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Abstract 
 
An extension to the program Pearcolator is presented that allows emulation of the 

x86 architecture. Pearcolator is an emulator written in Java and runs as a front 

end to the Jikes Research Virtual Machine. 

 

The work presented was carried out as part of the Jamaica Project in the School 

of Computer Science at the University of Manchester. The long term aim of the 

Jamaica Project is to develop a chip multiprocessor architecture. Pearcolator is 

needed as a way to run software compiled for legacy architectures. Jikes RVM 

has parallel translation and execution abilities. It is hoped performance will be 

better than that of more traditional emulators designed for single processor 

architectures. 
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1 Emulation with Pearcolator 

 

1.1 Emulation 

 

An emulator is a program that allows programs compiled for one type of 

processor to run on a computer with another type of processor. 

 

There are three ways to emulate a program: Static Binary Translation, Dynamic 

Binary Translation and Interpretation. 

 

Static Binary Translation (SBT) translates the entire emulated program to native 

machine code before execution. This technique is not often used as it can be 

difficult getting things like dynamic linking and self modifying code to work. 

 

Dynamic Binary Translation (DBT) converts only the parts of the emulated 

program that are likely to be executed. Each part that is translated is called a 

trace. A trace gets translated just before execution. Because the translation 

happens at run time there are not so many problems with dynamic linking and 

self modifying code. 

 
The last method is to use an interpreter. An interpreter does not perform any 

translation. Instead, each time an instruction must be executed the instruction 

must first be decoded. Decoding is the act of determining which instruction an 

instruction is. Once the instruction is decoder a method is called that carries out 

the same operation as the emulated instruction. 

 

DBT usually generates very fast code. The trade off is that to translate the 

emulated machine code to native machine code requires an expensive 

compilation process. If a trace is to be executed many times the speed of the 

generated code should offset the length of time spent on compilation. This 

ensures that the generated code is often not much slower than native machine 

code on long running programs such as servers. 
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An interpreter executes more slowly than the code generated by DBT. However, 

because there is no translation process the overhead is lower. For short lived 

programs where a piece of code is not run many times the interpreter can end up 

being faster. 

 

1.2 Pearcolator 
 

Pearcolator is an emulator created by the Jamaica Project at the University of 

Manchester [1]. It is written in Java and acts as a front end to the Jikes Research 

Virtual Machine (RVM). 

 

The long term goal of the Jamaica project is to design a chip multiprocessor 

architecture [5].  

 

Jikes RVM is a sophisticated Java Virtual Machine (JVM) written in Java. Jikes 

RVM has an optimising compiler and supports parallelisation of code. 

 

An emulator was needed by the Jamaica Project in order to run legacy code 

written for single processor architectures. Other emulators were found not to be 

suitable for the needs of the Jamaica Project so Pearcolator was created. 

 

Initially Pearcolator was designed as a PowerPC emulator. This is because of the 

simplicity of the PowerPC instruction set. The design was found to produce a 

promising emulator so it was decided to expand to emulate other architectures. 

 

The aim of this project is to extend Pearcolator to emulate the x86 architecture. 

The x86 was chosen as it is one of the most commonly found architectures. 
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2 Emulating x86 Linux 
 

2.1 Evaluation of the x86 Linux Environment 
 
Linux uses the ELF binary format. This has been developed over many years so 

has gained many features while remaining simple to process. One of the features 

allows statically linked binaries. This is a benefit for any fledgling emulator. It 

allows programs to be run without needing to worry about the intricacies of 

dynamic linking. Dynamic linking can cause many problems which need to be 

solved before a program can be executed. 

 

The x86 architecture is quite complicated. Being fundamentally a CISC 

(Complex Instruction Set Computer) architecture means it has a lot of 

instructions. Most instructions are capable of loading any data they need without 

the use of load/store instructions. This means an x86 emulator must handle a 

large number of instruction-addressing mode combinations. 

 

Each instruction can be of a variable length. This has the advantage that code 

density in memory is high, but the disadvantage that the instruction decoder 

tends to be more complex than that of a RISC (Reduced Instruction Set 

Computer) processor such as PowerPC. 

 

Most instructions set condition bits in the eflags register. The condition bits are 

used relatively infrequently. This can generate a lot of wasted computation. This 

needs to be handled elegantly to prevent emulation slowing down to much. 

 

Several x86 registers have sub-registers that can be used as unique registers. To 

prevent a lot of mask and shift instructions being generated these must also be 

handled elegantly. 
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2.2 X86 Architecture 
 

2.2.1 Overview 
 
Modern x86 processors can operate in several modes, these being 16 bit real 

mode, 32 bit protected mode, and 64 bit mode. Pearcolator emulates a 32 bit 

protected mode processor. It should be fairly simple to add support for other 

operating modes. Pearcolator has partial support for certain parts of 16 bit real 

mode. 

 

Pearcolator models the instruction set, data types, registers and memory. It does 

not yet handle interrupts or virtual memory handling. 

 

X86 processors use a little endian byte ordering. This means bit 0 is the least 

significant bit. 

 

X86 recognises 8 bit bytes, words (defined as two 8 bit bytes), double words 

(defined as two words) all of which Pearcolator is able to handle. There is also a 

quad word data type which is used by SIMD and 64 bit mode instructions. 

Pearcolator does not yet handle these for x86 emulation, although a framework is 

in place which should make adding support straight forward. Values in memory 

do not need to be word aligned, although most compilers generate code where 

this is the case. 

 

X86 processors support 32 bit single precision, 64 bit double precision and 80 bit 

double-extended precision floating point numbers. Pearcolator does not support 

this yet. SSE instructions also add support for 128 bit floating point numbers. 

 

2.2.2 Registers 
 
X86 has eight general purpose 32 bit registers. The registers are EAX, EBX, 

ECX, EDX, EDI, ESI, ESP, EBP. ESP is the stack pointer and is used by so 

many instructions that it is usually a good idea to not alter its value unless 

absolutely necessary. Each other register only has a conventional purpose. 
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The first four general purpose registers contain a number of sub-registers that can 

be referenced as if they were unique registers. Each of these registers has a 16 bit 

register in the lower 16 bits. For EAX this 16 bit register would be AX. The 16 

bit register is then split into two 8 bit registers – one in the lower 8 bits (for EAX 

this would be AL) and one in the upper 8 bits (for EAX this would be AH). 

 

The last four general purpose registers are able to be referenced as 16 bit 

registers. These registers are generally used as pointers, so in 32 bit mode the 16 

bit sub-registers are not generally used.  

 

There are six segment registers : CS, DS, SS, ES, FS, GS. These are 16 bit 

registers used to enable 16 bit processors to address up to 1 MB of RAM. These 

are rarely if ever used now so will not be discussed further. 

 

The instruction pointer is a 32 bit register that keeps track of the position in the 

program. No instructions are able to alter this directly. 

 

X86 processors have five control registers that are used to control certain features 

of the processor. These are generally only used by operating systems, which 

Pearcolator does not yet emulate so will not be discussed further. 
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The x86 has a flags register called EFLAGS. It is a 32 bit register with 17 fields, 

each comprising 1 bit. Only six of the fields are used and are described in the 

following table: 

 

Flag Bit Name Description 

CF 0 Carry Flag Set to 1 if an unsigned integer operation 

generates a carry or borrow on the most 

significant bit, 0 otherwise. 

PF 2 Parity Flag Set to 1 if an integer operation produces a result 

with an even number of 1's, 0 otherwise. 

AF 4 Adjust Flag Set to 1 if a BCD operation produces a carry on 

bit 3, 0 otherwise. 

ZF 6 Zero Flag Set to 1 if an integer operation produces the 

result 0, 0 if result is not zero. 

SF 7 Sign Flag Set to the most significant bit of the result of an 

integer operation. 

OF 11 Overflow Flag Set to 1 if unsigned integer overflow occurs, 0 

otherwise. 

 

The other fields are used more by operating system kernels so will not be 

discussed further. 

 

The x86 has eight 80 bit double-extended precision registers. Pearcolator models 

these using 64 bit double precision floating point values as it is faster for Java to 

do this and most programs will not notice the reduced precision. 

 

The Floating Point Unit (FPU) is used as a stack machine. 

 

The floating point status register is 16 bits. It is used to keep track of various 

aspects of results of floating point operations such as the outcome of 

comparisons or exceptions triggered. 
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The floating point control register is 16 bits. It is used to enable or disable certain 

functions of the FPU. 

 

The floating point tag register is 16 bits. It is used to keep track of the value of 

each register in the FPU stack. Two bits of this register are dedicated to each 

element. 

 

The possible values for each field are as follows: 

Value Description 

0x00 Register contains valid value 

0x01 Register contains 0 

0x10 Register contains special value 

0x11 Register contains invalid value 

 

MMX adds eight 64 bit registers for performing vector operations and operations 

on large integers. Pearcolator does not currently support this so will not be 

discussed further. 

 

SSE adds eight 128 bit registers for performing vector operations, operations on 

large integers, and operations on floating point numbers. Pearcolator does not 

currently support this so will not be discussed further. 

 

Recently 8 64 bit general purpose registers were added to x86 as part of the x86-

64 initiative. These can be referenced by sub-registers in a similar manner to the 

existing 32 bit general purpose registers. Pearcolator does not currently support 

these registers. Support should be simple to add as any instructions that wish to 

use these registers must simply add a prefix (see chapter 4) to the start of the 

instruction. 
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2.2.3 Addressing Modes 
 
The formula 

 

segment_register + immediate_offset + base_register +  

(index_register * scale_factor) 

 

is used by nearly all instructions that need to access memory. 

 

segment_register is one of the six segment registers. All other registers are 

general purpose registers. immediate_offset is an immediate value given in the 

instruction. 

 

Virtually any combination of variables may be used. If scale_factor is used then 

index_register must also be specified. segment_register is not used very often as 

on Linux it is often fairly meaningless. 

 

Using this formula allows fairly sophisticated array access operations to be 

carried out within a single instruction. 
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3 Environment 
 

3.1 Introduction 
 

This chapter discusses how Pearcolator convinces an emulated binary it is being 

run within a real environment. 

 

3.2 Process Space 
 

3.2.1 Overview 
 

The ProcessSpace class is the part of Pearcolator which holds everything 

together. It is about the only part to have complete knowledge of both the 

Operating System (OS) and processor being emulated. ProcessSpace has three 

main components, which are the registers, memory and system call interface. 

 

The ProcessSpace ensures the correct set of system calls are used, and that 

instructions are handled by the correct decoders and translators for the processor 

being emulated. 

 

Previous versions of Pearcolator did not use a modular Process Space class. All 

memory, register and System Call handling was inside the Process Space class. It 

was decided that instead of repeating a similar design for all future architectures 

Pearcolator might support all memory, register and system call handling should 

be placed in separate classes. This encapsulation allows each component to be far 

more flexible and allows for greater code reuse.  

 

The PowerPC version had a PPC_ProcessSpace class which handled everything. 

There is now a ProcessSpace super class which contains functionality common to 

all architectures and operating systems to be emulated.  
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Each architecture/operating system combination has a sub class of ProcessSpace 

which sets up each component in the appropriate manner. 

 

3.2.2 Registers 
 
A class named Registers has been created. Each type of register has methods 

used for performing low level operations on that register. Each method receives 

an index as an argument specifying which register of that type is to be accessed. 

The registers object is designed to allow support for any type of register. 

 

The registers object currently supports the following operations: 

 

read 32 bit general purpose register 

read 16 bit general purpose register 

read 8 bit general purpose register 

write 32 bit general purpose register 

write 16 bit general purpose register 

write 8 bit general purpose register 

read 32 bit flags register 

read 16 bit flags register 

write 32 bit flags register 

write 16 bit flags register 

 

How each register is implemented is left to sub classes of Register. Each method 

in Registers throws an exception if called.  

 

Each method could have been declared as an abstract method. This was not 

chosen as many architectures do not support all the register types that the 

Register class supports. For example, PowerPC does not support 16 bit general 

purpose registers. If the methods in Registers were all declared abstract, the sub 

class of Registers for PowerPC would need to implement 16 bit registers, which 

obviously does not make much sense. The sub class for x86 implements all the 

above methods.  
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Encapsulation of the registers in this manner allows for a great deal of flexibility. 

Any other parts of the emulator that need to access registers do not need to know 

how each register type is implemented. 

 

For the general purpose registers the x86 sub class only stores the value for the 

32 bit registers. These are stored as an array of 32 bit integers. Accesses to 16 bit 

and 8 bit registers are implemented as masks and shifts performed on the 32 bit 

registers.  

 

It should be possible to use native methods and a series of pointer manipulations 

to access the 16 bit and 8 bit sub registers without changing any code that uses 

registers. Using pointer manipulations like this may result in faster code, 

although this is currently untested. This will help speed up the interpretor more 

than the translator for reasons that are discussed in chapter 3. 

 

3.2.3 Memory 
 
A new memory system has been created. This is based on the super class 

Memory. 

 

Pearcolator now supports x86 and PowerPC processors. X86 is little endian 

while PowerPC is big endian which require different memory systems. 

 

If x86 is being emulated on another x86 computer the emulated memories bytes 

are in the correct order. However, if x86 is being emulated on a PowerPC 

computer reading a multiple byte value requires the order to be reversed before 

the value can be used. 

 

Different endian memory schemes are handled by different sub classes of 

Memory. The different memory schemes can also be addressed using either bytes 

or integers. 
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Each of the memory schemes contains three page tables. One page table stores all 

tracks pages with read permission, another with write permission and the last 

handles execute permission. 

 

Assuming an address space of 4GB, each page table has 0x100000 elements, 

while each page is 4096 bytes long. 

 

Each element of a page table contains a reference to an array containing the data 

(the page). If a type of access is not allowed on a page, that element of the page 

table for that type of access contains a null reference.  

 

Previous versions of Pearcolator would explicitly check the permission of each 

memory access before it occurred. Newer versions now assume the memory 

access is allowed. If the page being accessed does not have the correct 

permissions set, Pearcolator will attempt to deference a null reference, so an 

exception is thrown. 

 

The sub classes of Memory are as follows: 

 

CallBasedMemory 

Super class to all other Memory sub classes. Contains methods for translating 

memory reads and writes. 

 

ByteAddressedMemory 

Data in each page is stored as array of bytes in the same order as the host 

processor would expect. 

 

ByteAddressedByteSwapMemory  

Same as ByteAddressedMemory, but with multi-byte values being reversed. 

 

ByteAddressedReversedMemory 

Data in each page is stored as array of bytes. All memory addresses are reversed 

(such as 0x00000000 being mapped to 0xffffffff and vice versa). Endian 

conversion is performed. 
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IntAddressedMemory 

Data in each page is stored as array of ints in the same order as the host processor 

would expect. 

 

IntAddressedByteSwapMemory 

Similar to IntAddressedMemory except endian conversion is performed on reads 

and writes. 

 

IntAddressedPreSwappedMemory 

Data stored as ints, with data stored in reverse order within the ints. 

 

IntAddressedReversedMemory 

Similar to ByteAddressedReversedMemory except all data is stored in ints. 

 

The x86 version of Pearcolator uses ByteAddressedMemory when run on an x86 

computer and IntAddressedByteSwappedMemory when run on a PowerPC. 

 

In the last section, a technique using pointer manipulations to possibly speed up 

register operations was described. It is hoped that similar techniques can be 

applied to memory. This should benefit the translated code and interpretor 

roughly equally. The effect of the memory optimisation will have a greater 

benefit for the translated code than the similar register optimisation. 

 

3.2.4 System Calls 
 
In previous versions of Pearcolator all system call handling was handled by 

PPC_ProcessSpace [12]. When a system call was to be made 

PPC_ProcessSpace.doSysCall() was called. This would retrieve the system call 

number from the register r3 which would then be used in a large switch 

statement. The body of the switch statement would carry out the same action as 

the system call it was to emulate. The body of the switch statement would get 

arguments as needed from the registers. The return value of the system call 

would be written to register r3. 
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For the x86 version of Pearcolator the first problem is that the system call 

number is stored in register EAX not r3. As other architectures store the system 

call number in other ways it was decided to create an abstract method 

getSysCallNumber() in ProcessSpace. This would be implemented in each 

subclass of ProcessSpace. It was felt this should be a suitable way of selecting 

the correct system call in an architecture independent way. The x86 version 

simply returns the value held in the register EAX. 

 

The next problem way how to get system call arguments in a architecture 

independent manner. Looking at the system call specifications it becomes clear 

that all arguments can be represented by 32 bit integers. 

 

An abstract method getSysCallArguments() in ProcessSpace was created. This 

receives an int as an argument which specifies how many arguments are 

expected. getSysCallArguments() returns an array containing the arguments. 

Each subclass of ProcessSpace implements this method. For the x86 processor if 

the number of arguments is five or less the arguments in order are read from 

EBX, ECX, EDX, ESI, and EDI. If the number of arguments is greater than five, 

EBX contains a pointer to the list of arguments. 

 

In a similar manner an abstract method setSysCallReturn() in ProcessSpace was 

created. As its name would suggest it sets the system call return value. For the 

x86 this involves setting EAX. 

 

The next improvement was to move as much of the system call handling out of 

the ProcessSpace class. The method doSysCall() method was kept in the 

ProcessSpace class but was made abstract. The method doSysCall() is 

implemented by all subclasses of ProcessSpace. In the subclass for x86 Linux 

this method calls doSysCall() in the class 

org.binarytranslator.LinuxSystemCaller. This reads the return value of 

getSysCallNumber() which is then used as an index into an array of SystemCall 

objects. 
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The array index technique was used instead of a switch statement for a number of 

reasons. First is that it makes the code more object oriented. Second was that 

using an array instead of a switch statement tends to help the branch prediction. 

 

Each system call is implemented by a separate subclass of the class SystemCall. 

For example, the exit system call is SysExit. 

 

Any system calls as yet unimplemented are represented by the class USC. For 

example, the fork system call is not implemented so its position in the look up 

table is occupied by an instance of USC. If an unimplemented system call is used 

an exception is thrown stating which system call is being attempted.  

 

The position of unimplemented system calls could have been occupied by a null 

reference. This would have thrown an exception automatically but would not 

give any information about which system call the emulator was attempting to 

use. 

 

3.3 Binary Loader 
 

3.3.1 Introduction 
 
Before it is possible to execute a program, whether natively or via emulation, it is 

necessary to read the program from disk and load it into memory ready to be run. 

This constitutes a number of stages. The stages to load a Linux binary are as 

follows: 

 

• Determination of format 

• Read Elf header 

• Read Elf program header table 

• Read Elf program headers 

• Read program code 

• Read initialized data 

• Configure unitialized space 
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• Environment variables 

• Aux vector 

• Stack inistialisation 

 

Each of these stages will be covered in the following sections. 

 

3.3.2 Purpose of Binary Formats 
 
In order for the binary loader to function it must first know the layout of the file 

the binary is in.  

 

The simplest layout would be if the file only contained the instructions to be 

executed as part of the program perhaps immediately followed by any 

preinitialized data. This is obviously quite an inflexible system. The user of the 

computer would be responsible for making sure the correct program was being 

used for the processor and operating system currently in use. 

 

Fortunately, modern binary formats are much more sophisticated. Formats such 

as ELF enable a file to be split into a number of different sections each one 

usually containing either executable machine code or initialized data. Each 

section can also have access permissions applied to it so that, for example, the 

code section can not be written to and the data section is not executable. 

 

 

3.3.3 The ELF Binary Format 
 
The Executable and Linkable Format (ELF) contains a large amount of data, a lot 

of which is not currently of interest to Pearcolator [13]. The parts that Pearcolator 

is interested in are the ELF Header, Program Header Table and segments. 

 

The ELF Header contains data specifying the layout of the rest of the file. One of 

the most important fields of the header is e_machine. This specifies the 

architecture of the binary. Another important field is EI_OSABI. EI_OSABI 
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stores the operating system the binary is meant to run on. Unfortunately gcc 

appears not to give very much detail in this field at the current time, only 

specifying that the operating system is some variant of Unix. 

 

Other fields of interest in the ELF header are e_ehsize which is the length in 

bytes of the header, e_phnum which gives the number of entries in the Program 

Header Table, and e_phentsize which gives the size of each entry in the Program 

Header Table. 

 

The Program Header Table contains a list of Program Headers. Program Headers 

give information about each segment in the file such as segment size and access 

permissions. 

 

Two segments are usually of interest to a program: the code segment and the data 

segment. 

 

ELF is currently the only format supported by Pearcolator, although it does 

contain a framework for supporting other formats. 

 

3.3.4 A problem with the Old Binary Loader 
 
In previous versions of Pearcolator one of the first objects to be created would be 

the PPC_ProcessSpace object. The PPC_ProcessSpace object stored the memory 

of the process and all registers of the processor being emulated. This was 

adequate when the only platform being emulated was PowerPC on Linux. The 

binary being loaded could be assumed to be for PowerPC Linux. 

 

However, this version introduced support for the x86 instruction set. This created 

an equivalent X86_ProcessSpace object. It would be a simple to matter to copy 

most of the code from the PowerPC Linux version and create a seperate branch 

that dealt only with x86 Linux.  
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This raises a number of issues. Support for Sparc and Arm processors is currently 

under consideration. This means a total of four differerent branches of 

Pearcolator would be needed each needing to be executed from a different 

command eg. 

 

rvm org.binarytranslator.PPC_Main executable 

rvm org.binarytranslator.X86_Main executable 

rvm org.binarytranslator.ARM_Main executable 

rvm org.binarytranslator.Sparc_Main executable 

... 

rvm org.binarytranslator.xxx_Main executable 

 

If support for the OS X, Solaris and Windows operating systems were added in 

the future even more org.binarytranslator.xxx_Main classes would be needed – 

one for each operating system, architecture and binary format combination – all 

to ensure the correct xxx_ProcessSpace class was loaded at run time. The 

computer user may not even know or care what platform the architecture is 

designed for making selecting the correct org.binarytranslator.xxx_Main class to 

use. 

 

The solution is to load enough of the binary to detect which xxx_ProcessSpace 

object to select. This means there is only one entry point for Pearcolator which 

solves the above problems. 

 

3.3.5 Determination of Binary Format 
 
The first task to be carried out is to detect the binary format. This is the job of the 

class org.binarytranslator.BinaryLoader.  

 

Commonly the first four bytes of a binary file are used to specify the format of 

the file.  

 

Currently the only format of interest to Pearcolator is ELF. It should be fairly 

easy to add support for Java classes, which can be passed to Jikes RVM without 

to much problem. For an ELF file to be detected the first four bytes must contain 
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the characters 'E', 'L', 'F', and '\0' in that order. When an ELF binary has been 

found control passes to the class org.binarytranslator.ELF_BinaryLoader. 

 

3.3.6 Reading ELF Header 
 

Reading the ELF Header is handled by the class 

org.binarytranslator.ELF_Header. Once the ELF_Header has been loaded 

Pearcolator has enough information to select the correct xxx_ProcessSpace class. 

The ELF Header is directly after the binary format identifier. 

 

3.3.7 Creating ELF Program Header Table 
 
The Program Header Table is implemented as an array in the class 

org.binarytranslator.ELF_X86_ProgramHeaderTable. It has the responsibility of 

calling org.binarytranslator.ELF_ProgramHeader to populate each element of the 

array. 

 

3.3.8 Reading ELF Program Headers 
 
Reading ELF Program Headers is handled by 

org.binarytranslator.ELF_X86_ProgramHeader. Program Headers are stored 

directly after the ELF Header in the file. 

 

3.3.9 Copy Executable Code 
 
Up to this point no data has been copied to memory. The first step is to copy 

executable code. This uses the method mmap in ProcessSpace to allocate space 

in memory and then copy the code from the binary file to memory.  

 

The mmap method allows various parameters specifying how the memory should 

be set up. These include, MAP_GROWSDOWN, MAP_PRIVATE, and 

MAP_SHARED. The only parameter currently handled is MAP_PRIVATE. 
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Pages allocated for executable code have read and execution permissions set. 

 

3.3.10 Copy Initialised Data 
 
This step is similar to copying executable code, except initialised data is copied 

from the binary file and the permissions are set to read and write access. 

 

3.3.11 Configure Uninitialised Data 
 
At the end of the initialised data, ELF often specifies that there should be an area 

for uninitialised data. 

 

If the last page of initialised data is not full, the uninitialised data starts there. 

Otherwise the uninitialised data starts in the next page. 

 

The method mmap is called without a file to read from for this stage. This 

version of mmap should only need to allocate space. However, for some reason 

gcc/glibc generates code that relies on all uninitialised data areas being set to 0. 

This can cause strange problems, so all data that according to ELF is uninitialised 

must in fact be initialised to 0. 

 

3.3.12 Environment Variables 
 
In old versions of Pearcolator, all environment variables were fixed. The values 

were set up for a different computer to the one this version was developed on. 

Rather than simply changing the values for each computer Pearcolator is run on, 

a more flexible way of setting environment variables was needed. 

 

This version of Pearcolator relies on Jikes RVM only running on variants of 

Unix. This seems a reasonable assumption which should stay valid for the 

foreseeable future. 
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The Unix command env is run from within Pearcolator. This outputs all 

environment variables and the corresponding values. The output text of the 

command is stored in an array and then placed on the stack. 

 

3.3.13 Aux Vector 
 
The aux vector is an array of key-value pairs. It gives information about the 

architecture Pearcolator is emulating. Since automatically obtaining such 

information does not appear to be possible at present the data is constant. 

 

3.3.14 Stack Initialisation 
 
Stack initialisation involves copying everything needed to access environment 

variables, command line arguments and the aux vector to the stack. 

 
First, the length of the stack once it has been initialised is calculated. This is so 

that the stack can be built from the lowest memory location up to the highest. 

 

The lowest memory location of the stack is called the stack top. The stack pointer 

is set to the stack top using the method setStackPtr in ProcessSpace. The method 

setStackPtr is abstract in ProcessSpace and needs to be implemented by its sub 

classes. In the x86 Linux emulator setStackPtr sets the register ESP to the stack 

top. 

 

Directly above the stack top are the pointers to command line arguments. Next is 

4 byte value 0x00000000. This is to show where the list of pointers ends. 

 

This is followed by the environment variable pointers, followed by 0x00000000 

again. 

 

Next is the aux vector. This already has an end of vector marker built in. 

 

It is often useful for multiple byte values such as pointers to be word aligned, so 

the stack now has a number of padding bytes to ensure this. 
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Finally, the environment variable and command line strings themselves are 

copied on to the stack. Because of the way the stack initialisation works, each 

string needs to be reversed.  
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4 Register Handling 
 

4.1 Introduction 
 
This chapter deals with register handling for the translation portion of 

Pearcolator. Register handling is not covered in the section on code translation as 

it is a very complex area. 

 

4.2 Register handling in PowerPC Pearcolator 
 
Before register handling in the x86 version of Pearcolator can be covered it is 

useful to explain how the PowerPC version works. This is to show why PowerPC 

register handling does not translate well to x86. 

 

The PowerPC has 32 general purpose registers. Each is 32 bits in length and 

unlike the x86 does not allow sub registers. 

 

At the start of a trace the translator commands that all registers be filled. Filling a 

register is the act of specifying that at the start of the execution of the trace a 

register used in the trace should be given the value held in the ProcessSpace. 

 

Throughout the translation, whenever a register is used by the trace (used being 

defined as reading from or writing to a register) the translator records that that 

register has been used.  

 

At the end of the trace the register used in the trace should be spilled. This means 

the register held in the ProcessSpace is updated with the value held by its 

counterpart in the executed trace. 

 

After this, a second pass is made through the translated trace. If a register has not 

been marked as being used in the trace any fills or spills for that register are 

deleted. This results in the trace only performing useful work on the registers. 
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4.3 Register Handling in x86 Pearcolator 
 

4.3.1 Introduction 
 
The x86 allows referencing of sub registers. This tends to complicate matters. 

 

The simplest way to handle sub registers is to use masks and shifts from the 32 

bit register. Reading from the register ah requires the following operations to be 

performed: 

 

 (EAX >>> 8) & 0xFF 

 

Writing val8 to ah requires the following operations: 

 

 EAX = (EAX & 0xFFFF00FF) | (val8 << 8) 

 

Writing val16 to ax requires the following operations: 

 

 EAX = (EAX & 0xFFFF0000) | val16 

 

This is obviously a complicated, time consuming set of operations to perform 

each time a sub register is to be accessed. 

 

Reading can be simplified substantially by treating each sub register as a unique 

register. Each time a sub register is updated Pearcolator must ensure each sub 

register that is dependent on the data written contains the correct data. 

 

Reading from a sub register simply involves reading the value from the variable 

representing it. Writing val8 to ah requires the following set of operations: 

 

 EAX = (EAX & 0xFFFF00FF) | (val8 << 8) 

 AX = EAX & 0xFFFF 

 AH = val8 
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Writing val16 to ax requires the following set of operations: 

 

 EAX = (EAX & 0xFFFF0000) | val16 

 AX = val16 

 AH = AX >>> 8 

 AL = AX & 0xFF 

 

While reading sub registers is made far simpler, writing is made far more 

complex. A technique where only sub registers that are used are updated is 

required. Such a technique is Sub Register Synchronisation Laziness 

 

4.3.2 Sub Register Synchronisation Laziness 
 
Each group of registers (such as EAX, AX, AH and AL) is given a state. This 

state is the Lazy State. The lazy state specifies at the current time in the 

translation which states are valid for reading. 

 

The Lazy State is represented by 4 bits. Each bit shows the state of a specific sub 

register. The following table shows for EAX which sub register is represented by 

which bit: 

 

Sub Register Bit 

EAX 4 

AX 3 

AH 2 

AL 1 

 

If a bit is set it means the corresponding sub register can be read from with no 

extra work. If a bit is cleared it means the corresponding sub register must have 

instructions inserted to synchronise it with the rest of the registers in a group. 

 

As an example, if the EAX group has the lazy state 0x8, it means EAX is the 

only sub register that is valid. Any other sub registers that are to be read from 



 36 

need to obtain updated data from EAX. If the Lazy State is 0x6, AX and AH are 

both valid, while EAX and AL are invalid. 

 

When a sub register is written to it “creates laziness”. This means Pearcolator 

sets the sub register bits in the Lazy State and clears all bits for sub registers that 

depend on the data just written. If the Lazy State for EAX is 0xF, writing to AL 

results in the Lazy State becoming 0x3. Writing to AX directly after this results 

in a Lazy State of 0x4. 

 

When a sub register is read from it “resolves laziness”. If the sub registers bit is 

already set in the Lazy State, the register can be read.  If the sub registers bit is 

cleared when the read is demanded Pearcolator must: 

 

1. Synthesise the sub register from the data held in the valid sub registers. 

This usually involves some degree of masking and shifting. 

2. Set the sub registers bit in the Lazy State. 

3. Translate the read. 

 

If the Lazy State before a read is 0x4, then a read from AH will perform the 

following actions: 

 

1. Mask top 8 bits of AX, and shift right by 8 bits, putting the result in AH. 

2. Set the Lazy State to 0x6. 

3. Translate the read from AH. 

 

Although this looks like it requires more work than the non lazy register handling 

it must be remembered that all Lazy State handling happens at translation time, 

not execution time. This means if generated code using sub registers must be 

executed many times, the Lazy State must only be handled once. 
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4.3.3 Removing Unnecessary Fills and Spills 
Register Synchronisation Laziness reduces the amount of code to be executed 

during the trace for register handling, but it does not help when fills and spills are 

needed at the beginning and ends of traces respectively. 

 

The PowerPC version of Pearcolator adds all fills and spills possible to the trace 

and uses a second pass to remove any that are unneeded. 

 

For the x86 version, due to Register Synchronisation Laziness it was found to be 

unfeasible to add all fills and spills on a first pass and remove them later. This is 

because each register could be in too many states to handle in this way. Using a 

second pass to remove instructions also seemed inelegant. 

 

4.3.4 First Version 
 

The first version of the lazy evaluator was very simple. It did not make any 

attempt to remove fills or spills. This was done merely to see if the generated 

code would be acceptable. 

 

At the beginning of a trace all sub registers would be filled. The body of the trace 

would be translated, using laziness to reduce unneeded register operations. At the 

end of the trace all laziness would be resolved. All sub registers would be spilled. 

 

No benchmarks needed to be run on this technique to know that it was slow. 

Emulating a four instruction program with no looping took roughly 2 seconds to 

translate and execute. 

 

4.3.5 Second Version 
 

The goal of the second version was to remove fills and spills of register groups 

that were not used. 
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In this version no register fills occurred at the start of the trace. Instead registers 

were only filled as they were used. At first use of a register group, all sub 

registers in the group were filled. 

 

At the end of the trace, laziness for all sub registers in all register groups was 

resolved. If a register group had been used, then all sub registers were spilled. 

 

This version had a substantial speed increase over the first version. There was 

very little delay between starting the translation and execution completing. 

 

4.3.6 Third Version 
 
Although the second version seemed adequate, it still appeared to be inefficient. 

All sub registers in a group were filled and spilled even if most were not used. 

This version was to remove unnecessary fills and spills of sub registers within a 

group. 

 

On first use of a sub register from a group, instead of filling all sub registers only 

the 32 bit sub register was filled. If another sub register was needed it would be 

resolved from the data in the 32 bit sub register. 

 

At the end of the trace the 32 bit sub register would be resolved from any altered 

data in the other sub registers in the group. The 32 bit sub register only would 

then be spilled. This was possible as this sub register now contained all data held 

in the other sub registers. 

 

4.3.7 Fourth Version 
 
The fourth and final version implemented removed more fills and spills.  

 

Every version covered so far used a course grained view of register use. If a 

register group was either read from or written to then it would be filled and 

spilled. 
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This version keeps more fine grained data on register use. It separates usage data 

into reading and writing. 

 

If the first use of a sub register is a write, no fill is performed. This is because the 

filled result will be over written any way so is wasted computation. 

 

If a sub register needs to be read from, and can be resolved from data available in 

the other sub registers in the group then laziness is resolved to get the required 

data. If insufficient data is available to resolve from, the 32 bit register is filled.  

The 32 bit sub register is updated from any data that may have been written and 

the sub register is resolved from that. 

 

If a register group is written to, the 32 bit sub register is resolved at the end of the 

trace (filling if necessary), and then is spilled. 

 

This version tends to reduce the number of register fills and spills over earlier 

versions. 

 

4.3.8 Alternative Implementation 
 
Another technique for handling fills and spills was also considered. For 

completeness it will be covered briefly here. 

 

Currently the 32 bit sub register in a group is filled if a read is required. The 

alternative is to fill each individual sub register when a read is required. At the 

end of the trace the most encompassing sub register would be written. If AL and 

AH were written to then they would be spilled. If AX were also written to then 

only AX would be spilled as it encompasses AL and AH. 

 

This technique was rejected. With the currently implemented version the 32 bit 

sub register always contains data, even if it is no longer valid. The top half of the 

32 bit sub register is always valid. This allows the 32 bit sub register to be used 

easily if required by other sub registers for synchronisation purposes.  
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As an example, let AL be written to. This will cause EAX to be filled if it 

currently contains no data. The Lazy State is 0x1. If a read from AX is required, 

EAX can be resolved, and then AX resolved from EAX. 

 

With this alternative implementation, after AL has been written to, there is 

difficulty when AX needs to be read from. One of two things can happen: 

 

1. Fill AX, resolve AX from AL, read AX 

2. Fill EAX, update EAX from AL, resolve AX from EAX, read AX 

 

The first option seems to be more efficient, while the second closely follows the 

behaviour of the current implementation only in a slightly different order. 

 

The first option seems more efficient until a read from EAX is needed. This 

would the following operations: 

 

1. Fill EAX 

2. Update EAX from AX 

3. Read EAX 

The second option merely requires a read operation on EAX. There are many 

similar cases. This implementation seems to require a potentially larger number 

of fills than the current implementation. 

 

Even if the this implementation could be adapted to fall back on to the current 

behaviour if it seemed more efficient, a far greater number of Lazy States would 

be required to keep track of which sub registers contain data. 
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4.4 Flag Handling 
 

4.4.1 Introduction 
 

A similar problem exists for the EFLAGS register. It is updated by nearly every 

instruction with each update requiring various masks of the EFLAGS register.  

The EFLAGS register is only very rarely read from, so keeping it up to date at all 

times is very inefficient. 

 

4.4.2 Flag Laziness 
 
To solve this problem flag laziness was developed. Each time a flag needs 

updating a copy of the result that the flag is to be based on is copied along with 

the type of the operation (such as integer, short or byte). 

 

When a flag needs to be read from the operation of updating EFLAGS can be 

performed. 
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5 Instruction Decoder 

 

5.1 Introduction 
 

In order for Pearcolator to run a program, it must first know the instructions it is 

to emulate. This is the job of the instruction decoder. The instruction decoder 

must read a series of bytes from the Memory object and ensure the correct action 

is performed. 

 

5.2 Instruction Format 
 
Unlike the PowerPC instruction format that is simple and fast to decode, the x86 

instruction format is much slower and more complicated to decode. 

 

Each PowerPC is 32 bits in length. Due to its constant length it is easy to extract 

information from. The x86 has variable length instructions ranging from 1 byte 

to 17 bytes. 

 

Each instruction has a number of fields: 

 

• Instruction Prefix 

• Opcode 

• ModR/M 

• SIB 

• Displacement 

• Immediate Data 

 

Each field is optional within the instruction except for the opcode field, which is 

obligatory. 
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5.2.1 Instruction Prefix Field 
 

The instruction prefix field can be between 0 to 4 bytes in length. There are a 

large number of prefixes that can be used. Currently Pearcolator only has full 

support for the Operand Size Override prefix. The Operand Size Override prefix 

changes the default operand size from 32 bits to 16 bits. 

 

Other notable prefixes include: 

 

• Lock, which ensures any memory locations used by the instruction are 

not used by any other instructions run concurrently. 

• Branch Hint, which offers a suggestion to the processor of which 

conditional branch is likely to be taken. 

• Wait, which commands floating point instructions to wait for exceptions 

to be resolved. 

• Rex, which tells the processor to use the registers added by the x86-64 

extension. 

 

5.2.2 Opcode Field 
 
This is the only obligatory field. It must be at least 1 byte and no more than 3 

bytes long. 

 

Most instructions only require a 1 byte opcode. If an instruction requires a longer 

opcode the first byte must contain a value from a specific set of values. Often the 

multi-byte opcodes simply offer instructions similar to the 1 byte opcodes but 

with slightly different functionality. 

 

5.2.3 ModR/M Field 
 
When present the ModR/M field has 1 byte. It has the following structure: 

 

 
 Mod 

Bits 6 - 7 
Reg/Opcode 

Bits 3 - 5 
R/M 

Bits 0 - 2 
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As can be seen from the diagram it is split into three further fields, i.e. the Mod, 

Reg/Opcode and R/M fields.  

 

The Mod and R/M fields are often combined. They can represent up to 32 

different values. This corresponds to 8 general purpose registers (by default on 

Linux the general purpose registers are 32 bit) and 24 addressing modes. If one 

of the addressing modes is used the SIB field (described in the next section) must 

be present.  

The encoding used by this byte for the register and addressing modes is very 

complex so will not be discussed here. 

 

The Reg/Opcode field is usually used to specify a register to use in the 

instruction. If necessary this field can also be used to further refine the opcode. 

 

Very occasionally the entire byte can be used as part of the opcode field. 

 

5.2.4 SIB Field 
 
The SIB field is used when one of the operands to be used is a register indirect 

operand. It is used when the ModR/M field specifies an addressing mode. When 

present it is 1 byte long and has the following structure: 

 

 

 

 

 

 

In an earlier chapter the formula for building a register indirect address was 

given as: 

 

segment_register + immediate_offset + base_register + 

(index_register * scale_factor) 

 Scale 
Bits 6 - 7 

Index 
Bits 3 - 5 

Base 
Bits 0 - 2 
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The variable scale_factor is given in Scale. The mapping of values given in Scale 

to values of scale_factor is given by Scale ^ 2 (Scale to the power of 2). 

 

The variables index_register and base_register are given by the Index and Base 

fields respectively. Each specifies a 32 bit general purpose register by a default. 

If the instruction make use of the Address Size Override prefix  

  

5.2.5 Displacement Field 
 
This field is used as immediate_offset in the formula in the previous section. 

When present it can be 1, 2 or 4 bytes. 

 

5.2.6 Immediate Data 
 

This field is used when one of the operands is a constant. When present it can be 

1, 2 or 4 bytes long. 

 

5.3 Decoder Implementations 
 
Instead of building a decoder from scratch it was decided to try  to find an 

already written decoder that could be used easily by Pearcolator. The x86 

instruction set was deemed too complicated to build a decoder from scratch in 

the time available. 

 

First, research centred on finding a decoder written using Java. None were found 

so the search was expanded to cover decoders written using C and C++. 

 

Since any decoder written in C or C++ would need to be altered to fit the specific 

needs of Pearcolator it was decided that any decoder chosen should be ported to 

Java. 

 

This produced far more results. The most promising found are covered in the 

following sections. 
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5.3.1 QEMU 

 
Qemu is an emulator that supports a number of architectures [6]. 

 

QEMU has two decoders: one to decode the emulated instructions and the other 

to act as an interface to GDB (the GNU DeBugger). The decoder for the 

emulator seemed quite tightly integrated with the rest of the emulator and proved 

difficult to try to extract. 

 

The decoder for the interface to GDB seemed at first to be fairly straight forward 

to convert to Java. It did not appear to use any macros or similar language 

constructs that might be difficult to convert. Unfortunately it did use lots of 

strange pointer manipulations that made conversion difficult. 

 

5.3.2 Bochs 

Bochs is an x86 emulator that runs on a number of architectures[7]. 
 
The decoder from Bochs has the same problem as QEMU in that it is tightly 

integrated with the rest of the decoder. The documentation seems to be under 

development and is not any use at the moment. 

 

5.3.3 libdisasm 

 

libdisasm is a disassembler library used by The Bastard disassembler [8]. It 

works using a series of array lookups based on each byte of the instruction. It is 

written using C. Documentation is excellent for this library. The code is nicely 

laid out and is easy to follow.  

 

The problem with libdisasm is that it is currently undergoing a complete rewrite. 

The current version seems to have a number of serious bugs which aren’t being 

corrected by the developers. Another problem is that the design of the lookup 

means that it would be very time consuming to convert. 
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5.3.4 libopcodes 

 

libopcodes is used by objdump for its disassembler output. It is largely 

undocumented. It does not appear to support many of the newer instructions. 

 

5.3.5 Jikes RVM 

 

Jikes RVM has a disassembler that  was borrowed from IBM Visual Age. It is 

written in C++ and as a consequence uses very few features that have no 

analogue in Java.  

 

It is quite old and lacks many of the newer instructions that have been added to 

the x86 architecture. It is however fairly clear how to add the missing 

instructions. 

 

It is well laid out with no ambiguity as to which code is actually part of the 

decoder. 

 

5.3.6 ndisasm 

 

ndisasm is part of nasm [10]. It is fairly similar in design to libdisasm but has 

more active development. 

 

It is designed to reuse much of nasm, and was not built from the ground up to be 

a disassembler. It was built purely because it seemed a waste not to have a 

disassembler when various parts were already available. 
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5.3.7 Sled 

 

Sled is a tool for building instruction decoders [9]. It works in a similar way to a 

lexer and parser with the user creating specifications for the format of an 

instruction.  

 

It is written in a combination of C and Icon. Although decoders are already 

available for the x86 meaning writing the decoder is theoretically trivial, Sled 

only outputs decoders in C and Modula at present. It is not clear how to add an 

output language without rewriting large parts of Sled. 

 

It would be possible to use Sled using the Java Native Interface (JNI) but this is 

messy. 

5.3.8 Chosen Implementation 
 
The disassembler from Jikes RVM was chosen as the base for the decoder for 

Pearcolator. Despite its age it seemed to be the easiest to port to Java. Also it 

meant that Pearcolator would not be perceived by people as being merely a 

conglomeration of work taken from other emulator projects.  

 

Another advantage is that it should be fairly simple to separate the decoder from 

the interpreter and translator and reintroduce disassembler functionality. There is 

still a reasonable amount of disassembler functionality hidden in Pearcolators 

decoder. Each Instruction class (covered in section 5.4.2) contains a String 

representation of the name of the instruction. This would mean Jikes RVM 

would have a disassembler written in Java rather than C++. There is a trend in 

Java currently to rely less on JNI and legacy code that this would appear to fit in 

with. 

 

5.4 Decoder Components 
 
This section will give details of some of the major components of the decoder. 
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5.4.1 X86_BaseInstructionDecoder Class 

 

This is the entry point for the decoder. It contains an array of 32 bit Instruction 

objects, an array of 16 bit Instruction objects and an array of OpcodeFunction 

objects. The first byte of an instruction is read from memory which is used to 

select the correct Instruction and OpcodeFunction from the arrays. 

 

After this the selected OpcodeFunction is used to decode the rest of the 

instruction. 

 

5.4.2 Instruction Class 

 

There is one Instruction for each instruction in the x86 architecture. It handles the 

translations and interpretations for that instruction. 

 

5.4.3 OpcodeFunction Class 

 

The OpcodeFunction objects handle further instruction decoding needed by 

groups of instructions. It might handle reading extra opcode bytes or selecting 

the correct operands. 

 

5.4.4 Opcode Decoder 

 

Each OpcodeFunction creates an opcode decoder. This is a where all information 

that the OpcodeFunction finds is stored. This includes the instruction and list of 

operands. 
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5.4.5 Operands 

 
Each Instruction object must know how to deal with a large number of operand 

types and addressing modes. It was for this reason the Operand class was 

conceived. 

 

The Operand class has a sub class for each size of operand (such as byte, short 

and int). Each size sub class has a sub class for each operand type (such as 

register, constant and register indirect. 

 

An instruction class is able to specify which operand sizes it accepts and what to 

do when operands are of a certain size. The Instruction object should not need to 

know any more information than that. 

 

The Operand class and its sub classes also provide a means of storing 

information about the operand in a way that is meaningful to both the translator 

and the interpreter. 

 

The Operand class has several methods for reading and writing different sized 

operands for both translation and interpretation. Each method returns an 

exception if called. 

 

The Operand sub classes are as follows: 

 

ByteOperand: Super class of all operands that represent a byte. 

ByteConstantOperand:  Represents an immediate byte value. 

GP8RegisterOperand: Represents an 8 bit general purpose register. 

 

ShortOperand: Super class of all operands that represent a 16 bit value. 

ShortConstantOperand:  Represents an immediate 16 bit value. 

GP16RegisterOperand: Represents a 16 bit general purpose register. 

 

IntOperand: Super class of all operands that represent a 32 bit value. 

IntConstantOperand: Represents an immediate 32 bit value. 



 51 

GP32RegisterOperand: Represents a 32 bit general purpose register. 

 

GP32RegisterIndirectOperand: Represents a register indirect operands where 

all registers used are 32 bit general purpose registers. It has a method for 

obtaining the address for the translator and interpreter (this is mainly used 

externally of this class by the Lea instruction). It has methods for reading and 

writing 8, 16 and 32 bit values. 

 

Currently GP32RegisterIndirectOperand must be treated differently from all 

other operand types as the values it deals with can be of any size. Each other 

operand type has a specific size of values it deals with. It is hoped that in the near 

future it will be possible to have indirect operands that have specific sizes. 

GP32RegisterIndirectByteOperand, GP32RegisterIndirectShortOperand and 

GP32RegisterIndirectIntOperand operand types are all planned. This should 

reduce the number of operand types each instruction translator must deal with. 

 

Sign extended and zero extended operands are also planned. Many instructions 

deal with one integer operand and one byte operand that must be sign extended to 

an integer. Currently the instruction translator must perform the sign extension. 

These instructions end up having a translator that deals with two integer operands 

and another that deals with one integer and one byte. After sign extension both 

translators perform much the same task. By making the operand perform the sign 

extension it can be treated as a perfectly stand integer operand, removing the 

need for a second translator. 

 

5.5 Improving the Decoder 
 
As well as the improvements mentioned in the last section several other 

improvements can be made in the future. These mostly involve reducing the 

number of redundant branches the decoder needs to make. 

 

One of the first improvements would remove the need to perform an array access 

to find the instruction followed by another array access to get the operand 
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decoder. Since these two operations both use the first byte of the instruction it 

should be simple to have a decoder for each value of the first byte which will 

know which instruction it is operating on. 

 

The next improvement involves optimising instructions where register operands 

are encoded in the opcode. The x86 has one byte push and pop instructions that 

act on a 32 bit register. These instructions are quite frequently used. The decoder 

must currently mask off part of the byte to obtain the register. Making the first 

improvement in this section makes it unnecessary to mask the byte as the 

decoder will already know the value of the byte. Removing a single And 

instruction from the decoder may not sound like much of an improvement but it 

must be remembered that for the interpreter it may be a great improvement. One 

instruction may take up a large proportion of the time taken to interpret an 

instruction. Removing the need for the instruction may result in a significant 

performance increase. A similar idea can be applied to many other instruction 

decoders. 

 

The final improvement should make the most significant improvement in 

performance. Currently each time an instruction is decoded, several operand 

objects must be created. Once the instruction has been translated or interpreted, 

the operand values are often never used again. Object creation tends to be an 

expensive operation to perform. For the interpreter this of particular concern as it 

severely limits the speed at which instructions can be executed. The values stored 

in the operand object are not needed after the instruction has been translated or 

interpreted so it seems reasonable to reuse the object and simply change the 

values. A similar optimisation can be carried out with other objects created by 

the decoder. 

 

The improvement should be large for the interpreter. Instead of needing to create 

several objects for each instruction, it should be possible to create only about 20-

30 objects for the entire life of the interpreter. The improvement should help the 

translator as well, but not as much. 
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6 Emulation Modes 

 

6.1 Introduction 
 

Once the environment a program is to be emulated in has been set up (covered in 

the last chapter) Pearcolator then must run the program somehow. Pearcolator 

has two modes of accomplishing this: code translation and interpretation. 

 

6.2 Code Translation 
 

6.2.1 Introduction 
 

Code translation involves converting instructions of the machine code to be 

emulated into native machine code. It does this by first translating the emulated 

machine code to the High level Intermediate Representation (HIR). The HIR is 

then passed through to a compiler which generates native machine code. 

 

HIR is the first of many intermediate languages used by Jikes RVM. HIR has a 

very similar structure and instruction set to that of a modern RISC processor. 

 

Each emulated instruction is converted to a Basic Block. A Basic Block contains 

a sequence of HIR instructions that are to be executed in order. Each basic block 

has a link to the next basic block to be executed. There can optionally be a 

branch at the end of a Basic Block which affects which block must be  

 

The aim of the code translator is to approximate java methods from the emulated 

machine code. The return value is the memory location of the last instruction 

executed. 

 

Pearcolator has two modes of translation: single instruction and trace translation. 
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6.2.2 Single Instruction Translation 
 
Single Instruction Translation mode generates HIR for one instruction, runs the 

compiler on that instruction and then executes the generated machine code.  

 

This mode has the advantage of being very simple to program and debug. It 

much easier to find the debugging output for a particular instruction. 

 

It has the disadvantage of being slow. After each instruction decode Pearcolator 

must run the compiler. This obviously takes some time to start, which will be 

roughly constant no matter how much code it must translate. Another reason is 

that executing the translated code in such a disjointed fashion effectively disables 

branch prediction and pipelining on the host processor. The following flow 

diagram shows the translation for this mode: 
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6.2.3 Trace Translation Mode 
 
This translates instructions to HIR until either a branch is located for which it is 

not possible to predict the target or until a certain number of instructions have 

been translated. When this point is reached the HIR is passed to the compiler and 

the generated machine code is executed. Following is the flow diagram for this 

mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decode 
Instruction 

First use of register in 
translation is a read 
operation? 

No Yes 

Fill 
Register 

Translate 
instruction to HIR 

Instruction is 
conditional or 
indirect branch? 

Move 
pc on 

No 

Yes 

Spill registers written 
to 

Compile HIR to 
Machine Code 

Execute Machine 
Code 

Set return value to 
branch target 



 56 

6.2.4 Structure 
 

There are three components that control translation of x86 machine code to 

native machine code. These are the classes X86_OptimisationPlanner, 

X86_ConvertX86toHIR, MC2IR and X862IR. 

 

X86_OptimisationPlanner is used to control the stages of the HIR to machine 

code compiler. It specifies which translators to use at each stage. 

 

X86_ConvertX86toHIR coordinates the x86 machine code to HIR translator with 

the other stages, ensuring the generated HIR is in a form that is suitable for later 

stages. X86_ConvertX86toHIR ensures X862IR gets used correctly. 

 

MC2IR and X862IR control the translation itself. MC2IR handles the parts of the 

translation that are not architecture specific such as method call planting, 

controlling how the trace should be built. X862IR handles all architecture 

specific operations such as using the correct instruction decoder/translator and 

register handling. 

 

6.2.5 Branch Handling 
 

The x86 has three classes of branch. These are constant branch, conditional 

branch and indirect branch. 

 

A constant branch has the branch target encoded into the instruction. When the 

translator finds this type of branch it continues from the branch target. It does not 

add any HIR to the trace. 

 

A conditional branch has the branch target encoded into the instruction, but 

whether the branch is taken or not is decided by the state of the condition flags at 

the time of the instructions execution. When the translator reaches this type of 
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branch, it inserts code to resolve the flag laziness and then code to return the next 

instruction location based on that result. The translation then stops. 

 

An indirect branch has a target stored in a specific register or memory location. 

The branch will always be taken. When the translator reaches this type of branch, 

code is inserted to resolve register the register if necessary, and then return the 

branch target address. The retn instruction is classed as this type of branch. 

 

6.2.6 Reusing HIR 
 
Quite often different traces will use instructions from the same memory location. 

This is usually due to several branch instructions having the same target. 

 

It is obviously inefficient to generate HIR which is identical to that previously 

generated. 

 

To solve this, a cache of previously generated HIR is kept in a hash map in the 

class MC2IR. The current lazy state is used as the key.  

 

Before each instruction is translated Pearcolator checks that the instruction has 

not previously been translated with the same lazy state. If the instruction 

translation is found in the cache then the cached translation is linked into the 

current trace. The translation can then end. This is because all translated 

instructions after the cached instruction are linked into the cached instruction so 

the trace is complete. 

 

If a suitable translation is not found in the cache the instruction is translated as 

normal, and the translation is added to the cache. 

 

6.2.7 Planting Method Calls 
 
It is often necessary for the translated HIR to make method calls. This is needed 

for filling and spilling registers, making system calls and accessing memory. 
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It is fairly simple to make method calls from HIR. It is simply a matter of 

specifying the object the method is in, the name of the method, the arguments to 

use and where to put the return value. 

 

Before a method can be called it must be compiled and useable by the generated 

HIR. To ensure this the class DummyDynamicCodeRunner was created. It 

contains method calls to all methods that can be planted. It is referenced by parts 

of the code translator and ensures each method is compiled into a form useable 

by the translated code. It is possible to dynamically compile methods but tends to 

be messy so this feature is not used. 

 

6.2.8 Compilation 
 
Once a trace has been converted to HIR it is time to compile it to native machine 

code. 

 

Pearcolator has two compilers i.e. the baseline and adaptive compilers. 

 

The baseline compiler compiles to native machine code as quickly as possible. It 

performs only minimal optimisations. For this reason the code it generates tends 

to be fairly inefficient. It does have the advantage of compiling quickly. 

 

The adaptive compiler is an optimising compiler. It has many levels of 

optimisation. The more that a piece of code is executed the more heavily it is 

optimised. For this reason it tends to generate efficient code. Unfortunately, the 

compiler tends to be slower. 

 

Pearcolator uses the optimising compiler. This is because Pearcolator is designed 

primarily for emulating long running programs such as web servers or databases. 

As such, any machine code generated will be executed many times. Any 

deficiencies will impact performance considerably. Due to the nature of the 
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programs to be emulated any extra time spent compiling is offset by the overall 

speed increase in the execution of the program. 

 

By default, Pearcolator sets the initial optimisation level to 0. When code is 

executed it gets profiled by Jikes RVM. When warranted Jikes RVM can 

increase the optimisation level of a trace. This results in the trace being 

recompiled with the extra optimisations. 

 

For this to work Pearcolator must cache traces that have been compiled. The 

cache stores VM_CodeArray objects which contains translated machine code. 

Note that this cache of compiled HIR (i.e. machine code) is different to the cache 

of emulated machine code converted to HIR mentioned EARLIER.  

 

Before translation of a trace into HIR starts Pearcolator checks the cache of 

compiled traces to ensure a trace will not be retranslated. 

 

6.2.9 Execution 
 
Once a trace has been compiled it must be executed. This is accomplished by 

passing the VM_CodeArray object associated with the trace to the method 

VM_Magic.dynamicBridgeTo.  

 

6.3 Interpretation 
 

6.3.1 Introduction 
 
Although the primary role of Pearcolator is to emulate long running programs it 

was felt desirable that performance should be improved for short running 

programs. 

 

With code translation the generated HIR must pass through several stages of 

compilation and optimisation. This produces fast code but makes the compiler 

relatively slow. Even if a block of code is only to be executed once it must still 
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pass through the same compiler as code that is executed several million times. If 

a program will only run for a few seconds a considerable amount of time will 

still be spent on compilation. 

 

By only running the adaptive compiler on parts of the program that execute 

frequently it is hoped the execution time of short lived programs can be 

significantly reduced. 

 

6.3.2 Operation of the Interpreter 
 

Once an instruction has been decoded (instruction decoding is covered in the 

next chapter) it is then executed immediately without passing through a compiler. 

The operation of the instruction to be emulated is implemented in a method that 

is called after the instruction has been decoded. 

 

As an example, the method that implements adding two integers is the following: 

 

int interpret(int pc, int nextPc, ProcessSpace ps,  

IntOperand op1, IntOperand op2) { 

 op1.write(ps, op1.read(ps) + op2.read(ps); 

 return nextPc; 

} 

 

6.3.4 Switching from Interpretation to Code Translation 
 
Pearcolator must know at what point in the execution of a program it is suitable 

to stop interpreting a section of code and instead translate it to machine code. A 

simple way is to count the number of times an instruction at an address is 

interpreted. Once the instruction has been executed a certain number of times, 

invoke the code translator. This is the current behaviour of Pearcolator. 

 

Although the current behaviour works as it should, keeping track of every 

instruction carries a lot of overhead which slows down the performance 

considerably. 
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A better system is to ignore how many times an individual instruction has been 

executed and make the decision to switch at a branch. When interpreting a 

branch, Pearcolator should keep track of how many times the target has been 

branched to. When a target has been branched to a certain number of times then 

it should be translated. 

 

This technique has a number of benefits: 

1 Less overhead for the interpreter. 

2 Allows certain optimisations in the instruction decoder. 

3 Ensures translated traces start at a branch target and end at a branch. This 

keeps the traces similar to methods in Java. It is hoped in the future 

Pearcolator may output Java bytecode so that emulated programs may be 

executed on other Java Virtual Machines. 

 

Another technique that has only received minimal research up to now is to use 

Compiler DNA. Compiler DNA is the system used by the adaptive compiler in 

Jikes RVM to decide when the next level of optimisation should be applied. It 

works by keeping track of how long an optimisation will take to apply and how 

much of an improvement is likely. If the length of time to perform the 

optimisation is not offset be the improvement in speed no optimisation is applied. 

 

6.4 Improving the Translator 
 
The code translator currently has a problem with branch handling. When the 

translator reaches a conditional or an indirect branch a decision must be made as 

to which instruction to decode next. Either the translation can halt with the 

generated code returning the address of the next instruction to be executed, or the 

translator can translate all possible branch targets. Currently Pearcolator uses the 

former technique.  

 

With the introduction of an interpreter it becomes possible to profile the branches 

before translation. This allows Pearcolator to detect which branch targets are 
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used most so they can be translated. All other branch targets can continue to be 

interpreted. 

 

6.5 Status of Interpreter 
 
Unfortunately the current functionality of the interpreter is behind the translator. 

Whereas the translator is able to handle fairly substantial programs, the 

interpreter is missing some vital feature such as conditional branching. 

 

Lack of conditional branching in the interpreter has also impacted the translator. 

The branch handling of the translator was built to ensure easy addition of 

profiled branching in the future. It was hoped that it would then be possible to 

put an if instruction at the branch. If either of the branch targets had been 

interpreted enough times or had been previously translated the translation could 

continue. For any branch targets for which this is not the case the translation 

would finish. 

 

However, the interpreter has not reached a point which allows this. Currently 

when the translator reaches a conditional or indirect branch, translation halts. It 

should be a simple but time consuming matter to add the required functionality to 

the interpreter. 

  



 63 

7 Current Status and The Future of x86 Pearcolator 
 

7.1 Current Status 

 

The x86 version of Pearcolator is not as advanced as the PowerPC version. The 

PowerPC version can run many benchmarks, substantial programs and is 

currently under development to run Linux under emulation. 

 

The x86 version can run substantial assembly programs. It can handle simple 

programs written in C making use of glibc. Programs written using glibc tend to 

be good tests that an emulator is working correctly. The following features of 

Pearcolator have been tested by emulating simple glibc programs: 

 

• The memory system 

• Binary Loading 

• Stack Layout 

• The decoder 

• Instruction translation 

• Lazy register handling 

• Lazy flag handling 

• System calls 

 

All features tested above have been found to work correctly. To get x86 

Pearcolator to execute more complex programs is a matter of simply 

implementing the instructions and system calls that are missing. The interpreter 

has been tested on small assembly language programs and seems to work 

adequately for the parts that are implemented. 
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7.2 The future of x86 Pearcolator 

 

As work on Pearcolator is ongoing it seems useful to describe some of the future 

advances that should be possible. Many of these have already been mentioned 

throughout the dissertation, but will be summarised here for clarity. 

 

7.2.1 Completing Instruction Set and System Calls 

 

Only a small fraction of all the instructions and system calls are currently 

implemented. The decoder is currently able to decode most instructions. The 

instructions are merely missing translations and interpretations. 

 

7.2.2 Dynamic Linking 

 

Pearcolator for the x86 only handles statically linked binaries at present. Most 

programs use dynamic linking. It is unknown how much work will be required to  

enable dynamic linking. 

 

7.2.3 Parallelisation 
 

One of the benefits of Jikes RVM is that it allows use of multi processor 

architectures. Pearcolator does not currently take advantage of this. 

 

 

7.2.4 The Decoder 
 

The Decoder currently works but as mentioned in section 5.5 could be made 

faster with a few simple changes. 
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7.2.5 Native Memory 
 

The memory system could be made a lot faster if JNI was used to access the 

memory. This will avoid several mask and shift instructions being generated for 

each memory access, replacing them with a single pointer manipulation. 
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