
Arithmetic and Control Components

for an Asynchronous System

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

1997

Jianwei Liu

Department of Computer Science



Table of Contents

1 Introduction 17

2 Background 24

2.1  Introduction .................................................................................   24

2.2  Basic concepts .............................................................................   26

 2.2.1 Delay models ..................................................................   26

 2.2.2 Circuit classification .......................................................   26

 2.2.3 Hazards and races ...........................................................   27

 2.2.4 Metastability and arbitration ..........................................   27

 2.2.5 Circuit specifications ......................................................   28

 2.2.6 Signalling protocols ........................................................   29

 2.2.7 Data representation .........................................................   30

 2.2.8 Synthesis .........................................................................   30

2.3  Sutherland’s micropipelines ........................................................   31

 2.3.1 Event control modules ....................................................   31

 2.3.2 Event-controlled storage element ...................................   33

 2.3.3 Micropipeline FIFO ........................................................   34

 2.3.4 Micropipelines with processing .....................................   35

2.4  The AMULET project .................................................................   35

 2.4.1 AMULET1 chip .............................................................   36

 2.4.2 AMULET2e chip ............................................................   37

 2.4.3 AMULET3i ....................................................................   38

3 Adder design 39

3.1  Introduction .................................................................................   39

3.2  Carry arbitration ..........................................................................   40

 3.2.1 Two-way carry arbiter ....................................................   41

 3.2.2 Three-way carry arbiter ..................................................   44

 3.2.3 Carry arbiters with more than three ways ......................   46

3.3  Parallel prefix computation .........................................................   47

3.4  Implementation ............................................................................   49

3.5  Refinement of the Manchester carry chain ..................................   53

3.6  Simplification of carry select adders ...........................................   55
        2



3.7  Adder design for AMULET3i .....................................................   57

3.8  Circuit design ...............................................................................   58

3.9  Layout design ..............................................................................   61

3.10  Evaluation ....................................................................................   62

 3.10.1 Performance ...................................................................   62

 3.10.2 Power consumption ........................................................   62

 3.10.3 Silicon area .....................................................................   62

3.11  Summary ......................................................................................   64

4 Multiplier design 66

4.1  Introduction .................................................................................   66

 4.1.1 Making each addition faster ...........................................   68

 4.1.2 Reducing the number of additions required ...................   70

4.2  AMULET2e multiplier ................................................................   72

4.3  Multiply support for AMULET3i ................................................   75

 4.3.1 Normal multiply .............................................................   75

 4.3.2 Long multiply .................................................................   75

4.4  Multiplier organization ................................................................   76

 4.4.1 First design iteration .......................................................   76

 4.4.2 Encoding technique ........................................................   77

 4.4.3 Second design iteration ..................................................   79

 4.4.4 Sign extension ................................................................   81

4.5  Circuit design ...............................................................................   82

 4.5.1 Booth mux cell design ....................................................   82

 4.5.2 4-2 Counter design .........................................................   84

 4.5.3 Pipeline register design ..................................................   88

 4.5.4 Partial product register design ........................................   90

 4.5.5 Low power design ..........................................................   91

4.6  Layout design ..............................................................................   93

4.7  Evaluation ....................................................................................   93

 4.7.1 Performance ...................................................................   94

 4.7.2 Power consumption ........................................................   94

 4.7.3 Silicon area .....................................................................   94

4.8  Summary ......................................................................................   96

5 Four-phase pipeline control 97

5.1  Introduction .................................................................................   97

5.2  Data-validity scheme ...................................................................   98
        3



1

4

7

8

0

1

3

5

7

5.3  Logic activation configuration ....................................................   100

5.4  Decoupling degree .......................................................................   10

5.5  ERU latch control circuit .............................................................   102

5.6  ERS latch control circuit .............................................................   103

5.7  ERF latch control circuit .............................................................   106

5.8  BRU latch control circuit .............................................................   107

5.9  BRS latch control circuit .............................................................   108

5.10  BRF latch control circuit .............................................................   109

5.11  BAS & BAF latch control circuits ...............................................   111

5.12  Interfacing ....................................................................................   11

5.13  Low-power design using dynamic logic ......................................   115

5.14  Simulation results ........................................................................   11

5.15  Discussion ....................................................................................   11

5.16  Summary ......................................................................................   12

6 Four-phase control modules 121

6.1  Introduction .................................................................................   12

6.2  CALL modules ............................................................................   123

 6.2.1 pCALL module ..............................................................   123

 6.2.2 dCALL module ..............................................................   124

 6.2.3 bCALL module ..............................................................   126

6.3  ARBITER modules .....................................................................   127

 6.3.1 pARBITER module ........................................................   128

 6.3.2 dARBITER module ........................................................   130

 6.3.3 bARBITER module ........................................................   131

6.4  JOIN modules ..............................................................................   13

 6.4.1 pJOIN module ................................................................   133

 6.4.2 dJOIN module ................................................................   133

 6.4.3 bJOIN module ................................................................   134

6.5  FORK modules ............................................................................   13

 6.5.1 pFORK module ..............................................................   135

 6.5.2 dFORK module ..............................................................   135

 6.5.3 bFORK module ..............................................................   136

6.6  SELA modules .............................................................................   13

 6.6.1 pSELA module ...............................................................   137

 6.6.2 dSELA module ...............................................................   138

 6.6.3 bSELA module ...............................................................   138
        4



0

2

3

8

9

4

5

6

7

9

1

6.7  SELB modules .............................................................................   14

6.8  TOGGLE module ........................................................................   141

6.9  An example: a counter .................................................................   14

6.10  Arbiter modules revisited ............................................................   14

 6.10.1 eARBITER module ........................................................   143

 6.10.2 fARBITER module ........................................................   143

6.11  Modules with multiple input links ...............................................   146

6.12  Summary ......................................................................................   14

7 AMULET3i 149

7.1  Introduction .................................................................................   14

7.2  AMULET3i .................................................................................   150

7.3  AMULET3 ..................................................................................   151

7.4  Execution unit ..............................................................................   15

7.5  Implementation ............................................................................   15

7.6  Summary ......................................................................................   15

8 Conclusions 157

8.1  Contributions ...............................................................................   15

8.2  Future work .................................................................................   15

 8.2.1 Low power market .........................................................   159

 8.2.2 Mobile communication market ......................................   160

8.3  Asynchronous prospects ..............................................................   16

Bibliography 162

A Adder schematics 170

B Adder layouts 176

C Multiplier schematics 181

D Multiplier layouts 196
        5



0

List of Figures

2-1 A bundled data interface .................................................................... 31

2-2 Micropipeline event logic modules .................................................... 32

2-3 Event-controlled storage element ....................................................... 33

2-4 Micropipeline FIFO ........................................................................... 34

2-5 Basic micropipeline structure ............................................................. 36

3-1 Two-way carry arbiter ........................................................................ 41

3-2 4-bit carry computation ...................................................................... 42

3-3 Three-way carry arbiter ...................................................................... 45

3-4 9-bit carry computation ...................................................................... 46

3-5 Static implementation of a two-way carry arbiter .............................. 50

3-6 Pass-transistor based implementation ................................................ 5

3-7 Direct implementation of a three-way carry arbiter ........................... 51

3-8 Modified implementation of a three-way carry arbiter ...................... 52

3-9 Manchester carry chain with buffers .................................................. 54

3-10 Manchester carry chain without buffers ............................................. 54

3-11 Carry select adder ............................................................................... 55

3-12 New carry select adder ....................................................................... 56

3-13 AMULET3i adder block diagram ...................................................... 57

3-14 Devices for dynamic circuits .............................................................. 58

3-15 Static Implementation of a three-way carry arbiter ........................... 59

3-16 New Implementation of a three-way carry arbiter ............................. 60

3-17 Physical layout of the adder datapath ................................................ 63

4-1 Dot representation of 8× 8 bit add and shift multiplication .............. 67

4-2 A simple multiplier ............................................................................ 68

4-3 A carry-save multiplier ...................................................................... 69

4-4 AMULET2e multiplier organization ................................................. 73

4-5 First version ........................................................................................ 78
        6



5

4

5

4-6 Second version ................................................................................... 80

4-7 Booth mux cell ................................................................................... 83

4-8 4-2 Counter structure ......................................................................... 84

4-9 4-2 Counter with enable control ......................................................... 86

4-10 4-2 Counter without enable control ................................................... 87

4-11 Pipeline register .................................................................................. 89

4-12 Partial product register ....................................................................... 91

4-13 Physical layout of the multiplier datapath .......................................... 95

5-1 Micropipeline stage structure ............................................................. 98

5-2 Three data-validity schemes ............................................................... 99

5-3 “Request-activate” configuration ....................................................... 100

5-4 “Acknowledge-activate” configuration .............................................. 101

5-5 STG of the ERU latch control circuit ................................................. 102

5-6 ERU latch control circuit ................................................................... 103

5-7 STG of the ERS latch control circuit ................................................. 104

5-8 ERS latch control circuit .................................................................... 105

5-9 Asymmetric C-gate notation .............................................................. 10

5-10 STG of the ERF latch control circuit ................................................. 106

5-11 ERF latch control circuit .................................................................... 107

5-12 STG of the BRU latch control circuit ................................................ 107

5-13 BRU latch control circuit ................................................................... 108

5-14 STG of the BRS latch control circuit ................................................. 108

5-15 BRS latch control circuit .................................................................... 109

5-16 STG of the BRF latch control circuit ................................................. 110

5-17 BRF latch control circuit .................................................................... 110

5-18 Another “Acknowledge-activate” configuration ............................... 111

5-19 STG of the BAS latch control circuit ................................................. 112

5-20 STG of the BAF latch control circuit ................................................. 112

5-21 BAS latch control circuit .................................................................... 113

5-22 BAF latch control circuit .................................................................... 113

5-23 STG of the Converter ......................................................................... 11

5-24 Converter circuit ................................................................................ 11
        7



8

2

0

42

6

5-25 Test circuit .......................................................................................... 11

6-1 Four-phase control modules ............................................................... 12

6-2 PN of the pCALL module .................................................................. 124

6-3 pCALL circuit implementation .......................................................... 124

6-4 PN of the dCALL module .................................................................. 125

6-5 dCALL circuit implementation .......................................................... 125

6-6 PN of the sCALL module .................................................................. 126

6-7 sCALL circuit implementation .......................................................... 126

6-8 MUTEX circuit .................................................................................. 127

6-9 PN of the pARBITER module ........................................................... 129

6-10 pARBITER circuit implementation ................................................... 129

6-11 PN of the dARBITER module ........................................................... 130

6-12 dARBITER circuit implementation ................................................... 131

6-13 PN of the bARBITER ........................................................................ 132

6-14 bARBITER circuit implementation ................................................... 132

6-15 pJOIN circuit implementation ............................................................ 133

6-16 dJOIN circuit implementation ............................................................ 134

6-17 bJOIN circuit implementation ............................................................ 135

6-18 pFORK circuit implementation .......................................................... 136

6-19 dFORK circuit implementation .......................................................... 136

6-20 bFORK circuit implementation .......................................................... 137

6-21 pSELA circuit implementation .......................................................... 138

6-22 dSELA circuit implementation .......................................................... 139

6-23 bSELA circuit implementation .......................................................... 139

6-24 Implementation of the SELB modules ............................................... 14

6-25 TOGGLE circuit implementation ...................................................... 141

6-26 Speed-independent incrementer ......................................................... 1

6-27 PN of the eARBITER module ........................................................... 144

6-28 eARBITER circuit implementation ................................................... 144

6-29 PN of the fARBITER module ............................................................ 145

6-30 fARBITER circuit implementation .................................................... 145

6-31 Tree arbiter ......................................................................................... 14
        8



4

7-1 AMULET3i block diagram ................................................................ 150

7-2 AMULET3 block diagram ................................................................. 151

7-3 AMULET3 organisation .................................................................... 153

7-4 Execution pipeline organization ......................................................... 15

7-5 AMULET3 datapath structure ........................................................... 155
        9



        10

List of Tables

2-1    Characteristics of AMULET1 ...............................................................  37

2-2    Characteristics of AMULET2e .............................................................  38

3-1    Carry request .........................................................................................  40

3-2    Two-way carry requests ........................................................................  41

3-3    Dual-rail code ........................................................................................  42

3-4    (g, p) carry requests ...............................................................................  43

3-5    The Brent and Kung carry code ............................................................  44

3-6    Three-way carry requests ......................................................................  45

3-7    Simulation results of the three-way carry arbiter ..................................  61

4-1    Modified Booth algorithm ....................................................................  72

4-2    Simulation results on the Booth mux cell .............................................  83

4-3    Truth table for 4-2 Counters ..................................................................  85

4-4    Simulation results on the 4-2 Counter with enable control ...................  88

4-5    Simulation results on the 4-2 Counter without enable control ..............  88

4-6    Simulation results on the pipeline register ............................................  90

4-7    Simulation results on the partial product register .................................  91

5-1    HSPICE simulation results ....................................................................  117



        11

Abstract

This thesis describes arithmetic components (an adder and a multiplier) and

control components which have been designed and implemented for AMULET3i,

a commercial asynchronous embedded system chip incorporating the third

generation asynchronous ARM processor (AMULET3).

A novel carry arbitration scheme is proposed (and has been patented) for parallel

adder circuits. This new scheme provides an efficient encoding in which the carry

is generated by arbitrating several input carry requests, exploiting the associativity

of the carry computation. Post-layout simulation, in a 0.35 micron triple metal

CMOS technology, shows that the adder for AMULET3i takes 1.8 ns to complete

the computation of a 32-bit addition.

The multiplier design uses the modified Booth’s algorithm integrated with a new

encoding technique for adjusting the product result of an unsigned number

multiplication. An adjustment value is made on the least significant 32-bit

positions. Post-layout simulation, in a 0.35 micron triple metal CMOS technology,

shows that the multiplier for AMULET3i takes 11.2 ns (2.8 ns× 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

Organizing these arithmetic components efficiently into a four-phase asynchronous

pipeline is investigated and a set of speed-independent latch control circuits is then

proposed. Additionally, a set of control modules for four-phase micropipelines is

presented. These two sets of control components can be used to construct complex

and powerful asynchronous systems.
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Introduction 1

The real world is asynchronous by nature. It is, thus, logical to build digital systems i

asynchronous way, exploiting the potential advantages of this inherent proper

asynchrony to their fullest. However, synchronous design styles have been preferre

have dominated digital systems for the last three decades. This is not surprising fo

reasons. Firstly, synchronous design is easier to understand and easier to imple

which are attractive characteristics. Secondly, asynchronous design was us

considered less disciplined and more anarchic, which frightens most designers aw

With the rapid development of synchronous digital systems, however, there is evid

that we are beginning to hit some of the fundamental limitations of synchrony.

becoming ever more difficult to establish global synchrony within today’s chips, let al

from chip to chip. It is becoming unacceptable for global synchrony to burn increa

power, especially for power-sensitive applications where short battery life is the ban

the users. It is becoming a huge task for a digital system to be maintained and f

components to be replaced or reused. High noise emission and Electro-Mag

Interference (EMI) are also increasingly becoming concerns in mobile communica

applications.
Introduction        17
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Asynchronous design [1] has made a come-back in recent years, showing a num

advantages [2,3] over synchronous design. There are no clock related problems be

global synchrony has been removed. Performance can be better as it is based

average case rather than the worst case. Power consumption can be lower since p

only consumed when needed. Large digital systems can easily be maintained due

high modularity and composability as each block can be designed without knowled

the timing characteristics of any of the other blocks. Also, the low noise emission

good Electro-Magnetic Compatibility (EMC) of asynchronous systems are of pote

use in mobile communication applications since increasingly rigorous EMI complia

specifications and testing can be more easily satisfied.

With asynchronous design becoming widely recognized after a world-wide resurgen

interest, it seems that it is expanding beyond its initial area of interest (which

primarily in academic research) into industry. However, there is still confus

surrounding the claimed advantages as there are very few demonstrable chips av

to assess and therefore to endorse the asynchronous design methodology. The ou

for most claims are still to be answered, though some are obvious.

The AMULET (Asynchronous Microprocessor Using Low Energy Techniques) gro

was established late in 1990, led by Professor Steve Furber, to investigate the cl

advantages and the feasibility of designing large asynchronous systems. The objec

to realize asynchronous microprocessors with lower power consumption and h

performance than is currently available using synchronous design techniques. R

than adding to the theoretical work, an engineering approach was adopted and th

contributed to the growing pool of asynchronous knowledge during the last seven y
Introduction        18
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The first milestone was AMULET1 [4-8] in 1994, an asynchronous implementation

the ARM 32-bit RISC microprocessor [9,10]. It demonstrated the feasibility of build

an asynchronous system at the levels of complexity of current synchronous d

systems with the resources and tools readily available to synchronous designers.

The second milestone was AMULET2e [11] in 1996, an asynchronous embedded sy

chip which includes a significantly enhanced version of AMULET1. Its performance

power efficiency are competitive with the industry leading synchronous ARM desi

The AMULET2e work established a path to the commercial exploitation

asynchronous design.

AMULET3i, a commercial asynchronous embedded system chip for communica

applications, is currently under development. This will be a significant milestone:

first fully asynchronous embedded system going into a commercially viable produc

The main objective of the work described in this thesis is to design high performance

low power arithmetic components (an adder and a multiplier) and control compon

for AMULET3i. An adder and a multiplier have been designed and implemented d

to the layout level; these are two basic arithmetic blocks which are critical to

performance of the processor core. A set of control components for four-p

micropipelines, namely the pipeline latch control circuits, have been proposed, w

can be used to organize arithmetic components efficiently into a micropipe

Additionally, another set of control components, namely four-phase control module

also presented as basic building blocks. These two set of control components can b

to construct complex and powerful asynchronous systems.
Introduction        19



ould

vant

rcuit

n for

two

r in

the

ter 5

d.

thin

fore an

has

s an

arry

is a

this

made

not

, but

. To

r for
Thesis overview

Due to the engineering nature of my PhD work, there is considerable detail which c

easily blur the picture of the basic ideas. Instead, only the key ideas and rele

information are given here. Some engineering detail can be found in the ci

schematics and layout, presented in the appendices. Background informatio

asynchronous design is provided in chapter 2. The body of the work is divided into

main parts. The first part includes the arithmetic components, the AMULET3i adde

chapter 3 and the AMULET3i multiplier in chapter 4. The other part deals with

control components, a set of four-phase micropipeline latch control circuits in chap

and a set of four-phase control modules in chapter 6. Each chapter is self-containe

Addition is one of the most important arithmetic operations performed frequently wi

both general purpose and digital signal processing systems and an adder is there

important arithmetic component. A novel carry arbitration scheme is proposed (and

been patented [12]) for parallel adder circuits in chapter 3. This scheme provide

efficient encoding in which the carry is generated by arbitrating several input c

requests, exploiting the associativity of the carry computation. The new coding

logically redundant superset of the conventional carry process. Departing from

general coding, certain modifications which reduce the redundancy can easily be

where this simplifies the implementation. The proposed carry arbitration scheme

only leads to high speed adders due to the reduction in the required layers of logic

also offers a regular and compact layout and uniform fan-in and fan-out loadings

demonstrate the feasibility and effectiveness of the new scheme, a 32-bit adde

AMULET3i has been designed and implemented down to the layout level.
Introduction        20
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Multiplication is another of the most common arithmetic operations. In chapter 4,

multiplier design for AMULET3i is presented, in which attention is focused on CMO

circuit design techniques. The AMULET3i multiplier can process two classes

multiply instructions: a normal 32-bit result and a long 64-bit result; both types

multiply instruction can also optionally perform an accumulate operation. A n

encoding technique has been employed to adjust the final result of an unsigned nu

multiply operation. The design uses the modified Booth’s algorithm [13,14] and e

bits are scanned at a time. A new 4-2 Counter with an enable control has been prop

High speed circuit design techniques including the “true single-phase clocking regis

[15] are used. Some of this chapter is based on previous work by the author describ

his M.Sc thesis [16].

As the four-phase micropipeline design style [17-19] was adopted for AMULET3i,

design of arithmetic components, the adder and the multiplier, are similar to clo

designs in some ways. However there are some subtle differences between the tw

is obvious in the multiplier design where the asynchronous nature has been expl

The fundamental difference lies in the control mechanisms, which are describe

chapter 5 and chapter 6.

The AMULET designs are based on Sutherland’s micropipelines [20]. Althou

micropipelines were originally conceived with two-phase control, most recent work u

four-phase control mainly for performance reasons. The change from two-phase co

to four-phase control leaves many choices open regarding the organization o

asynchronous pipelines. Chapter 5 explores these control schemes for asynchr

pipelines and presents a set of pipeline latch control circuits. All of the proposed pip
Introduction        21
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latch control circuits are speed-independent, which is verified using the FORCAGE

[21]. Low power considerations and the use of dynamic logic are also discussed in

chapter.

To ease the design of asynchronous systems based on four-phase micropipelines,

basic control modules is required. Such a set is proposed in chapter 6. Arbiters, w

are non-trivial and tricky to implement, are also included. The specifications of th

four-phase control modules are carried out using Petri Nets [22]. These basic co

modules, together with the pipeline latch control circuits, can construct complex

powerful asynchronous systems including forking or joining multiple pipelines. All

the proposed control modules are speed-independent, which is verified using

PETRIFY tool [23-26].

A brief description of AMULET3i is given in chapter 7 in the hope of providing the b

picture into which the components described in the previous chapters can be place

Conclusions are finally made in chapter 8.

Contributions

The main contributions made in this thesis are:

❏ In chapter 3, a high performance, low power asynchronous 32-bit adder

AMULET3i has been designed and implemented down to the layout level. The de

uses a novel carry arbitration scheme (which has been patented) exploiting

associativity of the carry computation.
Introduction        22
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❏ In chapter 4, a high performance, low power asynchronous 32-bit multiplier

AMULET3i has been designed and implemented down to the layout level. The de

employs the modified Booth’s algorithm integrated with a new encoding technique

adjusting the product result of an unsigned number multiply operation.

❏ In chapter 5, a set of speed-independent latch control circuits has been prop

for asynchronous pipelines. These pipeline latch control circuits provide a framew

within which arithmetic components can be efficiently organized.

❏ In chapter 6, a set of speed-independent control modules has been proposed.

control modules provide basic building blocks which can be used to construct com

and powerful asynchronous systems.
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Background 2

In this chapter, we highlight some aspects of asynchronous design. Asynchronous d

here refers to the design of digital circuits which operate correctly without relying

global clocks for synchronization. It is not possible to offer a comprehensive overv

here; instead a brief introduction to the basic concepts is provided. The micropip

design style and the AMULET project are then overviewed, which are of interest

because they form the background for the rest of the work described in this thesis. A

treatment of other asynchronous design styles can be founded elsewhere [2,3].

2.1   Introduction

A binary digital circuit uses two distinct values, 0 and 1. This is an ideal model

reality, there are no true digital circuits, but only analog circuits which approximat

digital behaviours. No matter howquickthe transitions the digital signals make, there a

not only 0’s and 1’s but also undefined values between 0 and 1. These undefined v

when they occur, may not be recognized or may be interpreted in different ways

digital circuit. As a result the digital circuit may behave unexpectedly. The period of

time uncertainty of a transition can be interpreted as “delay”, and unexpected pheno

in a digital circuit due to the existence of delays are called “hazards’. To avoid s
Background        24
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hazards, we must wait and evaluate digital signals only at well-defined reference p

Generally, digital design methodologies fall into two categories according to how th

reference points are defined. The synchronous design methodology uses global

signals as reference points, whereas the asynchronous design methodology emplo

elapse of time or local control signals as reference points.

Historically, most early asynchronous designs used the elapse of time as refe

points, based on somereal delay assumptions on circuit elements or wires. The des

process is much the same as synchronous design. It postulates many local clock s

based on the elapse of time between the changes of circuit signals. These postulate

clock signals are used to define reference points, which can be variable and control

adjusting delays in circuit elements or wires. Though much effort has been expe

during the last three decades on this design approach, there are some funda

problems that are hard to deal with. As a result, this design style is viewed as

disciplined and more anarchic than synchronous design, and this view has frigh

most designers away in the past and still generates an adverse reaction.

However, most current asynchronous designs have abandoned the old ad hoc m

based onreal delay assumptions on circuit elements or wires. Instead, they

unbounded delay assumptions, which means a circuit always operates correctly

any distribution of circuit element delays or wire delays. Though this seems v

pessimistic, it resolves all the delay-related problems that would otherwise arise. A

same time, the performance of a circuit is not compromised and even may be imp

since concurrent operations can easily be exploited. Another benefit is that the c

correctness issue is separated from delays and as a result circuit verification be
Background        25
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design is very systematic and well disciplined.

2.2   Basic concepts

A few key concepts and a taxonomy of asynchronous design are introduced and d

informally here; these are fundamental to the understanding of asynchronous de

Formal definitions are beyond the scope of this thesis and can be found elsewhere

2.2.1   Delay models

Theboundeddelaymodel assumes that there is an upper bound on the delay of a ci

element or a wire.

The unboundeddelay model assumes that there is no upper bound on the delay

circuit element or a wire.

2.2.2   Circuit classification

Timedcircuitsare circuits whose correct operation is dependent on the delays in ci

elements and wires.

Speed-independentcircuits are circuits whose correct operation is independent of

delays in circuit elements, and wire delays are assumed to be zero.

Delay-insensitivecircuits are circuits whose correct operation is independent of

delays in both circuit elements and wires.
Background        26
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Quasi-delay-insensitivecircuitsare delay-insensitive circuits augmented with isochron

forks.

(Isochronic forks are sets of interconnecting wires where the delay difference betw

the branches is zero or negligible compared to the circuit element delays.)

2.2.3   Hazards and races

A static hazard is a single transition of a signal which should remain constant.

A dynamic hazard is a multiple transition of a signal which should change only once

A function hazard is inherent in the specification of the logic function.

A logic hazard depends on the particular implementation of the logic function.

An essential hazard is inherent in the specification of the finite state machine.

A non-essential hazard (also called arace) depends on the particular state encoding.

A noncritical race is where all transient states settle to the same final state.

A critical race is where different transient states may lead to the different final state

2.2.4   Metastability and arbitration

The metastabilityproblem [27] is the phenomenon of the unusually long delay in

logic decision time between two values 0 and 1 for bistable systems such as flip-fl

When two asynchronous inputs to a bistable system arrive at very nearly the same t

discrete decision must be made from a continuous range of input possibilities.

fundamentally impossible to make this decision reliably within a bounded time.

delay may theoretically be an indefinite amount of time [28-30].Arbitration is the

mechanisms whereby a bistable system responds to either one input or the other.
Background        27
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Though metastability is an inevitable problem, the resulting metastable states ca

resolved internally to maintain valid logic levels at the circuit interface using ana

circuit techniques. Themutualexclusioncircuit (MUTEX) [31] has this property and is

used for making a non-deterministic decision between asynchronous calling reque

It is worth noting here that the probability of failure of synchronous designs can neve

zero and it must be accepted that whenever an asynchronous signal is input there is

chance of failure, though the probability can be made small with careful de

techniques. However, this is not the case in asynchronous designs; an asynchr

circuit can be designed always to operate correctly, though it will require an unbou

time to resolve in the worst case.

2.2.5   Circuit specifications

Generally speaking, there are two broad classes of asynchronous design specifi

styles: state-based and event-based approaches.

Asynchronousfinite statespecificationsareHuffmanstatemachines[32,33] or extended

Huffman state machines such asBurst Mode state machine [34,35]. Huffman circuits

operate infundamentalmode, which assumes that only one input can change at a tim

and succeeding input changes must not occur until the entire circuit settles into

stable state. Relaxing the condition of only one input change in fundamental m

burst-mode circuits allow multiple input changes as a burst. Another operation mo

called theinput/outputmode[36], which assumes that further external input changes c

be applied as soon as the expected outputs have responded the current inputs.Total state

specifications[37,38] are referred to asMuller stategraphs, from which the semantics of
Background        28
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event-based models are derived.Trace theory [39,40] is an abstract and forma

description of a Muller state graph.

Eventspecificationsare referred to as Petri Net [22] specifications, and include I-n

[41], Signal Transition Graphs (STG) [42,43], and Change Diagrams (CD) [21,44].Petri

Net specifications are a mathematical formalism to describe the behaviour of sys

with concurrency, causality and conflicts between events.

I-netsare restricted Petri Nets in which interface signal names are assigned to transi

Signal Transition Graphsare interpreted Petri Nets whose transitions are labelled

signal value changes. Similar to STGs,Change diagramsare interpreted Petri Nets, bu

allow OR-type signal transitions and disengageable arcs for nonrepeating s

transitions.

2.2.6   Signalling protocols

A handshake is a procedure where one signal (the request signal) makes a transition

a second signal (the acknowledge signal) makes a transition as a response.

Linksare sets of request and acknowledgement wires used for communications th

handshaking between different blocks.

The two-phase[20] protocol uses one handshake along a link for one transac

between two blocks. As a result, rising and falling signal transitions are equivalent,

The four-phase[17-19] protocol uses two handshakes along a link for one transac

between two blocks. There are variant schemes (see chapter 5) based on this prot
Background        29
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2.2.7   Data representation

Bundleddata [20] comprises a set of data wires and an associated control signal

indicates the validity of the data. The data wires and the control wire are constru

such that stable data are available at the receiver before the control signal mak

indication of valid data. The relationship between the data and control delays requir

ensure correct operation is referred to as thebundling constraint.

Codeddata systems hide timing information in the data itself. There are many way

encode data [45]. One well-known method is thedual-rail code [46] that requires two

wires to encode a single bit of data. A transition can occur on either one wire or the o

and not on both wires.

2.2.8   Synthesis

The type of specification usually determines the style of synthesis which can be us

generate the asynchronous circuit. State-based and event-based specification

corresponding synthesis approaches: state-based and event-based synthesis. Th

synthesis approaches are often used to design controllable asynchronous modules

a set of asynchronous modules is at hand, large asynchronous systems can be b

from these modules. Syntax directed program translations for specifications using

like programming languages [47] such as Tangram [48] are examples of this approa

building circuits from a library of modules. Although state-based or event-based de

techniques can be applied directly to large asynchronous systems, they have no

very successful and practical for VLSI applications. Note that some designs

combinations of state-based and event-based design approaches.
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2.3   Sutherland’s micropipelines

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lect

[20], and are a framework for building asynchronous pipelines. Micropipelines

composed of a bounded delay datapath operated by an unbounded delay two

control circuit.

Data passes on a bus from sender to receiver and is associated with aRequestwire

indicating when the data is valid. There is anAcknowledgewire from the receiver to the

sender which indicates whether the data has been received. (see figure 2-1). Th

wires and the request signalling wire must be treated as a bundle; the data must rea

receiver prior to the request event. Rising and falling transitions of request

acknowledge wires are equivalent, carrying the same information.

2.3.1   Event control modules

Figure 2-2 illustrates a basic set of event control blocks proposed by Sutherland w

can be “programmed” to build complex and powerful asynchronous systems. T

basic building blocks were designed using I-nets [41].

Request

Acknowledge

Data

Sender Receiver

Figure 2-1: A bundled data interface
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TheXOR gate acts as the OR function for events. A transition on either input results

transition on its output. For correct operation events must not arrive simultaneous

both inputs. XOR modules are often calledMERGE elements because they merge tw

event streams into one.

The Muller C-gate acts as the AND function for events. A transition will occur at th

output only when there have been transitions at both of the inputs. Muller C-gate

often calledRENDEZVOUS elements because they make events at the output wait u

events have been received on both inputs.

TheTOGGLE module steers incoming events to its outputs alternately; the first eve

arrive is issued to the output marked with a dot, the second to the unmarked outpu

so on.

The SELECT module steers incoming events to one of two outputs according to

Boolean value of its diamond input. The Boolean value must be set up before

incoming event that it steers, a requirement similar to the bundling constraint.

SELECT
FalseTrue C

A
LL

r

d

r1

r2

d1

d2 A
R

B
IT

E
R

r1

r2

g1

g2

d1

d2

TOGGLEC

Figure 2-2: Micropipeline event logic modules
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The CALL module allows two processes to share a common resource, similar

procedure call in software. The calling processes must be mutually exclusive; if the

not, they must access the call block through an arbiter.

The ARBITER module is used to control the interaction between two asynchron

event streams. As the two streams can issue requests at any time, the arbitration l

inherently prone to metastability. The metastable states must be resolved interna

maintain valid logic levels at the interface of the module.

2.3.2   Event-controlled storage element

Event-controlled storage elements are needed to build a complete micropipeline c

Figure 2-3 shows an implementation of an event-controlled storage element an

symbol used to denote it.

The input is initially connected to the output; it is transparent when empty and doe

behave as a storage element at all. An event on the “capture” wire flips the two swit

and as a result a loop is formed containing two inverters, causing the data to be lat

This loop is still connected to the output, which therefore carries the previously latc

Capture

Capture
Done

Pass
Done

Pass

Din Output

C

D
in

Pd

P

D
ou

t

Cd

C
ap

tu
re

_P
as

s

Figure 2-3: Event-controlled storage element
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value and does not follow subsequent input changes. An event on the “capture d

wire is issued after the switches have flipped. An event on the “pass” wire flips the o

switch and as a result the element is returned to the transparent state and ready

next coming transaction. Similarly, an event on the “pass done” wire is issued afte

switch has flipped.

2.3.3   Micropipeline FIFO

A micropipeline with no processing in it, which is simply a FIFO, can be built as sho

in figure 2-4. A data value can be entered into the FIFO from the left by signalling

event on theRinwire, whereupon it will ripple down the FIFO and eventually will be fe

out through the wireRout.

One of the elegant features of a micropipeline FIFO is its elasticity. Data can be ins

into or removed from a FIFO at any rate bounded from zero to a maximum define

the throughput parameter. The maximum insertion rate at the input end and
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Din

Ain

Rout

Dout

Aout
CC

CC

Figure 2-4: Micropipeline FIFO
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maximum removal rate at the output end can be achieved at the same time. Howe

this condition, the percentage occupancy of the FIFO remains unchanged, a

determined by how fast the request signal passes forward and the acknowledge

returns backward. If the request signal and acknowledge signal travel at the same

which is the most common case for a micropipeline FIFO, the percentage occupan

only 50%.

Therefore, if we want to sustain high throughput for a long time, more FIFO sta

should be used than might be expected. This is why an asynchronous micropip

FIFO is often deeper than its synchronous counterpart for the same application.

2.3.4   Micropipelines with processing

The simple micropipeline FIFO can be extended to interpose processing logic bet

micropipeline FIFO stages, as shown in figure 2-5. The operation of this micropipe

with processing operates in a similar manner to the micropipeline FIFOs. The dela

the request event path must match the logic processing delay in order to preserve th

bundling convention.

More complex structures including forking and merging multiple pipelines can be b

with the aid of other event control modules.

2.4   The AMULET project

It is our belief that asynchronous designs should be justified not only on a theore

significance but also by their practical implications. This is also the motivation beh

the AMULET project.
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2.4.1   AMULET1 chip

In 1994 Professor Steve Furber’s AMULET group at the University of Manchester t

delivery of the AMULET1 processor, the first asynchronous implementation o

commercial processor architecture. The AMULET1 chips are code compatible with

ARM 32-bit RISC processor.

The design used the two-phase micropipeline style and includes several novel fe

such as the register locking mechanism [49], the instruction prefetching with its “colo

management of non-determinism and the data dependent ALU operations [50].

chips were fabricated on two CMOS processes: a 1µm process at ES2 and a 0.7µm

process at GEC Plessey Semiconductors.

Table 2-1 shows a summary of the characteristics of the AMULET1 chips with thos

ARM6 for comparison. The chips demonstrate robustness to variations in temper

and voltage supply. The AMULET1 chip demonstrated the feasibility of building

Figure 2-5: Basic micropipeline structure
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asynchronous digital system at the levels of complexity of current synchronous d

systems.

2.4.2   AMULET2e chip

Two years later, the AMULET group took delivery of the AMULET2e embedded syst

chip. AMULET2e is aimed at the embedded control market, and includes AMULET

significantly enhanced version of AMULET1), 4 Kbytes of RAM which can also

configured to operate as a cache, a counter-timer for real-time reference, a fle

memory interface and various configuration and control registers. The design inc

several novel features such as the load and register forwarding, branch target pred

and the “halt” mode. The design uses the four-phase micropipeline design style

chips were fabricated in a 0.5µm triple metal CMOS technology.

Table 2-2 shows a summary of the characteristics of AMULET2e with those of ARM

and ARM810 for comparison. AMULET2e is the first asynchronous processor wh

performance and power-efficiency are competitive with the industry-leading cloc

Table 2-1: Characteristics of AMULET1 [4]

AMULET1 (a) AMULET1 (b) ARM6

Process 1µm 0.7µm 1 µm

Area (mm2) 5.5× 4.1 3.9× 2.9 4.1× 2.7

Transistors 58,374 58,374 33,494

Performance 20.5 kDhry. 40 kDhry. 31 kDhry

Power 152 mW N/A 148 mW

MIPS/W 77 N/A 120

Conditions 5 volt, 20°C 5 volt, 20°C 5 volt, 20 MHz
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ARM designs. One remarkable feature of AMULET2e is that the power consump

drops to nearly zero with the “halt” function enabled.

2.4.3   AMULET3i

AMULET3i, an asynchronous embedded system chip which incorporates the

generation asynchronous ARM processor (AMULET3), is currently under developm

Different from its predecessors, AMULET1 and AMULET2e, AMULET3i is aimed

be a commercially viable product for communication applications. This will be

significant step (see chapter 7).

Table 2-2: Characteristics of AMULET2e [11]

ARM710 AMULET2e ARM810

Process 0.6µm 2LM 0.5µm 3LM 0.5µm 3LM

Area (mm2) 32 41 76

Transistors 570,295 454,000 836,022

Cache 8 K 4-way 4K 64-way 8K 64-way

MIPS 23 40 86

Power 120 mW 150 mW 500 mW

MIPS/W 192 250 172

Conditions 3.3 volt, 25 MHz 3.3 volt, 20°C 3.3 volt, 72 MHz
Background        38
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Adder design 3

In this chapter a novel carry arbitration scheme is proposed (and has been patente

parallel adder circuits. The proposed scheme provides an efficient encoding in whic

carry is generated by arbitrating several input carry requests, exploiting the associa

of the carry computation. The new scheme not only leads to high speed adders du

reduction in the required layers of logic, but also offers a regular and compact layou

uniform fan-in and fan-out loadings. To demonstrate the feasibility and effectivenes

the proposed scheme, a 32-bit adder for AMULET3i has been designed. Post-l

simulation, in a 0.35 micron triple metal CMOS technology, shows that it takes 1.8 n

complete the computation of a 32-bit addition.

3.1   Introduction

Addition is one of the most important arithmetic operations performed frequently wi

both general purpose and digital signal processing systems. A problem with desig

high speed adder circuits is that the most significant bits of the result are logically

physically dependent upon the carry output values from the least significant bits.

consequence of this sequential dependency is that addition operations tend

relatively slow. This has been widely recognized, and adder design has been st
Adder design        39
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extensively for decades. Generally, the basis of adder designs is still either

generation and carry propagation [51-55] or carry selection based on all possible r

being available [56,57]. In recent years carry free additions achieved by emplo

redundant number systems have received considerable attention [58,59]. In an ef

develop adder circuits that are capable of operating at high speed a carry arbit

scheme for parallel adders is proposed. The new scheme provides an efficient enc

in which the carry is generated by arbitrating several input carry requests, exploitin

associativity of the carry computation.

3.2   Carry arbitration

The interesting and difficult task in an adder circuit is the computation of the carry

For an addition of two 1-bit numbersai andbi, the carryci can be evaluated as shown i

table 3-1. There are two general cases defined by the values ofai andbi. The first case,

where there is a carry request, arises when both operand bits are equal. A 1-carry r

occurs if both inputs are 1, whereas a 0-carry request occurs if both inputs are 0

second case, where there is no carry request, arises when the operand bits have d

values. The letteru indicates there is no carry request. Carry computation is similar to

logic behaviour when connecting wiresai andbi together. If they have the same value

then the result follows. If they are different, the result is undefined.

Table 3-1: Carry request

ai, bi ci

0 0 0

1 1 1

0 1 u

1 0 u
Adder design        40
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3.2.1   Two-way carry arbiter

One input pair may or may not make a carry request. If two input pairs (ai, bi) and (aj, bj)

are considered together, they may issue carry requests at the same time. Therefore

is a need to arbitrate these two carry requests. Figure 3-1 shows a two-way carry a

The input pair (ai, bi) can make anon-maskablecarry request, wherenon-maskable

means that a carry request from the input pair (ai, bi) must always be granted service t

the outputci. The input pair (aj, bj) can makemaskablecarry requests, wheremaskable

means that a carry request from the input pair (aj, bj) may be masked by the input pai

(ai, bi). Only when there is no non-maskable carry request from the input pair (ai, bi) is a

maskable carry request from the input pair (aj, bj) granted service to the outputci. The

truth table required to implement two-way carry arbiters is illustrated in table 3-2.

Table 3-2: Two-way carry requests

ai, bi aj, bj ci

0 0 - - 0

1 1 - - 1

0 1 (or 1 0) 0 0 0

0 1 (or 1 0) 1 1 1

0 1 (or 1 0) 0 1 (or 1 0) u

Two-Way
Carry Arbiter

ai
bi

aj
bj

ci

(vi, wi)

Figure 3-1: Two-way carry arbiter
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The output carryci can be encoded using two wires (vi, wi) as shown in table 3-3.

Equations EQ-1 and EQ-2 satisfy table 3-2 and table 3-3.

vi = aibi + (ai + bi)aj (EQ-1)

wi = aibi + (ai + bi)bj (EQ-2)

Figure 3-2 shows a 4-bit carry computation using two-way carry arbiters. The solid

represent two-way carry arbiters. The carry output values of the high order bi

generated by arbitrating carry requests from their low order bits. High order bit c

requests have priority over low order bit carry requests. For any carry output bits,

must exist a path to every low order input operand bits, which reflects the fact tha

carries shall propagate across all the way of the word length of the operands.

Table 3-3: Dual-rail code

ci vi, wi

0 0 0

1 1 1

u 0 1 (or 1 0)

Two input operands

carry output

Figure 3-2: 4-bit carry computation
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The proposed scheme is similar to but different from the scheme proposed by Bren

Kung [52]. Firstly, the computation logic needed for carry generategi and carry

propagatepi in the Brent and Kung adders is not necessary in our scheme. This lead

reduction of the required layers of logic and hence high speed carry genera

Secondly, only single-rail signals need to be routed instead of dual-rail signals if

signalsvi and wi are predicted to be equal (which indicates that the carry has b

generated, either a 1-carry request or a 0-carry request). This results in a reduct

chip area, especially in the final row of the carry computation where more room

needed to accommodate signals crossing from the least significant bits to the

significant bits. Finally and more importantly, group adders in a carry select adder ca

eliminated using the modified implementation of carry arbiters as we will see later.

In fact, the Brent and Kung scheme can be viewed as a special encoding of our sche

shown in table 3-4. The two signal pairs (gi, pi) and (gj, pj) generated from the input pairs

(ai, bi) and (aj, bj) can be seen as new input pairs. The new input pair (gi, pi) issues a 0-

carry request when they are both 0, a 1-carry request whengi is 1, and no carry reques

whenpi is 1. Note thatgi andpi are mutually exclusive. In other words, the case of (gi, pi)

with the value (1, 1) is removed by the Brent and Kung encoding.

Table 3-4: (g, p) carry requests

gi, pi (ai, bi) gj, pj (aj, bj) ci

0 0 (0 0) - - (- -) 0

1 0 (1 1) - - (- -) 1

0 1 (0 1 or 1 0) 0 0 (0 0) 0

0 1 (0 1 or 1 0) 1 0 (1 1) 1

0 1 (0 1 or 1 0) 0 1 (0 1 or 1 0) u
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The carry request outputci is encoded here as shown in table 3-5. Equations EQ-3

EQ-4 give the behaviour defined by table 3-4 and table 3-5.

vi = gi + pigj (EQ-3)

wi = pipj (EQ-4)

Equations EQ-3 and EQ-4 are the key ideas of the well known Brent and Kung adde

is clear that the computation logic for carry generategi and carry propagatepi is wasteful

except for understanding how the carries are generated and propagated. By encod

input pairai andbi to the carry generategi and propagatepi, the advantage in our schem

of some signals being routed in single-rail form is lost because the dual-rail signagi

andpi are always required in the Brent and Kung scheme.

3.2.2   Three-way carry arbiter

A three-way carry arbiter is shown in figure 3-3. As before, the input pair (ai, bi) can

issue a non-maskable carry request. The input pairs (aj, bj) and (ak, bk) can both make

maskable carry requests at any time, possibly at the same time. However, the inpu

(aj, bj) has priority over the input pair (ak, bk). Only when there is no non-maskable carr

request from the input pair (ai, bi) is a maskable carry request from the input pair (aj, bj)

granted service to the outputci. Only when there is no non-maskable carry request fro

Table 3-5: The Brent and Kung carry code

ci vi, wi

0 0 0

1 1 1

u 0 1
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the input pair (ai, bi) and no maskable carry request from the input pair (aj, bj) is a

maskable carry request from the input pair (ak, bk) granted service to the outputci.

The truth table required to implement three-way carry arbiters is shown in table

Equations EQ-5 and EQ-6 give the behaviour defined by table 3-3 and table 3-6.

vi = aibi + (ai + bi)(ajbj + (aj + bj)ak) (EQ-5)

wi = aibi + (ai + bi)(ajbj + (aj + bj)bk) (EQ-6)

Figure 4 shows a 9-bit carry computation using three-way carry arbiters. The additio

an n-bit binary number using three-way carry arbiters can be performed in a

proportional toO(log3n), and therefore is more efficient than using two-way car

Table 3-6: Three-way carry requests

ai, bi aj, bj ak, bk ci

0 0 - - - - 0

1 1 - - - - 1

0 1 (or 1 0) 0 0 - - 0

0 1 (or 1 0) 1 1 - - 1

0 1 (or 1 0) 0 1 (or 1 0) 0 0 0

0 1 (or 1 0) 0 1 (or 1 0) 1 1 1

0 1 (or 1 0) 0 1 (or 1 0) 0 1 (or 1 0) u

Three-Way
Carry Arbiter

ai
bi

ak
bk

ci

(vi, wi)

Figure 3-3: Three-way carry arbiter

aj
bj
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arbiters where the computation time isO(log2n). It is worth noting here that there is a

difference in complexity between two-way and three-way carry arbiters, which shoul

taken into account when comparing them.

The algorithm as shown in the above diagram is very elegant, and follows a very si

rule:

t = 3; while (ci = u) {ci = ci-t; t = 3t;}

Heret is the number of input pairs of carry arbiters used, and is three for this case. I

bottom line, the carries are computed just by looking at the three bits and hold eitheu or

the correct carries. In the top line, the carry computation covers more bits and reac

point where all of the bit positions have been examined, therefore all of the carrie

generated.

3.2.3   Carry arbiters with more than three ways

Using the same approach, carry arbiters with any number of pairs of input signals c

derived. Theoretically, it will be appreciated that a single carry arbitration circuit co

Two input operands

carry output

Figure 3-4: 9-bit carry computation
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be responsive ton pairs of input signals (n > 3). However, carry arbiters with more tha

four ways are not usually of practical interest. Firstly, too many series transistors

needed to implement these arbiters, which leads to inefficient CMOS designs. Seco

the arbiter cell layout can easily become too large for the bit pitch of a datapath.

The circuit which implements a 9-bit carry computation as shown in figure 3-4 can b

fact, considered as a nine-way carry arbiter, which is built up using three-way c

arbiters.

Now it may be questioned why the new term “carry arbitration” has been introduce

describe a circuit whose function is purely combinational. The introduction of this n

term serves to explain the idea, since it is difficult to use the conventional te

“generate”, “kill” and “propagate” to describe the new coding.

In a sense, the new coding is a logically-redundant superset of the conventional

process. Departing from this general coding, certain modifications (which reduce

redundancy) can easily be made where this simplifies the implementation as we wi

later in section 3.4.

3.3   Parallel prefix computation

In this section the verification of the adder design using the proposed scheme is c

out formally by taking an n-bit addition using two-way carry arbiters as an example.

(an, an-1, …, a1) and (bn, bn-1, …, b1) be n-bit binary input operands with output carrie

(cn, cn-1, …, c1), and letc0 be the initial input carry bit. We define an operator “o” [60]

here as follows:
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(a, b)o(a′, b′) = (ab + (a + b)b′, ab + (a + b)b′)

Lemma 1: Let

wherec1 = a1b1 + (a1 + b1)c0.

Then ci = vi = wi for i = 1, 2, …, n.

Proof: We prove the lemma by induction oni.

It is obvious that the above equation holds true fori = 1.

If i > 1 andci-1 = vi-1 = wi-1, then

(vi, wi)= (ai, bi)o(vi-1, wi-1)

= (ai, bi)o(ci-1, ci-1)

= (aibi + (ai + bi)ci-1, aibi + (ai + bi)ci-1)

= (ci, ci)

Thus, the equation holds true by induction.

Lemma 2: The operator “o” is associative.

Proof: For any three (a3, b3), (a2, b2) and (a1, b1),

[(a3, b3)o(a2, b2)]o(a1, b1) =

[(a3b3 + (a3 + b3)a2), (a3b3 + (a3 + b3)b2)]o(a1, b1) =

(((a3b3 + (a3 + b3)a2)(a3b3 + (a3 + b3)b2) +

((a3b3 + (a3 + b3)a2) + (a3b3 + (a3 + b3)b2))a1),

((a3b3 + (a3 + b3)a2)(a3b3 + (a3 + b3)b2) +

((a3b3 + (a3 + b3)a2) + (a3b3 + (a3 + b3)b2))b1)) =

(((a3b3 + (a3 + b3)a2b2) + (a3b3 + (a3 + b3)(a2 + b2))a1),

vi wi,( )
c1 c1,( ) if i 1=

ai bi,( )o vi 1– wi 1–,( ) if 2 i n≤ ≤



=
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((a3b3 + (a3 + b3)a2b2) + (a3b3 + (a3 + b3)(a2 + b2))b1)) =

((a3b3 + (a3 + b3)(a2b2 + (a2 + b2)a1)),

(a3b3 + (a3 + b3)(a2b2 + (a2 + b2)b1))) =

(a3, b3)o(a2b2 + (a2 + b2)a1, a2b2 + (a2 + b2)b1) =

(a3, b3)o[(a2, b2)o(a1, b1)]

Thus, the operator “o” is associative.

This lemma provides the foundation for using tree structures to generate carries sin

signalsvi andwi can be computed in any order from the given input values. This is

key idea for the proposed scheme.

Lemma 3: The operator “o” is not commutative.

This can easily be proved by inspection that (1, 1)o(0, 0) ≠ (0, 0)o(1, 1). This lemma

implies that carry arbitration should perform in a prioritized way.

3.4   Implementation

Figure 3-5 shows a static CMOS implementation of a two-way carry arbiter. Note

the outputs vi and wi are complemented signals. However, the arbiter is qu

symmetrical and implementing the next stage in inverse logic is straightforward.

signals through two arbiters are naturally positive true, so no inverters are needed.

Figure 3-6 shows a pass-transistor based implementation of a two-way carry arbiter

implementation has an additional feature. The outputvi is zero if and only if the output

wi is zero, and the outputwi is one if and only if the outputvi is one. This provides

another view of the arbiter. When the outputsvi andwi are different this means that ther
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are no carry requests from the inputs as described previously. Furthermore we can

the outputvi as the carry out generated with a one carry-in and the outputwi as the carry

out generated with a zero carry-in. The implementation in figure 3-5 does not disting

which is the carry out generated with a one carry-in and which with a zero carry-in, s

each output can be zero or one independent of the other output. The AND and OR

in figure 3-6 serve as an input conversion from (0 1) to (1 0). The signals after these

gates, e.g., (oj, zj), take one of the three values (0 0), (1 1) and (1 0).

ai

bi

aj

bj

vi wi

Figure 3-5: Static implementation of a two-way carry arbiter

0
1

0
1

ai

bi

aj

bj

vi

wi

Figure 3-6: Pass-transistor based implementation

oj

zj
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Three-way carry arbiters and four-way carry arbiters may be advantageous if dyn

CMOS techniques are used. Figure 3-7 shows a direct dynamic CMOS implement

[61-63] of a three-way carry arbiter. Instead of using a global precharge control sig

local incoming input signals are used for this purpose. The operation of the circu

such that the nodesn1 and n2 are precharged high when the inputsai and bi are low

during the reset phase of the control handshake and will conditionally discharge d

the evaluation phase in a self-timed design. The inverters are required for the next

and also served to maintain proper drive strength.

Figure 3-8 gives a modified version of the three-way carry arbiter by reducing

redundancy of the new coding. We assume here that every input pair takes one

three values (0 0), (1 1) and (1 0), and (0 1) has already been transformed to (1

described previously. The outputvi is the carry out generated with a one carry-in and t

ai

bi

aj

bj

ak

bk

wivi

n1 n2

Figure 3-7: Direct implementation of a three-way carry arbiter
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outputwi is the carry out generated with a zero carry-in if no carry requests issue f

input signals. This results in the elimination of group adders in a carry select adder

section 3.6) and is the main feature of our scheme.

However, the use of the modified implementation needs the input conversion from

to (1 0). Fortunately this causes no problem; the conversion is simple. It consists o

2-input NAND and one 2-input NOR gate per bit. For practical reasons, gates

normally necessary anyway to isolate the signals from the main input buses.

difference here is that NAND and NOR gates are used instead of inverters. If the

input buses are designed using a precharged structure, the outputs from the NAN

NOR gates are naturally low (as required in the dynamic implementation) when

buses are precharged high. Furthermore, these NAND and NOR gates can be reu

logic operations in an ALU design.

ai

bi

aj

bj

ak

bk

wivi

n1 n2

Figure 3-8: Modified implementation of a three-way carry
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It could be questioned here whether there is a real difference between this new sc

eliminating the value (0 1) compared with the Brent and Kung scheme which does

use the value (1 1). How can we claim that the new arrangement without the formati

generate and propagate terms has an advantage after adding initial NAND and

gates? The answer lies in observing that the constraint of not using the value (1

inherent in the Brent and Kung scheme and therefore an initial formation of the gen

and propagate terms is required, whereas the constraint of not using the value (0 1)

modified implementation of the carry arbitration scheme is introduced as an optimiz

rather than enforced. The optimization leads to the benefit of eliminating group adde

a carry select adder (see section 3.6) and also results directly in a simplified circuit

3.5   Refinement of the Manchester carry chain

One simple application of the new scheme is given in this section, where it is use

refine the Manchester carry chain. In the next section, another application is given, w

is to simplify the design of carry select adders.

A wide variety of addition schemes and their implementations are available to s

different performance/cost requirements. One of them is the well known Manche

carry chain [31], which is often found in custom datapaths combined with the carry

scheme. However a problem with the Manchester carry chain is that too many

transistors are in series along the carry chain, which degrades the performance esp

in CMOS designs with a low supply voltage. To avoid this problem, buffers are usu

used to divide the carry chain into several sets of series pass transistors as sho

figure 3-9.
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Instead of using buffers to limit the number of pass transistors in series, the carry c

can be rearranged using the part of the circuit in figure 3-6 based on the concept of

arbitration. Figure 3-10 shows a new carry chain in which the output of one set of s

pass transistors is connected to the control gate of the next stage. By so doing, we

the series connection of pass transistors without any overhead. It is worth noting t

double pass-transistor logic design style [64] should be used in order to exploit this

carry chain fully.

Obviously, this new implementation of the Manchester carry chain can be der

directly from the truth table without any knowledge of the carry arbitration scheme.

new implementation was found during the development of the carry arbitration sch

0

1

0

1

0

1

0

1

0

1

Figure 3-9: Manchester carry chain with buffers

0

1

0

1

0

1

0

1

Figure 3-10: Manchester carry chain without buffers

0 1
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3.6   Simplification of carry select adders

Figure 3-11 shows an adder design using the conventional carry select scheme [57

inputs are divided into d-bit (or possibly variable width) groups. Two d-bit adders

needed per group. One is an adder with a zero carry-in and the other with a one ca

The carry generator is responsible for generating the boundary carries for all gro

which are then used to select the appropriate sum using a multiplexer.

Design decisions must be made to choose the appropriate group widths in ord

balance the worst case delays of both the carry generator and the group adders.

group adders are made too long, the decreasing delays in the carry generat

exceeded by the increasing delays of the group adders. If the group adders are ma

short, the logical complexity of the carry generator increases and its delay determine

total adder delay. Usually a mechanism for carry computation with low complexity, s

as the Manchester carry chain, is chosen in the group adders. So the group can

made long (normally less than or equal to 8 bits) due to its linearly increasing delay.

d-bit adder

M
ux

0

d-bit adder1

M
ux

C
ar

ry
G

en
er

at
or

o
u

tp
u

ts

in
p

u
ts

c0

ci

Figure 3-11: Carry select adder

d-bit adder0

d-bit adder1
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leads to the increasing complexity of the carry generators. Carry generators des

using conventional approaches consume much chip area and power as well as lim

the ultimate performance that can be achieved.

If carry arbiters, modified according to the circuit in figure 3-6 or figure 3-8, are use

elements to design the carry generator, the group adders can be eliminated as sh

figure 3-12. The outputvi is the carry out generated with a one carry-in and the outpuwi

is the carry out generated with a zero carry-in if no carry requests issue from i

signals. Choosing the length of the group adders becomes unnecessary since the

adders are not required at all. This results in a significant reduction of chip a

especially when the groups are made long, since group adders also need a mechan

carry computation.

The intermediate signalsvi and wi in the carry generator are elegantly reused f

generating the two intermediate sums. If the signalsvi andwi are equal (meaning that the

carry has been generated), the final result is independent of the boundary carry sin

two intermediate sums are equal. If the signalsvi and wi are different, the two

M
ux

M
ux

C
ar

ry
 G

en
er

at
or

o
u

tp
u

ts

in
p

u
ts

boundary carry

boundary carry

Figure 3-12: New carry select adder

v (c1)
w (c0)

s1

s0

v (c1)
w (c0)

s1

s0
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intermediate sums with the signalsvi andwi as inputs are those with a one carry-in and

zero carry-in, respectively. Therefore the boundary carry can choose one of thes

intermediate sum results to use as the final sum result. It is clear that these

intermediate signalsvi andwi have dynamic meanings, and this is the main feature of

proposed scheme. It is worth noting that the carry generator itself is much simplified

optimized by using the proposed scheme

3.7   Adder design for AMULET3i

A 32-bit adder for AMULET3i has been designed, using the architecture in figure 3

to demonstrate the proposed scheme. The whole adder is visualized (but not divid

consisting of four 8-bit long groups. Figure 3-13 illustrates the block diagram for

AMULET3i adder.

c15

c23

?

?

?

?

?

?

?

?

1st 2nd 3rd 4th 5th

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

7 ~ 0

15 ~ 8

23 ~ 16

31 ~ 24

⇒

⇒

⇒

⇒

Figure 3-13: AMULET3i adder block diagram
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The AMULET3i adder compromises one row of conversion circuits containing 2-in

NAND and NOR gates and two rows of three-way carry arbiters to generate all

intermediate signalsvi and wi. Additionally, two extra three-way carry arbiters ar

needed to compute the boundary carries. These operate in parallel with the XOR

(the 4th and 5th levels are mostly operating in parallel).

3.8   Circuit design

An efficient three-way carry arbiter design is the key to the whole adder design.

dynamic implementation of a three-way carry arbiter as shown in figure 3-8 was init

chosen since dynamic circuits offer the benefits of increased speed and lower sw

capacitance. However, dynamic circuits are sensitive to noise when both the NMOS

down and the PMOS pull up networks are in the off state. Additional devices as show

figure 3-14 are, in practice, incorporated into dynamic circuits to combat noise. The

then the problem that the dynamic circuit with the additional device might demonstra

considerable performance disadvantage since the NMOS pull down network

overdrive the additional device.

We look firstly at the static implementation of a three-way carry arbiter as show

figure 3-15 before moving on to an alternative implementation. In the case of this

or

Figure 3-14: Devices for dynamic circuits
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complementary CMOS circuit, the size of the p-type transistors should be 2 ~ 3 t

greater than that of the n-type transistors to compensate for the typically 2 ~ 3 t

slower speed of the p-type transistors. As a result, this circuit consumes a large are

is quite slow due to its large input capacitance. The problem can easily be solve

making the size of all the p-typed transistors minimum. However, this change make

rise time of the circuit dramatically increase.

The original idea of dynamic circuits can be reintroduced here but all the p-t

transistors are retained. Figure 3-16 shows a new implementation combining both

and dynamic circuit properties. Two p-type transistors P1 and P2 are introduce

precharging. While this may seem like a foolish idea at first, it has some merit. Altho

the new implementation is almost the same as the static implementation apart fro

ai

bi

aj

bj

ak

bk

wi vi

n1 n2

Figure 3-15: Static Implementation of a three-way carry arbiter
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two extra p-type transistors at the circuit level, the operation of the two circuits is tot

different.

All the p-type transistors except these two precharge transistors are minimum sized

new implementation. The p-type transistors in the original static implementation sh

be oversized by 2 ~ 3 times compared with the size of the n-type transistors to keep

rise time in line with the fall time. The large input capacitance due to the oversize

type transistor therefore requires a previous stage with more drive strength.

inevitably results in degraded performance and increased power consumption.

The new implementation behaves both statically and dynamically, thus having

advantages of these two types of circuit. The transistors marked with an asterisk c

ai

bi

aj

bj

ak

bk

wi vi

n1 n2

Figure 3-16: New Implementation of a three-way carry arbiter

P1 P2

* *
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fact, be eliminated. This very efficient carry arbiter circuit provides a firm foundation

the realisation of a high speed AMULET3i adder.

The three-way carry arbiter shown in figure 3-16 was analysed using HSPICE

extracted layout under the conditions of 3.3 volt supply voltage and 100˚C temperature.

The simulation results are given in table 3-7. The estimation of power consumption

circuit is difficult since it is a function of not only its inputs but also of their history. F

the sake of simplicity, the power consumption was measured under the assumpt

100% input activity.

3.9   Layout design

The technology on which the AMULET3i adder is based, is a 0.35 micron triple m

CMOS process. The minimum drawn width is 0.4 micron.

The layout of the AMULET3i adder uses a full-custom style for the datapath, where

circuit and layout are optimized. The bit pitch in the datapath is 82λ. Data flow is routed

horizontally in metal3, while control flow is relayed vertically in metal2. Metal1 is us

for local interconnections in cells. The global power rails use metal1 and metal3, an

local power rails use metal2.

Table 3-7: Simulation results of the three-way carry arbiter

delay power

typical process case 0.35 ns
72 µW @ 100 MHz

153µW@ 200 MHz

worst process corner 0.44 ns
71 µW @ 100 MHz

148µW @ 200 MHz
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3.10   Evaluation

An evaluation of the AMULET3i adder in terms of performance, power consumpt

and silicon area is presented in this section.

3.10.1   Performance

The critical path covers one NAND/NOR gate stage, three three-way carry arbiter s

and one multiplexer stage. The critical delay is about 1.8 ns under worst-case cond

(Vdd= 3.3V,Vss=0.1V, slow-slow process corner, at 100˚C temperature). This results in

a 460 MHz computational speed with a 20% engineering margin.

3.10.2   Power consumption

The estimation of power consumption is a difficult problem as it is a strong function

the inputs and their history. A rough estimate of power consumption is given base

some assumptions. It is highly unlikely that all data bits will change for every data va

Based on the assumptions that half the data bits on average will change and th

dynamic switching power is 90% of the total power, the power estimate of the datapa

about 8 and 17 mW operating at 100 and 200 MHz (under typical process conditi

respectively.

3.10.3   Silicon area

The silicon area of the datapath is 686λ × 2624λ (137.2× 524.8µm2). Figure 3-17

shows the physical layout of the datapath of the AMULET3i adder, and illustrate

regular structure.
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Figure 3-17: Physical layout of the adder datapath
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3.11   Summary

A carry arbitration scheme is proposed (and has been patented) for parallel

circuits. The proposed scheme provides an efficient encoding in which the car

generated by arbitrating several input carry requests, exploiting the associativity o

carry computation. The new scheme not only leads to high speed adders due

reduction in the required layers of logic, but also offers a regular and compact layou

uniform fan-in and fan-out loadings.

CMOS implementations of carry arbiters have been derived and modified. The mea

of the modified version is twofold. If the intermediate signalsvi and wi are equal, it

means that the carry has been generated. If they are different, it means that there

carry requests from the input signals. The intermediate signalvi can be viewed as the

carry out generated with a one carry-in and the intermediate signalswi as the carry out

generated with a zero carry-in.

A new implementation of a three-way carry arbiter has been developed, which beh

both statically and dynamically, thus having the advantages of both static and dyn

circuits.

Two applications of the scheme are given in this chapter. One is to refine the Manch

carry chain. Another is to simplify carry select adders.

A high performance, low power asynchronous 32-bit adder with a reasonable hard

resource has been developed for AMULET3i, demonstrating the feasibility

effectiveness of the new scheme. It takes 1.8 ns to complete a 32-bit addition and
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both

adder
occupies 137.2µm × 524.8µm of chip area in a 0.35µm triple metal CMOS technology.

The power estimate of the datapath is about 8 and 17 mW operating at 100 and 200

(under typical process conditions), respectively.

It is worth noting that the proposed scheme is general and can be applied to

asynchronous design and synchronous design. The new scheme was used in the

design for the ARM Piccolo DSP processor [65].
Adder design        65



on

for

his

gn

ed

duct

ron

he

no

bers

tation

ber

e for
Multiplier design 4

This chapter presents the design of a multiplier for AMULET3i. Attention is focused

CMOS circuit design techniques. We start with an introduction to basic algorithms

multiplication. The asynchronous multiplier for AMULET2e is then reviewed, as t

formed the starting point for the design of the AMULET3i multiplier. Finally, the desi

of an asynchronous multiplier for AMULET3i is developed which uses the modifi

Booth’s algorithm integrated with a new encoding technique for adjusting the pro

result of an unsigned number multiplication. Post-layout simulation, in a 0.35 mic

triple metal CMOS technology, shows that it takes 11.2 ns (2.8 ns× 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

4.1   Introduction

The general principle by which computers carry out multiplication is quite simple. T

multiplication of two 1-bit binary numbers is even simpler than addition since there is

need for the carry to propagate. Consider the multiplication of two unsigned num

using the ordinary paper-and-pencil method. Figure 4-1 illustrates a dot represen

[66] for the multiplication of two 8-bit unsigned numbers. Roughly speaking, the num

of dots reflects the amount of hardware in a parallel multiplier or the processing tim
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a serial multiplier. The height of the dot diagram relates to the latency for carrying

the multiplication. The paper-and-pencil method comprises two distinct steps. Firstl

the partial products are generated simultaneously, then they are added tog

proceeding column-wise from right to left. Although conceptually simple, a dir

mechanical implementation of the paper-and-pencil method would lead to a

inefficient design [67] due to the asymmetry between different columns.

Looking row-wise, there is a degree of symmetry in terms of the number of dots, tho

they have different weights in each row. It is thus desirable to proceed row-wise from

to bottom for VLSI implementations, either sequentially or using parallel hardware.

scheme derived from a straightforward application of the paper-and-pencil meth

essentially a process of repeated adds (conditionally adding the multiplicand to a ru

partial product) and shifts. Therefore there are two basic approaches to improvin

speed of multiplication: making each addition faster, and reducing the numbe

Multiplicand
Multiplier

Figure 4-1: Dot representation of 8× 8 bit add and shift multiplication
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additions required. An additional technique is to use an “early out” scheme [68], w

depends upon the operands presented.

4.1.1   Making each addition faster

A simple multiplier using the scheme derived from the paper-and-pencil metho

illustrated in figure 4-2. The multiplier and multiplicand are initially placed in registerA

and B, respectively; registerP which holds the partial product is initially 0. Each

multiply step consists of replacingP with the sum ofP andB (AND-gated by the least

significant bit ofA), and then shiftingP andA together one bit right at a time.

Obviously, the time necessary for carry propagation imposes the ultimate limit on

speed of addition and thus multiplication. All the techniques for faster adders ca

used here to speed up multiplication. However, multiplication is a special cas

repetitive addition in which the intermediate results of all but the last addition are no

any interest. So it is not necessary for the carries to propagate during every multiply

Instead, the carries generated during one step may be saved and used again in t

A
dd

er

A

B

P
carry-out

shift right

Figure 4-2: A simple multiplier
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step with an appropriate shift. In this way, a partial sum and a partial (saved) c

together present the partial product. Thus each multiply step needs only the time req

for a 1-bit addition since all the carry bits are passed from internal intermediate signa

outputs. Only on the last step need the carries be propagated to completion inste

being saved. A carry-save multiplier is illustrated in figure 4-3.

Alternatively, redundant number systems [58] can be used to achieve addition wi

carry propagation. Take the radix-2 redundant representation as an example, which

digit set {1, 0, 1} where1 denotes -1. An n-bit redundant numberY= [yn-1,…,y0] has the

value , whereyi belongs to {1, 0, 1}. This is similar to an unsigned binary

representation except thatyi can be1. The key idea to avoid carry propagation whe

adding two redundant numbers is to set the intermediate sum to 0 or 1 when ther

negative carry from the next lower order position and to set the intermediate sum to

1 when there is a positive carry from the next lower order position. By so doing, the

no need to know the lower order carry to obtain the carry as the intermediate sum

carry from the next lower order position cannot both be 1 and -1 at the same time.

A

B

P1

shift right

Figure 4-3: A carry-save multiplier

P2

C
S

A

yi 2i×
i 0=

n 1–

∑
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It is worth noting that since the partial product has been replaced by a partial sum

partial carry, the carry-save scheme in effect employs a redundant concept.

difference is that the carry-save scheme uses the digit set {0, 1, 2, 3} instead of {1, 0, 1}

since the combination of a partial sum and a partial carry results in four value

unsigned number.

4.1.2   Reducing the number of additions required

One way to reduce the number of additions required is to use multi-operand add

(more than three operands), which can add many numbers simultaneously, instead

two or three at a time. A Wallace tree [69] is well known for its optimal computati

time. However, its implementation is often too expensive to justify the speed obtai

Several tree or array structures derived from the Wallace tree have been propos

trading speed for regularity [70-72].

Another way to reduce the number of additions required is to skip over any contig

string of 1s and 0s in the multiplier, rather than form a partial product for each bit.

original Booth’s algorithm [13] is based on this idea.

Taking a 32-bit two’s complement number as an example. A 32-bit signed wordA =

(a31a30 … a1 a0) can be expressed as:

The principle of the original Booth’s algorithm is to rewrite this number as:

A 231a31– 2iai
i 0=

30

∑+=

A 231a31– 2iai
i 0=

30

∑+ 2i ai 1– ai–( )
i 0=

31

∑ 2i ki
i 0=

31

∑= = =
Multiplier design        70



the

ndant

f

and

rs

he

bits

rder

ed

to a

ix 4
wherea-1 is a dummy bit that is equal to zero, andki (= ai-1 - ai) belongs to the digit set

of { 1, 0, 1}. Thus, the original Booth’s algorithm may be viewed as a conversion of

multiplier representation from a conventional code into a redundant code. The redu

code is {1, 0, 1}, and the radix is two. The radix (r = 2b) determines how many bits (b) o

multiplier are retired in an iteration.

A redundant addition or carry-save addition scheme encodes themultiplicand using a

redundant representation, while the original Booth’s algorithm encodes themultiplier

using a redundant representation. It is worth noting that the radix of the algorithm

the radix of the number representation are not the same concept.

A slightly different algorithm, called the modified Booth’s algorithm [14], conside

groups of bits of the multiplier rather than skipping over arbitrarily long strings. T

multiplier bits are divided into two-bit groups. Three bits are scanned at a time, two

from the present group and the third bit being the higher-order bit of the next lower-o

group.

The principle of the modified Booth’s algorithm is to rearrange a number as:

wherea-1 is a dummy bit that is equal to zero, andki (= a2i-1 + a2i - 2a2i+1) belongs to

the digit set of {-2, -1, 0, +1, +2}. Thus, the modified Booth’s algorithm may be view

as a conversion of the multiplier representation from a conventional code in

redundant code. The redundant code is {-2, -1, 0, 1, 2}, and the radix is four. A rad

algorithm retires 2 bits of multiplier in an iteration.

A 231a31– 2iai
i 0=

30

∑+ 22i a2i 1– a2i 2a2i 1+–+( )
i 0=

15

∑ 22i ki
i 0=

15

∑= = =
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The modified Booth’s algorithm is described in table 4-1.

The modified Booth’s algorithm is more commonly used than the original Boo

algorithm since VLSI implementations favour its fixed shift of the multiplier in ea

iteration. The modified Booth’s algorithm halves the number of additions that have t

performed compared with the simple paper-and-pencil method, therefore speeding

multiplication.

An additional technique that may be used to further reduce the number of additions

check in each multiply step whether the shifted multiplier register contains only 1s o

and, if so, to terminate the multiply process early. Note that the final result mus

correctly aligned.

4.2   AMULET2e multiplier

The AMULET2e multiplier has been described elsewhere [16], so only a summa

presented here. Figure 4-4 shows the organisation of the AMULET2e multiplier.

Table 4-1: Modified Booth algorithm

Group Action

0 0 0 0

0 0 1 +1

0 1 0 +1

0 1 1 +2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0
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4-2
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Booth’s
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4-bits shift to right

4-bits shift to left
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Figure 4-4: AMULET2e multiplier organization
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❏ The AMULET2e multiplier is a 32-bit normal multiplier, which means that th

final result is the least significant 32 bits of the 64-bit product. One benefit from this

of multiplier is that both unsigned and signed number multiplications give the s

result. The AMULET2e multiplier does not detect overflow and leaves it to softw

either to constrain the operands to ensure there is no overflow or to perform ex

checks (as required by the ARM instruction set definition).

❏ The AMULET2e multiplier uses the modified Booth’s algorithm. Two stages

the Booth’s algorithm are performed in each cycle by shifting four bits at a time.

AMULET2e multiplier employs an “early out” scheme, which depends on the opera

provided, hence achieving statistical speed improvement and saving power.

❏ An iterative structure was chosen combined with a pipeline technique in

AMULET2e multiplier to reduce the hardware cost by increasing hardware utilizat

The partial products in the AMULET2e multiplier remain at a fixed alignment to av

difficulty when selecting the final result in “early out” cases. Instead, the multiplica

and multiplier shift left and right, respectively.

❏ The AMULET2e multiplier uses the high speed, low power true single-ph

clocking (TSPC) methodology and pass-transistor logic style. Novel 4-2 Counters

used which are symmetric with respect to their inputs and outputs. Transistors with s

size were favoured for low power.

❏ The AMULET2e multiplier was designed in a 0.5µm three metal CMOS process

technology. The layout is regular and compact with a datapath area of only 320× 710

µm2. The working chip has a 6.5 ns multiplier cycle time [11].
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4.3   Multiply support for AMULET3i

AMULET3i supports two classes of multiply instruction: a normal 32-bit result and

long 64-bit result. Both types of multiply instruction can also optionally perform

accumulate operation.

4.3.1   Normal multiply

There are two normal multiply instructions, producing 32-bit results:

MUL

The MUL instruction multiples the values of two registers together, truncates the re

to 32 bits, and stores the result in a third register.

MLA

The MLA instruction multiples the values of two registers together, adds the value

third register, truncates the result to 32 bits, and stores the result into a fourth regis

Both instructions can operate on signed or unsigned numbers since only the

significant 32 bits of the product result are stored in the destination register and the

of the operands does not affect this value.

4.3.2   Long multiply

There are four long multiply instructions, producing 64 bit results:

SMULL& UMULL
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These two instructions multiply the values of two registers together and store the 6

result in a third and a fourth register. There are signed (SMULL) and unsig

(UMULL) variants. The signed variants produce a different result in the most signific

32 bits if either or both of the source operands is negative.

SMLAL& UMLAL

These two instructions multiply the values of two registers together, add the 64 bit v

from a third and a fourth register and store the 64 bit result back into those (third

fourth) registers. There are again signed (SMLAL) and unsigned (UMLAL) varia

These two instructions perform a long multiply and accumulate.

4.4   Multiplier organization

The target for the multiplier design for AMULET3i is a 2 times speed improvem

compared with the AMULET2e multiplier, with a reasonable area increase. Latency

chip area were considered the most important parameters to be minimized.

AMULET3i multiplier is not optimized for low power since multiplication instruction

are not very often used compared with other instructions for general purp

applications. However, low power was kept in mind during the development of

design.

4.4.1   First design iteration

The first design decision was to use the modified Booth’s algorithm, processing 8 b

a time. The reasons are twofold. Firstly, based on the evaluation of the AMULE

multiplier, this approach is likely to meet the speed target. Secondly, an 8-bit sch
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just having four cases (caused by early outs) to choose from, simplifies the product

select compared with the eight cases arising from the “early out” scheme with 4 bits

time. This difficulty was avoided in the AMULET2e multiplier by shifting th

multiplicand left while the partial product remains fixed, since the most significant

bits of a product result can be thrown away. However, as the multiplier for AMULE

supports long multiply instructions, the difficulty cannot easily be avoided as

multiplicand should remain fixed here while the partial products are shifted right.

The second design decision was to define an iterative structure for the AMULE

multiplier. It is possible to implement a fast parallel 32-bit multiplier, however,

significant amount of hardware would be needed. On the other hand, serial multip

use less area but are quite slow. A serial/parallel iterative structure was chosen as a

compromise for the AMULET3i multiplier.

The initial design is shown in figure 4-5. A 64 bit accumulate value can be use

initialise one of the partial product registersP1 andP2 (the most significant 32 bits and

the least significant 32 bits of an accumulate value are inP1L andP1H or P2L andP2H,

respectively). Multiplier data can be stored into the least significant 32 bits of eithe

the partial product registersP1 or P2. The most significant 32 bits of one of the partia

product registersP1 or P2 is unused and should be initialised to 0. This initial version

the design presents a minimum hardware requirement.

4.4.2   Encoding technique

As described previously, the multiplier for AMULET3i should support both unsign

and signed numbers. In fact, the modified Booth’s algorithm can also be used wi
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unsigned system. For an unsigned number multiply operation, an extra action mu

performed to adjust the product result. The conventional equation of the mod

Booth’s algorithm for an unsigned number is, in the case of a 32-bit number, to rearr

an unsigned numberA = (a31a30 … a1 a0) as:

wherea-1 is a dummy bit that is equal to zero, andki (= a2i-1 + a2i - 2a2i+1) belongs to

the digit set of {-2, -1, 0, +1, +2}. Obviously, an adjustment value (a multiplicand val

Multiplicand

Booth Mux

4-2 counter

4-2 counter

P1H P1L

P2H P2L

Result select

final result

Figure 4-5: First version

shift 8 bits right per cycle

A 231a31 2iai
i 0=

30

∑+ 22i a2i 1– a2i 2a2i 1+–+( )
i 0=

15

∑ 232a31+ 22i ki
i 0=

15

∑ 232a31+= = =
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can initially be put into either registerP1Lor P2L to represent the term 232a31. However,

this cannot easily be done since one of the registersP1L andP2L is used for the most

significant 32 bits of an accumulate value and the other is used for a multiplier ope

One observation is that one of the registersP1H andP2H is for the least significant 32

bits of an accumulate value and the other is left unused. The new idea introduced h

to put an adjustment value in one of the registersP1H andP2H.

A signed or unsigned number can be expressed as:

whereb0 = 0, bi = ai (1 ≤ i ≤ 31), andb32 = sign× a31. Thesignbit indicates that signed

numbers are used if it is 1 and unsigned numbers are used if it is 0. In this wa

adjustment value can initially put into either registerP1H or P2H to present the terma0.

4.4.3   Second design iteration

From figure 4-5, a multiply cycle should cover the delay of two 4-2 Counters, one Bo

mux cell and one register. In order to improve the speed, a common pipeline tech

can be used, as shown in the figure 4-6. Two additional pipeline registers are added

initial version. This does not cause a big increase in hardware since part of register

be merged efficiently into the preceding 4-2 Counter as we will see later in the ci

design. However, the pipeline register causes a one clock cycle skew between the

products and the signals before the pipeline registers since the partial product reg

are shift registers. A multiplexer can be used before the partial product registers to

the skew problem as is frequently done in clocked designs. The alternative approac

A 231a31 2iai
i 0=

30

∑+ 22i b2i b2i 1+ 2b2i 2+–+( )
i 0=

15

∑ a0+ 22i ki
i 0=

15

∑ a0+= = =
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use gated registers (conditional clocking) for partial products. Only on the first cycle

the partial registers disabled and the contents of the registers remains unshifted, the

the partial registers are naturally aligned with the incoming signals from the pipe

registers after the first cycle.

The first approach (using a multiplexer) will suffer a hardware overhead, wherea

second approach (conditional clocking) will violate the high speed true single-p

Multiplicand

Booth Mux

4-2 counter

4-2 counter

P1H P1L

P2H P2L

final result

Figure 4-6: Second version

shift 8 bits right per cycle

Pipeline register
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clocking methodology we will use in the circuit design as the clock signals for

pipeline registers and the partial product registers have to be separated due to the

clock requirement for the partial product registers. The two above approaches

heavily influenced by the clocked design methodology.

In fact, the skew problem can easily be solved within the asynchronous framewor

making the pipeline registers initially transparent. It will be seen that the first cycle t

must cover the whole path delay just as in the non-pipelined case. However, this do

matter for an asynchronous design which can have variable cycle times. This

example of how nicely an asynchronous design can solve problems which can on

solved with much effort in clocked designs.

Another change is that a final shifter for “early out” cases is not used since the

difficulty in the layout stage. Though the number of tracks for buses is ten per bit p

six buses must be reserved for global use and only four local buses are available f

multiplier. As a result, the final result can be quickly shifted out instead.

4.4.4   Sign extension

Due to the two negative terms (-1 and -2) in the modified Booth’s algorithm, the sign

(the most significant bit) of the partial products has to be extended up to the

significant bit of the expected result. This means that in a real circuit implementation

sign bit has to be broadcast up to the most significant bit of the expected result an

may cause both decreased circuit speed, since a heavy capacitance load arises fr

high fan-out of the sign bit, and increased layout area. The scheme presented

avoids these drawbacks.
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Consider a numberAext of a k-bit signed partial productA = (ak-1ak-2 … a1 a0), which

must be sign extended bys bits. Its value is:

The above equation can be rearranged as:

From the equation, instead of direct sign extension, constant 1s (the first term) ca

added at the most significant s+1 bit positions of the numberAext and the invertedak-1

(the second term) replaces the originalak-1. All the constant 1s of the partial products ca

be pre-calculated as a adjustment value.

4.5   Circuit design

The true single-phase clocking (TSPC) methodology [15] and pass-transistor logic

[73-77] were chosen for the circuit design in order to achieve high performance and

power. One main advantage of the true single-phase clocking methodology is tha

clock skew problem of complementary phase or multi-phase clocking scheme

avoided. Another advantage is its low power consumption as only one enabling sig

required. Pass-transistor logic style is flexible for the design of arithmetic compone

4.5.1   Booth mux cell design

The modified Booth’s algorithm examines three bits of the multiplier at a time

determine whether to add 0, +1, +2, -1, or -2 times the multiplicand. The Booth mux

performs this function, and it steers the appropriate multiplicand value to the ou

Aext 2s k 1–+ ak 1–– 2
i
ak 1–

k 1–

s k 2–+

∑ 2iai
i 0=

k 2–

∑+ +=

Aext 2i

k 1–

s k 1–+

∑ 2k 1– 1 ak 1––( ) 2iai
i 0=

k 2–

∑+ +=
Multiplier design        82



r.

is on

the

re

it is

the
Figure 4-7 shows the circuit of the Booth mux cell used in the AMULET3i multiplie

Some effort was expended to ensure that only one path from the input to the output

at any time, minimising short circuit currents for low power reasons.

The Booth mux cell was analysed using HSPICE on extracted layout under

conditions of 3.3 volt supply voltage and 100˚C temperature. The simulated results a

given in table 4-2. The estimation of power consumption of a circuit is difficult since

a function of not only its inputs but also of their history. For the sake of simplicity,

power consumption was measured under the assumption of 100% input activity.

Table 4-2: Simulation results on the Booth mux cell

delay power

typical process case 0.61 ns
41 µW @ 100 MHz

87 µW @ 200 MHz

worst process corner
0.72 ns

37 µW @ 100 MHz

78 µW @ 200 MHz

-1*+1* +2* -2*

+1 -1 +2 -2

M*
i

M*
i+1

Mi

Mi+1

Outi

Figure 4-7: Booth mux cell
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4.5.2   4-2 Counter design

4-2 Counters [78-82] are used to speed up the partial product compression proces

main advantage of 4-2 counters over the more familiar 3-2 counters (i.e., full adde

that their structure is analogous to a binary tree, which leads to regular layout

improved speed. Logically, a 4-2 counter consists of two full adders as shown in figu

8 and has four XOR gate delays. Since theCoutsignal is independent of theCin signal,

there is no propagation problem when several 4-2 counters are abutted into the sam

this is the key idea behind 4-2 counters. A 4-2 counter is similar to but different from

3 counter. A 5-3 counter has three different weights for the outputs, while a 4-2 cou

has two different weights for the outputs.

With careful design, following the truth table as shown in table 4-3, one XOR gate d

can be saved. Figure 4-9 and figure 4-10 show the new 4-2 Counter with and wi

In2 In3 In4In1

SumCarry

CinCout

3-2 counter

3-2 counter

Figure 4-8: 4-2 Counter structure
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enable control, respectively. A 4-2 Counter with enable control includes the function

of the pipeline register (see section 4.5.3). This inclusion is natural and without hard

overhead; just two more n-type transistors are introduced.

The circuits use pass-transistor logic and borrow a common practice from analog de

in which noise immunity is achieved by using quasi-differential signals. The interfac

signals are singled-ended and internal signals are complementary.

Normally the enable signal is high and the circuit behaves statically. The sum and

delays are balanced for decreasing glitches; this is also desirable since both signa

on the critical path. This is different from the case of adder designs where the carry d

should be minimized since it is on the critical path and the sum delay is off the cri

path.

Table 4-3: Truth table for 4-2 Counters

The number of inputs high Cin Cout Sum Carry

0 0 0 0 0

1 0 0 1 0

2 0 1/0(note) 0 0/1(note)

3 0 1 1 0

4 0 1 0 1

0 1 0 1 0

1 1 0 0 1

2 1 0/1(note) 1 1/0(note)

3 1 1 0 1

4 1 1 1 1

(note) — eitherCout or Carry may be one or zero, but not both.
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Figure 4-9: 4-2 Counter with enable control
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Figure 4-10: 4-2 Counter without enable control

P1

P3

P2

P4

nCin CinCo nCo

nPS
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The two 4-2 Counters were analysed using HSPICE on extracted layout unde

conditions of 3.3 volt supply voltage and 100°C temperature. The simulation results a

given in table 4-4 and table 4-5. For the sake of simplicity, the power consumption

measured under the assumption that one input is active.

4.5.3   Pipeline register design

Figure 4-11 shows the circuit of a pipeline register. The first enabled inverting s

predischarges the noden1 low and the second enabled inverting stage is opaque when

enable signalEn is high. At the time thatEn falls, the noden1 is either pulled high (input

In low) through two pull-up transistors or remains low (inputIn high), and this level is

then stored into the dynamic noden2 through the second transparent inverting sta

whenEn is low. Normally the enable signalEn is high. Since the signalsLt andnLt are

Table 4-4: Simulation results on the 4-2 Counter with enable control

delay power

typical process case 1.10 ns
319µW @ 100 MHz

644µW @ 200 MHz

worst process corner 1.40 ns
302µW @ 100 MHz

611µW @ 200 MHz

Table 4-5: Simulation results on the 4-2 Counter without enable control

delay power

typical process case 0.97 ns
300µW @ 100 MHz

606µW @ 200 MHz

worst process corner 1.24 ns
285µW @ 100 MHz

574µW @ 200 MHz
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initially high and low, respectively, which allows the inputIn to propagate down to the

noden2, the noden2 has static behaviour. It is obvious that the initially transpare

pipeline register not only solves the skew problem (see “Second design iteration

page 80), but also makes the noden2 static; otherwise some effort would have to be p

into ensuring that the noden2 was static rather than “floating”. There is no node in th

circuit that is in the floating state for an arbitrary long time. It is worth noting that o

enabled inverting stage required for a negative edge triggered TSPC register is m

into the last stage of the previous 4-2 Counter.

The pipeline register was analysed using HSPICE on extracted layout unde

conditions of 3.3 volt supply voltage and 100°C temperature. The simulation results a

given in table 4-6. For the sake of simplicity, the power consumption was meas

under the assumption of 100% input activity.

In Out

En Lt nLt

n1

n2

Figure 4-11: Pipeline register
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4.5.4   Partial product register design

Figure 4-12 shows the circuit of the partial product register, which comprises t

clocked inverting stages. The first stage is transparent and the third stage is opaque

En is high. On the other hand, the first stage is opaque and the third stage is trans

whenEn is low. At the time thatEn is high, noden1 in the second stage is predischarge

low. WhenEn falls, the noden1 is either pulled high or remains low, and this level is the

transfer into the third stage.

The partial product register also provides a direct load capability. Initially the noden2 is

made static high by the signalnZ, and it can then be conditionally discharge dependi

on the signalsD andLt.

The partial product register was analysed using HSPICE on extracted layout unde

conditions of 3.3 volt supply voltage and 100°C temperature. The simulation results a

given in table 4-7. For the sake of simplicity, the power consumption was meas

under the assumption of 100% input activity.

Table 4-6: Simulation results on the pipeline register

delay
power

In → En En→ Out

typical process case 0.0 ns 0.46 ns
58 µW @ 100 MHz

92 µW @ 200 MHz

worst process corner 0.0 ns 0.68 ns
44 µW @ 100 MHz

83 µW @ 200 MHz
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4.5.5   Low power design

The multiplier for AMULET3i is not optimized for low power, however low power wa

kept in mind during the whole process of design development.

Dynamic logic [83,84] is favourable for low power due to its lower switched capacitan

However, a direct application of dynamic logic in an asynchronous design will cau

Table 4-7: Simulation results on the partial product register

delay
power

In → En En→ Out

typical process case 0.19 ns 0.47 ns
39 µW @ 100 MHz

63 µW @ 200 MHz

worst process corner 0.23 ns 0.65 ns
31 µW @ 100 MHz

57 µW @ 200 MHz

In

Out

En Lt nZ

n1 n2

D

Figure 4-12: Partial product register
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state-loss problem since an asynchronous design allows activity to cease fo

arbitrarily long time. Therefore low power designs often employ dynamic logic w

additional latches or charge-retention circuits to give pseudo-static behaviour. T

additions increase the cost and power consumption of the dynamic circuits, the

compromising their potential advantages. Circuits used for the AMULET3i multip

are dynamic logic without the above-mentioned encumbrances whilst still retai

externally static behaviour.

The true single-phase clocking methodology has been adopted in the circuit design

reasons are threefold. Firstly, its dynamic logic which can be integrated with s

behaviour is desirable for both low power and high speed. Secondly, only one ena

signal is required and the minimum size and number of transistors are needed

TSPC registers. Thirdly, it is easy to integrate some logic into a TSPC register to re

the hardware complexity and overall delay and therefore save power.

To minimize the physical capacitance for low power, transistors are made s

whenever this is possible. Cells for the AMULET3i multiplier usually comprise tw

stages. The first stage contains transistors with the smallest size possible to minimi

required area and power, whereas the second stage uses transistors with greater

ensure that they have the drive capability for their capacitive load.

Reducing the activity of nodes with a large capacitive load is another approach ad

for low power. An early out technique is used, which not only gives a statistical sp

improvement but also saves power. Attention is also given to minimise short cir

currents during the circuit design [85].
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4.6   Layout design

The layout design of the AMULET3i multiplier uses a full-custom style for the datapa

where the circuit and layout of almost every transistor is optimized, and a standard

style for the control logic, where the layout is automatically placed and routed u

Compass Design Automation tools [86]. When the layout of a cell was complete, it

verified against the corresponding schematic (LVS) and then simulated using HSP

The full-custom style is used in order to exploit the regularity of the datapath

designing only one “bit slice”. The height of the bit slice in the datapath design is 8λ

for the AMULET3i multiplier. The number of tracks available for buses is ten per

slice. Four tracks are for local routing and the other six for through buses. Data flo

routed horizontally in metal3, while control flow is relayed vertically in metal2. Bo

metal1 and metal2 are used for local interconnect in cells. The global power rails

metal1 and metal3, and the local power rails use metal2.

The overall height and width of the standard cells for AMULET2e are 112λ and a

multiple of 8λ, respectively. This means that the connectors of a cell must have anλ

spacing and a 4λ horizontal margin to either side of a cell. By taking into accou

existing open vertical routing tracks inside the standard cells, the routing over

algorithm helps to reduce the final chip size.

4.7   Evaluation

An evaluation of the AMULET3i multiplier in terms of performance, powe

consumption and silicon area is presented in this section.
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4.7.1   Performance

The critical path in the first pipeline stage includes one Booth mux cell, one 4-2 Cou

(with enable control) and one pipeline register and the critical delay is about 2.8 ns u

worst-case conditions (Vdd = 3.3V, Vss=0.1V, slow-slow process corner, at 100˚C

temperature). The critical path in the second pipeline stage includes one 4-2 Co

(without enable control), one partial product register and one multiplexer for the fi

result and the critical delay is about 2.6 ns under worst-case conditions.

The delays of the two pipeline stages are well matched. This results in a 300

computational speed with a 20% engineering margin.

4.7.2   Power consumption

The estimation of power consumption is a difficult problem since it is a strong func

of the inputs and their history. A rough estimate of power consumption is given base

some assumptions. It is highly unlikely that all data bits will change for every data va

Based on the assumptions that half the data bits on average will change and th

dynamic switching power is 90% of the total power, the power estimate of the datapa

about 40 and 82 mW operating at 100 and 200 MHz (under typical process conditi

respectively.

4.7.3   Silicon area

The silicon area of the datapath is 2082λ × 3198λ (416.4× 639.6µm2). Figure 4-13

shows the physical layout of the datapath of the AMULET3i multiplier, and illustrates

regular structure.
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Figure 4-13: Physical layout of the multiplier datapath
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4.8   Summary

A high performance, low power asynchronous 32 bit multiplier with a reasona

hardware resource has been developed for AMULET3i. The design uses the mo

Booth’s algorithm with 8 bits at a time with an iterative structure. An “early out” sche

is employed.

The pipeline registers are made initially transparent to avoid the data skew pro

caused by introducing one pipeline stage. An new coding scheme is used to adju

product result of an unsigned number multiplication. An adjustment value is made o

least significant 32-bit positions.

The true single-phase clocking methodology and pass-transistor logic style are c

for circuit design. A new 4-2 counter circuit has been incorporated.

The AMULET3i multiplier presents a minimum hardware requirement giv

performance constraints and is designed for low power.

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows th

takes 11.2 ns (2.8 ns× 4 cycles) to complete the computation of a 32-bit multiplicatio

in the worst case. The power estimate of the datapath is about 40 and 82 mW opera

100 and 200 MHz (under typical process conditions), respectively. The layout is reg

and compact with a datapath area of only 416.4× 639.6µm2.

Taken individually, the characteristics above are not novel. What is new is the mann

which the AMULET3i multiplier has been designed to combine elegantly all th

algorithm and circuit design techniques within an asynchronous framework.
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Four-phase pipeline control 5

This chapter explores the design of four-phase control schemes for asynchro

pipelines. The study is focused mainly on the four-phase micropipeline design

which uses conventional level-sensitive data latches. Low power considerations an

use of dynamic logic are also discussed. All of the proposed pipeline latch co

circuits are speed-independent, and this has been verified using the FORCAGE too

Simulation results in a 0.35 micron triple metal CMOS technology are presented.

5.1   Introduction

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lect

[20], and are a practical way to build asynchronous pipelines. Micropipelines are vie

as being composed of a control circuit employing the two-phase handshake protoco

a datapath using the bounded delay model.

The AMULET1 asynchronous processor, developed by Professor Steve Fur

AMULET group at the University of Manchester, used the two-phase micropipe

design techniques. However its successors, AMULET2e and AMULET3i, abando

two-phase control in favour of four-phase control, mainly for performance reasons.
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The four-phase micropipeline design space may be roughly categorized by vie

along three dimensions: the data-validity scheme, the logic activation configuration

the decoupling degree. These three dimensions have the possible values of:Early, Broad

or Late;Request-activate orAcknowledge-activate;Un-decoupled,Semi-decoupled or

Fully-decoupled, respectively. A three-character shorthand notation can therefo

used to convey the category for a particular design. For example, the abbreviationERF

would signify a circuit which employs theEarly data-validity scheme, uses aRequest

signal to activate combinational logic, and isFully-decoupled.

5.2   Data-validity scheme

Figure 5-1 shows a general micropipeline stage structure. The latch control ci

communicates with neighbouring pipeline stages on both its input link (Rin, Ain) and its

output link (Rout, Aout). The control link (E, D) connects with associated combination

logic. In addition to these three handshake links, a latch control wire (Lt) is needed to

open and close the latch when low and high, respectively. The pipeline latche

configured as transparent when empty and we will return to this later.
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tc

h
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gi

c

Controller
Rin

Ain

Rout

Aout

LtE D

Data in Data out

Figure 5-1: Micropipeline stage structure
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The four-phase micropipeline design uses two successive handshakes for completi

communication process between neighbouring pipeline stages. There is a choice

made as to which edge (rising or falling) of each handshake signal indicates the va

of data. This leaves us with three possible data-validity schemes, “early” [17,

“broad” [19] or “late”, which are depicted in figure 5-2. It is worth noting that all the

schemes take the micropipeline view that the sender of the data initiates the transf

Initially, the Rin andAin wires are both low. The “early” data-validity scheme uses t

rising edge of theRinwire to indicate “data available” and the rising edge of theAin wire

to indicate “data latched”. Then theRin wire is returned low, whereafter theAin wire is

also returned low. The first handshake fromRin high to Ain high is called the

“processing” or “evaluation” phase, during which the data remains valid. Data

change after the first handshake. The second handshake fromRin low to Ain low is called

the “recovery” or “reset” phase, which is redundant and carries no meaning.

“Early”

“Broad”

“Late”

Rin

Ain

Figure 5-2: Three data-validity schemes
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The “broad” data-validity scheme uses the rising edge of theRin wire to indicate “data

available” and the falling edge of theAin wire to indicate “data latched”. Data must b

guaranteed valid throughout two successive handshake processes. No “evaluati

“reset” phases are distinguished.

The “late” data-validity scheme uses the falling edge of theRin wire to indicate “data

available” and the falling edge of theAin wire to indicate “data latched”. The first

handshake fromRinhigh toAin high is called the “preset” phase, which is redundant a

carries no meaning. The second handshake fromRin low to Ain low is called

“processing” or “evaluation” phase, during which the data remains valid. Since the “l

data-validity scheme is rarely used, we focus only on the “early” and “broad” d

validity schemes and omit further consideration of the “late” scheme in this thesis.

5.3   Logic activation configuration

The rising edge ofRin, which indicates “data available” in both “early” and “broad

data-validity schemes, is usually used to activate combinational logic. This com

arrangement is referred to as a “request-activate” configuration as shown in figure 
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h
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c

Controller
Rin

Ain

Rout

Aout

LtE D

Data in Data out

Figure 5-3: “Request-activate” configuration
Four-phase pipeline control        100



ng

ole

tivate”

wer

with

first

d” is

wo

d”

(2)

een

first
Instead of using theRin wire, the “broad” data-validity scheme has the choice of usi

the Ain wire to activate combinational logic as the data remains valid during the wh

handshaking process. This new arrangement is referred to as an “acknowledge-ac

configuration as shown in figure 5-4, and provides an efficient framework for low po

design using dynamic logic (see section 5.13).

5.4   Decoupling degree

Conceptually, the decoupling degree is used to describe how the input link interacts

the output link. For the sake of discussion, three terms are defined here. The

handshake is called “initiated” and the second handshake “completed”. “Suspende

between “initiated” and “completed”.

A micropipeline stage is said to be un-decoupled if it satisfies the following t

conditions: (1) a new communication coming along its input link cannot be “initiate

until the current communication going along its output link has been “completed”,

and it is “suspended” if the new communication along its output link has not b

“initiated”. A micropipeline stage becomes semi-decoupled by getting rid of the
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c

Controller
Rin

Ain

Rout

Aout

LtE D

Data in Data out

Figure 5-4: “Acknowledge-activate” configuration
Four-phase pipeline control        101



new

be

”.

raph

G for

ate

ve and

at the

arcs

ken

s.

state

-6 is
condition, and it becomes fully-decoupled by also removing the second condition. A

communication along the input link of a fully-decoupled latch control circuit may

“completed” before the new communication along its output link has been “initiated

5.5   ERU latch control circuit

The specification of the latch control circuit is described using a Signal Transition G

(STG) which shows the causal relationships between the signal transitions. An ST

an ERU latch control circuit is shown in figure 5-5. The dashed arrows indic

dependencies that the environment (usually the neighbouring stages) must obser

the solid arrows represent internal orderings; both must be maintained to ensure th

corresponding circuit is speed-independent. The “tokens” drawn next to certain

represent an initial “marking”. A particular transition can fire only when there is a to

on each of its input arcs and a token is placed on each of its output arcs after it fire

The state graph may be derived from the STG and then an implementation from the

graph, but in this simple case it may be seen by inspection that the circuit in figure 5

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-5: STG of the ERU latch control circuit
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an implementation of the STG in figure 5-5. There should be one closure and

opening of the latch before one communication has been “completed” for this l

control circuit. Thus the latch can only be closed when the next stage latch is open

Aoutmust be low (the next latch is open) beforeLt can go high. In the case when data

inserted into the pipeline at a greater rate than it is removed from the pipeline

pipeline will eventually fill. A full micropipeline has alternate closed and open latch

(and therefore only alternate stages can be occupied), similar to master-slave latc

synchronous designs. This effectively halves the asynchronous pipeline depth. The

this design is not of practical interest, and it is used here only as a starting point.

5.6   ERS latch control circuit

An STG specification for an ERS latch control circuit [18] is shown in figure 5-7. It

worth noting that an internal variable (A) is introduced on purpose. The variable (A) is

used to record when the input link is ready to proceed. It is expected that there w

dozens of latched data and a buffer is to be needed to maintain reasonable drive str

This buffer reflects the need for the latch to close before the input link is “initiated”

could, perhaps, be argued that some delay should be built into the path fromD to Rout.

D

C

Aout Rout

Lt

Ain

Figure 5-6: ERU latch control circuit

A
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However, there is no need for the latch to close beforeRout is signalled so long as the

data have propagated through the latch which is transparent when empty. This arg

reflects, in fact, the constraint of the bounded delay model. Therefore the delay fromD to

Rout must be no shorter than the propagation delay through the latch for the co

operation of the circuit, which is almost always satisfied with confidence.

To obtain formally an implementation of an STG specification, the STG is fi

transformed into the state graph by applying the underlying Petri net rules to cons

the reachability tree. The state graph should have the CSC (Complete State Co

property, then logic equations for the output variables can be derived. Figure 5-8 s

an implementation of the ERS latch control circuit [18]. The notation used here

asymmetric C-gates follows that used in previous work [18]. An input controls b

edges of the output when it is connected to the main body of the gate, it controls onl

rising edge when connected to the extension marked “+”, and it controls only the fa

edge when connected to the extension marked “-”. This notation is illustrated in figu

9 which shows a possible transistor level implementation of an asymmetric C-gate.

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-7: STG of the ERS latch control circuit
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With the ERS circuit a new communication on the input link can be “initiated” before

current communication on the output link has been “completed”, but it is “suspend

until the new communication on the output link has been “initiated”. This means that

communication should cover two “evaluation” processes and can therefore be perfo

in a time proportional to the sum of the two processing logic delays.

D

C

Aout Rout

Lt

Ain

-

C+

Figure 5-8: ERS latch control circuit
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+

A
B

C
Z =

Figure 5-9: Asymmetric C-gate notation
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5.7   ERF latch control circuit

An STG specification for an ERF latch control circuit is shown in figure 5-10. Note t

the buffer falling delay fromLt high toLt low is removed from the input link path. This is

significant since the buffer delay, especially in a wide datapath where the capa

loading is large, has an adverse effect on the handshake delays.

The ERF latch control circuit is shown in figure 5-11. A new communication along

input link can be “completed” before the new communication along the output link

been “initiated”. The essence of a fully-decouped latch control circuit is to break

sequential operational dependency between its input side and its output side in or

allow them to run concurrently on either side. A clocked pipeline is, in some sen

fully-decouped, but it should use an edge-triggered as one pipeline stage to isola

input flow from its output flow. It is obvious that asynchronous pipelines are m

efficient in terms of the number of latches required, especially when a wide datapath

deep pipeline is involved. It should be mentioned here that early asynchronous de

[87] used edge-triggered latches, simply following the practice of the clocked desig

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-10: STG of the ERF latch control circuit
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5.8   BRU latch control circuit

For the sake of comparison, an STG specification and implementation of a BRU

control circuit are shown in figure 5-12 and figure 5-13, respectively.

D

Aout Rout

Lt

Ain

C

C

+

A

Figure 5-11: ERF latch control circuit

_

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-12: STG of the BRU latch control circuit
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5.9   BRS latch control circuit

An STG specification and implementation of a BRS latch control circuit are show

figure 5-14 and figure 5-15, respectively. The BRS latch control circuit is very simila

the ERS one. However, the buffer delay directly contributes to the input link delay in

ERS latch control circuit, whereas the buffer delay is “invisible” from the input link a

moved into the output link in the BRS one.

D

C

AoutRout

Lt

Ain

Figure 5-13: BRU latch control circuit

A

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-14: STG of the BRS latch control circuit
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The BRS latch control circuit has the same drawback as the ERS one: the pipeline

time increases by twice the processing logic delay. It is of potential use only in F

applications.

5.10   BRF latch control circuit

An STG specification of a BRF latch control circuit is shown in figure 5-16. For the in

link (D, Ain), the path fromAin low to D high is the critical arc since the evaluatio

process is by assumption much longer than internal handshake transitions. Similar

the output link (Rout, Aout), the path fromRouthigh toAouthigh is the critical arc. By

now, an intuitive feel for fully-decoupling is that operations on these two critical pa

should not be dependent on each other. In other words, there is no simple loop

contains these two arcs in the STG specifications. By so doing, two neighbou

combinational logic functions can be performed in parallel at all times.

D

AoutRout

Lt

Ain

-

C+

Figure 5-15: BRS latch control circuit

C A
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Figure 5-17 shows an implementation of the BRF latch control circuit [19]. T

emphasis of asynchronous pipeline designs is on maximum allowable concurr

which was kept in mind during the development of these latch control circuits. O

slight differences in STG specifications may lead to very different latch control circu

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-16: STG of the BRF latch control circuit
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Figure 5-17: BRF latch control circuit

A

Four-phase pipeline control        110



idity

l

the

he

f the

d the

The

ay

d, the

tion

ever,

l an
5.11   BAS & BAF latch control circuits

By now, we may sense the key difference between the “early” and “broad” data-val

schemes, which lies in the decision point on when to issue the acknowledge signaAin.

For the “early” data-validity schemes, only after the data has been latched is

acknowledge Ain issued. However for the “broad” data-validity schemes, t

acknowledgeAin can be issued before the data has been latched. The key idea o

“broad” data-validity scheme is to make the first handshake as fast as possible an

associated combinational logic is sidelined from the pipeline (see figure 5-4).

request signalRin is no longer entitled to activate the combinational logic since it m

return low independently of whether the evaluation phase is complete or not. Instea

acknowledgeAin can take the job. It could, perhaps, be argued that the point of activa

of the combinational logic has been delayed and the performance will suffer. How

firstly, the delay is marginal since the first handshake is fast. Secondly, if it is stil

issue, another arrangement can be made as shown in figure 5-18.

La
tc

h

Lo
gi

c

Controller
Rin

Ain

Rout

Aout

LtE D

Data in Data out

Figure 5-18: Another “Acknowledge-activate” configuration
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STG specifications for a BAS and a BAF latch control circuit are shown in figure 5

and figure 5-20, respectively. Implementations of a BAS and a BAF latch control cir

are shown in figure 5-21 and figure 5-22, respectively. These two latch control cir

are almost the same as their request-activate counterparts but have an extra inpu

can be used to exploit the advantage of dynamic logic for low power designs as we

Rin+ D+ Rout+

Lt+Ain+ Aout+

Rin- D- Rout-

Lt- Aout-Ain-

A+

A-

Figure 5-19: STG of the BAS latch control circuit
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Rin+ D+ Rout+

Lt+Ain+ Aout+

Rin- D- Rout-

Lt- Aout-Ain-

A+

A-

Figure 5-20: STG of the BAF latch control circuit
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discuss in the next section. It should be noted here that up to now all the combinat

circuits presented earlier are assumed to be static by default. Some effort must be

before dynamic circuits can be used.

Figure 5-21: BAS latch control circuit
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Figure 5-22: BAF latch control circuit
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5.12   Interfacing

There are occasions where it may be desirable to use both “early” and “broad”

control circuits. For example, the BAS or BAF latch control circuit for low pow

designs using dynamic logic should be used together with other latch control circu

ensure that the end condition is satisfied. (see section 5.13).

To interface a “broad” latch control circuit into an “early” latch controller would appe

to be rather straightforward, since the “broad” scheme is more than sufficient to cove

input specification of the “early” scheme. However there must be a converter w

interfacing an “early” latch control circuit into a “broad” one. An STG specification a

implementation of a converter are shown in figure 5-23 and figure 5-24, respectivel

It should be noted that a broad latch control circuit can be used for cases where the

protocol is used. However, the operation of the circuit is totally sequential, whic

undesirable from the performance perspective. Therefore appropriate latch co

circuits should be used for particular application cases.

D+ A+ Rout+

Lt+Ain+ Aout+

D- A- Rout-

Lt- Aout-Ain-

Figure 5-23: STG of the Converter
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With the Converter circuit a new communication along the input link is not subjec

being blocked and will be completed as long as it has been initiated. This proper

useful to ensure the end condition that we will discuss in the next section.

5.13   Low-power design using dynamic logic

The micropipeline design style configures the pipeline latches as transparent

empty. The motivation for this comes from both performance and testability. F

transparent latches steer the inputs directly to the outputs, thus reducing the laten

the pipeline. Secondly, they make the datapath have a combinational behaviour

initial state, offering good testability of the datapath logic. However, this comes

price. Data and glitches can be broadcast down the pipelines, thus wasting power.

Figure 5-24: Converter circuit
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Dynamic circuits can be used to localise the data flow to solve the above problem

The obstruction of data flow is achieved since the dynamic logic is held during

precharged phase. Additionally, dynamic circuits offer the benefits of increased s

and lower switched capacitance. Therefore low power designs often employ dyn

logic, especially in the datapath design.

However, there is a difficulty in directly using dynamic circuits in asynchronous des

since the asynchronous control can stall in any state for any time. Leakage currents

the output of dynamic circuits to be valid for a short time; therefore evaluation can

begin until the output latch is free. The inputs must also be held stable until evaluati

complete, so during evaluation both the input and the output latches are required b

intervening dynamic logic, resulting in at most50%of the logic being active at any time.

Although additional latches or charge-retention circuits can be used to make dyn

circuits pseudo-static, these additions increase the cost and power consumption

dynamic circuits, thereby compromising their potential advantages.

The new idea introduced here is to observe that it is not strictly necessary for the o

latch to be free before evaluation begins; it is only necessary to know that it will bec

free “soon”. Here “soon” is interpreted as any period which is not subject to arbit

delay and is within the dynamic storage time of the output nodes. This relaxation o

evaluation start time allows a significant improvement in the pipeline’s performance

The dynamic logic begins evaluation when its enable (E) goes high and it indicates a

valid output on a “done” signal (D). When its enable is low it is precharged, an

precharge completion is signalled by the “done” signal going low. (see figure 5-4).
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For the BAS or BAF latch control circuit, the acknowledge wireAin is indeed a

confirmation signal which indicates that the output latch will be free “soon”. “Soon

just the result of internal self-timed delays only, and is determined by the evaluate p

(V) and the precharge phase (P) together with a few internal control delays. Here th

assumption is that the pipeline stage is connected to similar neighbours. We argue

stall can only occur betweenRouthigh andAouthigh on the arrow markedS in figure 5-

19 or figure 5-20. If this is true, the property is propagated back to the input, and he

by induction, along a pipeline of similar stages. Only the end conditions remain t

checked. This condition is satisfied by using the Converter (see figure 5-24).

5.14   Simulation results

The latch control circuits have been laid out using 0.35 micron triple metal CMOS

technology and simulated using HSPICE operating at worst-case conditions (Vdd= 3.3V,

Vss = 0.1V, slow-slow process corner, at 100°C) and driving a 32 bit latch. The

simulation results are shown in table 5-1.

A micropipeline with no processing in it is a FIFO and its cycle time gives an up

bound on the potential throughput. The response time is measured by stalling the o

Table 5-1: HSPICE simulation results

Parameter ERS ERF BRS BRF BAS BAF

FIFO Cycle Time 3.7 ns 4.4 ns 3.6 ns 4.0 ns 3.6 ns 4.0 ns

FIFO Response 8.6 ns 10.1 ns 8.0 ns 3.7 ns 8.0 ns 3.7 ns

Proc. Cycle Time 10.1 ns 7.7 ns 10.0 ns 7.1 ns 7.0 ns 7.2 ns

Proc. Response 18.5 ns 10.2 ns 17.5 ns 3.8 ns 8.9 ns 3.9 ns
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of a 3 stage pipeline until it is full, and then seeing how long it takes from releasing

stall until the input starts moving. The corresponding results for a micropipeline w

processing in it are established by inserting combinational logic into the pipeline wit

evaluation time of 3.0 ns and reset time of 0.3 ns. The test circuit is shown in figure 5

5.15   Discussion

The simulation results show that the cycle times of the ERS and BRS latch co

circuits increase by approximately twice the processing delay, indicating both

processing delay on the input side and that on the output side are included. The

times of the other four latch control circuits just increase by the evaluation de

indicating the processing delay on only one side is included. Here we now see ho

different decoupling techniques have affected the resulting cycle times.

It is quite interesting that the BAS latch control circuit behaves in a “fully-decouple

way. This is due to the fact that the point when the combinational logic begins evalua

has been moved in the acknowledge-activate configuration. This reflects the fact th

Figure 5-25: Test circuit
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combinational logic is pulled out of the input link path and put aside. By so doing,

handshake process of the input link is in fact isolated from that of the output link.

change in the activation mechanism for the combinational logic makes the differ

between semi-decoupled and fully-decouped behaviours.

The response times of the BRF and BAF latch control circuits is a lot smaller than

other four latch control circuits. The reason stems from the fact that when a confirm

signal (Ain) goes high this propagates very quickly backwards up the pipeline, allow

every pipeline stage to begin evaluation at almost the same time. For other latch co

circuits, each pipeline stage must wait to clear the interlock before the initiating actio

taken. Obviously, this is a very important factor in the performance of asynchron

pipelines which has unfortunately been ignored in the past. The response time rela

how fast a bubble [88] travels back up a pipeline. The detailed analysis of bub

making self-timed pipelines fast can be found in [89].

It seems that the BRS and BAS latch control circuits will give the best performanc

FIFO applications. However, it takes a long time to start moving after the full pipelin

released. Therefore, the BRF and BAF latch control circuits are suitable for both F

applications and pipelines including processing logic.

It is clear that the circuits using the broad protocol give better performance than t

employing the early protocol. Among latch control circuits described above, the B

and BAF latch control circuits are the best choice.

The BAF latch control circuits can be used to exploit the advantages of dynamic logi

low power designs. However, the end condition (a stall can only occur betweenRouthigh
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to Aouthigh) must be met. For the BAF latch control circuit, this condition can easily

met by using the Converter circuit (see section 5.12).

All of the latch control circuit in this chapter are speed-independent, and were ver

using the FORCAGE tool.

5.16   Summary

The design of control schemes for asynchronous pipelines has been studied. The

focused mainly on the four-phase micropipeline design style which uses convent

level-sensitive data latches. A set of speed-independent latch control circuits has

presented. Verification was carried out using the FORCAGE tool.

The BRF and BAF latch control circuits are the best choice for both FIFO applicat

and pipelines including processing logic. The ERF, BRF, BAS and BAF latch con

circuits behave in the “fully-decoupled” way, where the cycle time increases by just

evaluation time. The BRF and BAF latch control circuits give the good response tim

The circuits using the broad protocol give better performance than those employin

early protocol. The acknowledge-activation configuration allows dynamic logic to

easily exploited for low power design. Dynamic logic retains externally static behav

without additional latches or charge-retention circuits (allowing activity to cease with

loss of state), and hence power can be saved.
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Four-phase control modules 6

This chapter presents a set of control modules for four-phase micropipelines. Arb

which are non-trivial and tricky to design, are also included. These control modu

together with the pipeline latch control circuits described in the previous chapter, ca

used to construct complex and powerful asynchronous systems including forkin

joining multiple micropipelines. All of the proposed four-phase control modules

speed-independent, and this has been verified using the PETRIFY tool [23-26].

6.1   Introduction

In order to build asynchronous systems based on four-phase micropipelines, a

basic control modules is required. Such a set is proposed here and shown in figur

The first element is theCALL module, which enables two processes to share a comm

resource. The two calling requests must be mutually exclusive. If they are not

ARBITER module must be used instead. It is worth emphasizing that unlike in

synchronous case, an asynchronous arbiter always operates correctly. TheJOIN and

FORK modules are used to join and fork multiple control flows or pipeline

respectively. TheSELECT module comes with two versions: one with a control link an

one with a Boolean guard. The input Boolean guard must be prepared prior to
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incoming handshakes on the input link and must remain stable during the handsh

process (restricted and guaranteed by the environment). The SELECT module

incoming input handshakes to one of two outputs, depending on the handshake

along the control link or the Boolean value. TheTOGGLE module steers incoming

four-phase handshakes to alternate outputs. All of these four-phase control modul

speed-independent, and this has been verified using the PETRIFY tool.

This set of control modules provides the basic building blocks, which can be use

construct other control modules and asynchronous systems. The circuit implement

presented here are not claimed to be optimal. It should be appreciated that optimiz

can be made if input constraints (determined by the environment) are known a prio

designers. A CALL module is an example, where it is known that the two input requ

are mutually exclusive as a result of the environmental constraints. An ARBIT

module is more general as its input changes are unrestricted. However, the c

implementation of a CALL module is much simpler than that of an ARBITER modu
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Figure 6-1: Four-phase control modules
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The specifications of these control modules are described using Petri Nets (PN) [22

PETRIFY tool then takes and manipulates this initial specification. It either gener

another PN which is simpler than the original description or synthesizes an optim

speed-independent asynchronous circuit. The original specification may not satisf

requirement of Complete State Coding (CSC) [90] and may lead to different states

the same binary value when encoding. To resolve this state coding conflict the PET

tool automatically inserts a new state signal. The rising and falling transitions of this

state signal are inserted in such way that the synthesized circuit is optimized accord

a selected cost function.

6.2   CALL modules

The CALL module serves the role of the procedure call in software where a com

subroutine is shared. This section describes three types of CALL module: pCA

dCALL, and bCALL. The first two CALL modules use the four-phase early protoc

while the last employs the four-phase broad protocol. The whole four-phase handsh

process on one input link must be completed before the next process on the other

link starts. Otherwise, the circuit will operate improperly.

6.2.1   pCALL module

A specification and implementation for a CALL module, called pCALL, are shown

figure 6-2 and figure 6-3, respectively. The pCALL module allows concurrent proces

on the input link and resetting on the output link. However, the input and output links

not allowed to reset in parallel, with the input link being first reset and the output

following.
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6.2.2   dCALL module

A specification and implementation for a CALL module, called dCALL, are shown

figure 6-4 and figure 6-5, respectively. Like the pCALL module, the dCALL modu

allows concurrent processing on the input link and resetting on the output

R1+ R2+Ro+ Ro+

Ao+ Ao+A1+ A2+

R1- R2-

Ao- Ao-

Ro- Ro-

A1- A2-

Figure 6-2: PN of the pCALL module
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Figure 6-3: pCALL circuit implementation
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Furthermore, concurrent resetting on both the input and output links are also allow

the dCALL module. The resetting on the output link can start even before that on

input link. The output link has the property of self-resetting as soon as it has comp

the calling procedure; resetting of the output link does not depend on an input

request.

R1+ R2+Ro+ Ro+

Ao+ Ao+A1+ A2+

Ro- Ro-

Ao- Ao-

R1- R2-

A1- A2-

Figure 6-4: PN of the dCALL module
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Figure 6-5: dCALL circuit implementation
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6.2.3   bCALL module

The first two CALL modules described above use the four-phase early protocol. T

are occasions where it may be desirable to use the four-phase broad protocol, e.g.

dynamic logic for low-power design (see “Low-power design using dynamic logic”

page 115). A specification and implementation for a CALL module using the br

protocol, called bCALL, are shown in figure 6-6 and figure 6-7, respectively. The cir

is quite simple. It is worth noting that no processing or resetting phases are distingu

R1+ R2+Ro+ Ro+

Ao+ Ao+A1+ A2+

R1- R2-

A1- A2-

Ro- Ro-

Ao- Ao-

Figure 6-6: PN of the sCALL module
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Figure 6-7: sCALL circuit implementation
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in the broad protocol. The bCALL module can also be used for cases where the

protocol is used since the specification of the broad protocol is more than sufficie

cover that of the early protocol. However, the operation of the circuit is totally sequen

which is undesirable from the performance perspective.

6.3   ARBITER modules

The ARBITER module produces an exclusive grant to one of two asynchronous ca

requests. As discussed in section 2.2.4 (see “Metastability and arbitration” on page

the ARBITER module is inherently prone to metastability. However, this metasta

problem only affects the performance of the ARBITER module, not its functiona

(only in the asynchronouscase). Analog circuit techniques are used to keep

metastable states internal while maintaining valid logic levels at the interface.

mutual exclusion circuit (MUTEX) [31], as shown in figure 6-8, is such an analog circ

which makes a non-deterministic decision between two asynchronous reques

comprises a cross-coupled NAND structure and a filter. The cross-coupled NA

structure may go metastable when the two inputs switch high at very nearly the

time. The filter conceals possible metastable states from the environment to ma

valid logic levels at the interface.

R1

R2
G1

G2

Figure 6-8: MUTEX circuit
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This section describes three types of ARBITER module: pARBITER, dARBITER, a

bARBITER. The first two ARBITER modules use the four-phase early protocol, wh

the last employs the four-phase broad protocol.

6.3.1   pARBITER module

A specification and implementation for an ARBITER module, called pARBITER,

shown in figure 6-9 and figure 6-10, respectively. The signalsG1 andG2 are the outputs

of the MUTEX element and internal signals of the pARBITER module. The t

transitions (Ro+ → Ao+) and (Ro- → Ao-) are illustrated by the expressions (Ro+, Ao+)

and (Ro-, Ao-), respectively, for the sake of brevity. As shown in [44], logic synthesis c

produce speed-independent implementations only for specifications without conflic

non-input signals. However, there is a conflict between the signalsG1 and G2 in this

specification and these two signals are internal (non-input) signals. We can get a

this difficulty by treating the signalsG1 andG2 as additional inputs [44] whose change

are restricted by the MUTEX element. The MUTEX element is considered to be pa

the environment for the pARBITER module. This design trick is not restricted

conflicts on non-input signals and can also be applied to no-conflict cases. Well-de

modules can be treated in the same way as the MUTEX element and their outputs

internal signals for a specification to be synthesized) are considered as additional in

By so doing, efficient implementations can be derived for some cases which othe

may be difficult to synthesize.

The pARBITER module allows concurrent processing on the input link and resettin

the output link. However, the input and output links are not allowed to reset in para
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with the input link being first reset and the output link following. Note that the sign

G1 andG2 are often used to control a multiplexer to select the input data.

G1+ G2+R1+ R2+

(Ro+, Ao+)

A1+ A2+R1- R2-

A1- A2-

G1- G2-

Ro-

Ao-

Figure 6-9: PN of the pARBITER module
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Figure 6-10: pARBITER circuit implementation
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6.3.2   dARBITER module

A specification and implementation for an ARBITER module, called dARBITER,

shown in figure 6-11 and figure 6-12, respectively. Like the pARBITER module,

dARBITER module allows concurrent processing on the input link and resetting on

output link. Furthermore, concurrent resetting on both the input and output links are

allowed in the dARBITER module. The resetting on the output link can start even be

that on the input link. The output link has the property of self-resetting as soon as i

completed the calling procedure; resetting of the output link does not depend on an

reset request.

Specifications with more concurrent operations lead, in general, to complex ci

implementations. This can bee seen from the development of the circuits above.

G1+ G2+R1+ R2+

(Ro+, Ao+)

A1+ A2+R1- R2-

A1- A2-

G1- G2-

Ro-

Ao-

Figure 6-11: PN of the dARBITER module
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6.3.3   bARBITER module

The first two ARBITER modules described above use the four-phase early protoc

specification and implementation for an ARBITER module using the broad proto

called bARBITER, are shown in figure 6-13 and figure 6-14, respectively. T

bARBITER module can also be used for cases where the early protocol is used sin

specification of the broad protocol is more than sufficient to cover that of the e

protocol. However, the operation of the circuit is totally sequential, which is undesir

from the performance perspective.

Generally, specifications using the broad protocol, e.g. the bARBITER, often h

simpler circuit implementations than those using the early protocol.
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Figure 6-12: dARBITER circuit implementation
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All the ARBITER modules described above are fair arbiters [91], which means th

pending request on one input link must be granted after the granted request on the

input link has completed.

G1+ G2+R1+ R2+

(Ro+, Ao+)

A1+ A2+R1- R2-

A1- A2-

G1- G2-

(Ro-, Ao-)

Figure 6-13: PN of the bARBITER
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Figure 6-14: bARBITER circuit implementation
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6.4   JOIN modules

The JOIN module synchronizes and concatenates two input links to the output link

is used in organizing multiple control flows or pipelines. This section presents t

types of JOIN module: pJOIN, dJOIN and bJOIN. The first two JOIN modules use

four-phase early protocol, while the last employs the four-phase broad protocol. As

the PN specifications in this section and the following sections are quite straightfor

they are omitted for the sake of brevity.

6.4.1   pJOIN module

Figure 6-15 shows a circuit implementation for a JOIN module, called pJOIN.

pJOIN module allows concurrent processing on the input link and resetting on the o

link. However, the input and output links are not allowed to reset in parallel, with

input link being first reset and the output link following.

6.4.2   dJOIN module

Figure 6-16 shows a circuit implementation for a JOIN module, called dJOIN. Like

pJOIN module, the dJOIN module allows concurrent processing on the input link

R1
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R2
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C

+

Figure 6-15: pJOIN circuit implementation
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resetting on the output link. Furthermore, concurrent resetting on both the input

output links are also allowed in the dJOIN module. The resetting on the output link

start even before that on the input link. The output link has the property of self-rese

as soon as it has completed the calling procedure; resetting of the output link doe

depend on an input reset request.

6.4.3   bJOIN module

The first two JOIN modules described above use the four-phase early protocol. A c

for an ARBITER module using the broad protocol, called bARBITER, is shown in fig

6-17. The circuit is simple, and is similar to a C-gate. A difference is that the signalRo,

notAo, is fed back internally in a C-gate.

The bARBITER module can also be used for cases where the early protocol is used

the specification of the broad protocol is more than sufficient to cover that of the e

protocol. However, the operation of the circuit is totally sequential, which is undesir

from the performance perspective.
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Figure 6-16: dJOIN circuit implementation
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6.5   FORK modules

The FORK module is often used when there are multiple destinations. It is worth no

that the FORK module and the isochronic fork [92] discussed in section 2.2.2

completely different concepts that have no relation to each other. This section pre

three types of FORK module: pFORK, dFORK and bFORK. The first two FOR

modules use the four-phase early protocol, while the last employs the broad protoc

6.5.1   pFORK module

Figure 6-18 shows a circuit implementation for a FORK module, called pFORK.

pFORK module allows concurrent processing on the input link and resetting on

output link. However, the input and output links are not allowed to reset in parallel, w

the input link being first and the output link following.

6.5.2   dFORK module

Figure 6-19 shows a circuit implementation for a FORK module, called dFORK. L

the pFORK module, the dFORK module allows concurrent processing on the input

A1

R1

R2

A2

Ao

Ro

Figure 6-17: bJOIN circuit implementation
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and resetting on the output link. Furthermore, concurrent resetting on both the inpu

output links are also allowed in the dFORK module. The resetting on the output link

start even before that on the input link. The output link has the property of self-rese

as soon as it has completed the calling procedure; resetting of the output link doe

depend on an input reset request.

6.5.3   bFORK module

The first two FORK modules described above use the four-phase early protoco

circuit for a FORK module using the broad protocol, called bFORK, is shown in fig

6-20. The bFORK module can also be used for cases where the early protocol is
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Ri
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+

Figure 6-18: pFORK circuit implementation
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Figure 6-19: dFORK circuit implementation
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since the specification of the broad protocol is more than sufficient to cover that o

early protocol. However, the operation of the circuit is totally sequential, which

undesirable from the performance perspective.

6.6   SELA modules

This section presents three types of SELA modules: pSELA, dSELA and bSELA. A

these three SELA modules use a control link. The sSELA module serves the role o

if-else statement in programming languages. The input request first issues a hand

along the control link. If the returned value of the dual-rail acknowledge signal is t

the handshake will proceed along the output link (R1, A1); otherwise it goes along the

output link (R2, A2). The first three SELA modules use the four-phase early proto

while the last employs the four-phase broad protocol.

6.6.1   pSELA module

Figure 6-21 shows a circuit implementation for a SELA module, called pSELA. T

pSELA module allows concurrent processing on the input link and resetting on

output link. However, the input and output links are not allowed to reset in parallel, w

the input link being first and the output link following.

C

A1
R1

R2
A2

Ai

Ri

Figure 6-20: bFORK circuit implementation
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6.6.2   dSELA module

Figure 6-22 shows a circuit implementation for a SELA module, called dSELA. Like

pSELA module, the dSELA module allows concurrent processing on the input link

resetting on the output link. Furthermore, concurrent resetting on both the input

output links are also allowed in the dSELA module. The resetting on the output link

start even before that on the input link. The output link has the property of self-rese

as soon as it has completed the calling procedure; resetting of the output link doe

depend on an input reset request.

6.6.3   bSELA module

The first two SELA modules described above use the four-phase early protocol. A c

for a SELA module using the broad protocol, called bSELA, is shown in figure 6-

Note that the acknowledge signals of the control link are dual-rail encoded, so the

C

+

C

+

Ri

Ai

Rc AtAf

R1

A1

R2

A2

Figure 6-21: pSELA circuit implementation
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able to convey a Boolean value and make the circuit implementation speed-indepen

The bSELA module can also be used for cases where the early protocol is used sin

specification of the broad protocol is more than sufficient to cover that of the e

protocol. However, the operation of the circuit is totally sequential, which is undesir

from the performance perspective.

C

+

C

+

Ri

Ai

Rc AtAf

R1

A1

R2

A2C

_

Figure 6-22: dSELA circuit implementation

Ri

Ai

Rc AtAf

R1

A1

R2

A2

Figure 6-23: bSELA circuit implementation
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6.7   SELB modules

There are often cases where a boolean guard is known prior to incoming i

handshakes and remains stable during the process of handshaking. The SELB m

are designed for those cases. Figure 6-24 shows an implementation of the SELB m

using the SELA module. This SELB module is still considered to be speed-indepen

as long as the Boolean guard is well controlled by the environment.

Generally, most speed-independent circuits arerobust, whererobustmeans that multiple

input changes are allowed and the orders of input changes do not affect the behavi

the circuit. This property is certainly desirable to designers. However, if the in

changes of a specification are restricted by the environment and are known a pri

designers, the circuit implementation could be much simplified and more efficient.

By taking the nature of Boolean guard into account, simple and efficient cir

implementations of the SELB module can be derived; they are omitted here for the

of brevity.

R1

A1

R2

A2

Ri

Ai
SELA

Rc At Af

R1

A1

R2

A2

Ri

Ai
SELB

Sel

Sel

=

Figure 6-24: Implementation of the SELB modules
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6.8   TOGGLE module

The TOGGLE module produces communications alternately on its two output

response to its input. The TOGGLE module is a useful building block and can be us

construct other control modules or even asynchronous systems. However, the TOG

module itself is the most difficult module to implement, though it appears to be q

simple. Many circuit implementations had been derived and then verified not to be s

independent. The difficult lies in the fact that circuit implementations tend to contain

inherent race hazard.

Figure 6-25 shows a circuit implementation for the TOGGLE module using NOR ga

Since the TOGGLE module is designed mainly as a basic building block for construc

other control modules, there are no associated acknowledge signals to form inp

output links. Therefore, the environment must provide an input at a proper point

after the outputs have responded the previous input changes. Analysis of this c

implementation has demonstrated that the operation is totally sequential, and

cannot happen as there is only one enabled transition in every possible state.

Ri

Rx

Ry

q

qb

x

y

Figure 6-25: TOGGLE circuit implementation
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6.9   An example: a counter

This section shows how an n-bit speed-independent counter is built using the TOG

modules as the building blocks. The worse case settling time of this counter is large

the carry may propagate from the low-order bit up to the high-order bit. However, o

two bits change per operation on average [93]; the typical case is much faster tha

worst case.

Figure 6-26 illustrates the diagram of the n-bit speed-independent counter. The

stops at a bit position where the internal state variable (see figure 6-25) is zero; t

indicated by the transition along theRxoutput of the TOGGLE module. If one bit stag

is one, the transition happens along theRy output which is connected to the nex

neighbour TOGGLE module. There are only two input states for the Comple

Detector: either all are zeros or only one of them is one. When a change from one

state to the other is detected, it means the carry has completed its journey and the re

generated. The result lies in the internal state variable of the TOGGLE modules.

…TOGGLE
Ri

RxRy

TOGGLE
Ri

RxRy

TOGGLE
Ri

RxRy

Completion Detector

Go

Done

Figure 6-26: Speed-independent incrementer

… Rx[0]Rx[1]Rx[n]Ry[n]

Ry[0]Ry[1]Ry[n-1]
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6.10   Arbiter modules revisited

All of the arbiter circuits described in section 6.3 take the micropipeline view that

request signal initiates the data transfer (this is called apushchannel). However, arbiters

are often used in a bus structure, where the acknowledge signal initiates the data tr

(called apull channel). One undesirable property of push arbiters is that the ou

request must wait whenever the MUTEX element goes metastable. Therefore the la

is unbounded, which is quite serious in some applications requiring low latency.

section presents two types of pull ARBITER module. The eARBITER modules use

four-phase early protocol, while the fARBITER module employs the broad protocol

6.10.1   eARBITER module

A specification and implementation of a pull ARBITER module, called eARBITER,

shown in figure 6-27 and figure 6-28, respectively. The request signalRodirectly follows

the input requests and it is not necessary to wait until the output signalsG1andG2of the

MUTEX element have been resolved when a metastable state occurs. The circuit

bounded request latency, which is important for applications requiring low latency. N

that the place “p1” can accommodates two tokens, which the PETRIFY tool can

with. However, other tools based on STGs have restrictions for multiple token ca

though a CD specification can describe this situation using OR-type signal transitio

6.10.2   fARBITER module

A specification and implementation of a pull ARBITER module using the bro

protocol, called fARBITER, are shown in figure 6-29 and figure 6-30, respectively.
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Figure 6-27: PN of the eARBITER module

G1+ G2+R1+ R2+
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Figure 6-28: eARBITER circuit implementation
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Figure 6-29: PN of the fARBITER module
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Figure 6-30: fARBITER circuit implementation
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6.11   Modules with multiple input links

Up to now, all the modules presented have had at most two input links. There are

cases where multiple input links are required. Circuit implementations for modules

multiple input links can be derived following the procedure described in the prev

sections. However, they are most practically built by using the corresponding two i

link modules. This section examines the design of these modules with multiple i

links. The design of a four-phase early protocol arbiter with multiple input links is ta

as an example and discussed. The discussions can, in general, apply to other m

with multiple input links.

Figure 6-31 shows a tree arbiter with eight input links, where the solid dots represen

two input link arbiters. The following terms are defined for the sake of discussion.

top arbiter is called thehome node, the bottom arbiters are called theleaf nodesand the

arbiters between the home node and the leaf nodes are called thedirectory nodes. The

input links connected to the same leaf node form aleaf group. The input links connected

to the same directory node form adirectory group. For an example, the input linksi1 and

i2 form a leaf group and input linksi5, i6, i7 andi8 form a directory group.

i1 i2 i3 i4 i5 i6 i7 i8

out

leaf nodes

directory nodes

home node

Figure 6-31: Tree arbiter

d1234
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Imagine a case where all eight asynchronous input requests arrive and one input r

(say, the input linki1) is granted and the other seven input requests are pending. We

interested inwhich input request will be granted andwhenafter the granted input reques

from the input linki1 is released.

All the ARBITER modules presented earlier are fair. In other words, a pending ca

request must be granted after a bounded number of other input requests are grante

bounded number is eight in this case. Seen from the home node, one input reques

the directory group {i5, i6, i7, i8} will be granted after the input request from the inpu

links i1 is released because of the fair nature of the home node. Therefore, those

links should be put into different directory groups or different leaf groups if calli

requests from those input links are likely to compete for a common resource. This i

first conclusion.

Suppose that sARBITER modules are used. The release of the calling request fro

input link i1 involves resetting all the nodes from the leaf node to the home node.

these resettings are sequential and thus delay a grant for other calling requests. Su

that pARBITER modules are used. The situation will improve as the resetting of

output link of the home node and the falling transition of the input link of the direct

noded1234can be in parallel. However, the circuit still waits for the falling transition

the calling request from the input linki1. This is unacceptable if the height of the tre

structure is high. Supposed that dARBITER modules are used. The problem wi

solved since the dARBITER module can reset the output link by itself as soon as i

completed the calling procedure and resetting of the output link does not depend

input reset request (see “dARBITER module” on page 131). Therefore, dARBIT
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modules should be used to build an arbiter with multiple input links based on the

structure. If other types of arbiters are used, the response time will be degraded. T

the second and also very important conclusion.

6.12   Summary

A set of control modules for four-phase micropipelines with different implementati

has been presented. Arbiters, which are non-trivial and tricky to design, are

included. These control modules, together with the pipeline latch control circ

described in the previous chapter, can be used to construct complex and pow

asynchronous systems including forking or joining multiple pipelines. Also they can

used to construct other four-phase control modules. All of the proposed control mod

are speed-independent, and this has been verified using the PETRIFY tool.

The design of an arbiter with multiple input links based on a tree structure has also

discussed. The dARBITER modules should be used to build an arbiter with mul

input links as their output links can be self-reset.

Petri nets have been shown to be an appropriate formalism for describing the beha

of asynchronous systems with concurrency, causality and conflicts between ev

Though most steps of the development of these control modules were processed by

the PETRIFY tool played a key role and was used to synthesize various implementa

for comparison and analysis.
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AMULET3i 7

AMULET3i is an asynchronous embedded system chip which incorporates the

generation asynchronous ARM processor (AMULET3). Different from its predecess

AMULET1 and AMULET2e, AMULET3i is aimed to be a commercially viable produ

for communication applications. This will be a significant step. A brief description

AMULET3i and AMULET3 is given in this chapter in the hope of providing the b

picture into which the components described in the previous chapters can be place

7.1   Introduction

As we said previously, it is our belief that asynchronous design must be justified o

practical significance rather than solely on a theoretical basis. The motivation behin

AMULET project is to demonstrate this practical significance.

AMULET1 demonstrated the feasibility of building an asynchronous system at the le

of complexity of current synchronous systems. AMULET2e proved the competitiven

of an asynchronous system compared with current synchronous systems, from bo

power perspective and the performance perspective. AMULET3i will, in turn, put

asynchronous experience of the academic community into industrial practice.
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7.2   AMULET3i

AMULET3i is a commercial asynchronous embedded system chip, whose organiz

is shown in figure 7-1. In addition to AMULET3 (the third generation asynchrono

ARM processor), AMULET3i contains 8 Kbytes of RAM (which can also be configur

AMULET3

8K byte
RAM

DMA
controller

Control
registers

Synchronous
peripheral
interface

Test
interface
controller

Synchronous
peripheral
subsystem

data

address

chip
selects

DRAM
control

peripheral
I/Os

asynchronous

synchronous

MARBLE bus

DMArq DMAak

delay

test

Memory
interface

Figure 7-1: AMULET3i block diagram
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as a cache), a DMA controller, a MARBLE (Manchester AsynchRonous Bus for L

Energy) bus [94], a flexible memory interface, a general synchronous periph

interface, an on-chip synchronous peripheral subsystem, and various configuratio

control registers. A test interface is also included to support the design for test stra

7.3   AMULET3

AMULET3 is the third generation asynchronous ARM processor. It implements

ARM architecture version 4 and supports the Thumb instruction set [95]. Figure

shows the block diagram of AMULET3, which consists of five major blocks. T

Execute Data access

Reorder &
Writeback

Decode &
Register read

Prefetch

Instruction fetch

Data
transfers

FIQ IRQ

Figure 7-2: AMULET3 block diagram
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detailed organization of AMULET3 is shown in Figure 7-3. (Note that figures 7-1,

and 7-3 are reproduced from the “Scoreboard” of the AMULET project with the k

permission of Professor Steve Furber). The design includes several novel features

Firstly, a Harvard architecture is used and the data interface is sidelined from the

instruction flow. As a result, data transfer operations, especially multiple load and

instructions, can be decoupled from purely internal operations. Another benefit of

organization is that an interrupt can be dealt with in the Prefetch Unit rather than in

Decoder Unit and treated as a predicted branch, giving a fast interrupt respons

loaded values are reordered into the Register Bank and data aborts are allowed

delayed, there is significant speculation following a load or store instruction with

paying penalties for slow memory.

Secondly, instructions are allowed to execute out of order and a Reorder Buffer

(borrowed from superscalar design techniques) is used to hold results to be written

to the Register Bank in order. This reorder buffer is, in essence, an implementation o

register renaming mechanism. Therefore, result forwarding (not only the last result

AMULET2e [11]) can be achieved in a deterministic and arbitration-free manner.

worth noting that two Thumb instructions are fetched per bus cycle, which is ano

superscalar aspect of the design.

Finally, branch prediction and a halt mechanism are included. The halt mechanis

straightforward in asynchronous designs and achieves a three to four orders of mag

power saving [11] in the idle state, whereas a synchronous design can only approac

power efficiency by stopping the clocks with considerable effort.
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7.4   Execution unit

Figure 7-4 shows the block diagram of the Execution Unit. The ALU comprises a lo

unit and an adder unit. The design of the adder unit is presented in chapter 3. The d

of the multiplier is described in chapter 4. Multiplexers are used to implement the re

forwarding mechanism, and choose operands either from the Register Bank or fro

Reorder Buffer (which is also called the Queue).

Figure 7-4: Execution pipeline organization

Multiplier
& Shifter

Immediates

ALU

Mux Mux Mux

A B C
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Forwarding
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7.5   Implementation

Figure 7-5 shows an implementation oriented view of the AMULET3 datapath struct

AMULET3i is designed using a 0.35µm triple metal CMOS technology.

Figure 7-5: AMULET3 datapath structure
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7.6   Summary

A brief description of AMULET3i and AMULET3 has been given. AMULET3i is a

asynchronous embedded system chip, which is aimed to be commercially viable pr

for communication applications. AMULET3 is the third generation asynchronous A

processor, which implements the ARM architecture version 4 and supports the Th

instruction set. Clearly, the adder and the multiplier, described in the chapter 3 a

have directly contributed to AMULET3i. Two sets of asynchronous control circu

described in the chapter 5 and 6, have also contributed to AMULET3i, but this is

clear in the pictures presented here.
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Conclusions 8

This thesis has presented engineering work on asynchronous design. The arithme

control components were designed and implemented for AMULET3i, a comme

asynchronous embedded system chip for communication applications. The arith

components comprise an adder and a multiplier; these two are critical to the perform

of the processor core. The control components consist of a set of pipeline latch co

circuits and a set of control modules; all of these components are speed-indepe

Though the nature of the work is mainly engineering, there are some significant

insights gained in the course of the work.

8.1   Contributions

A novel carry arbitration scheme was proposed (and has been patented) for parallel

circuits. The proposed scheme provides an efficient encoding in which the car

generated by arbitrating several input carry requests, exploiting the associativity o

carry computation. The new coding is a logically redundant superset of the convent

carry process. Departing from this general coding, certain modifications which re

the redundancy can easily be made where this simplifies the implementation. The

scheme not only leads to high speed adders due to the reduction in the required lay
Conclusions        157



-out

en

1.8 ns

d 17

.

ble

has

ed

2-bit

ether

hase

thm

ork.

at it

n

ting at

ular

been

nto a

ent,

n be
logic, but also offers a regular and compact layout and uniform fan-in and fan

loadings. A high performance, low power 32-bit adder for AMULET3i has be

designed using the new scheme and implemented down to the layout level. It takes

to complete a 32-bit addition and occupies 137.2µm × 524.8µm of chip area in a 0.35

µm triple metal CMOS technology. The power estimate of the datapath is about 8 an

mW operating at 100 and 200 MHz (under typical process conditions), respectively

A high performance, low power asynchronous 32 bit multiplier with a reasona

hardware resource has been developed for AMULET3i. A new encoding technique

been used in the AMULET3i multiplier to adjust the product result of an unsign

number multiply operation. An adjustment value is made on the least significant 3

positions. A new 4-2 compressor with an enable control has been presented, tog

with several other circuit design techniques including the use of true single-p

clocking registers. The elegance of this multiplier is the manner in which the algori

and the circuit implementation are well matched within the asynchronous framew

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows th

takes 11.2 ns (2.8 ns× 4 cycles) to complete the computation of a 32-bit multiplicatio

in the worst case. The power estimate of the datapath is about 40 and 82 mW opera

100 and 200 MHz (under typical process conditions), respectively. The layout is reg

and compact with a datapath area of only 416.4× 639.6µm2.

A set of pipeline latch control circuits for four-phase asynchronous pipelines has

proposed. These can be used to organize arithmetic components efficiently i

micropipeline. All of the proposed pipeline latch control circuits are speed-independ

and this has been verified using the FORCAGE tool. A four-phase micropipeline ca
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configured either in a request-activated form or in an acknowledge-activated form.

latter is the framework within which dynamic logic can be exploited for low power.

A set of control modules has been proposed in order to ease the design of asynchr

systems based on four-phase micropipelines. Arbiters, which are non-trivial and tric

implement, are also included. All of the proposed control modules are sp

independent, and this has been verified using the PETRIFY tool. These control mod

together with the pipeline latch control circuits, can be used to construct complex

powerful asynchronous systems.

8.2   Future work

There are some application areas where asynchronous designs are likely to demo

advantages. Our philosophy is still to prove that the theoretical benefits are pract

realizable, and this is reflected in the engineering nature of work presented here.

There are two areas where asynchronous designs are attacking and are likely to wi

first is the low power market where short battery life is the bane of the user and

second is the mobile communication market where good EMC is required. Thus m

future work is expected in these two areas.

8.2.1   Low power market

The field of low power designs using traditional clocked design methodologies has

plagued with fundamental difficulties. Global clock generation and distribution

blamed for a significant portion of the total power consumption in a synchronous CM

circuit [97]. Though advanced power management can deal with clock gating and
Conclusions        159



ever,

ology.

uggest

tion is

try-

. A

the

98-

that

ous

in

way
shut down clocks, this comes at a price in terms of increased complexity. How

advanced power management is inherent within the asynchronous design method

Power is only consumed when needed. There are many other arguments which s

an asynchronous design is a low power design. But the most convincing demonstra

the AMULET2e work, which reduces power below that achievable in the indus

leading clocked ARM designs.

It is worth noting that there is no single solution to the power consumption problem

design should consider power at all levels of the design hierarchy, including

technology, layout, circuit, logic, design style, architectural and algorithmic levels [

103].

8.2.2   Mobile communication market

In the early 19th Century, the French mathematician Jean-Baptiste Fourier proved

any reasonably behavedperiodic function,g(t), with frequencyf can be constructed by

summing a number of sines and cosines:

wherec is a constant,an andbn are the sine and cosine amplitudes of thenth harmonics,

which decrease asn increases. From the above equation, it is clear that a synchron

system produces “harmonic pollution” that aligns with harmonics of the clock,

addition to “fundamental noise” that aligns with the clock frequency. However,periodic

operation is the fundamental property of synchronous systems and there is no

around this. Fortunately, asynchronous systems areaperiodic and therefore do not

g t( ) c an 2πnft( )sin
n 1=

∞

∑ bn 2πnft( )cos
n 1=

∞

∑+ +=
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produce harmonic pollution (or produce negligible harmonic pollution). This very go

EMC is a unique advantage of asynchronous systems. It is worth noting tha

asynchronous system generates less fundamental noise compared with a s

synchronous system as it produces broadband distributed current without the

amplitude peaks. Recent work has shown that the magnitude of the current peak

synchronous system is 2.5 times that of a similar asynchronous system [104].

increasingly rigorous EMI compliance specifications and testing, good EMC prope

will demonstrate another meritorious aspect of asynchronous design.

8.3   Asynchronous prospects

“It is possible that all the renewed interest in asynchronous techniques will com

nothing, though this seems unlikely. It is also possible that industry will suddenly se

asynchronous light and switch completely to the new approach. This seems even

unlikely! What seems more likely is that areas will be identified where asynchron

approaches have really worthwhile advantages; these will be niches in other

synchronous designs.”

The above statement was made by Professor Steve Furber at a time shortly aft

AMULET group was established. It still remains true today. In the intervening ye

work in the AMULET group and elsewhere has moved asynchronous technology m

closer to commercial reality. The research described in this thesis is expecte

contribute to this movement, making the low power and EMC advantages inhere

asynchronous technology more accessible to the designers of products which need

benefits.
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T3
Adder schematics A

This appendix contains the schematics of some of the cell library for the AMULE

adder. Below is a list:

❏ adder_datapath

❏ adder_arbiter3

❏ adder_nor2

❏ adder_xor2

❏ adder_select
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A.1   adder_datapath
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A.2   adder_arbiter3
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A.3   adder_nor2
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A.4   adder_xor2
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A.5   adder_select
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er.
Adder layouts B

This appendix contains the layouts of some of the cell library for the AMULET3 add

Below is a list:

❏ adder_arbiter3

❏ adder_nor2

❏ adder_xor2

❏ adder_select
Appendix A        176



B.1   adder_arbiter3

vss

a1

a2

b1

b2

a0

b0

aa

bb

vdd

vss vdd
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B.2   adder_nor2

vss vddnGo

vss vddnGo

bb

aa

nor nor

nand nand
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B.3   adder_xor2

vss

vss vdd

vdd
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bb

aa

suma

bb

sumb

xorxor

xnorxnor
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B.4   adder_select

vss

vss

vdd

vdd

sumby

sumay

sumbx

sumax

nsumy

nsumx

sy

sx
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T3
Multiplier schematics C

This appendix contains the schematics of some of the cell library for the AMULE

multiplier. Below is a list of the following appendix sections:

❏ AMULET3_Multiplier

❏ multdatapath

❏ multboothmux33

❏ multrow1

❏ multrow2

❏ multrow3

❏ multboothmux

❏ multcnt42e

❏ multcnt42c

❏ multmuxe

❏ multlatch

❏ multdffa

❏ multdffb

❏ multdffc
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C.1   AMULET3 Multiplier
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C.2   multdatapath
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C.3   multboothmux33
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C.4   multrow1
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C.5   multrow2
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C.6   multrow3
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C.7   multboothmux
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C.8   multcnt42e
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C.9   multcnt42c
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C.10   multmuxe
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C.11   multlatch
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C.12   multdffa
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C.13   multdffb
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C.14   multdffc
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T3
Multiplier layouts D

This appendix contains the layouts of some of the cell library for the AMULE

multiplier. Below is a list:

❏ multboothmux

❏ multcnt42e

❏ multcnt42c

❏ multmuxe

❏ multlatch

❏ multdffa

❏ multdffb

❏ multdffc
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D.5   multlatch
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