
A CHIP MULTI-CLUSTER

ARCHITECTURE WITH LOCALITY

AWARE TASK DISTRIBUTION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2007

Matthew James Horsnell

School of Computer Science

Contents

List of Tables 7

List of Figures 8

List of Algorithms 12

Abstract 13

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 17

1.1 Motivation . 17

1.2 Microprocessor Design Challenges 19

1.2.1 Wire Delay . 20

1.2.2 Memory Gap . 21

1.2.3 Limits of Instruction Level Parallelism 22

1.2.4 Power Limits . 23

1.2.5 Design Complexity . 24

1.3 Design Solutions . 26

1.3.1 Exploiting Parallelism . 26

2

1.3.2 Partitioned Designs . 29

1.3.3 Bridging the Memory Gap 30

1.3.4 Design Abstraction and Replication 31

1.4 Summary . 33

1.5 Research Aims . 33

1.6 Contributions . 33

1.7 Thesis Structure . 34

1.8 Publications . 35

2 Parallelism 36

2.1 Application Parallelism . 36

2.1.1 Amdahl’s Law . 37

2.1.2 Implicit and Explicit Parallelism 37

2.1.3 Granularity of Parallelism 39

2.2 Architectural Parallelism . 42

2.2.1 Bit Level Parallelism . 42

2.2.2 Data Level Parallelism . 43

2.2.3 Instruction Level Parallelism 44

2.2.4 Multithreading . 47

2.2.5 Simultaneous Multithreading 50

2.2.6 Chip Multiprocessors . 50

2.3 Summary . 51

3 Jamaica CMP and Software Environment 52

3.1 The Jamaica Chip Multiprocessor 52

3.1.1 Multithreading . 53

3.1.2 Register Windows . 55

3.1.3 Lightweight Task Distribution 58

3.1.4 Branch Prediction . 59

3.1.5 Coherent Shared Memory Hierarchy 60

3.1.6 Hard and Soft Interrupts 64

3.1.7 Devices . 65

3.2 Jamaica Core Revisions . 65

3.2.1 Interleaved Multithreading 65

3.2.2 Working Set and Register Windows 66

3.3 Jamaica Software Environment 67

3

3.3.1 Jamaica Assembler and C Compiler 67

3.3.2 Jamaica Boot Procedure 68

3.3.3 The Jamaica Virtual Machine 68

3.4 Jamaica Simulation Environment 70

3.4.1 Simulation Accuracy . 70

3.4.2 Simulation Configuration 71

3.4.3 System Simulation . 72

3.5 Summary . 74

4 Multi-level Cache Coherence 75

4.1 Multiprocessor Organisation . 75

4.1.1 Memory Access . 76

4.1.2 Inter-Processor Communication 77

4.2 Scaling the Jamaica Architecture 78

4.2.1 Limitations to Bus Scaling 78

4.2.2 Multi-Level Cache Hierarchy 80

4.2.3 Cache Inclusion . 81

4.2.4 Locality and Affinity . 84

4.3 PIMMS - a Multi-Level Coherence Protocol 84

4.3.1 Cache States . 85

4.3.2 Network Transactions . 86

4.3.3 State Transitions . 86

4.3.4 Four Phase Transactions 86

4.4 Summary . 92

5 Multi-level Cache Hardware 93

5.1 Cache Organisation . 93

5.1.1 Level 1 Private Caches . 94

5.1.2 Shared Level Caches . 95

5.2 Coherence Messages and Transactions 96

5.3 Flow Control . 96

5.3.1 Blocking and Negative Acknowledgments 97

5.4 Deadlock Avoidance . 98

5.4.1 Sinkable Messages . 98

5.4.2 Non-Sinkable Messages . 99

5.4.3 Sinkable and Non-Sinkable Queues and Priorities 99

4

5.4.4 Passive and Active Non-Sinkable Messages 100

5.5 Address Blocking . 103

5.5.1 Local Transactions . 103

5.5.2 Deadlock Avoidance . 104

5.6 Multi-Level Synchronisation . 105

5.7 Lazy Cache-Line Allocation . 106

5.8 Summary . 107

6 Multi-level Task Locality 108

6.1 Clusters and Cache Locality . 108

6.2 Task Distribution . 109

6.2.1 Locality Aware Task Distribution 110

6.2.2 Token Requests . 110

6.2.3 Locality Aware Token Request Extensions 112

6.2.4 Cache-Distance Identifiers 112

6.2.5 Hardware Support for Locality 114

6.2.6 Software Support for Locality 116

6.3 Summary . 120

7 Results and Analysis 121

7.1 Experimental Method . 121

7.1.1 Simulation Environment 122

7.2 Benchmark Descriptions . 123

7.2.1 Fork/Join Benchmarks . 123

7.2.2 Multithreaded JavaGrande Benchmarks 125

7.2.3 Benchmark Parameters . 127

7.3 PIMMS Coherence Protocol . 127

7.3.1 Coherence Transactions 127

7.3.2 Four-phase Transactions 129

7.3.3 Interconnect Latency . 131

7.3.4 Negative Acknowledgment 131

7.3.5 Non-Sinkable Queue Rotation 134

7.3.6 Effect of Inclusion . 135

7.3.7 Protocol Robustness . 137

7.4 Single Bus Chip Multiprocessor Architecture 138

7.4.1 Speed-up . 138

5

7.4.2 Wire Delay . 145

7.4.3 Bus Contention . 146

7.4.4 Memory Saturation . 147

7.5 Cluster Architectures . 149

7.5.1 Speed-up . 150

7.5.2 Bus-Tree Cluster . 155

7.5.3 Crossbar Cluster . 155

7.5.4 Hybrid Bus-Crossbar Cluster 157

7.6 Locality Aware Task Distribution 158

7.6.1 Synchronisation Locality 158

7.6.2 Application Isolation . 160

7.6.3 Application Restructuring 161

7.7 Chip Multi-Cluster Design Considerations 164

7.8 Summary . 166

8 Conclusions 168

8.1 Contributions . 169

8.2 Future Work . 171

Bibliography 173

A Jamaica - Instruction Set Architecture 185

A.1 Instruction Formats . 185

A.1.1 Register Form . 186

A.1.2 Immediate Form . 186

A.1.3 Branch Form . 186

A.1.4 Memory Form . 186

A.2 Instruction Set . 187

A.2.1 Arithmetic/Logical Instructions 187

A.2.2 Control Transfer Instructions 188

A.2.3 Memory Instructions . 189

A.3 BuiltIn Instructions . 190

6

List of Tables

1.1 Growth in area between successive generations of Intel architectures. 24

4.1 Configuration of a 1 billion transistor CMP. 79

4.2 PIMMS protocol: cache states. 85

4.3 PIMMS protocol: network transactions, mnemonic codes and de-

scriptions. 86

7.1 Configuration of the simulated cache hierarchy. 122

7.2 Benchmark parameters used during experimentation. 127

7.3 Locality-aware task distribution. 163

7.4 Performance comparison CMC vs. single bus CMP. 165

A.1 Jamaica instruction set: arithmetic/logical instructions. 187

A.2 Jamaica instruction set: branch form control instructions. 188

A.3 Jamaica instruction set: memory form control instructions. 188

A.4 Jamaica instruction set: memory instructions. 189

A.5 Jamaica instruction set: builtin instructions. 190

7

List of Figures

1.1 Predicted percent of die reachable by each generation [104]. 21

1.2 A growing gap between memory speed and processor speed leads

to bottlenecks during data intensive workloads [62]. 22

1.3 A growing gap between increases in the complexity of a chip and

productivity of design engineers and tools. 25

1.4 Exploiting thread-level parallelism: a) software scheduling, b) multi-

threaded hardware, c) multi-processor hardware. 29

1.5 The effect of increased cache size (MB) on performance (×) of the

Itanium 2 processor [107]. 31

1.6 Comparison of hardware scouting and increasing cache size [27]. . 32

2.1 Amdahl’s Law: Parallel speedup (S) vs. parallel fraction (P). . . 38

2.2 A simple code sequence amenable to ILP execution. 40

2.3 A simple code sequence containing no ILP. 40

2.4 Inner loop of the motion detection algorithm used in MPEG en-

coding, calculation of the sum of absolute differences. 41

2.5 Inner loop after scalar expansion and loop fission. The first loop

is now amenable to data level parallelism optimisations. 41

2.6 4-bit ripple-carry adder. 43

2.7 4-bit carry-select adder. 43

2.8 Data Level Parallelism: the datapath inside the execution of the

psadbw SSE2 instruction. 44

8

2.9 A simple pipelined architecture. 45

2.10 Superscalar pipelined architecture. 46

2.11 Single issue and superscalar scheduling. 46

2.12 Multithreading scheduling. 49

2.13 SMT and CMP scheduling. 50

3.1 The Jamaica single chip multiprocessor. 53

3.2 Jamaica core: Multithreaded pipeline and support structures. . . 54

3.3 Jamaica core: Context running states. 54

3.4 Jamaica core: Register windows, call and return overlaps. 57

3.5 Jamaica core: Register windows; virtual to physical register lookup. 57

3.6 Jamaica core: Lightweight task distribution. 59

3.7 Jamaica core: branch prediction. 60

3.8 Jamaica: Split transaction bus protocol. 61

3.9 Jamaica: Level 1 private cache. 62

3.10 Jamaica: Lock acquisition code. 63

3.11 Jamaica: Shared level 2 cache and memory interface. 64

3.12 Jamaica core revisions: Register window call. 67

3.13 Jamaica core revisions: Register window return. 67

3.14 JikesRVM software to Jamaica hardware mapping. 69

3.15 Configuration code for jamsim. 72

3.16 Connected simulation components for jamsim. 73

3.17 Jamaica Simulation: Java bytecode is executed through the JaVM

by jamsim within a Java virtual machine on top of the host system. 73

4.1 Multiprocessor memory access. 76

4.2 Theoretical bus access limitations. 79

4.3 Jamaica multi-level cache hierarchy. 80

4.4 Multi-level hierarchy without inclusion. 82

4.5 Multi-level hierarchy with inclusion. 83

4.6 Multi-level cache state transitions. 87

4.7 Four phase read transaction. 88

4.8 Four phase read transaction, timeline. 89

4.9 Four phase concurrent write transactions. 90

4.10 Four phase concurrent write transaction, timeline. 91

5.1 Level 1 cache. 94

9

5.2 Shared level cache. 95

5.3 Circular queue dependence. 98

5.4 Shared cache request queues divided into sinkable and non-sinkable

entities. Non-sinkable queue divided further into passive and active

queues allowing reordering. 99

5.5 Passive/Active queue reordering. 102

5.6 Multi-level address blocking table. 103

5.7 Multi-level deadlock arising in the address blocking table. 104

5.8 Multi-cluster load-linked/store-conditional. 105

6.1 Multi-cache locality of reference. 109

6.2 Multi-level data sharing. 111

6.3 Unbalanced multi-cluster configuration. 113

6.4 Cache-distance identifiers. 114

6.5 TRQ semantics: the preference operand. 117

6.6 Remote-local distribution. 118

6.7 Cluster affinity distribution. 119

7.1 Bus utilisation during execution of the lu benchmark. The archi-

tecture is configured as a symmetric 2 cluster × 64 processors × 1

context CMP. 128

7.2 Coherence traffic generated during the JavaGrande barrierBench

benchmark, on a symmetric 2 cluster × 8 processors CMP. 130

7.3 Network latency (lu). 132

7.4 Negative acknowledgments. 133

7.5 Non-sinkable reordering. 134

7.6 Inclusive caches. 136

7.7 Cost of inclusion. 137

7.8 Single bus CMP. 139

7.9 CMP bus scaling - fibonacci. 141

7.10 CMP bus scaling - matrixMult. 141

7.11 CMP bus scaling - jacobi. 142

7.12 CMP bus scaling - lu. 142

7.13 CMP bus scaling - integrate. 143

7.14 CMP bus scaling - mergeSort. 143

7.15 CMP bus scaling - series. 144

10

7.16 CMP bus scaling - sor. 144

7.17 CMP bus scaling - crypt. 145

7.18 Bus speed relative performance. 146

7.19 Level 1 bus utilisation. 147

7.20 Level 2 - level 3 bus utilisation. 148

7.21 L1 bus negative acknowledgments. 148

7.22 CMC architectures. 149

7.23 CMC scaling - fibonacci. 150

7.24 CMC scaling - matrixMult. 151

7.25 CMC scaling -jacobi. 151

7.26 CMC scaling - lu. 152

7.27 CMC scaling - integrate. 152

7.28 CMC scaling - mergeSort. 153

7.29 CMC scaling - series. 153

7.30 CMC scaling - sor. 154

7.31 CMC scaling - crypt. 154

7.32 CMC scaling speed-ups. 156

7.33 Locality-aware: setClusterAffinity. 159

7.34 Locality-aware synchronisation. 159

7.35 Locality-aware isolation. 160

7.36 Locality-aware restructuring of the sor benchmark. 162

7.37 Locality-aware isolation. 164

A.1 Register form Rc ← Ra op Rb. 186

A.2 Register immediate form Rc ← Ra op Rb. 186

A.3 Branch form. 186

A.4 Memory form. 186

11

List of Algorithms

1 Cache-distance encoding. 112

12

Abstract

Chip MultiProcessor (CMP) architectures are fast becoming ubiquitous. Their

widespread adoption has been motivated by three dominant factors; power and

thermal limits have constrained higher clock frequencies, the memory wall has

expedited concurrency as a means of maintaining performance, and technology

advances have increased transistor budgets enabling the integration of multiple

cores on a single chip. It is anticipated that a trend of increasing the number

of cores with increasing transistor budgets will emerge, and that within the next

decade it will be feasible to integrate up to 128 cores within a single chip archi-

tecture.

This thesis investigates the scaling limitations of current single bus CMP ar-

chitectures and proposes a Chip Multi-Cluster (CMC) architecture as a feasible

approach for future many-core designs. A novel cache coherence protocol and

hardware support for maintaining coherence across multiple clusters is presented.

Additionally, support at the hardware/software interface is provided to allow

locality-aware thread creation and distribution in order to best utilise the archi-

tecture. Several possible implementations of the CMC architecture are studied

through cycle accurate simulation using multithreaded benchmarks.

13

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

14

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instruc-

tions given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions

of any such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of the School of Computer Science.

15

Acknowledgements

I would like to thank my supervisor Professor Ian Watson for all of the help, en-

couragement, support and constructive feedback he has given me over the last four

years. I would also like to thank Ian Rogers, Ahmed El-Mahdy and Andrew Dinn

for proof reading this thesis and for the many discussions that have continued to

motivate me.

I would like to thank all of the members of the Jamaica project and the APT

group. Those with whom I have been able to discuss research ideas and those who

have provided lively conversations over a few pints. I would also like to thank my

friends outside of computer science for keeping me sane by taking me away from

computers and remaining in contact with me throughout.

Special thanks to my parents for their continued support and encouragement,

and to my brother Jonathan and sister Katherine for their enduring friendship.

Finally, and certainly not least, a debt of gratitude is owed to Laura for her

unfaltering patience, understanding and love.

16

CHAPTER 1

Introduction

A chip multi-cluster architecture based on a novel multi-level cache coherence

protocol is presented in this thesis. This architecture supports interleaved multi-

threading and provides facilities for lightweight locality aware thread distribution.

The architecture is simulated using a novel cycle-level simulation platform and

is used to evaluate the concepts associated with increasing the number of cores,

bus contention and wire delay, scaling the memory hierarchy, and locality aware

task distribution.

1.1 Motivation

Over 40 years ago Gordon Moore observed that the total number of devices in-

tegrated on a chip doubled every 12 months [111]. Based on this observation

he boldly predicted that this trend would continue throughout the 1970s and

would subsequently slow down to a doubling every 24 months in the 1980s. This

prediction, commonly referred to as Moore’s Law, triggered a revolution in mi-

croarchitecture innovation and design that has delivered enormous increases in

computing power.

17

1.1. Motivation

During the last decade alone, the number of transistors integrated on a single

die has doubled every 24 months and the relative performance of microprocessors

when executing SPECint benchmarks has grown by over 75 times [63]. In the

same period the type of applications processed by microprocessors has diversified

enormously. With further expansion of broadband internet, multimedia, gaming

and mobile communication the complexity of such application areas continue to

push a demand for yet more performance increases.

Sustaining this performance growth has, to date, largely been achieved through

technology scaling. In the last 10 years mainstream semiconductor technology

has scaled feature sizes down from 350nm to 65nm, enabling operating frequen-

cies to increase from 200MHz to 3.2GHz, on the Intel Pentium Pro and Pentium

4 respectively. This frequency increase, of 16 times, has provided the majority of

the 75 times performance increase, with the remaining increase due to microar-

chitecture innovation and exploiting higher transistor budgets. Both frequency

increases and exploiting higher transistor budgets are becoming increasingly dif-

ficult in single processor designs.

Until recently increasing transistor budgets have been exploited by increasing the

pipeline depth, issue width and reorder buffers of single processor superscalar

architectures. Unfortunately, the performance gained in this manner has been

diminishing [20] and further small performance gains require discouragingly com-

plex additional hardware. A recent study [53] showed that there is a growing

discrepancy between the increase in area employed by a new microarchitecture

and the increase in performance, with the increase in performance growing at

the square root of the increase in area. A productivity gap is also emerging, as

designers and design tools are not able to keep pace with the increase in com-

plexity of modern designs. This was highlighted by the International Technology

Roadmap for Semiconductors as a grand challenge [139].

As mentioned previously, the rapid increase in clock frequency, 40 percent per

year for the past 15 years, has been the dominant factor in microprocessor perfor-

mance increases. This speed increase has come from two sources: smaller, faster

transistors and deeper pipelines with shorter critical paths. For two reasons this

increase has diminished in the past few years. Firstly, the rapid increases in speed

have hastened the emergence of a power wall. Simply put, the power consumed

by modern microprocessors is becoming too costly for the end user, and more

Chapter 1. Introduction 18

1.2. Microprocessor Design Challenges

importantly perhaps, the heat dissipated is becoming too expensive to cool [38].

Secondly, as feature size decreases transistor switching speed increases, however

wires are not scaling as quickly [17]. This is leading to wire delay limited circuits,

where the percentage of the chip accessible in one clock cycle is decreasing per

generation.

With the main techniques responsible for increases in microprocessor performance

rapidly expiring, a shift towards different design strategies capable of maintaining

performance increases is currently underway. Although many alternatives were

initially proposed in a special issue of IEEE Computer [19], parallel architectures,

in the form of Chip Multiprocessors (CMP) have become the focus of most major

microprocessors roadmaps [81, 127, 78, 108]. These architectures are able to

overcome or avoid design challenges of modern microprocessors and at the same

time continue increasing performance, largely by exploiting parallelism.

The remainder of this chapter introduces and expands on some of the key issues

facing modern microarchitecture design. This is followed by a discussion of how

computer architects are innovating in order to overcome these challenges.

1.2 Microprocessor Design Challenges

As mentioned previously, the application space for general purpose microproces-

sors is vast and is growing as new technologies and application areas are discov-

ered. Applications, whether multimedia, gaming, communications or scientific,

require microprocessors that are capable of processing a variety of tasks, many

within imposed timing constraints. At the same time computer systems are used

to run multiple applications concurrently, adding additional complexity to the

workload of a general purpose microprocessor.

For these purposes it is desirable that each successive generation of microprocessor

is able to face a changing and growing application space, and is able to remain

capable of processing workloads into the future. At the same time the end user of a

computer system does not want the cost of ownership to become overly expensive,

so power consumption is a key concern. The design of processors optimised for

performance, power and cost requires a carefully balanced architecture which

Chapter 1. Introduction 19

1.2. Microprocessor Design Challenges

addresses numerous challenges. This section describes the major challenges that

architects face in designing modern architectures.

1.2.1 Wire Delay

As semiconductor technology advances, transistors are becoming smaller and

more transistors can be integrated onto a single silicon die. These transistors

consume less power and the time taken by them to switch state, the gate delay,

decreases. In real terms transistors, and hence logic, on a chip are becoming

cheaper and faster.

In order to connect transistors as their feature sizes decrease, the width of wires

writhin a given technology must also decrease. This reduces the cross-sectional

area of the wires (A), which increases the resistance (R) per unit of length (L)

because resistance is inversely proportional to area, Equation 1.1. In the equation

ρ is the resistivity constant of the material.

R =
ρL

A
(1.1)

τ = RC (1.2)

This means that the delay (τ) through a wire, Equation 1.2, where C is wire

capacitance, will only decrease linearly with its length, which depends on the

underlying transistor technology [17]. As wire delay is only decreasing linearly

and gate delay is decreasing more rapidly, circuits are increasingly becoming wire

delay limited. This happens because the number of gates reachable in a single

clock cycle is decreasing.

The overall impact that this has on a microarchitecture is that shrinking a wire

delay limited circuit will not make it run any faster, as less of the silicon is

available within one clock cycle [66]. In fact, it was estimated that when the

semiconductor technology gets down to a 0.1µm process, only 16% of the die will

be reachable within a single clock cycle [104], Figure 1.1.

Chapter 1. Introduction 20

1.2. Microprocessor Design Challenges

Figure 1.1: Predicted percent of die reachable by each generation [104].

1.2.2 Memory Gap

In order for a microprocessor to operate efficiently it needs to be fed with a steady

stream of instructions to process and to have access to the data required by those

instructions. In today’s architectures access to main memory, to load or store

instructions and data, is often a bottleneck. This bottleneck is caused by the

discrepancy in memory and processor speeds. While processor clock speeds have

increased by approximately 55% per year since 1980, memory performance has

only been increasing at less than 10%, creating a widening memory gap [62], see

Figure 1.2.

This increasing memory gap reduces the benefit of increased operating frequen-

cies; whenever a processor requires access to a piece of data or instruction not

currently in a local cache it has to wait. Access to memory, in modern micropro-

cessors, takes hundreds of cycles during which time the processor remains idle.

This gap is especially evident in commercial applications that are transaction

intensive.

In order to alleviate this problem, smaller cache memories are used to keep fre-

quently accessed data local to the processor and most modern architectures now

Chapter 1. Introduction 21

1.2. Microprocessor Design Challenges

Figure 1.2: A growing gap between memory speed and processor speed leads to bottle-
necks during data intensive workloads [62].

contain at least two levels of cache memory, of which many different configura-

tions have been researched [75, 42]. Complimentary to storing frequently used

data are schemes for fetching data in advance of requirement. These prefetching

schemes have been attempted both in software [23, 113] and hardware [28, 162]

to reduce the impact of the memory wall further.

1.2.3 Limits of Instruction Level Parallelism

Many modern processors contain hardware support for exploiting instruction level

parallelism (ILP). ILP exists where multiple instructions are independent from

each other and can be executed simultaneously. Independent instructions found

within an instruction stream can be issued to multiple functional units within

the processor for execution, and modern superscalar architectures are capable of

dispatching four or more instructions per clock cycle to separate functional units.

Whilst this approach has enabled performance increases, and fundamentally al-

lows more than one instruction to be executed in each clock cycle, it does have

limitations. In particular instructions within the same thread usually display a

Chapter 1. Introduction 22

1.2. Microprocessor Design Challenges

high degree of dependence, and finding further independent instructions requires

the ability to look further ahead in the instruction stream, which requires addi-

tional hardware.

A plethora of studies have looked at the limits of ILP [10, 22, 166, 129]. Many

have shown that even in the presence of theoretical perfect caches1, and perfect

branch prediction, the maximum attainable ILP is still only in the order of 10

to 100 instructions per cycle (IPC) [62]. In practice ILP very rarely attains

greater than 4 IPC with relatively complex but manageable hardware. Beyond

this, the complexity of large instruction fetch windows, broadcast networks which

suffer from wire delays, multiple functional units and centralised control becomes

impractical. Some of this hardware, for example register bypass logic, grows

quadratically [123] when attempting to exploit further ILP and performance gains

diminish.

1.2.4 Power Limits

Power consumption has gone from being a factor that needed to be considered

when designing a new architecture, to becoming a first order constraint on the

design of new architectures. The limit to acceptable power consumption is usually

realised when the ability to dissipate the heat from a processor becomes difficult.

With the recent rapid increases in clock frequency and the continual increase in

chip transistor density, the heat dissipated by modern high end microprocessors

is becoming unmanageable.

Power consumption in a processor comprises a static component, called leakage

power, and a dynamic component, called switching power, Equation 1.3. Tra-

ditionally the static component has been a fraction of the dynamic component,

however in modern semiconductor technologies this is changing.

Powertotal = Powerstatic + Powerdynamic

= V × Ileakage +
CV 2fclock

2
(1.3)

1A theoretical perfect cache would have the property that each access would result in a cache
hit.

Chapter 1. Introduction 23

1.2. Microprocessor Design Challenges

Process Old Architecture Area mm2 New Architecture Area mm2 Area Increase
1.0µm i386 (compaction) 42.25 i486 (lead) 132.25 3.1
0.7µm i486 (compaction) 90.25 Pentium (lead) 289 3.2
0.5µm Pentium (compaction) 148.84 Pentium Pro (lead) 299.29 2.0

Table 1.1: Growth in area between successive generations of Intel architectures.

As the feature size decreases with semiconductor technology, the size of the tran-

sistors and hence their capacitance (C) decreases. This reduced capacitance de-

creases the transistor switch time, or gate delay, leading to increased performance.

However as the feature size decreases the voltage (V) must be lowered to reduce

the interference between the closer components and in order to meet thermal

requirements for the design.

In order to keep the chip functioning correctly at a reduced operating voltage the

threshold voltage, the threshold at which the transistor switches state, must be

decreased. A lower threshold voltage brings it closer to ground which increases the

static leakage current, Ileakage, increasing the static power consumption. Recent

research has focused on techniques to reduce static power consumption [115].

1.2.5 Design Complexity

Each semiconductor technology generation is allowing more transistors to be inte-

grated onto a single silicon chip, and potentially these additional transistors can

be incorporated into future microarchitecture designs. Recently Intel released

the Montecito processor [107], a dual-core, dual-threaded Itanium architecture,

which incorporated 1.72 billion transistors in the design, taking silicon chips into

the era of billion transistor architectures.

Unfortunately, growth in performance in a new microarchitecture is declining in

subsequent generations and is approximately proportional to the square root of

the growth in area of the microarchitecture in any given technology generation.

Taking the x86 family of architectures as an example, the growth in area of

approximately 2-3 times, Table 1.1, was accompanied by only a 1.5 - 1.7 times

increase in performance.

This discrepancy is due to the hardware that was added in subsequent genera-

tions of microarchitecture. As previously mentioned, hardware for exploiting ILP

Chapter 1. Introduction 24

1.2. Microprocessor Design Challenges

suffers from diminishing returns, as does adding larger cache memories. At some

point quadratic increases in the size of the hardware only achieve linear increases

in performance.

Figure 1.3: A growing gap between increases in the complexity of a chip and produc-
tivity of design engineers and tools.

Another important issue associated with design complexity is designer produc-

tivity. The International Technology Roadmap for the Semiconductor Industry

(ITRS) 2005 [139] continued to highlight the gap between design complexity,

measured as the total number of transistors on a chip, and designer productivity

measured as transistors designed-in per staff member per month, Figure 1.3. The

number of transistors on-chip is growing at a rate of 58% per year, but design

productivity is only increasing at a rate of 21% per year. In order to close the

productivity gap the ITRS stated that reuse, testing and verification must all

improve by over 2 times.

Chapter 1. Introduction 25

1.3. Design Solutions

1.3 Design Solutions

Computer architects have responded, with many novel solutions, to the current

problems facing microprocessor design. In the following section some of these

solutions are presented.

1.3.1 Exploiting Parallelism

As increases in the underlying circuit speed decline, due to issues such as power

density and clock distribution, it appears that future performance will need to

come from doing more work in parallel. As mentioned previously, Section 1.2.3,

architectural techniques capable of extracting ILP are now reaching practical

limits, motivating the need to look elsewhere for parallelism.

Just over 40 years ago, a taxonomy was proposed placing all computer architec-

tures into four categories based on the parallelism in both the instruction and data

streams [48]. This model is still useful for explaining where additional parallelism

can be found in future microprocessors.

Single Instruction, Single Data Stream (SISD)

This category includes the uniprocessor, where a single instruction stream is

processed against a single data stream. As discussed parallelism in SISD ar-

chitectures can be extracted using ILP techniques, as is the case in superscalar

architectures [123]. In addition to the ILP extracted through complex hardware,

simpler hardware in combination with complex compiler techniques can be used

to define explicitly parallelism in a single instruction stream, as is the case in

Very Long Instruction Word (VLIW) architectures [45]. Both of these techniques

have reached practical limits and further advances require discouraging expense

in hardware with low utilisation.

Single Instruction, Multiple Data Stream (SIMD)

In SIMD architectures a single instruction is executed by multiple Processing

Elements (PEs) on different data streams. SIMD architectures exploit data level

Chapter 1. Introduction 26

1.3. Design Solutions

parallelism (DLP), by applying the same operation to multiple data items in

parallel. Each PE has its own data memory, hence multiple data streams, however

each PE is driven by the same instruction streams, usually from a single control

processor responsible for fetching and dispatching each instruction.

For multimedia and scientific applications, which exhibit significant amounts of

DLP, this approach is very efficient. As these applications have rapidly migrated

into the desktop space, architectures have incorporated SIMD extensions into the

instruction set [126, 39, 118] and provided special purpose hardware for executing

these instructions. SIMD instructions are now ubiquitous in modern general

purpose architectures, accelerating cryptographic, media encoding and decoding,

and graphics processing.

The performance of SIMD architectures is limited only by the amount of DLP

available in any given application, as the addition of further PEs is relatively

cheap, in comparison to the structures associated with extending superscalar

techniques.

Multiple Instruction, Single Data Stream (MISD)

MISD architectures process a single data memory with multiple instruction streams.

An implementation of a MISD architecture [58] has been shown to be useful for

very specific tasks, such as fast pattern matching in large data streams for which

there is no efficient index, and hence multiple different search tasks can be exe-

cuted on the same data in parallel. It appears that MISD architectures have not

shown significant benefits in any general purpose application areas, and as such

no commercial architecture of this type has been developed.

Multiple Instruction, Multiple Data Stream (MIMD)

In MIMD architectures multiple processors execute independent instruction streams

on independent data streams. Each processor in a MIMD architecture executes a

separate thread of control. That is, they execute independent instruction streams

on largely independent2 data streams in parallel. This thread-level parallelism

2In MIMD architectures shared memory coherence, in particular atomic primitives such as
synchronisation, may prevent the streams from being fully independent.

Chapter 1. Introduction 27

1.3. Design Solutions

(TLP) is far more flexible than DLP and it can be exploited by a larger set of the

application space of general purpose microprocessors. For this reason TLP is per-

haps the best candidate to achieve future performance gains in general purpose

microprocessors.

Thread Level Parallelism

Many modern programming languages allow programmers to define, explicitly,

independent threads of control within a program all of which can be executed

in parallel. Additionally multi-processing operating systems allow multiple pro-

cesses to be run concurrently. Each of these processes may be run in parallel, and

in turn may contain threads that can also be run in parallel. Prior to MIMD ar-

chitectures, SISD architectures relied on the operating system software to switch

among concurrent processes and threads, ensuring that each was allowed sufficient

execution time within the same processor to continue making forward progress,

Figure 1.4 (a).

In order to accelerate TLP, many modern processors, especially in the server class,

incorporate hardware that allows a single processor to maintain information for

multiple threads, switching between each thread at a hardware level and filling

empty slots in the processor’s pipeline on long latency cache misses, Figure 1.4

(b). In highly threaded applications, of which the operating system is an example,

multi-threaded hardware can help with hiding the long idle times associated with

data and instruction accesses that miss local or intermediate caches. Due to the

increasing memory gap, Section 1.2.2, these idle times can be several hundreds

of clock cycles during which time, in the absence of multi-threading hardware,

the processor would effectively remain idle. In some data intensive applications,

such as database workloads, the idle time in modern microprocessors is as much

as 75% [90]. A recent study [53], stated that adding multithreading hardware,

in the study two threads, to an existing architecture adds approximately 10%

additional logic to the CPU, increases the maximum power by less than 10% but

can increase throughput by over 30%.

Another approach to exploiting TLP in hardware is to add additional proces-

sors to the architecture, via an off-chip interconnect at the board or multi-chip

module (MCM) level, or, with billion transistor budgets, increasingly in the same

Chapter 1. Introduction 28

1.3. Design Solutions

Figure 1.4: Exploiting thread-level parallelism: a) software scheduling, b) multi-
threaded hardware, c) multi-processor hardware.

silicon die, Figure 1.4 (c). Additional processors can provide linear increases in

performance with die size on transactional workloads such as TPC-C [34]. CMPs,

where multiple processors are integrated on a single chip, can provide performance

increases even on applications exhibiting fine-grained TLP.

1.3.2 Partitioned Designs

As mentioned in Section 1.2.1, wire delay is diminishing the area of a chip reach-

able in a single clock cycle with each generation of process technology. This

motivates the need for designs where cross chip communication is minimised.

A new class of parallel architectures have been designed with wire delay treated as

a first order design constraint. These communication-centric architectures such

as RAW [165], Smart Memories [102] and TRIPS [137] keep the length of critical

paths in the design to within 1 or 2 cycles. Whilst these architectures overcome

limits due to wire delay they also impose a message-passing [165] or data-flow

[141] paradigm of programming onto the compiler or software.

CMPs can also be designed to overcome wire delay limits. Each of the many

small processing cores on CMPs take up a relatively small area on the total chip,

Chapter 1. Introduction 29

1.3. Design Solutions

minimising the size of critical paths within each core. Only infrequently used and

therefore less latency critical wires, connecting processors and caches, need to be

long.

1.3.3 Bridging the Memory Gap

The memory gap, as mentioned in Section 1.2.2, is constantly increasing the

penalty, in cycles, of memory loads and stores. In modern processors, such as

the Intel Pentium 4, the cost of accessing main memory can be as large as 200-

300 cycles. For this reason today’s high performance processors employ multiple

levels of cache memory to help reduce the performance gap.

Increasing the size of on-chip caches decreases the chance of a memory operation

in the processor having to go all the way to main memory. In today’s semiconduc-

tor technologies it is possible to integrate extremely large caches on-chip. Indeed,

Intel’s Montecito [107] processor included nearly 27MB of on chip cache memory,

improving the performance by almost a factor of 2 over previous generations of

the same architecture, Figure 1.5.

Cache memories cannot totally close the memory gap, as untouched data, when

first loaded must always come from main memory unless prefetched in advance

using hardware [28] or software [23]. It is however possible to improve perfor-

mance even during loads and stores to untouched areas of memory by exploiting

memory-level parallelism (MLP) [30]. MLP can be exploited by overlapping mul-

tiple accesses to main memory during the period that the processor is idle waiting

for the first access to resolve.

To illustrate the potential of MLP as a performance booster, consider a memory-

bound application that spends two-thirds of its execution time in off-chip accesses,

doubling the MLP can halve the time spent in these accesses and potentially im-

prove performance by 25%. As long latency memory accesses are fairly dynamic,

occurring when a cache has evicted previously held data or has not yet seen it,

hardware schemes are needed to look for memory accesses that can be overlapped.

One such scheme is hardware scouting [27]. When a processor is forced to stall on a

memory operation, a scout thread is invoked. The scout thread’s sole purpose is to

run ahead in the instruction stream and look for memory accesses, while the real

Chapter 1. Introduction 30

1.3. Design Solutions

Figure 1.5: The effect of increased cache size (MB) on performance (×) of the Itanium
2 processor [107].

thread is stalled waiting for the initial access to come back. The hardware scout

can pass control flow operations such as branches and jumps taking whichever

path is deemed most likely, and can continue scouting for memory accesses many

hundreds of cycles in advance of the real thread. Obviously when the initial

memory access is resolved the real thread is switched back in, and continues from

the point at which it stalled. Any memory accesses that were overlapped will have

been fetched into local caches and the cost for the following accesses is reduced.

Hardware scouting can be more efficient, in terms of logic area consumed, than

simply increasing the size of caches, as illustrated in Figure 1.6.

1.3.4 Design Abstraction and Replication

Two methods by which the design complexity problem can be addressed are

abstraction and replication. The International Technology Roadmap for Semi-

conductors [139], has continually outlined the need for both of these methods to

be increased by at least a factor of two in order to bridge the productivity gap.

Chapter 1. Introduction 31

1.3. Design Solutions

Figure 1.6: Comparison of hardware scouting and increasing cache size [27].

Abstraction can be addressed by designing systems at a higher level. Initially

circuits were designed at the transistor level, then at the gate level using libraries,

and more recently at the macro block level. With billion transistor budgets the

abstraction level may have to be raised higher once more, possibly to the processor

or multiple processor level. Next generation architectures can be composed of

multiple copies of the previous generations in order to best utilise the increase in

transistor space.

Replication within an architecture is also necessary. This can already be seen with

current generation chip multiprocessors. Sun’s Niagara processor [81] contains 8

identical Sparc in-order cores, IBM’s Power 5 [78] and Intel’s Core Duo [108]

architectures both contain two identical superscalar processors, and STI’s3 Cell

processor [127] contains one Power processor and eight synergistic processors. All

of these architectures have reduced the design time normally associated with a

new architecture through successful replication and reuse.

3STI - a collaboration by Sony, Toshiba and IBM

Chapter 1. Introduction 32

1.4. Summary

1.4 Summary

In this introduction, the major challenges facing modern microprocessor design

have been outlined. These challenges and the demand for continual performance

gains, have motivated research within this area. Moreover some of the solutions to

these challenges have been discussed, and many come from a shift to parallelism

as a design paradigm. In this context CMP architectures have been shown to have

significant potential for future general purpose high performance processors.

1.5 Research Aims

The research presented in this thesis focuses on CMP architectures. An archi-

tecture is presented that scales beyond the current generation of CMPs by in-

corporating a multi-level cache hierarchy on a chip, allowing the notion of Chip

Multiple-Cluster (CMC) architectures. In order to facilitate this clustering, a

novel multi-level cache hierarchy is presented as well as a novel cache coherence

protocol to maintain shared memory coherency. A scheme allowing locality based

task distribution is presented, showing that in such architectures task isolation

and task affinity can be used to improve performance.

1.6 Contributions

The contributions made by the work presented in this thesis are summarised as

follows:

• A multi-level shared memory cache coherence protocol.

• Cache hardware to support a multi-level shared memory cache coherence

protocol.

• An instruction set extension and mapping mechanism for exploiting cache

locality between threads.

Chapter 1. Introduction 33

1.7. Thesis Structure

• A simulation platform capable of evaluating, through cycle-level simulation,

chip multiprocessor and chip multi-cluster architectures containing upto and

including 128 cores.

• A fully cache coherent study, using real multithreaded applications, of the

effects and performance of large scale chip multiprocessor and chip multi-

cluster architectures.

1.7 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 reviews the availability of parallelism within software and the exploita-

tion of parallelism within software and architecture design.

Chapter 3 outlines the Jamaica CMP which is the base architecture subsequently

extended in later chapters. The chapter also presents the simulation platform used

to investigate and analyse the architecture, and describes the software toolchain

supporting it.

Chapter 4 introduces a multi-level cache coherence protocol capable of maintain-

ing shared memory coherence across multiple on-chip clusters.

Chapter 5 presents the hardware extensions necessary to implement the coherence

protocol. In particular a deadlock free queueing mechanism is described.

Chapter 6 introduces an extension to the instruction set which allows software to

exploit locality by controlling the affinity of distributed threads.

Chapter 7 evaluates the performance of the multi-level coherence protocol, the

architecture supporting it, and the optimisations using locality aware task distri-

bution.

Chapter 8 concludes the thesis by summarising the contributions made and sug-

gesting future directions of research that could be conducted.

Finally, the Appendix includes details of the Jamaica instruction set for reference.

Chapter 1. Introduction 34

1.8. Publications

1.8 Publications

Accepted Papers

• M. J. Horsnell, J. Zhao, I. Rogers, A. Dinn, C. K. Kirkham, I. Watson, Optimiz-

ing Chip Multiprocessor Work Distribution using Dynamic Compilation, Euro-

pean Conference on Parallel and Distributed Computing, Rennes, France, August

28-31, 2007. Lecture Notes in Computer Science, Volume 4641/2007, pages 258–

267.

• I. Rogers, M. J. Horsnell, I. Watson, Virtualization and chip multiprocessor mem-

ory management: the JAMAICA architecture, 5th UK Memory Management Net-

work Workshop, University of Glasgow, UK, July 2005.

• M. J. Horsnell, I. Watson, Harnessing Java for Novel Chip-Multiprocessor Archi-

tecture Simulations, PREP2005 Conference, Lancaster, UK, March 2005.

Abstracts

• M. J. Horsnell, I. Watson, Simulating the Jamaica CMP Architecture, HiPEAC

ACACES, L’Aquila, Italy, July 2005.

• M. J. Horsnell, I. Watson, Cycle-Accurate, Distributed Chip Multiprocessor Sim-

ulation, PREP2004 Conference, Hertfordshire, UK, March 2004.

Chapter 1. Introduction 35

CHAPTER 2

Application and Architectural Parallelism

With the gains available from conventional uniprocessor architecture techniques

diminishing with each successive generation of processor technology, parallel com-

puter architectures are being embraced by industry and researchers to provide

scalable, consistent performance increases.

Parallel architectures consist of multiple processing elements that cooperate in

order to solve problems, ideally in a shorter period of time than solving the

problem using a single processing element alone. There exist three constraints on

the performance attainable from a parallel architecture: the available parallelism

in the application, the parallelism available in the hardware and the efficiency

and nature of distributing and scheduling parallel work.

2.1 Application Parallelism

For a parallel computer architecture to realise any speed-up during the execution

of a given workload, the workload must to some extent be amenable to paralleli-

sation. The amount of an application that can be successfully parallelised and

36

2.1. Application Parallelism

executed concurrently on a parallel architecture determines the extent to which

the parallel architecture is capable of reducing the overall execution time.

2.1.1 Amdahl’s Law

The correlation between the amount of parallelism in a given code and the maxi-

mum speedup from parallel execution is commonly referred to as Ahmdahl’s Law

[4], and is a demonstration of the law of diminishing returns. The maximum

theoretical speedup S, attainable from running an application on N processors,

is shown in Equation 2.1, where P is the percentage of the code that can be

parallelised.

S =
1

(1− P) + P
N

(2.1)

When Amdahl’s law is applied, as shown in Figure 2.1, applications containing

large percentages of parallel code sections do not guarantee large performance

speedups. When P = 0.9, that is 90% of the code in a target application is

amenable to parallelisation, and assuming no overheads associated with the par-

allel execution of the code, a 16 processor machine realises a speedup of less than

7. This result may initially appear disappointing, however, for the reasons out-

lined in Section 1.2, it may be infeasible to design and build a processor that can

run at 7 times the clock frequency, whilst remaining inside a given power budget,

therefore it may be more cost and time effective to replicate multiple processing

cores from an existing design, in order to achieve the additional performance.

2.1.2 Implicit and Explicit Parallelism

With the amount of parallelism available in an application determing the amount

of speedup attainable on a parallel architecture, it becomes essential to locate or

introduce parallelism into an application. Locating parallelism within existing

code is referred to as exploiting implicit parallelism, introducing or programming-

in parallel sections of code is referred to as exploiting explicit parallelism.

Chapter 2. Parallelism 37

2.1. Application Parallelism

Figure 2.1: Amdahl’s Law: Parallel speedup (S) vs. parallel fraction (P).

Implicit Parallelism

Writing programs without concern for how they map onto a given parallel ar-

chitecture has obvious benefits. However, without explicity marking sections in

the code as being parallel, a good automated strategy needs to be employed in

order to decide when to fork parallel computation. Much work has been done in

this area, with static parallelising compilers [122, 56, 16, 59] and also dynamic

run-time recompilation techniques [136, 41, 172], ranging from conservative ap-

proaches [37, 121, 120] where all dependencies must be guaranteed before applying

a given parallelisation technique to liberal speculative techniques [57, 135, 148]

that speculate on dependencies, predict values and roll-back on dependency vio-

lations or value misspredictions.

Explicit Parallelism

Implicit parallelism, whilst being an attractive approach to locating parallelism,

often under performs as it either extracts parallelism conservatively, missing po-

tential performance gains, or it extracts parallelism too liberally and then wastes

Chapter 2. Parallelism 38

2.1. Application Parallelism

time cleaning up speculative state changes. Additionally the performance of im-

plicit techniques are often hard to reason without a solid understanding of the

underlying compiler or runtime execution environment.

An alternative approach is for the programmer to annotate a program in order to

indicate to the compiler and runtime execution environment that parallel com-

putation might be beneficial. Most high-level programming languages support

abstractions for implementing concurrency such as the concurrency package [94]

in Java, and the POSIX thread library [21] in C and C++. Using such libraries

it is possible for the programmer to abstract away much of the detail of the

underlying implementation and concentrate on writing parallel applications.

Unfortunately explicit parallelism is often conservative because critical sections of

code need to be locked, as incorrect locking can result in incorrect program exe-

cution, despite the fact that the majority of execution would succeed without the

locks in place. Much work has been done looking at alleviating the cost of locks

[133], lock-free synchronisation [86] and data structures [64] and more recently

a resurgence in transactional memory [65, 61, 5, 134] where locking structures

are removed entirely and the concept of a transaction is introduced. A transac-

tion is a body of code that either completes, in which case all of its changes are

committed, or fails and therefore none of the changes are committed.

2.1.3 Granularity of Parallelism

In general whilst parallelism is either implicit or explicity defined in an applica-

tion, there also exists a range of granularity at which parallelism can be defined

or extracted.

Instruction Level Parallelism

Arguably the finest grain of parallelism exploitable in an application is instruction

level parallelism (ILP). ILP exists where multiple instructions within a sequence

are independent and can therefore be executed concurrently. Figure 2.2 and 2.3

show two simple sequences of 3 instructions. In Figure 2.2 all three instructions

are independent; there are no data dependencies between them, and they could all

be executed in parallel. In Figure 2.3 however, the instructions must be executed

Chapter 2. Parallelism 39

2.1. Application Parallelism

in sequence as the second instruction consumes the result of the first, and the

third instruction consumes the result of the second.

LOAD R1, 32[R2]

ADD R3, R3, #1

SUB R4, R4, R3

Figure 2.2: A simple code sequence
amenable to ILP execution.

ADD R3, R3, #1

ADD R4, R3, R2

STORE 0[R4], R0

Figure 2.3: A simple code sequence
containing no ILP.

The amount of ILP within an application varies widely depending on the type of

application. A large amount of research has been done looking at locating ILP

in applications [77, 167, 166, 24], and exploiting ILP using both compile-time

optimisations [99, 70] and architectural innovations [156, 100].

Data Level Parallelism

Data Level Parallelism (DLP), also referred to as SIMD [48], exploits parallelism

in applications where a single operation is applied to multiple data sets concur-

rently. Scientific applications that work on massive vectors or matrices are often

amenable to data-parallelism optimisations, as are many image and signal pro-

cessing applications [151]. DLP is usually fairly fine-grained, as multiple data

elements or registers are often processed using a single instruction and as such is

usually exploited using instruction set extensions. Most modern microarchitec-

tures contain vector specific instructions within their instruction set architecture,

for example Intel’s MMX [126] and later SSE(1–4), AMD’s 3DNow! [118], Pow-

erPC’s AltiVec [39], Sun’s VIS [157] and Hewlett-Packard’s MAX-2 [96].

Figure 2.4, presents a loop from the MPEG encoder [110]. The loop is performing

a sum of absolute differences calculation on the arrays ref and curr. After scalar

expansion and loop fission the two loops shown in Figure 2.5 are formed. The first

loop is then amenable to data level optimisations, as a subtraction is being applied

on multiple datasets, in Figure 2.5 it is assumed that the underlying architecture

has the capability to dispatch four substractions concurrently and so the loop

has an unrolling factor of 4. Exploiting DLP on multimedia applications, such as

MPEG4 encode/decode and H.264 decode has shown speedups in performance

by upto 2 times [54, 95].

Chapter 2. Parallelism 40

2.1. Application Parallelism

for(i=0; i<16; i++){

localdiff = ref[i] - curr[i];

diff += abs(localdiff);

}

Figure 2.4: Inner loop of the motion
detection algorithm used in MPEG en-
coding, calculation of the sum of abso-
lute differences.

for(i=0; i<16; i+=4){

T[i+0] = ref[i+0] - curr[i+0];

T[i+1] = ref[i+1] - curr[i+1];

T[i+2] = ref[i+2] - curr[i+2];

T[i+3] = ref[i+3] - curr[i+3];

}

for(i=0; i<16; i++){

diff += abs(T[i]);

}

Figure 2.5: Inner loop after scalar
expansion and loop fission. The first
loop is now amenable to data level par-
allelism optimisations.

Loop Level Parallelism

Another form of parallelism exploited by both implicit and explicit optimisation

techniques is Loop Level Parallelism (LLP) [3, 89, 12]. LLP fits into the MIMD

category in Flynn’s taxonomy [48]; the total iterations of a loop being divided

amongst the multiple processors in a multiprocessor system, and executed concur-

rently. Until recently gains from LLP were limited because of fine-grain synchro-

nisation and loop-carried dependencies [98], limiting the applicability to loops

amenable to course-grained division. More recently however the reduction in

communication latencies between multiple processors, especially those integrated

in the same chip or multi-chip module, has allowed loop level optimisations to be

applied on smaller loops exhibiting fine-grained parallelism [172].

Thread Level Parallelism

Perhaps the coarsest grain of parallelism exploitable within applications is Thread

Level Parallelism (TLP). TLP is the parallelism inherent in an application that

runs multiple threads of execution concurrently. TLP has traditionally been

exploited in commercial applications, for example databases and web servers,

where system input/output is a generally a limiting factor on performance. By

running multiple threads in parallel, these applications are able to hide the latency

incurred by the input/output, and therefore increase the overall throughput of

Chapter 2. Parallelism 41

2.2. Architectural Parallelism

the application [85].

More recently with the advent of chip multiprocessors, exploiting TLP has become

an important source of performance gain within the desktop market. Several

studies have shown that upto 1.4 times speedup via TLP exists even amongst

the threads within common desktop applications [46, 47], however the level of

TLP present is only sufficient to provide performance speedups on dual or quad

processor architectures.

Like ILP and LLP, TLP is also limited by data and control flow dependencies.

In an attempt to overcome some of these dependencies and hence extract more

TLP from existing applications much work has been done looking at speculating

on data dependencies [148, 119, 146, 147, 173], a technique referred to as Thread

Level Speculation (TLS). TLS allows sections of code that can not be guaran-

teed as independent at compile- or run-time to execute speculatively in parallel.

State changes are locally buffered, and results are only committed when no other

threads exist that can change the state previously seen by a speculative thread.

Studies have shown the TLS can extract between 1.74–2.1 times speedup for

floating point applications, and 1.23–1.7 times speed-up for integer applications

[130, 74].

2.2 Architectural Parallelism

Having outlined in the previous section techniques for exploiting parallelism

within applications, the following sections discuss how parallel execution is sup-

ported in hardware.

2.2.1 Bit Level Parallelism

Of all the hardware techniques that exploit parallelism, bit level parallelism is the

finest-grained and is usually employed inside logic blocks within an architecture.

Exploiting bit level parallelism, whilst not able to reduce the total number of

cycles required to execute a given application, is often used to reduce the critical

path and hence allows for increased operating frequencies.

Chapter 2. Parallelism 42

2.2. Architectural Parallelism

Figure 2.6: 4-bit ripple-carry adder. Figure 2.7: 4-bit carry-select adder.

A simple example would be the implementation of a 4-bit full-adder which can be

implemented as a ripple-carry adder, shown in Figure 2.6. In a ripple-carry adder

all but the first in the sequence of the 1-bit adders must wait for a carry input

before producing an output. In order to exploit bit level parallelism a carry-select

adder can be used as an alternative, shown in Figure 2.7. In a carry-select adder

two additions are computed for each bit pair, using a carry of 0 and 1. The correct

result is later selected and propagated when the true carry value is known.

2.2.2 Data Level Parallelism

As mentioned previously, Section 2.1.3, additional SIMD instructions have been

added to most modern microarchitectures to better support common multimedia

algorithms. These algorithms generally consist of operations on values repre-

sented by 8-, 16-, and 32-bit integer or fixed-point data types, which are typically

smaller than the maximum datapath width, 32- or 64-bits or greater. Also men-

tioned in Section 2.1.3, SIMD optimisations can account for 2 times speedup

within multimedia applications, while the addition of SIMD support in hard-

ware has been shown to require minimal additional logic, in the UltraSparc I this

additional logic increased the die area by approximately 3% [158].

Figure 2.8 shows a high-level abstraction of the DLP within the data path used

by the Streaming SIMD Extensions (SSE) instruction psadbw, within compliant

Chapter 2. Parallelism 43

2.2. Architectural Parallelism

Figure 2.8: Data Level Parallelism: the datapath inside the execution of the psadbw

SSE2 instruction.

Intel architectures. Eight bytes are packed into each of two 64-bit registers.

The architecture is then capable of performing the sum of differences calculation

on all eight pairs of bytes with a 4-cycle latency, replacing 8 subtractions and

accumulations and handling the absolute value without using branch instructions.

The loop presented in Figure 2.4, using the SSE2 instructions and associated

hardware, can be reduced to just two psadbw instructions. Within the MPEG

encoder’s motion detection algorithm this can be used to produce a factor of 2

speedup [71].

One limitation of DLP support in hardware is that it is only invoked by an

application that has already been compiled or coded to include the extended

SIMD instructions, extracting DLP dynamically at runtime is impractical. This

means that when extensions are added to an instruction set architecture, and

extra logic blocks are added to the hardware, application code must be rewritten

or recompiled in order to use it.

2.2.3 Instruction Level Parallelism

Section 2.1.3 introduced a simple sequence of instructions that is amenable to ILP.

In order to illustrate how ILP can be exploited in hardware, it is first necessary

to introduce a simple pipelined processor.

Chapter 2. Parallelism 44

2.2. Architectural Parallelism

Simple Pipelined Processor

The simple pipelined processor, shown in Figure 2.9, is a simple MIPS-like [79],

control-flow, load-store architecture with a 5-stage pipeline. The Fetch stage is

responsible for loading instructions from memory and maintaining the current

program counter. The Decode stage decodes the instruction, fetches register

contents and determines when the instruction can be issued. The Execute stage

performs the operation. The Memory stage is responsible for loading or storing

data into the memory hierarchy. Finally the Writeback stage commits the results

of the operation back into the registers.

Figure 2.9: A simple pipelined architecture: showing pipeline stages, latches and data-
forwarding paths.

In the simple pipelined processor, shown in Figure 2.9, ILP can not be exploited as

there is no opportunity to execute multiple instructions concurrently, see Figure

2.11.

Superscalar and VLIW Processors

In order to exploit ILP a processor must be able to issue and execute multiple

instructions per cycle from the same instruction stream. Two broad classes of

architecture, VLIW [45] and superscalar [7, 124, 123] have been designed around

the concept of multiple-issue pipelines, an example of which is shown in Figure

2.10.

Superscalar processors were originally developed as an alternative to vector pro-

cessors, aimed at achieving vector processor performance but from exploiting ILP

rather than DLP. In the pipeline of a superscalar processor upto n instructions can

Chapter 2. Parallelism 45

2.2. Architectural Parallelism

be issued each cycle, as illustrated in Figure 2.11, equating to a maximum achiev-

able throughput of n instructions per cycle. In an architecture where n ≥ 3 and

where the right functional units were available, all of the instructions in the code

sequence listed in Figure 2.2 could be issued in a single cycle latency. Achieving

3 way ILP.

Figure 2.10: A multiple-issue pipeline, with multiple functional units.

In order to utilise an n issue superscalar processor efficiently one instruction needs

to be issued to each functional unit in each cycle. Since the amount of ILP within

a basic block1 of code is small, instructions must be selected across basic blocks in

order to keep the functional units busy. Compilers usually employ optimisations

such as loop unrolling, code motion and register renaming, in order to exploit as

much ILP as possible.

Figure 2.11: Instruction scheduling within a single-issue and superscalar/VLIW pro-
cessor.

1A basic block is a sequence of code that has one entry point, one exit point, and contains
no jumps or branches.

Chapter 2. Parallelism 46

2.2. Architectural Parallelism

Superscalar processors can be subdivided by their scheduling policy. Statically

scheduled superscalar processors are able to issue multiple instructions from a sin-

gle instruction stream, where dependencies and hazards are resolved in the decode

stage of the pipeline, such that the instructions are issued in the order they ap-

pear in the instruction stream. Dynamically scheduled, out-of-order, superscalar

processors allow instructions to be issued in any order, as long as dependencies are

maintained, regardless of whether preceding instructions have been issued. This

simplifies the job of the compiler as some dependencies can only be determined at

runtime, it allows the processor to tolerate dynamic cache behaviour and associ-

ated latencies and allows code compiled for a particular pipeline configuration to

run efficiently on a different pipeline. The flexibility of dynamic scheduling results

in further exploitation of ILP and therefore higher performance, than statically

scheduled superscalar or VLIW processors, but requires substantial increases in

the complexity of the hardware.

This complexity of dependence resolution amongst the inputs into and outputs

from the multiple functional units that form a superscalar architecture increases

quadratically with the number of functional units. This combined with diminish-

ing returns from attempting to exploit wide-issue ILP have limited most super-

scalar architectures to between 2- and 8-way issuing.

2.2.4 Multithreading

In single-issue, VLIW and superscalar architectures multithreading, that is switch-

ing between multiple instruction streams, is achieved through software support

of either cooperative or preemptive scheduling. These scheduling schemes rely

on either the operating system or the application itself to concede use of the

processor to another thread at regular intervals. In order for this to happen the

running thread is required to save all of its current working state2 into memory

before the context can be switched. The replacement context is then required to

load all of its previous working state into registers prior to continuing its execu-

tion of a thread. These software based context switches take many hundreds of

cycles to complete and are only invoked once a thread has had many thousands

2The working set includes the registers and context specific state, such as the program count,
stack pointer.

Chapter 2. Parallelism 47

2.2. Architectural Parallelism

of cycles of processor use. The combination of the memory gap, as mentioned

in Section 1.2.2, and increasingly multithreaded workloads, created the demand

for processors capable of switching between one thread of execution rapidly to

hide the memory latency of another. These multithreaded architectures are capa-

ble of issuing instructions from multiple threads, and can therefore exploit TLP

during otherwise wasted memory delay cycles. The manner in which threads

are scheduled for execution within a multithreaded processor defines two types

of multithreading, Interleaved MultiThreading (IMT) and Block MultiThreading

(BMT).

Interleaved Multithreading

IMT, also referred to as fine-grained multithreading, schedules an instruction

from each of the architecturally supported thread contexts each cycle, see Figure

2.12, leading to a context switch delay of zero cycles. Initially the number of

threads supported by IMT processors was equal to the number of pipeline stages.

This eliminates control and data dependencies between pipeline stages and re-

moves the need for complex hardware interlocking or data forwarding. Without

these complex paths the critical paths in the pipeline are reduced and it can

therefore be clocked at a higher frequency. A disadvantage to the original inter-

leaved multithreading scheme as implemented in the HEP architecture [142], is

that single-threaded execution was poor as a thread could only utilise the pipeline

every n cycles, where n is the number of hardware supported threads. Two tech-

niques proposed in the literature overcome this limitation, the first dependence

look-ahead [155] allows the compiler to tag each instruction with a number of bits

informing the pipeline how many following instructions are independent allowing

each context to gain more continuous time in the pipeline. The second technique

Interleaving [92], added data forwarding paths and hardware interlocking allowing

contexts to be switched on a cycle by cycle basis, but also efficiently supporting

single-threaded execution. This form of multithreading is implemented in Sun’s

Niagara architecture [81].

Chapter 2. Parallelism 48

2.2. Architectural Parallelism

Figure 2.12: Scalar multithreading scheduling schemes.

Block Multithreading

BMT, also referred to as coarse-grained multithreading, schedules instructions

from a fixed context until a specific event triggers a context switch, usually a

long-latency operation. When only 1 context is runnable no context switches are

triggered and the context achieves good single-threaded performance. The trigger

event can either be static or dynamic. A statically triggered BMT processor

switches contexts when a particular instruction is issued. These instructions can

either be specific context switch instructions or instructions within the instruction

set that are likely to cause long latency stalls, such as loads, stores and branches.

Dynamically triggered BMT processors switch context when a dynamic event

occurs such as a cache miss, see Figure 2.12, an interrupt or after the context has

run for a given quantum, say a thousand cycles. The advantage of static BMT

is that the cost of the context switch is still minimal, zero or one cycle, whereas

dynamic multithreading requires the pipeline to be flushed causing multiple delay

cycles.

In general BMT is less efficient than IMT especially when used in deep pipelines

[91], due to the cost of flushing pipeline stages following a context switch.

Chapter 2. Parallelism 49

2.2. Architectural Parallelism

2.2.5 Simultaneous Multithreading

Simultaneous MultiThreading (SMT) [159] is the natural hybrid formed by in-

cluding multithreading techniques within a superscalar architecture. A SMT

processor is capable of issuing multiple instructions from multiple threads each

cycle, as shown in Figure 2.13. Each hardware context can compete each cycle for

all of the available functional units, allowing both ILP and TLP to be exploited,

increasing pipeline utilisation and hence overall performance.

Figure 2.13: Instruction scheduling within an SMT processor and a CMP.

2.2.6 Chip Multiprocessors

As the number of transistors integrated onto a single silicon chip has increased,

the ability to integrate multiple complete processors and a memory hierarchy on

the same chip has become feasible. Many Chip MultiProcessor (CMP) designs

have been proposed [44, 60, 82, 32, 103, 143, 145, 148, 13] and more recently

implemented [81, 127, 78].

CMPs initially consisted of multiple single-issue processors, which were able to

exploit TLP, but could not hide the latency of memory accesses amongst each

thread. As the technology has allowed, however, the processing cores used have

become more complex, and now multithreaded and even superscalar cores are

Chapter 2. Parallelism 50

2.3. Summary

replicated on a single chip, allowing the architecture as a whole to exploit TLP,

ILP and even memory level parallelism (MLP).

CMPs have two distinct advantages over a SMT, VLIW and superscalar archi-

tectures capable of exploiting the same level of parallelism. Firstly the design

is less complex, each processor integrated on the chip can be fairly simple and

is replicated. If necessary much of the complication of superscalar and SMT ar-

chitectures can be avoided by opting for multithreaded scalar processors. This

simplicity allows for higher clock frequencies and eases design validation. Sec-

ondly the power requirements within a chip multiprocessor are often far lower

than the equivalent performing superscalar processor [108].

These advantages are balanced against the necessity to maintain memory co-

herency across multiple processors, requiring cache coherence protocols and shared

or distributed memory hierarchies, which increase the complexity of cache control

logic, however not to the same extent as the additional logic requirements of a

centralised superscalar wide-issue design.

2.3 Summary

This chapter has reviewed the availability of parallelism within software and the

exploitation of parallelism within processor and architecture design. ILP has been

shown to provide benefits in the execution of single-threaded applications but is

limited by the availability of independent instructions within those applications

and the poor scalability of the complex control structures required to exploit

it within processors. TLP, on the other hand, can be explicitly defined and

extracted at multiple levels of granularity, and as such is easier to exploit and is

more abundant within modern workloads. Architectures that exploit TLP can

do so by hiding memory latency or by truly executing multiple threads in parallel

using an SMT or CMP architecture.

The next chapter reviews the Jamaica CMP architecture, introduces the jamsim

simulation platform developed to simulate it, and briefly describes the software

environment used to run applications on the Jamaica architecture.

Chapter 2. Parallelism 51

CHAPTER 3

Jamaica Chip Multiprocessor and Software Environment

In the previous chapter several techniques for extracting parallelism from appli-

cation code, and methods for exploiting this parallelism within processor archi-

tectures were discussed. This chapter reviews the Jamaica CMP architecture, a

CMP with multithreaded cores and hardware support for lightweight work distri-

bution. The architecture is able to exploit thread level parallelism and hide the

latency of memory operations increasing parallel throughput.

The Jamaica CMP architecture provides a base design for the work presented in

subsequent chapters.

3.1 The Jamaica Chip Multiprocessor

The Jamaica1 architecture [170], as shown in Figure 3.1, is a CMP architecture

consisting of N cores integrated on a single chip implemented in a cycle accu-

rate simulation platform. Each core has its own Level 1 (L1) instruction and

data cache. These private caches are linked by an on-chip bus, employing the

1Jamaica is an acronym for JAva Machine And Integrated Circuit Architecture.

52

3.1. The Jamaica Chip Multiprocessor

MOESI coherence protocol, to a unified Level 2 (L2) cache and on-chip memory

controllers. Bus snooping is used to implement load-linked and store-conditional

instructions, as per the Alpha architecture [140], which support the implemen-

tation of critical sections within application code. Several additional features of

the architecture aid the execution of object-oriented and multithreaded codes.

Figure 3.1: The Jamaica single chip multiprocessor.

3.1.1 Multithreading

Unlike many other CMP architectures [60, 13] each core within Jamaica is multi-

threaded to improve overall throughput. Multithreading gives the appearance of

having multiple virtual processors per core by supporting multiple thread contexts

in hardware. Each context maintains a set of context specific registers, containing

register, interrupt and other thread specific state. Each context shares the core

pipeline and L1 private instruction and data caches, illustrated in Figure 3.2.

The contexts within a core can reside in one of five possible states: runnable,

stalled, waiting, empty and idle. The transitions between the five states is shown

in Figure 3.3. The fetch stage of the core pipeline is responsible for fetching

an instruction for the currently active context, chosen from the list of runnable

contexts.

Jamaica employs a blocked, switch-on-cache-miss multithreading policy [161],

extended by an additional switch-on-timer policy. The switch-on-timer policy

Chapter 3. Jamaica CMP and Software Environment 53

3.1. The Jamaica Chip Multiprocessor

Figure 3.2: Jamaica core: Multithreaded pipeline and support structures.

Figure 3.3: Jamaica core: Context running states.

Chapter 3. Jamaica CMP and Software Environment 54

3.1. The Jamaica Chip Multiprocessor

triggers a context switch event when a context has been running for 1,024 cycles

unhindered by cache misses. This maintains forward progress in the presence

of spin-locks and the absence of an implicit context switch instruction. A round

robin policy is used to rotate the active context from the list of runnable contexts

for scheduling into the pipeline. If no contexts are runnable at a context switch

event, the core itself becomes idle. A stalled context becomes a candidate for

scheduling once the stalled memory access is resolved.

Context switching can help to hide memory latency, by keeping the core busy

executing instructions from a runnable context during the memory stall incurred

by another context, improving the overall throughput. The policy employed by

Jamaica is most efficient when contexts suffer regular but not frequent cache

misses. In the presence of only one runnable thread no context switching occurs.

3.1.2 Register Windows

To reduce the effects of frequent method calls within modern object-oriented

languages [160, 36], a large windowed register file is shared between all of the

contexts in a Jamaica core. The hardware supporting the register file implements

a register windowing scheme [125, 131, 52], based on the multi-windows proposal

[138]. The compiler can see 32 registers which are divided into four windows each

containing eight 32-bit registers.

• (%g0 - %g7) Global window, shared by all contexts on a core.

• (%x0 - %x7) Extra window, private per context, statically allocated, non-

volatile across methods calls.

• (%i0 - %i7) In window, private per context, dynamically allocated at each

method call, volatile across method calls.

• (%o0 - %o7) Out window, private per context, dynamically allocated at

each method call, volatile across method calls.

Chapter 3. Jamaica CMP and Software Environment 55

3.1. The Jamaica Chip Multiprocessor

All the contexts on a core share the Global window, which is mapped directly

to the bottom eight physical registers2. Each context has a private Extra win-

dow, mapped into the physical register windows located directly above the Global

window. The In and Out window are allocated and released dynamically during

method calls. When a context is in the idle state it consumes only two windows

in the physical register file for the statically allocated Extra window and the bot-

tom allocated In window, allowing all other windows to be allocated to runnable

contexts.

Calling Convention

Although compiler techniques, based on register colouring [31, 132], can reduce

the overheads associated with method calls, supporting register windows reduces

the need to save and restore registers on each call and return, and is still useful for

simplifying calling conventions. In Jamaica the Out registers of the caller method

overlap with the In registers of the callee method and so passing small numbers of

variables, six or fewer3, is handled implicitly, as illustrated in Figure 3.4. Passing

more values requires spilling and filling to the stack as per architectures not

supporting register windows.

Register Mapping

One of the disadvantages of register windows is that window indices, in Jamaica a

5-bit register index encodes the window indices, must be mapped to a register in

the physical set within the critical path of the decode stage which can prevent the

pipeline from being clocked at higher frequencies [125]. In Jamaica the register

operands decoded from an instruction are translated to physical addresses by a

context Look-Up-Table (LUT), illustrated in Figure 3.5.

Downstream of the decode stage, all register indexes are physical and therefore

data hazards and forwarding can occur using the same forwarding path and de-

tection logic found in architectures containing flat register files.

2Additionally %g0 is hardwired to the value 0.
3Only 6 registers are available for passing values as two registers are explicitly used to pass

the return PC, and the stack pointer.

Chapter 3. Jamaica CMP and Software Environment 56

3.1. The Jamaica Chip Multiprocessor

Figure 3.4: Jamaica core: Register windows, call and return overlaps.

Figure 3.5: Jamaica core: Register windows; virtual to physical register lookup.

Chapter 3. Jamaica CMP and Software Environment 57

3.1. The Jamaica Chip Multiprocessor

Window Management

Dynamic allocation of a new Out window occurs during a method call by setting

a pointer from the previous Out window to a currently free window. The free

window is then allocated and can not be used until it is released by a return.

Window allocation is not restricted to contiguous windows and so a backward,

prev, pointer is stored to trace back to the previous window on a return. A

forward, next, pointer is also stored. This is necessary as a window can be evicted

to the stack when all windows are allocated and a context attempts a call. When

such an eviction occurs a previous frame present flag (pfp) is cleared to indicate

that the window has been spilled into memory.

These pointers are stored alongside the index mappings in a global mapping table,

shown in Figure 3.5.

3.1.3 Lightweight Task Distribution

A novel feature of the Jamaica architecture is the hardware support for lightweight

task distribution. This hardware support consists of a ring interconnect connect-

ing all of the processing cores. The ring allows active contexts to locate idle

contexts to which tasks can then be distributed.

Idling Contexts

When an active context exits from the bottom of its current executing stack,

detected in hardware by a return from an In window that has no predecessor,

the context’s state changes from runnable to idle and a token is inserted into the

sequence of tokens circulating around the ring interconnect. There is no software

teardown prior to the release of the token, which leaves the resident software stack

in place in the context specific registers, ready to run when work is distributed

to the idle context. The token placed onto the ring simply contains the identity,

a unique contextId stored in a hardware fused register, of the context now in

the idle state.

Two additional instructions within the Jamaica instruction set are used by an ac-

tive context to locate an idle context, by requesting a token from the interconnect

Chapter 3. Jamaica CMP and Software Environment 58

3.1. The Jamaica Chip Multiprocessor

Figure 3.6: Jamaica core: Lightweight task distribution.

using a token request (TRQ), and then to distribute work to that context using a

thread jump (THJ). The simple calling convention, mentioned in Section 3.1.2, is

also used during task distribution, the Out window being used to hold task setup

information as well as task input variables. When the THJ instruction executes, a

transaction is placed onto the shared bus, and the relevant snoop controller wakes

up the idle context, see Figure 3.6. If when executing the TRQ no other contexts

are idle, or a token is not acquired from the ring within a given number of cycles,

the TRQ instruction fails and the active context processes the work locally.

The average latency to find an idle context, if one is present, on an N core Ja-

maica architecture is N
2

cycles, which for small numbers of N is significantly lower

than locating idle processors through a shared locked queue stored in memory.

Additionally the ring interconnect can be accessed in parallel, allowing multiple

cores to either release or request tokens concurrently.

3.1.4 Branch Prediction

Branch prediction in the Jamaica core is implemented using a simple 2-bit satu-

rating up/down counter policy [171], indexed from a Least Recently Used (LRU)

evicted branch history table. The table is accessed during the fetch stage as part

of the calculation of the next PC. A hit in the branch history table alters the PC

Chapter 3. Jamaica CMP and Software Environment 59

3.1. The Jamaica Chip Multiprocessor

according to the 2-bit status. The branch is subsequently evaluated in the execute

stage of the pipeline, where the table is updated accordingly. Miss-predictions

are handled by flushing the pipeline and setting the PC to the correct branch

target.

Figure 3.7: Jamaica core: branch prediction.

In the Jamaica core, the delay between speculating on the branch target and

subsequently calculating the true target is only 2 cycles and so a context switch

is not triggered during this period. Branch prediction is however essential for

keeping the pipeline busy between context switches.

3.1.5 Coherent Shared Memory Hierarchy

The Jamaica CMP has private L1 instruction (I$) and data caches (D$), con-

nected via a shared bus to a single shared L2 cache. Access to external memory

is through the integrated L2 cache and memory controller. All caches in the ar-

chitecture maintain sequential consistency to allow for standard shared memory

programming.

Cache Coherence

All caches in the Jamaica CMP are kept coherent by snooping a shared L1–L2

bus and cooperatively implementing a version of the Modified, Owned, Exclusive,

Shared and Invalid (MOESI) cache coherence protocol [153]. A cache line in the

Modified or Exclusive state is writeable, since it holds the only valid copy of

Chapter 3. Jamaica CMP and Software Environment 60

3.1. The Jamaica Chip Multiprocessor

data present in the system, the Modified and Owned states indicate that the

cache holding the line is responsible for writing the only updated dirty data

back to memory. The protocol used in Jamaica is based on features taken from

the Firefly, Dragon [8] and CRAC [154] protocols. In particular L1 cache to

cache transactions are allowed without updating memory, and ownership can be

transferred without informing the L2 cache or memory.

L1–L2 Shared Bus

All private L1 caches and the shared L2 cache and memory controllers are con-

nected by a shared bus. The bus implements a protocol allowing split transactions

and transaction pipelining similar to the SGI Challenge’s Power2 bus [51]. Each

transaction is split into two distinct phases, request and response, allowing the

memory hierarchy to service requests during the delay due to a request missing

in the L2 cache and being serviced from main memory.

Figure 3.8: Jamaica: Split transaction bus protocol.

The Jamaica shared bus implements an 8-cycle protocol, illustrated in Figure

3.8. The protocol allows pipelining of multiple requests, each starting at 1 cycle

intervals, with the condition that two requests for the same address can not occur

in sequence. This condition is required as the data and tags are in an unstable

state during cycles 6 and 7, the same cycles in which a subsequent transaction

would be checking the state of the corresponding cache line.

Chapter 3. Jamaica CMP and Software Environment 61

3.1. The Jamaica Chip Multiprocessor

Priority on the shared bus is given to requests originating from the L2 cache, all

other requests for access to the bus are fairly arbitrated by selecting the least

recently used cache. Requests that can not be responded to within the 8-cycle

protocol, those that miss in all L1 caches and the L2 cache, are responded to by

the L2 cache after the data is fetched from memory. The request and response

pairs are matched using the ID placed on the bus in cycle 3, a sequential number

unique to each cache.

Level 1 Private Caches

Each L1 private cache is shared by the multiple contexts supported by each core.

When a memory access misses in an L1 cache a context switch is triggered, as

mentioned in Section 3.1.1, and an entry is placed in the cache request table,

shown in Figure 3.9. The request table is responsible for progressing outstanding

requests onto the shared bus and for handling the responses. A small number of

buffers are provided for lines requiring writeback in the Owned or Modified state.

The writeback buffer is also used as a small victim cache when unmodified data

is evicted.

Figure 3.9: Jamaica: Level 1 private cache.

Chapter 3. Jamaica CMP and Software Environment 62

3.1. The Jamaica Chip Multiprocessor

Level 1 Atomic Primitives

Atomic primitives, used to enforce critical code sections, are implemented using

load-linked (LDL L) and store-conditional (STL C) pairs, as illustrated by the code

sequence Figure 3.10. Inside each L1 cache a small lock table is maintained,

containing one address and lock flag per context. The flag is set as part of the

LDL L operation. A subsequent STL C is allowed to complete, committing the

data word and setting an acknowledgement value of 1 in an allocated register, if

the lock flag is still set. A write to the lock address by any other context in the

architecture in the intervening period resets the lock flag, and the STL C fails,

writing a value 0 into the allocated register.

lock_aquire:

LDL_L %i1, 0(%i0) ! load lock

BNE %i1, wait_release ! wait if non-zero

ADD %g0, 1, %i1

STL_C %i1, 0(%i0) ! try to acquire

BEQ %i1, lock_aquire ! try again if store failed

RET

wait_release:

WAIT !wait for lock release

BR lock_aquire !retry lock aquire

Figure 3.10: Jamaica: Lock acquisition code.

Level 1 Synchronisation

For synchronisation the LDL L can also be paired, in the Jamaica instruction set,

with the WAIT operation, also shown in Figure 3.10. After setting the lock flag

with a LDL L the WAIT instruction sets the context state to wait. The context

is unavailable for scheduling until the lock address is written to by another con-

text. In practice the WAIT operation is used sparingly, however, as multithreaded

applications containing more software threads than hardware supported contexts

require that multiple threads are serviced by each context, and disabling a context

with a WAIT could lead to starvation and dead-lock.

Chapter 3. Jamaica CMP and Software Environment 63

3.1. The Jamaica Chip Multiprocessor

Level 2 Shared Cache

In the Jamaica CMP the L2 shared cache is less complex than the L1 caches.

The L2 cache is unified, and is accessed via the shared L1–L2 bus. The L2 cache

only responds to bus transactions for which the data is not contained in the L1

caches. This occurs when a transaction is in progress and during cycle 5 of the

bus protocol, see Figure 3.8, the Found wire is not set high. The L2 cache either

responds with the data in following cycles by setting the Found flag and state

flags (Excl, Owned, Shared) high, or sets the memory accept (MAccept) flag to

high in which case the request is forwarded to memory by the L2 controller, see

Figure 3.11.

Figure 3.11: Jamaica: Shared level 2 cache and memory interface.

If a bus request for a line not in the L1 or L2 caches occurs when the mem-

ory queues are full, then neither the Found nor the MAccept wire are set high.

The L1 cache must subsequently re-attempt the same request after a subsequent

successful arbitration for the bus.

3.1.6 Hard and Soft Interrupts

Support is provided within Jamaica for handling a limited number of hardware

and software generated interrupts. Interrupts vector a contexts execution path

to handler code located at the bottom of memory, addressed by the type of

Chapter 3. Jamaica CMP and Software Environment 64

3.2. Jamaica Core Revisions

interruption. A software interrupt, SIRQ, can be delivered to any context in the

runnable, waiting, stalled or empty states. The SIRQ is delivered to a context by

the shared bus in a similar manner to the THJ, without a data payload. Contexts

in the idle state can only be restarted using a THJ, therefore a SIRQ to an idle

context is ignored.

Jamaica currently employs a single software interrupt, used to wakeup all contexts

and vector them to a boot code sequence in order to setup a minimal stack, and

a single hardware interrupt to trap on accesses to invalid memory addresses.

3.1.7 Devices

As Jamaica is currently only a simulated architecture, there is no defined device

interface, and hence no associated device hardware interrupts. The simulation

of Jamaica enables calls to the underlying operating system, for I/O operations

through a set of defined built in operations. These operations are called within

the architecture by subroutine jumps, JSR, into small negative addresses. The

simulator recognises this address range and the calls are bypassed through to the

underlying operating system upon which the simulation platform is running.

3.2 Jamaica Core Revisions

Having outlined the Jamaica CMP architecture in Section 3.1, this section de-

scribes several revisions that this thesis has made to the core to improve and

simplify the architecture.

3.2.1 Interleaved Multithreading

As mentioned in Section 3.1.1 the Jamaica core architecture supports the exe-

cution of multiple hardware-supported contexts within the same pipeline using

blocked switch-on-cache-miss multithreading. Interleaved execution of multiple

contexts within the Jamaica architecture has been added providing further sup-

port for the execution of fine-grained threads.

Chapter 3. Jamaica CMP and Software Environment 65

3.2. Jamaica Core Revisions

The IMT policy is similar to the scheme presented by Laudon et al. [92] and the

scheme implemented in the Niagara (Sparc T1) architecture [81, 152]. The active

context is selected for execution every cycle from the set of runnable contexts.

This allows multiple contexts to inhabit the pipeline concurrently and requires ad-

ditional exception handling logic to determine the context from which exceptions

are triggered.

Additionally the policy adds another context state, long latency stall, similar to

the LLI state in the T1 architecture [152]. This state inhibits the context from

being scheduled during operations that require multiple cycles. These opera-

tions include TRQ, JSR, BSR and RET. In the execution of the TRQ instruction, a

configurable number of poll-cycles is included as an instruction operand, dur-

ing which the token interface unit is able to poll the token ring for free context

tokens. Rather than stalling the whole pipeline during these poll-cycles, or ex-

ecuting multiple TRQ instructions, a context executing a TRQ instruction is set

to long latency stall and only re-scheduled after either a token is located or the

poll-cycles expire. During this polling period, the pipeline is available to other

runnable contexts. The following section describes the operation of the JSR, BSR

and RET operations.

3.2.2 Working Set and Register Windows

As outlined in Section 3.1.2, the windowing scheme employed by the Jamaica

architecture adds considerable complexity into the critical path of the decode

stage in the pipeline. To reduce this complexity and maintain compatibility

with the Jamaica instruction set and associated software, the register windowing

scheme has been greatly simplified by removing window management and offset

indexing from the decode stage.

During normal execution a context accesses registers %g0-%x7, from a set of 32

working registers indexed directly. When a call (JSR or BSR) or return (RET)

is decoded in the decode stage the context is placed into the long latency stall

state. During the subsequent stall period, window management occurs and other

runnable contexts can be scheduled into the pipeline. It is anticipated that win-

dow management can occur within two-cycles, using a 16-wide register transfer

port, labelled (1) in Figure 3.12 and (3) in Figure 3.13, and so in the revised

Chapter 3. Jamaica CMP and Software Environment 66

3.3. Jamaica Software Environment

Figure 3.12: Window Call: (1) write
IN to physical, (2) copy OUT into IN,
(3) increment window pointer.

Figure 3.13: Window Return: (1)
copy IN into OUT, (2) decrement win-
dow pointer, (3) read IN from physical.

Jamaica core a JSR, BSR or RET incurs a stall latency of 2 cycles before becoming

available for rescheduling.

Implementing register windows in this manner has been shown to reduce the

overall footprint as all but the working set of registers can be implemented in

compact 6-transistor per bit SRAM cells and decreases the critical access time to

the working set of registers [81].

3.3 Jamaica Software Environment

As the Jamaica instruction set is significantly different from both the Alpha

instruction set, from which many of the instruction formats evolved, and from

other common instruction sets, the Jamaica architecture is supported by a number

of tools providing a software compilation and execution environment.

3.3.1 Jamaica Assembler and C Compiler

A toolset comprising a C compiler, based on the Princeton LCC compiler [50]

and an assembler is used in order to generate binary boot images for the Jamaica

Chapter 3. Jamaica CMP and Software Environment 67

3.3. Jamaica Software Environment

architecture. The C compiler is able to compile a sizeable subset of the C language

directly to the Jamaica ISA, but support for multithreading is not available, and

so where required as in the boot procedure, small hand coded Jamaica assembly

routines supplement the C generated code.

3.3.2 Jamaica Boot Procedure

The Jamaica architecture, in simulation, implements a cold start protocol whereby

only a single context, the primordial context, begins the execution of code, all

other contexts start in the empty state4. Prior to execution, the simulation envi-

ronment loads an ELF binary, containing a boot procedure, into physical memory

placing code and data segments at addresses detailed by the ELF file. The start

address is extracted from the ELF file and is used as the initial PC value for the

primordial context.

The code contained in the boot procedure is responsible for initialising registers

and memory, including the initialisation of interrupt vectors and loading any other

required code into physical memory. After this initial phase all auxiliary contexts

can be woken using a software interrupt, SIRQ. The software interrupt vectors

execution into an initial wake-up routine that sets up a minimal stack for each

context capable of handling code shipped via the THJ/THB instructions. Upon

completion of this phase each context releases a token onto the work distribution

ring and switches to the idle state awaiting incoming work.

3.3.3 The Jamaica Virtual Machine

Software execution is supported on the Jamaica architecture primarily by the

Jamaica Virtual Machine (JaVM) [40], a port of the Jikes Research Virtual Ma-

chine (RVM) [1] to the Jamaica instruction set. The Jikes RVM compiles and

optimises Java bytecode to native machine code. The JaVM port allows execution

of unmodified Java applications on top of the Jamaica architecture.

4Section 3.1.1 discusses the states that contexts can reside in.

Chapter 3. Jamaica CMP and Software Environment 68

3.3. Jamaica Software Environment

JaVM Boot Procedure

Supplementary to the standard Jamaica boot procedure, boot strapping JaVM

ensures that the primordial context and all auxiliary contexts are associated with

a VM Processor object, and that key Java class files are loaded into memory. The

VM Processor object maintains a set of queues containing Java threads associated

with it. These threads are run within the context that the VM Processor is

attached to, illustrated in Figure 3.14.

Figure 3.14: JikesRVM software to Jamaica hardware mapping: Each hardware con-
text is associated with a VM Processor object.

Idling Contexts

After the initial boot strapping phase, each context is associated with a VM Processor

object. The VM Processor is responsible for accepting and scheduling any Java

thread created by the virtual machine or application code for execution on the

context. In the Jikes RVM a VM IdleThread resides inside the idleQueue of

a VM Processor. The idleThread, a small loop checking for new threads in

the runQueue, is run whenever the runQueue becomes empty. In the JaVM the

idleThread immediately schedules a VM BranchThread, a thread that sets up

a small stack to handle incoming threads distributed across the shared bus us-

ing the THJ operation. The VM BranchThread then exits from the bottom of its

Chapter 3. Jamaica CMP and Software Environment 69

3.4. Jamaica Simulation Environment

working stack, releasing a token onto the work distribution ring, and freezing the

hardware context, and therefore the associated VM Processor, in the idle state.

Work Distribution

When a thread resident on another VM Processor creates a new VM Thread ob-

ject, which encapsulates ordinary Java threads, it can attempt to locate a token

from the ring using the TRQ operation. If it succeeds the THJ operation is in-

voked, supplying a schedule method as the restart address with the new thread

as argument. The idle context immediately enters the runnable state and exe-

cutes the method on the VM BranchThread stack, inserting the new thread into

the runQueue of the resumed context’s VM Processor and yielding until the new

thread exits. When the branch thread finally resumes it exits, releasing another

token. If a VM Processor is not able to find an idle context to ship the new

thread to, the thread is placed into the local runQueue.

Using these processes, regular multithreaded Java application code, and the

threads within the virtual machine which is also written in Java, benefit from the

work distribution mechanism provided by the Jamaica architecture. Addition-

ally the VM BranchThread is capable of executing an arbitrary shipped method,

enabling it to be used to implement lightweight thread distribution.

3.4 Jamaica Simulation Environment

The previous sections of this chapter have discussed the Jamaica CMP architec-

ture and its associated software environment. As Jamaica is a simulated archi-

tecture, this section describes the simulation platform developed as part of this

thesis to study and extend the architecture, and to provide an environment for

explorative software development.

3.4.1 Simulation Accuracy

Architectural simulations are typically a trade-off between speed and accuracy,

with a complete spectrum ranging from circuit-level timing delay simulations [114]

Chapter 3. Jamaica CMP and Software Environment 70

3.4. Jamaica Simulation Environment

through to cycle accurate and functional simulation [18], emulation and dynamic-

binary translation [14]. The Jamaica simulation platform [67, 68], jamsim, is a

Java simulation platform that has been developed to execute binaries created for

the Jamaica instruction set. The jamsim platform supports several models of

simulation. It can be used for fast, functional simulations required for system

software development as well as cycle-level simulations, which are essential for

quantitative evaluation of the architecture.

At cycle-level accuracy the simulation platform models the components in suffi-

cient detail to account for effects such as stalls due to pipeline hazards, intercon-

nection bus and queue contention, cache access contention and memory channel

queueing.

3.4.2 Simulation Configuration

The jamsim simulation platform allows architectures to be configured based on

the Jamaica instruction set. Parameterisable components of the simulated ar-

chitecture, include the number of processing cores, the number of contexts per

core, the L1, L2 and Level 3 (L3) cache sizes and ways, the size of the branch

history table, the type of memory hierarchy and the interconnection network,

either bus-based, crossbar based or a hybrid of both.

The simulation platform is capable of simulating the processor, the interconnect

and the memory hierarchy both at the cycle-level and at a purely functional level.

Where it makes sense the simulation platform can be composed of components

at different levels of modelling. An example of this would be cache simulations,

where it may not be necessary to use a cycle-level model for the processors as

a functional model is able to generate the memory access patterns necessary to

exercise the caches.

From scratch this simulator was developed as part of this thesis. The simulation

platform is a structural simulator and currently consists of over 50 components,

and some 30,000 lines of Java code. Each hardware component has been mapped

onto a simulator component, a Java class, using object oriented practices. Addi-

tionally interfaces have been developed to enforce compatibility between multiple

models of key components within the simulation platform, such as the processors,

Chapter 3. Jamaica CMP and Software Environment 71

3.4. Jamaica Simulation Environment

private void initializeArchitecture() {

CycleLevelProcessor[] proc = new CycleLevelProcessor[noProcs];

L1CacheController[] iCache = new L1CacheController[noProcs];

L1CacheController[] dCache = new L1CacheController[noProcs];

for(int p = 0; p < noProcs; p++) {

proc[p] = new CycleLevelProcessor(this, noCtxs);

iCache[p] = new L1CacheController(this, L1size, L1sets);

dCache[p] = new L1CacheController(this, L1size, L1sets);

proc[p].connectCaches(iCache, dCache);

}

CacheController l2cache = new CacheController(this, L2size, L2sets);

Bus bus = new Bus(this, l2cache, iCache, dCache);

MemoryController memCont = new MemoryController(this, l2cache);

}

Figure 3.15: Configuration code for building a CMP architecture in jamsim.

caches, interconnects and memory controllers and to allow simple configuration.

These interfaces have simplified the process of extending and adapting the current

architecture models.

The simulation platform can be configured to run Jamaica instruction set binaries

and Java class files through the JaVM port of the JikesRVM, targetting from

single-threaded single-core systems, right through to hundreds of cores and multi-

threaded, multi-cluster architectures.

3.4.3 System Simulation

As Jamaica is a simulated architecture and no device interfaces exist, see Section

3.1.7, complete system simulation is enabled using a special range of built-in

instructions, refer to Appendix A.3. These instructions, which attempt a jump

subroutine call, JSR, to small negative memory addresses are trapped during

simulation, and the simulation platform calls out to the underlying operating

system through the Java virtual machine in which the simulation is running,

illustrated in Figure 3.17.

Chapter 3. Jamaica CMP and Software Environment 72

3.4. Jamaica Simulation Environment

Figure 3.16: Connected simulation components for jamsim, consistent with the con-
figuration code listed in Figure 3.15.

Figure 3.17: Jamaica Simulation: Java bytecode is executed through the JaVM by
jamsim within a Java virtual machine on top of the host system.

Chapter 3. Jamaica CMP and Software Environment 73

3.5. Summary

3.5 Summary

This chapter has outlined the Jamaica CMP architecture as introduced by [170]

and subsequent revisions made to it for this thesis. Each core contains a simple 5-

stage RISC pipeline and accesses memory through private L1 instruction and data

caches. Each core maintains sequential consistency and keeps coherent with other

cores, a shared L2 cache and memory via a split transaction snoopy bus and a

derivative of the MOESI cache coherence protocol. The architecture is supported

by a collection of tools allowing both C and Java to execute on the simulated

architecture. The jamsim simulation platform, developed as part of this thesis,

was presented as a platform capable of simulating the Jamaica CMP architecture

at both cycle-level and functional-level accuracies. In the following chapter an

extension to the architecture is introduced that allows multiple CMP clusters to

coexist within a chip, while still adhering to a shared memory paradigm.

Chapter 3. Jamaica CMP and Software Environment 74

CHAPTER 4

Multi-level Cache Coherence

As the number of transistors integrated within a single chip continues to grow the

ability to increase the number of processing cores within a chip becomes possible.

As more cores are added to a CMP architecture considerable pressure is placed

on the memory hierarchy. Sufficient bandwidth is required to keep all of the cores

working efficiently, and low latency is beneficial for inter-core communication.

This chapter briefly reviews alternative schemes for scaling up the memory hier-

archy of CMP architectures. In the context of these schemes the limitations of

the single shared bus Jamaica architecture are discussed and a novel multi-level

cache coherence protocol is introduced which extends the memory hierarchy of

the Jamaica architecture.

4.1 Multiprocessor Organisation

Much prior research within the multiprocessor field has looked at scaling archi-

tectures beyond tens of processors. This research established several categories of

75

4.1. Multiprocessor Organisation

multiprocessor organisation, with respect to both memory access [149, 117] and

inter-processor communication [105].

4.1.1 Memory Access

Two categories of memory access in multiprocessor systems exist: distributed

memory and Symmetric MultiProcessors (SMP). In SMP systems a single global

shared memory is accessible to all of the processors within the system. The la-

tency of memory access from each of the processors is uniform and as such SMP

architectures are also referred to as Uniform Memory Access (UMA) architec-

tures. Distributed memory systems, in contrast, usually have multiple memory

modules each paired with one or more processors, as illustrated in Figure 4.1.

Figure 4.1: Multiprocessor Memory Access: (a) Shared Memory, (b) Distributed Mem-
ory.

Two variants of distributed memory systems exist. The first, distributed shared

memory (DSM), also referred to as Non-Uniform Memory Access (NUMA) archi-

tectures, divides the global address space equally amongst the multiple memory

modules [2, 97]. Access by any processor in the system to an address must be

directed to the memory module containing that portion of the address space,

usually controlled by a directory based coherence scheme [26]. A DSM multipro-

cessor from a programming perspective appears identical to a SMP, however the

latency of memory accesses to local memory modules is far less than accesses to

remote memory modules [80]. The second variant of distributed memory archi-

tectures divides the total address space into multiple private address spaces local

Chapter 4. Multi-level Cache Coherence 76

4.1. Multiprocessor Organisation

to each memory module [9]. These private spaces, which are disjoint, are not ac-

cessible by remote processors, in effect each processor-memory pair is essentially

a separate computer.

In considering the scalability of a multiprocessor architecture, distributed sys-

tems appear to have two key advantages over SMPs. Firstly, if most memory

accesses can be contained within the address range of the local memory module,

the memory bandwidth of the architecture scales with the number of memory

modules. The second advantage of a distributed memory arrangement is a re-

duced memory access latency. This lower latency again is realised if most accesses

go direct to the local memory nodes. A disadvantage to a distributed approach

is that additional software complexity is required to balance the memory access

patterns made by each processor in order to utilise the bandwidth and latency

benefits. This additional complexity increases the overhead associated with dis-

tributing work to the multiple processors in the system and limits the granularity

of parallelism that can be exploited.

4.1.2 Inter-Processor Communication

In order for the processors within a multiprocessor system to speed-up the execu-

tion of an application, inter-processor communication is necessary to coordinate

distribution of the overall workload and to synchronise on shared data. Two

methods are employed for communicating data amongst the processors in a mul-

tiprocessor system. In shared memory multiprocessors, both SMP and DSM,

communication occurs through the shared address space. Data is implicitly ex-

changed through load and store operations within the shared memory space, with

every processor becoming aware of any changes through cache coherence [149].

In distributed memory systems where memory is disjoint and private to each pro-

cessor, communication of data is achieved by explicitly passing messages amongst

the processors [105].

A considerable disadvantage of the message-passing paradigm is that sharing of

data must be explicitly annotated within software. This leads to a greater degree

of software complexity [163] and again these additional overheads often reduce

the amount of fine-grained thread-level parallelism that can be exploited [150].

Chapter 4. Multi-level Cache Coherence 77

4.2. Scaling the Jamaica Architecture

4.2 Scaling the Jamaica Architecture

The Jamaica architecture [170], discussed in Chapter 3, is a CMP architecture

consisting of multiple simple processing cores connected via private L1 caches to

a shared bus which in turn is connected to a globally shared L2 cache and an

on-chip memory controller. A limiting factor to this approach is the shared bus

that connects all of the processing cores.

4.2.1 Limitations to Bus Scaling

As the transistor budgets of future process technologies increase the viability

of incorporating more processing cores into the Jamaica architecture becomes

realistic. However, the single-shared bus within the Jamaica architecture becomes

a bottleneck to memory accesses as the number of cores is increased. Figure 4.2

shows the theoretical peak utilisation of the shared data bus in the Jamaica

architecture, assuming high L1 instruction and data cache hit rates, 99% and

98% respectively, a perfect L2 cache hit rate and typical1 RISC code [63], 22%

loads and 12% stores. As illustrated, depending on the ratio of the bus frequency

to the core frequency the bus begins to become a bottleneck, even for a relatively

fast bus clocked at a quarter of the core frequency, the bus becomes saturated

after 16 cores. Bus utilisation levels of around 80% have been shown to create

detrimental increases in access delays largely due to queueing effects [168].

This problem is further exacerbated by wire delay limits, discussed previously in

Section 1.2.1. If the number of cores connected to a single bus is increased then

the bus will necessarily have to span further across the chip. As illustrated in

Figure 1.1, in future process technologies as little as 10% of the die area will be

accessible within a single clock. To put this into context, consider the parameters

in Table 4.1.

If the Jamaica core architecture is considered to be of a similar complexity to

the Alpha 21064 [106], then incorporating 64 cores onto a 65nm technology chip

requires consideration of both wire-delay and bus scaling. Referring to Table 4.1,

each core spans approximately 5.5% of the die length in the technology, and a

1SpecInt92 average instruction mix as reported in [63].

Chapter 4. Multi-level Cache Coherence 78

4.2. Scaling the Jamaica Architecture

Figure 4.2: Theoretical bus access limitations, assuming a 98% L1 data cache hit rate,
a 99% L1 instruction cache rate, a typical RISC code mix [63] and a perfect L2 cache
hit rate.

65nm technology 1 billion transistors
14MB cache (6 transistors/bit) 704,643,072
64 (Alpha 21064) cores 179,200,000
Die span per core approx. 5.5%
Die span 8-core bus approx. 22%
Signal propagation 8-core bus 4 clocks
8 core utilisation at 4:1 (see Figure 4.2) 52%
Architecture 8 x 8 core clusters
128 × L1 caches (total 2MB) each 16KB (I$ and D$ per core)
8 × L2 cluster caches (total 4MB) each 512KB
1 × L3 cache (total 8MB) each 8MB

Table 4.1: A feasible configuration for scaling a CMP using 1 billion transistors.

Chapter 4. Multi-level Cache Coherence 79

4.2. Scaling the Jamaica Architecture

bus connecting all 64 cores, depending on the topology, would be required to

span the length of some 30 core spans in order to connect them all, requiring

a stretch some 165% of the die length. This would clearly lead to an infeasible

design because the signal propagation on the bus would take more than 16 clocks

(see Figure 1.1), and such a bus would be saturated by only 4 working cores (see

Figure 4.2). A scalable memory hierarchy is therefore required to utilise the 1

billion available transistors fully, and as shown in Table 4.1, 8 clusters of 8 cores

connected by such a hierarchy could provide a feasible design solution.

4.2.2 Multi-Level Cache Hierarchy

To increase the ability of the Jamaica architecture to scale with the addition of

more processing cores the single shared bus architecture is replaced by a scalable

multi-level cache hierarchy. The multi-level hierarchy, illustrated in Figure 4.3,

maintains shared memory coherence, a pre-requisite for efficiently running stan-

dard multi-threaded applications written in high-level languages such as Java.

Figure 4.3: Jamaica multi-level cache hierarchy.

The multi-level hierarchy, by dividing the total number of cores into clusters

each connected through a hierarchy of interconnect networks and caches, can

allow many more cores to be integrated onto a single chip, whilst maintaining

shared memory and limiting the span of each interconnect to reduce the effects

of cross-chip wire delay and bus contention.

Chapter 4. Multi-level Cache Coherence 80

4.2. Scaling the Jamaica Architecture

Each intra-cluster network is independently arbitrated and accessed concurrently

allowing the cores within each cluster to access the larger cluster-shared cache

with less contention. The additional scalability, however, comes at the expense

of a more complex cache coherence protocol that needs to maintain coherence

across multiple clusters, and the need to maintain cache inclusion.

A Chip Multi-Cluster (CMC) architecture, incorporating multiple on-chip clus-

ters each containing multiple cores and multiple levels of shared cache is feasible

given the transistor budgets of modern process technologies.

4.2.3 Cache Inclusion

The Jamaica memory hierarchy, as outlined in Section 3.1.5, allows L1 private

caches to take ownership of cache lines avoiding inclusive L2 caches. Once owner-

ship for a cache line is passed onto an L1 cache, the line containing the non-owned

copy in the L2 cache is redundant and can be freed. This removes the necessity

for the L2 cache to include the set of all lines contained within the L1 caches

which potentially allows the L1 and L2 caches, when combined, to contain more

data.

In a multi-level hierarchy inclusion is important for shielding intra-cluster net-

works from the traffic of inter-cluster networks at each level [11]. Without inclu-

sion a multi-level cache hierarchy has no way of shielding inter-cluster coherence

messages from the intra-cluster networks, and an unnecessarily large amount of

traffic is generated.

Non-Inclusive Write Request

As an example consider a write request, illustrated by Figure 4.4. When a write

request to address A misses in the L1 cache (L1$[4]) attached to core 4 (P[4]), a

request is forwarded onto the L2 cache (L2$[2]). Without inclusion, the request

made to L2$[2] must be visible to other L1 caches serviced by L2$[2], as they may

hold a copy of the data at address A. In a hierarchy of buses the write request

placed onto the intra-network bus L1N[2] would be snooped by L1$[5] allowing

response of the data or an acknowledgement that the data is not present. In a

network hierarchy an explicit invalidation message would need to be sent directly

Chapter 4. Multi-level Cache Coherence 81

4.2. Scaling the Jamaica Architecture

to L1$[5] and acknowledged with a message before the write request is propagated

to the next level in the hierarchy.

Figure 4.4: In the absence of inclusion coherence messages must be forwarded to each
and every cache creating unnecessary network traffic, and acknowledgement of each
invalidation must be received before propagating requests to successive levels.

In the example the data at address A is not present in any cache, so the request

made to L2$[2] is forwarded onto the inter-cluster network (L2N[0]). Again before

the request can be forwarded to the memory controller (MC[0]), invalidations

must be made visible to caches L2$[0] and L2$[1], in turn all caches below them,

L1$[0]-L1$[3] must receive and acknowledge an invalidation message. Finally

when the invalidations have successfully been sent and acknowledged by all caches

the request can be forwarded to the memory controller and a response including

the data at address A can be returned to L1$[4] which allows P[4] to continue

execution.

Inclusive Write Request

By maintaining inclusion, the same request from core 4 would only generate

traffic on the networks containing copies of the data at address A. If the data

is not present in any cache in the system, the network traffic is reduced to the

propagation of the request and response, as shown in Figure 4.5. Where inclusion

information exists, messages do not need to be sent to lower level caches. In the

example, cache L1$[5] does not need to be sent an invalidation message as L2$[2]

Chapter 4. Multi-level Cache Coherence 82

4.2. Scaling the Jamaica Architecture

knows that no copies exist in any lower level caches. This is not the case on

the inter-cluster network L2N[0] as the memory controllers contain no inclusion

information, and so messages must be sent to both L2$[0] and L2$[1] before

forwarding the request to MC[0]. The invalidations sent to L2$[0] and L2$[1] are

simply acknowledged, but no change of state is necessary as they do not contain

the data at address A, and no messages are forwarded to caches L1$[0]-L1$[3].

Figure 4.5: Maintaining inclusion reduces any unnecessary traffic being generated in
clusters not containing copies of the requested data.

Maintaining Cache Inclusion

A disadvantage of maintaining cache inclusion is that the set of lines in each

shared cache must be a superset of all of the cache lines contained within the

caches sharing it. To avoid poor hit rates in shared caches, they need to be

significantly larger than the sum of all the caches connected below them [168].

The space overhead of inclusion can be reduced by allowing certain lines, for

example those modified in lower level caches, to be cleared from the shared cache,

if a table of address tags for these lines is maintained and accessed in parallel to

the main cache tags [13].

Chapter 4. Multi-level Cache Coherence 83

4.3. PIMMS - a Multi-Level Coherence Protocol

4.2.4 Locality and Affinity

A further aid to scalability in a multi-level cache hierarchy is the implicit ex-

ploitation of locality. The multi-level hierarchy exploits both spatial locality and

parallel locality. Spatial locality is exploited in the same manner as all cache ar-

chitectures, each cache line fetched contains multiple words. Memory references

made in the near future have a high probability of being near recent past refer-

ences, and therefore multiple references may be made to the same line, removing

the necessity for multiple memory requests.

Parallel locality is an extension of the effect of spatial locality in the context of

a parallel program. Future memory accesses by a thread can be predicted by

recent memory access patterns of related threads, in the same parallel program,

in addition to its own recent accesses.

Significant levels of spatial and parallel locality are usually present in parallel

programs [49]. Parallel locality can be increased by explicitly enforcing an affinity

onto threads, distributing them in such a manner as to keep related threads

within a subset of the cache hierarchy. This same process can be used to insulate

applications, as much as possible, from interference by unrelated threads.

4.3 PIMMS - a Multi-Level Coherence Protocol

Having outlined in previous sections the motivation for extending the Jamaica

architecture to allow a scalable multi-level shared cache hierarchy, this section

introduces the PIMMS2 protocol, which maintains system wide cache coherence.

The protocol maintains compatibility with the original Jamaica instruction set

and as such code written for that architecture can run unmodified on the multi-

level hierarchy.

Unless otherwise stated, the examples presented in this chapter assume a hier-

archy of buses connecting the shared level caches. The protocol presented is,

with minor modifications, capable of maintain coherency additionally across a

hierarchy of crossbars.

2PIMMS is an acronym for the 4-bits used to encode all states; Pending, Invalid, Modified,
Modified Stale.

Chapter 4. Multi-level Cache Coherence 84

4.3. PIMMS - a Multi-Level Coherence Protocol

State Code Description
Invalid I no line present
Valid V read access only
Valid Shared V* as Valid, shared by lower level cache(s)
Modified M read and write access
Modified Shared M* as Modified, shared by lower level cache(s)
Modified Stale MS line stale, modified by lower cache
Pending P operation pending, refuse access

Table 4.2: PIMMS protocol: cache states.

4.3.1 Cache States

The protocol used is extended from the family of MOESI protocols [153] with

additional states to allow multi-level cache hierarchies. Ownership is discarded

as it is implied by maintaining inclusion. The protocol is similar to those used

in the KSR-1 [49], Paradigm [29] and Gigamax [168] multiprocessors. Any cache

line can be in one of seven states listed in Table 4.2, except for lines in private

L1 caches which can only be in the states I, V, or M. Only lines within the

L1 data cache can reside in the Modified state. A cache line in the Modified

Stale state additionally keeps track of the index number of the cache in the lower

level that currently holds the modified copy. Although similar to the protocol

states presented by Anderson and Baer [6] for multi-level hierarchies, the seven

states and index tracking maintained by the PIMMS protocol reduce unnecessary

coherence messages within the system and allow the protocol to generalise to non-

broadcast networks.

It should be noted that the states V* and M*, where the star denotes the line as

being shared by lower level caches, are weak annotations in a bus based hierarchy.

When a sharer exists the Sharer state is always set, however the state may remain

set even after a sharing cache has overwritten the shared line, and therefore no

longer shares that line. Infrequently this leads to invalidation messages being sent

to a cache no longer containing a copy of the line; these messages are ignored.

Where crossbars are used to connect cache levels in a hierarchy the Sharer states,

V* and M*, must maintain a list of sharers. This list of sharers is used to

determine the channels within the crossbar that must be reserved in order to

send an invalidate signal.

Chapter 4. Multi-level Cache Coherence 85

4.3. PIMMS - a Multi-Level Coherence Protocol

Class Code Name Description
SH Share Request for read access to a line

memory MD Modified Request for write access to a line
bound MC Cond. Modified As Modified but from a STL C

WB Writeback Writeback/Eviction of a modified line
MSH Mem Shared Response with read access and data
MMD Mem Modified Response with write access and data

core INV Invalidate Force invalidation of line
bound DWN Downgrade Force downgrade of line (e.g. M → V)

MWB Mem Writeback Force writeback of line

Table 4.3: PIMMS protocol: network transactions, mnemonic codes and descriptions.

4.3.2 Network Transactions

Two classes of transactions are generated in the protocol. Those originating from

a cache on the core side of an interconnect that propagate in the direction of

memory are referred to as memory-bound transactions. Transactions originating

from the memory side of the interconnect, propagating towards the core side, are

referred to as core-bound transactions. In total eight types of network transac-

tions exist, listed in Table 4.3.

4.3.3 State Transitions

Figure 4.6 shows all of the possible transitions between the seven cache states,

when network transactions occur on the upper or lower interconnects surrounding

a cache. The possible state transitions in the L1 caches are far fewer as they only

include the states V, I and M.

4.3.4 Four Phase Transactions

In a single shared bus architecture a request placed on the bus either receives a

response from another cache holding a copy, or after a delay from memory. In

both cases all caches that either hold a copy or require a copy can alter state

after snooping a transaction for the same data on the bus. In a multi-level cache

hierarchy, however, data can be present in caches that are not directly connected

Chapter 4. Multi-level Cache Coherence 86

4.3. PIMMS - a Multi-Level Coherence Protocol

Figure 4.6: Multi-level cache state transitions for shared level caches. Note that for
clarity MC transactions are left off the diagram as apart from their handling internally
in the cache controller queues, see Section 5.6, the state transitions are identical to
MD.

Chapter 4. Multi-level Cache Coherence 87

4.3. PIMMS - a Multi-Level Coherence Protocol

to the same interconnect as the requesting cache. As a result two additional

scenarios are encountered within the hierarchy:

1. Multiple transactions for the same data can be generated on separate in-

terconnects concurrently.

2. Copies of data may be modified in caches not shared by the requesting

cache.

The implication of the first scenario is that two requests that have started can

meet at a shared interconnect both competing for the same data. This is handled

in much the same way as with a single bus architecture; the requests are handled

in sequence, after the first transaction is completed the second may progress. The

second scenario requires an extension from the two phase (request, response) bus

transactions employed in single shared bus architectures, to four phase transac-

tions (request, action, reaction, response).

Figure 4.7: Four phase read transaction.

Chapter 4. Multi-level Cache Coherence 88

4.3. PIMMS - a Multi-Level Coherence Protocol

Four Phase Read Transaction

As an example of a four phase transaction consider the scenario illustrated in

Figure 4.7. Core P[4] issues a read for data at address A, the most upto date

copy of which resides in L1$[0]. On issuing a read to the interconnect L1N[2] a

miss is triggered in the cache L2$[2]. L2$[2] forwards the read request and issues

it on the interconnect L2N[0]. The cache L3$[0] currently holds the line in state

MS. The modified stale state indicates that the line is present in the cluster under

cache L2$[0], and none of the caches connected to the interconnect L2N[0] can

supply an up to date copy of the data because the data has also been modified

by a cache below L2$[0]. In order to be able to respond to the read request

made by P[4], the modified data must first be fetched from L1$[0]. An action, in

this case downgrade (DWN), is issued to L2$[0] and eventually to L1$[0]. L1$[0]

downgrades the line and issues a reaction, in this case a writeback (WB) along

with the data. When the WB and data are issued on the L2N[0] interconnect, a

response can be forwarded to the original requestor, L1$[4]. A timing diagram of

the four phase read transaction, including cache line state transitions, is shown

in Figure 4.8.

Four Phase Concurrent Write

The potential for two concurrent requests for the same data to arrive at a shared

bus concurrently is illustrated in Figure 4.9. Both core P[4] and P[0] are attempt-

ing to gain write privileges to data at address A. Both private L1 data caches,

L1$[0] and L1$[4], only contain the data in the valid state and therefore prop-

agate MD requests up the hierarchy to the L2N[0] network in order to acquire

the line in a modified state from the L3$[0]. Assuming both requests arrive at

the interconnect L2N[0] concurrently, one of the requests is given priority, in this

case the request originating from L1$[0].

As outlined in the timing diagram, Figure 4.10, as the MD request from L1$[0]

is responded to with a MMD, an invalidate is triggered in the L2$[2] cluster to

invalidate its copy of the data. After the initial MD request has cleared from the

interconnect the second MD request can be issued. During this phase the second

MD request triggers a MWB to fetch the data from the cluster beneath cache

L2$[0]. It is possible that the original MMD is still propagating towards L1$[0],

Chapter 4. Multi-level Cache Coherence 89

4.3. PIMMS - a Multi-Level Coherence Protocol

Figure 4.8: Four phase read transaction, timeline.

Figure 4.9: Four phase concurrent write transactions.

Chapter 4. Multi-level Cache Coherence 90

4.3. PIMMS - a Multi-Level Coherence Protocol

and the network must ensure ordering so that the original request is responded

to and has time to commit the write before the data is written back in response

to the MWB. Following the writeback the data is sent with modified permissions

to the cache L1$[4]. As can be seen concurrently writing to the same location

from cores in separate clusters generates considerable network activity.

Figure 4.10: Four phase concurrent write transaction, timeline.

Pending State

A potential difficulty with the four phase transaction is that while an action is in

progress, within a cluster, another transaction outside of the cluster may request

the data involved. In the read example, from the point at which the downgrade

(DWN) is issued until the point that the line is written back (WB), the state of

line A is in flux. If the state of line A in L3$[0] is left as modified stale (MS) during

this period a read request from a cache above the L3$[0] would cause the L3$[0]

to issue a downgrade (DWN) onto the L2N[0] interconnect. This downgrade

would be issued into the L2N[0] network. This would not only cause unnecessary

network traffic, but has the potential to generate a downgrade to a cache that

has already downgraded the line. To prevent occurrences of such transactions, a

Chapter 4. Multi-level Cache Coherence 91

4.4. Summary

line is set in the Pending state (P) while an action is in progress. Any request to

the line is negatively acknowledged and must be retried after regaining access to

the network.

4.4 Summary

This chapter has outlined the scaling limitations of the single shared bus design

currently employed by Jamaica and several other CMP architectures [60, 108,

80, 83]. In order to fully increasing transistor budgets fully the integration of

many more cores on-chip will be desirable. At the same time maintaining a

shared memory hierarchy simplifies the implementation of parallel applications

and allows exploitation of finer grained parallelism.

Furthermore, this chapter introduced the concept of a CMC architecture and a

protocol based on four phase transactions, that is able to keep a CMCs multi-

level cache hierarchy coherent. A novel aspect of the protocol is the Pending state

which prevents unnecessary inter-cluster traffic entering a cluster while the data

requested is being altered by another four phase transaction.

In the next chapter the hardware support required to implement the multi-level

PIMMS coherence protocol is introduced.

Chapter 4. Multi-level Cache Coherence 92

CHAPTER 5

Multi-level Cache Hardware

The introduction of a multi-level cache hierarchy into the Jamaica CMP archi-

tecture requires significant changes to the cache hardware. Moving from a single

shared bus to a hierarchy of buses or other interconnects introduces networking

issues which must be handled by the caches. Multithreaded cores and the addi-

tion of the four-phase coherence protocol allow many outstanding transactions to

be in transit in the multi-level hierarchy at once. The cache hardware must be

able to support these transactions, prevent the hierarchy from becoming easily

saturated and avoid deadlock. This chapter describes the cache hardware, used to

implement the coherence protocol described in the previous chapter. The cache

hardware has been implemented, through detailed simulation, for a hierarchy of

buses, crossbar switches and a hybrid of both.

5.1 Cache Organisation

The multi-level cache hierarchy consists of two types of cache, the private L1 data

caches and a number of shared caches depending on the depth of the hierarchy.

The organisation of both types of cache is outlined in the following sections.

93

5.1. Cache Organisation

5.1.1 Level 1 Private Caches

As mentioned in Section 3.1.5 the L1 caches are shared by multiple contexts

within each of the processing cores. Each context is stalled on both an instruction

cache and data cache miss, restricting the number of outstanding operations in the

cache hierarchy to two per context. This restriction also ensures that the memory

accesses made by each context remain sequentially consistent [87], despite any

reordering that may occur higher up in the cache hierarchy.

The L1 caches in the multi-level hierarchy, shown in Figure 5.1, differ little from

those in the single shared bus architecture. When a memory operation misses

in the L1 cache an entry is made into the cache request table which holds one

request per context. On gaining access to the interconnect, the interconnect side

controller issues a request from the request table or writes back a line from the

writeback buffer. Writeback buffer entries are given priority over entries in the

request table.

Figure 5.1: Level 1 cache.

Responses, invalidations or writeback requests originating from higher level caches

in the hierarchy are also handled by the interconnect controller. As both the core

and the interconnect controllers share a single access port to the tag and data

array in the L1 caches, contention between the two can occur and is resolved

by giving priority to the interconnect controller. Should queue congestion occur,

which is possible in the data cache, the interconnect controller is able to block or

Chapter 5. Multi-level Cache Hardware 94

5.1. Cache Organisation

negatively acknowledge incoming writeback requests until a slot in the writeback

buffer is freed.

5.1.2 Shared Level Caches

The second type of caches in the multi-level hierarchy are shared level caches.

Shared level caches are generally shared by multiple lower-level caches. Although

this is not a strict requirement, they are generally larger than the sum of all the

caches directly sharing them, and are necessarily slower to access. Importantly

the shared level caches act as a bridge between two levels in the hierarchy and

are connected to two interconnects, see Figure 5.2.

Figure 5.2: Shared level cache.

As mentioned previously, in Section 4.3.2, two classes of network transactions ex-

ist, memory-bound transactions and core-bound transactions. The shared level

cache, in bridging two interconnects, is required to accept and process memory-

bound and core-bound transactions, update the cache tags and data, and forward

the requests or responses to either higher or lower level caches. A separate queue-

ing channel is implemented for each class of transaction, and a separate controller

is required for the lower and upper interconnects. Again access to the cache tags

is shared by both the upper and lower interconnect controller, with the upper

controller having priority when contention arises.

Chapter 5. Multi-level Cache Hardware 95

5.2. Coherence Messages and Transactions

5.2 Coherence Messages and Transactions

In the following discussions of flow control and deadlock avoidance within a multi-

level cache hierarchy the terms coherence message and transaction are used.

A coherence message is used to mean the actual physical message sent through

the hierarchy. In the multi-level hierarchy this coherence message consists of the

request or response type, the address and optionally the data. The memory-

and core-bound request queues, illustrated in Figure 5.2, are required to store

coherence messages.

A transaction simply refers to the process of delivering a coherence message across

the interconnect in a multi-level hierarchy. An incoming transaction, for example,

refers to a coherence message being sent across the interconnect and arriving at

a cache’s interconnect controller.

5.3 Flow Control

In the multi-level cache hierarchy requests and responses may potentially propa-

gate through multiple interconnects and caches; requiring buffering into queues at

each level. These queues can overflow due to interconnect saturation, and to pre-

vent the loss of transactions a mechanism is required which guarantees message

delivery. Additionally, in the process of maintaining coherency, a single incoming

transaction can trigger multiple outgoing transactions; for example, upgrading a

line in one cache and concurrently invalidating all sharers of the same line. In

such cases the incoming transaction cannot be removed from a buffer until all of

the outgoing transactions have been delivered.

To handle flow control in the multi-level cache hierarchy, each shared level cache is

encapsulated by a core-bound and memory-bound FIFO based queue system, see

Figure 5.2. Incoming coherence messages are buffered into the input buffer and

then processed by the interconnect controllers which also maintain the coherence

protocol logic. As previously mentioned, access conflicts by the interconnect

controllers to the cache tags are resolved by giving priority to the higher level

interconnect controller, the one closer to memory and generally running at a lower

frequency.

Chapter 5. Multi-level Cache Hardware 96

5.3. Flow Control

The interconnect controllers are also responsible for forwarding coherence mes-

sages between levels when required by copying the messages from the input buffers

into the request queues. When an incoming transaction simply requires that the

shared level cache changes state, for example a writeback meeting a modified stale

line, the coherence message is consumed by the interconnect controller and is not

forwarded. When a transaction triggers responses or actions the interconnect

controller is responsible for generating and issuing them.

5.3.1 Blocking and Negative Acknowledgments

When an incoming transaction requires that the shared level cache generates a

coherence message, for either a response or action, there is a possibility that

the message may be blocked by the destination cache. This can occur when the

destination cache is no longer accepting incoming transactions as the relevant

request queue has reached or is approaching capacity.

When such an event occurs the original incoming transaction is either negatively

acknowledged (Nack’d), where the interconnect is a bus, or the transaction is left

within the buffer slot it occupies in a crossbar fabric. In both cases the transaction

is subsequently rescheduled. Rescheduling occurs until the transaction is able

to complete because the relevant destination cache’s request queue is no longer

blocked. Simulations done for this thesis have shown that queue blocking does

occur frequently in larger many core architectures.

In order to avoid deadlock, particularly when the memory-side cache controller

has a blocked transaction, and to avoid rescheduling repeatedly blocked core-side

caches an exponentially increasing, 7-bit saturating block counter is used. Each

cache controller only arbitrates for the interconnect when the block counter is 0.

If a transaction is nack’d then the block counter is incremented in powers of 2,

until it saturates at 128. The block counter is decremented by 1 for each missed

arbitration slot, until reaching zero and retrying the transaction.

Chapter 5. Multi-level Cache Hardware 97

5.4. Deadlock Avoidance

5.4 Deadlock Avoidance

In multi-level cache hierarchies, in particular in the interconnect and queues that

connect them, deadlock can occur. This is because all four conditions required

for deadlock to occur [33] are present. In particular deadlock can arise in multi-

level hierarchies between the memory-bound and core-bound queues leading to a

circular chain of dependencies [109], an example scenario is shown in Figure 5.3.

Both the write request (MD A) in the memory bound queue and the writeback

request (MWB B) in the core bound queue are blocked as they both generate

responses, which cannot be buffered in the cache’s core and memory bound queues

and deadlock arises.

Figure 5.3: A circular dependence between the queues leading to deadlock.

To overcome deadlocks arising from circular dependencies the queueing system

within the shared level caches is extended in a similar manner to the NUMAchine

architecture [101, 55]. The request queue is divided into two separate physical

queues handling different classes of coherence messages. For queueing purposes

two classes of coherence messages exist.

5.4.1 Sinkable Messages

Sinkable messages are coherence messages that do not elicit a response back

into the interconnect. In the PIMMS protocol these messages include writebacks

Chapter 5. Multi-level Cache Hardware 98

5.4. Deadlock Avoidance

(WB) and invalidations (INV). Neither of these messages generate additional

coherence messages back into the network which generated them. The messages

are either consumed or forwarded by a shared level cache.

5.4.2 Non-Sinkable Messages

Non-sinkable messages are coherence messages that do elicit responses back into

the interconnect. In the PIMMS protocol these messages include read requests

(SH), write requests (MD and MC), downgrade requests (DWN), writeback re-

quests (MWB) and additionally read and write responses (MSH and MMD). The

responses are included in the list of non-sinkable coherence messages as, due to

the lazy allocation of cache lines, a response can evict a modified line generating

a writeback.

Figure 5.4: Shared cache request queues divided into sinkable and non-sinkable en-
tities. Non-sinkable queue divided further into passive and active queues allowing re-
ordering.

5.4.3 Sinkable and Non-Sinkable Queues and Priorities

The queueing structure resulting from splitting the input queues into sinkable

and non-sinkable queues is shown in Figure 5.4. The dependencies leading to

deadlock in the previous scenario, illustrated in Figure 5.3, are now avoided.

The writeback (WB B), generated by the core bound memory writeback request

(MWB B), is now guaranteed to find space in the memory-bound sinkable queue.

Chapter 5. Multi-level Cache Hardware 99

5.4. Deadlock Avoidance

This in turn frees a slot in the core-bound non-sinkable queue which then allows

the write request (MD A) to be issued.

In general deadlock is avoided by ensuring three rules are adhered to by all of the

coherence messages in the multi-level hierarchy:

1. sinkable messages remain ordered,

2. sinkable messages are guaranteed to propagate, and

3. sinkable messages are always given priority over non-sinkable messages.

5.4.4 Passive and Active Non-Sinkable Messages

Unlike the scheme developed by Grindley et al. [55] for the NUMAchine architec-

ture, the queue containing non-sinkable coherence messages is additionally split

into two further queues, a passive and an active queue, again refer to Figure 5.4.

The passive queue is used to hold coherence messages prior to gaining access to

the interconnect network for issuing. The active queue is used to maintain a

copy of non-sinkable coherence messages currently in the process of being issued

across the interconnect. When a coherence message has been issued the entry is

removed from the active queue. If during the issuing the interconnect controller

determines that a non-sinkable coherence message can not complete, then the

entry is removed from the active queue and inserted back into the passive queue.

Upon reaching the head of the passive FIFO the coherence message is retried.

Allowing non-sinkable messages to become re-ordered in the passive and active

queues allows the processing of coherence messages to be pipelined and prevents a

single message from unnecessarily blocking the progress of other messages in the

queue. Each message, in the simulated implementation, can only be re-ordered

twice, at which point the message gains blocking priority over the non-sinkable

passive queue. Limiting re-ordering ensures that eventually each message will

make forward progress.

Chapter 5. Multi-level Cache Hardware 100

5.4. Deadlock Avoidance

Coherence Message Reordering

Figure 5.5 illustrates the function of passive and active queues when connected

to a bus-based interconnect. Five snapshots of the memory-bound input queues

for a shared level cache are shown. For clarity it is assumed that no other cache

is competing for the bus during the period shown. The non-sinkable and sinkable

queues contain three read requests and a single writeback request respectively.

Following the deadlock avoidance rules, mentioned in Section 5.4.3, the writeback

takes precedence over the three read requests and is issued first. At cycle 3, the

writeback transaction is placed on the bus, freeing the non-sinkable queues to

arbitrate for access to the bus. At cycle 5 the first read request is issued on the

bus for address B, and a copy of the coherence message is placed in the active

queue. At cycle 7 the second read request, this time for address C, is issued. A

copy is placed in the active queue, and the data for the writeback is transferred

on the data bus. During the same cycle, however, the upper level cache triggers a

Nack for address B, signalling a blocked queue. The interconnect controller raises

the retry signal, and the coherence message (SH B) is re-entered into the passive

queue. At cycle 9 the third read request is issued. No Nack is triggered during

this cycle so the copy of the coherence message for the second read request is

cleared from the queue. Finally during cycle 11 the initial read request (SH B)

is re-issued.

As the queue was blocked during the issue of the first read request the final

ordering of the requests sent across the network is WB A, SH C, SH D and SH B.

Were the three read requests being sent to a multiple banked cache, where each

address was contained within separate banks, the blocking of address B would

not significantly delay the progress made by the other requests. Re-ordering is

also beneficial when a shared cache is issuing core-bound transactions to multiple

cores or clusters. A coherence message being sent to a cluster or core that is

blocking incoming transactions will not unnecessarily delay subsequent messages

to other cores or clusters.

Chapter 5. Multi-level Cache Hardware 101

5.4. Deadlock Avoidance

Figure 5.5: Passive/Active queue reordering.

Chapter 5. Multi-level Cache Hardware 102

5.5. Address Blocking

5.5 Address Blocking

To reduce the number of coherence messages propagating through the multi-level

hierarchy, and to simplify the protocol logic, each interconnect in the hierarchy

implements address blocking. A small table of addresses is stored at the lower

interconnect controller within each shared level cache, as shown in Figure 5.6.

When a coherence message is propagated up to a higher level in the cache hierar-

chy the address is stored in the address blocking table. Should another coherence

message for the same address arrive at the lower level interconnect controller

it is blocked, and rescheduled as previously described in Section 5.3.1. The ad-

dress blocking table also prevents multiple transactions for the same address from

entering the same shared level cache concurrently. When the address blocking

table is full, subsequent transactions that require propagation to higher levels are

blocked.

Figure 5.6: Multi-level address blocking table.

The address blocking table also stores the identifier of the cache that issued the

transaction onto the interconnect. This id is subsequently used when a response

is generated in order to route the coherence messages back through the hierarchy.

5.5.1 Local Transactions

The address blocking table is implemented as a separate structure to the cache

tags and as such the size is necessarily limited to allow fast access. The table can

therefore become full if many coherence messages all for different addresses are

Chapter 5. Multi-level Cache Hardware 103

5.5. Address Blocking

sent to the upper levels of the hierarchy. During periods of significant activity

locally contained transactions, those not requiring any further propagation, are

still allowed access to the shared level cache. Local transactions may complete if

no coherence messages are triggered to higher levels in the hierarchy by a change

of cache state.

If the number of entries in the address blocking table is fewer than the total

number of core side caches attached to the network, a portion of the address

blocking table is reserved. This reserved section ensures throughput from local

transactions is always maintained. When a local transaction completes its entry

is removed from the address blocking table.

5.5.2 Deadlock Avoidance

The address blocking table is important for routing responses back to the original

requesting caches, however it also introduces another possible deadlock scenario.

Should the address blocking table block all coherence messages then it can easily

become deadlocked, as illustrated in Figure 5.7.

Figure 5.7: Multi-level deadlock arising in the address blocking table.

By applying the same rules outlined in Section 5.4, in particular guaranteeing the

propagation of sinkable messages by not blocking them, deadlock can be avoided.

Sinkable messages share the reserved portion of the blocking table with local

transactions so that they can always propagate across the interconnect.

Chapter 5. Multi-level Cache Hardware 104

5.6. Multi-Level Synchronisation

5.6 Multi-Level Synchronisation

Extending the cache hierarchy to multiple shared levels has implications when

providing synchronisation instructions using the load-linked and store-conditional

pair. Multiple processors can execute a load-linked instruction and subsequently

attempt a store-conditional instruction, illustrated in Figure 5.8.

Figure 5.8: Load-linked and store-conditional synchronisation in a multi-cluster ar-
chitecture.

The store-conditional instruction generates a store-conditional, MC bus transac-

tion, which can be in flight for multiple processors concurrently. Arbitration for

the top level bus will ensure that only one of the MC transaction succeeds, proces-

sor P[0] in Figure 5.8. A MMD response is generated towards processor P[0], and

because P[2]’s cache holds the line shared, an INV transaction is generated. The

invalidate transaction is also required to remove any in-flight store-conditional

transactions for the same address from all memory bound buffers that the in-

validate signal passes. When the invalidate signal reaches the cache attached to

P[2] the context waiting for the store-conditional to complete is woken and the

store-conditional fails. Software routines, such as the one outlined in Figure 3.10,

are responsible for a subsequent reattempt to enter the critical section of code.

Chapter 5. Multi-level Cache Hardware 105

5.7. Lazy Cache-Line Allocation

This cancellation process is necessary to stop a subsequent MC generating an

INV response which could reach the processor before the store response1. In such

a scenario both store-conditional transactions would arrive at the processors with

both sets of locks reset, and so would fail and need to be reattempted. Such a

scenario can lead to livelock.

In the presence of multiple levels of shared cache it may be more appropriate to

use the compare and swap primitive for certain concurrent algorithms to avoid the

potential for ping-ponging between multiple load-linked/store-conditional pairs.

5.7 Lazy Cache-Line Allocation

Both the private and shared level caches within the multi-level hierarchy imple-

ment a write-back policy, and can therefore hold the only up to date copy of a

given cache line. Write-back caches are advantageous in multi-level hierarchies as

they generate less write traffic when compared to write-through caches [76], with

only evictions generating transactions on the interconnect.

A lazy cache line allocation policy is implemented within the multi-level hierarchy.

When a cache miss occurs a coherence message is generated and propagated

into the network without allocating a line to hold the response. This occurs at

each successive level in the hierarchy and no line is allocated until a response

transaction is received.

When a response is received by a cache, the least recently used set for each line

mapping is selected as an allocation candidate for the incoming cache line. If the

candidate line is Valid the line is simply overwritten, if the line is Valid Shared

the line is overwritten and invalidations are generated for the sharing caches. If

the candidate line is Modified a writeback is generated, if it is Modified Shared

a writeback and invalidations are generated. If the candidate is Modified Stale a

writeback request is generated to fetch the latest data into the cache and the line

is set Pending, however the response is delayed and must be rescheduled. The

response is rescheduled until the candidate line is no longer in the Pending state

and the line in the Modified state can be written back and overwritten.

1INV and WB are examples of sinkable transactions which are able to overtake other trans-
actions due to the split-channels described in Section 5.4.3.

Chapter 5. Multi-level Cache Hardware 106

5.8. Summary

This policy ensures that when a line is finally allocated, after the response is

received back at each level, the least recently used set in each cache is selected

for eviction. Additionally during the period from a request being generated to

a response being received no lines within the cache are reserved, which would

reduce cache utilisation. Furthermore, lazy allocation prevents requests from

being blocked when a particular mapping in the cache has been allocated across

all of the sets for outstanding transactions.

5.8 Summary

This chapter has presented the cache hardware required to implement the cache

coherence protocol presented in Chapter 4. The hardware implementation of

shared level caches within the hierarchy was discussed, in particular the core- and

memory-bound queueing systems were outlined. The addition of multiple levels

of shared cache introduces networking issues such as flow control and deadlock.

Deadlock within the multi-level hierarchy is prevented by dividing the coher-

ence messages into sinkable and non-sinkable messages and providing separate

queueing channels for each. A novel passive and active queueing mechanism was

presented that allows reordering of non-sinkable messages and prevents head of

queue blocking. Finally lazy cache line allocation was introduced.

In the next chapter distribution and optimisation schemes are discussed that best

utilise the multi-cluster architecture.

Chapter 5. Multi-level Cache Hardware 107

CHAPTER 6

Multi-level Task Locality

The extension of the Jamaica CMP architecture to a CMC architecture presents

several challenges and opportunities for software applications. The ability to in-

tegrate many more cores within a single chip shared-memory architecture, poten-

tially allows for greater performance but also increases inter-processor communi-

cation. If clustering is a possible direction for next generation CMP architectures

then both application restructuring and scheduling to take advantage of locality

of reference must be carefully considered.

This chapter discusses locality within the CMC architecture outlined in Chapters

4 and 5, presents a novel extension to the work distribution mechanism and the

instruction set and discusses the use of this scheme to implement both application

restructuring and scheduling.

6.1 Clusters and Cache Locality

In a multi-level cache hierarchy multiple levels of sharing exist; the contexts

within a core share the L1 cache, all cores within a cluster share the L2 cache,

108

6.2. Task Distribution

and all L2-clusters share the L3 cache or memory, as illustrated in Figure 6.1.

This sharing continues to extend in deeper hierarchies as more cache or index1

levels are added.

Figure 6.1: The multi-cache hierarchy implicitly exhibits a hierarchy of locality of
reference within each shared level working cache set.

Ideally application tasks or threads should be distributed across the processing

cores in an attempt to best exploit the locality between associated tasks. Bal-

ancing tasks in this manner reduces the bandwith requirements of higher level

interconnects, reduces the visible memory latency, and avoids unnecessary con-

gestion within the network.

6.2 Task Distribution

The Jamaica architecture, outlined in Chapter 3, provides hardware support for

fine-grained parallelism by means of a token distribution ring, outlined in Section

3.1.3. The ring allows tasks to be distributed from a running thread maintained

within one hardware context to any other idle hardware context within the CMP.

1Maintaining a cache at every level in the hierarchy is not strictly necessary, higher levels
within the system can be coordinated using tag matrices [49], to reduce the transistor require-
ments.

Chapter 6. Multi-level Task Locality 109

6.2. Task Distribution

Given a single bus CMP architecture the distribution of tasks is arbitrary and

each idle context is given an equal weighting as a candidate for task distribution.

This scheme works well as all contexts within a single bus CMP share a single

L2 cache and any L1 cache can transfer data to any other L1 cache, because

all shared data is accessed across the single shared bus. Some advantage can be

gained from distributing two associated tasks to two idle contexts within the same

processing core, as there will be some benefit from the sharing of data within a

L1 cache, but can also be a disadvantage when another free context resides in a

wholly idle core somewhere else on the chip.

6.2.1 Locality Aware Task Distribution

Extending the architecture to a multi-cluster CMP extends the access possibilities

for data shared between multiple contexts. Data may be shared, and subsequently

modified, by a context within a different cluster. Successive modifications to the

same data by two contexts in two separate clusters will incur significant delays

due to the latency of continually passing updated copies of the data across higher

level interconnects and invalidating and moving the data through multiple levels

of cache, as illustrated in Figure 6.2.

Minimising the level at which data is shared by associated tasks can significantly

reduce the access latency to shared data by those tasks and, as a consequence,

improve the performance of a parallel application.

Synchronisation also benefits from locating coordinated tasks within a cluster

where possible. This ensures that data regions used to implement atomic primi-

tives remain as close to the context attempting synchronisation as possible, min-

imising the latency of each synchronisation.

6.2.2 Token Requests

In the original single shared bus Jamaica architecture a token-request instruction,

TRQ, is executed during the process of forking a task. The token-request either

returns an integer value, uniquely associated with an idle-context somewhere

on the chip, or after polling unsuccessfully for a software set number of cycles,

Chapter 6. Multi-level Task Locality 110

6.2. Task Distribution

Figure 6.2: Two contexts operating on the same data perform more efficiently if that
data can be kept within the same cluster, intra-cluster sharing, as opposed to sharing
between clusters, inter-cluster sharing.

returns 0 informing the context executing the token-request that no idle context

was available during the polling period.

When an idle context identifier is returned by the execution of a token-request,

task setup data is sent across the single shared bus along with the idle context’s

unique identifier using the thread jump, THJ, instruction. The idle context, as

part of constant normal cache snooping, recognises the identifier and reads the

task data, eight 32-bit values, off the data bus and into the context’s In register

window2, before beginning execution of the forked task. Part of the task data

includes a value uniquely identifying the parent thread, which is required when

notification is later sent back to the parent thread informing it that one of its

forked tasks has completed.

In order to maintain this lightweight thread-shipping mechanism within a multi-

cluster architecture the token-request instruction has been extended to encode

information about the cache locality of each context.

2Register windows are discussed in Section 3.1.2.

Chapter 6. Multi-level Task Locality 111

6.2. Task Distribution

6.2.3 Locality Aware Token Request Extensions

The CMC architecture exhibits a number of levels of cache locality, shown in

Figure 6.1. Two contexts within a CMC architecture can either cohabit a cluster

or exist in separate clusters at each level of cache locality. As an example all

contexts within the processing core P[0], in Figure 6.1, cohabit a level 0 cluster.

A context in P[0] and a context in P[1] cohabit a level 1 cluster, but exist in

different level 0 clusters. The minimum locality level at which two contexts share

a common cache will be referred to as the cache-distance between them.

The cache-distance can be used to distribute tasks to contexts either within a

locality level, or outside of a locality level. In order to calculate the cache-distance

between two contexts, the token distribution mechanism is extended such that

cluster information is encoded into the unique-identifiers.

6.2.4 Cache-Distance Identifiers

The CMC architecture and coherence protocol, introduced in Chapters 4 and 5,

allow for an arbitrary configuration of the multi-cluster hierarchy. A CMC archi-

tecture can be configured in a balanced tree-like topology, as shown in Figures

6.1 and 6.2, or in an unbalanced topology, as shown in Figure 6.3.

By assuming that an architect may want to build or analyse the performance of

both balanced and unbalanced cluster configurations the cache-distance identifier

is encoded with sufficient information to determine the minimum level at which

two contexts share data by comparison with another context’s cache-distance

identifier.

Algorithm 1 Cache-distance encoding.

1: cache-distance id = 0
2: for l = top sharing level down-to 0 do
3: components = max number of sharing components at level l
4: bit shift = bits needed to express the number of components
5: bit mask = index of the component the context is connected under at level

l or index of component itself or 0
6: cache-distance id = cache-distance id | bit mask
7: cache-distance id = cache-distance id << bit shift
8: end for

Chapter 6. Multi-level Task Locality 112

6.2. Task Distribution

Figure 6.3: An example of an unbalanced multi-cluster configuration.

Each cache-distance identifier is a bit-mask which is composed of the encoded

locality of each context, defined by the algorithm listed in Algorithm 1. The bit

mask is stored in a context specific register, discussed in Section 3.1.1, and can be

accessed by the L1 cache logic as well as by privileged software. To illustrate how

the cache-distance identifiers are allocated consider the unbalanced architecture

shown in Figure 6.4.

Starting with the top level of sharing, level 2, the number of connected compo-

nents, in the example comprising three L2 caches, is counted in order to derive the

number of bits required to represent all components at the same level. For each

context the level 2 bitmap is the binary representation of the level 2 component

which is above it in the hierarchy, using left to right indexing. In the example

all contexts connected to processor P[0] have 00 as the level 2 bitmap, contexts

connected to P[1] and P[2] have 01 as the level 2 bitmap. This trivial process

is repeated at each level of sharing. It should be noted that all cache-distance

identifiers must be of the same length, even when the hierarchy is unbalanced, as

illustrated by P[0] in Figure 6.4.

Chapter 6. Multi-level Task Locality 113

6.2. Task Distribution

Figure 6.4: The allocation of cache-distance identifiers to contexts in an unbalanced
multi-cluster architecture.

6.2.5 Hardware Support for Locality

In order to support lightweight threading within the CMC architecture it must

be possible to locate idle contexts across the whole chip, and then be able to

distribute tasks to available idle contexts.

Locating Idle Contexts

Locating idle contexts within the CMC architecture is done using the same ring

structure found in the single bus architecture. Each core on the chip is connected

to two neighbouring cores creating a single ring network. When contexts become

idle the cache-distance identifier is placed onto the ring or, if no space exists on

the ring, into a local token pool. Idle contexts, as previously mentioned in Section

3.1.3, are located by polling the ring network for tokens using the TRQ instruction.

A single ring network has two major disadvantages when connecting all of the

processing cores in a CMC architecture. Firstly the latency for a cache-distance

token to complete a rotation of the ring is equal to the number of cores connected

to the ring. With the possibility of integrating hundreds of cores this latency can

Chapter 6. Multi-level Task Locality 114

6.2. Task Distribution

be significant, however, the actual latency is dependant on the requirements of

the token request instruction. The second disadvantage is that the ring is not

fault tolerant. Any damage to the structure during manufacturing will remove

the ability to locate idle contexts using the ring. The ring does however provide a

simple mechanism that allows multiple cores to poll for and release idle contexts

concurrently and is retained for this reason within the CMC architecture.

Distributing Tasks

To support task distribution within the CMC architecture each shared cache must

be able to forward task-setup data either up or down the hierarchy so that an idle

context, even in a different cluster, can receive it. Each level of shared cache in

the architecture contains logic to make a simple comparison of the cache-distance

identifier within the task-setup data, and that stored in the caches test mask.

The task-setup data is forwarded up the hierarchy until the test mask matches

the cache-distance identifier, the task is then moved down the hierarchy of caches

based on the values in each successive bitmap within the cache-distance identifier.

Suppose core P[1], in Figure 6.4, upon executing a TRQ instruction receives the

cache-distance identifier [101101]. The forking code executing on the core pack-

ages the task-setup data into registers o0 - o7, and executes a THJ instruction.

The L1 cache logic checks that the cache-distance identifier is not within its local

group of contexts, using the test mask [0100--], and, in a similar manner to

load/store instructions missing in the L1 cache, arbitrates for access to the bus,

L1N[0]. The task data, consisting of 8 32-bit registers, matches the size of a

cache line, and so task distribution reuses the logic already required for cache

coherence.

When the interconnect network is a bus, a THJ transaction can be snooped by

all the caches and consumed by a cache where the test mask matches the cache-

distance identifier. When the interconnect network is a crossbar, the THJ transac-

tion must be forwarded to the higher level shared cache, where logic then deter-

mines if the THJ should be forwarded up or down the hierarchy. In this example

the L2 cache, L2$[1] buffers the THJ transaction and the task-setup data, as the

cache-distance identifier [101101] does not match the test mask [01----] and

so the transaction must be passed onto the next level bus, L2N[0].

Chapter 6. Multi-level Task Locality 115

6.2. Task Distribution

When the THJ transaction is placed onto the top level bus, L2N[0], the L2 cache,

L2$[2], is able to match the cache-distance identifier [101101] with the test mask

[10----]. The THJ transaction is subsequently forwarded down the hierarchy,

using the same process, until it arrives on bus L1N[1] and is consumed by the L1

cache L1$[5]. The cache is then able to wake the relevant context in core P[6]

which becomes runnable, and will begin processing the distrubuted task when

the context is next scheduled.

The delay associated with shipping a task across the chip is related to the distance

that the task is being shipped. A longer delay will be associated with shipping

a task to a core in a remote cluster when compared to shipping a task within

the same cluster. This delay is acceptable however as distributing the task to a

remote core is reserved for tasks that exhibit poor locality or that are sufficiently

independent to achieve benefits from running in separate caches.

6.2.6 Software Support for Locality

The lightweight task distribution mechanism is exposed to software via the TRQ

instruction so that parallel applications can be optimised to best utilise the CMC

architecture.

Token Request Semantics

The TRQ instruction has been modified to allow programs to express a preference

for how near or far away in the cache hierarchy a shipped task should be dis-

tributed. The TRQ instruction is of the register form, see Appendix A.1.1, which

is composed of two input operands Ra and Rb and a result register Rc. The first

operand is used to define the number of cycles that the TRQ operation is allowed

to poll for a token. The TRQ operation returns either a token, containing the

cache-distance identifier, or -1 in the result register depending on whether a suit-

able token is found or not. The second operand is used to define the preferences

for selection of a token, and is composed as shown in Figure 6.5.

The operand can be interpreted as either a mandatory or preferential set of

arguments. The TRQ instruction will try to satisfy the arguments of the operand

during the poll cycles supplied within the first operand. If no token of any sort is

Chapter 6. Multi-level Task Locality 116

6.2. Task Distribution

Figure 6.5: The TRQ semantics allow preferences for token selection which are exposed
within the preference operand (Rb)

available it will return -1. As soon as a token matching the preferences is found

that token is returned, curtailing the polling period. If other tokens are found

during the polling period and the arguments are supplied as preferential, then

each token is held until another is found, at which point the newly found token

is held and the previously held token is released back onto the token ring. If

no matching tokens are found when the polling period expires the held token is

returned.

The semantics allow software to select tokens that are related to a given cache-

distance identifier, that are a given level distance from the executing context’s

cache-distance, or that are in a particular cluster at a given level. Because the

TRQ instruction stores the resulting cache-distance identifier in register Rc, the

software can use this value in future distribution operations. However, the soft-

ware can not generate a cache-distance token to distribute a task to, the returned

identifier is stored in a privileged internal register which is used by the following

THJ or THB instruction. Additional instructions within the instruction set allow

software to enquire about the number of levels of sharing and the number of com-

ponents at each level, relative to the context executing the instruction. These

values are hardwired into control registers within each processor.

To utilise the token semantics two initial distribution methods were developed;

cluster affinity and remote-local distribution. Using the TRQ semantics it is also

possible that other scheduling schemes described in the literature could be imple-

mented within software, in particular balance-set scheduling [43] and sampling-

based and electron-based policies [164] and go some way to approaching quality-

of-service schemes [73].

Chapter 6. Multi-level Task Locality 117

6.2. Task Distribution

Remote-Local Distribution

Remote-local distribution is a simple policy that allows a thread distributing work

to decide whether the task should be forked to a local context, within a cluster at

a given sharing level to improve data locality, or to a remote context in a remote

cluster at a given sharing level to improve load-balancing. This scheme is used

by software to keep threads either local, for example when dividing work on a

shared array of data, or to ship threads away from the distributing thread to avoid

unnecessary cache interference that may delay the progress of the distributing

thread.

A disadvantage to the remote-local distribution policy is that remote tasks are

sent to arbitrary remote clusters, based on the order they are acquired using the

token-request TRQ instruction. This can lead to work imbalance, where a number

of remote tasks are distributed to the same cluster and potentially clusters remain

idle. The remote-local scheduling is best used when a large number of worker

threads need to be distributed by a single distributing thread. The distributing

thread can therefore opt to distribute tasks to remote clusters or cores to allow

itself to progress without being impeded by time-sharing a core’s pipeline.

Figure 6.6: Remote-local distribution allows a program to fork a task to a context
within either a local or a remote cluster. Even though four remote threads are forked
there is no guarantee all clusters will receive work.

Chapter 6. Multi-level Task Locality 118

6.2. Task Distribution

Cluster Affinity

Cluster affinity distribution allows a program to ship tasks to a context within

a specified cluster of processors at a given sharing level. The policy enables

software to distribute tasks to all clusters at a given sharing level, ensuring that

all clusters are utilised within an architecture leading to a better load-balance,

see Figure 6.7. Additionally this is beneficial when running multiple independent

application threads. By running each application in isolation, each restricted to

a separate cluster, cache interference can be avoided within the smaller, lower

level, shared caches whenever possible.

Figure 6.7: Cluster affinity allows a task to be distributed to a specified cluster at a
given sharing level.

Software can also use cluster affinity as a means of keeping a thread within the

same cluster throughout its lifecycle. On a heavily loaded system, many threads

will be competing for a limited number of hardware contexts to execute on.

A global thread scheduler is responsible for ensuring all threads make forward

progress, and when required will force threads to yield. When those threads

are subsequently rescheduled cluster affinity can be used to ensure that they are

rescheduled within the same cluster in order to benefit from previously cached

data.

Chapter 6. Multi-level Task Locality 119

6.3. Summary

6.3 Summary

This chapter has described how locality can be exploited within a CMC architec-

ture. In particular an extension to the TRQ instruction was presented that allows

software to exploit locality by controlling the affinity of distributed tasks. Two

simple examples of the use of the extended TRQ instruction for locality based task

distribution were presented.

The next chapter presents and analyses results from experimentation using the

coherence protocol introduced in Chapter 4, the hardware support introduced in

Chapter 5, and finally locality aware task distribution introduced in this chapter.

Chapter 6. Multi-level Task Locality 120

CHAPTER 7

Results and Analysis

Previous chapters have introduced a cache coherence protocol for multiple levels

of shared cache, a CMC architecture built to support this protocol and locality

based task distribution to take advantage of cache locality within the architecture.

This chapter analyses the architecture, protocol and distribution mechanism by

exercising a cycle-level simulated system using parallel benchmarks.

7.1 Experimental Method

Accurately evaluating the performance of the CMC architecture, the coherence

protocol and the locality distribution mechanism requires a way of simulating

the system and exercising its components with workloads likely to reflect those

used in real parallel systems. In this section the simulation environment and the

benchmark applications used in this study are described.

121

7.1. Experimental Method

7.1.1 Simulation Environment

To evaluate both the protocol and the architecture built to support it, the jamsim

framework was extended with additional components. These components include

a modified cache component, able to express the seven states of the PIMMS

protocol, see Table 4.2, and both a bus and crossbar based interconnect able to

implement the protocol transitions.

For each simulation the architecture is configured with, unless otherwise stated,

the parameters listed in Table 7.1. The processor, the interconnect and the

memory hierarchy are simulated using cycle-level models to account for, and al-

low further analysis of, the many interactions, stalls, queue delays and blocking

associated with the architecture. Additionally the simulation platform has been

extensively instrumented to extract statistical data from each of the studied com-

ponents and overall performance metrics.

Component Parameters
L1 caches 16KB, 4-way set-associative, access 1 cycle,

4 entry core- & memory-bound queues.
L2 cache 2MB, 8-way set-associative, access 8 cycles,

4 entry core- & memory-bound queues.
L3 cache 4MB, 16-way set-associative, access 32 cycles

4 entry core- & memory-bound queues.
Off-chip Memory 2GB, access 100 cycles
L1-L2 bus 8 phase, memory led split-transaction protocol, L2 clock
L2-L3 bus 8 phase, memory led split-transaction protocol, L3 clock

Table 7.1: Configuration of the simulated cache hierarchy.

The Java benchmark applications selected are executed within the ported version

of the Jikes RVM which is hosted natively on the simulator. The use of the JaVM

allows Java threads to be mapped onto the underlying hardware thread distri-

bution mechanism. The benchmark applications are statically compiled into the

Jikes RVM bootimage using the highest level of optimisation (-02). This avoids

the cost of dynamic compilation and optimisation of the benchmark classes dur-

ing execution and as a consequence reduces the impact of noise and interruptions

by JaVM threads to the application threads at runtime, allowing a more intuitive

reasoning about the performance.

Chapter 7. Results and Analysis 122

7.2. Benchmark Descriptions

7.2 Benchmark Descriptions

In order to exercise the architecture and stress the coherence protocol a set of

multi-threaded applications were selected from two benchmark suites: Doug Lea’s

Fork/Join package [93] and the JavaGrande Forum benchmark suite [144]. The

parameters used for each benchmark have been chosen to avoid the side-effects of

garbage collection during execution, again avoiding unnecessary JaVM activity.

7.2.1 Fork/Join Benchmarks

The fork/join benchmarks have been selected from a set of nine demonstration

applications used to study parallel application performance using a Java work-

stealing framework. Out of the nine benchmark applications three were discarded,

Microscope because the code was heavily interleaved with a graphical user inter-

face, Heat because standard parameters consumed too large a simulation time,

and NQueens because results and timings are non-deterministic, due to the nature

of its multiple solution strategy.

The fork/join benchmarks are supplied at runtime with the number of threads

available to process tasks; for each simulation configuration this is set to the

number of hardware supported contexts. The following sections briefly introduce

the six benchmarks selected.

Fibonacci

The fibonacci benchmark calculates the nth fibonacci number by recursive par-

allel decomposition. The initial number is decomposed into two parallel tasks to

calculate the (n−1) and (n−2) numbers. This decomposition is done recursively

until the value of n falls below a threshold, at which point it is calculated se-

quentially. The results of the decomposed values are then successively combined

to form the total result. Each task of the decomposed pair, (n− 1) and (n− 2),

must wait for the other to complete before combining the results and completing

the n task that they themselves were recursively divided from.

Chapter 7. Results and Analysis 123

7.2. Benchmark Descriptions

MatrixMult

The matrixMult benchmark performs a parallel divide-and-conquer matrix mul-

tiplication. The matrices A and B are divided into quadrants and then multiplied

using Equation 7.1.

(A1,1 A1,2

A2,1 A2,2

)
×

(B1,1 B1,2

B2,1 B2,2

)
=

((A1,1×B1,1) (A1,1×B1,2)
(A2,1×B1,1) (A2,1×B2,1)

)
+

((A1,2×B2,1) (A1,2×B2,2)
(A2,2×B2,1) (A2,2×B2,2)

)
(7.1)

The matrices on the right hand side are recursively divided into smaller quad-

rants until reaching the threshold set in the benchmark, at which point the leaf

multiplications are calculated using sequential code. Synchronisation is required

to recombine all the quadrant results in order to produce the result matrix.

Jacobi

The jacobi benchmark performs iterative relaxation on a matrix mesh. The

initial mesh is configured with the value 1 in all edge elements and 0 in all other

elements. The complete mesh is represented internally as a tree structure and

relaxation is carried out on each of the leaf nodes within the tree. Each leaf node

contains a subsection of the mesh upon which nearest neighbour averaging is

carried out sequentially. Leaf nodes are processed in parallel tasks, with synchro-

nisation occurring where edge elements overlap two leaf nodes. A defined number

of nearest neighbour averaging iterations is performed over the total mesh, until

the number of iterations expires or the result converges.

LU

The lu benchmark performs a matrix decomposition of a randomly filled matrix,

into the product of two triangular matrices, Lower and Upper, and is a Java

version of the well known Linpack benchmark. The actual composition of the

algorithm is beyond the scope of this study, suffice to say that the decomposition

is calculated again in a divide and conquer manner. Eventually the division

creates sub-matrices whose granularity falls under a threshold, at which point

Chapter 7. Results and Analysis 124

7.2. Benchmark Descriptions

the LU decomposition is calculated sequentially inside that matrix, and multiple

calculations are performed in parallel.

Integrate

The integrate benchmark computes integrals using a recursive Gaussian quadra-

ture. Essentially this calculates the area under a curve using a finite approxima-

tion, by dividing the area into sections and calculating rectangular areas. The

function of the curve, for which the integral is being calculated is listed in Equa-

tion 7.2.

(2i− 1)x(2i−1) (7.2)

MergeSort

The mergeSort benchmark performs a parallel merge/quick-sort of a set of inte-

gers. The complete array of integers is recursively subdivided into smaller sets

of integers, until the set size falls below a threshold at which point the standard

quick-sort algorithm is applied. Quick-sort of multiple sets occur in parallel, and

the results are then merged into larger sets until the whole array has been sorted.

7.2.2 Multithreaded JavaGrande Benchmarks

The JavaGrande multithreaded benchmark suite consists of three sets of bench-

marks; low-level, kernel, and application codes designed to evaluate parallel ap-

proaches to standard computationally intensive problems. From these three sets,

one low-level and three kernel tests were selected. The benchmarks have largely

been re-programmed with reference to the sequential JavaGrande benchmarks,

which in turn were re-coded versions of the Splash-2 benchmark suite [169]. Par-

allel work is distributed statically to the number of threads passed to the bench-

marks as a parameter. Unlike the fork/join benchmarks, no work stealing occurs,

and so each thread completes the whole portion of the work given to it.

Chapter 7. Results and Analysis 125

7.2. Benchmark Descriptions

BarrierBench

The barrierBench benchmark is a low-level benchmark designed to measure

the performance of barrier synchronisation. Internally the benchmark creates

a number of threads which loop for a given number of iterations and attempt

to synchronise on two types of barrier, a simple shared counter and a lock-free

tournament barrier.

Series

The series benchmark calculates the first n Fourier coefficients of the function

listed in Equation 7.3, over the interval [0, 2]. The benchmark consists of a large

loop over the Fourier coefficients, however, each iteration of the loop is indepen-

dent of every other iteration and the work is simply divided and distributed to

the parallel threads.

f(x) = (x+ 1)x (7.3)

SOR

The sor benchmark performs 100 iterations of successive over relaxation on a

N × N grid. The benchmark contains three loops, the outer iteration loop and

two inner loops over the row elements to process the relaxation. In order to

parallelise the algorithm the elements in the grid are processed using a “red-

black” ordering scheme, which allows the inner loops to be partitioned between

the threads. Synchronisation occurs at the end of each iteration to ensure that all

red (black) elements have been updated before attempting to update the black

(red) elements.

Crypt

The crypt benchmark performs IDEA (International Data Encryption Algo-

rithm) encryption and decryption on an array of N bytes. The benchmark con-

tains two principle loops whose iterations are independent and can therefore be

Chapter 7. Results and Analysis 126

7.3. PIMMS Coherence Protocol

partitioned between the threads in a block fashion.

7.2.3 Benchmark Parameters

For completeness the parameters used for each benchmark, unless otherwise

stated alongside results, are listed in Table 7.2. Each benchmark was run us-

ing N threads, where N equals the number of hardware contexts supported by

the architecture being simulated.

Benchmark Type Parameters

barrierBench low-level size = 0

fibonacci kernel number = 39, threshold = 20
matrixMultiply kernel matrix = 1024×1024, granularity = 128
jacobi kernel matrix = 1024×1024, steps = 128
lu kernel matrix = 512×512
integrate kernel low = 1, high = 42, exponential = 5, tolerance = 0.001
mergeSort kernel sort array = 5,000,000 integers
series kernel size = 100
sor kernel matrix = 256×256
crypt kernel 500,000 bytes

Table 7.2: Benchmark parameters used during experimentation.

7.3 PIMMS Coherence Protocol

Having outlined the simulation configurations and the benchmarks used to ex-

ercise the architecture and the coherence protocol, this section looks at various

aspects of the protocol, working under simulation, to assess its correct function.

7.3.1 Coherence Transactions

As mentioned in Section 4.3.2, nine coherence transactions coordinate all of the

on-chip shared memory coherence. Coherence messages propagate both up and

down the multi-level cache hierarchy to ensure that the cached representation of

memory seen by all contexts is consistent.

Chapter 7. Results and Analysis 127

7.3. PIMMS Coherence Protocol

Coherence transactions are tracked during simulation when they appear in the

interconnect. This tracking provides an insight into both the composition of

the coherence traffic and the peak utilisation of the interconnect. Figure 7.1,

shows this utilisation, during execution of the lu benchmark. As the system is

configured as a two cluster CMC, there are two bus networks, L1N[0] and L1N[1],

connecting the L1 private caches of the 64 cores within each cluster and a higher

level bus network, L2N, connecting the two L2 caches.

Figure 7.1: Bus utilisation during execution of the lu benchmark. The architecture is
configured as a symmetric 2 cluster × 64 processors × 1 context CMP.

The area under the utilisation curve is divided, by percentage, into the constituent

coherence message types. SH, MD, MC and WB are memory-bound transactions,

Chapter 7. Results and Analysis 128

7.3. PIMMS Coherence Protocol

MSH, MMD, INV, DWN and MWB are core-bound, and are described fully in

Section 4.3.2.

As the benchmarks are Java classes, the period during which the JaVM is booted

and all supporting classes are loaded is significant, in Figure 7.1 this period lasts

until cycle 975,590,490. After this point the benchmark execution begins and the

coherence traffic increases significantly. The benchmark executes on all of the

processors, and the bus utilisation increases to peak at 95.02% on the L1N[1]

bus.

The coherence traffic on buses L1N[0] and L1N[1] mainly consists of transactions

satisfied either by a load from the L2 cache or a transfer of ownership/permissions

from another L1 cache. This is noticeable as the number of the SH, MD and MC

request transactions far exceeds the corresponding memory oriented responses.

7.3.2 Four-phase Transactions

As mentioned in Section 4.3.4, four-phase transactions are necessary in order

to maintain coherence across the cache hierarchies in a CMC architecture. The

number of four-phase transactions can be calculated from the combination of

MWB and DWN transactions, which are only triggered during the action phase

of a four-phase transaction.

In Figure 7.1 the number of four-phase transactions peaks at around 10% of

the total transactions seen on the level 2 bus, some 130,711 MWB and DWN

transactions during a period of 10 million cycles, in which 1.25 million level 2 bus

slots are available.

The lu benchmark, the execution of which generated Figure 7.1, performs syn-

chronisation as it combines results of sub-matrix decomposition to form the whole.

During this process synchronized methods inside the benchmark ensure that

locks are gained on the results prior to combining them, so some four-phase

transactions are generated. Figure 7.2, however, better illustrates the four-phase

transactions, this time generated during execution of the barrierBench bench-

mark. As the benchmark is simply attempting to synchronise on barriers a larger

portion of the coherence traffic visible on all buses is related to four-phase trans-

actions.

Chapter 7. Results and Analysis 129

7.3. PIMMS Coherence Protocol

Figure 7.2: Coherence traffic generated during the JavaGrande barrierBench bench-
mark, on a symmetric 2 cluster × 8 processors CMP.

Chapter 7. Results and Analysis 130

7.3. PIMMS Coherence Protocol

7.3.3 Interconnect Latency

Another factor which is introduced with the extension to multiple clusters is the

effect that memory sharing across clusters has on the latency of the interconnect.

The graph, Figure 7.3, shows the average network latency during discrete periods

of 1 million cycles on each of the shared buses in a two cluster architecture during

execution of the lu benchmark. The latency of each transaction is calculated from

the time that the request arbitrates for the bus to the point at which the response

is received.

Prior to execution of the benchmark, denoted by the dashed line, the average

latency on all of the buses is fairly erratic as the architecture is booting the

JaVM and loading and compiling all necessary classes, requiring frequent calls to

memory. Immediately before the benchmark is invoked the latency increases sig-

nificantly for a period of around 160 million cycles. This increase in latency, upto

240 cycles and 160 cycles on the level 2 and level 1 buses respectively is caused

by memory allocation as the benchmark begins to create data structures. Once

the benchmark is executing however, the average latency decreases to around 10

cycles on the level 1 buses and 40 cycles on the level 2 bus. These latencies are

almost as low as is feasible, given that the minimum time for a single transaction

to complete is 8 cycles on the level1 bus and 32 on the level 2 bus.

The observed latency is related to the distance that each transaction is required

to travel in the hierarchy in order to gather the requested data. In this example,

most requests are being satisfied directly from the shared cache without having

to traverse the inter-cluster bus.

7.3.4 Negative Acknowledgment

During periods of heavy coherence traffic on the interconnects, transactions may

not be able to commit, which can occur when transaction queues are at their

capacity. A negative acknowledgment signal is sent to the cache attempting the

transaction, and the cache must subsequently re-attempt the transaction.

Figure 7.4 shows the percentage of the total bus slots negatively acknowledged

over the execution of the fibonacci benchmark on a 16 core CMP.

Chapter 7. Results and Analysis 131

7.3. PIMMS Coherence Protocol

Figure 7.3: Average latency of bus transactions during execution of the lu benchmark
on a 2 cluster × 4 processors CMP.

Chapter 7. Results and Analysis 132

7.3. PIMMS Coherence Protocol

Figure 7.4: Negative acknowledgments blocking a transactions progress as a percent
of available bus slots, for a single cluster 16 processor CMP running the fibonacci

benchmark.

Chapter 7. Results and Analysis 133

7.3. PIMMS Coherence Protocol

7.3.5 Non-Sinkable Queue Rotation

As introduced in Section 5.4.4, each cache’s non-sinkable transaction queue is

split into a passive and active sub-queue. This allows requests in the non-sinkable

queue to be re-ordered when a transaction at the head of the queue is blocked

due to address locking or resource contention.

Figure 7.5: Non-sinkable passive/active queue reordering (per 10 million cycles) for
both L2 caches, in a 2 cluster × 64 processors CMP, executing the integrate bench-
mark.

Figure 7.5, shows the number of reordering events between the sinkable and non-

sinkable queues, during the execution of the integrate benchmark on a single

cluster CMP with 128 cores. These events are counted when a transaction success-

fully commits that was behind an aborting transaction that has been reordered.

Chapter 7. Results and Analysis 134

7.3. PIMMS Coherence Protocol

7.3.6 Effect of Inclusion

A limitation in the current implementation of the PIMMS coherence protocol

is that each shared level cache in the multi-level hierarchy maintains cache-line

inclusion1. This introduces redundancy within the shared level caches and reduces

their efficiency. Lines in the Valid Shared, Modified Shared, and Modified Stale

states are redundant in each shared-level cache.

Figure 7.6 illustrates the state of the lines within each of the shared caches, at 1

million cycle intervals, during execution of the fibonacci benchmark. The archi-

tecture is configured as a 2 cluster CMP where each cluster contains a 1MB level

2 shared cache, and 8 processing cores connected to 16KB instruction and data

caches. A 4MB level 3 cache is shared by both clusters. During the benchmark

phase, from around 750 million cycles, when all of the cores are executing code,

on average 12.5% of the L2 cache’s lines are redundant, and 40-45% of the L3

cache lines are redundant. In the absence of any code or data sharing between

contexts the redundancy in the caches is directly proportional to the size of the

caches directly below, and can be calculated, using Equation 7.4, where Sl is the

size of the larger shared cache, Ss is the size of the smaller caches, and R is the

percentage of redundant lines in the larger cache due to inclusion.

R = 100× Σ (Ss)

Sl

(7.4)

Using this calculation the expected redundancy, in the absence of sharing is 25%

in the L2 caches and 50% in the L3 cache. The discrepancy between expected and

actual redundancy is primarily due to code sharing in the fibonacci benchmark

and the small amount of data that is shared between the threads.

Looking at inclusion across all of the kernel benchmarks, for a 2-cluster config-

uration containing 4, 8, 16 and 32 cores per cluster, shown in Figure 7.7, the

maximum percentage of redundant lines in the L2 caches remains below 10%

when shared by four cores, 20% when shared eight cores, 30% when shared by

16, and below 45% when shared by 32 cores. In most configurations the average

1A potential future enhancement to the architecture would be to support tag inclusion.
Storing, in a separate cache structure, only the tags of lines that have been modified by a
lower-level cache. This is not considered further here.

Chapter 7. Results and Analysis 135

7.3. PIMMS Coherence Protocol

Figure 7.6: Cache-line state composition during the execution of the fibonacci bench-
mark on a 2 cluster × 8 processors CMP.

Chapter 7. Results and Analysis 136

7.3. PIMMS Coherence Protocol

Figure 7.7: Cost of inclusion measured as the percentage of cache lines containing
redundant copies of data, for all nine parallel benchmarks in a 2 cluster CMP.

redundancy is far less. In the absence of code and data sharing the percentage of

redundant lines is calculated as 12.5%, 25%, 50% and 100%.

The percentage of redundant lines in the L3 cache for all configurations, how-

ever, peaks far closer to 50%, which is to be expected as essentially a far larger

proportion of the L2 cache lines will contain non-shared data.

7.3.7 Protocol Robustness

Finally, whilst no formal analysis has been made as to the correct functioning

of the coherence protocol and the architecture under every possible condition,

it should be noted that for each configuration of the benchmarks tested, those

that did not fail when run using the perfect memory simulator, were also able

to run using the full cycle-level model of the memory hierarchy. Additionally a

significant number of cycles have been executed during the compilation of results,

each simulation of each benchmark executes for many billion cycles. During this

time the memory hierarchy has remained deadlock free.

Chapter 7. Results and Analysis 137

7.4. Single Bus Chip Multiprocessor Architecture

7.4 Single Bus CMP Architecture

This section looks at the scaling performance of a single bus CMP. Single bus

CMP architectures are attractive to build, primarily because cache coherence

across a single bus is well understood, and thus they have, to date, been the

subject of most CMP studies. However, as introduced in Section 4.2.1, two main

factors limit the scaling of their performance; wire delay and bus contention.

Wire delay is a physical limit and is discussed in detail in Section 1.2.1. Using data

presented in the literature [104] it appears clear that connecting many processing

cores to a single bus will inevitably require that the bus frequency is reduced

to allow the signal to propagate successfully. As outlined in Section 4.2.1 and

Table 4.1, even connecting 8 processors to a single bus may require the bus speed

to be reduced to 1
4

of the maximum on-chip frequency. Further reductions will

undoubtedly be necessary as the number of cores connected to the bus, and

hence its span increases. Bus contention also increases as the number of cores

added to the bus increases. Contention for the bus, and the subsequent delay

caused to a given core’s private cache effectively increases the access latency

to the level 2 cache. This latency affects access to the memory hierarchy in

general, impeding parallel performance gains. Additionally as the number of

cores is increased memory saturation can occur when the total number of requests

generated exceeds the available bandwidth.

To investigate the impact these two factors have on the performance of a sin-

gle bus CMP architecture the jamsim simulation platform was used to combine

the simulation of an increasing number of cores and a range of decreasing bus

frequencies, shown in Figure 7.8.

Each of the nine parallel kernel benchmarks was executed on each configuration

of single bus CMP architecture, with the number of threads created by each

benchmark equal to the number of cores in the architecture.

7.4.1 Speed-up

The results from these experiments are presented, initially, as speed-up graphs,

Figures 7.9 – 7.17. On each graph the vertical axis, representing speed-up, is

Chapter 7. Results and Analysis 138

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.8: Single bus CMP configuration.

Chapter 7. Results and Analysis 139

7.4. Single Bus Chip Multiprocessor Architecture

scaled to the maximum attainable speedup using a simulated configuration with

perfect memory2. This scale helps to quantify the parallelism inherent in the

benchmark, against that which is achieved by the architecture.

speedup(n) =
t1
tn

(7.5)

Speed-up is calculated using Equation 7.5, where t1 is the number of cycles taken

to execute the benchmark with a single core and tn is the number of cycles taken

with n cores. From the speed-up graphs, the benchmarks can be grouped into

three categories. Those that scale well with an increasing number of cores, near-

linear, those that scale but realise diminishing returns from an increasing number

of cores, diminishing, and finally those that reach a scaling limit and realise no

further returns from an increasing number of cores, limited.

In the near-linear category are the benchmarks fibonacci, Figure 7.9, and

crypt, Figure 7.17. In the diminishing category are the benchmarks matrixMult,

Figure 7.10, lu, Figure 7.12, series, Figure 7.15, and sor, Figure 7.16. Finally in

the limited category are the benchmarks jacobi, Figure 7.11, integrate, Figure

7.13, and mergeSort, Figure 7.14.

The following sections look at the impact wire delay, bus contention and memory

saturation have on the performance scaling of each of the benchmarks.

2The simulator can be configured with no memory hierarchy, i.e. all memory accesses happen
instantaneously. Coherence locking is simulated using a simple global lock table.

Chapter 7. Results and Analysis 140

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.9: Single bus CMP scaling - fibonacci.

Figure 7.10: Single bus CMP scaling - matrixMult.

Chapter 7. Results and Analysis 141

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.11: Single bus CMP scaling - jacobi.

Figure 7.12: Single bus CMP scaling - lu.

Chapter 7. Results and Analysis 142

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.13: Single bus CMP scaling - integrate.

Figure 7.14: Single bus CMP scaling - mergeSort.

Chapter 7. Results and Analysis 143

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.15: Single bus CMP scaling - series.

Figure 7.16: Single bus CMP scaling - sor.

Chapter 7. Results and Analysis 144

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.17: Single bus CMP scaling - crypt.

7.4.2 Wire Delay

Figure 7.18 shows the peak performance of each benchmark where the level 1 bus

clock is set to 1
2

and 1
4

of the core clock speed, relative to the level 1 bus being

clocked at the same speed as the core.

As might be expected, the peak performance drops for all of the benchmarks. This

is due in part to a decrease in bandwidth, as the total number of transactions

serviced by the bus in any given time period is reduced, and also due to an increase

in the observed access latency to the L2 shared cache and correspondingly any

bus serviced cache-to-cache transfers. In particular the maximum speed-up for

the diminishing benchmarks, matrixMult, lu, series and sor, decreases by

between 18 and 50% when the bus speed is halved, and between 42 and 73%

when the bus speed is quartered. Most of the performance is lost during slower

accesses made to the L2 shared cache, as the data sets used are sufficiently large

to overflow the private level 1 caches. The near-linear benchmarks, fibonacci

and crypt, are less effected, however, peak performance is still observed to drop

by between 4 and 21%. The limited benchmarks, jacobi, integ and mergeSort,

are marginally affected by wire-delay, this is because they are more fundamentally

Chapter 7. Results and Analysis 145

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.18: Peak performance with the level 1 bus clock set at 1
2 and 1

4 of the clock
speed, relative to the bus clocked at the same speed as the core.

limited by memory saturation.

7.4.3 Bus Contention

Contention for the level 1 bus increases with the number of cores attached. The

more cores, and hence more private caches that there are arbitrating, the longer

any one cache is likely to have to wait until it is granted access to place a transac-

tion on the bus. As mentioned previously, in Section 3.1.5, bus slots are granted

in least recently used order to the L1 caches, with overall priority given to the L2

cache.

Figure 7.19, shows the peak and average utilisation of the level 1 shared bus

which, for all of the benchmarks, increases with the number of cores. When the

number of attached cores reaches 64 and 128, for the majority of the benchmarks,

the average bus utilisation is well above 60% and the peak utilisation is over 90%.

This accounts for the performance tail off seen in the diminishing benchmarks, as

increasing the number of cores speeds up the processing of data, but the latency

of access to that data also increases. For the near-linear benchmarks the bus

utilisation is very low, crypt below 5% and fibonacci below 15%.

The corresponding utilisation of the channels between the L2 and L3 cache, Figure

Chapter 7. Results and Analysis 146

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.19: Level 1 bus utilisation, average and peak during the benchmark phase,
in a single bus CMP.

7.20, never peak above 60% for any of the benchmarks, and for the majority the

average utilisation is below 40%. This illustrates that the majority of contention

on the L1 bus is for access to the shared level 2 cache or for cache-to-cache

transfers.

7.4.4 Memory Saturation

Having looked at wire delay and bus contention, the third factor that can impact

on the scaling performance of an architecture is memory saturation. This occurs

when all of the cores are executing a data intensive benchmark leading to a

bottleneck at the memory controller. This bottleneck leads to queue congestion

and is observable as the number of transactions that receive nacks increases.

Such saturation is experienced by the limited benchmarks, jacobi, integrate

and mergeSort. As the number of cores increases past 16 the average bus utilisa-

tion exceeds 90%, however over 80% of these transactions are negatively acknowl-

edged, as shown in Figure 7.21. For this reason, none of the limited benchmarks

are able to achieve greater speed-ups when the number of cores increases past 16.

Chapter 7. Results and Analysis 147

7.4. Single Bus Chip Multiprocessor Architecture

Figure 7.20: Utilisation of bandwidth between the L2 and L3 caches, in a single bus
CMP.

Figure 7.21: Peak L1 bus nacks.

Chapter 7. Results and Analysis 148

7.5. Cluster Architectures

Figure 7.22: Three chip multi-cluster (CMC) architectures are assessed, a) bus-tree,
b) full crossbar and c) a bus-crossbar hybrid.

7.5 Cluster Architectures

After illustrating the limitations of a single bus CMP, this section looks at divid-

ing the processing cores into multiple on-chip clusters and additionally increasing

the bandwidth to memory. Three architectures are simulated, illustrated in Fig-

ure 7.22, a chip multi-cluster (CMC) connected by a tree of buses, bus-tree, a

CMC connected by crossbar switches, full crossbar, and a CMC connecting the

cores with a shared bus, and connected at the cluster level by a crossbar switch,

bus-crossbar. It should be noted that both the full crossbar and bus-crossbar ar-

chitectures introduce three additional banked memory controllers, and therefore

have four times the available bandwidth to memory.

Each architecture maintains the parameters presented in Figure 7.8. Where the

architecture is divided into two and four clusters, the L2 cache size is also divided

by two and four, such that the overall on-chip cache remains constant.

Clustering multiple-cores together and then building a hierarchy of clusters pro-

vides yet another level of abstraction at which to build a many-core architecture.

The division into clusters also reduces the number of cores being serviced by

any one shared cache, and so either the bus connecting them can be shorter and

clocked at higher speeds or a smaller crossbar structure can be used. A disad-

vantage to clustering is that an additional level of latency is introduced when

multiple cores in different clusters frequently share data.

Chapter 7. Results and Analysis 149

7.5. Cluster Architectures

Figure 7.23: CMC scaling - fibonacci.

7.5.1 Speed-up

For each of the three architectures the same benchmarks were again executed to

assess their scalability, the benchmark scaling graphs are presented in Figures 7.23

– 7.31. Each architecture was configured in a single cluster configuration, which,

for the bus-tree CMC, is analogous to the single-bus CMP, and two and four

cluster configurations. The clusters are simulated in symmetrical configurations,

such that the total number of cores and shared cache is divided equally between

the clusters.

Figure 7.32 shows the peak performance achieved by each of the cluster archi-

tectures for each benchmark normalised to the peak performance of the single

bus CMP architecture, with the bus speed set at the same speed as the core

frequency. This scenario is perhaps unfair because a single bus connecting 128

cores at the core clock speed is considered infeasible, however, it does provide a

best-case single bus to compare each cluster architecture configuration against.

Chapter 7. Results and Analysis 150

7.5. Cluster Architectures

Figure 7.24: CMC scaling - matrixMult.

Figure 7.25: CMC scaling -jacobi.

Chapter 7. Results and Analysis 151

7.5. Cluster Architectures

Figure 7.26: CMC scaling - lu.

Figure 7.27: CMC scaling - integrate.

Chapter 7. Results and Analysis 152

7.5. Cluster Architectures

Figure 7.28: CMC scaling - mergeSort.

Figure 7.29: CMC scaling - series.

Chapter 7. Results and Analysis 153

7.5. Cluster Architectures

Figure 7.30: CMC scaling - sor.

Figure 7.31: CMC scaling - crypt.

Chapter 7. Results and Analysis 154

7.5. Cluster Architectures

7.5.2 Bus-Tree Cluster

Looking first at the performance of the bus-tree cluster architecture, Figure 7.22

(a), the general trend is that the introduction of additional clusters decreases the

peak speed-up for most of the benchmarks. As the threads of each benchmark

are spread across multiple clusters, and are sharing data, the additional latency

in accesses to this data is impacting on the performance. The benchmarks that

suffer from this increased latency the most are fibonacci and lu. The peak

performance is reduced by 18 and 27% for two clusters and 24 and 32% for

four clusters respectively. These reductions, however, are compared to the fastest

clocked bus, and referring back to Figure 7.18, fibonacci performance is reduced

by 21% when wire delay reduces the bus speed to 1
4

and lu performance is reduced

by 42%. Taking these wire delay reductions into account for the single cluster

architecture the disparity is reduced to to -6% for fibonacci and +10% for lu

on a four cluster machine.

Four of the benchmarks, jacobi, integrate, mergeSort and series benefit

from the division into multiple clusters. Referring back to Figure 7.19 it is these

four benchmarks that have peak and average bus utilisation above 80% when the

number of cores is either 64 or 128. The addition of multiple clusters reduces

the access contention on the level 1 bus, as there are fewer cores attached, and

correspondingly reduces the access latency to the level 2 shared cache. For series

and integrate, reduced level 1 bus contention sees the peak performance increase

by 1.5 and 1.85 times. Prior work by Nayfeh et al. [116] looking at the effects of

clustering in small-scale shared-memory multiprocessors also showed a benefit in

performance due to a reduction in bus contention.

7.5.3 Crossbar Cluster

The second architecture presented, the crossbar architecture, Figure 7.22 (b), is

simulated with a full n × 4 crossbar, where n is the number of cores in each

cluster, and 4 is the number of banks in the shared L2 cache. Each L2 cache

is connected by a (c × 4) × n crossbar, c being the number of clusters, to an

L3 cache which is also divided into 4-banks. Each L3 bank is connected to a

separate memory controller. The addresses are divided into the four banks at the

cache-line, 32-byte, granularity using the offset and mask show in Equation 7.6.

Chapter 7. Results and Analysis 155

7.5. Cluster Architectures

Figure 7.32: Peak speed-up achieved, by the three CMC architectures, normalised to
the performance of bus-tree(1)(the single bus CMP).

bank = ((address >>> 5) & 3) (7.6)

Dividing the L2 and L3 caches into banks and increasing the number of memory

controllers to 4, provides a fourfold increase in the available memory hierarchy

bandwidth. Additionally the full crossbar between the cores and the banks of the

L2 cache provides an approximately fourfold increase in the number of coherence

transactions that can be processed3. In the single cluster configuration, this

architecture closely resembles the Niagara architecture [81] with the addition of

L3 caches.

This has a significant impact on the scaling of the benchmarks jacobi, integ,

and mergeSort which, as mentioned previously in Section 7.4.4, are limited in a

single bus CMP due to memory bandwidth saturation. In particular the integ

peak speed-up is increased by over 6 times, shown in Figure 7.32. This is due to

both a combination of a fourfold increase in the memory bandwidth but also the

reduction in level 1 bus contention. mergeSort and jacobi also see greater than

two-fold increases in peak performance.

3The increase in coherence transactions that can be processed across the crossbar peaks at
four times the amount across the bus, however in certain cases additional queueing is necessary.
In particular to achieve a broadcast, for invalidation say, requires the ability to send a signal
to all cores holding the line, or failing that stall until the relevant channels inside the crossbar
are free.

Chapter 7. Results and Analysis 156

7.5. Cluster Architectures

The additional latency associated with sharing data across clusters decreases the

performance, by as much as 40%, for mergeSort, as the total number of cores is

divided into four clusters.

7.5.4 Hybrid Bus-Crossbar Cluster

The third simulated cluster architecture, the bus-crossbar 7.22 (c), connects the

private L1 caches to the four banks of a shared L2 cache using a single bus,

and connects the L2 caches to the L3 cache banks and memory controllers using

full crossbar switches. The bus arbitration is modified, so that while priority is

generally given to the L2 cache, each bank is selected in least recently used (LRU)

order.

The hybrid architecture was simulated for two reasons. First, it enables distinc-

tion between the benefit of additional memory bandwidth and that of increased

transaction throughput. By maintaining a bus to connect the private L1 caches

to the L2 caches, bus contention in the absence of memory saturation can be more

readily observed. Secondly, the cost of a full crossbar interconnect in terms of

area has been shown to reduce chip real-estate otherwise available for additional

cores or cache [84]. The performance achieved using the hybrid bus-crossbar

architecture can therefore be compared to that of the full crossbar architecture.

The series benchmark running on the hybrid bus-crossbar architecture clearly

demonstrates that even though the memory bandwidth is quadrupled beyond the

L2 cache, the primary limiting factor to performance gains over the single bus

CMP is contention between the L1 caches and the shared L2 cache. Dividing

the number of cores between two clusters provides a 1.8 times increase in peak

performance, and division into four clusters a 2.7 times increase. Even though

the primary limiting factor is bus contention, the hybrid architecture provides an

additional 80% speed-up over the clustered bus-tree architecture.

In general the peak performance achieved using the hybrid bus-crossbar cluster

outperforms that of the bus-tree architecture and is within 10% of that of the full

crossbar architecture. Assuming that larger caches could be added in the absence

of full crossbars between the L1 and L2 caches, the performance discrepancy

between a crossbar and hybrid CMC architectures will likely drop further. Where

Chapter 7. Results and Analysis 157

7.6. Locality Aware Task Distribution

the performance drops, as the cores are divided amongst additional clusters, for

both the full crossbar and the hybrid bus-crossbar architectures the decrease is

less than that of the respective decreases in the bus-tree architecture.

7.6 Locality Aware Task Distribution

As outlined in Chapter 6, dividing the total number of cores in a CMP architecture

into multiple clusters, where each cluster contains at least one shared level of

cache, introduces an additional form of locality. Cluster locality, the notion of

sharing data internally within a cluster, can be exploited to utilise the shared level

of caches within each cluster efficiently. To investigate the benefits of exploiting

this, the locality-aware task distribution mechanism described in Section 6.2.4

was implemented within the cycle-level simulation platform.

Three experiments were used to assess the benefits of locality-aware task distribu-

tion with respect to synchronisation, isolation and affinity. A simple framework

implemented within the Jamaica port of the Jikes RVM was developed to allow

software to assign a cluster affinity to each application thread generated during

the execution of a benchmark. These application threads are either distributed

using Jamaica’s token ring task distribution mechanism, as described in Section

3.1.3, or distributed based on the cluster affinity assigned to them. Cluster affinity

is assigned to a Java thread by calling the method setClusterAffinity, as listed

in Figure 7.33. This call instructs the virtual machine to pass an affinity value

along with the token request TRQ instruction whenever the thread is scheduled

on to another VM Processor. On execution of the TRQ instruction the hardware

attempts to locate a token inside the required cluster. For each set of experiments

the simulated architectures were configured to assess the effects of locality-aware

task distribution over a range of both clusters and cores per cluster.

7.6.1 Synchronisation Locality

To assess the cost of synchronisation in a chip multi-cluster architecture the low-

level barrierBench benchmark is used. Two cluster architectures are assessed,

the bus-crossbar hybrid CMC and the full crossbar CMC. For each architecture

Chapter 7. Results and Analysis 158

7.6. Locality Aware Task Distribution

int level = 2; //look for clusters below the L3 cache.

int numberOfClusters = VM_Scheduler.getClusters(level);

for(int i = 0; i < 16; i++) {

int clusterId = i % numberOfClusters; //divide the threads amongst the clusters

th[i] = new Thread(benchmarkRunner[i]);

VM_Scheduler.setClusterAffinity(th[i], clusterId);

}

Figure 7.33: Setting a cluster affinity to Java threads.

the task distribution mechanism is either configured to distribute tasks based on

the cache-distance metric passed through a TRQ instruction, locality-aware dis-

tribution, or to distribute tasks to any idle contexts within the system, default

distribution. For each simulation several instances of the barrierBench bench-

mark are invoked, such that the number of instances is equal to the number of

clusters. Figure 7.34 shows the results from these experiments.

Figure 7.34: The effect on overall performance running multiple instances of the
barrierBench benchmark across multiple cluster architectures using locality-aware dis-
tribution.

Restricting each barrierBench instance into a single cluster increases the overall

performance by a factor of up to 2. This improvement, using the locality aware

distribution scheme, is achieved as almost all synchronisation in the benchmark

occurs within a cluster and so the latency of access is reduced.

Chapter 7. Results and Analysis 159

7.6. Locality Aware Task Distribution

7.6.2 Application Isolation

A potential benefit of dividing the on-chip caches and cores into clusters is that

applications can be isolated within a single cluster. Potentially this can improve

cache performance as all cores within a cluster can benefit from locality of applica-

tion code and data. The effects of deconstructive sharing from other application

threads can also be eliminated. To assess the effect of isolating applications the

hybrid and full-crossbar CMC architectures were once again used in simulation.

For each cluster in the architecture a separate instance of the sor benchmark

is invoked, each thread generated by the application is restricted, through the

locality-aware distribution mechanism, to run inside the cluster of the initial sor

application thread. The work of each sor benchmark is divided into a number of

threads, such that there is a thread for each core inside the cluster. Figure 7.35

shows the results from these experiments.

Figure 7.35: The effect on overall performance running multiple instances of the sor

benchmark across multiple cluster architectures using locality-aware distribution.

As was shown in Section 7.6.1, isolating applications into clusters can improve

performance as the shared synchronised data was confined in each clusters shared

L2 cache. By confining each instance of the sor application into a separate cluster,

and each instance’s threads within that same cluster, data sharing in the L2

caches is improved and inter-cluster coherence traffic is reduced. This improves

Chapter 7. Results and Analysis 160

7.6. Locality Aware Task Distribution

the performance of multiple sor applications running on the CMC architectures

by up to 1.29 times.

7.6.3 Application Restructuring

Although isolating an application within a single cluster in a CMC architecture

can improve performance, by increasing the cache efficiency and reducing access

latencies to shared data, there will be occasions when a single application should

be executed across multiple clusters or indeed the whole chip to maximise perfor-

mance. As shown in Figure 7.32 there is an associated decrease in performance

for most benchmarks as the number of clusters is increased. This performance

decrease is mainly caused by the additional latency when accessing shared data

across clusters. However, when careful consideration is given to the distribution

of work inside a benchmark the latency of accessing shared data across multiple

clusters can be significantly reduced. Most data sharing between threads can be

confined to the cluster they share, reducing the access latency and increasing the

performance.

To demonstrate this the sor benchmark is restructured to minimise sharing of

data between threads on different clusters. The initial sor algorithm divides the

grid, over which the successive over relaxation is calculated, into equal sized strips

such that one strip is given to each worker thread, see Figure 7.36 (a). During

each step of the algorithm, either the red or black elements are calculated by

reading the values of the four nearest neighbours and the element itself. Given

a sufficiently large sized grid, good parallelism can be achieved. Each thread is

only modifying the black (red) elements in one strip and the value is calculated

from the four nearest red (black) neighbours which are not being modified.

In a CMC architecture a näıve distribution may place adjacent strips into separate

clusters, Figure 7.36 (b). Accessing the updated values of neighbouring elements

for all strips requires communication across the top level network, which has

increased latency and lower bandwidth. However, by structuring the application

such that, as far as possible, adjacent strips remain on cores within the same

cluster, Figure 7.36 (c), access to data across the slowest communication paths

in the architecture is reduced.

Chapter 7. Results and Analysis 161

7.6. Locality Aware Task Distribution

Figure 7.36: The sor benchmark: (a) the grid is split into strips each of which is
distributed to a worker thread (b) pathological distribution can see all threads having to
communicate across the higher latency bus to access data in another thread. (c) optimal
division of the adjacent threads into cores within the same cluster. Communication
across the top-level bus is restricted to the overlapping data shared between threads 3
and 4.

Figure 7.37 shows the relative increase in performance using locality-aware thread

distribution, compared with using the default distribution scheme. The locality-

aware scheme first attempts to distribute threads to cores that are idle within

a defined cluster. If a core within the defined cluster is not found the default

distribution is employed. In the default distribution threads are distributed to

any idle core, or in the presence of no idle cores are executed on the context

attempting the distribution.

For all of the cluster configurations simulated, the locality-aware thread distribu-

tion scheme decreases the total execution time of the benchmark. The relative

performance of the scheme increases as the number of cores per cluster is in-

creased. This is an expected result, as increasing the cores, and hence the threads

in the benchmark, also increases the likelihood in the default scheme that adjacent

threads, in the algorithm of the sor benchmark, will be distributed to separate

clusters. Data sharing between clusters suffers from an increased communica-

tion latency and reduced bandwidth and becomes a performance bottleneck if

significant.

Table 7.3 lists the total coherence traffic, the total number of four-phase transac-

tions and the average thread distribution distance4 for the inter-cluster network

4The average sharing level distance that threads are distributed to. The average is calculated

Chapter 7. Results and Analysis 162

7.6. Locality Aware Task Distribution

C
on

fi
gu

ra
ti

on
T

ot
al

T
ra

n
sa

ct
io

n
s

T
ot

al
F

ou
r-

p
h
as

e
T

ra
n
sa

ct
io

n
s

A
ve

ra
ge

D
is

tr
ib

u
ti

on
D

is
ta

n
ce

R
el

at
iv

e
S
p

ee
d
-u

p
C

lu
st

er
s

C
or

es
D

ef
au

lt
L

o
ca

li
ty

D
iff

.
D

ef
au

lt
L

o
ca

li
ty

D
iff

.
D

ef
au

lt
L

o
ca

li
ty

D
iff

.
u
si

n
g

lo
ca

li
ty

sc
h
em

e
2

4
45

31
32

4
10

95
51

0
4.

13
×

24
57

91
10

43
95

2.
35
×

1.
12

80
1

1.
03

06
5

1.
09
×

1.
08
×

2
8

50
31

43
0

94
77

55
5.

30
×

29
12

40
10

99
61

2.
64
×

1.
05

52
6

0.
96

44
09

1.
09
×

1.
11
×

2
16

57
24

97
4

11
40

43
3

5.
02
×

63
68

14
12

60
99

5.
05
×

0.
95

01
21

0.
87

02
01

1.
09
×

1.
15
×

2
32

61
20

99
9

92
79

95
6.

59
×

10
57

51
1

13
46

13
7.

85
×

0.
82

72
52

0.
74

00
46

1.
11
×

1.
26
×

4
2

59
65

03
5

20
30

90
6

2.
93
×

30
19

81
18

04
73

1.
67
×

1.
41

10
4

1.
02

04
1.

38
×

1.
06
×

4
4

71
11

35
4

18
11

58
8

3.
92
×

40
54

90
19

10
38

2.
12
×

1.
17

02
9

1.
00

62
1

1.
16
×

1.
07
×

4
8

75
57

02
3

13
74

52
2

5.
49
×

80
80

84
16

86
85

4.
79
×

1.
00

46
7

0.
92

18
74

1.
08
×

1.
15
×

4
16

12
29

58
26

25
99

45
4

4.
73
×

19
34

74
9

31
05

33
6.

23
×

0.
90

50
64

0.
79

75
26

1.
13
×

1.
27
×

8
2

75
92

59
1

26
37

46
8

2.
87
×

46
60

29
30

99
51

1.
50
×

1.
42

53
7

1.
00

75
7

1.
41
×

1.
05
×

8
4

90
01

94
5

19
79

88
3

4.
54
×

91
80

22
23

35
09

3.
93
×

1.
14

58
2

0.
94

69
6

1.
20
×

1.
12
×

8
8

13
12

27
91

28
18

09
6

4.
65
×

21
02

58
1

38
70

41
5.

43
×

0.
95

86
56

0.
80

14
04

1.
19
×

1.
29
×

Table 7.3: Locality-aware task distribution: reduction in coherence traffic, four phase
transactions and the average distribution of threads.

Chapter 7. Results and Analysis 163

7.7. Chip Multi-Cluster Design Considerations

Figure 7.37: The effect on overall performance running multiple instances of the sor

benchmark across multiple clusters using locality-aware distribution.

in the full-crossbar cluster architecture, shown in Figure 7.22 (b). The results

are shown for both the default and the locality-aware distribution scheme. The

difference, Diff., column shows the reduction achieved using the locality-aware

scheme.

Using the locality-aware distribution, a reduction in total coherence traffic and

four phase transactions is observed on the inter-cluster bus for all configura-

tions. Correspondingly a reduction in the average thread distribution distance

is observed at each processor on executing a TRQ instruction. These two factors

account for the improved performance using the locality-aware scheme.

7.7 Chip Multi-Cluster Design Considerations

The previous section presented results showing that performance increases are

achievable through restructuring of an application and use of a locality aware

thread distribution scheme. However, Section 7.5 illustrated that increasing the

number of clusters often leads to decreased performance when data is frequently

over all TRQ operations. A value of 0 is added to the cumulative value if the thread remains in
the same context, 1 if the threads remain in the same processor, 2 in the same cluster, 3 outside
the cluster. Further explanation can be found in Chapter 6.

Chapter 7. Results and Analysis 164

7.7. Chip Multi-Cluster Design Considerations

shared across clusters. Equally, for some configurations where the number of

cores is small, a CMC architecture may actually perform worse than a single bus

CMP architecture.

In order to gain some insight into the design considerations required for utilising

CMC architectures, the performance of a single cluster bus-crossbar architecture,

see Figure 7.22 (c), is compared to the performance of a set of full-crossbar and

hybrid bus-crossbar CMC architectures, see Figure 7.22 (b) and (c). Each archi-

tecture is configured with an equal number of on-chip memory controllers, and

an equal amount of total cache. For the single cluster bus-crossbar architecture,

the inter-core bus is clocked at 1
4

of the core clock.

Single Bus CMP Configuration Hybrid Full Crossbar
(1

4
bus) cycles cluster cores cycles speed-up cycles speed-up

180520129 2 4 196444747 0.92× 196803387 0.92×
104599844 2 8 90385345 1.15× 91011825 1.15×
88412428 2 16 53418809 1.66× 54501857 1.62×
92687948 2 32 26846465 3.45× 26732865 3.47×
180520129 4 2 305976453 0.59× 306313453 0.59×
104599844 4 4 116654491 0.89× 116536067 0.90×
88412428 4 8 56110859 1.57× 54547371 1.62×
92687948 4 16 43739515 2.11× 39954355 2.32×
104599844 8 2 171528459 0.61× 170192259 0.61×
88412428 8 4 65979083 1.34× 66460291 1.33×
92687948 8 8 40100163 2.31× 39831179 2.33×

Table 7.4: Performance comparison between the locality-aware optimized sor bench-
mark running on the full crossbar CMC architecture, and the sor benchmark running
on a single inter-core bus CMP, with 4 memory controllers: a single cluster version of
the bus-crossbar hybrid (see Figure 7.22 (c)).

The sor benchmark is executed on each architecture. The results presented

in Table 7.4, compare the execution of the optimized sor benchmark on each

clustered architecture against the execution on the single cluster bus-crossbar

hybrid architecture, containing the same total number of cores.

Where the total number of cores is 8 or 16 the single bus architecture generally

out performs the CMC architecture, for the sor benchmark. There are several

design considerations here. Access latency to shared data is uniform for all of the

cores in the single bus architecture. Additionally bus contention is less than 40%,

see Figure 7.19, and is therefore not a limiting factor. The CMC architectures

perform poorly as latency to shared data is increased when sharing occurs across

Chapter 7. Results and Analysis 165

7.8. Summary

clusters.

For 32 and 64 cores, however, the CMC architectures always out perform the

single bus architecture. The increased latency of access to the level 2 cache,

reduced bus bandwidth and high bus contention levels, when the bus speed is

reduced, impact on the performance attainable from the sor benchmark in the

single bus CMP.

Recent studies have shown that there is also a need to consider the cost in area of

on-chip interconnects [84] and the efficiency of cache configurations [72, 69] when

trying to optimise CMP performance.

7.8 Summary

This chapter has evaluated, through cycle-level simulation, the coherence protocol

introduced in Chapter 4 implemented using the hardware support introduced in

Chapter 5. The architecture and protocol have been exercised using 10 represen-

tative parallel benchmarks. A single bus CMP was simulated and demonstrated

that wire delay and bus contention both inhibit scaling in large, greater than 32

core, configurations.

Three CMC architectures were simulated, demonstrating the protocol and ar-

chitecture’s capability of maintaining coherence across multiple clusters. The

architectures are able to exploit more parallelism from the benchmarks than the

single-bus CMP. The architectures reduce the effect of wire delay by decreasing

the span of the inter-core bus or crossbar. Bus contention is also reduced as the

number of cores connected to each inter-core bus, or to the banked cache in a

crossbar, decreases. The cluster architectures also demonstrated the necessity for

multiple memory controllers in order to avoid memory saturation.

Finally a locality-aware thread distribution scheme, introduced in Chapter 6,

was demonstrated to reduce the cost of synchronisation and deconstructive cache

sharing by isolating separate applications inside separate clusters. Furthermore

restructuring the sor benchmark demonstrated the ability to increase perfor-

mance by introducing simple locality-aware optimisations into the benchmark.

These optimisations enable up to 3.4 times improvement in performance, when

Chapter 7. Results and Analysis 166

7.8. Summary

executing a restructured benchmark on a CMC architecture, over that of a wire

delay limited single bus CMP.

Chapter 7. Results and Analysis 167

CHAPTER 8

Conclusions

As the number of transistors integrated onto a silicon chip continues to grow, so

the potential to incorporate more processing cores becomes a reality. Current

CMP architectures contain a relatively small number of processing cores, up to

eight, and hardware support for up to 32 concurrent threads. It is realistic, then,

to expect that a trend of increasing the number of processing cores will emerge

in an attempt to maximise both the power and performance efficiency of the

increasing single chip transistor budget.

Currently, however, there is a limited understanding of the effects that incorpo-

rating tens of processing cores will have on the cache, memory and interconnect

within a single chip architecture. This thesis represents an investigation into

the effects that scaling, into the hundreds of cores, has on cache efficiency, in-

terconnect utilisation and memory saturation. With the limits imposed through

wire-delay in modern process technologies, and the need to bridge the growing

design complexity gap, a chip multi-cluster (CMC) architecture is proposed as a

viable design solution.

The caches in the CMC architecture maintain coherency using a multi-level cache

coherence protocol, presented in Chapter 4 and hardware extensions introduced

168

8.1. Contributions

in Chapter 5. An extension to the instruction set architecture, Chapter 6, enables

software optimisations that are able to distribute work across a CMC architecture

to exploit locality.

8.1 Contributions

The thesis outlined five contributions to knowledge:

A Multi-level Coherence Protocol

A protocol capable of maintaining shared memory cache coherence over multiple

levels of on-chip shared cache was presented. The protocol is based on four-

phase transactions; request, action, reaction, response. It generalises sufficiently

to maintain coherence across both bus and crossbar interconnects. An explicit

pending state in the protocol is used to prevent unnecessary coherence traffic

propagating onto lower level buses while four-phase transactions are in flight.

Hardware Support for Multi-Level Coherence

Cache hardware required to support a multi-level coherence protocol was pre-

sented. In particular a core- and memory-bound queueing systems, necessary

at each shared cache, were outlined. The addition of multiple levels of shared

cache introduces flow control and deadlock issues into the cache hierarchy. Using

dual-channel, sinkable and non-sinkable queues, deadlock is avoided by breaking

circular chains of dependence. A novel passive and active queueing mechanism

was presented that allows reordering of non-sinkable messages to prevent head of

queue blocking.

Locality-Aware Task Distribution

An extension to the instruction set architecture was introduced allowing software

to exploit cache locality by controlling the affinity of distributed tasks. The

extension allows software to distribute threads to a core anywhere within the

Chapter 8. Conclusions 169

8.1. Contributions

architecture based on a cache-distance metric and token identifier. The token

identifiers are used to encode the cache-distance metric providing a simple method

by which threads can be distributed across the chip.

CMP/CMC Simulation Platform

A simulation platform was developed in order to undertake the work contained

within this thesis. The simulation platform is capable of simulating CMP and

CMC architectures, interconnected by bus or crossbar interconnects, containing

multiple cache levels, and many hundreds of cores or contexts.

Cycle-level implementations of the coherence protocol, the cache hardware sup-

port and the locality aware task distribution scheme were incorporated into the

simulation platform to enable the experimental analysis undertaken in this thesis.

Fully Cache Coherent, Multithreaded Study

Finally, while other research has explored the area of large-scale CMP architec-

tures [72, 69] these studies have focused on exploration and trade-offs specifically

in the cache design space. The studies were based on statistical analysis using

synthetic trace-driven simulations. In contrast the investigation undertaken in

this thesis studies effects on cache utilisation, memory saturation, and intercon-

nect utilisation. The performance of the simulated large-scale CMPs and CMCs

is attained using real multi-threaded Java applications each of which is run to

completion, maintaining complete cache coherence.

The study has shown that CMC architectures provide a feasible approach to the

design of future many-core architectures. Multiple CMPs can be replicated across

a chip providing another level of abstraction in the design of an architecture.

CMC architectures are also able, using task distribution optimisations, to out

perform wire delay limited single bus architectures.

Chapter 8. Conclusions 170

8.2. Future Work

8.2 Future Work

The design space for CMP and CMC architectures is vast and the work conducted

as part of this thesis has only been able to address a small portion of it, creating

many opportunities for future research. The following are some areas where future

research projects might be conducted.

Cache and Protocol Optimisations

The multi-level coherence protocol could benefit from several optimisations. Re-

moving the necessity for line inclusion by maintaining a tag–only cache or using

Bloom filters [15] for lines that are either stale or shared would reduce the level

of redundant lines stored in each cache, potentially improving their efficiency.

Support for asymmetric block sizes between levels could better utilise memory

bandwidth especially when the number of cores increases, however the impact

this would have in an inclusive cache hierarchy is unclear.

In a large multi-level, CMC architecture there is even more potential for exploit-

ing dynamic cache partitioning [128] to utilise each level of shared cache more

efficiently. A more thorough investigation into the cost of inclusion through ex-

ploration of the cache size, associativity and degree of banking in a coherent

environment could lead to a better understanding of the best configurations for

constructing multi-level cache hierarchies.

Course grained coherence tracking [112, 25] could be introduced to the system

in order to reduce the amount of inclusion within the higher level shared caches.

Such a scheme may allow higher level caches to maintain state associated with

larger blocks of memory reducing the amount of information stored at each level.

The scheme would clearly need to be adaptive to avoid mass invalidations.

Adaptive coherence protocols [35] which attempt to identify migratory data, data

which is consistently read and then written, may provide additional benefits in

multi-level hierarchies. Data identified as being migratory can be tracked by

additional states in the cache and on the initial read the line is serviced in a

modified state. This reduces the traffic as the initial downgrade of the line is

avoided.

Chapter 8. Conclusions 171

8.2. Future Work

Additionally a more rigorous proof of the coherence protocol and hardware using

a formal specification language, such as TLA+[88], would help to test and check

the correctness of the system.

Dynamic Exploitation of Locality-Aware Distribution

Utilising locality-aware task distribution within a dynamic execution environ-

ment, such as a virtual machine, could provide a more optimal utilisation of the

shared caches and interconnect within a CMC, without the need for application

restructuring.

The work in this thesis has only evaluated symmetric homogeneous multi-cluster

architectures. Prior research has shown the benefit of heterogenous CMPs [83],

this work could be extended in the context of CMC architectures by studying

both heterogeneous cores and heterogeneous clusters. Dynamic scheduling utilis-

ing locality-aware task distribution could be used to distribute simple loop level

parallelism to smaller simpler cores under small shared caches, and distribute

complex sequential code to more complex cores with larger caches.

Hardware Support for Transactional Memory

Work extending the current simulation models of the architecture to support

transactional memory (TM) [65] is currently ongoing. Supporting TM in a multi-

cluster hierarchy is an area of research that has not currently been explored, most

hardware TM systems extend single bus snooping protocols. However the same

limitations imposed by wire-delay within single bus CMP architectures will apply

to the scaling of TM architectures relying on single bus snooping protocols.

Chapter 8. Conclusions 172

Bibliography

[1] JikesTMResearch Virtual Machine website, Accessed last 2007. http://jikesrvm.org.

[2] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B.H. Lim,
G. Maa, and D. Nussbaum. The MIT Alewife machine: A Large-Scale Distributed-
Memory Multiprocessor. In Workshop on Scalable Shared Memory Multiprocessors, 1991.

[3] A. Aiken and A. Nicolau. Optimal loop parallelization. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 308–317, 1988.

[4] G. Amdahl. Validity of the single-processor approach to achieving large-scale computer
capabilities. In AFIPS Spring Joint Computer Conference, volume 30, pages 483–485,
1967.

[5] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie. Unbounded
transactional memory. In International Symposium on High-Performance Computer Ar-
chitecture, pages 316–327, 2005.

[6] C. Anderson and J.L. Baer. A multi-level hierarchical cache coherence protocol for mul-
tiprocessors. In International Parallel Processing Symposium, pages 142–148, 1993.

[7] D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo. The IBM System/360 Model 91: Ma-
chine Philosophy and Instruction-Handling. IBM Journal of Research and Development,
11(1):8–24, 1967.

[8] J. Archibald and J.L. Baer. Cache Coherence Protocols: Evaluation Using a Multipro-
cessor Simulation Model. ACM Transactions on Computer Systems, 4(4):273–298, 1986.

[9] W.C. Athas and C.L. Seitz. Multicomputers: message-passing concurrent computers.
IEEE Computer, 21(8):9–24, 1988.

173

[10] T.M Austin and G.S Sohi. Dynamic dependency analysis of ordinary programs.
SIGARCH Computer Architecture News, 20(2):342–351, 1992.

[11] J.L. Baer and W.H. Wang. On the inclusion properties for multi-level cache hierarchies.
In International Symposium on Computer Architecture, pages 73–80, 1988.

[12] U.K. Banerjee. Loop Parallelization. Kluwer Academic Publishers Norwell, MA, USA,
1994.

[13] L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture based on single-chip
multiprocessing. In International Symposium on Computer Architecture, pages 282–293,
2000.

[14] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Tech-
nical Conference, FREENIX Track, pages 41–46, 2005.

[15] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[16] W. Blume and R. Eigenmann. Performance Analysis of Parallelizing Compilers on the
Perfect Benchmarks Programs. IEEE Transactions on Parallel and Distributed Systems,
3(6):643–656, 1992.

[17] M.T. Bohr. Interconnect scaling-the real limiter to high performance ULSI. In Interna-
tional Electron Devices Meeting, pages 241–244, 1995.

[18] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0. ACM SIGARCH
Computer Architecture News, 25(3):13–25, 1997.

[19] D. Burger and J.R. Goodman. Billion-Transistor Architectures. IEEE Computer,
30(9):22–28, 1997.

[20] D. Burger and J.R. Goodman. Billion-Transistor Architectures: There and Back Again.
IEEE Computer, 37(3):22–28, 2004.

[21] D.R. Butenhof. Programming with Posix R©Threads. Addison-Wesley Professional, 1997.

[22] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single instruc-
tion stream parallelism is greater than two. In International Symposium on Computer
Architecture, pages 276–286, 1991.

[23] D. Callahan, K. Kennedy, and K. Porterfield. Software prefetching. In International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 40–52, 1991.

[24] T.J. Callahan and J. Wawrzynek. Instruction-Level Parallelism for Reconfigurable Com-
puting. In International Workshop on Field-Programmable Logic and Applications, pages
248–257, 1998.

[25] J.F. Cantin, J.E. Smith, M.H. Lipasti, A. Moshovos, and B. Falsafi. Coarse-Grain Coher-
ence Tracking: RegionScout and Region Coherence Arrays. IEEE Micro, pages 70–79,
2006.

Bibliography 174

[26] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-based cache coherence in
large-scale multiprocessors. IEEE Computer, 23(6):49–58, 1990.

[27] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-Performance Throughput Com-
puting. IEEE Micro, 25(3):32–45, 2005.

[28] T. Chen. An effective programmable prefetch engine for on-chip caches. In International
Symposium on Microarchitecture, pages 237–242, 1995.

[29] D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Paradigm: a highly scalable shared-memory
multicomputer architecture. IEEE Computer, 24(2):33–46, 1991.

[30] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for exploiting
memory-level parallelism. In International Symposium on Computer Architecture, pages
76–87, 2004.

[31] F. Chow and J. Hennessy. Register allocation by priority-based coloring. In SIGPLAN
Symposium on Compiler Construction, pages 222–232, 1984.

[32] L. Codrescu, D.S. Wills, and J. Meindl. Architecture of the Atlas Chip-Multiprocessor:
Dynamically Parallelizing Irregular Applications. IEEE Transactions on Computers,
50(1):67–82, 2001.

[33] E.G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Computing Sur-
veys, 3(2):67–78, 1971.

[34] T.P.P. Council. TPC Benchmark C Specification, 2005.

[35] A.L. Cox and R.J. Fowler. Adaptive cache coherency for detecting migratory shared data.
In International Symposium on Computer Architecture, pages 98–108, 1993.

[36] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko. Compiling
Java just in time. IEEE Micro, 17(3):36–43, 1997.

[37] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In International Confer-
ence on Parallel Processing, pages 836–844, 1986.

[38] V. De and S. Borkar. Technology and design challenges for low power and high per-
formance. In International Symposium on Low Power Electronics and Design, pages
163–168, 1999.

[39] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H. Scale. AltiVec extension to PowerPC
accelerates media processing. IEEE Micro, 20(2):85–95, 2000.

[40] A. Dinn, I. Watson, K. Kirkham, and A. El-Mahdy. The Jamaica Virtual Machine: A
Chip Multiprocessor Parallel Execution Environment. Technical report, University of
Manchester, 2005.

[41] K. Ebcioglu, E.R. Altman, Y. Heights, and N. York. DAISY: Dynamic Compilation for
100% Architectural Compatibility. In International Symposium on Computer Architec-
ture, pages 26–37, 1997.

Bibliography 175

[42] M. Farrens, G. Tyson, and A.R. Pleszkun. A study of single-chip processor/cache or-
ganizations for large numbers of transistors. In International Symposium on Computer
Architecture, pages 338–347, 1994.

[43] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of multithreaded
chip multiprocessors and implications for operating system design. In USENIX Annual
Technical Conference, pages 26–40, 2005.

[44] M. Fillo, S.W. Keckler, W.J. Dally, N.P. Carter, A. Chang, Y. Gurevich, and W.S. Lee.
The M-Machine multicomputer. In International Symposium on Microarchitecture, pages
146–156, 1995.

[45] J.A. Fisher. Very Long Instruction Word architectures and the ELI-512. In International
Symposium on Computer Architecture, pages 140–150, 1983.

[46] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level parallelism and in-
teractive performance of desktop applications. ACM SIGPLAN Notices, 35(11):129–138,
2000.

[47] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level parallelism of desktop
applications. In Workshop on Multi-threaded Execution, Architecture and Compilation,
2000.

[48] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–
1909, 1966.

[49] S. Frank, H. Burkhardt III, and J. Rothnie. The KSR 1: bridging the gap between shared
memory and MPPs. In IEEE Computer Society International Conference, pages 285–294,
1993.

[50] C.W. Fraser. A retargetable compiler for ANSI C. ACM SIGPLAN Notices, 26(10):29–43,
1991.

[51] M. Galles and E. Williams. Performance optimizations, implementation, and verification
of the SGI Challenge multiprocessor. In Hawaii International Conference on System
Sciences, volume 1, 1994.

[52] R.B Garner, A. Agrawal, F. Briggs, E.W Brown, D. Hough, B. Joy, S. Kleiman, S. Much-
nick, M. Namjoo, and D. Patterson. The scalable processor architecture (SPARC). In
IEEE Computer Society International Conference, pages 278–283, 1988.

[53] P.P. Gelsinger. Microprocessors for the New Millenium: Challenges, Opportunites and
New Frontiers. In IEEE Solid-State Circuits Conference, pages 22–25, 2001.

[54] J. Goodacre and A.N. Sloss. Parallelism and the ARM instruction set architecture. IEEE
Computer, 38(7):42–50, 2005.

[55] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa, A. Grbic,
M. Gusat, R. Ho, and O. Krieger. The NUMAchine Multiprocessor. Technical Report
TR324, University of Toronto, 2000.

Bibliography 176

[56] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Techniques
for Parallelizing Compilers on Multicomputers. IEEE Transactions on Parallel and Dis-
tributed Systems, 3(2):179–193, 1992.

[57] M. Gupta and R. Nim. Techniques for Speculative Run-Time Parallelization of Loops.
In IEEE/ACM Conference on Supercomputing, pages 1–12, 1998.

[58] A. Halaas, B. Svingen, M. Nedland, P. Saetrom, O. Snove Jr., and O.R. Birkeland. A
recursive MISD architecture for pattern matching. IEEE Transactions on Very Large
Scale Integration Systems, 12(7):727–734, 2004.

[59] M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam. Detecting coarse-
grain parallelism using an interprocedural parallelizing compiler. In Proceedings of Su-
percomputing, 1995.

[60] L. Hammond, B.A. Hubbert, M. Siu, M.K. Prabhu, M. Chen, and K. Olukotun. The
Stanford Hydra CMP. IEEE Micro, 20(2):71–84, 2000.

[61] L. Hammond, K. Olukotun, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg,
M.K. Prabhu, H. Wijaya, and C. Kozyrakis. Transactional Memory Coherence and Con-
sistency. ACM SIGARCH Computer Architecture News, 32(2):102, 2004.

[62] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach
(Third Edition). Morgan Kaufmann, 2003.

[63] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach
(Fourth Edition). Morgan Kaufmann, 2006.

[64] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745–770, 1993.

[65] M. Herlihy, J. Eliot, and B. Moss. Transactional Memory: Architectural Support For
Lock-free Data Structures. In International Symposium on Computer Architecture, pages
289–300, 1993.

[66] R. Ho, K.W. Mai, and M.A. Horowitz. The future of wires. Proceedings of the IEEE,
89(4):490–504, 2001.

[67] M. Horsnell. Cycle-Accurate, Distributed Chip Multiprocessor Simulation. In EPSRC
Postgraduate Research in Engineering and Physical Sciences (PREP)., 2004.

[68] M. Horsnell. Harnessing Java for Novel Chip Multiprocessor Architecture Simulations.
In EPSRC Postgraduate Research in Engineering and Physical Sciences (PREP)., 2005.

[69] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell. Exploring the cache design
space for large scale CMPs. ACM SIGARCH Computer Architecture News, 33(4):24–33,
2005.

[70] W.M.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann,
R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G Holm, and D.M Lavery. The
superblock: An effective technique for VLIW and superscalar compilation. Journal of
Supercomputing, 7(1):229–248, 1993.

Bibliography 177

[71] Intel. Block-Matching In Motion Estimation Algorithms Using Streaming SIMD Exten-
sions 3. Intel Application Note, December 2003. www.intel.com/cd/ids/developer/

asmo-na/eng/dc/pentium4/optimization/66775.htm accessed last 2007.

[72] R. Iyer, M. Bhat, L. Zhao, R. Illikkal, S. Makineni, M. Jones, K. Shiv, and D. Newell.
Exploring Small-Scale and Large-Scale CMP Architectures for Commercial Java Servers.
In IEEE International Symposium on Workload Characterization, pages 191–200, 2006.

[73] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and
S. Reinhardt. QoS policies and architecture for cache/memory in CMP platforms. In
ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, pages 25–36, 2007.

[74] T.A. Johnson, R. Eigenmann, and T.N. Vijaykumar. Min-cut program decomposition
for thread-level speculation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 59–70, 2004.

[75] N.P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. SIGARCH Computer Architecture News,
18(3a):364–373, 1990.

[76] N.P. Jouppi. Cache write policies and performance. In International Symposium on
Computer Architecture, pages 191–201, 1993.

[77] N.P. Jouppi and D.W. Wall. Available instruction-level parallelism for superscalar and
superpipelined machines. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 272–282, 1989.

[78] R. Kalla, B. Sinharoy, and J.M. Tendler. IBM Power5 chip: A dual-core multithreaded
processor. IEEE Micro, 24(2):40–47, 2004.

[79] G. Kane and J. Heinrich. MIPS RISC architectures. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1992.

[80] C.N. Keltcher, K.J. McGrath, A. Ahmed, P. Conway, and A.M. Devices. The AMD
Opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76, 2003.

[81] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way multithreaded Sparc
processor. IEEE Micro, 25(2):21–29, 2005.

[82] V. Krishnan and J. Torrellas. Hardware and Software Support for Speculative Execu-
tion of Sequential Binaries on a Chip-multiprocessor. In International Conference on
Supercomputing, pages 85–92, 1998.

[83] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heterogeneous chip multi-
processors. IEEE Computer, 38(11):32–38, 2005.

[84] R. Kumar, V. Zyuban, and D.M. Tullsen. Interconnections in Multi-core Architectures:
Understanding Mechanisms, Overheads and Scaling. In International Symposium on
Computer Architecture, pages 408–419, 2005.

Bibliography 178

www.intel.com/cd/ids/developer/asmo-na/ eng/dc/pentium4/optimization/66775.htm
www.intel.com/cd/ids/developer/asmo-na/ eng/dc/pentium4/optimization/66775.htm

[85] S.R. Kunkel, R.J. Eickemeyer, M.H. Lipasti, T.J. Mullins, B. O’Krafka, H. Rosenberg,
S.P. VanderWiel, P.L. Vitale, and L.D. Whitley. A performance methodology for com-
mercial servers. IBM Journal of Research and Development, 44(6):851–872, 2000.

[86] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–
811, 1977.

[87] L. Lamport. How to make a correct multiprocess program execute correctly on a multi-
processor. IEEE Transactions on Computers, 46(7):779–782, 1997.

[88] L. Lamport. Specifying concurrent systems with TLA+. Calculational System Design,
1999.

[89] J.R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Transactions
on Parallel and Distributed Systems, 4(7):812–826, 1993.

[90] J. Laudon. Performance/Watt: the new server focus. ACM SIGARCH Computer Archi-
tecture News, 33(4):5–13, 2005.

[91] J. Laudon, A. Gupta, and M. Horowitz. Architectural and Implementation Tradeoffs in
the Design of Multiple-Context Processors. In International Symposium on Computer
Architecture, pages 435–435, 1992.

[92] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading technique tar-
geting multiprocessors and workstations. In International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 308–318, 1994.

[93] D. Lea. A Java fork/join framework. In ACM Conference on Java Grande, pages 36–43,
2000.

[94] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-
Wesley, 2000.

[95] J. Lee, S. Moon, and W. Sung. H.264 decoder optimization exploiting SIMD instructions.
In IEEE Asia-Pacific Conference on Circuits and Systems, pages 1149–1152, 2004.

[96] R.B. Lee. Subword parallelism with MAX-2. IEEE Micro, 16(4):51–59, 1996.

[97] D. Lenoski, J. Laudon, K. Gharachorloo, W.D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M.S. Lam. The Stanford Dash multiprocessor. IEEE Computer,
25(3):63–79, 1992.

[98] D.J. Lilja. Exploiting the parallelism available in loops. IEEE Computer, 27(2):13–26,
1994.

[99] J.L. Lo and S.J. Eggers. Improving balanced scheduling with compiler optimizations that
increase instruction-level parallelism. ACM SIGPLAN Notices, 30(6):151–162, 1995.

[100] J.L. Lo, J.S Emer, H.M. Levy, R.L Stamm, D.M Tullsen, and S.J. Eggers. Converting
thread-level parallelism to instruction-level parallelism via simultaneous multithreading.
ACM Transactions on Computer Systems., 15(3):322–354, 1997.

Bibliography 179

[101] K.W. Loveless. The Implementation of Flexible Interconnect in the NUMAchine Multipro-
cessor. Master’s thesis, Department of Electrical and Computer Engineering, University
of Toronto, 1996.

[102] K. Mai, T. Paaske, N. Jayasena, R. Ho, W.J. Dally, and M. Horowitz. Smart Memo-
ries: a modular reconfigurable architecture. In International Symposium on Computer
Architecture, pages 161–171, 2000.

[103] P. Marcuello, A. González, and J. Tubella. Speculative multithreaded processors. In
International Conference on Supercomputing, pages 77–84, 1998.

[104] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer,
30(9):37–39, 1997.

[105] O.A. McBryan. An overview of message passing environments. Parallel Computing,
20:417–443, 1994.

[106] E. McLellan. The Alpha AXP Architecture and 21064 Processor. IEEE Micro, 13(3):36–
47, 1993.

[107] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Processor.
IEEE Micro, 25(2):10–20, 2005.

[108] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer, R. Chabukswar, E. Niemeyer, and
A. Kumar. CMP Implementation in Systems based on the Intel R©CoreTMDuo Processor.
Intel R©Technology Journal, 10(2):99–108, May 2006.

[109] P. Merlin and P. Schweitzer. Deadlock Avoidance in Store-and-Forward Networks–I:
Store-and-Forward Deadlock. IEEE Transactions on Communications, 28(3):345–354,
1980.

[110] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. Legall. MPEG Video Compression
Standard. Chapman & Hall, Ltd. London, UK, 1996.

[111] G.E Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–
117, 1965.

[112] A. Moshovos. RegionScout: exploiting coarse grain sharing in snoop-based coherence. In
International Symposium on Computer Architecture, pages 234–245, 2005.

[113] T. Mowry and A. Gupta. Tolerating latency through software-controlled prefetching
in shared-memory multiprocessors. Journal of Parallel and Distributed Computing,
12(2):87–106, 1991.

[114] L.W. Nagel and D.O. Pederson. Simulation Program with Integrated Circuit Emphasis.
In Midwest Symposium on Circuit Theory, volume 23, 1973.

[115] V. Narayanan, V.K. Paruchuri, E. Cartier, B.P. Linder, N. Bojarczuk, S. Guha, S.L.
Brown, Y. Wang, M. Copel, and T.C. Chen. Recent advances and current challenges in the
search for high mobility band-edge high-k/metal gate stacks. Microelectronic Engineering,
84(9-10):1853–1856, 2007.

Bibliography 180

[116] B.A. Nayfeh, K. Olukotun, and J.P. Singh. The impact of shared-cache clustering in small-
scale shared-memorymultiprocessors. In International Symposium on High-Performance
Computer Architecture, pages 74–84, 1996.

[117] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algorithms.
IEEE Computer, 24(8):52–60, 1991.

[118] S. Oberman, G. Favor, and F. Weber. AMD 3DNow! technology: architecture and
implementations. IEEE Micro, 19(2):37–48, 1999.

[119] J.T. Oplinger, D.L. Heine, and M.S. Lam. In Search of Speculative Thread-Level Paral-
lelism. In International Conference on Parallel Architectures and Compilation Techniques,
pages 303–313, 1999.

[120] G. Ottoni, R. Rangan, A. Stoler, M.J. Bridges, and D.I. August. From Sequential Pro-
grams to Concurrent Threads. IEEE Computer Architecture Letters, 5(1), 2006.

[121] D.A. Padua, D.J. Kuck, and D.H. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Transactions on Computers, 29:763–776, 1980.

[122] D.A. Padua and M.J. Wolfe. Advanced compiler optimizations for supercomputers. Com-
munications of the ACM, 29(12):1184–1201, 1986.

[123] S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-effective superscalar processors.
In International Symposium on Computer Architecture, pages 206–218, 1997.

[124] Y.N. Patt, W.M. Hwu, and M. Shebanow. HPS, a new microarchitecture: rationale and
introduction. In Annual Workshop on Microprogramming, pages 103–108, 1985.

[125] D.A. Patterson. Reduced instruction set computers. Communications of the ACM,
28(1):8–21, 1985.

[126] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture. IEEE
Micro, 16(4):42–50, 1996.

[127] D. Pham, S. Asano, M. Bolliger, M.N Day, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. The de-
sign and implementation of a first-generation CELL processor - a multi-core SoC. In
International Conference on Integrated Circuit Design and Technology, pages 49–52, May
2005.

[128] M. Planas, F. Cazorla, A. Ramirez, and M. Valero. Explaining Dynamic Cache Parti-
tioning Speed Ups. IEEE Computer Architecture Letters, 6(1), 2007.

[129] M.A Postiff, D.A. Greene, G.S Tyson, and T.N. Mudge. The limits of instruction level
parallelism in SPEC95 applications. SIGARCH Computure Architecture News, 27(1):31–
34, 1999.

[130] M.K. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual paral-
lelization. In International Symposium on Principles and Practice of Parallel Program-
ming, pages 1–12, 2003.

Bibliography 181

[131] D.J. Quammen, D.R. Miller, and D. Tabak. Register window management for a real-time
multitasking RISC. In Hawaii International Conference on System Sciences, volume 1,
1989.

[132] G. Radin. The 801 minicomputer. In International Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 39–47, 1982.

[133] R. Rajwar and J.R. Goodman. Speculative lock elision: Enabling highly concurrent
multithreaded execution. In International Symposium on Microarchitecture, pages 01–05,
2001.

[134] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In International
Symposium on Computer Architecture, pages 494–505, 2005.

[135] L. Rauchwerger and D.A. Padua. The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. IEEE Transactions on Parallel
and Distributed Systems, 10(2):160–180, 1999.

[136] J.H. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization and scheduling
of loops. IEEE Transactions on Computers, 40(5):603–612, 1991.

[137] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S.W. Keckler, and
C.R. Moore. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
SIGARCH Computer Architecture News, 31(2):422–433, 2003.

[138] T. Scholz and M. Schafers. An Improved Dynamic Register Array Concept for High-
Performance RISC Processors. In Hawaii International Conference on System Sciences,
1995.

[139] Semiconductor Industry Association. The International Technology Roadmap for Semi-
conductors, 2005.

[140] R.L. Sites. Alpha Architecture Reference Manual. Digital Press, 1998.

[141] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K.S McKinle, and
J. Burrill. Compiling for EDGE Architectures. In International Symposium on Code
Generation and Optimization, pages 185–195, 2006.

[142] B.J. Smith. Architecture and applications of the HEP multiprocessor computer system.
Real-time signal processing IV, pages 241–248, 1982.

[143] J.E. Smith and S. Vajapeyam. Trace processors: moving to fourth-generation microar-
chitectures. IEEE Computer, 30(9):68–74, 1997.

[144] L.A. Smith, J.M. Bull, and J. Obdrzalek. A Parallel Java Grande Benchmark Suite. In
ACM/IEEE Conference on Supercomputing, 2001.

[145] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar processors. In International
Symposium on Computer Architecture, pages 414–425, 1995.

[146] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. A scalable approach to thread-level
speculation. In International Symposium on Computer Architecture, pages 1–12, 2000.

Bibliography 182

[147] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. Improving value communication
for thread-level speculation. In International Symposium on High-Performance Computer
Architecture, pages 65–75, 2002.

[148] J.G. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. In International Symposium on High-Performance
Computer Architecture, volume 15, 1998.

[149] P. Stenström. A survey of cache coherence schemes for multiprocessors. IEEE Computer,
23(6):12–24, 1990.

[150] P. Stenström, E. Hagersten, D.J. Lilja, M. Martonosi, and M. Venugopal. Trends in
shared memory multiprocessing. IEEE Computer, 30(12):44–50, 1997.

[151] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures, pages 62–71,
1996.

[152] Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
OpenSPARCTMT1 Microarchitecture Specification, Revision A edition, August 2006.

[153] P. Sweazey and A.J. Smith. A class of compatible cache consistency protocols and their
support by the IEEE futurebus. In International Symposium on Computer Architecture,
pages 414–423, 1986.

[154] M. Takahashi, H. Takano, E. Kaneko, and S. Suzuki. A shared-bus control mechanism and
a cache coherence protocol for ahigh-performance on-chip multiprocessor. In International
Symposium on High-Performance Computer Architecture, pages 314–322, 1996.

[155] M.R. Thistle and B.J. Smith. A processor architecture for horizon. IEEE Computer
Society Press Los Alamitos, CA, USA, 1988.

[156] R.M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development, 11(1):25–33, 1967.

[157] M. Tremblay, J.M. Narayanan, and V.L. He. VIS speeds new media processing. IEEE
Micro, 16(4):10–20, 1996.

[158] M. Tremblay and J.M. O’Connor. UltraSparc I: a four-issue processor supporting multi-
media. IEEE Micro, 16(2):42–50, 1996.

[159] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: maximizing on-
chip parallelism. In International Symposium on Computer Architecture, pages 392–403,
1995.

[160] D.M. Ungar. The design and evaluation of a high performance Smalltalk system. MIT
Press Cambridge, MA, USA, 1987.

[161] T. Ungerer, B. Robič, and J. Šilc. A survey of processors with explicit multithreading.
ACM Computing Surveys, 35(1):29–63, 2003.

Bibliography 183

[162] S.P. VanderWiel and D.J Lilja. Data prefetch mechanisms. ACM Computing Surveys,
32(2):174–199, 2000.

[163] S.P. VanderWiel, D. Nathanson, and D.J. Lilja. Complexity and performance in parallel
programming languages. In International Workshop on High-Level Programming Models
and Supportive Environments, pages 3–12, 1997.

[164] D. Vuyst, R. Kumar, and D.M. Tullsen. Exploiting unbalanced thread scheduling for
energy and performance on a CMP of SMT processors. In Parallel and Distributed Pro-
cessing Symposium, page 10, 2006.

[165] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to Software:
Raw Machines. IEEE Computer, 30(9):86–93, 1997.

[166] D.W. Wall. Limits of Instruction Level Parallelism. Technical report, Digital - Western
Research Laboratory, 1993.

[167] D.W. Wall. Speculative execution and instruction-level parallelism. Technical report,
Digital - Western Research Laboratory, 1994.

[168] A.W. Wilson Jr. Hierarchical cache/bus architecture for shared memory multiprocessors.
In International Symposium on Computer Architecture, pages 244–252, 1987.

[169] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In International Symposium on Com-
puter Architecture, pages 24–36, 1995.

[170] Greg M. Wright. A single chip multi-processor architecture with hardware thread support.
PhD thesis, School of Computer Science, University of Manchester, 2001.

[171] T.Y. Yeh and Y.N. Patt. Two-level adaptive branch prediction. In International Sympo-
sium and Workshop on Microarchitecture, 1991.

[172] J. Zhao, I. Rogers, C. Kirkham, and I. Watson. Loop Parallelisation for the Jikes RVM.
In International Conference on Parallel and Distributed Computing, Applications and
Technologies, pages 35–39, 2005.

[173] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In International
Symposium on Computer Architecture, pages 2–13, 2001.

Bibliography 184

APPENDIX A

Jamaica - Instruction Set Architecture

The Jamaica instruction set borrows some of its instruction formats from the

Digital Alpha 32-bit instruction set architecture [140], but is not binary compat-

ible.

A.1 Instruction Formats

The architecture supports four distinct instruction formats, register form (Figure

A.1), immediate form (Figure A.2), branch form (Figure A.3) and memory form

(Figure A.4).

185

A.1.1 Register Form

Figure A.1: Register form Rc ← Ra op Rb.

A.1.2 Immediate Form

Figure A.2: Register immediate form Rc ← Ra op Rb.

A.1.3 Branch Form

Figure A.3: Branch form.

A.1.4 Memory Form

Figure A.4: Memory form.

Appendix A. Jamaica - Instruction Set Architecture 186

A.2 Instruction Set

A.2.1 Arithmetic/Logical Instructions

Register Form: OP Ra, Rb, Rc

Register Immediate Form: Ra, Imm, Rc

ADD Rc ← Ra + Rb

SUB Rc ← Ra − Rb

CMPEQ Rc ← (Ra = Rb)
CMPLE Rc ← (Ra <= Rb)
CMPLT Rc ← (Ra < Rb)
CMPULE Rc ← (Ra <= Rb)
CMPULT Rc ← (Ra < Rb)
S4ADD Rc ← (4×Ra + Rb)
S8ADD Rc ← (8×Ra + Rb)
S4SUB Rc ← (4×Ra − Rb)
S8SUB Rc ← (8×Ra − Rb)
AND Rc ← (Ra & Rb)
BIC Rc ← (Ra & v Rb)
BIS Rc ← (Ra | Rb)
EQV Rc ← (Ra |v Rb)
ORNOT Rc ← (Ra |v Rb)
XOR Rc ← (Ra ∧ Rb)
SLL Rc ← (Ra � Rb)
SRL Rc ← (Ra ≫ Rb)
SRA Rc ← (Ra � Rb)
CMOVEQ if(Ra = 0) Rc ← Rb

CMOVGE if(Ra > 0) Rc ← Rb

CMOVGT if(Ra > 0) Rc ← Rb

CMOVLBC if((Ra ∧ 1) = 0) Rc ← Rb

CMOVLBS if((Ra ∧ 0) = 0) Rc ← Rb

CMOVLE if(Ra ≤ 0) Rc ← Rb

CMOVLT if(Ra < 0) Rc ← Rb

CMOVNE if(Ra 6= 0) Rc ← Rb

MUL Rc ← Ra × Rb

TRQ see Section 6.2.2
RCR Rc ← CReg[Rb]
WCR CReg[Rb]← Ra

CAS single word compare and swap
SIRQ Send IRQ Rb to thread with ID Ra

EVICT Evict a frame; Rc ← 1 or 0

Table A.1: Jamaica instruction set: arithmetic/logical instructions.

Appendix A. Jamaica - Instruction Set Architecture 187

A.2.2 Control Transfer Instructions

Branch Form: OP Ra, disp 21-bit signed displacement

BEQ Branch if Ra = 0
BGE Branch if Ra ≥ 0
BGT Branch if Ra > 0
BLBC Branch if Ra&1 = 0
BLBS Branch if Ra&0 = 0
BLE Branch if Ra ≤ 0
BLT Branch if Ra < 0
BNE Branch if Ra 6= 0
BR Branch
BSR Branch to subroutine
THB Thread branch (following TRQ)

Table A.2: Jamaica instruction set: branch form control instructions.

Memory Form: OP Ra, disp 16-bit signed displacement

JSR Jump to subroutine
JMP Jump
RET Return (takes address from %i7)
THJ Thread jump (following TRQ)
RTI Return from interrupt

Table A.3: Jamaica instruction set: memory form control instructions.

Appendix A. Jamaica - Instruction Set Architecture 188

A.2.3 Memory Instructions

Memory Form: OP Ra, disp, Rb 16-bit signed displacement

LDA Ra ← disp + Rb

LDAH Ra ← disp � 16 + Rb

LDL Ra ← Mem[disp + Rb]
STL Mem[disp + Rb] ← Ra

LDB Ra ← Mem[disp + Rb],
byte, sign-extended

LDBU Ra ← Mem[disp + Rb],
byte, zero-extended

STB Mem[disp + Rb] ← Ra, byte
LDL L Ra ← Mem[disp + Rb],

set lock base, set lock flag
STL C if(lock flag) {Mem[disp + Rb]← Ra; Ra ←

1} else { Ra ← 0}
WAIT Sleep until lock flag is cleared

Table A.4: Jamaica instruction set: memory instructions.

Appendix A. Jamaica - Instruction Set Architecture 189

A.3 BuiltIn Instructions

Trap address BuiltIn Description
0xffff00d0 contextReplace switch context registers with

memory
0xffff00d4 printTimeStamp prints processor and context id

with cycle count
0xffff00d8 getCycleCount returns cycle count in register %o0
0xffff0104 fstat unix fstat equivalent
0xffff0144 copyMemory copy block of memory at %o0 to

%o1, %o2 bytes
0xffff0148 setMemory set block of memory at %o0 to

value %o1, %o2 bytes
0xffff0160 zeroCtxStats zero statistics for a given processor

context
0xffff0164 reportCtxStats report statistics for a given proces-

sor context
0xffff012c fflush unix fflush equivalent
0xffff0000 simExit forceably quit the sim
0xffff0008 fopen unix fopen equivalent
0xffff000c fputc unix fputc equivalent
0xffff0010 fgetc unix fgetc equivalent
0xffff0018 ungetc unix ungetc equivalent
0xffff00e0 zeroPerf zero all statistic counters
0xffff00ec getNumProcs return total number of processors

(deprecated)
0xffff00f0 getNumCtxs returns number of contexts
0xffff0108 open unix open equivalent
0xffff0124 lseek unix lseek equivalent
0xffff011c read unix read equivalent
0xffff014c reportPerf report all statistic counters
0xffff0120 write unix write equivalent
0xffff0128 getTimeOfDay get unix time
0xffff010c close unix close equivalent
0xffff0138 notifyDebugger notify the debugger of object up-

dates in VM
0xffff0200 switchCaches switch to cycle-level cache models
0xffff0300 utilityCall 2 integer inputs, 1 integer output

utility call

Table A.5: Jamaica instruction set: builtin instructions.

Appendix A. Jamaica - Instruction Set Architecture 190

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Microprocessor Design Challenges
	Wire Delay
	Memory Gap
	Limits of Instruction Level Parallelism
	Power Limits
	Design Complexity

	Design Solutions
	Exploiting Parallelism
	Partitioned Designs
	Bridging the Memory Gap
	Design Abstraction and Replication

	Summary
	Research Aims
	Contributions
	Thesis Structure
	Publications

	Parallelism
	Application Parallelism
	Amdahl's Law
	Implicit and Explicit Parallelism
	Granularity of Parallelism

	Architectural Parallelism
	Bit Level Parallelism
	Data Level Parallelism
	Instruction Level Parallelism
	Multithreading
	Simultaneous Multithreading
	Chip Multiprocessors

	Summary

	Jamaica CMP and Software Environment
	The Jamaica Chip Multiprocessor
	Multithreading
	Register Windows
	Lightweight Task Distribution
	Branch Prediction
	Coherent Shared Memory Hierarchy
	Hard and Soft Interrupts
	Devices

	Jamaica Core Revisions
	Interleaved Multithreading
	Working Set and Register Windows

	Jamaica Software Environment
	Jamaica Assembler and C Compiler
	Jamaica Boot Procedure
	The Jamaica Virtual Machine

	Jamaica Simulation Environment
	Simulation Accuracy
	Simulation Configuration
	System Simulation

	Summary

	Multi-level Cache Coherence
	Multiprocessor Organisation
	Memory Access
	Inter-Processor Communication

	Scaling the Jamaica Architecture
	Limitations to Bus Scaling
	Multi-Level Cache Hierarchy
	Cache Inclusion
	Locality and Affinity

	PIMMS - a Multi-Level Coherence Protocol
	Cache States
	Network Transactions
	State Transitions
	Four Phase Transactions

	Summary

	Multi-level Cache Hardware
	Cache Organisation
	Level 1 Private Caches
	Shared Level Caches

	Coherence Messages and Transactions
	Flow Control
	Blocking and Negative Acknowledgments

	Deadlock Avoidance
	Sinkable Messages
	Non-Sinkable Messages
	Sinkable and Non-Sinkable Queues and Priorities
	Passive and Active Non-Sinkable Messages

	Address Blocking
	Local Transactions
	Deadlock Avoidance

	Multi-Level Synchronisation
	Lazy Cache-Line Allocation
	Summary

	Multi-level Task Locality
	Clusters and Cache Locality
	Task Distribution
	Locality Aware Task Distribution
	Token Requests
	Locality Aware Token Request Extensions
	Cache-Distance Identifiers
	Hardware Support for Locality
	Software Support for Locality

	Summary

	Results and Analysis
	Experimental Method
	Simulation Environment

	Benchmark Descriptions
	Fork/Join Benchmarks
	Multithreaded JavaGrande Benchmarks
	Benchmark Parameters

	PIMMS Coherence Protocol
	Coherence Transactions
	Four-phase Transactions
	Interconnect Latency
	Negative Acknowledgment
	Non-Sinkable Queue Rotation
	Effect of Inclusion
	Protocol Robustness

	Single Bus Chip Multiprocessor Architecture
	Speed-up
	Wire Delay
	Bus Contention
	Memory Saturation

	Cluster Architectures
	Speed-up
	Bus-Tree Cluster
	Crossbar Cluster
	Hybrid Bus-Crossbar Cluster

	Locality Aware Task Distribution
	Synchronisation Locality
	Application Isolation
	Application Restructuring

	Chip Multi-Cluster Design Considerations
	Summary

	Conclusions
	Contributions
	Future Work

	Bibliography
	Jamaica - Instruction Set Architecture
	Instruction Formats
	Register Form
	Immediate Form
	Branch Form
	Memory Form

	Instruction Set
	Arithmetic/Logical Instructions
	Control Transfer Instructions
	Memory Instructions

	BuiltIn Instructions

