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Abstract

An extension to the program Pearcolator is presthig allows emulation of the
x86 architecture. Pearcolator is an emulator writteJava and runs as a front

end to the Jikes Research Virtual Machine.

The work presented was carried out as part ofdh&ica Project in the School
of Computer Science at the University of Manche&thae long term aim of the
Jamaica Project is to develop a chip multiproceasdritecture. Pearcolator is
needed as a way to run software compiled for legaclyitectures. Jikes RVM
has parallel translation and execution abilitiess hoped performance will be
better than that of more traditional emulators glesd for single processor

architectures.
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1 Emulation with Pearcolator

1.1 Emulation

An emulator is a program that allows programs cdedpfior one type of

processor to run on a computer with another tygeraéessor.

There are three ways to emulate a program: Stat@r{3 Translation, Dynamic
Binary Translation and Interpretation.

Static Binary Translation (SBT) translates therentimulated program to native
machine code before execution. This techniqueti®ften used as it can be
difficult getting things like dynamic linking ane$ modifying code to work.

Dynamic Binary Translation (DBT) converts only tharts of the emulated
program that are likely to be executed. Each et is translated is called a
trace. A trace gets translated just before execuBecause the translation
happens at run time there are not so many problgthgdynamic linking and

self modifying code.

The last method is to use an interpreter. An imt#gy does not perform any
translation. Instead, each time an instruction rhaestxecuted the instruction
must first be decoded. Decoding is the act of d@teng which instruction an
instruction is. Once the instruction is decoderedimad is called that carries out

the same operation as the emulated instruction.

DBT usually generates very fast code. The tradésdffat to translate the
emulated machine code to native machine code ejaim expensive
compilation process. If a trace is to be executadyrimes the speed of the
generated code should offset the length of timatspe compilation. This
ensures that the generated code is often not mMoeleisthan native machine

code on long running programs such as servers.

11



An interpreter executes more slowly than the coeteegated by DBT. However,
because there is no translation process the owkreéawer. For short lived
programs where a piece of code is not run manystitine interpreter can end up

being faster.

1.2 Pearcolator

Pearcolator is an emulator created by the Jamaajad® at the University of
Manchester [1]. It is written in Java and acts &®at end to the Jikes Research
Virtual Machine (RVM).

The long term goal of the Jamaica project is tagiea chip multiprocessor

architecture [5].

Jikes RVM is a sophisticated Java Virtual MachiiéN) written in Java. Jikes

RVM has an optimising compiler and supports paliaiéon of code.

An emulator was needed by the Jamaica Projecti@rdo run legacy code
written for single processor architectures. Otheulators were found not to be

suitable for the needs of the Jamaica Project accBRtor was created.
Initially Pearcolator was designed as a PowerPQato This is because of the
simplicity of the PowerPC instruction set. The dasivas found to produce a

promising emulator so it was decided to expandrialate other architectures.

The aim of this project is to extend Pearcolatogrtaulate the x86 architecture.

The x86 was chosen as it is one of the most comyrfouhd architectures.

12



2 Emulating x86 Linux

2.1 Evaluation of the x86 Linux Environment

Linux uses the ELF binary format. This has beerettgped over many years so
has gained many features while remaining simpfaadcess. One of the features
allows statically linked binaries. This is a beh&r any fledgling emulator. It
allows programs to be run without needing to waipput the intricacies of
dynamic linking. Dynamic linking can cause manylpems which need to be

solved before a program can be executed.

The x86 architecture is quite complicated. Beingdamentally a CISC
(Complex Instruction Set Computer) architecture msaahas a lot of
instructions. Most instructions are capable of ingdny data they need without
the use of load/store instructions. This means8emulator must handle a

large number of instruction-addressing mode contlans.

Each instruction can be of a variable length. Hais the advantage that code
density in memory is high, but the disadvantagettiainstruction decoder
tends to be more complex than that of a RISC (Redilestruction Set
Computer) processor such as PowerPC.

Most instructions set condition bits in the eflaggister. The condition bits are
used relatively infrequently. This can generatetaf wasted computation. This
needs to be handled elegantly to prevent emulatmming down to much.

Several x86 registers have sub-registers that earséd as unique registers. To

prevent a lot of mask and shift instructions bajegerated these must also be
handled elegantly.
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2.2 X86 Architecture

2.2.1 Overview

Modern x86 processors can operate in several mtuese being 16 bit real
mode, 32 bit protected mode, and 64 bit mode. B&dor emulates a 32 bit
protected mode processor. It should be fairly sentpladd support for other
operating modes. Pearcolator has partial suppodeidain parts of 16 bit real

mode.

Pearcolator models the instruction set, data tyeggsters and memory. It does

not yet handle interrupts or virtual memory hangllin

X86 processors use a little endian byte orderirngs Theans bit O is the least

significant bit.

X86 recognises 8 bit bytes, words (defined as tvai 8ytes), double words
(defined as two words) all of which Pearcolatoalide to handle. There is also a
quad word data type which is used by SIMD and &4nloide instructions.
Pearcolator does not yet handle these for x86 dimnjalthough a framework is
in place which should make adding support strédigivtard. Values in memory
do not need to be word aligned, although most clargogenerate code where
this is the case.

X86 processors support 32 bit single precisionhiédouble precision and 80 bit
double-extended precision floating point numbeearBolator does not support
this yet. SSE instructions also add support for dif8oating point numbers.

2.2.2 Registers

X86 has eight general purpose 32 bit registers.répisters are EAX, EBX,
ECX, EDX, EDI, ESI, ESP, EBP. ESP is the stack fmiand is used by so
many instructions that it is usually a good ideaab alter its value unless

absolutely necessary. Each other register onlhal@smventional purpose.

14



The first four general purpose registers contammber of sub-registers that can
be referenced as if they were unique registersh Bathese registers has a 16 bit
register in the lower 16 bits. For EAX this 16 tagister would be AX. The 16

bit register is then split into two 8 bit registersne in the lower 8 bits (for EAX
this would be AL) and one in the upper 8 bits @#X this would be AH).

The last four general purpose registers are albe t@ferenced as 16 bit
registers. These registers are generally usediateps so in 32 bit mode the 16

bit sub-registers are not generally used.

There are six segment registers : CS, DS, SS, §355. These are 16 bit
registers used to enable 16 bit processors to ssldieto 1 MB of RAM. These

are rarely if ever used now so will not be discddsether.

The instruction pointer is a 32 bit register thaegs track of the position in the

program. No instructions are able to alter thigctily.
X86 processors have five control registers thauasgl to control certain features

of the processor. These are generally only usempbyating systems, which

Pearcolator does not yet emulate so will not beudised further.
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The x86 has a flags register called EFLAGS. It 32dit register with 17 fields,

each comprising 1 bit. Only six of the fields as=d and are described in the

following table:

Flag | Bit | Name Description

CF |0 Carry Flag Set to 1 if an unsigned integeraien
generates a carry or borrow on the most
significant bit, O otherwise.

PF | 2 Parity Flag Set to 1 if an integer operatimdpces a result
with an even number of 1's, O otherwise.

AF |4 Adjust Flag Setto 1 if a BCD operation proési@ carry on
bit 3, 0 otherwise.

ZF | 6 Zero Flag Set to 1 if an integer operatiordpaes the
result O, O if result is not zero.

SF | 7 Sign Flag Set to the most significant bithaf tesult of an
integer operation.

OF | 11 | Overflow Flag| Setto 1 if unsigned integeerdow occurs, O

otherwise.

The other fields are used more by operating sy&emels so will not be

discussed further.

The x86 has eight 80 bit double-extended precisgrsters. Pearcolator models

these using 64 bit double precision floating pemites as it is faster for Java to

do this and most programs will not notice the redbugrecision.

The Floating Point Unit (FPU) is used as a stackhime.

The floating point status register is 16 bitssltised to keep track of various

aspects of results of floating point operationshsag the outcome of

comparisons or exceptions triggered.
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The floating point control register is 16 bitsisltused to enable or disable certain
functions of the FPU.

The floating point tag register is 16 bits. It sed to keep track of the value of
each register in the FPU stack. Two bits of thggster are dedicated to each

element.

The possible values for each field are as follows:

Value| Description

0x00 | Register contains valid value

0x01 | Register contains 0

0x10 | Register contains special value

0x11 | Register contains invalid value

MMX adds eight 64 bit registers for performing v@cbperations and operations
on large integers. Pearcolator does not currenfypart this so will not be

discussed further.

SSE adds eight 128 bit registers for performingareaperations, operations on
large integers, and operations on floating poimhbers. Pearcolator does not

currently support this so will not be discussedtfer.

Recently 8 64 bit general purpose registers wedectb x86 as part of the x86-
64 initiative. These can be referenced by sub-teigisn a similar manner to the
existing 32 bit general purpose registers. Peat@otibes not currently support
these registers. Support should be simple to adehamstructions that wish to
use these registers must simply add a prefix (sapter 4) to the start of the

instruction.
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2.2.3 Addressing Modes

The formula

segment_register + immediate_offset + base_register

(index_register * scale_factor)
is used by nearly all instructions that need teeasanemory.
segment_register is one of the six segment registers. All otherstegs are
general purpose registersimediate offset is an immediate value given in the
instruction.
Virtually any combination of variables may be usédcale factor is used then
index_register must also be specifiedegment_register is not used very often as

on Linux it is often fairly meaningless.

Using this formula allows fairly sophisticated arieccess operations to be

carried out within a single instruction.
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3 Environment

3.1 Introduction

This chapter discusses how Pearcolator convincesnaated binary it is being

run within a real environment.

3.2 Process Space

3.2.1 Overview

The ProcessSpace class is the part of Pearcolaiohwolds everything
together. It is about the only part to have congpletowledge of both the
Operating System (OS) and processor being emulBtedessSpace has three

main components, which are the registers, mematysgstem call interface.

The ProcessSpace ensures the correct set of sgatismare used, and that
instructions are handled by the correct decodealgramslators for the processor

being emulated.

Previous versions of Pearcolator did not use a tapdRrocess Space class. All
memory, register and System Call handling was enie¢ Process Space class. It
was decided that instead of repeating a similaigddsr all future architectures
Pearcolator might support all memory, register system call handling should
be placed in separate classes. This encapsuldlitovsaeach component to be far

more flexible and allows for greater code reuse.
The PowerPC version had a PPC_ProcessSpace cla$shandled everything.

There is now a ProcessSpace super class whichim®factionality common to

all architectures and operating systems to be dpulila
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Each architecture/operating system combinatioralas class of ProcessSpace

which sets up each component in the appropriatanaran

3.2.2 Registers

A class named Registers has been created. Eacbftypgister has methods
used for performing low level operations on thafiseer. Each method receives
an index as an argument specifying which regidténat type is to be accessed.

The registers object is designed to allow suppwrahy type of register.

The registers object currently supports the folloywperations:

read 32 bit general purpose register
read 16 bit general purpose register
read 8 bit general purpose register
write 32 bit general purpose register
write 16 bit general purpose register
write 8 bit general purpose register
read 32 bit flags register

read 16 bit flags register

write 32 bit flags register

write 16 bit flags register

How each register is implemented is left to sulss#a of Register. Each method

in Registers throws an exception if called.

Each method could have been declared as an ahstestodd. This was not
chosen as many architectures do not support atetister types that the
Register class supports. For example, PowerPCrdmiesipport 16 bit general
purpose registers. If the methods in Registers akideclared abstract, the sub
class of Registers for PowerPC would need to implari6 bit registers, which
obviously does not make much sense. The sub das86 implements all the

above methods.

20



Encapsulation of the registers in this manner aléw a great deal of flexibility.
Any other parts of the emulator that need to acosgisters do not need to know

how each register type is implemented.

For the general purpose registers the x86 sub otdgsstores the value for the
32 bit registers. These are stored as an arrag bft3ntegers. Accesses to 16 bit
and 8 bit registers are implemented as masks afid garformed on the 32 bit

registers.

It should be possible to use native methods aratiassof pointer manipulations
to access the 16 bit and 8 bit sub registers witbhbanging any code that uses
registers. Using pointer manipulations like thisymasult in faster code,

although this is currently untested. This will hefgeed up the interpretor more

than the translator for reasons that are discusseltapter 3.

3.2.3 Memory

A new memory system has been created. This is lmas#te super class

Memory.

Pearcolator now supports x86 and PowerPC processdésis little endian

while PowerPC is big endian which require differer@mory systems.

If x86 is being emulated on another x86 computeraimulated memories bytes
are in the correct order. However, if x86 is beamgulated on a PowerPC
computer reading a multiple byte value requiresdttaer to be reversed before

the value can be used.
Different endian memory schemes are handled bgreifit sub classes of

Memory. The different memory schemes can also deeaded using either bytes

or integers.
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Each of the memory schemes contains three pagestabhe page table stores all
tracks pages with read permission, another witkevpermission and the last

handles execute permission.

Assuming an address space of 4GB, each page @abl@xi00000 elements,
while each page is 4096 bytes long.

Each element of a page table contains a referenae array containing the data
(the page). If a type of access is not allowed page, that element of the page

table for that type of access contains a null exfee.

Previous versions of Pearcolator would explicitheck the permission of each
memory access before it occurred. Newer versiomsassume the memory
access is allowed. If the page being accessedmiidwmve the correct
permissions set, Pearcolator will attempt to defeeea null reference, so an

exception is thrown.

The sub classes of Memory are as follows:

CallBasedM emory
Super class to all other Memory sub classes. Quntaethods for translating

memory reads and writes.

ByteAddressedM emory
Data in each page is stored as array of bytesisdime order as the host

processor would expect.

ByteAddressedByteSwapMemory

Same as ByteAddressedMemory, but with multi-byteesbeing reversed.

ByteAddressedRever sedM emory
Data in each page is stored as array of bytesnathory addresses are reversed
(such as 0x00000000 being mapped to Oxffffffff amme versa). Endian

conversion is performed.

22



IntAddressedMemory
Data in each page is stored as array of ints irséinee order as the host processor

would expect.

IntAddressedByteSwapMemory
Similar to IntAddressedMemory except endian coneers performed on reads

and writes.

IntAddressedPreSwappedM emory

Data stored as ints, with data stored in reverderowithin the ints.

IntAddressedRever sedMemory

Similar to ByteAddressedReversedMemory exceptath @s stored in ints.

The x86 version of Pearcolator uses ByteAddresseadie when run on an x86
computer and IntAddressedByteSwappedMemory whemmnuea PowerPC.

In the last section, a technique using pointer maations to possibly speed up
register operations was described. It is hopeddinaitar techniques can be
applied to memory. This should benefit the tramslatode and interpretor
roughly equally. The effect of the memory optimisatwill have a greater

benefit for the translated code than the similgrster optimisation.

3.2.4 System Calls

In previous versions of Pearcolator all system lealidling was handled by
PPC_ProcessSpace [12]. When a system call wasrt@mbte
PPC_ProcessSpace.doSysCall() was called. This wetnldve the system call
number from the register r3 which would then bedusea large switch
statement. The body of the switch statement woaldy@ut the same action as
the system call it was to emulate. The body ofstviéch statement would get
arguments as needed from the registers. The re&lue of the system call

would be written to register r3.
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For the x86 version of Pearcolator the first prabis that the system call
number is stored in register EAX not r3. As othehé@ectures store the system
call number in other ways it was decided to creatabstract method
getSysCallNumber() in ProcessSpace. This wouldripéemented in each
subclass of ProcessSpace. It was felt this shauhll duitable way of selecting
the correct system call in an architecture indepahday. The x86 version
simply returns the value held in the register EAX.

The next problem way how to get system call argusgna architecture
independent manner. Looking at the system calliBp&tions it becomes clear
that all arguments can be represented by 32 leigars.

An abstract method getSysCallArguments() in Prdg8pease was created. This
receives an int as an argument which specifiesrinawy arguments are
expected. getSysCallArguments() returns an arrajagung the arguments.
Each subclass of ProcessSpace implements this dadtbothe x86 processor if
the number of arguments is five or less the argusnearorder are read from
EBX, ECX, EDX, ESI, and EDI. If the number of argents is greater than five,
EBX contains a pointer to the list of arguments.

In a similar manner an abstract method setSysCaitR@ in ProcessSpace was
created. As its name would suggest it sets thesystll return value. For the
x86 this involves setting EAX.

The next improvement was to move as much of theesysall handling out of
the ProcessSpace class. The method doSysCall(pchetts kept in the
ProcessSpace class but was made abstract. ThedhwetBgsCall() is
implemented by all subclasses of ProcessSpackelsubclass for x86 Linux
this method calls doSysCall() in the class
org.binarytranslator.LinuxSystemCaller. This rettusreturn value of
getSysCallNumber() which is then used as an ind&xan array of SystemcCall

objects.
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The array index technique was used instead of &lswiatement for a number of
reasons. First is that it makes the code more bbjgnted. Second was that

using an array instead of a switch statement temtslp the branch prediction.

Each system call is implemented by a separate astoff the class SystemCall.

For example, the exit system call is SysEXxit.

Any system calls as yet unimplemented are repredédnt the class USC. For
example, the fork system call is not implementedssposition in the look up
table is occupied by an instance of USC. If an yphemented system call is used

an exception is thrown stating which system catlamg attempted.

The position of unimplemented system calls coulelzeen occupied by a null
reference. This would have thrown an exceptionraataally but would not
give any information about which system call theutator was attempting to

use.

3.3 Binary Loader

3.3.1 Introduction

Before it is possible to execute a program, whetiagvely or via emulation, it is
necessary to read the program from disk and logdoitmemory ready to be run.
This constitutes a number of stages. The stageatba Linux binary are as

follows:

* Determination of format

* Read EIf header

* Read EIf program header table
* Read EIf program headers

* Read program code

* Read initialized data

» Configure unitialized space
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* Environment variables
e Aux vector

* Stack inistialisation

Each of these stages will be covered in the folhgnsections.

3.3.2 Purpose of Binary Formats

In order for the binary loader to function it mfisst know the layout of the file

the binary is in.

The simplest layout would be if the file only canted the instructions to be
executed as part of the program perhaps immedittibbyved by any
preinitialized data. This is obviously quite aniéxible system. The user of the
computer would be responsible for making sure treect program was being

used for the processor and operating system clylienise.

Fortunately, modern binary formats are much mophsticated. Formats such
as ELF enable a file to be split into a numberitietent sections each one
usually containing either executable machine cadeitialized data. Each
section can also have access permissions appliedddhat, for example, the
code section can not be written to and the datidogeis not executable.

3.3.3 The ELF Binary Format

The Executable and Linkable Format (ELF) contaifeyge amount of data, a lot
of which is not currently of interest to Pearcotdtt3]. The parts that Pearcolator

is interested in are the ELF Header, Program Hegalele and segments.
The ELF Header contains data specifying the lapbtite rest of the file. One of

the most important fields of the header is e_maghiinis specifies the
architecture of the binary. Another important fiddel _OSABI. EI_OSABI

26



stores the operating system the binary is meanirt@n. Unfortunately gcc
appears not to give very much detail in this figldhe current time, only

specifying that the operating system is some vaoabnix.

Other fields of interest in the ELF header are sizshwhich is the length in
bytes of the header, e_phnum which gives the numbentries in the Program
Header Table, and e_phentsize which gives theodieach entry in the Program
Header Table.

The Program Header Table contains a list of Prodgfi@aders. Program Headers
give information about each segment in the filehsae segment size and access

permissions.

Two segments are usually of interest to a progtamcode segment and the data

segment.

ELF is currently the only format supported by Petator, although it does

contain a framework for supporting other formats.

3.3.4 A problem with the Old Binary Loader

In previous versions of Pearcolator one of the bigects to be created would be
the PPC_ProcessSpace object. The PPC_Process$paatestored the memory
of the process and all registers of the processimigbemulated. This was
adequate when the only platform being emulatedReagerPC on Linux. The

binary being loaded could be assumed to be for FRG/&INUX.

However, this version introduced support for thé ¥&truction set. This created
an equivalent X86_ProcessSpace object. It woula sieple to matter to copy
most of the code from the PowerPC Linux version eneate a seperate branch

that dealt only with x86 Linux.
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This raises a number of issues. Support for Spatcdam processors is currently
under consideration. This means a total of fouledtrent branches of
Pearcolator would be needed each needing to beitexkeftom a different

command eg.

rvm org. bi narytransl at or. PPC_Mai n execut abl e
rvm or g. bi narytransl at or. X86_Mai n execut abl e
rvm org. bi narytransl at or. ARM Mai n execut abl e
rvm org. bi narytransl at or. Sparc_Mi n execut abl e

rvm or g. bi narytransl at or. xxx_Mai n execut abl e

If support for the OS X, Solaris and Windows ope@systems were added in
the future even more org.binarytranslator.xxx_Mdasses would be needed —
one for each operating system, architecture ararpiiormat combination — all
to ensure the correct xxx_ProcessSpace class adedat run time. The
computer user may not even know or care what plattbe architecture is
designed for making selecting the correct org.lytnanslator.xxx_Main class to

use.

The solution is to load enough of the binary teedetvhich xxx_ProcessSpace
object to select. This means there is only oneygraimt for Pearcolator which

solves the above problems.

3.3.5 Determination of Binary Format
The first task to be carried out is to detect timaty format. This is the job of the

class org.binarytranslator.BinaryLoader.

Commonly the first four bytes of a binary file arged to specify the format of
the file.

Currently the only format of interest to PearcotasoELF. It should be fairly

easy to add support for Java classes, which cpassed to Jikes RVM without
to much problem. For an ELF file to be detectedfitts¢ four bytes must contain
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the characters 'E’, 'L', 'F', and '\O' in that ordf¢hen an ELF binary has been

found control passes to the class org.binarytrémskELF_BinaryLoader.

3.3.6 Reading ELF Header

Reading the ELF Header is handled by the class
org.binarytranslator.ELF_Header. Once the ELF_Hehds been loaded
Pearcolator has enough information to select theecoxxx_ProcessSpace class.
The ELF Header is directly after the binary fornasntifier.

3.3.7 Creating ELF Program Header Table

The Program Header Table is implemented as an arithg class
org.binarytranslator.ELF_X86 ProgramHeaderTablea# the responsibility of
calling org.binarytranslator.ELF_ProgramHeaderdpuate each element of the

array.

3.3.8 Reading ELF Program Headers

Reading ELF Program Headers is handled by
org.binarytranslator.ELF_X86 ProgramHeader. Progreraders are stored
directly after the ELF Header in the file.

3.3.9 Copy Executable Code

Up to this point no data has been copied to memidrg.first step is to copy
executable code. This uses the method mmap in $88pace to allocate space

in memory and then copy the code from the bindeyté memory.
The mmap method allows various parameters spegityow the memory should

be set up. These include, MAP_GROWSDOWN, MAP_PRI¥A&nd
MAP_SHARED. The only parameter currently handleMAP_PRIVATE.
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Pages allocated for executable code have readxaedteon permissions set.

3.3.10 Copy Initialised Data

This step is similar to copying executable codegex initialised data is copied

from the binary file and the permissions are see#ul and write access.

3.3.11 Configure Uninitialised Data

At the end of the initialised data, ELF often sfiesithat there should be an area

for uninitialised data.

If the last page of initialised data is not fuletuninitialised data starts there.
Otherwise the uninitialised data starts in the mpage.

The method mmap is called without a file to reamhfrfor this stage. This
version of mmap should only need to allocate spidogever, for some reason
gcc/glibc generates code that relies on all urgilsted data areas being set to 0.
This can cause strange problems, so all data ticat@ding to ELF is uninitialised

must in fact be initialised to 0.

3.3.12 Environment Variables

In old versions of Pearcolator, all environmentafalles were fixed. The values
were set up for a different computer to the ong weirsion was developed on.
Rather than simply changing the values for eachpeden Pearcolator is run on,
a more flexible way of setting environment variagbleas needed.

This version of Pearcolator relies on Jikes RVMyaninning on variants of

Unix. This seems a reasonable assumption whichiélstay valid for the

foreseeable future.
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The Unix command env is run from within Pearcolaidris outputs all
environment variables and the corresponding vallies.output text of the

command is stored in an array and then placedestttk.

3.3.13 Aux Vector

The aux vector is an array of key-value pairsiveg information about the
architecture Pearcolator is emulating. Since autmally obtaining such
information does not appear to be possible at pteéke data is constant.

3.3.14 Stack Initialisation

Stack initialisation involves copying everythingaged to access environment
variables, command line arguments and the aux vaxcthe stack.

First, the length of the stack once it has bedraliged is calculated. This is so
that the stack can be built from the lowest mentocgtion up to the highest.

The lowest memory location of the stack is callegl stack top. The stack pointer
is set to the stack top using the method setStagkProcessSpace. The method
setStackPtr is abstract in ProcessSpace and rebddrmplemented by its sub
classes. In the x86 Linux emulator setStackPtrthetsegister ESP to the stack

top.

Directly above the stack top are the pointers tomand line arguments. Next is
4 byte value 0x00000000. This is to show wherdigt®f pointers ends.

This is followed by the environment variable pomtdollowed by 0x00000000

again.

Next is the aux vector. This already has an endgeofor marker built in.

It is often useful for multiple byte values suchpaénters to be word aligned, so

the stack now has a number of padding bytes torerisis.

31



Finally, the environment variable and command $trengs themselves are
copied on to the stack. Because of the way thé& st#@lisation works, each
string needs to be reversed.

32



4 Register Handling

4.1 Introduction

This chapter deals with register handling for tla@slation portion of
Pearcolator. Register handling is not covered énsiéction on code translation as

it is a very complex area.

4.2 Register handling in PowerPC Pearcolator

Before register handling in the x86 version of Bekator can be covered it is
useful to explain how the PowerPC version workss Tito show why PowerPC

register handling does not translate well to x86.

The PowerPC has 32 general purpose registers.i&8ehbits in length and

unlike the x86 does not allow sub registers.

At the start of a trace the translator commandsataeqgisters be filled. Filling a
register is the act of specifying that at the stéthe execution of the trace a

register used in the trace should be given theeviadid in the ProcessSpace.

Throughout the translation, whenever a registesex by the trace (used being
defined as reading from or writing to a registég translator records that that

register has been used.

At the end of the trace the register used in theetishould be spilled. This means
the register held in the ProcessSpace is updathdiva value held by its

counterpart in the executed trace.
After this, a second pass is made through thelatatstrace. If a register has not

been marked as being used in the trace any fikpitis for that register are

deleted. This results in the trace only performisgful work on the registers.
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4.3 Register Handling in x86 Pearcolator

4.3.1 Introduction

The x86 allows referencing of sub registers. Téigls to complicate matters.

The simplest way to handle sub registers is tomssks and shifts from the 32
bit register. Reading from the register ah requinesfollowing operations to be

performed:
(EAX >>> 8) & OxFF

Writing val8 to ah requires the following operatson
EAX = (EAX & OxFFFFOOFF) | (val 8 << 8)

Writing vall6 to ax requires the following operaitso
EAX = (EAX & OxFFFF0000) | val 16

This is obviously a complicated, time consumingdeaiperations to perform

each time a sub register is to be accessed.

Reading can be simplified substantially by treagagh sub register as a unique
register. Each time a sub register is updated Blsdioc must ensure each sub

register that is dependent on the data writtenaipstthe correct data.

Reading from a sub register simply involves readiregvalue from the variable

representing it. Writing val8 to ah requires thkol@ing set of operations:

EAX = (EAX & OxFFFFOOFF) | (val 8 << 8)
AX = EAX & OxFFFF
AH = val 8
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Writing vall6 to ax requires the following set qgfevations:

EAX = (EAX & OxFFFF0000) | val 16
AX = val 16

AH = AX >>> 8

AL = AX & OxFF

While reading sub registers is made far simplettingris made far more
complex. A technique where only sub registers énatused are updated is

required. Such a technique is Sub Register Syn@ation Laziness

4.3.2 Sub Register Synchronisation Laziness

Each group of registers (such as EAX, AX, AH and Ad._given a state. This
state is the Lazy State. The lazy state specififseacurrent time in the

translation which states are valid for reading.

The Lazy State is represented by 4 bits. Eachhbivs the state of a specific sub
register. The following table shows for EAX whiahsregister is represented by
which bit:

Sub Register| Bit
EAX 4
AX 3
AH 2
AL 1

If a bit is set it means the corresponding substegican be read from with no
extra work. If a bit is cleared it means the cquaexling sub register must have

instructions inserted to synchronise it with thst & the registers in a group.

As an example, if the EAX group has the lazy sfx@, it means EAX is the

only sub register that is valid. Any other sub ségjis that are to be read from
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need to obtain updated data from EAX. If the Lat&is 0x6, AX and AH are
both valid, while EAX and AL are invalid.

When a sub register is written to it “creates lagsi. This means Pearcolator
sets the sub register bits in the Lazy State agat€lall bits for sub registers that
depend on the data just written. If the Lazy Statd=AX is OxF, writing to AL
results in the Lazy State becoming 0x3. Writing\k directly after this results

in a Lazy State of 0x4.

When a sub register is read from it “resolves leg#i. If the sub registers bit is
already set in the Lazy State, the register carae. If the sub registers bit is
cleared when the read is demanded Pearcolator must:

1. Synthesise the sub register from the data heldarvalid sub registers.
This usually involves some degree of masking arftirsip
2. Set the sub registers bit in the Lazy State.

3. Translate the read.

If the Lazy State before a read is 0x4, then a felad AH will perform the

following actions:

1. Mask top 8 bits of AX, and shift right by 8 bitgjtfing the result in AH.
2. Set the Lazy State to 0x6.
3. Translate the read from AH.

Although this looks like it requires more work thidn@ non lazy register handling
it must be remembered that all Lazy State handieqgpens at translation time,
not execution time. This means if generated codegsib registers must be

executed many times, the Lazy State must only bedlad once.
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4.3.3 Removing Unnecessary Fills and Spills
Register Synchronisation Laziness reduces the anudwode to be executed

during the trace for register handling, but it doeshelp when fills and spills are

needed at the beginning and ends of traces regekcti

The PowerPC version of Pearcolator adds all filid spills possible to the trace

and uses a second pass to remove any that aredachee

For the x86 version, due to Register Synchronisdtariness it was found to be
unfeasible to add all fills and spills on a firstsg and remove them later. This is
because each register could be in too many statesdle in this way. Using a

second pass to remove instructions also seemeztjanal

4.3.4 First Version

The first version of the lazy evaluator was vemjsle. It did not make any
attempt to remove fills or spills. This was donereheto see if the generated

code would be acceptable.

At the beginning of a trace all sub registers wdagdilled. The body of the trace
would be translated, using laziness to reduce weteeegister operations. At the

end of the trace all laziness would be resolvetsii registers would be spilled.
No benchmarks needed to be run on this technigkedw that it was slow.

Emulating a four instruction program with no loogitook roughly 2 seconds to

translate and execute.

4.3.5 Second Version

The goal of the second version was to removedilid spills of register groups

that were not used.
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In this version no register fills occurred at tiarsof the trace. Instead registers
were only filled as they were used. At first useatgister group, all sub

registers in the group were filled.

At the end of the trace, laziness for all sub rtegssin all register groups was

resolved. If a register group had been used, theularegisters were spilled.

This version had a substantial speed increasetbgdirst version. There was

very little delay between starting the translataom execution completing.

4.3.6 Third Version

Although the second version seemed adequatel] gpieared to be inefficient.
All sub registers in a group were filled and spilkven if most were not used.

This version was to remove unnecessary fills anltssgd sub registers within a

group.

On first use of a sub register from a group, indt@filling all sub registers only
the 32 bit sub register was filled. If another sebister was needed it would be

resolved from the data in the 32 bit sub register.

At the end of the trace the 32 bit sub registerlditwe resolved from any altered
data in the other sub registers in the group. ThbeiBsub register only would
then be spilled. This was possible as this sulsteghow contained all data held
in the other sub registers.

4.3.7 Fourth Version
The fourth and final version implemented removederfdls and spills.
Every version covered so far used a course graimeedof register use. If a

register group was either read from or writtenhtent it would be filled and

spilled.
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This version keeps more fine grained data on registe. It separates usage data

into reading and writing.

If the first use of a sub register is a write, llag performed. This is because the

filled result will be over written any way so is stad computation.

If a sub register needs to be read from, and cardmved from data available in
the other sub registers in the group then lazirsesssolved to get the required
data. If insufficient data is available to resofk@m, the 32 bit register is filled.
The 32 bit sub register is updated from any daaniay have been written and
the sub register is resolved from that.

If a register group is written to, the 32 bit selyister is resolved at the end of the

trace (filling if necessary), and then is spilled.

This version tends to reduce the number of regfsleand spills over earlier

versions.

4.3.8 Alternative Implementation

Another technique for handling fills and spills waso considered. For

completeness it will be covered briefly here.

Currently the 32 bit sub register in a group ikdlif a read is required. The

alternative is to fill each individual sub registenen a read is required. At the
end of the trace the most encompassing sub registdd be written. If AL and
AH were written to then they would be spilled. IKAvere also written to then

only AX would be spilled as it encompasses AL arkdl A

This technique was rejected. With the currentlylenpented version the 32 bit
sub register always contains data, even if it ifsonger valid. The top half of the
32 bit sub register is always valid. This allows 82 bit sub register to be used
easily if required by other sub registers for syoalsation purposes.
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As an example, let AL be written to. This will ceusAX to be filled if it
currently contains no data. The Lazy State is thd read from AX is required,
EAX can be resolved, and then AX resolved from EAX.

With this alternative implementation, after AL Haeen written to, there is

difficulty when AX needs to be read from. One obtthings can happen:

1. Fill AX, resolve AX from AL, read AX
2. Fill EAX, update EAX from AL, resolve AX from EAXead AX

The first option seems to be more efficient, wihile second closely follows the

behaviour of the current implementation only idighdly different order.

The first option seems more efficient until a réaan EAX is needed. This

would the following operations:

1. Fill EAX

2. Update EAX from AX

3. Read EAX
The second option merely requires a read operatidéAX. There are many
similar cases. This implementation seems to requpetentially larger number

of fills than the current implementation.
Even if the this implementation could be adaptethlidoack on to the current

behaviour if it seemed more efficient, a far greatember of Lazy States would

be required to keep track of which sub registergaia data.
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4.4 Flag Handling

4.4.1 Introduction

A similar problem exists for the EFLAGS registarnslupdated by nearly every
instruction with each update requiring various nsaskthe EFLAGS register.
The EFLAGS register is only very rarely read frao keeping it up to date at all

times is very inefficient.

4.4.2 Flag Laziness

To solve this problem flag laziness was developgedh time a flag needs
updating a copy of the result that the flag isédolsed on is copied along with
the type of the operation (such as integer, shdoyte).

When a flag needs to be read from the operatiarpdéting EFLAGS can be

performed.
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5 Instruction Decoder

5.1 Introduction

In order for Pearcolator to run a program, it nfurst know the instructions it is
to emulate. This is the job of the instruction d#so The instruction decoder
must read a series of bytes from the Memory olgadtensure the correct action

is performed.

5.2 Instruction Format

Unlike the PowerPC instruction format that is sienphd fast to decode, the x86

instruction format is much slower and more compédao decode.

Each PowerPC is 32 bits in length. Due to its camdiength it is easy to extract
information from. The x86 has variable length instions ranging from 1 byte
to 17 bytes.

Each instruction has a number of fields:

Instruction Prefix

e Opcode
e ModR/M
e SIB

» Displacement

* |Immediate Data

Each field is optional within the instruction extéqr the opcode field, which is
obligatory.
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5.2.1 Instruction Prefix Field

The instruction prefix field can be between 0 toydes in length. There are a
large number of prefixes that can be used. Cugrétebrcolator only has full
support for the Operand Size Override prefix. Tie@nd Size Override prefix
changes the default operand size from 32 bits toits6

Other notable prefixes include:

* Lock, which ensures any memory locations used byrtbtruction are
not used by any other instructions run concurrently

* Branch Hint, which offers a suggestion to the pssoe of which
conditional branch is likely to be taken.

* Wait, which commands floating point instructionsaait for exceptions
to be resolved.

* Rex, which tells the processor to use the registédged by the x86-64

extension.

5.2.2 Opcode Field
This is the only obligatory field. It must be aas 1 byte and no more than 3

bytes long.

Most instructions only require a 1 byte opcodarfinstruction requires a longer
opcode the first byte must contain a value frorpecHic set of values. Often the
multi-byte opcodes simply offer instructions simila the 1 byte opcodes but

with slightly different functionality.

5.2.3 ModR/M Field

When present the ModR/M field has 1 byte. It hasfatlowing structure:

Mod Reg/Opcode R/M
Bits 6 -7 Bits 3-5 Bits 0 - 2
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As can be seen from the diagram it is split inteétfurther fields, i.e. the Mod,
Reg/Opcode and R/M fields.

The Mod and R/M fields are often combined. They &present up to 32
different values. This corresponds to 8 genergbpse registers (by default on
Linux the general purpose registers are 32 bit)2zhdddressing modes. If one
of the addressing modes is used the SIB field (de=tt in the next section) must
be present.

The encoding used by this byte for the registerautessing modes is very

complex so will not be discussed here.

The Reg/Opcode field is usually used to specifg@ster to use in the

instruction. If necessary this field can also beduw further refine the opcode.

Very occasionally the entire byte can be used @sgp#he opcode field.

5.2.4 SIB Field

The SIB field is used when one of the operandstaded is a register indirect
operand. It is used when the ModR/M field speciiasaddressing mode. When
present it is 1 byte long and has the followingdture:

Scale Index Base
Bits 6 - 7 Bits 3-5 Bits0 - 2

In an earlier chapter the formula for building gister indirect address was

given as:

segnment _regi ster + imedi ate_of fset + base register +

(index_register * scale _factor)
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The variablescale factor is given in Scale. The mapping of values giveBadale

to values ofcale factor is given by Scale ” 2 (Scale to the power of 2).

The variablesndex_register andbase _register are given by the Index and Base
fields respectively. Each specifies a 32 bit gelnamgpose register by a default.

If the instruction make use of the Address Sizer@de prefix

5.2.5 Displacement Field

This field is used asnmediate offset in the formula in the previous section.

When present it can be 1, 2 or 4 bytes.

5.2.6 Immediate Data

This field is used when one of the operands ismstamt. When present it can be
1, 2 or 4 bytes long.

5.3 Decoder Implementations

Instead of building a decoder from scratch it wasidied to try to find an
already written decoder that could be used eagilgdarcolator. The x86
instruction set was deemed too complicated to kadécoder from scratch in

the time available.

First, research centred on finding a decoder writteing Java. None were found

so the search was expanded to cover decodersmuigieg C and C++.
Since any decoder written in C or C++ would needda@ltered to fit the specific
needs of Pearcolator it was decided that any deabasen should be ported to

Java.

This produced far more results. The most promitagd are covered in the

following sections.
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5.3.1 QEMU

Qemu is an emulator that supports a number of i@athres [6].

QEMU has two decoders: one to decode the emulagtdictions and the other
to act as an interface to GDB (the GNU DeBuggehng diecoder for the
emulator seemed quite tightly integrated with & of the emulator and proved
difficult to try to extract.

The decoder for the interface to GDB seemed dttfirbe fairly straight forward
to convert to Java. It did not appear to use angrasaor similar language
constructs that might be difficult to convert. Urttohately it did use lots of

strange pointer manipulations that made conveiiicult.

5.3.2 Bochs

Bochs is an x86 emulator that runs on a numberabiitectures[7].

The decoder from Bochs has the same problem as QENHat it is tightly
integrated with the rest of the decoder. The docuat®n seems to be under

development and is not any use at the moment.

5.3.3 libdisasm

libdisasm is a disassembler library used by ThadBdslisassembler [8]. It
works using a series of array lookups based on legiehof the instruction. It is
written using C. Documentation is excellent fosthiprary. The code is nicely

laid out and is easy to follow.

The problem with libdisasm is that it is currentlydergoing a complete rewrite.
The current version seems to have a number ofusebogs which aren’t being
corrected by the developers. Another problem isttiedesign of the lookup

means that it would be very time consuming to conve

46



5.3.4 libopcodes

libopcodes is used by objdump for its disassentalgput. It is largely
undocumented. It does not appear to support matheaiewer instructions.

5.3.5 Jikes RVM

Jikes RVM has a disassembler that was borrowed fBM Visual Age. It is
written in C++ and as a consequence uses verydatures that have no

analogue in Java.
It is quite old and lacks many of the newer indinres that have been added to
the x86 architecture. It is however fairly cleanhtm add the missing

instructions.

It is well laid out with no ambiguity as to whiclde is actually part of the

decoder.

5.3.6 ndisasm

ndisasm is part of nasm [10]. It is fairly similardesign to libdisasm but has

more active development.
It is designed to reuse much of nasm, and wasuititfiom the ground up to be

a disassembler. It was built purely because it eglearwaste not to have a

disassembler when various parts were already daila
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5.3.7 Sled

Sled is a tool for building instruction decoderk [@works in a similar way to a
lexer and parser with the user creating specibecatifor the format of an

instruction.

It is written in a combination of C and Icon. Aligh decoders are already
available for the x86 meaning writing the decodethieoretically trivial, Sled
only outputs decoders in C and Modula at preserg.not clear how to add an

output language without rewriting large parts @&l

It would be possible to use Sled using the Javasdldtterface (JNI) but this is

messy.

5.3.8 Chosen Implementation

The disassembler from Jikes RVM was chosen asabe tor the decoder for
Pearcolator. Despite its age it seemed to be thiestdo port to Java. Also it
meant that Pearcolator would not be perceived bplpeeas being merely a

conglomeration of work taken from other emulatarjgcts.

Another advantage is that it should be fairly sienjal separate the decoder from
the interpreter and translator and reintroducesgesabler functionality. There is
still a reasonable amount of disassembler funclityri@dden in Pearcolators
decoder. Each Instruction class (covered in se&iér2) contains a String
representation of the name of the instruction. Woslld mean Jikes RVM

would have a disassembler written in Java rather @++. There is a trend in
Java currently to rely less on JNI and legacy dbdethis would appear to fit in
with.

5.4 Decoder Components

This section will give details of some of the magomponents of the decoder.
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5.4.1 X86_BaselnstructionDecoder Class

This is the entry point for the decoder. It consaam array of 32 bit Instruction
objects, an array of 16 bit Instruction objects andarray of OpcodeFunction
objects. The first byte of an instruction is reemhi memory which is used to

select the correct Instruction and OpcodeFunctiomfthe arrays.

After this the selected OpcodeFunction is usecetmde the rest of the

instruction.

5.4.2 Instruction Class

There is one Instruction for each instruction i@ ¥86 architecture. It handles the

translations and interpretations for that insticti

5.4.3 OpcodeFunction Class

The OpcodeFunction objects handle further instomctiecoding needed by
groups of instructions. It might handle reading@&xipcode bytes or selecting

the correct operands.

5.4.4 Opcode Decoder

Each OpcodeFunction creates an opcode decoderisTaishere all information
that the OpcodeFunction finds is stored. This idekithe instruction and list of
operands.
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5.4.5 Operands

Each Instruction object must know how to deal vaitlarge number of operand
types and addressing modes. It was for this redmo@perand class was

conceived.

The Operand class has a sub class for each soeeadnd (such as byte, short
and int). Each size sub class has a sub clasaébraperand type (such as

register, constant and register indirect.

An instruction class is able to specify which operaizes it accepts and what to
do when operands are of a certain size. The Ingirnuobject should not need to

know any more information than that.

The Operand class and its sub classes also pravitgEans of storing
information about the operand in a way that is nregial to both the translator

and the interpreter.

The Operand class has several methods for readthgating different sized
operands for both translation and interpretatiachEmethod returns an

exception if called.

The Operand sub classes are as follows:

ByteOperand: Super class of all operands that represent a byte.
ByteConstantOperand: Represents an immediate byte value.

GP8Register Operand: Represents an 8 bit general purpose register.

ShortOperand: Super class of all operands that represent atMakie.
ShortConstantOperand: Represents an immediate 16 bit value.

GP16Register Operand: Represents a 16 bit general purpose register.

IntOperand: Super class of all operands that represent at3&lkie.

IntConstantOperand: Represents an immediate 32 bit value.
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GP32Register Operand: Represents a 32 bit general purpose register.

GP32Register I ndirectOperand: Represents a register indirect operands where
all registers used are 32 bit general purposetergidt has a method for
obtaining the address for the translator and imétep (this is mainly used
externally of this class by the Lea instructionhads methods for reading and

writing 8, 16 and 32 bit values.

Currently GP32RegisterindirectOperand must beacedifferently from all

other operand types as the values it deals wittbeasf any size. Each other
operand type has a specific size of values it dedls It is hoped that in the near
future it will be possible to have indirect operartdat have specific sizes.
GP32RegisterIindirectByteOperand, GP32RegisterlotSiteortOperand and
GP32ReqgisterIndirectintOperand operand types apmaained. This should
reduce the number of operand types each instruttmslator must deal with.

Sign extended and zero extended operands arelatlsoepg. Many instructions
deal with one integer operand and one byte opetfatdnust be sign extended to
an integer. Currently the instruction translatorstmqerform the sign extension.
These instructions end up having a translatordbats with two integer operands
and another that deals with one integer and ore Byter sign extension both
translators perform much the same task. By makiagperand perform the sign
extension it can be treated as a perfectly staedy@n operand, removing the
need for a second translator.

5.5 Improving the Decoder

As well as the improvements mentioned in the lastisn several other
improvements can be made in the future. These yniostblve reducing the
number of redundant branches the decoder needake.m

One of the first improvements would remove the rtegokerform an array access

to find the instruction followed by another arracess to get the operand
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decoder. Since these two operations both userstebiite of the instruction it
should be simple to have a decoder for each vdltleedirst byte which will

know which instruction it is operating on.

The next improvement involves optimising instrunsavhere register operands
are encoded in the opcode. The x86 has one bytegngspop instructions that
act on a 32 bit register. These instructions aredrequently used. The decoder
must currently mask off part of the byte to obtidia register. Making the first
improvement in this section makes it unnecessanyask the byte as the
decoder will already know the value of the byterrigging a single And
instruction from the decoder may not sound like matan improvement but it
must be remembered that for the interpreter it beag great improvement. One
instruction may take up a large proportion of tingettaken to interpret an
instruction. Removing the need for the instructioay result in a significant
performance increase. A similar idea can be apptiedany other instruction
decoders.

The final improvement should make the most sigaiftamprovement in
performance. Currently each time an instructiotesoded, several operand
objects must be created. Once the instruction bas translated or interpreted,
the operand values are often never used againcOiygation tends to be an
expensive operation to perform. For the interpretesr of particular concern as it
severely limits the speed at which instructions lsaexecuted. The values stored
in the operand object are not needed after theuctsdn has been translated or
interpreted so it seems reasonable to reuse tieetan)d simply change the
values. A similar optimisation can be carried oithwather objects created by

the decoder.

The improvement should be large for the interprédtetead of needing to create
several objects for each instruction, it shoulghbssible to create only about 20-
30 objects for the entire life of the interprefBine improvement should help the

translator as well, but not as much.
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6 Emulation Modes

6.1 Introduction

Once the environment a program is to be emulatéasrbeen set up (covered in
the last chapter) Pearcolator then must run thgram somehow. Pearcolator

has two modes of accomplishing this: code trarsiatind interpretation.

6.2 Code Translation

6.2.1 Introduction

Code translation involves converting instructiohghe machine code to be
emulated into native machine code. It does thiirby/translating the emulated
machine code to the High level Intermediate Reptas®n (HIR). The HIR is
then passed through to a compiler which generattdgenmachine code.

HIR is the first of many intermediate languagesdusg Jikes RVM. HIR has a
very similar structure and instruction set to thisd modern RISC processor.

Each emulated instruction is converted to a BagiclB A Basic Block contains
a sequence of HIR instructions that are to be drddn order. Each basic block
has a link to the next basic block to be execulgre can optionally be a
branch at the end of a Basic Block which affectsctviblock must be

The aim of the code translator is to approximate jaethods from the emulated
machine code. The return value is the memory lonaif the last instruction

executed.

Pearcolator has two modes of translation: singd&ruiction and trace translation.
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6.2.2 Single Instruction Translation

Single Instruction Translation mode generates HIiRohe instruction, runs the
compiler on that instruction and then executegheerated machine code.

This mode has the advantage of being very simptedgram and debug. It

much easier to find the debugging output for aipaldr instruction.

It has the disadvantage of being slow. After eastruction decode Pearcolator
must run the compiler. This obviously takes someetto start, which will be
roughly constant no matter how much code it mastdiate. Another reason is
that executing the translated code in such a disgdifashion effectively disables
branch prediction and pipelining on the host preoesThe following flow

diagram shows the translation for this mode:
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6.2.3 Trace Translation Mode

This translates instructions to HIR until eithdsranch is located for which it is
not possible to predict the target or until a gartaimber of instructions have
been translated. When this point is reached theisifdssed to the compiler and
the generated machine code is executed. Followitigei flow diagram for this

mode.
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6.2.4 Structure

There are three components that control translatic®6 machine code to
native machine code. These are the classes X8@n{3ptionPlanner,
X86_ConvertX86toHIR, MC2IR and X862IR.

X86_OptimisationPlanner is used to control the etagf the HIR to machine

code compiler. It specifies which translators te aseach stage.

X86_ConvertX86toHIR coordinates the x86 machineectmdHIR translator with
the other stages, ensuring the generated HIRadanm that is suitable for later

stages. X86_ConvertX86toHIR ensures X862IR getd ueeectly.

MC2IR and X862IR control the translation itself. IR handles the parts of the
translation that are not architecture specific sasimethod call planting,
controlling how the trace should be built. X862I&lles all architecture
specific operations such as using the correctunson decoder/translator and

register handling.

6.2.5 Branch Handling

The x86 has three classes of branch. These areaabbsanch, conditional

branch and indirect branch.

A constant branch has the branch target encodedhatinstruction. When the
translator finds this type of branch it continuesni the branch target. It does not
add any HIR to the trace.

A conditional branch has the branch target encaatedhe instruction, but

whether the branch is taken or not is decided bysthte of the condition flags at
the time of the instructions execution. When tla@stator reaches this type of
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branch, it inserts code to resolve the flag lazgresl then code to return the next

instruction location based on that result. Thedlation then stops.

An indirect branch has a target stored in a spefyister or memory location.
The branch will always be taken. When the translagaches this type of branch,
code is inserted to resolve register the registeedessary, and then return the

branch target address. The retn instruction iseldss this type of branch.

6.2.6 Reusing HIR

Quite often different traces will use instructidream the same memory location.

This is usually due to several branch instructioaging the same target.

It is obviously inefficient to generate HIR whichidentical to that previously

generated.

To solve this, a cache of previously generated lIkept in a hash map in the

class MC2IR. The current lazy state is used akélye

Before each instruction is translated Pearcoladtecks that the instruction has
not previously been translated with the same léate sif the instruction
translation is found in the cache then the cactatstation is linked into the
current trace. The translation can then end. Bhiecause all translated
instructions after the cached instruction are lthkeo the cached instruction so

the trace is complete.

If a suitable translation is not found in the catfeinstruction is translated as

normal, and the translation is added to the cache.

6.2.7 Planting Method Calls

It is often necessary for the translated HIR to enadethod calls. This is needed

for filling and spilling registers, making systemlls and accessing memory.
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It is fairly simple to make method calls from HIRis simply a matter of
specifying the object the method is in, the namiefmethod, the arguments to

use and where to put the return value.

Before a method can be called it must be compihebiseable by the generated
HIR. To ensure this the class DummyDynamicCodeRuwas created. It
contains method calls to all methods that can aetptl. It is referenced by parts
of the code translator and ensures each methamripited into a form useable
by the translated code. It is possible to dynaryicampile methods but tends to

be messy so this feature is not used.

6.2.8 Compilation

Once a trace has been converted to HIR it is toreimpile it to native machine

code.

Pearcolator has two compilers i.e. the baselineaalaghtive compilers.

The baseline compiler compiles to native machirdeas quickly as possible. It
performs only minimal optimisations. For this reasibe code it generates tends

to be fairly inefficient. It does have the advamtaj compiling quickly.

The adaptive compiler is an optimising compilehds many levels of
optimisation. The more that a piece of code is etagtthe more heavily it is
optimised. For this reason it tends to generaieiefit code. Unfortunately, the

compiler tends to be slower.

Pearcolator uses the optimising compiler. Thiseisdoise Pearcolator is designed
primarily for emulating long running programs suchweb servers or databases.
As such, any machine code generated will be exdautny times. Any

deficiencies will impact performance consideralblye to the nature of the
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programs to be emulated any extra time spent camgps offset by the overall

speed increase in the execution of the program.

By default, Pearcolator sets the initial optimisatievel to 0. When code is
executed it gets profiled by Jikes RVM. When watednlikes RVM can
increase the optimisation level of a trace. Theuls in the trace being

recompiled with the extra optimisations.

For this to work Pearcolator must cache traceshttaag¢ been compiled. The
cache stores VM_CodeArray objects which contaiassiated machine code.
Note that this cache of compiled HIR (i.e. machinde) is different to the cache
of emulated machine code converted to HIR mentidb®RLIER.

Before translation of a trace into HIR starts Pelator checks the cache of

compiled traces to ensure a trace will not be nsteded.

6.2.9 Execution

Once a trace has been compiled it must be execlitéslis accomplished by
passing the VM_CodeArray object associated withithee to the method
VM_Magic.dynamicBridgeTo.

6.3 Interpretation

6.3.1 Introduction

Although the primary role of Pearcolator is to eatellong running programs it
was felt desirable that performance should be ivgatdor short running

programs.
With code translation the generated HIR must passigh several stages of

compilation and optimisation. This produces fastecbut makes the compiler

relatively slow. Even if a block of code is onlylie executed once it must still
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pass through the same compiler as code that isiwdseveral million times. If
a program will only run for a few seconds a consbiee amount of time will

still be spent on compilation.

By only running the adaptive compiler on partsha program that execute
frequently it is hoped the execution time of shieed programs can be

significantly reduced.

6.3.2 Operation of the Interpreter

Once an instruction has been decoded (instructooding is covered in the
next chapter) it is then executed immediately withmassing through a compiler.
The operation of the instruction to be emulateidhislemented in a method that
Is called after the instruction has been decoded.

As an example, the method that implements addingmtegers is the following:

int interpret(int pc, int nextPc, ProcessSpace ps,
I nt Oper and opl, IntQOperand op2) {
opl.write(ps, opl.read(ps) + op2.read(ps);
return nextPc;

6.3.4 Switching from Interpretation to Code Translation

Pearcolator must know at what point in the executiba program it is suitable
to stop interpreting a section of code and insteauklate it to machine code. A
simple way is to count the number of times an uttton at an address is
interpreted. Once the instruction has been exeautsitain number of times,

invoke the code translator. This is the currentalvelur of Pearcolator.
Although the current behaviour works as it shokiskping track of every

instruction carries a lot of overhead which slowsvd the performance

considerably.
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A better system is to ignore how many times anviiddial instruction has been
executed and make the decision to switch at a hralben interpreting a
branch, Pearcolator should keep track of how mengd the target has been
branched to. When a target has been branchedaxtaancnumber of times then

it should be translated.

This technique has a number of benefits:

1 Less overhead for the interpreter.

2  Allows certain optimisations in the instruction dder.

3 Ensures translated traces start at a branch tangetnd at a branch. This
keeps the traces similar to methods in Java.hiopsed in the future
Pearcolator may output Java bytecode so that eatbpabgrams may be

executed on other Java Virtual Machines.

Another technique that has only received minimséagch up to now is to use
Compiler DNA. Compiler DNA is the system used bg #daptive compiler in
Jikes RVM to decide when the next level of optiri@ashould be applied. It
works by keeping track of how long an optimisatwaiii take to apply and how
much of an improvement is likely. If the lengthtohe to perform the
optimisation is not offset be the improvement ierexphno optimisation is applied.

6.4 Improving the Translator

The code translator currently has a problem wignbh handling. When the
translator reaches a conditional or an indirechtinea decision must be made as
to which instruction to decode next. Either thesiation can halt with the
generated code returning the address of the nsixtigtion to be executed, or the
translator can translate all possible branch targatrrently Pearcolator uses the

former technique.

With the introduction of an interpreter it beconpessible to profile the branches

before translation. This allows Pearcolator to cieténich branch targets are
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used most so they can be translated. All otherdbrgéergets can continue to be

interpreted.

6.5 Status of Interpreter

Unfortunately the current functionality of the ireeter is behind the translator.
Whereas the translator is able to handle fairlystardtial programs, the

interpreter is missing some vital feature suchaslttional branching.

Lack of conditional branching in the interpretes laso impacted the translator.
The branch handling of the translator was buiknsure easy addition of
profiled branching in the future. It was hoped thatould then be possible to
put an if instruction at the branch. If either loétbranch targets had been
interpreted enough times or had been previoushstated the translation could
continue. For any branch targets for which thisasthe case the translation

would finish.

However, the interpreter has not reached a pointtwddlows this. Currently
when the translator reaches a conditional or itlibeanch, translation halts. It
should be a simple but time consuming matter totadaequired functionality to

the interpreter.

62



7 Current Status and The Future of x86 Pearcolator

7.1 Current Status

The x86 version of Pearcolator is not as advansatdeaPowerPC version. The
PowerPC version can run many benchmarks, subdtpntigrams and is

currently under development to run Linux under atiah.

The x86 version can run substantial assembly progirét can handle simple
programs written in C making use of glibc. Programisten using glibc tend to
be good tests that an emulator is working corredihe following features of

Pearcolator have been tested by emulating simfde gtograms:

e The memory system

* Binary Loading

e Stack Layout

* The decoder

* Instruction translation
e Lazy register handling
* Lazy flag handling

e System calls

All features tested above have been found to workectly. To get x86
Pearcolator to execute more complex programs iateenof simply
implementing the instructions and system calls &natmissing. The interpreter
has been tested on small assembly language progairseems to work

adequately for the parts that are implemented.
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7.2 The future of x86 Pearcolator

As work on Pearcolator is ongoing it seems usefulescribe some of the future
advances that should be possible. Many of these alagady been mentioned

throughout the dissertation, but will be summariseck for clarity.

7.2.1 Completing Instruction Set and System Calls

Only a small fraction of all the instructions angt®m calls are currently
implemented. The decoder is currently able to decodst instructions. The

instructions are merely missing translations amerpretations.

7.2.2 Dynamic Linking

Pearcolator for the x86 only handles staticallkdid binaries at present. Most
programs use dynamic linking. It is unknown how mwork will be required to

enable dynamic linking.

7.2.3 Parallelisation

One of the benefits of Jikes RVM is that it allowse of multi processor

architectures. Pearcolator does not currently éak@ntage of this.

7.2.4 The Decoder

The Decoder currently works but as mentioned itice&.5 could be made

faster with a few simple changes.
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7.2.5 Native Memory

The memory system could be made a lot faster ifwi& used to access the
memory. This will avoid several mask and shift instions being generated for
each memory access, replacing them with a singlegrananipulation.
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