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Abstract

This thesis presents new techniques designed to speed up the execution of Java

programs within a Java Virtual Machine (JVM). It presents a JVM based on

Dynamic Binary Translator (DBT) technology with developments to minimise

unnecessary translation and produce optimised hot paths.

Existing JVM runtime compilation technology compiles classes, methods or

portions of a method. This can make the compilation process inefficient as not

all the compiled code will be executed. It does mean however, that mapping from

Java to a target machine’s code can be performed simply at a small number of

boundaries.

The thesis develops low overhead mechanisms for executing Java bytecode by

compiling it a basic block at a time, thus avoiding unnecessary translation. It

also presents mechanisms for grouping translated blocks into larger blocks based

on execution statistics. By a novel register-mapping technique inter-procedural

optimisation at a low overhead is achieved. As all optimisations are directed

by execution statistics, near optimal ordering of code and register usage can be

produced quickly.

The thesis shows that basic block translation affords a saving of up to 18%

fewer bytecodes being translated than if a method were translated. It is also

shown that this is achieved with little overhead in the translated code. A set

of representative single threaded Java benchmarks are used for analysis. The

overall system performance is compared to the HotSpot client and server JVMs.

The measured execution time is from 3.163 to 19 times slower. The thesis dis-

cusses how, with improved translation performance, this can be significantly in-

creased. Combined with a more optimal set of library methods and translation

savings, performance can be comparable and potentially better than state-of-the-

art JVMs.
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Chapter 1

Introduction

1.1 The problem

Java is a popular programming language and program environment. As described

in chapter 2, Java programs are executed by a Java Virtual Machine (JVM)1

that provides the Java environment. Java programs are distributed in a platform

independent class file. The Java bytecodes contained in a class file can be executed

in three ways.

• Interpretation: Each Java bytecode is interpreted in software and its effect

on the JVM calculated.

• Hardware: Each Java bytecode is executed by a dedicated piece of hardware

which represents the JVM.

• Dynamic compilation: Java bytecodes are compiled onto a target computer

architecture. The compiled code is then executed instead of the original

Java bytecode.

Interpreters are easily implemented in software and have been used to provide

the reference JVM. Interpreting a Java bytecode takes at least several CPU clock

cycles; this means it is unsuited to executing Java programs that require high

performance.

1Static translation of Java programs to a target computer architecture is possible, however,
this breaks the Java model and programs translated in this way do not execute in a true Java
environment.
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CHAPTER 1. INTRODUCTION 18

Executing Java bytecodes in hardware is typically faster than interpreting

Java bytecodes. Many bytecodes are complex and may need to be interpreted by

an additional controlling processor. In particular, method calls to the underlying

system cannot be dealt with by Java bytecode alone.

Dynamic compilers are executed in parallel to the bytecode they have trans-

lated. They are required to produce high quality code quickly. The majority

of existing dynamic compilers work by translating a method the first time it is

called. This slows the Java environment down initially but, hopefully, in the

long run will prove to have made the program execute faster. State-of-the-art

JVMs [Sun99b] are using multiple levels of compilation; they aim to translate

quickly at first and then target expensive compiler optimisations.

This thesis considers a dynamic compiling JVM. The problems this JVM must

address are to execute Java programs faster, to have little latency in interactive

applications2, to use little memory and to support all of the rich set of features

of the Java programming language and Java environment.

1.2 The solution

The main thesis presented is:

Method based translation of Java bytecodes unnecessarily translates

bytecodes that will never be executed, wasting both time and space.

By translating at the basic block level, optimisation can be focused

away from bytecodes that will never or will be infrequently executed.

Execution statistics of the basic block allow for profile directed opti-

misation to schedule basic blocks and create optimal code layout for

hot paths.

Although basic block translation of instructions happens in existing dynamic

binary translation environments, dynamic Java compilers are method oriented3.

Method compilation reflects conventional compilation, with the addition of exe-

cution information. Basic block compilation is different in that it focuses on a

smaller unit of execution and groups these to form larger blocks that are then

2 Latency is the time between requesting an activity and that activity being performed (see
section 8.1).

3Some JIT compilers, such as LaTTe [LYK+99], do not translate exception handling regions
of code as they assume they are infrequently executed.
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optimised. There is a perceived cost in creating this information about larger

blocks, and although trace scheduling is a natural consequence of a basic block

compilation model, all existing JVMs are method oriented. This work shows

the benefits of basic block translation, and that it can be achieved with little

overhead.

class t e s t
{

public stat ic void main ( St r ing args [ ] )
{

/∗ Basic b l o c k 1 ∗/
int i , a [ ] ;
a = new int [ 1 0 0 ] ;
i =0;
/∗ Basic b l o c k 2 ∗/
while ( i <100){

/∗ Basic b l o c k 3 ∗/
a [ i ]= i ∗ i ;
i++;
}

}
/∗ Basic b l o c k 4 ∗/

}
}

Figure 1.1: Java source code of a small test program

To understand this approach at a high-level, some sample Java code is shown

in figure 1.1. The Java source code is a purely illustrative example of a Java

program comprising a method of a few basic blocks. The program does no more

than create an array of integers and initialise each integer to the square of its

index. As the first stage of compilation, a typical Java compiler will compile the

program into 4 basic blocks (the comments in the source code show the basic

blocks, the numbering is arbitrary). The first basic block performs the array

creation and loop initialisation, then it performs an unconditional branch to the

second basic block. The second basic block is the loop test, depending on the

result of the test the third or the fourth basic block may be executed next. The

third basic block performs the loop body and unconditionally branches to the

second basic block. The fourth basic block exits the method returning back to

either the JVM system or the calling method.
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The next stage for a Java program is to be executed in a JVM. We consider the

execution of the program within a JVM that uses a dynamic compiler. After the

JVM has created the environment used to execute the program within, it calls

the method called main. The method call tells a Just-In-Time (JIT) compila-

tion [Wil02] system to compile the method as the method has not been compiled

previously. The exact process of compilation varies between JVMs. A template

compiler would swap each Java bytecode for equivalent target processor instr-

uctions. A second pass would be necessary in order for forward branches to be

resolved. More sophisticated compilation systems remove the overhead of the Java

stack [Kra98]. A state-of-the-art compilation system, such as HotSpot [Sun99b],

would initially interpret the bytecode to see if a significant proportion of program

time is being spent in this method. At a trigger point, HotSpot will compile the

method in parallel to the interpretation. When compilation is complete, if the

same bytecodes are executed, the compiled code will be used instead of using the

interpreter. HotSpot is described more fully in section 2.10.

The example in figure 1.1 executes all its basic blocks. Blocks two and three

are good candidates for compilation as they are executed 100 times. However,

blocks one and four are poor candidates for compilation as they are executed

once. Java’s exception mechanism means there are often several basic blocks in

a method that will only ever get translated in an exceptional circumstance. A

method based compiler has to compile an entire method. Optimisations within a

method based compiler can be directed by execution statistics, but unnecessary

basic block compilation is unavoidable.

Object-oriented programmers are advised to keep methods short as good pro-

gramming practice [Sha97]. Studies of object-oriented software such as [BKP99]

and of the Java class file [AP98] have shown that basic block sizes tend to be

shorter. This means the scope for optimisation within a method is small. This

is solved by using expensive optimisations such as method inlining, where the

body of the called method is placed at its call site (thus removing the method

boundary). This can lead to code bloating (the code for the method is repeated

several times), and this has implications on the performance of the CPUs instruc-

tion cache. Due to the nature of the Java environment, method inlining cannot

be performed prior to execution in the JVM or else the JVM would not properly

support dynamic loading and linking of bytecode.
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In our system basic blocks are translated as and when needed, as opposed

to methods, thus avoiding unnecessary compilation. Further, method inlining

is performed by grouping a call site basic block with its called basic block and

all other frequently executed basic blocks in those methods. Parameter passing

is minimised in a two-pass compilation system, and by using heuristics in the

kernel of our system we avoid unnecessary code bloat from inlining. As basic

block layout is not driven by method layout, but execution profile heuristics,

we can trace-schedule instructions and maximise performance by optimising, for

example, for the CPUs instruction cache.

1.3 Contributions

The main contributions in this dissertation are:

• We investigate the design space of a basic block based dynamic compila-

tion system for JVMs by designing and implementing one. By compiling

at the basic block level, we reduce the number of bytecodes that need to

be translated compared with conventional Java JIT and dynamic compil-

ers. This JVM has full support for exceptions and native methods, with

threading at the design stage. In-stack replacement is avoided by perform-

ing only dynamic compilation, but performing it with differing amounts of

optimisation.

• We design and implement a register allocation algorithm that allows the vis-

ibility of multiple method’s registers to a profile based optimisation mecha-

nism. This enables method inlining to be performed and, at the same time,

the optimisation algorithm is ‘aware’ it is dealing with the same basic block

(not a duplicate as in traditional inlining/specialisation). This means the

optimisation algorithm can choose to specialise to the previous basic block

(the call site) or it can re-use the basic block to avoid code bloat.

• We design and implement a fast, lazy recursion detection algorithm so that

the JVM system does not bloat our register pool, whilst not requiring any

forward parsing of Java class files to avoid this; this was a vital development

for our register allocation algorithm.
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1.4 Outline

The first chapters of this thesis describe the background to the research. Chap-

ter 2 introduces the JVM and describes key technologies for its usability and

speed. Chapter 3 describes dynamic binary translation technology. Chapter 4

describes Dynamite, a research and commercial dynamic binary translator, which

is used as the dynamic compiler for this research.

The next three chapters describe the Dynamite JVM and investigate inter-

procedural optimisations. Chapter 5 describes the Dynamite JVM created as

part of this research. Chapter 6 introduces the register algorithm used by the

Dynamite JVM; chapter 7 describes how this optimisation works with recursive

methods. These chapters measure the implemented techniques and demonstrate

their low cost.

The final two chapters of this thesis look at the performance of the Dynamite

JVM and the further work necessary to improve it. Chapter 8 investigates the

performance of the Dynamite JVM compared to the HotSpot client and server

JVMs. Chapter 9 describes further research into the Dynamite JVM and the

Dynamite dynamic binary translator. In conclusion chapter 9 describes how the

research presented and future work will contribute to research into JVMs and

dynamic binary translators.



Chapter 2

The Java Virtual Machine

This chapter describes Java and the components of it. It is oriented toward the

implementation of a JVM. Section 2.1 focuses on what Java is and serves as an

introduction to the specific Java internals issues discussed in sections 2.2, 2.3, 2.4

and 2.5. After the internals of Java are described the focus is shifted toward the

implementation of a JVM in sections 2.7, 2.8 and 2.9. Method inlining, a key

compiler optimisation, is described in section 2.9.1. Finally, a complete state-of-

the-art JVM is discussed in section 2.10.

2.1 What is Java?

The name Java has, unfortunately, been used in an ad hoc manner. A person

browsing the web understands Java to be a kind of program they download and

run in their web browser. A computer science student understands Java to be a

programming language and set of standardised libraries. There are essentially two

views of Java, either as a programming language or as an execution environment.

The interaction between the two is shown in figure 2.1.

Sun defined Java in their Java language white paper [GM95] to be:

a simple, object-oriented, distributed, interpreted, robust, secure, ar-

chitecture neutral, portable, high-performance, multithreaded and dy-

namic language.

A design objective of the Java programming language was to keep the language

simple. This decision was made in the context that at that time most programs

were written in the C++ programming language [Str86]. As Java only provides a

23
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Java language components

Java class library

Java environment

Java virtual
machine

Java compiler

Java source code

Java class file

Figure 2.1: Relationship between the Java programming language and the Java
environment

subset of the programming language constructs that are available in C++, it can

be regarded as simpler in that sense. This doesn’t mean that Java programs are

simpler to execute or that Java is necessarily easier to program. This is apparent,

for example, by the large size of the set of standard libraries provided for Java.

Section 2.2 describes the object-oriented nature of the Java language and JVM

further.

The distributed features of Java enable programs to be downloaded over the

Internet. They also provide Java with a rich set of network library functions.

The distributed nature of Java is discussed further in section 2.5.

Interpretation is a feature of how a Java program is run, that gives it porta-

bility and architectural neutrality. The instructions (or bytecodes as they are

known) contained in the compiled class file are interpreted by a virtual machine

rather than run on the machine natively. The fact that bytecodes are interpreted

enables the compiled code to be portable between different virtual machines built

for different computer operating systems and instruction set architectures. The
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only code that needs to be ported is the virtual machine. Interpretation is dis-

cussed further in section 2.7.

Robustness was an objective of the Java programming language and is sup-

ported by the use of exceptions. Exceptions are described in section 2.6.

The downside to interpreting Java programs is that the programs will execute

slowly. The ability to achieve high-performance is discussed further in section 2.7.

Multithreading allows parts of a program (called threads) to execute at the

same time. By having threads designed into the Java programming language,

programmers can write multithreaded programs without having to rely on thread-

support libraries. This allows programmers to avoid long-winded syntax and

maintenance of thread data structures. By having threads as part of the Java

environment portability concerns are dealt with by the JVM.

Java is a dynamic language as it allows code to be dynamically loaded and

linked into the executing program at runtime. This is described further in sec-

tion 2.5.

2.2 Objects

Java programs are object-oriented. An object is viewed in object-oriented design

as a black box that contains state which has defined behaviours for receiving

and sending messages. The message passing mechanism is typically a method

call, however, in Java information can also be passed by reading and writing to

publicly accessible variables (state).

Objects are instances of data-types called classes. Classes are able to inherit

attributes from other classes, this is done in the Java programming language

using the extends keyword. All classes are subclasses of the base class called

java.lang.Object. A new class definition can redefine or, as it is commonly

referred to, override methods from a superclass. A method that takes an object

of a particular class as an argument can have a subclass of it passed in also. If

a method is to be called on an object then the exact method called depends on

the class type of the object. In Cardelli and Wegner’s model, this is called inclu-

sion polymorphism [CW85]. Java also supports parametric polymorphism (more

commonly referred to as overloading) whereby a method is uniquely identified by

not only its name but also its parameter types. The JVM calls a parameter list

a method descriptor.
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Every time an object is created an initialiser is run which optionally takes

parameters. Java initialises primitive types (see later) to default values, an object

initialiser goes on to overwrite these values.

Multiple inheritance in Java is a compromise. The Java programming lan-

guage only allows a class to have one superclass unlike other object-oriented

programming languages, such as C++, that allow a class to have multiple su-

perclasses. Having multiple superclasses complicates method calls (message dis-

patch). Programming languages that compile to a static binary file can calculate

what methods can be called and optimise the dispatch mechanism appropriately.

As Java is a dynamic language (see section 2.5) it was decided to keep the message

dispatch mechanism quick and simple by only allowing single inheritance.

The compromise in Java is that it supports interfaces. An interface is a

class that defines methods but provides no implementation, they are implicitly

abstract and all methods are both public and abstract. An interface can

have no variables but it can define constants. As an interface provides no im-

plementation or variables it cannot be instantiated. As with class inheritance,

interfaces do provide a way of describing an abstract feature that several classes

can implement. A class is permitted to implement as many interfaces as it re-

quires. As with classes, interfaces can inherit features from another interface.

As interfaces do not require any state they do not alter the object layout for

a class. They only complicate the execution of a Java program by requiring a

method dispatch mechanism that first has to select the appropriate interface for

the method call and then the appropriate method.

As well as methods and state which are associated with objects, Java allows

methods and state to be associated with a class. The keyword static is used to

declare these in the programming language. The method main is a static method

that is first called by the JVM. A typical main method creates the programs

objects and then passes control to them.

In the Java environment there are certain global objects for performing prim-

itive tasks such as string handling and file IO. These global objects are declared

as static. They are initialised by a set of rules defining when a class is to be

loaded. A special method called a class initialiser is called the first time a class is

loaded, this method sets up these global variables. The phase of execution where

the JVM is setting up global variables is called the bootstrapping phase. Cyclic

dependency problems can be encountered in the bootstrapping phase as shown



CHAPTER 2. THE JAVA VIRTUAL MACHINE 27

in figure 2.2.

/∗ The Java S t r ing l i b r a r y i s one o f the f i r s t l i b r a r i e s loaded .
I t
uses a Hashtab le as an i n t e r n a l lookup t a b l e f o r s t r i n g s as the Java
s p e c i f i c a t i o n s t a t e s t h e r e shou ld on ly e x i s t one copy o f a s t r i n g
wi th a p a r t i c u l a r va lue . ∗/

class St r ing {
private stat ic f ina l Hashtable i n t e r n t a b l e [ ] ;
. . .

}

/∗ This example Hashtab le c r ea t e s a boo t s t r app ing problem as i t
d e c l a r e s a S t r ing t ha t the JVM needs to in t e rn . There e x i s t s a c y c l i c
dependency where the Hashtab le r e l i e s on the S t r ing to be i n i t i a l i s e d
and the S t r ing r e l i e s on the Hashtab le to be i n i t i a l i s e d . ∗/

class Hashtable {
private stat ic f ina l St r ing copyr ight =

‘ ‘The Un ive r s i ty Of Manchester (C) ’ ’ ;
. . .

}

Figure 2.2: Example bootstrapping problem

Primitive types such as integer have dual modes in Java. Initially they are

not objects, however, an Integer object can be created. Primitive types also have

primitive operations that can be performed on them, such as addition. This re-

moves the message passing overhead from primitive types and means that aggres-

sive optimisation of primitive types is unnecessary. This is unlike other object-

oriented languages such as Self [US87]. Java supports boolean (1bit value), byte

(8bit value), char (16bit value), integer (32bit), long (64bit integer), float (32bit

floating point) and double (64bit floating point) primitive types. Boolean, byte

and char primitive types are represented as integers on the Java stack and in local

variables. The size of the boolean, byte and char primitive types only affects the

implementation of memory operations on objects.

All data structures are represented by objects which are composed of either

more objects or primitive types. Objects are always accessed by an object ref-

erence which is a pointer to the object data structure within the heap. Object

references are a primitive type.
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The size of an object in Java is determined by the primitive types it is com-

posed of, the alignment rules of the processor and how the primitive types are

arranged within the object. An object representation of booleans could use byte

values as this can speed accesses to individual boolean values at the expense of

compactness. Similar issues occur on computer architectures that don’t allow

unaligned memory accesses. An object must also hold a header which holds a

pointer to class information for method dispatch and for supporting bytecodes

that query the type of an object. Thread lock information is also held in the

object header.

All object representations must enable method dispatch. As described earlier

method dispatch must support interfaces and virtual (single inheritance) method

dispatch. Optimisations of various components of the Java environment may

affect the number of memory indirections to locate the method to execute, slowing

the method dispatch mechanism.

2.3 Class file

Java programs are compiled into class files. The contents of a class file are

illustrated in figure 2.3.

After the Java class files header, the constant pool contains all the values

used to describe object and method layout. The fields section contains type

information about fields within a class. The access flags enable the JVM to

stop unauthorised accesses to an object. The access flags also declare whether a

field is static (one per class) or an instance field (one per object). Similarly, the

methods section describes the types of methods, their bytecode and their access

permissions. The attributes section enables extra information to be passed within

a class file. An example use for this section would be line number information

for a debugger.

The class file format is very rich in the sense that it contains almost as much

information as the original Java source code. It has been shown that it can

be transformed back to Java code [PW97, AP98]. At the same time, bytecode

within a class file has had few significant optimisations performed on it. The

class file structure has to contain a lot of information as Java code compiled later

has to be linked against it. This prevents standard compiler and object-oriented

optimisations from being performed until the class files are within the JVM. Later
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Tag Entry data

Tag Entry data

Index into constant pool

Index into constant pool

Access flags Name Descriptor Attributes...

Access flags Name Descriptor Attributes...

InfoLengthName

InfoLengthName

Access flags Name Descriptor Attributes...

Access flags Name Descriptor Attributes...

Magic

Version numbers

Constant pool count

Constant pool

................

This class

Super class

Interface count

Interfaces

Field count

Fields

................

................

Method count

Methods

Number of fields. Public and private data objects used by this class

Identifies file as a Java class file (value is always 0xCAFEBABE)

Minor then major version numbers of Java compiler that produced code

Number of entries in the constant pool (plus 1 as entry 0 isn’t used)

A collection of values identifiable by the tag field

Number of interfaces implemented by this class

Constant pool index at which point the details of the current class are

Constant pool index at which point the details of the super class are

Constant pool indexes at which points details on implemented

classes are

Details of individual fields: how may they be accessed, what is

attributes

Number of public and private methods within this class

................

Attributes count

Attributes

................

Details of individual methods: how may they be accessed, what is

their name, string describing what data is passed to and returned,

the actual bytecodes and any special attributes

Number of additional attributes

Details of individual attributes used to add extra information to the

class file

their name, string describing the type of object, any special

Figure 2.3: Class file structure
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in the chapter these optimisations are discussed.

2.4 Class library and native methods

Java bytecodes have no mechanism for performing any input from or output to

the operating system, instead certain methods within the class file are flagged

as native and are not provided with implementations. When a native method is

called it signals for the JVM to perform some library code that is not within the

class file. The exact way the native method is called depends on the class library

the JVM is using.

Two methods exist for calling native methods, the first is to have a high

degree of integration between the JVM, its compiler and the native methods.

This technique is used by various JVMs, two are described below.

The Kaffe JVM [Wil02] has its own class libraries that use a native method

interface called the Kaffe Native Interface (KNI). Kaffe uses the same object

representation as the C++ compiler used to compile the native methods. This

poses numerous problems due to differences between the two languages and the

need for the JVM to know the layout of objects within the C++ compiler.

Like KNI, the GCJ project [Fou02b] uses a native interface called Cygnus

Native Interface (CNI) [Fou02a]. GCJ does not provide a true Java environ-

ment as it compiles Java statically to native code and therefore doesn’t support

features such as dynamic loading. The GCJ is part of the GNU Compiler Collec-

tion [Fou02c] which has a C++ compiler. CNI provides a mapping from Java to

C++ so that native methods can be written in C++. The native methods must

be compiled with a C++ compiler compatible with GCC. This places similar

restrictions on the programmer that KNI does.

This is a high-performance technique, due to the large amount of integration,

but is not very portable. Users are tied into using a particular compiler and only

writing native code in a particular language.

The second method uses an application binary interface (ABI) that gives the

native code hooks back into the JVM. Sun’s Java Native Interface (JNI) [Sun96]

provides such a mechanism, it passes around a Java environment that has the

necessary hooks into the JVM. In this approach, to access a method or a variable,

a function in the environment must be called. This technique is more portable

than the first solution, which was language and compiler specific, the native
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methods just need the ability to use the Java environment and call external

methods. However, this method is less efficient as the extra function calls slow

the native methods down.

To speed up using an ABI a JVM may implement some frequently called

native methods as if they were bytecodes; compiling or interpreting them as a

single unit without the method call overhead.

2.5 Linking and loading

A key part of a JVM is the class loader [LB98]. The class loader is responsible for

loading the class files and integrating them into the JVM. The primordial class

loader is the class loader provided by the JVM, however, Java has an extensibility

feature that allows it to be replaced by class loaders with extra facilities. For

example, the primordial class loader may only be able to load uncompressed

class files and not be able to load class files from over the Internet. A library can

replace the primordial class loader with a class loader of its own with these extra

features incorporated. As part of the security features of Java, this separate class

loader is given its own name space so none of its classes can conflict with system

classes. By writing the class loader in Java and having the JVM load it, the class

loader can take advantage of Java’s rich library code.

Class resolution is the process of loading a class when it is required by a JVM.

The JVM specification requires classes to be resolved in a lazy manner so that

a class is only resolved the first time it is referenced. References are made to

other classes in the information contained in the class file about what classes

this class file extends and implements. To enable a class to be resolved, these

other classes must be loaded and resolved. Other classes are also referenced in

bytecodes, these should not be resolved until the bytecode is executed for the

first time. This places an unfortunate requirement on the JVM’s interpreter or

dynamic compiler; they cannot resolve and optimise certain bytecodes ahead of

time.
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2.6 Exceptions

As introduced earlier, Java aims to provide a robust environment in which to

execute code. The key feature of this is an exception mechanism that allows exe-

cuting code to signal to the JVM that something has gone wrong. This happens

in a precise manner [GJS00], meaning all statements prior to the exception will

have completed at the point the exception happens. The JVM also detects when

something internally has gone wrong by generating its own exceptions when,

for example, an array boundary is over run, a NULL pointer is dereferenced or

there is a problem loading a class. Exceptions in Java are modelled using an

object that is a subclass of java.lang.Throwable. A Java program must declare

which exceptions the code can throw unless it is a common form of exception.

The common form of exceptions in Java are held in the java.lang.Error and

java.lang.RuntimeException class hierarchy subtrees.

import java . lang . ∗ ;

class t e s t
{

private int bar ( int [ ] a , int x )
{

return a [ x ] ;
// Po t en t i a l e xcep t i on i f x i s beyond the array boundary

}
public void f oo ( )
{

int a [ 1 0 ] ;
int z ;

try {
z = bar (a , 1 2 ) ;

}
catch ( ArrayIndexOutOfBoundsException e ) {
}

}
}

Figure 2.4: Example Java code handling exceptions

Figure 2.4 shows some Java code that will cause the JVM to generate an

internal exception in the method bar. The JVM creates a

java.lang.ArrayIndexOutOfBoundsException object. As with all exception
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objects the JVM must create a stack trace to place in the object to support

methods such as java.lang.Throwable.printStackTrace() [Sun02a]. Once an

exception object is created the exception is thrown. The process of throwing an

exception involves starting at the head of the stack trace and checking whether

the exception was thrown in a try block. If the exception is in a try block then

the JVM checks if there is a corresponding catch block for this class of exception

or a catch block for an exception that is a superclass of this exception. In the

example, the top method does not contain a try or a catch block so the JVM

proceeds to the next method in the stack trace. The exception is re-thrown in

this method at the point that the method that caused the exception was called.

This continues until the stack trace is exhausted and then the JVM handles the

exception, typically printing the name of the exception and the stack trace.

The approach of handling exceptions above is described in the JVM specifi-

cation [Sun95] and is described as the stack unwinding technique. To improve

exception performance stack cutting can be used. Stack cutting places an excep-

tion and the handler’s entry point onto an internal stack whenever a try region is

entered. This stack entry is popped from the stack when the try region is left. In-

stead of re-throwing exceptions this approach can more quickly yield the correct

handler. However, pushing and popping onto the exception stack happens in the

normal path of program execution and adds to the execution time of a method.

A suggested approach [OKN01] that tries to incorporate the best parts of

each exception handling system is to use a feedback directed optimisation that

places exception throwing code for methods that frequently throw exceptions at

the place the exceptions are thrown. This approach adds to the complexity of

the JVM interpreter or dynamic compiler (as described in the following sections)

as they must perform an analysis and modify the interpreted or executed code.

If the extra time spent is not regained by a more efficient exception handling

system then the JVM will have slowed down.

Analysis of exceptions allows for instructions to be rescheduled around ex-

ceptions and the amount of state generated when an exception is thrown to be

reduced in certain circumstances [GCH00]. Exception handler prediction creates

a fast path through to a predicted exception handler on the basis that the handler

for a thrown exception will be the same for each exception as long as the han-

dler is in the same method [LYK+00]. This optimisation is greatly improved by

method inlining (see section 2.9.1) but is still limited as to the kind of exceptions
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it can optimise.

2.7 Interpreter JVMs

Java’s portability as a language stems from the fact it is compiled into a machine

independent bytecode format that is intended to be interpreted within a JVM.

To speed interpretation the operation represented by each bytecode is encoded

into a single byte at the beginning of the instruction. Following the operation are

zero or more operand bytes describing the operation. Common operations and

operands are encoded into one bytecode to reduce the size of the compiled code.

A key feature to the bytecodes machine independent format is that it uses a

stack to carry out operations instead of registers. By using a stack, processors

with few addressable registers, such as the Intel IA32 instruction set architec-

ture [Int87], are able to use their indirect addressing modes to emulate the stack.

Instruction set architectures with more registers, such as the SPARC architec-

ture [SPA92], can map the stack into registers. As the bytecodes use the top of

the stack implicitly, bytecodes do not have to encode which register or memory

address to use for an operation. This helps to improve the bytecodes code density.

Mapping the stack to registers is discussed further in section 2.9.

As well as a stack, Java bytecodes can access a pool of local variables and swap

them in and out of the stack to have general purpose computations performed

on them. One exception to this is the iinc bytecode that directly increments a

specified local variable.

Bytecodes are addressed by a virtual machine’s program counter (PC) register.

All PC values within a method are relative to the beginning of the method. The

PC is used to calculate branch targets but its value can never be read. This

allows a target machine to replace the PC with a value to speed up hardware,

translation or interpretation.

An example of some Java bytecodes is shown in figure 2.5 generated by the

javap tool [Sun02b].

The downside to interpreting Java programs is that programs will execute

slowly. A Java interpreter has to fetch a bytecode, decode it (branch to a loca-

tion that has the code to implement this particular bytecode) and then execute

the code to perform the bytecode. A hardware JVM would fetch the bytecode
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Store the top stack element to the local variable at
location 1

Subtract the top stack element from the second

Method int gcd(int, int)

Method void Main(java.lang.String[])

Method GCD()
11 return

4 iload_1

8 iload_0
9 iload_1

3 iload_0
0 goto 19

10 isub
11 istore_0
12 goto 19
15 iload_1
16 iload_0
17 isub
18 istore_1
19 iload_0
20 iload_1

24 iload_0
25 ireturn

3 bipush 72
5 invokestatic #6 <Method int gcd(int, int)>
8 putstatic #7 <Field int result>

0 sipush 164

0 aload_0
1 invokespecial #5 <Method java.lang.Object()>
4 return

Load the local variables (or arguments to the method) at
locations 0 and 1 onto the stack

5 if_icmple 15

21 if_icmpne 3

Compare the top two stack elements. If the second to top

branch to location 15
values is less than or equal to the top of the stack value then

Figure 2.5: Bytecode example

and then execute it. This is analogous to executing a single instruction. An inter-

preter must perform several instructions to perform the load, fetch and execute

operations.

High-performance was a stated goal of Java. Often application performance

is not dependent on the speed of the actual program but more on the speed of

surrounding libraries and the operating system. Java’s class libraries are therefore

designed with high-performance in mind. Interpretation is still a bottleneck,

sections 2.8 and 2.9 describe approaches to solving this problem.

Interpreters are frequently used to try out ideas in JVM implementation, in

particular interpreters have been used to try out novel methods of object layout
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and thread support.

In object layout, as highlighted in section 2.2, it is important to have compact

data structures so as to be conservative on memory usage but also objects have

to be easily supported by a fast garbage collection algorithm and also provide

quick method dispatch. The Java class libraries place additional requirements on

the object representation. The java.lang.Class, java.lang.ClassLoader and

java.lang.reflect.* libraries allow programmers to access object internals and

use the JVM’s linking and loading abilities. A typical example of object layout

trade-off was performed in the move from the Sun JDK 1.2 JVM [Sun99a] to the

Sun HotSpot JVM [Sun99b] in the 1.3 release of the Sun JDK. In the 1.2 release

objects required two indirections from an object reference to access a field. The

first access was used to retrieve a handle, the use of handles vastly simplifies the

garbage collector, the second access used the handle to access the field. In the

HotSpot JVM handles were removed and only one indirection is required to access

a field, this is at the expense of having a more complicated garbage collector.

All synchronisation in Java is performed on objects. Each object contains

locking information and a set of threads waiting to get access to this object.

Ideally the thread information will be small, the locking and unlocking primitives

simple and the scheduler able to maximise the amount of time actually spent

executing code on the processor rather than, for example, being stuck in a busy-

wait loop waiting to aquire a lock to an object. The Java programming language

makes it straightforward to put synchronisation checks on a region of code or

even an entire method (the synchronize keyword), this ease of expression means

that Java can suffer from thread overhead more so than other languages.

Thread optimisation also takes the form of mapping Java threads onto low-

level operating system threads. This is the native threads model and is frequently

complicated due to the difference between OS and Java threads. A green thread

model maps the JVMs threads on to a scheduler within the JVM. The scheduler

makes the multiple Java threads execute on the single thread which the JVM

is running. Performance tends to be lower with a green thread model as the

operating system can’t allocate threads efficiently, for example, when waiting for

device input or output.
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2.8 Hardware JVMs

To solve the problem of bytecode interpreters being slow, hardware has been

dedicated to the challenge of speeding it up. The PicoJava [MO98] processor

is designed to execute bytecode natively and extends the bytecode instruction

set1 so that it can handle more hardware oriented tasks. The PicoJava processor

has special support within its register file for the Java stack. The stack also

imposes an extra overhead in that it requires operations to push and pop local

variables on to it. Figure 2.6 shows an example of a RISC instruction and the

equivalent bytecodes for adding two local variables together. It can be seen that

the stack overhead is 3 instructions. PicoJava has a 4 instruction window in

which it performs instruction folding, this removes the stack overhead and adds

the 2 registers directly.

iload_1
iload_2
iadd
istore_1

Java bytecode

Push local 1 onto the stack
Push local 2 onto the stack
Add top 2 stack elements
Pop top of stack into local 1

add  r1, r2, r1

RISC instruction

Add register 1 to register 2 and
store in register 1

Figure 2.6: Comparison of bytecode and RISC

As well as dedicated Java processors such as PicoJava, ARM’s ARM926EJ-S

and ARM7EJ-S CPU cores have added bytecode as an extra operating mode for

their processors [Cor00]. When in the bytecode mode the bytecodes are trans-

lated in the instruction decoder and issued to the processor like natively supported

instructions. There are a great many restrictions on what bytecodes can actu-

ally be decoded on top of existing hardware. Bytecodes that are not properly

supported trap out to handlers in the machines native instruction mode. This

is inherently slower than direct support within the CPU, but it keeps the gate

count of an implementation down.

Other processors that were designed with Java in mind but do not actu-

ally execute bytecode include the Delft-Java architecture [GV97,GV99] and the

Jamaica architecture [WWEM99, WEMW99]. Delft-Java has a direct mapping

of Java bytecode to its own RISC style ISA. To support the JVM stack the

1The last 53 bytecodes have no instruction assigned to them. This allows JVMs to extend the
instruction set by either switching bytecodes when they are decoded or having library functions
with these bytecodes in. An implementation which uses these bytecodes must ensure that none
appear within a class file, as they pose a potential security risk.
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Delft-Java ISA supports indirect addressing of registers. The Delft-Java uses

a register renaming scheme to eliminate stack overhead. Jamaica uses its own

light-weight thread mechanism to implement Java threads. Automatic paralleli-

sation tools that increase the amount of parallelism within Java programs (such

as JAVAR [BVG97]) are suited to the Jamaica architecture.

Java hardware has managed to achieve a speed up of 8x over interpreted

JVMs [Cor00] but still are not as fast as dynamic compilers. By not recompiling

code, hardware and interpreter JVMs save on memory. They therefore both have

a niche in embedded applications where memory is limited.

2.9 Just-In-Time and dynamic compilation JVMs

Just-In-Time (JIT) compilation and dynamic compilation both refer to the method

of executing Java bytecodes by translating them into native code and then ex-

ecuting the translated code instead of the bytecode. This causes a performance

improvement as the translated code is cached and executed each time the byte-

code should be executed.

A JIT compiler compiles the bytecode into native code either when a class is

loaded or when a method is executed for the first time. A dynamic compiler is

more selective over when compilation is performed and in certain cases a dynamic

compiler may choose to interpret instead of compile the bytecode. This can

hopefully avoid any unnecessary compilation expense. A dynamic compiler may

also choose to optimise a hot region of code. The optimisation takes the form of

conventional static compiler optimisations which, due to slowing the compilation

process down, were not executed when the compiler was run the first time.

JIT compilation is a form of dynamic compilation where the heuristic of when

to compile is very simple, once, when the class or method is first loaded or

executed. The heuristic of when to compile can make all the difference with a

JVM: compile too late and the benefit of faster code is never realised, compile

too early and the dynamic compiler could compile code that will infrequently be

executed. The dynamic compiler, like computer hardware, has to choose what

will happen in the future from its past experience (for example, temporal locality

properties exploited by caches). Java gives clues with methods such as class

initialisers that they can only ever be run once. However, because a method is

run once does not mean a lot of time can not be spent in it, for example, if there
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was a large loop in the body of the method.

The optimisations to increase program speed performed by dynamic compilers

are largely the same as in conventional static compilers2. Dynamic compilers

have a benefit in that execution statistics of the code to compile are available as

optimisations are performed. Chapter 4 describes the optimisations performed in

the Dynamite dynamic binary translator, that is analogous to a dynamic compiler.

As with Java hardware the overhead of a stack is eliminated by the dynamic

compiler. Java bytecode allows a direct mapping of the stack to registers by

making it a requirement of the bytecode that each time it is executed the stack

depth be the same.

Section 1.2 introduced the problem that object-oriented programs tend to

have short methods with lots of function calls and small basic blocks. A dynamic

compiler will struggle to optimise a method as it has little code in it, performance

will also suffer due to the overhead of passing information around inside the JVM.

To counter this an optimisation called method inlining is performed.

2.9.1 Method inlining

Method inlining is a technique used in object-oriented environments to increase

basic-block size and remove method boundaries therefore improving the oppor-

tunity for optimisation. A high-level example is shown in figure 2.7.

In figure 2.7 the code of class test has the method inlining optimisation per-

formed to produce the class test optimised. In the transformation the method

body of cube is moved inside the method body of main. For the code to remain

equivalent the parameter x is renamed i. This optimisation produces code that

no longer needs to perform a method call and method return, it also does not

need to pass i as a parameter. The body of the while loop in main is now longer,

allowing techniques such as instruction scheduling greater scope for optimisation.

The low-level implementation of method inlining varies slightly from the ex-

ample given in figure 2.7. In low-level implementations variables have symbolic

names and do not need renaming. More general implementations of the method

inlining optimisation need to be able to handle method polymorphism and in

Java’s case dynamic loading of classes. This means that an inlining optimisation

may later prove to be invalid and the optimised code needs invalidating.

2Conventional static compiler optimisations in a dynamic binary translator environment are
discussed in [Rog99].
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class t e s t
{

public stat ic void main ( St r ing args [ ] )
{

int i =0, t o t a l =0;
while ( i < 100){

t o t a l += cube ( i ) ;
i++;

}
}
private stat ic int cube ( int x )
{

return x ∗ x ∗ x ;
}

}

class t e s t op t im i s ed
{

public stat ic void main ( St r ing args [ ] )
{

int i =0, t o t a l =0;
while ( i < 100){

t o t a l += i ∗ i ∗ i ;
i++;

}
}
private stat ic int cube ( int x )
{

return x ∗ x ∗ x ;
}

}

Figure 2.7: Example of method inlining



CHAPTER 2. THE JAVA VIRTUAL MACHINE 41

If the call site which is inlined into a method does call multiple locations it

may still be worth placing the method bodies into the call site to remove the

parameter passing and method return overhead. In this circumstance the inlined

call site has to choose one of possibly several inlined methods or to perform a

regular method call. In this situation, Class Hierarchy Analysis (CHA) can be

used to determine whether a virtual call can actually be replaced by a static call.

CHA shows success rates of between 14% and 40% at inlining virtual calls in

Java [MMBC97].

The choice of which method to inline is guided by a weighting generated from

the execution statistics of the caller and callee method, whether or not the called

method lies within a loop, and what kind of a method is being compiled/opti-

mised. Methods flagged as final in the Java program are prohibited from being

overloaded, this is also true for private methods, these methods therefore make

good candidates for being inlined as there can be no complication of the method

dispatch.

One final heuristic for choosing a method for inlining is based on whether it

is a leaf method or not. A leaf method is one that calls no other methods. A

method can be flagged as a leaf method at the time it is loaded and verified by

the primordial class loader. We discovered by instrumenting the Kaffe [Wil02]

JVM that certain methods did benefit from this analysis. An example is the

library method to read a string from a file, this method in turn calls a method to

return a single character from a section of the file which is buffered. By inlining

the call to read a single character the string reader loses the cost of a method call

overhead as well as opening up the possibility for optimisation within the loop of

the string reader method. In many ways this is similar to the example shown in

figure 2.7.

2.10 HotSpot

HotSpot is a state-of-the-art JVM which executes Java bytecode using an inter-

preter, JIT and optimising compiler. JIT is used in this context to mean a simple

non-optimising compiler. To switch between modes of execution synchronisation

points are recorded in the code. At these points the JVM can switch from one

mode to the other, Sun call this technique in-stack replacement.

Each of the HotSpot’s 3 execution modes has different properties:
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• interpreter: interpretation has very low latency meaning there is very little

delay from the start of the code being told to run to it starting execut-

ing. The bytecodes instrument the execution of the method to guide the

modes of execution that use dynamic compilation. HotSpot’s interpreter is

automatically generated at start-up using the inbuilt assembler used by the

compilers. Generation is fast (less than 10ms on a 400MHz Intel Pentium

II) and configured to the exact architecture the JVM will run on [Gri99].

The Spec JVM ’98 benchmark [SPE98] score for the interpreter is 2.3.

• JIT compiler: originally this was a template-based compiler that translated

each bytecode into a fixed set of native instructions. Template compilers

have low latency but the performance of the produced code is slower than

than of an optimising compiler. The next generation HotSpot JIT compiler

performs optimisations such as common sub-expression elimination within

extended basic blocks, simple register allocation based on usage counts,

elimination of array bound checks in inner loops, method inlining and de-

lay slot filling. This increased the complexity of the JIT more than 3 fold

from 1400 cycles to translate a bytecode to 4300 cycles per bytecode on a

Ultra SPARC system [AD00]. The performance of the translated code is

more than 10 times faster then the interpreter with a Spec JVM ’98 bench-

mark score of 23.6. The JIT compiler produces code which instruments the

execution of the code to further guide the final optimising compiler.

• optimising compiler: this stage performs a full set of compiler optimisations

and produces code based on executions statistics created in the previous two

modes of execution. The compiler works in two phases, high form and low

form. Optimisations performed during the high form phase of compilation

include method inlining guided by class hierarchy analysis, common sub-

expression elimination, dead code elimination and invariant code hoisting.

During the low form phase optimisations include global register allocation,

delay-slot filling and branch optimisation. A bottom-up rewrite system is

used to convert machine-independent to machine-dependent instructions.

This is guided by a deterministic finite state automata that records the

lowest cost instruction as the intermediate representation is walked. During

the final phase of code generation a peephole optimiser selects the best

instruction to plant. Global code motion and null pointer check elimination
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are also performed during optimisation [PVC01]. The performance of the

final system is more than 12 times faster than the interpreter, but the

number of cycles to translate a bytecode has increased to over 150,000

cycles [AD00]. The Spec JVM ’98 benchmark score for the optimising

compiler is 27.9 although this will increase as the compiler matures.

As some of the optimisations performed by the two compiler modes of ex-

ecution may prove unsafe, a deoptimiser can remove optimisations. The main

optimisation to be affected is method inlining. Method inlining is potentially

made unsafe whenever a new class is loaded. The deoptimiser has to recreate

the state necessary for the interpreter mode of execution. To do this safe points

are planted through out the generated code and when one of these is reached

deoptimisation is performed.

Two versions of HotSpot exist for the server and client markets. The server

JVM focuses on high performance whilst the client JVM focuses on low latency.

By tuning when each mode of execution is used the different server and client

configurations are realised. The server JVM tries to switch to the dynamic com-

pilation phase as early as possible, where as the client JVM will usually operate

in the JIT mode. As the JIT mode of execution is only around 20% slower than

the optimising compiler mode, most client processes do not notice the speed loss

and benefit from the decreased latency caused by faster translation. As server

applications tend to be larger and run for a much longer period of time, the time

spent in dynamic compilation gets returned by the faster execution of the code.

In client applications, the cost of dynamic compilation may never get returned

through increased performance, so the compilation process is executed on a low

priority thread.

2.11 Summary

This chapter has introduced Java and the components that make it up, differen-

tiating between the Java programming language, the Java Virtual Machine and

the class libraries, and introduced the Java environment. The chapter went on

to describe key features of Java to the JVM: object representation, the class file

format and dynamic link loading. Next different implementations of the JVM

were considered from interpreted, hardware and dynamic compilation. Dynamic

compilation offers the highest speed of execution with expensive optimisations
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such as method inlining being performed, however, this can cause the JVM to

suffer from latency problems. Finally, the HotSpot JVM was described as well as

its mechanisms for dealing with latency.

More generally, this chapter has described techniques used by other Java and

JVM implementations such as IBM’s Jalapeño [AAea00], MS Visual J++ [Mic01a],

Insignia’s Jeode [Sol01], Symantec [Nic98], Cacoa [KG97,Kra98], Caffeine [HGH96],

Kaffe [Wil02], OpenJIT [MOS+98], Toba [PTB+97], SableVM [GH01] and Tow-

erJ [Tow98].

Chapter 5 goes on to describe the Dynamite JVM that implements a complete

JVM on top of the Dynamite dynamic binary translator. The following two

chapters describe dynamic binary translation technology.



Chapter 3

Dynamic Binary Translation

This chapter describes dynamic binary translators and is followed by chapter 4

describing the Dynamite dynamic binary translator on which the Dynamite JVM

is built. The main part of the chapter comprises three sections (3.2, 3.3 and 3.4),

highlighting certain binary translators. The next section provides an overview of

binary translators and the three groups used to classify binary translators in this

thesis.

3.1 Overview

Dynamic binary translation is a technique used to run programs that are not

natively compatible with a computer platform1. Binary programs have little

structural information contained within them and are sometimes impossible to

reverse engineer, thereby inhibiting migration to a new computer platform.

For example, code compiled for an Intel IA-32 machine, running Microsoft

Windows, has information about functions and subroutines in the source code

at the time of compilation. The compiler generates binary code that has data

structures placed in with the code, the data typically being used for jump tables

and other precomputed values. The compiler or the programmer may even create

code that is self modifying (for example, value specific optimisation [Kep96]). A

static binary translator can only translate the effect of this data and code if

it knows the format in which it was generated. This may alter as computer

1Dynamic binary translation is one form of computer emulation. Emulation is typically
meant to mean a emulated environment built around an interpreter. For this reason dynamic
binary translators try to distinguish themselves from emulators.

45
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languages and compilers change; hand-crafted assembler code has no style to

conform to.

Dynamic Binary Translators (DBTs) do not suffer from problems of code

discovery, as they translate and execute code in a lazy manner. Only code used

within a program’s execution needs to be translated. If a previously untranslated

path is taken by a branch then the DBT is called to translate the path. The new

path taken is calculated by the executing dynamically generated code.

The term subject machine is used to refer to the computer architecture a pro-

gram was intended to run on. The subject environment is the environment the

DBT produces. This may be little more than the subject machine, but it may

include loaders, linkers, and emulated software calls or hardware devices. The sub-

ject program is the program the subject environment executes. The instructions

contained in the subject program are subject code. Likewise, the code produced

by the DBT is called target code and is executed in a target environment.

In 1987 Hewlett-Packard released a binary translation system with a HP 3000

subject machine and a PA-RISC target machine [AKS00]. Later, Tandem built

a translator and interpreter system to migrate users of legacy TNS products to

their newer TNS/R product line [AS92]. Dynamic Binary Translation is now

a key technology allowing a computer architect to be freed from legacy code

concerns. Table 3.1 highlights emulation and DBT environments of the last 15

years.

Tool Reference Function

OCT + HP

3000 Emu-

lator

[BKMM87]

Static translator (Object Code Translator - OCT)

and interpreting emulator to run HP 3000 MPE V

binaries on PA-RISC MPE XL.

Flashport [GM88] Static translator with configurable subject environ-

ment front-end and target environment backend mod-

ules. Code discovery relies on human input. 680x0

Macintosh, IBM 360/370/390 and PDP11/70 sub-

ject machines supported. PowerPC Macintosh, IBM

RS/6000 and PowerPC, SPARC SunOS, PA-RISC,

MIPS and IA-32 target machines supported.

XDOS [HB89] Static translator of IA-32 MS-DOS binaries to 680x0,

IA-32, SPARC, 88000 and MIPS Unix. Human inter-

vention for code discovery like Flashport.
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Bedichek [Bed90] Fast DBT based 88000 architecture simulator with

debugger interface that runs on a 68020.

Accelerator [AS92] Static translator and interpreter to run TNS CISC

binaries on TNS/R.

VEST &

TIE

[SCK+92,

SCK+93]

Static translator (VEST) and runtime environment

with an interpreter (TIE), to run VAX OpenVMS bi-

naries on Alpha OpenVMS.

mx & mxr [SCK+92,

SCK+93]

Static translator (mx) and runtime environment with

an interpreter (mxr), to run Ultrix MIPS binaries on

Alpha OSF/1.

Mae [App96] 68LC040 Macintosh emulator for SPARC Solaris and

PA-RISC HP-UX.

Wabi [Cal02] IA-32 Windows API subset on Sparc Solaris, Pow-

erPC AIX and IA-32 Linux.

Atom [SE94] Binary modification tool for instrumenting binaries

and collecting extra profiling statistics.

Shade [CK94] DBT that translates MIPS or SPARC code to run

on SPARC SunOS/Solaris. Translated code is aug-

mented to generate profiling information.

Executor

and Syn68k

[Hos95] Efficient interpreter emulating 68LC040 on IA-32,

680x0, i860 and Alpha.

TIBBIT [CS95] 68000 to C to PowerPC with a focus on maintaining

real-time constraints.

SoftWindows

and RealPC

[Sof02] IA-32 hardware emulation using an interpreter and

DBT targeting PowerPC Mac OS and SPARC, Pow-

erPC and MIPS Solaris.

Virtual PC [Tra97] IA-32 hardware emulation and DBT to PowerPC Mac

OS.

Freeport

Express

[Com02] SPARC SunOS to Alpha Digital Unix static trans-

lator (fpx) and runtime environment (fpxr) with a

similar execution model to VEST and mx.

SimOS

[RBDH97]

High-performance configurable architecture simulator

similar to Shade.

Embra [WR96] Complete emulation of MIPS R3000/R4000 using

SimOS’s DBT.

Morph [CSB96] Binary migration tool supported through compiler

and measurement tools that annotate binaries.

FX!32 [Har97] DBT to run IA-32 Win32 binaries on Alpha Windows.
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DAISY [EA97] VLIW architecture with extensions supporting bina-

ries from different instruction set architectures using

a DBT called the VMM.

Bochs [Boc01] Unix IA-32 Emulator with a limited and now discon-

tinued DBT.

Crusoe [Kla00,

KCW98]

VLIW hardware dedicated to the fast dynamic trans-

lation and execution of IA-32 instructions.

Dynamo [BDB99] DBT and optimiser running PA-RISC HP-UX bina-

ries on PA-RISC HP-UX.

VMWare [VMw99,

Kei01]

IA-32 hardware emulation on IA-32 Windows and

Linux with instructions running natively.

MOJO

[CLCG00]

DBT and optimiser to run IA-32 Win32 binaries on

IA-32 Win32, similar to Dynamo.

Plex86 [Law00] Open source DBT project to translate IA-32 to mul-

tiple target machines.

UQDBT [UC00a] Generic DBT built using machine descriptions. Runs

IA-32 or Sparc Solaris binaries on IA-32 or Sparc So-

laris.

Aries [ZT00] DBT to run PA-RISC HP-UX binaries on IA-64 HP-

UX.

Vulcan [SEV01] Runtime system providing feedback to optimise bina-

ries across platforms.

Table 3.1: Translation environments

Figure 3.1 shows three different combinations of subject and target environ-

ments, with the DBT program layer.

In this thesis type 1 DBTs will be referred to as above operating system DBTs,

type 2 as between operating systems DBTs and type 3 as below operating system

DBTs. In this chapter above operating system DBTs are described in section

3.2, between operating system DBTs in section 3.3 and below operating system

DBTs in section 3.4.

As all DBTs are performing a similar role they may be adapted, for example,

from a between operating system DBT into a above operating system DBT. What

alters in this transition is the support for the surrounding operating system and

hardware.
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Figure 3.1: Dynamic binary translation environments

3.2 Above operating system dynamic binary trans-

lators

Above operating system DBTs take a program and execute it directly on the

DBT. As the underlying operating system is not translated, system calls need

to be passed through. Calls that cannot be passed need to be emulated by the

DBT. FX!32, Dynamo, UQDBT and DAISY all operate in this manner and are

described respectively in sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4.

3.2.1 FX!32

In the early 1990s Digital Equipment Corporations ambitiously planned to mi-

grate Windows NT, VAX/VMS and MIPS/Sparc Unix users to its new Alpha

processor. The Alpha was, and still is, a very fast RISC processor that looked as

though it could take over from existing CISC based processors, such as the Intel

i486. Microsoft offered support to the new architecture by porting their Windows

NT platform [Mic01b].

To enable people to switch easily to the new platform, Digital produced



CHAPTER 3. DYNAMIC BINARY TRANSLATION 50

FX!32 [Tur96,HH97]. This DBT allows Intel IA-32 Microsoft Win32 programs [Har97]

to run on the Alpha version of Windows NT. A Win32 binary is a binary of a

program designed to run on Windows NT and also Microsoft’s later operating

system product line of Windows 95, 98, etc. A Win16 binary designed for early

Microsoft operating systems, such as Windows 3.1, would work through an emu-

lation environment that interpreted rather than translated IA-32 instructions.

Binary translator

Transparency agent
Initiates

Uses

UsesUses

Creates

Uses

Uses

Creates

Runtime and emulator

Translated images Execution profileIA32 executable

Figure 3.2: The FX!32 System

The FX!32 system is shown in figure 3.2. The transparency agent is linked

into the Windows NT operating system and handles the loading of the runtime

environment for executing the non-native code. The translator itself is run as a

low-priority task. Sections of IA-32 programs are translated, based on execution

profiles that are gathered by the operating system. The profiles determine which

binaries should be translated first. The runtime environment and emulator use

a translated image, if one exists, or as a fallback for a half translated binary, the

system interprets the IA-32 instructions.

FX!32 incorporates a number of optimisations novel to its purpose [HH97].

The translator has two mangler functions for handling IA-32 registers and flags

(condition codes). The register mangler maintains the contents of the IA-32

registers in separate 32bit registers. The IA-32 Instruction Set Architecture (ISA)

defines registers such as EAX, AX, AL and AH to be overlapping, so the mangler

has to recombine registers whenever appropriate. By only recombining registers

when necessary, FX!32 avoids frequent shifting and masking of registers. The

flag mangler avoids maintaining the status of the flags during a translation, by

generating the flags when necessary from saved state at the point the flags are

used. As the values in the flag registers are frequently over-written, the flag
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mangler need only store state information for the end of a block. FX!32 handles

through profile analysis the problem of the Alpha processor faulting on unaligned

memory accesses. When profile data shows unaligned memory accesses to be

common, different code is generated which faults less frequently.

Intel and AMD provided stiff competition to Digital, with the Alpha processor

finding a niche away from the desktop in the high-performance server market.

FX!32 has now been discontinued, the Alpha processor (licensed to companies

such as Samsung) is used in systems such as the Cray T3E [Cra01].

3.2.2 Dynamo

HP started the Dynamo [BDB99] project in 1995 to create a DBT of a speed

and transparency that is comparable to how applications are run natively. Initial

Dynamo environments translated from PA-RISC HP-UX to PA-RISC HP-UX

and so are not translators as such, but the execution model supports different

front-end modules being written to configure the subject environment. Figure 3.3

shows the execution model of Dynamo.

Dynamo starts off by interpreting subject machine instructions on a model

of the machine’s state held in a context. On the PA-RISC platform (as the

subject and target environments are the same), the interpreter can be replaced

by running the native code and then performing a trap out when a start of trace

point is reached. An example of a trace start point would be a backward branch.

However, trapping out of code is reliant on a light weight trap instruction. When

a trace start point is hit, the Dynamo system looks to see if the proceeding code

has been previously translated. If it has, then this is executed until an exit point

returns the system to the interpreter environment with the context updated. The

translator is called when a section of code, pointed to by the program counter,

is detected as being hot (frequently executed). The translator interprets the

instructions and builds a trace profile until an end of trace condition is reached.

This profile is then translated, optimised and placed in the cache of translated

code. Linking the code in the code cache avoids the cost of interpretation and

detecting whether or not a program counter has been translated previously.

Key to Dynamo’s optimisation strategy is trace scheduling. The traces that

are built are ordered so that the most frequently executed paths experience re-

duced branch and cache misprediction penalties. Dynamo also concentrates on

being small and having a small code cache. The small size of Dynamo in memory
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Figure 3.3: Dynamo model of execution

comes from focusing on optimising a simple execution environment, with straight-

forward heuristics. The small code cache size comes from frequently flushing the

code cache whenever a change is detected in the way a program is executing

(referred to as program behaviour).

On the suite of SpecInt 95 benchmarks [SPE00] dynamo has a performance

improvement equivalent to -O4 optimisations from their HPUX compiler run with

-O optimisations [BDB00]. On certain benchmarks it does, however, perform

worse than executing the program natively.

3.2.3 UQDBT

The University of Queensland Dynamic Binary Translator (UQDBT) [UC00a]

builds on a static binary translator called UQBT [CE00]. A key part of UQBT’s
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static translation is the rediscovery of high-level programming language con-

structs such as switch statements [CE99] and the recovery of procedural infor-

mation [CS00]. By reconstructing high-level programming structures the trans-

lator is able to use an appropriate target machine’s mechanism to implement the

translation. For example, C code compiled for the IA-32 ISA [Int87] passes pa-

rameters to procedures through the stack, whereas the SPARC ISA [SPA92] uses

a register-window scheme. The UQBT translator can map the SPARC scheme

onto the IA-32 scheme or vice versa, whereas a conventional translation system

would have had to emulate each scheme.

UQDBT’s optimisations work by inspecting code and interpreting it to give

certain properties for the code. This is not always possible as: functions that

take a variable number of arguments have complicated function calls, hand coded

assembler can disregard convention, a compiler’s optimiser may remove part of

the convention as part of their own optimisation scheme or the code could contain

self-modifying portions.

UQDBT uses mechanisms developed for UQBT such as subject and target

machine specification languages to provide machine adaptability. UQDBT does

not use any procedure discovery mechanisms, as in UQBT, because this opti-

misation proves too costly to be executed at runtime. Instead cheap analysis is

performed and optimisations used on frequently executed regions of code.

UQDBT translates and caches basic blocks, unlike Dynamo which translates

traces of multiple basic blocks. A basic block is a small fragment of code (de-

scribed further in section 4.2.1), so it is necessary for UQDBT to build larger

fragments to avoid the penalty of being in the translator’s code instead of the

dynamically generated code. UQDBT builds up hot paths [UC00b], which are

collections of basic blocks connected by edges that have been traversed a number

of times greater than a threshold value. Hot paths are analogous to group blocks

in the Dynamite DBT described in chapter 4.

UQDBT maps as many system and library calls across architectures as pos-

sible. In particular, UQDBT concentrates on running IA-32 Solaris binaries on

SPARC Solaris. The main problem in achieving this is that SPARC is a big-

endian architecture, whilst IA-32 is a little-endian architecture. Byte swapping

and memory alignment prove a performance bottleneck at the library interface.
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3.2.4 DAISY

DAISY stands for the Dynamically Architected Instruction Set from Yorktown

[EA97]. The DAISY project has at its heart a novel instruction-level parallel

machine and VLIW ISA. To gain acceptance, DAISY uses a DBT called the

Virtual Machine Monitor (VMM). The subject environment emulated by the

DAISY DBT was primarily the Power PC ISA, however, the ability to configure

the subject machine is designed into the translator.

DAISY initially uses an interpreter to interpret code pieces and gather profile

data. A code piece is interpreted up to an execution threshold, at which point it

is translated. The translator builds up tree groups, which pass control between

each other or back to the VMM [EASG99, EAGS00]. In the original DAISY

implementation, branches that used a register or branches across pages were used

to trigger the VMM. A page fault was generated when an untranslated page was

branched to, this provided a trap into the VMM. A tree group is analogous to

a hot path in UQDBT, except that profile information is not held on branch

direction (counts associated with arcs between addresses), but on the individual

blocks themselves (counts associated with a particular address).

The DAISY architecture includes innovations that enable it to reschedule

loads and stores, and also accurately and quickly generate exceptions. DAISY

achieves this by having an exception bit in a number of special registers. The

VMM generates code that uses these registers. If an exception occurs on an

instruction accessing one of these registers then the exception bit is set, but the

exception is not reported to the operating system. If a register with the exception

bit set is copied to a regular register then an exception is thrown.

DAISY’s support of dynamic compilation made it a good candidate to imple-

ment a JVM [EAH97,YMP+99]. The JVM implementation techniques used are

described in chapter 2.

3.3 Between operating system dynamic binary

translators

Running one operating system within another is commercially popular. A num-

ber of such emulation environments exist, with a few using translator or DBT

technology. Sections 3.3.2, 3.3.1, 3.3.3 and 3.3.4 describe four such environments.
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3.3.1 VEST and mx

VEST and TIE are tools to translate and run VAX OpenVMS binaries on Alpha

OpenVMS [SCK+92,SCK+93]. Mx and mxr are tools to translate and run MIPS

Ultrix binaries on Alpha OSF/1. The execution process of these two systems is

shown in figure 3.4.

Runtime Support
(TIE/mxr)

Translator
(VEST/mx)

User Options Report

Hints

Original binary Translated binary:
original data
original code
translated code

Figure 3.4: VEST and mx execution model

TIE/mxr interprets any instructions that VEST/mx has not been able to

discover, as well as providing the emulation of the software environment. The

interpreter generates a hints file to aid in code discovery if the VEST/mx system

is re-run. The VEST/mx translator builds up a flow graph of basic blocks within

the program. Branches are resolved in this process using symbolic execution of

instructions.

VEST and mx optimise the translated code by use of idiom recognition,

whereby a sequence of instructions is replaced by a more optimal one for the

target machine. They also perform instruction scheduling to optimise the trans-

lated binaries performance on the Alpha processor. A key concern for these sys-

tems is to be 100% architecture compatible with the environment they emulate.

This puts a burden on the translator not to alter exception handling behaviour.

This is complicated in the case of VEST, which must translate the VAX CISC

instructions into multiple Alpha RISC instructions.

3.3.2 Macintosh application environment

The Macintosh Application Environment (MAE) [App94,App96] provides an em-

ulation of the 68LC040 and Macintosh hardware for Solaris and HP-UX. MAE

offers users of Solaris and HP-UX the ability to run MacOS software, and also
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offers administrators a mechanism by which they can centralise administration

for multiple virtual machines on one high-end server.

MAE’s control loop uses a lookup table of 68LC040 instructions to inter-

pret each subject instruction. Hot-block detection is performed, the control loop

branches into hot regions of code by planting the address of the translated code

in the lookup table and altering the subject machine’s instructions so that it

branches to it. Hot-blocks are determined using a sampling algorithm. The start

of the hot-block is a branch instruction and hot-blocks are ended by non-local

returns, non-local unconditional branches and complex instructions.

A legacy system to enable PowerPC Apple computers to run 68000 series

programs works in much the same way as MAE except it does not have to provide

an emulation environment, it can just pass though API calls to the operating

system kernel. It also has different requirements placed on its memory footprint.

MAE has now been discontinued by Apple.

3.3.3 Wabi

Wabi [Cal02] is a DBT that runs IA-32 applications on SPARC Solaris and PPC

AIX. More recently Wabi has been dropped by Sun and sold to Caldera who have

ported it to IA-32 Linux. The IA-32 version does not perform any translation,

instead running the IA-32 instructions natively. API mapping is done from the

Windows create windows API to the X-Windowing system create windows API.

The API is incomplete so only a subset of MS Windows programs are compatible

with Wabi, 24 applications being directly supported.

Sun produced the IA-32 to SPARC DBT for Wabi whilst IBM used it’s 80x86

Instruction Set Translator for the PPC. Both perform code analysis and caching

of hot regions, to help improve performance. The SPARC DBT maps IA-32 flags

onto SPARC flags, eliminating any unnecessary updates by evaluating the flags

as late as possible.

3.3.4 VMWare

Sometimes the motivation of an emulator is to run one operating system inside

another, on the same ISA. In such cases, code does not need translating and

can be emulated in a separate memory space. VMWare [VMw02] provides such

functionality allowing an IA-32 based PC to be emulated within itself. VMWare
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has to provide an emulation of the PC’s hardware and BIOS with the emulated PC

appearing indistinguishable to the guest operating system. SoftWindows [Sof02],

Bochs [Boc01] and Virtual PC [Tra97] also emulate a full set of PC hardware.

Network service providers are using full PC emulators due to their ability to

emulate network cards and appear as extra machines on a network. By providing

customers with virtual machines costs can be kept low, through lower space rental

and cost of hardware, whilst keeping a stable system. Stability is provided by

each virtual machine running in its own address space.

3.4 Below operating system dynamic binary trans-

lators

Type 3 DBTs execute a full operating system and program straight on an under-

lying piece of hardware. The DBT needs to map hardware or emulate it. Not

having an underlying operating system means the DBT has to provide its own

support libraries. Running directly on hardware gives a DBT the greatest amount

of freedom in optimising its code.

Simple DBTs, like simple JVMs, can interpret a subject machine instruction

on the target machine using a loop and state variables [AS92]. Alternatively, there

can be microcoded solutions such as the Intel 80286 compatability on 80386 and

later processors [Int87].

3.4.1 Transmeta

The Transmeta Crusoe processors provide compatability with Intel IA-32 instr-

uctions at the same time being a small, low powered processor with a native

VLIW instruction set [Kla00]. The Crusoe processors move complexity out of

the instruction decoder and into the code morphing software, which is a DBT.

They use a special translator memory to hold the DBTs translations. Enhance-

ments are not only brought by new silicon but improved by new software too.

For example, version 4.2 of the code morphing software achieves up to a 40% re-

duction in power consumption on benchmarks, compared to version 4.1 [Tra01].

The Crusoe processors incorporate features to enable rollback of several instr-

uctions, allowing portions of code to be aggressively optimised and for quick
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recovery of state if these optimisations are invalid [KCW98]. When an opti-

misation violation is detected the DBT is called to retranslate the code more

conservatively. The rollback mechanism is implemented through a gated store

buffer and additional registers. The gated store buffer delays writes to memory

until a boundary of a region of code is reached. If a fault occurs the memory

state is no different than when the region was entered. The registers are copied

to and then switched for an alternate set, at the boundary. The none working

set of registers preserves the register values from the beginning of the block. The

mechanism resembles hardware-based speculation [HP96] where mispredicted in-

struction traces are discarded. The granularity is much coarser here as the DBT

is generating code for multiple basic blocks. The DBT avoids paying the penalty

of speculating incorrectly each time the code is executed, by retranslating the

code and replacing the old version in the cache.

To detect a memory alias the Crusoe processor performs a load and protect

instruction. This instruction loads a value and places the address it was loaded

from into a special register. Loads and stores occurring after the load and protect

instruction generate an address which is compared with that held in the load and

protect instruction’s special register. If the two addresses are identical then a

fault is generated, the processor rolls back, and the DBT is called to retranslate

the code.

Crusoe hardware is designed to target the low power market segment, such as

laptops, embedded devices, and high-density servers. Performance is comparable

with other processors in this market segment, but not comparable to high-end

server and workstation processors.

3.5 Other directions

Above the operating system DBTs are well positioned to take advantage of binary

format, Application Binary Interface (ABI) and library standards, developed by

groups such as the open-group [Gro02]. iBCS2 is one such standard that defines

linking, ABI, and libraries, that allow IA-32 compiled binaries to be run under

many different operating systems. With dynamic binary translators, iBCS2 be-

comes a platform independent binary format, in much the same way as the Java

class file.

As well as running application programs on top of operating systems, the
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embedded computer market is a candidate for DBT technology. Embedded com-

puters provide a wide range of functionality on different CPU cores. Porting code

from one system to another can prove slow, as embedded code can have a lot of

hand-crafted assembler code. Porting code becomes increasingly complicated

when the systems have different word sizes and byte sex.

Peripheral devices, such as graphic cards, can off-load some of their initial-

isation on to the host processor. Typically, the host processor is expected to

be IA-32 compatible. To enable these devices to work on machines that do not

have an IA-32 compatible host processor, the BIOS (or even the graphic driver

on machines with more than one graphic card) interprets the initialisation code.

Devices such as modems have off-loaded some of their functions onto the host pro-

cessor too [Hac99]. DBTs can enable these devices to run on alternate processors

and operating systems.

As well as using a DBT as an emulator, it is also possible to use them to

support software and hardware development, by translating and augmenting code.

One typical augmentation is for generating statistics on how many instructions a

program runs. Having a short execution time is not a key for these DBTs, as they

will only be used by developers. The Shade tools [CK94] and SimOS [RBDH97]

are in this category of DBT.

Finally, DBTs can be seen as part of a system that follows software through

its life [SEV01]. Parts of a software’s life that can be handled by a DBT include

software management, anti-piracy, reliability, testing, performance measurement

and optimisation. Software management is the process of delivering, installing

and patching programs. Anti-piracy can be supported in a DBT by obfuscating

a program’s symbols and instructions, and detecting software tampering by the

addition of watermarks to software. Reliability can be measured, as a running

system can have tests run on it to verify it is operating correctly. Testing support

can be added to an execution environment so that software can be tested in a live

environment. Feedback about how the software is used can be analysed to guide

features for later revisions, as well as spot bugs and monitor performance. DBTs

provide optimisation, but within a fuller compiler and execution environment

within a system with more feedback, then the optimisations can be better targeted

and the performance further improved.
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3.6 Summary

This chapter has introduced existing dynamic binary translator environments

providing context for the Dynamite DBT. Dynamic binary translators have been

used as:

• A migration tool to move users from an old ISA to a new one.

• Quick hardware emulation tools and statistics generator.

• Integral part of a high-performance, low-power CPU to reduce hardware

complexity.

• Potentially future compiler toolkits, featuring DBTs, may be used as an

integral part of software development.

The following chapter describes the Dynamite DBT in detail. The Dynamite

DBT is the foundation for the Dynamite JVM, and all the following work in this

thesis.



Chapter 4

Dynamite

In the original thesis, this chapter provided background information, concern-

ing the Dynamite binary translation system, which was necessary to understand

the techical detail contained in subsequent chapters. However, this version has

been abridged to avoid possible disclosure of information which is the intellectual

property of Transitive Limited. Brief explanations of the relevant features are

provided with references to publicly available material which contains sufficient

information.

The author regrets the additional difficulty which this adds to the reading of

the thesis.

Research undertaken at the University of Manchester and now at Transitive

Corporation has produced the Dynamite DBT [Sou96]. The subject environment

is configured by a front-end module and code for a target environment is produced

by a back-end module. Figure 4.1 shows the modules within the Dynamite DBT.

This chapter describes the four modules of Dynamite as well as optimisations

performed within the framework.

4.1 The Dynamite fuse module

The fuse module performs the task of mapping between different operating sys-

tems and/or hardware. Details of this can be found in BNWK03, an overview is

provided on the Transitive website Cor05.

61
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Figure 4.1: Dynamite modules

4.2 The Dynamite front-end module

Dynamite uses a front-end to build up an intermediate representation (IR) of

the subject machine’s instructions. Details of this can be found in RSJ+03, an

overview is provided on the Transitive website Cor05.

4.2.1 Building Dynamite’s intermediate representation

Descriptions of the IR are contained in RSJ+03.

The Expression IR was designed to be translated into VCODE input [Eng96].

VCODE is a retargetable back-end interface with its input being code that re-

sembles a RISC load/store architecture.

The Dynamite front-end translates a series of subject machine instructions up

to a control-of-flow instruction such as a branch or subroutine call. Aho, Sethi

and Ullman [ASU86] define a basic block as follows:

A basic block is a sequence of consecutive statements in which flow of

control enters at the beginning and leaves at the end without halt or

possibility of branching except at the end.

Dynamite’s definition of a basic block is slightly different as it takes into

account a variety of optimisations and special cases [SN03].
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4.2.2 Substitute calls

To allow an interface to software and hardware, calls can be created as IR nodes.

Details on this process can be found in BNWK03,OAHH03a.

4.3 The Dynamite kernel module

The Dynamite kernel comprises the generic parts of the Dynamite DBT frame-

work. The intermediate representation forms part of the kernel, as does the code

to translate it. The translation modules are tuned to the back-end using back-end

configuration files.

4.3.1 Control

The control and execution of Dynamite are described in Nor04.

Dynamite is made up of a number of modules, a simplified view of the modules

is shown in figure 4.2.

Basic Block Cache

Dynamic Code

FrontEnd

Basic Block

BackEnd

Group Block

Intermediate Representation
Cache

Control

Substitute CallsMain dispatch loop

Substitute call out

Translate untranslated block

Generate target code

Translate IR

Generate target code

Build group
block

Build IR

Cache translation

Read & augment
Read & optimise

Figure 4.2: Interaction of Dynamite modules

After initialisation execution is passed to the control module. The control

module consists of a loop that dispatches translated code, optimising the cached

translations when appropriate. The optimised unit is called a group block and
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resembles the larger blocks of compilation such as the trace scheduled block in

Dynamo, hot paths in UQDBT and tree groups in DAISY. Group block construc-

tion is described in section 4.3.4. Chapter 3 described optimised regions for other

DBTs.

The basic block cache, described in section 4.3.2, maintains the translated code

and is responsible for initiating a translation. When a translation is required the

front-end is called to translate a block and build up IR as described in section

4.2.1. The translated IR is cached as it will be used to translate the basic block

as well as, later, to build the group block. The back-end is used by both the basic

block translator and group block translator and is described in section 4.4.

Initially Dynamite executes translations of basic blocks, gathering execution

statistics. When the execution count of a basic block is high enough group block

formation and translation is initiated.

4.3.2 Basic block cache

As can be seen in figure 4.2 the basic block cache is a key constituent of the

Dynamite kernel. It is the repository used for storing basic blocks.

Since statistically 90% of execution time is spent in 10% of code [HP96], the

basic block cache can remove infrequently executed code and IR as there is only

a slight risk it will need retranslation later. This assumption follows a pattern

commonly made by computer architects that future execution will reflect current

execution patterns. It is possible to think of cases where this will not hold and

the basic block cache may need tuning so that it does not throw away these

translations. For example, basic blocks associated with certain subject memory

locations, like library routines, should not be removed.

As described in section 4.2.1 basic blocks in Dynamite can overlap due to

their discovery mechanism. Dynamite also allows specialisation of basic blocks

as described in section 4.3.3. This leads the execution statistics of how many

times a basic block has been executed not to be identical to the number of times

a region of code is executed.

4.3.3 Basic block compatibility

Basic blocks are allowed to branch to other compatible basic blocks via a com-

patibility test. SN03 provides details on how this is used and may be used for



CHAPTER 4. DYNAMITE 65

optimisation. This optimisation is similar to the register mangling performed by

FX!32 (described in section 3.2.1).

4.3.4 Group blocks

When a basic block is executed over a trigger threshold a group block is formed.

Group blocks have a reduced translator overhead as they no longer need to en-

ter the control module between basic blocks. A description of group blocks is

contained in RSJ+03.

4.3.5 Dead code elimination

The dead code elimination technique for Dynamite is presented in RSJ+03.

4.3.6 Constant propagation

The constant propagation technique for Dynamite is presented in RSJ+03.

4.3.7 Value-specific optimisation

The latency of certain instructions inside a CPU can lead to pipelines being

starved of work. Lipasti and Shen [LS96] suggest a microarchitecture device that

can speculate on the values returned by loads. The load would take place and if

the speculation proved correct then the results would be committed. Prediction

bits tell the instruction decoder whether to speculate on the value of a particular

load, these bits are updated depending on the results of prior predictions, this

has a lot of similarities with branch prediction. As the pipelines would have had

to stall for the load operation the CPU has not wasted any clock cycles. The

disadvantage of this optimisation is that it is expensive in CPU area to make

a value speculator. This area may have been better utilised, for example, by

increasing cache size.

Keppel [Kep96] shows that run-time value-specific optimisation performed

by software can improve the performance on certain benchmarks. Keppel only

considered a small region to apply his value-specific optimisations, constant prop-

agation over a larger region would increase the benefit of the optimisation as in

Dynamo (see section 3.2.2).
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Owen [Owe00] presents a scheme for exploiting memory reference patterns by

snapshotting memory activity within a hot block (identical to a group block).

As the snapshot only reflects a short amount of program execution it is not fully

accurate. Statistical analysis as to the accuracy of the snapshot can be used to

drive dynamic optimisation which in certain circumstances are able to eliminate

12% of the instructions within a hot block. The snapshot results show that on

average one third of all loads within a hot block load a constant value. The

snapshot is also able to direct alias analysis.

4.3.8 Code duplication

Code duplication is a way of specialising code to a particular instance of its use

using the compatibility mechanism presented in section 4.3.3. It is presented in

RSJ+03.

4.4 Back-end

A TCODE back-end implements a set of functions for planting dynamic code

routines in to the dynamic code buffer currently under construction. For example,

a call to the STWIRI function of the back-end will plant code to store an immediate

value at the destination address given by the addition of an immediate and register

operand. In a similar manner the back-end provides successor functions that will

plant code for Dynamite’s branchs. As part of successor and group block creation

labels are generated and used by TCODE jump and branch instructions.

To plant efficient code it is not enough merely to have an appropriately rich

back-end interface. There are a number of optimisations that can be performed

during and after code generation as described in the following sections.

4.4.1 Instruction scheduling

A key to getting performance from modern pipelined and superscalar processors

is scheduling instructions. Processor pipelines have bubbles inserted to ensure

instructions are executed in order. As the bubbles take the place of instructions

the clock cycles per instruction (CPI) increases. This degrades the performance

of the processor compared to an optimally scheduled piece of code that has no
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movl (%esi),%eax
movl (%edi),%edx

addl $4,%esi
addl %eax,%edx
addl $4,%edi
movl (%ebx),%eax
addl $4,%ebx
decl %ecx
jnz next

U pipeline
movl (%edi),%edx

V pipeline

shll $2,%eax
shll $2,%eax
movl (%esi),%eax

addl $4,%esi
addl %eax,%edx addl $4,%edi
movl (%ebx),%eax addl $4,%ebx
decl %ecx jnz next

addl $4,%esi 

addl $4,%edi 

addl $4,%ebx 

decl %ecx

U pipeline V pipeline
addl $4,%esi Idle
Idle (AGI)movl −4(%esi),%eax

shll $2,%eax movl −4(%esi),%eax
Idle
Idle (Read−after−write)

shll $2,%eax addl $4,%edi 
movl −4(%edi),%edx Idle (AGI) Idle
addl %eax,%edx movl −4(%edi),%edx

addl %eax,%edx
Idle (Read−after−write)
addl $4,%ebx 

Idle (AGI) Idlemovl −4(%ebx),%eax
movl −4(%ebx),%eax decl %ecx
jnz next2

next:

jnz next

next:

Figure 4.3: Instruction scheduling on an Intel Pentium processor

bubbles in the processor pipeline. Figure 4.3 shows an example of two pieces of IA-

32 code and the 2 pipelines (U and V) of the Intel Pentium processor [CKK+95].

The first piece has a CPI of 1.0 clocks per instruction, the second piece has a

CPI of 0.5 clocks per instruction (assuming cache hits for all memory accesses).

The pieces of code are equivalent and both consist of 10 instructions. The second

piece of code will execute in half the time it takes to execute the first piece of code

so performance has been doubled of this loop. The pipeline bubbles in the first

piece of code are caused by address generation interlocks (AGI), where a register

changed in the preceding clock cycle is used as a base address in the current one.

There are also bubbles in the pipeline due to registers not being available for

reading until after an instruction has completed.

Scheduling has the ability to improve performance drastically and it does this

by exploiting instruction level parallelism (ILP). The traversal of IR graphs to
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improve instruction scheduling is presented in How00,OAHH03b,OAHH04.

4.4.2 Idiom recognition

Replacing long sequences of code with shorter ones is known as idiom recognition.

This is described in OAHH04.

4.4.3 Code generation

The code generation of Dynamite is described in OAHH03b,OAHH04.

4.5 Summary

This chapter has introduced Dynamite the framework on which the Dynamite

JVM is built. DBTs are significantly different to JVMs so there a certain design

issues and opportunities unique to making a JVM from a DBT. This is described

in the next chapter.

The converse to the 90/10 rule [HP96] is that 10% of execution time is spent

in code that is infrequently executed such as initialisation routines. The time

to translate code rises exponentially as the performance of that translated code

increases (as shown figure 4.41). As the translation cost will never be recouped

for code that is executed once, it is better to just interpret. This factor is recog-

nised by the HotSpot JVM (see section 2.10) that moves between three levels of

execution and compiled/interpreted code performance.

1Figure 4.4 is drawn from communication with numerous JVM authors.
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Chapter 5

Dynamite JVM

The Dynamite JVM combines the Dynamite DBT with the execution of Java

programs. Chapter 4 described the Dynamite DBT and chapter 2 introduced the

Java Virtual Machine.

This chapter describes the basic components of the Dynamite JVM; the follow-

ing chapter goes on to describe how inter-procedure optimisations are performed

within the Dynamite JVM. Particular focus is placed on inter-procedural optimi-

sation as it is key to the performance of object-oriented environments. Chapter 7

describes how the Dynamite JVM deals with a complication of inter-procedural

optimisation, recursion. Chapter 8 considers the overall system performance of

the Dynamite JVM.

5.1 Instruction decoding

Bytecodes within the JVM are uniquely identified by a PC value relative to the

beginning of a method. The PC is not a visible register and is only used to index

bytecode for branches. To uniquely identify basic blocks within the Dynamite

DBT a subject address is required. The Dynamite JVM uses the address in

memory the bytecode has been loaded into. This value is guaranteed to be unique,

but if a method is ever unloaded the Dynamite JVM’s kernel basic block cache

for this subject address should be flushed.

The instruction decode of the Dynamite JVM classifies bytecodes into 3 types:

• Expression bytecodes: bytecodes that can be generated using Dynamite

expression IR.

70
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• Control-of-flow bytecodes: bytecodes that end a basic block and determine

what the successors of this basic block are.

• Substitute bytecodes: bytecodes that cannot be implemented purely in IR

and must trap out to a substitute routine.

Expression bytecodes are decoded using an expression stack described in sec-

tion 5.1.1. Control-of-flow bytecodes are described in section 5.1.2. Substitute

bytecodes are used to perform operations involving the virtual machine, such as

object creation, or involving native method calls. The descriptions of substitute

bytecodes appear throughout the following sections.

5.1.1 Expression stack

The use of an operand stack adds an overhead to Java bytecodes that is eliminated

by folding several bytecodes together. This is performed in both hardware and

software JVMs (see section 2.8 and 2.9). It is a requirement that operands on the

bytecode operand stack are at the same depth every time a basic block is executed.

This allows the stack to be mapped onto registers. Further optimisation of the

operand stack can be performed with operands only needing to be on the operand

stack for 7% of basic block boundaries [Kra98].

The Dynamite JVM allocates a stack frame for a translation to work within.

The frame holds the local variables, frame data and operand stack. The frame

data records information about the method such as the frame link pointer (a

pointer to the previous stack frame on the call stack) and return address. The

maximum sizes of the local variables and the stack are used to calculate the

position of data within the stack frame. This is hidden in the implementation of

the Dynamite JVM using programming language abstraction.

To eliminate the operand stack overhead, instead of reading and writing reg-

isters, bytecodes manipulate an expression stack built up from Expression IR.

Figure 5.1 shows a translation made by the Dynamite JVM to IR. Figure 5.2

shows the contents of the expression stack at each PC value during the first part

of the translation.

The expression stack is a stack of pointers to the DAGs of IR that define a

particular stack location at any point of the translation. If a value needs to be

read and there is no IR in the expression stack then the translator reads a value

from the registers the stack maps onto.
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  19 iload_1
  20 bipush 31
  22 imul
  23 aload_0
  24 getfield #42 <Field char value[]>
  27 iload_2
  28 caload
  29 iadd
  30 istore_1
  31 iinc 2 1
  34 iload_2
  35 aload_0
  36 getfield #40 <Field int count>
  39 if_icmplt 19

Portion of the same code compiled to bytecode

...
public int hashCode() {

...
for (int i = 0; i < count; i++)

hashCode = hashCode * 31 + this.value[i];
...

}
}

public final class String ... {

A portion of the java.lang.String library
for computing a String’s hash code.

else successor := 42

String.local2 := String.local2 + 1

PC value

String.local1 := Load16(Load32(String.local0 + #16) + String.local2 + #8) + (String.local1 * #31)

if (String.local2 < (Load32(String.local0 + #16)) then successor := 19

The IR generated by the Dynamite JVM

Figure 5.1: Example Dynamite JVM translation from bytecode to IR

19. @String.local1

#31
@String.local1

20.

22. @String.local1 * #31

@String.local023
@String.local1 * #31

24.

27. @String.local2

@String.local1 * #31

@String.local1 * #31

28.
@String.local1 * #31

29.

30. Expression defines local variable 1

load32 (@String.local0 + #8)

Load local variable 1 onto the stack from the frame

Multiply the top two values on the stack and place the result on the stack

Push a constant value of 31

Push local variable 0 (the this pointer) onto the stack

load32 (@String.local0 + #8)

Perform a load a value from the object on the top of the stack

Push local variable 2 onto the stack

Load an array value, index and

Add

object are on the stack

PC

load16 (load32(@String.local0 +#8) + @String.local2 + #16)

(load16 (load32(@String.local0 + #8) + @String.local2 + #16) + (@String.local1 * #31)

Figure 5.2: Expression stack during translation
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The expression stack can ideally eliminate the use of stack registers from 93%

of basic blocks. Meanwhile, the local variables are optimised, just as abstract reg-

isters are, by dead code elimination, constant propagation and expression sharing

optimisations described in section 4.3.

5.1.2 Control-of-flow bytecodes

Java has 4 kinds of control-of-flow bytecode:

• method call: there are 4 kinds of method call in Java. Invokestatic and

invokespecial call a fixed method whereas invokevirtual and

invokeinterface are used to call a method associated with an object.

Virtual methods are used to support inheritance in Java; interfaces are

used as an approximation to multiple inheritance as described in chapter 2.

Invokespecial differs from invokestatic as it passes an object with the

method call. Method calls in bytecode differ from more conventional calls as

not only is the call responsible for altering the stack frame and recording the

return address, the method call is also responsible for passing parameters

between frames. The top variables on the stack become the first local

variables of the called method. To save copying parameters frames can be

overlapped.

Chapter 6 describes the optimisation of method call bytecodes within the

Dynamite JVM.

• branch: There are a number of different bytecodes for performing branches

either unconditionally or conditionally. Goto is used to branch to a fixed

PC location within the method. If_icmp and if have different variants

for comparing integer values on the stack with each other or with zero.

To perform comparisons of other primitive types such as doubles or floats,

they must first be compared using a comparison instruction like fcmplt

that yields an integer result that can then be used as an operand for a

branch. Ifnonnull, ifnull and if_acmp are used like the integer branches

except to compare object references.

• switches: Tableswitch and lookupswitch are used to perform more com-

plicated integer branches. Tableswitch provides a lookup table of branch

locations that is indexed by an operand on the top of the stack. The lookup
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table is of a limited size and if the operand lies outside of the range of the

table then a default location is branched to. Lookupswitch is similar to

tableswitch except it provides pairs of value and branch location. If the

value on the top of the stack matches a lookupswitch value then the cor-

responding branch location is branched to. If no value matches then again

a default location provided by the instruction is branched to.

• finally: Finally clauses in Java are implemented using a pair of instructions:

jump subroutine (jsr) and return (ret). Jsr pushes the current PC loca-

tion onto the stack and branches to a location within the method. Ret takes

a value for a local variable and branches to that location within the current

method. The PC location can never be inspected by the virtual machine,

it is just used in this pairing. Any bytecode that attempts to read the PC

value will cause a JVM error to be raised during bytecode verification. The

value is moved from the stack to the local variable by using the astore

bytecode that has a special caveat that not only can it place object refer-

ences from the stack into local variables, but values of type returnAddress

too.

Method call within the Dynamite JVM is performed using a constant jump

for invokestatic and invokespecial. As translation of the call means it will

be executed, the location can be immediately resolved for the successor address.

Section 5.3 describes how virtual calls are dispatched using a virtual method table

(VMT).

Branches are implemented in the regular way except operands are fetched from

the expression stack to avoid register manipulation. Tableswitch can be imple-

mented using a computed branch successor. Lookupswitch requires a successor

type which will compare multiple values and choose an appropriate branch loca-

tion. This does not match any successor type currently supported by the IR. The

addresses in both switch operations are big endian, the Dynamite JVM endian

converts the tables and then alters the bytecode to either a tableswitch_quick

or lookupswitch_quick bytecode, if the target machine is little endian. These

_quick bytecodes are specific to the Dynamite JVM.

Both switches use IR that is not currently supported by the Dynamite JVM,

they are therefore implemented as substitute calls. Switches are relatively in-

frequent bytecodes; they make up to 0.7% of a program’s dynamic instruction
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mix [RRJ99], so performance is not as key as with other bytecodes. In the long-

run, if the successor types were not added to the IR then performance can be

improved by replacing switches with special dummy bytecodes. These dummy

bytecodes will branch to a piece of IR that will implement the switch statement

and then branch to the correct target. Group block optimisation can remove the

branch overhead introduced, but instruction translation will have been compli-

cated.

Jsr is decoded and IR generated that places the address of the next bytecode

pushed onto the stack. Ret reads the value from a local variable register and

performs a computed jump to it.

5.2 Exceptions

Exceptions require the JVM to be able to generate a call-stack trace. The Dy-

namite JVM creates the call-stack trace by traversing the frame data sections of

a method’s call frame. In the frame data is a link register which holds the ad-

dress of the previous method’s frame data. The frame data also holds a method

identifier so that the stack values can be interpreted. These data structures are

discussed further in chapter 6.

The Dynamite JVM performs exception dispatch using stack unwinding as

described in section 2.6. As with optimisations described by Lee et al. [LYK+00],

exception handlers are translated when they are branched to by the exception

mechanism. As exceptions are generally not on the main execution path then

this reduces the amount of translated code.

A JVM has the ability to generate a large number of exceptions during loading,

linking, resolving, verification and bytecode translation. The Dynamite JVM does

not perform bytecode verification currently (this is typical of research virtual

machines). Exceptions that occur in the other phases described above have their

exception object generated and then thrown to the appropriate handler using

stack unwinding.

Exceptions occur when a method is running for two reasons, an exception is

explicitly thrown or a bytecode operation generates an exception. An explicit

throw of an exception is generated by the athrow bytecode. This is implemented

as a substitute routine by the Dynamite JVM. The substitute routine creates the

stack trace and exception object, then throws the exception in the appropriate
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method by stack unwinding.

JVMs also have to support a number of runtime exceptions that are not

thrown explicitly within methods by the athrow bytecode. Null pointer excep-

tions occur when a non-existent object is referenced. The Dynamite JVM uses

the UNIX segment violation signal to capture null pointer exceptions. The JVM

uses an internal JNULL symbol that points to a page of memory that when ac-

cessed will cause the operating system signal to be generated. In certain cases

this performance can be improved; for example, method dispatch on a null ob-

ject. Incomplete support exists in the Dynamite JVM for speeding the capture of

the null pointer exception caused this way by providing a dummy virtual method

table (VMT) that branches into exception handling routines.

Arithmetic exceptions are generated by executing idiv or irem bytecodes and

performing division by zero. The virtual machine generates an exception object

as with the null pointer exception and then throws the exception.

To improve the robustness of arrays, JVMs have to catch array accesses that

use an index that is out-of-bounds (less than zero or greater than the array

size). Array accesses are very frequent within Java, hence the support of arrays

as primitive types. The IR can generate exception handling code as shown in

figure 5.3.

iaload

aload_1 // Get array reference from local variable 1
// Constant 0iconst_0
// Load from array

1
2
3

stack0 := load (local1 + 0 + #8)

else successor := 4
if ((0 < 0) || (0 > load (local1+#4))) successor := BoundsException

(0 > load (local1+#4))

constant propagation
simplified expression after

Figure 5.3: IR for an array out-of-bounds exception

The branch location BoundsException is a special area of memory known

to the translator, which has a substitute call in it to perform the array index

out-of-bounds exception.

The drawback to handling an array access in this way is it terminates a ba-

sic block early. This reduces the amount of potential optimisation that can be
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performed by the expression stack and Dynamite JVM kernel. What is really

required are bounded load and store operations in the IR. As out-of-bound ex-

ceptions are not generated by the benchmarks used in chapters 6 and 8, the

Dynamite JVM ignores them by default in the current implementation. If re-

quired, a fall-back substitute call routine version of the JVM can be run that

generates array index out-of-bounds exceptions.

5.3 Object layout

Object layout affects the performance of systems such as method dispatch and

garbage collection. An object has to hold all the fields defined in the class file,

fields inherited from superclasses, thread locks, an object’s class and tables to

dispatch virtual and interface method calls.

Using a handle allows greater freedom in garbage collection as objects can

be moved around memory and only the handle needs to be altered to reflect this

change [HGH96]. However, using a handle requires the translated code to perform

two indirections to access a field. The first memory access reads the address of

the object’s data from the handle, the second read or write accesses the field. For

performance reasons, the Dynamite JVM uses handleless objects as these only

require one indirection to access a field.

Figure 5.4 shows the layout of an object in the Dynamite JVM.

Static Table Pointer
Object Data
Field 1
Field 2
Field 3

Field n Interface Method Pointer 1
Interface Method Pointer 2
Interface Method Pointer 3

Interface Method Pointer n

...

Instance Data

...

Field 3
...

...

java.lang.Class
jclass
Interface Pointer 1
Interface Pointer 2
Interface Pointer 3

Interface Pointer n
Method Pointer 1
Method Pointer 2
Method Pointer 3

Method Pointer n
Field 1
Field 2

Field n

Static Data

Object Header

object reference

To definition of object’s class
Object representation of class

...

Per Instance
Fields Interface Table

Figure 5.4: General layout of a Dynamite JVM object

Each object has a 2 word header that contains a pointer to the static data

associated with it and a data field. Currently the object data field is used to hold
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information on whether this object is an array and the type of the array. It is

envisaged this field will be used also for synchronisation on objects and possibly

garbage collection. The bits used to identify array information will be moved

into the static data area. Dice [Dic01] describes a fast implementation of Java

monitors using a single object data word.

Instance fields within the object vary in size from 1 bit to 8 bytes. For simplic-

ity and alignment, the current Dynamite JVM uses a fixed 8 byte field size that

can contain all the primitive types. This is space inefficient and can be optimised

in future version of the Dynamite JVM. Arrays are implemented differently to ob-

jects, they use the first field as a size field to support the arraylength bytecode

and to support index-out-of-bounds exception. The rest of the object contains

the body of the array with elements adjacent to each other in memory.

The static data table holds a pointer to a java.lang.Class object that rep-

resents this class. This object is frequently used in library and native methods

and is stored next to a jclass which is the virtual machines own internal repre-

sentation of a class.

The static data table also holds a vector of interface table pointers. The size of

this array is adequate for most applications. If a program requires more interfaces

implemented then the tables can be grown. All translated code needs invalidating

at this point. An alternative implementation negatively indexes interfaces from

the start of the static data table. This allows the table to grow and for the

translated code not to be invalidated, but it complicates memory allocation for

the static data table. As growing the table is infrequently performed1 the former

scheme is currently used.

Interface table entries and the virtual method table contain pointers to the

address associated with methods. Creating these tables requires the JVM to

parse the class hierarchies of the classes and interfaces. Superclasses and superin-

terfaces appear at the beginning of each table with entries being overridden when

a method of the same definition is found as the class hierarchy is traversed down

to the implemented class or interface.

Static fields are recorded at the bottom of the static data table. Although

this is not strictly required by the JVM specification [Sun95] it was considered

good practice at the time of the design to keep all static data in one place.

1On all benchmarks run to date a table of size 64 has never needed growing.



CHAPTER 5. DYNAMITE JVM 79

5.4 Class loader

The Dynamite JVM’s classloader provides coordination between dynamically ex-

ecuting code and the object model of the Dynamite JVM, as well as loading,

linking, resolving and running the static initialisers of classes.

The Dynamite JVM has been designed to run using the Classpath [GNU02]

class libraries. Classpath was chosen as it is not tailored to run on a pre-existing

JVM and it provides native interface routes for both high-performance JVM in-

tegration (CNI) and portable JVM integration (JNI) (see section 2.4). Currently,

the Dynamite JVM uses the JNI integration.

5.4.1 Boot strapping

Boot strapping is the initial phase of JVM execution. It is distinct from the main

execution of a program to avoid race conditions introduced by cyclic dependencies

(see section 2.2).

The first part of boot strapping is to create a thread for the application to

run on. This is implemented using java.lang.Thread and adding this thread

to the root thread group. A consequence of this is that the java.lang.System

class is loaded and initialised. A call from the java.lang.System class initialiser

to the JVM sets up system properties such as locale information. The final part

of the bootstrap process is to create an array of strings to be passed to the main

method that contains the command line parameters passed to the JVM.

5.4.2 New

New is implemented as a substitute call. The Dynamite JVM garbage collector

is called to register an allocation so that it may free and run the finalizer on the

object when it becomes unreachable. Currently, the Dynamite JVM supports

exact garbage collection on basic block boundaries. Exact garbage collection is

the ability of a JVM to differentiate objects from other forms of data; garbage

collectors that cannot distinguish between types of data are referred to as conser-

vative. A call is provided to generate a root set of nodes for the garbage collector

to work with. From this set the garbage collector can determine what objects are

reachable. However, the collect method of the garbage collector is not currently

implemented. This also means that in the Dynamite JVM, finalize methods do
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not get called.

After creating an object all the fields in that object must be initialised to their

default value: 0 for numbers, false for booleans, null for object references. Call-

ing the object’s initialiser is handled by an invokespecial call in the bytecode

instruction stream.

As well as creating new objects, there are variants of the new bytecode for

creating arrays of varying dimensions. Multi-dimensional arrays are implemented

as arrays of arrays, as defined by the Java specifications.

5.4.3 Checkcast and instanceof

Checkcast and instanceof bytecodes are used to check/determine whether an

object on the operand stack is of the type given as a parameter to the byte-

code. The complicated nature of these bytecodes requires the use of the JVM’s

internal representation of classes. Checkcast throws an exception if this check

fails whereas instanceof replaces the item at the top of the stack with 0 or 1

dependent on whether the test is failed or passed. Instanceof also differs from

checkcast as it pushes a 0 onto the stack if the object is null whereas this will

cause an exception with the checkcast bytecode.

The operand at the top of the stack can be one of three classes of object:

• ordinary (non-array) classes: For a true result the object has to be the same

class or a subclass of the one referenced in the instruction. If the instruction

references an interface then the object has to implement that interface.

• interface: For a true result then the object has to implement the interface or

a superinterface referenced by the instruction. If the instruction references

a class then that class must be java.lang.Object.

• arrays: For a true result then the instruction must reference java.lang.Object

or the interfaces implemented by an array (java.lang.Cloneable and

java.io.Serializable). The instruction may also reference an array

where a true result will be given if the class/type of the arrays are identical

or the class of the object’s array is a subtype of the instruction’s array.
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5.5 JNI

When a method static call bytecode (invokestatic and invokespecial) is

translated the method to be called is known. By inspecting the flags associated

with the method it is known whether this will be a native call and a substitute

call can be planted in the target code.

The target native method has to be found from the list of native meth-

ods within the JVM. Extra native methods are loaded from libraries using the

java.lang.System.loadLibrary() native method call. The Dynamite JVM

uses the dlopen and dlsym Unix library calls [Ric00] to open and link dynamic

libraries; the libffi foreign function interface library [Gre98] is used to ensure

that parameters are properly packed for method calls.

For virtual and interface method calls the nature of the call, whether it is

virtual or not, cannot be determined ahead of time. The Dynamite JVM instead

points the VMT to a newly created dummy method containing one bytecode.

The bytecode is called fixup_iv_native and is translated into a substitute call

that performs the native call. The dummy method acts as a trampoline to the

native code.

The JNI (see section 2.4) is a table of over 200 callback functions that is

passed to all native methods as an environment argument. Most methods get

passed an object parameter except static native methods that get passed the ob-

ject representation of the class to which the static method belongs. The calls

support accessing fields of classes and objects, creating objects, throwing excep-

tions, locking and unlocking objects, looking up classes and calling Java methods

back in the JVM. This requires the Dynamite JVM to be re-entrant.

5.6 Threading

Threading in Java requires support for monitorenter and monitorexit byte-

codes. These are used to implement synchronised regions of code within methods

as shown in figure 5.5. Methods can also be flagged as synchronised and the asso-

ciated object is locked/unlocked as the method is entered/exited, static methods

use a lock associated with the object representation of their class. A lock appears

in an object’s header (shown in figure 5.4). Information contained in the lock is

used for locking and unlocking the object. Java’s threading protocol also requires
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waiting and notifying to be performed on objects.

Method void increment()
   0 aload_0
   1 astore_1
   2 aload_1
   3 monitorenter
   4 aload_0
   5 dup
   6 getfield #4 <Field int x>
   9 iconst_1
  10 iadd
  11 putfield #4 <Field int x>
  14 aload_1
  15 monitorexit
  16 return
  17 aload_1
  18 monitorexit
  19 athrow

Release lock

class counter extends java.lang.Object {
  /* Value of the counter − initialised to 0 */
  private int x;
  /* Construct the counter */
  public counter (int val)
  {
  }
  /* Method to increment a counter object */
  public void increment ()
  {      

    synchronized (this)
    {
      x++;
    }
  }
}

    /* Synchronize thread access to object so that
    member variable is always incremented */

Without object lock 2
concurrent calls to

Aquire lock on object this

Perform work of method

increment could cause
only a single increment

Figure 5.5: Bytecodes for a synchronised method

To implement threading a call stack is required per thread. This impacts

on optimisations of the call stack as described in chapter 6. Possibly having

multiple translations happening at the same time requires thread safety to be

addressed within the Dynamite JVM front-end, kernel and back-end. A key place

of contention is the basic block cache that would need locks placing on it to avoid

invalidation by events such as the interface table overflowing (see section 5.3). As

more of the subject program is translated, more time will be spent in dynamic

code and contention on the basic block cache will be reduced.

The Dynamite JVM does not currently implement threads; the exact mecha-

nism to be used would depend on the low-level implementation of threads avail-

able on the target machine. Support for parallel garbage collection and dead-lock

detection can be implemented at the same time. Tuning would be required on

the Dynamite JVM to avoid long waits on contended objects.

5.7 Related work

This chapter has introduced the Dynamite JVM. Noticeable omissions from the

current JVM, that stop it from being certified as 100% Java compatible, are a

garbage collector, support for multiple threads, and array bound exceptions. This

chapter has discussed their implementation but the implementation is a matter

for future work.
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Taking an overview of the Dynamite JVM, it is interesting to compare it to

other state-of-the-art JVMs that exist at the moment. The Dynamite JVM has

multiple levels of execution. Initially it executes a basic block at a time until

an execution threshold is reached. At this point a group block is formed, and

later group blocks can also be formed incorporating a particular basic block. In

contrast HotSpot has three distinctly separate phases of execution, interpretation,

JIT (quick) compilation and an optimising compiler. Not having an interpreter

in the Dynamite JVM slows it for methods that are only executed once as the

translated overhead is never repaid by the faster code. The heuristic to determine

when to compile is non-trivial though. Compilation that is based upon methods

can find itself trapped in a particular method it is interpreting, that method needs

to be exited for a translated version of this method to be used. It is for this reason

HotSpot uses in-stack replacement to switch between its modes of execution.

The Dynamite JVM has the basic blocks trace scheduled within a group block.

JVMs such as HotSpot and Jalapeno also trace schedule code but this is restricted

to code within a method or inlined method. The heuristic of which method to

inline is often simplistic, for example inlining of final and leaf methods. As

the Dynamite JVM works with only enough knowledge of a method to support

instruction semantics, it is not restricted by method boundaries when optimising;

scheduling and optimisation is purely driven by execution statistics.

The Dynamite JVM has the potential to be a 100% compatible JVM using

dynamic compilation and a mechanism for trace scheduling that is different from

existing JVMs. To get the benefit of the freedom to trace schedule code the JVM

must eliminate method boundaries fully and allow the code generation algorithms

to view multiple call stack frames at the same time. This is the effect achieved

by method inlining; inter-procedure optimisation within the Dynamite JVM is

described in chapter 6.

To further improve the performance of the Dynamite JVM there are numer-

ous sources of optimisation. Null method recognition is the ability of a JVM

to realise that a method performs no operations. For example the initialiser of

java.lang.Object is frequently called and all it does is return. By flagging fre-

quently called methods such as this as null the JVM can avoid calling them when

translating code. Methods that perform no operations and call a null method can

themselves be marked as null, this is very common for Java constructors. This

optimisation is only applicable to static calls.
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The optimisation of exceptions can be performed as discussed in section 2.6.

A key optimisation for exceptions is only generating stack traces when they are

needed. This requires a detailed understanding of stack traces by the JVM and

for it to inspect exception handlers to see if the stack trace is used.

Scientific applications make a lot of use of arrays and programming languages

such as Fortran optimise them heavily (for example, reordering dimensions to

improve cache performance). Java adds an extra indirection per dimension for

multi-dimension array accesses, when compared to languages such as Fortran (as

shown in figure 5.6).

A[i,j] = load(A+(i*column width)+j) in Fortran

A[i][j] = load(load(A+i)+j) in Java

Figure 5.6: Java array accesses compared to those of Fortran

As Java uses standard calls and standard mathematical libraries it can be

reversed engineered, if necessary, and then optimised by the JVM. An example

optimisation is the replacement of calls to java.lang.Math.abs() with trans-

lated code that calculates the absolute value of an integer. The same effect can

be achieved at greater translation expense with method inlining.

Finally, optional features not required by a 100% Java compatible JVM can

be added to the Dynamite JVM. For example, debug support can be added to a

JVM through support for JVMDI [Sun01], the JVM debug interface/architecture.

5.8 Summary

This chapter has described core aspects of the Dynamite JVM. The Dynamite

JVM has the potential to be a 100% Java compatible JVM and distinguishes

itself from other JVMs in the way basic blocks are trace scheduled. The following

chapter describes the implementation of inter-procedural optimisations within the

Dynamite JVM. The chapter measures and analyses this cost of this optimisation,

and the potential benefits it brings. Chapter 7 further refines and measures

the inter-procedural optimisation mechanism. Chapter 8 analyses the remaining

aspects of performance to the Dynamite JVM.



Chapter 6

Inter-Procedure Optimisation

In chapter 1 the problem of method call optimisation was introduced. Object-

oriented programs tend to have short methods and small basic block sizes, this

limits optimisations such as dead code elimination, constant propagation and

instructions scheduling. To increase method and basic block sizes, method in-

lining is performed (see section 2.9.1). This is appropriate for JVMs that are

oriented around the compilation of methods. The Dynamite JVM is different

and is instead oriented around the compilation of basic blocks. This chapter de-

scribes two techniques allowing an approximation of method inlining that can be

performed within the Dynamite JVM. These are evaluated and a final technique

chosen.

The Dynamite JVM avoids translating code that does not contribute toward

improving performance by using basic blocks as a compilation unit instead of

methods. The techniques introduced here allow method inlining that is not based

on assumptions about the program behaviour (as described in section 2.9.1) but,

instead, on the execution threshold of basic blocks.

6.1 The method inlining problem

Method inlining places the body of one method inside the other. Figure 6.1 shows

a high-level example of the inlining of a function readChar inside a function

readString to create the function readString_readChar.

In figure 6.1 the function readString_readChar has both the stack frames of

readString and readChar visible. By not pushing parameters onto the stack and

popping them off again, the parameters are available to the compiler to optimise

85
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class example {
public char bu f f e r [ ] ;
public int ptr = 0 ;
example ( ) {

bu f f e r = new char [ 1 0 2 4 ] ;
}
public St r ing r eadSt r ing ( )
{

char buf [ ] = new char [ 2 6 ] ;
int l en =0;

while ( l en < 26){
buf [ l en ] = readChar ( ) ;
i f ( ( buf [ l en ] == ’ ’ ) | | ( buf [ l en ] == ’ \n ’ ) ){

break ;
}
l en++;

}
return new St r ing ( buf , 0 , l en ) ;

}
public char readChar ( )
{

char r e s u l t ;
i f ( ptr == 1024){

r e s u l t = ’ \n ’ ;
}
else {

r e s u l t = bu f f e r [ ptr ++];
}
return r e s u l t ;

}
public St r ing readStr ing readChar ( )
{

char buf [ ] = new char [ 2 6 ] ;
int l en =0;
char r eadChar r e su l t ;

while ( l en < 26){
i f ( ptr == 1024){

r eadChar r e su l t = ’ \n ’ ;
}
else {

r eadChar r e su l t = bu f f e r [ ptr ++];
}
buf [ l en ] = readChar r e su l t ;
i f ( ( buf [ l en ] == ’ ’ ) | | ( buf [ l en ] == ’ \n ’ ) ){

break ;
}
l en++;

}
return new St r ing ( buf , 0 , l en ) ;

}
}

Figure 6.1: Method inlining
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across the method boundary.

This chapter describes optimisations to be performed by the Dynamite JVM

that expose frames over method boundaries whilst keeping the correct program

execution semantics.

6.2 Sliding register-window scheme

Microprocessors such as the SPARC [SPA92] and IA-64 [Int01] map the call stack

to registers and then slide a window up and down these registers as functions

are called and returned. As indirect addressing is allowed within programming

languages such as C (most commonly for local arrays), certain parameters are

passed through memory to obtain the correct program behaviour. If the pool

of registers is exhausted then an exception is thrown and the operating systems

swaps registers onto the stack in memory.

The Dynamite JVM’s IR does not provide any support for indirect addressing

of registers. However, the compatibility function (see section 4.3.3) can be used

to retranslate code, so the same basic block can have two translations using

different abstract registers. This allows an approximation of register-windows at

the expense of retranslation. Figure 6.2 shows an example translation using this

scheme.

The group block mechanism can optimise over method boundaries in this

scheme as multiple method frames are visible during the recompilation. Retrans-

lation within this scheme is particularly expensive for recursive methods which

require one translation per recursive invocation. To avoid paying this penalty for

recursive methods, recursion detection (as described in chapter 7) can be used.

The sliding register-window scheme needs retranslation to occur when stack

depths vary on a method call. To reduce this penalty it would be possible to try

and align frames further and thus reduce the amount retranslation. For example,

if all frames were the same size then a retranslation would only be necessary if

the call depth varied rather than the call stack size varying.

6.3 Fixed register-window scheme

A fixed register-window scheme is one where each method is allocated a perma-

nent set of abstract registers to use. Retranslation of a method is avoided at the
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{
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Figure 6.2: Sliding register-window example
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cost of more expensive method calls (parameters can’t be passed by overlapping

stack frames). Figure 6.3 shows an example.

Static method call (invokestatic and invokespecial bytecodes) requires

the calling method to place the frame data into the called method. Parame-

ters are copied from the calling method and placed in the called method’s local

variables within its stack frame. As the parameters are on the expression stack,

unnecessary register copying is avoided except in the case when the basic block

prior to the calling basic block leaves something on the stack. This accounts for

approximately 7% of basic blocks [Kra98]. However, it is not necessarily the case

the parameters on the stack need passing to the called method. Group block

optimisations can also dead code eliminate these values on the stack if they are

subsequently overwritten.

Virtual method call (invokevirtual and invokeinterface bytecodes) re-

quires a fix-up bytecode (fixup_iv) to be at the beginning of each method. This

bytecode has to be 4 bytes long to ensure that tableswitch and lookupswitch

bytecodes are still aligned. The fix-up bytecode is responsible for creating the

frame data and copying the parameters from the calling method into the called

method. The fixup_iv bytecode is translated by static invokespecial calls,

but it performs no operation.

To determine the calling method the called method inspects the previous basic

block pointer that is passed to the translation of the fix-up bytecode’s basic block.

The current version of the Dynamite JVM inspects the this object reference and

finds the method from the virtual method table. Equally the method can be

found by inspecting the subject address of the called method and looking it up

in a table containing all loaded methods.

Parameter copying from the stack of the calling method to the locals of the

called method is unavoidable for virtual calls with this scheme, however, group

block optimisations should be able to eliminate them. An extra translation over-

head is introduced as the basic block containing the fix-up bytecode is specialised

to the call site and must therefore fail the compatibility test (see section 4.3.3)

for calls from different call sites.

Bytecodes that return a value to the calling method (ireturn, lreturn,

areturn, freturn and dreturn) leave the value on the top of their stack. The

calling method checks the return instruction to see if a value should have been

returned and places it on the expression stack at the start of translation. This
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Figure 6.3: Fixed register-window example
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specialises the basic block to the method that returns to it, and to support this,

the basic block compatibility test is once again used.

To minimise the number of registers required, it is possible for leaf methods to

share registers, as by definition they can not enter another method. This requires

a method to be parsed before being executed, and could be implemented in a

bytecode verifier that annotates methods for the JVM. In the current scheme, all

translations are invalidated when the register pool is exhausted. This starts the

process of translation again, with all the registers unassigned to methods. On

the benchmarks presented in section 6.4.1, it was found a register pool of 8192

registers was never exhausted.

6.4 Choice of register-window scheme

The performance of the group block optimisations is similar for both schemes.

The fixed register-window scheme uses more registers and relies on group block

optimisations to remove parameter passing overheads for virtual calls. The slid-

ing register-window scheme requires more re-translation than the fixed register-

window scheme.

In this section we gather metrics using the Dynamite JVM to help with the

choice of scheme to use. First of all we introduce a set of benchmarks that will

be used to measure performance.

6.4.1 Introduction of benchmarks

As described in section 5.7 the Dynamite JVM is not 100% compatible with

all Java programs. Due to limited resources not all benchmarks that could po-

tentially be made to run were able to. This was largely down to bugs in the

translation and class library. The chosen set of benchmarks are still a rigorous

test of all parts of the JVM. They are described below:

• helloworld: A Java program that prints the string “Hello World!” to screen.

Most of the executed bytecodes occur due to bootstrapping of the class

library.

• jmpeg2dec: A Java program that decompresses several frames of an mpeg2

graphics file [EM01]. This benchmark was chosen due to the availability
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of the source code and it reflects a realistic workstation workload. Correct

execution of the program can be checked by viewing the decoded frames.

• jmpeg2enc: A Java program that compresses several frames of pictures into

an mpeg2 movie file employing numerous compression algorithms [EM01].

Again, correct execution of this benchmark can be verified. The benchmark

is of the type of workload that would be run on a server.

• 201 compress: The compress benchmark from the SpecJVM 98 [SPE98]

benchmark suite. This program compresses one of three possible sets of

sample data. The benchmark harness verifies the correct execution of the

program.

• 202 jess: The jess benchmark from the SpecJVM [SPE98] benchmark suite.

This program is the Java Experts System Shell. The program itself reads

in several descriptions and then uses them to generate results to questions.

Two sets of input are considered for this benchmark and again the validity

of the benchmark is checked by the benchmark harness.

This gives a total of five benchmarks, with 201 compress and 202 compress

being run with medium sized data sets.

6.4.2 Number of fix-up blocks for fixed register-window

scheme

Fix-up blocks are an overhead for the fixed register-window scheme. To gather

statistics the Dynamite JVM was instrumented to record the number of invokestatic,

invokespecial, invokevirtual, invokeinterface and fixup_iv bytecodes trans-

lated and executed by the JVM operating in this mode.

Table 6.1 shows the number of bytecodes translated and executed by each

benchmark using the fixed register window scheme.

The number of bytecodes executed is shown in figure 6.4 (the bytecode names

have been abbreviated).

Figure 6.4 shows some features that would not be expected purely from the

fixed register-window scheme. The number of invokespecial, invokevirtual

and invokeinterface bytecodes translated by each benchmark is greater than

the number of fixup_iv bytecodes translated. It would be expected that the
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Benchmark Translated Bytecodes Executed Bytecodes
helloworld 4,398 21,877
mpeg2dec 27,152 604,548,289
mpeg2enc 33,437 14,693,689,649
201 compress 19,570 1,212,483,527
202 jess 33,907 148,612,987

Table 6.1: Benchmark translation and execution bytecode counts
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Figure 6.4: Fix-up overhead for fixed register-window scheme
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helloworld Translated Executed
invokestatic 0.932% 0.430%
invokespecial 1.546% 0.878%
invokevirtual 2.024% 1.284%
invokeinterface 0.000% 0.000%
fixup iv 3.456% 2.153%

mpeg2dec Translated Executed
invokestatic 1.624% 0.560%
invokespecial 3.819% 0.000%
invokevirtual 0.619% 0.001%
invokeinterface 0.000% 0.000%
fixup iv 4.416% 0.002%

mpeg2enc Translated Executed
invokestatic 1.053% 0.037%
invokespecial 2.428% 0.000%
invokevirtual 0.550% 0.029%
invokeinterface 0.000% 0.000%
fixup iv 2.955% 0.029%

201 compress Translated Executed
invokestatic 1.288% 0.001%
invokespecial 4.711% 0.200%
invokevirtual 2.657% 1.301%
invokeinterface 0.051% 0.000%
fixup iv 7.215% 1.501%

202 jess Translated Executed
invokestatic 1.463% 0.085%
invokespecial 3.728% 0.177%
invokevirtual 4.403% 3.857%
invokeinterface 0.077% 0.004%
fixup iv 7.895% 4.038%

Table 6.2: Percentage of method call bytecodes translated and executed in fixed
register-window scheme

number of fixup_iv bytecodes would be greater, as single invokevirtual and

invokeinterface bytecodes can go to multiple locations and thereby cause the

translation of specialised fix-up blocks (containing fixup_iv bytecodes). The

reason for the extra method call bytecode translations is due to invalidation of

basic blocks caused by recursion, this is explained in chapter 7. A small number

of the method calls also go to native methods that don’t use fixup_iv bytecodes

(see section 5.5).

Table 6.2 shows the translation and execution statistics for the measured

bytecodes on each benchmark. Appendix B.1 contains the raw data used to

create these results.

The fixup_iv bytecode accounts for less than 2% of the overall dynamic

instruction mix. When invokespecial calls are factored out (these do not require

extra parameter copying as they are static calls) the fixup_iv accounts for less

than 1.3% of the dynamic instruction mix.

Table 6.3 shows the parameter copying overhead per virtual call executed by

the benchmark. The average number of parameters passed by invokevirtual

and invokeinterface bytecodes shown in table 6.3 is greater than 1 as all virtual
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calls must pass a this pointer.

Benchmark Copying overhead
(average number of parameters copied)

helloworld 1.947
mpeg2dec 2.675
mpeg2enc 1.019
201 compress 1.923
202 jess 1.975

Table 6.3: Fixed register-window copying overhead per virtual call

6.4.3 Number of retranslations for sliding register-window

scheme

The Dynamite JVM was instrumented to record what depths of call stack a

method is executed at. For each of these depths, with the sliding register-window

scheme, a translation is required. In fact more translations are actually required

as the call stack is not guaranteed to be the same depth for a particular depth

of call (a Java stack frame isn’t a fixed size). A fixed frame size can be used but

some method calls will need registers containing parameters moving to appear in

the correct location.

Figure 6.5 shows the number of translations required for each method using

a sliding register-window scheme with one translation required per stack depth.

Appendix B.2 shows these results in a table format.

Benchmark Translated Translated Ratio Bytecodes
SRW non-SRW executed

helloworld 191 105 1.819 21,877
mpeg2dec 564 233 2.421 604,548,289
mpeg2enc 477 247 1.931 14,695,311,595
201 compress 1086 386 2.813 1,212,483,557
202 jess 2618 553 5.103 148,613,239

Table 6.4: Overall sliding register-window statistics
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Figure 6.5: Number of translations required for the sliding register-window
scheme
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Table 6.4 shows the number of translations performed per method both with

and without the sliding register window (SRW) scheme. The ratio gives an aver-

age number of times a method will be translated with the sliding register-window

scheme compared to a scheme without a sliding register-window. The final col-

umn shows the number of bytecodes executed by a benchmark.

The number of bytecodes executed vary from table 6.1 as slightly different

execution paths are taken within benchmarks. Typically this is because of time

and pseudo-random number generator functions.

The results show that methods will be translated over 1.819 times more using

a sliding register-window scheme compared to a scheme without a sliding register-

window. The ratio shows no clear correlation to the total number of executed

bytecodes. The results show that close to twice as much translation has to be

performed when using the sliding register-window scheme. This will greatly in-

crease the translation cost, with some benchmarks ( 201 compress and 202 jess

benchmarks in particular) performing worse than others.

6.4.4 Coverage of fixed register scheme

The Dynamite JVM uses a greedy register allocator (as described in section 4.4.3)

to allocate registers to instructions as they are translated. As the Dynamite

JVM eliminates stack register usage for approximately 93% of basic blocks (see

section 5.1.1), the main remaining register usage is for local variables. Frame

data is also stored in abstract registers, but these are only accessed on method

boundaries.

By instrumenting the Dynamite JVM and Kaffe JVM [Wil02] execution statis-

tics were gathered on methods and the number of registers they require. The

number of registers required was estimated to be the number of local variables.

Not all the frame data and local variables will be used in a basic block, but the

ability to reuse or not to allocate for these registers, by the register manager, is

ignored.

In previous work [RRS99] it was shown that a large percentage of the total

execution time of a program could fit into a group block without requiring the

Dynamite JVM to perform register spill and fill operations. It was found that

with 5 target machine registers 22% of the javac [Sun99a] program’s dynamically

executed code could fit into a group block without requiring spill or fill operations.

With 26 registers, 46% of the dynamically executed code can fit into a group
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block without requiring a spill or fill operation. By changing the heuristic to

favour methods that contribute to runtime and use few local variables (results

were sorted based on their percentage of execution time per local variable), it was

found that with 8 registers 30% of the total execution would fit in a group block

and with 25 registers 54% would fit without requiring register spills or fills.

The study was repeated using the Dynamite JVM on the set of benchmarks

described in section 6.4.1, the results are shown in figure 6.6.

Figure 6.6 shows that with 100 registers (local variables) over 80% of a pro-

gram’s dynamic execution can fit into a group block without register spills or fills.

The amount that fits depends on the benchmark, with mpeg2dec and mpeg2enc

using more local variables in their hot regions than helloworld, 201 compress and

202 jess.

6.4.5 Conclusion

Two schemes have been presented for allowing the Dynamite JVM’s group block

mechanism to optimise registers over method boundaries.

• sliding register-window scheme: The sliding register-window scheme re-

quires a translation of a method’s basic blocks for each particular depth it

is executed at. The number of translations required varies between bench-

marks, but in the chosen set of benchmarks it is conservatively shown to be

over 1.819 times per method.

• fixed register-window scheme: This scheme requires a specialised basic block

that handles parameter passing for virtual calls. The average number of

parameters passed in the chosen set of benchmarks was typically less than

two. The number of fix-up bytecodes required was found to be as much as

4.3% of the translated bytecodes and 1.8% of the executed bytecodes.

As the overhead of the fixed register-window scheme can be eliminated by

group block formation, it is believed this scheme is better than the sliding register-

window scheme that must always incur extra translation penalties.

In a group block the method calls to fixed (static) locations are removed and

the basic blocks trace scheduled to reduce the cost of moving between them.

Virtual method calls and method returns require a computed jump to calculate

their destination. The computed jump for the method return can be removed
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through constant propagation of the return register value. The computed jump

for the virtual method call can be removed by value specific optimisation (see

section 4.3.7). Currently within a group block, for computed jumps, the inline

cache is used to schedule the basic blocks to appear after the method call and

return. A test is performed to ensure the following basic block is the intended

block. Conventional method inlining wouldn’t require these tests, so for the

Dynamite JVM’s optimisations to be truly comparable to method inlining value

specific optimisation and constant propagation are required within group blocks.

6.5 Summary

This chapter has presented two schemes for allowing the Dynamite JVM to per-

form a method inlining style optimisation. A novel technique has been chosen,

based on benchmark results, that allows the Dynamite JVM translator to opti-

mise across method boundaries by mapping a method’s stack frame to a fixed set

of registers. This incurs a parameter passing penalty that can be eliminated by

group block formation.

As each method has an associated set of registers, recursive method calls will

require the reuse of these registers. Chapter 7 describes how the Dynamite JVM

deals with this problem. The techniques described are applicable to both the

sliding register-window and fixed register-window schemes.
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Chapter 7

Recursion

The last chapter described the fixed and sliding register window schemes that

allow optimisation over method boundaries within the Dynamite JVM. The fixed

register window scheme was chosen to be used by the Dynamite JVM. This chap-

ter describes how recursion is dealt with in the fixed register window scheme, but

the topic and solution are equally as appropriate for the sliding register window

scheme.

Section 7.1 describes the approach to handling progressively more complex

forms of recursion. Section 7.2 describes two approaches to handling stack fix-up

within the Dynamite JVM once recursion has been detected. Section 7.2 then

discusses the chosen scheme for the Dynamite JVM. Section 7.3 investigates the

overhead of the chosen scheme. A comparison is performed of the Dynamite JVM

to the HotSpot client and server JVMs on a recursive benchmark.

For the purposes of this thesis we provide the definition of recursion as defi-

nition 1.

Def. 1 Recursion is the calling of a method A from within a method B where

method A either calls method B or another method called by method A calls

method B. Method B may be the same as method A.

7.1 Lazy recursion detection

Recursion is a problem for register window schemes in the Dynamite JVM as

recursion requires a register window to be reused. If the Dynamite JVM were to

allocate extra register windows in the abstract register pool for each recursive call

104
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into a method, then there would need to be a corresponding translation of the

method and the Dynamite JVM would have to pay a high translation penalty.

There would also be code explosion only bounded by the maximum depth of the

recursion.

This problem can be solved in a hardware register window schemes using a

sliding or heap allocated register window that allows a certain amount of indirect

addressing of registers. This hardware maybe available to a translation system,

for example, it would be available if the SPARC processor were to be targeted

by the Dynamite JVM’s back-end. However, for instruction set architectures

such as MIPS, IA32 and ARM it is unavailable and registers can only be directly

addressed from within instructions. It is therefore assumed that the Dynamite

JVM back-end’s ISA registers can only be directly addressed.

For the fixed register window scheme to work, and not to pay a translation

and code explosion penalty, it needs to deoptimise recursive code and revert it

back to a stack managed in memory instead of registers. This deoptimisation

need only apply to methods that would have their register window over-written

by recursion. Non-recursive methods called by the recursive methods or methods

that are not themselves recursive but call recursive methods need not save their

stack frames.

Java has the ability to dynamically link classes as well as the ability to replace

the primordial class loader replaced with one, for example, capable of loading

class files from over the Internet. The ability to dynamically load and link code

means a JVM can’t perform an analysis on method calls, and the class hierarchy,

that would be capable of detecting recursion statically (before the code has been

executed).

Conventional method inlining approaches, which are analogous to the reasons

for wanting a fixed register window scheme, use a memory stack initially and

then optimise in cases where recursion does not exist. This scheme could be

implemented within the Dynamite JVM, but it would require a new front-end

optimisation phase added to the Dynamite JVM framework. The optimisation

would work by using two different front-ends, one that creates dynamic code for

the fixed register window scheme and one that produces for a memory stack.

The front-end that produces code using the memory stack would be the one

used in basic block mode. When a hot region is detected in the basic block

control-of-flow graph and turned into a group block, the fixed register window
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front-end would be called to retranslate the basic blocks belonging to the methods

that are being optimised. The current Dynamite JVM is implemented to only

have one optimising front-end, so considerable work would be necessary for this

scheme. Chapter 9 considers how performance of the Dynamite JVM can be

further improved.

As we are considering inlining not only direct method calls (such as calls to

static, final or private methods), but also virtual method calls, it can never know

whether the inlining optimisation has been performed safely. There is always the

possibility that a new class will be loaded, or if the program executes in a different

way, that the behaviour is altered and a previously non-recursive method is made

recursive. An example of this is shown in figure 7.1.

// Define 2 c l a s s e s where recur s ion does not e x i s t
class OurObject {

// . . .
public printName ( ) {

System . out . p r i n t l n ( ‘ ‘ OurObject ’ ’ ) ;
}
// . . .

}

class UsesOurObject {
// . . .
public OurObject x ;
public void printNames ( )
{

x . printName ( ) ;
}
// . . .

}
// Define a new c l a s s t ha t in t roduce s a p o t e n t i a l f o r recur s ion
class ExtendsOurObject extends OurObject {

// . . .
public UsesOurObject y ;
public void printName ( )
{

y . printNames ( ) ;
}
// . . .

}

Figure 7.1: Dynamic loading altering recursive behaviour of code
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In figure 7.1 when classes OurObject and UsesOurObject are loaded no recur-

sion exists. However, when ExtendsOurObject is loaded variable x in UsesOurObject

can be of type ExtendsOurObject. This means the method printNames in class

UsesOurObject can now call the method printName in ExtendsOurObject that

calls printNames in class UsesOurObject, so recursion has potentially been in-

troduced.

How the Dynamite JVM handles different kinds of recursion is described in

sections 7.1.1, 7.1.2 and 7.1.3.

7.1.1 Single recursion

Def. 2 Single recursion: A method that recurses purely by statically calling itself.

Single recursion is a programming technique using recursion deliberately to

divide and conquer a problem. As the program is written to statically call the

method that is currently being translated, detection of this kind of recursion is

straightforward (the destination method equals the calling method).

In the Dynamite JVM when single recursion is detected, the translation of

the recursive call needs to plant dynamic code to save the contents of the cur-

rent register window to a stack. The stack pointer used to save the window is

maintained in the first abstract register. The method call bytecode, currently

being translated, has the suffix _rec added. The suffix stops recursion detection

being performed if this bytecode is translated a second time. Also, the bytecode

following the method call in the current method can easily tell where the window

is, and if the _rec suffix is detected on the prior bytecode the window restored

from memory.

The implementation is of a caller save scheme, whereby registers are saved to

the stack when they are believed to be needed by a called method. This can create

unnecessary stores to the memory stack when all the registers are not required

by the called method. A callee save scheme would reduce the number of stores

to the stack, however, a caller save scheme is simpler to implement. The general

case overhead is minimal as the memory stack is a fallback for when the register

window scheme can’t be used.

To avoid unnecessary saving of local variables which are no longer used the

translator scans the forthcoming bytecodes to see which local variables they use

(simple liveness analysis within the method). If a backward branch is found it is
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assumed all local variables are used. An example of this optimisation is shown in

figure 7.2.

Method int ADD(int,int,int)
iload_0
iload_1
invokestatic <ADD(II)I>

invokestatic <ADD(II)I>
iload_2

ireturn

Local variables 0 and 1 are unused past
this point and don’t need backing up

Local variable 2 is unused past this point

Figure 7.2: Reducing locals saved to stack

7.1.2 Direct mutual-recursion

Def. 3 mutual-recursion: Method A which statically calls a method B that in

turn statically calls method A.

Mutual-recursion is another programming technique that uses a number of

recursive methods to divide and conquer a problem. As the method performing

the call isn’t the one being translated, detection of the recursion is more difficult.

To solve this within the Dynamite JVM each method descriptor has a collection

of methods called by the method. This set is added to each time a new method

is called. By looking at the called methods the translator can determine if there

is a path back to this method.

It is necessary to perform a stack fix-up so that the method being called has

its register window appearing on the stack before the register window belonging

to the method that is currently being translated. An example is shown in figure

7.3. The put and rehash methods are mutually recursive. Without fix-up the

values of this, key and value in the put method, the first time the rehash

method is called by put, will be overwritten by the second call to put from

within the rehash method. The frame data will also be overwritten making the

return address invalid. Section 7.2.1 and section 7.2.2 describe alternatives for

the Dynamite JVM’s implementation of stack fix-up.

As well as fixing up code the translator needs to ensure all translations of the

previous method are invalidated so that a memory stack version can be translated

in their place. As the Dynamite JVM only translates on demand the translation of

the deoptimised code only occurs on code that will be executed after the recursion

is detected.
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/∗ Hashtab le o b j e c t s are used wide ly throughout the c l a s s l i b r a r y and by
user programs . This example doesn ’ t prov ide the performance or f e a t u r e s o f
the c l a s s l i b r a r y implementation . ∗/
class Hashtable
{
/∗ The s i z e o f the ha sh t ab l e − i n i t i a l i s e d to 0 ∗/
private int s i z e ;
/∗ Number o f e n t r i e s in the ha sh t a b l e − i n i t i a l i s e d to 0 ∗/
private int numEntries ;
/∗ The en t r i e s in the t a b l e ( combined form a bucke t ) ∗/
private Object [ ] e n t r y va lu e s ;
private Object [ ] en t ry keys ;
. . .
/∗ A Hashtab le cons t ruc tor ∗/
public void Hashtable ( int i n i t i a l S i z e )
{

s i z e = i n i t i a l S i z e ;
en t r y va lu e s = new Object [ s i z e ] ;
en t ry keys = new Object [ s i z e ] ;

}
/∗ The rehash method inc rea se s the s i z e o f the ha sh t ab l e ∗/
private void rehash ( )
{

int c t r ;
/∗ Create a new hash tab l e o f g r ea t e r s i z e ∗/
Hashtable newHashtable = new Hashtable ( s i z e +100);
/∗ Put the o ld ha sh t ab l e e lements in to the new t a b l e ∗/
for ( c t r =0; c t r < s i z e ; c t r++) {

i f ( ent ry keys [ c t r ] != NULL) {
newHashtable . put ( ent ry keys [ c t r ] , e n t r y va lu e s [ c t r ] ) ;

}
}
/∗ Make the new hash tab l e the one used ∗/
s i z e = newHashtable . s i z e ;
numEntries = newHashtable . numEntries ;
en t r y va lu e s = newHashtable . en t r y va lu e s ;
en t ry keys = newHashtable . en t ry keys ;

}
/∗ Place a va lue at the l o c a t i on g iven by the key ∗/
f ina l public void put ( Object key , Object va lue )
{

/∗ I s the t a b l e f u l l or i s the re a c o l l i s i o n ? ∗/
while ( ( numEntries == s i z e ) | | ( ent ry keys [ key . hashCode]% s i z e != NULL) )

{ /∗ Grow the t a b l e ∗/
rehash ( ) ;

}
/∗ In s e r t the entry − a l l o b j e c t s have a hashCode method ∗/
en t ry va lu e s [ key . hashCode ( ) % s i z e ] = value ;
en t ry keys [ key . hashCode ( ) % s i z e ] = key ;
/∗ Increase the number o f e n t r i e s ∗/
numEntries++;

}
. . .
}

Figure 7.3: An example showing the need of recursion fix-up
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7.1.3 Indirect mutual-recursion

Def. 4 Indirect mutual-recursion: A method A that indirectly calls another method

B that calls method A.

Complex recursion encompasses all other occasions a method ends up being

called from within itself. An example is shown in figure 7.4. The hashCode

method calls the hashCode method of the objects in the list. If a list of lists were

created the hashCode method would be recursive.

/∗ This example c l a s s maintains a l i s t ∗/
class L i s t
{
. . .
/∗ Create the hashCode f o r t h i s l i s t − s tandard d e f i n i t i o n ∗/
public int hashCode ( )
{

/∗ I t e r a t e down l i s t combining hashCodes o f each element ∗/
hashCode = 1 ;
I t e r a t o r i = l i s t . i t e r a t o r ( ) ;
while ( i . hasNext ( ) ) {

Object obj = i . next ( ) ;
hashCode = 31∗hashCode + ( obj==null ? 0 : obj . hashCode ( ) ) ;

}
}
. . .
}

Figure 7.4: Complex recursive example

The detection of complex recursion requires that the set of called methods

in a method’s descriptor to include not only static calls but virtual calls too. A

virtual call calls a super classes method by default, but this may be overridden.

The method called is determined by the virtual method table pointed to by an

object’s header. A virtual method table is created whenever a class is loaded.

As a new class may be loaded it is not always possible for a complex recursive

method to determine initially whether or not they are recursive.

The Dynamite JVM calculates the possible destinations of virtual call by

examining the current class hierarchy at the point when the translation takes

place. The Dynamite JVM also adds the called method to the descriptor of the

previous method when it translates the fix-up code for the method. As all fix-up
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code blocks are specialised to the calling method, all possible methods that are

called by a method are known to the translator.

It is a feature of the basic block that performs the method call where the

unknown recursion exists that it has not been translated. If it had been then

the method would exist in a method’s descriptor and the recursion would be

detectable. As this method call is translated it is added to the descriptor of

the calling method. If a call is translated within the method that is potentially

recursive there will be a path from the method being translated back to itself.

The translator at this point has detected the recursion and can invalidate previous

translations and perform stack fix-up.

Other than the deoptimisation cost of retranslating code, the cost of this lazy

recursion detection system is maintaining the list of called methods. As this is

done only once per translation of a block containing a method call, the operation

is considered cheap to perform.

7.2 Fixing the call stack

For the lazy recursion detection described in the last section to work in the general

case, it requires a mechanism for the call stack to be fixed up. A fix-up involves

placing a stack frame from a register frame into the memory stack frame, at the

correct location, when recursion is detected. Two approaches are considered, one

for immediate fixing of the memory stack and another for delayed fix-up.

7.2.1 Immediate stack fix-up technique

Immediate stack fix-up involves detecting which methods frames should be on

the call stack. This is done by walking down the stack and seeing if any of the

methods that have called the method we are in can be called by the method we

are in. As the JVM must support a stack trace facility for exceptions, all the

information for the stack walk are contained within the call stack. The JVM is

able to distinguish memory stack from register window stack frames as the value

of the memory stack’s link pointers1 are greater than the number of registers used

in the register window scheme.

1Each call stack frame within the Dynamite JVM has a frame data region that holds a link
value which points to the previous stack-frame data. The use of the frame data for exceptions
is described in section 5.2.
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After walking down the stack collecting information about what methods can

be called by the current method, the stack is walked back up. Frames that

can be called by the current method are inserted into the memory stack, the

memory stack pointer and link pointer of the next frame are adjusted to reflect

the change. Recursive methods detected whilst walking the stack have their

translations invalidated so they are retranslated to use the memory stack.

The cost of performing the stack fix-up is proportional to the depth of the

call stack. However, once the fix-up has been performed the code can continue

to be executed without requiring a further retranslation in the future, unlike the

delayed stack fix-up technique described in the next section.

7.2.2 Delayed stack fix-up technique

Delayed stack fix-up is a technique that dynamically alters target code to cause

stack fix-up to occur just before the required frame is loaded from the memory

stack. This prevents stack traversal that could potentially prove costly. As stack

frames will be overwritten they are copied to backup frames that are stored into

the memory stack when the stack is unwound. Figure 7.5 shows an example

translation of a mutually recursive piece of code using this technique.

return return

invokevirtual

method A method B

1

2

34

5 6
7

invokevirtual_mut

Figure 7.5: Delayed stack fix-up

The following is a description of the steps taken in figure 7.5:
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1. Method A is entered and translated/executed until it reaches an

invokevirtual bytecode.

2. Method B is entered and translated/executed until it reaches a recursive

call to method A. The call is known to be recursive by checking the called

methods list of method A and seeing that method B is reachable by it.

The translation invalidates the translated basic blocks of method A as

they now possess calls that need to be made recursive. Method A’s stack

frame is copied into a backup frame and the current bytecode altered to a

invokevirtual_mut bytecode. The target code increments a counter which

is used to calculate when the backed up frames should be restored.

3. Method A is entered again and translated/executed. If the call to method

B were translated again it would be turned into a invokevirtual_rec

bytecode and the memory stack used.

4. Method A is executed until it exits with a return bytecode.

5. As part of the fix-up caused by a return, method B discovers the previ-

ous bytecode is an invokevirtual_mut bytecode and inspects whether the

counter has a value of 0. If it has then method A’s frame is restored from the

backup. The basic block containing the invokevirtual_mut is invalidated

and the bytecode altered to a invokevirtual_rec as a counter no-longer

needs maintaining.

6. Method B returns to method A.

7. Method A returns.

The test for a mutual-recursion counter hitting zero to invalidate blocks and

reload the backed up frames requires a substitute call. Compatibility tests can’t

be used as if a compatibility test passes once it must always pass. The Dynamite

JVM kernel can be altered to test compatibility based on counters, but it does

not currently do so. To support threading in the kernel and to allow a re-entrant

JVM, multiple backups of a method’s frame are required for the different possible

translations.
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7.2.3 Chosen scheme

The runtime cost of the immediate stack fix-up is the cost to move stack frames up

when one needs inserting lower in the stack. A delayed scheme requires multiple

counters and backup frames to be kept as well as retranslation of basic blocks.

The immediate stack fix-up scheme is currently implemented in the Dynamite

JVM as it was expected that most recursion will be detected on shallow call

stacks. A pathological case for the immediate fix-up scheme is shown in figure

7.6.

class t e s t {
public stat ic int f oo ( bool va l )
{

i f ( va l == true )
return bar (1000000) ;

else
return 1 ;

}

public stat ic int bar ( int va l )
{

i f ( va l > 1)
return 1+bar ( val −1);

else
return f oo ( fa l se ) ;

}
}

Figure 7.6: Pathological case for immediate stack fix-up

If the method foo is called with a value of true in figure 7.6 then the memory-

stack will contain 1,000,000 copies of method bar’s frame when mutual-recursion

is detected by the call back to method foo. The immediate stack fix-up scheme

has to shuffle these 1,000,000 entries up the stack to insert method foo’s frame,

whereas the delayed fix-up scheme would insert the frame when the stack had

been unwound and therefore not incurring a copying overhead.

7.2.4 Example stack fix-up

An example of stack fix-up performed in the Dynamite JVM is shown in figure

7.7, it shows the stack before and after stack fix-up in one instance of a stack
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fix-up performed in the 202 jess benchmark. The bytecode that calls out tells

whether a frame is in registers or memory. Bytecodes with a _rec extension save

the callers frame to memory before the call is performed. The descriptor for a

method is also shown. The descriptor allows name polymorphism dependent on

the parameters passed. The parameters are shown between brackets, the value to

the right is the return type. Table 7.1 explains the meaning of the abbreviations.

I Integer
J Long
Z Boolean
B Byte
V Void
S Short
F Float
D Double
[x Array of elements of type x
L..; An object reference to a class specified between the L and the ;

Table 7.1: Descriptor abbreviation descriptions

In the example the method spec/harness/Context.appendWindow detects re-

cursion and the methods from depth 14 down to depth 25 need fix-up performing

on them. The methods at depths 16 and 17 already have there frames in memory

so these frames are shuffled up and the frames that should be above and below

them are inserted.

7.3 Performance

This sections looks at the performance of the lazy recursion and immediate stack

fix-up technique. Section 7.3.1 examines how much the memory stack is used.

Section 7.3.2 looks at how frequently stack fix-up is required and what the max-

imum cost of immediate fix-up will be. Section 7.3.3 analyses the hot loop of a

recursive benchmark and compares the performance to the HotSpot JVM.

7.3.1 Cost of recursion

In section 6.4.1 a set of Java benchmarks were introduced which are used as

examples to characterise the execution of Java programs. Table 7.2 shows the

number of recursive instructions translated and executed in these benchmarks.
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Figure 7.7: Example of stack fix-up
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benchmark invoke-
virtual
trans-
lated

invoke-
virtual
exe-
cuted

invoke-
special
trans-
lated

invoke-
special
exe-
cuted

invoke-
static
trans-
lated

invoke-
static
exe-
cuted

helloworld 4 4 0 0 0 0
mpeg2dec 4 16 0 0 0 0
mpeg2enc 4 40 0 0 0 0
201 compress 18 778 3 299 1 7
202 jess 54 76742 10 11887 9 12144

Table 7.2: Recursive instruction counts

benchmark invoke-
virtual
trans-
lated

invoke-
virtual
exe-
cuted

invoke-
special
trans-
lated

invoke-
special
exe-
cuted

invoke-
static
trans-
lated

invoke-
static
exe-
cuted

helloworld 9.756% 4.255% 0% 0% 0% 0%
mpeg2dec 2.381% 0.177% 0% 0% 0% 0%
mpeg2enc 2.174% 0.001% 0% 0% 0% 0%
201 compress 3.462% 0.005% 0.325% 0.012% 0.397% 0.055%
202 jess 3.617% 1.339% 0.791% 4.523% 1.815% 9.576%

Table 7.3: Recursive instructions as a percentage of their base instruction

Although the 202 jess benchmark executes fewer bytecodes than the mpeg2dec,

mpeg2enc and 201 compress benchmarks it performs more recursion. Table 7.3

shows what percentage of the respective invoke bytecodes these recursive byte-

codes make up.

Table 7.4 shows the percentage of recursive invoke bytecodes as part of the

total translated and executed bytecode mix.

Table 7.5 shows the total number of values placed on the memory stack by

benchmark invoke-
virtual
trans-
lated

invoke-
virtual
exe-
cuted

invoke-
special
trans-
lated

invoke-
special
exe-
cuted

invoke-
static
trans-
lated

invoke-
static
exe-
cuted

helloworld 0.091% 0.018% 0% 0% 0% 0%
mpeg2dec 0.015% 0.000% 0% 0% 0% 0%
mpeg2enc 0.012% 0.000% 0% 0% 0% 0%
201 compress 0.092% 0.000% 0.015% 0.000% 0.005% 0.000%
202 jess 0.159% 0.052% 0.029% 0.008% 0.027% 0.008%

Table 7.4: Recursive bytecodes as a percentage of the total instruction mix
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benchmark invokevirtual total invokespecial total invokestatic total
helloworld 20 0 0
mpeg2dec 80 0 0
mpeg2enc 200 0 0
201 compress 4511 1065 28
202 jess 670083 70206 90008

Table 7.5: The total size of frames saved and loaded from the memory stack by
recursive invoke bytecodes

benchmark invokevirtual av-
erage frame size

invokespecial av-
erage frame size

invokestatic av-
erage frame size

helloworld 5 0 0
mpeg2dec 5 0 0
mpeg2enc 5 0 0
201 compress 5.798 3.562 4
202 jess 8.732 5.906 7.412

Table 7.6: The average size of frames saved to the memory stack by recursive
invoke bytecodes

recursive bytecodes. Table 7.6 uses these figures to calculate the average frame

size stored by a recursive bytecode. Each stack value is a 32bit word.

Table 7.6 shows that the average memory stack frame size is between 3 and 9

words. The frame data required for a memory stack entry is 3 words, these hold

the method associated with this frame, a link value to the next frame and the

return address of the method. Other frame locations hold local variable values

that will be used after the method has returned and any values left on the calling

method’s stack before the call was performed.

The results of this section have shown that recursive invoke bytecodes make up

less than 10% of the respective invoke bytecodes, that are translated and executed

by the Dynamite JVM, on the chosen benchmarks. The recursive bytecodes make

up less than 0.16% of the overall total instruction mix. The number of parameters

copied to and from the memory stack is relatively small, fewer than 9 words. The

execution time performance of the technique is measured in section 7.3.3. The

following section examines the performance of the immediate stack fix-up scheme.
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7.3.2 Cost of stack fix-up

The Dynamite JVM was instrumented to record the number of stack fix-ups

performed. As the cost of stack fix-up is related to the depth of the stack, the

stack depth for each fix-up was added to a cumulative total. A cumulative total

of all the maximum memory stack frame sizes was also recorded. The results are

shown in table 7.7.

benchmark stack fix-up
operations

cumulative stack
depth

cumulative
frame sizes

helloworld 4 24 90
mpeg2dec 4 52 326
mpeg2enc 4 28 166
201 compress 13 138 846
202 jess 35 710 4538

Table 7.7: Stack fix-up cost

Table 7.7 shows fewer recursive stack fix-up operations being performed than

translated recursive bytecodes shown in table 7.2. Stack fix-up is only neces-

sary when recursion is detected and not when recursive invoke bytecodes are

re-translated. Re-translation is necessary when the Dynamite JVM believes a

translation has become unsafe through a potential recursion being introduced.

As we know these particular bytecodes, and from that the containing basic block,

are recursion safe (they are using the memory stack instead of the fixed register

window) a potential optimisation may be to avoid invalidating these blocks.

The cumulative stack depth and frame sizes show that for the 202 jess bench-

mark 710 stack entries are examined and in the worst case 4538 stack frame entries

(each a 32bit word) would need moving to perform a fix-up operation of inserting

a frame in to the base of the memory stack (for each of the 35 performed fix-up

operations). In practice most fix-up occurs at the top of the stack, as this is

where the current working set of methods are. Even so the worst case perfor-

mance of immediate stack fix-up won’t be large as copying regions of memory is

relatively cheap compared to the re-translation costs associated with the delayed

stack fix-up scheme.
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7.3.3 Performance comparison

The Takeuchi function [Knu91] is a heavily recursive function widely used to test

recursive performance in Lisp environments. A Java version is shown in figure 7.8.

class takeuch i
{

public stat ic int r e s u l t ;
public stat ic int tak ( int x , int y , int z ) {

i f ( y >= x)
return z ;

else
return tak ( tak (x−1,y , z ) , tak (y−1,z , x ) , tak ( z−1,x , y ) ) ;

}
public stat ic void main ( St r ing args [ ] ) {

r e s u l t = tak ( 6 , 0 , 6 9 ) ;
}

}

Figure 7.8: Takeuchi benchmark program

The method tak that performs the Takeuchi function takes three arguments

and a result is computed recursively. The method is declared statically as it does

not act on any instance data. The main method is the 1st method called by the

JVM, in the benchmark it calls the function tak with three arguments which are

decided at compile time.

Figure 7.9 shows the bytecodes of the tak method as a basic block graph.

Figure 7.10 shows the Dynamite JVM basic block graph and IR for the tak

method.

The bytecodes turn into more IR than is typical of a Java program as there

are frequent method calls in the tak method, and this is a relatively complex

bytecode. The labels in the top left of the IR are the addresses of the Java

program’s basic blocks in memory. Following this is a list of stores that need

to be performed by this basic block, if any. Following this is a list of register

definitions within this basic block. Successors are indicated on the lines leaving

the blocks.

The store lists of basic blocks 0x08150867 and 0x0815086f have the stores to

the memory stack backing up the current method’s local variables. Basic blocks

0x0815087f and 0x08150882 avoid storing local variables to the memory stack as

local variables are not used in the basic blocks following these. Following the
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  31 invokestatic #5 <Method int tak(int, int, int)>

  23 iload_2
  24 iconst_1
  25 isub
  26 iload_0
  27 iload_1
  28 invokestatic #5 <Method int tak(int, int, int)>

  15 iload_1
  16 iconst_1
  17 isub
  18 iload_2
  19 iload_0
  20 invokestatic #5 <Method int tak(int, int, int)>

   0 iload_1
   1 iload_0
   2 if_icmplt 7

   9 isub
  10 iload_1
  11 iload_2
  12 invokestatic #5 <Method int tak(int, int, int)>

   8 iconst_1
   7 iload_0

   5 iload_2
   6 ireturn

  34 ireturn

Back to calling method

In from calling method

Figure 7.9: Takeuchi method bytecode basic block graph
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store (BP−24), load (BP−24)
store (BP−20), load (BP−20)
store (BP−16), load (BP−16)
store (BP−12), 0x08150744
store (BP−8), load (BP−8)
store (BP−4), load (BP−4)
store BP, tak.S00

0x08150860

0x08150867

store BP, tak.L00
store (BP+4), tak.L01
store (BP+8), tak.L02

store (BP+16), tak.Ret
store (BP+20), tak.Lnk

Store list

store (BP+12), 0x08150744

Registers

0x0815086f
Store list

Registers
tak.L02 = load (BP − 24)
tak.L01 = load (BP − 16)
tak.L00 = load (BP − 20) − 1
tak.Ret = 0x08150877
tak.Lnk = BP − 4
BP = BP + 4

Tak.L00 = Tak.L00 − 1
Tak.Ret = 0x0815086f
BP = BP + 24

Tak.Lnk = BP+20

0x08150877
Store list

store (BP−24), load (BP − 12)
store (BP−20), load (BP − 8)
store (BP−16), load (BP − 4)
store (BP−12), tak.S00

Registers

Registers
tak.L02 = load (BP − 24)
tak.L01 = load (BP − 28)
tak.L00 = load (BP − 20)

tak.Lnk = BP − 20
BP = BP − 8

0x0815087f

tak.Ret = 0x0815087f

Store list

Registers
tak.L02 = tak.S00
tak.L01 = load (BP − 4)
tak.L00 = load (BP − 8)

tak.Lnk = BP − 12
BP = BP − 8

0x8150865
Registers
Tak.S00 = Tak.L02

0x08150882

tak.Ret = 0x08150882

store (BP−20), 0x08150744

store (BP−28), 0x08150744

Registers

BP = BP − 12

else

Tak.Ret

Back to calling method

load(BP − 8)

tak.Lnk = load (BP − 4)
tak.Ret = load (BP − 8)

store (BP−16), load (BP − 16)
store (BP−12), load (BP − 12)

In from calling method

Dead
code

Dead
code

if (Tak.L01 < Tak.L00)

Figure 7.10: Takeuchi function translated into IR
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local variables in the store list comes the frame data and then any stack values

that need preserving.

In basic block 0x0815086f the stack frame is loaded at the beginning of the

basic block and stored again at the end with the local variables and frame data

being unchanged and at the same position in the memory stack. This is dead

code (highlighted in figure 7.10) that can be eliminated by the Dynamite JVM.

Likewise, the frame data storing highlighted in basic block 0x0815087f can be

eliminated.

Figure 7.11 and figure 7.12 show the performance of the Dynamite JVM,

the Dynamite JVM with group block optimisations (Dynamite -O), the HotSpot

client JVM version 1.4 and the HotSpot server JVM version 1.4 [Sun99b]. Fig-

ure 7.11 shows the performance of the JVMs at executing a small number of

bytecodes, figure 7.12 shows the performance of the JVMs at executing a larger

number of bytecodes. All tests were run on an unloaded AMD Athlon 1GHz

machine with 256MB RAM running SuSE Linux 7.2 and times recorded using

the time [KMJP00] command2.
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Figure 7.11: Takeuchi execution results

2The tests were run in single user mode and the minimum user time of 10 runs was record
to try and cancel out operating system and architectural overheads caused by other processes
being run on the test machine.
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Figure 7.12: Takeuchi execution results (more bytecodes)

benchmark bytecodes per second
Dynamite JVM 23,146,257
Dynamite JVM -O 243,030,690
HotSpot client JVM 768,709,402
HotSpot server JVM 1,238,759,081

The number of bytecodes executed by a particular run of the JVM was deter-

mined using the table included in appendix section B.3. The complexity of the

Takeuchi function means the amount of recursion and bytecodes executed is not

proportional to its input parameters.

The results show that the Dynamite JVM has a larger start-up cost than the

HotSpot client and server JVM. Without group block optimisations the overhead

of the Dynamite JVM’s control loop is apparent. With group block optimisation,

performance is improved as shown by the improved execution time with respect

to the number of bytecodes. Table 7.3.3 shows the number of bytecodes a second

executed by each JVM with the start-up overhead removed.

Performance is down with the Dynamite JVM due to load-store dead code

elimination not being performed. Performance is considered further in the next

chapter.
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A multi-phase optimisation scheme is used in the HotSpot [Sun99b] JVM. De-

optimisation is performed when optimisations have proved unsafe. An example of

this would be when method inlining has been performed on a method that cannot

be inlined due to a new class being loaded. The techniques used in the Dynamite

JVM differ in that recursion is assumed not to exist when the 1st translation

takes place. As HotSpot uses an interpreter it will know of most mutual and

complex recursion when it comes to translate, whereas the Dynamite JVM only

detects single recursion.

7.4 Summary

This chapter has presented the problem and solutions to recursion detection and

fix-up for the Dynamite JVM. Lazy recursion detection is used as a solution to

detecting recursion as dynamic loading of classes means full program analysis is

not possible at runtime. A consequence of detecting recursion late is the need to

perform stack fix-up. An immediate and delayed fix-up technique are described

with the immediate stack fix-up scheme used in the Dynamite JVM. Finally the

chapter analysed the performance of the recursion schemes showing low overhead

on typical benchmark programs, with recursive bytecodes making up less than

10% of the method call bytecode mix and the associated overhead being between

3 and 9 words of data to push and pop from the memory stack.

On the highly recursive Takeuchi benchmark performance was 3.163 times

slower per executed bytecode than the HotSpot client JVM as analysed in sec-

tion 7.3.3. There is clear evidence of potential optimisations in the Takeuchi

benchmark, with two regions of dead code highlighted in the hot region of the

IR graph (figure 7.10). However, performance is lower largely down because of

the Dynamite JVM’s kernel and back-end. This is examined further in the next

chapter.

Lazy recursion detection, immediate stack fix-up and delayed stack fix-up are

applicable to a sliding register window scheme. Sliding register windows and

the fixed register window scheme, used throughout this chapter, are described in

chapter 6.



Chapter 8

Overall System Performance

The thesis so far has presented the Dynamite JVM and discussed the optimisa-

tions performed within it. Chapter 6 introduced fixed register window allocation.

It was demonstrated that inter-procedural optimisation with the fixed register

window scheme requires little additional code translation and generation. In a

basic block translator fix-up code accounted for less than 1.3% of the instruction

mix and typically required fewer than 2 abstract register copies. With group

block optimisations this copying overhead can be eliminated through dead code

elimination.

A different scheme was suggested for inter-procedural optimisation, a sliding

register scheme. With a conservative model of this scheme, it was calculated that

between 1.819 and 5.103 translations were required per method.

It was also shown that although the fixed register window scheme works re-

gardless of target architecture, it benefits from architectures with more registers.

With around 100 registers a group block can be created, for the benchmark cases,

that contains 80% of the total translated code and has no register spills or fills

performed.

Chapter 7 showed that recursive method call bytecodes, necessary for the

inter-procedural optimisation, make up less than 10% of all translated method

calls. The associated cost of these bytecodes was stacking of between 3 to 9 words

to and from memory. Recursive bytecodes are analogous to method call bytecodes

in JVMs where the method calls haven’t been inlined. This sub-optimal case was

found to be only necessary in less than 10% of all executed method calls, and

accounted for less than 0.16% of the overall instruction mix.

Chapter 7 measured the performance of the Dynamite JVM compared to

126
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the HotSpot client and server JVMs [PVC01] on the highly recursive Takeuchi

function. Performance was 3.163 times slower than the HotSpot client JVM and

5.097 times slower compared to the HotSpot server JVM. It was shown at a high-

level that this benchmark could dead code eliminate many memory accesses.

This chapter continues the analysis of the performance of the Dynamite JVM.

The following section describes the aspects of the Dynamite JVM that will be

measured.

8.1 Break down of JVM performance

An equation for the total execution time of a Java program is shown in equa-

tion 8.1.

Execution time = Start up time + Translation time + Bytecode execution time

(8.1)

Every time a JVM is started data structures necessary for garbage collection

and translation are created. Runtime objects such as threads and the string array

passed into the main method are created. Not only must the objects be created

but the classes for these objects must be initialised. This time varies depending on

what classes are used in the bootstrapping process, but this time is independent

of work done executing the main bytecodes of the program and will be referred

to here as the start up time.

The translation time is the time spent translating bytecodes. In a trans-

lation system the translated bytecodes are cached so they are only translated,

dependant on the JVM, the first time a class is loaded, a method called, an ex-

ception executed or when a basic block is executed. Hardware JVMs or JVMs

that use an interpreter spend no time translating. JVMs such as the HotSpot

server JVM [PVC01] heavily optimise certain bytecodes, spending time trans-

lating bytecodes more than once and thereby increasing their translation time.

Section 8.2 shows the saving in the number of translated bytecodes achievable by

the Dynamite JVM. Section 8.4 examines the time it takes the Dynamite JVM

and HotSpot JVMs to translate a fixed number of bytecodes. The immaturity of

the Dynamite JVM results in slow performance.

The bytecode execution time of the JVM varies approximately with how many

bytecodes need to be executed. The number of bytecodes executed depends on
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the program and the dataset it is working on. To a certain extent the libraries

used by the JVM have an impact on the performance, commercial JVMs having

carefully optimised libraries. Section 8.3 examines the time taken to execute a

varying number of bytecodes. Again, a comparison of the Dynamite JVM and

HotSpot JVMs is performed. The Dynamite JVM produces code approximately

5 times slower than the HotSpot JVMs, section 8.5 examines the code produced

by the Dynamite JVM to demonstrate areas where performance can be increased.

Latency is an important aspect to a users experience of a JVM. Latency is

the time between requesting an activity and that activity being performed. For

example, if a menu button is clicked within an interactive application then the

user would expect the menu to appear within an acceptable period of time. In the

JVM latency is comprised of both translation and execution times. An interpreter

or Java processor can execute bytecodes without any translation overhead, so the

time to execute the initial bytecodes is low. A JIT cannot execute bytecodes until

they have been translated, however, the execution time of the bytecodes is typi-

cally lower so that the time spent translating is made up when the bytecodes are

executed. Section 8.3 shows some of the latency characteristics of the Dynamite

JVM and HotSpot JVMs.

The benchmark used to examine the properties of the Dynamite JVM and

HotSpot client and server JVMs is a Java port of the Dhrystone benchmark [Oka02].

The Dhrystone benchmark was originally created for Ada [Wei84] and provides

a Dhrystone MIPS comparison to a VAX 11/780. It is a synthetic benchmark

designed to simulate realistic integer, string, memory and logic operations. As

such it is a less than ideal example of an object-oriented Java program. It does,

however, have the advantage of being small and easy to understand, making it

ideal for experimentation. It also avoids known performance bottlenecks in the

Dynamite JVM, such as floating point operations.

Ian Walsh, technical director for MIPS in Europe, said: “It’s very

easy to say Dhrystone is not the best benchmark in the world but

everyone knows the same tricks and does the same things and that

makes it fair again.” [Fla01]
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8.2 Translation saving

By translating basic blocks instead of methods (as in a JIT compiler) the number

of translated bytecodes is reduced. The Dynamite JVM was instrumented to

record the number of translated bytes in the translation loop and the number of

bytes that would have been translated by a JIT compiler. Bytes were recorded

rather than bytecodes for simplicity. The translated bytes were divided in to

bytes that were translated in library and application code. Library code was

distinguished by method identifiers beginning with with either java or gnu (gnu

objects are part of the Classpath library). The results are shown in table 8.1

Benchmark JIT library JIT non-
library

Dynamite
JVM library

Dynamite
JVM non-
library

helloworld 7,407 9 6,815 9
dhrystone 11,174 1,155 9,655 1,114
mpeg2dec 9,501 31,715 8,523 27,329
mpeg2enc 9,494 39,693 8,509 35,587
201 compress 14,510 15,026 12,090 12,666
202 jess 17,595 34,446 14,328 28,195

Table 8.1: Number of translated bytes of a JIT compiler and the Dynamite JVM

Table 8.2 shows the percentage reduction achieved by basic block translation.

Benchmark library saving non-library saving
helloworld 7.99% 0%
dhrystone 13.59% 3.55%
mpeg2dec 10.29% 13.83%
mpeg2enc 10.37% 10.34%
201 compress 16.68% 12.70%
202 jess 18.57% 18.14%

Table 8.2: Reduction in translated bytes by basic block compilation

Table 8.2 shows the Dynamite JVM translates fewer bytes of code than a

JIT compiler. A JIT compiler does not necessarily compile all the methods that

are loaded, only those that are executed. Comparing the amount of translation

performed by the Dynamite JVM to a JIT compiler is therefore dissimilar to

comparing the amount of translation performed by a dynamic binary translator

to a static translator, as a static translator must compile the whole of a binary

file.
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8.3 Performance of translated code

The execution time of the Dhrystone benchmark is dependent on the number

of times the main loop is executed. This is shown in equation 8.2, where S is

the start-up time, T is the translation time, B is the bytecode execution time

excluding the loop execution time, E is the number of times the loop is executed

and BL is the execution time for each loop.

Execution time = S + T + B + E ∗BL (8.2)

For a JVM with two translation stages, such as the Dynamite JVM, the loop

is translated, executed a certain number of times, translated for a second time

and then this translation executed until the loop count is reached. The HotSpot

JVMs have three translation stages with each translation phase being triggered

by the loop being executed a certain number of times. This is shown in equation

8.3, where E1 to E3 are the number of times the results of each translation pass

are executed and BL1 to BL3 are the respective execution times. The value of T

is the translation time of all three translation passes. The value of E in equation

8.2 is the sum of E1, E2 and E3.

Execution time = S + T + B + E1 ∗BL1 + E2 ∗BL2 + E3 ∗BL3 (8.3)

For large values of E, E1 and E2 will be comparatively small and constant

as E is increased. By increasing E the execution time will increase and the rate

of change of which will be BL. For a JVM with three translation phases the rate

of change will be BL3. The Dynamite JVM fits equation 8.3 with a value of 0

for E1.

8.3.1 Externally measured performance

A harness was written that ran the Dhrystone benchmark for a set number of

loops measuring the time taken to execute. All tests were run on an unloaded

AMD Athlon 1GHz machine with 256MB RAM running SuSE Linux 7.2 and times

recorded using the time [KMJP00] command to record user mode execution time.

Section 8.3.2 measures the same performance using a measurement generated by

the Dhrystone benchmark.
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Figures 8.1, 8.2 and 8.3 show the execution times of the Dhrystone benchmark

for varying value of E. Each test was repeated 25 times and the lowest value used.

The value of E was increased in increments of 1 up until 100, then increments of

100 up until 70,000, then in increments of 1,000 up until 300,000 and finally in

increments of 100,000 up until 2,800,000.
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Figure 8.1: Execution cost: total execution time for values of E up to 50,000

Figure 8.2 shows the extra translation cost when group block optimisation is

performed after 85 iterations of the Dhrystone loop. Initial performance of the

Dynamite JVM with group block optimisation is worse than without, as group

block optimisation has been performed on native library code. Figure 8.1 shows

that the extra translation cost of creating a group block within the Dynamite

JVM has been cancelled out by the increased performance of the translated code

by 45,000 executions of the Dhrystone loop. The HotSpot server JVM’s execution

time increases at a lower rate after the number of executions of the Dhrystone

loop has passed 25,000. Figure 8.3 shows that the HotSpot server JVM’s execu-

tion time is the same as or lower than the HotSpot client JVM after 1,700,000

executions of the Dhrystone loop.

8.3.2 Internally measured performance

The Dhrystone loop, executing on a particular JVM, will execute a certain num-

ber of bytecodes each time around the loop. By instrumenting the Dhrystone



CHAPTER 8. OVERALL SYSTEM PERFORMANCE 132

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Executions of the Dhrystone loop

Dynamite JVM
Dynamite JVM -O

HotSpot client
HotSpot server

Figure 8.2: Execution cost: total execution time for values of E up to 100
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loop to emit the period of time between each pass an execution profile can be

plotted. The starting time is a static initialised in the class initialiser. The

java.lang.System.currentTimeMillis library call is used to get the time. The

test machine is the same as in section 8.3.1, each test was repeated 20 times and

the results with the lowest execution time were used. The results are shown in

figure 8.4.
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Figure 8.4: Internally measured execution cost

These results mirror those of section 8.3.1. The graph is smoother due to

the method of generating the time values. The time values are larger because

the timer is measuring the total execution time and not just time spent in user

mode. As certain sections of the code aren’t timed, translation time expended

during termination of the program isn’t incorporated into the graph. This bene-

fits the group block optimising version of the Dynamite JVM, which has better

performance than the Dynamite JVM without group blocks after 36,000 loop

executions.

8.3.3 Analysis

The performance of the externally and internally measured performance varies

greatly. Table 8.3 summarises the features of the graphs from the previous two

sections.
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External Internal
JVM Loops to

reach optimal
performance

Increase in
time per
Dhrystone
loop

Loops to
reach optimal
performance

Increase in
time per
Dhrystone
loop

Dynamite
JVM

1 0.0298ms 1 0.228ms

Dynamite
JVM -O

85 0.00889ms 88 0.155ms

HotSpot
client

1 0.000710ms 7 0.0373ms

HotSpot
server

25,000 0.000465ms 12,000 0.0311ms

Table 8.3: Summary of execution performance

Table 8.3 shows the difference the measurement mechanism makes. Perfor-

mance is an order of magnitude better when user time is recorded instead of wall

clock time, as recorded by the internal measurement. The optimal time to exe-

cute a Dhrystone loop with the Dynamite JVM with group block optimisations

(-O) is 12.5 times slower than the HotSpot client JVM, with external timing.

Similarly against the HotSpot server JVM the Dynamite JVM with group block

optimisations is 19.1 times slower. However, with internal timing, the Dynamite

JVM is 4.16 and 4.98 times slower than the HotSpot client and server JVMs

respectively.

This performance is disappointing, however, the Dynamite JVM provides

much simpler compilation than the HotSpot JVMs. Section 8.5 examines code

produced by the Dynamite JVM and shows how it can be improved. The per-

formance of the Dynamite JVM also suffers as the Dhrystone loop makes use of

the java.lang.String library for string access and comparison. Optimisation

of this library would increase the performance greatly and could be achieved by

writing native methods for the String methods. More optimally the Dynamite

JVM can recognise certain method calls and plant IR that performs the methods

algorithm.

The results from this section have shown that simple compilation or interpre-

tation are an advantage for improved latency up until large loop counts. The

Dhrystone loop threshold for the Dynamite JVM with and without group block
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optimisations is a loop count of either 45,000 when user time is measured exter-

nally or 36,000 when the wall clock time is measured internally. The external

loop threshold is greater as a larger amount of more optimal code needs to be

executed to recoup the performance lost by performing more complex transla-

tion on code outside of the inner loop, which in itself doesn’t justify increased

compilation effort.

8.4 Translation performance

Translation time increases as the number of bytecodes translated in a program

increases. The Dhrystone benchmark is a large loop that is executed a number

of times entered as a parameter to the program. The loop will only be translated

once per run of the benchmark. However, the loop can be unrolled1 inside a test

harness, and by doing so the number of translated bytecodes increased. Equa-

tion 8.4 shows the execution time for a JIT compiler executing the Dhrystone

benchmark, where S is the start-up time, B is the bytecode execution time, T

is the translation time excluding the unrolled loop, N is the number of times

the Dhrystone loop has been unrolled, TL is the time to translate a loop of the

Dhrystone benchmark, and LO is a loop overhead or saving incurred by unrolling

the loop.

Execution time = S + B + T + N ∗ (TL + LO) (8.4)

By keeping the number of executions of the Dhrystone loop constant the vari-

ables S and B will remain constant also. The value of LO is small in comparison

to TL. So by varying N , the number of times the Dhrystone loop has been un-

rolled, and plotting this against the execution time, it is possible to calculate the

value of TL, the time to translate a loop, by the gradient of the slope.

JIT performance is different to HotSpot and Dynamite JVM as it uses only a

single translation pass. Equation 8.5 shows the execution time for a 2 pass trans-

lator, such as the Dynamite JVM, where the 1 or 2 suffix represents a translation,

execution or loop overhead time associated with each translation pass.

1Loop unrolling is a conventional compiler optimisation where the loop body is repeated a
number of times. This benefits the target architecture of the compiler with potentially reduced
cache misses and branch mispredictions.
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Execution time = S + B1 + B2 + T + N ∗ (TL1 + TL2 + LO1 + LO2) (8.5)

For large loop values the execution of second pass translated bytecodes (B2)

will be much larger than (B1). For example, the Dynamite JVM performs second

pass translation after 85 executions of the first pass code. If the loop is executed

10,000 times then the executed bytecodes from the first translation pass will

account for less than 1% of the total executed bytecodes.

HotSpot uses a 3 pass translation and execution scheme [PVC01] where the

1st pass is actually an interpreter and therefore incurs no translation penalty.

Equation 8.6 shows the total execution time of the unrolled Dhrystone running

on HotSpot.

Execution time = S+B1+B2+B3+T+N∗(TL2+TL3+L01+LO2+LO3) (8.6)

So by varying the N it is possible to approximately measure TL1 for the

Dynamite JVM when group block optimisations are disabled, TL1 plus TL2 for

the Dynamite JVM with group block optimisation enabled (-O) and TL2 plus

TL3 for the HotSpot client and server JVMs.

Table 8.4 and figure 8.5 show the total execution times for Dhrystone when

the number of loop unrolls (N) is varied for a fixed number of 1,048,576 (220)loop

executions. The test machine is the same as in section 8.3.1 and was measured

using the time command. Each test was repeated 100 times and the lowest value

used. The Dynamite JVM with group block optimisations failed to complete

when the loop was unrolled 16 or more times due to a problem in the group block

algorithm.

Table 8.5 and figure 8.6 show the time to execute just the inner loop part of the

test benchmark. The time is measured using the java.lang.System.currentTimeMillis

library call.

Tables 8.6 and 8.7 show the increase in translation cost per loop unroll as the

loop is unrolled.

The time required to translate a loop of the Dhrystone benchmark by the Dy-

namite JVM executing without group blocks, does not increase linearly as would

be expected from equation 8.4. The number of instructions executed increases in
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N Dynamite Dynamite -O HotSpot
client

HotSpot
server

1 29.97 10.43 1.01 1.17
2 33.23 11.08 1.03 1.44
4 37.69 13.72 1.03 2.00
8 43.61 23.60 1.25 3.38
16 105.99 1.67 5.73
32 124.05 2.59 8.03
64 137.31 3.12 12.70

Table 8.4: Translation cost: total execution time
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Figure 8.5: Translation cost: total execution time

N Dynamite Dynamite -O HotSpot
client

HotSpot
server

1 29.35 10.40 0.80 1.26
2 34.12 12.42 0.85 2.20
4 37.34 20.67 0.89 3.40
8 42.98 63.39 1.20 6.62
16 114.15 1.73 10.64
32 128.08 2.89 10.76
64 140.61 4.05 24.48

Table 8.5: Translation cost: inner loop execution time
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Figure 8.6: Translation cost: inner loop execution time

N Dynamite Dynamite -O HotSpot
client

HotSpot
server

1 to 2 3.26 0.65 0.02 0.27
2 to 4 2.23 1.32 0.00 2 0.28
4 to 8 1.48 2.47 0.055 0.345
8 to 16 7.80 0.0525 0.294
16 to 32 1.13 0.0575 0.144
32 to 64 0.42 0.0166 0.146

Table 8.6: Translation cost: increase in total execution time per loop unroll

N Dynamite Dynamite -O HotSpot
client

HotSpot
server

1 to 2 4.77 2.02 0.05 0.94
2 to 4 1.61 4.13 0.02 0.6
4 to 8 1.41 10.68 0.0775 0.805
8 to 16 8.90 0.0663 0.503
16 to 32 0.871 0.0725 0.0075
32 to 64 0.392 0.0363 0.429

Table 8.7: Translation cost: increase in inner loop execution time per loop unroll
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accordance to equation 8.4, however, having more instructions translated means

that those instructions are located at different addresses. It is probable that this

will adversely affect the instruction cache on the test system.

The Dynamite JVM with group block optimisations enabled (-O) again does

not have a linear behaviour. The group block translation algorithm orders and

optimises basic blocks passing over them several times. The curve of the results

in figure 8.6 fits an exponential curve.

In table 8.6, the HotSpot client JVM’s results shows it taking 0.00 seconds

to translate a copy of the Dhrystone loop from 2 to 4 loop unrolls. This result

shows a limit in the resolution of the counter used. It could be a consequence of

the HotSpot client using an interpreter to translate bytecodes initially. However,

it wouldn’t make sense for that large of a loop count to not be optimised by the

translator. The other results show the HotSpot client JVM having the lowest

average translation overhead. Again the translation overhead does not increase

linearly as the Dhrystone loop is unrolled. This can be due to the architecture

of the test system or the complexity of the optimisation algorithm. The HotSpot

client JVM is designed to have a low latency, which is affected by the translation

cost.

The HotSpot server JVM’s results show that the HotSpot server JVM is slower

to translate a loop of the Dhrystone benchmark than the HotSpot client. The

HotSpot server JVM is designed to translate and produce better code than the

HotSpot client JVM. This extra performance comes at the cost of translation

time and latency.

8.5 Back-end performance

The performance of the Dynamite JVM is reliant on its back-end. By examining

the target code produced it is possible to identify the potential for optimisation.

Part of the hot path of all the benchmarks is the String.hashCode library

function. One of its uses is to maintain the String packages intern table. The

source code, bytecode and Dynamite JVM IR of the Classpath hashCode method

are shown in figure 5.1. They are repeated for convenience here in figure 8.7.

Figure 8.8 shows the target machine code generated by the Dynamite JVM for

2A time of 0.00 seconds, to translate a loop of the Dhrystone benchmark, shows the timing
counter used to not have enough resolution.



CHAPTER 8. OVERALL SYSTEM PERFORMANCE 140

  19 iload_1
  20 bipush 31
  22 imul
  23 aload_0
  24 getfield #42 <Field char value[]>
  27 iload_2
  28 caload
  29 iadd
  30 istore_1
  31 iinc 2 1
  34 iload_2
  35 aload_0
  36 getfield #40 <Field int count>
  39 if_icmplt 19

Portion of the same code compiled to bytecode

...
public int hashCode() {

...
for (int i = 0; i < count; i++)

hashCode = hashCode * 31 + this.value[i];
...

}
}

public final class String ... {

A portion of the java.lang.String library
for computing a String’s hash code.

else successor := 42

String.local2 := String.local2 + 1

PC value

String.local1 := Load16(Load32(String.local0 + #16) + String.local2 + #8) + (String.local1 * #31)

if (String.local2 < (Load32(String.local0 + #16)) then successor := 19

The IR generated by the Dynamite JVM

Figure 8.7: Dynamite JVM translation of hashCode method

a group block containing this loop. The IA-32 back-end generated the assembler

output, extra comments (lines starting with #) have been added to explain the

generated code. The first line of output gives the hexadecimal address of the

bytecodes in memory, the hexadecimal address of the IsoBlock and the execution

count at the point the group block was created.

The target code has a number of potential inefficiencies in the code generated

by the back-end:

• No immediate constants: constant values are generated into registers when

they could form part of an instruction. E.g. The target code at instruc-

tion 0x4049d725 could be addl $8,%ebx thereby eliminating instruction

0x4049d71a and freeing up a register. The constant value can even prop-

agate as far as the load instruction, as loads can be offset by a constant

value.

• Read-after-write hazards: the potential for executing instructions in par-

allel, on architectures that can not re-order instructions, is limited when

the value written by an instruction is read by the immediately proceeding

instruction. For example, this happens with instructions 0x4049d725 and
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82075bf (82f13f8) 150

# Register state before entering the block is:

# - ebp contains a pointer to subject machine registers in memory

# - edx contains hashCode.L01

# - esi contains hashCode.L02

# Generate constant 8

0x4049d71a: movl $0x8,%eax

# Fill ebx with the register value of hashCode.L00

0x4049d71f: movl 0x2c4(%ebp),%ebx

# Generate hashCode.L00 + 8

0x4049d725: addl %ebx,%eax

# Generate Load (hashCode.L00 + 8)

0x4049d727: movl (%eax),%eax

# Generate constant 1

0x4049d729: movl $0x1,%edi

# Spill edx into hashCode.L01

0x4049d72e: movl %edx,0x2c8(%ebp)

# Copy hashCode.L02 to edx

0x4049d734: movl %esi,%edx

# Spill esi into hashCode.L02

0x4049d736: movl %esi,0x2cc(%ebp)

# Generate constant 16

0x4049d73c: movl $0x10,%esi

# Generate Load(hashCode.L00 + 8) + 16

0x4049d741: addl %esi,%eax

# Generate hashCode.L00 + 16

0x4049d743: addl %esi,%ebx

# Generate Load(hashCode.L00 + 16)

0x4049d745: movl (%ebx),%ebx

# Copy hashCode.L02 to esi

0x4049d747: movl %edx,%esi

# Swap edi (constant 1) for the value in ecx

0x4049d749: xchgl %edi,%ecx

# Generate hashCode.L02 << 1

0x4049d74b: shll %ecx,%esi

# Swap edi and ecx back

0x4049d74d: xchgl %edi,%ecx

# Generate (Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1)

0x4049d74f: addl %esi,%eax

# Generate Load((Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1))

0x4049d751: movswl 0x0(%eax),%eax

# Generate 1 + hashCode.L02

0x4049d758: addl %edx,%edi

# Generate (1 + hashCode.L02) < Load(hashCode.L00 + 16)

0x4049d75a: cmpl %ebx,%edi

0x4049d75c: movl $0x0,%ebx

0x4049d761: setl %ebx

0x4049d764: andl $0x1,%ebx

# Fill edx with initial hashCode.L01

0x4049d767: movl 0x2c8(%ebp),%edx

# Generate constant 31

0x4049d76d: movl $0x1f,%esi

# Generate 31 * hashCode.L01

0x4049d772: imull %edx,%esi

# Generate constant 65535

0x4049d775: movl $0xffff,%edx

# Generate Load((Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1)) & 65535

0x4049d77a: andl %edx,%eax

# Generate (Load((Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1)) & 65535) + (31 * hashCode.L01)

0x4049d77c: addl %esi,%eax

# IF (1 + hashCode.L02) >= Load(hashCode.L00 + 16)

0x4049d77e: cmpl $0x0,%ebx

0x4049d784: je 0x4049d856

# ELSE (1 + hashCode.L02) < Load(hashCode.L00 + 16)

0x4049d78a: movl %eax,%edx

# Set up esi to match entry register state

0x4049d78c: movl %edi,%esi

0x4049d78e: jmp 0x4049d71a

Figure 8.8: String hashCode method target code
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0x4049d727. Section 4.4.1 describes instruction scheduling to improve this.

• Not enough registers: the spill of the initial value of hashCode.L01 by

instruction 0x4049d72e and the subsequent fill by instruction 0x4049d767

would be unnecessary if register pressure had not caused them to be spilled.

Register pressure is aggravated by generating constants into registers.

• Inefficient shift instructions: the back-end generated instructions 0x4049d749,

0x4049d74b and 0x4049d74d to perform a left shift of one place. Register

%edi was a constant so the shll instruction could have used an immediate

constant. The shll instruction could also have been replaced by leal or

even an addl instruction which will typically execute faster.

• Inefficient successor computation: Instructions 0x4049d75a, 0x4049d75c,

0x4049d761, 0x4049d764, 0x4049d77e and 0x4049d784 calculate what the

successor to the block is. The first four instructions set the value of register

%ebx. The next 2 instructions examine the value of %ebx to choose the

successor. If the value of Load(hashCode.L00 + 16) was not destroyed

from register %ebx by this computation then it could be used itself at

in the cmpl instruction 0x4049d764 with the value that is still in register

%edi. This would make instructions 0x4049d75a, 0x4049d75c, 0x4049d761

and 0x4049d764 redundant.

• Cold path tested first: The successor test computes whether it should

branch to the cold path before it falls through to take the hot path. At

least one instruction can be saved from the hot path by testing the hot path

condition first. This is likely to improve branch prediction on the target

processor.

A more optimal hand coded version of the code is shown in figure 8.9, the

instruction addresses shown are related to the original loop and would be different

if the code were compiled.

The more optimal loop reduces the number of instructions executed per loop

from 34 instructions to 19. This does not necessarily mean that performance will

be increased on a target processor due to hardware optimisation.
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82075bf (82f13f8) 150
# Register state before entering the block is:
# - ebp contains a pointer to subject machine registers in memory
# - edx contains hashCode.L01
# - esi contains hashCode.L02
# Fill ebx with the register value of hashCode.L00
0x4049d71f: movl 0x2c4(%ebp),%ebx
# Generate Load (hashCode.L00 + 8)
0x4049d727: movl 8(%ebx),%eax
# Spill edx into hashCode.L01
0x4049d72e: movl %edx,0x2c8(%ebp)
# Copy hashCode.L02 to edx
0x4049d734: movl %esi,%edx
# Spill esi into hashCode.L02
0x4049d736: movl %esi,0x2cc(%ebp)
# Generate Load(hashCode.L00 + 8) + 16
0x4049d741: addl $16,%eax
# Generate Load(hashCode.L00 + 16)
0x4049d745: movl 16(%ebx),%ebx
# Copy hashCode.L02 to esi
0x4049d747: movl %edx,%esi
# Generate hashCode.L02 << 1
0x4049d74b: addl %esi,%esi
# Generate (Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1)
0x4049d74f: addl %esi,%eax
# Generate Load((Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1))
0x4049d751: movswl 0x0(%eax),%eax
# Generate 1 + hashCode.L02
0x4049d758: leal 1(%edx),%edi
# Fill edx with initial hashCode.L01
0x4049d767: movl 0x2c8(%ebp),%edx
# Generate 31 * hashCode.L01
0x4049d772: imull $31,%edx
# Generate Load((Load(hashCode.L00 + 8) + 16) + (hashCode.L02 << 1)) & 65535
0x4049d77a: andl $65535,%eax
# Generate (Load((Load(hashCode.L00 + 8) + 16) +
# (hashCode.L02 << 1)) & 65535) + (31 * hashCode.L01)
0x4049d77c: addl %esi,%edx
# Set up esi to match entry register state
0x4049d78c: movl %edi,%esi
# IF (1 + hashCode.L02) < Load(hashCode.L00 + 16)
0x4049d77e: cmpl %ebx, %edi
0x4049d784: jl 0x4049d71a
# ELSE (1 + hashCode.L02) >= Load(hashCode.L00 + 16)
0x4049d78e: jmp 0x4049d856

Figure 8.9: Optimised string hashCode method target code
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8.6 Summary

Chapters 6 and 7 described the implementation and optimisations of the Dyna-

mite JVM. The implementation decisions were measured and the lowest overhead

scheme chosen. This chapter has performed measurements of more general as-

pects of JVMs. In two of the sections, the Dynamite JVM has been examined

and compared to the HotSpot client and server JVMs using a number of tests

based around a Java version of the Dhrystone benchmark.

Section 8.4 shows that translation cost does not increase linearly for the Dy-

namite JVM. The translation cost is much larger for the Dynamite JVM than

the HotSpot client and server JVM. This impacts on the latency of the Dynamite

JVM. The translation cost should improve in comparison to a method based JIT

compiler as the Dynamite JVM has to translate fewer bytecodes, as shown in

section 8.2.

Section 8.3 shows the performance of the translated code of Dynamite JVM.

Again the performance is not as good as the HotSpot client and server JVM.

The performance is 4.16 times slower than the HotSpot client JVM and 4.98

times slower than the HotSpot server JVM per execution of the Dhrystone loop.

The relative performance is between 3 and 4 times worse when measured by an

external timing program.

Section 8.5 shows an example of a group block translation by the Dynamite

JVM. The code is sub-optimal and on the considered piece of frequently executed

code the instruction count can be reduced by more than 40%.

This thesis ends with a description and conclusion of the work presented in

the previous chapters. It also describes future work to improve the Dynamite

JVM, in terms of completeness and performance.



Chapter 9

Summary and Conclusions

This thesis has introduced an implementation of a JVM called the Dynamite

JVM. In section 9.1 the work from the previous chapters is summarised. Sec-

tion 9.2 draws conclusions from this work. Finally, section 9.3 considers future

work and optimisation to the Dynamite JVM.

9.1 Summary

9.1.1 Background

Chapter 2 introduced the Java programming language, the Java Virtual Machine

and the class libraries. Key features of Java to the JVM are object representa-

tion, the class file format and dynamic link loading. Interpreting, hardware and

dynamic compiling JVMs were described; the HotSpot JVM was described as an

example of a state-of-the-art JVM.

Chapter 3 discussed existing dynamic binary translator environments provid-

ing context for the Dynamite DBT, and introducing techniques used by DBTs.

Chapter 4 provides a description of Dynamite, the framework on which the Dy-

namite JVM is built. DBTs are significantly different to JVMs, there are certain

design issues and opportunities unique to making a JVM from a DBT.

9.1.2 Design

Chapter 5 described key features of the Dynamite JVM, such as how it provides

exception support, loads classes and performs native method call. The expression

stack was introduced as a mechanism for mapping the JVMs stack on to registers
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and eliminating its associated overhead. Threading and array exceptions were

described, with this support the Dynamite JVM would be 100% Java compatible.

Chapter 6 presented two schemes that allow the Dynamite JVM to optimise

across method boundaries by mapping a method’s stack frame to a fixed set of

registers. With the chosen fixed register window scheme there is a parameter pass-

ing penalty, however, this scheme does avoid the need for multiple re-translations.

The overhead can be eliminated by group block formation.

Chapter 7 presented the problem and solutions to recursion detection and fix-

up for the fixed register-window optimisation. Dynamic loading of classes means

full program analysis is not possible at runtime, so the Dynamite JVM uses

lazy recursion detection. This technique requires stack fix-up to be performed.

Immediate and delayed fix-up techniques were described, the immediate stack

fix-up scheme is used in the Dynamite JVM.

9.1.3 Experiments

The decision of which inter-procedural optimisation technique to use was made

in chapter 6 from analysis of a set of benchmarks. For the fixed register-window

scheme to work, fix-up blocks are required at the boundary of virtual methods

to perform parameter passing. In the worst case, less than 1.3% of the dynamic

instruction mix is made of fix-up instructions (which are effectively eliminated

during group block creation). The alternate sliding register-window scheme was

found to require between 1.819 and 5.103 extra translations per method.

Analysis was performed on the fixed register-window scheme to determine

how many registers would be used by the Dynamite JVM as larger group blocks

were formed. Ignoring reuse of registers, over 80% of a program’s execution can

fit into just 100 registers.

A stack in memory is used when recursion is detected. Chapter 7 showed an

example of stack fix-up, an operation performed when recursion is detected. Re-

cursive method calls were found to make up to 0.16% of the dynamic instruction

mix. In the worst case 9.576% of executed virtual method calls were found to

be recursive. Simple liveness analysis was performed on the frames to be placed

on the memory stack. It was found that between 3 and 9 words of data had

to be placed on the memory stack per method call. Stack fix-up was performed

between 4 and 35 times on the benchmark programs, and in the worst case 4538

words of data would need re-ordering.
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Chapter 7 measured the performance of the Dynamite JVM on the highly

recursive Takeuchi benchmark, compared to the HotSpot client and server JVMs.

Performance was found to be 3.163 times slower per executed bytecode than the

HotSpot client JVM, and 5.097 slower compared to the HotSpot server JVM. Two

regions of dead code were highlighted in the hot region of the IR graph which

could be eliminated to improve performance.

Chapter 8 measured the translation saving afforded by basic block rather

than method based translation. Up to 18% of the bytecodes translated by a

method based translator were found to be never translated or executed by the

Dynamite JVM. The execution performance of the Dynamite JVM was found to

be 4.16 times slower than the HotSpot client JVM and 4.98 times slower than

the HotSpot server JVM per execution of the Dhrystone loop. An example of the

code produced by the Dynamite JVM was examined and 40% of the produced

instructions could be removed by using existing optimisations within Dynamite.

The Dynamite JVM’s translation cost was found to be significantly worse than

the HotSpot JVMs. For the benchmark in chapter 8, when user time was mea-

sured, instead of the time in the inner loop, the performance was also significantly

worse. The large memory footprint and the lack of an interpreter are likely to be

hurting the Dynamite JVM’s performance. Section 9.3 describes improvements

to these aspects of the Dynamite JVM.

9.2 Conclusions

Existing dynamic optimisation techniques have been applied from a dynamic

binary translator and used to create a JVM environment. This has not been at

the expense of throwing away the rich amount of extra information Java gives its

dynamic execution environment. Although the techniques described have been

demonstrated to have low overhead, the thesis hasn’t shown they result in a JVM

faster than the state-of-the-art. Consideration on how this performance can be

improved has been presented throughout the thesis. Improving the translation

of the IR to target machine code, and optimising the class library are likely

to improve performance the most. Other techniques are described in the next

section.

Specific contributions of this work have been:

• The design, implementation and demonstration of dynamically compiling
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JVM potentially with full support for all Java applications. In common

with other JVMs, the Dynamite JVM maps the Java stack onto registers

to eliminate the overhead of bytecodes that manipulate the stack.

• The application of basic block translation techniques which support trace

scheduling to Java bytecode. This is novel as all previous dynamic compiling

Java environments orient themselves on compiling methods1 and transla-

tion of basic blocks can result in as much as 18% fewer bytecodes being

translated.

• The generation of a register allocation algorithm that allows a basic block

optimisation algorithm to perform optimisations over method boundaries,

as with method inlining. This scheme is applicable to over 90% of all

methods.

• The generation of a low cost lazy recursion detection scheme that can be

used in dynamic binary translators to map more of the stack into the register

stack cache. A cheap fix-up scheme is described and implemented to catch

cases where recursion is detected late.

• The measurement of the performance of JVM environments to calculate the

cost of translation and the quality of the translated code.

The JVM shares similarities with a number of virtual machines and computer

architectures. By recreating high-level procedure call and return semantics within

the dynamic binary translator, fixed register windows and lazy recursion detection

can be used with other architectures and virtual machines.

9.3 Future work

The Dynamite JVM does not currently support certain features required to run

all Java programs. Sections 9.3.1, 9.3.2 and 9.3.3 consider the implementation of

these features. Section 9.3.4 considers the alternative class library implementa-

tions for the Dynamite JVM, as this is a performance concern from chapter 8.

Section 9.3.5 considers improvements to the dynamic memory footprint of the

1Other JVMs perform partial translation of methods such as Latte [LYK+99]. Other JVMs
such as Jalapeno [AAea00] are able to reschedule basic blocks in the presence of JVM features
such as exceptions.
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Dynamite JVM. Sections 9.3.6 and 9.3.7 consider how latency, and the overall

performance of the dynamic code produced by the Dynamite JVM, can be im-

proved.

9.3.1 Threading

By implementing the java.lang.Thread set of native functions and by allowing

multiple call stacks, threading support is added to a JVM. In a conventional JVM

these call stacks are in memory: in the Dynamite JVM the call stack is split be-

tween memory, for recursive methods, and an abstract register pool (as described

in chapter 6). The address of the abstract register pool is held in a register. By

allocating multiple abstract register pools and switching the value held within

the register pointing to the abstract register pool, different thread contexts can

be supported. This is an extension of the current mechanism for running class

initialisers and has the advantage that no methods need re-translating.

An alternative implementation would be to allocate the abstract register pools

at known addresses in memory and specialise translated code to the abstract

register pool. This would free the register holding the address of the abstract

register pool, and having this extra register available would reduce the number of

spills and fills from the abstract register pool. However, as the code is specialised

to expect the abstract register pool to appear at a fixed address, each thread

will need a separate translation specialised to the address of the abstract register

pool. Re-translation of separate threads can be avoided on processors with virtual

memory, by altering the page table on a thread context switch so that the virtual

addresses always map to the appropriate abstract register pool real addresses for

a particular thread context.

9.3.2 Garbage collection

Section 5.4.2 introduced the Dynamite JVM implementation of the new bytecode

for allocating memory. Garbage collection is performed by a JVM to reclaim

allocated memory. The Dynamite JVM has the ability to perform exact garbage

collection on basic block boundaries as the types of values in abstract registers are

held for each basic block boundary. For example, mark and compaction garbage

collection can be performed by examining the abstract register pool on a basic

block boundary and generating a root set of object references. By then examining



CHAPTER 9. SUMMARY AND CONCLUSIONS 150

the objects pointed to by these references, further objects can be found until all

reachable objects have been discovered (Dynamite JVM object layout is described

in section 5.3). After all reachable objects are marked, all remaining objects can

then be freed from memory.

This scheme is sub-optimal as it does not allow easy parallelisation and it

requires execution to be suspended whilst it is performed. For a description of

many of the different ways of implementing a garbage collector, Wilson [Wil92]

provides a survey considering implementations for uniprocessor systems, whilst

Flood et al. [FDSZ01] consider a parallel implementation of a garbage collector.

Escape analysis is a technique for discovering whether an object is referenced

outside of a loop, method or by another executing thread [Bla99]. By knowing an

object doesn’t escape a loop, method or thread, the object may be allocated on

the stack or reused around a loop body. By reducing the number of allocations

through reuse and using the stack: less time is spent allocating objects, less time

is spent in the garbage collector and the locality of objects is improved. Profile

directed escape analysis [VR01] would be suited to the Dynamite JVM within

group block creation.

9.3.3 Exception handling

Section 5.2 introduced how the Dynamite JVM supports runtime exceptions and

techniques for improving their performance. The following solutions were identi-

fied:

• stack cutting - Section 2.6 introduced how holding a stack of catch addresses,

and the associated exceptions, for all try regions that have been entered, can

allow for more efficient exception dispatch. However, there is an associated

cost of maintaining a runtime data structure as the bytecodes enter and

leave try regions.

• bound load store IR - the Dynamite JVM’s IR is currently able to eliminate

unnecessary array boundary checks through constant propagation and, in

the future, using value specific optimisation. Array boundary checks do,

however, force basic blocks to end early. If bounded loads and stores were

an IR operation, they could be translated and scheduled within a basic

block without the need to terminate the block.
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• dummy null object - To speed dispatch of exceptions caused by virtual calls

on null object references, a special virtual method table for the null object

will re-direct dynamic code into a null exception handler.

By examining bytecodes further, more potential for optimisation can be iden-

tified. For example, precise exceptions are not necessary if a method accesses an

array and does not have any catch regions for array bound exceptions.

The benchmarks examined in chapters 6 and 8 did not exhibit worst case ex-

ception behaviour and, as such, optimisation of the exception mechanism would

not have greatly improved the performance of the Dynamite JVM. The 202 Jess

benchmark uses the athrow bytecode to generate exceptions to signal the recog-

nition of parsed tokens; these exceptions are caught by a method several stack

frames below the parser. 202 Jess would benefit from exception prediction (de-

scribed in section 2.6) to avoid throwing the same exception multiple times at

different stack depths until the handling method and frame are found.

9.3.4 Class library

The Dynamite JVM uses the Classpath [GNU02] class library implementation.

Benchmarks such as 213 javac from the SpecJVM 98 [SPE98] benchmark suite

were unable to run because the class library implementation was incompatible.

Improvements in the class library will allow the Dynamite JVM to run a wider

range of benchmarks.

The Dynamite JVM lacks full support for features required by the class library.

Threading and loading classes into the JVM require special JVM classes which

are only partially present. Full support for these features will allow the Dynamite

JVM to run all Java applications.

Section 8.3 looked at the performance of the Dynamite JVM in comparison

with the HotSpot server and client JVM at executing the Dhrystone benchmark.

The Dynamite JVM was between 4.16 and 4.98 times slower than the HotSpot

client and server JVM. In section 7.3.3 an analysis of the Takeuchi function

showed the performance of the Dynamite JVM to be 3.16 times slower than the

HotSpot client JVM and 5.10 times slower than the HotSpot server JVM. This

performance was measured with an external timer, when the same timer was used

on the Dhrystone benchmark performance was 3 to 4 times slower. A key reason

why the Dhrystone benchmarks appears slower than the Takeuchi function is that
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the Takeuchi function makes no use of the Java class library, whereas Dhrystone

uses it for string access and comparison.

Calls to the class library can be replaced with pre-optimised code for certain

known library functions; however, this requires a tight integration between the

JVM and the class library. This tight integration can be at the expense of the

portability of the JVM between different class library implementations. The class

library’s performance can be further improved by light weight access to the Java

data structures by native methods, such as with KNI or CNI, as described in

section 2.4. The Classpath class library uses the JNI native interface, which

requires an indirect method call to perform object and JVM manipulation from

the native code. The CNI interface can be used, but this restricts the object

layout.

9.3.5 Memory usage

JVM interpreters and hardware are able to execute Java bytecodes without a

region of memory for storing translated bytecodes. For certain embedded ap-

plications, having a small memory footprint can be as important as execution

performance.

The Dynamite JVM’s fixed register window scheme currently requires a pool

of 8192 registers which occupies 32 kilobytes of memory for each thread within

the JVM. The number of registers can be reduced by sharing register windows

of methods that can not execute at the same time, such as leaf methods. The

number of used registers can also be reduced by releasing register windows for

methods that are infrequently accessed or only accessed at start-up. This would

require re-translation of the method if it were ever accessed again. Alternatively,

all methods could use one frame, and the memory stack and fixed register windows

can be used for methods that are re-translated for group blocks.

The Dynamite JVM currently performs bytecode verification at translation

time. This is a violation of the JVM specification [Sun95] and it also requires

extra state to be held in basic blocks so that bytecodes may be verified when they

are translated. A bytecode verifier in the class loader would remove the need for

this state information and free memory.

Certain target code is only executed once at start-up; however, currently

this target code is never destroyed. By holding a time-stamp of when a basic

block or group block was last executed, it is possible to work out which blocks



CHAPTER 9. SUMMARY AND CONCLUSIONS 153

were executed recently and, assuming temporal locality of code, free all other

translated blocks from memory.

9.3.6 Latency

Section 8.3 showed how the time taken to execute a fixed number of iterations of

the Dhrystone loop varied over time between the Dynamite JVM, with and with-

out group block optimisation, and the HotSpot client and server JVMs. By not

performing complicated translation, as with the HotSpot server and Dynamite

JVM with group block optimisation, latency is improved for shorter runs. Per-

forming little translation is therefore an advantage for short runs. The Dynamite

JVM in basic block mode has to translate single blocks of code, which is slower

than just interpreting the bytecodes. Subsequently, a bytecode interpreter would

improve the Dynamite JVM’s latency performance for short runs.

The Dynamite JVM performs large group block optimisation and register

window optimisation shortly into the execution of a benchmark. By phasing

in the optimisation it would again be possible to improve latency. Aggregate

group blocks are one solution to this problem. An aggregate group block is a

group block where translation has been terminated early so that the group block

contains fewer members than a normal group block. By limiting the translation,

the translation time is reduced, and fix-up of branches between aggregate group

blocks allows for similar performance to the normal group block (synchronising

register maps results in lower performance).

Another optimisation that can be phased in is the inter-procedural optimisa-

tions described in chapters 6 and 7. If the normal case used a memory stack and

the optimal case used the fixed register window scheme, there would be no trans-

lation of fix-up code except for hot-regions. This could decrease translation cost

(and hopefully latency), but the complexity of having two translations schemes

would complicate translation of method calls and thereby potentially increase the

translation cost. Recursion detection is necessary even if fixed-register windows

are only used in a more optimised case.
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9.3.7 Performance

Section 8.5 showed how the Dynamite JVM can produce better code than it cur-

rently does. Chapter 4 described constant propagation, code motion, code dupli-

cation, alias optimisation, value specific optimisation, instruction scheduling and

idiom recognition optimisations within the Dynamite JVM. The Dynamite JVM

only supports a limited amount of constant propagation, instruction scheduling

and idiom recognition. Further to the optimisations discussed in chapter 4, the

Dynamite JVM would also benefit from call IR. Without nodes representing sub-

routine or method call and return within the Dynamite JVM means that constant

propagation of return addresses can not be performed. This is necessary to stop

a computed jump being used for subroutine return (as described in chapter 6).

Method inlining eliminates this computed jump in Java JIT compilers.

Another optimisation that may later be of use within the Dynamite JVM is

speculative thread-level parallelisation. Dynamic translation allows a number of

run-time optimisations to be performed, many of which may prove to be unsafe

at some point. Speculative threading takes advantage of this by running the

heavily optimised code on a separate thread and then running the correctness

checks and potentially safer translations on other threads. Speculative threading

can also parallelise code, having multiple translations running at the same time.

When the code has been run and checked, the state changed can be committed

to memory and the register bank, in order to not violate the sequential semantics

of the program. Speculative threading is a good optimisation on SMT architec-

tures where some processor cores are idle. Speculative threading also benefits

from hardware support for incorrect speculation that allows quick roll-back (see

section 3.4.1).

9.4 Final remark

Basic block dynamic compilation is a viable method for executing and optimising

Java programs. It reduces the amount of translated and generated code. Having

comparable performance with a state-of-the-art JVM has been beyond the scope

of this thesis due to the heavy optimisation of such a JVM. However, a significant

contribution has been made linking dynamic binary translator technology and

optimisations with that of JVMs.



Appendix A

feJAVA Dynamite JVM

Front-End

This appendix describes the front-end source files of the Dynamite JVM project

including some more of the low-level implementation.

• Class.cc / Class.h - These files contain the implementation of the Class

object which is used to represent all Dynamite JVM classes. Methods on the

Class object allow for class loading, object creation and accessor methods

to Dynamite JVM objects.

• ExceptionStack.cc / ExceptionStack.h - These files contain the Exception-

Stack class which is used to provide run-time support for the stack cutting

technique of Java exception handling (see section 2.6).

• FrameDescriptor.cc / FrameDescriptor.h - These files contain the Frame-

Descriptor class which is used to describe a method’s frame within the

Dynamite JVM. The FrameDescriptor class handles allocation of abstract

registers to the Dynamite JVM and provides accessor methods to the rele-

vant part of the frame and support for the memory stack.

• FrontEnd.cc / FrontEnd.h - The FrontEnd class provides the interface be-

tween the Dynamite JVM and Dynamite. It is responsible for creation and

initialisation of all front-end objects, defining basic blocks for the Dynamite

kernel and clean-up after the Dynamite JVM has finished execution.

• Fuse.cc / Fuse.h - The Fuse class is provided to support kernel debugging

features of Dynamite.
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• GC.cc / GC.h - The GC class is responsible for garbage collection although

the collect method is currently unimplemented. All constructed objects are

registered with the GC object and it provides debug support.

• Instruction.cc / Instruction.h - The instruction object provides functions

for classifying and debugging bytecodes.

• IsoBlock.cc / IsoBlock.h - Defines the IsoBlock class (an IsoBlock is a combi-

nation of a basic block with compatibility information). This class contains

the methods to translate a block, defining compatibility and the expression

stack.

• JMethodID.cc / JMethodID.h - The method object holds information on

translated methods and the support routines for lazy recursion detection.

• MethodArea.cc / MethodArea.h - The method area is the pool of loaded

classes and methods. Separate class loaders have separate method areas.

• NullObject.cc / NullObject.h - Definition of fast null pointer class.

• SubCall.cc / SubCall.h - Substitute calls for new, instanceof and expressions

not supported by the Dynamite kernel.

• SubCallInvokes.cc - Substitute calls for performing JNI native method call.

• jni.cc - JNI support code that allows native methods to interrogate objects

and the JVM, as well as allowing native methods to call java methods.

• native.cc - the Classpath native library does not provide all of the native

methods that need implementing for the class library to function as some of

the native methods are JVM dependent. These native methods are defined

here.

• ByteCode.h - list of bytecodes including Dynamite JVM quick bytecodes.

• Types.h - definition of types used within the JVM.

• build.pl / InstructionData - script to generate expression or substitute call

planting code dependent on data file definition.

• registerID.h - JVM register definitions used by the Dynamite kernel and for

debug support.
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Result Data

This appendix contains the data used for the graphs and tables in chapters 6, 7

and 8.

B.1 Number of fix-up blocks for fixed register-

window scheme

Section 6.4.2 measured the number of translated and executed method call byte-

codes in a fixed register-window scheme. The data used to calculate the percent-

age of executed bytecodes in table 6.2 are shown in table B.1

B.2 Number of retranslations for sliding register-

window scheme

Section 6.4.3 measured the number of translations necessary for the sliding register-

window scheme. Tables B.2 and B.3 show the data presented in figure 6.5. The

results for 202 jess are presented in a separate table due to their length. In cer-

tain cases when the number of methods retranslated was zero the row of the table

has been omitted for brevity. In each table translations is the number of trans-

lations of that method performed, methods is the number of methods translated

that number of times.
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helloworld Translated Executed
invokestatic 41 94
invokespecial 68 192
invokevirtual 89 281
invokeinterface 0 0
fixup iv 152 471
total 4398 21877

mpeg2dec Translated Executed
invokestatic 441 3383318
invokespecial 1037 3711
invokevirtual 168 9045
invokeinterface 0 0
fixup iv 1199 12755
total 27172 604548289

mpeg2enc Translated Executed
invokestatic 352 5414887
invokespecial 812 6169
invokevirtual 184 4221232
invokeinterface 0 0
fixup iv 988 4227400
total 33437 14693689649

201 compress Translated Executed
invokestatic 252 12652
invokespecial 922 2423450
invokevirtual 520 15775531
invokeinterface 10 50
fixup iv 1412 18199019
total 19570 1212483527

202 jess Translated Executed
invokestatic 496 126818
invokespecial 1264 262784
invokevirtual 1493 5731643
invokeinterface 26 6532
fixup iv 2677 6000943
total 33907 148612987

Table B.1: Number of method call bytecodes translated and executed in fixed
register-window scheme
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helloworld

Translations Methods

1 34

2 16

3 8

4 3

5 2

6 1

7 1

8 0

mpeg2enc

Translations Methods

1 115

2 33

3 17

4 9

5 5

6 7

7 5

8 3

9 1

10 0

mpeg2dec

Translations Methods

1 81

2 36

3 22

4 13

5 9

6 5

7 5

8 7

9 2

10 1

11 1

12 0

13 1

201 compress

Translations Methods

1 71

2 66

3 24

4 28

5 10

6 5

7 5

8 8

9 3

10 3

11 4

12 2

13 4

16 1

17 2

23 1

Table B.2: Number of translations necessary for methods

using the sliding register-window scheme
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202 jess
Translations Methods

1 88
2 117
3 41
4 26
5 17
6 11
7 10
8 15
9 9
10 5
11 5
12 6
13 3
14 3

Translations Methods
15 3
16 11
17 3
18 5
19 3
20 1
21 3
22 1
23 2
24 3
25 6
26 6
27 1
28 3

Translations Methods
29 1
30 2
31 2
35 1
36 1
37 1
38 1
39 2
42 1
43 1
53 2
59 1
73 1

Table B.3: Number of translations necessary for methods using the sliding
register-window scheme ( 202 jess)

B.3 Input to Takeuchi function

The input to the Takeuchi function used in section 7.3.3 is shown in table B.4.

The number of bytecodes was determined using the function shown in figure B.1

that assumes 5 bytecodes for the execution of the main function, 23 bytecodes

for the false route through the Takeuchi benchmark and 5 bytecodes for the true

route. These values were determined by disassembling the benchmark with the

javap tool [Sun02b]. The results were sorted and input values to the Takeuchi

function chosen for executing a unique number of bytecodes and the number of

bytecodes lying between a particular range.
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X Y Z bytecodes
6 0 3 352
1 0 12 846
1 0 20 1454
1 0 28 2062
3 0 6 2784
1 0 47 3506
1 0 56 4190
1 0 62 4646
1 0 72 5406
1 0 82 6166
1 0 92 6926
2 0 15 8636
3 0 10 14108
2 0 26 25964
2 0 32 39302
2 0 38 55376
2 0 44 74186
5 0 10 98278
2 0 57 124346
4 0 14 153872
3 0 24 188604

X Y Z bytecodes
2 0 77 226566
3 0 27 266808
2 0 92 323162
6 0 11 359908
3 0 34 526804
3 0 39 790144
3 0 45 1206738
3 0 50 1648868
5 0 19 2211268
4 0 30 2951432
7 0 14 3759692
4 0 34 4802602
4 0 36 6000438
3 0 83 7429656
7 0 16 9118756
3 0 95 11106688
5 0 28 14115946
4 0 49 20017346
5 0 33 31077588
4 0 59 41480886
4 0 65 60703946

X Y Z bytecodes
5 0 40 78595334
4 0 75 106650126
4 0 80 137558832
4 0 85 174739856
6 0 34 228694992
5 0 52 280463874
6 0 37 371149392
6 0 40 580634994
6 0 43 880235012
5 0 71 1281618410
7 0 36 1865463140
5 0 82 2595826750
5 0 87 3470939922
5 0 92 4567465642
7 0 43 6069941676
6 0 65 9640314934
7 0 50 16620180584
7 0 54 27843337856
6 0 84 43122767242
6 0 90 64621544604

Table B.4: Takeuchi input

class takeuch i
{

public stat ic int r e s u l t ;
public stat ic long bytecodes ;
public stat ic int tak ( int x , int y , int z ) {

i f ( y >= x){
bytecodes += 5 ;
return z ;

}
else {

bytecodes += 23 ;
return tak ( tak (x−1,y , z ) , tak (y−1,z , x ) , tak ( z−1,x , y ) ) ;

}
}
public stat ic void main ( St r ing args [ ] ) {

int stop = 100 ;
for ( x=0; x < stop ; x++){

for ( y=0; y < stop ; y++){
for ( z=0; z < stop ; z++){

bytecodes = 5 ;
r e s u l t = tak (x , y , z ) ;
System . out . p r i n t l n ( ‘ ‘ x ’ ’ + x + ‘ ‘ y ’ ’ + y + ‘ ‘ z ’ ’ + z +

‘ ‘ bytecodes ’ ’ + bytecodes + ‘ ‘\n ’ ’ ) ;
}

}
}

}
}

Figure B.1: Function to calculate the number of bytecodes executed by the
Takeuchi function
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