
OPTIMISING DYNAMIC BINARY

MODIFICATION ACROSS ARM

MICROARCHITECTURES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2017

By

Cosmin Gorgovan

School of Computer Science

Contents

Abstract 11

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 16

1.1 Dynamic binary modification . 16

1.1.1 General principles . 16

1.1.2 Uses . 17

1.1.3 Overhead . 17

1.1.4 DBM for ARM . 18

1.2 The ARM architecture . 19

1.2.1 Emergence . 19

1.2.2 The ARM hardware ecosystem 19

1.3 Motivation . 20

1.4 Contributions . 21

1.5 Publications . 22

1.6 Thesis structure . 23

2 Background and related work 25

2.1 Binary modification . 25

2.1.1 Static and dynamic binary modification 26

2.2 Transparency . 26

2.3 The implementation of dynamic binary modification 27

2.3.1 Tool injection / application loading 28

2

2.3.2 Code scanners . 29

2.3.3 Code caches . 30

2.4 Branch linking . 33

2.4.1 Direct branches . 33

2.4.2 Indirect branches . 34

2.5 Performance overhead . 41

3 Overview of MAMBO 43

3.1 Introduction . 43

3.2 Aims and current state . 44

3.3 The ARM architecture . 44

3.4 Scratch space . 46

3.5 Executable loader . 47

3.5.1 The userspace ELF Loader 48

3.6 Code cache . 49

3.7 Code scanner . 50

3.8 System call interception . 51

3.9 Test and development methodology 51

3.10 Plugins . 53

3.11 Transparency . 53

3.12 Summary . 54

4 Branch linking 56

4.1 Introduction . 56

4.2 Indirect branches . 56

4.2.1 Function returns: low overhead return address prediction . 57

4.2.2 Table branches: space-efficient linking 60

4.2.3 Inline hash lookup for indirect branches 63

4.2.4 Fallthrough branch linking 65

4.2.5 Indirect branch target prediction 66

4.3 Direct branches . 67

4.3.1 Direct branch linking . 67

4.3.2 Eliding unconditional direct branches 68

4.4 Evaluation . 70

4.4.1 Experimental setup . 70

4.4.2 Contribution of different optimisations 73

3

4.4.3 Comparison of the space-efficient and fastBT table branch

linking schemes . 74

4.4.4 Overall performance . 76

4.4.5 Code cache size . 79

4.5 Summary . 81

5 Microarchitectural optimisations 82

5.1 Introduction . 82

5.2 Traces . 83

5.2.1 Trace heads . 85

5.2.2 Trace building . 87

5.2.3 Trace size limits . 88

5.2.4 Summary . 88

5.3 Indirect branches . 89

5.3.1 Hardware-assisted return address prediction 90

5.3.2 Low footprint inline hash table lookup dispatch 93

5.3.3 Adaptive indirect branch inlining 96

5.3.4 Huge pages . 100

5.4 Evaluation . 101

5.4.1 Experimental setup . 101

5.4.2 Trace creation threshold 103

5.4.3 Overall performance . 104

5.4.4 Performance counter analysis 105

5.5 Summary . 122

6 Conclusions and future work 124

6.1 Summary and conclusions . 124

6.2 Optimisation selection guidelines 127

6.3 Portability to AArch64 . 127

6.4 Future work . 130

6.4.1 Asynchronous multithreaded trace generation 130

6.4.2 Automatic optimisation of DBM plugins 131

6.4.3 Dynamic microarchitectural optimisations 132

6.4.4 Trace layout optimisations 132

Bibliography 133

4

A Example plugin 140

B The full evaluation results 142

C Raw performance counter values 148

Word Count: 36686

5

List of Tables

1.1 Structure of the thesis. 24

3.1 Linux system calls discarded, emulated or otherwise modified by

MAMBO . 52

4.1 Number of branch mispredictions on Jetson TK1 with different

implementations of shadow branches tables. 76

4.2 Summary of geometric mean overheads for MAMBO, Valgrind and

QEMU running SPEC CPU2006. 76

4.3 Code cache size for SPEC CPU2006, in KiB and number of basic

blocks. 80

5.1 Overview of the NET algorithm. 84

5.2 Comparison of MAMBO traces and NET. 88

5.3 Overview of the systems used for evaluation. 101

5.4 The MAMBO baseline, +traces and the configuration with the

lowest overhead for SPEC CPU2006 on each system. 104

5.5 Overhead under the baseline MAMBO configuration, on ODROID-

XU3 (LITTLE cluster). 108

5.6 Overhead under the baseline MAMBO configuration, on ODROID-

X2. 109

5.7 Overhead under the baseline MAMBO configuration, on Trons-

mart R28. 109

5.8 Overhead under the baseline MAMBO configuration, on Jetson TK1.110

5.9 Overhead under the baseline MAMBO configuration, on APM X-C1.110

5.10 Overhead of the traces optimisation (relative to baseline), on ODROID-

XU3. 112

5.11 Overhead of the traces optimisation (relative to baseline), on ODROID-

X2. 112

6

5.12 Overhead of the traces optimisation (relative to baseline), on Tron-

smart R28. 113

5.13 Overhead of the traces optimisation (relative to baseline), on Jet-

son TK1. 113

5.14 Overhead of the traces optimisation (relative to baseline), on APM

X-C1. 114

5.15 Overhead of the hw ras optimisation (relative to +traces), on ODROID-

XU3. 115

5.16 Overhead of the hw ras optimisation (relative to +traces), on ODROID-

X2. 115

5.17 Overhead of the hw ras optimisation (relative to +traces), on Tron-

smart R28. 115

5.18 Overhead of the hw ras optimisation (relative to +traces), on Jet-

son TK1. 116

5.19 Overhead of the hw ras optimisation (relative to +traces), on APM

X-C1. 116

5.20 Overhead of the hugetlb optimisation (relative to +hw ras +traces),

on Jetson TK1. 117

5.21 Overhead of the hugetlb optimisation (relative to +hw ras +traces),

on APM X-C1. 117

5.22 Overhead of the ldm pc sr optimisation (relative to +traces), on

ODROID-XU3. 118

5.23 Overhead of the ldm pc sr optimisation (relative to +traces), on

ODROID-X2. 118

5.24 Overhead of the ldm pc sr optimisation (relative to +traces), on

Tronsmart R28. 119

5.25 Overhead of the ldm pc sr optimisation (relative to +traces), on

Jetson TK1. 119

5.26 Overhead of the ldm pc sr optimisation (relative to +traces), on

APM X-C1. 120

5.27 Overhead of the aibi optimisation (relative to +traces), on ODROID-

XU3. 120

5.28 Overhead of the aibi optimisation (relative to +traces), on ODROID-

X2. 120

7

5.29 Overhead of the aibi optimisation (relative to +traces), on Trons-

mart R28. 121

5.30 Overhead of the aibi optimisation (relative to +traces), on Jetson

TK1. 121

5.31 Overhead of the aibi optimisation (relative to +traces), on APM

X-C1. 122

6.1 Optimisation selection guidelines 128

6.2 Portability of the optimisations to AArch64 129

C.1 The raw performance counter values for the native execution of

SPEC CPU2006 on ODROID-XU3 (thousands). 149

C.2 The raw performance counter values for the native execution of

SPEC CPU2006 on ODROID-X2 (thousands). 149

C.3 The raw performance counter values for the native execution of

SPEC CPU2006 on Tronsmart R28 (thousands). 150

C.4 The raw performance counter values for the native execution of

SPEC CPU2006 on Jetson TK1 (thousands). 150

C.5 The raw performance counter values for the native execution of

SPEC CPU2006 on APM X-C1 (thousands). 151

8

List of Figures

2.1 The components of a DBM system and the control flow between

them. 27

3.1 The ARM registers. 44

3.2 Translation using scratch registers for an instruction which accesses

the stack. 48

3.3 Structure of an ELF file. 48

3.4 MAMBO data structures for an example basic block. 49

4.1 Example of a typical function call and the translation generated

by MAMBO. 57

4.2 Space-efficient shadow branch table. 61

4.3 Comparison of shadow branch table size for SPEC CPU2006. . . . 61

4.4 Inline hash lookup routine. 64

4.5 Linking of fallthrough branches. 66

4.6 Comparison between translations with and without unconditional

direct branch eliding. 68

4.7 Comparison of basic block sizes. 69

4.8 Relative execution time for SPEC CPU2006 with the ref dataset

on ODROID-X2. 71

4.9 Relative execution time for SPEC CPU2006 with the ref dataset

on Jetson TK1. 72

4.10 Relative slowdown for selected SPEC CPU2006 benchmarks with

the fastBT table branch linking scheme. 75

4.11 Relative execution time for SPEC CPU2006 under MAMBO, Val-

grind and QEMU (ref dataset). 77

4.12 Relative execution time for PARSEC 3.0 with the native dataset. 79

9

5.1 Example control flow graph. Each box represents a basic block.

Block A, the entry point, contains a conditional direct branch,

block C contains an unconditional indirect branch and all other

blocks contain unconditional direct branches. 85

5.2 Inline hash table lookup. 89

5.3 Example of a typical function call. 91

5.4 Comparison of hit rates on a selection of SPEC CPU2006 bench-

marks for indirect branch predictors. 96

5.5 Adaptive indirect branch inlining. 98

5.6 Trace creation threshold vs relative execution time and trace code

size . 104

B.1 Relative execution time for SPEC CPU2006 with the ref dataset

on ODROID-XU3 - with microarchitectural optimisations. 143

B.2 Relative execution time for SPEC CPU2006 with the ref dataset

on ODROID-X2 - with microarchitectural optimisations. 144

B.3 Relative execution time for SPEC CPU2006 with the ref dataset

on Tronsmart R28 - with microarchitectural optimisations. 145

B.4 Relative execution time for SPEC CPU2006 with the ref dataset

on Jetson TK1 - with microarchitectural optimisations. 146

B.5 Relative execution time for SPEC CPU2006 with the ref dataset

on APM X-C1 - with microarchitectural optimisations. 147

10

Abstract

Optimising Dynamic Binary Modification Across ARM
Microarchitectures

Cosmin Gorgovan
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2017

Dynamic Binary Modification (DBM) is a technique for modifying applications

at runtime, working at the level of native code. It has numerous applications,

including instrumentation, translation and optimisation. However, DBM intro-

duces a performance overhead, which in some cases can dominate execution time,

making many uses impractical.

While avenues for reducing this overhead have been widely explored on x86,

ARM, an architecture gaining widespread adoption, has received little attention.

Consequently, the overhead of DBM on ARM, as reported in the literature and

measured using the available DBM systems, has fallen behind the state-of-the-art

by one or two orders of magnitude. The research questions addressed in this thesis

are: 1) how to develop low overhead DBM systems for the ARM architecture,

and 2) whether new optimisations are plausible and needed.

Towards that end, a number of novel optimisations were developed and eval-

uated specifically to address the sources of overhead for DBM on various ARM

microarchitectures. Furthermore, many of the optimisations in the literature

were ported to ARM and evaluated. This work was enabled by a new DBM sys-

tem, named MAMBO, created specifically for this purpose. MAMBO, using the

optimisations presented in this thesis, is able to achieve an overhead an order of

magnitude smaller than that of the most efficient DBM system for ARM available

at the start of this PhD.

11

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses

13

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

First of all, I would like to thank my supervisor, Mikel Luján, for his support,

guidance and contributions during these past four years. His broad experience

has been most helpful in guiding my research. In particular, Mikel has always

encouraged me to consider the broader context, rather than getting caught up in

the details of dynamic binary modification systems, for which I am thankful.

I would also like to thank Alasdair Rawsthorne for encouraging me to start a

PhD and also for introducing me to the fields of dynamic binary modification and

virtualisation. Had I not done the undergraduate final year project on system

virtualisation for ARM, proposed and supervised by Alasdair, chances are that I

would have never started this PhD.

I would also like to thank Oscar Palomar Perez, who has reviewed this thesis

and has provided very useful and thorough feedback despite the tight timeline

caused by my abysmal time management skills. Thanos Stratikopoulos has also

provided feedback on this thesis, for which he has my gratitude.

I would like to thank Amanieu d’Antras and Guillermo Callaghan, the two

other PhD students with whom I have worked on a regular basis. Amanieu was

working on dynamic binary translation during the time I was working on dynamic

binary modification. While we often do not agree on the finer points of mangling

binaries, we have debated these points and occasionally joined efforts throughout

most of our PhDs; MAMBO is all the better for it. Guillermo has been working

hard on porting MAMBO to AArch64. He has made great progress and I am

looking forward to putting the finishing touches together. Guillermo has also

provided feedback on this thesis.

John Mawer has my gratitude for being the first user of MAMBO and pro-

viding valuable feedback and bug reports.

Last but not least, I will thank Amanieu, Mireya Paredes and Yaman Cak-

makci for their support while we were writing up our theses at the same time.

14

This brings us to the other residents of IT301, who deserve our gratitude for

putting up with four of their colleagues being stressed and keeping strange hours

over the past few months.

15

Chapter 1

Introduction

1.1 Dynamic binary modification

1.1.1 General principles

Dynamic Binary Modification (DBM) is a technique for modifying applications

transparently while they are executed, working at the level of machine code. A

system implementing DBM is called a DBM tool or simply a DBM system. To

be able to modify the code at runtime, a DBM system must maintain control of

execution by scanning and, where required, translating all code before execution.

To perform a given task (e.g. to optimise or to instrument the code), additional

(optional) modifications are performed. A DBM framework is a DBM system

which exposes its functionality through an external API, enabling an external

tool to apply optional code modifications. For example, DynamoRIO [Bru04],

Pin [LCM+05] and Valgrind [NS07b] are DBM frameworks, while Dynamo [BDB00]

and QEMU [Bel05] are DBM systems which are not DBM frameworks.

It shall be noted that since a DBM system deals with machine code, a large

part of the implementation of such a system is architecture-specific. Therefore, an

optimised DBM implementation is not easily portable to a different architecture.

DBM can be used both at the system level and at the userspace level. The

main differences between the two consist of isolation and security challenges in

the case of a system level DBM (while for userspace DBM systems these are

mostly handled by the operating system) and handling of irregular changes to

the execution flow: for userspace DBM these consist of signals (on Linux), while

system level DBM has to handle hardware interrupts, exceptions and faults. This

16

CHAPTER 1. INTRODUCTION 17

thesis explicitly deals with a userspace level DBM system. However, the proposed

optimisations for branch handling are generally suitable for use in a system level

DBM as well.

1.1.2 Uses

DBM is a general purpose technique with numerous applications. Most uses of

DBM can be classified in one of three categories: Dynamic Binary Instrumenta-

tion (DBI), Dynamic Binary Translation (DBT) and Dynamic Binary Optimisa-

tion (DBO).

DBI is a technique for dynamically adding instrumentation code. DBI is often

used for fine-grained analysis of applications, since it allows data to be collected

up to the level of individual instructions and data bits. One example of DBI is

Memcheck [NS07a], a tool which allows sources of memory errors to be tracked at

the level of individual bits and which was implemented using Valgrind [NS07b],

a DBM framework.

DBT is a technique for efficiently translating software at runtime from one

Instruction Set Architecture (ISA) to another one. At the system level, DBT has

been used by Transmeta to run x86 software on their processors, which imple-

mented a proprietary VLIW architecture [DGB+03]. DBT is also commonly used

by Virtual Machine Monitors, for example QEMU [Bel05] and those developed

by VMware [AA06].

DBO is a technique which uses runtime information to optimise machine code.

For example, DynamoRIO has been used to show that even programs compiled

with a high level of static optimisation can benefit from dynamic application of

traditional optimisations [Bru04]. Additionally, microarchitectural optimisations

have been demonstrated [Bru04]. Furthermore, the NVIDIA Denver processor

is employing both DBT to execute ARM applications on a proprietary VLIW

architecture and also DBO to optimise the translated code for the VLIW proces-

sor [BBTV15].

1.1.3 Overhead

A general limitation of DBM is that it introduces various overheads compared

to native execution, even if no optional transformations are performed. Such

overheads include increasing the memory usage due to the data used by the

CHAPTER 1. INTRODUCTION 18

DBM system and increasing the start-up time by having to inspect and patch

the code before executing it. However, the most important overhead is the one

affecting execution speed, even after the start-up phase. This overhead varies

significantly between DBM systems, workloads and hardware architectures. The

average overhead on the SPEC CPU benchmark suite can be as low as 10% for

performance-optimised state-of-the-art DBM systems on the x86 architecture and

as high as 1900% for less optimised systems.

Depending on the magnitude of the execution speed overhead, many of the

uses described in Section 1.1.2 can become limited or even impractical. For

example, if the performance of a DBT system is noticeably poor to its users,

then the technology is unlikely to be deployed at all. Similarly, if a profiling

or debugging tool using DBI has high overhead, it might become impossible to

employ it in some cases (e.g. if the intention is to analyse a real-time video game

which ends up running at a very low frame rate under the tool). Finally, it only

makes sense to create a DBO tool when the overhead of the underlying DBM

framework is low enough to be easily amortised.

The execution speed overhead is caused by multiple factors, however it is es-

sential to note that the main source of overhead is the lower execution speed of the

code after being patched by the DBM system and not the patching process itself.

The reasons for the lower execution speed include: the additional instructions

inserted for handling branches, in particular indirect branches, and those used to

hide the DBM system from the application; also microarchitectural causes such

as lower cache hit rates due to the increased code and data sizes and poor branch

prediction rates in the modified code. Section 2.5 further discusses the causes of

performance overhead identified in the literature.

1.1.4 DBM for ARM

The recent popularity of the ARM architecture, especially in the mobile and em-

bedded markets, has created a demand for compatible DBM systems. However,

both the literature and the existing DBM systems have almost exclusively focused

on support for other architectures, especially x86. Consequently, ARM is sup-

ported by only two DBM / DBT systems (Valgrind [NS07b] and QEMU [Bel05]),

neither of which is designed to achieve low overhead. Previously, an ARM port

of Intel Pin has also been available [HK06], however 1) it has since been discon-

tinued and 2) its overhead was around one order of magnitude higher compared

CHAPTER 1. INTRODUCTION 19

to state of the art DBM systems for x86. The lack of publications and exper-

tise on optimising DBM for the ARM architecture, together with the demand

for such tools, both from academia and from industry, presented an interesting

opportunity.

1.2 The ARM architecture

1.2.1 Emergence

Development of fast, low power systems led to the wide adoption of powerful mo-

bile devices in the form of smartphones starting from the late 2000s. This created

the current situation of the consumer mobile device market dwarfing the tradi-

tional computer market and the tentative adoption of low power architectures for

less traditional applications such as datacentres. These platforms have reached

similar complexity with that of more performance-oriented architectures. Most

recent developments aim to further improve power efficiency and performance

using same-ISA heterogeneous multicore chips, such as ARM big.LITTLE, which

combines a cluster of ISA-compatible low power processors and a cluster of high

performance processors on the same chip [ARM13b].

1.2.2 The ARM hardware ecosystem

Multiple vendors are developing and commercialising ARM-based SoCs for differ-

ent markets, such as smartphones and tablets, network appliances, embedded ap-

plications and network servers. Since these markets have different requirements,

a wide range of ARM implementations are commercially available at the same

time. There are two paths through which commercial ARM implementations are

developed. First, an implementation can be licensed from ARM, which allows the

vendor to tweak some microarchitectural parameters such as the size of caches

and TLBs, but does not allow for fundamental changes to the microarchitecture.

Alternatively, the vendor can develop their own implementation, which has to

correctly support the ARM instruction set, however this allows complete free-

dom in designing the microarchitecture. Several vendors have chosen the second

approach, further increasing hardware fragmentation.

Currently available implementations vary from single issue, in-order systems

(e.g. ARM Cortex-A5) to high performance 6-issue out-of-order cores (e.g. Apple

CHAPTER 1. INTRODUCTION 20

Twister) or cores designed for large multicore systems (e.g. APM X-Gene2, a 4-

issue out-of-order microarchitecture which can be used in clusters of 8 to 16 cores

[SFY14]). Additionally, same-ISA heterogeneous multicores have been widely

adopted.

The work presented in this thesis is applicable to the Application profile of

the ARM architecture, i.e. ARMv7-A and ARMv8-A, which is used for general

purpose computing. The ARM architecture also has a Microcontroller profile

and a Realtime profile, which are used for microcontrollers and for hard real-time

applications respectively. The latter two profiles are not within the scope of this

document. Furthermore, ARMv8-A has introduced a 64-bit execution state called

AArch64, while also providing a 32-bit state called AArch32, which is backwards-

compatible with ARMv7-A. The techniques presented in the following chapters

have been implemented for the 32-bit state only, due to the late availability of

ARMv8 hardware and time limitations. Therefore, in the context of this docu-

ment, the generic term ARM will be used to refer to the 32-bit execution state

of ARM. Nevertheless, many of the optimisations presented in this thesis are

expected to also apply to AArch64, with little or no modification. The compati-

bility of the optimisations with AArch64 is summarised in Section 6.3. The ARM

ISA and the specific challenges it poses to DBM are discussed in Section 3.3.

1.3 Motivation

The ARM architecture, once almost exclusively found in embedded systems, is

growing in adoption for general purpose computing, however most DBM sys-

tems and research have focused on the x86 architecture. This has resulted in the

performance of DBM systems for ARM lagging behind; cf. Pin [LCM+05] or Dy-

namoRIO [Bru04] on x86/x86-64. For example, Valgrind serialises multithreaded

execution on ARM and x86/x86-64, while performance optimised DBM systems

such as Pin and DynamoRIO do not. This raises two of the questions that this

thesis addresses: (i) how to develop such DBM systems for the ARM architecture

and (ii) whether new optimisations are plausible and needed.

Additionally, the ARM ecosystem poses unique challenges for high perfor-

mance DBM systems because of the large number and wide range of capabilities

of the commercially available implementations: from single issue, in order cores

(Cortex-A5), up to 6-issue out-of-order cores (Apple Twister) and including less

CHAPTER 1. INTRODUCTION 21

traditional implementations such as NVIDIA Denver (a 7-way VLIW processor

using a combination of hardware and software DBT to run ARM code). These

challenges are exacerbated by the wide adoption of single-ISA heterogeneous mul-

ticores (such as big.LITTLE [ARM13b]), which use different microarchitectures

on the same System on Chip (SoC) and allow the migration of active applications

from one type of core to another. This raises the question of whether it is possible

to develop DBM optimisations which either improve or, at the very least, do not

affect performance on all available systems and microarchitectures. Furthermore,

are the results obtained by evaluating a DBM system on one or a small selection

of systems relevant across the available platforms?

1.4 Contributions

The contributions of this thesis are:

• developing a research DBM system, to enable optimising the key code

manipulation algorithms for ARM 32-bit platforms; this system has been

named MAMBO and is presented in Chapter 3;

• proposing the principle of behavioural transparency to relax the transparency

requirements for DBM systems in order to minimise implementation com-

plexity and improve performance (Section 3.11);

• comparing the performance of MAMBO against two other DBM systems,

Valgrind and QEMU (Section 4.4.4);

• showing that due to the wide range of ARM microarchitectures commer-

cially available, runtime selection of optimisations is desirable to achieve

optimum performance (Section 5.4);

• microarchitectural optimisations for DBM, which take advantage of certain

features of the hardware implementations:

– introducing a hot code profiling technique for the creation of traces

while avoiding branch target prediction for poorly predictable branches

or expensive modification of existing translated code (Section 5.2);

– introducing a novel technique to enable hardware return address pre-

diction in a code cache without a software return address stack (Section

5.3.1);

CHAPTER 1. INTRODUCTION 22

– introducing a software indirect branch prediction scheme which allows

effective prediction for polymorphic indirect branches (Section 5.3.3);

– introducing a technique aimed at reducing the data cache and TLB

footprint of the inline hash table lookup routine used in the translation

of indirect branches on ARM (Section 5.3.2);

– introducing the use of huge pages to reduce the TLB pressure created

by running modified code from a software code cache (Section 5.3.4);

• architectural optimisations for DBM, which mainly aim to reduce the dy-

namic instruction count:

– introducing a novel return address prediction scheme which trades off

guaranteed transparency for improved performance (Section 4.2.1);

– introducing an improvement of the fastBT [PG10] table branch linking

scheme, which is implemented more efficiently on ARM and reduces

the memory space requirements on all architectures (Section 4.2.2);

– describing how to implement and configure several other established

DBM optimisations for ARM (Sections 4.2.3, 4.2.4 and 4.3); and

• evaluating and providing a detailed analysis of the effectiveness of these

optimisations when running on a wide range of microarchitectures (Sections

4.4 and 5.4).

1.5 Publications

The material from Chapters 3 and 4 appears in the following journal publication:

• MAMBO: A Low-Overhead Dynamic Binary Modification Tool

for ARM. Cosmin Gorgovan, Amanieu d’Antras and Mikel Luján. In

ACM Transactions on Architecture and Code Optimization (TACO), 13 (1),

14, April 2016.

The material from Chapter 5 is based on the following submission-pending

paper:

• Optimising Dynamic Binary Modification Across ARM Microar-

chitectures. Cosmin Gorgovan, Amanieu d’Antras and Mikel Luján.

CHAPTER 1. INTRODUCTION 23

Other related publications:

• Optimizing Indirect Branches in Dynamic Binary Translators.

Amanieu d’Antras, Cosmin Gorgovan, Jim Garside and Mikel Luján. In

ACM Transactions on Architecture and Code Optimization (TACO), 13 (1),

7, April 2016.

1.6 Thesis structure

Chapter 2 presents the organisation and components of a DBM system and the

interactions between them. The chapter then continues with a literature review of

the existing optimisations for these components, in particular for the code cache

and for branch linking. The final section of the Background chapter discusses the

performance overhead of state-of-the-art DBM systems. Chapter 3 then presents

an overview of the MAMBO system. This chapter defines the aims of the system

and then presents the design decisions which were taken towards those aims, in

the context of the larger design space presented in Chapter 2.

Chapter 4 starts presenting the novel contributions of this thesis related to

branch linking, which is one of the major sources of overhead for DBM systems.

Existing linking techniques are also discussed in the context of efficiently imple-

menting them for the ARM architecture. The chapter includes an evaluation,

conducted on two commercial ARM systems, using two different microarchitec-

tures. The evaluation is done both for each individual optimisation separately and

also for the overall system performance, in comparison to the Valgrind and QEMU

systems. At this point, the overhead of MAMBO is significantly lower than the

overhead of the other two systems. This is considered the baseline version of

MAMBO, which achieves lower overhead than the other DBM systems available

for ARM, but slightly higher than the state-of-the-art DBM systems. Chapter 5

then continues presenting novel optimisations for reducing this overhead, however

the focus is shifted from optimising at the architectural level (i.e. implementing

operations using a low number of instructions) to optimising for the underlying

microarchitectures. For example, the techniques presented in this chapter pri-

oritise efficient use of the memory subsystem and good branch prediction over a

low dynamic instruction count. Due to the nature of these optimisations, their

evaluation is done on five different microarchitectures with a wide range of ca-

pabilities. In addition to the execution time, the hardware performance counters

CHAPTER 1. INTRODUCTION 24

are used to measure the effect of each optimisation on the microarchitecture, by

counting events such as cache, branch prediction and TLB misses.

Chapter 6 summarises the contents of this thesis and the conclusions which

have been drawn. Based on these conclusions and the various behaviours ob-

served in the evaluation of the existing system, a number of avenues for future

optimisation are suggested. Furthermore, a possible approach towards automatic

optimisation of instrumentation code inserted via the plugin API of MAMBO is

proposed.

Table 1.1 summarises the structure of this thesis.

Chapter 1 Introduction, motivation, contributions and publications.
Chapter 2 Background and related work.
Chapter 3 Overview of MAMBO, the DBM platform.
Chapter 4 Linking techniques for indirect and direct branches.
Chapter 5 Microarchitectural optimisations, including traces.
Chapter 6 Conclusions and future work.

Table 1.1: Structure of the thesis.

Chapter 2

Background and related work

2.1 Binary modification

Binary modification is a technique for modifying computer programs at the level

of machine code. It is used either when 1) the source code or toolchain required

to re-build the code are not available, or 2) when it is desired to preserve parts

of the machine code intact. The first case is fairly clear: without the ability to

access and modify the source code and then to rebuild the program from the up-

dated source code, the only alternative is to modify the native code. However, the

second case deserves further explanation. Let us take the example of instrumen-

tation being used to obtain code execution traces, for the purpose of architectural

simulation. This could be implemented by modifying the source code by adding

an instrumentation procedure and a number of calls to it. However, the addi-

tional instrumentation code would change the original layout of the executable

and therefore affect the addresses recorded in the execution trace. Furthermore,

the compiler and linker will observe and optimise the instrumented code, possibly

changing the generated machine code even more in terms of control flow, gener-

ated instructions and their scheduling. In practice, an application instrumented

by modifying its source code will provide an insight into its own behaviour rather

than into the behaviour of the original, uninstrumented application. This is often

undesirable, including in this example. On the other hand, at the level of native

code, it is practical to observe the original code, and then insert instrumentation

with minimal disturbance.

25

CHAPTER 2. BACKGROUND AND RELATED WORK 26

2.1.1 Static and dynamic binary modification

There are two approaches to binary modification: static binary modification and

dynamic binary modification. Static binary modification is altering the program

ahead of its execution. Its main advantage is that it can have minimal or no

overhead compared to the original executable. However, it is not universally ap-

plicable because of the code discovery problem [HM80]: for non-trivial programs,

it is impossible to accurately determine which locations contain code and which

locations contain data ahead of time, therefore it will suffer from incomplete cov-

erage, when code is misidentified as data and incorrect modification, when data

is misidentified as code. Additionally, static binary modification cannot be used

for Just-In-Time-compiled code and self-modifying code.

Dynamic binary modification avoids the code discovery problem by identify-

ing the code just before it executes: instead of statically scanning and modifying

the whole executable, this is done in single-entry and single-exit units called ba-

sic blocks. The first basic block is scanned at the entry point of the program,

stopping when the first control flow instruction is encountered. Once the basic

block has finished executing, the target address of the control flow instruction is

used to scan the second basic block, and so forth. This approach may not have

complete coverage of all static code regions, however it will capture all code that

is executed and will not misidentify code and data. Furthermore, it is compatible

with Just-In-Time (JIT) compilation and self-modifying code. Therefore, DBM

is a universal solution to the binary modification problem. However, this process

introduces a number of overheads, which can have a high impact on performance.

Avoiding and amortising these overheads is the aim of DBM performance re-

search.

2.2 Transparency

A key concept related to DBM is transparency, which refers to preventing the code

being modified from observing any changes compared to native execution. There

are multiple types of transparency (i.e. what kind of changes can be observed)

and also various degrees of transparency (i.e. how can the changes be observed

and how likely are they to interfere with correct execution).

Bruening [Bru04] classifies the types of transparency in three categories, de-

pending on how they are handled by DynamoRIO. The first category includes the

CHAPTER 2. BACKGROUND AND RELATED WORK 27

resource usage conflicts (e.g. library transparency, I/O transparency), which are

handled by avoiding to share resources between the application and DynamoRIO.

The second category includes the types of transparency which can be provided by

leaving the application unchanged (e.g. thread transparency, data transparency).

The third category includes the types of transparency which require specific han-

dling by DynamoRIO (e.g. application address transparency, debugging trans-

parency).

Some types of transparency can be fully supported with minimal implementa-

tion complexity and overhead. For example, library transparency can be imple-

mented by statically linking any libraries used by the DBM tool and ensuring that

no data is shared between the copy used by the DBM tool and any copies which

might be used by the application. Other types of transparency are impractical

to fully support or would have a high overhead, e.g. timing transparency.

Many DBM tools are designed to support the best degree of transparency for

as many types of transparency as possible. However, this goal can directly conflict

with the goal of minimising execution overhead. At the same time, implementing

some types of transparency can have a major impact on the design of a DBM

system and require significant development effort, while only being required to

correctly execute very few applications.

2.3 The implementation of dynamic binary mod-

ification

Figure 2.1: The components of a DBM system and the control flow between them.

Figure 2.1 shows the major components of a DBM system. The entry point is

the mechanism which allows the DBM system to take control over the execution

CHAPTER 2. BACKGROUND AND RELATED WORK 28

of an application (the Loader / Injector). There are two major approaches to

doing so: either launching the DBM system first and then loading the application

or, alternatively, injecting a DBM system into an already running process. These

are further explored in Section 2.3.1.

Once the DBM system has control of a process, it must inspect and modify

the code of the application. This is done by the code scanner, which is further

discussed in Section 2.3.2. The modified code produced by the code scanner

is then typically stored in a software code cache (Section 2.3.3), from where it

can execute multiple times to amortise the overhead of the code scanner. To

efficiently transfer control between different basic blocks, they are linked together

by the code cache linker (Section 2.4). Because code is dynamically discovered

and then scanned at runtime, execution of the modified code, of the code scanner

and of the linker is interleaved. Control transfers between the code cache and

the other system components is managed by a dispatcher, which preserves the

context of the application on exit from the code cache and then restores it back

when returning.

2.3.1 Tool injection / application loading

DBM systems generally run in the same thread and memory space as the appli-

cation to be modified. It follows that before the DBM system can start executing

the application, both executables (the DBM system itself and the application)

have to be loaded in the memory space of the process. This can be achieved

using one of two approaches: Injection, when the application is launched in

the regular way, using the system loader and dynamic linker. After loading has

completed, the DBM system injects itself into the same memory space. Injection

has been implemented mainly using two mechanisms: LD PRELOAD, which is

a feature of the dynamic loader on GNU/Linux systems which forces the loading

of specific shared object files in a process. A DBM system can inject itself by

using this feature, and then it can take control of execution by declaring a con-

structor function, which the dynamic linker calls before the main function of the

application. This approach is simple to implement because it delegates loading to

the system software. However, this method is fundamentally incompatible with

statically compiled applications. It can also allow some application code to run

unmanaged (e.g. constructors from other loaded libraries) and it is not portable

to other platforms. This is the default approach taken by DynamoRIO [Bru04].

CHAPTER 2. BACKGROUND AND RELATED WORK 29

A second mechanism which can be used for injection is ptrace. Ptrace is a

Unix API which allows one process to control a second process. A DBM tool can

use ptrace to pause the execution of the application, inject code which loads the

DBM system in the same process, and then resume execution. After a successful

injection, the DBM tool has to restore the memory contents of the application

and start managed execution. This approach is difficult to implement reliably

because the tracing process has limited control over the context of the traced

application, requiring the DBM tool to overwrite existing machine code in the

application, only with limited information being available to it. Additionally,

ptrace functionality is incomplete on many combinations of hardware platforms

and operating systems, reducing portability. The advantage of this approach is

that it can be used to inject a DBM system into a running process. This is an

alternative injection implementation used by DynamoRIO [Bru04].

The alternative to injection is Loading, when the DBM system is started first,

using the standard launching mechanism of the platform. The DBM system then

loads the application itself. Because the executable loader used on GNU/Linux is

implemented in the kernel, a different loader, running in the userspace, has to be

included with the DBM system. This approach allows the DBM tool to maintain

control of the execution at all times. In addition, it is more easily portable to

different platforms. The current implementation of Valgrind uses this loading

strategy, which has been found to be more reliable than injection [NS07b].

2.3.2 Code scanners

DBM systems work by scanning and, if required, modifying code before it exe-

cutes. This is done by code scanners, which disassemble the native machine code,

inspect it and then assemble any needed modifications. Multiple approaches have

been used to build code scanners. The main differentiating criteria is instruction

representation: Copy-and-Annotate (C&A) code scanners essentially copy most

code unmodified, while only translating a relatively small number of instructions,

such as sensitive and control flow instructions. This approach is well suited for

DBI and DBO applications, which tend to only modify a small subset of the

input code. C&A is generally used by performance-oriented DBM systems, such

as DynamoRIO [Bru04], Pin [LCM+05] and FastBT [PG10].

Disassemble-and-Resynthesise (D&R) code scanners, on the other hand, trans-

late all input code into an Intermediate Representation (IR), then perform any

CHAPTER 2. BACKGROUND AND RELATED WORK 30

required modifications at the IR level and finally translate the IR back to na-

tive code. This approach is well suited for portable DBM systems because it

allows the modification logic and any architecture-independent optimisations to

be implemented once and reused across multiple architectures. Similarly, this

approach is also well suited for DBT applications, which have to translate all

instructions to a different ISA. D&R can also be useful for performing complex

analysis by using a simplified IR to reduce the challenge of writing instrumen-

tation code. D&R enables the JIT compiler to optimise across the original and

the modified code, which can also reduce the challenge of developing complex

instrumentation [NS07b]. However, it is difficult to maintain the performance of

the original input code across the native-to-IR and IR-to-native translations. In

particular, it is difficult to represent all properties of the input native code in a

simple IR, which typically results in the IR representation using significantly more

instructions than the input. To control this overhead, an architecture-specific op-

timisation pass is usually required when the IR is translated back to native code.

Furthermore, the scanning process itself generally has higher overhead compared

to C&A because of the additional operations involved. D&R is used by DBM

systems such as Valgrind [NS07b] and QEMU [Bel05].

Apart from instruction representation, another design decision is whether and

how much of the code scanner to craft manually and how much to automate.

FastBT, for example, uses a high level representation of the instruction set to au-

tomatically generate translation tables [PG10]. The logic for modifying specific

instructions is then implemented using the C++ language. This allows FastBT

to automate the error prone aspects of the code scanner, while also allowing low

level control for modifying and translating instructions. On the other hand, Dy-

namoRIO mostly uses hand-crafted C-language implementations for instruction

decoding, instruction encoding and modification / translation logic. This allows

experienced implementers the maximum degree of flexibility and opportunities

for optimisation.

2.3.3 Code caches

Scanning and translating any given basic block takes significantly longer than

executing the translated code in the basic block once, therefore it is essential

for a DBM system to be able to reuse its translations, especially those of the

hot code (the regions in which most of the execution time is spent). This can

CHAPTER 2. BACKGROUND AND RELATED WORK 31

be achieved in two ways: the first one is to modify the original code in-place.

For example, to insert instrumentation code at a specific location, the original

instruction at that location would be replaced by a trampoline. This trampoline

would branch to a different memory region, where the instrumentation code, the

original instruction and a branch back to the instruction following the trampo-

line have been injected. This approach is taken by Dyninst [BH00]. It has the

advantage that a performance penalty is only paid when the original code is mod-

ified. However, it has a number of shortcomings related to code discovery and

transparency [HMC94, BM11]. Additionally, the overhead of the modified code

is relatively high since it cannot be inlined, or alternatively, it involves additional

complexity in relocating large blocks of code to allow inlining [BM11].

The other approach, used by most DBM systems [Bru04, LCM+05, PG10,

Bel05, SN05, BDB00], is to relocate all code to a software code cache and to

link the code cache fragments directly, a technique introduced by Shade (under

the name chaining), an instruction set simulator [CK94]. The mapping from the

original application addresses (the Source Program Counters - SPCs) to their

translations in the code cache (the Translated Program Counters - TPCs) is

maintained using a hash table indexed by the SPCs. This approach has a number

of advantages, namely: it avoids the code discovery problem by identifying the

reachable code at runtime; it avoids transparency issues by preserving both the

original code and data unmodified at their original locations; and it simplifies

inline modification of code by combining the relocation and modification in one

step [Bru04]. The disadvantage of this approach is that an overhead is introduced

for all code due to its relocation to the code cache, even if it is not otherwise

modified. However, various code cache linking optimisations have been used to

minimise this overhead, while retaining the advantages of the code cache. The

overhead of a number of DBM systems is further discussed in Section 2.5.

Basic blocks

A DBM software code cache is organised in basic blocks, which are single-entry

and single-exit fragments, meaning they are created from linear code regions,

with the first instruction being the only allowed entry point. Consequently, dif-

ferent entry points to the same linear code region in the application will create

multiple basic blocks in the code cache, with tail duplication. The source of each

block can only contain up to one control flow instruction, which must be the

CHAPTER 2. BACKGROUND AND RELATED WORK 32

last instruction. Other conditions such as reaching a size limit or encountering a

sensitive instruction can be used to terminate a basic block, in which case they

are equivalent to a basic block which unconditionally branches to the following

instruction in memory.

Traces

Traces (also known as superblocks or extended basic blocks) are single-entry,

multiple-exit fragments, usually a result of merging together multiple basic blocks

which are reachable from a specific entry point. Traces eliminate branching on a

preferred execution path and improve cache locality, thereby reducing the over-

head of modified code.

Traces are usually built using hot path profiling, however they can also be cre-

ated using static heuristics, in which case they are known as pseudo-traces. To be

effective, online hot path profiling requires low overhead and must produce a result

after a very limited number of executions, therefore offline profiling techniques are

not generally considered suitable [DB00]. Next Executing Tail (NET) [DB00], a

lightweight profiling scheme originally developed for the Dynamo dynamic opti-

miser [BDB00] has been widely adopted. NET works by inserting an execution

counter into the basic blocks which are a target of backward branches, known as

path heads, based on the insight that hot code regions consist of loops and the

targets of backward branches are the start of loops. Once this counter has reached

a certain threshold, a new trace is created with the path head as the entry point.

The taken target at the end of each fragment in the trace is then appended to

the trace, until another backward branch or the entry point to an existing trace

is executed. When conditional branches are encountered, the selected target is

added to the trace and the alternate target is conditionally linked, creating trace

exits. NET is described in more detail in Section 5.2.

Last-Executed Iteration (LEI) has been proposed as an alternative to NET

[HHS05]. It improves on NET by placing interprocedural cycles inside a single

trace and by reducing duplication in the case of nested loops and unbiased condi-

tional branches. However, its implementation introduced high profiling overhead,

which overshadowed the expected performance benefits [DH11a].

NETPlus [DH11a] is another alternative to NET. It identifies the hot code

regions in the same manner as NET, by inserting a dynamic execution counter

in the targets of backward branches. Its improvement over NET is in the trace

CHAPTER 2. BACKGROUND AND RELATED WORK 33

termination condition: when NETPlus encounters a backward branch, it first per-

forms a forward search for loops back to the trace head and then only terminates

the trace if a loop is not found. This allows NETPlus to create fewer, longer

traces compared to NET, further improving code locality. NETPlus was shown

to reduce the number of transfers of control directly from one trace to another

compared to NET on the SPEC CINT2006 benchmarks [DH11a].

2.4 Branch linking

Optimising the translation of branches in the code cache is essential to achieve

low overhead. This is done by linking the code cache fragments directly, instead

of going through the dispatcher to transfer control. Branches can be classified

in direct branches, which have a static target, and indirect branches, which have

a dynamic target. Due to this difference, the two types of branches are handled

separately.

2.4.1 Direct branches

Because the target of direct branches is known at the time they are scanned, their

handling is relatively straightforward: if a translation of the target is available in

the code cache, then it can be linked directly by placing a branch at the end of the

code cache fragment. The design space of direct branch linking is relatively small.

One decision is whether to proactively link direct branches when the fragment is

created or to lazily link them when and if they are taken. Bruening [Bru04] has

found that for DynamoRIO on x86, proactive linking is generally more efficient

and improves the overall performance for mesa, a SPEC CPU2000 benchmark,

by 5% compared to lazy linking. The performance of some benchmarks is slightly

reduced by proactive linking, but only by up to around 1.5% for swim and under

1% for other benchmarks. The overall effect is relatively small, with a harmonic

mean improvement of under 1% across the SPEC CPU2000 benchmarks and

a selection of desktop applications. Hazelwood and Klauser [HK06] also found

proactive linking to be more efficient for the ARM implementation of Pin.

A second design choice is whether to terminate basic blocks on unconditional

direct branches or to elide the branch and inline the target of the branch in the

same basic block. Terminating minimises tail duplication, while inlining elim-

inates a control transfer and can increase code cache locality. Nethercote and

CHAPTER 2. BACKGROUND AND RELATED WORK 34

Seward [NS07b] argue that inlining, together with an efficient dispatcher imple-

mentation, enables Valgrind to achieve relatively low overhead despite not link-

ing branches. DynamoRIO also elides unconditional direct branches, although

the main benefit is in reducing the memory usage rather than directly reducing

overhead [Bru04]. HDTrans elides unconditional branches, but only for targets

which do not already have a translation in the code cache, to reduce code dupli-

cation [SSNB06].

2.4.2 Indirect branches

Because indirect branches have a dynamic target, they cannot be directly linked

like direct branches. Instead, the original target address used by the applica-

tion (the SPC) must be matched to the address of its translation in the code

cache (the TPC) every time the indirect branch executes. The translation of

indirect branches is the main source of overhead for DBM systems and an effi-

cient implementation is critical for achieving good performance [KS03b]. Various

solutions have been proposed, which can be broadly classified in two categories.

The first category, hardware and hardware/software co-designed solutions, modify

the architecture or microarchitecture of processors. The second category are the

software-only solutions, which are compatible with unmodified general purpose

architectures.

Before exploring the indirect branch linking techniques in the literature, it

is necessary to further classify indirect branches into several types with distinct

properties. The first category of indirect branches is returns, which execute at the

end of a procedure (the callee) to return control back to the caller. More specifi-

cally, returns branch to the instruction immediately following the call instruction

in the caller. This enables very accurate target address prediction, simply by

recording the address of the instruction following each executed call in a Last In,

First Out (LIFO) structure and then removing one entry, the predicted address,

for each executed return. However, prediction is not always correct, for example

due to exceptions and therefore must always be checked for correctness. A second

category of indirect branches is table branches, which load their target address

from an indexed table in memory. The third category of indirect branches is

generic indirect branches, which simply branch to a dynamic target address from

a register or from memory.

CHAPTER 2. BACKGROUND AND RELATED WORK 35

Returns

Returns make up the majority of executed indirect branches [SKC+04]. Most

microarchitectures incorporate a Return Address Stack (RAS) which is automat-

ically maintained by the hardware across calls and returns, and which is used for

return address prediction when code is executing natively. However, the naive

translation of calls and returns in the code cache uses generic branch instructions,

which do not take advantage of this hardware branch prediction mechanism. Kim

and Smith have found this to be a limiting factor in the performance of DBM

systems [KS03a].

One optimisation which can be considered is to use code cache addresses (i.e.

TPCs) instead of the original addresses (SPCs) as return addresses, by copying

call and return instructions unmodified to the code cache. This would enable

hardware return address prediction in the code cache, at the cost of application

transparency. However, as reported by Bruening [Bru04], many applications are

affected by breaking transparency in this way, therefore making this optimisation

impractical. To avoid the transparency issues, another possible optimisation is

to maintain a software RAS together with the hardware RAS. The software RAS

consists of pairs of SPCs and their matching TPCs. An entry is pushed by the

translation of call instructions, while translated return instructions pop the first

entry from the software RAS, compare the actual target SPC of the application

to the SPC of the RAS entry and if the two match, then execution can branch

directly to the TPC in the RAS entry. This optimisation was used for return

address prediction in FX!32 [HH97] and Pin for ARM [HK06]. However, an

experimental implementation in DynamoRIO was found to be slower than the

baseline indirect branch translation using an optimised hash table lookup and

indirect branch [Bru04].

A different approach, in the form of function cloning [CHK93], is taken by

Pin [LCM+05]. Pin creates multiple copies of procedures in the code cache, one

for each call site. This allows each copy to statically predict a single return

address, which is expected to be correct in the common case. However, this can

result in large amounts of code duplication and increases the pressure on the

instruction memory subsystem.

HDTrans introduced a technique called the return cache [SSB07], which is

also used by FastBT [PG10]. Similarly to the software RAS technique, it is

exploiting the relationship between calls and returns to predict the target address

CHAPTER 2. BACKGROUND AND RELATED WORK 36

of returns. The return cache is a thread-private hash table storing TPCs indexed

by their SPC. The translated calls add an entry to the return cache for the

instruction following the call. The translated returns then blindly load the hash

table entry indexed by the SPC of the return target. Collisions are handled in

the translated return fragment, which compares the return target SPC with its

own source SPC and falls back to the generic SPC-to-TPC lookup if a mismatch

is detected. This technique can reuse the return cache entries in case of deep

recursion, as opposed to the software RAS predictor which stores a SPC-TPC pair

for every call. It also requires use of fewer registers compared to the software RAS.

However, the performance of the return cache is severely affected by collisions,

which are reported to happen at a rate of 15% to 22% [SSNB06].

Table branches

FastBT introduced an optimisation for the translation of table branches called

the shadow jump table. This optimisation detects table branches on the x86

architecture by pattern matching specific encodings of the jmp instruction, which

load the target address from a table using an absolute or PC-relative base address

and an offset. When a table branch is detected, FastBT creates a shadow jump

table, which is populated on demand with the TPCs of the SPCs in the original

table. The performance overhead of the DBM system is reduced by translating

a table branch in the application to a table branch in the code cache, as opposed

to one of the less efficient lookup implementations for generic indirect branches.

However, the size of the jump table is not statically determined, therefore runtime

bounds checking is used for the shadow branch table, introducing a performance

overhead. Furthermore, a memory overhead is introduced by the shadow jump

table.

Generic indirect branches

The most common way to translate generic indirect branches is by performing

a hash table lookup in a hash table mapping SPCs to TPCs. Many DBM im-

plementations use additional optimisations to avoid a hash table lookup in some

cases, however it is used as the fallback technique by most DBM systems. The

design space is fairly large and many different implementations have been de-

veloped. For example, one choice is whether to call a shared hash table lookup

routine, minimising the code cache size, or to generate a separate, inlined, hash

CHAPTER 2. BACKGROUND AND RELATED WORK 37

table lookup routine in each translation of an indirect branch, reducing the length

of the critical path [KS03b]. For example, DynamoRIO uses an inlined routine in

the hot code (traces) and a shared routine in the cold code (basic blocks) [Bru04];

FastBT always uses an inlined routine [PG10], while QEMU uses a shared rou-

tine [Bel05]. Another decision is whether to perform the lookup in the global

hash table or whether to use a small, local hash table for each translated indi-

rect branch [LCM+05, HK06]. Other decisions include the size of the hash table,

whether it has a static size or is dynamically resized and whether to use colli-

sion chains or open addressing with linear probing (the latter has been found to

outperform the former in DynamoRIO due to better cache locality [Bru04]).

A common optimisation is Indirect Branch Inlining (IBI) (also called indirect

branch prediction or speculative chaining), which caches one or multiple SPC-

TPC pairs in the code cache fragment itself [WR96, BDB00, Bru04, LCM+05,

HWH+07, PG10]. This optimisation relies on each indirect branch being heavily

biased towards one or a very low number of targets. It is implemented by gen-

erating a chain of one or more compare-and-conditional-branch sequences which

compare the target of the indirect branch against the cached SPC using only im-

mediates. If the target matches the SPC, then execution branches directly to its

TPC. Otherwise, execution falls through to the next compare-and-conditional-

branch sequence or, if one is not available, to a fallback mechanism such as

a hash table lookup. The cached targets are selected using different types of

lightweight profiling: the optional DynamoRIO implementation records the tar-

gets of each execution up to a certain threshold count and then caches the hottest

ones [Bru04], while the FastBT implementation replaces the cached targets on

every prediction miss [PG10]. DBM systems which build traces across indirect

branches, such as Dynamo [BDB00], implicitly use IBI with one cached target.

In this case, the predicted target is simply selected as the target of the indirect

branch at the time the trace path was recorded.

However, IBI is not effective if its prediction misses often, for example if

the selected target changes during execution compared to the target which was

profiled or if it regularly selects more unique targets than are cached [KS03b].

Furthermore, the cost of a prediction miss is high because time is spent comparing

all cached SPCs and then also executing the fallback lookup procedure. The

cost of mispredictions also limits the maximum number of targets which can be

effectively cached, and it is mostly driven by the hardware branch mispredictions

CHAPTER 2. BACKGROUND AND RELATED WORK 38

generated in the compare-and-conditional-branch chain. Kim and Smith go as

far as calling this technique a performance limiter [KS03b]. This limitation is

also acknowledged by Payer and Gross [PG10], who have developed the adaptive

combined optimisation, which adds a misprediction counter to IBI. When this

counter reaches a certain threshold, IBI is replaced with an inline hash table

lookup routine.

Dhanasekaran and Hazelwood [DH11b] have observed that indirect branches

often have high locality (i.e. the selected target address for a given execution of

the indirect branch is equal to the target address of the previous execution). To

take advantage of this property, they have introduced a new entry at the begin-

ning of the IBI chain, which caches the Most Recently Used (MRU) SPC and

its TPC. Instead of implementing the target comparison on the code path, like

standard IBI, this is implemented on the data path, which allows the predic-

tion to be updated after every miss. All target fragments of the IBI chain are

patched to update the predicted target when the MRU prediction misses. They

have implemented this system in Pin, however no performance improvement was

obtained. This is explained by the dynamic instruction count of MRU exceeding

the dynamic instruction count of standard IBI, despite a higher prediction hit

rate.

More recently, Jia et al. [JYHC14b] noted that the targets of indirect branches

tend to exhibit phase behaviour and hypothesised that the accuracy of IBI pre-

dictions could be improved by detecting these phase changes and updating the

predicted targets in response. They have proposed Software Prediction with Tar-

get Updating (SPTU), a collection of mechanisms which count the number of

prediction misses at the level of predicted target (software-only), translated indi-

rect branch (software-only), or application-wide (using the performance counters).

Then, the related IBI prediction chain or chains can be updated when a certain

miss count threshold is reached. An implementation for HDTrans of the Global

Miss count version of SPTU, which maintains an application-wide miss count

using performance counters, is shown to improve both the prediction rate of IBI

and also the overall performance of HDTrans.

HDTrans introduced a hybrid technique which combines hash table lookups

and IBI, called the sieve [SSNB06]. It works by calculating a hash value based

on the target address of indirect branches, which is then used as the index for

branching to the sieve branch table. Each entry in the sieve branch table contains

CHAPTER 2. BACKGROUND AND RELATED WORK 39

a branch either to a sieve bucket or to a fallback lookup routine. Sieve buckets

compare the target against a cached SPC. If the target and the SPC match,

then the sieve bucket restores the application context and branches to the cached

TPC, otherwise control is transferred to the next sieve bucket, similarly to IBI.

The sieve is essentially an implementation of a hash table lookup with open

addressing which uses code instead of data. Therefore its performance relative to

that of a regular data-based hash table lookup depends on the relative amounts

of available code and data cache space [HWH+07].

SPc-Indexed REdirecting (SPIRE) does away with using a hash table lookup

for SPC-to-TPC mapping and instead uses the whole memory space of the appli-

cation as an indexed table [JYW+13]. SPIRE overwrites the targets of indirect

branches with trampolines to their translation in the code cache. Therefore, in-

direct branches in the source application can be copied unmodified to the code

cache. One challenge of this approach is in detecting the targets of indirect

branches and inserting the trampolines before branching to these locations. This

is solved by SPIRE by marking all memory mappings of the application as non-

executable, therefore being able to trap execution at these locations. When the

first trampoline is inserted in a page, SPIRE creates a shadow copy of the page for

data transparency, then inserts the trampoline and fills the rest of the page with

trap-generating instructions and marks the page as execute-only (i.e. no read and

write access). This allows the trampoline to execute directly in the future, but

traps branches to other locations in the page. Furthermore, attempts to access

data on the page will trap, allowing SPIRE to substitute the shadow copy.

The base SPIRE design incurs high overhead when data in the modified pages

is accessed. Additionally, it requires MMU support for specific combinations of

read/write/execute permissions which are not supported either on x86, nor on

ARM AArch32. Both of these issues are addressed by the authors by modify-

ing SPIRE to maintain the trampolines in shadow pages at a fixed offset from

the corresponding code, while leaving the pages of the application unmodified.

However, this comes at a cost in terms of memory fragmentation and overhead.

Furthermore, both approaches to SPIRE have low cache and TLB locality be-

cause of the additional level of indirection and fragmentation in the trampoline

pages. Nevertheless, the evaluation shows that SPIRE can reduce the overhead

of HDTrans on x86 and it can also outperform an implementation of IBI.

CHAPTER 2. BACKGROUND AND RELATED WORK 40

Jia et al. observed that the targets of many indirect branches are directly

selected from memory rather than being calculated at runtime [JYHC14a]. Fur-

thermore, the possible targets of these indirect branches are organised in tables,

which are accessed using a index at runtime. Direct-TPC-Table (DTT) has been

created to translate this type of branches. DTT works in two stages: first, the

code of the application is inspected to detect these branches and their correspond-

ing Target Address Tables (TATs). Then, a shadow table containing the TPC

for each SPC entry in the TAT is created and a translation of the indirect branch

which uses this table is generated. This translation of indirect branches can then

execute efficiently by avoiding a runtime SPC-to-TPC lookup and instead exe-

cuting an indirect branch using the TPC table. The main challenge of DTT is in

identifying the base address and size of the TAT for each indirect branch. The

authors propose a set of heuristics both for discovering the TATs at runtime and

also for rolling back this prediction scheme when it is inefficient for a particular

branch instruction (e.g. if the shadow TPC table grows too large or if the TAT is

frequently modified, requiring multiple invalidations of the shadow TPC table).

DTT differs from the shadow jump table technique introduced by Payer and

Gross [PG10] (discussed in the Table branches subsection above) in that it applies

to a wider set of branches. Whereas the shadow jump table technique can only

translate branches using an address table which can be identified at code scanning

time (i.e. using an absolute or PC-relative base address), DTT is more widely

applicable to branches which select their address from memory, even if the base

address is dynamic, e.g. the value of a register. This allows DTT to handle

additional indirect branch instructions, such as those used to implement virtual

functions in higher level languages. However, shadow jump tables can be used to

translate explicit table branches (as used for compiling switch statements) just as

efficiently, using a simpler mechanism. Furthermore, the ARM architecture poses

additional challenges to the implementation of DTT due to the limited range of

immediate operands, requiring the insertion of additional instructions compared

to the x86 implementation.

Hardware solutions

Hardware and hardware/software co-designed solutions can eliminate most of

the performance overhead associated with indirect branch translation. Several

techniques have been proposed, both for handling generic indirect branches and

CHAPTER 2. BACKGROUND AND RELATED WORK 41

also for returns. However, none of the proposed techniques have been imple-

mented on general purpose architectures, therefore they are considered outside

the scope of this thesis and will not be discussed in detail. The Jump Target-

address Lookup Table (JTLT) [KS03b] is a hardware cache which maps SPCs

to TPCs, allowing the translation of source indirect branches to a specialised

type of indirect branches which take the SPC as an operand and automatically

branch to the TPC. The main disadvantage of this approach is in the amount of

associative memory required on-chip. The JTLT is suitable for the translation of

table and generic indirect branches. For returns, the dual-address return address

stack (dual-address RAS) [KS03b] modifies the hardware RAS predictor used by

most processors to store SPC-TPC pairs, similarly to the software RAS predic-

tion scheme discussed on page 35. This would allow the translation of source

calls to a push-dual-address-RAS instruction taking as input the SPC and TPC

of the expected return. The hardware return address predictor would then use

the TPC of the RAS entry as the predicted target and would compare the SPC

of the RAS entry against the SPC operand of the translated return instruction.

2.5 Performance overhead

The overhead of DBM systems has been an active area of research. Depending

on the design aims and choices of such systems, the overhead varies significantly.

Bruening et al. [BZA12] evaluated the performance of DynamoRIO [Bru04] and

Pin [LCM+05] when running SPEC CPU2006 compiled for x86-64, with no in-

strumentation. They have reported an average overhead of 11% for DynamoRIO

and 21% for Pin, with a maximum overhead under 60% for DynamoRIO and

under 80% for Pin. In a recent DynamoRIO tutorial [BZ16], a harmonic mean

overhead of 8% for x86 and 13% for x86-64 has been reported on SPEC CPU2006.

The reported average overhead for StarDBT [WHK+07] running SPEC CPU2000

compiled for x86 is 12% and 27% on two Intel Xeon processors using different

microarchitectures. Also on x86, the overhead of HDTrans has been reported

to compare favourably to DynamoRIO, however the exact number is not spec-

ified [SSNB06]. Payer and Gross [PG10] have evaluated DynamoRIO, FastBT,

HDTrans and Pin on x86. Using the reported execution times, the geometric

mean overhead of each the four systems has been calculated to be 7%, 9%, 10%

and 34%, respectively.

CHAPTER 2. BACKGROUND AND RELATED WORK 42

On the ARM architecture, the only DBM system with a focus on performance

was the Pin port [HK06], which has since been discontinued. Its performance has

been evaluated by Hazelwood and Klauser on a subset of the SPEC CPU2000

benchmarks, using a reduced input data set due to limitations of the test platform

(using an ARMv4 processor clocked at 200 MHz, with 64 MiB of memory). Com-

pared to native execution, its geometric mean overhead with no instrumentation

was 187%, with a maximum of 656%. Copies of Pin for ARM are no longer dis-

tributed and therefore it could not be evaluated in this thesis. Furthermore, Pin

for ARM appears to have only supported the ARMv5 ISA, while the evaluations

in this thesis were done using benchmarks compiled for ARMv7.

DBM on the ARM architecture is currently also supported by Valgrind [NS07b]

and QEMU [Bel05]. However, these systems do not prioritise performance and

instead focus on providing good support for heavyweight instrumentation (in

the case of Valgrind) or multi-architectural cross-ISA translation (QEMU). Their

overhead is evaluated using the SPEC CPU2006 benchmarks in Section 4.4.4:

Valgrind has a geometric mean overhead of 226% on a Cortex-A9 and 285% on

a Cortex-A15, while QEMU has an even higher overhead of 1,907% on a Cortex-

A15.

All DBM systems available on ARM introduce very high overheads, which

dominate the execution time. This has motivated the development of DBM opti-

misations specifically for ARM in this thesis. At the same time, a number of low

overhead DBM systems exist for the x86 architecture. These provide a reference

point for the level of overhead which can be achieved in a highly optimised sys-

tem. However, the two architectures and their implementations are significantly

different, each raising distinct challenges and opportunities, therefore the results

cannot be directly compared against each other. This point is also highlighted by

the difference in overhead between x86-64 and x86: the overhead of DynamoRIO

on x86-64 is almost 40% higher than its overhead on x86, even though the former

is derived from, and similar to the latter. Likewise, the hardware platform and

the microarchitecture of its processor can have a very strong influence on the

results, as shown by the evaluation of StarDBT, whose overhead varies between

12% and 27% in otherwise identical tests.

Chapter 3

Overview of MAMBO

3.1 Introduction

A number of DBM systems were available at the time this PhD project was

started, however only Valgrind [NS07b] and QEMU [Bel05] had support for the

ARM architecture and were also actively maintained. Neither of them is designed

to achieve near-native execution performance and their evaluation results, shown

in Section 4.4.4, confirm that both have high overhead. At the same time, the

internal architecture and the code base of these systems is fairly complex, making

it impractical to redesign them for low overhead in the available time. Similarly,

porting DynamoRIO [Bru04] to ARM has been considered and then decided

against due to its large code base and different priorities in terms of transparency

and complexity.

It became apparent that to investigate high performance DBM on ARM, a

different kind of DBM system was required, one which was designed to have low

overhead and which prioritised a small, simple code base over a rich feature set.

This chapter introduces MAMBO, the DBM framework for the ARM architecture

which we created, from scratch, to satisfy these two requirements. MAMBO was

used to implement and evaluate all research put forward in this thesis.

The main purpose of this chapter is to provide the context of how the more

advanced topics, such as those discussed in Chapters 4 and 5 fit in the context of

a DBM / DBT implementation in general and in MAMBO in particular.

43

CHAPTER 3. OVERVIEW OF MAMBO 44

Figure 3.1: The ARM registers.

3.2 Aims and current state

We have implemented a new high performance and multicore-scalable DBM plat-

form for researching optimisations on modern ARM hardware, named MAMBO.

To the best of our knowledge, it achieves lower overhead than any other re-

ported results on ARM. It makes use both of optimisation techniques previously

published in the literature and of novel optimisations that we have developed.

MAMBO was designed to be able to run all applications following the ARM

ABI. It is currently capable of running a wide range of applications, including

the SPEC CPU2000 and CPU2006 benchmark suites; the PARSEC multithreaded

benchmark suite and many unmodified GNU/Linux applications, including large

applications such as LibreOffice 4.2 and GIMP 2.8. One of the priorities in de-

veloping MAMBO was to keep its code base small, to allow researchers to easily

understand and modify it. The current version is implemented in fewer than

10,000 lines of code.

The MAMBO implementation has been designed to be largely Operating Sys-

tem (OS) agnostic, however the pragmatic choice was to implement the small

OS-specific components for a single OS, Linux.

3.3 The ARM architecture

ARM is a load/store architecture, meaning that data from memory is accessed

using a small set of load and store instructions, while data processing instructions

CHAPTER 3. OVERVIEW OF MAMBO 45

work on registers. Figure 3.1 shows the organisation of ARM registers. There

are 15 32-bit general purpose registers and a Program Counter (PC) register,

which can be read and written by many of the general purpose instructions. By

convention, register R14 is used to store the function return address and it is called

the Link Register (LR) and register R13 is used as the Stack Pointer (SP). In

addition, an optional floating point extension (called VFP) uses dedicated double

precision 64-bit registers, which can also be accessed as 32-bit single precision

registers. An optional SIMD extension (commonly called NEON) shares the 64-

bit registers of the VFP, while also being able to access pairs of 64-bit registers

as 128-bit registers.

One particularity of the ARM architecture is that it implements multiple

instruction sets. The ARM instruction set (also known as A32 - not to be confused

with AArch32, which is the 32-bit execution state) is the original one, and it uses a

fixed instruction word length of 32 bits, with support for conditional execution of

most instructions. Thumb was later developed to improve code density and uses

an instruction word length of 16 bits. Most Thumb instructions only allow access

to the lower 8 registers (r0-r7). Thumb-2 extends the Thumb instruction set and

adds 32 bit instructions, which mirror almost all ARM-mode instructions. It was

developed to increase the performance and improve the code density compared to

Thumb by minimising the number of switches between ARM mode and Thumb

mode. All ARMv7-A processors include support for Thumb-2. In this document,

the term Thumb will be used to refer to the extended set of Thumb and Thumb-2

instructions.

MAMBO currently supports most of the instructions of the ARMv7-A ar-

chitecture and of the 32-bit execution state in ARMv8 (AArch32), including

the ARM and Thumb instruction sets and the optional VFP and NEON exten-

sions. Support for various instructions is improved as they are encountered in

the applications ran under MAMBO. At the time of writing this thesis, MAMBO

supports 358 Thumb instructions and 137 ARM instructions. The ARMv8 ar-

chitecture manual [ARM15] defines 293 AArch32 instructions. However, these

numbers cannot be compared directly because instructions are defined differently

in the two contexts. For example, MAMBO handles a 16-bit and a 32-bit version

of an instruction separately, while the manual counts them as a single instruction.

Similarly, MAMBO handles small groups of VFP or NEON instructions which

do not access the general purpose registers and which have similar encodings as

CHAPTER 3. OVERVIEW OF MAMBO 46

single generalised instructions. The Jazelle extension and ThumbEE instruction

set are not implemented and attempts to use them would trap to a debugging

mode. Both have been deprecated and we have not encountered any GNU/Linux

application using them.

MAMBO, like most other DBM tools, runs in the same address space as the

application it is modifying and controls its execution by scanning and translating

all of the application machine code before it is executed. MAMBO-translated

code is generated using the same instruction set as its source code, which min-

imises the complexity of the translation logic. While the assembly language

syntax for the ARM and Thumb instruction sets is unified, the machine code

encoding is completely different, so two different sets of instruction decoders and

encoders are used.

Because ARM and Thumb code is commonly intermixed in applications, ad-

dressing code poses a challenge: simply using a pointer to an address is not

sufficient, the ISA must also be specified. This issue is solved in the instruction

set by enforcing halfword or word alignment for all instructions and using the

Least Significant Bit (LSB) of the address, passed to interworking (i.e. capable

of switching between ARM and Thumb mode) branch instructions, to select the

instruction set. The same approach is used by MAMBO, therefore all code point-

ers handled by MAMBO use the LSB to encode the instructions set: the bit is

set for Thumb and cleared for ARM. The advantage of this approach is that the

internal pointers used by MAMBO can be directly passed to interworking branch

instructions. On the other hand, addresses used by non-interworking branch in-

structions in the application must be patched before being passed to MAMBO

subsystems, because the value of their LSB is not guaranteed to be correct.

3.4 Scratch space

The translated code produced by DBM systems for execution from the code

cache often uses additional variables. Because ARM is a load/store architecture

and it only supports small immediate operands, these additional values must

be loaded in registers. For example, when translating an instruction taking the

PC as an input, the value of the SPC must be loaded in a register on ARM,

while on x86 a 32-bit immediate could be used directly. While in some cases

it might be possible to use dead registers, that is not always the case. When

CHAPTER 3. OVERVIEW OF MAMBO 47

dead registers are not available, values from some of the live registers must be

spilled to memory. This poses a particular challenge on ARM, because the range

for immediate offsets for store instructions is only ±4KiB from the base register.

When no dead registers are available, only the PC could be used as a base register,

meaning that scratch space for spilling registers would have to be reserved at

least every 8KiB inside the code cache. Additionally, PC-relative stores are only

allowed in ARM mode. This solution has the disadvantage of high overhead from

mode switches between Thumb and ARM mode, it creates additional challenges

for code cache allocations and it requires always mapping the code cache with

read/write/execute permissions, with implications for the security of the DBM

system.

An alternative approach is to steal a register from the application and use it

exclusively as a pointer to scratch space. However, this approach requires being

able to rewrite all application instructions to use different registers. To keep

complexity low, we prefer to modify as few instructions as possible, therefore this

option was discarded.

It is also possible to use coprocessor registers as scratch space, if they are

known to be unused. On ARM, the read/write thread id register (TPIDRURW)

meets this condition on GNU/Linux. Our evaluation showed that the latency to

access this register is high and that on average the first approach of using scratch

space inside the code cache is faster.

Unlike other platforms, the ARM ABI prohibits applications from storing

valid data on the stack above the stack pointer. This allows safe use of the

application stack for scratch space, for applications following the ABI. However,

no persistent MAMBO data can be left on the stack, because it would add an

offset to stack accesses from the application. Furthermore, care must be taken to

fix up stack offsets when generating the translation for instructions which use the

stack themselves. Figure 3.2 shows an example of such a translation, which must

first reserve stack space for the value pushed by the application before spilling a

register. This is the approach currently used by MAMBO.

3.5 Executable loader

MAMBO uses the loading approach over injection (discussed in Section 2.3.1),

which ensures that no application code executes before it takes over and also

CHAPTER 3. OVERVIEW OF MAMBO 48

Figure 3.2: Translation using scratch registers for an instruction which accesses
the stack.

Figure 3.3: Structure of an ELF file.

supports both dynamically and statically linked executables. Because the exe-

cutable loader used by GNU/Linux is implemented in the kernel rather than in

userspace, it becomes necessary to include a userspace executable loader as part

of MAMBO. Although GNU/Linux supports a number of different executable

formats, e.g. ELF, a.out and ECOFF, in practice ELF binaries are used almost

exclusively. Therefore, the lightweight userspace loader implemented in MAMBO

only supports ELF files.

3.5.1 The userspace ELF Loader

The loader is responsible for allocating memory and then loading the application

from storage. An ELF file contains various fields which need to be parsed for

correct loading. Figure 3.3 shows a simplified view of this structure. The ELF

executable header is always present and contains general information about the

file, such as: type (either shared or executable), class (either 32-bit or 64-bit),

the type of machine for which is has been compiled and the entry point (address)

of the application. The ELF loader compares the values of these fields against

the expected values (i.e. a 32-bit file compiled for ARM) and then passes the

entry point to the code scanner. The program header table, another top level

structure, describes the segments of an ELF file. The segments are continuous

chunks of data which are included in the ELF file. Each segment is described

by type (LOAD - application data or NOTE - metadata), offset and size of the

CHAPTER 3. OVERVIEW OF MAMBO 49

Figure 3.4: MAMBO data structures for an example basic block.

data in the file, the address where to load it in memory, the size of the memory

allocation and permission flags (separate for read, write and execute). The ELF

loader maps the segments of type LOAD in memory, following the requested

addresses, sizes and permissions.

A statically linked ELF executable can be loaded using the information de-

scribed above. Typically, there are two segments: a code segment with read and

execute permissions, and a data segment with read and write permissions. A

dynamically linked ELF executable contains additional information, including an

entry pointing to an interpreter (actually the dynamic linker) and a list of shared

library dependencies which need to be loaded by the dynamic linker. When a

dynamically linked executable is detected, the ELF loader loads its interpreter

following the procedure described above, and then prepends the path to the ap-

plication itself to the launch arguments. The dynamic linker, running under the

control of MAMBO, then loads and initialises the application itself.

3.6 Code cache

The code scanner works on short single-entry, single-exit units called basic blocks.

To amortise the cost of scanning, the generated code is stored in a code cache.

MAMBO uses thread-private code caches, which allow scanning and execution

from multiple threads with no synchronisation. This design scales fairly well on

current systems with 4 to 8 cores, for workloads which use one thread per core

to take advantage of parallel execution. However, some applications use a higher

number of threads, e.g. as a way to handle blocking I/O or to logically separate

different tasks in a process. For example, the Mozilla Firefox web browser uses

CHAPTER 3. OVERVIEW OF MAMBO 50

tens of threads during routine execution. The performance of MAMBO on such

workloads has not been evaluated yet, however it is likely to be limited by the

scalability of its shared-nothing architecture. This is a topic for future work,

together with investigating a hybrid thread-private / thread-shared architecture

to improve scalability.

Figure 3.4 shows the data structures created by MAMBO for an example basic

block. Each thread-private code cache consists of a number of data structures:

• a set of fixed-size blocks which hold translated basic blocks;

• metadata unique to each basic block;

• a hash table which maps application addresses to code cache addresses; and

• meta-data used by the basic block allocator.

Control is handed off between basic blocks using a dispatcher, which is called at

the end of each basic block. More efficient mechanisms for handing off execution

are the subject of Chapter 4.

3.7 Code scanner

The code scanner reads instructions from the source application, applies any

requested modifications and outputs position-independent code which can be ex-

ecuted from the code cache. MAMBO has two code scanners, one for the ARM

instruction set and one for the Thumb instruction set. Each of these scanners

outputs code using the same instruction set as its input, which allows many types

of instructions to be copied into the code cache unchanged by using the C&A ap-

proach presented in Section 2.3.2. Both code scanners work in a single pass and

manipulate native code directly, without using an intermediate representation,

which enables fast code scanning and translation, minimising application startup

overhead.

A code scanner consists of a loop which reads, decodes and translates one in-

struction at a time. The type of the instruction is compared to a list of instruction

types which need to be translated. The translated instructions include instruc-

tions which make use of the PC register (e.g. PC-relative memory operations,

data processing operations which use the PC as an input or output) and explicit

control flow instructions (e.g. branch, branch-and-link). The instructions whose

CHAPTER 3. OVERVIEW OF MAMBO 51

type is in this list are passed to translation routines, while other instructions are

copied unmodified to the code cache. The scanner stops after translating the

first control flow instruction in each block, which ensures that basic blocks have

a single exit point.

To maintain correctness of the generated code, the following invariants are

maintained:

• any register values which are overwritten by MAMBO-generated code are

restored unless they can be proved to be dead;

• either no new instructions which modify the state of the Program Status

Register (PSR) are inserted, or, alternatively, the state of the PSR is ex-

plicitly saved before executing such instructions and then restored after;

• no memory accesses are inserted between a LoaD Register EXclusive (LDREX)

instruction and the matching STore Register EXclusive (STREX) instruc-

tion, which could otherwise fail;

• writing to the stack is only allowed above the stack pointer of the applica-

tion;

• if the translation of an instruction temporarily pushes data on the stack, it

must also restore the value of stack pointer, i.e. no MAMBO data is left on

the stack between translated instructions; and

• no instructions are reordered with respect to barrier instructions.

3.8 System call interception

All system call instructions are translated into calls to an interception routine,

which allows MAMBO to modify the arguments and return values of system calls

or even to completely replace them with different operations. This mechanism is

used to handle multithreading, signals and to detect events such as thread and

application exit. Table 3.1 shows the Linux system calls handled by MAMBO.

3.9 Test and development methodology

MAMBO was developed using iterative testing and implementation on larger and

more diverse applications. When new OS features, instructions and variants of

CHAPTER 3. OVERVIEW OF MAMBO 52

System call Function Action(s)
clone creates a new thread initialises a new MAMBO thread; scans the en-

try point in the new thread; emulated using
pthread create()

exit terminates the thread unmaps thread-private data structures
exit group terminates the process terminates all threads
close closes a file descriptor discards attempts to close stdout and stderr (used

by MAMBO)
rt sigaction registers a signal han-

dler
replaces the pointer to the signal handler with a
pointer to the translation of the signal handler

cacheflush flushes the data cache
and invalidates the in-
struction cache

flushes the software code cache to maintain consis-
tency between the application code and the trans-
lated code

set tls sets the thread-local
storage pointer

MAMBO stores the thread-local storage pointer of
the application in a thread-private MAMBO data
structure, this allows it to register its own thread-
local storage pointer with the operating system; dis-
cards the system call

mmap2 allocates memory ensures that executable allocations are readable (re-
quired for code scanning) and removes the executable
permission (to prevent execution of untranslated
code)

mprotect changes the permis-
sions of an existing
memory allocation

same as mmap2

munmap frees allocated memory flushes the code cache when executable memory is
freed to prevent the execution of stale translations

vfork creates a new process,
blocking the parent

ensures that the child uses a separate address space,
to prevent execution in the child from overwriting
the MAMBO data structures of the parent

exec executes a program optional: rewrite the file path to launch the new pro-
gram under MAMBO

Table 3.1: Linux system calls discarded, emulated or otherwise modified by
MAMBO

instructions were encountered in applications, support for them was added to

MAMBO. This approach was enabled by maintaining a conservative whitelist of

instruction variants known to be handled correctly and by trapping execution, to

a development and testing mode, on instructions not on the whitelist.

Testing for correctness was done by comparing the output when executing

under MAMBO against the output of native execution. The early testing and im-

plementation was done by running hand-crafted programs and Valgrind [NS07b]

tests, while later on the full benchmark suites used in the evaluation and stan-

dard GNU/Linux applications were used. By only implementing the functionality

required to execute the relevant workloads, we have achieved the aim of maintain-

ing the code base small and relatively simple. Furthermore, by mostly reusing

CHAPTER 3. OVERVIEW OF MAMBO 53

existing applications as test cases, we have minimised the time required for test-

ing. This approach was practical because the translation or modification of most

instructions can be treated statelessly, in isolation from the rest of the code. How-

ever, this is not always the case, e.g. for IT instructions in Thumb mode which

affect the execution of the following instructions. In these cases, we have found

that designing tests which exhaustively cover corner cases is more practical than

testing against a multitude of existing applications.

The downside of this methodology is that only the instructions and behaviours

observed during development and testing are supported and new executables or

even different inputs to known applications might trap to the development and

testing mode. Indeed, this has occasionally been observed when using different

compilers or compiler options to build previously passing test applications. This

is a minor issue considering that MAMBO is not intended to support running

every possible application. Nevertheless, these occurrences have been largely

eliminated over time by testing against the builds of a variety of applications

provided by multiple GNU/Linux distributions.

3.10 Plugins

MAMBO is a DBM framework and therefore does not apply any behavioural

changes to the application; it only applies the transformations required to effi-

ciently run applications from the code cache. Additional modifications can be

performed through the plugin API, which allows plugins to inspect and modify

the instruction stream, and to observe the same events available to MAMBO,

e.g. code scanning events, system calls and application exit. The plugin API is

used to implement tools for dynamic instrumentation, program analysis, etc. on

top of MAMBO. A full description of this API is outside the scope of this thesis.

However, an example plugin is provided in Appendix A.

3.11 Transparency

This thesis introduces the principle of behavioural transparency, defined as itera-

tively identifying the types of transparency required for correct execution of the

selected workloads and then implementing the minimum degree of transparency

required to achieve correct execution. Behavioural transparency is an alternative

CHAPTER 3. OVERVIEW OF MAMBO 54

to full transparency, which is the approach of implementing a best effort degree

of transparency for all transparency types. The aim is to reduce the complexity

and development time and is particularly suitable for research DBM systems,

which can adjust the tradeoff between the range of supported applications and

the resources used to support transparency. In the case of MAMBO, we aim to

support applications which follow the platform ABI, do not depend on undefined

behaviour (as described by the ARM architectural manual [ARM15]) and use

standard system libraries.

One design decision affecting transparency is to use the application stack for

scratch space, as described in Section 3.4. A fully-transparent implementation

would require the availability of a scratch register, either by stealing it from

the application or by temporarily storing its value inside the code cache (due to

the limited addressable range), likely incurring additional overhead. Because the

ARM ABI prohibits applications from storing data on the stack at addresses lower

than the stack pointer, a behaviourally transparent implementation can safely

store temporary data (used in the translation of a single application instruction)

on the stack. The only case when the scratch data on the stack requires special

handling is for signal delivery; signals must be delivered when no temporary data

is present on the stack.

3.12 Summary

This chapter introduces MAMBO, the DBM framework which was created to

facilitate performance-related research of DBM systems for the ARM architec-

ture. This was achieved by making its main design priorities low overhead and

maintaining a small code base. Furthermore, MAMBO relaxes the transparency

guarantees compared to other DBM systems when doing so can measurably im-

prove performance or save development effort, without affecting typical workloads

(behavioural transparency).

This chapter also provides an overview of the ARM architecture, in particular

of its limitations relevant to a DBM system. The architectural challenges which

have extensive effects and the ways in which they are mitigated in MAMBO are

also discussed.

MAMBO is organised in multiple sub-systems, including a code scanner which

generates the modified code, a software code cache which stores this code, and

CHAPTER 3. OVERVIEW OF MAMBO 55

a dispatcher which manages execution. These systems are used and further ex-

tended to implement the optimisations described in Chapters 4 and 5. The next

chapter describes the techniques used to improve the performance of control trans-

fers between basic blocks.

Chapter 4

Branch linking

4.1 Introduction

With the basic code cache introduced in Section 3.6, control transfers between

basic blocks are mediated by the runtime system, which involves two expensive

context switches every time a translated branch instruction is executed. This

is easily the dominant source of overhead in a DBM system and reducing it by

directly linking together basic blocks is an active area of research [HWH+07,

PG10, DH11b, JYW+13, dGGL16]. Branches can be broadly classified in direct

(Section 4.3) and indirect (Section 4.2) branches, depending on whether their

target address is static or dynamic. Both direct and indirect branches can be

further classified in multiple sub-types which can be handled differently by a

DBM system.

This chapter presents several novel linking schemes, in particular for dealing

with indirect branches. In addition, other existing branch linking schemes have

been ported to the ARM architecture and are also briefly discussed in this chapter.

4.2 Indirect branches

Indirect branches are control flow instruction with a target not known at trans-

lation time. Looking up the target of indirect branch instructions at runtime is

the major source of overhead for DBM systems [KS03b]. Two types of indirect

branch instructions can be handled specially:

56

CHAPTER 4. BRANCH LINKING 57

(a) The original function call. (b) The translation. Unmodified code is greyed out.

Figure 4.1: Example of a typical function call and the translation generated by
MAMBO.

• Function returns - used at the end of functions to return control to the

caller. The target address is either copied from a register or loaded from

the stack.

• Table branches - used to implement switch statements from higher level

languages. The address or offset for such an instruction is loaded from a

fixed table in memory.

4.2.1 Function returns: low overhead return address pre-

diction

Figure 4.1(a) shows a typical function call in ARM code. A caller function

contains a branch-and-link to the entry address of the callee. The callee preserves

the return address, executes, and returns to the instruction following the branch-

and-link in the caller using a return instruction which branches to the return

address in the link register. Because it branches to an address in a register, this

return instruction is an indirect branch. Fast return address prediction in DBM

systems has been shown to be critical for achieving low overhead [KS03b].

While the return instruction is an indirect branch because its target address

cannot be determined statically, it has the property that its translated address

can be predicted with very high accuracy when its matching branch-and-link in-

struction executes. This property is sometimes exploited by a technique which

stores pairs of untranslated and translated addresses on a software Return Ad-

dress Stack (RAS) for every call instruction. Return instructions then load the

untranslated address from the RAS, compare it with the return address in the

CHAPTER 4. BRANCH LINKING 58

application and, if they match, directly return to the translated address from the

RAS. We call this linking scheme a fat entry RAS return address predictor. This

optimisation was used by several DBM systems, including Pin for ARM [HK06].

However, when implemented in MAMBO, this scheme causes a slowdown com-

pared to our inline hash lookup (presented in Section 4.2.3), a result similar to

that experienced by DynamoRIO [Bru04]. Additionally, the performance over-

head of maintaining a software RAS has been shown to be around 10% compared

to direct native execution of returns [DMW15].

We have developed an alternative scheme which trades off some transparency

guarantees for increased performance, while still being able to execute typical

applications correctly. Return type instructions are initially translated to exits to

the dispatcher and their basic block is marked as exiting with a return instruction.

When the dispatcher handles an exit from this type of basic block, it looks up the

translated address and compares it with the entry at the top of the RAS. In case of

a match, the dispatcher rewrites the exit code in the basic block to directly branch

to the address at the top of the RAS. Translated returns are handled through

the dispatcher only when they execute for the first time. Further executions of

a translated return are handled through the fast RAS-based return operation

inlined in the basic block. Our implementation of the call and return operations

is shown in Figure 4.1(b).

Comparison with fat entry RAS return address prediction

Compared to the pair of 32-bit addresses used by a fat-entry RAS return predic-

tor, the low overhead return predictor only pushes and pops a single 32-bit value

(the predicted code cache return address) for each branch-and-link and return

instruction. On ARM, this eliminates 4 instructions from the critical execution

path. In addition, the correctness of predictions is not checked on the critical

path for every return instruction. This eliminates another 4 instructions and also

avoids placing a conditional branch in the translation of returns, which would

increase the pressure on the branch predictor and affect branch prediction rates.

On applications using deep nested function calls, the pressure on the data cache

and on the data TLB is reduced due to the smaller size of the RAS.

CHAPTER 4. BRANCH LINKING 59

Restrictions

This scheme is not fully transparent because it relies on functions following the

ARM ABI for function calls (which is always the case for compiler generated

code). When a return instruction is executed for the first time, the dispatcher

verifies that the predicted return address is correct, which is intended to catch

any mispredictions caused by use of non-standard call or return operations, or

by exceptions. When a misprediction is detected, MAMBO can be configured to

either:

• attempt to balance the RAS if it contains stale entries because of missed

return instructions or stack unwinding;

• flush the code cache and disable this linking scheme (the default option);

or

• print an error message and exit.

This configuration option allows selecting different trade-offs between safety

and performance. In addition, MAMBO will disable this scheme and flush the

code cache if any instructions replace the value of the LR with a dynamic value

(i.e. the value depends on other values apart from immediate operands or the

PC). Static modifications of the LR are translated to push the predicted return

address on the RAS.

Given these measures, our return address prediction scheme can only cause a

misprediction and execution of the incorrect code if the following conditions are

met at the same time:

• the behaviour causing the misprediction is conditional and it does not ex-

ecute before the affected return instruction is executed for the first time;

and

• the modified return address is generated in a register other than the LR,

written to the stack and then POP-ed in the PC.

The only situation where we have encountered this behaviour is in applica-

tions that throw exceptions. Because exception handling is done by unwinding

the stack to search for exception handlers, it is possible for stale entries to remain

on the RAS. However, the libgcc exception handling code we have examined is

CHAPTER 4. BRANCH LINKING 60

guaranteed to cause a return address misprediction because it always overwrites

its return address, which is detected by MAMBO the first time an exception is

thrown. Implementing a portable stack unwinding detector, which would allow

use of this scheme in all applications that use exceptions, is a possible area of fu-

ture development. Another case in which applications could cause mispredictions

is when using the longjmp / siglongjmp functions. These functions are imple-

mented in glibc similarly to the exception handling code, and also overwrite their

return address, which allows MAMBO to detect the misprediction. We have not

encountered any applications which cause RAS mispredictions only after one or

more executions of a return instruction, which would not be possible to detect

when using the low overhead return address predictor.

4.2.2 Table branches: space-efficient linking

Table branch instructions are a type of indirect branch which determine their

target address by selecting it from a table in memory, indexed by a dynamic

value. Table branch instructions are commonly used by compilers to implement

switch-type constructs.

We propose a scheme which adapts the shadow jump table linking scheme

introduced by fastBT [PG10] (previously described in Section 2.4.2 on page 36)

for use on the ARM architecture and also improves the space efficiency of the

shadow branch table.

Shadow branch table size Most table branch instructions have the prop-

erty that the number of different indexes used during a typical execution (se-

lected indexes) is much lower than the largest selected index (max index). The

fastBT scheme allocates a shadow jump table which can fit all targets starting

from index 0 and up to a maximum index. When ported to ARM, the size of this

table is fastbt table size = (max index + 1) · 4 bytes, each entry being encoded

as a 32-bit target address.

The space-efficient shadow branch table we have implemented, shown in Fig-

ure 4.2, uses a two level table, where the offset table contains max index bytes.

This table encodes offsets into a trampoline table which contains direct branches

(of size 4 bytes) to basic blocks. The size of this shadow table is:

mambo table size = max index + 1 + selected indexes · 4

CHAPTER 4. BRANCH LINKING 61

Figure 4.2: Space-efficient shadow branch table.

Figure 4.3: Comparison of shadow branch table size for SPEC CPU2006.

We have profiled the two parameters, selected indexes and max index for

table branch instructions executed by SPEC CPU2006 benchmarks. The violin

plot in Figure 4.3 shows the distribution of shadow branch table sizes for the

two schemes. The width of the curve at various positions on the vertical axis

shows the distribution of shadow branch tables of the corresponding size in each

benchmark. The red horizontal markers show the minimum, mean and maximum

(when under 400 bytes) sizes. Our scheme reduces both the median and maximum

shadow branch table size for all SPEC CPU2006 benchmarks. Across all SPEC

CPU2006 benchmarks, the mean shadow table size is reduced from 159 bytes to

72 bytes and the maximum size is reduced from 2,700 bytes to 1,388 bytes.

Use of the space-efficient shadow branch table saves on average 3,550 bytes

of code cache space per benchmark. Most space is saved for the gcc (47KiB),

perlbench (21KiB) and gobmk (10KiB) benchmarks.

CHAPTER 4. BRANCH LINKING 62

Detection The Thumb instruction set, unlike x86 and ARM, includes explicit

table branch instructions, called TBB and TBH. Both Thumb table branch in-

structions take as input two registers: the first one points to the beginning of

the table in memory and the second one is the index. The branch offset is the

value loaded from the table multiplied by two. In ARM mode, table branches

are usually implemented with a load instruction that uses the program counter

as both the destination and the base registers and with another register, shifted

left 2 bits, as the index.

Implementation Figure 4.2 shows our implementation of the space-efficient

shadow branch table. The size of the offset table determines the maximum index

which can be handled; the size of the trampoline table determines how many

unique indexes can be cached. Indexes higher than max index are handed off

to an inline hash lookup routine. Similarly, if the trampoline table gets filled,

any additional indexes which execute are redirected to the inline hash lookup by

setting the appropriate offset in the offset table. The inline hash lookup routine

is discussed separately in Section 4.2.3. The current value of max index is 152

and the size of the trampoline table is 32 entries. These values were chosen

experimentally as a compromise between size requirements and performance for

the SPEC CPU2006 benchmarks. These sizes allow over 99.9% of the table

branches executed across SPEC CPU2006 benchmarks to be cached in the shadow

branch tables.

The default value for all offsets in the offset table points to call dispatcher, so

that the dispatcher is always called when a certain index is selected for the first

time. The call dispatcher routine passes both the untranslated target address and

the index to the main dispatcher, which, based on these parameters, allocates an

available entry in the trampoline table and updates the offset in the offset table.

Once a specific index is cached, all future executions with the same index will use

the cached code cache target.

Does the extra level of indirection affect performance? Even though the space-

efficient shadow branch table appears to trade off performance for space compared

to the single level fastBT shadow branch table, experimental results do not match

this. When evaluated using a microbenchmark which applies no pressure on

the branch predictors or caches, the fastBT scheme is around 5% faster than

the space-efficient scheme. However, when used by MAMBO running a more

CHAPTER 4. BRANCH LINKING 63

struct hash_table_entry {

uint32_t application_address;

uint32_t code_cache_address;

};

struct hash_table {

hash_table_entry entries[TABLE_SIZE+OVERP];

};

Listing 4.1: Structure of the hash table.

complex workload, such as the SPEC CPU benchmarks, the space-efficient scheme

is consistently faster than the fastBT scheme. Benchmarking and profiling results

are discussed in Section 4.4.3.

Restrictions This scheme is only applied when the base of the branch table

used by the translated TBB or TBH instruction can be statically determined

(which is the case for compiler-generated code implementing switch statements)

and if the table is stored in write-protected memory (which is the case for the

code segment in ELF executables). The shadow branch table must be invalidated

if the application unmaps or remaps with write permissions the area in which

the branch table resides, which has only been observed to happen rarely, with

virtually no impact on the performance of translated table branches.

4.2.3 Inline hash lookup for indirect branches

The previously described linking schemes only deal with special cases of indirect

branches, leaving generic indirect branches to execute through the dispatcher and

incurring a high overhead from the associated context switch. Because the targets

of indirect branches cannot be statically determined, direct linking similar to that

used by the previous schemes is impossible to implement efficiently. Instead, this

linking scheme aims to:

• minimise the context switch overhead;

• implement an efficient hash lookup routine; and

• facilitate hardware branch target prediction.

The hash lookup routine is encoded inline in the basic blocks which contain

the translation of an indirect branch. This allows adapting every instance to

CHAPTER 4. BRANCH LINKING 64

Figure 4.4: Inline hash lookup routine.

minimise context switch cost and also allows the processor to handle branch

target prediction for every translated indirect branch individually.

The structure of the hash table is defined in Listing 4.1. Each entry consists of

a pair of 32-bit addresses: the untranslated application address and the translated

address in the code cache. Our implementation uses linear probing to solve

collisions. To minimise the number of required registers, there is no wrap-around.

Instead, a number of additional slots are used to handle possible collisions at the

end of the table, followed by a guard entry, identical to empty slots, which marks

the end.

The hash function is simple and can be implemented with a single bitwise

AND instruction:

hash = key & 0x1FFFF

Because the keys are code addresses, all bits are significant, including the

LSB which is used to indicate the instruction set (ARM or Thumb). The size of

the hash table is around twice the maximum number of basic blocks to minimise

the number of collisions. We have found that hash table collisions become very

expensive due to branch misprediction in the hash lookup routine.

Figure 4.4 shows the inline hash lookup routine. The first operation saves the

context. This operation is specialised for each instance of the inline hash lookup

and frees up a number of scratch registers. It only saves a reduced number of

CHAPTER 4. BRANCH LINKING 65

registers or none at all if a stack pop in the application can be delayed until the

hash lookup routine has completed, subject to data dependencies.

Next, the hash key is computed using bitwise instructions and the correspond-

ing entry is loaded from the hash table. If the application address in the hash

table entry is equal to the target address, the lookup is successful, therefore the

values of the scratch registers are restored and execution branches directly to the

code cache address. In case of a mismatch, it is checked if the hash table entry is

empty. If it is, there is no translation of the target address in the code cache and

the dispatcher is called. If the entry is not empty, it is still possible for the cor-

rect entry to be at another index due to a collision, in which case the previously

computed hash key is incremented and execution loops back. This loop is only

exited when either the correct entry or an empty entry is found.

All inline hash lookup routines access a single thread-private hash table, there-

fore encoding a new routine only takes up code cache space and not any additional

data space. The size of the inline hash lookup routine is between 94 and 118 bytes

in Thumb mode and either 116 or 120 bytes in ARM mode, depending on the

type of translated instruction and available registers. This includes fallback code

for calling the dispatcher if the translation of the target address is not yet present

in the code cache. Section 4.4.5 evaluates the overall code cache overhead when

enabling inline hash lookups for SPEC CPU2006 benchmarks.

This inline hash lookup procedure is similar to others described in the litera-

ture (Section 2.4.2, page 36), in particular to that used by DynamoRIO [Bru04].

Apart from being implemented for ARM, the other differences from the Dy-

namoRIO inline hash lookup is that 1) collisions are handled directly instead of

falling back to a shared procedure and 2) the size of the hash table is fixed instead

of being dynamically resized.

4.2.4 Fallthrough branch linking

Conditional branches have an implicit fallthrough branch to the following instruc-

tion. The fallthrough branch is only taken if the conditional branch is skipped.

Even if the conditional branch is indirect, the fallthrough branch is always a di-

rect branch, which can be directly linked in the translated code. Figure 4.5 shows

how fallthrough branches are translated: MAMBO links the fallthrough branch

by placing a conditional direct branch with the opposite condition compared to

that of the source branch before the indirect branch lookup routine.

CHAPTER 4. BRANCH LINKING 66

Figure 4.5: Linking of fallthrough branches.

To avoid the potential overheads and error transparency issues involved in

scanning the target of a fallthrough branch before it is taken, we use stub basic

blocks. Stub basic blocks are basic blocks which are allocated in the code cache

and can be linked to, but have not been scanned. Stub basic blocks only contain

a call to the dispatcher. When a stub basic block is executed for the first time,

the scanner overwrites the initial stub with the translated contents of the basic

block.

4.2.5 Indirect branch target prediction

Other DBM systems, such as Pin [LCM+05], use a short series of inlined compare-

and-branch sequences as their main method of resolving indirect branches. How-

ever, we have found that on ARM such an approach is generally outperformed by

our fast inline hash lookup system. A fundamental limitation of a compare-and-

branch predictor is that updating the predicted addresses is a relatively expensive

operation (as opposed to a hardware indirect branch predictor, which can be up-

dated every time the indirect branch executes) therefore the performance of the

system relies on indirect branches being predictable and on using a good heuristic

to decide which target to select. However, by instrumenting the indirect branches

in SPEC CPU2006 benchmarks which make heavy use of indirect branches, we

have determined that many indirect branches are not easily predictable. An or-

acle which always predicts the address taken most often for each indirect branch

can get misprediction rates as high as 80% for perlbench with splitmail.pl, 52%

for sjeng, or 47% for gcc with scilab.in. A practical branch predictor heuristic is

likely to have even higher miss rates.

A second issue with compare-and-branch predictors is that only a few execu-

tion cycles can typically be saved compared to an inline hash lookup, only when

both the software predictor and the hardware branch predictor hit. However, the

compare-and-branch predictor uses additional conditional branches which can be

CHAPTER 4. BRANCH LINKING 67

mispredicted by the hardware branch predictor. Hardware branch mispredictions

have a latency proportional to the number of pipeline stages (e.g. around 20 cycles

for Cortex-A15) and can easily start to dominate the lookup time. An inline hash

lookup is generally expected to cause at most one hardware branch misprediction,

only if the target is different compared to the last execution of the branch. On

the other hand, a 2 entry compare-and-branch predictor with a fallback inline

hash lookup can cause up to three branch mispredictions.

4.3 Direct branches

4.3.1 Direct branch linking

When basic blocks are first created, their exit code stub saves the application

context, sets or computes the target address and then branches to the code dis-

patcher. However, the context switch and the call to the dispatcher introduce

significant overhead. This linking scheme avoids that overhead by replacing the

context switch and call to the dispatcher with direct branches to the translated

target basic block, if it is present in the code cache.

There are two types of direct branches:

• unconditional direct branches - this includes various types of branch and

branch-and-link instructions; and

• conditional direct branches - direct branches can be executed conditionally

either because the instruction encoding explicitly supports conditional ex-

ecution or because they are preceded by an If-Then (IT) instruction which

makes them conditional.

The various encodings support different branch offsets, from a range of -256 /

+254 bytes up to ±16MiB in Thumb mode and ±32MiB in ARM mode. When

direct branch linking is used in the code cache, most types of branches are linked

using branch instructions with the maximum range. This range defines the max-

imum size of a code cache; a larger code cache size would require linking using

slower indirect branch instructions.

Conditional branches which use the status register are linked as a conditional

branch (implemented as an IT instruction followed by a branch) and one un-

conditional branch, to link both possible execution paths. Compare and branch

CHAPTER 4. BRANCH LINKING 68

Figure 4.6: Comparison between translations with and without unconditional
direct branch eliding.

on zero/nonzero (CBZ/CBNZ) instructions conditionally branch depending on

the result of the comparison between a register and the value 0. These have a

very limited range so are linked using a CB(N)Z instruction and two uncondi-

tional branches, with the CB(N)Z instruction conditionally skipping over the first

unconditional branch.

4.3.2 Eliding unconditional direct branches

Modern ARM cores use either 32 byte or 64 byte cache lines, while instruction

words are only 2 or 4 bytes in length. Because the software code cache allocates

basic blocks of fixed size, execution of short basic blocks can potentially fill a

large portion of the hardware instruction cache with invalid code which never

executes.

This optimisation aims to improve the density of valid translated code in the

hardware instruction cache by increasing the average size and reducing the total

number of basic blocks. Instead of stopping the code scanner when encountering

unconditional direct branches or branch-and-link instructions, these instructions

are instead elided by continuing to translate, in the same basic block, the target

of the branch. When this linking scheme is enabled, it takes precedence over

unconditional direct branch linking; all unconditional direct branches are elided

instead of being linked.

Figure 4.6 shows a comparison between the translations of the application code

from Figure 4.1(a) with and without eliding the unconditional direct branch. In

this example, by eliding the unconditional branch, the number of basic blocks is

CHAPTER 4. BRANCH LINKING 69

Figure 4.7: Comparison of basic block sizes.

lowered to one, the total number of instructions is reduced and a branch instruc-

tion is eliminated.

A disadvantage of this linking scheme is caused by tail duplication, with po-

tential overhead in terms of total code cache size: code which would otherwise

be translated only once, in a single basic block, can end up being duplicated in

multiple basic blocks.

Eliding unconditional branches can cause the scanner to attempt generating

infinite size basic blocks, for example when scanning a loop which contains no

conditional control flow instructions. To prevent this from occurring, we limit

the maximum number of elided unconditional branches in a single basic block.

We use different limits for forward and backward branches. The limit for forward

branches controls the size of code which can potentially be duplicated in multiple

basic blocks, while the lower limit for backward branches is primarily intended

to control duplication within unique basic blocks, i.e. loop unrolling.

The violin plot in Figure 4.7 compares the distribution of basic block sizes de-

pending on whether this linking scheme is enabled or not. The width of the curve

at various positions on the vertical axis shows the distribution of basic blocks

of the corresponding size in each benchmark. The red horizontal markers show

the minimum and median sizes. It can be observed that eliding unconditional

branches increases both the median and minimum size of basic blocks compared

to linking unconditional branches. Four byte basic blocks (i.e. the minimum size

of basic blocks for most benchmarks with linked unconditional direct branches),

generated when the first instruction in a basic block is an unconditional direct

branch, are completely eliminated.

CHAPTER 4. BRANCH LINKING 70

4.4 Evaluation

4.4.1 Experimental setup

The results presented in this section have been obtained on two single board

computers:

• ODROID-X2, which is built around a Samsung Exynos 4412 Prime System-

on-Chip with 4 Cortex-A9 cores running at 1.7 GHz, with 32KiB L1 data

and instruction caches (32 byte cache lines) and a shared 1 MiB L2 cache.

The system has 2GiB of LP-DDR2 memory; and

• Jetson TK1, build around an NVIDIA Tegra K1 System-on-Chip with 4

Cortex-A15 cores running at 2.3 GHz, with 32KiB L1 data and instruction

caches (64 byte cache lines) and a 2 MiB L2 cache. This system has 4 GiB

of DDR3L memory.

Power management features such as DVFS and core power-gating were dis-

abled and a fan was added to the passive heatsink of the ODROID-X2 to minimise

the risk of thermal throttling. SPEC CPU2006 was compiled with GCC 4.6.3 and

PARSEC 3.0 was compiled with GCC 4.8.2, both configured to generate Thumb

code (which is the default configuration) with NEON and VFP support, at the

-O2 optimisation level. Non-essential services were disabled and the systems were

otherwise idle.

The libquantum benchmark from the SPEC CPU2006 suite has been disabled

because it fails to complete, both when executed natively and under MAMBO.

All other CPU2006 benchmarks are enabled when running natively or under

MAMBO and produce the expected output. Valgrind fails to load the zeusmp

benchmark because of its large BSS section (1.1 GiB) and throws an exception

when running povray because it fails to decode a valid ADD.W instruction. The

benchmarks Canneal and Raytrace from PARSEC 3.0 do not build on ARM.

fluidanimate requires the number of threads to be a power of two, therefore it

could only execute with 1, 2 and 4 threads (i.e. not with 3 threads). All SPEC

CPU2006 results were obtained using the ref data set and all PARSEC 3.0 results

were obtained using the native data set.

CHAPTER 4. BRANCH LINKING 71

F
ig

u
re

4.
8:

R
el

at
iv

e
ex

ec
u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
O

D
R

O
ID

-X
2.

CHAPTER 4. BRANCH LINKING 72

F
ig

u
re

4.
9:

R
el

at
iv

e
ex

ec
u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
J
et

so
n

T
K

1.

CHAPTER 4. BRANCH LINKING 73

4.4.2 Contribution of different optimisations

Figures 4.8 and 4.9 show a comparison of overhead with different types of optimi-

sations being enabled. The results using the A9 and A15 suffixes were obtained

on the ODROID-X2 and Jetson TK1 systems respectively. The five configurations

which were evaluated are:

• MAMBO - all linking schemes are enabled, it is the fastest version;

• MAMBO-RAS - return address prediction using the software RAS is dis-

abled and return instructions are translated to inline hash lookups;

• MAMBO-RAS-TB - both return address prediction and table branch link-

ing are disabled, table branches are handled using the dispatcher;

• MAMBO-RAS-TB-EUDB - the previous two linking schemes are disabled

and unconditional direct branches are being directly linked to the basic

block containing the translation of their target instead of being elided; and

• MAMBO-RAS-TB-EUDB-IH - the previous three linking schemes and the

inline hash lookup are disabled. All types of indirect branches are handled

using calls to the dispatcher.

The benchmarks marked with a caret (ˆ) cause return address mispredictions

which require disabling of the RAS predictor at some point during execution.

These are perlbench, omnetpp and povray.

The inline hash lookup routine is essential for achieving low overhead. The

geometric mean of the relative time for -RAS-TB-EUDB-IH is 1.63 on ODROID-

X2 and 1.81 on Jetson TK1, with maximums of 4.44 on ODROID-X2 and 5.37

on Jetson TK1. When inline hash lookups are enabled, the geometric mean of

relative times is reduced to 1.36 on ODROID-X2 and 1.42 on Jetson TK1 and the

maximums to 3.16 on ODROID-X2 and 3.58 on Jetson TK1. This corresponds

to 42% and 48% lower overhead on ODROID-X2 and Jetson TK1 respectively.

The table branch linking optimisation affects benchmarks where table branches

are a significant part of the total number of indirect branches: perlbench, gcc,

sjeng, gamess and soplex. For these benchmarks, the overhead is reduced on

average by 28% on ODROID-X2 and 25% on Jetson TK1.

Enabling the return address predictor reduces the overhead of benchmarks

with many calls to functions which return relatively quickly. At the same time,

CHAPTER 4. BRANCH LINKING 74

benchmarks with high data cache pressure can be negatively affected by the

additional operations on the RAS and benchmarks with high instruction cache

pressure can be negatively affected by the increased code cache size.

Eliding unconditional direct branches reduces the average overhead by 5% on

ODROID-X2 and by 2% on Jetson TK1. On the ODROID-X2, all benchmarks

run at least as quickly with elided unconditional direct branches than without.

However, on the Jetson TK1, that is no longer the case and some benchmarks

suffer a slow-down (e.g. 1.8% higher overhead on perlbench) with elision.

By comparing the speedup when the return address predictor and table branch

linking are enabled, it can be observed that both of these linking schemes appear

to be more effective on Cortex-A15. However, based on the higher overhead on

Cortex-A15 when using the -RAS-TB and -RAS-TB-IH versions, which rely on

hash lookups to resolve indirect branches, we conclude that in fact hash lookups

perform worse on Cortex-A15. We attribute this behaviour primarily to the higher

branch misprediction penalty on Cortex-A15, taken when using linear probing to

look up hash table entries with collisions. The return address prediction and

table branch linking schemes generally avoid difficult to predict branches, which

allows for greater speedup compared to hash lookups.

Another likely contributor to the higher overhead on Cortex-A15 is the use of

larger cache lines compared to Cortex-A9 (leading to poor density of valid code)

without increasing the size of the L1 instruction cache. This effectively reduces

the maximum size of translated code which is cached.

4.4.3 Comparison of the space-efficient and fastBT table

branch linking schemes

To compare the two table branch linking schemes, we have limited the set of

benchmarks to the six which make significant use of table branches: perlbench,

gcc, sjeng, gamess and soplex, using the ref dataset. Figure 4.10 shows the

slowdown of two fastBT configurations relative to the space-efficient scheme:

• fastBT-70 - uses the fastBT scheme with up to 70 cached targets; and

• fastBT-152 - uses the fastBT scheme with up to 152 cached targets.

The results were obtained on the Jetson TK1 system. Lower values are better

(faster execution).

CHAPTER 4. BRANCH LINKING 75

Figure 4.10: Relative slowdown for selected SPEC CPU2006 benchmarks with
the fastBT table branch linking scheme.

The maximum index and number of cached targets for the space-efficient

scheme were determined experimentally to produce good results with acceptable

memory usage across a variety of workloads. For the fastBT scheme, 70 was

chosen as a maximum number of cached targets because it uses the same amount

of code cache space as the space-efficient scheme; 152 was chosen to allow the

fastBT scheme to cache targets up to index 151, the same as the space-efficient

scheme. fastBT-152 reserves more than double the amount of space compared to

the space-efficient scheme (608 bytes instead of 280).

In all cases using the fastBT scheme instead of the space-efficient scheme

increases the execution time, up to 3.6% for fastBT-70 and up to 5% for fastBT-

152. The difference between different applications is roughly proportional to the

number of table branch instructions, it does not show the efficacy of table branch

linking varying between applications.

fastBT-152 is faster than fastBT-70 for some benchmarks and fastBT-70 is

faster for other benchmarks. This depends on the the distribution of table branch

indexes used by each benchmark (fastBT-152 can directly link the translation of

higher indexes) and by the pressure on the cache subsystem (fastBT-152 reserves

more space for the shadow branch table).

Profiling using the performance counters on the Cortex-A15 shows that the

space-efficient scheme runs with fewer branch mispredictions compared to the

fastBT shadow branch tables (see data in Table 4.1). For example, perlbench

runs with 40% fewer mispredictions on the Cortex-A15 when using the space-

efficient shadow table compared to the fastBT-152 shadow table. Unfortunately,

CHAPTER 4. BRANCH LINKING 76

the indirect branch predictor in these ARM cores is not documented, therefore

the root cause of this behaviour remains unexplained.

Benchmark fastBT-70 fastBT-152 space-efficient BT
perlbench 50,701,305,241 52,214,438,915 31,119,438,795
gcc 22,506,245,623 22,609,245,529 18,001,564,317
sjeng 88,829,466,475 87,830,777,975 77,088,995,881
gamess 21,040,036,701 20,159,607,431 17,513,213,671
soplex 9,076,672,304 9,062,995,152 7,573,834,491

Table 4.1: Number of branch mispredictions on Jetson TK1 with different imple-
mentations of shadow branches tables.

4.4.4 Overall performance

Singlethreaded performance: SPEC CPU2006

The results in Figure 4.11 were obtained by running SPEC CPU2006 with the

ref dataset, using MAMBO with all linking schemes enabled, Valgrind 3.10 and

QEMU 2.0.0 in user mode. QEMU results are only reported for the Cortex-A15

system, due to time constraints caused by the high overhead of QEMU. We esti-

mate that SPEC CPU2006 would take more than 20 days to finish running under

QEMU on the ODROID-X2. The geometric mean of overheads is summarised in

Table 4.2.

DBM system MAMBO Valgrind QEMU
System A9 A15 A9 A15 A15
SPECint 1.57 1.67 3.92 4.64 8.03
SPECfp 1.11 1.16 2.84 3.36 36.31
SPEC CPU 1.28 1.34 3.26 3.85 20.07

Table 4.2: Summary of geometric mean overheads for MAMBO, Valgrind and
QEMU running SPEC CPU2006.

MAMBO has higher overhead when running on Jetson TK1 compared to

ODROID-X2 for most benchmarks. The likely causes of this pattern are described

in Section 4.4.2. In some cases the difference can be very large (e.g. from 3%

to 28% overhead for soplex) and it warrants further investigation. However,

several benchmarks have lower overhead on Cortex-A15 compared to Cortex-A9.

These benchmarks likely benefit from having a larger L2 cache, which can better

accommodate the larger working set of translated applications.

CHAPTER 4. BRANCH LINKING 77

F
ig

u
re

4.
11

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
u
n
d
er

M
A

M
B

O
,

V
al

gr
in

d
an

d
Q

E
M

U
(r

ef
d
at

as
et

).

CHAPTER 4. BRANCH LINKING 78

Some benchmarks execute with significant overhead under MAMBO. By pro-

filing using the hardware performance counters, the main causes have been de-

termined to be poor L1 instruction cache utilisation leading to a significant in-

crease in cache misses compared to native execution and high instruction TLB

miss rates. Both issues are caused by the fixed-size basic block layout used by

MAMBO. This layout causes basic blocks to exclusively use at least one cache line

(32 bytes on a Cortex-A9 or 64 bytes on a Cortex-A15) even when their length

is significantly shorter. It also spreads out the translated code across more pages

than the untranslated code. This issue could be addressed either by modifying

the code cache to use variable size basic blocks or by implementing traces. In

Chapter 5, we propose and evaluate the use of traces in MAMBO.

MAMBO has lower overhead than Valgrind and QEMU on every benchmark.

On average, MAMBO has 8.1 times lower overhead than Valgrind on the Cortex-

A9 system (28% vs 226%) and 8.4 times lower overhead than Valgrind on the

Cortex-A15 system. QEMU has 56 times higher overhead than MAMBO and 8.3

times higher overhead than Valgrind. The highest overhead on a single bench-

mark is 154% for MAMBO (perlbench on Cortex-A15), 656% for Valgrind (perl-

bench on Cortex-A15) and 8707% for QEMU (calculix on Cortex-A15). The

higher overhead of QEMU on SPECfp is caused by its inefficient translation of

VFP instructions, which are translated to calls to instruction emulation routines.

MAMBO and Valgrind can both generate native VFP code, which will run with

no or low overhead.

leslie3d obtains a significant speed-up under MAMBO compared to native

execution, around 25%. Performance counter analysis shows this is caused by

reduced L1 data cache miss rates (from 14% to 8%) and a subsequent 29% re-

duction in the number of L2 cache misses. The number of executed instructions

is essentially unchanged. MAMBO affects the memory layout of applications by

reserving space for itself, however it does not perform any memory-related op-

timisations on the translated applications; speeding up leslie3d appears to be a

coincidental side-effect.

Multithreaded performance: PARSEC 3.0

The results in Figure 4.12 were obtained by running PARSEC 3.0 with the native

dataset and MAMBO with all linking optimisations enabled, on the Jetson TK1

CHAPTER 4. BRANCH LINKING 79

Figure 4.12: Relative execution time for PARSEC 3.0 with the native dataset.

board. The geometric mean is 1.30 when running with one thread, 1.27 for two

threads and 1.32 for three and four threads.

Multithreaded scaling Generally, MAMBO shows good performance scaling

with multiple threads. The poor scaling shown for the x264 benchmark is ex-

plained by its threading model: most threads it creates execute for only 1 to 4

seconds before exiting, causing MAMBO to translate and link the same code for

each newly created thread. Several benchmarks (dedup, freqmine and streamclus-

ter) have higher overhead for single threaded execution compared to 2 or more

threads. blackscholes and dedup show poor scaling, with overhead increasing as

more threads are used.

4.4.5 Code cache size

The size of the code cache has been measured in the same five configurations

described in Section 4.4.2. The results for all SPEC CPU2006 benchmarks are

shown in Table 4.3. For benchmarks which are launched multiple times with

different inputs, the arithmetic mean is shown. For benchmarks which cause

return mispredictions and a subsequent flushing of the code cache in the MAMBO

configuration - marked with a caret (ˆ) - only the higher value between the

size at the time of the misprediction and the size at exit is shown. Note that

MAMBO uses lazy linking for conditional branches; if a translation of either of

the two possible targets does not exist in the code cache yet, an exit stub which

calls the dispatcher is generated. The size of these exit stubs is included in the

CHAPTER 4. BRANCH LINKING 80

Configuration MAMBO MAMBO-RAS
MAMBO-RAS
-TB

MAMBO-RAS
-TB-EUDB

MAMBO-RAS
-TB-EUDB-IH

Benchmark KiB BBs KiB BBs KiB BBs KiB BBs KiB BBs
perlbenchˆ 887 15153 1002 17178 970 17069 949 17822 933 17824
bzip2 151 2060 143 2131 141 2128 142 2265 142 2265
gcc 3356 44447 2835 52458 2726 52194 2659 53875 2637 53864
mcf 120 1645 112 1659 110 1655 110 1746 104 1746
gobmk 1174 15835 1122 18990 1117 18978 1071 19549 1013 19543
hmmer 246 3150 218 3453 215 3447 214 3610 205 3609
sjeng 240 3261 220 3384 215 3373 203 3472 198 3470
h264ref 540 6733 487 7257 481 7243 477 7615 473 7623
omnetppˆ 487 9115 577 11192 572 11180 573 11521 524 11516
astar 199 2474 158 2480 156 2476 153 2579 147 2579
xalancbmk 2409 25281 1787 27961 1768 27918 1761 29037 1439 29026
bwaves 249 2897 202 2976 194 2956 194 3118 191 3117
gamess 1176 13125 1058 14160 1039 14111 1031 14807 1094 14800
milc 242 2887 202 3166 199 3159 200 3333 196 3327
zeusmp 612 6088 513 6393 504 6370 496 6588 545 6586
gromacs 440 5226 400 5463 392 5444 392 5723 378 5720
cactusADM 601 6458 452 7503 445 7488 449 7803 439 7803
leslie3d 373 4279 319 4527 309 4507 311 4747 320 4744
namd 299 3724 281 3926 279 3922 275 4067 286 4063
dealII 1060 11941 803 13376 798 13366 803 14051 782 14050
soplex 517 5832 397 6123 391 6110 390 6397 365 6391
povrayˆ 564 9128 669 11042 654 11006 647 11504 632 11503
calculix 1008 12001 821 13740 806 13706 802 14276 814 14268
GemsFDTD 887 9785 746 11327 733 11297 734 11708 772 11705
tonto 1730 17445 1349 19107 1315 19026 1303 19757 1352 19750
lbm 96 1279 89 1291 88 1289 88 1365 85 1365
wrf 3187 27655 1760 25689 1744 25650 1746 26309 1871 26302
sphinx3 414 5135 356 5753 353 5747 353 6019 349 6011

Table 4.3: Code cache size for SPEC CPU2006, in KiB and number of basic
blocks.

reported code cache size, even though they will execute, at most, two times and

are therefore expected to have a minimal impact on the hardware cache hit rate.

Enabling the inline hash lookup (column MAMBO-RAS-TB-EUDB vs

MAMBO-RAS-TB-EUDB-IH) increases the size of the code cache across SPEC

CPU2006 benchmarks by around 1.3% and makes no impact on the number of

basic blocks. When unconditional direct branches are elided (column MAMBO-

RAS-TB vs MAMBO-RAS-TB-EUDB), the size of the code cache is increased

by around 1% due to code duplication, however the number of basic blocks is

reduced by approximately 3.8%. When table branch linking is enabled (column

MAMBO-RAS vs MAMBO-RAS-TB), the code cache size increases by another

1.9% and the numbers of basic blocks increases by around 0.3%, due to the space

required for shadow branch tables. Enabling return address prediction (column

CHAPTER 4. BRANCH LINKING 81

MAMBO vs MAMBO-RAS) increases the code cache size by 21.9% and reduces

the number of basic blocks by 9.8%. Due to the fixed size basic block layout used

by MAMBO, an increase in code cache size is not necessarily going to increase

the pressure on the hardware instruction cache, as long as the number of basic

blocks is not also increasing.

4.5 Summary

This chapter presented a number of techniques for efficient handling of control

transfer instructions. These instructions can be classified in two types: direct

branches, when their target is static and indirect branches, when their target is

not known at translation time and which might be dynamic. Indirect branches can

be further classified into function returns (used to exit a procedure and return to

its caller), table branches (indirect branches which load their target from a static

table) and generic indirect branches. Conditional execution is allowed both for

direct and indirect branches.

Techniques for handling all of these cases are provided. Of particular impor-

tance are the novel contributions for handling function returns (in Section 4.2.1)

and table branches (in Section 4.2.2). An efficient ARM implementation of inline

hash table lookups for handling generic indirect branches is described in Section

4.2.3, while the handling of various types of direct branches available on the ARM

architecture is presented in Section 4.3.

The Evaluation section (Section 4.4) is organised in two parts: first, the effect

of individual optimisations is shown in Section 4.4.2, then the overall performance

is evaluated and compared against other DBM systems (Valgrind [NS07b] and

QEMU [Bel05]) in Section 4.4.4. The overhead of MAMBO is significantly lower

than that of either of these systems: a geometric mean overhead of 28% on a

Cortex-A9 and 34% on a Cortex-A15 for SPEC CPU2006, compared to 226% on

a Cortex-A9 and 285% on Cortex-A15 for Valgrind and 1900% for QEMU on a

Cortex-A15.

Chapter 5

Microarchitectural optimisations

5.1 Introduction

The optimisations presented and evaluated in Chapter 4 have focused on improv-

ing the translated code at the architectural level, i.e. by reducing the number

of executed instructions or by reducing the size of the generated translation to

allow more code to fit in the software code cache. However, in the evaluation

it became apparent that some of the performance overhead is introduced by the

interaction between the generated code and the microarchitecture. In particular,

significant overhead seemed to be caused by the high number of instruction cache

load misses and instruction TLB load misses.

This chapter introduces a number of optimisations for improving performance

at the microarchitectural level. First, traces are introduced to improve the lo-

cality of the code cache and increase the instruction cache and TLB hit rates

(Section 5.2). Then, a technique for enabling hardware return address prediction

for translated returns in the code cache, without the overhead of maintaining

a software return address stack is presented in Section 5.3.1. Next, the data

cache and TLB footprint of the inline hash table lookup procedure is minimised

in Section 5.3.2. Adaptive indirect branch inlining, a form of software indirect

branch target prediction which avoids the hardware branch misprediction penalty

of indirect branch inlining, is then introduced in Section 5.3.3. Finally, the use

of huge pages is evaluated for minimising the number of instruction TLB load

misses and for reducing the impact of SPC-to-TPC lookups on the data TLB

(Section 5.3.4). The evaluation of these optimisations is done both by directly

82

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 83

measuring the overhead, but also by using hardware performance counters to

directly observe their effect on a number of performance events.

The strong effect of the interaction between the code and the microarchitec-

ture raises another question: given the wide range of currently available ARM

microarchitectures, how much are the results of the evaluation likely to change

depending on the selection of systems used in the evaluation? Furthermore, could

an optimisation technique improve performance on one microarchitecture while

harming performance on a different microarchitecture? To answer these ques-

tions, the evaluation of these optimisations is done on five different microarchi-

tectures, ranging from a small in-order core (Cortex-A7) and up to a server-grade

out-of-order APM X-Gene 1 core.

5.2 Traces

The baseline code cache, organised in basic blocks, creates and stores the basic

blocks in the order they are first executed. However, the basic blocks in the soft-

ware code cache have high fragmentation, making inefficient use of the hardware

code cache. Furthermore, the two paths of conditional branches are translated

in two separate basic blocks in the software code cache, increasing the number of

executed branches (by executing a branch in the translated code even when the

source conditional branch is not taken). A breakdown of how performance is af-

fected by the code cache is shown in Sections 5.4.4 and 5.4.4 of the evaluation. To

avoid these limitations, traces (also known as superblocks) were implemented for

MAMBO. Traces are single-entry, multiple-exit units built by merging together

multiple basic blocks on the hot code path. The single-entry, single-exit units

which make up a trace are called trace fragments. The concept of code cache

traces was introduced in Section 2.3.3.

Because creating a trace has a non-trivial cost (both in terms of code cache

space, and execution time spent creating the trace instead of running the appli-

cation), it is important to only create traces for hot code, which is expected to

execute many times in the future and amortise its creation cost. On the other

hand, to get the best performance, it is preferred to create traces for all of the

hot code in an application and as early as possible. The challenge is in 1) quickly

identifying the hot code in an application and 2) in profiling the hot execution

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 84

Hot code profiling execution counter for trace heads
Trace head selection the targets of backward branches
Trace path the path taken across forward direct and indirect

branches, after the execution counter of a trace head
reached a certain threshold

Trace termination a backward branch is encountered

Table 5.1: Overview of the NET algorithm.

paths through this code with low overhead. MAMBO builds traces using an im-

provement of the Next Executing Tail (NET) online profiling scheme [DB00]. The

NET algorithm is summarised in Table 5.1. It is designed to minimise the pro-

filing overhead. Towards that end, NET initially maintains an execution counter

only for the basic blocks which are the potential start of a hot path. These instru-

mented basic blocks are called trace heads. The insight is that the hot execution

path must consist of cycles, therefore NET uses the targets of backwards branches

(both direct and indirect) as trace heads. Once the execution counter for a partic-

ular trace head reaches a certain threshold, then the trace is considered hot and

NET records the full execution path following the trace head, until a backwards

branch is encountered (which terminates the trace). This record is then used

as the predicted path, based on the rationale that the trace tail following a hot

trace head is also likely to be part of the hot execution path. For example, let us

consider the Control Flow Graph (CFG) depicted in Figure 5.1, where each box

represents a basic block and block A ends with a conditional direct branch, blocks

B, D, E, F, G, H and I end with unconditional direct branches, while block C

ends with an unconditional indirect branch. The trace heads in this examples

are the two blocks which are the target of backwards branches: A and C. If, for

example, the execution count threshold is reached for the trace head A and then

the blocks CEH execute, the trace will consist of the blocks ACEH, ending with

a branch back to the beginning of the trace.

An important property of NET is that it builds traces across indirect branches,

statically predicting their target address to be the same as observed in the path

recording phase. In the previous example involving the trace ACEH, the target of

the indirect branch from block C is block E in the path recording stage, therefore

NET builds the trace predicting that the target of block C is always E. However,

analysis of the SPEC CPU benchmarks showed that most indirect branches are

polymorphic and poorly predicted by a static target predictor, as used by NET.

Furthermore, a static indirect branch predictor adds overhead in the case when

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 85

Figure 5.1: Example control flow graph. Each box represents a basic block.
Block A, the entry point, contains a conditional direct branch, block C contains
an unconditional indirect branch and all other blocks contain unconditional direct
branches.

the prediction is incorrect. This analysis is available in Section 5.3.3, which also

presents AIBI, a more accurate indirect branch prediction scheme, which has been

implemented in MAMBO. To avoid this limitation, the MAMBO trace building

scheme terminates on indirect branches, which avoids static target prediction and

instead allows their SPC-to-TPC lookup to be implemented using an inline hash

table lookup, optionally with AIBI.

5.2.1 Trace heads

The new trace termination condition described in Section 5.2 avoids adding the

targets of an indirect branch to a trace tail, by terminating the trace. However,

one or more of these targets are likely part of the hot execution path, therefore

all targets of indirect branches should have execution counters (i.e. become trace

heads) to allow creation of traces. Nevertheless, the NET trace head selection

algorithm only instruments the targets of backwards branches and would generally

fail to instrument many of these targets. If, for example, block C in the CFG

shown in Figure 5.1 is on the hot code path and its indirect branch has a 70%

bias toward block E, 30% toward block F and never branches to block G, then

both the E and F blocks are also on the hot code path. If these blocks would

be trace heads, then the traces EH... and FI... would be created. However, the

trace head selection of NET does not allow this and instead the blocks E, H, F

and I could not be trace heads, nor would they be included in trace tails because

of the additional termination condition used by MAMBO.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 86

NET also presents an implementation challenge for DBM systems: if a basic

block is first reached using a forward branch, then it will be created without an

execution counter. However, if it is later reached using a backward branch, then

an execution counter has to be added to the existing block or, otherwise a second

version of the basic block has to be created. Both options make inefficient use of

the code cache space and increase fragmentation. For example, in the control flow

graph depicted in Figure 5.1, the first execution of block C would necessarily be a

result of the branch from block A, therefore not creating a trace. If block I would

execute at a later time, then the backwards branch to C would be discovered and

an execution counter would have to be added to the existing block C.

Both of these issues are addressed in MAMBO by a single change to the trace

head selection algorithm: whether a basic block is a trace head or not is decided

at the time it is created, depending on whether it ends with a direct branch (then

it is a trace head) or an indirect branch (then it is a regular basic block). Basic

blocks containing an indirect branch are not allowed as trace heads because they

would be terminated immediately and would therefore create traces containing a

single fragment. This algorithm also allows the targets of indirect branches to be

trace heads and avoids ulterior transformation of existing basic blocks into trace

heads, by removing the reachability of basic blocks as an input to the trace head

selection algorithm. Instead, it relies exclusively on the contents of the basic block

itself, which are known at the time it is created. In the example CFG in Figure

5.1, all basic blocks apart from block C (which contains an indirect branch) would

be trace heads.

Changing the trace head selection algorithm compared to NET results in more

basic blocks becoming trace heads and incurring the overhead of updating the

execution counter. However, this overhead is limited: the counter is updated by

calling a shared procedure, which is implemented using only ten instructions. Ad-

ditionally, the execution count threshold for trace creation is fairly low, typically

in the order of tens or hundreds, which strongly limits the maximum overhead

which can be introduced by each trace head.

In MAMBO, a trace head is implemented as a basic block with a header

(shown in Listing 5.2) which: 1) pushes to the stack the contents of 3 scratch

registers and of the Link Register, 2) sets the id of the trace head in R0 and

3) calls a shared procedure which then decrements the execution counter of the

trace head by one and returns, until it reaches zero. When zero is reached, trace

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 87

creation is started, using the id passed to the shared procedure to identify the

trace head. The rest of the trace building process is described in Section 5.2.2.

PUSH {R0-R2, LR}

MOVW R0, #(trace_head_id & 0xFFFF)

MOVT R0, #(trace_head_id >> 0xFFFF)

BL increment_exec_counter

Listing 5.2: The code added to trace heads.

5.2.2 Trace building

Trace building works similarly to NET: when a trace is first created, the SPC

of the trace head is used to create the first fragment in the trace. Then the

first fragment is executed and its selected target is appended to the trace. This

iterative process continues until a termination condition is met. The first such

condition is the execution of an indirect branch, as previously discussed. An

additional condition is the execution of a direct branch to the entry point of an

existing trace (including itself), which is intended to limit tail duplication between

different traces. If a branch to the entry point of an existing trace is encountered,

then a direct branch to that trace is inserted and the partial trace is terminated.

For example if a trace was created from block A in Figure 5.1, then the trace

would initially contain the fragment A. After the fragment A would execute, its

target would be appended to the trace. If this target was B, then the partial trace

would contain the fragments AB. Since B contains a branch to D, this fragment

would also be added to the trace, which would then contain ABD. Finally, the

target of the D fragment is A, for which a trace would already exist (the partial

trace itself). The ABD trace would be terminated and linked directly to its own

entry point.

Additionally, when a trace is created, the SPC-TPC hash table is updated to

the TPC of the trace. All direct branches from other basic blocks and traces to

the trace head are replaced by branches to the new trace, essentially making the

trace head unreachable. In the previous example, the hash table entry for the

SPC of A would be changed from the address of the trace head A to the address

of the new partial trace A.... Similarly, any branches to trace head A would be

replaced with branches to the partial trace.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 88

NET MAMBO traces
Hot code
profiling

execution counter for trace heads same as NET

Trace head
selection

the targets of backward branches basic blocks exiting with a direct
branch

Trace path the path taken across forward di-
rect and indirect branches, after
the execution counter of a trace
head reached a certain threshold

the path taken across direct branches,
after the execution counter of a trace
head reached a certain threshold

Trace
termination

a backward branch is encoun-
tered

an indirect branch is encountered
OR a direct branch to an existing trace
is encountered
OR the maximum number of fragments
has been reached and a backward direct
branch is encountered

Table 5.2: Comparison of MAMBO traces and NET.

5.2.3 Trace size limits

Some code duplication is allowed inside each trace, to encourage partial unrolling

of short loops. However, excessive code duplication is undesirable, therefore the

maximum number of fragments in each trace is limited. If this configurable limit

is reached, the trace is terminated on its next backwards branch. For example

in the CFG shown in Figure 5.1, the blocks CFI form a loop. If this loop would

execute while the trace ACFICFICFI... was built, then this would result in

an increasingly large trace, which would eventually fill the trace code cache.

However, because the maximum number of fragments in a trace is limited, the

trace would be terminated on the backward branch from I to C after a limited

number of iterations.

5.2.4 Summary

Using a software code cache based on basic blocks contributes to the overhead of

DBM systems by introducing fragmentation and by executing numerous branch

instructions to transfer control between any two basic blocks. These issues are

mitigated by traces, which are single-entry and multiple-exit units which group

together multiple basic blocks likely to execute sequentially on the hot code path.

The main challenges related to traces are in 1) identifying the hot code with

minimal delay and 2) profiling this code to obtain the hot execution paths. The

NET online profiling algorithm is commonly used to build traces in DBM systems,

however it relies on static target prediction for indirect branches. Nevertheless,

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 89

indirect branches are shown to generally be polymorphic and poorly predicted by

a static target predictor. In this context, several changes to NET are proposed,

as shown in Table 5.2, which eliminate static indirect branch prediction while

managing the undesired side-effects.

5.3 Indirect branches

Indirect branches are control flow instructions with a target not known at trans-

lation time. Looking up TPC for the SPC of indirect branches at runtime is

the major source of overhead for DBM systems [KS03b]. We classify indirect

branches in three types, as presented in Section 2.4.2:

• function returns, for which we introduce hardware-assisted return address

prediction in Section 5.3.1; and

• generic indirect branches, handled in MAMBO using inline hash table

lookups (Section 4.2.3), for which we introduce the optional low footprint

optimisation - Section 5.3.2 and adaptive inlining - Section 5.3.3; and

• table branches, handled in MAMBO using the space-efficient shadow branch

table linking, previously described in Section 4.2.2.

Figure 5.2 shows the steps involved in an inline hash table lookup, which is

the mechanism used for handling indirect branches in the baseline MAMBO: 1)

first, if required and depending on the type of indirect branch, the values of up to

three registers are pushed onto the stack to enable their use as scratch registers;

then, 2) the SPC is copied or generated in one of the scratch registers; 3) the

Figure 5.2: Inline hash table lookup.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 90

hash table lookup is performed, with the TPC ending up in one of the scratch

registers; 4) finally the values of the scratch registers are restored and a branch

to the TPC is performed. The hardware-assisted return address prediction, low

footprint inline hash table lookup dispatch and adaptive indirect branch inlining

optimisations are all a variation or extension of inline hash table lookups.

5.3.1 Hardware-assisted return address prediction

Return instructions are the instructions which execute at the end of a proce-

dure (the callee) to return control back to the caller. More specifically, returns

target the instruction immediately following the call instruction. Therefore, at

the time a call is executed, the target of the first return to execute can be ac-

curately predicted to be the address of the instruction following the call. If

nested calls execute, then all predicted addresses can be recorded in a Last In,

First Out (LIFO) structure for later use. These properties are used for return

address prediction in virtually all modern microprocessors, including by most

ARM implementations, which maintain a Return Address Stack (RAS) which

is not exposed architecturally [ARM16f, ARM13c, ARM10, ARM16e, ARM13a,

ARM14, ARM16a, ARM16b, ARM16c, ARM16d]. However, the translated code

generated by a DBM system does not generally maintain these properties because

call instructions are translated to regular branches while returns are translated

to regular indirect branches. Consequently, hardware return address prediction

is not used. Instead, return instructions are predicted by the hardware using

the generic indirect branch prediction mechanisms, which are both less accurate

and also limited in the number of indirect branches which can be tracked and

predicted simultaneously. Since fast return handling is critical for achieving low

overhead in DBM systems [KS03b], this limitation is an important contributor

to the total overhead.

Some of the proposed solutions for optimising returns include: modifying the

ISA to allow explicit manipulation of the hardware RAS [KS03b], however this

change has not been implemented on general purpose architectures such as x86

or ARM; maintaining a software RAS [HK06], however this is only beneficial on

modern microarchitectures if certain transparency guarantees are relaxed (Sec-

tion 4.2.1), or in the case of DBT when the target architecture provides additional

registers which can be easily used as a RAS pointer [dGGL16]. In this context,

hardware-assisted return address prediction was developed to allow use of the

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 91

(a) The original function call.

(b) The translated function call without hardware return
prediction.

(c) The translated function call with hardware return pre-
diction.

Figure 5.3: Example of a typical function call.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 92

hardware mechanisms for return address prediction, while forgoing the use of a

software RAS. Hardware-assisted return address prediction also maintains trans-

parency and is compatible with traces.

Figure 5.3(a) shows a typical function call in ARM code. A caller function

contains a call (implemented using a Branch-and-Link - BL - instruction) to the

entry address of the callee. The callee preserves the return address from the

Link Register (LR), executes, and then returns to it using a return instruction

(implemented using a Branch-and-eXchange - BX - instruction). Because the

target address of the return is in a register, this return instruction is an indirect

branch.

Hardware return address prediction on ARM works thus: when a call (either a

BL or a Branch-with-Link-and-eXchange - BLX - instruction) is executed, an en-

try, containing the address of the next instruction after the call, is automatically

pushed by the core on the RAS. Then, when the matching return instruction is

executed, its target address is predicted by automatically popping the first value

from the top of the RAS. Since the ARM architecture does not have explicit re-

turn instructions, certain types of indirect branches (return-type instructions) are

treated by the branch predictor as returns, typically: BX LR, a POP containing

the PC in the register list, an SP-relative load into PC, and MOV PC, LR.

The naive translation of BL and BLX instructions (from the native code in

Figure 5.3(a) to Figure 5.3(b)) emulates the call instruction by setting the value

of the LR explicitly to the SPC of the instruction following the call and then

branches to the translation of the target using a regular (i.e. without link) branch.

Similarly, return instructions are translated to an inline hash table lookup (rep-

resented by the IHL() pseudocode) followed by a regular branch to the TPC of

the return address. Therefore, the naive translation of calls and returns is not

compatible with the hardware return address predictor, which increases branch

mispredictions by 1) translating call-type instructions to regular branch instruc-

tions, which do not cause a push on the RAS and by 2) translating return-type

instructions to generic indirect branches, which are predicted using the less accu-

rate indirect branch predictor, while also increasing the pressure on the indirect

branch predictor. Hardware-assisted return address prediction solves these is-

sues, by modifying the translations as shown in Figure 5.3(c): first, it translates

call-type instructions to a sequence which ends with a call-type instruction (BB

#1), which allows the hardware predictor to push an entry to the RAS. Next, it

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 93

inserts the translation of the following instructions, i.e. the predicted return (BB

#2) immediately after the call, as expected by the predictor. Finally, it modifies

the translation of return-type instructions to use a return-type instruction, which

will allow the hardware predictor to pop the predicted address from the RAS (BX

LR in BB #3).

For return prediction to work correctly, a single translation of each call-type

instruction must exist in the code cache, otherwise multiple translations of the

predicted return would be generated, which cannot be registered in the hash

table mapping the SPC-TPC relationships. This is a potential issue because

different entry points into a single linear code area which contain a call-type

instruction would normally lead to the creation of multiple basic blocks, each

one containing a translation of the call-type instruction. To avoid this issue, if

a call-type instruction is scanned without being the first instruction in a basic

block, a new basic block is created with the call-type instruction as the entry

point, if it does not exist yet. The original basic block is then directly linked to

the translation of the call-type instruction. This ensures that when a call-type

instruction is scanned, its SPC-TPC mapping will be recorded. Then, if the same

call-type instruction is encountered in multiple BBs by the code scanner, all are

linked to the unique translation.

As an additional optimisation, when a call-type instruction is encountered

in the middle of a basic block and a translation does not exist yet, the separate

basic block generated for the call-type instruction will be stored in the code cache

area immediately following the first basic block, allowing the eliding of the direct

branch. For the example in Figure 5.3(c), BB #1 would be stored immediately

after BB #0, allowing the elimination of the B BB#1 instruction from BB #0.

5.3.2 Low footprint inline hash table lookup dispatch

The baseline MAMBO implementation of inline hash table lookups has been ob-

served to increase the overhead in some cases by generating an excessive number

of data cache and TLB misses. The cause of this behaviour has been tracked

down to the implementation of the dispatch stage of inline hash table lookups,

as shown in Figure 5.2. This stage works by first storing the target address of

the branch in a temporary buffer within the code cache fragment itself, then it

restores the values of the scratch registers used by the previous stages of the rou-

tine and finally it branches to the target by using a PC-relative load instruction

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 94

// Original instruction: POP {PC}

// The three scratch registers are R4-R6

// and the result of the lookup is in R4

0x00: .word // TPC reserved word

0x04: SUBW R5, PC, #12

0x08: STR R4, [R5]

0x0C: POP {R4-R6}

0x10: ADD SP, SP, #4

0x12: LDR, PC, [PC, #-24]

// sa is a pointer to a scratchpad

0x00: MOVW R6, #(sa & 0xFFFF)

0x04: MOVT R6, #(sa >> 16)

0x08: STR R12, [R6]

0x0C: STR R4, [R6, #4]

0x0E: MOV R12, R6

0x10: POP {R4-R6}

0x14: ADD SP, SP, #4

0x16: LDM R12, {R12, PC}

Listing 5.3: Default (left) and low footprint (right) inline hash table lookup dis-
patch (Thumb).

with PC as the destination register. This unusual design was imposed by various

limitations of the ARM instruction set, which are described in the following para-

graphs. The consequence of temporarily storing the 4-byte target address in the

code cache fragment, which is not normally accessed via the data path, is that

an additional cache line (which is either 32 or 64 bytes in length, depending on

the microarchitecture) is fetched in the hardware data cache for each translated

indirect branch. This increases the pressure on the hardware data cache, which in

some cases results in a higher number of hardware data cache load misses. Simi-

larly, a data TLB entry is used for each page of the software code cache containing

the translation of indirect branches, increasing the data TLB pressure. The low

footprint inline hash table lookup dispatch avoids these issues by modifying the

dispatch stage to share a single temporary target buffer between all inline hash

table lookups in a thread. This limits the number of hardware data cache lines

and TLB entries required for inline hash table lookups to at most one.

On ARM, the target of an indirect branch can be either in a register or in mem-

ory. However, if the target is in memory, then the address of the memory location

is limited to a +/- 4KiB offset from the base address in any register. The dispatch

stage is challenging to implement efficiently because an indirect branch has to be

executed while preserving the values of all registers, therefore the target must be

loaded from memory, which has the limited offset range. This can be achieved

in two ways. The first approach, used by default by MAMBO (shown on the left

side of Listing 5.3), is to use a PC-relative load into the PC. However, because

the immediate offsets which can be used with load instructions are limited to +/-

4KiB, the TPC has to first be saved (by the STR at address 0x08) in a reserved

word within the basic block itself (shown at address 0x00). Then, the values of

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 95

the scratch registers are restored (by the POP instruction at address 0x0C), the

stack pointer is incremented by 4 to simulate POP-ing the target address from

the stack (at address 0x10) and finally the translated address is loaded in the PC

from the temporary location inside the code fragment (by the LDR at address

0x12). The second approach is to push the translated return address to the stack

and then to POP it directly in the PC. However, instructions of this type are

considered function returns by all current ARM microarchitectures, which will

attempt to predict their target using the hardware return address stack, which

will obviously mispredict since this translation is generated for generic indirect

branches. On the microarchitectures we have evaluated, the penalty for these

branch mispredictions tends to be high enough to undo any performance benefits

due to the lower number of instructions used by this implementation. This sec-

ond approach is therefore only used for translated return instructions when the

hardware-assisted return address prediction is enabled - see Section 5.3.1).

However, the PC-relative dispatch is still suboptimal on modern microarchi-

tectures as previously discussed : because the target address is temporarily saved

in the code cache fragment (which is not normally accessed through the data

path), a whole 32 or 64 bytes (depending on implementation) data cache line

is going to be mostly wasted since it will only contain 4 bytes of useful data,

possibly causing the eviction of live cache lines; and similarly, a data TLB entry

will be used by each page containing code with inline hash table lookups. This

motivated the development of the low footprint inline hash table lookup dispatch.

Low footprint inline hash table lookup dispatch uses a thread private scratch-

pad for all inline hash table lookups, therefore reducing the total number of

required data cache lines and data TLB entries to one. The implementation is

shown in the right hand column of Listing 5.3. Initially, the address of the shared

scratchpad is generated in one of the scratch registers (using the instructions

MOVW and MOVT at address 0x00 and 0x04). Then, the value of another ap-

plication register (R12 in this case) is spilled to offset 0 of the scratchpad (by the

STR at address 0x08) and the TPC is saved at offset 4 of the scratchpad (by the

STR at address 0x0C). Next, the pointer to the scratchpad is copied from the

initial scratch register to the one whose value was spilled to the scratchpad (by

the MOV at address 0x0E). Restoring the values of the first set of scratch regis-

ters proceeds as before. Finally, a load-multiple instruction (at address 0x16) is

used to atomically load both the spilled value of the last scratch register and the

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 96

Figure 5.4: Comparison of hit rates on a selection of SPEC CPU2006 benchmarks
for indirect branch predictors.

translated target into the PC. In effect, instead of loading the target into the PC

while preserving the values in the general purpose registers, this works by using

a scratch register and restoring its value at the same time as branching to the

destination.

A limitation of this optimisation is its limited portability: in the AArch64

state, it is no longer possible to directly load the target address of an indirect

branch from memory to the PC and therefore this technique cannot be imple-

mented.

5.3.3 Adaptive indirect branch inlining

Indirect branches have dynamic targets, which are not known at translation time.

Due to their nature, the translated indirect branches must perform a SPC to TPC

lookup every time they execute. This lookup represents a major source of over-

head for DBM systems [KS03b, HWH+07]. The baseline version of MAMBO and

other DBM systems such as DynamoRIO attempt to reduce this overhead by gen-

erating a highly optimised inlined hash table lookup routine for each translated

indirect branch. This approach allows the hardware branch predictors to handle

separately each translated indirect branch (improving hardware prediction rates)

and minimises the length of the critical path compared to a shared routine by

taking advantage of the available dead registers, on a case-by-case basis. How-

ever, the hash table lookup operation inherently requires a number of additional

instructions, including memory loads and conditional branches. Other DBM sys-

tems, such as Pin for ARM, use Indirect Branch Inlining (IBI), which consists of

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 97

check_pred:

LDR Rs0, [PC, #16]

SUB Rs0, Rs0, Rtarget

CBNZ fallback

b_pred:

POP {Rs0,...,Rsn}

LDR PC, [PC, 4]

pred_spc: .word

pred_tpc: .word

fallback:

// the fallback inline hash table lookup

SUB Rs0, PC, offset_to_pred_spc

STR Rtarget, [Rs0, #0]

// the TPC is loaded from the hash table in Rtarget, overwriting the SPC

STR Rtarget, [Rs0, #4]

...

Listing 5.4: The implementation of AIBI. Rs0 to Rsn are scratch registers, while
Rtarget is the register which initially contains the target address (SPC).

a compare-and-branch chain which compares the current target address against

a configurable number of previous targets, using only the code path (i.e. by us-

ing immediates). However, previous attempts to use this prediction scheme in

MAMBO have failed to improve performance, due to the high overhead associ-

ated with updating the predicted target, the poor hit rate due to the polymorphic

nature of indirect branches and the high penalty of hardware branch mispredic-

tions triggered in the relatively common case when one or more predictions at

the top of the chain miss. On the other hand, we designed the Adaptive Indirect

Branch Inlining (AIBI) scheme to allow quick updating of the predicted address

every time it misses, while still having a shorter critical path than the inline hash

table lookup. This is similar to the way indirect branch target prediction works

in most hardware implementations.

Figure 5.4 compares the hit rates for three indirect branch predictions schemes:

AIBI, which always predicts the address of the most recent target; IBI (common),

which is a static predictor which predicts the most common target for each branch

using post-mortem information; and IBI (first) which predicts the address of the

first target seen for each branch. The selected benchmarks are those which execute

a relatively high number of generic indirect branches. The aggregate bars show

the hit rates when considering together all indirect branch executions from the

selected benchmarks. IBI (common) shows the upper bound for a static predictor

and since the information to choose the most common target is not available at

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 98

Figure 5.5: Adaptive indirect branch inlining.

runtime, practical IBI implementations will almost always have lower hit rates.

The IBI (first) hit rate is more relevant for practical IBI implementations, which

can either predict the target of the n-th execution of an indirect branch, or,

alternatively, can profile the first few executions of the branch and predict the

most common target among those samples. It can be observed that the hit rate

for AIBI is generally similar to that of the IBI (common) predictor and for most

benchmarks and overall, slightly better. On the other hand, the hit rate for IBI

(first) is generally much lower, which indicates that IBI implementations will tend

to have significantly lower hit rates than AIBI.

A major difference of AIBI compared to IBI is that the prediction is updated

for every miss, which is achieved by falling back to the inline hash table lookup and

unconditionally overwriting the prediction on this execution path. Since this can

occur for a large percentage of the executions of a branch, this operation must

be implemented very efficiently to minimise the overhead of prediction misses.

Using immediates on the code path to generate the predicted address (similar to

IBI) was ruled out because ARM uses a modified Harvard architecture, which re-

quires expensive cache flushing and invalidation via system calls to update code.

Therefore, the predicted target address and its matching code cache address are

accessed as data words, which is the second major difference from IBI. The addi-

tion of two unconditional store instructions with no read-after-write dependencies

on the fallback execution path appears to have a minimal performance impact on

most hardware implementations.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 99

The diagram in Figure 5.5 shows how AIBI works, where the black boxes show

the additional steps added specifically for AIBI, while the grey boxes show the

unmodified steps which are part of the inline hash table lookup routine (which

is shown separately in Figure 5.2). Listing 5.4 shows the implementation of

AIBI. With AIBI, after the target address has been generated or loaded in a

register, the predicted SPC is loaded using a single PC-relative load instruction

and then two addresses are compared, as shown in the check pred procedure. The

comparison is implemented using a subtract instruction (SUB) and a Compare

and Branch on NonZero (CBNZ) instruction to preserve the flags in the ARM

Program Status Register (PSR). In case of a match, the context is restored and

execution branches to the predicted TPC using a second PC-relative load, as

shown in the b pred procedure. Otherwise, in case of a miss, the regular inline

hash table lookup proceeds, with the difference that after the hash table lookup

has been performed, but before branching to the destination, the predicted SPC

and TPC are updated, as shown in the fallback procedure. PC-relative stores are

not allowed in the Thumb mode, therefore the address where the predicted SPC

and TPC are stored is first generated using a subtract instruction.

AIBI is similar in predicting the address of the most recent target to the MRU

IBI prediction scheme proposed by Dhanasekaran and Hazelwood [DH11b], which

was presented on page 38, Section 2.4.2. However, while the MRU scheme is used

in addition to IBI, AIBI is an alternative to IBI. When the MRU prediction

misses, it falls back to IBI, while AIBI falls back to an inline hash table lookup.

MRU updates the predicted address from the IBI target fragments, while AIBI

updates the predicted address in the inline hash table lookup. Furthermore, AIBI

as implemented in MAMBO is effective in reducing the overhead on all systems

used in the evaluation (Section 5.4), while MRU as prototyped for Pin failed

to improve performance on average. Unfortunately, insufficient information is

available to determine why. The MRU publication explains that its dynamic

instruction count was higher than that of standard IBI despite the increased pre-

diction hit rate. However, on ARM platforms we have observed that the hardware

branch prediction rate and other microarchitectural events often have a stronger

effect than relatively small changes in the number of executed instructions. For

example, when we have unsuccessfully tried to use IBI in MAMBO, the dynamic

instruction count was significantly reduced, however the overhead was increased

because of the hardware branch mispredictions introduced by the IBI chain. This

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 100

could indicate that 1) existing x86 implementations can predict IBI chains bet-

ter than ARM implementations or, less likely, 2) that branch mispredictions are

relatively cheaper on x86 implementations than on ARM implementations. An-

other possible explanation is that the performance of MRU was affected by the

mechanism used to update the predicted address, which it duplicates across every

target fragment linked by the IBI chain and whose details are not presented in

the publication.

5.3.4 Huge pages

Translation Lookaside Buffers (TLBs) are small, fast buffers used by the processor

to cache the virtual to physical address mapping for a limited number of active

memory pages. For some combinations of workloads and TLB size, the miss

rate for TLBs has been observed to increase excessively under MAMBO. ARM

implementations use separate data and instruction TLBs and increased miss rates

have been observed in both types. The data TLB is under additional pressure

because of the hash table used to dynamically map the SPC to the TPC for

indirect branches, which becomes part of the working set under MAMBO. The

instruction TLB tends to be more heavily affected, because the size of the code

in the code cache is affected by multiple factors: code expansion, caused by the

additional instructions added to provide transparency; code duplication, caused

by tail duplication both in traces and basic blocks; and fragmentation in the code

cache, which spreads code fragments across a higher number of pages compared

to the native code.

Most caches used by ARM implementations are Physically Indexed and Phys-

ically Tagged (PIPT), which require a virtual-to-physical address translation for

every cache access. Therefore, the latency introduced by this translation has a

direct impact on the latency of every single memory operation. The TLBs speed

up the translation compared to performing a page table walk for every memory

access. As a consequence, the maximum size of data which can be accessed with

low latency is bound by the size of the TLB (the maximum number of entries

it can store simultaneously) multiplied by the size of a page. However, if the

data is fragmented across multiple pages, with poor temporal locality, the effec-

tive capacity will be proportionally reduced. A solution introduced by hardware

designers was to allow the use of larger pages. For example on ARM, where

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 101

System ODROID-XU31 ODROID-X2 Tronsmart R28 Jetson TK1 APM X-C1
SoC Exynos 5422 Exynos 4412 Prime Rockchip RK3288 NVIDIA TK1 T124 APM883208
Core Cortex-A7 Cortex-A9 Cortex-A17 Cortex-A15 APM X-Gene 1
Frequency 1.4 GHz 1.7 GHz 1.6 GHz 2.3 GHz 2.4 GHz
L2 cache size 512 KiB 1 MiB 1 MiB 2 MiB 256 KiB
L3 cache size N/A N/A N/A N/A 8 MiB
L1i line length 32 32 64 64 64
L1d line length 64 32 64 64 64
L2 line length 64 32 64 64 64
L1d TLB 10 32 32 32(R) + 32(W) 20
L1i TLB 10 32 32 32 10
L2 TLB 256 132 1024 512 1024
IB predictor previous* previous previous adaptive adaptive
OOO N Y Y Y Y
Pipeline len 8 8-11 10-12 15 15

Table 5.3: Overview of the systems used for evaluation.

the standard page size is 4KiB, support for huge pages (2 MiB) has also been

introduced.

To address the issue of increased TLB pressure resulting in high TLB miss

rates under MAMBO, the option to request huge pages has been implemented as

an optional feature. Huge pages are used both for the code cache and metadata

(including the SPC-to-TPC hash table) and are requested using the standard

interface provided by the mmap Linux system call. These structures were already

stored in memory in large contiguous allocations, therefore no modifications to

their internal organisation were required. This optional feature does not affect

the memory allocations of the application itself, which can either use regular or

huge pages. This optimisation is evaluated in Section 5.4.4.

5.4 Evaluation

5.4.1 Experimental setup

Three systems (ODROID-XU3, Tronsmart R28 and APM X-C1) have been added

to the two used in the evaluation of Chapter 4. This was motivated by the de-

pendence of the optimisations evaluated in this chapter on the microarchitectural

features of the processor. The five systems were selected to cover a wide range

of the commercially available ARM implementations. Table 5.3 describes their

1The specifications for ODROID-XU3 apply to the LITTLE cluster only. The big cluster
is not used for this evaluation because it uses Cortex-A15 cores, the same as the Jetson TK1
system.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 102

microarchitectures. All systems use a modified Harvard architecture, with sep-

arate 32 KiB L1 data caches and 32 KiB L1 instruction caches, and separate

data and instruction L1 TLBs as described in Table 5.3. Higher level caches and

TLBs are unified. The IB predictor row describes the hardware indirect branch

prediction scheme: previous means that the address of the previous target of the

instruction is predicted, while adaptive means that multiple target addresses are

allowed per branch. Note that Cortex-A7 is documented not to predict the target

for branches implemented as loads or data processing operations with PC as the

destination, which are used to implement most indirect branches translated by

MAMBO.

All systems are running Ubuntu 14.04 LTS with the Linux kernel version

supported by the manufacturer: 3.8 for ODROID-X2, 3.10 for ODROID-XU3,

Tronsmart R28 and Jetson TK1 and 4.2 for APM X-C1. SPEC CPU2006 has

been compiled with GCC 4.6.3, configured to generate Thumb-2 code (the default

configuration) for the armhf architecture using the -O2 optimisation level and

the executables were statically linked. Power management features such as DVFS

and core offlining were disabled. The ODROID-XU3 system uses a heterogeneous

big.LITTLE [ARM13b] configuration, with a LITTLE Cortex-A7 cluster, which

was used for this evaluation and a big Cortex-A15 cluster which was not used

in this evaluation because the same microarchitecture is used on the Jetson TK1

system.

The libquantum benchmark from the SPEC CPU2006 suite has been disabled

because it fails to complete, both when executed natively and under MAMBO.

All other CPU2006 benchmarks are enabled and produce the expected output.

All SPEC CPU2006 results were obtained using the ref data set.

Multiple MAMBO configurations have been benchmarked. A configuration is

a build of MAMBO with a specific set of enabled optimisations. The configura-

tion with an empty set of optional optimisations enabled is called the baseline

configuration. This is similar to the MAMBO configuration used in Section 4.4,

with the exception that the low overhead return address prediction, which is a

return address prediction scheme based on a software RAS, has been discontinued

because it is incompatible with traces and therefore it is never used in this evalua-

tion. Hardware-assisted return address prediction, introduced in this publication,

serves a similar role while maintaining full transparency. All other configurations

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 103

are named +<name of optimisation 0> ... +<name of optimisation n>, for ex-

ample the configuration with hw ras and traces enabled is called +hw ras+traces.

The following optional optimisations have been evaluated:

• traces - code cache traces; and

• hw ras - hardware return address prediction; and

• hugetlb - the code cache and metadata are allocated using huge pages; and

• aibi - adaptive indirect branch inlining; and

• ldm pc sr - low footprint inline hash table lookup dispatch.

5.4.2 Trace creation threshold

As described in Section 5.2, traces are created when a trace head reaches a prede-

fined execution count threshold. For relatively long running tasks, such as SPEC

CPU, minimising the trace creation latency by reducing this threshold is not crit-

ical. However, the value of the threshold affects which trace tail is recorded and

then used as the path of the trace. Therefore, it is desirable to use a threshold

which makes it more likely to record a typical execution of each loop rather than

special cases such as the first or last iteration. This property is mostly specific

to the application and input data, however some numbers are possibly a better

choice on average. A second consideration is the size of the trace cache: for low

thresholds, more traces are created, which can end up filling the limited size code

cache and require flushing it, an expensive operation. To evaluate the impact of

the trace creation threshold, perlbench, the SPEC CPU2006 benchmark which ap-

pears to be the most sensitive to the value of this parameter, was executed under

MAMBO using the +traces configuration and a varying trace creation threshold,

between 2 and 256.

The results of this evaluation are shown in Figure 5.6. This chart shows the

size of the trace code size (lower is better) as the blue line (using the scale on

the primary Y axis on the left) and the relative execution time (lower is better)

as the red line (using the scale on the secondary Y axis on the right). As it

can be observed, the relative execution time varies between around 1.7 and 1.9

without a clear pattern being noticeable. The thresholds which generate faster

code are generally expected to be specific to perlbench and the ref input set, rather

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 104

Figure 5.6: Trace creation threshold vs relative execution time and trace code
size

System MAMBO configuration SPECint SPECfp SPEC CPU
ODROID-XU3 (LITTLE) baseline 1.55 1.11 1.26

+traces 1.41 1.10 1.21
+hugetlb +hw ras +traces 1.35 1.09 1.19

ODROID-X2 baseline 1.61 1.13 1.30
+traces 1.33 1.07 1.17
+aibi +traces 1.31 1.06 1.15

Tronsmart R28 baseline 1.60 1.12 1.29
+traces 1.31 1.09 1.17
+aibi +traces 1.29 1.08 1.16

Jetson TK1 baseline 1.71 1.16 1.35
+traces 1.44 1.11 1.23
+hw ras +traces 1.38 1.11 1.21

APM X-C1 baseline 1.59 1.09 1.26
+traces 1.34 1.07 1.17
+hugetlb +hw ras +traces 1.21 1.05 1.11

Table 5.4: The MAMBO baseline, +traces and the configuration with the lowest
overhead for SPEC CPU2006 on each system.

than more generally applicable. The size of the trace cache, however, decreases

following a logarithmic curve, tapering off around a threshold of 230. For the

rest of the experiments in this evaluation, the trace creation threshold was set

to 256 (the maximum allowed by the implementation because it maintains this

counter in a byte), which appears to minimise the code size while not affecting

the performance.

5.4.3 Overall performance

Table 5.4 summarises the overall performance of the baseline, +traces and of the

optimal MAMBO configuration for each system (when running SPEC CPU2006).

Appendix B includes the full results showing the performance of each MAMBO

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 105

configuration on each system. The reported value is the geometric mean of execu-

tion time relative to native execution for each benchmark. It can be observed that

between the five test systems, three unique MAMBO configurations are needed

to achieve the lowest possible overhead. This hints that, as expected, some of

the optimisations have varying effectiveness depending on the microarchitecture.

This behaviour is examined in detail in Section 5.4.4. Another related observa-

tion is that the spread of the average overhead between the microarchitectures

is quite high: from only 11% on APM X-C1, up to 21% on Jetson TK1, which

further underlines the impact of microarchitecture on the performance of DBM

systems. The SPECint benchmarks run with higher overhead than the SPECfp

benchmarks because they tend to be control (as opposed to data) bound.

The traces optimisation has by far the largest overall effect. This is the

expected result, as improved software code cache locality and a reduced number

of executed branches reduce the overhead 1) for most benchmarks and 2) on

all microarchitectures. While the geometric mean overhead is generally reduced

only by a few points for the other optimisations, this is in large part due to

these optimisations targeting only specific types of workloads. For example, the

hw ras optimisation reduces the overhead of gobmk on Jetson TK1 from 94% to

67%, however, because only a few benchmarks gain a speed-up, the geometric

mean overhead is only decreasing from 23% to 21%. By running the optimal

configuration on each system, the geometric mean overhead is reduced compared

to the baseline configuration by 29% on ODROID-XU3, 49% on ODROID-X2,

46% on Tronsmart R28, 41% on Jetson TK1 and 58% on APM X-C1.

5.4.4 Performance counter analysis

The benchmarks which have significant overhead under the baseline MAMBO

configuration or whose overhead is changed by enabling various MAMBO optimi-

sations have been executed under the perf stat tool, which uses hardware perfor-

mance counters to report the total number of times various performance-related

events have occurred. Note that some of the reported events occur as a result

of architectural execution (i.e. code executed by the application), while others

occur as a result of speculative execution (both architecturally executed code and

instructions executed without being committed, as a result of mis-speculation).

The following metrics are reported:

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 106

• Insts - instructions architecturally executed

• L1d-l - loads by the core from the L1 data cache

• L1d-m - misses in the L1 data cache

• L1i-l - loads by the core from the L1 instruction cache

• L1i-m - misses in the L1 instruction cache

• L2-l - loads from the unified L2 cache

• L2-m - misses in the unified L2 cache

• dtlb-m - L1 data TLB misses

• itlb-m - L1 instruction TLB misses

• br - architecturally executed branches

• br-m - mispredicted or not predicted branches speculatively executed

For the baseline configuration, the values are relative to native execution (i.e. a

value of 2 means that a certain event has occurred twice as many times compared

to native execution). All other results show the effect of enabling one additional

optimisation compared to the baseline or to another MAMBO configuration. For

example, Table 5.14 shows the effect of enabling the traces optimisation and

shows results relative to the baseline configuration, while Table 5.19 shows the

effect of enabling the hw ras optimisation and shows results relative to the +traces

configuration. Additionally, the raw performance counter values for the native

execution are provided in Appendix C. These can be used to calculate the hit

and miss rates for caches, TLBs and the branch predictor, for example.

Some events cannot be monitored on all systems: the L1i-l, L2-l and L2-m

events are unavailable on the ODROID-X2, while the br event is not available on

the APM X-C1. Furthermore, the br-m event on APM X-C1 does not appear to

work as expected and has been discounted from this analysis. On APM X-C1,

the counter for this event has values of similar magnitude and strongly corre-

lated with the Cycles counter. Additionally, Cortex-A9 (used by ODROID-X2)

does not implement the INST RETIRED event, used on the other systems for

the Insts counter and instead the Instructions coming out of the core renaming

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 107

stage event is used, which is described by ARM as providing similar function-

ality. This accounts for the slight difference between the values of the Insts

counter on ODROID-X2 compared to the other systems. Cortex-A15 (used by

the Jetson TK1 system) does not implement the architecturally executed software

change of PC event (PC WRITE RETIRED), used on the other systems for the

branches counter and instead the speculatively executed software change of PC

event (PC WRITE SPEC) is used.

How to read and interpret the results

The tables provided in this section contain a large amount of data. This section

will provide guidance on how to read it and interpret the results. Let us consider

Table 5.9 as the first example, which shows the relative performance counter

values for the baseline configuration of MAMBO compared to native execution,

on APM X-C1.

The first column to inspect is Cycles, which shows the relative change in the

number of execution cycles compared to native execution. For these compute-

bound workloads, it is equivalent to the slowdown in terms of time for the

userspace code (i.e. excluding time spent in system calls). In this example, the

perlbench benchmark takes 1.98 times as long to execute the userspace code (i.e.

it takes 98% longer), tonto takes 1.18 times as long and so on. The second col-

umn to inspect is Insts, which shows the relative number of executed instructions.

perlbench executes 53% more instructions, while tonto executes 28% more instruc-

tions. Comparing the two benchmarks against each other, it can be observed that

perlbench executes 53% more instructions while taking 98% longer and tonto ex-

ecutes 28% more instructions while only taking 18% longer. This indicates that

the translation of tonto executes relatively efficiently on this microarchitecture

and much of the introduced overhead can be attributed to the additional exe-

cuted instructions. However, some of the other performance metrics for tonto are

degraded and are likely to be responsible for some of this overhead. For example,

the number of L1 instruction load misses (L1i-m) has increased 35 times and

the number of instruction TLB misses (itlb-m) has increased 3 times, which is a

result of code expansion, duplication and fragmentation in the code cache. This

behaviour is likely to be improved by traces, which reduce fragmentation and

improve code cache locality. Another degraded metric is the number of L1 data

cache loads (L1d-l), which has increased by 14%, likely as a result of accesses to

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 108

the SPC-to-TPC hash table. However, it can be observed that the L1 data cache

has been able to accommodate the increased working set size fairly well, as the

number of L1 data cache load misses (L1d-m) has only increased by 3%. As a

result of the increased number of L1 cache misses, the number of L2 cache loads

(L2-l) has increased by 37%. This increased pressure on the L2 cache results

in 20% more load misses (L2-m). Finally, the larger working set for data also

slightly increases the number of data TLB misses (dtlb-m) by 18%.

Continuing to analyse the tonto benchmark, Table 5.14 shows the relative

change in performance related events when the traces optimisation is enabled,

compared to the baseline configuration of MAMBO. In this case, the Cycles col-

umn shows a 6% speed-up, with no change in the number of executed instructions.

This performance improvement can be attributed to the 78% reduction in L1 in-

struction load misses, which also lowers the pressure on the L2 cache, reducing the

number of L2 loads and L2 loads misses by 8% each. Enabling traces also reduces

the number of executed branches by 42% (br). The number of executed branches

is not reported by the APM X-C1 system, however, as it is an architectural event,

its value is the same on all systems and can therefore be obtained from one of

the ODROID-XU3, ODROID-X2 or Tronsmart R28 tables (Tables 5.10 to 5.12).

Baseline MAMBO

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 2.11 1.53 1.19 1.93 1.49 8.80 4.39 3.32 6.70 17.45 2.14 1.24
gcc 1.59 1.41 1.28 1.23 1.41 10.49 2.38 1.36 2.99 17.12 1.60 1.24
gobmk 2.35 1.38 1.13 1.84 0.84 12.71 6.14 4.62 10.98 45.77 1.85 0.87
sjeng 2.11 1.47 1.25 1.93 1.23 23.39 7.95 1.91 5.27 63.04 2.06 1.01
h264ref 1.55 1.40 1.28 1.52 1.47 11.59 2.42 1.30 2.54 12.26 1.49 1.21
omnetpp 1.69 1.90 1.73 1.39 1.25 45.81 3.29 1.13 2.24 7.50 2.06 1.21
astar 1.28 1.48 1.30 1.02 1.51 1.84 1.03 1.03 1.02 13.07 1.97 1.07
xalancbmk 1.95 1.80 1.78 1.89 1.52 27.54 3.56 1.29 2.36 10.11 2.53 1.28
dealII 1.36 1.46 1.46 1.04 1.57 9.43 1.27 1.03 3.37 7.47 1.48 1.22
povray 1.81 1.75 1.55 1.62 1.47 5.57 2.48 8.32 9.38 9.52 1.66 0.98
tonto 1.27 1.28 1.16 1.06 1.20 16.58 2.26 1.09 3.57 17.03 1.66 1.13

Table 5.5: Overhead under the baseline MAMBO configuration, on ODROID-
XU3 (LITTLE cluster).

Tables 5.5 to 5.9 show the overhead of running SPEC CPU2006 under the

baseline configuration of MAMBO compared to native execution, for benchmarks

with an execution time overhead of at least 15%.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 109

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 2.13 1.62 1.20 1.70 N/A 17.68 N/A N/A 2.76 8.18 2.12 3.57
gcc 1.95 1.51 1.39 1.15 N/A 25.50 N/A N/A 2.09 8.99 1.64 3.50
gobmk 2.41 1.39 1.08 1.58 N/A 31.78 N/A N/A 2.48 408.17 1.86 2.38
sjeng 2.17 1.42 1.19 1.81 N/A 97.81 N/A N/A 2.51 1346.68 2.06 2.05
h264ref 1.52 1.47 1.31 1.31 N/A 42.07 N/A N/A 2.60 65.52 1.49 3.99
omnetpp 1.94 2.16 1.71 1.28 N/A 322.95 N/A N/A 1.97 41.19 2.06 4.37
astar 1.18 1.38 1.26 1.03 N/A 7.18 N/A N/A 1.07 0.69 1.95 1.45
xalancbmk 2.19 2.00 1.81 1.57 N/A 44.00 N/A N/A 2.09 5.74 2.53 3.90
milc 1.25 1.20 1.13 1.01 N/A 69.31 N/A N/A 1.19 0.99 1.48 9.72
dealII 1.31 1.49 1.47 1.02 N/A 54.21 N/A N/A 1.16 9.28 1.49 2.00
povray 1.65 1.78 1.56 1.50 N/A 13.65 N/A N/A 2.10 3.10 1.66 2.22
tonto 1.44 1.35 1.19 1.02 N/A 47.53 N/A N/A 1.65 12.22 1.69 4.05
wrf 1.21 1.18 1.14 1.02 N/A 94.11 N/A N/A 1.81 5.61 1.50 3.36

Table 5.6: Overhead under the baseline MAMBO configuration, on ODROID-X2.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 1.95 1.53 1.19 1.69 1.58 20.43 7.14 2.32 2.61 20.99 2.12 1.93
gcc 1.66 1.42 1.40 1.20 1.62 32.62 3.94 1.19 2.30 18.83 1.63 2.58
gobmk 2.58 1.37 1.10 1.59 1.12 35.43 12.56 3.11 2.28 636.50 1.86 2.05
sjeng 2.36 1.47 1.23 1.89 1.52 127.62 19.39 1.56 1.93 117218.94 2.06 2.32
h264ref 1.62 1.40 1.28 1.44 1.88 47.39 2.77 1.49 2.13 164.69 1.49 3.23
omnetpp 1.77 1.89 1.65 1.36 1.83 427.80 5.35 1.15 1.71 174.81 2.06 4.44
xalancbmk 2.28 1.79 1.66 1.79 2.18 81.49 5.33 1.29 2.20 7.46 2.52 4.13
gamess 1.16 1.10 1.03 1.07 1.14 43.93 2.38 1.06 1.14 933.69 1.90 1.62
dealII 1.40 1.46 1.33 1.03 1.44 85.67 1.25 1.02 1.58 21.70 1.49 1.69
povray 1.79 1.73 1.55 1.55 1.56 13.66 3.53 2.97 1.96 4.43 1.66 2.42
tonto 1.31 1.28 1.16 1.03 1.49 57.96 2.11 1.11 1.47 20.98 1.68 2.84

Table 5.7: Overhead under the baseline MAMBO configuration, on Tronsmart
R28.

Overall, the metrics measured by the performance counters for this subset

of benchmarks are worse compared to native execution and generally multiple

factors appear to affect the performance of translated code. The number of

instruction cache loads is, however, reduced for multiple benchmarks and systems,

despite an increased number of executed instructions: for gobmk on ODROID-

XU3 it is reduced by 26%, for leslie3d on Jetson TK1 by 9%, and for gobmk,

h264ref, astar, dealII and tonto on APM X-C1 by 15%, 6%, 21%, 19% and 9%

respectively. This indicates that even a relatively simple dynamic code cache has

the potential to improve (hardware) instruction cache spatial locality compared

to static compilers and linkers. The number of branch mispredictions for gobmk

on ODROID-XU3 is reduced by 13%, despite the number of branches increasing

by 85%. This is likely enabled by the software code cache improving prediction

for conditional direct branches.

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 110

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 2.41 1.54 1.21 1.66 2.02 10.51 5.78 1.84 2.81 13.39 1.34 2.89
gcc 1.86 1.42 1.37 1.20 1.99 16.11 3.12 1.10 2.17 7.09 1.26 2.49
gobmk 2.75 1.37 1.05 1.54 1.43 16.26 7.06 3.13 2.52 86.95 1.29 1.44
sjeng 2.47 1.47 1.17 2.27 1.70 25.24 8.60 1.27 2.10 125.51 1.35 1.85
h264ref 1.67 1.40 1.23 1.37 1.83 17.23 2.30 2.39 2.35 19.61 1.35 3.21
omnetpp 1.89 1.90 1.62 1.52 2.68 50.02 4.75 1.32 1.78 55.37 1.39 3.60
xalancbmk 2.48 1.81 1.61 1.85 3.55 26.76 4.11 1.19 2.10 10.29 1.47 4.68
gamess 1.19 1.10 1.01 0.96 1.16 21.67 1.83 1.54 1.14 11.37 1.47 1.46
milc 1.25 1.19 1.08 1.00 1.17 7.78 1.00 0.94 1.04 0.86 1.33 1.70
leslie3d 0.76 1.07 0.97 0.54 0.91 1.37 0.71 1.00 0.99 0.86 1.11 0.98
dealII 1.38 1.46 1.29 1.03 1.51 19.64 1.24 1.01 1.12 5.42 1.20 1.32
soplex 1.31 1.25 1.07 1.01 1.24 11.20 1.00 1.00 1.10 2.22 1.29 1.18
povray 2.03 1.75 1.45 1.41 2.01 7.43 2.71 8.26 2.19 3.24 1.34 2.77
tonto 1.36 1.28 1.13 1.01 1.47 36.68 2.60 1.07 1.43 6.20 1.27 1.68
sphinx3 1.49 1.11 1.03 1.02 1.22 3.77 0.86 0.95 1.74 2.37 1.21 1.21

Table 5.8: Overhead under the baseline MAMBO configuration, on Jetson TK1.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 1.98 1.53 1.19 1.44 1.32 10.64 1.56 5.24 2.45 15.46 N/A N/A
gcc 1.76 1.41 1.24 1.14 1.20 19.60 1.59 1.69 1.07 8.01 N/A N/A
gobmk 2.65 1.37 1.04 1.87 0.85 22.98 2.18 9.75 2.16 16.90 N/A N/A
sjeng 2.04 1.46 1.20 2.12 1.05 196.43 2.43 5.90 1.03 3.98 N/A N/A
h264ref 1.36 1.40 1.28 1.36 0.94 43.37 1.55 1.48 1.26 4.70 N/A N/A
omnetpp 1.77 1.90 1.64 1.14 1.18 429.36 2.84 1.22 1.04 2.26 N/A N/A
astar 1.25 1.48 1.17 1.02 0.79 2.92 1.47 1.00 0.99 3.00 N/A N/A
xalancbmk 2.57 1.80 1.78 1.71 1.42 74.64 3.94 1.84 1.18 4.70 N/A N/A
dealII 1.30 1.46 1.50 1.02 0.81 61.49 2.23 1.05 1.02 2.51 N/A N/A
povray 1.91 1.75 1.44 1.46 1.12 15.35 2.28 17.82 38.87 25.12 N/A N/A
tonto 1.18 1.28 1.14 1.03 0.91 35.84 1.37 1.20 1.18 3.07 N/A N/A

Table 5.9: Overhead under the baseline MAMBO configuration, on APM X-C1.

The benchmark with the highest execution time overhead on all systems is

gobmk, with an overhead between 135% (on ODROID-XU3) and 175% (on Jet-

son TK1). The instruction count overhead under MAMBO is only around 37%,

therefore there are additional causes for the high slowdown factor. Natively,

gobmk is the benchmark with the highest rate of instruction cache misses (per

cycle). When running under the baseline MAMBO, the number of instruction

cache misses increases from 12 times on ODROID-XU3 up to 35 times on Trons-

mart R28. The instruction cache misses lead to an increased number of L2 loads

(from 2 times more on APM X-C1 up to 12 times on Tronsmart R28) and L2

load misses (from 3 times more on Tronsmart R28 up to 9 times more on APM

X-C1). The number of instruction TLB misses also increases significantly, from

16.9 times on APM X-C1 and up to 636 times on Tronsmart R28. This be-

haviour appears to be primarily caused by the fragmented layout of basic blocks

in the code cache, which decreases instruction cache locality, and spreads the

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 111

code across more pages. Additionally, the increased number of branches (1.86

times) and increased branch mispredictions (except on ODROID-XU3, from 1.44

more on Jetson TK1 up to 2.38 on ODROID-X2) likely affect hardware code

prefetching.

leslie3d on Jetson TK1 gets a 24% speedup compared to native execution.

This appears to be caused by improved cache hit rates. The 9% reduction in

the instruction cache misses and the 14% reduction in instruction TLB misses

are likely caused by the software code cache with unconditional branch eliding

improving locality. However, the more significant 46% reduction in data cache

misses appears to be a fortunate side effect of the memory layout of applications

running under MAMBO being slightly altered because of the memory region

reserved for the runtime. The layout of application data is not modified on

purpose.

The overhead of h264ref on APM X-C1 is significantly lower compared to the

other systems (36% on APM X-C1 and between 52% and 67% on the other sys-

tems). On APM X-C1, the number of L1 instruction cache loads under MAMBO

is reduced by 6% from native execution, as opposed to the other systems on

which it is increased from 43% (on ODROID-XU3) to 88% (Jetson TK1). The

overhead on APM X-C1 in terms of L2 loads (55%) and L1 data TLB misses

(26%) is also lower compared to the other systems (between 139% and 177% and

between 113% and 160% respectively). Similarly, tonto running on APM X-C1

has a lower overhead (18%) compared to the other systems (27% - 44%), while

having fewer L1 instruction cache loads and lower overhead in terms of L2 cache

loads and L1 data TLB misses. Since the Jetson TK1 and Tronsmart R28 systems

have the same instruction cache line length as the APM X-C1, it is not immedi-

ately clear why the benchmarks running on APM X-C1 have fewer L1 instruction

loads. Unfortunately, the microarchitecture of APM883208 is not documented in

detail, therefore further understanding of this behaviour is difficult. This differ-

ence could potentially be caused by a large loop buffer on the APM X-C1 system.

The Cortex-A15 core used by the Jetson TK1 system is documented to have a

32 entry loop buffer [Lan11], while the other Cortex-A cores used in the other

systems are not documented to use a loop buffer at all.

The effect of some of the microarchitectural parameters are clearly shown in

the performance counter results. For example, the overhead in terms of L2 cache

load misses is inversely correlated with the size of the L2 cache: taking perlbench

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 112

as an example, the L2 load miss overhead is 84% on Jetson TK1 (2MiB L2 cache),

132% on Tronsmart R28 (1MiB L2 cache), 232% on ODROID-XU3 (512 KiB L2

cache) and 424% on APM X-C1 (256KiB L2 cache).

Traces

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.82 0.99 1.00 1.04 0.97 0.33 0.53 0.51 1.01 1.13 0.49 1.26
bzip2 1.06 1.01 1.00 1.02 0.84 1.11 1.02 1.11 1.00 0.83 0.48 1.05
gcc 0.90 1.03 1.00 1.05 0.99 0.48 0.73 0.82 1.00 1.29 0.67 0.96
gobmk 0.74 0.99 1.00 0.99 1.15 0.60 0.67 0.46 1.46 1.60 0.57 1.18
sjeng 0.83 1.00 1.01 1.01 1.02 0.51 0.60 0.75 1.24 1.45 0.60 1.08
h264ref 0.97 1.01 1.01 1.02 1.11 0.56 0.82 0.95 0.96 1.29 0.76 0.97
omnetpp 0.84 0.97 1.00 1.04 1.36 0.31 0.60 0.98 0.94 1.01 0.57 0.98
xalancbmk 0.90 0.98 1.00 1.01 1.16 0.66 0.83 0.93 1.03 0.93 0.53 1.03
povray 0.94 0.97 1.00 1.02 1.13 0.69 0.86 0.50 1.38 1.40 0.56 1.13
tonto 0.94 1.00 1.00 1.02 0.99 0.31 0.62 1.00 1.33 1.17 0.58 0.98

Table 5.10: Overhead of the traces optimisation (relative to baseline), on
ODROID-XU3.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.68 0.90 1.01 0.95 N/A 0.20 N/A N/A 0.92 0.78 0.49 0.27
bzip2 0.80 1.01 1.00 0.95 N/A 0.60 N/A N/A 0.97 1.09 0.48 0.73
gcc 0.85 0.96 1.00 1.01 N/A 0.24 N/A N/A 0.96 1.04 0.67 0.37
gobmk 0.62 0.93 1.03 0.95 N/A 0.33 N/A N/A 0.94 0.90 0.57 0.50
sjeng 0.69 0.98 1.03 0.92 N/A 0.27 N/A N/A 0.86 0.55 0.60 0.60
h264ref 0.91 1.00 1.00 0.93 N/A 0.15 N/A N/A 0.94 0.59 0.76 0.66
omnetpp 0.69 0.84 1.02 0.97 N/A 0.08 N/A N/A 1.03 0.55 0.57 0.30
astar 0.96 0.99 1.01 0.99 N/A 0.51 N/A N/A 1.04 1.13 0.63 0.83
xalancbmk 0.78 0.91 1.01 0.97 N/A 0.41 N/A N/A 1.03 0.72 0.53 0.45
dealII 0.89 0.96 0.99 1.00 N/A 0.12 N/A N/A 0.86 0.47 0.56 0.28
povray 0.83 0.93 1.00 1.02 N/A 0.25 N/A N/A 1.01 0.90 0.56 0.44
tonto 0.86 0.95 1.00 1.02 N/A 0.19 N/A N/A 0.84 0.64 0.58 0.27
wrf 0.96 1.01 1.00 0.97 N/A 0.28 N/A N/A 0.79 0.26 0.69 0.37

Table 5.11: Overhead of the traces optimisation (relative to baseline), on
ODROID-X2.

Tables 5.10 to 5.14 show the relative change in the number of performance

events when running SPEC CPU2006 under the +traces configuration, com-

pared to the baseline configuration of MAMBO, for benchmarks with a signifi-

cant change in execution time. With traces, many benchmarks gain a significant

speed up: up to 18% on ODROID-XU3 (perlbench), up to 38% on ODROID-X2

(gobmk), up to 41% on Tronsmart R28 (gobmk), up to 31% on Jetson TK1 and

up to 36% on APM X-C1 (gobmk). Across the benchmarks getting a speed-up,

the number of architecturally executed branches is substantially reduced (by 11%

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 113

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.72 0.99 1.00 0.96 0.80 0.20 0.32 0.58 0.98 0.51 0.49 0.51
gcc 0.80 1.03 0.99 1.00 0.79 0.22 0.44 0.90 1.01 0.60 0.66 0.46
mcf 1.06 1.00 1.02 1.00 0.82 0.44 1.00 1.00 1.00 0.94 0.47 0.82
gobmk 0.59 0.99 1.02 1.01 0.89 0.34 0.39 0.50 0.98 0.56 0.57 0.56
sjeng 0.62 1.00 1.01 0.99 0.83 0.25 0.31 0.79 1.03 0.37 0.60 0.52
h264ref 0.90 1.01 0.99 0.95 0.98 0.16 0.55 0.84 0.95 0.42 0.76 0.72
omnetpp 0.74 0.97 0.99 0.96 0.80 0.08 0.30 0.93 0.98 0.49 0.57 0.38
xalancbmk 0.77 0.98 0.98 1.00 0.84 0.40 0.58 0.88 0.96 0.69 0.53 0.47
gamess 0.91 0.99 1.00 0.98 1.01 0.24 0.56 1.12 1.00 0.55 0.55 0.60
leslie3d 1.04 1.05 1.01 1.03 1.07 1.35 1.01 1.00 1.21 0.98 0.89 1.09
dealII 0.88 1.00 0.99 0.99 0.81 0.12 0.83 0.99 0.95 0.33 0.56 0.46
povray 0.79 0.97 0.97 0.93 0.78 0.29 0.53 0.39 1.00 0.70 0.56 0.46
GemsFDTD 1.06 1.01 1.01 1.01 1.04 0.75 0.99 0.99 1.07 0.24 0.57 0.88
tonto 0.87 1.01 0.99 0.99 0.86 0.17 0.56 0.97 0.98 0.47 0.57 0.36

Table 5.12: Overhead of the traces optimisation (relative to baseline), on Trons-
mart R28.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.71 0.99 0.98 0.94 0.80 0.33 0.51 0.83 0.98 1.16 0.90 0.73
gcc 0.83 1.03 1.00 1.05 0.89 0.39 0.66 1.00 1.04 1.50 1.12 0.93
gobmk 0.70 0.99 1.02 1.00 0.90 0.57 0.65 0.64 0.98 1.38 0.92 1.18
sjeng 0.69 1.00 1.02 1.07 0.89 0.48 0.58 0.86 1.06 0.72 0.93 0.89
h264ref 0.90 1.01 1.00 0.90 0.95 0.35 0.66 0.69 0.94 0.92 1.11 0.89
omnetpp 0.76 0.97 0.99 0.97 0.79 0.30 0.52 0.83 1.03 0.88 0.81 0.83
xalancbmk 0.81 0.98 0.99 0.99 0.72 0.60 0.78 1.00 0.99 0.89 0.87 0.86
gamess 0.92 0.99 1.00 0.93 0.95 0.43 0.67 0.86 1.01 1.36 0.85 0.90
soplex 0.80 1.03 0.99 1.00 0.96 0.22 1.03 1.02 0.99 0.64 1.14 0.86
povray 0.82 0.97 0.98 0.98 0.80 0.53 0.75 0.21 1.03 1.73 0.77 0.75
calculix 1.03 1.00 1.01 1.00 1.07 0.41 0.98 0.97 1.00 1.11 1.02 1.95
tonto 0.85 1.00 1.01 1.19 0.90 0.20 0.56 1.01 1.01 1.29 1.02 0.86
sphinx3 0.94 1.03 1.00 1.00 0.85 0.62 1.00 1.04 0.89 1.03 1.35 0.42

Table 5.13: Overhead of the traces optimisation (relative to baseline), on Jetson
TK1.

up to 53%), which is an intended consequence of traces merging code fragments

commonly executed one after each other. The improved layout of traces and

reduced number of executed branches also reduces the number of branch mispre-

dictions, however this appears to be heavily dependent on microarchitecture: on

ODROID-XU3 the average is a slight increase in the number of mispredictions, on

ODROID-X2 all benchmarks trigger fewer mispredictions (by 17% up to 73%), on

Tronsmart R28 all benchmarks apart from leslie3d trigger fewer mispredictions

(from 12% up to 62%) and on Jetson TK1 gobmk and calculix have 18% and 95%

more mispredictions respectively, while most benchmarks have fewer (by 7% up

to 58%).

The number of L1 instruction loads is decreased with traces (due to increased

locality and higher utilisation of cache lines) for some combinations of benchmarks

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 114

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.77 0.99 1.03 1.00 0.94 0.34 0.86 0.43 0.95 0.92 N/A N/A
gcc 0.80 1.03 1.01 1.00 1.09 0.33 0.88 0.71 1.01 1.34 N/A N/A
gobmk 0.64 0.99 1.02 0.88 1.15 0.57 0.79 0.34 0.99 0.95 N/A N/A
sjeng 0.73 1.00 1.04 0.91 1.15 0.45 0.79 0.34 1.00 0.95 N/A N/A
h264ref 0.94 1.01 1.00 0.98 1.19 0.25 0.96 0.87 0.97 0.88 N/A N/A
omnetpp 0.80 0.97 1.01 1.00 1.04 0.13 0.67 0.94 1.00 1.17 N/A N/A
xalancbmk 0.76 0.98 1.01 0.99 1.12 0.54 0.83 0.69 0.93 0.70 N/A N/A
dealII 0.92 1.00 1.00 1.00 1.17 0.18 0.95 0.98 1.00 1.23 N/A N/A
povray 0.91 0.97 1.01 0.98 1.22 0.53 0.90 0.22 2.30 1.46 N/A N/A
tonto 0.94 1.00 1.00 1.00 1.17 0.22 0.92 0.92 1.03 1.02 N/A N/A

Table 5.14: Overhead of the traces optimisation (relative to baseline), on APM
X-C1.

and systems and increased (due to the code duplication being introduced by

traces) for others. On Tronsmart R28 and Jetson TK1 most benchmarks have

fewer L1 instruction loads, on ODROID-XU3 the number of benchmarks with

fewer loads is equal to the number of benchmarks with more loads, while on APM

X-C1 most benchmarks have a slight increase in loads. The difference between the

different systems is mainly caused by the cache line length (ODROID-XU3 has 32

byte lines, the other three have 64 byte lines), speculative execution capabilities

and loop buffer size (if available). The L1i-l event is not available on ODROID-

X2. The number of L1 instruction load misses is decreased for most benchmarks

on all systems, by as much as 69% on ODROID-XU3 (for omnetpp and tonto),

92% on ODROID-X2 and Tronsmart R28 (for omnetpp), 80% on Jetson TK1

(for tonto) and 87% on APM X-C1 (for omnetpp). The reduced number of L1

instruction misses is likely to be one of the main contributors to the improved

performance with traces for benchmarks such as perlbench, gcc, gobmk, sjeng,

omnetpp, xalancbmk, povray and tonto, which have high L1 instruction cache

miss rates (from 3% up to 27%, depending on benchmark and system) with the

baseline MAMBO configuration.

Interestingly, the number of speculatively executed branches, measured by

the Jetson TK1 system, is higher compared to the baseline configuration for

some benchmarks.

However, there are also several minor slow downs: bzip2 on ODROID-XU3

(6% slowdown), mcf, leslie3d and GemsFDTD on Tronsmart R28 (slowdowns of

6%, 4% and 6% respectively) and calculix on Jetson TK1 (3% slowdown). Of

these benchmarks, calculix appears to be affected by an increased number of L1

instruction loads, L1 instruction TLB misses and branch misses, which seem to

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 115

indicate excessive code duplication in traces; similarly bzip2 seems to be affected

by increased L1 instruction cache and L2 cache misses.

Hardware return address prediction

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
bzip2 0.93 1.00 1.00 0.98 0.98 0.81 0.98 0.90 1.00 0.77 1.05 0.93
gobmk 0.92 1.02 1.03 0.99 1.07 0.77 0.83 0.84 0.73 0.65 1.10 1.00
sjeng 0.94 1.01 1.01 1.01 1.02 0.75 0.83 0.95 0.71 0.50 1.08 1.00
h264ref 0.96 1.00 0.98 0.90 1.03 0.57 0.80 0.96 0.92 0.73 1.14 1.08

Table 5.15: Overhead of the hw ras optimisation (relative to +traces), on
ODROID-XU3.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
gcc 0.96 1.03 1.07 0.98 N/A 0.82 N/A N/A 0.94 0.73 1.07 1.07
h264ref 0.96 0.97 0.99 1.03 N/A 0.76 N/A N/A 0.92 0.42 1.14 0.65
xalancbmk 1.03 1.03 1.04 1.02 N/A 0.81 N/A N/A 1.00 0.86 1.18 1.26
dealII 1.03 1.00 1.06 1.00 N/A 0.80 N/A N/A 0.96 0.66 1.24 0.88
povray 1.05 1.05 1.06 1.03 N/A 0.77 N/A N/A 0.96 0.81 1.29 1.35

Table 5.16: Overhead of the hw ras optimisation (relative to +traces), on
ODROID-X2.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
gobmk 0.94 1.02 1.02 0.94 1.11 0.74 0.78 0.86 0.97 0.54 1.10 0.91
h264ref 0.94 1.00 0.99 0.93 0.91 0.80 0.89 0.91 0.90 0.47 1.14 0.50
gromacs 0.96 0.99 0.99 0.95 0.99 0.24 0.97 1.00 0.95 0.68 0.96 0.86
cactusADM 0.96 0.99 0.99 0.97 0.99 0.23 0.97 0.99 0.99 1.04 0.53 0.31
leslie3d 0.96 0.99 0.99 1.00 1.01 0.67 1.01 1.00 0.83 0.98 0.98 0.90
dealII 1.12 1.01 1.07 1.00 1.06 2.14 1.03 0.99 0.99 0.71 1.24 0.99
GemsFDTD 0.95 0.99 0.99 0.98 0.95 0.32 1.01 1.00 0.94 0.67 0.96 0.64

Table 5.17: Overhead of the hw ras optimisation (relative to +traces), on Tron-
smart R28.

Tables 5.15 to 5.19 show the relative change in the number of performance

events when running SPEC CPU2006 under the +hw ras +traces configuration

compared to the +traces configuration of MAMBO, for benchmarks with a change

in execution time greater than 3%. With hardware return address prediction,

many benchmarks gain a speed up (up to 8% on ODROID-XU3, up to 4% on

ODROID-X2, up to 6% on Tronsmart R28, up to 15% on Jetson TK1 and up to

21% on APM X-C1).

The main purpose of this optimisation is to improve branch prediction for

translated function returns. All of the cores used on the test systems use a hard-

ware return address stack for return address prediction, however, without the

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 116

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
gobmk 0.85 1.02 1.03 0.91 0.97 0.75 0.76 0.81 0.95 0.46 1.05 0.79
sjeng 0.95 1.01 1.03 0.93 1.05 0.78 0.83 0.98 0.98 0.61 1.04 0.97
h264ref 0.92 1.00 0.99 1.19 0.90 0.69 1.10 0.94 0.90 0.41 1.09 0.55
omnetpp 0.95 1.04 1.05 1.02 0.92 0.54 0.79 0.97 0.98 0.54 1.12 0.57
xalancbmk 0.89 1.03 1.00 0.98 0.91 0.76 0.84 0.97 0.99 0.59 1.07 0.52
sphinx3 1.04 1.00 1.00 1.00 0.99 0.86 0.96 0.98 0.92 0.79 1.01 0.92

Table 5.18: Overhead of the hw ras optimisation (relative to +traces), on Jetson
TK1.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.85 1.03 0.99 0.98 0.85 0.85 0.97 0.86 0.91 0.73 N/A N/A
gcc 0.91 1.03 1.02 0.99 0.96 0.68 0.93 0.94 0.98 0.74 N/A N/A
gobmk 0.83 1.02 1.03 0.92 1.00 0.72 0.89 0.75 0.91 0.74 N/A N/A
sjeng 0.91 1.01 0.99 0.94 0.97 0.67 0.86 0.85 1.00 0.91 N/A N/A
omnetpp 0.88 1.04 1.02 0.99 0.98 0.42 0.80 0.93 0.99 0.88 N/A N/A
astar 0.93 1.03 1.02 1.00 1.13 0.95 0.89 1.00 1.00 0.53 N/A N/A
xalancbmk 0.85 1.03 1.00 0.99 0.94 0.78 0.86 0.95 0.99 0.85 N/A N/A
povray 0.79 1.05 1.03 0.99 0.87 0.62 0.85 0.68 0.12 0.25 N/A N/A
tonto 0.95 1.01 1.01 1.00 0.94 0.68 0.92 0.96 0.93 0.73 N/A N/A

Table 5.19: Overhead of the hw ras optimisation (relative to +traces), on APM
X-C1.

hw ras optimisation, all return instructions in the application are translated to

indirect branches, which are handled by the generic indirect branch predictor in-

stead. Whether a benchmark is affected by this optimisation depends both on

its execution profile (e.g. how many return instructions it executes and how often

their target changes) and on the microarchitecture (e.g. the penalty for branch

mispredictions, the size and sophistication of the indirect predictor). The more

complex microarchitectures, with longer pipelines (Cortex-A15 and X-Gene), ap-

pear to benefit more from this optimisation compared to the microarchitectures

with shorter pipelines (Cortex-A9 and Cortex-A17). This is expected behaviour,

since implementing this optimisation adds some additional instructions and (eas-

ily predictable) unconditional direct branches, whose overhead has to be amor-

tised by the improved return address prediction. In addition, the benchmarks

running on Cortex-A7 (on the ODROID-XU3) benefit from this optimisation,

despite the simple architecture with a short pipeline, because the generic indirect

branch translations generated by MAMBO are not predicted at all.

The performance of several benchmarks is negatively affected: xalancbmk,

dealII and povray on ODROID-X2 (3%, 3% and 5% respectively), dealII on

Tronsmart R28 (12%) and sphinx3 on Jetson TK1 (4%). None of the monitored

events on Jetson TK1 show a significant overhead, therefore it is not clear what is

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 117

causing the slowdown. The three benchmarks suffering a slowdown on ODROID-

X2 appear to be simply failing to amortise the cost of additional branches and

instructions. dealII on Tronsmart R28 appears to be affected by an increase in

L1 instruction cache loads and branches caused by the changes to the code layout

introduced by this optimisation. While the number of L1 instruction load misses

is increased by a factor of 2, the overall miss rate is still relatively low, around

0.3%, therefore it is unlikely to be a major contributor to the higher overhead.

Some benchmarks in the result tables show improved performance with an

equal or higher number of mispredicted branches. This appears to be caused by

the br-m event counting misses for all speculatively executed branches and not

only for architecturally executed branches. The reported number of L1 instruc-

tion load misses and L1 instruction TLB misses is improved for most benchmarks

on all of the five test machines, as expected and consistent with improved branch

prediction and hardware prefetching. The number of L1 instruction cache misses

is reduced by up to 63% on ODROID-XU3, 24% on ODROID-X2, 77% on Tron-

smart R28, 46% on Jetson TK1 and 58% on APM X-C1, while the number of

L1 instruction TLB misses is reduced by up to 50% on ODROID-XU3, 58% on

ODROID-X2, 53% on Tronsmart R28, 59% on Jetson TK1 and 75% on APM

X-C1. The improved hit rate in the first level instruction cache also reduces the

number of loads and misses for the higher level caches.

Huge pages

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.97 1.00 1.00 0.96 1.01 1.05 0.83 0.99 1.02 1.01 1.00 1.06
xalancbmk 0.97 1.00 1.00 0.97 0.99 1.01 0.90 1.00 1.00 1.01 1.00 1.01
leslie3d 1.35 1.00 1.03 1.85 1.14 1.17 1.42 1.00 1.02 1.20 1.01 1.02

Table 5.20: Overhead of the hugetlb optimisation (relative to +hw ras +traces),
on Jetson TK1.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.96 1.00 1.00 1.00 0.99 1.08 1.00 1.00 0.46 0.03 N/A N/A
gobmk 0.97 1.00 1.00 1.01 1.04 1.07 1.02 1.02 0.52 0.08 N/A N/A
xalancbmk 0.96 1.00 1.00 1.01 1.03 1.05 1.00 1.00 0.90 0.05 N/A N/A

Table 5.21: Overhead of the hugetlb optimisation (relative to +hw ras +traces),
on APM X-C1.

Support for huge pages is not implemented in the version of the Linux kernel

used on ODROID-X2, therefore this optimisation has not been evaluated on that

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 118

machine. Additionally, this optimisation fails to produce a speed up of 3% or more

on any SPEC CPU2006 benchmark on the ODROID-XU3 and Tronsmart R28

systems, despite reducing the number of L1 instruction TLB misses to a negligible

value on both systems and also measurably reducing the number of L1 data

TLB misses on Tronsmart R28. Tables 5.20 and 5.21 show the relative change

in the number of performance events between running SPEC CPU2006 under

the +hugetlb +hw ras +traces configuration compared to the +hw ras +traces

configuration of MAMBO, for benchmarks with a change in execution time greater

than or equal to 3%.

Jetson TK1, whose Cortex-A15 core only supports 4KiB granularity in the

L1 TLB entries, gets a 3% speedup on the perlbench and xalancbmk benchmarks.

On the same machine, leslie3d, a benchmark which runs 21% - 25% faster than

native under most MAMBO configurations, has a significant slowdown due to the

hugetlb optimisation and ends up running 3% slower than native. This appears

to be caused by the data cache hit rate reverting back to the native value1 rather

than by additional overhead being introduced by this optimisation.

On APM X-C1, the benchmarks perlbench, gobmk and xalancbmk gain 4%,

3% and 4% speed-ups, respectively.

Low footprint inline hash table lookup dispatch

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 1.03 1.04 1.06 0.97 1.04 1.07 1.01 1.03 0.92 0.92 1.00 1.00
gobmk 1.04 1.03 1.06 1.04 1.02 1.06 1.05 1.04 0.89 0.98 1.00 1.00
omnetpp 1.03 1.06 1.08 1.01 1.02 1.15 1.05 1.01 1.14 1.03 1.00 1.00
xalancbmk 1.03 1.04 1.07 0.99 1.00 1.09 1.03 1.02 0.95 0.87 1.00 1.00
povray 1.06 1.08 1.09 1.03 1.05 1.02 1.03 1.36 1.03 1.21 1.00 1.00

Table 5.22: Overhead of the ldm pc sr optimisation (relative to +traces), on
ODROID-XU3.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 1.03 1.04 1.05 1.02 N/A 1.09 N/A N/A 1.01 1.02 1.00 1.04
xalancbmk 1.03 1.04 1.04 1.01 N/A 1.04 N/A N/A 0.99 1.00 1.00 1.02
povray 1.04 1.07 1.06 1.01 N/A 1.07 N/A N/A 1.02 1.04 1.00 0.97

Table 5.23: Overhead of the ldm pc sr optimisation (relative to +traces), on
ODROID-X2.

1See the discussion about leslie3d on Jetson TK1 on page 111

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 119

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
gromacs 0.96 0.99 0.99 0.95 0.99 0.24 0.97 1.01 0.96 0.74 0.93 0.93
GemsFDTD 0.96 1.00 1.00 0.99 0.96 0.60 1.00 1.00 0.97 1.12 0.96 0.81

Table 5.24: Overhead of the ldm pc sr optimisation (relative to +traces), on
Tronsmart R28.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
calculix 0.96 1.00 1.00 1.00 0.94 0.94 0.99 1.02 1.02 0.86 1.00 0.62
sphinx3 1.03 1.01 1.00 0.99 1.00 1.17 0.96 0.99 0.97 0.90 1.00 0.93

Table 5.25: Overhead of the ldm pc sr optimisation (relative to +traces), on
Jetson TK1.

Tables 5.22 to 5.26 show the relative change in the number of performance

events when running SPEC CPU2006 under the +ldm pc sr +traces configuration

compared to the +traces configuration of MAMBO, for benchmarks with a change

in execution time greater than or equal to 3%. The effect of this linking scheme

varies depending on the microarchitecture: on ODROID-XU3 and ODROID-X2

all benchmarks runs with increased or equal overhead (by up to 6% on ODROID-

XU3 and 4% on ODROID-X2), on Jetson TK1 one benchmark gains a speed-up

(of 4%) while a second benchmarks suffers a slow-down (3%), while on Tronsmart

R28 and APM X-C1 all benchmarks run with the same or lower overhead (up to

4% lower on Tronsmart R28 and up to 14% lower on APM X-C1). This linking

scheme is intended to reduce the pressure on the data TLB and on the data

cache, while also avoiding an expensive PC-relative load in the PC, at the cost

of additional instructions being added to the inline hash table lookups. To get a

speed-up, the improved performance due to higher TLB and cache hit rates has

to overcome the penalty of executing these additional instructions, therefore it is

expected to get the best performance on wider OOO microarchitectures, which

is indeed the pattern observed here.

The main penalties associated with using this linking scheme as observed

using performance counters are: an increased number of architecturally executed

instructions for some benchmarks (up to 8% for povray); and an increased number

of L1 instruction cache loads, L1 instruction cache load misses and L1 instruction

TLB misses as a result of the increased code size, mostly on the ODROID-X2

and ODROID-XU3 systems.

On Tronsmart R28, the main benefits appear to be the slight reduction in L1

data cache misses and branch misses. Despite the large relative improvement, the

reduced number of L1 instruction cache misses and L1 instruction TLB misses

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 120

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 0.89 1.04 0.99 1.00 0.84 1.00 1.08 1.00 1.00 1.03 N/A N/A
gcc 0.94 1.03 1.02 1.00 0.91 1.03 1.06 1.01 1.00 1.03 N/A N/A
omnetpp 0.92 1.06 1.05 0.99 0.99 0.65 1.02 0.98 1.00 1.03 N/A N/A
astar 0.92 1.04 1.03 1.00 1.09 1.19 1.02 1.00 1.00 1.14 N/A N/A
xalancbmk 0.95 1.04 1.04 1.01 0.92 1.07 1.08 1.02 1.00 1.01 N/A N/A
povray 0.86 1.08 1.05 1.02 0.91 1.02 1.00 1.29 1.09 1.00 N/A N/A

Table 5.26: Overhead of the ldm pc sr optimisation (relative to +traces), on
APM X-C1.

are unlikely to have a significant contribution to the improved performance of

gromacs and GemsFDTD : both benchmarks in the +traces configuration have

an L1 instruction cache miss rate lower than 0.06% and an L1 instruction TLB

miss rate under 0.002% of L1 instruction cache loads.

On APM X-C1, it is not clear why performance is improved. Overall, this

optimisation is effective in some cases, however the expected improvements in

data cache and data TLB hit rates were not observed.

Adaptive indirect branch inlining

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
h264ref 0.94 0.93 0.96 0.99 0.89 0.78 0.92 0.97 0.80 0.72 0.97 1.18
omnetpp 0.97 0.90 0.91 1.05 0.84 0.89 1.00 0.99 0.88 0.82 0.93 1.04
astar 0.94 0.93 0.94 0.99 0.90 0.93 0.99 0.99 1.01 0.81 0.96 1.02
xalancbmk 0.94 0.91 0.90 1.05 0.85 0.90 0.99 0.98 0.88 0.93 0.93 1.15

Table 5.27: Overhead of the aibi optimisation (relative to +traces), on ODROID-
XU3.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
h264ref 0.96 0.94 0.96 1.03 N/A 1.03 N/A N/A 1.13 1.42 0.97 0.97
omnetpp 0.97 0.90 0.94 1.04 N/A 0.86 N/A N/A 1.01 1.15 0.93 0.87
xalancbmk 0.97 0.90 0.93 1.09 N/A 1.01 N/A N/A 1.07 1.14 0.93 0.92
dealII 0.92 0.89 0.90 1.01 N/A 0.98 N/A N/A 1.03 1.23 0.90 0.82

Table 5.28: Overhead of the aibi optimisation (relative to +traces), on ODROID-
X2.

Tables 5.27 to 5.31 show the relative change in the number of performance

events when running SPEC CPU2006 under the +aibi +traces configuration com-

pared to the +traces configuration of MAMBO, for benchmarks with a change

in execution time greater than or equal to 3%. This optimisation relies on the

previous target of an indirect branch being a good prediction for the following

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 121

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
h264ref 0.96 0.93 0.98 1.01 0.90 0.90 0.97 0.99 1.22 1.05 0.97 1.04
omnetpp 0.96 0.90 0.98 1.04 0.87 0.74 0.98 0.99 1.09 0.89 0.93 0.87
xalancbmk 0.94 0.91 0.98 1.10 0.82 0.87 0.98 0.99 1.12 1.14 0.93 0.87
milc 0.97 0.94 0.96 1.00 0.94 0.94 0.99 1.00 0.86 0.24 0.93 1.08
gromacs 0.96 0.99 0.98 0.95 0.98 0.33 0.98 1.00 0.97 0.83 0.93 0.99
dealII 0.96 0.89 0.97 1.01 0.85 0.88 1.00 0.99 1.09 1.26 0.90 1.08
lbm 0.97 1.00 0.98 0.97 1.00 1.02 0.99 1.00 1.00 1.00 1.00 1.04

Table 5.29: Overhead of the aibi optimisation (relative to +traces), on Tronsmart
R28.

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 1.06 1.01 1.01 1.09 1.12 0.98 1.04 1.01 1.07 0.91 1.02 1.34
mcf 0.94 0.99 1.00 1.00 1.12 1.01 1.05 1.01 1.00 0.99 1.03 1.27
hmmer 0.95 1.00 1.00 0.64 1.06 0.95 0.77 0.87 0.99 0.96 1.00 1.01
h264ref 0.94 0.93 0.99 1.22 0.92 0.88 1.09 0.94 1.12 1.07 1.06 0.97
xalancbmk 0.96 0.91 0.98 1.11 0.87 0.94 1.03 1.05 1.20 1.12 1.01 0.91
dealII 0.91 0.89 0.96 1.02 0.85 0.85 1.00 1.00 1.06 0.93 1.02 0.87
calculix 0.96 1.00 1.00 1.00 0.94 0.97 0.98 1.00 1.03 0.92 1.00 0.64

Table 5.30: Overhead of the aibi optimisation (relative to +traces), on Jetson
TK1.

execution of a branch. The performance benefit gained by executing fewer in-

structions and fewer branches in the case of a correctly predicted branch must

amortise the additional cost of updating the predicted address in the case of a

miss.

The performance improvement of this linking scheme can be attributed to mul-

tiple factors: when predictions tend to be correct, the number of architecturally

executed instructions can be reduced by as much as 11% (dealII); additionally,

by reducing the size of the code typically executed for inline hash table lookups,

the number of instruction cache loads and instruction load misses is generally

reduced; and by avoiding the hash table lookup in case of a correct prediction,

the number of architecturally executed branches is reduced. Since the number

of branch misses is reported as either increased and decreased, depending on

benchmark and microarchitecture, and since the br-m event applies both to ar-

chitecturally and to speculatively executed branches, it is not clear what is the

effect of this linking scheme on branch prediction.

perlbench running on Jetson TK1 suffers a slowdown. This appears to be re-

lated to the poor predictability of the indirect branches executed by this bench-

mark, as shown in Section 5.3.3. These cause AIBI to mispredict relatively often

and fall back to the inline hash table lookup routine, which leads to additional

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 122

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
sjeng 1.03 0.98 0.99 1.19 1.01 1.08 0.99 1.07 1.00 1.36 N/A N/A
h264ref 0.96 0.93 0.97 1.13 1.01 0.97 0.95 1.01 1.03 1.16 N/A N/A
dealII 0.92 0.89 0.91 1.01 0.92 1.23 0.71 1.00 1.00 1.26 N/A N/A

Table 5.31: Overhead of the aibi optimisation (relative to +traces), on APM
X-C1.

hardware branch mispredictions (which are particularly expensive on this system)

and increases the number of L1 instruction loads.

This optimisation improves the average performance on all test systems, how-

ever on some systems it is not as effective as the +hw ras linking scheme, as

shown in Table 5.4.

On ODROID-XU3, ODROID-X2 and Tronsmart R28 all benchmarks are ei-

ther not affected or achieve lower overhead. The highest speed-ups on each system

are: 6% on ODROID-XU3 and Tronsmart R28, 8% on ODROID-X2 and APM

X-C1 and 9% on Jetson TK1.

5.5 Summary

This chapter presented a number of optimisations which address the overhead

introduced by the interaction between the hardware microarchitectures and the

code generated by DBM systems: traces reduce the code cache fragmentation by

grouping together basic blocks which are likely to execute sequentially; hardware-

assisted return address prediction is a technique which enables use of the hardware

return address prediction without maintaining a software return address stack;

low footprint inline hash table lookup dispatch is intended to reduce the impact of

inline hash table lookups on the data caches and TLBs; adaptive indirect branch

inlining is a software indirect branch prediction scheme which allows quick and

frequent updates of the predicted address; and use of huge pages for the code

cache and metadata minimises the number of TLB misses caused by the larger

working sets of data and instructions in translated applications. By using the

optimal combination of these optimisations on each system, the geometric mean

overhead of MAMBO was reduced by at least 29% (on ODROID-XU3) and by

as much as 58% (on APM X-C1) compared to the baseline configuration.

The low footprint inline hash table lookup dispatch has improved the per-

formance on two of the benchmarks running on Tronsmart R28 and six of the

benchmarks running on APM X-C1. However, the expected improvement in data

CHAPTER 5. MICROARCHITECTURAL OPTIMISATIONS 123

cache and data TLB hit rates has been minimal on the former system and absent

on the latter. It is not clear how the significant performance improvement on

APM X-C1 was achieved.

The use of huge pages has had a low effect on performance, only on Jetson

TK1 and on APM X-C1, despite significantly reducing the number of TLB misses.

It appears that TLB misses have a minimal impact on the overhead of MAMBO.

Chapter 6

Conclusions and future work

6.1 Summary and conclusions

Dynamic Binary Modification (DBM) is a technique for modifying applications

transparently while they are executed, working at the level of native machine code.

DBM has numerous applications, including instrumentation and program analy-

sis, virtualisation and dynamic translation. However, many uses are hindered by

the introduced overheads, particularly in terms of execution speed. As a result,

the topic of DBM performance has been an active area of research. Nonetheless,

this thesis identified a number of limitations of the existing literature and research

platforms: firstly, DBM performance research has mostly focused on the x86 ar-

chitecture, while the ARM architecture, which is dominating the mobile com-

puting market and is transitioning to general use, has generally been overlooked.

This introduced the second limitation: existing DBM systems are large, complex

systems, and therefore are difficult to understand and modify by researchers. In

particular for the ARM architecture, there were no performance-oriented DBM

systems at the time this investigation was done. This was addressed by creating

MAMBO, a low overhead DBM system for ARM, which is capable or running

industry standard benchmarks and many other applications. With MAMBO as

a base experimental platform, DBM optimisations were then quickly prototyped

and developed, particularly in the area of branch handling, hot trace generation

and microarchitectural optimisations. However, a new concern then emerged:

publications in the area of DBM performance tend to use one or two systems

for evaluation. Is this an appropriate methodology and can it provide relevant

results? To find out, a number of performance optimisations were evaluated on

124

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 125

five different ARM systems, each using a different microarchitecture. The results

show that 1) the performance of a DBM system can change significantly be-

tween microarchitectures (the overhead varied between 11% and 21% on the five

systems) and that 2) some optimisations which generally improve performance

on one system can actually harm performance on another system (e.g. the low

footprint inline hash table lookup dispatch improves performance on APM X-C1,

while reducing it on ODROID-XU3 and ODROID-X2).

An important contribution is the development of MAMBO, a DBM system

for the ARM architecture, which achieves similar overhead to state-of-the-art

DBM tools for the x86 architecture by using the optimisations put forward in

this thesis. MAMBO has an overhead between 11% and 21% on the five ARM

systems on which it was evaluated, while other DBM systems with support for

ARM have much higher overheads, between 187% for the now discontinued Pin

for ARM [HK06] and 1,907% for QEMU [Bel05]. Furthermore, the codebase

of MAMBO is very small (fewer than 10,000 lines of code) compared to other

DBM systems, which facilitates further research. MAMBO was publicly released

as Free software under the Apache 2.0 license [Gor16]. The design of the base

system is presented in Chapter 3.

MAMBO implements a number of novel optimisations presented in this thesis.

These are: the generation of hot code traces using a new algorithm (Section 5.2),

low overhead return address prediction (Section 4.2.1), hardware-assisted return

address prediction (Section 5.3.1), space-efficient table branch linking (Section

4.2.2), low footprint inline hash table lookup dispatch (Section 5.3.2) and adap-

tive indirect branch inlining (Section 5.3.3). These optimisations were evaluated

using the SPEC CPU2006 benchmark suite. The first optimisation is an im-

provement over the NET [DB00] trace building algorithm, which was modified

to avoid recording traces across difficult to predict indirect branches. This opti-

misation was shown to reduce the geometric mean overhead of MAMBO across all

test systems, from 20% on ODROID-XU3 to 43% on ODROID-X2, by reducing

the number of executed branches, mispredicted branches and instruction cache

misses. The next two optimisations are both used for translating returns and can

not be used at the same time. Low overhead return address prediction is a

variation on the well known software return address prediction with a fat entry

software return address stack. Because of the properties of the ABI and the im-

plementation of exceptions on ARM, low overhead return address prediction can

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 126

trade off full transparency for lower overhead, with the ability to detect incorrect

predictions and fall back to a fully transparent but less efficient translation. This

technique reduces the overhead by 6% on the Jetson TK1 and by 9% on the

ODROID-X2. Hardware-assisted return address prediction is a technique

which enables hardware return address prediction in the code cache, while contin-

uing to use the generic translation for indirect branches at the software level. As

opposed to low overhead return address prediction, this technique is fully trans-

parent and is also compatible with traces. The effect of this optimisation varies

widely depending on the microarchitecture: on APM X-C1, ODROID-XU3 and

Jetson TK1 it reduces the overhead by 30%, 12% and 10% respectively, while on

ODROID-X2 and Tronsmart R28 it has no or minimal effect. Space-efficient

table branch linking is an optimisation for translated table branches which

reduces the size of the translation compared to the shadow jump table used by

FastBT [PG10]. Furthermore, on ARM it can be implemented more efficiently.

On a subset of benchmarks which use a significant number of table branches, this

optimisation improved performance by 1.5% to 3.6% compared to the shadow

jump table scheme when both were configured to use the same amount of code

cache space. Low footprint inline hash table lookup dispatch is an op-

timisation specific to ARM and to the MAMBO implementation of inline hash

table lookups, used to perform the SPC-to-TPC lookup. This optimisation was

intended to reduce the pressure on the data cache and the data TLB. It reduces

the overhead by 17% on APM X-C1, however it actively harms performance on

ODROID-XU3 and ODROID-X2. Furthermore, the performance counter anal-

ysis has failed to explain how the performance was improved on APM X-C1.

However, this optimisation does not appear to significantly reduce the number

of data cache or data TLB misses as expected. Adaptive indirect branch

inlining is a software indirect branch target prediction scheme designed to have

a high hit rate to avoid the hardware branch misprediction penalties incurred by

indirect branch inlining. This optimisation reduces the geometric mean overhead

of MAMBO by 3%, 7%, 7%, 9% and 10% on APM X-C1, ODROID-X2, Jet-

son TK1, Tronsmart R28 and ODROID-XU3, respectively. The main cause of

this improvement seems to be the lower dynamic instruction count, obtained by

avoiding the inline hash table lookups.

Of these optimisations, low overhead return address prediction and hardware-

assisted return address prediction apply to the same type of instructions and

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 127

therefore can not be used at the same time. Furthermore, there are various in-

teractions between some of the other optimisations, meaning that if combined,

the actual performance improvement might be lower than expected. The low

footprint inline hash table lookup dispatch and adaptive indirect branch inlining

apply to branches translated using the inline hash table lookup. When optimisa-

tions specialised for specific types of indirect branches are enabled, fewer branches

are translated using the inline hash table lookup, and therefore fewer translated

branches can benefit from these other optimisations. For example, in most cases

there is little to no speed-up when enabling adaptive indirect branch inlining if

hardware-assisted return address prediction is already used.

For the microarchitectural optimisations in Chapter 5, the performance was

analysed on five different ARM platforms, which has shown that 1) whether an

optimisation for a DBM system is effective or not depends on multiple factors,

include the microarchitecture of the processor it is running on and the type of

workload, and that 2) the optimal combination of linking schemes can be dif-

ferent between multiple systems. Considering that some optimisations increased

performance on one system and decreased it on other systems, while running the

same workload, it becomes clear that performance evaluations of DBM systems

should aim to report results using a similar wide range of hardware platforms.

While this is the case for some of the cited publications [SSNB06], many only use

one or two machines.

6.2 Optimisation selection guidelines

Table 6.1 summarises the dependence of each optimisation on microarchitectural

features and provides guidelines on when it is effective to enable each optimisation.

6.3 Portability to AArch64

While the techniques introduced in this thesis have only been implemented for

32-bit ARM, their portability to AArch64 has also been considered. This is

summarised in Table 6.2. It must be noted that this analysis is strictly showing

whether the instruction set allows the implementation of the optimisations and

it does not make any claims on their performance portability, i.e. whether their

AArch64 implementation would be effective in improving performance.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 128

Optimisation Relevant mi-
croarchitectural
features

Guidelines

Low overhead return
address prediction

return address
prediction
(optional)

trade-off between improved return ad-
dress prediction and the cost of main-
taining a shadow return address stack;
limited transparency; should be dis-
abled if mispredicting; hardware return
address prediction is desirable

Space-efficient table
branch linking

- always use

Inline hash table
lookup

- always use

Fallthrough branch
linking

- always use

Direct branch linking - always use
Eliding uncon-
ditional direct
branches

- trade-off between code cache size and
code cache fragmentation

Traces instruction
cache; direct
branch predic-
tion; instruction
prefetching

should be used in most cases, however
application startup performance could
be affected on very large code bases by
the additional profiling

Hardware-assisted
return address
prediction

return address
prediction

return address prediction is required;
trade-off between a slight increase in
dynamic instruction count and more ac-
curate target prediction for translated
returns; most effective on systems with
no generic indirect branch target pre-
diction and / or higher branch mispre-
diction penalty

Low footprint inline
hash table lookup
dispatch

data cache; data
TLB

must be able to directly load a target
address from memory in the PC, not
available on AArch64

Adaptive indirect
branch inlining

indirect branch
prediction

use for translated generic indirect
branches; also use for translated re-
turns on systems with hardware indi-
rect branch prediction and low branch
misprediction penalty; prediction accu-
racy heavily dependent on the workload

Huge pages support for huge
pages in data
and/or instruc-
tion TLBs

slight performance improvement, most
noticeable on high performance cores
with small TLBs

Table 6.1: Optimisation selection guidelines

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 129

Optimisation AArch64
comp.

Notes

Low overhead return
address prediction

Y -

Space-efficient table
branch linking

Y the explicit table branch instructions have been re-
moved in AArch64; would require more complex pattern
matching in the code scanner; the LDRB and ADD in-
structions can be used instead of TBB to implement the
offset table

Inline hash table
lookup

Y -

Fallthrough branch
linking

Y -

Direct branch linking Y additional challenge because of the limited range of con-
ditional branches and removal of the IT instruction

Eliding uncon-
ditional direct
branches

Y -

Traces Y -
Hardware-assisted
return address
prediction

Y -

Low footprint inline
hash table lookup
dispatch

N requires loads into PC, which are no longer allowed

Adaptive indirect
branch inlining

Y -

Huge pages Y -

Table 6.2: Portability of the optimisations to AArch64

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 130

6.4 Future work

6.4.1 Asynchronous multithreaded trace generation

DBM systems interleave scanning the application code and executing the modified

code. Thus, the performance of the code scanner must be carefully managed to

avoid interrupting the execution of the application for significant lengths of time.

This is the desired behaviour when cold code runs for the first time (i.e. when

MAMBO creates basic blocks), to minimise the startup latency. However, when

traces of the hot code are created, more processing time could be used to optimise

their translation, with the expectation that improved performance will amortise

the longer scanning time. Nevertheless, the creation of traces is also interleaved

with executing the modified application and therefore similar latency restrictions

must apply. This restriction on the latency of the traces code scanner limits the

number and types of optimisations which can be applied.

It would be worthwhile to decouple the generation of traces from the thread

running the modified code. Because a version of the modified code would already

exist in basic blocks at the time traces are created, its execution could continue

uninterrupted. This would be implemented by starting additional threads exclu-

sively for asynchronous generation of optimised code traces. A similar approach

is used by ArcSim [ABVK+11], an instruction set simulator which uses interpre-

tation for cold code and DBT generated by a pool of JIT compilation workers

for hot code. However, because MAMBO uses basic blocks instead of interpreta-

tion for the cold code, the trade-offs involved change significantly. For example,

because the overhead of basic blocks (2-3x slowdown in the worst cases) is much

lower than the overhead of interpretation (on the order of a 100x slowdown), a

longer trace creation latency can be tolerated. In this case, the factors limit-

ing the trace creation time are expected to become the energy overhead and for

some workloads, the duration of execution of the workload. On same-ISA het-

erogeneous systems, the selection of core on which to create traces presents an

opportunity for adjusting the delay - energy overhead trade-off. Multithreaded

workloads scalable to the number of cores available in the system pose a challenge

to this approach because the workload and the trace creation threads would com-

pete directly for processing time. This case is likely to require special handling

to prevent performance degradation.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 131

6.4.2 Automatic optimisation of DBM plugins

The optimisations presented in this thesis are aimed at improving the performance

of the DBM systems themselves. The low overhead DBM frameworks which can

be built using these techniques enable users to efficiently run their modification,

instrumentation and optimisation DBM plugins. However, implementing the plu-

gins efficiently requires experienced developers with a good understanding of the

target architecture, microarchitecture and of the DBM system itself. Further-

more, implementing plugins at this low abstraction level is relatively verbose and

slow compared to using a higher level programming language like C or C++.

In practice, many DBM plugins are implemented using a low effort, inefficient

approach. In particular, many DBM plugins implement most of their logic using

functions in higher level programming languages (called instrumentation func-

tions for the remaining of this section), which are then called by the modified

application. However, this approach is inefficient because the application context

has to be preserved before calling the instrumentation functions and then restored

when returning to the application. This technique can be particularly inefficient

when short instrumentation functions are called often, in which case the cost of

these context switches can dominate the execution time.

Given this usage pattern, it becomes desirable to support automatic optimi-

sation across the instrumentation functions implemented in high level languages

and the code of the application. Furthermore, while the source code of the ap-

plications being modified is not available, the source code of plugins is available

to their developers. The availability of a higher level representation for the in-

strumentation functions makes it practical to employ more advanced code trans-

formations compared to modifying the code of the application. A number of

such transformations are of potential interest. For example, automatic inlining of

short instrumentation functions in the code cache. This would improve the code

cache locality and also eliminate the function call and return. Inlining longer in-

strumentation functions, however, is likely to result in excessive code duplication.

Furthermore, instruction scheduling has a significant effect on the performance

of in-order microarchitectures and therefore re-scheduling code fragments which

contain inlined instrumentation code could reduce overhead. Pin [LCM+05] per-

forms some optimisations on the machine code of the instrumentation functions,

however the opportunities brought by access to the source code or an IR repre-

sentation of the instrumentation functions have not been explored.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 132

6.4.3 Dynamic microarchitectural optimisations

The evaluation of the optimisations in Chapter 5 has shown that different microar-

chitectures can benefit from different optimisations. Furthermore, an experiment

in optimising the memcpy function has indicated that in some cases it is possible

to significantly exceed the native performance if generating an implementation

tuned for a specific microarchitecture. However, in the context of same-ISA het-

erogeneous multicores which migrate threads between different types of cores,

such as ARM big.LITTLE, it is not possible to optimise for a single microar-

chitecture. This can be addressed by dynamically detecting the type of core on

which each thread is running. However, two challenges remain: how to efficiently

detect the migration from one type of core to another? And once the thread

has been migrated, how can this be handled efficiently? For example, it would

be possible to maintain multiple separate software code caches, one for each mi-

croarchitecture. However, safely switching from one to another and reducing the

memory overhead are likely to present significant difficulties.

6.4.4 Trace layout optimisations

The evaluation of performance for different trace creation thresholds in Section

5.4.2 has shown that this parameter can have a significant effect. However, no

clear pattern has emerged and therefore further analysis of this behaviour is

required. The aim is either to further refine the trace selection algorithm and

minimise this variance or, alternatively, to develop heuristics which can be used

at runtime to select good trace creation thresholds for each application. The

first step in analysing this effect will be to use hardware performance counters to

determine how performance is affected, similarly to the evaluation in Section 5.4.4.

Then, the differences between the generated traces will be manually analysed,

both in terms of selected paths and generated code.

Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and

hardware techniques for x86 virtualization. ACM Sigplan Notices,

41(11):2–13, 2006.

[ABVK+11] Oscar Almer, Igor Böhm, Tobias Edler Von Koch, Björn Franke,

Stephen Kyle, Volker Seeker, Christopher Thompson, and Nigel

Topham. Scalable multi-core simulation using parallel dynamic bi-

nary translation. In Embedded Computer Systems (SAMOS), 2011

International Conference on, pages 190–199. IEEE, 2011.

[ARM10] ARM. Cortex-A8: Technical Reference Manual, Revision r3p2, 2010.

[ARM13a] ARM. ARM Cortex-A15 MPCore Processor Technical Reference

Manual, Revision r4p0, 2013.

[ARM13b] ARM. big.LITTLE technology: The future of mobile, 2013. (Visited

on 13/07/2016).

[ARM13c] ARM. Cortex-A7 MPCore Technical Reference Manual, Revision

r0p5, 2013.

[ARM14] ARM. ARM Cortex-A17 MPCore Processor Technical Reference

Manual, Revision r1p1, 2014.

[ARM15] ARM. ARM Architecture Reference Manual, ARMv8, for ARMv8-A

architecture profile, 2015.

[ARM16a] ARM. ARM Cortex-A53 MPCore Processor Technical Reference

Manual, Revision r0p4, 2016.

[ARM16b] ARM. ARM Cortex-A57 MPCore Processor Technical Reference

Manual, Revision r1p3, 2016.

133

BIBLIOGRAPHY 134

[ARM16c] ARM. ARM Cortex-A72 MPCore Processor Technical Reference

Manual, Revision r0p3, 2016.

[ARM16d] ARM. ARM Cortex-A73 MPCore Processor Technical Reference

Manual, Revision r0p2, 2016.

[ARM16e] ARM. ARM Cortex-A9 Technical Reference Manual, Revision r4p1,

2016.

[ARM16f] ARM. Cortex-A5: Technical Reference Manual, Revision r0p1, 2016.

[BBTV15] Darrell Boggs, Gary Brown, Nathan Tuck, and K Venkatraman.

Denver: NVIDIA’s first 64-bit ARM processor. 2015.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo:

a transparent dynamic optimization system. In ACM SIGPLAN

Notices, volume 35, pages 1–12. ACM, 2000.

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator.

In USENIX Annual Technical Conference, FREENIX Track, pages

41–46, 2005.

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. An api for runtime code

patching. Int. J. High Perform. Comput. Appl., 14(4):317–329,

November 2000.

[BM11] Andrew R. Bernat and Barton P. Miller. Anywhere, any-time bi-

nary instrumentation. In Proceedings of the 10th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools,

PASTE ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[Bru04] Derek Lane Bruening. Efficient, transparent, and comprehensive

runtime code manipulation. PhD thesis, Massachusetts Institute of

Technology, 2004.

[BZ16] Derek Bruening and Qin Zhao. Building dynamic tools

with DynamoRIO on x86 and ARM, 2016. https:

//github.com/DynamoRIO/dynamorio/releases/download/

release_6_1_0/DynamoRIO-tutorial-mar2016.pdf (Visited on

17/08/2016).

https://github.com/DynamoRIO/dynamorio/releases/download/release_6_1_0/DynamoRIO-tutorial-mar2016.pdf
https://github.com/DynamoRIO/dynamorio/releases/download/release_6_1_0/DynamoRIO-tutorial-mar2016.pdf
https://github.com/DynamoRIO/dynamorio/releases/download/release_6_1_0/DynamoRIO-tutorial-mar2016.pdf

BIBLIOGRAPHY 135

[BZA12] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent

dynamic instrumentation. ACM SIGPLAN Notices, 47(7):133–144,

2012.

[CHK93] Keith D Cooper, Mary W Hall, and Ken Kennedy. A methodology

for procedure cloning. Computer Languages, 19(2):105–117, 1993.

[CK94] Bob Cmelik and David Keppel. Shade: A fast instruction-set simu-

lator for execution profiling. In Proceedings of the 1994 ACM SIG-

METRICS Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’94, pages 128–137, New York, NY, USA,

1994. ACM.

[DB00] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot

path prediction: Less is more. SIGPLAN Not., 35(11):202–211,

November 2000.

[DGB+03] James C Dehnert, Brian K Grant, John P Banning, Richard John-

son, Thomas Kistler, Alexander Klaiber, and Jim Mattson. The

Transmeta Code Morphing software: using speculation, recovery,

and adaptive retranslation to address real-life challenges. In Pro-

ceedings of the international symposium on Code generation and op-

timization: feedback-directed and runtime optimization, pages 15–24.

IEEE Computer Society, 2003.

[dGGL16] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, and Mikel

Luján. Optimizing indirect branches in dynamic binary translators.

ACM Transactions on Architecture and Code Optimization (TACO),

13(1):7, 2016.

[DH11a] Derek Davis and Kim Hazelwood. Improving region selection

through loop completion. In ASPLOS Workshop on Runtime En-

vironments/Systems, Layering, and Virtualized Environments (RE-

SoLVE), 2011.

[DH11b] Balaji Dhanasekaran and Kim Hazelwood. Improving indirect

branch translation in dynamic binary translators. In Proceedings of

the ASPLOS Workshop on Runtime Environments, Systems, Layer-

ing, and Virtualized Environments, pages 11–18, 2011.

BIBLIOGRAPHY 136

[DMW15] Thurston HY Dang, Petros Maniatis, and David Wagner. The per-

formance cost of shadow stacks and stack canaries. In ACM Sym-

posium on Information, Computer and Communications Security,

ASIACCS, volume 15, 2015.

[Gor16] Cosmin Gorgovan. MAMBO: A low-overhead dynamic binary mod-

ification tool for ARM, 2016. https://github.com/beehive-lab/

mambo.

[HH97] Raymond J Hookway and Mark A Herdeg. Digital FX!32: Com-

bining emulation and binary translation. Digital Technical Journal,

9:3–12, 1997.

[HHS05] David Hiniker, Kim Hazelwood, and Michael D Smith. Improv-

ing region selection in dynamic optimization systems. In 38th

Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’05), pages 11–pp. IEEE, 2005.

[HK06] Kim Hazelwood and Artur Klauser. A dynamic binary instrumen-

tation engine for the ARM architecture. In Proceedings of the 2006

international conference on Compilers, architecture and synthesis

for embedded systems, pages 261–270. ACM, 2006.

[HM80] R. Nigel Horspool and Nenad Marovac. An approach to the prob-

lem of detranslation of computer programs. The Computer Journal,

23(3):223–229, 1980.

[HMC94] Jeffrey K Hollingsworth, Barton Paul Miller, and Jon Cargille. Dy-

namic program instrumentation for scalable performance tools. In

Scalable High-Performance Computing Conference, 1994., Proceed-

ings of the, pages 841–850. IEEE, 1994.

[HWH+07] Jason D Hiser, Daniel Williams, Wei Hu, Jack W Davidson, Jason

Mars, and Bruce R Childers. Evaluating indirect branch handling

mechanisms in software dynamic translation systems. In Proceedings

of the International Symposium on Code Generation and Optimiza-

tion, pages 61–73. IEEE Computer Society, 2007.

https://github.com/beehive-lab/mambo
https://github.com/beehive-lab/mambo

BIBLIOGRAPHY 137

[JYHC14a] Ning Jia, Chun Yang, Yu He, and Xu Cheng. Dtt: Program

structure-aware indirect branch optimization via direct-tpc-table in

dbt system. In Proceedings of the 11th ACM Conference on Com-

puting Frontiers, CF ’14, pages 12:1–12:10, New York, NY, USA,

2014. ACM.

[JYHC14b] Ning Jia, Chun Yang, Yu He, and Xu Cheng. SPTU: Improving

dynamic binary translation through software prediction with target

updating. In Proceedings of International Conference on Systems

and Storage, SYSTOR 2014, pages 2:1–2:12, New York, NY, USA,

2014. ACM.

[JYW+13] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi Wang.

SPIRE: improving dynamic binary translation through SPC-indexed

indirect branch redirecting. In ACM SIGPLAN Notices, volume 48,

pages 1–12. ACM, 2013.

[KS03a] Ho-Seop Kim and James E. Smith. Dynamic binary translation for

accumulator-oriented architectures. In Proceedings of the Interna-

tional Symposium on Code Generation and Optimization: Feedback-

directed and Runtime Optimization, CGO ’03, pages 25–35, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[KS03b] Ho-Seop Kim and James E Smith. Hardware support for con-

trol transfers in code caches. In Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, page

253. IEEE Computer Society, 2003.

[Lan11] Travis Lanier. Exploring the design of the Cortex-A15 proces-

sor, 2011. http://www.arm.com/files/pdf/AT-Exploring_the_

Design_of_the_Cortex-A15.pdf (Visited on 13/07/2016).

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and

Kim Hazelwood. Pin: building customized program analysis tools

with dynamic instrumentation. In Acm Sigplan Notices, volume 40,

pages 190–200. ACM, 2005.

http://www.arm.com/files/pdf/AT-Exploring_the_Design_of_the_Cortex-A15.pdf
http://www.arm.com/files/pdf/AT-Exploring_the_Design_of_the_Cortex-A15.pdf

BIBLIOGRAPHY 138

[NS07a] Nicholas Nethercote and Julian Seward. How to shadow every byte of

memory used by a program. In Proceedings of the 3rd international

conference on Virtual execution environments, pages 65–74. ACM,

2007.

[NS07b] Nicholas Nethercote and Julian Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In ACM Sigplan No-

tices, volume 42, pages 89–100. ACM, 2007.

[PG10] Mathias Payer and Thomas R Gross. Generating low-overhead dy-

namic binary translators. In Proceedings of the 3rd Annual Haifa

Experimental Systems Conference, page 22. ACM, 2010.

[SFY14] Gaurav Singh, Greg Favor, and Alfred Yeung. AppliedMicro X-

Gene2. In HotChips, 2014.

[SKC+04] Kevin Scott, Naveen Kumar, Bruce R Childers, Jack W Davidson,

and Mary Lou Soffa. Overhead reduction techniques for software

dynamic translation. In Parallel and Distributed Processing Sympo-

sium, 2004. Proceedings. 18th International, page 200. IEEE, 2004.

[SN05] Julian Seward and Nicholas Nethercote. Using Valgrind to detect

undefined value errors with bit-precision. In USENIX Annual Tech-

nical Conference, General Track, pages 17–30, 2005.

[SSB07] Swaroop Sridhar, Jonathan S Shapiro, and Prashanth P Bungale.

HDTrans: a low-overhead dynamic translator. ACM SIGARCH

Computer Architecture News, 35(1):135–140, 2007.

[SSNB06] Swaroop Sridhar, Jonathan S Shapiro, Eric Northup, and

Prashanth P Bungale. HDTrans: an open source, low-level dynamic

instrumentation system. In Proceedings of the 2nd international con-

ference on Virtual execution environments, pages 175–185. ACM,

2006.

[WHK+07] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R Nair, Mauri-

cio Breternitz Jr, Zhiwei Ying, and Youfeng Wu. StarDBT: an ef-

ficient multi-platform dynamic binary translation system. In Asia-

Pacific Conference on Advances in Computer Systems Architecture,

pages 4–15. Springer, 2007.

BIBLIOGRAPHY 139

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible

machine simulation. In Proceedings of the 1996 ACM SIGMET-

RICS International Conference on Measurement and Modeling of

Computer Systems, SIGMETRICS ’96, pages 68–79, New York, NY,

USA, 1996. ACM.

Appendix A

Example plugin

The plugin shown in Listing A.5 uses the API of MAMBO to modify the

instruction stream: for each table branch instruction (Table Branch Byte - TBB

or Table Branch Halfword - TBH) in the scanned code, it inserts an inlined

code snippet which temporarily stores the required context on the stack; it loads,

increments and stores back a 64-bit counter; and finally it restores the context of

the application. This is implemented using a callback registered for the pre inst

event. This callback is called for each instruction that MAMBO scans, but before

the translation has been inserted in the code cache. This allows the plugin to

insert its own code before the translated instruction.

Another callback is registered for the thread creation event pre thread, which

gets called when a new thread is created (including the initial thread). This

callback allocates a new thread-private counter and it saves a pointer to it in

the thread-private metadata. A third callback is registered for the thread exit

event post thread, which is called when a thread or the whole process exit. This

callback prints the value in the counter to the standard output.

140

APPENDIX A. EXAMPLE PLUGIN 141

// Called for each instruction scanned by MAMBO,

// before the translation is generated

void inst_cnt_pre_inst_handler(mambo_context *ctx) {

if (mambo_get_type(ctx) == MAMBO_THUMB

&& (mambo_get_inst(ctx) == THUMB_TBB32)

|| (mambo_get_inst(ctx) == THUMB_TBH32)) {

// PUSH {R0-R2}

emit_thumb_push16(ctx, (1 << r0) | (1 << r1) | (1 << r2));

// MRS R0, CPSR; PUSH {R0}

emit_thumb_push_cpsr(ctx, r0);

// MOVW R0, #(ptr_to_ctr & 0xFFFF)

// MOVT R0, #(ptr_to_ctr >> 16)

emit_thumb_copy_to_reg32(ctx, r0, mambo_get_thread_plugin_data(ctx));

// LDRD R1, R2, [R0, #0]

emit_thumb_ldrdi32(ctx, r1, r2, r0, 0);

// ADDS R1, R1, #1

emit_thumb_addi16(ctx, r1, r1, 1);

// ADCS R2, R2, #0

emit_thumb_adci32(ctx, r2, r2, 0);

// STRD R1, R2, [R0, #0]

emit_thumb_strdi32(ctx, r1, r2, r0, 0);

// POP {R0}; MSR CPSR, R0

emit_thumb_pop_cpsr(ctx, r0);

// POP {R0-R2}

emit_thumb_pop16(ctx, (1 << r0) | (1 << r1) | (1 << r2));

}

}

// Called when a new thread is created, including the initial thread

void inst_cnt_pre_thread_handler(mambo_context *ctx) {

uint64_t *inst_counter = mambo_alloc(ctx, sizeof(uint64_t));

*inst_counter = 0;

assert(inst_counter != NULL);

mambo_set_thread_plugin_data(ctx, (uint32_t)inst_counter);

}

// Called when a thread exits, or in all threads when the process exits

void inst_cnt_post_thread_handler(mambo_context *ctx) {

uint64_t *inst_counter = mambo_get_thread_plugin_data(ctx);

printf("%llu instructions executed in thread %d\n",

*inst_counter, mambo_get_thread_id());

mambo_free(ctx, inst_counter);

}

void init_plugin() {

mambo_register_pre_inst_cb(&inst_cnt_pre_inst_handler);

mambo_register_pre_thread_cb(&inst_cnt_pre_thread_handler);

mambo_register_post_thread_cb(&inst_cnt_post_thread_handler);

}

Listing A.5: Example plugin: dynamic execution counter for TBB and TBH
instructions

Appendix B

The full evaluation results

These are the full performance results obtained in the evaluation of the microar-

chitectural optimisations in Section 5.4.

142

APPENDIX B. THE FULL EVALUATION RESULTS 143

F
ig

u
re

B
.1

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
O

D
R

O
ID

-X
U

3
-

w
it

h
m

ic
ro

ar
ch

it
ec

tu
ra

l
op

ti
m

is
at

io
n
s.

APPENDIX B. THE FULL EVALUATION RESULTS 144

F
ig

u
re

B
.2

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
O

D
R

O
ID

-X
2

-
w

it
h

m
ic

ro
ar

ch
it

ec
tu

ra
l

op
ti

m
is

at
io

n
s.

APPENDIX B. THE FULL EVALUATION RESULTS 145

F
ig

u
re

B
.3

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
T

ro
n
sm

ar
t

R
28

-
w

it
h

m
ic

ro
ar

ch
it

ec
tu

ra
l

op
ti

m
is

at
io

n
s.

APPENDIX B. THE FULL EVALUATION RESULTS 146

F
ig

u
re

B
.4

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
J
et

so
n

T
K

1
-

w
it

h
m

ic
ro

ar
ch

it
ec

tu
ra

l
op

ti
m

is
at

io
n
s.

APPENDIX B. THE FULL EVALUATION RESULTS 147

F
ig

u
re

B
.5

:
R

el
at

iv
e

ex
ec

u
ti

on
ti

m
e

fo
r

S
P

E
C

C
P

U
20

06
w

it
h

th
e

re
f

d
at

as
et

on
A

P
M

X
-C

1
-

w
it

h
m

ic
ro

ar
ch

it
ec

tu
ra

l
op

ti
m

is
at

io
n
s.

Appendix C

Raw performance counter values

These are the raw performance counter values obtained by natively running

the SPEC CPU2006 benchmarks used in the evaluation under the perf stat tool.

These values can be used in addition to the relative changes shown in Section

5.4.4 when it is desired to determine hit and miss rates for a specific subsystem,

for example. Note that these measurements have only been collected for the

benchmarks which have a speed-up or slowdown higher than 15% in the baseline

configuration of MAMBO compared to native execution.

Refer to Section 5.4.4 for the description of each event and any differences in

measurement between the systems.

148

A
P
P
E
N
D
IX

C
.
R
A
W

P
E
R
F
O
R
M
A
N
C
E
C
O
U
N
T
E
R

V
A
L
U
E
S

149

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 3,690,325,468 2,255,654,058 1,000,097,844 10,862,963 1,476,441,317 12,239,541 34,068,740 1,769,124 1,902,376 423,083 222,276,466 37,079,618
gcc 3,846,132,516 1,499,506,926 537,985,655 14,620,196 921,449,000 4,821,057 37,829,334 7,440,854 1,332,620 113,651 195,921,682 21,924,195
gobmk 3,524,352,529 1,968,819,357 778,212,573 12,076,407 1,495,802,883 15,917,782 40,246,232 2,037,365 481,092 91,929 183,143,333 81,787,011
sjeng 4,715,769,249 2,912,710,206 1,038,056,615 12,008,396 2,265,209,632 9,358,293 33,380,053 1,791,676 1,362,890 68,250 253,509,981 124,057,490
h264ref 5,982,552,369 4,149,274,955 2,535,575,899 17,597,956 2,054,215,898 3,506,430 39,277,937 4,801,544 1,218,269 77,428 316,855,404 23,449,963
omnetpp 3,130,035,321 599,913,093 258,691,687 19,950,398 481,122,570 1,789,768 41,693,697 11,347,091 5,237,166 657,390 85,318,171 19,189,808
astar 3,379,153,892 1,173,554,370 495,323,227 23,073,631 849,983,926 393,901 46,560,352 9,090,519 7,726,703 1,787 107,630,400 36,605,706
xalancbmk 2,982,431,874 1,111,900,059 361,063,790 19,968,726 650,599,075 2,830,111 43,149,661 7,479,865 4,089,139 467,517 127,378,383 15,739,802
dealII 4,795,041,123 2,179,895,790 708,017,730 21,122,246 1,220,042,959 1,218,917 43,583,333 8,593,370 348,650 45,781 265,472,607 13,325,493
povray 1,966,480,792 958,174,993 460,960,783 11,165,346 718,404,308 6,216,564 28,553,787 26,434 183,267 83,412 107,196,694 22,265,489
tonto 9,815,189,762 3,697,914,375 1,362,800,194 32,748,435 2,099,643,594 5,597,429 72,483,554 11,873,297 450,847 75,130 249,828,207 33,408,257

Table C.1: The raw performance counter values for the native execution of SPEC CPU2006 on ODROID-XU3 (thousands).

Benchmark Cycles Insts L1d-l L1d-m L1i-m dtlb-m itlb-m br br-m
perlbench 2,815,755,601 2,501,847,665 1,033,007,602 9,862,797 11,844,645 19,737,955 1,543,992 223,529,357 34,678,361
bzip2 4,274,908,232 2,756,683,787 1,139,199,335 36,148,464 88,497 22,687,108 13,656 176,516,775 26,157,150
gcc 2,471,368,972 1,570,401,715 403,804,940 16,690,833 4,785,611 10,521,025 474,029 192,582,150 19,253,469
gobmk 3,045,579,461 2,466,209,613 851,967,413 11,932,162 17,889,037 18,307,828 57,135 181,492,026 72,493,491
sjeng 4,151,571,112 3,673,627,317 1,136,913,786 9,982,919 5,980,475 26,306,870 17,863 253,300,729 112,303,750
h264ref 4,639,583,977 4,227,578,613 2,411,666,672 23,330,923 2,050,185 9,391,644 37,668 315,989,160 16,032,457
omnetpp 2,635,323,407 698,580,807 295,734,977 20,182,257 664,695 25,663,682 261,030 85,006,703 19,581,671
astar 3,014,912,902 1,452,102,341 552,422,578 22,441,759 62,130 14,732,420 13,659 108,525,660 26,626,309
xalancbmk 2,158,716,362 1,176,570,381 379,048,517 23,175,074 4,587,812 15,631,611 1,859,041 127,033,068 18,588,703
milc 4,009,538,523 1,114,293,575 449,608,610 43,286,231 146,361 2,977,108 160,697 57,176,972 682,451
dealII 3,217,795,455 2,254,522,911 710,584,008 39,147,036 426,812 5,861,722 59,949 264,680,741 22,202,544
povray 1,814,163,945 1,085,518,603 493,182,598 10,680,732 6,504,803 8,621,725 541,474 107,440,270 19,576,414
tonto 5,596,497,544 3,697,510,833 1,269,705,728 55,196,715 2,712,861 8,535,044 396,538 244,109,365 20,600,398
wrf 5,793,295,984 3,930,787,382 1,146,965,142 79,211,356 415,522 3,465,268 131,556 207,770,767 8,309,588

Table C.2: The raw performance counter values for the native execution of SPEC CPU2006 on ODROID-X2 (thousands).

A
P
P
E
N
D
IX

C
.
R
A
W

P
E
R
F
O
R
M
A
N
C
E
C
O
U
N
T
E
R

V
A
L
U
E
S

150

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 2,168,767,505 2,253,036,197 964,325,146 9,394,109 805,663,534 4,421,670 15,172,706 1,237,948 16,013,148 951,928 223,272,058 21,954,908
gcc 2,025,059,232 1,446,824,663 381,266,976 13,249,741 364,520,984 1,667,436 19,201,278 6,769,026 6,643,389 429,251 192,068,767 10,641,345
gobmk 2,250,835,358 1,967,180,637 776,404,010 12,014,182 812,084,659 7,092,155 21,825,722 1,318,549 15,508,636 67,225 181,300,127 40,636,842
sjeng 3,012,537,578 2,904,914,551 990,639,390 11,152,120 1,142,850,742 1,984,026 14,297,849 1,468,681 20,653,985 336 253,162,182 49,286,264
h264ref 3,132,101,576 4,139,324,473 2,161,595,961 16,400,455 762,330,738 717,052 24,663,893 2,758,848 8,585,194 21,108 315,777,005 14,107,530
omnetpp 2,187,896,900 602,904,679 309,152,905 20,608,243 274,606,319 206,418 22,108,245 11,009,500 23,887,139 86,131 84,955,321 6,333,983
xalancbmk 1,556,378,206 1,120,952,411 408,530,333 16,330,159 236,002,694 1,005,471 22,039,424 5,805,145 12,893,907 1,744,595 126,917,594 7,155,372
gamess 4,793,126,462 7,429,543,372 2,634,679,352 29,047,669 1,569,169,353 1,066,136 34,648,716 348,612 93,889,936 3,256 233,859,529 14,621,064
dealII 1,733,460,769 2,167,379,153 688,752,433 21,073,043 574,997,602 103,323 38,403,805 5,944,837 2,699,432 36,105 264,520,962 10,629,562
povray 1,163,916,244 968,847,199 445,304,512 11,830,498 393,722,143 2,461,665 15,130,308 24,792 6,188,141 534,898 107,364,597 7,653,809
tonto 3,901,595,691 3,631,278,029 1,193,278,554 31,910,223 746,806,504 1,027,706 54,180,894 7,540,656 7,872,678 305,683 243,782,389 9,598,556

Table C.3: The raw performance counter values for the native execution of SPEC CPU2006 on Tronsmart R28 (thousands).

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m br br-m
perlbench 2,118,480,940 2,249,707,882 752,048,593 8,980,308 698,117,561 8,710,503 21,732,464 1,216,636 12,150,437 1,322,294 458,821,849 12,488,348
bzip2 2,732,226,671 2,538,912,900 851,337,009 23,316,724 744,188,094 288,896 40,482,169 3,643,425 12,871,476 113,362 398,653,587 19,905,785
gcc 1,876,504,654 1,450,771,425 281,667,054 11,087,930 345,879,852 2,780,627 23,450,592 5,497,961 6,588,356 871,611 306,873,127 9,112,055
gobmk 2,385,090,836 1,967,180,700 610,076,223 10,632,389 1,000,664,650 10,600,619 28,793,826 457,546 10,031,633 309,140 357,964,065 44,001,466
sjeng 3,292,060,176 2,908,622,699 788,915,176 9,801,911 1,279,591,626 6,826,186 24,365,547 1,200,646 15,922,106 222,747 530,509,921 49,163,044
h264ref 3,241,562,001 4,142,481,979 1,825,345,339 19,086,023 978,202,852 1,850,493 32,731,259 917,269 6,695,404 186,325 404,677,836 11,220,020
omnetpp 2,385,534,690 597,605,991 188,473,768 14,603,693 250,606,707 1,642,890 26,420,935 7,299,341 19,528,101 286,908 166,811,123 5,472,346
xalancbmk 1,667,922,937 1,110,291,141 303,882,355 15,620,335 261,643,258 2,458,525 29,784,576 4,978,723 11,569,883 1,458,015 296,472,672 5,980,174
gamess 5,333,438,827 7,436,407,583 2,210,687,529 33,654,119 1,824,529,462 2,221,326 53,474,750 87,027 56,558,700 255,011 401,462,187 14,068,189
milc 2,923,015,642 1,132,711,771 352,344,240 20,042,197 285,451,052 489,433 37,547,761 23,203,837 2,380,807 244,168 77,611,112 385,623
leslie3d 3,923,789,938 2,078,563,933 583,436,777 83,395,570 345,762,527 373,983 152,738,530 26,059,609 1,622,673 147,637 122,774,429 1,058,851
dealII 1,869,086,471 2,169,788,952 585,496,850 19,948,778 538,733,928 523,577 40,342,755 5,470,150 4,287,744 157,613 400,104,751 9,303,474
soplex 1,995,235,573 850,094,371 262,142,090 24,943,445 255,710,191 249,814 51,530,347 20,871,742 4,015,777 116,076 125,581,449 6,089,528
povray 1,038,052,554 955,896,562 351,879,320 11,607,134 360,559,270 3,502,942 17,369,218 2,408 5,096,517 676,573 172,098,812 6,271,126
tonto 4,267,856,090 3,628,224,150 932,804,529 23,584,143 921,119,034 2,287,193 51,546,401 4,634,693 6,825,843 898,021 395,978,019 12,350,902
sphinx3 4,317,078,877 3,780,959,416 873,298,213 50,044,017 819,893,160 588,883 107,591,074 41,047,238 10,088,672 175,266 313,858,445 14,431,067

Table C.4: The raw performance counter values for the native execution of SPEC CPU2006 on Jetson TK1 (thousands).

A
P
P
E
N
D
IX

C
.
R
A
W

P
E
R
F
O
R
M
A
N
C
E
C
O
U
N
T
E
R

V
A
L
U
E
S

151

Benchmark Cycles Insts L1d-l L1d-m L1i-l L1i-m L2-l L2-m dtlb-m itlb-m
perlbench 2,520,106,048 2,245,395,251 1,183,838,376 8,436,096 755,369,805 6,197,691 198,176,717 2,463,757 134,595 5,988
gcc 2,107,242,303 1,447,655,775 653,121,583 10,342,843 492,770,737 1,869,990 126,648,843 8,993,241 589,646 3,383
gobmk 2,654,963,492 1,963,229,930 1,024,663,026 5,787,026 932,737,664 7,342,406 168,771,329 3,177,745 80,059 2,036
sjeng 3,756,174,373 2,903,627,121 1,252,758,465 4,876,171 1,272,166,730 917,219 191,465,805 2,435,304 843,408 4,300
h264ref 4,203,087,556 4,139,876,485 3,013,954,577 10,250,889 917,634,316 666,064 356,462,112 5,909,471 239,263 3,245
omnetpp 2,147,649,392 593,759,385 340,205,967 14,245,003 304,473,802 177,213 74,845,173 14,075,923 2,786,365 22,913
astar 2,506,341,256 1,166,529,496 729,092,673 13,743,938 699,565,596 40,777 93,747,895 11,397,448 4,001,454 443
xalancbmk 1,439,543,532 1,110,057,362 437,194,965 14,669,555 377,742,010 889,747 54,768,435 8,693,653 1,067,476 22,654
dealII 2,400,600,161 2,167,438,971 751,933,478 19,757,600 719,213,113 109,185 92,129,686 14,024,577 125,591 202
povray 1,512,631,808 954,360,864 625,803,161 9,466,681 381,331,095 1,595,696 91,636,915 81,807 11 8
tonto 5,920,119,194 3,618,640,681 1,484,005,028 28,604,646 825,142,901 1,077,524 285,447,366 13,860,932 51,361 2,142

Table C.5: The raw performance counter values for the native execution of SPEC CPU2006 on APM X-C1 (thousands).

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Dynamic binary modification
	General principles
	Uses
	Overhead
	DBM for ARM

	The ARM architecture
	Emergence
	The ARM hardware ecosystem

	Motivation
	Contributions
	Publications
	Thesis structure

	Background and related work
	Binary modification
	Static and dynamic binary modification

	Transparency
	The implementation of dynamic binary modification
	Tool injection / application loading
	Code scanners
	Code caches

	Branch linking
	Direct branches
	Indirect branches

	Performance overhead

	Overview of MAMBO
	Introduction
	Aims and current state
	The ARM architecture
	Scratch space
	Executable loader
	The userspace ELF Loader

	Code cache
	Code scanner
	System call interception
	Test and development methodology
	Plugins
	Transparency
	Summary

	Branch linking
	Introduction
	Indirect branches
	Function returns: low overhead return address prediction
	Table branches: space-efficient linking
	Inline hash lookup for indirect branches
	Fallthrough branch linking
	Indirect branch target prediction

	Direct branches
	Direct branch linking
	Eliding unconditional direct branches

	Evaluation
	Experimental setup
	Contribution of different optimisations
	Comparison of the space-efficient and fastBT table branch linking schemes
	Overall performance
	Code cache size

	Summary

	Microarchitectural optimisations
	Introduction
	Traces
	Trace heads
	Trace building
	Trace size limits
	Summary

	Indirect branches
	Hardware-assisted return address prediction
	Low footprint inline hash table lookup dispatch
	Adaptive indirect branch inlining
	Huge pages

	Evaluation
	Experimental setup
	Trace creation threshold
	Overall performance
	Performance counter analysis

	Summary

	Conclusions and future work
	Summary and conclusions
	Optimisation selection guidelines
	Portability to AArch64
	Future work
	Asynchronous multithreaded trace generation
	Automatic optimisation of DBM plugins
	Dynamic microarchitectural optimisations
	Trace layout optimisations

	Bibliography
	Example plugin
	The full evaluation results
	Raw performance counter values

