
JIKESNODE: A JAVA OPERATING

SYSTEM

A thesis submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Science and Engineering

2005

By

Georgios I. Gousios

Department of Computer Science

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1 Introduction 10

1.1 Motivation and objectives . 10

1.2 Related work . 11

1.3 Organisation of the thesis . 13

2 Operating system architectures 14

2.1 Established architectures . 14

2.1.1 Monolithic kernels . 15

2.1.2 Microkernels . 16

2.2 The Javaos . 18

2.2.1 Basic architecture . 19

2.2.2 System components . 21

2.2.3 Non-functional requirements 23

3 The Nanokernel 26

3.1 The i386 architecture . 27

3.2 The grub boot loader . 30

3.3 Implementation . 32

4 The Jikes Research Virtual Machine 38

4.1 The JikesRVM architecture . 39

2

4.1.1 Runtime . 40

4.1.2 The boot image . 41

4.1.3 The build system . 42

4.2 Implementation . 43

4.2.1 Changes to the runtime 43

4.2.2 The build system . 45

4.2.3 Changes to the VM . 46

4.2.4 Not implemented functionality 46

4.2.5 Runtime operation . 47

5 Merging the components 48

5.1 The JNode operating system . 48

5.1.1 Components of the JNode architecture 48

5.1.2 Changes to JNode . 51

5.2 The classpath . 52

5.3 The build system . 54

5.3.1 Implementation . 55

5.3.2 The boot image . 56

5.3.3 Not implemented . 57

6 Conclusions 59

Bibliography 63

A A sample run output 69

B Creating a boot disk image 71

3

List of Tables

3.1 Nanokernel code distribution and sizes 33

4.1 Implemented system call stubs. 44

5.1 The JNode project packages . 49

5.2 Changes to the classpath. 54

4

List of Figures

2.1 Monolithic kernel vs microkernel in system service call handling . 17

2.2 The process-based Javaos architecture 20

2.3 Javaos components. 22

3.1 Protected mode memory management in i386 29

3.2 System memory after initialisation 34

4.1 High level view of the JikesRVM architecture 39

5

Abstract

Operating system kernel development has been an active area of research since

almost the birth of computer science. There are currently two major architectural

designs for kernels, namely monolithic and microkernels. This thesis examines

the potential of a Java operating system that theoretically combines the strong

points of the aforementioned designs. The proposed architecture merges the Jikes

Research Virtual Machine with the JNode operating system in order to demon-

strate the feasibility of such an approach and to provide the Jamaica project with

a tool to further continue the study of parallelism.

6

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

7

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instruc-

tions given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the Author.

The ownership of any intellectual property rights which may be described

in this thesis is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third parties

without the written permission of the University, which will prescribe the terms

and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.

8

Acknowledgements

First of all, I would like to thank Ian Rogers for his invaluable help throughout

the project. Ian gave my project the initial kickstart, promptly gave up what he

was up to when I asked for help and acted as an intermediate between me and

my supervisor whenever my language skills were not up to the level to be able

to explain what I was doing. Finally, he was something like the group’s mother

by preparing and sharing coffee, opening the windows and/or switching on the

air-conditioning when it was hot (well, it never got really hot, but anyway), and

buying us doughnuts from time to time.

Also, many thanks should go to my supervisor, Chris Kirkham for the motiva-

tion to work and moral support he provided me, especially at the beginning of the

project when the project turned out to be much tougher than I have expected.

Thanks to the Greek guys from the acs course for keeping me sane during

the project, to Andrew Dinn for the two essential 2-hour chats, to Ian Watson for

obtaining a licence for VMWare in just 1 day and to the Greek national football

team for cheering us up and giving us the chance to get revenge from our English

friends.

The following people have contributed comments and ideas on how to improve

the present document and have gone through the tedious process of proofreading:

Chris Kirkham, Ian Rogers, Diomidis Spinellis. I would like to thank them for

their time and effort.

Last, but of course not least, to Fenia Aivaloglou for keeping me company,

and for being the closest person I had in my whole year in Manchester.

9

Chapter 1

Introduction

This report, by its very length, defends itself against the

risk of being read.
— Winston Churchill

In this thesis, I present the implementation of the JikesNode operating system,

an attempt to create an operating system using the Java programming language.

The current implementation relies heavily on the Jikes Research Virtual Ma-

chine (JikesRVM) Java Virtual Machine (JVM) [2, 26] and the JNode operating

system [17]. The work was carried out in the Jamaica group at the University of

Manchester.

1.1 Motivation and objectives

The Jamaica group at the University of Manchester has long worked on chip

multiprocessor research. Chip multiprocessors support hardware level parallelism,

thus allowing the execution of multiple threads simultaneously by utilising several

processing cores on a single die. In order to be able to test and further develop

the design and the implementation of the Jamaica chip, the group has put a

significant amount of effort into porting the JikesRVM to their chip simulator and

also on trying to improve the core of JikesRVM itself.

With the basic software infrastructure already implemented, what was really

needed were applications that would expose the chip design to realistic workloads.

Operating systems, unlike benchmarks, show a high degree of unpredictabilty in

their operation which could set forth design or implementation flaws in the Ja-

maica platform. Also, an operating system could be the base of running massively

10

CHAPTER 1. INTRODUCTION 11

multithread applications which in turn could be a proof of concept for the plat-

form. The JNode operating system presented an ideal platform because it was

written in a high level thread-aware language and also included a functioning

driver model and an Input/Output (I/O) subsystem. The challenge presented

was to separate the core Operating System (OS) from its proprietary virtual

machine and port it to the JikesRVM.

Since the port of JikesRVM to the Jamaica simulator was at an early stage

of development and the simulator itself was slow enough to not allow for fast

compile-and-test cycles, the decision was made to base the project on the i386

architecture. The goals that were set at the beginning of the project were the

following:

• Create a standalone environment that offers to JikesRVM just the necessary

functions to be able to work without an operating system.

• Separate the core of the JNode operating system from its Virtual Machine

(VM) and port it to the standalone version of the JikesRVM.

• Create a build system that integrates the make-based build system of the

GNU is Not Unix (GNU) classpath, the ant-based build system of JNode

and the custom made build system of JikesRVM.

1.2 Related work

Operating system research is almost as old as computing itself. There are two

major architectures that have emerged: monolithic kernels and microkernels. The

monolithic kernel was the first architecture to be put into practice and still is the

basis of the majority of the operating systems. Examples include Linux [6], the

Berkeley Software Distribution (BSD) family [24] and the Solaris operating sys-

tems. Microkernels were supposed to be the next big thing in operating systems,

but unfortunately due to early performance problems they never really gained

the required momentum. Many systems were developed, the most important of

which are Mach [1] by the Carnegie-Mellon University and spin [4]. Later efforts

[9, 21] managed to overcome the infancy problems of the first implementations.

Work on Java operating systems started by the creators of the Java language,

Sun Microsystems. From the scarce documentation available, the JavaOS [28]

appears to provide a single network-enabled virtual machine with the ability to

CHAPTER 1. INTRODUCTION 12

display graphics on special framebuffers. The tos [25] operating system, devel-

oped in Brock University, Canada, was an educational operating system along

the lines of Minix [30]; it provided a set of servers for common operating system

tasks but it required a JVM running on a host OS to run.

The KaffeOS [3] and the Alta [32] systems, both developed at University of

Utah, share the assumption that a Java OS must support the process abstrac-

tion. A process is presented with a virtual instance of the JVM; the underlying

GNU acts as a resource manager and is responsible for initiating and schedul-

ing processes and providing InterProcess Communication (IPC) mechanisms. In

KaffeOS, each process has its own Java heap and its own Garbage Collection (GC).

The notion of a process is built on top of classloaders, each process having its

own classloader for objects that are not shared. Objects that could be shared are

loaded by the system wide classloader. In Alta, each process is offered the illusion

of a complete copy of the GNU having separate root thread groups and private

copies of static member data . Both systems are built on top of the KaffeVM and

are not directly bootable.

The jx operating system [11] developed at the University of Erlangen, Ger-

many is a real Java operating system in the sense of it can be directly booted

on a machine and provides device drivers. The jx system includes a custom-

developed lightweight VM, a classpath implementation and the analogue to a

process model, called a domain. A domain is an instance of the virtual machine

that runs independently but can communicate with other domains with a custom

Remote Method Invocation (RMI) like mechanism and share read-only instances

of classes. This kind of architecture offers application protection and isolation

while still maintaining good performance, according to the jx developers. The

results presented are not terribly convincing though, because they are not pro-

duced using any kind of globally accepted benchmarking method and only the

strong points of the system are presented.

Finally, the JNode OS, written from scratch by Ewout Pransgma and released

under the General Public Licence (GPL), is a Java operating system that aims

to run all Java applications natively. It includes a custom resource-aware JVM

implementation, a nanokernel that provides a thin abstraction layer between the

JVM and the hardware and the GNU classpath implementation. Everything in

JNode, from device drivers to applications are plugins to the system managed by

a central plugin manager. More details on the JNode architecture can be found

CHAPTER 1. INTRODUCTION 13

in section 5.1.

Considering the options available, the decision was made to base this work on

the JNode operating system for the following reasons:

• The project is relatively new, thus its size is not overwhelming.

• It is designed and developed using modern software engineering practices.

• Although JNode includes its own JVM it is not too tightly integrated with

it, so porting it to JikesRVM would not be a resource consuming exercise.

• Its source code was available under the GPL licence.

1.3 Organisation of the thesis

Chapter 2 is about kernel architectures. The basic architectures are described

and their strong points and weakness are detailed. Later, we describe the

general idea and the architecture of a Java operating system.

Chapter 3 describes the bits of the i386 architecture needed to understand

the nanokernel implementation and also discusses the development of the

nanokernel itself.

Chapter 4 describes, without going into detail, the JikesRVM architecture and

the changes made to the JikesRVM subsystems in order to make it work on

top of the nanokernel.

Chapter 5 discusses the processes of bringing together the three distinct system

components (nanokernel, JikesRVM and JNode).

Chapter 2

Operating system architectures

Operating systems are like underwear – nobody really

wants to look at them.
— Bill Joy

Any computer system includes a basic set of programs called the operating

system. The most important part of an operating system is its kernel. A ker-

nel, in traditional operating-system terminology, is a small nucleus of software

that provides only the minimal facilities necessary for implementing additional

operating system services [24, Chapter 2.1]. The kernel is the first component

of the operating system to be loaded in memory when the computer starts and

stays there until the computer is shut down. The kernel is mainly responsible for

communicating with the hardware and providing a basic set of services in order to

allow user programs to run. A more complete list of responsibilities for a kernel

can be found in [30, Chapter 1].

2.1 Established architectures

There are two major kernel architectures: monolithic kernels and microkernels.

Monolithic kernels form the basis for almost all Unix-like operating systems in

use today. Examples include Linux, the BSD family and Solaris. There were

some efforts for commercial microkernel operating systems, mainly in the form

of osf/1 and NextStep, but the fact remains that microkernels are mostly used

for research purposes. On the other hand, the two most widely used operating

systems today, Windowsnt and Macosx, take a hybrid approach by either run-

ning a large portion of a monolithic kernel as a kernel task (Macosx) or multiple

14

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 15

processes in kernel space (Windowsnt), both on top of a microkernel.

2.1.1 Monolithic kernels

Monolithic systems, the most common architecture for kernels, are those whose

functionality is contained into a single executable lump of code that runs in

executive/kernel mode. All operating system services run in kernel mode and can

be invoked by user space processes via interrupt-driven system calls. Although

the kernel might be designed as a sum of components and layers, in practice even

high level components can directly access low level functions.

As an example of tight integration of subsystems in monolithic kernels, the

Linux kernel scheduler provides the set cpus allowed function to restrict pro-

cesses to particular cpus. The Athlon64 Powernow driver1 directly uses this

function to make a certain physical processor run the kernel execution context

that the driver is currently in, a required step prior to deciding the power saving

capabilities of the processor. A non-monolithic system would require many more

interactions to achieve the same result, such as requesting the processor list, lock-

ing each one of them in turn to decide if the driver runs on the specific processor

and finally triggering a reschedule after finishing.

Some of the strong points the monolithic design offers are the following:

• Efficiency: System calls in monolithic systems are implemented as regular

function calls using commonplace calling conventions (e.g. the stack and

registers). There are only two context switches taking place for servicing a

system call.

• Optimisations: High level components can bypass intermediate layers and

directly interoperate with low level functions. The example presented above

is quite usual practice in open source kernels. Although from a software

engineering point of view bypassing layers in a layered system is not ac-

ceptable, in practise it may be the only way to get acceptable performance

or add features not present in the system’s first design.

• Dynamicaly Loaded Extensions: Most monolithic kernels today can be ex-

tended at runtime using dynamically linked programs called modules. In

order to achieve that, kernels provide a linking mechanism that imports

1linux/arch/i386/kernel/cpu/cpufreq/powernow-k8.c:415–430

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 16

the module’s symbols and code into the kernel space and a corresponding

module interface (e.g. the Linux module mechanism [6, Appendix B]). Af-

ter being linked, the module can access the kernel structures as if it was

directly compiled into the kernel. Modules allow for layered system design,

platform independence (e.g. the scsi disk driver is exactly the same for

all architectures in Linux) and efficient memory usage which is essential for

embedded systems, while having almost no effect on system performance.

The monolithic design’s achilles heel is security and stability. A badly written

kernel module can lead to security holes that can be used to compromise the

whole system. Also, in case a kernel component misbehaves, for example if is

crashes, the operating system will collapse. Being many years in development

has minimised those problems for the major operating systems, though.

2.1.2 Microkernels

The basic idea driving microkernel development is to reduce the kernel space pro-

vided services to the absolute minimum and implement the rest of the OS services

as a set of user space programs, usually referred to as servers. Microkernels, as

their name might suggest, offer only a small subject of the services that a normal

kernel does; in fact, many microkernels only provide IPC, trap handling and basic

scheduling services. The advantages of the microkernel design are clear from a

software engineering standpoint:

• Modularity: Almost all the system components can be replaced with new

implementations while the system is running. The kernel can provide ap-

plication interfaces to many established standards even if these standards’

hardware requirements overlap without the cost of emulation on top of the

operating system. An example is the Windows implementations of both

the win32 and the Portable Operating System Interface for uniX (POSIX)

environments using dynamically loaded servers.

• Stability: The various kernel processes run in isolated memory areas. A

crash in, for example, the network card driver cannot affect the filesystem

operation.

• Portability: In theory, the only part of a microkernel OS that needs to be

ported on a different architecture is the microkernel itself. The portability

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 17

Microkernel

User
Application

System call Result

Kernel
Service

User
Application

Monolithic
kernel

Kernel
Service

= Context switch

Figure 2.1: Monolithic kernel vs microkernel in system service call handling

work mainly consists of porting the kernel and the memory management

servers. While this statement is also in part true for the monolithic sys-

tems, the clean separation of system parts and the existence of well defined

interfaces significantly reduce the amount of effort required in the case of

microkernels.

The first microkernel implementations were received with enthusiasm by the

research community. After the microkernels evolved into real operating systems,

the enthusiasm gave its place to scepticism, the cause being performance. In

order to service an IPC call, be it a system call or a user space process to process

call, the design of a microkernel OS does not allow it to employ traditional IPC

mechanisms, such as shared memory or stack-based function calls. The cost of

the associated Remote Procedure Call (RPC) seemed to hurt IPC performance

in a microkernel environment. The cost should not only be attributed to context

switching; there are a lot of performance issues discovered by [19, 7, 21], described

netxt.

First of all, the cost of RPC for servicing systems calls is significant by itself.

As shown in figure 2.1, in order for an RPC to be served, four process switches

must be made compared to two in the case of monolithic kenrels. A process

switch involves, among others, saving processor registers, invalidating caches and

possibly rescheduling. The cost of process switching may differ from architecture

to architecture, but it is at least twice in microkernels compared to traditional

kernels [19].

Also, the memory accessing cost seems to be much higher in microkernel sys-

tems. The cost, measured in Memory Cycles Per Instruction (mcpi), involves the

invalidation of caches and accesses to memory while servicing system calls. The

fact that it is higher in microkernels is a consequence of intermodule copying dur-

ing RPC. Furthermore, frequent context switches lead to worse locality properties

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 18

than monolithic kernels [7].

The fact that microkernels have evolved from traditional designs and had to

support existing software poses an additional performance penalty [21]. The Mach

microkernel offered more than 150 system calls, roughly the amount of system

calls provided by monolithic kernels of its time. The additional complexity of

decoding the call in kernel mode and also redirecting it to user space is a limiting

factor for performance. Other microkernel designs (e.g. the Exokernel [9]) that

relied more on direct IPC communications between user processes and kernel

servers performed significantly better.

For the reasons listed above, microkernels never really left the researcher’s

laboratories to get used into production environments. Although the second

generation of microkernels, such as the Exokernel mentioned above and the l4

microkernel [20], offer comparable performance to monolithic kernels on certain

workloads, the fact remains that the abstraction rule enforced by microkernels

render the possible synergies that could be developed between kernel parts that

know each others’ operation almost non-existent. Even people who have fought in

favour of microkernels [29] are now much more open-minded [30, Chapter 10.1.7].

2.2 The Javaos

Throughout many years of operating system development there has been little

change on the way computer scientists understand the operating system, the

common conception being that the operating system is a service provider. The

last change was when computers stopped being regarded as batch systems and

multiprogramming and multiuser operating systems took over.

Java operating systems (JavaOS) are going to be a major change in the way

computing is done.2 For the first time a service provider on whom programs

are going to depend on in order to function is not strictly necessary. Services

and programs will be all part of a system, communicating with each other with

simple function calls. Resource management will be inherent part of the system.

Many security headaches will simply disappear using the type safety and bounds

checking features of the core language. The executed code will be able to be

dynamically optimised according to load characteristics of the system and the

underlying architecture. Legacy code will be able to be executed through dynamic

2If they manage to prevail, of course...

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 19

binary translation, even with on the fly optimisations, as shown by work done in

the Jamaica group [23].

2.2.1 Basic architecture

As with all operating systems, the primary role of a Javaos is to manage re-

sources in such a way so as to allow more than one program to run concurrently.

As resources we define the set of computational power, memory space and I/O

bandwidth that running programs compete for. Current Javaos research, as pre-

sented in Section 1.2, focuses on two approaches to organising resources:

Process based: All executed programs run on the same JVM. The virtual ma-

chine builds the notion of a process by using seperate classloaders for each

loaded program. Each program is tricked to believe it is running in its

own virtual machine by being with private copies of bootstrap classes and

its private memory space and garbage collector. Changes in the JVM are

required to support this model.

JVM based: Each executed program consists of one or more Java threads. A

supervising thread is responsible for spawning new programs as needed us-

ing a well defined interface. Language-based memory protection and thread

synchronisation mechanisms are used to protect shared resources. Loaded

programs become part of the system’s classpath and so other programs can

directly access their methods, but namespaces and method access control

can be used to protect the program internals. No changes are required to

the JVM.

The process-based approach is based upon the traditional operating system

architecture. Figure 2.2 shows an overview of the process-based Javaos . The

JVM has been modified to include additional components:

• the resource manager is responsible to allocate cpu time, memory and

bandwidth to processes

• The scheduler is responsible to start, stop and pre-empt processes

• the process accounting component monitors the runtime behaviour of pro-

cesses and gathers resource usage data

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 20

JVM

Process 1 Process n

 Resource manager Scheduler Process Accounting

Heap
P1

Threads

Stacks

Classloader
Class Class

Class

 Process 1

Class Class

RP
C

 In
te

rf
ac

e

Figure 2.2: The process-based Javaos architecture

The GC process can take place in both the JVM global heap and the process space

heap. Depending on the implementation, IPC can be done using explicit object

sharing [32], thread sharing between processes [32, 3] and local RPC invocations

using the callee’s interface [11].

A critique of the process-based Javaos model

The process based Javaos architecture adds an extra overhead to the virtual

machine. Does it offer any added value to justify the oveehead? In our opinion it

does not. The process abstraction was conceived when operating systems had no

means of protection between concurrently executing programs. A program, at the

time often written in a low level language such as assembly, could directly access

all system available memory. There was no language level support for information

hiding. The Java programming language offers both memory protection between

threads, by completely eliminating pointers and enforcing bounds checking on

array access, and disallows access to fields or methods private to the called class.

Memory resource management is an inherent part of the JVM and for most JVMs

it can be tuned for either performance or space usage. If a thread misbehaves

with respect to memory, an OutOfMemoryException can be thrown by the JVM

to stop it.3 The problem of cpu resource sharing can be directly solved using

3Although the OutOfMemoryException is never caught in application programming and
causes the JVM to exit, in the context of operating systems can be used e.g. by the supervisor

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 21

advanced thread scheduling algorithms in the JVM, a feasible approach since the

JVM specification [22] defines no default scheduling strategy.

2.2.2 System components

Another role of an operating system, apart from sharing resources, is to interact

with the hardware. Some types of interactions are described in the following list:

• Accept and process processor generated signals such as traps, faults and

errors.

• Receive hardware interrupts.

• Provide a unified software view of classes of hardware devices for programs

to use.

• Initialise the system during the boot process.

In the case of a Javaos , the JVM is the component responsible to interact with

the hardware. Since the JVM expects an operating system to do the hardware

interaction in its place, a compatibility layer between the JVM and the hardware

must be built. This layer must do little more than initialising the hardware,

setting up a context switching environment for servicing interrupts and branching

into the JVM. Device drivers would better be kept out of the compatibility layer

and be directly implemented in Java, because this will make them portable and

enable them to use the classpath facilities.

The basic architectural components of a Javaos can be seen in figure 2.34.

The nanokernel represents the intermediate layer discussed above. When the

computer boots, the nanokernel configures the hardware protection levels (usually

kernel mode and user mode) and installs those parts of the interrupt handlers that

execute in kernel mode. Depending on the hardware platform, the nanokernel can

also be responsible for I/O operations, for example by providing a call that allows

the program to break into kernel mode to do port-based I/O. The final state of

its execution is to switch the hardware to user mode and branch into the JVM

boot method.

thread to stop a resource consuming child.
4Original idea http://jnode.sourceforge.net/portal/book/view/175

http://jnode.sourceforge.net/portal/book/view/175

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 22

Device Drivers

Core libraries
(Classpath)

Filesystems Networking GUI

Memory
Management

JVMNanokernel
I/O

Ports
Interrupts

Class
Manager

JIT

Applications

Hardware

Resource Management

Figure 2.3: Javaos components.

In the context of a Javaos , a JVM is responsible for more than just executing

bytecodes. First of all, it must be extended to include resource management capa-

bilities. As resources, apart from cpu time, I/O bandwidth and memory space,

we also consider interrupts and memory areas reserved for I/O. Basic resource

management was discussed in section 2.2.1; hardware resource management can

be implemented using a subscription/notification scheme in cooperation with the

JVM’s memory management subsystem. Memory management is a simple pro-

cess in a Javaos ; most JVMs just require a single non-segmented address space

to use as heap, which is the state of the free computer memory after booting the

OS. In order to implement a more advanced memory management scheme, such

as virtual memory, support from the nanokernel, is required.

Device drivers allow an operating system to utilise hardware. In order for

a device driver to talk to hardware, it needs to register for an interrupt to get

notified when something interesting happens to the device and a set of memory

ranges or I/O ports to read and write data to it. The interrupt registration and

notification facilities are provided by the JVM along with the reservation of I/O

ports. The nanokernel interrupt handlers are responsible to propagate interrupts

to the JVM. The device driver layer should also support a hardware enumeration

and detection facility, which maintains a database of supported hardware and

assigns drivers to hardware. Device drivers in a Javaos run in user mode and can

use the Java libraries. Also, they can implicitly use the multithreading facilities

provided by JVM, which in turn can have a positive impact on performance on a

multiprocessor system and can help avoid pauses caused by I/O.

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 23

The classpath is the core library of the Java language. It provides programs

with a set of classes ranging from simple data structures to complex graphics.

In order to provide acceptable speed, most classpath implementations, including

the GNU classpath, use native methods for the advanced components, through

the Java Native Interface (JNI). In the case of the Javaos , the classpath has to

be modified to use the OS’s subsystems instead of native calls. Finally, although

the size of the classpath seems too big to be used as the basic Javaos library,

the classpath is the only library most Java applications will ever need to run.

Also, the size is comparable with a set of native libraries that offer the same

capabilities. 5

2.2.3 Non-functional requirements

What we present below are high level non-functional requirements common to

operating systems and how a Javaos implementation addresses them.

Security

Security is a strong point for Java implementations in general. A Javaos benefits

from language-wide security features to provide a good set of security features.

Bytecode inspection The JVM includes a code verifier that can check if loaded

bytecodes conform to certain specifications. The verification process includes

stack overflow,opcode and method argument type checks. The great majority

of attacks is then discovered and isolated even before the offending component

starts to execute. Java goes even further and allows the development of trust

relationships between the bytecode supplier and the bytecode user through digital

signatures. Important system components, such as device drivers and system

servers, can then be trusted, a significant prerequisite in security aware sites.

Finally, Java requires that the types of variables being passed to methods conform

to the method declaration which can help with pointer indirection attacks [8].

Runtime security Apart from link time code inspection, Java offers runtime

security checks. Array accesses are checked against array bounds and additionaly

there is no type of variable which can directly access memory. In the context

5On a Linux system, the size of the GNU classpath is 16mb. The size of an equivalent set of
native libraries (libc, xlib, qt, xml,) is almost double (30mb).

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 24

of the Javaos , this behaviour helps protect against accidental or intentional

access and modification of kernel structures. In addition, a Javaos can use the

Java language security infastructure to implement security domains and access

policies for those domains, a feature only recently added to Linux. For example,

it could implement seperate domains for network and system servers and thus

isolate the core system from a potential network security breach.

Efficiency

Core language features will allow a Javaos implementation to be efficient. Al-

though efficiency cannot be judged without having actual implementations and

current benchmark results, albeit promising, are debatable [11], two characteris-

tics of Javaos will allow it to be very efficient, given a good overall architectural

design. These are the lack of system calls and lightweight locking. System calls

are not needed in Javaos because there is no need for the system to switch to

kernel mode to service a request. Kernel mode was traditionaly used to restrict

access to kernel internals from malicious code; as noted before, in Java the same

functionality can be achieved through protection domains. Code with the ap-

propriate permisions can still access low-level system functionality though. On

the other hand, Java’s lock monitoring functionality can be used by the system

to provide fine grained locking of critical code paths. The Javaos does not need

to globally lock the system when an important event, like an interrupt, occurs.

Traditional monolithic systems, e.g. FreeBSD/DragonFlyBSD, are trying hard to

overcome the burden of the “giant kernel lock”, as they name it.

Scalability

As scalability, we define the ability of a system to adapt to its executing en-

vironment. Because the Javaos runs in a virtual machine and knows little, if

any, about the executing harware, scalability of Javaos depends on the scalabil-

ity of the JVM. Most current implementations of multiprocessor capable JVMs

use pthreads to model an abstraction layer to physical processors. There is

no JVM implementation that can directly take advantage of multiple processors

without relying on services provided by the underlying operating system (such

as pthreads). Building a multiprocessing capable Javaos would require signifi-

cant amount of work on the nanokernel and the JVM, but the operating system

itself would be able to directly take advantage of the multiple processors, even

CHAPTER 2. OPERATING SYSTEM ARCHITECTURES 25

in an efficient manner, due to the multithreading programming model used and

to fine-grained locking. On 64-bit architectures, a 64-bit JVM would be able to

use all the available memory directly, while no effort has to be put in porting the

Javaos from 32-bit to 64-bit due to the lack of direct memory access (pointers).

On the other hand, memory usage would be the major constraint to downsizing

a Javaos , because of the dependency on the classpath functionality.

Modularity

Because of the language it is written in, the Javaos can take modularity to the

extreme. All of the subsystems (except maybe from the classpath) shown in figure

2.3 can be interchanged and extended directly, most of them even when the system

is running, in system designed with basic adherence to object-oriented software

engineering methods. The Javaos can thus support dynamically loaded device

drivers (modules), alternative subsystem implementations running in parallel,

such as multiple filesystem servers and network stacks and dynamically loaded

libraries through the use of the system classloader.

Chapter 3

The Nanokernel

/* You are not expected to understand this */

— comment in the context-switching

code of the V6 Unix kernel

An important portion of the work on JikesNode has gone into the development

of the system’s nanokernel. Nanokernel is a term devised to describe operating

system cores that are usually very constrained in size and/or functionality. Most

nanokernels are custom implemented to fit the needs of the system and hardware

they are designed for. Because nanokernels usually act as an abstraction layer

between the hardware and the operating system, they are written in a low-level

language, such as assembly, to directly interact with the target processor. In

most cases, nanokernels do not include a boot mechanism, but rely on an external

boot loader to load them to memory and provide information about the computer

hardware. Here, the grub boot loader was used.

Currently, the JikesNode operating system is designed to run on the Intel

i386 architecture. The many years in development, while maintaining backwards

compatibility, has made this architecture quite complicated. All the subsystems

that were present in the first implementations of the architecture are still present

in today’s systems, but are extended or work in parallel with more modern alter-

natives.

What follows is a detailed description of the nanokernel implementation in

JikesNode. We first present the bits of the i386 architecture and the grub boot

loader that are important to understand the nanokernel operation. Then, the

nanokernel design and implementation is described.

26

CHAPTER 3. THE NANOKERNEL 27

3.1 The i386 architecture

Overall architecture

The x86 architecture [15], a generic term describing all generations of the In-

tel processor family, was first introduced more than 25 years ago. The current

generation, the 7th, still maintains compatibility with all its ancestors.

The i386 family are 32-bit cisc processors with an address bus 32 bits wide

(36-bit width mode available) . They feature 7 general purpose registers (e[a-

d]x, esi, edi, ebp) and 2 special registers for the stack pointer (esp) and the

instruction pointer (eip). The eflags register is 32-bit register used for storing

various flags (1-bit fields) such as the zero flag or the carry flag, whose values

depend on the result of the executed instructions. On later processors, the control

registers (cr[0-4]) are used for controlling advanced processor features such as

the Memory Management Unit (mmu). Newer models are equipped with a float-

ing point co-processor (fpu) which introduces another 8 stack-allocated registers

(st[0-7]) along with special floating point instructions. Finally, another recent

addition was the support for integer ‘single instruction, multiple data’ (simd)

instructions (mmx) which was later expanded to support floating point opera-

tions by adding a new set of 128-bit dedicated registers (xmm[0-7]) 1 and the

required instructions (sse), which in turn was expanded to support a wider range

of floating point and data movement instructions (sse2) and finally expanded to

enhance thread synchronisation and number conversions (sse3).

The i386 processor features 3 modes of operation, which drastically change

the processor’s behaviour. The real mode is entered when the computer starts;

it restricts the processor to accessing the first megabyte of memory and to using

the bottom 16-bit of its registers. The protected mode,the normal i386 operating

mode, enables the processor subsystems such as the mmu for virtual memory

support and full 32-bit operation. The system management mode was targeted to

power saving, but was quickly obsoleted by more competent technologies. Finally,

the virtual-x86 mode allows the processor to emulate the real mode while in

protected mode, which is useful to run code written for real mode in modern

systems (e.g. the system bios).

In order to support address space protection and multitasking, the processor

can run programs in 4 privilege levels and also differentiates instruction privilege

1mmx uses the fpu registers, which prevents mixing of mmx and fpu instructions

CHAPTER 3. THE NANOKERNEL 28

levels from I/O privilege levels. Most operating systems only use level 0 (least

restrictive) for kernel mode and level 3 for user mode. In order to switch modes,

the processor has to save or restore the full set of registers on the stack the current

mode uses.

Memory management

Memory management is arguably the most complicated aspect of i386 program-

ming. There are 2 memory models for an i386 processor which can be used

in parallel, segmentation and paging [16, Chapter 3]. As a consequence, three

address spaces can be used to access the same memory cell: the logical space

when segmentation is enabled , the linear space when paging is enabled and the

physical space which represents raw memory addresses. An overview of memory

addressing in i386 is presented in figure 3.1 2.

Segmentation The segmentation model allows memory addressing using the

segment selector:offset form (logical addresses). The segment selector field

is a pointer to a special system-wide memory construct called the Global Descrip-

tor Table (gdt). A gdt entry consists of a pointer to the beginning of a memory

segment and information about the privilege levels required to access the seg-

ment. Each process can have up to 6 segment selectors in the gdt; if more are

required, the process can have its own segment selector table (Local Descriptor

Table (ldt)) which in turn is pointed to by a special entry in the gdt. In order

to speed up memory address conversions, there are exactly 6 segment selector

registers in the cpu to store the running process’s selectors. To get the exact

memory cell, the offset value is added to the segment’s start address, which is

pointed to by the gdt entry.

In order for segmentation to work, the gdt table, the segment selectors for

each process and the possible ldt tables have to be hand-generated. If more than

one process is run, a special gdt entry for each process is created, which points

to a task-state segment (tss) structure. The tss reserves space to save process

context (register values) during task switching. The tss selector for the current

process is loaded to the corresponding processor register.

2Source: Intel Architecture Software Developer’s Manual, Volume 3: System programming,
page 3-2 [16]

CHAPTER 3. THE NANOKERNEL 29

Segment
Selector Offset

GDT

Segment
Descriptor

Linear Address
Space

Segment

Lin. Add.

Segment Base
Address

Linear Address

Dir Table Offset

Entry

Page Table

Physical Address
Space

Page

Phy. Add.

Entry

Page
Directory

Segmentation Paging

Page

Figure 3.1: Protected mode memory management in i386

Paging Paging allows an operating system to utilise more memory than the

host system’s physical memory and to isolate the memory spaces used by pro-

cesses. When using paging, the memory address space is organised hierarchically

as a series of directories, tables and pages. A directory holds pointers to 1024

tables and a table holds pointers to 1024 pages. A 32-bit memory address (linear

address) represents a memory cell using the dir:table:offset encoding; the

first 10 bits denote the page directory entry, the next 10 bits denote the page

table entry and the final 12 bits are used as a displacement indicator in the 4k

page. Address translations from linear to physical addresses are transparently

performed by the processor’s mmu. Each process can have its own page direc-

tory; the cr3 register holds the page directory address for the current process. In

case a non-existant page is accessed, a page fault exception is generated and the

offending virtual memory address is returned. It is the OS’s job to either create

the required page by freeing memory or find the required page in the set of pages

swapped to the hard disk. The virtual memory subsystem allows page sizes of

either 4kb or 4mb. In the latter case, there is no need for page tables and the

offset value of a linear address uses the last 22 bits of the address.

Interrupts

Interrupts are forced transfers of execution from the currently running program

to a special procedure called the handler [16, Chapter 5]. Interrupts can be gen-

erated by processor-detected exceptional conditions, such as a division by zero,

CHAPTER 3. THE NANOKERNEL 30

external device event notifications (in that case called Interrupt Requests (In-

terrupt ReQuest (IRQ)s)) and can also be software-generated. A i386 processor

can handle up to 255 interrupts. A memory construct, called the Interrupt De-

scriptor Table (idt), is filled in with specially formatted entries, called task-gate

descriptors which point to the routine or task that is executed when the interrupt

occurs. The first 16 interrupts are reserved for processor detected errors and are

called exceptions, the next 16 interrupts are reserved for future use by Intel, while

interrupts 32-48 are assigned to irq[0-15]. Interrupts from 49 to 255 are free to

be used for software generated events. When an interrupt occurs, the proces-

sor saves the important registers’ values (such as eip and eflags) on the stack,

searches the idt for the handler whose table entry matches the interrupt number

and switches the context to the task handler. In order to service an interrupt,

the handler must be run in protection level 0.

IRQs are generated outside the processor and are routed to its interrupt pin

by the 8259A Programmable Interrupt Controller (pic) [13]. The pic is respon-

sible for handling 8 IRQs, so two pics are present in each personal computer’s

motherboard. After an IRQ occurs, the pic suspends all IRQs until the operating

system or the interrupt handler re-enables them.

Time keeping

The i386 architecture defines the existence of 3 clocks: The Real Time Clock

(rtc) which is battery operated and keeps track of real world time, the Time

Stamp Counter (tsc) which is a high frequency (400 mhz) counter provided by

the processor and used for precise timing and the Programmable Interval Timer

(pit). The pit is a programmable alarm clock usually implemented by a 8254

cmos chip [14]. It can be programmed to issue interrupts on IRQ0 at a fixed

rate and is normally used by operating systems to invoke the process scheduler

at regular intervals.

3.2 The grub boot loader

A boot loader is the first program that is run by the computer bios. It is respon-

sible for loading the operating system kernel in memory from an external resource

and transferring control to it. On i386, the boot loader is installed on the first

512 bytes of the first floppy disk or the first hard drive, which is referred to as

CHAPTER 3. THE NANOKERNEL 31

the Master Boot Record (mbr). Because this space is often too restrictive, only

an initial part of the boot loader is installed on the mbr; the remaining parts

are usually installed on the first sectors of the hard disk partition that contains

the operating system. Because the boot loader must know the internals of the

operating system, such as the address of the start-up method, each operating

system uses its own boot loader.

The grub boot loader is an effort aiming to produce a boot loader that can

directly boot all existing operating systems. grub is a two stage boot loader: a

bootstrap 512 byte file (stage1) is installed on the mbr and the main boot loader

executable (stage2) is installed on the boot sector of any hard disk partition.

The boot loader uses a configuration file (menu.lst) to get information about

the kernel to load, possible additional files and the kernel command line, if any.

The boot loader can access the operating system’s filesystem to load the kernel

and the configuration file by means of filesystem drivers embedded into stage2

when the boot loader is installed. At boot time, grub reads the configuration file

and loads the specified kernel and the additional modules on consecutive memory

addresses starting from 0x100000 (1mb) and transfers execution to the kernel

entry point. grub supports many advanced features, such as network booting

and elf format support, but for our system its the most important feature is

support for the Multiboot specification.

The Multiboot specification

The Multiboot protocol [10] aims to unify the different boot mechanisms found

in open source operating systems. The specification requires that a special data

structure (Multiboot header) is present at the beginning of the kernel executable

file. The Multiboot header includes fields that can force the boot loader to provide

information about the computer hardware; the information that can be provided

varies from probed memory areas to video adapter capabilities. Also, the kernel

entry point and the text and data segments can be described in the Multiboot

header. The boot loader recognises the Multiboot header by a ‘magic number’

found at its beginning and, after loading the kernel, sets the ebx processor register

to the address containing the information requested by the kernel.

CHAPTER 3. THE NANOKERNEL 32

3.3 Implementation

The JikesNode nanokernel has a specific target: to provide the runtime environ-

ment for the JikesRVM to run. The nanokernel should only initialise and use

those bits of the i386 architecture that are vital for the system. The functional

requirements are following:

• Incorporate the Multiboot information header.

• Initialise the memory management subsystem by providing separate seg-

ments for user and kernel code. Initialise the kernel space and the user

space execution context.

• Initialise the idt table with interrupt handlers for the required interrupts

and convert the interrupts to signals supported by the JikesRVM.

• Initialise other hardware components.

• Use the system console for output and provide a debug mechanism.

• Link the code to the appropriate base address.

The JNode operating system includes a nanokernel that can satisfy some of

the requirements set above. The decision was made to base our work on JNode’s

nanokernel and to extend it to support the features our system needed. The

JNode kernel was entirely written in assembly language. We tried, however, to

avoid the use of assembler as much as possible in our system and implement

the architecture independent pieces in the c language. Table 3.1 describes the

distribution of c and assembler in the nanokernel’s implementation.

Multiboot information header

As mentioned before, the Multiboot information header has to be directly linked

in the first bytes of the kernel. The nasm i386 assembler used for the project

compiles the assembly code sequentially, meaning that the output object file’s

symbols appear in the same order as in the assembly file. Therefore, implementa-

tion was straightforward: the Multiboot information header forms the beginning

of the start.s file, the first file processed by the assembler. The actions re-

quested from the boot loader through the header’s flags field was to map the

usable memory ranges and to align the kernel code on a 4k boundary so its size

is a multiple of the memory page size.

CHAPTER 3. THE NANOKERNEL 33

Files Lines of code Size (source) Size (compiled)
assembler:
console.s, cpuid.s, de-
bug.s, heap.s, ints.s,
mm.s, start.s, i386.h

1617 34.2Kb 50Kb

C:
console.[ch], inter-
rupts.c, kernel.[ch]

669 16.1Kb 16.4Kb

total: 13 files 2286 50.3kb 66.4kb

Table 3.1: Nanokernel code distribution and sizes

Memory management initialisation

Both segmentation and paging are used in JikesNode. Basic protection between

kernel space and user space is provided by employing different memory segments.

Paging is not used as a memory management mechanism but as an additional

protection mechanism for the kernel code when executing an interrupt handler in

kernel space.

All memory management initialisation code is included in the mm.s assem-

bly file. The gdt table is initialised with entries for the kernel code and data

segments, the user space code and data segments and a tss entry. The code

segments are read-only and the data segments are read-write. The tss struct is

mainly used for preserving the stack pointer state when switching between kernel

mode and user mode. The gdt table address is loaded to the gtdr processor

register and then a long jump is performed to the kernel code segment. After-

wards, a page directory, a page table and the required pages are created. We use

4k pages for the first 4mb of paged memory and 4mb pages for the rest of the

memory. The pages that fall into the area used by the kernel (as denoted by the

kernel begin and kernel end assembly labels) are marked read-only. Finally,

the processor’s esp register, the stack pointer, is set to the bottom of the space

specifically reserved for use as a stack in the heap.s file, labeled kernel stack.

An overview of the memory status after the memory has been initialised and the

system components loaded is shown in figure 3.2.

CHAPTER 3. THE NANOKERNEL 34

0x100000 0x11F000 0x1200000 0x3200000

Page
Directory

METADATAIMMORTAL

4k 4M

Page Table

4k 4k 4M 4M 4M 4M 4M4M 4M 4M 4M 4M 4M 4M

0x0 0x8000000

TSS

Kernel Code segment Kernel Data segment User code segm User Data segment

KERNEL

GDT

RVM Image
RVM Memory Management

Reserved Area FREE MEMORY

= 4k pages

4M = 4M pages

4k

Figure 3.2: System memory after initialisation

Interrupt handler initialisation

The interrupt handler code in JikesNode works in three steps: i) an interrupt spe-

cific assembly routine accepts the interrupt, ii) a c function (default interrupt -

handler) which maps the interrupt to the appropriate signal is called, iii) and

the JikesRVM signal handler is directly invoked by the c callback. The interrupt

handler setup code uses a set of assembler macros to prepare the interrupt han-

dler code (int {no}error) and setup the appropriate entry into the idt table

(intport).

int {no}error
For each interrupt, the int_error macro generates a stub <int name> rou-

tine which pushes the interrupt specific handler address and the interrupt

number (both arguments to the macro) to the stack and calls the generic

interrupt handler routine (inthandler). The int_noerror version is used

for interrupts that do not produce an error code and pushes a dummy er-

ror code on the stack in addition to what the int_error does because the

generic interrupt handler expects the same task layout in both cases.

intport

The intport macro uses the stub_<int_name> autogenerated routine and

the interrupt number to produce an entry for the idt table.

CHAPTER 3. THE NANOKERNEL 35

The inthandler routine pushes the general registers on the kernel stack,

checks whether it is run in kernel mode3, loads the kernel’s data segment descrip-

tor to the ds register and jumps to the interrupt specific handler. Because the

JikesRVM signal handler code requires write access to the stack, a copy of the

interrupt handler stack is saved in the memory area labelled int_regs. When

the interrupt handler returns, the stack is restored from the int_regs copy, the

user code registers are restored from the stack and an iret instruction is issued

to signal the end of the interrupt handler and switch back to user mode.

IRQs are handled in almost the same way as interrupts, the main difference

being that there is no need to generate a stack copy. The c callback function in

case of IRQs is default irq handler. A notable exception is irq0 (used by the

pit) whose interrupt handler directly calls the JikesRVM thread scheduler function

for efficiency. Also, care is taken to re-enable the pic after an IRQ handler has

finished processing an IRQ, which by default is suspended after delivering an IRQ.

Currently, there is no support for transferring received IRQs to the Javaos IRQ

handler. The code for the interrupt handlers is in the ints.s and interrupts.c

files.

Hardware component initialisation

Several hardware components are initialised prior to jumping into user mode. We

should notice that we do not provide drivers for generic usage into the nanokernel

for those components.

Serial port The serial port is used to redirect the console output to it. A virtual

terminal can then be connected to a physical serial port or an emulator can

directly dump the serial port to a file. The first serial port is initialised by

writing special control words to the 0x3f8 I/O port.

PIT As in most OSs, in JikesNode the pit is used to trigger reschedule sessions.

The pit is programmed by writing to the 0x43 I/O port. As an initial

value, the pit was programmed to issue 100 irq0 interrupts per second.

The actual value should be subject to careful experimentation.

FPU The JikesRVM can produce code that uses the floating point unit of the

3If it is, then an interrupt has arrived while executing the interrupt handler, a situation
which we are not prepared to handle.

CHAPTER 3. THE NANOKERNEL 36

processor. Prior to usage, the fpu is initialized using the fninit instruc-

tion.

System console and debugging support

Console writing support is implemented by directly writing to the video memory

address 0xb8000. Each written character consists of its 8-bit ascii value and an

8-bit attribute value which controls how the character is displayed. In JikesNode,

the attribute value is fixed to display a white character on black background.

Some basic functions such as printf and putchar were implemented and the

console can scroll text if the text buffer is full. Console output support is only

supposed to work in kernel mode, during early system initialisation. A full console

implementation is provided by the JikesNode console driver, written in Java.

Console functionality is implemented in console.[ch].

The nanokernel features a limited debugging facility that is constrained to

printing the processor register values when executing an interrupt handler. The

debug function (dump registers) also takes advantage of the disassembler that

was plugged into the kernel for use by the JikesRVM signal handler to print

a disassembled version of the stack contents. The function is declared in the

interrupts.c file. An assembly function (sys print intregs) that prints the

register contents, but can work when in user mode, is provided in the debug.s

file. The function overwrites screen contents.

Linking the nanokernel

The nanokernel uses the elf [31] binary file format which is directly supported by

the grub boot loader. The elf format divides the executable file into a number

of sections, two of which are required to be present in every elf binary: i) the

text section for read only executable code and ii) the bss and/or text sections

for read-write runtime data. Linkers typically use the data section for initialised

variables, for example strings, and leave uninitialised variables for the bss section.

Other sections used are the rodata section for variables declared as constants and

the dynamic section which holds dynamic linking information.

We used the GNU ld linker to link the nanokernel. The link base address was

set to 0x100000, this address where grub loads the nanokernel. The gnu c com-

piler was used to compile the c language files and the nasm assembler compiled

the assembly files. In the assembly source code, two sections (code and data)

CHAPTER 3. THE NANOKERNEL 37

were declared. The user mode stack and the kernel mode stack declared in the

data section. A linker script was used to relocate the two sections appropriately

in the final elf file. The build procedure was intergrated to the JikesRVM build

process, analysed in page 45.

Runtime operation

The kernel and the JikesNode Java code module are loaded to memory by the

boot loader. After running the memory management and interrupt handling ini-

tialisation routines, the kernel executes an interrupt return (iret) instruction to

switch to user mode. In user mode, the kernel does little more than calculate the

beginning and end adresses for the JikesNode module and pass them as arguments

to the JikesRVM initialisation code.

Chapter 4

The Jikes Research Virtual

Machine

If Java had true garbage collection, most programs would

delete themselves upon execution.
— Robert Sewell

Perhaps the most important subsystem of a Javaos is its Java Virtual Ma-

chine. It is responsible for providing core services, such as bytecode compilation

to native code and for acting as a resource manager. In general, a JVM that

adheres to the specification [22] cannot act as a Javaos core as the specification

specifically assumes that JVMs should be run on top of a real operating system.

A significant amount of effort has been put into modifying the JikesRVM to make

it run on top of the JikesNode nanokernel.

The JikesRVM emerged as an open source version of an ibm internal project

called Japaleño [2]. Since then, it has become the testbed for many institutions

that conduct research on virtual machines. As a result, it contains some advanced

features such as an optimising bytecode to machine code recompilation system,

several GC strategies and a sophisticated thread execution mechanism. The VM

itself is written in Java.

This chapter describes those bits of the JikesRVM architecture that were of

interest to this project and how the JikesRVM was modified to allow it to run

without a supporting operating system.

38

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 39

HEAP

Runtime (Threads,...) VM_MagicVM_SysCall

Compilers
 Baseline

 Optimising

Garbage Collectors
 Semispace

 Mark - Sweep

 BootImageRunner
Syscall

Interface
Runtime
Support

Runtime
Initialisation

method1
method0

type

...

Object[] ...
method info

field info

Class

Code

Compiled
method

TIB
field1
....

status

Object 1

TIB
field1
....

status

Object 2

Object Instances Object Models

 S
ta

ti
cs

 (J
TO

C
)

Statics

String1

Figure 4.1: High level view of the JikesRVM architecture

4.1 The JikesRVM architecture

An overview of the JikesRVM architecture can be seen in figure 4.1. There are 4

important subsystems in the JikesRVM architecture [12, Chapter 6]:

Core Runtime Provides services to execute applications and to interfacing li-

braries. Its subsystems include the classloader, the thread mechanism, the

bytecode verifier and the system call interface along with the magic interface

which are explained in 4.1.1.1 .

Compilers Includes the bytecode to native code compilers and the adaptive op-

timisation framework. The JikesRVM includes two families of compilers, the

baseline compiler which is fast but does not implement any optimisations

and the optimising compiler which only compiles the parts of the running

program that consume the most time of the program’s execution. Runtime

information about the program is collected and retrofitted to the compiler

by the adaptive subsystem.

Memory Managers The JikesRVM uses a unified, extensible memory manage-

ment framework called mmtk [5]. It accommodates several GC algorithms

and memory layout plans, which are selectable at compile time.

Native Runtime The native runtime is the only part of the JikesRVM that is

not written in Java. It is used for three reasons: i) to load the Java image of

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 40

the JikesRVM in memory and branch into it (4.1.2), ii) to handle exceptional

conditions before they are propagated to the VM (4.1.1.3), iii) to provide a

system call interface to the underlying operating system (4.1.1.2).

Because the JikesRVM is written in Java, all its subsystems run in the same

memory space as the executed programs. As a consequence, they share global

structures such as the Java Table of Contents (jtoc) that stores references to

static fields and to all loaded classes’ type information blocks (tib). The memory

management subsystem knows about the memory resources the VM uses and does

not perform GC on that memory. The information on the memory layout is stored

in the mmtk’s memory usage plan; the plan divides the available memory into

sections, which specifically declare a memory area as a ‘garbage-collectible’ area

or not.

4.1.1 Runtime

JikesRVM uses pthreads to multiplex Java threads on physical processors. Usu-

ally, for each physical processor a pthread is spawn and is encapsulated by the

VM Processor class. Each virtual processor holds a set of thread queues to store

threads in various processing states, such as the ioQueue and the runQueue. Us-

ing a fifo scheduling policy, the scheduler always selects the first thread in the

runQueue and assigns its context to the underlying pthread. There is no time

slicing policy for the scheduler; a thread stops executing when it voluntarily calls

the yield method or when it is blocked by a lock. A load-balancing mechanism

distributes the threads among virtual processors.

4.1.1.1 Bypassing the type system

Occasionally, subsystems of the JikesRVM must use functionality that is not di-

rectly supported by the Java language, e.g. pointer arithmetic or unsafe casts.

As an example the thread switching mechanism needs to save the running thread

context (processor registers and the stack) before switching to the new thread.

The implementing class, VM Magic, uses function prototypes declared as native

whose existence is known by the bytecode compiler. When the compiler encoun-

ters calls to these methods, it inlines the required assembly code for the magic

method into the caller method. A special class that implements pointers and

pointer arithmetic is also provided (VM Address).

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 41

4.1.1.2 System calls

The JikesRVM must use system calls to communicate with the underlying OS and

to implement the thread multiplexing functionality described in 4.1.1. The native

runtime component implements stub functions for invoking system calls that

convert the JikesRVM system call parameters to native call parameters. The boot

image header (4.1.2) contains pointer placeholders in preconfigured locations for

each implemented system call. These placeholders get filled in with the addresses

of the corresponding stub functions. The VM SysCall class provides a set of static

functions that use the VM Magic conventions to invoke the native system call.

4.1.1.3 Exception handling

Exceptions in the JikesRVM context can either be normal Java exceptions or

processor generated synchronous or asynchronous exceptions. The first case is

handled internally by the JikesRVM; in the latter cases, support from the native

runtime is required. The exceptions reach the JikesRVM in the form of Unix

signals. The signal handler code differentiates between synchronous exceptions

(sigsegv, sigfpe, sigtrap) which are delivered when the code performs an

illegal operation (null pointer access, division by zero, stack overflow respectively),

and asynchronous exceptions (sigalrm, sigquit, sigterm) which are usually

generated by user intervention. Synchronous signals are handled by creating an

artificial stack frame on the current thread’s stack with the appropriate values

and setting the instruction pointer to the Java exception handler. Depending

on the signal, the next instruction to be executed might be needed to resume

execution after the signal handling process; a disassembler is then required1 to

examine the current code frame. In case of asynchronous signals, the native

runtime manipulates the stack in a similar way, using the JikesRVM exit method

as the signal handler.

4.1.2 The boot image

JikesRVM cannot bootstap itself because Java bytecodes are not executable under

any operating system. To address this problem, the JikesRVM developers intro-

duced the concept of the boot image, a structured lump of compiled bytecodes

whose header is used to identify the location of the Java bootstap code in it.

1Only required on the i386 architecure, where the instruction length is not fixed.

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 42

The boot image is generated after compiling the Java source files by the Boot-

ImageWriter program. The BootImageWriter uses an external JVM to load and

initialise the JikesRVM in a special boot image mode. The initialised JikesRVM

loads a set of pre-defined classes (referred to as primordials), compiles them to

native code and outputs the compiled code in a byte array. It then appends the

boot image header to the beginning of the byte array and fills it in with the off-

sets of important system components such as the jtoc and the initial processor

object.

4.1.3 The build system

The JikesRVM build system is a collection of Unix shell scripts. It is quite cus-

tomizable but hugely complicated. The configuration script (jconfigure) uses

two files which contain configuration parameters for a) the VM runtime envi-

ronment, such as the underlying operating system (from now on host config)

b) the combination of compiler and GC implementation to use (vm config) [12,

Chapter 2.3].

Among others, the host config file specifies some parameters especially

important for the project:

• rvm for single virtual processor: Controls whether JikesRVM should

use pthreads to map Java threads to physical processors or not.

• bootimage load address: The physical address where the bootimage

should be loaded by the operating system. The JikesRVM load address has

to be specified in order to avoid conflicts with dynamically loaded shared

libraries on the target system.

• maximum mappable address: Controls the maximum physical address

the JikesRVM can access.

The jconfigure script outputs a set of build scripts whose contents are based

on parameter values defined in the configuration files. The build process is di-

vided into four phases which: i) collect the required files into the build directory,

ii) compile the required Java files, iii) build the boot image, iv) compile the native

runtime c++ files. Additional phases can be inserted, for example to compile

an additional module, but the build system does not support incremental com-

pilation. Finally, the build system features a preprocessor that can include or

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 43

exclude Java code from the compilation stage, similarly to the c preprocessor.

4.2 Implementation

As discussed in 2.2.1, a JVM has two roles in the context of the Javaos : to pro-

vide the basic execution environment and to manage low-level shared resources,

namely memory and interrupts. JikesRVM, and in particular the native runtime

environment, had to be extensively modified in order to be able to run without

the support of the operating system. Some minor modifications are also needed

to implement resource management functionality.

4.2.1 Changes to the runtime

The native runtime from the i386 Linux JikesRVM distribution was used as a

basis for our native runtime implementation. The source code for the system call

interface (sys.C), the signal handlers (libVM.C) and the command line parser

(cmdline.h) was imported. A major concern throughout the process was the

JikesRVM’s interdependencies with the GNU classpath. Because both JikesRVM

and Jnode use the GNU classpath, though in a different manner, the changes

made to the classpath are described in section 5.2.

To simplify the development of an initial prototype and also to speedup the

build cycles, the simplest configuration possible was chosen for JikesRVM. The

rvm for single virtual processor parameter was set to disable the depen-

dency on the pthreads library (which our nanokernel does not provide) and the

JikesRVM was built with the prototype configuration set. This set provides the

baseline compiler and a simple mark-sweep GC.

System calls JikesRVM uses system call stub functions to implement access to

files, network connectivity and threading. This functionality is exported to the

Java programs through the classpath. In the context of Javaos though, these

services should normally be provided to the system by higher level components,

but also be exported through the classpath. Therefore, the JikesRVM runtime

only has to implement a small subset of the system call interface that will allow

it to operate until the Jnode operating system is loaded.

The first step was to decide which system calls were needed to boot the

JikesRVM until it could be able to use its own classloader to load external classes.

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 44

Group Implemented Comment
Console Output sysWrite* Use the printf function provided by the

kernel
File manipula-
tion

- Provided by the Jnode filesystem layer

Math Functions *Float*,
Double

Implemented by importing code from
FreeBSD libc. Mainly used to speed
up type conversions.

Memory man-
agement

sysMmap, sysCopy,
bzero

Used gcc assembly built-in functions for
*Copy, *bzero. sysMmap always returns
true

Networking - Provided by the Jnode networking
layer

Thread Manip-
ulation

- Not applicable

Thread Switch-
ing

processTimerTick,
TimeSlicer

processTimerTick called directly by the
timer interrupt handler, *TimeSlicer*

used by the VM boot method.

Table 4.1: Implemented system call stubs.

The first system calls implemented were the sysWrite* functions that write mes-

sages to the console by directly calling the kernel’s printf function. For the rest

of the system calls dummy implementations were provided which do little more

than writing their name and arguments to the console. That allowed to easily

identify all the functions needed when JikesRVM boots. As it turned out, only a

very small subset of system calls were actually used. Table 4.1 lists the system

call groups that were implemented.

Signal Handlers The logic of signal handling has not changed in the JikesNode

JikesRVM native runtime. However, the semantics did change as a result of the

differences in signal generation in the nanokernel. There is no formal support

for Unix like signals in the nanokernel; signal handlers are directly called from

the corresponding interrupt handlers. The correct signal identification number,

the interrupt memory address and the interrupt handler stack (section 3.3) are

passed as arguments to the signal handler in order to minimise the amount of

changes to it. Some stack bound checks were also removed due to differences in

the location of the currently used stack; in normal operation, the signal handler

runs on the user space stack whereas, in JikesNode, the kernel space stack is used

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 45

because the caller, the nanokernel’s interrupt handler, is executed in kernel mode.

Command line parser The command line parser is used by the JikesRVM

to convert its command line to runtime options. The command line parser was

imported along with some string related c functions needed for its operation.

The initial plan was to use the command line parser to exploit the command

line feature the grub boot loader offers in order to dynamically set options to

the JikesRVM through the grub configuration file at boot time. Unfortunately,

problems in the version used for the project prevented grub from returning the

command line passed to it. However, the command line parser can still be used

by assigning it to a static string and recompiling the kernel.

4.2.2 The build system

The JikesRVM build system was changed to accommodate an extra compilation

stage that processes both the JikesRVM native runtime sources and the nanokernel

sources. The integration was necessary as long as there are direct function calls

across the boundaries of the two subsystems. The jconfigure script was modified

to output an extra builder script, named jbuild.jnode. The new builder first

copies the native source files in the JikesRVM build directory and then compiles

them into a single binary file. The linking stage is described in section 36.

An important consideration during the development of the build script was

to allow the build system to construct the JikesRVM image without depending

on the compilation of the runtime. This approach had a strong prerequisite: the

link address of the JikesRVM image should be known prior to its compilation.

When running on top of an OS, JikesRVM does not need to care about its link

address; the OS virtual memory subsystem can load it to any address. In fact,

the JikesRVM developers have set the bootimage load address configuration

parameter to a rather high number (0x4300000) to avoid conflicts with shared

libraries. In our case, the grub boot loader loads the JikesRVM image directly af-

ter the nanokernel. Since the nanokernel’s load address is known (0x100000), the

JikesRVM load address could be guessed by adding the nanokernel size to its load

address. The resulting address is then assigned to bootimage load address

parameter and the build process is restarted. The proposed solution does not

always work; the problem seems to be in the algorithm used by grub to decide

the address to load the JikesRVM image. Most of the times, this address is the

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 46

nanokernel end address plus a padding to align it to a 4k boundary; however,

sometimes, grub adds another 4k to the padding, as if it had to align the nanok-

ernel address to an 8k boundary. The approach used in the project always aligns

to a 4k boundary.

4.2.3 Changes to the VM

A small amount of changes had to be done to the VM. For all changes made,

the simplest possible approach was followed. In case a VM subsystem had to be

disabled, the subsystem’s initialisation method was removed from the JikesRVM

initialisation method (VM.boot()). We relied on the Java exception mechanism to

receive errors in case of using an uninitialised subsystem. First, the JNI support

was disabled because, obviously, there is no need of running native methods in

JikesNode. Some class initialisation methods that depended on the JNI subsystem

were also disabled. A few system calls were added to support reading to and

writing from I/O ports and to read the result of the cpuid processor instruction.

The required native system calls were added to the native runtime.

4.2.4 Not implemented functionality

Lack of adequate time prevented the addition of the following required function-

ality to the VM:

• A native runtime method for handling IRQs and propagating them to the

JNode IRQ manager. This change would probably require the development

of an asynchronous notification mechanism, similar to the exception han-

dlers.

Implementation suggestion A new method, for example deliverIRQ,

has to be added in the VM Runtime class. This method should disable the

GC and call the corresponding static method in the JNode IRQ manager.

Because the deliverIRQ method has to be called from the native runtime, a

jtoc entry is required in the VM BootRecord class. The native counterpart

should only call the Java method with the IRQ number as an argument.

• Support for managing Direct Memory Access (dma) areas in the mmtk.

• We did not check the optimising compiler or advanced memory managers

with the current runtime implementation.

CHAPTER 4. THE JIKES RESEARCH VIRTUAL MACHINE 47

4.2.5 Runtime operation

After the nanokernel has initialised the computer components, it calls the check-

Multiboot kernel function to calculate the size and the initial address for the

loaded JikesRVM boot image. It then branches into the JikesRVM native code

component, which calls the setLinkage method to link the system call stub

pointers to the boot image header. An assembly routine takes over and transfers

the control to the Java code boot thread. The VM.boot method is called and

after initialising the memory manager and the scheduler, JikesRVM is ready to

run the class specified in its command line.

Chapter 5

Merging the components

If builders built buildings the way programmers wrote pro-

grams, then the first woodpecker that came along would

destroy civilization.
— Gerald M Weinberg

5.1 The JNode operating system

The JNode operating system is a recent effort to create an environment in pure

Java that will be able to execute Java bytecodes natively. It includes a VM

implementation, a custom version of the GNU classpath and a device driver in-

frastructure with device drivers for many widely used hardware components. It

can be directly booted on the i386 architecture and execute simple programs. It

does not support multiprocessing or multiple simultaneous users yet.

The JNode distribution is split into 6 packages, whose contents can be seen in

table 5.1. Not all sub-packages are at the same level of development; in particular,

while the core and shell packages are fairly complete, the net and especially the

gui package are still very immature. For JikesNode, the core, shell and fs packages

were used.

5.1.1 Components of the JNode architecture

5.1.1.1 The plug-in architecture

All components of JNode, except for the VM, the classpath and the plug-in ar-

chitecture itself, are plug-ins to the system. A plug-in has an associated xml

48

CHAPTER 5. MERGING THE COMPONENTS 49

Package Description

core Includes the classpath implementation, the JNode VM,
the resource managers, the plug-in manager and the de-
vice driver infrastructure and the device drivers.

fs Devices drivers for block devices and implementations of
various filesystems.

shell Command line implementation and various shell com-
mands.

net Device drivers for network interfaces, network protocol im-
plementations and command line clients for various pro-
tocols.

gui Attempt to implement the java.awt package, in a very
early stage.

builder ant based builder tasks for building the system and cre-
ating the boot disks.

Table 5.1: The JNode project packages

descriptor and is contained in a Java ARchive (JAR) file. Plug-ins are assembled

during the build process and are contained in the initial boot image. Plug-ins can

define extension points which are subsystem or domain specific implementations

of functionality that can be accessed with the same interface. As an example,

all filesystem drivers are hooked to the org.jnode.fs.types extension point

and thus their existence is known to the system and their functionality can be

accessed through the FileSystemType interface. Other types of plug-ins are li-

braries, which provide shared implementations of common functionality (e.g. the

xml parser), and runtime plug-ins which export commands that can be started

through the shell. Each plug-in has its own class loader and can access a lim-

ited set of classes, namely system plug-ins and predefined (in the descriptor file)

library plug-ins.

The central part of the plug-in architecture is the plug-in manager. It is the

container object of the plug-in registry and the plug-in loader and defines methods

to start, stop and load plugins. The registry holds information about the loaded

plug-ins which is derived from the plug-in descriptor files and is responsible to

use the provided plug-in loaders to load plug-ins and resolve dependencies. A

plug-in loader is used to load a plug-in from a resource, such as a url or the boot

image JAR file. Different instances of plug-in loaders are managed by the loader

manager.

CHAPTER 5. MERGING THE COMPONENTS 50

5.1.1.2 The device driver infrastructure

All device drivers in JNode share a common infrastructure. A driver controls a

device and is an implementation of an api specific to the device hardware. An

api is a common method of controlling a class of devices that share common oper-

ating characteristics, for example block or character devices. A bus is a resource

manager for a set of devices that are connected to it; it can register for receiving

interrupts to the resource manager, execute commands specific to the hardware

bus it encapsulates and probe the hardware for a device. All buses are organised

below the system bus, which is the root of the system device hierarchy tree. A

device is a software representation of a hardware device and holds references to

its bus, to the controlling driver and to the apis it implements and can emit

notifications for specific events, such as start and stop events.

The controller of the device driver infrastructure in JNode is the device man-

ager, which is a system plug-in. Associated with the device manager are the

device finders and the device mappers, which are defined as plug-in extension

points. A device finder searches for and reports devices found on a particular

bus. Device mappers search for device drivers for a particular device. The device

manager holds references to all devices, the device finders and the device mappers

in the system. When a new device is found by a device finder, it is registered to

the device manager and device mappers are queried to return a device driver for

the device. For buses that support asynchronous notifications when a new device

is connected to them (e.g. usb), an event mechanism notifies the device manager

which then undertakes to map a driver to the device.

5.1.1.3 Resource management

The JNode OS can share 3 distinct types of resources among Java threads:

i) Memory regions, ii) IRQ’s and iii) I/O ports. Each resource can have a resource

owner, and depending on the resource, it can be shared among owners. Memory

regions and I/O port resources are handled in the same manner. A system-

wide table for each resource associates each resource unit with a resource owner.

Synchronised methods provide access to that table by the associated resource

manager. In order to claim an I/O or memory resource, a system component first

tries to discover the specified resource manager through the system-wide naming

service and then calls the claimIOResource or claimMemoryResource methods.

CHAPTER 5. MERGING THE COMPONENTS 51

These methods return resource-specific interfaces for accessing the claimed re-

source, for example writing to I/O ports.

IRQ resource management is somewhat different because IRQs can be shared

and the resource manager must respond to external events. A system global table

counts the number of IRQs occurred since the beginning of the system operation

and is directly updated by the nanokernel’s generic IRQ handler function. Each

IRQ is associated with a service thread, which holds references to the IRQ han-

dler methods. At regular intervals, the thread scheduler awakes the IRQ service

threads, which call the respective IRQ handlers if the IRQ count table entry is

greater than the count recorded by the handler.

Finally, a system-wide resource manager offers uniform access to all resources.

The resource manager is part of the JNode VM and is directly used by its GC to

mark system-only read-only and user allocable read-write memory areas and to

provide an interrupt handler (for irq0) that drives its scheduler.

5.1.2 Changes to JNode

The main change that had to be done to JNode was to remove the VM it in-

corporates and adapt it to work with JikesRVM. The VM in JNode is resource

aware and includes the functionality discussed in Section 5.1.1.3. The goal was

to completely remove the VM’s garbage collector, the code generation classes and

the classloader implementation while preserving the interface to the nanokernel,

the resource management functionality and the architecture description classes.

Removing the VM As there was no documentation on the JNode VM archi-

tecture, a trial-and-error approach had to be followed. The org.jnode.assembler

and the bytecode, classmgr, compiler and memmgr sub-packages of the org.jnode.vm

package were removed at the beginning of the process, as they clearly implemented

parts of the VM. A class diagram (automatically generated by the umlgraph tool)

was used to identify some important classes, while others were considered as im-

portant just because of their name. The ”important” classes were a very small

percentage (about 10%) of the total vm classes. The Java compiler’s error output

was used to identify missing dependencies which were added back to the compi-

lation after careful inspection and if and only if they did not contained undesired

functionality.

CHAPTER 5. MERGING THE COMPONENTS 52

The nanokernel interface The nanokernel interface in JNode is mainly pro-

vided by two classes, Unsafe and Address. These classes play the same role as

VM Magic and VM Address in the case of JikesRVM, the main difference being that

in case of JikesRVM the compiler knows their existence and treats them differently

while in JNode a pseudo-JNI implementation is used. Not all methods of Unsafe

were needed for JikesNode, as many of them were used as support for the JNode

VM, for example to circumvent the JNode type system. The implementation used

the JikesRVM equivalents of the specified methods and also added some system

calls to JikesRVM, as discussed in section 4.2.3.

5.2 The classpath

The classpath is the base of the Java language. Both JNode and JikesRVM use

the GNU version of the classpath. The GNU classpath has been developed for

quite a long period of time, but since the exponential increase of the core Java

api’s in Java version 1.4, its evolution no longer represents the current state of

the language. Nevertheless, it supports the basic language packages (java.lang,

java.util, java.net) well enough to enable complex applications, such as JikesRVM,

to work.

The classpath implementation is divided into two namespaces: the standard

java and javax namespaces which implement the classpath classes as described

in the specification and the gnu namespace that specifies internally-used classes.

The classpath is not written in pure Java, as one might expect, because it has to

interface many OS subsystems in order for programs to work. Examples include

the windowing system and the network stack. For that reason, the classpath uses

native code libraries, which are dynamically loaded through the JNI mechanism.

Also, some language features need special support by the VM and cannot be

implemented in the library, for example the reflection and thread api’s. In order

to be VM independent, the classpath uses abstract classes which are expected to

be replaced by the implemented VM with concrete equivalents at runtime. It is

however possible to configure the classpath to not directly load and use external

native libraries but to expect that the runtime will load the libraries on demand

by some external mechanism. In that case, even a runtime that does not support

JNI can use the classpath by losing a little of its functionality.

CHAPTER 5. MERGING THE COMPONENTS 53

JikesRVM and JNode take different approaches on how they use the class-

path. In JNode, all classes that use native methods have either been replaced

by pure Java classes that use the JNode operating system services or completely

removed. The classpath’s make-based build system has been replaced by an ant-

based equivalent. In JikesRVM, the classpath build is controlled by the standard

jbuild builder and is performed by using the classpath’s own builder. There was

no need to modify the classes because JikesRVM supports JNI; only the required

abstract classes are reimplemented by JikesRVM.

The differences described above presented a strong challenge in the effort to

merge the two systems. In addition, the two systems used different versions

of the classpath; in open-source programs, especially those whose code has not

stabilised, even a minor revision version can lead to many changes in the source

code, and unfortunately this was the case with the classpath. Two important

decisions had to be made at the beginning of the effort:

1. Which version of the classpath should be used.

2. Which should be the preferred method to build the classpath.

The solution should i) minimize the changes needed to the source code and ii) min-

imize the changes needed to the build system. The decision was mainly based

on the fact that the classpath should be the first component to be built as both

JNode and JikesRVM depend on it. Also, the JikesRVM should be compiled be-

fore JNode because JNode uses functionality present in internal JikesRVM classes.

Thus, the default implementation of the classpath was used as a basis. This de-

cision was further reinforced by the fact that the JikesRVM build process makes

a number of assumptions about the location of files produced by the classpath

build process. Breaking those assumptions would require a fair amount of work

on the JikesRVM build system.

The changes made by the JNode team to the classpath had to be backported to

the version we used in order for the JNode services to be available to the JikesNode

OS. The JNode builder offered a method to identify the differences between its

own classpath version and the stock classpath. Its output was rather complicated,

but offered good hints as to which classes the porting effort should focus on. Most

differences, as expected, were in the java.io, java.net and java.util packages. The

differences in the java.lang and java.lang.reflect packages were not backported

because most of these classes form the VM specific part of the classpath, which is

CHAPTER 5. MERGING THE COMPONENTS 54

Class C Comment

java.io
DataOutputStream

File

FileDescriptor

FileInputStream

FileOutputStream

RandomAccessFile

M Completely replaced with JNode version. Possible con-
flicts due to different versions. New versions use the
VM* classes to interface with the JNode filesystem api.

FileNotFound-

Exception

M Added FileNotFoundException (String,

Throwable) and FileNotFoundException

(Throwable) constructors.
IOException M Added IOException (String, Throwable) and

IOException (String, Throwable) constructors.
VMFileHandle

VMFileSystemAPI

VMIOUtils

VMObjectStreamClass

VMOpenMode

A Interfaces that are implemented by the JNode filesys-
tem api.

java.util
jar.JarFile

zip.ZipFile

M Use the RandomAccessBuffer for processing memory-
mapped JAR files.

zip.RandomAccess-

Buffer

A Provides methods for the manipulation of memory-
mapped files. Used to access the initial JAR classpath
file.

A Added
M Modified

Table 5.2: Changes to the classpath.

already implemented by Jikesrvm. The java.net package was also not backported

because it would depend on the jnode-net module which was outside the initial

porting plan. Once again, the Java compiler’s error output was used to identify

which classes were missing or had unsatisfied dependencies. Table 5.2 summarises

the changes made to the classpath.

5.3 The build system

The build system is where the three components are brought together. In its

current state, it incorporates the three different build systems of the system

CHAPTER 5. MERGING THE COMPONENTS 55

components and supports component-level build dependencies.

Before actually creating the build system, the build procedure and the non-

functional requirements had to be decided:

• The JikesNode build system should use the existing component build sys-

tems with the least possible changes.

• The build system should be able to identify the dependencies at a compo-

nent level, in order to avoid building an already up-to-date subsystem.

• The dependencies for the system’s boot image should be automatically ex-

tracted and the boot image should be generated by the build system.

The step-by-step approach followed for the development of JikesNode has

generated important preconditions that had to be taken into consideration when

designing the build system. First, the JikesRVM build system incorporates an au-

tomated build for the classpath, using the classpath’s original make-based mech-

anism. The JNode project does also include a classpath build procedure, but

it is not based on the original classpath build system. As discussed above, the

classpath was the first component to be built, because both JikesRVM and JNode

depend on it. Also, the JikesRVM build system had been already modified to in-

clude the nanokernel build (Chapter 4.2.2), and, since it was working acceptably,

no changes should be made to it. Finally, the build system should include a phase

that builds the system’s boot disk in order to ease the build-test cycles.

5.3.1 Implementation

The subprojects were imported into separate directories. Each directory also

contained the build script each project used. The top level directory was added to

a cvs tree to ensure proper backups and code versioning. The ant build tool was

used to coordinate the build process. We did not use the commonly used make tool

for three reasons: i) The JNode build system is based on ant; while it is trivial to

use other build systems from ant, it is not so from make, and rewriting or adapting

the JNode build system is not trivial either. ii) There are strong indications (in

the JikesRVM development lists) that the JikesRVM build system would be moved

towards ant sometime in the future. iii) The author was more acquainted with

ant than with make. A top-level ant script was written that recursively invokes

the build system in each component subdirectory. A component level dependency

CHAPTER 5. MERGING THE COMPONENTS 56

mechanism was developed to avoid rebuilding components that were up to date,

using the ant’s conditional building feature. Finally, the umlgraph tool was

included to the build script to automatically extract uml class diagrams that

helped understand the structure of the subsystems written in Java.

5.3.2 The boot image

The JikesNode boot image is used to assemble the system components in a format

suitable for loading them to memory and starting the system. Both JNode and

JikesRVM include a boot image build step in their build process; the two systems

are similar in principle but differ considerably in the implementation. The JNode

boot disk builder builds the jnode-core package and the modified classpath by

booting the JNode VM in a special build mode, loading and compiling all the

classes. The main difference is that the JikesRVM image builder tries to minimize

the created image size by only compiling the necessary classes for the VM to load

(the primordials).

For the JikesNode build system, the JikesRVM image builder was used. The

default build process for JikesRVM had to be stopped in order to allow the JNode

JAR files to be built prior to creating the boot image. To achieve that, a custom

switch is implemented (-compile) into the jbuild script. A custom shell script is

used to parse the debugging output of the Sun’s Java Compiler in order to extract

a list composed of the compiled JNode classes and the classpath depedencies of

those classes. This list is then appended to the primordials file of the JikesRVM

build process. Care is taken to avoid duplicate entries as they confuse the image

builder. The JikesRVM build is then resumed and the image builder is given the

new primordials file as input. The resulting image file should be directly bootable,

but the described system is not thoroughly tested yet.

In order to load the nanokernel and the JikesRVM image to the system memory

when the computer boots, the typical pc boot conventions had to be used: The

system should be able to find the boot loaded at the start of the boot partition

and the boot loader would then be responsible to load the images in memory

and branch into the kernel. On a normal pc, the operating system and the boot

loader usually reside on the hard drive. The need for fast compilation-testing

cycles during the development of JikesNode prohibited the use of an external

computer for testing; instead, the VMWare, bochs and qemu emulators were used.

All three emulators support booting from exact copies of hard disks, usually

CHAPTER 5. MERGING THE COMPONENTS 57

referred to as disk images. A disk image is a file whose contents are formatted

exactly like a hard disk platter meaning that it is divided in sectors and contains

a master boot record and a master file table. The process of creating a boot disk

file and installing a boot loader on it is described in appendix B.

The boot image creation step is the last step of the build process and is per-

formed into the jbuild.jnode (Section 4.2.2) script developed for the nanokernel

builder. The script uses the mtools package to access the disk image and copies

the JikesNode boot image and the grub configuration file into it. Finally, the

mkisofs tool creates a bootable cdrom image containing the boot disk.

5.3.3 Not implemented

Lack of adequate time prevented the complete integration of the JikesNode com-

ponents. In the author’s opinion, the following changes have to be made before

the system is fully functional.

• The JNode boot image, apart from the nanokernel and the compiled VM

and classpath, contains an archive of the system plug-ins to be used, referred

to as initJar. The current JikesNode build process does not build plug-

ins, although it compiles the required Java files. The plug-in builder from

JNode has to be ported to the JikesNode build system. In order for the

system to use the plug-ins, two system calls have to be implemented in

the JikesRVM native runtime and then exported through the VM SysCall

facility to the JNode Unsafe class.

• The built JikesNode image has not been tested. Moreover, only the nec-

essary bits of the classpath are included in it. The JNode boot image

contains the full classpath compiled in it. The author’s opinion is that the

same should go for JikesNode. The problem is that the boot image size

is predicted to be more than 45mb. A solution to this problem is not to

include parts of the classpath that are really unnecessary, such as java.awt

or javax.swing.

• The JNode main class has to be known to JikesRVM in order to be called

after the vm initialisation. There are two solutions to that: i) Directly

call the JNode init method from the JikesRVM init method and ii) use the

JikesRVM command line to specify the method to load first. In the first

CHAPTER 5. MERGING THE COMPONENTS 58

case, the JikesRVM primordial classloader is going to be used while in the

second a normal application classloader is needed. The correct solution

might only be found by experimentation.

• A mechanism that accepts IRQs and directly calls the required interrupt

handlers could replace the polling mechanism used in JNode. Alternatively,

the generic IRQ handler can be used to update the IRQ manager tables and a

seperate thread should check for recently received IRQs in regular intervals.

Changes to the JikesRVM are required, as discussed in section 4.2.4.

• A small number of minor tweaks might be needed to the JNode core code,

especially in the Unsafe class, which is the main entry point to JikesRVM.

Chapter 6

Conclusions

Multithreaded Java programs are perfectly suited to thread-aware chip multipro-

cessors [34]. Java operating systems, being massively multithreaded, can be the

platforms for developing and deploying applications that exploit the capabilities

of such architectures.

This thesis examined the feasibility of merging an advanced Java operating

system (JNode) with a high performance Java virtual machine (JikesRVM) to form

a new operating system called JikesNode. The engineering work was performed

on an established platform (Intel i386), to avoid the infancy problems of chip

multiprocessor architectures. The project was successful in providing a native

runtime environment for the virtual machine to run on and in making the majority

of the required changes to JikesRVM and JNode in order to work together. Time

constraints in conjunction with the, sometimes, overwhelming complexity of the

project subsystems prevented the completion of the merging effort and the process

of system testing.

First, a thin abstraction layer, the nanokernel, sitting between the hardware

and JikesRVM, was built. The existing JNode nanokernel was leveraged and sev-

eral new features were added to it. Special effort was put into minimizing the

effect it has on system performance by providing shortcuts for frequently called

functions, such as the timer interrupt handler (section 3.3), a feature not existing

in the original JNode nanokernel. Also, the decision to integrate the nanokernel

with the JikesRVM native runtime component allowed for minimising the func-

tionality that needed to be implemented in the nanokernel to support JikesRVM;

subsystems such as Unix style asynchronous notification schemes (signals) were

replaced by direct function calls from the signal source. In its current state,

59

CHAPTER 6. CONCLUSIONS 60

the nanokernel runs stably enough for a JVM to run on top of it. Changes are

required to it to support multiple processors or advanced memory management

schemes.

Furthermore, the JikesRVM was successfully modified to make it boot with-

out the need of an operating system. Both the native code and the Java code

needed a significant amount of change, mostly concerning the integration with the

nanokernel. Fortunately, concepts in the design of the core of JikesRVM, mainly

the jtoc table, allowed us to change the way JikesRVM operates with respect

to signal handling and loading to memory, without needing any changes in the

core system. The output of a sample run of the modified JikesRVM on top of the

nanokernel can be seen in Appendix A.

The final stage of the work proved to be the most challenging due to the size

and complexity of the code that was involved. It included the merging of three

distinct projects featuring three different build systems. A number of different

tools were used to check the differences and mark the pieces of code that needed to

be changed or imported. Two custom tools were used to identify dependencies of

the JNode classes to the main library classpath and to build the disk boot image.

The project integrated the classpath, JikesRVM and the core JNode functionality

to a single build system. A small amount of further change was left to be done

in order for the system to fully function.

Lessons learned

The project was a worthwhile exercise. Having never worked on systems program-

ming before, we gained valuable experience and also came in touch with emerging

technologies and future trends in operating systems and hardware design. The

most important lessons learned throughout the process were the following:

• The project proved the capabilities of the Java language as a generic pro-

gramming tool. With careful design and a clever bootstrapping mechanism

both JNode and JikesRVM were able to combine the advanced type safety

and memory management features of Java with accessing low-level hard-

ware, only requiring a tiny compatibility layer. Device drivers and protocols

are much easier to implement in Java, mostly due to the advanced struc-

tures available in the library, and the resulting code is sometimes smaller

that writing it using a low-level language like C.

CHAPTER 6. CONCLUSIONS 61

• The assertion made in [27, Chapter 6.6] that the complexity of large projects

cannot be dealt without employing a significant amount of meta-programming

was proven valid. Many of the used tools, for example ant, grep and awk,

required declaring program structures in their custom domain-specific lan-

guages. Tackling large projects without being familiar with these languages

or relying on an ide to provide complex search and build functions can only

lead to significant time losses or even loss of interest from the developer’s

part. The Unix programming paradigm of combining tools to perform com-

plex tasks [18] was the preferred method of dealing with problems during

this project. When needed, we did not hesitate to build our own custom

tool to help us perform a particular complex task easily.

• Working with a small group doing advanced research was probably the most

important experience gained. We had the opportunity to communicate and

cooperate with knowledgeable people and to learn the methods employed

and the tools used to coordinate a large project.

Future work

A working prototype of the JikesNode operating system is about 85% complete.

The remaining work to be done is highlighted in various points throughout the

thesis (sections 4.2.4, 5.3.3). A conservative estimate for the time required for

the successful completion of the project would be about one man month. This

includes the time to understand the project’s background and the work carried

out so far.

Java operating systems is a relatively new research area in computer science.

Current implementations tend to provide solutions to well defined problems rather

than focus on building a platform for running applications on. JikesNode is, to

the best of our knowledge, the first implementation that is based on a solid well-

performing, continuously evolving virtual machine and that provides an extensible

architecture and working implementations of the crucial subsystems.

Further work on the JikesNode platform can include:

• Implementation of a process model in order to allow multiple programs to

run concurrently. The isolation primitives and the application loading and

initiating semantics have to be examined. The currently existing approaches

are discussed in section 2.2.1.

CHAPTER 6. CONCLUSIONS 62

• Support for multi-user operation. The notion of user does not exist in

the current implementation. The research can include, among others, the

implementation of security properties (perhaps based on the Java security

domains), the possibility to assign users to running threads, implementation

of user databases and more.

• Support for legacy applications. Work could be done to embed the dynamic

binary translator developed in the Jamaica group[23] for running native

code applications.

• Testing. The system could be tested by running real world applications

which are best suited for multithreaded operation such as web servers or

j2ee servers.

JikesNode could provide a good starting point for all these usefull projects

and in general can be considered as a testbed for novel research on operating

systems architectures.

Bibliography

[1] Acetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,

Tevanian, A., and Young, M. Mach: A new kernel foundation for Unix

development. In Proceedings of Summer USENIX 1986 Technical Conference

(Atlanta, Georgia, June 1986), USENIX, pp. 93–112.

[2] Alpern, B., Attanasio, C. R., and Burton, J. J. The Jalapeño virtual

machine. IBM Systems Journal (2000).

[3] Back, G., Hsieh, W. C., and Lepreau, J. Processes in KaffeOS: Iso-

lation, resource management, and sharing in Java. In Proceedings of the 4th

Symposium on Operating Systems Design and Implementation (San Diego,

CA, Oct. 2000), USENIX.

[4] Bershad, B. N., Chambers, C., Eggers, S. J., Maeda, C., Mc-

Namee, D., Pardyak, P., Savage, S., and Sirer, E. G. SPIN - an

extensible microkernel for application-specific operating system services. In

ACM SIGOPS European Workshop (1994), pp. 68–71.

[5] Blackburn, S. M., Cheng, P., and McKinley, K. S. Oil and water?

High performance garbage collection in Java with MMTk. In Proceedings of

ICSE 2004, 26th International Conference on Software Engineering (Edin-

burgh, Scotland, May 2004).

[6] Bovet, D. P., and Cesati, M. Undestanding the Linux kernel, first

edition ed. O’ Reilly, 2001.

[7] Chen, J., and Bershad, B. The impact of operating system structure on

memory system performance. In Proceedings of the 14th ACM symposium

on Operating systems principles (1993), ACM Press, pp. 120–133.

63

BIBLIOGRAPHY 64

[8] Drossopoulou, S., and Eisenbach, S. Java is type safe — proba-

bly. In European Conference On Object Oriented Programming (Berlin, June

1997), M. Aksit, Ed., vol. 1241 of Lect. Notes in Comp. Sci., Springer-Verlag,

pp. 389–418.

[9] Engler, D., Kaashoek, M., and O’Toole, J. Exokernel, an operating

system architecture for application-level resource management. In Proceed-

ings of the 15th ACM Symposium on Operating System Principles (SOSP)

(Copper Mountain Resort, Colo., Dec. 1995), ACM, ACM Press, pp. 251–

266.

[10] Free Software Foundation. The Multiboot protocol, Jan. 2004.

http://www.gnu.org/software/grub/manual/multiboot/.

[11] Golm, M., Felser, M., Wawersich, C., and Kleinoder, J. The JX

operating system. In USENIX Annual Technical Conference (June 2002),

pp. 175–188.

[12] IBM. The Jikes Research Virtual Machine User’s guide, 2004. Manual

accompanying the JikesRVM source distribution.

[13] Intel Corporation. 8259A Programmable Interrupt Controller, Dec.

1988.

[14] Intel Corporation. 8254 Programmable Interval Timer, Sept. 1993.

[15] Intel Corporation. Intel Architecture Software Developers Manual, Vol-

ume 1: Basic Architecture, 1997.

[16] Intel Corporation. Intel Architecture Software Developers Manual, Vol-

ume 3: System programming, 1999.

[17] The Jnode operating system, 2004. http://jnode.sourceforge.net.

[18] Kernighan, B. W., and Pike, R. The UNIX Programming Environment.

Prentice-Hall, 1984.

[19] Liedtke, J. Improving IPC by kernel design. In Proceedings of the

14th ACM symposium on Operating systems principles (1994), ACM Press,

pp. 175–188.

BIBLIOGRAPHY 65

[20] Liedtke, J. On micro-kernel construction. In Proceedings of the 15th ACM

symposium on Operating systems principles (1995), ACM Press, pp. 237–250.

[21] Liedtke, J. Towards real microkernels. Commun. ACM 39, 9 (1996), 70–77.

[22] Lindholm, T., and Yellin, F. The Java Virtual Machine Specification,

2nd ed. Addison Wesley Professional, Apr. 1999. Also available online at

ftp://ftp.javasoft.com/docs/specs/vmspec.2nded.html.tar.gz.

[23] Mattley, R. Native code execution within a jvm. Master’s thesis, Univer-

sity of Manchester, Sept. 2004.

[24] McKusick, M. K., Bostic, K., Karels, M. J., and Quaterman,

J. S. The Design and Implementation of the 4.4BSD Operating System.

Addison-Wesley, 1996.

[25] Nicholas, T., and Barchanski, J. A. Overview of TOS: a distributed

educational operating system in Java. SIGOPS Oper. Syst. Rev. 34, 1 (2000),

2–10.

[26] The Jikes Research Virtual Machine (RVM), 2004.

http://oss.software.ibm.com/developerworks/oss/jikesrvm/.

[27] Spinellis, D. Code reading: The open-source perspective. Effective Software

Development. Addison Wesley, 2003.

[28] Sun Microsystems. JavaOS: A standalone Java environment, Feb. 1997.

http://www.javasoft.com/products/javaos/-javaos.white.html.

[29] Tanenbaum, A. S. Linux is obsolete. Message sent to comp.os.minix

newsgroup, Jan. 1992.

[30] Tanenbaum, A. S. Modern operating systems, 2nd ed. Prentice-Hall, 2001.

[31] TIS comitee. Tool Interface Standard Portable Formats Specification, Oct.

1993.

[32] Tullmann, P. The Alta operating system. Master’s thesis, University of

Utah, 1999.

[33] WikiPedia, the free encyclopedia. Online.

http://en.wikipedia.org/wiki/Main Page.

BIBLIOGRAPHY 66

[34] Wright, G. M. A single-chip multiprocessor architecture with hardware

thread support. PhD thesis, University of Manchester, Jan. 2001.

Acronyms

Definitions for most acronyms were taken from the WikiPedia project [33].

BSD Berkeley Software Distribution An open source reimplementation of the

Unix operating system from the University of California at Berkeley.

GC Garbage Collection. A system of automatic memory management which

seeks to reclaim memory used by objects which will never be referenced in

the future

GNU GNU is Not Unix. Open source project that was launched in 1983 by

Richard Stallman with the goal of creating a complete free operating system.

GPL General Public Licence. The most common licence accompanying open-

source projects. Grants the user the right to distribute, use, copy and

modify the source code of a program, provided that the modifications are

released under the same licence.

IPC InterProcess Communication. The exchange of data between one process

and another, either within the same computer or over a network.

IRQ Interrupt ReQuest. Interrupts used by peripherals as a way to bring the

processor into attention.

I/O Input/Output. Generic term used to describe the mechanisms of communi-

cation between computer software and hardware.

JAR Java ARchive. A gzip-compatible file format that is used to store compiled

Java classes and associated metadata that constitute a program.

JikesRVM Jikes Research Virtual Machine. A JVM implemented by ibm as a

research program and released under an open source licence [2, 26].

67

BIBLIOGRAPHY 68

JNI Java Native Interface A programming framework that allows Java code

running in the Java virtual machine to call and be called by programs

specific to a hardware and operating system platform.

JVM Java Virtual Machine. A VM that executes Java bytecodes.

OS Operating System. A basic set of programs that communicate with the

computer harware and share resources in order to enable user programs to

run.

POSIX Portable Operating System Interface for uniX. Attempt to provide a

standardised programming interface for Unix environments.

RPC Remote Procedure Call. A remote procedure call is a method that allows

a computer program running on one host to cause code to be executed on

the same host or another host, using the network as a transport medium,

without the programmer needing to explicitly code for this.

RMI Remote Method Invocation. Allows an object running in one JVM to

invoke methods on another object running in another JVM. Provides for

remote communication between products written in the Java language.

VM Virtual Machine. An environment between the computer platform and the

end user which allows the execution of programs not designed for the current

architecture. In the text, used interchangably with JVM.

Appendix A

A sample run output

Multiboot flags = 0x7ef

cmdline =

mods_count = 1, mods_addr = 0x284a0

RVMmodule: mod_start = 0x11f000, mod_end = 0xda9494

mod_size=12841kb cmdline=@

Kernel end: 0xdaa000

Memory map provided by grub

base_addr=0x0, length_low=0x9fc00, type = 0x1

base_addr=0x100000, length_low=0x7f00000, type = 0x1

FreeMem: start=0xdaa000 end=0x8400000 size=121176kb usable pages=2474

Processor id = 0x8a1e20

Booting

Setting up current VM_Processor

Doing thread initialization

Setting up write barrier

Setting up memory manager: bootrecord = 0x11f1c0

mmap succeeded at chunk 19 0x01300000 with len = 1048576

mmap succeeded at chunk 20 0x01400000 with len = 1048576

mmap succeeded at chunk 21 0x01500000 with len = 1048576

mmap succeeded at chunk 22 0x01600000 with len = 1048576

mmap succeeded at chunk 23 0x01700000 with len = 1048576

mmap succeeded at chunk 103 0x06700000 with len = 1048576

Stage one of booting VM_Time

SYS:sysGetTimeOfDay

69

APPENDIX A. A SAMPLE RUN OUTPUT 70

Initializing baseline compiler options to defaults

Creating class objects for static synchronized methods

mmap succeeded at chunk 35 0x02300000 with len = 1048576

Fetching command-line arguments

SYS:sysArg argno=-1 buf=0x671f20c buflen=512

Early stage processing of command line

Collector processing rest of boot options

Initializing class loader

Stage two of booting VM_Time

SYS:sysGetTimeOfDay

Running various class initializers

[Loaded [Ljava/util/Hashtable$HashEntry;]

[Loaded superclasses of [Ljava/util/Hashtable$HashEntry;]

[Initializing java.security.ProtectionDomain]

[Initialized java.security.ProtectionDomain]

[Loaded [Ljava/util/Locale;]

[Loaded superclasses of [Ljava/util/Locale;]

Booting VM_Lock

Booting scheduler

mmap succeeded at chunk 51 0x03300000 with len = 1048576

SYS:sysVirtualProcessorEnableTimeSlicing: timeSlice=10

SYS:setTimeSlicer timerDelay=10

Running late class initializers

[Loaded [Ljava/lang/System;]

[Loaded superclasses of [Ljava/lang/System;]

VM is now fully booted

Initializing runtime compiler

Late stage processing of command line

[VM booted]

SYS: sysCPUID id=0x6752254

Extracting name of class to execute

vm: Please specify a class to execute.

vm: You can invoke the VM with the "-help" flag for usage information.

SYS:Exit 100

Halted.

Appendix B

Creating a boot disk image

Creating a boot disk image and istalling a boot loader on it is not a trivial task;

Most boot images for open source operating systems that can be found on the

Internet are snapshots of a hard drive on which the operating system has been

installed. The following method can be used to create a boot image using only

standard command line tools on the Linux operating system. Assuming that the

grub bootloader is installed to /boot/grub, and the user knows how to use an

i386 emulator, the required steps are the following:

1. Decide the size of the disk to be created. A size that is equal to a power of

2 is preferable because calculations tend to be easier. A disk size of 16MB

(= 224) is used throughout as an example throughout the described process.

2. Create an empty file with the exact size:

dd if=/dev/zero of=disk.img bs=1k count=16k

3. Setup a loop device for the created file (root access required):

losetup /dev/loop0 disk.img

4. Call fdisk on the loop device:

fdisk -C 64 -H 16 -S 32 /dev/loop0

Arbitrary values can be used for the C/H/S switches as long as C*H*S*512

equals to the exact size of the disk. At the fdisk command line (in paran-

thesises the required keystrokes), create a new(n), primary(p) first(1) parti-

tion, set its type(t) to fat16<32m (4) or to fat16(6) and activate it(a,1).

5. Delete the current loop device (losetup -d /dev/loop0) and recreate it

with an offset matching the size of the disk master file table (mft). The

71

APPENDIX B. CREATING A BOOT DISK IMAGE 72

offset can be calculated as:

offset = blocks/sector * sectors to start of partition * 512

where blocks/sector is the S parameter specified to fdisk and sectors

to start of partition equals to 1. The command to create the loop

device is:

losetup -o 32256 /dev/loop0 disk.img

6. Create a dos filesystem on the loop device

mkdosfs /dev/loop0

and mount it to an empty directory

mount -t vfat /dev/loop0 /mnt/scratch

7. Copy the required grub files on the disk image and unmount it:

mkdir -p /mnt/scratch/boot/grub

cp /boot/grub/stage* /mnt/scratch/boot/grub

umount /mnt/scratch

8. Prepare a bootable grub floppy:

dd if=/boot/grub/stage1 of=floppy

dd if=/boot/grub/stage1 of=floppy seek=1

9. Setup the emulator to boot from the floppy disk image and use the hard

disk image as it hard disk. Then start the emulator and the grub command

line should appear. On the command line enter the following commands:

root (hd0,0)

setup (hd0)

The boot image is now ready. The user can use the mtools package to access

the contents of the image e.g.

mdir z:/ to list the files

after adding the following line to ~/.mtoolsrc

drive z: file="/path/to/diskimage" partition=1

Alternatively, the user could loop-mount the disk image with the offset option to

losetup as discussed previously.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation and objectives
	Related work
	Organisation of the thesis

	Operating system architectures
	Established architectures
	Monolithic kernels
	Microkernels

	The Javaos
	Basic architecture
	System components
	Non-functional requirements

	The Nanokernel
	The i386 architecture
	The grub boot loader
	Implementation

	The Jikes Research Virtual Machine
	The JikesRVM architecture
	Runtime
	The boot image
	The build system

	Implementation
	Changes to the runtime
	The build system
	Changes to the VM
	Not implemented functionality
	Runtime operation

	Merging the components
	The JNode operating system
	Components of the JNode architecture
	Changes to JNode

	The classpath
	The build system
	Implementation
	The boot image
	Not implemented

	Conclusions
	Bibliography
	A sample run output
	Creating a boot disk image

