses per block, and a fixed number of outputs per block. Fleet

and Armada have no such restrictions which makes code bags more dense.

4.4.7 Fleet at Sun Microsystems and U.C. Berkeley

Fleet continues to develop at both Sun Microsystems and U.C. Berkeley. As men-

tioned previously, this research took a snapshot of the Fleet architecture in 2006

and branched from the core group. The other group of researchers are investi-

gating ways of programming individual Ships with small kernels of instructions.

These instructions can be dynamically loaded and unloaded from Ships chang-

ing the behavior for different parts of programs. That research includes study

into programming these systems with a new mid-level language above the level

of move instructions.

4.5 Conclusion

This chapter described several enhancements to the Fleet architecture that enable

further exploitation of concurrency. The Armada-1 microarchitecture discussed

in the next chapter is the first design based on the Armada architecture. It con-

tains hardware that exploits the thread-level concurrency described by Armada

programs. Due to time constraints, further implementation and study of flow

caching was not rigorously pursued and is left as future work.

Chapter 5

The Armada-1 microarchitecture

This chapter describes one possible hardware organization of the Armada archi-

tecture. This first Armada microarchitecture focuses on functional support for the

thread-level concurrency extensions described in the previous chapter; cacheable

flows are not supported. Processor performance was not a key consideration as

exploring the programmability and use of the novel architecture took precedence.

5.1 Overview

Armada-1, shown in figure 5.1, is the first microarchitecture based on Armada. It

is designed to exploit thread-level concurrency with minimal complexity. Armada-

1 supports configurations of one, two, and four Fleet cores. These cores each

have distinct switch fabrics and Ships, and they share a common fetch unit. As

mentioned previously, only one type of Fleet core was created for the research;

although the Armada architecture generally supports the integration of different

types of cores, Armada-1 is a homogeneous chip multiprocessor.

5.2 Memory subsystem

The data and instruction memories and accompanying infrastructure in Armada-1

are relatively primitive and are not specified in a high level of detail. As described

in the previous chapter, Armada-1 has a uniform access memory architecture

with byte-addressing and 64-bit physical addresses. There is no virtual memory

system. The instruction memory is only a cache that must be preloaded with

programs; there are no other components in the instruction memory hierarchy

78

5.3. FLEET CORES 79

Figure 5.1: Block diagram of a dual-core Armada-1 processor.

for it to connect to. The data memory is also a flat structure that must be

preloaded with any program data.

5.3 Fleet cores

Armada-1 integrates several simultaneously-multithreading Fleet cores together

within a single chip. The cores receive instructions from the fetch and dispatch

unit (FDU) through an instruction horn. Those instructions merge with data

in the instruction pool. Once paired together, instructions carry data through

a funnel-and-horn switch fabric to the Ship destinations. The Ships forward

outputs to the instruction pool where that data merges with instructions, and

the process continues.

5.3.1 Simultaneous multithreading

The Fleet cores in Armada-1 multiplex the use of resources across multiple

threads. Fleet cores are designed to integrate large numbers of Ships, and there

are times that instructions from a single thread will not use all of those resources

80 CHAPTER 5. THE ARMADA-1 MICROARCHITECTURE

at the same time. Inactive resources may still significantly contribute to the

processor’s leakage power consumption. Allowing multiple threads to simultane-

ously use available resources in the system has two very useful implications. First,

the leakage-power cost is amortized across those different threads. Secondly, the

hardware is able to support even larger numbers of threads without the addi-

tion of more Ships and an increase to die area. Supporting numerous contexts

is particularly attractive as the Armada ISA encourages software to spawn many

threads.

Data and instructions from different threads may be in the instruction pool

or in-flight in different parts of the switch fabric concurrently. Likewise, dif-

ferent Ships may operate on data from different threads concurrently. Due to

these characteristics, Armada-1’s Fleet cores are considered to be simultaneously

multithreading.

The cores in Armada-1 implement a tagging scheme, or coloring scheme, that

allows the hardware to distinguish between instructions and data from different

threads. The switch fabric preserves this coloring, reading colored data from the

instruction pool and delivering colored data to Ship input ports. Ships will only

operate on data at their input ports that have identical colors, and any output

they produce will be marked with that same color. State-retentive Ships, such as

the stride Ship discussed previously, must be capable of maintaining unique state

for the full number of contexts supported by the microarchitecture. Instructions

in the instruction pool, also colored, will only merge with Ship output data of

the same color.

Each core effectively manages multiple virtual channels of instructions and

data occupying the same physical wires and processing elements. One such vir-

tual channel or color layer on a physical Fleet core is referred to as a virtual

Fleet. Thus, an Armada-1 processor built with four physical cores each sup-

porting 32 virtual channels has 128 virtual Fleets on which to execute threads.

This scheme is analogous to commercial SMT cores that present themselves as

multicore processors to operating systems.

5.3.2 Data size

In the original Fleet design, multiple values of out-of-band were possible. Al-

though eventually OOB was limited to one value, last, Armada-1 has remnants

5.3. FLEET CORES 81

of the original specification. Thus, the native data size is 96 bits to accommo-

date typical 64-bit integer and double-precision floating point data plus 32 bits

to represent different possibilities of OOB. Code bag descriptors are also 96-bit

and are handled as primitive data objects.

5.3.3 Instruction horn

The instruction horn feeds colored instructions from the shared FDU to the in-

struction pools within the individual cores (figure 5.2). Steering elements route

instructions through the horn to reservation stations within the pool. Each steer-

ing element looks at one bit of the source address and steers the instruction

toward the target station based on that bit’s value.

Figure 5.2: Instruction horn and pool.

5.3.4 Instruction pool and reservation stations

The instruction pool is an abstract place where executable instructions wait before

entering the switch fabric. In the microarchitecture, this instruction pool consists

of many reservation stations that merge instructions and data together into switch

fabric payloads.

82 CHAPTER 5. THE ARMADA-1 MICROARCHITECTURE

There is one reservation station for each Ship output port in a Fleet. The

stations wait for port-to-port move instructions to arrive from the instruction

horn and for data to arrive from the Ship output ports. Once each of these

different inputs of matching color arrive, the station combines the destination

addresses and mini-opcodes in the instruction with the data into a switch fabric

payload.

After forming this payload, the reservation station either preserves or destroys

Ship data and the instruction depending on the characteristics of the C and S

bits in that move instruction (recall the move instruction opcode in figure 4.2(a)).

If the instruction has the consume-source bit set, the station will erase the Ship

data. Otherwise, it will transfer that same data when the next instruction with

the same color arrives. If the instruction has the standing bit set and the data

it merges with is not last, a copy of the instruction will remain at the station

to merge with the next data of matching color produced by the associated Ship.

Otherwise, the instruction is discarded after one use.

The Fleet cores handle constants generated at compile-time and the three

move instruction variants that carry these values in a special way. Each core

dedicates one reservation station to handling these constants. In the prototype

cores of Armada-1, the address of this reservation station is 127 as shown in fig-

ure 5.2. Unlike the other stations, the constant reservation station’s data input

link is not connected to a Ship output port. Instead, this link is connected di-

rectly to the FDU. The FDU strips the constant from constant move instructions

and sends it to the reserved reservation station via this connection. The FDU

also converts constant move instructions into port-to-port move instructions; it

replaces the constant value with the address of the constant reservation station.

These converted move instructions traverse the instruction horn as normal. Thus,

constants and their associated move instructions take different pathways to the

reservation station. The constant and the instruction for multiple constant move

instructions in a single code bag arrive in the correct order because each pathway

guarantees in-order delivery of the payloads.

5.3.5 Switch fabric

The switch fabric and supporting structures move data from reservation stations

in the instruction pool to Ship input ports. The switch fabrics in the Fleet cores

of Armada-1 are directly derived from the experimental funnel-and-horn design

5.3. FLEET CORES 83

of FLEETzero, a Fleet test chip developed by Sun Microsystems (figure 5.3)

[CLJ+01]. The Armada-1 funnel uses arbitrated “demand merge” elements as

described in the FLEETzero paper. These merge elements are arbiters that for-

ward the first payload to arrive at either of its two input ports. The payload

eventually arrives at the trunk of the switch fabric which passes it forward into

the switch horn. The switch horn routes the payloads to their one or two desti-

nation Ships.

Figure 5.3: Switch fabric

5.3.6 Ships

Ships, the functional units in Fleet architectures, accept input data from the

switch fabric and may forward Ship-specific output data to the instruction pool

reservation stations. As previously described, a Ship may have one or many inputs

and zero or many outputs. A Ship may also hold state established by previous

inputs. Ships in Armada-1 may receive inputs of different colors in any order.

The Ship is responsible for handling sets of data of each color independently

from data of other colors. A Ship that carries state must therefore be capable

of holding independent state for every possible color. Ships tag any output data

they generate with the same color as the input data that invoked it.

84 CHAPTER 5. THE ARMADA-1 MICROARCHITECTURE

Armada-1 consists of several classes of Ships. Control Ships allow program-

mers to express sequencing and changes in control flow. Bitwise-logic Ships per-

form bitwise operations on inputs. Integer and floating-point arithmetic Ships

enable fundamental numerical operations. Memory Ships provide a means to

communicate with external system memories. The fetch class consists of only

one type of Ship that enables program branching and facilitates virtualization.

The register class contains only type of register Ship used to temporarily store

data and to hold forwarded code bag arguments. Finally, context-synchronization

Ships provide a thread-merging capability. The full array of Armada-1 Ships and

the port address mapping are described in appendix A.

5.4 Fetch and dispatch unit

The Armada-1 shared fetch and dispatch unit receives code bag descriptors from

the Fleet cores and ultimately delivers colored instructions and constants to those

cores. Internally, the FDU consists of two units, the code bag fetch unit (CBFU)

and the instruction dispatch unit (IDU), as shown in figure 5.4. The FDU receives

two sets of inputs from each of the different Fleet cores. Dependent code bag

descriptors and independent code bag descriptors together with forwarded register

values each go through different channels into the CBFU. The inputs from the

different cores go through arbiters so that the CBFU handles only one request at

a time per channel.

5.4.1 Code bag fetch unit

The CBFU has several responsibilities including:

• allocating virtual Fleets for independent code bags to execute on

• freeing a virtual Fleet when software signals that the resources are cleared

• providing the instruction memory with addresses of instructions to fetch

• forwarding register values to their destination virtual Fleet

• delivering constants to their destination virtual Fleet

The CBFU contains a Fleet allocation table that keeps track of the virtual

Fleets that are in use. When an independent code bag descriptor arrives, the

5.4. FETCH AND DISPATCH UNIT 85

Figure 5.4: Fetch and dispatch unit.

CBFU attempts to find a free virtual Fleet to allocate for the bag. If found, that

Fleet is marked busy, and the bag is fetched and routed to that Fleet. If all virtual

Fleets are in use, the data channel delivering independent code bag descriptors

stalls until resources are freed up. Because software may request thousands of

threads at a time under normal conditions, the independent channel queue is

backed by a buffer in main memory. Overflowing requests are written to main

memory and subsequently fed into the CBFU by a direct-memory-access engine

when the queue size decreases.1 If the operating system sees that a program

is fetching more independent bags than it or the system memory supports, the

operating system may throw an exception similar to the stack overflow exception

thrown in many modern general purpose computing systems.

Non-last dependent descriptors do not require an allocation table reference.

Because a dependent code bag runs on the same virtual Fleet already allocated

to the predecessor bag that fetched it, the dependent code bag descriptor queue

is not subject to the blocking condition that the independent descriptor queue

1The independent code bag descriptor and forwarded register queue is not implemented this
way in the simulator described in the next chapter. For simplicity, the queue’s size in the model
is unbounded; thus, no DMA-engine is needed.

86 CHAPTER 5. THE ARMADA-1 MICROARCHITECTURE

may experience; resource-dependent code bag fetches can always be fulfilled.

The CBFU will free a virtual Fleet upon receipt of a last dependent descriptor

originating from that Fleet. In this case, the CBFU must reference the Fleet

allocation table. The Fleet allocation table handles requests from this queue

separately from those made by the independent code bag queue; if an independent

request to the allocation table blocks because there are no free Fleets, the table

will continue to handle dependent code bag requests. These dependent requests

will eventually free virtual Fleets thus allowing the CBFU to continue fulfilling

allocation requests from the independent code bag queue.

When fetching a code bag, the CBFU extracts the start address and length

of the code bag from the descriptor. The CBFU passes one or more 32-byte-

aligned physical addresses and 8-bit instruction enables to the instruction mem-

ory indicating which instructions to fetch. The memory then delivers a 32-byte

cacheline of instructions and the same 8-bit instruction enable data to the IDU.

Additionally, the CBFU will pass the tag of the destination virtual Fleet where

the instructions should be executed on to the memory. The tag contains bits

identifying which physical core of resources the instructions are destined for and

what color to tag those instructions with. By passing the tag and instruction

enables to the instruction memory, the CBFU can fire and forget the requests.

This decoupling gives the memory freedom to deliver instructions in any order.

Cached instructions may be fetched and delivered immediately, and requests for

instructions that must be fetched from farther away in the memory hierarchy can

be initiated and queued for delivery later; the memory has all the information

it needs to complete requests efficiently and out of order without help from the

CBFU.2

The CBFU must also forward register values to virtual Fleets. The destination

of values for an independent code bag is resolved when a virtual Fleet is allocated

for the bag. In Armada-1, the CBFU forwards register values by constructing

constant move instructions with the register value as the constant and the target

register as the destination. The instructions are packed into a cacheline and

delivered to the IDU with appropriate instruction enables and target Fleet tag.

This interface is identical to the one that the instruction memory shares with

the IDU. The constant move instructions hold the 96 bits of the register value in

2Recall that this implementation has only a single-level memory hierarchy. Therefore, this
decoupling will not affect performance in Armada-1.

5.4. FETCH AND DISPATCH UNIT 87

addition to 32 bits of routing information. Thus, only two of these instructions

may be delivered in a single 256-bit instruction cacheline. If all eight registers

require forwarding, for example, four cachelines are created and delivered to the

IDU. Handling forwarded values by interacting with the IDU in the same way as

regular instructions helps to limit the special-purpose hardware needed to deliver

this data.

5.4.2 Instruction dispatch unit

The IDU receives instructions from both the instruction memory and the CBFU,

and it outputs move instructions and constants to the specified virtual Fleets.

The IDU receives a 32-byte instruction cacheline, an 8-bit instruction enable,

and a target Fleet tag as one input data set. An arbiter merges the requests from

the CBFU and the instruction memory into one stream; the delivery order does

not impact correct behavior.

Upon receiving an input data set, the IDU extracts instructions based on the

instruction enable bits, sequentially reading from the lower bytes of the cacheline

and working up to the higher order bytes. If the instruction is a move-immediate

type, the IDU extracts the immediate value, sign-extends it to a 64-bit inte-

ger, and then finally zero-extends the length to 96 bits. If the instruction is a

move-constant type, the IDU interprets a number of the following bytes in the

cacheline as data and not as instructions. The number of bytes needed to rep-

resent the constant is encoded within the instruction. Armada-1 does not allow

move-constant instructions and the constant data they reference to extend across

cacheline boundaries; the assembler must organize instructions in code bags so

as not to violate this requirement.

Once the instructions and constants have been extracted, the IDU appends

coloring information from the target Fleet tag to them. The instructions and

constants are then sent to different queues based on the target physical Fleet core

in the tag. As previously described in section 5.3.4, the IDU forwards constants

directly to constant reservation stations within the target Fleet’s instruction pool

and converts constant-move instructions into port-to-port move instructions.

88 CHAPTER 5. THE ARMADA-1 MICROARCHITECTURE

5.5 Context synchronizers

Context synchronizers allow a program’s many independent threads of execution

to merge before the program executes additional code. Each synchronizer Ship

in the different Fleet cores is connected to a central context synchronization unit

(CSU). That unit interfaces with main memory to store and update synchroniza-

tion objects requested by the programs. These objects consist of an independent

code bag descriptor, up to eight forwarded register values, and a 64-bit count.

When software requests a synchronization object, the local Ship forwards the

request to the CSU. The CSU allocates a block of memory for the object and re-

turns a reference to it; in this design, the reference is the physical address of the

object in memory. Local context synchronizer Ships similarly forward decrement

requests to the CSU. The CSU looks up the reference and decrements the counter.

When the counter reaches zero, the CSU releases the barrier by forwarding the

independent code bag descriptor and any register value arguments specified in

the synchronization object to the FDU for dispatching. The CSU then frees the

memory allocated for the synchronization object.

5.6 Communication

Armada-1 components communicate asynchronously using a single-tracked, bun-

dled data protocol. Each bit of data is carried by a single wire, high indicating

logic 1 and low indicating logic 0. A single wire signals when the bundle of data

wires is driven to the correct value. The sending unit pulls this line high once the

data wires are driven to their correct values to send a request, and the receiving

unit pulls the signal low once it has read the data lines to send an acknowledge.

This signal has a delay matched to the worst-case delay of the data lines so that a

request signal does not reach the receiver before the data lines reflect the desired

value. Most bundles of data wires in Armada-1 are 96 bits wide to handle the

transfer of data for all native data types at once.

5.7 Conclusion

Although several design trade-offs were made to complete this first design of an

Armada processor within a constrained time limit, the end product is capable

5.7. CONCLUSION 89

of functionally testing the independent and dependent code bag programming

model, a key contribution of this work for exploiting thread-level concurrency

in this one-instruction architecture. One of the methods introduced to enable

concurrent computations through instruction and data coloring and through re-

source multiplexing will hopefully keep die area and leakage power to a minimum

while achieving proportionally larger performance gains. The next chapter dis-

cusses how the Armada-1 microarchitecture was evaluated using the Mandelbrot

benchmark.

Chapter 6

Evaluation of Armada-1

To evaluate the Armada architecture and, more specifically, the Armada-1 mi-

croarchitecture described in the previous chapter, a low-level simulator of the de-

sign was constructed. The Mandelbrot benchmark was developed using Armada

features and evaluated on the simulator. This chapter discusses the simulator

and benchmark implementations.

6.1 ArmadaSim

ArmadaSim is a timing-approximate, SystemC model of the Armada-1 microar-

chitecture. SystemC is an open-source modeling environment that provides C++

constructs for building standard modular hardware components[Ope06]. Sys-

temC also provides a reference simulation engine for running the models. Many

developers in the SystemC community work to enhance the models and to de-

velop standards that maximize interoperability and reuse. Due to these efforts,

supplemental tools are also becoming more readily available for visualization and

power estimation. In addition to growing developer-community support and In-

stitute of Electrical and Electronics Engineers (IEEE) standards approval, strong

industry support is also a testament to the general acceptance of SystemC as a

mature, robust modeling tool.

6.1.1 Structural configuration

The simulator may be centrally configured in an architecture definition file. The

number of Fleet cores to instantiate and the number of virtual Fleets to support

90

6.1. ARMADASIM 91

per physical core are defined there. The file contains definitions of the widths of

commonly used data structures and buses. It also describes the types of Fleet

cores to integrate into an Armada. After modifications have been made, the

sources are recompiled to generate a new executable model.

6.1.2 Timing model

ArmadaSim simulates time required for inter-component communication and

computation using a centrally-configurable timing model. Timing files can be

interchanged to model different implementation choices such as fabrication pro-

cess technology. The configuration points for simulation events vary in level of

detail; some timing values approximate setup and hold times of local wires while

others approximate more abstract behavior such as fetching a cache line from

memory or performing an asynchronous multiplication operation. A minimum

and maximum time value is specified for each configuration point. At run time,

the simulator randomly chooses and applies a delay from this range at each oc-

currence of a timed event. For example, the simulator may choose different delays

for the result latency of an asynchronous multiplier each time it is used. Such a

timing model seems appropriate for asynchronous processor implementations in

which completion times for tasks are often data-dependent. This dynamic timing

model enables more robust verification and evaluation of Armada-1 than a static

timing model could. However, the timing model applies variation randomly and

does not consider real-world reasons for asynchronous timing variation.

6.1.3 Statistics gathering

ArmadaSim hardware blocks inherit from statistics-gathering interfaces defined in

the source code which enable a variety of measurements. The current implemen-

tation provides an interface which enables the measurement of resource utilization

over time. Other statistics interfaces may be easily added for future work. In

addition to fine-grained measurement, total wall-clock time and simulation time

are also reported.

6.1.4 Fleet state checker

Armada requires software to free all virtual Fleet state before releasing that Fleet

resource back to the hardware. Due to large amounts of concurrently active

92 CHAPTER 6. EVALUATION OF ARMADA-1

operations, cleanup of the cores is not straightforward and is prone to errors

without a proper methodology. As a debug tool, a state checker was built into

the simulator. Whenever a program attempts to free a virtual Fleet, the checker

verifies that each Ship is free of any state for the appropriate color. If stray state

is discovered, the simulator terminates and indicates the error. The simulator

provides a listing of the Ships that have residual state as well as the code bag

descriptors responsible for delivering the stray tokens. A current limitation of

the checker is that it does not catch stray instructions and data that are in-flight.

This enhancement is left as future work.

6.1.5 Value-change dump output

SystemC natively provides useful facilities for generating value-change dump

(VCD) files that can be imported into many waveform viewers. ArmadaSim sup-

ports this feature enabling users to view signals connecting both very primitive

blocks and large composite structures. The signals are arranged in a hierarchy

based on the block structure hierarchy of the architecture to ease signal selec-

tion for viewing. Studying waveforms is extremely useful for debugging Armada

programs as well as the simulator.

6.1.6 Verification

Verification of the simulator was performed at many levels of the design from

independent testing of primitive blocks to holistic verification of the complete

system. At one extreme, each independent block was tested with mostly ran-

dom inputs to input ports, and the generated output was verified. Blocks that

retain state were tested with verification methods that demanded such state was

reflected in the outputs over time. When coloring extensions were added to the

architecture, inputs of random colors were driven into components at random in-

tervals, and the outputs from the components were verified for each color. Each

block was tested in this fashion as it was developed. Nearly all of the design bugs

were found and remedied at this stage.

At the next level of verification, two or more of these primitive blocks were put

together and tested as a larger component. The inputs provided to these blocks

were more directed to likely possibilities, but randomness was introduced when

possible. The instruction horn is one example of a block tested at this mid-level

6.1. ARMADASIM 93

verification stage. Many arbiter blocks are connected together to form this much

larger block. The horn was tested holistically by inputting random, valid payloads

and then verifying that the correct payload reached the appropriate destination

output. The few bugs that were found in this stage were mostly errors with how

the units were interfaced together.

At the highest level of verification, the primary and mid-level blocks were put

together to form a functioning Armada system. The most common bugs found

at this stage were differences between the assembler used to generate executable

binaries of the tests and how the implementation of the microarchitecture inter-

preted those opcodes. As Armada and Fleet were very fluid, changes were made

to opcode formats regularly that were not always reflected in both the simulator

and the assembler causing them to be out of sync. Additionally, some previously

mentioned shortcuts were taken in order to complete the design more quickly;

ways of handling these abstractions also had to be kept in sync between the

pieces of software, and some discrepancies were discovered and resolved during

this high-level validation stage.

6.1.7 Design complexity

A register-transfer level construction of the architecture was not developed, and

the man-hours involved in that process are therefore unknown. However, some

observations on the complexity involved in the implementation and verification

of the Armada-1 simulator are worth consideration given the severity of the de-

sign productivity gap previously discussed in chapter 2. The complexity of the

simulator development likely reflects the complexity involved in implementing an

Armada-1 processor at the Verilog or VHDL level.

The modularity inherited from the Fleet architecture has proven to be ex-

tremely useful in decoupling the implementation of units from one another. As

described in the previous section, the majority of bugs were found by testing

units that were developed in complete isolation from one another. Most units,

especially Ships, were simple to design and easy to test and validate. Addition-

ally, Ship designs in particular took advantage of large amounts of reuse. The

input and output port communication logic was implemented in a parent object

that child Ship objects simply inherited from. Such reuse proved valuable as it

kept the number of bugs in the colored-communications logic low and kept the

means to fix the occasional error centralized. Finally, the total time required

94 CHAPTER 6. EVALUATION OF ARMADA-1

to implement the working Armada microarchitecture model in SystemC by the

researcher was only three months including a SystemC learning curve. Although

these observations may not quantitatively reveal the true complexity involved in

realizing Armada microarchitectures in hardware,1 they are strong hints that such

complexity will likely be very low for the design and debug phases of the process.

The decoupled behavior allows optimizations to individual units to be performed

as deemed necessary without incurring the costs of affecting other units.

6.1.8 Limitations

ArmadaSim is fairly robust today having a decent feature set, good performance,

and some focused validation. As previously mentioned, the timing model is useful

for functional validation purposes but cannot be used to accurately reflect real-

world performance with good detail. The simulator does not currently support

the flow caching enhancement first described in chapter 4.

6.2 Mandelbrot

In order to test the ideas behind Armada, the execution of suitable workloads on

an Armada system must be analyzed. Because this research is not looking into

memory performance, ideal workloads for analysis favor large amounts of compu-

tation over memory accesses. The Mandelbrot benchmark is one such workload.

The algorithm contains ample amounts of ILP, TLP, and DLP that capable hard-

ware may take advantage of. Additionally, the control flow is non-trivial making

coding of the algorithm for Armada an interesting challenge. Finally, this bench-

mark is accepted by commercial markets as one gauge of processor performance;

it is used in the SiSoft Sandra benchmarking suite as a multimedia benchmark.

6.2.1 Computation

The Mandelbrot set is a fractal, an object or quantity that exhibits self-similarity

at all scales[Wei06]. The set is computed from the equation:

zn+1 = z2
n + C (6.1)

1Indeed, asynchronous tools currently lag behind the capabilities and robustness of syn-
chronous ones.

6.2. MANDELBROT 95

with z0 = C for points C on the complex plane. Points that do not diverge

toward infinity when entered into the equation are members of the Mandelbrot

set; those that do tend toward infinity are not in the set. An approximation of

whether C tends toward infinity may be made by testing whether zn is greater

than some limit bound, LIMIT , for 0 ≤ n < ITER MAX. Therefore, if

zITER MAX−1 does not exceed LIMIT , the point is assumed to be a member of

the Mandelbrot set.

Representations of the Mandelbrot set make interesting fractal drawings. An

image resolution is chosen with dimensions window.width×window.height. Each

pixel is mapped to a point on a viewport of the complex plane. The viewport

is characterized by its top-left corner, width, and height. In most drawings,

points in the Mandelbrot set are colored black. Points not in the set are colored

differently based on the final value of n, the number of iterations taken to reach

LIMIT . Thus, points that tend toward infinity at different rates than others are

painted different colors.

The benchmark creates this graphical representation of the Mandelbrot set.

A window of some variable resolution is specified. The typical view port of the

complex plane chosen for the benchmark is the range with top left corner at

(−2.5, 1.5), width of 4.0, and height of 3.0. Many points in this area are in

the Mandelbrot set; therefore, the benchmark spends the majority of its time

executing the innermost loop of the benchmark. Figure 6.1 shows a Java code

snippet of the core of the Mandelbrot algorithm.

6.2.2 Parallelism

The Mandelbrot benchmark described has ample amounts of ILP, TLP, and DLP

that may be taken advantage of by a highly concurrent architecture like Ar-

mada. Some ILP is present in the innermost loop of the algorithm where the

large majority of operations are performed. The innermost loop body consists

of nine fundamental arithmetic operations as depicted in the data flow diagram

in figure 6.2. Independent operations can occur simultaneously if their inputs

and enough hardware resources are available to handle the multiple operations.

The diagram conveys a sense of time through varying lengths of operation boxes

and the vertical space between them. A multiply operation is assumed to take

twice the amount of time as an addition or subtraction operation; communica-

tion of each piece of data takes about half the time of an addition or subtraction

96 CHAPTER 6. EVALUATION OF ARMADA-1

1 for (int i =0; i<window . he ight ; ++i) {
2 double c i ;
3

4 c i = ((double) i / (double) window . he ight) ∗
5 viewport . getHeight () + viewport . getMinY () ;

6 for (int j =0; j<window . width ; ++j) {
7 double c r , z r , z i , z r n e x t ;
8 int i t e r ;
9

10 c r = ((double) j / (double) window . width) ∗
11 viewport . getWidth () + viewport . getMinX () ;

12 z r = z i = 0 . 0 ;
13 for (i t e r = 0 ; i t e r < ITER MAX; ++i t e r) {
14 z r n e x t = z r∗ z r − z i ∗ z i + c r ;
15 z i = 2 .0∗ z r∗ z i + c i ;
16 z r = z r n e x t ;
17 i f (z r∗ z r + z i ∗ z i > LIMIT) break ;
18 }
19 c o l o r p i x e l (i , j , i t e r , ITER MAX) ;
20 }
21 }

Figure 6.1: Mandelbrot benchmark inner loops in Java. In the translation to the Armada
assembly language, lines 1–5 are mapped to the Main code bag, 6–11 to OuterLoop, and
12–19 to InnerLoop (as shown in figure 6.3).

6.2. MANDELBROT 97

operation. Though the exact timings may vary in an asynchronous system like

Fleet, the diagram shows which operations are likely to occur simultaneously if

sufficient resources are available.

Figure 6.2: Mandelbrot inner loop operations. Many operations are likely to overlap in
the computation-intensive inner loop of the benchmark. This ILP can be exploited by an
architecture to reduce the total computation time of the loop body.

The algorithm also contains abundant amounts of TLP and DLP. The same

set of operations are performed for every data element or pixel, a characteristic

of DLP. Single-threaded architectures may exploit this parallelism by applying

SIMD operations to multiple pixels at a time. Alternatively, architectures that ef-

ficiently support numerous threads may map each pixel to an independent thread

of execution to take advantage of the TLP in the algorithm. Hybrid approaches

of using the parallelism are also possible. For example, each row can be treated

as a thread. Each thread may then use SIMD instructions to operate on a set of

pixels within that row at a single time.

98 CHAPTER 6. EVALUATION OF ARMADA-1

6.2.3 Mapping to Armada

In this section, the process of mapping the Mandelbrot benchmark to the Armada

instruction set architecture is discussed. The most challenging aspect of the

algorithm to map is the control flow. Using Armada’s independent code bags to

exploit thread-level concurrency is also of primary interest to the research and

given special attention here. The Armada-assembly code for the benchmark is

provided in appendix C.

Implementation structure

The Mandelbrot benchmark for Armada was hand-coded in the Armada assembly

language. The final design is a sensible construction, but there was no rigorous

optimization stage. Therefore, further improvements are possible. The core of

the program is held in nine code bags, three independent bags and six dependent

bags. Figure 6.3 shows the relationship between these code bags. Independent

code bags have a dotted pattern on them, and dependent code bags are plain.

The dashed arrows in the figure describe the fetch of independent code bags, and

the solid arrows indicate the fetch of dependent code bags. The shaded regions

indicate shared state; an independent code bag and all dependent bags that are

fetched by it or any of its descendants share the same state. In Armada, all

instructions from such a set of code bags that share state will execute on the

same virtual Fleet.

Figure 6.3: Mandelbrot code bags. Each shaded region identifies code that shares state
and is executed on one virtual Fleet.

6.2. MANDELBROT 99

Main is the entry point to the program. Main fetches window.height in-

stances of the independent code bag OuterLoop before finally fetching depen-

dent code bag Main cleanup to clean up and release the virtual Fleet it oc-

cupies. Each instance of OuterLoop fetches window.width instances of the in-

dependent code bag InnerLoop before cleaning up by fetching dependent code

bag OuterLoop cleanup. Thus, Main and OuterLoop work together to fetch

window.height × window.width instances of InnerLoop — one instance for

each pixel of the window. Each of these instances have independent state and

may therefore execute on many virtual Fleets concurrently. Figure 6.4 illustrates

this technique of releasing the InnerLoop code bags.

Figure 6.4: Mandelbrot code bag fetch scheme. Main fetches one OuterLoop bag for
every row of the window. These bags may execute concurrently and will each fetch one
InnerLoop code bag for every column in their row. All window.height × window.width
number of InnerLoop bags may execute concurrently to color in each pixel in the window.

A typical count-controlled for loop with no early exits is implemented using

a stride Ship as the counter, a compare Ship to perform the loop conditional test,

and a selector Ship to choose between two sets of actions to perform depending

on the result of the comparison. One set of actions would be to iterate the

counter and repeat the loop body, and the other set would be to exit the loop

and perhaps continue with additional behavior. This technique is applied in the

simple example shown in figure 4.5(a). The Main and OuterLoop code bags work

in this way.

Each InnerLoop bag must know the coordinates of the pixel it is operating

100 CHAPTER 6. EVALUATION OF ARMADA-1

on so that it can write to the correct address in the frame buffer. Therefore, Main

and OuterLoop must minimally forward this information to the InnerLoop bags

using Armada’s register forwarding scheme. Main passes both the row number,

i, and the imaginary component of the point on the complex plane to test, ci,

to the OuterLoop bags it fetches. Because ci is the same for every column in

any single row, the calculation need only be performed once per row. OuterLoop

leaves these values untouched, forwarding them to each InnerLoop bag it fetches.

OuterLoop additionally forwards the column number, j, and the real component

of the point to test, cr, to the InnerLoop bags.

Cleanup

InnerLoop applies the Mandelbrot set equation (equation 6.1) to the point on

the complex plane forwarded to it in a tight loop. This for loop is more complex

than the simple for loops handled by Main and OuterLoop; it must additionally

manage an early exit condition. The count-controlled part of the loop terminates

when n = ITER MAX. However, the loop will terminate early if the value

produced by the Mandelbrot equation exceeds LIMIT . Exiting due to loop

counter expiration leaves the Fleet in a state that is not equivalent to the state it

is left in if this early exit condition causes termination. Because of the different

residual states, two different code bags of cleanup instructions, one for each case,

are required to free the occupied Fleet (figure 6.5).

Figure 6.5: InnerLoop control flow.

Cleaning up a Fleet is not a trivial task, but the application of some useful

techniques can simplify the problem. The process used to track and cleanup resid-

ual state consisted of maintaining state tables for each virtual Fleet. First, one

6.3. CONCLUSION 101

state table is built. Starting with the independent code bag, each input and out-

put port of every Ship is score-boarded as instructions reference them. A couple

of cases require special consideration. Data may queue up behind write-persist

data sent previously to the same destination. Additionally, standing instructions

may forward data automatically for some time which must also be accounted for

in the table. In the case of conditional branching behavior caused by the condi-

tional fetch of different dependent code bags, the state table is duplicated so that

one table is maintained for each branch; trees of branches result in trees of state

tables. When a branch terminates, the state table identifies all residual state in

the system that must be cleaned up. When a branch loops back to an already

visited section of code, the difference between the current table and the table as

it was when first entering that section of code is computed. This residual state

must be cleaned up before looping back and re-executing that code. These tables

were drawn by hand for the coding of this program, but, as described in part III

of this thesis, such a process can be automated.

6.3 Conclusion

This chapter described the ArmadaSim simulator of the Armada-1 microarchi-

tecture. The Mandelbrot benchmark was ported to the architecture and makes

use of the thread-level concurrency and context synchronization enhancements

described in chapter 4. The benchmark’s large amounts of obvious parallelism

and its low dependence on memory behavior made it an ideal test of Armada-1

given the current progress and level of detail in the design. The next chapter

discusses the results from simulation runs of the benchmark on ArmadaSim.

Chapter 7

Microarchitecture results and

discussion

The Mandelbrot benchmark described in the previous chapter was executed on

different configurations of the Armada microarchitecture model. This chapter

presents these results and discusses the ability of the microarchitecture to exploit

instruction-level and thread-level concurrency. Static and dynamic code size is

evaluated in comparison to existing commercial architectures. Finally, the chap-

ter touches on the asynchrony aspect of Armada performance and performance

modeling.

7.1 Performance overview

The Armada extensions supporting thread-level concurrency allow the Mandel-

brot benchmark run time to scale with respect to the number of hardware threads.

The compiled benchmark does not require modification to utilize additional Fleet

cores present in an Armada. Figure 7.1 shows the speed up achieved by various

configurations of the Armada-1 microarchitecture over the base case of a single-

core, single-threaded implementation.

As shown in figure 7.1(a), Armada-1 achieves a greater than 12x perfor-

mance improvement over a single, non-SMT Fleet core. A single-core, SMT

configuration, denoted by the diamonds in the figure, is limited to less than an

8x performance improvement despite the number of simultaneously-executable

threads supported. This data indicates the presence of performance bottlenecks

within the core. Multiple-core configurations hit performance bottlenecks when

102

7.1. PERFORMANCE OVERVIEW 103

(a)

(b)

Figure 7.1: Overview of Mandelbrot performance on Armada-1. (a) shows performance
improvement relative to the total number of threads supported by all cores in the microar-
chitecture. (b) shows performance improvement relative to the number of threads supported
by each individual core.

104 CHAPTER 7. MICROARCHITECTURE RESULTS AND DISCUSSION

16 threads are supported regardless of whether the multithreading is achieved

through core replication or simultaneous multithreading on a single core (fig-

ure 7.1(b)). This data indicates a bottleneck in the units that are shared among

all cores. Figure 7.2 examines the bottlenecks in detail for different configurations

of a dual-core Armada-1 implementation.

Figure 7.2: Resource utilization of performance-limiting units in a dual-core Armada-1
implementation. The trunk and horn utilization data shown is an average of the utilization
measured on each core.

Using the utilization data collected from the simulations, the key core-specific

bottleneck was identified as the trunk element of the switch fabric. The shared

components that limit performance are the fetch and dispatch unit, instruction

cache, and instruction dispatcher. It is possible to improve the throughput of

these structures by modifying their implementation. Although these modifica-

tions are beyond the scope of this work, figure 7.3 shows the performance im-

provement possible if each of these components is effectively sped up by a factor

of ten. The results presented in the remainder of this chapter come from simu-

lating the benchmark on this hypothetical, optimized implementation.

With 16, 8-way simultaneously-multithreaded cores, the Armada-1 processor

delivers a nearly 100-fold increase in performance over a single Fleet core. Sup-

porting more than eight threads per core does not result in further performance

improvement (figure 7.3(b)). In this optimized implementation, the primary bot-

tlenecks are within the cores and no longer in the shared units. For the Mandel-

brot benchmark, the floating point addition and multiply Ships are highly utilized

and are the limiting factors of the performance.

7.1. PERFORMANCE OVERVIEW 105

(a)

(b)

Figure 7.3: Overview of Mandelbrot performance on a hypothetical, optimized imple-
mentation of Armada-1. This data reflects a 10x speedup in the fetch and dispatch unit,
instruction cache, instruction dispatcher, and switch-fabric trunk element. (a) shows per-
formance improvement relative to the total number of threads supported by all cores in the
microarchitecture. (b) shows performance improvement relative to the number of threads
supported by a single core.

106 CHAPTER 7. MICROARCHITECTURE RESULTS AND DISCUSSION

7.2 Exploiting concurrency

In Armada, instruction-level concurrency is discovered and represented statically

by software. Code bags contain instructions that can be fetched and executed in

any quantity and order. The amount of work that software requests the fetch and

dispatch unit to do concurrently for a single thread is proportional to the number

of instructions in the bag being fetched. However, the execution of move instruc-

tions is additionally dictated by data-flow ordering. Empirically, it is possible to

determine how many operations are being performed simultaneously by counting

how many Ships are active at any given time. Figure 7.4 shows the number of

concurrently active Ships over the entire benchmark on single-core and 16-core

Armada-1 configurations.

The single-core histogram shows that for non-SMT configurations, only one

Ship is active at any time for the vast majority of the benchmark run time. The

SMT behavior added to Fleet in Armada provides more work to perform con-

currently ultimately providing an improvement to the benchmark run time. The

16-core histogram shows that the number of concurrently active Ships actually

decreases when moving from an 8-way SMT to a 16-way SMT configuration. This

pullback in the number of concurrent operations correlates with the decrease in

overall performance between the configurations observed in figure 7.3. Possible

reasons for this performance degradation are discussed in section 7.5.

7.2.1 Instruction-level concurrency

The amount of instruction-level concurrency in the Mandelbrot benchmark that

Armada-1 can capitalize upon is reflected in the amount of concurrent opera-

tions that take place in the single-core, single-threaded configuration shown in

figure 7.4(a). This data accounts for the result latencies of the operations as well

as data-flow dependencies. Over 80% of the time, only one operation is active at

once, showing the necessity for fast single-threaded performance in the absence

of exploiting other forms of concurrency.

Armada-1 is strongly limited in single-thread performance because of insuffi-

cient pipelining. As discussed in section 4.1, the Armada-1 switch fabric does not

have a flow-control mechanism for pipelining standing instructions. The Ships are

also not pipelined. Additionally, Armada-1 does not support branch prediction

or data speculation, both of which can increase ILC. However, these deficiencies

7.2. EXPLOITING CONCURRENCY 107

(a)

(b)

Figure 7.4: Concurrently active Ships in Armada-1 running Mandelbrot. These histograms
show the number of concurrently active Ships over the duration of the benchmark. (a)
describes one physical core with one, four, eight, and sixteen-way SMT configurations. (b)
describes a sixteen physical core configuration with each core having one, four, eight, and
sixteen-way SMT configurations.

108 CHAPTER 7. MICROARCHITECTURE RESULTS AND DISCUSSION

can be partially overcome by exploiting thread-level concurrency.

7.2.2 Thread-level concurrency

Like ILC, thread-level concurrency is also discovered and represented statically by

software. The number of independent code bags that can be fetched concurrently

determines the maximum degree of TLC the hardware may achieve. For the ma-

jority of tests performed, the resolution was limited to 32x24 pixels to control

simulation time making about 770 threads available for concurrent execution. As

seen in figure 7.4(b), many-core configurations like the 16-core ones shown en-

able large amounts of operations to occur concurrently. By having more cores

available, core-local bottlenecks are mitigated. By increasing the multithread-

ing capacity of each core, oft-idle units are more highly utilized thus lowering

benchmark run-time with minimal hardware overhead. Workloads that do not

use many threads will not benefit from Armada’s TLC extensions.

7.3 Code density

Instruction set density, or code density, is a significant factor in system perfor-

mance and cost. Dense instruction streams require less system bandwidth than

sparse ones often resulting in better performance and lower power consumption.

Instruction caches can be utilized more efficiently thereby reducing the frequency

of costly off-chip memory accesses.

Armada generally requires more instructions than a traditional RISC archi-

tecture to represent the same computation. In Fleet architectures, the communi-

cation involved in computations is explicitly described by software whereas it is

implicit in RISC and CISC architectures. Table 7.1 compares the code size and

amount of instruction fetch traffic for three different architectures running the

Mandelbrot benchmark.

The ideal number of physical Ships for a general-purpose Fleet architecture

is related to the amount of concurrent operations possible in a program. In

Armada-1, 7-bit addresses for both input and output ports were chosen somewhat

arbitrarily to fill a 32-bit instruction. The composition of Ships in the cores was

largely influenced by the requirements of the Mandelbrot benchmark. Future

implementations should take into account the concurrency available in typical

programs when selecting processing resources. An analysis of concurrently active

7.4. CODE BAG ORGANIZATION 109

Architecture Code size (bytes) Num exec insts Inst traffic (bytes)

MIPS 180 424,860 1,699,440

x86-64 200 582,467 2,228,524

Armada-1 756 761,072 3,401,640

Table 7.1: Code size and instruction fetch traffic comparison. MIPS code compiled with
gcc v4.1.2 -O2 optimization. x86 code compiled with gcc v4.3.2 -O2 optimization. Armada
version is hand-coded.

units, similar to but more detailed than the analysis described in section 7.2,

would be useful in determining the quantities of different types of resources to

put into a Fleet core. Additionally, the ideal number of bits needed for addresses

could be optimized with the same procedure. Optimizing address size will reduce

instruction size and instruction-related traffic.

7.4 Code bag organization

Fleet proposes that concurrently-executable instructions all be placed into a code

bag. The order the hardware chooses to fetch and issue the instructions is out of

software control. While this representation is useful in allowing hardware to fetch

some non-contiguous instructions as they are available, software-provided hints

on execution order can help to improve performance. Armada-1, for example,

attempts to fetch instructions with lower physical addresses before fetching those

with higher physical addresses from a code bag. If software was aware of this

preference, it could place move instructions in the bag based on the level that the

corresponding arcs appear in the data-flow graph. High-priority arcs at the lower,

leaf levels of the graph would be positioned at the lowest addresses in a code bag,

and arcs at the highest level of the graph would be positioned at the highest

addresses. The difference in execution time of the Mandelbrot benchmark when

move instructions are positioned in these two opposing arrangements for Armada-

1 16-core configurations varied between 0.1% and 6.4% as shown in figure 7.5.

However, somewhat unexpectedly, the instruction orderings that were considered

more ideal did not always yield a performance improvement. For the 16-way SMT

case, for example, the arrangement considered non-ideal actually performed 6.4%

better than the other arrangement, the largest variance measured. The next

section explores possible reasons for such behavior.

110 CHAPTER 7. MICROARCHITECTURE RESULTS AND DISCUSSION

Figure 7.5: Effect of intra-code bag instruction arrangement on Mandelbrot benchmark
performance. The improvement of the first-needed prioritized instruction arrangement over
the last-needed, inverse-priority arrangement is shown.

7.5 Asynchronous system performance

For the Mandelbrot benchmark, a Fleet core’s performance saturates and may

actually decrease when more than eight contexts are active at once as shown

in figure 7.3b. The Fleet funnel-and-horn switch fabric exhibits high occupancy

within the funnel and relatively low occupancy in the horn. The speed of the trunk

element limits the rate at which data can enter the horn. Merge elements within

the funnel rarely have multiple inputs to propagate in the single-threaded case as

shown by the low concurrency in figure 7.4. As more threads are allowed to occupy

a single core, the funnel occupancy rises. When more than one input is present

at a merge element, there is an additional delay incurred in the propagation of

the second datum. ArmadaSim simulates a small delay required for the merge

element to respond to an acknowledge from the successor element indicating that

the forwarded data has been received. This reverse latency is hidden from the

pipeline through that merge element if no other data is waiting to pass through

it. Conversely, if another datum is at the merge element’s input port, it must

wait for that delay before the merge element processes it and moves it forward.

When more than 200 threads are active at once on any multicore, multi-

threaded configuration tested, performance begins to degrade further. This degra-

dation, visible in the 8- and 16-core configurations of figure 7.3a, is caused by sat-

uration of the shared units in the processor model. The fetch and dispatch unit

7.6. RESOURCE MULTIPLEXING 111

and the instruction memory become overloaded reducing their overall throughput.

Similar behavior has been observed and reported on in asynchronous pipeline and

ring buffer experiments where throughput is limited by the availability of holes

in the pipeline[MJC+99, Wil94].

7.6 Resource multiplexing

Armada-1 explored just one approach of increasing resource utilization that only

reaps benefits when many threads execute concurrently. An alternative way of

both increasing utilization of Ships and reducing the size of the switch fabric is to

allow some port addresses in move instructions to map to the same physical Ship

input ports. Some of the bits in the address would route data to the appropriate

location, and the remaining bits could disambiguate the contexts to which the

data applies. For example, if 5-bit addresses are used, the lower three address

bits could be used to route data to the correct physical Ship, and the remaining

two bits could be used to identify the context to which that data applies. This

scheme may decrease the number of Ships needed in a core and increase Ship

utilization among instructions within an individual thread. It is very similar to

the tagging or coloring scheme used to distinguish between thread contexts in

Armada-1.

Additionally, the costs of implementing SMT using the virtual channels in

Armada-1 may outweigh the simpler alternative of increasing the number of phys-

ical cores and allowing only one context per Fleet. The appropriate trade-off is

largely dependent on the targeted process technology for the processor. The

exploration of this design space is beyond the scope of this work.

7.7 Conclusion

This chapter demonstrated that the Armada architecture is effective at capital-

izing on the thread-level concurrency available in a benchmark like Mandelbrot.

Nearly a 100-fold increase in performance is realized over a single-core Fleet by

replicating cores, employing simultaneous-multithreading using virtual channels,

and by allowing software to spawn threads easily with Armada’s addition of

resource-independent code bags.

While hand-coding a benchmark for an unconventional processor like Armada

112 CHAPTER 7. MICROARCHITECTURE RESULTS AND DISCUSSION

is possible, compiling programs directly from a high-level language automatically

is often much more difficult. The next part of this thesis shows that ubiquitous,

imperative-language compilers can successfully target the Armada architecture.

This capability provides further evidence that the Armada architecture may be

used as the foundation for a general-purpose computer processor.

Part III

An Armada compiler

113

Chapter 8

Armada Procedure Call Standard

Compilers transform high level languages into machine code for the target ar-

chitecture. The compiler as well as low-level programmers that write the na-

tive machine code must adhere to a procedure call standard to ensure that the

code they generate will cooperate with other code libraries and modules that

their code may reference. Although such standards are relatively straightfor-

ward though tedious, the Armada Procedure Call Standard (APCS) introduced

here ensures both serially- and concurrently-called code using Armada’s novel

resource-dependent and resource-independent code bags can work interchange-

ably. Readers familiar with procedure call standards for traditional architectures

may wish to skip to section 8.5 which discusses Armada-specific behavior.

8.1 Overview

There are four stages in a procedure call [BD95]. The first stage is the caller

prologue where the caller prepares to invoke the subroutine. The second stage

is the callee entry where the subroutine takes control over which instructions are

executed. In the third stage, the callee exit, the subroutine relinquishes control

back to the caller. Finally, the caller recovers from the procedure in the caller-

epilogue stage.

As concurrency is an essential part of the Armada architecture, there are

two procedure call methods in the APCS. The serial method is commonly used

to call functions in parts of the program dominated by control flow code where

actions are serialized. There is also a concurrent method of calling functions that

may spawn one or more threads of execution to exploit thread-level concurrency

114

8.2. REGISTER FILE 115

available in programs. The APCS therefore describes the caller and callee function

responsibilities for both the serial and concurrent cases. The following sections

discuss these responsibilities. First, the behavior of the key resources involved in

procedure calls, the register file and the stack, are described. Then the standard

for how data is passed between caller and callee is described. Finally, the serial

and concurrent methods of calling procedures are discussed.

8.2 Register file

Unlike traditional architectures, the purpose of the Armada register file is not

solely to hold often-used values close to the processing elements; the file’s primary

purpose is to transfer arguments to execution contexts of independent code bags.

A caller function will place arguments to the callee in the registers and fetch

an independent code bag. That fetch operation will consume the values in the

register file, package them with the independent code bag descriptor, and place

the resulting independent context fetch transaction into a queue. The new context

will eventually be allocated to a Fleet tile, the arguments loaded into the register

file of that Fleet, and the bag of instructions executed.

8.2.1 Behavior

Armada registers are either full of data or empty. The fetch unit will block1

if an independent code bag descriptor cannot be fetched because one or more

argument registers are empty. A bit-field in the code bag descriptor specifies the

registers that must be full prior to executing the successor code bag. The register

file may not be used at all when fetching dependent code bags that will execute

on the same physical tile because data on any Ship output port may be accessed

directly.

8.2.2 Listing

The Armada-1 architecture provides eight, 96-bit, general-purpose registers that

have a role in calling procedures. These registers were designed to hold complete

1The fetch unit will appear to block from the software’s perspective. The hardware may
prefetch the instructions within the code bag onto a Fleet tile or perform other setup behaviors
in anticipation of the register data arriving.

116 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

code bag descriptors as well as 64-bit data with a variety of OOB values. Register

use depends on how the procedure call is invoked by the caller. A0−A4 may hold

arguments to pass to procedures. SSP may hold a software-allocated successor

stack pointer to be used by a callee. LSP holds the local stack pointer for

the currently active routine. LR holds the independent code bag descriptor of

the code to execute after the callee completes. A full register listing is shown

in table 8.1. The registers’ involvement in the procedure calling convention is

described in detail in subsequent sections.

Register name Alias Description

R0 A0 argument passing
R1 A1 argument passing
R2 A2 argument passing
R3 A3 argument passing
R4 A4 argument passing
R5 SSP successor stack pointer
R6 LSP local stack pointer
R7 LR link register

Table 8.1: Armada-1 register file listing.

8.3 Stack

The APCS requires stacks to be full descending. In a full descending stack, the

stack grows to lower addresses (descending), and the stack pointer points to the

last element on the stack (the pointed-to memory is full). Thus, when a new

item is pushed onto the stack, the stack pointer must first be decremented to

allocate space for that item. The stack must maintain 64-bit alignment across

procedure calls. Empty buffering space should be added if needed to maintain

this alignment. Argument and return value passing are discussed in section 8.4.

8.3.1 Allocation policy

For the concurrent procedure call cases, a single stack cannot easily be shared

among many threads. Therefore, the APCS accommodates dynamic stack alloca-

tion for callee threads. Many hardware and software mechanisms in the literature

8.3. STACK 117

may be adapted to support this behavior [EO88][VH99][BMBW00]. A subrou-

tine’s stack may be allocated by software or by hardware. The two methods have

different advantages and disadvantages as discussed in the following sections. The

caller function decides which method to use on a per-call basis. The compiler or

programmer can choose the best method to use for each call and thus use both

models within a single library or program.

Software allocation

Software may allocate the successor stack directly and pass this pointer to the

callee. In this model, the software must supply the successor stack pointer in

the SSP register when fetching an independent code bag descriptor. Software

determines how the stack memory is allocated. For example, the stack space may

be allocated on the heap by a thread library or may simply be a copy of the

parent stack pointer’s current location.

Hardware allocation

Alternatively, the program can have the hardware create a stack dynamically. To

decrease the amount of time required to allocate these stacks, hardware assists

in the stack allocation process by maintaining a stack pool of pre-allocated and

recycled stacks. The hardware, with operating system assistance2, will provide a

stack pointer automatically for the callee by populating the SSP register.

8.3.2 Choosing the allocation policy

The stack policy may vary for each subroutine call. In some cases, a shared, linear

stack like those typically used in traditional architectures may not be adequate

as several callees may be capable of running concurrently and may need to have

their own independent memory. The Armada architecture’s hardware support

for stack allocation provides fast allocation and deallocation of stack memory

for the concurrent execution of subroutines. However, if a caller must execute a

single procedure call serially, the preferred method is to avoid stack allocation and

release penalties by using the shared linear stack method and allowing the single

2Although the hardware still requires operating system assistance, an intelligent design will
amortize the high software intervention cost by managing stack allocation and release in hard-
ware when possible perhaps by using stack caching and recycling mechanisms. Armada-1 im-
plements such a system.

118 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

successor subroutine to grow down from the end of the parent’s stack. Amdahl’s

law tells us that the sequential segments of a program are the limiting factors to

speedup in computer systems; so it is worthwhile to optimize the serial cases as

much as possible.

8.4 Data placement

The caller and callee exchange data in a similar way for both serial and concurrent

call methods. This section describes how the caller transfers arguments to the

callee and how the callee returns values to the caller.

8.4.1 Argument passing

The caller prologue is responsible for passing input arguments to the callee. Reg-

isters are the preferred means of transport, and the stack is used when the size

of the register file argument passing registers is inadequate.

Argument registers

The 96-bit registers A0 − A4 are argument passing registers. The argument

passing registers contain the input arguments for the callee. 96 bits are enough

to contain whole code bag descriptors as well as all other primitive Armada

machine types with OOB values. The arguments passed via the argument passing

registers are loosely packed such that each primitive type allocates an entire

register regardless of its size. For example, five 16-bit characters will occupy

A0−A4 even though they could be packed into a single register. This restriction

allows data to be passed from caller to callee without incurring packing and

unpacking overhead. Arguments are passed in ascending order using the argument

passing registers. Argument one is passed to the callee via A0, argument two is

passed via A1, and so forth.

If there are more arguments than argument passing registers, the arguments

overflow onto the callee stack. For example, if a callee takes nine integers as

arguments, A0 − A4 would contain arguments one through five, and arguments

six through nine would be pushed onto the callee stack. Data placement on the

stack is discussed in a later section.

8.4. DATA PLACEMENT 119

Aggregate types

Non-native aggregate types such as data structures passed to the callee with

pass-by-value semantics may not fit in a single register. Such structures are

passed over multiple registers if the entire unpacked structure can fit within the

available registers. For example, if a callee has two parameters, an integer and

a data structure comprised of two doubles, the integer would be passed in A0,

the first double within the structure in A1, and the second double within the

structure in A2.

Structures that are too large to fit in their entirety in the available argument

passing registers are pushed onto the callee stack. For example, if a callee takes

two arguments, an integer and a data structure comprised of five doubles, the

integer would be passed in A0, the data structure would be pushed onto the

callee stack, and A1− A4 would be empty.

When there is a mix of non-native aggregate types and native types passed

as arguments to a callee, arguments are positioned in the following way. First,

the arguments are placed in the argument passing registers if possible regardless

of whether they are native types or aggregate types. As described earlier, an

aggregate type may not fit in its entirety in the available argument passing regis-

ters. If this is the case, it is skipped over for the remainder of the first pass. The

remaining arguments are visited and placed into the argument passing registers

if possible. Once the argument passing registers are full or only arguments of ag-

gregate types that do not fit in the available argument passing registers remain,

the unplaced arguments are placed in reverse sequence on the callee stack. This

scenario is demonstrated in figure 8.1.

1 s t r u c t e lephant {
2 char var a r ray [1 0 0 0] ;
3 } ;
4

5 s t r u c t mouse {
6 i n t x , y , z ;
7 } ;
8

9 void proc (i n t a , s t r u c t e lephant b , double c , s t r u c t mouse d ,
10 i n t e , i n t f) ;

Figure 8.1: Argument passing example with native and aggregate types.

120 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

In this example, the argument for parameter a is placed in register A0. The

aggregate-typed argument for parameter b is skipped over for now as it will not

fit in the four remaining argument passing registers. c’s argument is placed in

register A1. Finally, the aggregate-typed argument for parameter d is placed in

registers A2−A4 (d.x, d.y, and d.z respectively) since it does fit in its entirety into

the available argument passing registers. The remaining arguments are skipped

over as there are no more argument passing registers available. Then, the un-

placed arguments are revisited in reverse sequence beginning with the argument

to parameter f and pushed onto the callee stack.

Overflowing to the stack

The callee stack provides additional storage for arguments that do not fit in the

argument passing registers. Arguments are pushed onto the stack in reverse order.

For the example in figure 8.1, the argument for f is pushed first followed by the

arguments for e then b. Aggregate types for parameters such as b have each of

their members pushed on the stack in reverse order as well. If b.var array[999]

is at address 3999 on the empty descending stack (byte-addressed, base 10), then

b.var array[0] is at address 3000. As a result, an object of an aggregate type

residing in the heap, statically positioned in memory, or residing on the stack is

accessed in the same way given a pointer to the base of the object.

8.4.2 Automatic variables

Automatic variables, or automatics, are variables that are created and destroyed

as program flow enters and exits scoped portions of a user program. For example,

variables used solely by a single function and defined within that function are

automatic variables. Generally, automatics do not occupy registers but instead

reside directly at Ship output ports as they are created. However, if an occupied

Ship must be used for another purpose or the parent function otherwise needs to

bank an automatic variable, it may store the variable onto the end of the stack as

in traditional architectures. This is useful in many cases including in performing

recursive function calls.

8.5. PROCEDURE CALLS 121

8.4.3 Return values

Callee return values are passed back to the caller on the stack. Although in the

serial case it is possible to return small values back via one or more registers, this

method does not work for the concurrent case where many callees may need to

return values to a caller at once. Having the return values returned on the stack

guarantees that the necessary storage for those values is available. Placing the

values on the stack for both serial and concurrent cases guarantees code unifor-

mity in accessing those values; it allows a single implementation of a function to

be called serially or concurrently. If the APCS allowed different methods of re-

turning values for serial and concurrent cases, functions that could potentially be

called both serially and concurrently would have to be implemented two different

ways in order to adhere to the standard. This replication would increase code

size, software maintenance cost, and invite confusion for the programmer.

8.5 Procedure calls

The following sections discuss the caller and callee responsibilities for serial and

concurrent methods of calling procedures. Particular attention must be paid to

the handling of the two stack pointers. The local stack pointer (LSP) points to

the last element on the stack for the actively running function. The successor

stack pointer (SSP) points to the last element on the stack for the successor

subroutine being called. When fetching an independent code bag, the Armada

hardware will move the SSP into the LSP position for the called function.

8.5.1 Serial procedure calls

In a serial procedure call, the caller function jumps to a single callee. Upon

termination, the callee returns control back to the caller. The process in Armada

is very similar to the process in traditional architectures. The following sections

describe caller and callee requirements for the four stages of the function call

process.

Caller prologue

In preparation to call a function, the caller must make room for the callee’s

return value on the stack, put arguments into the appropriate registers or stack

122 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

locations, and place a code bag descriptor for the callee to fetch once it has

completed. Figure 8.2(a) shows the layout of the stack after the prologue has set

it up for the function call. The caller passes the new location of the stack frame

to the callee via the SSP register.

Callee entry

When fetching an independent code bag descriptor, the Armada hardware reposi-

tions the SSP value from the caller into the LSP position of the callee effectively

setting up the local stack frame for the subroutine. The callee may allocate addi-

tional space on the stack for local, automatic variables as shown in figure 8.2(b).

The callee can reference the arguments passed in by the caller from the register

file or the stack as appropriate.

Callee exit

Upon exiting, the callee uses the return value pointer provided by the caller to

store its result, if any, to memory. The successor stack pointer is incremented

to remove the callee’s arguments, automatic variables, and return value pointer

from the stack as in figure 8.2(c). Finally, the callee fetches the independent code

bag descriptor provided by the caller in the link register (LR) and terminates.

Caller epilogue

The callee fetches the caller epilogue code bag prior to terminating. This code

bag may now access the callee return value. As with the caller prologue to callee

entry phase, the hardware moves the SSP setup by the callee into the LSP

position when returning to the caller as showing in figure 8.2(d).

8.5.2 Concurrent procedure calls

Spawning threads is designed to be easy with the Armada architecture. The

APCS describes how procedures can be called to execute concurrently. Program

flow can then later be resumed after a barrier point once the threads have com-

pleted.

8.5. PROCEDURE CALLS 123

(a) Caller prologue. (b) Callee entry.

(c) Callee exit. (d) Caller epilogue.

Figure 8.2: Stack layout for a serial procedure call. The caller allocates space for the
return value, if any, and passes a pointer to that memory and any arguments to the callee
(a). The SSP in the caller is transferred to the LSP register in the callee, and the callee
allocates any additional space it needs for automatic variables onto the stack (b). Upon
callee exit, the LSP is discarded, and the SSP is positioned to effectively remove all local
stack memory used by the callee (c). Finally, upon return to the caller, the SSP is again
transferred to the LSP register by the hardware, and the original caller has the same LSP
as before the call was made (d). The LSP points to the return value, if any, left by the
callee.

124 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

Caller prologue

The caller may spawn one or more threads to execute concurrently while it con-

tinues running itself. The spawned threads may have one or more barriers that

synchronize execution before continuing on with the program flow.

The caller function allocates separate stacks for the threads it creates. Unique

stacks allow callee threads to execute freely without interfering with one another’s

local variables. The stacks may be allocated from the heap by the caller directly.

Additionally, hardware may provide accelerated stack-allocation support as in

Armada-1 (see appendix B). The caller allocates space for the return values of

each callee either on its own stack or on the heap. Only the pointers to these

memory locations are passed to the callees. Arguments to each callee are passed

in through registers when available and the callees’ individual stacks as needed.

The stack layout for the concurrent caller prologue with return value storage

allocated on its stack is shown in figure 8.3.

The caller must also setup any barrier code needed to synchronize execution

among the threads it calls. The caller allocates barrier objects from the hardware

as needed. Software supplies the number of threads to wait for, the independent

code bag descriptor to fetch when those threads have completed, and arguments

for that post-barrier code. The hardware then returns a reference to the barrier

object. The caller places this barrier reference onto the stacks of callee threads.

The caller passes a code bag descriptor to veneer code to the callees to handle

the barrier object. That process is described in the caller epilogue section.

Callee entry and exit

The callee entry and exit are identical to the serial case described previously.

This symmetry enables functions to easily be called serially or concurrently as

needed. Although this symmetry aids writing reentrant functions, it cannot alone

guarantee thread safety. The functions may, for example, have unchecked access

to global variables which can cause those routines to fail if run concurrently. It is

the compiler or programmers’ responsibility to ensure such accesses are avoided

or guarded.

8.5. PROCEDURE CALLS 125

(a) Caller prologue. (b) A callee stack setup by the caller.

(c) Barrier veneer code entry.

Figure 8.3: Stack layout for a concurrent procedure call. The caller allocates space for
the return values, if any. In this example, the caller allocates space for those values on its
own stack (a). The caller then allocates stacks for each callee. If the callee threads must
all complete before control is returned to the caller, the caller will allocate a merge-task
resource from the hardware and push a reference to it onto each callee stack. The caller
will then replace the LR value with a code bag descriptor for veneer code that handles the
task merging. The caller also passes return-value pointers unique to each callee and any
arguments to the callees (b). The callees behave identically to the serial procedure case. If a
merge-task is used, callees will fetch veneer code that decrements the merge-task reference
counter when they each complete (c). The hardware then detects when all callees have
terminated, and fetches a successor code bag to execute.

126 CHAPTER 8. ARMADA PROCEDURE CALL STANDARD

Caller epilogue

The veneer code set up by the caller decrements the barrier object count using

the barrier reference provided on the stack. The stack may now be freed or may

be freed after the barrier. Freeing the stack now, when possible, is the preferred

method so as to hide this latency from program execution as much as possible.

This veneer code bag then terminates. Program flow is continued when the barrier

object reaches a zero count indicating that the spawned threads have completed.

The hardware automatically fetches the post-barrier code to execute as set up by

the caller prologue.

8.6 Conclusion

The APCS describes the rules that software must follow when writing or generat-

ing assembly code to guarantee interoperability among code. Serial and concur-

rent methods of calling functions described by the APCS make use of the Armada

architecture’s independent code bags and thread level concurrency support. The

next chapter describes a compiler that can generate APCS-compliant code from

a high-level imperative programming language.

Chapter 9

Compiling for Armada

New and radical computer architectures are easy to envision. Programming these

architectures is an entirely different matter. Part of this research aims to prove

that the Armada ISA can be targeted by a modern imperative-language compiler.

This research does not concede or conclude that imperative languages are the best

choice for exploiting concurrency. These languages are ubiquitous, though, and

it must be possible for an imperative language compiler to target the Armada

ISA for Armada to be a successful general-purpose computer architecture in the

foreseeable future.

This chapter describes the implementation of a compiler back-end for the Ar-

mada architecture. Due to time constraints on the research, the back-end is not

production quality and primarily targets only the basic Fleet instruction set; in

particular, thread-level extensions proposed for Armada are not supported. How-

ever, the back-end does show that compilers for common imperative languages

can manage Armada’s fundamental programming interface and approach to ex-

ploiting ILP.

9.1 Modern optimizing compilers

Compilers take high-level languages that are designed for humans and translate

them into primitive instructions that a machine can understand. Modern opti-

mizing compilers like the GNU Compiler Collection (GCC) and the Low Level

Virtual Machine compiler infrastructure (LLVM) typically have three parts as

shown in figure 9.1. The first part, the front-end, takes a high-level programming

language as input. This language might be C, Java, or Fortran, for example.

127

128 CHAPTER 9. COMPILING FOR ARMADA

The front-end translates the input program into a common intermediate repre-

sentation (IR). Because this IR is independent of the high-level language used,

subsequent steps in the compilation process can operate directly on the IR with-

out having to know anything about the high level language the program was

originally written in. The optimizer, or the middle-end as it is often intrigu-

ingly called, performs optimizations on the IR. Common optimizations involve

removing dead code, constant and value propagation, and subexpression elimi-

nation among many others. Finally, the back-end of the compiler is responsible

for translating the optimized IR into the target machine’s language. For this

reason, a back-end for a specific target architecture is often referred to as a code

generator for that architecture. An LLVM Armada code generator is the focus

of this chapter.

Figure 9.1: Modern optimizing compiler architecture. High-level language source code
written in languages such as C, Java, or Fortran are translated into a common intermediate
representation, or IR. This allows a common optimizer stage to optimize programs written in
any of the supported high-level languages. Finally, a code generator converts the optimized
IR to assembly code for the target architecture.

9.2 LLVM IR

Although virtual machine is in its name, the LLVM compiler infrastructure can

be used as a static compiler. A static configuration of LLVM version 2.3 was

9.2. LLVM IR 129

used to create the Armada code generator. LLVM was chosen as the basis for

the Armada code generator because of its large community support and excellent

documentation. GCC was also considered, but its complexity and inconsistent

documentation made it less amenable to the proof-of-concept compiler needed

for this research. Other research compilers investigated like Trimaran and SUIF

have generally lost support and are no longer actively updated.

The Armada code generator described here receives LLVM IR for input and

produces Armada code as output. Although the full specification of the IR is

beyond the scope of this work, the parts of the IR that are most relevant to the

Armada code generator are described in the following sections.

9.2.1 Basic blocks

The IR fundamentally consists of basic blocks of sequenced LLVM instructions.

A basic block has only one entry point and only one exit point. This definition

implies that branches cannot jump into the middle of a basic block. Furthermore,

there can only be one branch instruction in a basic block, and this branch instruc-

tion must be the last instruction in the block. By definition, if any instruction

in a basic block is executed, then all of the instructions in the basic block must

be executed. The all-or-none instruction execution semantics of basic blocks are

similar to those of Fleet and Armada code bags. This symmetry is exploited by

the back-end as discussed in the following sections.

A basic block may have one or more predecessor blocks that jump to the start

of it. Additionally, a basic block may have one or more successor blocks that its

last instruction can conditionally jump to.

9.2.2 Instructions

There are seven classes of LLVM instructions as shown in table 9.1. Most in-

structions in the LLVM IR are in static single assignment (SSA) form. In SSA

form, variables are defined exactly once. Where a high level language may allow

a variable to be redefined multiple times throughout a program, the LLVM IR

creates new, unique versions of that variable as needed. LLVM supports an infi-

nite number of typed virtual registers to hold these values. These virtual registers

are mapped to real machine registers in a subsequent stage of the compilation

process. Figure 9.2 shows the control flow graph (CFG) for a program in LLVM

130 CHAPTER 9. COMPILING FOR ARMADA

IR format that prints the numbers 0 to 99. Each box in the CFG corresponds to

a basic block. Note how the second assignment of the variable i creates a new

variable, indvar.next, rather than overwriting the original variable.

Class Description Examples

terminator

Every basic block ends with a single termi-
nator instruction. Terminator instructions
change control flow and typically have no
value.

br, ret

binary
Binary operations execute an operation over
two inputs. The inputs must be of the same
type.

add, sub, mul,
udiv

bitwise binary
Bitwise operations manipulate the bits of an
input.

shl, ashr, xor

vector
Vector operations support insertion, re-
moval, and permutation of vector data.

extractelement,
insertelement,
shufflevector

memory

The LLVM IR contains instructions to ac-
cess and address memory. Memory loca-
tions are not in SSA form in the IR. LLVM
provides instructions to allocate memory on
a heap or stack, to free memory, to load and
store data, and to address data within ag-
gregate data structures.

malloc, free, al-
loca, load, store

conversion
A slew of LLVM conversion instructions al-
low values to be cast from one type to an-
other.

trunc, zext,
sext, fptoui,
ptrtoint, bit-
cast

miscellaneous

In addition to the phi instructions, the IR
has other miscellaneous instructions to com-
pare values and call functions among other
behaviors.

icmp, fcmp,
call, va arg

Table 9.1: LLVM instruction classes.

Most LLVM instructions produce a value as a result. For example, figure 9.3

shows two typical LLVM instructions. The add instruction produces a result,

%tmp. A few instructions like store, however, do not produce a result.

LLVM implements load-store architecture semantics; data are transferred be-

tween registers and memory explicitly through load and store instructions. Unlike

the majority of instructions in LLVM, memory instructions are not in SSA form.

9.2. LLVM IR 131

Figure 9.2: Control flow graph of a simple LLVM loop.

Because pointers to memory for these instructions can take on a very large num-

ber of possible values, there is not a reasonable, compact way to represent these

possibilities in SSA form.

Additionally, LLVM enforces strong typing on its IR. In figure 9.3, the add

instruction is operating on two 32-bit integers. The store instruction then stores

the result to a memory location referred to by the 32-bit integer pointer %ptr.

Cast instructions enable explicit conversions between data types. The LLVM

primitive types are void, integer, boolean, and floating point.

1 %tmp = add i32 4 , %var
2 s t o r e i 32 %tmp , i 32∗ %ptr

Figure 9.3: LLVM add and store instructions. LLVM instructions are strongly typed and
are generally in static single assignment (SSA) form.

Basic blocks can have multiple predecessors. Some variables may have dif-

ferent values depending on the block that directly preceded the execution of the

current block. For example, referring back to figure 9.2, i will take on the con-

stant value 0 for the first iteration of the loop when the preceding, invoking block

is entry. On subsequent iterations of the loop, the preceding block is bb and thus

i = indvar.next. This flow-dependent assignment, characteristic of programs in

SSA form, is captured by the LLVM phi instruction. The phi instruction in basic

132 CHAPTER 9. COMPILING FOR ARMADA

block bb conditionally assigns a value to a variable depending on the predecessor

block that invoked it. The phi instruction is a member of the miscellaneous class

of LLVM instructions.

9.3 Armada code generator

The Armada code generator creates Armada assembly code from the LLVM IR.

This assembly code is run through an assembler to generate Armada binaries.

These binaries can then be executed on Armada architecture models such as

ArmadaSim described in chapter 6.

9.3.1 Data types

As described in a previous section, LLVM IR instructions are strongly typed. The

LLVM IR supports void, boolean, 8- to 64-bit signed and unsigned integers, and

single- and double-precision floating point primitive types. Additionally, the IR

supports four derived types – pointers, functions, structures, and arrays.

Void

The void type is a trivial mapping to Armada; the type is data-less and 0 bytes

in size.

Boolean

The boolean type is mapped to an unsigned 64-bit integer. The least significant

bit holds the boolean value, and the meaning of the rest of the bits is undefined.

Integers

LLVM provides a full range of 8- to 64-bit signed and unsigned integers. Some

examples of uncommon integer sizes supported by LLVM are 21 and 37 bits.

Armada supports 8-, 16-, 32-, and 64-bit signed and unsigned integers. LLVM in-

teger types in-between supported sizes are promoted to the closest-sized Armada

integer type that can fully represent the data.

9.3. ARMADA CODE GENERATOR 133

Floating point

Armada supports 64-bit, double-precision floating point values. It does not have

single-precision support; all LLVM single-precision floating point types are pro-

moted to the double-precision type.

Derived types

As Armada-1 supports 64-bit addressing, all pointers are treated as 64-bit un-

signed integers. Elements of arrays and structures are accessed through their

base pointers with offsets calculated by the size of the primitive types they con-

tain. Finally, functions are translated to 64-bit pointers to their address in the

program binary. The LLVM function type includes the argument types and the

return type. The back-end uses this information to determine how arguments are

passed to functions and how the return value is returned from the callee. The

Armada Procedure Call Standard described in the previous chapter dictates how

the back-end should move this data between caller and callee.

9.3.2 Pre-processing

Prior to forming code bags and translating the IR into Armada assembly, several

pre-processing steps transform the IR at a high-level to make subsequent processes

easier.

LR insertion pass

The LR insertion pass introduces the link register into the IR. If the function

makes subroutine calls, space is allocated on the stack for the LR so it may be

recalled later. This pass also adds code at the end of the terminal basic block of

a function to forward the contents of the LR to the fetch unit.

APCS conformance pass

This pass makes a function and all of its callers conform to the Armada Procedure

Call Standard in terms of handling return values. It does three things.

First, it transforms the signature of all non-void-return-type functions into

void-return-type functions that take one additional argument — a pointer to

the old return type. This satisfies the APCS requirement that return values are

134 CHAPTER 9. COMPILING FOR ARMADA

always returned indirectly through memory as opposed to a register transfer. The

return value pointer precedes all other arguments. For example, this prototype:

int fac(int f);

is converted to:

void fac(int *_ret_result_storage, int f);

Second, for every non-void-return-type function modified, all callers of that

function are adapted accordingly. The callers create space on their stack to hold

the return data. They also pass a pointer to this space as an additional argument

to each call of the modified function. For the example above, a caller would create

storage space for fac’s return value. Then, every call to fac in this function would

be changed to provide the return storage space pointer as the first argument to

the callee.

Finally, the pass changes all LLVM return instructions within the trans-

formed function into a two instruction sequence. The first instruction stores

the return value into the return value space provided by the caller. The second

instruction returns void.

Procedure call block-splitting pass

The LLVM IR embeds procedure calls within the middle of basic blocks. This

approach works fine for architectures with a program counter. The instruction

to execute upon return is simply the instruction after the procedure call. As

alluded to earlier, Armada will eventually transform the basic blocks into code

bags. Armada therefore treats a procedure call as the termination of the block

and any subsequent code as another basic block. This allows the callee to return

by fetching the code bag descriptor for the remaining code in the caller. This

pass splits blocks containing procedure calls into two or more basic blocks at

every procedure call.

Entry point veneer pass

When callees return to callers in Armada, they fetch an independent code bag

jumping into the function just past the procedure call. After the block-splitting

pass, this return point is now a separate basic block in the IR. This pass traverses

9.3. ARMADA CODE GENERATOR 135

each new entry point into the function created by the splitting pass and adds the

necessary code to reload values stored on the stack prior to the function call. It

also reads the callee’s return value out of memory into an LLVM IR variable.

Stack pointer insertion pass

LLVM allocates spaces on the stack for variables with the alloca instruction.

Instructions using those variables refer to the alloca instruction’s value. This

is an abstract reference that must be made concrete. This pass converts such

references to loads offset from the local stack pointer.

9.3.3 Code bag formation

In the Fleet and Armada architectures, instructions are fetched and executed in

variably-sized groups of code bags. If any one instruction in a bag is fetched and

executed, all instructions in the bag will be fetched and executed. LLVM basic

blocks behave similarly; once a program jumps into a block of instructions, all

instructions in that block are guaranteed to execute. The code generator exploits

this symmetry and directly maps basic blocks to code bags.

However, there is a fundamental difference between basic blocks and code

bags in how instructions are ordered. In LLVM blocks, instructions are assumed

to execute in sequence. These semantics differ from the unordered nature of code

bags. Because the majority of LLVM instructions are in SSA format, this differ-

ence in sequencing is not a major problem. In SSA, variables can only be assigned

once per block. Therefore, there is minimal ambiguity due to read-after-write or

write-after-read hazards (RAW and WAR respectively) within a block1. If an

Armada processor attempts to execute an instruction before its inputs have been

assigned values, the instruction will stall until those inputs are ready. Thus, the

execution of instructions originating from LLVM SSA instructions are governed

by data-flow ordering.

The code generator cannot completely overlook certain sequencing aspects

of LLVM IR semantics. For example, memory access instructions are problem-

atic. Consider multiple load instructions reading from a hardware first-in first-out

1However, two pointers could alias to a single address making RAW and WAR hazards a
concern. Programmers and the compiler should work together to eliminate or minimize such
cases. Failure to do so will cause some instructions to execute serially that could otherwise run
concurrently. LLVM and other modern compilers attempt to determine whether two pointers
may alias each other to optimize code most efficiently.

136 CHAPTER 9. COMPILING FOR ARMADA

(FIFO) register. The meaning of the values read from the FIFO likely depend

on the order in which they were read. A similar scenario involving store op-

erations can easily be envisioned. The code generator must therefore preserve

the execution sequence of at least some memory access instructions. In this first

implementation of the compiler, all memory accesses are forced to occur in the

order given by the LLVM IR. This ordering is implemented by gating memory

accesses on the completion of previous accesses using tokens. The memory Ship

generates a completion token whenever a store operation completes. Recall that

in Armada-1 all memory options are instantaneous. The memory Ship has been

implemented to generate completion tokens based upon the mini-opcode sent to

it. The programmer may choose to:

1. not generate a completion token

2. generate a completion token upon store completion

3. generate a split-completion token once a store operation has been issued to

the memory subsystem in-order but has not necessarily completed

Although the current compiler back-end always uses the conservative option two,

the other options are available to optimize memory subsystem performance. Op-

tion three is particularly useful as it can be used to guarantee the ordering of

memory operations without waiting for those operations to complete. Therefore,

multiple memory operations may be outstanding to help hide memory subsystem

latency in a real system. Once the hardware issues a split-completion token, it

guarantees that any other subsequently-issued requests to memory will occur af-

ter that previous operation has completed. Support for split-completion tokens

in the compiler back-end is left as future work.

Additionally, although RAW and WAR hazards do not generally occur within

a single code bag, these hazards can present in cases where instructions from

multiple bags are in-flight at once. In program loops, for example, the code

generator must guarantee that operations from older iterations complete before

corresponding operations from the current iteration. The back-end accomplishes

this by ensuring that all instructions in the current bag have completed before

fetching the next code bag. This very conservative implementation guarantees

correctness but unnecessarily limits ILC present among multiple code bags. Op-

timization in this area is left as future work.

9.3. ARMADA CODE GENERATOR 137

9.3.4 Ship type and instruction selection

The back-end decides which Ship or Ships to use for each LLVM IR instruction

and generates Armada move instructions to and from those Ships. This compiler

pass is currently only capable of generating code for a single IR instruction at

a time; it is unable to map multiple IR instructions together into an optimal

Armada operation. For example, the multiple IR instructions involved in a for

loop cannot currently make use of Armada’s stride Ship.

The selection pass allocates virtual Ships for the Armada instructions it gen-

erates. These virtual Ships are mapped to physical resources in the Fleet in a

later pass. Virtual Ships are distinguished from physical ones in code listings by

the presence of a tilde in front of the virtual Ship name. The full IR instruction-

to-Ship mapping is specified in appendix D.

Once the appropriate Ship type is selected, the compiler must generate Ar-

mada move instructions that move data to and from the Ship appropriately. For

example, the branch instruction shown in figure 9.4 is translated into four move

instructions making use of a selector and fetch Ship.

At this stage in the compilation process, all move instructions generated are

move-once, copy-source to a single destination (denoted by *->). The token

cleanup stage described later will convert copy-source to move-source operations

when the source data does not need to be preserved. Recall that standing instruc-

tions are not supported in this first implementation of the compiler back-end.

Figure 9.4: Translation of LLVM branch to Armada move instructions.

9.3.5 Instruction merging

The initial instruction selection pass generates many single-destination instruc-

tions. The instruction-merging compiler pass then combines multiple move in-

structions that have the same source address or source value into a single Ar-

mada instruction with multiple destinations. The pass thus reduces the number

138 CHAPTER 9. COMPILING FOR ARMADA

of instructions in code bags decreasing static code size and promoting increased

instruction fetch efficiency.

9.3.6 Instruction splitting

The instruction merging pass can potentially merge a large number of instructions

together into a single instruction with a large number of destination addresses.

In an actual implementation of Armada, the instruction opcode size limits the

actual number of destinations allowed per instruction. For example, Armada-

1 allows only two destinations per 32-bit instruction. The instruction splitting

pass looks for instructions that have more destination addresses than the number

supported by the underlying Armada implementation and splits those instructions

into multiple move instructions. This pass is decoupled from the instruction

merging pass because the number of supported destinations and, therefore, the

splitting process, are implementation-dependent.

9.3.7 Stray token cleanup

Unlike traditional architectures, the presence or absence of data plays a key role

in the programming and execution of Armada programs. Whereas registers may

be overwritten freely in a traditional synchronous machine, for example, asyn-

chronous Fleet architectures require an unused or expired token be disposed of

to clear the path for subsequent tokens traveling along the same route or using

the same resource. Failure to do so will result in imminent deadlock and errors in

the program. In Armada, software is responsible for handling these stray tokens.

The assembly-level programmer or compiler must keep track of tokens, deter-

mine when they expire and become stray tokens, and, finally, dispose of the stray

tokens.

Source of stray tokens

Stray tokens are expired values that no longer have any use in a Fleet program.

Stray tokens are generated in multiple ways. A common way is for a temporary

variable to go out of scope. For example, once an operation on a loop iterator

satisfies the loop termination condition, the iterator may no longer be of any use

as in example 9.2. The program must then dispose of the token. Another example

is when values passed in through registers to a function call are never referenced

9.3. ARMADA CODE GENERATOR 139

because of a particular control flow path taken within the function. If software

performs any speculation, mispredictions transform speculated values into stray

tokens.

Tracking stray tokens

The compiler keeps track of every value in the program from the moment they

are created. This process is similar to liveness analysis for values in compilers for

traditional architectures. When values are passed in to a function through reg-

isters, those tokens are added to a token live list. Similarly, automatic variables

created by the function are also added to the live list. In this way, the compiler

behaves in a traditional manner.

Fleet architecture compilers, however, have the additional responsibility of

understanding data transformations that occur at Ships. For example, two values

that are sent to an adder will be consumed and generate a new result value. The

compiler must replace the two operands from the live list with the result token.

This process is complicated by persistent tokens, such as constants, that reside at

a Ship’s input port until Ship-specific events occur that clear the token. If one of

the inputs to an adder is persistent, for example, that token will only be cleared

when the other operand is last. Operand persistence and other Ship state, such

as the internal count in a Counter Ship, must be cleared when such state goes out

of scope. If this clearance does not happen as a side-effect of some calculation in

the program, the compiler must generate code to explicitly clear a Ship’s state.

Removing stray tokens

In the original Fleet proposal, a bit-bucket Ship was proposed to accept stray

tokens [Sut05]. It was a true sink that generated no output. This research

determined that a pure sink was insufficient in a highly concurrent, asynchronous

architecture like Fleet. In a system where software manages the tokens flowing

through the system, it is essential to determine when tokens have been successfully

eliminated. The problem with the bit-bucket Ship is that it does not have a way

to indicate when stray tokens have arrived in the bucket. As Fleet imposes no

strict timing constraints on Ships or the switch fabric, it is important to know

when those tokens have been eliminated to avoid deadlock and miscalculations

caused by data arriving out of the intended order. Armada thus uses a counter to

collect the stray tokens. Software provides an input to the counter indicating how

140 CHAPTER 9. COMPILING FOR ARMADA

many tokens to wait for. The stray tokens are moved to the counter’s token input

port. When the specified number of tokens have arrived, the counter generates a

single output token that can be used to gate the fetch of another code bag or free

the underlying Fleet tile for example. New code bags with token-cleanup code

are introduced into programs as needed. Typically, these code bags are added

near forks in control flow where tokens often become extraneous depending on

the path taken by the program. Token cleanup proves to be a costly problem as

described in chapter 11.

9.3.8 Ship allocation

Thus far, the instructions created have been almost exclusively using virtual Ships

created as-needed by the compiler. This limitless supply of virtual Ships must be

mapped to a finite set of real Ships that are in the targeted Fleet tile type. This

is accomplished by the Ship allocation pass of the compiler.

The compiler is supplied with a Ship composition map for each type of Fleet

tile in the system. In this study, the targeted Armada-1 has only one core type.

The mapping describes the addresses for all software-accessible input and output

ports of the Ships. Each function is compiled individually and thus not entangled

with any other function. The Ship allocation pass passes over each function sep-

arately visiting each code bag. The virtual Ships in each instruction are replaced

by physical Ships as available. If two instructions move data to virtual destina-

tion Ships that cannot possibly be live at the same time, the same physical Ship

may be used in both of the moves.

Like register allocators for traditional architectures, the Ship allocation pass

uses graph-coloring techniques to assign the virtual Ships to physical resources.

Ships are analagous to registers in register-allocation schemes. An interesting

problem, however, is that there are many more Ships in a Fleet than registers

in most architectures. The initial Ship allocator took many minutes to execute

forcing a search for a more optimal solution.

As the LLVM IR is in SSA format2, the interference graphs for each function

are chordal [Hac05][HGG06][BDR07]. A chord is an edge in the graph connect-

ing two non-adjacent nodes. A cycle of nodes in a chordal graph has at most

2store instructions generated by the LLVM IR may not be in SSA form, but after Armada
inserts store completion tokens, they effectively are.

9.4. ASSEMBLER 141

three nodes. The significance of this characteristic is that it reduces the com-

plexity of the Ship assignment problem when Ships do not need to be spilled.

While the problem is NP-complete for non-chordal graphs, the SSA-elimination

algorithm for chordal ones is optimal in polynomial time [Yi05][BDJS06]. The

list-coloring implementation used in the Armada back-end is an adaptation of a

method proposed for register and functional unit allocation in VLIW processors

[ZW03].

If there are not enough physical Ships to accommodate all of the instructions,

the compiler would ideally introduce serialization to eliminate the overlapping

liveness of the constrained resources. This may be accomplished by gating the

execution of one move instruction on completion of others that use the same

resource. The compiler may split a code bag in two to separate the colliding

instructions into different groups. The output token of the constrained resource

is then used to gate the fetch of the next code bag that also needs that resource.

Note that this spilling process is not yet implemented in the code generator and

left as future work.

After this Ship selection stage, the compilation process is complete. Armada

assembly code is generated that is compliant with the APCS and can be assembled

into machine code.

9.4 Assembler

The Armada assembler takes the assembly code text and builds program binaries

that can execute on Armada hardware or hardware simulators like Armada-1. The

assembler was written before the LLVM back-end and before the idea of creating

a high-level language compiler to target Armada was envisioned. Unlike the

compiler, it does assemble all valid Armada assembly code including independent

code bags, standing move instructions, and other features not supported by the

back-end. The operation is straight-forward and will not be described in detail.

9.5 Limitations

A fully operational and robust modern optimizing compiler requires a large

amount of effort to create and validate. Although LLVM was leveraged to aid

the process, a fully functional compiler was out of the scope of this research due

142 CHAPTER 9. COMPILING FOR ARMADA

to time constraints. The current compiler generates Armada assembly code that

may possibly need hand-coded modification in two ways. First, although the

compiler detects conditions where there are more virtual Ships referenced than

there are physical Ships to map them to, it cannot correct the code and spill Ships

when needed. Additionally, the compiler cannot always split instructions with

too many virtual Ship destinations into multiple, two-destination instructions as

required by Armada-1.

In addition to these functional limitations, numerous optimization-related lim-

itations were described in the chapter. The compiler back-end is generally very

conservative to ensure correct operation. However, this approach limits available

concurrency that the architecture could exploit.

9.6 Conclusion

The Armada compiler back-end generates assembly code that can be assembled

with minimal manual intervention into binaries for the Armada-1 architecture

model. The next chapter discusses a debugger designed to aid assembly-level

programmers as well as the manual steps required to complete the compilation

process using the limited compiler back-end described in this chapter. The qual-

ity of the code output from the compiler is then compared to the hand-coded

implementation of the Mandelbrot benchmark in chapter 11.

Chapter 10

ArmadaSim debugger

Concurrent execution adds additional complexity to the debugging process. Not

only are many instructions from a single thread elgible for execution at one time;

many threads may be executing concurrently as well. The ArmadaSim Debug-

ger helps the low-level programmer visualize the state of the system and the

possibilities of which instructions may imminently execute.

10.1 Trace replay

The ArmadaSim Debugger replays traces captured from a previously executed

simulation allowing programmers to step through the code and see how the pro-

cessor state changed. The ArmadaSim simulator may be set up to capture traces

from all parts of the processor. It must minimally be configured to capture

messages from the Fetch unit and from the trunk element of the switch fabric

to generate a trace usable by the debugger; other messages are ignored. The

Fetch Ship messages tell the simulator which Fleets in the Armada are in use at

any time. The trunk element provides a timestamp on when instructions pass

through the switch fabric. Recall that every instruction must pass through the

trunk element of the horn-and-funnel switch fabric in a Fleet in Armada-1.

10.2 Message view

The ArmadaSim Debugger relies on the simulation trace or message file to gen-

erate helpful debug information. Figure 10.1 shows the message view of the de-

bugger. The left pane shows simulator messages along with their corresponding

143

144 CHAPTER 10. ARMADASIM DEBUGGER

timestamp. The Fleet tile where the message originated is given by the physical

tile and color fields. As the simulator may be configured to dump many mes-

sages, it is useful to filter out irrelevant messages in the debugger. The right pane

allows the programmer to create custom filters to only show messages that meet

given criteria. In figure 10.1, a Color0 filter is specified that only shows messages

originating from color layer 0 of the Armada.

Figure 10.1: ArmadaSim Debugger messages view. The ArmadaSim Debugger messages
view displays all messages in the trace file generated by ArmadaSim. Custom filters like the
Color0 filter shown can be used to suppress the display of chosen messages from the trace
file.

10.3 Source code view

The primary use for the debugger is to track the progress of a previously-executed

program. The user can load up the assembly code for the program the trace was

generated from and step through the code. The debugger displays the trace file

messages in the left pane and syntax-highlighted source code in the right pane as

shown in figure 10.2. When multiple Fleets are active simultaneously, new source

code tabs are generated in the debugger for each virtual Fleet. The programmer

10.4. STATE TRACKING VIEW 145

may switch tabs to see what each Fleet is currently doing. When the user steps

through to the next instruction, the debugger can switch tabs automatically to

the Fleet that generated the message. The user may also choose to only debug

one Fleet at a time and have the debugger skip to the next message originating

from the Fleet under inspection.

Figure 10.2: Debugging multiple threads. The ArmadaSim Debugger keeps track of all
active Fleet contexts. The programmer can flip through the tabs assigned to each context
to inspect the state of each active Fleet.

10.4 State tracking view

A difficult problem encountered when debugging highly-concurrent programs is

keeping track of which instructions are currently eligible for execution. The de-

bugger highlights all instructions that may be currently in-flight based on which

code bags have been fetched as in figure 10.3. Expired instructions are grayed

out. The programmer steps through programs by stepping through the instruc-

tions as they travel through the trunk of the switch fabrics. The programmer has

two levels of stepping granularity. The user can step through instructions only

or can follow every state change such as when data arrives at a Ship.

146 CHAPTER 10. ARMADASIM DEBUGGER

Figure 10.3: Stepping through a program. Users can step through the source code of a
program with the debugger. The debugger highlights which instructions have executed and
expired, which instructions are eligible for execution, and the current instruction passing
through the switch fabric.

10.5. LIMITATIONS 147

Another difficult problem in thinking about Armada programs is keeping track

of which Ships have data at their input or output ports. A programmer may forget

to supply a Ship with data it needs to compute an output causing the program

to halt indefinitely. The debugger provides a model view of each active Fleet tile

that allows the programmer to see data waiting at Ship input and output ports

(figure 10.4). Visualizing this state allows the programmer to understand why a

program has halted, why a Ship produced the output it did, or what stray state

must be cleaned up before freeing a Fleet tile for reuse. This view also shows the

code bag fetch history for the active Fleet. As code from previously fetched bags

may still be in the system, this listing helps programmers keep track of which

instructions may have lingering effects.

Figure 10.4: Tracking Fleet state. The debugger updates models for each active Fleet tile
as the user steps through the program. Ship input port data, Ship output port data, and
code bag fetch history for the Fleet under inspection are shown in the right pane.

10.5 Limitations

This debugger was primarily designed to aid in the compiler development process,

and, thus, shares the same limitations as the compiler. In particular, the debugger

148 CHAPTER 10. ARMADASIM DEBUGGER

does not track persistent inputs at Ship input ports, and it does not handle

standing instructions.

10.6 Conclusion

The ArmadaSim Debugger helps programmers keep track of the large state space

that an asynchronous, highly-concurrent architecture like Armada may have. By

replaying traces generated by ArmadaSim, programmers can track changes to

every Fleet in the Armada at once. The programmer can monitor very low-level

state such as Ship input and output port events or step through many instructions

at a time. Despite its limitations, the debugger handles all code generated by

the Armada compiler making it a useful aid to the compiler development and

verification process.

Chapter 11

Testing the Armada compiler

The Armada compiler demonstrates that it is feasible to translate a program

written in a high-level imperative language into Armada assembly code. Although

the thread-level extensions to the architecture are not explored by this proof-of-

concept compiler, unique aspects of Fleet architectures such as the code bags of

move instructions and the absence of a program counter are successfully targeted.

This chapter examines the code generated by the compiler relative to what is

possible with hand-coded optimizations as well as to code generated for other

ISA’s by traditional modern compilers.

11.1 Objectives

Although this compiler is largely exploratory, it is useful to have some idea of

how the Armada compiler compares to more traditional compilers in terms of

code density and dynamic code size. The compiler-generated version of the Man-

delbrot benchmark is also compared to the hand-coded version to determine how

much optimization the compiler is leaving on the table. Direct comparisons of

benchmark run-times between traditional and Armada ISA’s are avoided as Ar-

madaSim has not been correlated to real-world silicon performance.

11.2 Method and metrics

The Armada code generator output is compared to the output of x86-64 and

MIPS code generators for the same version of the LLVM compiler infrastructure.

149

150 CHAPTER 11. TESTING THE ARMADA COMPILER

Thus, the same high-level optimizations are applied. However, the MIPS and x86-

64 code generators are much more mature than the experimental Armada code

generator and contain low-level optimizations not present in the Armada gener-

ator. The code density, number of instructions fetched, number of instructions

committed, and instruction traffic are measured for all the target architectures

and compared.

11.2.1 Code structure

The hand-coded implementation of the Mandelbrot benchmark attempts to make

the best use of all of Armada’s relevant features. The limited exploratory com-

piler generates code that is quite different from the envisioned low-level program.

The code structure of the two different implementations are compared to better

understand the challenges of compiling a high-level imperative language program

for Armada.

11.2.2 Code density

Code density is the measure of the number of bits of instructions required to im-

plement a particular algorithm. High code density promotes efficient use of the

instruction cache, lower memory requirements for constrained embedded systems,

and less instruction traffic at run time. These benefits can result in lower power

consumption, higher performance, and lower costs for systems. This metric is

measured by compiling the code with similar compiler options across the stud-

ied platforms and measuring the resulting executable file size. Library calls are

avoided and replaced with dummy calls as needed to eliminate external effects

on the executable file’s organization and on code density.

11.2.3 Instructions fetched

The number of instructions fetched from memory are measured for each test

platform. In Armada, standing instructions are unique in that they may be

fetched once but effectively executed many times over. Although some processors

for the other platforms may have mechanisms of re-executing previously fetched

and decoded instructions (eg. a trace cache), these types of optimizations are

not considered. Similarly, instructions that are fetched but never executed by

speculative machines are not counted. Thus, for all test platforms except the

11.2. METHOD AND METRICS 151

Armada with standing instruction support, the number of instructions fetched is

the same as the number of instructions executed.

11.2.4 Instructions executed

Instructions executed by a processor must be fetched from memory, decoded, and

issued. These steps all require time and energy. They also utilize some of the

available system bandwidth that other threads could otherwise use. The GNU

debugger (GDB) is used on the various target platforms to count the number of

native instructions executed before the program completes. Standing instructions

used in the hand-coded version of the Mandelbrot benchmark are counted as

executed each time they move data through the switch fabric. It is therefore

possible for the number of instructions executed or committed by Armada to

exceed the number of instructions fetched.

11.2.5 Instruction traffic

Instruction traffic is analogous to code density measured at run time. Algorithms

packed densely into instructions consume less bus bandwidth at run time. For

many systems, dense code packing results in less toggling of pins on the chip

package, a typically costly action in terms of power. In fixed-instruction-length

architectures, instruction traffic from the instruction cache can be calculated

by multiplying the instructions committed by the instruction size. Computing

instruction traffic for variable-length instruction set architectures such as the x86

ISA is more difficult. An extension developed for GDB is used to count the

number of bits in every instruction executed by the target architectures. For the

case of standing instructions in Armada, instruction traffic is measured at the L1

cache only.

11.2.6 Concurrency

The amount of functional-unit concurrency achieved with the hand-coded ver-

sion of Mandelbrot is compared with the amount achieved by the code generated

by the compiler. The utilization of the Ships is compared between both ver-

sions of Mandelbrot running a single-core, single-threaded Armada configuration

in ArmadaSim. Thread-level concurrency is not measured as the Armada code

152 CHAPTER 11. TESTING THE ARMADA COMPILER

generator does not currently support independent code bags and hardware mul-

tithreading.

11.3 Results

Given the low level of maturity of the compiler, the implementation of Mandelbrot

that it generates performs somewhat respectably relative to the optimized, hand-

coded implementation. Table 11.1 compares the two implementations1. Some of

this data has been previously presented in chapter 7.

Hand-coded Hand-coded Compiled
1 Fleet 32 Fleets (2x16SMT) 1 Fleet

code size (bytes) 756 1176
number of code bags 9 15
relative performance 1 19.76 0.59

Table 11.1: Hand-coded versus compiled Mandelbrot.

11.3.1 Performance

The compiled implementation performs about half as fast as the hand-optimized

version. Although slower, the performance is quite reasonable considering the

limitations of this first code generator. It is not uncommon for hand-coded ver-

sions of algorithms for traditional architectures to exhibit similar improvement

over compiler-generated versions. Supporting persistent inputs and standing in-

structions will narrow this gap. Merging the basic blocks into larger code bags

will also eliminate overhead of managing data that goes in and out of scope. Fi-

nally, compiler support for the Armada thread-level extensions will provide the

greatest performance benefit for parallelizable workloads and benchmarks like

Mandelbrot; the hand-coded, multithreaded implementation achieves a 20x im-

provement on a 32-Fleet configuration. Such speed-ups are not possible without

Armada’s thread-level concurrency support.

1The compiled version used for this analysis differs slightly from the listing given in ap-
pendix C. The version used for this analysis does not contain calls to malloc and free to
enable a fair comparison with the hand-coded version.

11.3. RESULTS 153

11.3.2 Code structure

The organization of the hand-coded and compiled Mandelbrot programs differ

greatly. While the hand-coded version was aggressively optimized for the archi-

tecture, the compiler-generated format is generic and does not reflect the organi-

zation chosen to take advantage of thread-level extensions. Figure 11.1 shows the

control flow diagrams for both implementations. Cleanup code bags, highlighted

in figure 11.1(c), are inserted into the LLVM code by the Armada code gener-

ator. These code bags contain move instructions that pull stray, out-of-scope

values from Fleets and dispose of them. As fetching code bags largely serializes

the execution of instructions, these cleanup bags are detrimental to performance

especially within the critical loop. The hand-coded implementation attempts to

group cleanup code within existing bags thus avoiding that penalty. Such an

optimization is possible for the compiler but is currently not in place.

11.3.3 Code density

The compiled code is 56% larger than the hand-coded version. Primary reasons

for this difference in code density are the lack of persistent Ship inputs and the

larger number of code bags in the compiled version. Without persistent inputs,

some values must be recommunicated with additional move instructions in other

code bags. There are also more code bags in the compiled version because the

code generator currently does not attempt to merge basic blocks into single code

bags. The hand-coded implementation, however, attempts to merge as many

instructions into a single bag as possible.

Compared to other architectures, the Armada code size is quite large at about

four times the size of the same benchmark implemented for the MIPS RISC and

x86-64 CISC architectures. As described in section 7.3, explicitly describing every

movement of data in a Fleet requires more bits than only defining the operation as

traditional architectures do. Additionally, Armada places data constants directly

into instructions. In the other architectures examined, many constants are placed

in separate memory regions (such as a literal pool) and read into the register file

by load instructions. The size of the literal pool is not accounted for in table 11.2.

154 CHAPTER 11. TESTING THE ARMADA COMPILER

(a) Hand-coded implementation.

(b) Compiler implementation.

(c) Cleanup code bags in the compiled implementation.

Figure 11.1: Hand-coded and compiled Mandelbrot.

11.3. RESULTS 155

11.3.4 Instructions fetched and instruction traffic

Despite the larger code size, the number of instructions fetched at run-time by the

hand-coded benchmark is fairly comparable to the number fetched on traditional

architectures. The compiled version, however, fetches 2.7 and 3.7 times as many

instructions as CISC and RISC architectures do respectively. Unsurprisingly,

the amount of data actually transferred while fetching these instructions is also

considerably higher. The compiled Armada implementation transfers about 2.8

times more instruction data than the hand-coded implementation. The compiler’s

inability to use standing instructions and persistent inputs contribute to this

shortcoming. Additionally, poorer code organization and more orphan tokens to

clean up than the hand-optimized version both contribute to instruction-fetch

bloat.

Hand-coded Compiled MIPS x86-64

code size (bytes) 756 1176 180 200
instructions fetched 622,861

1,576,952 424,860 582,467
instructions executed 761,072

instruction traffic (bytes) 3,401,640 9,418,396 1,699,440 2,228,524

Table 11.2: Mandelbrot comparison on various ISA’s.

11.3.5 Instructions executed

Aside from the hand-coded Mandelbrot implementation, the number of instruc-

tions fetched is identical to the number of instructions executed for the various

architectures (also shown in table 11.2). The hand-coded implementation on

Armada uses standing instructions that are fetched only once and repeat exe-

cution indefinitely. The results indicate that standing instructions reduced the

instruction fetch count by nearly 20% when compared to the number of instruc-

tions executed. While this result does provide strong evidence that standing

instructions reduce instruction fetches and fetch traffic, the number of fetches for

Armada architectures is still higher than the number of fetches required by more

traditional designs.

156 CHAPTER 11. TESTING THE ARMADA COMPILER

11.3.6 Concurrency

Thread-level concurrency is not currently supported by the Armada code gener-

ator. However, the compiler does formulate code bags which enables programs

to achieve some degree of functional-unit concurrency. Figure 11.2 shows that

the compiled code leaves the Ships idle nearly 20% more of the time than the

hand-coded version does. Although neither implementation results in high levels

of operation concurrency for a single thread, the compiled version is not unrea-

sonably off-pace from the optimized code. This result suggests that more must

be done fundamentally at the architecture and microarchitecture levels to enable

higher levels of operation concurrency. As mentioned previously, one method

of increasing single-thread ILC and Ship utilization is to implement a separate

flow-control fabric on top of the existing switch fabric. The additional commu-

nication infrastructure can reduce communication latencies between Ships and

more efficiently pipeline operations than is currently possible with Armada-1.

Figure 11.2: ILC comparison between hand-coded and compiled Mandelbrot. The
benchmark implementations were executed on a single core, non-SMT configuration of Ar-
madaSim.

11.4. CONCLUSION 157

11.4 Conclusion

The compiled version of the benchmark has decent performance compared to

the optimized code considering the compiler limitations and early stage of de-

velopment. However, producing code around 41% slower performance than the

optimized version on a single-core, non-SMT configuration, the compiler has room

for improvement. More intelligent grouping of basic blocks into code bags, per-

sistent input support, standing instruction support, and a dedicated flow-control

fabric are the major keys to enhancing single-threaded performance. However,

the biggest gains to be seen in programs and benchmarks with lots of thread-level

concurrency available can be harnessed using Armada’s TLC extensions. Limi-

tations on research time prohibited further compiler enhancement leaving these

improvements as future work.

Part IV

Discussion and conclusion

158

Chapter 12

Discussion and conclusion

The aim of this research was to enhance the highly-concurrent, communication-

centric Fleet architecture and demonstrate that such an unconventional processor

could be the basis for a general-purpose computer. Thread-level concurrency ex-

tensions were introduced, and a timing-approximate simulator of the architecture

was created. The work undertaken generated a primitive but reasonably func-

tional set of tools for the architecture including an imperative-language compiler,

an assembler, and a debugger. The developed tool chain generated a reason-

able implementation of the Mandelbrot benchmark. This work has thus provided

strong evidence that the Armada architecture can indeed serve as general-purpose

computer architecture.

However, the performance of the architecture appears to trail traditional CISC

and RISC machines in terms of instruction fetch and execution efficiency. With

lower code density, more instructions required to perform identical work, and

higher instruction fetch traffic than those architectures, Armada puts high pres-

sure on its shared instruction fetch and dispatch unit and instruction cache. How-

ever, the thread-level extensions incorporated into Armada, though not currently

exploited by the compiler, do allow the performance of workloads with thread-

level concurrency to scale greatly with the addition of more Fleets without any

changes to program binaries.

The following sections discuss the merits of Fleet, the extensions introduced

with Armada, and the compiler designed to target the architecture. Finally,

limitations of the work performed and areas for future work are discussed.

159

160 CHAPTER 12. DISCUSSION AND CONCLUSION

12.1 Fleet changes

After some study, a decision was made to remove support for the numerous out-

of-bounds (ie. OOB) possibilities envisioned by the pioneering Fleet work. The

cost of checking for a number of possible conditions dictated by dynamically

changing conditions would require a certain level of serialization of the code. As

OOB values would be considered common, checks would be similarly frequent.

Recovering from error cases would also be difficult especially in the absence of

a hardware-reset for a Fleet core. Had this decision been made earlier in the

research, the 96-bit data paths would have been replaced by smaller 65-bit paths

throughout the design. Using 65-bits would accommodate common 64-bit data

types coupled with the one OOB value that remains in the architecture, last.

96-bit code bag descriptors would not be treated as a first-order data type but

instead be accessed indirectly through a 64-bit address.

Hardware enforcement of data types was seen as a distraction to the study

of Fleet and Armada in this exploratory, proof-of-concept research. It was not

considered in this study.

12.2 Architecture enhancements

A number of architecture enhancements were added to the Fleet concept to form

Armada. These extensions are discussed here.

12.2.1 Proposed extensions and motivating factors

Armada introduces independent code bags to the ISA to provide programmers

and compilers with a low-level method of spawning threads. The motivation was

to make threading a natural and unavoidable part of programming. In the pro-

cess, it was hoped that software written and compiled once could take advantage

of additional cores added to an Armada processor over time as permitted by

increasing transistor budgets.

The hardware supports the execution of multiple threads by two methods.

Core replication produces multiple instances of physical resources like Ships and

12.2. ARCHITECTURE ENHANCEMENTS 161

the switch fabric. Additionally, resource-multiplexing adds a layer of virtual chan-

nels on one physical Fleet and adds tags to instructions and data to uniquely iden-

tify separate thread contexts operating on top of the same hardware. Resource-

multiplexing attempted to increase Ship utilization. Higher utilization would

imply good use of the die area and reduce the impact of static, leakage power

that accompanies enabled but seldom-used resources.

The context synchronizers were introduced to support barrier behavior and

thread merging. Though not discussed in detail in this work, the units were tested

and behaved as expected. The stack resource ring was implemented to lower the

cost of spawning threads that require their own stacks.

12.2.2 Conclusions

These extensions perform admirably when executing the hand-coded Mandelbrot

benchmark. The code can execute on a single Fleet yet exhibit increases in

performance with the addition of up to 128 virtual Fleets. The best performance

was achieved with a 16x8-way SMT configuration. Further improvement was

hampered by saturation of the shared fetch, dispatch, and instruction cache units.

Unfortunately, the compiler development did not progress enough to make use of

these extensions. The compiled version of the benchmark does spawn threads,

but the execution of those threads is serial; there is no TLC.

Ship utilization was increased successfully using the virtual channels. Al-

though in principle this increased utilization would decrease the relevance of the

static power consumed by the units, other techniques like implementing multi-

ple power domains would also alleviate the problem. The cost of implementing

virtual channels for simple operations like additions will likely be higher than sim-

ply duplicating adders for each channel. Virtual channels sharing large, complex

Ships may be worthwhile, however. More study using additional benchmarks and

more precise simulations will help answer this question.

The performance of the stack allocation ring was not thoroughly evaluated.

Although it functioned as anticipated, it is not possible to fully understand the

performance without understanding the costs associated with stack allocation by

the operating system. When designing the unit, it was assumed that a traditional

memory management unit would map physical memory onto a process’ virtual

memory map. The stack allocation units would have to perform such behavior

as well, but this level of detail was not implemented.

162 CHAPTER 12. DISCUSSION AND CONCLUSION

12.3 Compiler and tools

The compiler, assembler, and debugger are essential requirements for general-

purpose computing. Those tools were created to target Armada.

The compiled code’s performance was 60% of the hand-coded, optimized ver-

sion for single-core performance. This result is quite promising considering the

limited optimizations built in to the tool. Fleet with a shared-memory subsystem

accommodates imperative-language programming common to general-purpose

computing. Static single assignment form, increasingly common in optimizing

compilers, maps easily to move instructions. Given their single entry point and

single exit point semantics, basic blocks also map well to Fleet and its code bags.

However, for the Mandelbrot benchmark, there are so many data dependencies

within each block that instruction-level concurrency and functional-unit concur-

rency are quite low. This result largely diminishes the value of code bags in

exploiting ILC as envisioned. Although compiler enhancements may help, the

optimized, hand-coded version of the benchmark was also not very successful

at keeping many Ships utilized concurrently. Architecture changes such as the

flow-control fabric suggested are required to increase this level of concurrency.

The debugger along with a simple waveform viewer proved to be useful tools

for understanding what was happening in the highly-concurrent Armada archi-

tecture. However, these tools only test one possible sequence of events at a

time. Although the simulator had randomness built-in to help test software more

thoroughly, this feature is still inadequate to test all the possible cases. As in-

structions and data may arrive in vastly different arrangements, formal methods

for ensuring correct behavior would be essential for validating the correctness of

software. Software today has generally very limited concurrency, and there are

few related bugs that have serious impact. For example, researchers have discov-

ered concurrency-related bugs in operating systems for traditional architectures

that have been hidden in the code for years. Though these bugs could deadlock

the system, the failing conditions occur so rarely that these bugs are difficult

to discover and fix. Fleet and Armada have such few restrictions on instruction

ordering, data movement, and timing in general that any bug in software would

be much more likely to appear.

12.4. LIMITATIONS OF DESCRIBED WORK 163

12.4 Limitations of described work

The work performed covered a broad range of material from hardware simulation

to software compilation. The uniqueness of the proposed architecture greatly

limited reuse of existing infrastructure and tools. Thus, much of the research

period was used to develop tools, models, and standards to evaluate Armada.

Due to time constraints, there are several notable limitations that are described

here.

12.4.1 Few benchmarks

One of the most prominent deficiencies in the work is the lack of benchmark results

for Armada. One goal of the compiler was to make benchmark implementation

easy so more benchmarks could be ported to the architecture. Time constraints

ultimately prevented more benchmarks from being implemented and tested.

12.4.2 Performance comparison to modern architectures

ArmadaSim is a timing-approximate model. Although some time was spent

researching and incorporating the measured performance of asynchronous im-

plementations of functional units to Ships, the timing model was not detailed

enough to fairly compare Armada performance against real silicon. An accurate

performance model is important to this research as a drastic change to a new

computer architecture will only occur in the general-purpose computing domain

if the performance improvement is great.

12.4.3 Compiler maturity

The compiler is not complete and requires some manual intervention in the Ship-

allocation phase. Optimizations for Armada have not been investigated. The

work focused on proving that a traditional compiler could target Armada. This

objective leaves enhancements as future work.

12.5 Areas for future work

In addition to the incomplete activities described in the limitations section, there

are some other areas of broader study that are left open to future research.

164 CHAPTER 12. DISCUSSION AND CONCLUSION

12.5.1 Memory subsystem

The memory-processor performance gap is a notable problem in computer ar-

chitecture. Fleet and Armada may be unique vehicles for exploring interesting

memory architectures.

12.5.2 Higher granularity Ship functionality

Armada exposes communication at an extremely fine level of granularity. Expos-

ing communications at this level may not be very useful as moving data between

such small bits of logic sitting very near each other is not extremely costly. One

area of study is to incorporate more behavior into Ships. For example, a Ship

may be a hardware accelerator block for video encoding as opposed to a simple

adder.

12.5.3 Armada as an application-specific processor archi-

tecture

Following from coordinating communication of data at a higher level of granu-

larity is the possibility of generating application-specific designs quickly from a

library of accelerators, cores, or other logic blocks. Because the switch fabric has

so few constraints on the blocks attached to it, integrating new logic is easy. Ad-

ditionally, software accesses the logic uniformly with moves to and from numbered

addresses. Therefore, the ISA remains relatively unchanged with the exception

of port assignments for the logic. That factor is not particularly problematic for

ASP’s where software is purpose-built to perform a specific task using a specific

set of hardware resources.

12.5.4 Flow-control fabric

Armada-1 does not exhibit high single-threaded concurrency of operations. A

flow-control fabric would enable Ships to communicate data more quickly between

each other especially in the case where standing instructions are used.

12.6. FINAL REMARKS 165

12.5.5 Flow caching

Flow caching was described in chapter 4 as a means to increase performance by

caching commonly-executed code onto Fleet cores. By caching these flows, in-

struction fetches are largely avoided resulting in decreased instruction-side pres-

sure and latencies. Flow caching may prove to be a viable way of making recon-

figurable computing easily accessible to programmers.

12.5.6 Compiler enhancements

Many optimization and enhancement opportunities remain for the LLVM code

generator implemented for this research. Standing instruction support and persis-

tent input support are key lacking features. Additionally, a much larger outstand-

ing problem is how to have an imperative language compiler generate threaded

code.

12.6 Final remarks

Armada builds on Fleet in design and in spirit. Using Fleet cores as fundamental

building blocks, Armada promotes exposing expensive communication and makes

concurrency a requirement rather than an optimization. Current progress into

the Armada research has demonstrated that the architecture is highly amenable

to ubiquitous, imperative-language programming and may possibly serve as a

general-purpose computer architecture for the future. More investigation is re-

quired, however, to prove if its use in this domain is practical.

Bibliography

[AHKB00] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug

Burger. Clock rate versus IPC: the end of the road for conventional

microarchitectures. In ISCA ’00: Proceedings of the 27th interna-

tional symposium on Computer Architecture, pages 248–259, 2000.

[BD95] Mark W. Bailey and Jack W. Davidson. A formal model and speci-

fication language for procedure calling conventions. In POPL ’95:

Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, pages 298–310, 1995.

[BDJS06] Philip Brisk, Foad Dabiri, Roozbeh Jafari, and Majid Sarrafzadeh.

Optimal register sharing for high-level synthesis of SSA form pro-

grams. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(5):772 – 779, 2006.

[BDR07] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the com-

plexity of spill everywhere under SSA form. SIGPLAN Notices,

42(7):103–112, 2007.

[BG04] D. Burger and JR Goodman. Billion-transistor architectures: there

and back again. Computer, 37(3):22–28, 2004.

[BMBW00] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and

Paul R. Wilson. Hoard: a scalable memory allocator for multi-

threaded applications. SIGPLAN Not., 35(11):117–128, 2000.

[CLJ+01] William S. Coates, Jon K. Lexau, Ian W. Jones, Scott M. Fairbanks,

and Ivan E. Sutherland. FLEETzero: An asynchronous switching

experiment. In ASYNC ’01: Proceedings of the 7th international

symposium on Asynchronous Circuits and Systems, pages 173 – 182,

2001.

166

BIBLIOGRAPHY 167

[CM91] Henk Corporaal and Hans (J.M.) Mulder. MOVE: a framework for

high-performance processor design. In Supercomputing ’91: Proceed-

ings of the 1991 ACM / IEEE conference on Supercomputing, pages

692–701, 1991.

[DM75] Jack B. Dennis and David P. Misunas. A preliminary architecture

for a basic data-flow processor. In ISCA ’75: Proceedings of the 2nd

annual symposium on Computer Architecture, pages 126–132, 1975.

[End95] P. B. Endecott. SCALP: A Superscalar Asynchronous Low-Power

Processor. PhD thesis, University of Manchester, Manchester, UK,

1995.

[EO88] Carla Schlatter Ellis and Thomas J. Olson. Algorithms for parallel

memory allocation. Int. J. Parallel Program., 17(4):303–345, 1988.

[FH05] M.J. Flynn and P. Hung. Microprocessor design issues: thoughts on

the road ahead. IEEE Micro, 25, 2005.

[FKM+02] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw,

and Trevor Mudge. Drowsy caches: simple techniques for reducing

leakage power. In ISCA ’02: Proceedings of the 29th annual interna-

tional symposium on Computer Architecture, pages 148–157, 2002.

[For03] Martti Forsell. Analysis of transport triggered architectures in gen-

eral purpose computing. In Proceedings of the 21st IEEE Norchip

Conference, pages 183–186, 2003.

[FPT94] Matthew Farrens, Andrew R. Pleszkun, and Gary Tyson. A study

of single-chip processor / cache organizations for large numbers of

transistors. SIGARCH Computer Architecture News, 22(2):338–347,

1994.

[Gel01] P.P. Gelsinger. Microprocessors for the new millennium: Challenges,

opportunities, and new frontiers. In ISSCC ’01: International Solid-

State Circuits Conference Digest of Technical Papers, pages 22–25,

2001.

168 BIBLIOGRAPHY

[GG98] J. Gonzalez and A. Gonzalez. Limits of instruction level parallelism

with data speculation. Proceedings of the VECPAR Conference,

pages 585–598, 1998.

[GKW85] J. R Gurd, C. C Kirkham, and I. Watson. The Manchester prototype

dataflow computer. Communications of the ACM, 28(1):34–52, 1985.

[Hac05] Sebastian Hack. Interference graphs of programs in SSA-form. Tech-

nical report, University Karlsruhe, June 2005.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allo-

cation for programs in SSA-form. In Compiler Construction 2006,

volume 3923 of Lecture Notes In Computer Science, pages 247–262,

March 2006.

[HGLS86] W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms.

Communications of the ACM, 29(12):1170–1183, 1986.

[HMH01] R. Ho, K.W. Mai, and M.A. Horowitz. The future of wires. Proceed-

ings of the IEEE, 89(4):490–504, 2001.

[Hol05] Mike Holenderski. Accumulating the Fibonacci sequence using

FLEET. Technical memo UCMH#2005-mh02, 2005.

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture:

A Quantitative Approach. Morgan Kaufmann, third edition, 2003.

[Isa06] Nemanja Isailovic. Eight-element bubble sort in FLEET. Technical

memo, 2006.

[ITR05] ITRS. International Technology Roadmap for Semiconductors

(ITRS) 2005 Edition: Design. Japan Electronics and Information

Technology Industries Association, 2005.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch buffers.

SIGARCH Computer Architecture News, 18(3a):364–373, 1990.

[KAB+03] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge,

Krisztián Flautner, Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir,

BIBLIOGRAPHY 169

and Vijaykrishnan Narayanan. Leakage current: Moore’s law meets

static power. Computer, 36(12):68–75, 2003.

[KM03] D. Koufaty and D.T. Marr. Hyperthreading technology in the net-

burst microarchitecture. IEEE Micro, 23(2):56–65, 2003.

[KP02] Christoforos Kozyrakis and David Patterson. Vector vs. superscalar

and VLIW architectures for embedded multimedia benchmarks. In

MICRO 35: Proceedings of the 35th annual ACM / IEEE interna-

tional symposium on Microarchitecture, pages 283–293, 2002.

[Lin07] Andrew Lines. The Vortex: A superscalar asynchronous processor. In

ASYNC ’07: Proceedings of the 13th IEEE international symposium

on Asynchronous Circuits and Systems, pages 39–48, 2007.

[MB05] C. McNairy and R. Bhatia. Montecito: a dual-core, dual-thread

Itanium processor. IEEE Micro, 25(2):10–20, 2005.

[Mey06a] Trevor Meyerowitz. Euclid’s algorithm in FLEET take 2. Technical

memo, 2006.

[Mey06b] Trevor Meyerowitz. Matrix-vector multiplication in FLEET. Tech-

nical memo, 2006.

[MJC+99] C.E. Molnar, I.W. Jones, W.S. Coates, J.K. Lexau, S.M. Fairbanks,

and I.E Sutherland. Two FIFO ring performance experiments. In

Proceedings of the IEEE, volume 87, pages 297–307, 1999.

[Moo65] G. E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8):114–117, 1965.

[MPJ+00] K. Mai, T. Paaske, N. Jayasena, R. Ho, WJ Dally, and M. Horowitz.

Smart Memories: a modular reconfigurable architecture. Computer

Architecture, 2000. Proceedings of the 27th international symposium

on, pages 161–171, 2000.

[Ope06] Open SystemC Initiative. Homepage: SystemC: Welcome.

http://www.systemc.org/, September 2006.

170 BIBLIOGRAPHY

[PWD+09] Songwen Pei, Baifeng Wu, Min Du, Gang Chen, Leandro A. J.

Marzulo, and Felipe M. G. Franca. Spmt wavecache: Exploiting

thread-level parallelism in wavescalar. In CSIE ’09: Proceedings of

the 2009 WRI World Congress on Computer Science and Informa-

tion Engineering, pages 530–535, Washington, DC, USA, 2009. IEEE

Computer Society.

[RF93] B.R. Rau and J.A. Fisher. Instruction-level parallel processing: His-

tory, overview, and perspective. The Journal of Supercomputing,

7(1):9–50, 1993.

[SMSO03] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.

Wavescalar. In MICRO 36: Proceedings of the 36th annual IEEE

/ ACM international symposium on Microarchitecture, pages 291 –

302, 2003.

[SNL+03] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S.W. Keckler, and C.R. Moore. Exploiting ILP, TLP, and DLP with

the polymorphous TRIPS architecture. ACM SIGARCH Computer

Architecture News, 31(2):422, 2003.

[SR00] M.S. Schlansker and B.R. Rau. EPIC: Explicitly parallel instruction

computing. Computer, 33(2):37–45, 2000.

[Sut05] I. E. Sutherland. FLEET – A One-Instruction Computer. Memo to

Berkeley students, December 2005.

[TEL98] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simul-

taneous multithreading: maximizing on-chip parallelism. In ISCA

’98: 25 years of the international symposia on Computer architec-

ture (selected papers), pages 533–544, New York, NY, USA, 1998.

ACM Press.

[TLM+02] M.B. Taylor, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, A. Agarwal, et al. The

Raw microprocessor: A computational fabric for software circuits

and general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

BIBLIOGRAPHY 171

[TLM+04] MB Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,

H. Hoffmann, P. Johnson, J. Kim, J. Psota, et al. Evaluation of

the Raw microprocessor: an exposed-wire-delay architecture for ILP

and streams. Computer Architecture, 2004. Proceedings. 31st annual

international symposium on, pages 2–13, 2004.

[TS88] M.R. Thistle and B.J. Smith. A processor architecture for horizon.

Supercomputing ’88: Proceedings, 1:35–41, 14-18 Nov 1988.

[vESV+99] J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.J.D. Pol,

M.I.A. Tromp, P. Struik, R.H.J. Bloks, P. van der Wolf, A.D. Pi-

mentel, and H.P.E. Vranken. TriMedia CPU64 architecture. In

Computer Design, 1999. (ICCD ’99) International Conference on,

pages 586–592, Austin, TX, USA, 1999.

[VH99] Voon-Yee Vee and Wen-Jing Hsu. A scalable and efficient storage al-

locator on shared memory multiprocessors. In ISPAN ’99: Proceed-

ings of the 1999 International Symposium on Parallel Architectures,

Algorithms and Networks, page 230, Washington, DC, USA, 1999.

IEEE Computer Society.

[Wal91] David W. Wall. Limits of instruction-level parallelism. In ASPLOS-

IV: Proceedings of the fourth international conference on Architec-

tural Support for Programming Languages and Operating Systems,

pages 176–188, 1991.

[Wal95] David W. Wall. Limits of instruction-level parallelism, pages 432–

444. IEEE Computer Society Press, 1995.

[Wei06] Eric W. Weisstein. Homepage: Fractal.

http://mathworld.wolfram.com/Fractal.html, August 2006.

[Wil94] Ted E. Williams. Performance of iterative computation in self-timed

rings. Journal of VLSI Signal Processing, 7(1-2):17–31, 1994.

[Yi05] Kwangkeun Yi, editor. Register Allocation via Coloring of Chordal

Graphs, volume 3780 of Lecture Notes in Computer Science. Springer,

2005.

172 BIBLIOGRAPHY

[ZW03] Thomas Zeitlhofer and Bernhard Wess. List-coloring of interval

graphs with application to register assignment for heterogeneous

register-set architectures. Signal Processing, 83(7):1411–1425, 2003.

Appendix A

Ships in Armada-1

A.1 Register

Description

Holds a data value.

Input ports

in: write value to register; must not be persistent

Output ports

out: read value from register

Mini-opcodes

none

A.2 IntAdd64

Description

Adds two signed 64-bit integers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

out: result

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

173

174 APPENDIX A. SHIPS IN ARMADA-1

A.3 IntDiv64

Description

Divides two signed 64-bit integers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

outQ: quotient

outR: remainder

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

A.4 IntMul64

Description

Multiply two signed 64-bit integers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

out: result

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

A.5 FPAdd64

Description

Adds two 64-bit double-precision floating point numbers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

out: result

A.6. FPDIV64 175

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

A.6 FPDiv64

Description

Divides two 64-bit double-precision floating point numbers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

out: result

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

A.7 FPMul64

Description

Multiplies two 64-bit double-precision floating point numbers.

Input ports

in lhs: left-hand-side of operation; only one of in lhs and in rhs may be persistent

in rhs: right-hand-side of operation; only one of in lhs and in rhs may be persistent

Output ports

out: result

Mini-opcodes

in lhs and in rhs: change the sign of either input (multiply by -1) by moving with miniop=1

A.8 BitShift

Description

Bit shifts 32- or 64-bit integers.

Input ports

in lhs: base value; only one of in lhs and in rhs may be persistent

in rhs: amount to shift by; only one of in lhs and in rhs may be persistent

176 APPENDIX A. SHIPS IN ARMADA-1

Output ports

out: result

Mini-opcodes

in lhs: 0: 32 BIT

1: 64 BIT

in rhs:

0: shift left (LSL)

2: logical shift right (LSR)

3: logical shift left (LSL)

A.9 BitOp

Description

Perform bitwise operations.

Input ports

in1: val1

in2: val2

Output ports

out: result

Mini-opcodes

in lhs: none

in rhs:

0: AND

1: OR

2: XOR

A.10 IntToFP

Description

Converts a 64-bit integer to a 64-bit double-precision floating point number.

Input ports

in: integer to convert; may not be persistent

Output ports

out: floating point result

Mini-opcodes

in: change the sign (multiply by -1) by moving with miniop=1

A.11. SEXT 177

A.11 SExt

Description

Sign-extends a 32-bit integer to 64-bits

Input ports

in: integer to sign-extend; may not be persistent

Output ports

out: result

Mini-opcodes

none

A.12 Counter

Description

Counts a number of tokens generating an output token, last, once all tokens have arrived.

Input ports

in tok: port where tokens are counted; may not be persistent

in cnt: number of tokens to wait for; may not be persistent

Output ports

out: generates last token when all inputs have arrived

Mini-opcodes

none

A.13 Stride

Description

Generates a series of numbers and a last token when complete

Input ports

in start: first value to generate

in step: increments output value by this amount for each subsequent value generated

in stop: maximum bound; if output value will exceed this bound for positive step or be less than this bound for

negative step, the last token is generated and state cleared

in next: any token sent to this port other than last will cause Ship to generate the next output; a last token

received at this port will reset Ship state

178 APPENDIX A. SHIPS IN ARMADA-1

Output ports

out: output tokens

Mini-opcodes

none

A.14 Cmp

Description

Compares two tokens generating a boolean evaluation output.

Input ports

in lhs: left-hand-side value to compare; one of lhs or rhs may be peristent

in rhs: right-hand-side value to compare; one of lhs or rhs may be peristent

in op: type of comparison to perform; may be persistent

in reset: any token received at this port will cause Ship to reset

Op Mnemonic Description

0 INT EQ integer, ==
1 INT NE integer, ! =
2 INT UGT unsigned integer, >
3 INT UGE unsigned integer, >=
4 INT ULT unsigned integer, <
5 INT ULE unsigned integer, <=
6 INT SGT signed integer, >
7 INT SGE signed integer, >=
8 INT SLT signed integer, <
9 INT SLE signed integer, <=
16 FP EQ double-precision floating-point, ==
17 FP NE double-precision floating-point, ! =
18 FP GT double-precision floating-point, >
19 FP GE double-precision floating-point, >=
20 FP LT double-precision floating-point, <
21 FP LE double-precision floating-point, <=

Table A.1: Cmp Ship in op input port values.

Output ports

out: boolean result of comparison

Mini-opcodes

none

A.15. JOIN 179

A.15 Join

Description

There are two variants of the join Ship used in testing, a 2-way and 4-way join. Ship takes 2 and 4 tokens,

respectively, as inputs. When all inputs arrive, input 1 is passed forward to the output port.

Input ports

in pass: value that is passed forward to the output port once all other inputs have arrived; may be persistent

in 2: input to wait for; may not be persistent

in 3: input to wait for; may not be persistent

in 4: input to wait for; may not be persistent

Output ports

out: delivers token from in pass once all other inputs have also arrived

Mini-opcodes

none

A.16 Selector

Description

Passes one of two inputs forward to the output port based on boolean input.

Input ports

in true: input to pass forward if boolean input is true; may be persistent

in false: input to pass forward if boolean input is false; may be persistent

in sel: boolean value that dictates input to forward; may not be persistent; last token delivered to this input

resets the Ship

Output ports

out: selected input forwarded here

Mini-opcodes

none

A.17 Toggle

Description

Delivers two tokens in a predefined order despite the order in which those tokens arrive at the Ship. It may

deliver the first token to the output port even if the second input has not yet arrived

180 APPENDIX A. SHIPS IN ARMADA-1

Input ports

in 1: first data value to forward; may not be persistent

in 2: second data value to forward; may not be persistent

Output ports

out: delivers first data value followed by second data value

Mini-opcodes

none

A.18 Fetch

Description

Fetches code bags and forwards values to new threads.

Input ports

in cbd: code bag descriptor of bag to fetch; may not be persistent; last delivered to this port signals hardware

that the Fleet core is ready for reuse

in r0: forwarding register; may be persistent

in r1: forwarding register; may be persistent

in r2: forwarding register; may be persistent

in r3: forwarding register; may be persistent

in r4: forwarding register; may be persistent

in r5: forwarding register; may be persistent

in sp: forwarding register; may be persistent

in lr: forwarding register; may be persistent

Output ports

none

Mini-opcodes

none

A.19 Memory

Description

Reads and writes to shared system memory.

Input ports

in rdAddr: address to read from; may not be persistent

in wrAddr: address to write to; one of in wrAddr and in wrData may be persistent

in wrData: data to write; one of in wrAddr and in wrData may be persistent

A.20. CONTEXTSYNCHRONIZER 181

Output ports

out rdData: data read from memory

out wrComp: write completion indicator token

Mini-opcodes

Opcodes representing size of data to read or write from memory are read by the in rdAddr and in wrAddr ports.

0: 8-bit

1: 16-bit

2: 32-bit

3: 64-bit

A.20 ContextSynchronizer

Description

Provides thread barrier operation. Waits for threads to complete. Once all done, fetches an independent code

bag to continue program flow.

Input ports

in icbd: independent code bag descriptor to fetch once barrier threads complete; may not be persistent

in cnt: number of threads to wait for

in r0—in r7: registers to forward to code bag fetched after barrier

in decrement: threads barrier is waiting for send the synchronizer reference to decrement here when they com-

plete; when all barrier threads complete, hardware fetches the post-barrier code bag

Output ports

out reference: returns a reference to a synchronizer object; should be forwarded to child threads which pass this

reference to the in decrement port when they complete

out decrement conf: generated to confirm synchronizer reference was accepted by the in decrement port

Mini-opcodes

none

A.21 Stack

Description

Supplies software with pointers to stacks that can be assigned to new threads; software also returns stacks no

longer needed to this Ship

Input ports

in stack req: any token sent to this port requests a stack memory pointer

in stack: stack pointer previously allocated by this Ship that is no longer needed by software

Output ports

out stack: response from in stack reg; outputs pointer to stack memory for software to use

182 APPENDIX A. SHIPS IN ARMADA-1

Mini-opcodes

none

Appendix B

Hardware stack allocation

support

Armada-1 has hardware support for low-latency stack memory allocation when

spawning threads. Caller code can issue a stack allocation request to a special

stack Ship in the Fleet. This ship will return a pointer to memory that has been

pre-allocated for this purpose. Ideally, the memory would be mapped into the

running process’ page table. Armada-1 does not have a memory management

unit (MMU); so, this behavior is not implemented.

Although this support was implemented in Armada-1, very little research was

done regarding the efficiency of the mechanism due to time constraints. Without

an MMU, the merits of the mechanism are difficult to quantify. It is also not

used by the benchmarks tested. Therefore, the details of the implementation

have been relegated to this appendix.

B.1 Overview

The idea behind pre-allocating stacks is to decrease the latency of spawning many

concurrent threads that require their own stack. As Armada was designed to allow

software to spawn many threads quickly with low-overhead, hardware support

seemed appealing. A ship in each Fleet core buffers some amount of memory

pages reserved for these stacks. When a Fleet requests a stack, the allocation is

local avoiding latencies associated with any centralized resource scheme.

In this implementation, the ships in the Fleet cores are connected to two of

their neighbors as in figure B.1. A ship can request stacks from one neighboring

183

184 APPENDIX B. HARDWARE STACK ALLOCATION SUPPORT

core. It can push stacks to the other neighbor.

(a)

(b)

Figure B.1: Hardware stack allocation scheme. Each Fleet in the Armada has a local
stack Ship that buffers stack resources (a). They are connected to one another in a ring
formation. One segment of the ring interfaces with the operating system to allow stacks
to be inserted and removed from the ring. Each stack Ship can request stacks from one
neighbor and push stacks to the other (b).

B.2 Priming the ring

Initially, all cores are starved for stacks and will send requests for memory to

their neighbors. These requests ultimately trigger an event (ie. an interrupt)

demanding operating system attention. The operating system allocates memory

for stacks and pushes them into a hardware FIFO. That FIFO feeds into one core

in the ring of Fleets. Stacks are propagated through the ring until all stack Ship

buffers meet their minimum watermark level.

B.3. STACK ALLOCATION 185

B.3 Stack allocation

When a fetch Ship in a core fetches an independent code bag descriptor and the

hardware stack allocation method is specified by the programmer, a pointer to

one of the locally-buffered stacks is returned. If that causes the local stack buffer

to fall below its low watermark, it will request another stack from its neighbor.

B.4 Stack release

When stacks are released via the local stack Ship, the stack memory is returned

to the local pool of available stack resources. If many stacks are freed at once, the

local buffers may become full. When those buffers reach a high watermark, they

begin pushing stacks to their neighbors. Ultimately, the Fleet that terminates

the ring and interfaces with the software-accessible FIFO may push those stacks

out of the ring. This again initiates an event that is handled by the operating

system.

B.5 Testing

The stack ring was functionally tested with a directed test. This test ensured

the system primed itself by requesting stacks from the operating system. This

program in turn also functionally tested the Armada event-handling system. Once

the system was primed, test code spawned many threads that requested hardware

stack allocation. The ring did not have enough buffers from its initial priming to

fulfill all these requests, and additional events provoked the software to top-up the

ring by pushing in more stacks. Finally, these threads terminated and released

their stacks in near unison. This caused the ring to fill up with stacks and cause

more events to push the stacks out of the ring. The event handler responded by

reading out of the FIFO effectively ’freeing’ those stacks.

Appendix C

Code listings

C.1 Mandelbrot, hand-coded

// input aliases for Tile 01

alias Register_0.in 0;2

alias Register_1.in 1;3

alias Register_2.in 2;4

alias Register_3.in 3;5

alias Register_4.in 4;6

alias Register_5.in 5;7

alias Register_6.in 6;8

alias Register_7.in 7;9

10

alias Fetch_0.in_cbd 8;11

alias Fetch_0.in_reg0 9;12

alias Fetch_0.in_reg1 10;13

alias Fetch_0.in_reg2 11;14

alias Fetch_0.in_reg3 12;15

alias Fetch_0.in_reg4 13;16

alias Fetch_0.in_reg5 14;17

alias Fetch_0.in_reg6 15;18

alias Fetch_0.in_reg7 16;19

20

alias Cmp_0.in_lhs 17;21

alias Cmp_0.in_rhs 18;22

alias Cmp_0.in_op 19;23

alias Cmp_0.in_rst 20;24

alias Cmp_1.in_lhs 21;25

alias Cmp_1.in_rhs 22;26

alias Cmp_1.in_op 23;27

alias Cmp_1.in_rst 24;28

29

alias FourJoin_0.in1 25;30

alias FourJoin_0.in2 26;31

alias FourJoin_0.in3 27;32

alias FourJoin_0.in4 28;33

alias FourJoin_1.in1 29;34

alias FourJoin_1.in2 30;35

alias FourJoin_1.in3 31;36

alias FourJoin_1.in4 32;37

38

alias Memory_0.in_rdAddr 33;39

alias Memory_0.in_wrAddr 34;40

alias Memory_0.in_wrData 35;41

42

alias Selector_0.in_sel 36;43

alias Selector_0.in_true 37;44

alias Selector_0.in_false 38;45

alias Selector_1.in_sel 39;46

alias Selector_1.in_true 40;47

alias Selector_1.in_false 41;48

49

alias Stride_0.in_start 42;50

alias Stride_0.in_step 43;51

alias Stride_0.in_stop 44;52

alias Stride_0.in_next 45;53

alias Stride_1.in_start 46;54

alias Stride_1.in_step 47;55

alias Stride_1.in_stop 48;56

alias Stride_1.in_next 49;57

58

alias Toggle_0.in1 50;59

alias Toggle_0.in2 51;60

alias Toggle_1.in1 52;61

alias Toggle_1.in2 53;62

63

alias IntToFP_0.in 54;64

alias IntToFP_1.in 55;65

alias IntToFP_2.in 56;66

alias IntToFP_3.in 57;67

68

alias FPMul64_3.in1 58;69

alias FPMul64_3.in2 59;70

71

alias IntAdd64_0.in1 64;72

alias IntAdd64_0.in2 65;73

alias IntAdd64_1.in1 66;74

alias IntAdd64_1.in2 67;75

alias IntAdd64_2.in1 68;76

alias IntAdd64_2.in2 69;77

alias IntAdd64_3.in1 70;78

alias IntAdd64_3.in2 71;79

alias IntAdd64_4.in1 72;80

alias IntAdd64_4.in2 73;81

alias IntAdd64_5.in1 74;82

alias IntAdd64_5.in2 75;83

alias IntAdd64_6.in1 76;84

alias IntAdd64_6.in2 77;85

alias IntAdd64_7.in1 78;86

alias IntAdd64_7.in2 79;87

alias IntAdd64_8.in1 80;88

alias IntAdd64_8.in2 81;89

alias IntAdd64_9.in1 82;90

186

C.1. MANDELBROT, HAND-CODED 187

alias IntAdd64_9.in2 83;91

alias IntAdd64_10.in1 84;92

alias IntAdd64_10.in2 85;93

alias IntAdd64_11.in1 86;94

alias IntAdd64_11.in2 87;95

96

alias IntDiv64_0.in1 88;97

alias IntDiv64_0.in2 89;98

alias IntDiv64_1.in1 90;99

alias IntDiv64_1.in2 91;100

alias IntDiv64_2.in1 92;101

alias IntDiv64_2.in2 93;102

alias IntDiv64_3.in1 94;103

alias IntDiv64_3.in2 95;104

105

alias IntMul64_0.in1 96;106

alias IntMul64_0.in2 97;107

alias IntMul64_1.in1 98;108

alias IntMul64_1.in2 99;109

alias IntMul64_2.in1 100;110

alias IntMul64_2.in2 101;111

alias IntMul64_3.in1 102;112

alias IntMul64_3.in2 103;113

114

alias FPAdd64_0.in1 104;115

alias FPAdd64_0.in2 105;116

alias FPAdd64_1.in1 106;117

alias FPAdd64_1.in2 107;118

alias FPAdd64_2.in1 108;119

alias FPAdd64_2.in2 109;120

alias FPAdd64_3.in1 110;121

alias FPAdd64_3.in2 111;122

123

alias FPDiv64_0.in1 112;124

alias FPDiv64_0.in2 113;125

alias FPDiv64_1.in1 114;126

alias FPDiv64_1.in2 115;127

alias FPDiv64_2.in1 116;128

alias FPDiv64_2.in2 117;129

alias FPDiv64_3.in1 118;130

alias FPDiv64_3.in2 119;131

132

alias FPMul64_0.in1 120;133

alias FPMul64_0.in2 121;134

alias FPMul64_1.in1 122;135

alias FPMul64_1.in2 123;136

alias FPMul64_2.in1 124;137

alias FPMul64_2.in2 125;138

//139

alias BitBucket.in 127;140

141

142

// output aliases for Tile 0143

alias Register_0.out 0;144

alias Register_1.out 1;145

alias Register_2.out 2;146

alias Register_3.out 3;147

alias Register_4.out 4;148

alias Register_5.out 5;149

alias Register_6.out 6;150

alias Register_7.out 7;151

152

alias Literal.out 8;153

154

alias Cmp_0.out 17;155

alias Cmp_1.out 21;156

157

alias FourJoin_0.out 25;158

alias FourJoin_1.out 29;159

160

alias Memory_0.out_rdData 33;161

alias Memory_0.out_wrComp 34;162

163

alias Selector_0.out 36;164

alias Selector_1.out 39;165

166

alias Stride_0.out 42;167

alias Stride_1.out 46;168

169

alias Toggle_0.out 50;170

alias Toggle_1.out 52;171

172

alias IntToFP_0.out 54;173

alias IntToFP_1.out 55;174

alias IntToFP_2.out 56;175

alias IntToFP_3.out 57;176

177

alias FPMul64_3.out 58;178

179

alias IntAdd64_0.out 64;180

alias IntAdd64_1.out 66;181

alias IntAdd64_2.out 68;182

alias IntAdd64_3.out 70;183

alias IntAdd64_4.out 72;184

alias IntAdd64_5.out 74;185

alias IntAdd64_6.out 76;186

alias IntAdd64_7.out 78;187

alias IntAdd64_8.out 80;188

alias IntAdd64_9.out 82;189

alias IntAdd64_10.out 84;190

alias IntAdd64_11.out 86;191

192

alias IntDiv64_0.outQ 88;193

alias IntDiv64_0.outR 89;194

alias IntDiv64_1.outQ 90;195

alias IntDiv64_1.outR 91;196

alias IntDiv64_2.outQ 92;197

alias IntDiv64_2.outR 93;198

alias IntDiv64_3.outQ 94;199

alias IntDiv64_3.outR 95;200

201

alias IntMul64_0.out 96;202

alias IntMul64_1.out 98;203

alias IntMul64_2.out 100;204

alias IntMul64_3.out 102;205

206

alias FPAdd64_0.out 104;207

alias FPAdd64_1.out 106;208

alias FPAdd64_2.out 108;209

alias FPAdd64_3.out 110;210

211

alias FPDiv64_0.out 112;212

alias FPDiv64_1.out 114;213

alias FPDiv64_2.out 116;214

alias FPDiv64_3.out 118;215

216

alias FPMul64_0.out 120;217

alias FPMul64_1.out 122;218

alias FPMul64_2.out 124;219

220

221

222

//// MANDELBROT ////223

initial codebag reset 0{224

(dispatch) -> Fetch_0.in_cbd;225

} reset;226

227

// Put the various programs to run here228

dependent codebag dispatch 0 {229

(Main) -> Toggle_0.in1;230

"OOB" -> Toggle_0.in2;231

Toggle_0.out => Fetch_0.in_cbd;232

} dispatch;233

234

188 APPENDIX C. CODE LISTINGS

independent codebag Main 0{235

// viewport.width236

(4.0D) -> FPDiv64_0.in1;237

// viewport.height238

(3.0D) -> FPDiv64_1.in1;239

// viewport.getMinY240

(-1.5D) -> *FPAdd64_0.in2;241

242

"OOB" -> *Cmp_0.in_rhs;243

(OuterLoop) -> *Selector_0.in_true;244

(MainCleanup) -> *Selector_0.in_false;245

246

247

// window.width248

(320) -> IntToFP_0.in, Fetch_0.in_reg4;249

IntToFP_0.out -> FPDiv64_0.in2;250

// window.height251

(240) -> IntToFP_1.in, Stride_0.in_stop;252

253

IntToFP_1.out -> FPDiv64_1.in2;254

255

FPDiv64_0.out -> Fetch_0.in_reg3;256

FPDiv64_1.out -> *FPMul64_0.in2;257

258

(0) -> Stride_0.in_start;259

(1) -> Stride_0.in_step, Stride_0.in_next;260

Stride_0.out => IntToFP_2.in, Register_0.in;261

IntToFP_2.out => FPMul64_0.in1;262

Register_0.out => Cmp_0.in_lhs, Fetch_0.in_reg1;263

264

FPMul64_0.out => FPAdd64_0.in1;265

FPAdd64_0.out => Fetch_0.in_reg2, Stride_0.in_next;266

267

(1) -> *Cmp_0.in_op;268

Cmp_0.out => Selector_0.in_sel;269

Selector_0.out => Fetch_0.in_cbd;270

} Main;271

272

dependent codebag MainCleanup 0 (r1, r2, r3, r4) {273

Register_4.out -> Stride_0.in_start, Stride_0.in_stop;274

Stride_0.out -> FourJoin_0.in1;275

Register_1.out -> FourJoin_0.in2;276

Register_2.out -> FourJoin_0.in3;277

Register_3.out -> FourJoin_0.in4, Stride_0.in_step;278

FourJoin_0.out -> Cmp_0.in_rst;279

} MainCleanup;280

281

282

// window.width, i, c_i, widthRatio283

independent codebag OuterLoop 0 (r1, r2, *r3, *r4) {284

"OOB" -> *Cmp_0.in_rhs;285

286

// viewport.getMinX287

(-2.5D) -> *FPAdd64_0.in2;288

289

(InnerLoop) -> *Selector_0.in_true;290

(OuterLoopCleanup) -> *Selector_0.in_false;291

292

293

Register_4.out -> Stride_0.in_stop, Fetch_0.in_reg4;294

(0) -> Stride_0.in_start;295

(1) -> Stride_0.in_step, Stride_0.in_next;296

Stride_0.out => IntToFP_0.in, Register_0.in;297

Register_0.out => Cmp_0.in_lhs, Fetch_0.in_reg1;298

IntToFP_0.out => FPMul64_0.in1;299

300

(1) -> *Cmp_0.in_op;301

Cmp_0.out => Selector_0.in_sel;302

Selector_0.out => Fetch_0.in_cbd;303

304

Register_1.out -> Fetch_0.in_reg0;305

Register_2.out -> Fetch_0.in_reg2;306

Register_3.out -> *FPMul64_0.in2;307

FPMul64_0.out => FPAdd64_0.in1, Stride_0.in_next;308

FPAdd64_0.out => Fetch_0.in_reg3;309

} OuterLoop;310

311

dependent codebag OuterLoopCleanup 0 (r0, r1, r2, r3, r4){312

Register_0.out -> Stride_0.in_start;313

Register_1.out -> Stride_0.in_stop;314

Register_2.out -> Stride_0.in_step;315

Register_3.out -> FourJoin_0.in1;316

Register_4.out -> FourJoin_0.in2;317

Stride_0.out -> FourJoin_0.in3, FourJoin_0.in4;318

FourJoin_0.out -> Cmp_0.in_rst;319

} OuterLoopCleanup;320

321

// i, j, c_i, c_r, window.width322

independent codebag InnerLoop 0 (*r0, r1, *r2, r3, *r4) {323

// init z_r, z_i324

(0.0D) -> Register_5.in, Register_6.in;325

326

"OOB" -> *Cmp_0.in_lhs;327

(InnerLoop_compute) -> *Selector_0.in_true;328

(InnerLoop_cleanup) -> *Selector_0.in_false;329

330

(100000.0D) -> *Cmp_1.in_rhs;331

(InnerLoop_cleanup2) -> *Selector_1.in_true;332

(InnerLoop_next_itr) -> *Selector_1.in_false;333

334

(1) -> *Cmp_0.in_op;335

(18) -> *Cmp_1.in_op;336

337

Register_3.out -> *FPAdd64_1.in2, FourJoin_0.in2;338

Register_2.out -> *FPAdd64_2.in2, FourJoin_0.in3;339

340

(-1) -> FourJoin_0.in1, FourJoin_0.in4;341

FourJoin_0.out -> Stride_0.in_start, Memory_0.in_wrData;342

(1) -> Stride_0.in_step, Stride_0.in_next;343

(256) -> Stride_0.in_stop;344

Stride_0.out => Cmp_0.in_rhs, Register_7.in;345

Cmp_0.out => Selector_0.in_sel;346

Selector_0.out => Fetch_0.in_cbd;347

348

Cmp_1.out => Selector_1.in_sel;349

} InnerLoop;350

351

dependent codebag InnerLoop_compute 0 {352

Register_5.out -> FPMul64_0.in1, Register_2.in;353

Register_2.out -> FPMul64_0.in2, FPMul64_2.in1;354

355

Register_6.out -> FPMul64_1.in1, Register_3.in;356

Register_3.out -> FPMul64_1.in2, FPMul64_2.in2;357

358

FPMul64_0.out -> FPAdd64_0.in1, FPAdd64_3.in1;359

FPMul64_1.out -> FPAdd64_0.in2(1), FPAdd64_3.in2;360

FPAdd64_0.out -> FPAdd64_1.in1;361

FPAdd64_1.out -> Register_5.in, FourJoin_0.in3;362

363

FPMul64_2.out -> FPMul64_3.in1;364

(2.0D) -> FPMul64_3.in2;365

FPMul64_3.out -> FPAdd64_2.in1;366

FPAdd64_2.out -> Register_6.in, FourJoin_0.in4;367

368

FPAdd64_3.out -> Cmp_1.in_lhs;369

Selector_1.out -> FourJoin_0.in1, FourJoin_0.in2;370

FourJoin_0.out -> Fetch_0.in_cbd;371

} InnerLoop_compute;372

373

dependent codebag InnerLoop_next_itr 0 {374

"OOB" -> Memory_0.in_wrAddr(1);375

Memory_0.out_wrComp -> BitBucket.in;376

Register_7.out -> Memory_0.in_wrData, Stride_0.in_next;377

} InnerLoop_next_itr;378

C.2. MANDELBROT, LLVM-GENERATED 189

379

// this bag gets loaded if iter == iter_max380

// causing inner loop to terminate execution381

// i, j, X, X, window.width,382

dependent codebag InnerLoop_cleanup 0 {383

"OOB" -> FPAdd64_1.in1;384

FPAdd64_1.out -> FPAdd64_2.in1;385

Register_7.out -> BitBucket.in;386

Register_4.out -> IntMul64_0.in1;387

Register_0.out -> IntMul64_0.in2;388

IntMul64_0.out -> IntMul64_2.in2;389

IntMul64_2.out -> IntAdd64_0.in1;390

(16) -> IntMul64_1.in1, IntMul64_2.in1;391

Register_1.out -> IntMul64_1.in2;392

IntMul64_1.out -> IntAdd64_0.in2;393

IntAdd64_0.out -> Memory_0.in_wrAddr(1);394

Register_5.out -> FourJoin_0.in1;395

Register_6.out -> FourJoin_0.in2;396

FPAdd64_2.out -> FourJoin_0.in3;397

Memory_0.out_wrComp -> FourJoin_0.in4;398

399

FourJoin_0.out -> Cmp_1.in_rst;400

Selector_1.out -> Cmp_0.in_rst;401

} InnerLoop_cleanup;402

403

// this bag gets loaded if z_r^2 + z_i^2 > bound404

// causing inner loop to terminate execution405

dependent codebag InnerLoop_cleanup2 0 {406

"OOB" -> Memory_0.in_wrAddr(4), FourJoin_0.in4;407

Memory_0.out_wrComp -> FourJoin_0.in1, FourJoin_0.in2;408

Register_7.out -> Memory_0.in_wrData, FourJoin_0.in3;409

FourJoin_0.out -> Stride_0.in_next;410

} InnerLoop_cleanup2;411

C.2 Mandelbrot, LLVM-generated

Note that some small hand-coded changes were made in the following code to

address the limitations of the compiler back-end. The mandatory aliases as shown

in the previous listing are omitted here for brevity. The corresponding LLVM

IR is shown at the top of each code bag. The comments have been generated

automatically by the compiler and are not intended to draw specific attention to

the reader.

;; initial codebag - this is hardcoded and assumes your program has a1

;; ‘main’ function2

initial codebag __main 0 {3

(dispatch) -> Fetch_0.in_cbd;4

} __main;5

6

dependent codebag dispatch 0 {7

(exit) -> Fetch_0.in_lr;8

(main) -> Toggle_0.in1;9

"OOB" -> Toggle_0.in2;10

Toggle_0.out -> Fetch_0.in_cbd;11

(1048576) -> Fetch_0.in_sp, Fetch_0.in_r2;12

(1048576) -> Fetch_0.in_r0, Fetch_0.in_r1;13

Toggle_0.out -> Fetch_0.in_cbd;14

} dispatch;15

16

independent codebag exit 0(r6) {17

"OOB" -> Join_0.in_pass;18

Register_6.out -> Join_0.in2;19

Join_0.out -> Fetch_0.in_cbd;20

} exit;21

22

23

;; Function ‘my_malloc’24

;; prototype: void (i8 * *, i32)25

;; predecessors: N/A26

;; successors: N/A27

;; ==28

;; StackView (Function ‘my_malloc’)29

;; --30

;; nothing31

;; ==32

independent codebag my_malloc 0 (r0, r1, r6, r7) {33

;; %_incoming_sp_ = load i64* @Register6.out ; <i64> [#uses=1]34

;; %_lr_ = load i64* @Register7.out ; <i64> [#uses=1]35

190 APPENDIX C. CODE LISTINGS

;; store i64 %_lr_, i64* @Fetch.in_cbd36

;; store i8* null, i8** %_ret_val_storage_ptr_37

;; %_outgoing_sp_ = bitcast i64 %_incoming_sp_ to i64 ; <i64> [#uses=1]38

;; store i64 %_outgoing_sp_, i64* @Fetch.in739

;; ret void40

41

"OOB" -> Toggle_0.in2;42

Register_7.out -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete43

Register_0.out -> Memory_2.in_wrAddr(64_BIT); // store: ... -> [_ret_val_storage_ptr_]44

(0) -> Memory_2.in_wrData(0); // store: <<>> -> ...45

Register_6.out -> Fetch_0.in_sp(0); // store: fetch_sp46

(2) -> Counter_0.in_cnt(0); // cleanup: num stray tokens to wait for47

Counter_0.out -> Join_0.in2(0); // cleanup: trigger bag fetch when all stray tokens arrive48

Memory_2.out_wrComp -> Counter_0.in_tok(0); // cleanup: remove this stray token49

Register_1.out -> Counter_0.in_tok(0); // cleanup: remove this stray token50

Join_0.out -> Toggle_0.in1;51

Toggle_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag52

Toggle_0.out -> Fetch_0.in_cbd(0);53

} my_malloc;54

55

56

;; Function ‘my_free’57

;; prototype: void (i8 *)58

;; predecessors: N/A59

;; successors: N/A60

;; ==61

;; StackView (Function ‘my_free’)62

;; --63

;; nothing64

;; ==65

independent codebag my_free 0 (r0, r6, r7) {66

;; %_incoming_sp_ = load i64* @Register6.out ; <i64> [#uses=1]67

;; %_lr_ = load i64* @Register7.out ; <i64> [#uses=1]68

;; store i64 %_lr_, i64* @Fetch.in_cbd69

;; %_outgoing_sp_ = bitcast i64 %_incoming_sp_ to i64 ; <i64> [#uses=1]70

;; store i64 %_outgoing_sp_, i64* @Fetch.in771

;; ret void72

73

"OOB" -> Toggle_0.in2;74

Register_7.out -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete75

Register_6.out -> Fetch_0.in_sp(0); // store: fetch_sp76

Join_0.out -> Toggle_0.in1; // cleanup: wait until done before fetching next bag77

Register_0.out -> Join_0.in2(0); // cleanup: remove this stray token78

Toggle_0.out -> Fetch_0.in_cbd(0);79

Toggle_0.out -> Fetch_0.in_cbd(0);80

} my_free;81

82

83

;; Function ‘main’84

;; prototype: void (i32 *, i32, i8 * *)85

;; predecessors: N/A86

;; successors: main_bb_entry_pt_veneer87

;; ==88

;; StackView (Function ‘main’)89

;; --90

;; Offset: -8, Name: _lr_storage, Type: i64 *91

;; Offset: -16, Name: my_malloc_retVal, Type: i8 * *92

;; Offset: -24, Name: stacked__ret_val_storage_ptr_, Type: i32 * *93

;; ==94

independent codebag main 0 (r0, r1, r2, r6, r7) {95

;; %_lr_storage_addr = add i64 %_incoming_sp_, -8 ; <i64> [#uses=1]96

;; %_lr_storage_addr_as_ptr = inttoptr i64 %_lr_storage_addr to i64* ; <i64*> [#uses=1]97

;; %my_malloc_retVal_addr = add i64 %_incoming_sp_, -16 ; <i64> [#uses=1]98

;; %my_malloc_retVal_addr_as_ptr = inttoptr i64 %my_malloc_retVal_addr to i8** ; <i8**> [#uses=1]99

;; %stacked__ret_val_storage_ptr__addr = add i64 %_incoming_sp_, -24 ; <i64> [#uses=1]100

;; %stacked__ret_val_storage_ptr__addr_as_ptr = inttoptr i64 %stacked__ret_val_storage_ptr__addr to i32**101

;; <i32**> [#uses=1]102

;; %_incoming_sp_ = load i64* @Register6.out ; <i64> [#uses=3]103

;; store i32* %_ret_val_storage_ptr_, i32** %stacked__ret_val_storage_ptr__addr_as_ptr104

;; %_incoming_lr_ = load i64* @Register7.out ; <i64> [#uses=1]105

;; store i64 %_incoming_lr_, i64* %_lr_storage_addr_as_ptr106

;; %tmp1 = tail call void @my_malloc(i8** %my_malloc_retVal_addr_as_ptr, i32 1228800)107

C.2. MANDELBROT, LLVM-GENERATED 191

;; br label %main_bb_entry_pt_veneer108

109

"OOB" -> Toggle_0.in2;110

(main_bb_entry_pt_veneer) -> Fetch_0.in_lr(0);111

(my_malloc) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete112

(1228800) -> Fetch_0.in_r1(0);113

(-8) -> IntAdd64_5.in_rhs(0);114

(-16) -> IntAdd64_1.in_rhs(0);115

(-24) -> IntAdd64_3.in_rhs(0), IntAdd64_2.in_rhs(0);116

IntAdd64_3.out -> Memory_0.in_wrAddr(64_BIT); // store: ... -> [stacked__ret_val_storage_ptr__addr_as_ptr]117

Register_0.out -> Memory_0.in_wrData(0); // store: <<_ret_val_storage_ptr_>> -> ...118

IntAdd64_5.out -> Memory_1.in_wrAddr(64_BIT); // store: ... -> [_lr_storage_addr_as_ptr]119

Register_7.out -> Memory_1.in_wrData(0); // store: <<_incoming_lr_>> -> ...120

IntAdd64_1.out -> Fetch_0.in_r0(0);121

Register_6.out -> IntAdd64_2.in_lhs(0), Register_3.in;122

Register_3.out -> IntAdd64_5.in_lhs(0), Register_4.in;123

Register_4.out -> IntAdd64_1.in_lhs(0), IntAdd64_3.in_lhs(0);124

IntAdd64_2.out -> Fetch_0.in_sp(0);125

Join_0.out -> Toggle_0.in1;126

Toggle_0.out -> Fetch_0.in_cbd;127

Toggle_0.out -> Fetch_0.in_cbd;128

(4) -> Counter_0.in_cnt(0); // cleanup: num stray tokens to wait for129

Counter_0.out -> Join_0.in2(0); // cleanup: trigger bag fetch when all stray tokens arrive130

Memory_0.out_wrComp -> Counter_0.in_tok(0); // cleanup: remove this stray token131

Memory_1.out_wrComp -> Counter_0.in_tok(0); // cleanup: remove this stray token132

Register_1.out -> Counter_0.in_tok(0); // cleanup: remove this stray token133

Register_2.out -> Counter_0.in_tok(0); // cleanup: remove this stray token134

} main;135

136

137

;; predecessors: main138

;; successors: main_bb139

independent codebag main_bb_entry_pt_veneer 0 (r6) {140

;; %_incoming_sp_1 = load i64* @Register6.out ; <i64> [#uses=1]141

;; %_callee_adjusted_sp_ = add i64 %_incoming_sp_1, 24 ; <i64> [#uses=0]142

;; br label %main_bb143

144

(main_bb) -> Fetch_0.in_cbd(0);145

Register_6.out -> IntAdd64_1.in_lhs(0);146

(24) -> IntAdd64_1.in_rhs(0);147

(0) -> Register_0.in(0); // phi: setup value for successor bb ‘main_bb’148

} main_bb_entry_pt_veneer;149

150

;; predecessors: main_bb_entry_pt_veneer main_bb77151

;; successors: main_bb15152

dependent codebag main_bb 0 {153

;; %i.0.reg2mem.0 = phi i32 [0, %main_bb_entry_pt_veneer], [%indvar.next109, %main_bb77] ; <i32> [#uses=3]154

;; %tmp910 = sitofp i32 %i.0.reg2mem.0 to double ; <double> [#uses=1]155

;; %tmp13 = mul double %tmp910, 6.250000e-03 ; <double> [#uses=1]156

;; %tmp14 = sub double %tmp13, 1.500000e+00 ; <double> [#uses=1]157

;; %tmp59 = mul i32 %i.0.reg2mem.0, 640 ; <i32> [#uses=1]158

;; br label %main_bb15159

160

(main_bb15) -> Fetch_0.in_cbd(0);161

(0.5000D) -> FPMul64_0.in_rhs(0);162

(1.50000D) -> FPAdd64_0.in_rhs(1);163

Register_0.out *-> IntToFP_0.in(0), IntMul64_0.in_lhs(0); // sitofp: (float)i.0.reg2mem.0164

IntToFP_0.out -> FPMul64_0.in_lhs(0);165

FPMul64_0.out -> FPAdd64_0.in_lhs(0);166

(8) -> IntMul64_0.in_rhs(0);167

(0) -> Register_1.in(0); // phi: setup value for successor bb ‘main_bb15’168

} main_bb;169

170

;; predecessors: main_bb main_bb57__to__main_bb15__cleanup171

;; successors: main_bb22172

dependent codebag main_bb15 0 {173

;; %j.0.reg2mem.0 = phi i32 [0, %main_bb], [%indvar.next108, %main_bb52__to__main_bb57__cleanup] ; <i32> [#uses=3]174

;; %tmp1617 = sitofp i32 %j.0.reg2mem.0 to double ; <double> [#uses=1]175

;; %tmp19 = mul double %tmp1617, 6.250000e-03 ; <double> [#uses=1]176

;; %tmp20 = sub double %tmp19, 2.500000e+00 ; <double> [#uses=1]177

;; br label %main_bb22178

179

192 APPENDIX C. CODE LISTINGS

(main_bb22) -> Join_0.in_pass;180

(0.00000D) -> Register_4.in(0), Register_5.in(0); // phi: setup value for successor bb ‘main_bb22’181

(0.5000D) -> FPMul64_0.in_rhs(0);182

(2.50000D) -> FPAdd64_1.in_rhs(1);183

Join_0.out -> Fetch_0.in_cbd(0);184

Register_1.out *-> IntToFP_0.in(0); // sitofp: (float)j.0.reg2mem.0185

IntToFP_0.out -> FPMul64_0.in_lhs(0);186

FPMul64_0.out -> FPAdd64_1.in_lhs(0), Join_0.in2;187

(0) -> Register_3.in(0); // phi: setup value for successor bb ‘main_bb22’188

} main_bb15;189

190

;; predecessors: main_bb15 main_bb52__to__main_bb22__cleanup191

;; successors: main_bb22__to__main_bb57__cleanup main_bb22__to__main_bb52__cleanup192

dependent codebag main_bb22 0 {193

;; %iter.0.reg2mem.0 = phi i32 [0, %main_bb15], [%tmp51, %main_bb52] ; <i32> [#uses=2]194

;; %z_i.0.reg2mem.0 = phi double [0.000000e+00, %main_bb15], [%tmp38, %main_bb52] ; <double> [#uses=3]195

;; %z_r.0.reg2mem.0 = phi double [0.000000e+00, %main_bb15], [%tmp31, %main_bb52] ; <double> [#uses=3]196

;; %tmp25 = mul double %z_r.0.reg2mem.0, %z_r.0.reg2mem.0 ; <double> [#uses=1]197

;; %tmp28 = mul double %z_i.0.reg2mem.0, %z_i.0.reg2mem.0 ; <double> [#uses=1]198

;; %tmp29 = sub double %tmp25, %tmp28 ; <double> [#uses=1]199

;; %tmp31 = add double %tmp29, %tmp20 ; <double> [#uses=3]200

;; %tmp33 = mul double %z_r.0.reg2mem.0, 2.000000e+00 ; <double> [#uses=1]201

;; %tmp36 = mul double %tmp33, %z_i.0.reg2mem.0 ; <double> [#uses=1]202

;; %tmp38 = add double %tmp36, %tmp14 ; <double> [#uses=3]203

;; %tmp42 = mul double %tmp31, %tmp31 ; <double> [#uses=1]204

;; %tmp45 = mul double %tmp38, %tmp38 ; <double> [#uses=1]205

;; %tmp46 = add double %tmp42, %tmp45 ; <double> [#uses=1]206

;; %tmp47 = fcmp ogt double %tmp46, 1.000000e+05 ; <i1> [#uses=1]207

;; br i1 %tmp47, label %main_bb22__to__main_bb57__cleanup, label %main_bb22__to__main_bb52__cleanup208

209

(main_bb22__to__main_bb57__cleanup) -> Selector_0.in_true(0);210

(main_bb22__to__main_bb52__cleanup) -> Selector_0.in_false(0);211

(2.00000D) -> FPMul64_2.in_rhs(0);212

(100000.0D) -> Cmp_0.in_rhs(0);213

Register_5.out *-> FPMul64_0.in_lhs(0), FPMul64_0.in_rhs(0);214

Register_5.out *-> FPMul64_2.in_lhs(0);215

Register_4.out *-> FPMul64_1.in_lhs(0), FPMul64_1.in_rhs(0);216

Register_4.out *-> FPMul64_3.in_rhs(0);217

FPMul64_0.out -> FPAdd64_4.in_lhs(0);218

FPMul64_1.out -> FPAdd64_4.in_rhs(1);219

FPAdd64_4.out -> FPAdd64_2.in_lhs(0);220

FPAdd64_1.out *-> FPAdd64_2.in_rhs(0);221

FPMul64_2.out -> FPMul64_3.in_lhs(0);222

FPMul64_3.out -> FPAdd64_3.in_lhs(0);223

FPAdd64_0.out *-> FPAdd64_3.in_rhs(0);224

FPAdd64_2.out *-> FPMul64_4.in_lhs(0), FPMul64_4.in_rhs(0);225

FPAdd64_3.out *-> FPMul64_5.in_lhs(0), FPMul64_5.in_rhs(0);226

FPMul64_4.out -> FPAdd64_5.in_lhs(0);227

FPMul64_5.out -> FPAdd64_5.in_rhs(0);228

FPAdd64_5.out -> Cmp_0.in_lhs(0);229

(FP_GT) -> Cmp_0.in_op(0);230

Cmp_0.out -> Selector_0.in_sel(0);231

Selector_0.out -> Fetch_0.in_cbd(0);232

Register_3.out *-> Register_2.in(0); // phi: setup value for successor bb ‘main_bb57’233

} main_bb22;234

235

;; predecessors: main_bb22236

;; successors: main_bb57237

dependent codebag main_bb22__to__main_bb57__cleanup 0 {238

;; br label %main_bb57239

240

(main_bb57) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete241

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag242

(6) -> Counter_0.in_cnt(0); // cleanup: num stray tokens to wait for243

Counter_0.out -> Join_0.in2(0); // cleanup: trigger bag fetch when all stray tokens arrive244

FPAdd64_1.out -> Counter_0.in_tok(0); // cleanup: remove this stray token245

Register_3.out -> Counter_0.in_tok(0); // cleanup: remove this stray token246

Register_4.out -> Counter_0.in_tok(0); // cleanup: remove this stray token247

Register_5.out -> Counter_0.in_tok(0); // cleanup: remove this stray token248

FPAdd64_2.out -> Counter_0.in_tok(0); // cleanup: remove this stray token249

FPAdd64_3.out -> Counter_0.in_tok(0); // cleanup: remove this stray token250

} main_bb22__to__main_bb57__cleanup;251

C.2. MANDELBROT, LLVM-GENERATED 193

252

;; predecessors: main_bb22__to__main_bb57__cleanup main_bb52__to__main_bb57__cleanup253

;; successors: main_bb57__to__main_bb77__cleanup main_bb57__to__main_bb15__cleanup254

dependent codebag main_bb57 0 {255

;; %iter.0.reg2mem.1 = phi i32 [%iter.0.reg2mem.0, %main_bb52__to__main_bb22__cleanup],256

;; [%tmp51, %main_bb52] ; <i32> [#uses=1]257

;; %tmp61 = add i32 %j.0.reg2mem.0, %tmp59 ; <i32> [#uses=1]258

;; %tmp6164 = sext i32 %tmp61 to i64 ; <i64> [#uses=1]259

;; %tmp65 = getelementptr i32* null, i64 %tmp6164 ; <i32*> [#uses=1]260

;; store i32 %iter.0.reg2mem.1, i32* %tmp65, align 4261

;; %indvar.next108 = add i32 %j.0.reg2mem.0, 1 ; <i32> [#uses=2]262

;; %exitcond = icmp eq i32 %indvar.next108, 640 ; <i1> [#uses=1]263

;; br i1 %exitcond, label %main_bb57__to__main_bb77__cleanup, label %main_bb57__to__main_bb15__cleanup264

265

(main_bb57__to__main_bb77__cleanup) -> Selector_0.in_true(0);266

(main_bb57__to__main_bb15__cleanup) -> Selector_0.in_false(0);267

Register_1.out -> IntAdd64_0.in_lhs(0), IntAdd64_3.in_lhs(0);268

IntMul64_0.out *-> IntAdd64_0.in_rhs(0);269

IntAdd64_0.out -> SExt_0.in(0); // sext: (int64_t)tmp61270

(0) -> IntAdd64_2.in_lhs(0), Cmp_0.in_op(0); // getelemptr271

(2) -> IntMul64_1.in_lhs(0); // getelemptr272

IntMul64_1.out -> IntAdd64_2.in_rhs(0); // getelemptr273

SExt_0.out -> IntMul64_1.in_rhs(0); // getelemptr274

IntAdd64_2.out -> Memory_0.in_wrAddr(16_BIT); // store: ... -> [tmp65]275

Register_2.out -> Memory_0.in_wrData(0); // store: <<iter.0.reg2mem.1>> -> ...276

(1) -> IntAdd64_3.in_rhs(0);277

IntAdd64_3.out -> Cmp_0.in_lhs(0), Register_1.in(0);278

(8) -> Cmp_0.in_rhs(0);279

Cmp_0.out -> Selector_0.in_sel(0);280

Selector_0.out -> Fetch_0.in_cbd(0);281

} main_bb57;282

283

;; predecessors: main_bb57284

;; successors: main_bb77285

dependent codebag main_bb57__to__main_bb77__cleanup 0 {286

;; br label %main_bb77287

288

(main_bb77) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete289

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag290

(4) -> Counter_0.in_cnt(0); // cleanup: num stray tokens to wait for291

Counter_0.out -> Join_0.in2(0); // cleanup: trigger bag fetch when all stray tokens arrive292

FPAdd64_0.out -> Counter_0.in_tok(0); // cleanup: remove this stray token293

IntMul64_0.out -> Counter_0.in_tok(0); // cleanup: remove this stray token294

Memory_0.out_wrComp -> Counter_0.in_tok(0); // cleanup: remove this stray token295

Register_1.out -> Counter_0.in_tok(0); // cleanup: remove this stray token296

} main_bb57__to__main_bb77__cleanup;297

298

;; predecessors: main_bb57__to__main_bb77__cleanup299

;; successors: main_bb77__to__main_bb85__cleanup main_bb300

dependent codebag main_bb77 0 {301

;; %indvar.next109 = add i32 %i.0.reg2mem.0, 1 ; <i32> [#uses=2]302

;; %exitcond110 = icmp eq i32 %indvar.next109, 480 ; <i1> [#uses=1]303

;; br i1 %exitcond110, label %main_bb77__to__main_bb85__cleanup, label %main_bb304

305

(main_bb77__to__main_bb85__cleanup) -> Selector_0.in_true(0);306

(main_bb) -> Selector_0.in_false(0);307

Register_0.out -> IntAdd64_0.in_lhs(0);308

(1) -> IntAdd64_0.in_rhs(0);309

IntAdd64_0.out -> Cmp_0.in_lhs(0), Register_0.in(0);310

(6) -> Cmp_0.in_rhs(0);311

(INT_EQ) -> Cmp_0.in_op(0);312

Cmp_0.out -> Selector_0.in_sel(0);313

Selector_0.out -> Fetch_0.in_cbd(0);314

} main_bb77;315

316

;; predecessors: main_bb77317

;; successors: main_bb85318

dependent codebag main_bb77__to__main_bb85__cleanup 0 {319

;; br label %main_bb85320

321

(main_bb85) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete322

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag323

194 APPENDIX C. CODE LISTINGS

Register_0.out -> Join_0.in2(0); // cleanup: remove this stray token324

} main_bb77__to__main_bb85__cleanup;325

326

;; predecessors: main_bb77__to__main_bb85__cleanup327

;; successors: main_bb85_cr328

dependent codebag main_bb85 0 {329

;; tail call void @my_free(i8* null) nounwind330

;; br label %main_bb85_cr331

332

(main_bb85_cr) -> Fetch_0.in_lr(0);333

(my_free) -> Fetch_0.in_cbd(0);334

(0) -> Fetch_0.in_r0(0);335

IntAdd64_1.out -> IntAdd64_0.in_lhs(0);336

(-24) -> IntAdd64_0.in_rhs(0);337

IntAdd64_0.out -> Fetch_0.in_sp(0);338

} main_bb85;339

340

;; predecessors: main_bb57341

;; successors: main_bb15342

dependent codebag main_bb57__to__main_bb15__cleanup 0 {343

;; br label %main_bb15344

345

(main_bb15) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete346

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag347

Memory_0.out_wrComp -> Join_0.in2(0); // cleanup: remove this stray token348

} main_bb57__to__main_bb15__cleanup;349

350

;; predecessors: main_bb22351

;; successors: main_bb52352

dependent codebag main_bb22__to__main_bb52__cleanup 0 {353

;; br label %main_bb52354

355

(main_bb52) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete356

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag357

(3) -> Counter_0.in_cnt;358

Counter_0.out -> Join_0.in2(0); // cleanup: remove this stray token359

Register_2.out -> Counter_0.in_tok(0); // cleanup: remove this stray token360

Register_4.out -> Counter_0.in_tok(0); // cleanup: remove this stray token361

Register_5.out -> Counter_0.in_tok(0); // cleanup: remove this stray token362

} main_bb22__to__main_bb52__cleanup;363

364

;; predecessors: main_bb22__to__main_bb52__cleanup365

;; successors: main_bb52__to__main_bb22__cleanup main_bb52__to__main_bb57__cleanup366

dependent codebag main_bb52 0 {367

;; %tmp51 = add i32 %iter.0.reg2mem.0, 1 ; <i32> [#uses=3]368

;; %tmp54 = icmp slt i32 %tmp51, 1000 ; <i1> [#uses=1]369

;; br i1 %tmp54, label %main_bb52__to__main_bb22__cleanup, label %main_bb52__to__main_bb57__cleanup370

371

(main_bb52__to__main_bb22__cleanup) -> Selector_0.in_true(0);372

(main_bb52__to__main_bb57__cleanup) -> Selector_0.in_false(0);373

Register_3.out -> IntAdd64_0.in_lhs(0);374

(1) -> IntAdd64_0.in_rhs(0);375

IntAdd64_0.out *-> Cmp_0.in_lhs(0), Register_3.in(0);376

IntAdd64_0.out *-> Register_2.in(0), Join_0.in2;377

(100) -> Cmp_0.in_rhs(0);378

(INT_SLT) -> Cmp_0.in_op(0);379

Cmp_0.out -> Selector_0.in_sel(0);380

Selector_0.out -> Join_0.in_pass;381

Join_0.out -> Fetch_0.in_cbd(0);382

FPAdd64_3.out -> Register_4.in(0); // phi: setup value for successor bb ‘main_bb22’383

FPAdd64_2.out -> Register_5.in(0); // phi: setup value for successor bb ‘main_bb22’384

} main_bb52;385

386

;; predecessors: main_bb52387

;; successors: main_bb22388

dependent codebag main_bb52__to__main_bb22__cleanup 0 {389

;; br label %main_bb22390

391

(main_bb22) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete392

Join_1.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag393

Register_2.out -> Join_0.in2(0); // cleanup: remove this stray token394

IntAdd64_0.out -> Join_1.in2;395

C.2. MANDELBROT, LLVM-GENERATED 195

Join_0.out -> Join_1.in_pass;396

} main_bb52__to__main_bb22__cleanup;397

398

;; predecessors: main_bb52399

;; successors: main_bb57400

dependent codebag main_bb52__to__main_bb57__cleanup 0 {401

;; br label %main_bb57402

403

(main_bb57) -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete404

Join_0.out -> Fetch_0.in_cbd(0); // cleanup: wait until done before fetching next bag405

(5) -> Counter_0.in_cnt(0); // cleanup: num stray tokens to wait for406

Counter_0.out -> Join_0.in2(0); // cleanup: trigger bag fetch when all stray tokens arrive407

FPAdd64_1.out -> Counter_0.in_tok(0); // cleanup: remove this stray token408

Register_3.out -> Counter_0.in_tok(0); // cleanup: remove this stray token409

Register_4.out -> Counter_0.in_tok(0); // cleanup: remove this stray token410

Register_5.out -> Counter_0.in_tok(0); // cleanup: remove this stray token411

IntAdd64_0.out -> Counter_0.in_tok(0);412

} main_bb52__to__main_bb57__cleanup;413

414

415

;; predecessors: main_bb85416

;; successors: N/A417

independent codebag main_bb85_cr 0 (r6) {418

;; %_lr_storage_addr5 = add i64 %_callee_adjusted_sp_3, -8 ; <i64> [#uses=1]419

;; %_lr_storage_addr5_as_ptr = inttoptr i64 %_lr_storage_addr5 to i64* ; <i64*> [#uses=1]420

;; %stacked__ret_val_storage_ptr__addr4 = add i64 %_callee_adjusted_sp_3, -24 ; <i64> [#uses=1]421

;; %stacked__ret_val_storage_ptr__addr4_as_ptr = inttoptr i64 %stacked__ret_val_storage_ptr__addr4 to i32**422

;; <i32**> [#uses=1]423

;; %_incoming_sp_2 = load i64* @Register6.out ; <i64> [#uses=1]424

;; %_callee_adjusted_sp_3 = add i64 %_incoming_sp_2, 24 ; <i64> [#uses=3]425

;; %_ret_val_storage_ptr__val = load i32** %stacked__ret_val_storage_ptr__addr4_as_ptr ; <i32*> [#uses=1]426

;; %_lr_ = load i64* %_lr_storage_addr5_as_ptr ; <i64> [#uses=1]427

;; store i64 %_lr_, i64* @Fetch.in_cbd428

;; store i32 0, i32* %_ret_val_storage_ptr__val429

;; %_outgoing_sp_ = bitcast i64 %_callee_adjusted_sp_3 to i64 ; <i64> [#uses=1]430

;; store i64 %_outgoing_sp_, i64* @Fetch.in7431

;; ret void432

433

"OOB" -> Toggle_0.in2;434

(-8) -> IntAdd64_0.in_rhs(0);435

(-24) -> IntAdd64_1.in_rhs(0);436

Register_6.out -> IntAdd64_2.in_lhs(0);437

(24) -> IntAdd64_2.in_rhs(0);438

IntAdd64_1.out -> Memory_0.in_rdAddr(64_BIT); // load: [stacked__ret_val_storage_ptr__addr4_as_ptr]439

IntAdd64_0.out -> Memory_1.in_rdAddr(64_BIT); // load: [_lr_storage_addr5_as_ptr]440

Memory_1.out_rdData -> Join_0.in_pass(0); // cleanup: fetch next bag when cleanup complete441

Memory_0.out_rdData -> Memory_2.in_wrAddr(32_BIT); // store: ... -> [_ret_val_storage_ptr__val]442

(0) -> Memory_2.in_wrData(0); // store: <<>> -> ...443

IntAdd64_2.out -> Fetch_0.in_sp(0), Register_0.in;444

Register_0.out -> IntAdd64_0.in_lhs(0), IntAdd64_1.in_lhs(0); // store: fetch_sp445

Join_0.out -> Toggle_0.in1;446

Toggle_0.out -> Fetch_0.in_cbd;447

Toggle_0.out -> Fetch_0.in_cbd;448

Memory_2.out_wrComp -> Join_0.in2(0); // cleanup: remove this stray token449

} main_bb85_cr;450

Appendix D

LLVM instruction mapping to

Armada

This appendix gives a general description of how the LLVM intermediate representation instructions map to

Armada Ships.

D.1 Terminator class

D.1.1 ret

Other passes transform the functions such that they all return void.

LLVM

ret void

Armada

lr -> Fetch.in cbd

D.1.2 br

LLVM

br i1 <cond>, label <iftrue>, label <iffalse>

Armada

<cond> -> Selector.in sel

<iftrue> -> Selector.in true

<iffalse> -> Selector.in false

Selector.out -> Fetch.in cbd

LLVM

br label <dest>

196

D.2. BINARY CLASS 197

Armada

<dest> -> Fetch.in cbd

D.1.3 switch

Unimplemented.

D.1.4 invoke

Unimplemented.

D.1.5 unwind

Unimplemented.

D.1.6 unreachable

Unimplemented.

D.2 Binary class

D.2.1 add

LLVM

<result> = add <ty> <var1>, <var2> ; yields {ty}:result

Armada

if <ty> is an int:

<var1> -> IntAdd64.in lhs

<var2> -> IntAdd64.in rhs

; result on IntAdd64.out

else if <ty> is a float:

<var1> -> FPAdd64.in lhs

<var2> -> FPAdd64.in rhs

; result on FPAdd64.out

D.2.2 sub

LLVM

Armada

if <ty> is an int:

<var1> -> IntAdd64.in lhs

<var2> -> IntAdd64.in rhs(NEGATE)

; result on IntAdd64.out

else if <ty> is a float:

<var1> -> FPAdd64.in lhs

198 APPENDIX D. LLVM INSTRUCTION MAPPING TO ARMADA

<var2> -> FPAdd64.in rhs(NEGATE)

; result on FPAdd64.out

D.2.3 mul

LLVM

Armada

if <ty> is an int:

<var1> -> IntMul64.in lhs

<var2> -> IntMul64.in rhs

; result on IntMul64.out

else if <ty> is a float:

<var1> -> FPMul64.in lhs

<var2> -> FPMul64.in rhs

; result on FPMul64.out

D.2.4 udiv

LLVM

<result> = udiv <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> IntDiv64.in lhs

<var2> -> IntDiv64.in rhs

; must dispose of remainder token if not used on IntDiv64.outR ; result on IntDiv64.outQ

D.2.5 sdiv

LLVM

<result> = sdiv <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> IntDiv64.in lhs

<var2> -> IntDiv64.in rhs

; must dispose of remainder token if not used on IntDiv64.outR ; result on IntDiv64.outQ

D.2.6 fdiv

LLVM

<result> = fdiv <ty> <var1>, <var2> ; yields {ty}:result

D.3. BITWISE BINARY CLASS 199

Armada

<var1> -> FPDiv64.in lhs

<var2> -> FPDiv64.in rhs

; result on FPDiv64.out

D.2.7 urem

LLVM

<result> = urem <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> IntDiv64.in lhs

<var2> -> IntDiv64.in rhs

; must dispose of quotient token if not used on IntDiv64.outQ ; result on IntDiv64.outR

D.2.8 srem

LLVM

<result> = srem <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> IntDiv64.in lhs

<var2> -> IntDiv64.in rhs

; must dispose of quotient token if not used on IntDiv64.outQ ; result on IntDiv64.outR

D.2.9 frem

Unimplemented.

D.3 Bitwise binary class

D.3.1 shl

LLVM

<result> = shl <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitShift.in lhs(32 BIT or 64 BIT)

<var2> -> BitShift.in rhs(LSL)

; result on BitShift.out

200 APPENDIX D. LLVM INSTRUCTION MAPPING TO ARMADA

D.3.2 lshr

LLVM

<result> = lshr <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitShift.in lhs(32 BIT or 64 BIT)

<var2> -> BitShift.in rhs(LSR)

; result on BitShift.out

D.3.3 ashr

LLVM

<result> = ashr <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitShift.in lhs(32 BIT or 64 BIT)

<var2> -> BitShift.in rhs(ASR)

; result on BitShift.out

D.3.4 and

LLVM

<result> = and <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitOp.in lhs

<var2> -> BitOp.in rhs(AND)

; result on BitOp.out

D.3.5 or

LLVM

<result> = or <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitOp.in lhs

<var2> -> BitOp.in rhs(OR)

; result on BitOp.out

D.4. VECTOR CLASS 201

D.3.6 xor

LLVM

<result> = xor <ty> <var1>, <var2> ; yields {ty}:result

Armada

<var1> -> BitOp.in lhs

<var2> -> BitOp.in rhs(XOR)

; result on BitOp.out

D.4 Vector class

D.4.1 extractelement

Unimplemented.

D.4.2 insertelement

Unimplemented.

D.4.3 shufflevector

Unimplemented.

D.5 Memory class

D.5.1 malloc

LLVM

<result> = malloc <type>[, i32 <NumElements>][, align <alignment>]

Armada

Treated as regular function call.

D.5.2 free

LLVM

free <type> <value> ; yields {void}

Armada

Treated as regular function call.

202 APPENDIX D. LLVM INSTRUCTION MAPPING TO ARMADA

D.5.3 alloca

LLVM

<result> = alloca <type>[, i32 <NumElements>][, align <alignment>] ; yields {type*}:result

Armada

Handled by stack value placement compiler pass.

D.5.4 load

LLVM

<result> = load <ty>* <pointer>[, align <alignment>]

<result> = volatile load <ty>* <pointer>[, align <alignment>]

Armada

All loads are considered volatile in this implementation.

<pointer> -> Memory.in rdAddr(sizeof(ty))

; result on Memory.out rdData

D.5.5 store

LLVM

store <ty> <value>, <ty>* <pointer>[, align <alignment>] ; yields {void}
volatile store <ty> <value>, <ty>* <pointer>[, align <alignment>] ; yields {void}

Armada

All stores are treated as volatile in this implementation.

<pointer> -> Memory.in wrAddr(sizeof(ty))

<value> -> Memory.in wrData

; completion token on Memory.out wrComp

D.5.6 getelementptr

LLVM

<result> = getelementptr <ty>* <ptrval>{, <ty> <idx>}*

Armada

<ptrval> -> IntAdd64.in lhs

sizeof<ty> -> IntMul64.in lhs

<idx> -> IntMul64.in rhs

IntMul64.out -> IntAdd64.in rhs

; result on IntAdd64.out

D.6. CONVERSION CLASS 203

D.6 Conversion class

D.6.1 trunc . . to

LLVM

<result> = trunc <ty> <value> to <ty2> ; yields ty2

Armada

<value> -> BitOp.in lhs

<2sizeof(<ty2>) − 1> -> BitOp.in rhs(AND)

; result on BitOp.out

D.6.2 sext. . . to

LLVM

<result> = sext <ty> <value> to <ty2> ; yields ty2

Armada

Current implementation always extends to 64 bits.

<value> -> SExt.in(8 BIT or 16 BIT or 32 BIT)

; result on SExt.out

D.6.3 zext. . . to

No-op in Armada.

D.6.4 fptrunc. . . to

As Armada only supports double-precision floating point, calls to fptrunc are considered no-ops since lower-

precision floating point numbers are not supported.

D.6.5 fpext. . . to

As Armada only supports double-precision floating point, calls to fpext are considered no-ops since all floating

point values are already double precision.

D.6.6 fptoui. . . to

Unimplemented.

D.6.7 fptosi. . . to

Unimplemented.

204 APPENDIX D. LLVM INSTRUCTION MAPPING TO ARMADA

D.6.8 uitofp. . . to

LLVM

<result> = uitofp <ty> <value> to <ty2> ; yields ty2

Armada

<value> -> IntToFP.in

; output on IntToFP.out

D.6.9 sitofp. . . to

LLVM

<result> = sitofp <ty> <value> to <ty2> ; yields ty2

Armada

<value> -> IntToFP.in

; output on IntToFP.out

D.6.10 ptrtoint. . . to

No-op in Armada.

D.6.11 inttoptr. . . to

No-op in Armada.

D.6.12 bitcast. . . to

No-op in Armada.

D.7 Miscellaneous class

D.7.1 icmp

LLVM

<result> = icmp <cond> <ty> <var1>, <var2> ; yields {i1}:result

Armada

<var1> -> Cmp.in lhs

<var2> -> Cmp.in rhs

<one of INT CMP ops (see Cmp Ship)> -> Cmp.in op

; result on Cmp.out

D.7. MISCELLANEOUS CLASS 205

D.7.2 fcmp

LLVM

<result> = icmp <cond> <ty> <var1>, <var2> ; yields {i1}:result

Armada

<var1> -> Cmp.in lhs

<var2> -> Cmp.in rhs

<one of FP CMP ops (see Cmp Ship)> -> Cmp.in op

; result on Cmp.out

D.7.3 phi

Handled in the Armada passes.

D.7.4 select

LLVM

<result> = select i1 <cond>, <ty> <val1>, <ty> <val2> ; yield

Armada

<val1> -> Selector.in true

<val2> -> Selector.in false

<cond> -> Selector.in sel

; result on out Selector.out

D.7.5 call

Handled in the Armada passes.

D.7.6 va arg

Unimplemented.

D.7.7 getresult

Unneeded for call’s as they never return values in Armada. Unimplemented for invoke’s because invoke’s are

unimplemented in this version of the compiler.

