THE DESIGN OF A SELF-TIMED

LOW POWER FIFO USING A

WORD-SLICE STRUCTURE

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER
FOR THE DEGREE OF MASTER OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

September 1998

By
KyoungKeun Yi

Department of Computer Science

Contents

Abstract
Declaration
Copyright
Acknowledgements

1 Introduction
1.1 Overview o oL e
1.1.1 FIFO. e
1.1.2 An overview of the problems in current
FIFO structures
1.1.3 A new FIFO structure
1.2 Contributiono L

1.3 Thesis structure

2 Concepts and terms in asynchronous logic

11

12

13

14

15

15

15

16

17

18

19

20

2.1 Synchronous logico 20

2.2 Asynchronous logic L Lo 21
2.3 Micropipelineo Lo 24
2.3.1 Synchronous vs. asynchronous pipelines 25
2.4 Handshake protocols 26
2.4.1 Two-phase handshake protocol 27
2.4.2 Four-phase handshake protocol 28
2.5 The characteristics of asynchronous design 29
2.5.1 Local handshake without global clock signal 29
2.5.2 Average performance 30
2.5.3 Electro-magnetic emissions and noise. 30
Basic elements for building asynchronous circuits 32
31 C-element 32
3.2 Event-controlled storage element 33
3.3 Structure of the micropipeline 35

New FIFO structure :

Word-Slice FIFO 38
4.1 Micropipeline FIFO o0, 38
4.1.1 Normally open latch control 40
4.1.2 Normally closed latch control 42
4.2 Ring Buffer FIFO o o . 43

4.3

4.4

Current problems L .
4.3.1 Micropipeline FIFO
4.3.2 Conventional ring buffer FIFO
A new structureo
4.4.1 Interface to a micropipeline
4.4.2 Word-slice FIFO element
4.4.3 Write address pointero Lo
4.4.4 Read address pointer

4.4.5 Handshake controller

5 Evaluation 1 : energy consumption

5.1

5.2

9.3

5.4

9.9

Methods of design and verification.
5.1.1 Design Flow oo,
5.1.2 Analysis of the energy efficiency
Primitive models oo oo
Representing different FIFO structures
Test environmentso
5.4.1 Scope of the experiments
5.4.2 Test control circuit
Measurements and analysis,
5.5.1 Energy consumption by read and write operations

5.5.2 Total energy consumption for a single data transfer

5.5.3 Energy consumed by the control elements

64

64

64

65

66

68

70

70

71

72

72

73

5.5.4 Energy consumption by the memory elements 7
5.6 Choice of structure according to input data characteristics 79

5.7 Comparing the energy consumptions for FIFO elements in different

structures L oL 80

6 Evaluation 2 : performance 82
6.1 Test environments 82
6.2 Measurements and analysis. 0oL 84
6.2.1 Data propagationdelay 84

6.2.2 Cycletime Lo 86

7 Conclusion 88
7.1 Comparison e 89
72 Future Work 90
Bibliography 92
A Word-slice FIFO 96
A1 VHDL e 96
A.2 Test environment 96
A.3 Top level FIFO structure 96
A4 FIFOelement 96
A5 Physical layouto 96

B Micropipeline FIFO 104

B.1 Test environment
B.2 Top level FIFO structure

B.3 Physical layout

C Evaluation

C.1 Measurement of current for a data transfer

List of Tables

5.1 Experimental Results . .

5.2 Total energy consumption

6.1 Performance Measurements

List of Figures

21

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

Synchronous logic L o 0o oL 21
An example of asynchronous logic 22
Synchronous pipeline 25
Asynchronous pipeline 26
The two-phase Handshake protocol 27
The four-phase handshake protocol 28
C-element 33
Event-controlled storage element 34
The structure of the micropipeline 36
A micropipeline FIFO 00 oL 39
STG of a micropipeline FIFO control element 41
STG of normally closed latch control 42
Normally closed latch control circuit 42
Ring buffer FIFO structure 43
Write and read counter in a ring buffer L. 44

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

4.17

5.1

5.2

9.3

5.4

9.5

5.6

5.7

6.1

6.2

6.3

Word-Slice FIFO structure
Input Request Decoding
Generating the Input Acknowledge Signal
Timing diagram for generating the Input Acknowledge Signal . . .
Word Slice FIFO Element
A ring counter with three write address pointers
Write address pointer
STG of the write address pointer
Read address pointer,
STG of read address pointer

Word-Slice FIFO Control for asynchronous interface

Energy model oo
Test input pattern generator
Total energy consumption
Energy consumption by control elements
Energy consumption by memory elements
Total energy consumption and the characteristics of input data . .

Energy consumed by memory and control elements

Input request controller
Output acknowledge controller

Data propagationdelay

6.4

Al

A2

A3

A4

B.1

B.2

B.3

C.1

Data transfer cycle time00, 86

Test environment of the word-slice FIFO 100
The word-slice FIFO 101
The word-slice FIFO element 102
Physical layout of the word-slice FIFO 103
Test environment of the micropipeline FIFO 105
The micropipeline FIFO 106
Physical layout of the micropipeline FIFO 107
Measuring currents for a data transfer 109

10

Abstract

A new structure for a FIFO (First In First Out memory), the Word-Slice FIFO,
has been developed in order to attain high performance and low power.

Conventional asynchronous micropipeline structures have two major prob-
lems when used as a FIFO. The first problem is high power consumption and the
second is low performance. The serial structure of the data path and the control
mechanism of the micropipeline cause the problems.

This dissertation presents solutions to these problems using a new FIFO struc-
ture. Each word of the memory element has its own local controller, which allows
the FIFO structure to be as simple as a micropipeline FIFO. All memory elements
are arranged in parallel for high performance. Only one local controller and one
memory element are activated for a data transfer for low power consumption.

Post-layout simulation, in a 0.35 micron technology, shows that a Word-Slice
FIFO which has 16 words of 32-bit memory consumes 183.5 pJ to transfer data
when half the data bits are toggled. In a corresponding micropipeline FIFO,
the energy used for the same data transfer is measured as 388.1 pJ. Data delays
from input to output are 3.8 ns and 12.4 ns for the Word-Slice and micropipeline

structure respectively.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

12

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc-
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.

13

Acknowledgements

I would like to thank my wife, JeongHye, who has been with me throughout the
difficult times of my study and gave birth to our second baby during that time.
Special thanks to my supervisor, Professor Steve Furber, for much precious
advice for my study on the interesting world of asynchronous design. I would also
like to thank to my advisor, David Lloyd, for his great help during the writing of
this thesis. Thanks to William John Bainbridge for his comments on my writing.
Finally, I would like to thank Andrew Bardsley, Dr. Philip Endecott and all
the smart members in the Amulet group who helped me to understand asyn-

chronous design.

14

Chapter 1

Introduction

1.1 Overview

This thesis presents the design and evaluation of a new structure for a low-power
high-performance asynchronous FIFO (First In First Out memory). The two
main existing designs for FIFOs are analysed. The advantages and disadvantages

of both are identified, leading to the new structure.

1.1.1 FIFO

A FIFO is a memory component which is widely used in digital systems. It can
store consecutive data values in order, and output the stored data in the stored
order. The input and the output of a FIFO can have different data transfer
rates. Consequently, they are frequently used in VLSI design to maximise the

utilisation of a communication channel, by smoothing the fluctuations in the data

15

CHAPTER 1. INTRODUCTION 16

production rate.

There are three requirements for the VLSI implementation of a FIFO. Firstly,
we need simple structure: when the size of a FIFO can be scaled easily, it is easy
to build a physical implementation of the circuit. Secondly, we need low power to
reduce the cost of packaging: high power consumption in a VLSI device generates
high temperatures which need to be cooled down by an expensive heat-emitting

package. Finally, high performance is also necessary for a VLSI design.

1.1.2 An overview of the problems in current

FIFO structures

There are two main structures used for implementing FIFOs: micropipeline and

ring-buffer structures.

Micropipeline FIFO

Conventional Micropipeline [26] structures which are described in section 4.1 on
page 38 have two major problems when they are used as a FIFO: high power
consumption and low performance.

High power consumption is caused by the unnecessary activity of the memory
elements and the control elements in a micropipeline FIFO. Input data have to
travel along a serial data path, through multiple stages of memory elements. This
means that all the memory elements of a FIFO are activated, which causes high

power consumption. All the control signals are activated for a data transfer. This

CHAPTER 1. INTRODUCTION 17

activity adds to the power consumption.
The data delay increases proportionally to the depth of the FIFO as it is in-
creased. This incremental delay causes significant degradation of the performance

as the FIFO depth increases.

Ring-buffer FIFO

A solution to these problems of high power consumption and low performance is
to adopt the conventional ring-buffer FIFO [27] which is described in section 4.2
on page 43 to reconstruct the micropipeline FIFO function in another structure.
However, as Sutherland mentioned in his seminal lecture, Micropipelines [26],
the ring-buffer FIFO is very hard to design. The centralised controller makes the

VLSI design hard because the FIFO size is not scalable.

1.1.3 A new FIFO structure

A solution to these problems, a new FIFO structure, the Word-Slice FIFO, is
presented in this thesis. This structure has been developed in order to interface
high performance asynchronous and synchronous systems efficiently. The new
structure has several benefits: low power consumption, high performance, easy
modification and a simple interface.

For the new Word-Slice FIFO, each word of the memory element must

have its own local controller to build a simple structure, just as each stage of

CHAPTER 1. INTRODUCTION 18

the memory element has in a micropipeline FIFO. However, only one local con-
troller and one memory element are activated for a data transfer, unlike the usual
micropipeline FIFO controller.

This design, therefore, requires all memory elements to be arranged in parallel

for high performance and for low power consumption.

1.2 Contribution

The new FIFO structure described in this thesis has three characteristics which
have not been fully satisfied with current FIFO structures.

Firstly, the new structure is simple. It is easy to modify the FIFO size in
physical layout in a VLSI design. We can build a FIFO from the prepared library
of a FIFO element by simply connecting the elements in series. Consequently, it
is possible to build a data-path library for the FIFO design, thus designers do
not need to worry about designing various sizes of FIFOs by themselves.

Secondly, the new FIFO consumes less power. The high cost for a heat-
emitting package for a high performance VLSI device can be avoided. The battery
life time can be extended when the structure is used in the design of portable
devices.

Finally, the new FIFO has low latency, thus we can make a high performance

system.

CHAPTER 1. INTRODUCTION 19

1.3 Thesis structure

In chapter 1, the purpose of using a FIFO in a high speed system interface was
mentioned: a digital system uses FIFOs to maximise the utility of the bandwidth
in a communication channel. An overview of the problems in current FIFO
structures was discussed followed by an overview of the suggested solution.

In chapter 2, basic concepts of asynchronous design will be described. The
characteristics of asynchronous logic will be considered.

In chapter 3, the operations of the basic elements used to build a micropipeline
will be described.

In chapter 4, a new FIFO structure will be considered. First, detailed prob-
lems with existing FIFO structures will be mentioned. Next, the detailed solu-
tions to the problems will be discussed. Finally, we will implement the new idea
as a physical design.

In chapter 5, the design methods used in this work will be introduced. Before
the evaluation of the design, two major FIFO structures will be implemented:
micropipeline and word — slice structures. An analysis of the energy efficiency
will be presented for each of the two different FIFO structures.

In chapter 6, we will compare the performance of different FIFO structures.

In chapter 7, we will summarise the analysed data and the results. This is

followed by the conclusions from this work.

Chapter 2

Concepts and terms in

asynchronous logic

2.1 Synchronous logic

Digital logic design can be divided into two categories: synchronous design and
asynchronous design. Synchronous design uses one or more global synchronising
signals, called clock signals. Clock signals are connected to the memory elements,
flipflops and latches. Figure 2.1 shows synchronous logic which has a global clock
signal, CK. The state decoder derives the next state, NS, from the present state,
PS, and/or from the input signals, In. The output decoder derives the output

signals, Out, from the present state, PS, and/or from the input signals, In.

20

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 21

NS PS

cK > ok

State
Decoder

Output
Decoder

————=> Out

Figure 2.1: Synchronous logic

2.2 Asynchronous logic

Asynchronous designs do not use clocks, or any global synchronising signals,
unlike synchronous designs. We can see an example of asynchronous logic in
Figure 2.2.

The processing module is for data processing. The Start signal denotes the
request to start processing. The End signal notifies the end of current processing
in the module. The transition sequence controller defines the order of all of the
internal signals’ transitions.

The delay is one of the most important factors for digital logic designs re-
gardless of whether a logic design is asynchronous or synchronous. Asynchronous
design methodologies/concepts are based upon assumptions on the characteris-
tics of the delay. Delay characteristics are grouped into one of the two models

outlined below.

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 22

Processng Module Dita Processng Module
In QOut In Out

Start End Start End
S E R S E
> > E—
R Transiion Ro R Transiion Ro
- Sequence) Acknowledge - Sequence
A Contrller Ao A Contrller Ao

Figure 2.2: An example of asynchronous logic

e Bounded delay model [21]
A delay model which has lower and/or upper bounds on the delay of a

circuit element or wire is called a bounded delay model.

e Unbounded delay model [21]
A delay model which has no upper or lower bound on the delay of a circuit

element or wire is called an unbounded delay model.

These delay models are used to define the following four models of circuit

operation.

e Huffman model (Fundamental-mode) [17, 10, 25]
One class of asynchronous models which assume bounded delays on their
wires and circuit elements are called fundamental-mode FSM (Finite State
Machine) or the Huffman models. The inputs of the circuit must not be

changed until all of the internal states are stable. If an input is changed

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 23

while the internal state of the circuit is transient, the final state of the
logic is unknown. As a result, the interval between transitions on each
input should be greater than the maximum delay of the feed-back loops or
shorter than the minimum delay of the logic to avoid disturbances to the

sequence of the internal states. Thus the delay must be bounded.

e Speed-independent model [11, 17]
The Huffman model uses only inputs and outputs of a circuit to represent
the state. However, in the speed independent model, all of the internal
nodes’ states are considered. The speed independent model represents the
circuit operations by using precedence relations between all of the internal
signals. Thus we can define the operation of a signal by a subset of the total
state of transitions of all signals that effect the transition of the signal ([7]
pp. 106-107). The delays caused by the interconnecting wires are assumed

to be zero in this model.

e Delay-insensitive model
While the speed independent model assumes zero delay on all the wires in
the circuit, the delay insensitive model assumes unbounded but finite delays

on both the circuit elements and wires in the circuit.

e Quasi delay-insensitive model
The difference in the delays at each end of a wire fork causes a conflict in

CMOS operation. To avoid this conflict, the quasi delay insensitive model

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 24

has been proposed. This model assumes that the wires in the circuit only

have isochronic forks.

An isochronic fork is a set of interconnecting wires where the delay difference
between the branches is zero or negligible compared to the circuit element

delays.

The speed-independent model and the bounded delay model are used for the
controllers in the new FIFO design, while the bounded delay model is used to
build the data path.

The micropipeline described in the following section uses the bounded de-
lay model for the data path, while it uses the speed-independent model for its

controller.

2.3 Micropipeline

There are two methods used in asynchronous logic to indicate when the outputs
from a combinatorial logic block are valid. The first encodes validity information
with data using a scheme such as dual-rail encoding to produce a completion
signal. The second uses delay matching [4] logic where, in a micropipeline, the
data is assumed to be valid within a bounded delay so that a constant delay
element can be used to indicate the data validity.

The main approach used for the circuit is based on the Micropipelines

Turing Award lecture of 1988 [26]. The proposed design methodology is composed

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 25

of a bounded-delay data path controlled by delay-insensitive circuits [25].

2.3.1 Synchronous vs. asynchronous pipelines

; D1 D2
b = Q . D Q Do
Processing Module

7> cK T CK

Figure 2.3: Synchronous pipeline

Figure 2.3 shows the typical structure for a synchronous pipeline. The period
of the clock, CK, should be greater than the sum of the delay from the CK to
D1, from D1 to D2 and the setup time of the flip-flop. The performance of a
pipeline with a processing module is a constant determined by the clock. The
maximum performance of a synchronous circuit is normally dependent not only
on the slowest part of the data processing modules but also on the slowest part
of the control modules.

A micropipeline is shown in Figure 2.4. In contrast to the synchronous
pipeline, a stage of a micropipeline consists of a processing module, a control
module and memory elements such as latches. The clock distribution network is
replaced by the control module. When the data DI is valid, an input request
is generated on the R: signal by the control module at the left side. An input
handshake cycle is initiated by this request. When the control module at the

right side receives a signal transition on the REQ) signal, it sends a start signal,

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 26

: D2
Di B ———)] Q) D Q Do
Processing Module
—= LT — LT
S D
S D S D
LT — LT
Control Module Ri Control Module Ro
REQi REQo REQi REQo
Ai . Ao
ACKi ACKo ACKi ACKo

Figure 2.4: Asynchronous pipeline

S, to the processing module. After the completion of data processing in the pro-
cessing module, it returns a done signal, D, to the control module. After that,
an input acknowledge signal, As, is changed to indicate the completion of data
reception. At the same time, the data D2 is latched in the right latch. After the
latch operation, an output request signal is sent to the next stage through the

Ro signal to initiate an output handshake cycle.

2.4 Handshake protocols

Handshaking protocols are used to maintain the correct ordering of data and
operations. When data are transfered, they are bundled with a control signal

which represents the timing information to indicate data validity.

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 27

Sender Receiver
DATA
Do Di
REQ
REQo REQi
ACK .
ACKo ACKi

S oS X

LSS

Figure 2.5: The two-phase Handshake protocol

2.4.1 Two-phase handshake protocol

Figure 2.5 shows an asynchronous handshake structure and a timing diagram for
a two-phase handshake protocol.

The data are accompanied by a pair of handshake control signals. When the
data are valid, the sender makes an event on the RE() signal. The receiver returns
an event (a signal transition) to the sender using the ACK signal to indicate that
the data have been received. After the event on the ACK signal, the sender starts
to produce the next data on the DATA signals.

The constraints at the receiver inputs dictate that the changed control signal,
REQ, should arrive after all of the changes in the data are transmitted to the
receiver: the data at the output of the sender can be changed only after the

change of the acknowledge control signal, ACK, from the receiver.

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 28

2.4.2 Four-phase handshake protocol

Sender Receiver
DATA
Do Di
REQ
REQo REQi
ACK .
ACKo ACKi

& & X

REQ

Figure 2.6: The four-phase handshake protocol

A four-phase handshake protocol is illustrated in figure 2.6. (The other four-
phase handshake protocols are described in [5, 18].) Two transitions on each
handshake control are needed to complete a data transfer. A low-to-high tran-
sition on the request signal, RE(Q), initiates a handshake operation. The rising
edge of the RE() signal indicates that the data are available. The rising edge of
the ACK signal indicates that the data have been latched into the receiver. The
falling edges of the handshake control signals are return to zero actions before

the start of the next handshake operation.

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 29

2.5 The characteristics of asynchronous design

2.5.1 Local handshake without global clock signal

The design of the physical layout of a synchronous circuit is becoming more
demanding because of the global constraints on the clock-distribution net. To
avoid degradation of the performance as a result of global clock skew, the designer
must take great care with the clock signals in VLSI design.

The power consumed by a capacitive load is

P = CV°F (2.1)

where C'is the load capacitance of the CMOS logic, V' is the operating voltage and
F is the operating frequency. According to the above equation, a high operating
clock frequency requires more power to drive the capacitive load of the clock
network. So the power consumption supporting the clock distribution network
increases as the performance of synchronous systems increases.

In contrast, self-timed design uses local handshake control mechanisms which
are required to satisfy the local constraints described in section 2.4. Only local

constraints have to be satisfied by designers when developing physical layout.

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 30

2.5.2 Average performance

It is possible to end a handshake operation early when the operation in a process-
ing element in a micropipeline stage finishes early. However, synchronous pipeline
operation is controlled by a clock which permits only a fixed data transfer rate in
the pipeline. Consequently, the performance in a pipeline can be greatly affected
by whether the pipeline control mechanism is synchronous or asynchronous.
The fixed performance demanded by the maximum processing delay in syn-
chronous design can be compared to the variable performance in a stage of
an asynchronous pipeline. In a study by Mark [20], the performance of an
asynchronous pipeline demonstrated the conditions necessary to obtain average
case performance. The longest delay in multiple stages of an asynchronous mi-
cropipeline is the most important factor which defines the spontaneous average
performance of the pipeline. Consequently, the average performance in multiple
micropipeline stages does not always lead to the high performance which can be

achieved by a single micropipeline stage.

2.5.3 Electro-magnetic emissions and noise.

A synchronous system usually needs delicate shields to block electro-magnetic
emissions. The periodical clock causes simultaneous switching of the devices in a
digital hardware system. Simultaneous switching leads to a concentration of the
emission energy around periodical frequency/time regions. This saturated energy

causes disturbances to other devices, e.g. noise to an audio system, undesirable

CHAPTER 2. CONCEPTS AND TERMS IN ASYNCHRONOUS LOGIC 31

effects to medical equipment and noise to mobile communications.

However, an asynchronous system spreads the energy relatively evenly over
time and frequency because the operations of the devices are not synchronised
to a periodical clock. As a result, the electro-magnetic energy radiated from
an asynchronous system can be spread relatively evenly over the time/frequency

domain.

Chapter 3

Basic elements for building

asynchronous circuits

Ivan Sutherland, in his Turing award lecture of 1988 [26], introduced the concept
of Micropipelines. He showed how basic circuit elements can be combined to
provide the control for complex micropipeline systems.

To describe the operation of a micropipeline, the Muller C-element and an
event-controlled storage element must be introduced. A simple asynchronous

pipeline can be built with these two basic elements.

3.1 C-element

An event is a signal transition on a control signal in an asynchronous circuit.
The Muller C-element [26, 11] acts as an AND function for events.
A simple two-input C-element is illustrated in figure 3.1. A bubble on the

32

CHAPTER 3. BASIC ELEMENTS FOR BUILDING ASYNCHRONOQOUS CIRCUITS 33

< State Transitions >

< C-element > | In ~
0 0 Z
C z 0o 1 0
In _< }
1 0 1
1 1 Z

Figure 3.1: C-element

left, input side means an inversion. Thus the output copies the state of the upper
input if the inputs differ in state (signal level): otherwise the output holds the

previous state [26].

3.2 Event-controlled storage element

Normal memory elements such as flipflops transfer the data using only one of the
high-to-low or low-to-high transitions of a control signal. Event-controlled logic
may need to transfer data on both of the transitions on the control signal. An
event controlled storage element [26] is illustrated in figure 3.2.

There are two signals to control the data: capture, C, and pass, P. Each
of these signals is connected to two nodes, one input and one output, to make

handshakes between the adjacent stages in a pipeline. For example, the capture

CHAPTER 3. BASIC ELEMENTS FOR BUILDING ASYNCHRONOUS CIRCUITS 34

C A
2z
In out —®h (i Ou—>
i
4@
Cd P

Figure 3.2: Event-controlled storage element

signal is connected to both the capture requesting signal, C, and the capture-
acknowledging signal, Cd. The data transfer procedure through the event-controlled

storage element is as follows.

e Initial state:

The circuit is in transparent mode as shown in the figure 3.2.

e Capture:
The sender at the input side places data on the input, Din. The input signal,
C, receives an event from the sender which requests the latch to capture the
data input. The input switches are flipped to the lower position to form a

state-retaining loop.

e Capture done:
The input, In, is captured into the lower inverter loop when an event is
introduced at the capture signal, C. An acknowledge event, ('d, is sent back

to the sender after the capture has completed.

e Pass:

CHAPTER 3. BASIC ELEMENTS FOR BUILDING ASYNCHRONOQUS CIRCUITS 35

When the data at the output is captured by the next stage, an event is sent

to the P input. The output switch is flipped to the upper position.

e Pass done:
The storage element is in transparent mode again. An event is returned
to the control unit through the signal Pd to acknowledge that the storage

element is in transparent mode and ready to capture the next input data.

e Complementary state:

The storage element is now in the complementary state to the initial state.

In the final complementary state above, the storage element is actually in
the same state as the initial state taking into account that the high-to-low and

low-to-high transitions have the same meaning in event-controlled logic.

3.3 Structure of the micropipeline

There are area overheads for circuits used to indicate data validity, such as dual
rail encoding. A micropipeline uses the bounded-delay model for the processing
module to eliminate the overhead of the redundant circuitry for indicating data
validity. In the case of the control module, which is normally much smaller than
the processing module, a micropipeline uses the speed-independent model.
Figure 3.3 shows an example of a micropipeline without processing elements.
The thick signal lines are data paths, while dashed lines are the control signal

feedbacks for the handshaking acknowledges.

CHAPTER 3. BASIC ELEMENTS FOR BUILDING ASYNCHRONOQUS CIRCUITS 36

A0 -

Figure 3.3: The structure of the micropipeline

The thin solid lines are carrying the control signals forward for the handshak-
ing requests.
The handshaking loops (request/acknowledge pair) make the propagation of

the control and data as follows.

e Initial state:
All of the control signals are assumed to be low in the initial state in normal

operation. So, all of the storage elements are in transparent mode.

e Data input Captured:
When a request input, R0, receives an event which means that new data
are introduced at D0, then the output of the left-most C-element is set to

high. Thereby, the data, D0, is captured into the left-side storage element.

e Acknowledge 0:
At the same time, the event on the C input is transfered to the Cd output

making an acknowledge event to A0.

CHAPTER 3. BASIC ELEMENTS FOR BUILDING ASYNCHRONOUS CIRCUITS 37

e Data output passed:

After a wire delay, the Cd output is transmitted to the signal R1.

e Acknowledge 1:
Using the same procedure as in the first stage of pipeline, the second C-
element produces an event on its output and returns it to the first storage

element through the signal A7.

e Ready to capture the next data:
At this time, the first C-element is ready to accept the next request event
through R0. If the next data has already arrived on D0 and the request on

RO, the next capture operation should wait for an event on A1.

Chapter 4

New FIFO structure :

Word-Slice FIFO

In this section, a new structure and concept in designing a FIFO (First In First
Out) memory element will be introduced. The new structure, the Word-Slice
FIFO, can make FIFO design easier while maintaining low power consumption
with high performance.

Firstly, the structures and operation of asynchronous FIFOs will be examined.
Detailed problems will be discussed next. Finally, the new FIFO structure will

be introduced.

4.1 Micropipeline FIFO

Figure 4.1 shows the structure of a micropipeline without processing elements
(a micropipeline FIFO). The memory element and control element within the

38

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 39

dashed circle make a micropipeline FIFO element. The depth of the FIFO shown
in the figure is two, because it has two memory elements. We can increase the
FIFO depth by simply adding FIFO elements in series. Each memory element is
accompanied by a control element. The same memory and control element are

used for each FIFO element.

FIFO ELEMENT

Memory Element -~ Memory Element

Din /’/ DATA Dout
D Q, D Q

LT K LT

'
WE | WE
Control Element ' Control Element
Rin ' REQ Rout

i
——=Ri Ro Ri Ro

in \
- Ai Ao T Ai Ao

Figure 4.1: A micropipeline FIFO

To transfer data from the input Din to the output Dout, the input data must
pass through the left memory element: the input data are transfered from the
Din bus to the DATA bus by setting the LT (latch enable) signal to high. The
data on the DATA bus is transfered to the Dout bus through the right memory
element in the same way. With this structure all data in every memory element in
the FIFO must be toggled for a data transfer from the Din bus to the Dout bus,
when the input data are toggled. The total delay for data to pass from the input
to the output is the sum of the delays in every memory element. Consequently,
the total delay will increase proportionally to the depth of the FIFO.

The control elements are used for the handshake operation as described in

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 40

section 2.4. To transfer control from the input Rin (input request signal) to the
output Rout (output request signal), the input request signal Rin passes through
the left control element at first: an event (transition) at Rin signal causes a
transition at RE(). The event on the signal RE() is transfered to the signal Rout
through the right control element in the same way.

To transfer control from the input Aout to the output Ain, the output ac-
knowledge signal Aout passes through the right control element at first: an event
(transition) at Aout signal causes a transition at ACK. The event on the signal
ACK is transfered to the signal Ain through the left control element in the same
way.

With this structure, all request and acknowledge signals (Ri, Ro, Ai and Ao)
in every control element in the FIFO must be toggled to control the data transfer
from Din to Dout. The total data delay from a control input to a control output
is the sum of the delays in every control element. Consequently, the total delay

of the control signals will increase proportionally to the depth of the FIFO.

4.1.1 Normally open latch control

Figure 4.2 shows the STG (Signal Transition Graph) notation of a normally open
latch control circuit (BRF latch control [18]) used for a micropipeline. A+ denotes
a low-to-high transition of the signal A. A- denotes a high-to-low transition of
the signal A. An arrowed arc represents the order of the signal transition: the

transition A+ precedes the transition Ai+.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 41

O v/\
I Ri+ A+

Ai+ WE-
; |
Ri- =~ A-
Ai- —

, WE+

Figure 4.2: STG of a micropipeline FIFO control element

This control circuit uses a 4-phase handshake protocol. Ri and A: are the
input request and acknowledge control signals. Ro and Ao are the output request
and acknowledge control signals. WE is a latch control signal. Initially, the
WE signal is high to make the latch open. Therefore in a micropipeline FIFO
which uses the latch control circuit as a control element, all the memory elements
(latches) in the FIFO are open initially.

In an empty micropipeline FIFO, the first input data will pass through the
FIFO to occupy the last memory slot. Thus the data lines of all the memory
elements along the data path must be toggled when the input data are toggled.
These unnecessary transitions add an extra power consumption factor.

We can avoid the extra power consumption, caused by the spurious transitions,

by using a normally closed latch control.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 42

Ri

WE

Ai

Ro

Ao

Figure 4.3: STG of normally closed latch control

WE

Ri

Figure 4.4: Normally closed latch control circuit

4.1.2 Normally closed latch control

Figure 4.3 shows the STG of a normally closed latch control element. Figure 4.4
shows the circuit translated from the boolean equations, generated by the Petrify

tool [16]. As shown in the figures, the latch control signal, WE, is initially low so

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 43

that the latches in the memory elements are closed when they are empty.

However, the normally open latch control has a benefit in performance. Be-
cause the latches in an empty FIFO are open initially, it is not necessary to
open the latch along the data path to transfer data through the empty memory
elements.

If the WE signal is low initially (a normally closed latch control), the low-
to-high transition of the input request signal R: is followed by a low-to-high
transition of the WE signal to open the latches. This transition causes a delay
due to the capacitive load at the WE signal. Consequently, by removing the initial
transition on the latch control signal using the normally open latch control, we

can achieve higher performance.

4.2 Ring Buffer FIFO

DATAout

DATAIn

MEMORY
ELEMENT)

MEMORY
ELEMENT (2

MEMORY
ELEMENT)

D Q D Q D Q
LT LT LT
\
By g 35 8
WRITE WC wc RC READ
ADDRESS ADDRESS
COUNTER COMPARATOR COUNTER
FULL EMPTY
Figure 4.5: Ring buffer FIFO structure

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 44

Figure 4.5 shows the structure of a conventional ring buffer FIFO. Each mem-
ory element in the FIFO consists of a latch and a tri-state output buffer. The
write address counter selects one memory element at a time, to write input data
to. The read address counter selects one memory element at a time, from which
a word of data can be output. The comparator compares the counter values,
WC (Write Counter) and RC (Read Counter) to generate the FIFO FULL or

the FIFO EMPTY signals.

RC (Read counter Value)

WC (Write Counter Value)

Figure 4.6: Write and read counter in a ring buffer

Figure 4.6 illustrates the operation of a conventional ring buffer FIFO. The
write counter value, WC, and the read counter value, RC, are set to zero initially:
the FIFO is empty. Thus the EMPTY signal is high whereas the FULL signal is
low because the FIFO is not full.

After a write operation, the write counter value is incremented by one. At this

time, the comparator compares WC and RC. If those two values are different,

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 45

the comparator sets the EMPTY signal to low: the FIFO is not empty.

As data are repeatedly written to the FIFO, the W(' increases until it has the
same value as RC. If those two values are the same after the final write operation,
the FIFO is full. At this moment, the comparator sets the FULL signal to high.
After the FULL signal becomes high, the next write operation is prohibited until
the FULL signal is returned to low by a read operation.

The read address cannot increase its counter value until the EMPTY signal
becomes low, by a write operation to the FIFO. As data are repeatedly read from
the FIFO, RC increases until it has the same value as WC. If those two values are
the same after the final read operation, the FIFO is empty. At this moment, the
comparator sets the EMPTY signal to high. After the EMPTY signal becomes
high, the next read operation is prohibited until the EMPTY signal is returned
to low by a write operation.

We can notice that the FULL and the EMPTY signals have the same con-
dition (WC and RC are the same) to be set to high. To distinguish the two
states of the FIFO, with the same information from the two counters, we need
extra information: almost full and almost empty. This information can be
generated by subtracting RC' from WC, or by subtracting WC from RC.

As a result, to design a conventional FIFO, we need four pieces of information:
empty, almost-empty, almost-full and full. An empty state can arise if and only
if the previous state is almost-empty. A full state can arise if and only if the

previous state is almost-full. By keeping the previous state in the comparator

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 46

shown in the figure, it is possible for the comparator to tell the FULL from the

EMPTY state.

4.3 Current problems

In the following subsections, we will discuss several problems with the micropipeline

and ring buffer FIFO structures.

4.3.1 Micropipeline FIFO

Micropipeline [26] structures have two major problems when used as a FIFO. The
first problem is high power consumption and the second is low performance due

to the structure.

Power consumption

There are three reasons for the high power consumption in a micropipeline FIFO.

e Normally open latch control: memory element
Firstly, spurious transitions can travel through the serial data path along
multiple stages of the memory elements or latches, making a transition on
every memory element. If the FIFO controllers make the latches normally
open and all the latches open when the FIFO is empty, a transition at the
data input causes transitions on all of the memory elements along the data

path in the FIFO.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 47

e Normally closed latch control: memory element
These spurious transitions can be removed by using a normally-closed
latch control method, as described in section 4.1.1. However, even though
this method is used to build a micropipeline FIFO structure, there is still a
problem. Every memory element must be toggled to transfer data from the
input to the output of the FIFO because this FIFO uses a shift operation

to transfer data.

e Common problem: control element
The final cause of high power consumption is that all control elements are
required to make a handshake operation just for a single data transfer from
the input to the output of the FIFO. In other words, all of the request
signals, REQs, must be toggled from the input to the output to transfer a
word of data. All of the acknowledge signals, ACK's, must also be toggled
just for a single data transfer. Consequently, the intensive activity of the

control elements makes for additional high power consumption.

Performance

After we discussed the operation of the micropipeline FIFO in section 4.1, we can

see that there will be two problems which cause performance degradation.

e The first problem with performance in a micropipeline FIFO is the delay
from the data input to the output. The total data delay in the FIFO

increases as the number of storage elements along the data path increases.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 48

This incremental delay can cause significant performance degradation when

the data delay is important to a system.

e The second problem is caused by the handshake mechanism which is needed
to transfer the control signal forward and backward. The total delay from
Rin to Rout in figure 4.1 increases as the number of control elements in
the FIFO increases. Even though this delay can be reduced using normally

open latch control, it is still proportional to the depth of the FIFO.

In the next subsection, a conventional ring buffer FIFO will be compared to

the micropipeline FIFO.

4.3.2 Conventional ring buffer FIFO

Power consumption

Unlike a micropipeline FIFO, a conventional ring-buffer FIFO has only one mem-
ory element between the data input and the output in the FIFO, as in figure 4.5.

Because the capacitive loads of the DATAin and the DATAout signals increase
as the FIFO depth increases, the total energy consumption for a data transfer
increases as the depth increases. However, this incremental energy consumption

can be smaller than that of a micropipeline FIFO.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 49

Performance

The incremental capacitive load on each input and output of a memory element
in the FIFO also increases the total delay of the data as the FIFO depth increases.
However, as we will see in the experimental results in section 6, this incremental

delay can be smaller than that of a micropipeline FIFO.

Design

A conventional ring-buffer structure can be used to implement a FIFO [27] both
for lower power consumption and for higher performance. However, as Suther-
land described in [26], the ring-buffer FIFO is hard to design. This difficulty
partly brought about the concept of the micropipeline as a substitute for the
conventional FIFO.

Consequently, it is useful to develop a new structure which is not only as
simple as a micropipeline but also as fast and power-efficient as a conventional

ring-buffer.

4.4 A new structure

The new FIFO structure is shown in figure 4.7. The data path structure of the
FIFO memory is the same as a conventional ring buffer FIFO.
However, in the new design, multiple local control elements are used for every

memory element to control the data path, while a conventional ring buffer FIFO

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 50

DATAout

DATAIn

MEMORY MEMORY MEMORY
ELEMENT ELEMENT ELEMENT
WORD(1) WORD(2) WORD(N)
WPr(0) WPr(1) ; == WPr(C)
CONTROL CONTROL CONTROL
RPr(0) ELEMENT RPr(1) ELEMENT ELEMENT RrPr(c)
(6]

@ ©

RDreq

™ RDack

" Input Acknowledge Controller
~~ Output Request Controller

Figure 4.7: Word-Slice FIFO structure

uses a single central controller.

The use of local independent controllers for every memory element allows the
FIFO design to scale easily. Each memory element has the same control element
as the others, in the same manner as in a micropipeline structure.

There are two data buses, one for input data, the other for output. All of the
memory elements share these buses for data input and output signals. Using this
structure, input data only need to pass through one memory element to reach
to the output. In contrast, the input data to a micropipeline FIFO must pass
through all the memory elements, increasing the data delay.

To attain power efficiency, unlike a micropipeline structure, only one of the
memory elements and one of the control elements are activated for a data transfer
in this new structure. By enabling only one of the write address pointers, WPr(c),

in the FIFO (c represents the address of a memory element in the FIFO), only

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 51

one memory element is activated for a write operation. By enabling only one of
the read address pointer signals, RPr(c), in the FIFO, only one memory element
is activated for a read operation.

The input request signal, WTreq, is activated to initiate a 4-phase input hand-
shake cycle. The input acknowledge signal, WTack, is activated to complete a
write operation. The input acknowledge controller controls the WTack signal
by decoding the internal state of all the memory elements.

The output request signal, RDreq, is activated to initiate a 4-phase output
handshake cycle. The output acknowledge signal, RDack, is activated to complete
a read operation. The output request controller controls the RDreq signal by
decoding all the internal state of the memory elements.

In the following subsections we will discuss the design and operation of the
word-slice FIFO, starting with its interface in section 4.4.1, the word-slice FIFO
element in section 4.4.2, the write address pointer in section 4.4.3, the read address

pointer in section 4.4.4 and the handshake controller in section 4.4.5.

4.4.1 Interface to a micropipeline

In this work, the 4-phase micropipeline handshake protocol is used to synchronise
the input data. The handshake protocol chosen is the reduced-broad protocol
defined in [5]. To simplify the control and the structure of the design, the concept
of delay-matching [5] is applied to this design.

As shown in figure 4.8, decoding the input request signal, WTreq, is necessary

WORD-SLICE FIFO 92

CHAPTER 4. NEW FIFO STRUCTURE :
MEM (0) ‘~\\‘2(

(WORD-SLICE FIFO ELEMENT)

WTreq
—_ > —
.
.
—_—t—>w » ’ !
MEM (1) |
1
- i
1
1
—_—t WE 1
SERIAL 1
MEM (2 h
L :
1
1

TO
I

PARALLEL
1

CONVERSION
— P WE

MEM (N-2) [

i

- -

— P WE
MEM (N-1)

Figure 4.8: Input Request Decoding
to distribute the write control signal to each of the memory elements. A ring

counter and a set of comparators are used to build a circular write pointer to
the memory. Every cycle of the input handshake increases the value of this ring

counter and so moves the write pointer.
The common data input, INPUT DATA, will cause a high local power con-

sumption and a long delay as a result of its large capacitive load, when the FIFO
element is compared to a micropipeline FIFO stage.
The full signals from each of the FIFO elements are collected to generate a
single write acknowledge signal. To match the delay of the bundled full signals
from each FIFO element to the acknowledge signal, a bounded delay from the

input request signal, WTreq, to every full signal is required. If all of the memory

elements are in the full state after a write operation, the input acknowledge

signal cannot make a transition to low until one of the memory elements is put

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 53

((Bundled Control Signal Set)

7777777777777777777777 === f,”%:,f»ws
! 1 ~-.
[= B MEM (0 "7~~~ (WORD-SLICE FIFOELEMENT)
- Rl o
I [P
, i
[Y -
| s MEM (1) 4
<}LL§—FUII
\ 1
Input F-----twE
I
F2 ! MEM (2)
Acknowledge I : Full
Controller | 1
I
: 1
I
I i
\ i
I 1
\ '
L
WTack e e
! g ' MEM (N-2)
<—l':nz71Full
\ |
S e
g ! veM vy T
-« Ful

Figure 4.9: Generating the Input Acknowledge Signal

into the empty state by a read operation. By withholding the acknowledge signal
transition, the request signal cannot make a transition, thus preventing further

write operations.

WTreq
WTack

FO

F1

Fn-2

Fn-1

|
[il b S SR

Figure 4.10: Timing diagram for generating the Input Acknowledge Signal

Figure 4.10 presents the timing diagram for the input handshake operation.
Initially, the FIFO is empty. When a write is requested by the first rising edge

of the WTreq signal, the full signal, F0, of the first FIFO element is set to high.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO o4

The second rising edge of WTreq causes the low-to-high transition of the second
full signal F'1. When all the full signals are set to high, transition A in the figure,
the FIFO is in the full state. This full state prevents the WTack signal from
falling to zero. The 4-phase handshake protocol ensures that the next transition
of WTreq signal is disabled. Only a read operation to the FIFO can create an
empty memory space. After the read operation, one of the FIFO elements is
allowed to accept the next input data by returning the full signal, F0 in this
example, to zero: transition B in the figure. This allows the WTack signal to be
set to low. Consequently, the WTack signal can be toggled to high again to start
the next input handshake cycle.

If more than one of the memory elements are not full (the interval FULL in
the figure), there is at least one empty space to be filled with new input data. All
of the full signals from each memory element are regarded as a bundled set of
control signals. In this design, the concept of bundling plays an important role

not only for data processing elements but also for the controller design.

4.4.2 Word-slice FIFO element

Figure 4.11 shows the internal structure of the word-slice FIFO element and the
external interconnections. Each FIFO element consists of a word of memory and
an independent control element. The control element consists of a read address
pointer, a write address pointer and a handshake controller.

The data input and output, Di and Do, are shared with the other FIFO

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 59

FIFOELEMENT

Di / Di D > |
P Di 0 =
1 Memory |
Element OE X RDack
WE OF - -
WRITE \ :
1
Address \ ' Rpi
RE Pointer) |
| 1 RPro
Hendshake RC T
Controller // :
D— - - !
- 1
_- - 1
-l __-- 1
1
Output , ROreq
H——— @ —
Acknowledge
FULL ‘ F Request EMPTY
~————— Controller Controllef—————~

Figure 4.11: Word Slice FIFO Element

elements in a parallel configuration.

There are two ways of controlling the FIFO input. One way is applying the
micropipeline control technique. The other way is applying a ring buffer control
method.

There are two problems with the first technique as described in section 4.1. A
major problem with the micropipeline structure is that every FIFO control unit
is dependent on the state of the adjacent control units, this makes the average
performance slower. We will show that this unnecessary dependency can be
overcome by redesigning a parallel and independent structure.

To remove the dependency on the neighbouring control elements, a handshake
controller records the state (full or empty) of a memory element. The state (the
signal F in the figure) is provided to the external interface (the input acknowledge

controller and the output request controller). The individual states of all the

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 56

memory elements in the FIFO are then used to generate the total state of the
FIFO: full or empty. The total state is used not only to control the 4-phase
handshake protocol, but also to control the interface to the conventional ring-
buffer protocol [27].

To avoid the increased power consumption through unnecessary internal switch-
ings, the write address pointer is designed so that there are no simultaneous ac-
tivations of write control signals WE. In addition, the FIFO control element is

designed so that only one of the controllers is activated at a time.

4.4.3 Write address pointer

RSTn B

WPr[g] WPr[;] o > WF’r[Z]=

a
dffns dffnr dffnr
n » n

cen con cen
son

WTr o

Figure 4.12: A ring counter with three write address pointers

Figure 4.12 shows the ring counter structure used to activate a single write
address pointer, WPr, at a time. Initially, only WPr[1], among the outputs of
the flipflops, is set to high by setting the active low reset signal, RSTn, to low.

When we set the RSTn signal to high, only WPr[2] is set to high by the first

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO o7

falling edge of WTreq. Each flipflop in the ring counter can be used as a write

address pointer in the FIFO control element, as shown in figure 4.7.

RSTn B
250 *

WTr o>

Figure 4.13: Write address pointer

Figure 4.13 shows the circuit diagram of the write address pointer. The circuit
function described using STG (Signal Transition Graph) is shown in figure 4.14.
The STG was synthesised using the Petrify [16] tool.

In the word-slice FIFO design, the output of the counter, WFr, is used as a
write address pointer for the current memory element. The input request signal
WTr can control the write enable signal WE only when the address pointer WFr
is set to high. The input of the counter, WPr, is a write address pointer from
the previous slot of the FIFO element. The signal M, combined with the WPr
and WFr signals, is used to describe a shift operation of the flipflop to move the
address pointer along the ring counter.

In response to the input request signal WTreq, only one write address pointer,

WFr, of all the FIFO elements is activated during a cycle of an input handshake.

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 58

WTr-

/

WFr+

0

WPr- WTr+

\

WE+

N/

WTr-

/N

WFr- WE-

s

WPr+ WTr+

)

Figure 4.14: STG of the write address pointer

The WTreq signal in figure 4.7 is connected to the internal WTr signal shown
in figure 4.13. The WTr signal acts as the clock input to the flipflop. In the
figure, the output signal, WFr, is connected to the input WPr signal of the write
address pointer in the next slot of the control element. The WFr signal from the
final control element, CONTROL ELEMENT (C) in figure 4.7, is connected to
the WPr signal of the write address pointer in the first control element.

The flipflops in each write address pointer perform a shift operation clocked
by the falling edges of the WTreq signal. Only one output of the flipflops is set
to high at a time because only the WPr(1) signal is set to high in the beginning.
As a result, a global ring counter is built using the flipflop contained in each
individual write address pointer.

We also could use other kinds of counters such as a Gray Coded Counter or

a Johnson Counter, to obtain better area efficiency in an implementation. In

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 99

these cases, only one output of the counter should be changed at a time to avoid
glitches on the decoded output signals.

Alternatively, we can make an independent controller for each FIFO element
instead of a global controller for all of the memory elements. In this design, the
same memory element and control element can be used in every FIFO element

in the FIFO, and so it is easy to vary the depth of the word-slice FIFO.

4.4.4 Read address pointer

RPr
¥ (Size : 327)

RE o % RDr

RSTn Bh—
} 250
a

RC ¢

<@ RDa

RFr

Figure 4.15: Read address pointer

The read address pointer is used to select the memory element from which
the data are moved to the output data bus of the FIFO. A shift register is again
used to make a simple control structure for the read control. Figure 4.15 shows
the circuit for the read address pointer. Figure 4.16 shows the STG for the read
address pointer.

RPr, RFr and M are the signals used to describe the operation of the flipflop

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 60

Figure 4.16: STG of read address pointer

which shifts the read address pointer along the ring counter. The input of the
flipflop, RPr, is a read address pointer from the previous slot of the FIFO element.
The input signal, RF'r, is used to enable a handshake cycle for a read operation
from the memory slot which it currently points to.

RE and RC are the handshake control signals which are interfaced to the
handshake controller shown in the figure 4.11. When the memory is not empty,
the RE signal is set to high.

RDr and RDa are the handshake control signals which are interfaced to the
outputs of the FIFO. When the memory is not empty, the RDr signal is set to

high to request a read operation. After the 4-phase handshake cycle is finished,

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 61

the RDa signal returns to zero disabling the current read address pointer signal,
RFr. The next write operation to the memory is enabled by returning RC' to

zero to indicate that the memory is empty.

4.4.5 Handshake controller

The handshake controller shown in figure 4.11 has two functions. The first is to
control the local handshake between the input and the output. The second is to
record the state (full or empty) of the local memory element.

An asynchronous FIFO (in self-timed design) uses a handshake protocol with
two pairs of control signals, while a conventional FIFO uses FULL and EMPTY
signals for the interface. Because the handshake controller records the local state
of the memory element, the FULL signal can be generated simply from all the
local state (This is illustrated in figure 4.9: FULL = F0 and F1 and ... and
Fn-1).

Figure 4.17 shows the local handshake controller for the asynchronous inter-
face. The upper picture is the signal transition graph of the controller. The lower
picture is the resulting circuit synthesised using Petrify [16].

The signals, WE (input request) and WC (input acknowledge), control the
local input handshake control. RE (output request) and RC (output acknowl-
edge) are used for the local output handshake control. The signal F' represents
the state of the memory element: it is set to high when full, it is set to low when

empty. The signal FC disables the next write operation until the current read

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 62

[
N

/Y

II WE+ — = F+——>=RE+

S2 ize :
We (Size : 650)

WC ¢

RSTn o

Figure 4.17: Word-Slice FIFO Control for asynchronous interface

operation ends.

We can improve the input cycle time by generating the transition F'+ directly
after the transition WE+, as in Figure 4.17. In other words, because the total
state of the FIFO, full, is generated by combining the individual F, as described
in section 4.4.1, the early transition at the signal F' reduces the time to generate

the total state (full). As the full signal generates an acknowledge signal for the

CHAPTER 4. NEW FIFO STRUCTURE : WORD-SLICE FIFO 63

input handshake operation, an improved response time is expected.

Chapter 5

Evaluation 1 : energy

consumption

This chapter describes the method and analysis of the energy consumption in the

two different FIFO structures.

5.1 Methods of design and verification

5.1.1 Design Flow

VHDL [12] was used to specify the top-level function of the FIFO structures and
the test environments. QuickHDL [13] was then used to simulate the VHDL
description. All the test vectors for the PowerMill simulation were generated
using the VHDL simulator.

Signal Transition Graphs (STG) [7, 8] were used to specify the function of the

64

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 65

asynchronous controllers in this design, and Petrify [14, 15, 16] was used for the
verification of the controllers’ function. After the design of the control circuits,
they were converted to VHDL to verify the top-level functionality.

All the VHDL descriptions were converted into schematics. All the designs
were converted into physical layouts using Compass Chip Compiler [28,; 29] and

Composition Editor [30]. 0.35 micrometer technology was used for the layout.

5.1.2 Analysis of the energy efficiency

The primary purpose of this analysis is to show the advantage of the new FIFO
structure regarding energy efficiency. The second purpose is to derive a reference
for the optimal choice of structure for various applications.

A four stage process was employed to obtain comparative measurements.

e Stage one :
To simplify the analysis, primitive models were defined. These models allow
the characteristics of the two different FIFO structures to be represented

by simple equations.

e Stage two:
A simple simulation environment was constructed from which results could
easily be obtained. A test control circuit was designed such that it consumed

little energy and so had a negligible effect on the overall measurements.

e Stage three:

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 66

Basic measurements were performed. Energy consumptions for a data trans-
fer was measured. Data values were obtained from post-layout simulation

using PowerMill [31]. The operating voltage was set to 3.3 volts.

e Stage four:
Energy consumption characteristics were analysed using the resulting data.

Several graphs will be presented to simplify the analysis.

Finally, methods of choosing an optimal structure will be described.

5.2 Primitive models

To ease the process of analysing measurements, we need to define a simple but
effective model for a FIFO’s energy consumption. From this model, simple equa-
tions can be used to describe different FIFO structures and different memory
sizes.

In CMOS digital logic, energy consumption, E, can be calculated as:

E = V/Oogdt
o ¢

1
= 501/2 (5.1)

C is a load capacitance in CMOS logic. The capacitor is charged with) coulomb

to V volts.

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 67

: (Capacitance Model)
i
1 I
~ Cwe :
I
1
I
|
\

~ Cre

N |

~ Cri

N |

~ Cwi

\ |

Basic Element

(Energy Model)

Input Output

Basic Element

i)

Figure 5.1: Energy model

We can represent an element in a CMOS design using a simple energy con-
sumption model as shown in figure 5.1.

The capacitance model is illustrated in the upper picture.

Vw: the electrical voltage source for a write operation.

Cwe: the external equivalent capacitive load at the input side.

Cwi: the internal equivalent capacitive load at the input side.

Vr: the electrical voltage source for a read operation.

Cre: the external equivalent capacitive load at the output side.

Cri: the internal equivalent capacitive load at the output side.

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 68

Using equation (5.1), each capacitive element can be converted into an energy
dissipation element, when the voltage source, V, is constant. Therefore the ca-
pacitance model can be converted to the energy dissipation model shown in the
lower picture in figure 5.1.

Employing the above assumption allows us to remove the need to measure the

capacitance, and so simplifies the process of obtaining experimental results.

5.3 Representing different FIFO structures

To calculate the relative power consumptions of different FIFOs operating with
the same performance, the energy used to transfer a data item from the input of
a FIFO to the output must be measured for each FIFO structure.

If we assume that the power consumption of a FIFO is linear with its depth,
we can derive an equation for the power consumption of the FIFO from the
measurements at two different FIFO depths.

To enable the analysis of energy consumption for two different structures of
FIFOs, four FIFO designs were required. Two of the FIFOs have a micropipeline
structure and the other two have the word-slice structure. Two candidate memory
sizes were chosen for each structure to enable the derivations of linear equations,
by which the characteristics of the FIFOs can be expressed.

A word-slice FIFO will be denoted as WS in the equations, whereas a mi-
cropipeline FIFO will be denoted as UP.

A FIFO memory size is defined by two variable parameters: word width, NV,

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 69

and FIFO depth, C.

The characteristics of input data can have a large impact on the power con-
sumption. For this analysis, we represent the number of toggled data bits for a
data transfer by the variable n.

The following symbols are used in the analysis.

e E't: The energy for a data transfer from the input to the output of a FIFO.

e Fw : The energy for writing single data to an empty FIFO.

e Er : The energy for reading data from a FIFO with single valid data.

e E'm : The energy consumed by memory elements for a data transfer from

the input to the output of a FIFO.

e FEc: The energy consumed by control elements for a data transfer from the

input to the output of a FIFO.

These symbols can be used to represent the characteristics of FIFO structures

as follows.

e Et(n,N,C,WS) : The energy consumption of a FIFO for a data transfer,
when n input data are toggled, a memory element consists of N-bit memory,
the total number of memory elements is C' and the FIFO has Word-Slice
structure. N, n and C are positive integers. The total number of control

elements is the same as the number of memory elements.

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 70

e Ec(n,N,C,UP) : The energy consumed by control elements in a FIFO, for
a data transfer, when n input data are toggled, a memory element consists
of N-bit memory, the total number of memory elements is C' and the FIFO
has micropipeline structure. N, n and C' are positive integers. The total

number of control elements is the same as the number of memory elements.

5.4 Test environments

5.4.1 Scope of the experiments

We determined the energy needed for a data transfer from the input of a FIFO to
the output. To simplify the calculation of power consumption, the data transfer
rate was kept constant.

In the experiment, the parameters were chosen as follows for the two FIFO

structures.

e Memory size
In this experiment, the number of bits of memory in a memory element
word, N, was set to 32. Each FIFO structure was analysed using two

different FIFO depths C: 16 and 3.

e Input data
Each FIFO structure was analysed using the two extreme numbers of tog-
gled input data, n : 16 (half the input data toggled) and 0 (none of the

input data toggled).

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 71

5.4.2 Test control circuit

D —| >(O—
HTen | Q

FlipFlop

Deven

WTack O> CK

Figure 5.2: Test input pattern generator

The test circuit should not only provide enough functionality to acquire the
data values but should also be small enough to have a negligible influence on the
experimental results.

In this experiment, the flipflop based circuit shown in figure 5.2 was used to
generate toggled patterns of input data. The same test circuit was used for both
FIFO structures. When HTen signal is set to high, Deven signal is toggled by
every falling edge of WTack signal; when HTen is set to low, the Deven signal is
not toggled. An input handshake control signal, WTack, is used as a clock signal
for the flipflop. The output Deven is connected to every other data input line of
a FIFO to toggle half of the data. The other data inputs of the FIFO which are
not toggled are set to low.

Two different input data patterns can be generated by this simple pattern

generator.

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 72

e Zero data toggled input: no data are changed.
o Half the data toggled input: half of the data are changed.

The zero data toggled input can be used to measure the energy consumed by the
control elements because there are no activations in the data path composed of

memory elements.

The half data toggled can be used to measure the energy consumed by a FIFO
when we assume random input data because the probability of the data change

is 0.5 for random data.

5.5 Measurements and analysis

5.5.1 Energy consumption by read and write operations

The energy consumption measured for a write and a read operation in each struc-

Table 5.1: Experimental Results

Micropipeline FIFO (UP) Word-Slice FIFO (WS)

Test Conditions | DATA (pJ)| Test Conditions | DATA (pJ)
Ew(16,32,16,UP) | 363. Ew(16,32, 16, WS) | 100.
Er(16,32,16,UP) | 25.1 Er(16,32,16,WS) | 835
Ew(0,32,16,UP) | 154. Ew(0,32,16,WS) | 564
Er(0,32,16,UP) | 135 Er(0,32,16,W38) | 67.0
Ew(16,32,3,UP) | 70.3 Ew(16,32,3,W38) | 703
Er(16,32,3,UP) | 21.8 Er(16,32,3,WS) | 294

Ew(0,32,3,UP) | 317 Ew(0,32,3,WS) | 30.0

Er(0,32,3,UP) | 10.6 Er(0,32,3,WS) | 294

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 73

ture are presented in table 5.1. The acquired data should be viewed in a relative
sense: the measured data values varied by up to 20 percent as the physical layout

changed.

5.5.2 Total energy consumption for a single data transfer

A data transfer in a FIFO consists of a write operation to the FIFO and a read
operation from it. Therefore the total energy consumed for a data transfer in
a FIFO is the sum of energy consumed by a write and a read operation to the
FIFO:

Et=Fw + Er

Using the data in section 5.5.1, the total energy consumptions in the two

structures of FIFOs were derived. The results are presented in table 5.2.

Table 5.2: Total energy consumption

Micropipeline FIFO (UP) Word-Slice FIFO (WS)

Test Conditions | DATA (pJ) | Test Conditions | DATA (pJ)
E1(16,32, 16, UP) | 388. Et(16, 32,16, W2S) | 184,
Et(0,32,16,UP) | 168. Et(0,32,16,W2S) | 123.
E1(16,32,3,UP) | 92.1 E1(16,32,3,WS) | 99.7

Et(0,32,3,UP) | 42.3 Et(0,32,3,WS) | 59.4

If we assume that the energy consumption in a FIFO is linear to the depth C,
we can derive the equation for Et(n = 16, N = 32,C,UP) from Et(16, 32,16, U P)

and Ft(16,32,3,UP) labelled as equation 5.2. An equation for Ft(n = 16, N =

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 74

32,C,WS) can also be derived from Et(16,32,16, WS) and Et(16,32,3, WS)
labelled as equation 5.3.

Because n and N are constants,

388 — 92.1 388 —92.1
Ft(n =16, N = 32 P) = ————— 2.1 — oer I
(n 6, 32,C,UP) 6_3 C+9 3 X 16—3 (pd)
= 22.8C +23.8 (pJ) (5.2)
Et(n=16,N =32,C,WS) = 6.45C +80.4 (pJ) (5.3)

(Energy consumption)

N=32 (Number of data bitsin amemory element)
Et(pJ)

n=16 (Number of toggled data bits for a data transfer)
388

(Micropipeline)
Et(C, UP)

(Word-Slice)
Et(C, WS)

183

99.7
92.1

C (FIFO depth)
1 3347 5 10 15 16

Figure 5.3: Total energy consumption

From equations (5.2) and (5.3), we can predict that the word-slice FIFO

consumes less energy than the micropipeline FIFO if

c > 347

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 75

Figure 5.3 shows the total energy consumption characteristics of two different

FIFO structures.

5.5.3 Energy consumed by the control elements

The total energy consumed for a data transfer in a FIFO is the sum of the energies
consumed by the control element and the memory element:

Et=Em + Ec
if the energy consumed by the test circuit is negligible.

If none of the data input bits are toggled, Em(0, N, C, UP) and Em(0, N,C, W S)
can be assumed to be zero because none of the memory elements are activated.
Consequently, the energy consumed by the control elements is the same as the
total energy consumption:

Ec(0,N,C,UP) = Et(0,N,C,UP)

Ec(0,N,C,WS) = Et(0,N,C,WS)

From previous measurements in section 5.5.1, the energies consumed by the

control elements are as follows.

e Micropipeline structure
Ec(0,32,16,UP) = 167.6 pJ

Ec(0,32,3,UP) = 42.3 pJ

e Word-slice structure

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 76

Ec(0,32,16, WS) = 123.4 pJ

Ec(0,32,3,WS) = 59.4 pJ

From the data above, the energies consumed by control elements, when the

depth of the FIFOs are varying, can be expressed using the following equations.

Ec(n=0,N =32,C,UP) = 9.64C +134 (pJ) (5.4)

Ec(n=0,N =32,C,WS) = 4.92C +44.6 (pJ) (5.5)

(Energy Consumption)
Ec (pJ) N=32 (Number of bits in a memory element)

n=0 (Number of toggled data)

(Word-Slice FIFO) (Micropipeline FIFO)
Ec(C, WS) Ec(C, UP)

168

123

59.4
423

C

1 3 5 662 10 15 16 ([ERoDept)

Figure 5.4: Energy consumption by control elements

From equations (5.4) and (5.5), we can predict that the control elements
in the word-slice FIFO consume less energy than the control elements in the
micropipeline FIFO if

C > 6.62

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 7

Figure 5.4 shows the energy consumption characteristics of the control ele-

ments for the two different FIFO structures.

5.5.4 Energy consumption by the memory elements

The total energy consumed for a data transfer in a FIFO is
Et =Em + Ec
The energy consumed by memory elements is

Em = Et - Ec

All the control element perform the same operation for a data transfer regard-
less of the change of the input data, and so Ec(n, N,C,UP) and Ec(n, N,C,WS)
are constants for all n.

From equations (5.2) and (5.4),

Em(n=16,N =32,C,UP) = 13.1C+104 (pJ) (5.6)

From equations 5.3 and 5.5,

Em(n=16,N =32,C,WS) = 153C+35.7 (pJ) (5.7)

From equations (5.6) and (5.7), we can predict that memory elements in the

word-slice FIFO consume less energy than control elements in the micropipeline

FIFO if

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 78

¢ > 217
Figure 5.5 shows the energy consumption characteristics of memory elements
for the two different FIFO structures. The energy consumed by the memory
elements in a micropipeline FIFO is dominated by the FIFO depth because the

number of data bits toggled in the memory elements is proportional to the depth.

(Energy Consumption)

Em(pJ) N=32 (Number of bits in a memory element)
n=16 (Number of toggled data for a data transfer)

(Micropipeline FIFO)
Em(C, UP)

220

(Word-Slice FIFO)
Em(C, WS)

N N
] R W
03| o t----
c
L 27, : ” —
(FIFO Depth)

Figure 5.5: Energy consumption by memory elements

In contrast, the energy consumed by the memory elements in the word-slice
structure is not affected by the FIFO depth because the number of data bits
toggled in the memory elements is not changed by the depth. However, as the
depth increases, the sum of the input and the output load capacitances of the
memory elements of the word-slice FIFO also increases. The figure shows that
these incremental capacitances cause a smaller increment of energy consumption

than that caused by the changes of the data in the memory elements.

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 79

5.6 Choice of structure according to input data

characteristics

It is necessary to analyse the characteristics of the energy consumption not only
with the different depth of the memory elements but also with the different char-
acteristics of the input data.

Consider an environment where the input data to a FIFO are frequently
changed. In this case, we can set the value n to half of N to represent random

data.

(Energy Consumption)

Et (pJ) N=32 (Number of Data in a Memory Element)

n=0or 16 (Number of Toggled Data bits for a Data Transfer)

388
Micropipeline FIFO(n=16)
Word-Slice FIFO(n=16)
Word-Slice FIFO(n=0)
184
168
123
99.7
92.1
59.4
42.3
Micropipeline FIFO(n=0)
c
1 3 3.47 5 6.62 10 5 16

(FIFO Depth)

Figure 5.6: Total energy consumption and the characteristics of input data

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 80

Consider an environment where the input data to a FIFO are rarely changed.
We can set the value n to zero in this case.

From equations (5.2), (5.3), (5.4) and (5.5), we can express the characteristics
in the graph shown in figure 5.6. From the figure, it can be seen that the word-
slice FIFO has better characteristics in the region A when the input data are
random. The word-slice FIFO also has better characteristics in the region B

when there are few changes of data.

5.7 Comparing the energy consumptions for FIFO

elements in different structures

Figure 5.7 presents a comparison of the energy consumed by the memory elements

and the control elements in the two different FIFO structures. For comparison,

(Energy Consumption)
E (p)) N=32 (Number of bits in a memory element)

n=16 (Number of toggled data for a data transfer)

(Micropipeline) Ec(C, UP)
(Micropipeline) Em(C, UP)

220 memory

(Word-Slice) Ee(C, WS)
control

168
(Word-Slice) Em(C, WS)

123 control

24 memory
wl =)
ws A L

23 j

40.3 C

218 6.62
! 3 5 10 15 16 (FIFO Depth)

Figure 5.7: Energy consumed by memory and control elements

CHAPTER 5. EVALUATION 1: ENERGY CONSUMPTION 81

half of the input data are assumed to be toggled for a data transfer.

In a micropipeline structure, the memory elements consume more power than
the control elements. In a word-slice FIFO, the control elements consume more
power than the memory elements.

When each FIFO has 16 words of 32-bit memory, the memory elements in the
word-slice FIFO consume only 27-percent of the energy needed by the memory
elements in the micropipeline FIFO to transfer the data. In this case, the control
elements in the word-slice FIFO consume only 49-percent of the energy needed

by the control elements in the micropipeline FIFO to transfer the data.

Chapter 6

Evaluation 2 : performance

The performance of the two different FIFO structures are compared in this chap-
ter. Two FIFO depths are chosen as the candidates for each FIFO structure. We
then predict the performance variations according to the variance of the FIFO

depth with these two sets of measured data.

6.1 Test environments

The performance was measured using two factors:
e FIFO structure: word-slice/micropipeline structure
e FIFO depth: 3/16 words

To control the input and the output handshake operations, the same test
circuits were used for both FIFO structures. The input and output operation can

be controlled in three modes:

82

CHAPTER 6. EVALUATION 2 : PERFORMANCE 83

e Fast cycle

e Slow cycle

e Halt

Go7 o>

Figure 6.1: Input request controller

The input request control circuit shown in figure 6.1 was used for the input
control. The input handshake cycle is in fast mode if Go7 signal is set to high
and if Gol17 signal is set to low. The input handshake cycle is in slow mode if
the Go7 signal is set to low and if the Go17 signal is set to high. The input

handshake operation is disabled if both Go7 and Go17 signals are set to low.

Comel7 &>

Come7 »—

€ RDreq

Figure 6.2: Output acknowledge controller

The acknowledge control circuit shown in figure 6.2 was used for the output
control. The output handshake cycle is in fast mode if Come7 signal is set to

high and if Come17 signal is set to low. The output handshake cycle is in slow

CHAPTER 6. EVALUATION 2 : PERFORMANCE 84

mode if the Come7 signal is set to low and if the Come17 signal is set to high.
The output handshake operation is disabled if both Come7 and Comel7 signals

are set to low.

6.2 Measurements and analysis

The data propagation delay and the data transfer cycle time of the two different

FIFO structures will be analysed in this section.

Table 6.1: Performance Measurements

Micropipeline FIFO (UP) Word-Slice FIFO (WS)
Test Conditions | DATA (ns) || Test Conditions | DATA (ns)
Teye(C = 3) 3.5 Teye(C=3) | 3.7
Tcyc(C = 16) 3.5 Teye(C =16) | 4.2
Tpd(C=3) | 2.6 Tpd(C=3) |28
Tpd(C =16) | 12.4 Tpd(C =16) | 3.8

Table 6.1 presents the experimental data. Tcyc is the data transfer cycle time.
T'pd is the data propagation delay from the input of a FIFO to the output. C
denotes the FIFO depth. UP denotes the micropipeline FIFO. WS denotes the

word-slice FIFO.

6.2.1 Data propagation delay

Figure 6.3 shows the difference between the data propagation delays of the two

FIFO structures. We can draw a straight line between two different sizes of the

CHAPTER 6. EVALUATION 2 : PERFORMANCE 85

(Data Propagation Delay)
Tpd (ns)

124

N=32 (Number of data bits in a memory element)

Micropipeline FIFO

Word-Slice FIFO

C (FIFO depth)
1 3 S 5 10 15 16

Figure 6.3: Data propagation delay

FIFO to predict the performance for different FIFO sizes. This is based on the
assumption that the propagation delay is linear with the FIFO size for the same
structure because the FIFOs are scalable so the capacitive loads are proportional
to the FIFO sizes. Equations for the propagation delays can be derived from the

measured data in 6.1 as follows.

Tpd(C,UP) = 0.75C 4+ 0.34 (ns) (6.1)

Tpd(C,WS) = 0.077C +2.6 (ns) (6.2)

From these equations, we can see that the incremental propagation delay (0.75 ns)
of the micropipeline FIFO structure is about nine times lager than the incremental
delay (0.077 ns) of the word-slice FIFO structure.

From figure 6.3, we can expect a word-slice FIFO to have a better performance

CHAPTER 6. EVALUATION 2 : PERFORMANCE 86

for data propagation when the depth is greater than three. When the FIFO depth
is 16, the word-slice FIFO is three times faster than the micropipeline FIFO in
the propagation delay.

The serial data path of the micropipeline structure slows down the data prop-
agation significantly while the parallel data path of the word-slice structure leads

to a better performance.

6.2.2 Cycle time

(Cycle Time) N
N=32 (Number of databitsin amemory element)
Teye (ns)
Word-Slice FIFO
Micropipeline FIFO

ol U N

374 - --- N

35/

C (FIFO depth)
1 3 5 10 15 16

Figure 6.4: Data transfer cycle time

Figure 6.4 shows the difference between the data transfer cycle times of the
two FIFO structures. We can draw a straight line between the two different sizes
of the FIFO to predict the performance for different FIFO sizes. This is based
on the assumption that the cycle time is linear to the FIFO size in the same

structure.

CHAPTER 6. EVALUATION 2 : PERFORMANCE 87

From the figure, we can see that the word-slice FIFO is slightly inferior to
the micropipeline structure in data transfer cycle time. When the FIFO depth is
16, the micropipeline FIFO is 1.14 times faster than the word-slice FIFO in cycle
time while the word-slice FIFO is three times faster than the micropipeline FIFO
in propagation delay.

The incremental capacitive load at the common data bus in the word-slice

FIFO causes the incremental data transfer cycle time characteristic.

Chapter 7

Conclusion

A new asynchronous FIFO structure has been developed. Three problems with
current FIFO designs have been addressed: power consumption, performance and
simple structure for VLSI design.

To simplify the VLSI design process, the new FIFO structure is scalable in
its depth: it uses a word-slice FIFO structure, and it overcomes the difficulty
of FIFO design which was described by Sutherland [26].

Low power consumption was achieved using two methods. The first method
is to control the memory so that only the memory elements selected by the read
or write pointers are activated. The second method is to minimise the activity of
the control elements.

High performance was achieved by arranging all memory words in the FIFO in
parallel. This structure requires the input data to pass through only one memory

element to reach the output.

88

CHAPTER 7. CONCLUSION 89

7.1 Comparison

The power consumed by the word-slice FIFO structures tested in this thesis was
less than that of conventional micropipeline FIFO structures. However, the best
relative results were obtained if the input data is random. In this case, the power
consumed by the word-slice FIFO is only 48 percent of that of micropipeline
FIFO. Even when the data are correlated, the power consumed by the word-slice
FIFO is only 73 percent of that of the micropipeline FIFO.

From these observations, we can observe that the power consumed by the
control element in a word-slice FIFO is smaller than that of a micropipeline
FIFO. Consequently, we need to minimise the activity not only of the memory
elements but also of the control elements in micropipelines.

The conventional micropipeline FIFO has a slightly better data transfer cycle
time than the word-slice FIFO. The micropipeline FIFO is 1.14 times faster than
that of the word-slice FIFO when the FIFO depth is 16.

However, the word-slice FIFO has a significantly improved data propagation
delay compared to the micropipeline FIFO. The word-slice FIFO is 3.26 times
faster than the micropipeline FIFO when the FIFO depth is 16.

In circumstances where a slight difference in data transfer rate causes critical
disadvantages, a micropipeline FIFO is recommended. A micropipeline FIFO is
also better when the buffer depth is less than three. In all other cases, a word-

slice FIFO has benefits in power consumption and performance when the FIFO

CHAPTER 7. CONCLUSION 90

depth is greater than three.

We can expect that a conventional ring-buffer FIFO has similar performance
and power consumption characteristics to the word-slice FIFO because of the
similarity of the data path. However, due to the difference in control structures
and complexity, the word-slice FIFO has clear advantages. The simple structure
of the word-slice FIFO eases the VLSI design process.

The power consumed by the control elements in a micropipeline has been
shown to be significant when it is compared to the power consumed by the data
path without processing elements. When the data are correlated, we can expect
that most of the power consumption is caused by the control elements in an

asynchronous system.

7.2 Future Work

Further work is needed to take maximum advantage of the word-slice FIFO struc-
ture.

The first step is to build an automatic process from a FIFO specification to a
physical layout. This automatic process can be used to build a data-path library
so that a designer can use a FIFO by simply specifying the width and the depth.

The second step is to optimise the handshake controller for improved energy

efficiency. There can be two ways that this can be achieved. The one is to

CHAPTER 7. CONCLUSION 91

minimise the activity of the CMOS gates in the handshake controller, the other

is to optimise the transistor size.

Bibliography

1]

S.B. Furber, J.D. Garside, S. Temple, P. Day, N.C. Paver, J.V. Woods,
"AMULET1 : An Asynchronous ARM Microprocessor”, IEEE Transactions

on Computers, vol. 46, No. 4, pp. 385-398, April 1997.

Amulet Group, ” Amulet2e” data sheet from the University of Manchester,

1996

S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day, N.C. Paver,
"AMULET2e : An Asynchronous Embeded Controller”, Proceedings Async

‘97 pp- 290-299 TEEE Computer Society Press, April 1997.

S.B. Furber, ” Asynchronous Logic”, IberChip, Sao Paulo, Brazil, 12 Feb

1996, http://www.cs.man.ac.uk/amulet/publications/papers.html.

S.B. Furber, ” A small Compendium of 4-Phase Micropipeline Latch Control

Circuits”, University of Manchester, Nov 1997.

A.J. Martin, ”The limitations to delay-insensitivity in asynchronous cir-
cuits”, Sixth MIT Conference on Advanced Research in VLSI, Cambridge,
Massachusetts, 1990

92

BIBLIOGRAPHY 93

[7] Chu T.A.,”On the models for designing VLSI asynchronous digital systems”,
North-Holland, INTEGRATION, THE VLSI JOURNAL VOL. 4, 1986, PP.

99-113

[8] Chu T.A., Leung C.K.C. and Wanuga T.S., ” A design methodology for con-

current VLSI systems”, Proceedings of ICCD, 1985.

[9] C.J. Lin, S.M. Reddy, ”On delay fault testing in logic circuits”, IEEE Trans-

actions on Computer Aided Design, vol. 6, September 1987, pp.694-703.

[10] D.A. Huffman, " The synthesis of sequential switching circuits”, J. Franklin

Institute, vol. 257, March/April 1954, pp.161-190.

[11] D.E. Muller, W.C. Bartky, ” A theory of asynchronous circuits”, Annals of

Computing Laboratory of Harvard University, 1959, pp.204-243.

[12] IEEE Computer Society Publication Department, ”VHDL Language Refer-

ence Manual, IEEE-STD-1076”, 1987.

[13] Mentor Graphics ”QuickHDL User’s and Reference Manual”, Software Ver-

sion 8.5.4.

[14] J.L. Perterson "PETRI NET THEORY AND THE MODELING OF SYS-

TEMS”, 1981.

[15] J. Cortadella, M. Kishinervsky, A. Kondratyev, L. Lavagno, E. Pastor and
A. Yakovlev, ”Synthesizing Petrinets from State-Based Models”, June 12,

1997.

BIBLIOGRAPHY 94

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

J. Cortadella, M. Kishinervsky, A. Kondratyev, L. Lavagno, E. Pastor and

A. Yakovlev, ”Petrify User’s manual”, June 12, 1997.

Liu J., ”The design of asynchronous multiplier”, MSc thesis, University of

Manchester, June 1995 pp.27-35.

Liu J., ”The design of asynchronous multiplier”, PhD thesis, University of

Manchester, June 1997, pp.97-120.

M.B.Josephs, ”Speed-Independent Design of a Toggle”, EXACT Workshop
on Asynchronous Controllers and Interfacing Leuven, Belgium, September,

1992.

Mark R.G. and Lenneth S., ”Bubbles Can Make Self-Timed Pipelines Fast”,

Journal of VLSI Signal Processing, 2, 1990, pp. 139-148.

Michael K., Luciano L. and Peter V., "The Systematic Design of Asyn-

chronous Circuits”, ICCAD ’95 tutorial, pp. 22-25, pp.75-91.

Molnar C.E. et al, ”Synthesis of delay-insensitive modules”, Proceedings
of the 1985 Chapel Hill Conference on VLSI, (Computer Science Press,

Rockville, MD, 1985).

N. C. Paver, "The Design and Implementation of an Asynchronous Micro-

processor”, PhD thesis, University of Manchester, 1994, pp. 48-53.

S. B. Furber, P. Day, ”"Four-Phase Micropipeline Latch Control Circuits”,

IEEE Transaction on VLSI Systems, vol. 4, June 1996, pp. 247-249.

BIBLIOGRAPHY 95

[25] Scott Hauck, ” Asynchronous Design Methodologies : An Overview”, Pro-

ceedings of IEEE, vol. 83, No. 1, pp. 69-93, January 1995.

[26] Sutherland I.E., ”MICRO-PIPELINES”, The 1988 Turing Award Lecture,

Communications of the ACM, Vol. 32, June 1988, pp. 720-738.

[27] TI, " The TTL Data Book ”, Vol. 2, 1987, pp. 2-225 - 2-264.

[28] COMPASS, ”COMPASS Design Automation: LOGIC ASSISTANT”, V8R3,

1991.

[29] COMPASS, ”COMPASS Design Automation: CHIP COMPILER”, V8R3,

1991.

[30] COMPASS, "COMPASS Design Automation: COMPOSITION EDITOR”,

V8R3, 1991.

[31] EPIC, "EPIC PowerMill User Manual”, Release 3.4, 1996.

Appendix A

Word-slice FIFO

A.1 VHDL

A.2 Test environment

A.3 Top level FIFO structure
A.4 FIFO element

A.5 Physical layout

96

97

WORD-SLICE FIFO

APPENDIX A.

T T PUANOHId SM

ulSy <=ulsy
‘(03 <= ALdW3
04 <=11n4
‘(O <=4y
‘(O)dd <=y
‘(O)edt <=edy
‘(0)idd <= 0y
‘(0)edm <=r4Mm
‘(0)HM <= HM
‘(O)edM <=BdM
‘(0 <= Idm
Weay <=eqy
‘(0ay <=1ay
‘(O)eLM <=BLIM
BoILM <= 1Lm
‘00 <=0a
‘Id<=1
) dew pod
(HLAIM <= HLAIM) dew o1eusb
0 LNIWATI SM:0 SM

‘ssa001d pue
‘doo| pus
Jipus
(Nd=>0q
Wy T, = (1)edd §1

doo| (T - H1d3@) 010 u! | Jo}
uifiaq (ay) sse00id 1 TISLNO
uibeq

IdALAVHEY QHOM : O fubs
‘3dAL”QHOM Jo (0 owmop (T - H1d3Q)) AeieSI 3IAL AVHHY QHOMadky
‘(0 owmop (T - HLQIM)) J0308A 9B PIS S| I AL HOM 2dAigns
‘(0 owmop (T - H1d3@)) Jooen-oibo| pis :
IV U3 '3 ' pubs
(0 0umop (T - H143Q)) Jowen 21B0] pis :
34 ey 'HY Bdd Iy
M "M BdM IdM
'®QY QY BLM ILM [eubs
2160j) : IQY! BLM! ILMA EUbS
10414 SM J0 T 301TS QYoM aIniseioe

‘0414 SMpw
(
a1Boj ps Ul 1 uLSy

‘010 P N0 : AL
ifo[s N0 1IN

21Bojpis U1+ oeay
“2ifo| ps o : baiay

‘10| pIs N0 : YR LM
IndINQ "V SnouoyouAsY --
“aifo pis ut : beam

ndui “bey snouoiyoufsy --

(0 oumop (T - HLAIM)) JoreA~d 1o pss Ino : oQ
ndinoereq -
(0 oumop (T - HLAIM)) Joyen dibo[s Ul 1a
ndujeeq -

) vod
‘(e : H1d3a
W 3pAd YR LM OV BoILM -~ B} : oezbel L

* el HLAIM) d1eueh

10414 SM A

{|lpafexoed 014 SMHomasn
‘|ep9TT i60] pis'333 88N
‘3331 Aeaqy)

3INBRYIIY 1IS-PIOM --

866T/NNC/ ‘1A UeyBunoAy --
PUNOLI4 SM
044 BuBdeeIu1 SNOUDIYDUAS 0} SnouoIyaUASY --

¢ abed T PYNO4I4 SM 0€:0T 866T T dos

T abed T PYAOId SM 0€:0T 866T LT dos

98

WORD-SLICE FIFO

APPENDIX A.

T 2 PUNOdI4 SM
‘onay =>)z *NODO3Y
(Oetm=> 01w BeJaued pue
((u1sy <=u1sy
‘()3 <= ALdNT
(T - Hld3a@)u3 => 1ay! (4 <=711n4
(T - HLd3Q)IV =>BLM! (el <=e4y
(4 <= Y
BIMI=> dRLM ‘(e <=edy
--< [BO07] > ‘(1Y <= gy
‘(M <=edm
(03=>0m (HM <= HM
(T - H1d3Q)E => ALdINT ‘(edM <=edM
(WM <= M
(04 =>0) Weay <=eqy
(T -HId3@)H4 => 114 ‘(1)iay <=Jad
‘(DeLm <=BLM
gyl => baigy ‘BoILM <= I1M
BIMIIO ILMA => YRLM -~ ‘(Nd<=0a
<1809 >~ a<=1a
) dew yod
'ss004d puo (HLAIM <= HLAIM) dew o1ieueb
dooj pus INIWITT SM:SM
Jrpue a1RUR (Z - H1d3Q) 01T Ul | 1o}
(T + edy => (e TAVEEY SM
(T + DedM => (edm {(u1SH <= uISy
sp (T-H1d30)3 <= ALdNT
{(O)edt => (164 ‘(T-H1d3aH <= 11n4
‘(O)dMm => (1le4m (T - H1d3ak4y <=e4y
Wy (T - Hid3Q) = 1) 41 ‘(T - H1d3Q)13Y <= 13y
dooj (1 - H143) 03O U | 10} (T - H1d3akdy <=edd
uifeq (ULSY edy edm) ss200.d ‘(T - H1d3Q)idY <= idd
NOOYOVY (T - HLd3QR4M <='dm
(T - HLd3Q@)HM <= HM
‘ssao00.d pus (T - HLd3QRdM <=8edM
doo| pue (T - HLd3Q)dM <= JdM
Jipue Weay <=eqy
(- DY => (1 ‘(T - H1d3Q)Iay <= 1aY
(T DHEm=> ()dm (T - HLd3QRLM <=BLM
sp ‘boILM <= I1M
H(T - HLd3a)HE => (1idd ‘(T-Hld3a)d<=0a
(T - H1d3@)HM => (idM <=1
Wy 0=14) dew piod
doo| (T - H1d3@) 010 Ul | Jo} (HLQIM <= HLQIM) dew d1Bueb
uifeq (14 ‘14m) sss00.d 3 ININITI SM: T SM
Z abeq Z PUNOdId SM 9£:0T 8661 2T das 1 abed Z PUAOLId SM 90T 8661 2T das

99

APPENDIX A. WORD-SLICE FIFO

€ PUNOdId SM

"T3017S QHOM pw

‘ss300.d pus
41 pue
Soegbel L ele beil M => 11Ma
*xp
SuT BIRbRILM => 11MA
WU T, =be1Lm 41
ajokd >yoe dn paads -~ uiBeq (be1 L) s3001d 1 AW HOYM

-< [B307] >--
3 pue (1-)3 => ()3
4 pue (T-1)i4 => (1)
..................... < Yg0719 >~

91Ul (T - H1d3Q) 01T Ul | 1o}
(B34

T abed € PUAOId SM Z€:0T 8667 LT dos

100

APPENDIX A. WORD-SLICE FIFO

| o baugy L1awo) < ﬁ
%o0ay JENIGOR | <«
“N
_ B 550 o t—— K
N3O MOV oo e o
baiim 109 f—— K
11N 4 e ol)
N3O 03d
UALdN T e
ulsy 4
UALdN3 4
AOD (0 r+¢ P oay oIm uisy -
b , i
. e —— | 100 (0115710 M ¢ [0:1£10 u319901 " 41vH ——— K
. |
®5m<\OOLDHL\m [0-1end [045IGHN N 1 ¢——
IN3O dlL

/l2Wo]
/2Wo)

L1909
LO9

ulsd

ULH
Efl

Figure A.1: Test environment of the word-slice FIFO

APPENDIX A. WORD-SLICE FIFO 101

Dol31:0]
BEMPTYn

e EiEwo e
u15

U4

Yoy

Yoy

T
DiL31:01

Figure A.2: The word-slice FIFO

102

APPENDIX A. WORD-SLICE FIFO

B ULSH

ﬁ\\&&gui

& [0-1¢]1d

UALdNA 14
i i
M
J Y rag v A = 4
u1sy uIsy uisy
IES 14
OQK&|_|V e 0 zNn oM
A0 ¢——— < xmm EN! EN B EN EN i —K M
70 T SM on
oy DY g OM “am «
0¢9
. 007 /TS 7|g i
z30 zeam (¢
30 M
LN
[0:1¢100 - [o1e1e0 (01710 e -
[0:1¢100 [(0:1¢1d
%93
085/

Figure A.3: The word-slice FIFO element

103

APPENDIX A. WORD-SLICE FIFO

slice FIFO

Figure A.4: Physical layout of the word

Appendix B

Micropipeline FIFO

B.1 Test environment
B.2 Top level FIFO structure

B.3 Physical layout

104

105

APPENDIX B. MICROPIPELINE FIFO

| o baugy L1awo) < ﬁ Nﬁ®ﬁ\COQ
3000y JENLER | <K [/ 2WO0)
&l > /109
N3O MOV so oo 4
v\A F>> basim moo‘|‘m NOO
7N ulsy (—
N3O D3
ulsy (o <« UlSY
NOD (0 e P o0y oLM ulsy
U 1 bl >
. 210 ree ay i U®L%>>Nm*)
[01T100 rigu— O 100 on (015210 “ﬁOerQ ¢ OA 101510 1319901 " 9vH ———K U | H
- -) H
91449 3dId 1 s N S E—
IN3O dlL

Figure B.1: Test environment of the micropipeline FIFO

106

MICROPIPELINE FIFO

APPENDIX B.

€ U1SY

y

v

v

:

,

;

v

v

:

:

;

v

v

,

y

y

448 ERIE] 444 444 448 448 444 444 444 448 ERIE] 444 444 444 448 ERIE]
ody o oxav v [oMoy bov | owav piov [oxay mov|esav v | exay biov [edav mov | ooy biov [eMay mav|oxav v | owav biov|edav miov [owav biov | exav v [oxav v | exov by
04 as 9zin gzin Lzin cemn LN ozin BLLN gzin oLn zln Ln LN 8oLn gon r0oLN zn
e ogin 62N zen czin zzin Lzin rzin SN PN cln alLn 60LN Loin soLn N
[o1g3ed - b (01c10 (O1S10 | (OUSID [04€10 | (ONEID [OLEIO | [OUEID [OAEIO | [OUEI0 (O4EIN | COAEID [OMEI] | [OMEID [OLEI | OUEID [OLEI0 | [OUEID [OAEI0 | CDIEI (O4EIN | COAEID [OMEI] | [OMEID [O4E1A | (OACID [OLEI0 | [OAEID [OAS10 | DLEI (O4E10 | COAEID [ogIam
EI0QUHD 1V [UHO IV [UHD LY T [UHO LY T [UHD LV [UHD LIV JUHD LV [UHO LY T [UHD LV T JUHD LIV JUHO LV [UHD LV [UHD LV T JUHO LV T [UHD 1V [UHD LV

p—IOLM

L

g [0°LC 10

FIFO

ine

1

The micropipe

Figure B.2

APPENDIX B. MICROPIPELINE FIFO 107

Figure B.3: Physical layout of the micropipeline FIFO

Appendix C

Evaluation

108

APPENDIX C. EVALUATION 109

C.1 Measurement of current for a data transfer

The upper plot of i(GND) is the current wave of micropipeline FIFO with 16
words of 32-bit memory. The lower plot of i(GND) is the current wave of corre-
sponding word-slice FIFO. In the micropipeline FIFO, we can see the consecutive
peaks after a write operation. It shows that a series of memory and control ele-
ments are activated for a write operation. In contrast, there are only three peaks
in word-slice FIFO: a middle peak is for the change of stored data, the other

peaks are for driving the control signals.

Figure C.1: Measuring currents for a data transfer

550, | ‘ ‘ . [600, | ‘ ‘ . 650,
GROUP A
wtreq (0}
wt ack (0}
rdreq 1 [l
r dack (0}

i (GND) 13. 3mA

GROUP B

i (GN\D) 8. 46mMA

[0, : : : 500 : : [100D : : A

