
DEEP SPIKING NEURAL NETWORKS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2018

Qian Liu

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright Statement 12

Acknowledgements 13

List of Acronyms 14

List of Symbols 17

1 Introduction 21

1.1 Motivation and Aims . 24

1.2 Thesis Statement and Hypotheses . 25

1.3 Contributions . 26

1.4 Papers and Workshops . 28

1.4.1 Papers . 28

1.4.2 Workshops . 30

1.5 Thesis Structure . 31

1.6 Summary . 31

2 Spiking Neural Networks (SNNs) 33

2.1 Biological Neural Components . 33

2.1.1 Neuron . 34

2.1.2 Neuronal Signals . 35

2.1.3 Signal Transmission . 36

2

2.2 Modelling Spiking Neurons . 37

2.2.1 Neural Dynamics . 37

2.2.2 Neuron Models . 39

2.2.3 Synapse Model . 43

2.2.4 Synaptic Plasticity . 44

2.3 Simulating Networks of Spiking Neurons 45

2.3.1 Software Simulators . 46

2.3.2 Neuromorphic Hardware . 47

2.3.3 Neuromorphic Sensory and Processing Systems 48

2.4 Summary . 50

3 Deep Learning 51

3.1 Brief Overview . 51

3.1.1 Classical Models . 52

3.1.2 Combined Approaches . 53

3.2 Convolutional Networks . 54

3.2.1 Network Architecture . 54

3.2.2 Backpropagation . 56

3.2.3 Activation Function and Vanishing Gradient 58

3.3 Autoencoders (AEs) . 59

3.3.1 Structure . 59

3.3.2 Training . 60

3.4 Restricted Boltzmann Machines (RBMs) 61

3.4.1 Energy-based Model . 61

3.4.2 Objective Function . 62

3.4.3 Contrastive Divergence . 63

3.5 Summary . 64

4 Off-line SNN Training 65

4.1 Introduction . 65

4.2 Related Work . 66

4.3 Siegert: Modelling the Response Function 69

4.3.1 Biological Background . 69

3

4.3.2 Mismatch of The Siegert Function to Practice 71

4.3.3 Noisy Softplus (NSP) . 78

4.4 Generalised Off-line SNN Training . 80

4.4.1 Mapping NSP to Concrete Physical Units 81

4.4.2 Parametric Activation Functions (PAFs) 81

4.4.3 Training Method . 85

4.4.4 Fine Tuning . 86

4.5 Results . 86

4.5.1 Experiment Description . 87

4.5.2 Single Neuronal Activity . 87

4.5.3 Learning Performance . 90

4.5.4 Recognition Performance . 91

4.5.5 Power Consumption . 95

4.6 Summary . 95

5 On-line SNN Training with SRM 97

5.1 Introduction . 97

5.2 Related Work . 99

5.3 Spike-based Rate Multiplication (SRM) 101

5.4 Training Deep SNNs . 105

5.4.1 Experimental Setup . 105

5.4.2 AEs . 108

5.4.3 Noisy RBMs . 111

5.4.4 Spiking AEs . 114

5.4.5 Spiking RBMs . 117

5.5 Problem of Spike Correlations . 119

5.5.1 Solution 1 (S1): Longer STDP Window 120

5.5.2 Solution 2 (S2): Noisy Threshold 120

5.5.3 Solution 3 (S3): Teaching Signal 123

5.5.4 Combined Solutions (S4) . 124

5.6 Case Study . 124

5.6.1 Experimental Setup . 124

4

5.6.2 Trained Weights . 126

5.6.3 Classification Accuracy . 129

5.6.4 Reconstruction . 134

5.7 Summary . 137

6 Benchmarking Neuromorphic Vision 139

6.1 Introduction . 139

6.2 Related Work . 140

6.3 NE Dataset . 144

6.3.1 Guiding Principles . 144

6.3.2 The Dataset: NE15-MNIST . 145

6.3.3 Data Description . 146

6.4 Performance Evaluation . 148

6.4.1 Model-level Evaluation . 149

6.4.2 Hardware-level Evaluation . 154

6.5 Results . 155

6.5.1 Training . 156

6.5.2 Testing . 157

6.5.3 Evaluation . 158

6.6 Summary . 163

7 Conclusion and Future Work 165

7.1 Confirming Research Hypotheses . 165

7.2 Future Work . 170

7.2.1 Off-line SNN Training . 170

7.2.2 On-line Biologically-plausible Learning 172

7.2.3 Evaluation on Neuromorphic Vision 173

7.3 Closing Remarks . 175

A Detailed Derivation Process of Equations 177

B Detailed Experimental Results 179

Word count 41086

5

List of Tables

4.1 LIF parameter settings. 72

4.2 SNN training methods comparison. 93

5.1 Parameter setting of SRM. 114

5.2 Mean synaptic event rate. 134

6.1 SNN descriptions at the model level . 150

6.2 Model-level comparison . 152

6.3 Hardware-level comparison . 153

6.4 LIF parameter setting using PyNN. 156

6.5 Comparisons of NEST and SpiNNaker performance. 162

6

List of Figures

1.1 The outline of the thesis. 32

2.1 Two neurons connected by synapses [Reece et al., 2011; Hodgkin and

Huxley, 1939]. 34

2.2 Example of rate coding [Hubel and Wiesel, 1962]. 36

2.3 Example of temporal coding [Liu et al., 2013]. 37

2.4 Post-synaptic potential. 38

2.5 Summation of post-synaptic potentials [Reece et al., 2011]. 38

2.6 Comparisons of an artificial and a spiking neuron. 40

2.7 The cell membrane acts like a RC circuit [Gerstner et al., 2014]. 40

2.8 Spike-Timing-Dependent Plasticity (STDP) [Bi and Poo, 2001]. 44

2.9 Neuromorphic hardware systems using SpiNNaker. 49

3.1 Typical ConvNet architecture. 54

3.2 An artificial neuron. 56

3.3 Activation functions . 58

3.4 A typical Autoencoder structure. 60

3.5 A typical RBM structure. 61

3.6 Gibbs sampling on a RBM. 64

4.1 A spiking neuron. 67

4.2 Response function of the LIF neuron. 71

4.3 Recorded response firing rate driven by NoisyCurrentSource. 73

4.4 NoisyCurrentSource samples from a Gaussian distribution. 74

4.5 Recorded response firing rate driven by a noisy synaptic current. 76

4.6 Noisy currents generated by Poisson spike trains. 77

7

4.7 NSP models the LIF response function. 79

4.8 NSP in 3D. 80

4.9 NSP fits to the response firing rates. 82

4.10 A conventional artificial neuron. 83

4.11 An artificial spiking neuron modelled by NSP. 84

4.12 An artificial spiking neuron modelled by PAF-NSP. 84

4.13 Images presented in spike trains convolve with a weight kernel. 88

4.14 The recorded firing rate of the convolution outcomes. 89

4.15 Comparisons of loss during training. 90

4.16 Classification accuracy. 91

4.17 The classification accuracy after fine tuning. 94

5.1 ReSuMe algorithm. 101

5.2 The architecture of an ADALINE network. 101

5.3 Rectangular STDP curve. 103

5.4 Reconstruction using AEs and RBMs. 106

5.5 Noisy input gathered from Poisson spike trains. 107

5.6 AE training of the reconstruction tests. 109

5.7 AE-NI training of the reconstruction tests. 110

5.8 nRBM training of the reconstruction tests. 112

5.9 nRBM-NI training of the reconstruction tests. 113

5.10 Network architecture and the learning algorithm of a spiking AE. . . . 115

5.11 SAE training of the reconstruction tests. 116

5.12 Network architecture and the learning algorithm of a spiking RBM. . . 117

5.13 SRBM training of the reconstruction tests. 118

5.14 Comparisons of solutions in training SAE. 121

5.15 Comparisons of solutions in training SRBM. 122

5.16 AE and RBM structure for MNIST tasks. 125

5.17 Comparisons of trained weights using (spiking) AEs. 127

5.18 Comparisons of trained weights using (spiking) RBMs. 128

5.19 Comparisons of classification accuracy between conventional and spik-

ing models. 130

5.20 Classification accuracy per time step. 132

8

5.21 Classification accuracy with various input firing rates. 133

5.22 Comparisons of loss between conventional and spiking models. 135

5.23 Reconstructions of the same digit ’2’. 136

6.1 Snapshots of the jAER software. 146

6.2 DVS sensor with flashing input. 149

6.3 The proposed SNN model. 157

6.4 Comparisons on different test time and input firing rate. 159

6.5 Energy usages of different network size. 163

B.1 SAE-S1 training of the reconstruction tests. 180

B.2 SRBM-S1 training of the reconstruction tests. 181

B.3 SAE-S2 training of the reconstruction tests. 182

B.4 SRBM-S2 training of the reconstruction tests. 183

B.5 SAE-S3 training of the reconstruction tests. 184

B.6 SRBM-S3 training of the reconstruction tests. 185

B.7 SAE-S4 training of the reconstruction tests. 186

B.8 SRBM-S4 training of the reconstruction tests. 187

B.9 Comparisons of solutions in training SAE using LIF. 188

B.10 Comparisons of solutions in training SRBM using LIF. 189

B.11 Trained weights of AE, same as Figure 5.17(a). 190

B.12 Trained weights of AE-NI, same as Figure 5.17(b). 191

B.13 Trained weights of SAE, same as Figure 5.17(c). 192

B.14 Trained weights of SAE-S2, same as Figure 5.17(d). 193

B.15 Trained weights of SAE-S3, same as Figure 5.17(e). 194

B.16 Trained weights of SAE-S4, same as Figure 5.17(f). 195

B.17 Trained weights of nRBM, same as Figure 5.18(a). 196

B.18 Trained weights of nRBM-NI, same as Figure 5.18(b). 197

B.19 Trained weights of SRBM, same as Figure 5.18(c). 198

B.20 Trained weights of SRBM-S2, same as Figure 5.18(d). 199

B.21 Trained weights of SRBM-S3, same as Figure 5.18(e). 200

B.22 Trained weights of SRBM-S4, same as Figure 5.18(f). 201

9

The University of Manchester

Qian Liu
Doctor of Philosophy
Deep Spiking Neural Networks
February 8, 2018

Neuromorphic Engineering (NE) has led to the development of biologically-inspired
computer architectures whose long-term goal is to approach the performance of the
human brain in terms of energy efficiency and cognitive capabilities. Although there
are a number of neuromorphic platforms available for large-scale Spiking Neural Net-
work (SNN) simulations, the problem of programming these brain-like machines to be
competent in cognitive applications still remains unsolved. On the other hand, Deep
Learning has emerged in Artificial Neural Network (ANN) research to dominate state-
of-the-art solutions for cognitive tasks. Thus the main research problem emerges of
understanding how to operate and train biologically-plausible SNNs to close the gap
in cognitive capabilities between SNNs and ANNs.

SNNs can be trained by first training an equivalent ANN and then transferring the
tuned weights to the SNN. This method is called ‘off-line’ training, since it does not
take place on an SNN directly, but rather on an ANN instead. However, previous work
on such off-line training methods has struggled in terms of poor modelling accuracy
of the spiking neurons and high computational complexity. In this thesis we propose
a simple and novel activation function, Noisy Softplus (NSP), to closely model the
response firing activity of biologically-plausible spiking neurons, and introduce a gen-
eralised off-line training method using the Parametric Activation Function (PAF) to
map the abstract numerical values of the ANN to concrete physical units, such as cur-
rent and firing rate in the SNN. Based on this generalised training method and its fine
tuning, we achieve the state-of-the-art accuracy on the MNIST classification task using
spiking neurons, 99.07%, on a deep spiking convolutional neural network (ConvNet).

We then take a step forward to ‘on-line’ training methods, where Deep Learning
modules are trained purely on SNNs in an event-driven manner. Existing work has
failed to provide SNNs with recognition accuracy equivalent to ANNs due to the lack
of mathematical analysis. Thus we propose a formalised Spike-based Rate Multipli-
cation (SRM) method which transforms the product of firing rates to the number
of coincident spikes of a pair of rate-coded spike trains. Moreover, these coincident
spikes can be captured by the Spike-Time-Dependent Plasticity (STDP) rule to update
the weights between the neurons in an on-line, event-based, and biologically-plausible
manner. Furthermore, we put forward solutions to reduce correlations between spike
trains; thereby addressing the result of performance drop in on-line SNN training.
The promising results of spiking Autoencoders (AEs) and Restricted Boltzmann Ma-
chines (SRBMs) exhibit equivalent, sometimes even superior, classification and recon-
struction capabilities compared to their non-spiking counterparts.

To provide meaningful comparisons between these proposed SNN models and other
existing methods within this rapidly advancing field of NE, we propose a large dataset
of spike-based visual stimuli and a corresponding evaluation methodology to estimate
the overall performance of SNN models and their hardware implementations.

10

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

12

Acknowledgements

First and foremost I would like to express my deepest appreciation to my supervisor,

Prof. Steve Furber, for all his contributions of time, patience, ideas and funding to my

study. I am grateful for his ‘ease-the-grip’ strategy that I have complete freedom to

explore my own research problems and find out solutions to them. Although sometimes

problems occur and tough time comes, he tells and encourages me, persistence is the

key to all the problems. It builds up my confidence to think and act professionally like

a scientist. At the same time, he knows when to ‘hold hands firmly’ that the thesis

would not be finished without his kind reminders about commitment on writing.

I would like to thank my colleagues John Woods, Cameron Patterson, Garibaldi

Pineda Garcia, Yunhua Chen, Jonathan Heathcote and Robert James, for their col-

laborations, meaningful discussions, insightful comments and helpful English revisions

on my papers and thesis. Those sleepless nights we work towards deadlines, and the

colourful and densely packed corrections on my printed papers will stay in my memory.

In addition, I express my gratitude to Cameron Patterson, Evangelos Stroma-

tias, Mireya Lopez, Guangda Zhang, Garibaldi Garcia, Gengting Liu, Athanasios

Stratikopoulos, and Crefeda Rodrigues for being my great companions and friends.

My study would not be such an enjoyable experience without them, since they always

celebrate any achievement I have made, pull me out of stress and negative moods

towards the bright side, and share the bitter-sweets on the journey to our PhD.

My sincere thanks to my parents, Caixia Zhou and Yancheng Liu, beloved husband,

Xuekai Li and long-time friends Jingjing Cui and Xiaowen Jia for supporting and

understanding me spiritually throughout my life in general. I cannot be who I am

without being part of their lives. Especially with my husband, we take the adventure

to Manchester, learn about the world, understand ourselves and pursue the meaning

of life together. My special thanks to him again.

13

List of Acronyms

AE Autoencoder

AER Address-Event Representation

AI Artificial Intelligence

ANN Artificial Neural Network

BP Backpropagation

CA Classification Accuracy

CD Contrastive Divergence

Conv convolutional

ConvNet Convolutional Networks

DBN Deep Belief Network

DVS Dynamic Visual Sensor

EPSP Excitatory Post-Synaptic Potential

FC fully-connected

FoCal Filter Overlap Correction ALgorithm

GAN Generative Adversarial Network

IHC Inner Hair Cell

IPSP Inhibitory Post-Synaptic Potential

14

LIF Leaky Integrate-and-Fire

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

MSE Mean Squared Error

NE Neuromorphic Engineering

NI noisy input

NSP Noisy Softplus

PAF Parametric Activation Function

Pool pooling

PSP Post-Synaptic Potential

RC Resistor-Capacitor

ReLU Rectified Linear Unit

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

ROC Rank Order Coding

SAE Spiking Autoencoder

SGC Spiral Ganglion Cell

SGD Stochastic Gradient Descent

SNN Spiking Neural Network

Sopbs synaptic operations per biological second

Sops synaptic operations per second

SRBM Spiking Restricted Boltzmann Machine

15

SRM Spike-based Rate Multiplication

STDP Spike-Time-Dependent Plasticity

VLSI Very-Large-Scale Integration

WTA Winner-Take-All

16

List of Symbols

δ error gradient

η learning rate

λ firing rate

µv instantaneous mean of the change in membrane

potential

σv standard deviation of the change in membrane

potential

σ sigmoid function;

or the second parameter of Noisy Softplus, the

standard deviation of the noisy current influx

τdur duration of a spike train

τrefrac refractory period after a neuron generates a spike,

during which the neuron cannot fire again

τwin time window used in Spike-Time-Dependent Plas-

ticity

τsyn synaptic time constant

τm membrane time constant

Θ a set of parameters

θ parameter

17

ξ(t) a Gaussian stochastic process

b bias

Cm membrane capacitance

D dataset

dt time step

Esyn reversal potential of the ion channel in a synapse

E mean square error used in Backpropagation;

or energy function used in energy-based model

f activation function

gsyn conductance of the ion channel in a synapse

h value of a hidden unit

Ioffset offset of the input current

Ic current which charges the capacitor

Ir current which discharges through the resistance

I current

k data index;

or the noise scaling factor of Noisy Softplus

K number of data samples;

scaling factor which maps numerical numbers to

firing rates in Hz

l log likelihood

L loss reprensented by the loss function;

or likelihood function

mI mean of the input current

18

N total number

net weighted sum, the input value of an activation

function

p possibility;

or parameter p of the Parametric Activation Func-

tion

Rm membrane resistance

r a random number sampled from a Gaussian dis-

tribution

sI standard deviation of the input current

S mapping scaling factor used in the Parametric

Activation Function

s spike train

t time;

teaching labels

T total time

Vreset resetting potential after a neuron spikes

Vrest resting potential

Vth threshold of the membrane potential

V membrane potential

v value of a visible unit

Wt Wiener process

w weight or synaptic strength

x input of a model or a function

19

y output of a model or a function

Z partition function

20

Chapter 1

Introduction

“As engineers, we would be foolish to ignore the lessons of a billion

years of evolution.”

- Carver Mead, 1993

Advances in computing power and machine learning have endowed computers with

rapidly growing performance in cognitive tasks such as recognising objects [Deng et al.,

2009] and playing GO [Silver et al., 2016]; these tasks were once dominated by hu-

man intelligence and solved by biological neurons in the brain. However, humans and

many other animals still outperform computers in practical tasks, such as vision, and

in terms of size and energy cost by several orders of magnitude. For instance, Al-

phaGO [Silver et al., 2016] has a power consumption of 1 MW on its 1, 920 CPUs

and 280 GPUs when playing the game with one of the best human players whose

brain is rated at 20 W [Drubach, 2000]. Although we are still far from understanding

the brain thoroughly, it is believed that the performance gap between computation

in the biological nervous system and in a computer lies in the nature of the funda-

mental computing units and how they compute. Typical computers employ Boolean

logic and deterministic digital operations usually based on synchronous clocks while

nervous systems employ parallel, distributed, event-driven, stochastically unreliable

components [Indiveri et al., 2009]: neurons. These impressive disparities in cognitive

capabilities and energy consumption drive research into biologically-plausible spiking

neurons and brain inspired computers, known as Neuromorphic Engineering (NE).

NE was proposed by Carver Mead in the late 1980s [Mead, 1989] to build analogue

21

22 CHAPTER 1. INTRODUCTION

circuits which mimic biological neural cells and the architecture of the nervous sys-

tem using Very-Large-Scale Integration (VLSI) technology. With the ultimate goal of

equipping neuromorphic machines with genuine intelligence, the objectives of NE can

be summarised as follows [Furber and Temple, 2007]:

• brain modelling: for neuroscientists to understand the brain by modelling and

simulating the activities of biological neurons;

• neuromorphic computing: for engineers to build brain-like machines by applying

biological principles to computers.

The aims complement each other; building a biologically inspired computer requires

a better understanding of the brain, and simulating brain activities at large scale and

in real time is feasible only on massively-parallel neuromorphic hardware.

Spiking Neural Networks (SNNs), comprised of spiking neurons, hold the key to

address the dual aims of understanding brain functions and building brain-like ma-

chines. The spiking neuron mathematically models the dynamics of a single neuron

with biological realism and the network describes the architecture of the neural con-

nections and the information transmission among them; readers can refer to Chapter 2

for more detail. Therefore, neuroscientists are able to reproduce the recorded neural

dynamics and activities from in-vivo/vitro experiments to verify their models and mea-

sure the progress of brain understanding, while computer engineers can focus on the

hardware implementations of the spiking neurons and the interconnections between

them to build energy-efficient neuromorphic hardware.

Over the last decade, considerable development has taken place in NE where simu-

lations of massive SNNs [Markram, 2006; Ananthanarayanan et al., 2009] have proved

to be significantly useful in understanding the brain, and large-scale neuromorphic

platforms have been launched to simulate SNNs in hardware. These neuromorphic

computers develop into energy-efficient systems by implementing neurons, synapses

and neuronal communications on analogue circuits [Schemmel et al., 2010; Benjamin

et al., 2014; Yu et al., 2012; Moradi et al., 2017] or exploiting parallel low-power mi-

croprocessors on digital hardware [Furber et al., 2014; Merolla et al., 2014]. Thus, the

neuromorphic hardware systems have successfully demonstrated decreased energy cost

of SNN simulations on supercomputers [De Garis et al., 2010; Sharp et al., 2012].

23

However, the SNN simulations only reconstruct the network behaviours and neural

dynamics of some subsystem of the brain, ‘but without precisely functionally simulat-

ing that subsystem’ [De Garis et al., 2010]. In other words, the SNNs are able to repeat

the firing activities of groups of neurons, however, not capable of simulating or un-

derstanding the functions of these activities. Therefore, this type of SNN simulation

can be used to guide neuroscience and the development of neuromorphic hardware

systems, but is not directly useful for solving cognitive tasks. Recent SNN appli-

cations [Bill and Legenstein, 2014; Diehl et al., 2015a] in Artificial Intelligence (AI)

tasks, summarised in Chapter 6, typically comprise only two neural layers and exploit

biologically-plausible learning rules, e.g. Spike-Timing-Dependent Plasticity (STDP),

and/or Winner-Take-All (WTA) circuits on the synaptic connections. These two-

layered SNN models are considered to be ‘reactive’ since the output neurons simply

react to the sensory input. Consequently, such SNNs cannot perform sophisticated

effective cognition as can the brain; thus programming these neuromorphic machines

to be competent in cognitive applications still remains unsolved. Indiveri et al. [2009]

argued that the next substantial challenge of NE is to make these brain-like computers

effectively cognitive, also known as ‘Neuromorphic Cognition’.

STDP as a learning mechanism based on biological observations has been imple-

mented to be equivalent to a stochastic version of powerful machine learning algo-

rithms, such as Expectation Maximisation [Nessler et al., 2013], Contrastive Diver-

gence [Neftci et al., 2013], Markov Chain Monte Carlo [Buesing et al., 2011] and Gra-

dient Descent [O’Connor and Welling, 2016]. However, in practice, there have been

two significant problems prohibiting the SNN from becoming as ‘intelligent’ as its

non-spiking counterpart, the Artificial Neural Network (ANN). Firstly, Deep Learning

research has made great achievements in the field of ANNs and dominated state-of-

the-art solutions for AI engineering tasks, e.g. exceeding human-level performance

on image classification [He et al., 2015], see Chapter 3 for more examples. However,

the fundamental differences in data representation and neural computation between

spiking and artificial neurons make it difficult to transform ANN models into SNN

algorithms, see Chapter 2 for more detail. Secondly, the computational cost for sim-

ulating large SNNs of size comparable to commonly-used deep ANNs was considered

to be infeasible, though this has gradually been solved by NE.

24 CHAPTER 1. INTRODUCTION

With the neuromorphic platforms ready for massive SNN simulations, this, there-

fore, is the main research problem: to improve the cognitive performance of SNNs

to catch up with that of ANNs. Hence, researchers turn to Deep Learning to build

‘smarter’ SNNs. Initial studies have shown that SNNs can be trained by first training

an equivalent deep ANN and then transferring the tuned weights to the SNN; this

method is called ‘off-line’ training, since it does not take place on SNNs directly, but

rather on ANNs instead. Chapter 4 discusses these ‘off-line’ training models in de-

tail, and proposes a simple, generalised, off-line SNN training method to overcome the

problems of poor modelling accuracy and high computational complexity of the exist-

ing methods [Jug et al., 2012; Hunsberger and Eliasmith, 2015; Diehl et al., 2015b].

To embed the biologically-plausible learning rules into deep SNN training, researchers

take an extra step to ‘on-line’ methods where Deep Learning modules can be trained

purely on SNNs in an event-driven manner, see Chapter 5. Previous work [Neil, 2013;

Neftci et al., 2013; Burbank, 2015] has failed to provide SNNs with recognition accu-

racy equivalent to ANNs due to the lack of model formalisation and accurate parameter

settings. We continue the inspiring work on these biologically-plausible ‘on-line’ train-

ing methods and propose a formalised method to train multi-layered Deep Learning

modules on SNNs.

To provide meaningful comparisons between these proposed SNN models and other

existing methods within the rapidly advancing field of NE, we propose a large dataset

of spike-based images/videos to unify data resources for objective comparisons; and

a corresponding evaluation methodology to estimate the overall performance of SNN

models and their hardware implementations in Chapter 6. Moreover, we transform

one of the common datasets widely used in Computer Vision into spike-based dataset

to enable meaningful comparisons between SNNs and conventional machine learning

methods.

1.1 Motivation and Aims

NE has led to the development of biologically-inspired computer architectures whose

long-term goal is to approach the performance of the human brain in terms of energy

efficiency and cognitive capabilities. Although there are a number of neuromorphic

1.2. THESIS STATEMENT AND HYPOTHESES 25

platforms available for large-scale SNN simulations, the problem of programming these

brain-like machines to be competent in cognitive applications still remains unsolved.

On the other hand, Deep Learning has emerged in ANN research to dominate state-

of-the-art solutions for cognitive tasks. Thus the main research problem emerges of

understanding how to operate and train biologically-plausible SNNs to close the gap

in cognitive capabilities between SNNs and ANNs on AI tasks.

Enabling this massively-parallel neuromorphic hardware to deliver state-of-the-art

performance on AI tasks will be a big step towards Neuromorphic Cognition. It will

contribute to the ultimate goal of equipping brain-inspired computers with Human

brain levels of energy efficiency and cognitive capability.

1.2 Thesis Statement and Hypotheses

Although fundamental differences in input/output representation and neural computa-

tion exist between spiking and conventional artificial neurons, the cognitive capability

of SNNs can be improved to catch up with that of ANNs by embedding Deep Learn-

ing techniques in training SNNs. Deep Learning has not only successfully equipped

ANNs with better-than-human performance on AI tasks, but also studies have proved

the equivalent learning capability of SNNs, and neuromorphic hardware is ready for

operating large-scale deep SNNs.

According to the thesis statement, the hypotheses are defined as follows:

• Deep SNNs can be successfully and simply trained off-line where the training

takes place on equivalent ANNs and the tuned weights then transferred back to

the SNNs, thus making them as competent as ANNs in cognitive tasks.

• Unsupervised Deep Learning modules can be trained on-line on SNNs with

biologically-plausible synaptic plasticity to demonstrate a learning capability

equivalent to ANNs.

• A new set of spike-based vision datasets can provide resources and corresponding

evaluation methodology to support objective comparisons and measure progress

within the rapidly advancing field of NE.

26 CHAPTER 1. INTRODUCTION

1.3 Contributions

The primary achievement of the work described in this thesis is the training of deep

SNNs, both off-line and on-line, which closes the gap in cognitive capability between

SNNs and ANNs. Other achievements contribute to the performance evaluation of

SNN models and their hardware implementations. The contributions are:

• A generalised and simple method for off-line SNN training.

The core elements of the training methods are a pair of novel activation func-

tions used in ANNs: Noisy Softplus (NSP) and the Parametric Activation Func-

tion (PAF). NSP successfully models the firing activities of biologically-plausible

spiking neurons with conventional activation functions of abstract values; and

PAF maps these numerical values to concrete physical units in SNNs: current in

nA and firing rates in Hz. The proposed activation functions solve the problem

of the fundamental differences in data representation and neural computations

between ANNs and SNNs, thus tackle the difficulties of transforming ANN mod-

els to SNNs. Moreover, they address the problems of inaccurate modelling and

high computational complexity of existing approaches.

This off-line training method consists of three simple steps: firstly, estimate pa-

rameter p for the PAF, y = p×f(x), using the proposed activation function NSP;

secondly, use a PAF version of conventional activation functions, e.g. Rectified

Linear Unit (ReLU), for ANN training; thirdly, the tuned weights can be trans-

ferred directly into the SNN without any further transformation. This method

involves the least computational complexity while performing most effectively

among existing algorithms.

NSP is described in Chapter 4 and was published and presented at the Interna-

tional Conference on Neural Information Processing (ICONIP 2016); the work of

generalised SNN training using PAF will be submitted to the IEEE Transactions

on Neural Networks and Learning Systems (INNLS).

• An on-line unsupervised learning algorithm working purely on event-

based STDP for training spiking Autoencoders (AEs) and Restricted

Boltzmann Machines (RBMs).

1.3. CONTRIBUTIONS 27

Multiplying two numerical values, which is the core operation in the algorithms

for training the Deep Learning modules of AEs and RBMs, can be represented

with rate multiplication of a pair of rate-coded spike trains. The proposed for-

malised Spike-based Rate Multiplication (SRM) method transforms the product

of rates to the number of coincident spikes emitted from a pair of connected

spiking neurons, and the simultaneous events can be captured by the change of

the synaptic efficacy using the biologically-plausible learning rule: STDP.

The SRM successfully tackles the problem of translating the weight tuning from

numerical computations to event-based, biologically-plausible learning rules in

SNNs. In addition, the numerical analysis of the proposed algorithm accurately

estimates the parameters, thus closely mimicking the learning behaviour of the

AE and RBM modules, and improves the learning performance compared to

existing methods. Moreover, we propose solutions to the problem of continu-

ous performance drop caused by correlated spike trains. Thus, spiking AEs and

RBMs can be trained with SRM and approach the same, sometimes even supe-

rior, classification and reconstruction capabilities compared to their equivalent

non-spiking models.

This work comprises Chapter 5. A paper on these findings is in preparation for

submission to the Journal of Neural Computation.

• A dataset and the corresponding evaluation methodology for compar-

isons of SNN models and their hardware implementations.

To objectively compare these proposed SNN models with other existing methods,

we propose a Neuromorphic Vision dataset NE15-MNIST which is comprised of

spike-encoded images/videos based on a standard computer vision benchmark,

the MNIST [LeCun et al., 1998] dataset. The unified dataset satisfies the re-

quirement for quantitatively measuring progress within the rapidly advancing

field of NE and provides resources to support objective comparisons between re-

searchers. In addition, a complementary evaluation methodology is presented to

estimate the overall performance of SNN models and their hardware implemen-

tations, since new concerns relating to energy efficiency and recognition latency

emerge in SNNs run on NE platforms.

28 CHAPTER 1. INTRODUCTION

We also present a potential benchmark system which is evaluated using the

Poissonian subset of the NE15-MNIST dataset. It provides a baseline for further

comparisons with upcoming SNN models.

The dataset was generated with the help of Garibaldi Pineda-Garćıa and Teresa

Serrano-Gotarredona. This work comprises Chapter 6 and was published as a

journal paper in Frontiers in Neuromorphic Engineering.

1.4 Papers and Workshops

1.4.1 Papers

Much of the work contributed to solving the main research problem of this thesis has

either been published or is in the process of submission for publication.

• Q. Liu, and S. Furber, Noisy Softplus: A Biology Inspired Activation

Function, International Conference on Neural Information Processing (ICONIP

2016). This paper [Liu and Furber, 2016] introduces the novel activation func-

tion, NSP, which solves the problem of accurately modelling the response firing

activity of spiking neurons using conventional abstract activation functions. This

paper comprises the first half of Chapter 4.

• Q. Liu, Y. Chen, G. Garćıa, and S. Furber, Generalised Training of Spiking

Neural Networks, (to be submitted to INNLS). This paper extends the work of

the NSP to solve the problem of mapping abstract numerical values of activation

functions to concrete physical units in spiking neurons using PAF, and success-

fully formalises a simple off-line SNN training method which is also generalised

to ReLU-like activation functions. The paper presents the work described in the

rest of Chapter 4.

• Q. Liu, and S. Furber, Spike-based Rate Multiplication for On-line SNN

Training (to be submitted to Neural Computation). This paper mainly com-

prises the work of Chapter 5, which proposes a method for on-line unsupervised

training of SNNs equivalent to the conventional Deep Learning techniques: AEs

and RBMs.

1.4. PAPERS AND WORKSHOPS 29

• Q. Liu, G. Garćıa, E. Stromatias, T. Gotarredona, and S. Furber, Bench-

marking Spike-Based Visual Recognition: A Dataset and Evaluation,

Frontiers in Neuromorphic Engineering. The work presented in this paper [Liu

et al., 2016] mainly comprises the spike-based dataset NE15-MNIST and its

corresponding evaluation method for Neuromorphic Vision proposed in Chap-

ter 6. In addition, the paper also includes the contributions of the co-authors:

the detailed description of a subset of this database and a case study as an

example to validate the dataset and its evaluation.

Other publications build up the neuromorphic hardware system for complete event-

based visual and auditory processing, providing deep spiking neural networks a valid

hardware platform for running applications in biological real time.

• Q. Liu, and S. Furber, Real-Time Recognition of Dynamic Hand Pos-

tures on a Neuromorphic System, International Conference on Artificial

Neural Networks (ICANN 2015). We develop an object recognition system op-

erating in real-time on a complete neuromorphic platform in an absolute spike-

based fashion. This paper paves the way for further study with solid proof of the

capability of a real-time cognitive application built on a neuromorphic platform.

In Chapter 2, we introduce this system as an existing vision-based neuromor-

phic hardware platform which comprises a Dynamic Vision Sensor (DVS) as the

front-end and a massive-parallel SNN hardware simulator as the back-end.

• Q. Liu, C. Patterson, S. Furber, Z. Huang, Y. Hou and H. Zhang, Modeling

Populations of Spiking Neurons for Fine Timing Sound Localization,

International Joint Conference on Neural Networks (IJCNN 2013). This pa-

per [Liu et al., 2013] presents a model of sound localisation to solve the problem

of coarse time resolution of SNN simulations. Such an auditory processing sys-

tem can be implemented on a similar neuromorphic hardware platform described

above, which uses a silicon cochlea as the input (see Chapter 2).

• G. Garćıa, P. Camilleri, Q. Liu, and S. Furber, pyDVS: An Extensible, Real-

time Dynamic Vision Sensor Emulator using Off-the-Shelf Hardware,

The 2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI

2016). This paper [Garibaldi et al., 2016] proposes a visual input system inspired

30 CHAPTER 1. INTRODUCTION

by the behaviour of a DVS but using a conventional digital camera as a sensor

and a PC to encode the images (see Chapter 2).

1.4.2 Workshops

The author participated in workshops organised by the NE community, 1) to establish

and contribute to collaborations on mutual interests; 2) to catch up with cutting-edge

research and collect inspiration; and 3) to discuss the author’s own findings with key

researchers in the field.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2012.

Contributed to successful connections of SpiNNaker to neuromorphic sensors1.

This formed the hardware platform for real-time SNN applications processing

event-based sensor data.

• Telluride Neuromorphic Cognition Engineering Workshop 2013.

Developed a real-time sound localisation system on the neuromorphic platform as

a main contributor2. The work led to the publication of a journal paper [Lagorce

et al., 2015].

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2014.

Developed the real-time neural activity visualiser for the project of ‘Integrated

Neurorobotics for Real-World Cognitive Behaviour’ 3.

• Capo Caccia Cognitive Neuromorphic Engineering Workshop 2015.

Inspired by the projects on Deep Learning in the workshop4, the author later

proposed the off-line SNN training method and the unsupervised on-line learning

algorithm of deep SNNs, and led the discussion of benchmarking neuromorphic

vision in the workshop 5.

1https://capocaccia.ethz.ch/capo/wiki/2012/csnQian
2http://neuromorphs.net/nm/wiki/sound_localization
3https://capocaccia.ethz.ch/capo//wiki/2014/integrneurobot14
4https://capocaccia.ethz.ch/capo//wiki/2015/spikednn15
5https://capocaccia.ethz.ch/capo//wiki/2015/visionbenchmark15

https://capocaccia.ethz.ch/capo/wiki/2012/csnQian
http://neuromorphs.net/nm/wiki/sound_localization
https://capocaccia.ethz.ch/capo//wiki/2014/integrneurobot14
https://capocaccia.ethz.ch/capo//wiki/2015/spikednn15
https://capocaccia.ethz.ch/capo//wiki/2015/visionbenchmark15

1.5. THESIS STRUCTURE 31

1.5 Thesis Structure

The thesis comprises the following seven chapters:

Chapter 1 introduces the origin and the motivation of the research, states the

problem, defines the hypotheses and objectives, summarises the contributions and

publications, and outlines the thesis.

Chapter 2 illustrates how biological neurons function, transmit signals between

them, and are modelled by mathematical abstractions, thus to unveil the special fea-

tures of spiking neurons that differ from the neurons of ANNs; and introduces SNN

simulators both in software and in hardware including neuromorphic systems.

Chapter 3 gives an overview of popular architectures and models of Deep Learning

and illustrates the mechanism of the Convolutional Networks (ConvNets), the AEs,

and the RBMs in detail.

Chapter 4 demonstrates the generalised off-line SNN training method to confirm

the first hypothesis that SNNs can be trained off-line and perform equivalently as

ANNs in cognitive tasks.

Chapter 5 proposes an STDP-based learning algorithm for training spiking AEs

and RBMs on-line; and test the second hypothesis that on-line training is able to

improve the cognitive capabilities of SNNs and catch up with ANNs.

Chapter 6 puts forward the spike-based vision dataset and the evaluation method-

ology and presents a case study as a tentative benchmark running on SpiNNaker to

assess the hardware-level performance against software simulators.

Chapter 7 summarises the research, discusses the contributions to the field, points

out future directions and concludes the thesis.

1.6 Summary

In brief, Figure 1.1 summarises the introduction and demonstrates the outline of the

thesis.

Chapter 1 introduces the aims of NE: modelling the brain, and building brain-

like machines. Although progress has been made in both directions, it is still far

from achieving the long term goal of Neuromorphic Cognition. With the support of

accumulated knowledge of SNNs and the massive neuromorphic SNN simulators (both

32 CHAPTER 1. INTRODUCTION

Neuromorphic
Engineering
Chapter 1

Brain modelling
using SNNs
Chapter 2

Neuromorphic H/W
for SNN simulation

Chapter 2

objectives

Thesis aim:
Deep SNNs on

AI tasks

support for

Long­term goal:
Neuromorphic

Cognition

benefits
to

Deep Learning
in ANNs

Chapter 3

approaches
to

A generalised,
simple, off­line

SNN training method
Chapter 4

A formalised,
unsupervised, on­line
SNN training method

Chapter 5

A spike­based dataset
& an evaluation methodology
to measure SNN performance

Chapter 6

methods

Figure 1.1: The outline of the thesis.

refer to Chapter 2), plus the huge success of Deep Learning in ANNs (see Chapter 3),

the research aims at understanding how to operate and train biologically-plausible

SNNs to close the gap in cognitive capabilities between SNNs and ANNs on AI tasks,

thereby approaching Neuromorphic Cognition.

To achieve the thesis aim, we propose an off-line (Chapter 4) and an on-line (Chap-

ter 5) SNN training method to bring Deep Learning advantages to SNNs, and provide

a spike-based dataset and its corresponding evaluation methodology to measure the

performance of SNN models and the neuromorphic hardware platforms in Chapter 6.

Chapter 2

Spiking Neural Networks (SNNs)

The so-called third generation of artificial neural network, the Spiking Neural Net-

work (SNN), is comprised of spiking neurons which mimic the dynamics of biological

neural behaviour. In this chapter we will demonstrate the special features of spiking

neurons that differ from neurons of conventional Artificial Neural Networks (ANNs);

these biologically-plausible neuronal operations are the root of the research problem

raised in the thesis: how to operate SNNs to equip them with cognitive capabilities as

competent as ANNs. Section 2.1 will illustrate how biological neurons function and

transmit signals between them. The way neural dynamics are modelled by mathemat-

ical abstractions of spiking neurons is described in Section 2.2 , and finally existing

SNN simulators are introduced in Section 2.3.

2.1 Biological Neural Components

At the cellular level, the central nervous system consists of two types of cell: neurons,

the elementary processing units, and glial cells, the structural and metabolic support-

ers. Here we focus on the former, since neurons are the basic elements supporting

higher brain functions such as cognition, thought and action. The human brain con-

tains around a hundred billion (1011) such processing units, and up to four orders of

magnitude more connections (1015) [Azevedo et al., 2009]. Despite being such a huge

and complex system, neurons in the brain manage to send signals rapidly and precisely

to other cells through these connections, thanks to their special structures.

33

34 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

Figure 2.1: Two neurons connected by synapses. A neuron comprises three functional
parts: dendrites, the cell body, and the axon. (a) A pre-synaptic cell connects to its
post-synaptic cell through synapses (b) [Reece et al., 2011], and the neural signal, the
action potential (c) [Hodgkin and Huxley, 1939], propagates in the direction of the red
arrows.

2.1.1 Neuron

A typical neuron comprises three functional parts: dendrites, a cell body (soma),

and an axon, see Figure 2.1(a). The dendrites of a neuron receive stimuli from other

neurons, and transmit the neural signal to the neuron’s soma. The soma is the cell body

of the neuron, the location of the nucleus, and functions as a non-linear processor which

triggers an output signal when the accumulated total input exceeds some threshold.

The output signal initiates from the axon hillock where the axon emerges from the

soma, and is propagated through the axon to other neurons. Most neurons have only

one axon, but may connect to many neurons by branching out axon terminals.

The signal delivery from one neuron to another occurs at the junction between

these two neurons, which is called a synapse, see Figure 2.1(b). The configuration can

be seen as a pre-synaptic cell which sends the signal, and a post-synaptic cell which

receives it.

2.1. BIOLOGICAL NEURAL COMPONENTS 35

2.1.2 Neuronal Signals

Neuronal signals propagated among neurons are short electrical pulses, and Figure 2.1(c)

shows the original recording of such a so-called action potential observed on a squid

giant axon. A typical action potential, also known as a ‘spike’, is of about 100 mV

amplitude and lasts 1-2 ms. Usually, there is a time period immediately after a spike

that the neuron is unresponsive to any further stimulus. This minimal time difference

between two spikes of a single neuron is the absolute refractory period during which

no spike can be generated. After the absolute refractory period, it is still difficult but

possible to fire a spike during the relative refractory period.

The size and duration of the spikes do not vary much among different species, and

maintain the same form as the electrical pulses propagate along the axon as illustrated

in Figure 2.1(c). Therefore, the form of an action potential carries little information;

it is the frequency and timing of the spikes that encode the messages. A sequence

of action potentials generated by a single neuron is called a ‘spike train’, which can

be viewed as binary events happening in discrete time where ‘on’ indicates a spiking

event within a time step whereas ‘off’ means none. Information can be encoded in the

frequency and timing of these binary events.

The rate coding model states that the spiking rate represents the intensity of a

stimulus, e.g. as the stimulus becomes stronger, the frequency of the action potentials

also increases. An example of the tuning curve of a V1 (visual area one of the visual

cortex) simple cell responding to different stimulus orientation is shown in Figure 2.2.

As the stimulus becomes more aligned to the preferred orientation (0◦) of the neuron,

the firing rate increases.

Rate coding works well when the stimulus is changing slowly and the observation

time period is long enough to estimate the firing rate. However, in practice the stim-

ulus, e.g. visual sensory input, varies on a fast time scale and the neurons respond

within a short reaction time. Thus, temporal coding encodes information in the pre-

cise timing of spikes which is considered to be a candidate for the encoding of a fast

changing stimulus.

Sound localisation requires temporal coding at sub-millisecond precision, which is

a good example of one of the temporal coding schemes, phase locking. Figure 2.3

shows phase-locked spike trains generated by Inner Hair Cells in the cochlea. Phase

36 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

Figure 2.2: Example of rate coding: spike trains for different stimulus orientation
(left) of a V1 simple cell of a cat, and the tuning curve (firing rate against stimulus
orientation) of the neuron (right) [Hubel and Wiesel, 1962]. The square indicates the
visual receptive field of the neuron, and a bar is placed at different orientations and
moves to the direction perpendicular to its orientation. As the stimulus becomes more
aligned to the preferred orientation (0◦) of the neuron, the firing rate increases.

locking forms the basis of detecting time differences of binaural sound inputs.

Time-to-first-spike encodes the information according to the intensity of a stimulus

where a spike shortly after a reference signal indicates a strong stimulation and a later

action potential is interpreted as a weaker input. The tactile afferent information

generated by forcing fingertips from various directions is encoded in such a time-to-

first-spike coding scheme [Johansson and Birznieks, 2004]. Synchrony coding also can

be found in the brain, where neurons representing the same ‘concept’ always fire at

the same time [Von Der Malsburg, 1994], for example in object recognition [Gray

and Singer, 1989]. Established from the context of fast object recognition, rank-order

coding was proposed where the precise time of spikes is discarded, but rather uses the

relative order of spikes among a group of neurons [Gautrais and Thorpe, 1998].

2.1.3 Signal Transmission

The spike, as an electrical signal, propagates to another neuron through the junction

between these two neurons, a chemical synapse. The axon terminal of a pre-synaptic

neuron approaches very close (within about 20 nm) to the dendrites (or cell body) of

2.2. MODELLING SPIKING NEURONS 37

Figure 2.3: Example of temporal coding: phase-locked spike trains generated by sim-
ulated Inner Hair Cells in the cochlea [Liu et al., 2013]. A sound source generates a
sine wave of a certain frequency and conducts to two ears with a time difference and
different amplitude due to the angle and distance of the sound source to the head.
Two spike trains respond to different phases manipulated by a threshold of the sound
waves. Sound localisation can be resolved by calculating the time difference and/or
level difference of these sound waves which are encoded in the spike trains.

a post-synaptic neuron. The tiny space between neurons at a synapse is called the

synaptic cleft, which is illustrated in Figure 2.1(b). At such a chemical synapse, the

action potential generated by the pre-synaptic neuron triggers chemical neurotrans-

mitter molecules to be released into the synaptic cleft, and once the post-synaptic

neuron detects these neurotransmitters it opens specific ion channels to allow elec-

trical current in. Hence, synapses complete the transformation from electrical signal

to chemical molecules and then back to ion influx. The amount of neurotransmitter

determines the strength of the current flow into the post-synaptic neuron. Thanks to

synaptic plasticity, changes of chemical synapses enable modulations of the synaptic

efficacy, and form the neuronal correlation of learning and memory.

2.2 Modelling Spiking Neurons

2.2.1 Neural Dynamics

The effect of an ion influx on the post-synaptic neuron caused by spike transmission

is a change of potential difference between the interior and exterior of the cell body,

which is called the membrane potential. The membrane potential of a post-synaptic

neuron stays at a resting potential in the absence of an input. As soon as a spike ar-

rives, the membrane potential will be either depolarised (increased) or hyper-polarised

(decreased) according to the type of synapse, and go back to the resting potential

38 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

Figure 2.4: Post-synaptic potential driven by a spike, where the red arrow represents
a spike arriving at the neuron [Marieb and Hoehn, 2007].

driven by membrane leakage. The state of the membrane potential change caused by

a single spike is called the Post-Synaptic Potential (PSP). Thus, a spike transmitted

by an excitatory synapse triggers a positive PSP, called an Excitatory Post-Synaptic

Potential (EPSP), see Figure 2.4(a); a negative change, an Inhibitory Post-Synaptic

Potential (IPSP), is driven by an inhibitory synaptic event and is shown in Fig-

ure 2.4(b). Spikes arriving at different synapses at the same post-synaptic neuron

have PSPs of different amplitudes according to the synaptic efficacy.

Multiple PSPs have an accumulative effect on the membrane potentials both in

Figure 2.5: Summation of post-synaptic potentials [Reece et al., 2011]. (a) Single
EPSPs are usually not strong enough to trigger an action potential without summa-
tion. (b) Temporal summation of two EPSPs of the same synapse generates an action
potential. (c) Spatial summation of two EPSPs of two synapses generates an action
potential. (d) Spatio-temporal summation of both EPSP and IPSPs.

2.2. MODELLING SPIKING NEURONS 39

temporal and spatial terms. The accumulation performs a simple summation of PSPs

until the membrane potential reaches a threshold, when an action potential is gen-

erated at the post-synaptic neuron. Figure 2.5 illustrates temporal and spatial sum-

mations of PSPs under different circumstances. The temporal summation refers to

the accumulated effect of a single synapse where the spatial one integrates the PSPs

triggered by multiple synapses.

The neural dynamics of the membrane potentials, PSPs, and spike trains are all

time dependent, while the neurons of ANNs, e.g. sigmoid units, only cope with nu-

merical values representing spiking rate, without timing information, see Figure 2.6.

A regular artificial neuron (Figure 2.6(a)) comprises a weighted summation of input

data,
∑
xiwi, and an activation function, f , applied to the sum. Usually, a bias is

included in the weighted summation which increases the expression ability of a neu-

ron. However, in this thesis we remove biases of both ANNs and SNNs to simplify

the neural models and to reduce the number of parameters. Nevertheless, our experi-

mental results show that the network using unbiased neurons performs the same when

it is used to solve a relatively simple task, the MNIST. Thus the inputs of a spiking

neuron (Figure 2.6(b)) are spike trains generated by pre-synaptic neurons, which cre-

ate PSPs on the post-synaptic neuron and trigger a spike train as the output of this

spiking neuron. These fundamental differences in input/output representation and

neural computation lead to special model descriptions of spiking neurons (illustrated

in the next section), and raise the difficulties of transforming ANN models to spiking

neurons. Hence, this research aims to address the problem of how to operate and train

biologically-plausible SNNs to be as competent in cognitive tasks as are ANNs.

2.2.2 Neuron Models

The keys to modelling a spiking neuron are:

• to mathematically formalise the evolution of the membrane potential;

• to state a mechanism of spike generation.

40 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

y

...

...

∑xiwi

f

(a) An artificial neuron

x1

xi

xn

wi

w1

wn

...

...

(b) A spiking neuron

Input spike trains (s) and synaptic efficacy (w)

wi

s1

si

sn

Output spike train sy

t

w1

wn

Figure 2.6: Comparisons of processing mechanisms of an artificial and a spiking neuron.
(a) An artificial neuron takes numerical values of vector x as input, works as a weighted
summation followed by an activation function f . (b) Spike trains flow into a spiking
neuron as input stimuli, trigger linearly summed PSPs through synapses with different
synaptic efficacy w, and the post-synaptic neuron generates output spikes when the
membrane potential reaches some threshold.

Figure 2.7: The cell membrane acts like a Resistor-Capacitor (RC) circuit [Gerstner
et al., 2014]. Input current I(t) flows into a neuron which charges the capacitor C and
leaks through the resistance R in line with a battery Vrest.

Leaky Integrate-and-Fire (LIF) Model

The evolution of membrane potential V can be simplified to a Resistor-Capacitor (RC)

circuit which consists of a membrane capacitance Cm and a membrane resistance Rm,

both driven by an input current flow I, see Figure 2.7. In the resting state without

any input, the membrane potential V stays at the same potential as the battery Vrest.

When current flows into the neuron, it will charge the capacitor with current IC(t) and

discharge through the resistance with current IR(t). When the input current stops the

2.2. MODELLING SPIKING NEURONS 41

capacitive charge will decay back to Vrest by leaking through the resistance:

I(t) = IR(t) + IC(t)

=
V − Vrest
Rm

+ Cm
dV

dt
.

(2.1)

The standard form of the LIF model describes the sub-threshold membrane potential

evolution as follows:

τm
dV

dt
= −(V − Vrest) +RmI(t) , (2.2)

where τm = CmRm is called the membrane time constant, and as soon as the membrane

potential reaches the threshold Vthresh, it is set to a reset potential Vreset, which is

usually lower than Vrest:

V = Vreset . (2.3)

The simple LIF model uses: (1) a linear differential equation to describe the evo-

lution of membrane potential; and (2) a threshold to generate a spike.

Hodgkin-Huxley Model

The Hodgkin-Huxley model [Hodgkin and Huxley, 1952] is the Nobel Prize winning

model that explains the ionic mechanisms generating and transmitting action poten-

tials in the squid giant axon. The current IR(t) which flows through the membrane

resistance is determined by three ion channels: a leak channel with conductance gL,

the sodium channel with conductance gNa and the potassium channel with conduc-

tance gK . The currents which flow through these channels are all proportional to the

difference between the membrane potential and the reversal potentials of the channels:

V − EL, V − ENa, and V − EK respectively. Thus Equation 2.1 is detailed as:

I(t) = IL(t) + INa(t) + IK(t) + IC(t)

= gL(V − EL) + gNam
3h(V − ENa) + gKn

4(V − EK) + Cm
dV

dt
.

(2.4)

42 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

The Hodgkin-Huxley model can be seen as a non-linear differential equation with four

state variables, V , m, h and n that change against time:

Cm
dV

dt
= I(t)− gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL) , and

dm

dt
= αm(V)(1−m)− βm(V)m ,

dn

dt
= αn(V)(1− n)− βn(V)n ,

dh

dt
= αh(V)(1− h)− βh(V)h ,

(2.5)

where α(V) and β(V) are empirical functions of membrane potential.

With regard to the mechanism of spike initiation, the most significant property of

the Hodgkin-Huxley model is that the model is able to generate action potentials with

the changes of those dynamic internal variables alone.

The Hodgkin-Huxley equations provide a detailed, quantitative, and reasonably

accurate mathematical model explaining the evolution of the membrane potential and

the action potential [Byrne et al., 2014]. However, its numerical complexity and highly

non-linear characteristics prohibit it from being intuitively understood and make large-

scale simulations too expensive. Therefore, neural model selection should take account

of objectives, degree of detail and computational power.

Izhikevich Model

The Izhikevich model was proposed to solve the problems of computational complexity

of the Hodgkin-Huxley model and the insufficient capability of LIF model to reproduce

the complex dynamics of cortical neurons [Izhikevich, 2003]. Thus the model can be

employed to simulate large-scale brain models comprising real biological neurons.

The membrane potential evolves in accordance with a pair of differential equations:

dV

dt
= 0.04V 2 + 5V + 140− u− I(t) ,

du

dt
= a(bV − u) ,

(2.6)

where V is the membrane potential and u represents the membrane recovery which

negatively feeds back to V .

2.2. MODELLING SPIKING NEURONS 43

In terms of spike generation, the initiation part of an activation potential is pro-

duced by the equations, but a resetting scheme is needed:V = c

u = u+ d
when V ≥ 30. (2.7)

Parameters a, b, c, and d are constant, which can be configured to reproduce various

neural dynamics of real biological neurons [Izhikevich, 2004].

2.2.3 Synapse Model

Applying spiking neuron models to synaptic spike transmission, we can use two types

of synapse: current-based and conductance-based models. Thus the synaptic efficacy

w determines either the input current intensity flowing through the synapse:

I(t) = w(t) , (2.8)

or the electrical conductance gsyn of the ion channel:

I(t) = gsyn(V − Esyn) = w(t)(V − Esyn) , (2.9)

where Esyn indicates the reversal potential of a synapse. Both equations identify

the strength of a synaptic current, thus simply adding up all synaptic currents on

the same post-synaptic neuron represents the external current I(t) for all the neuron

models stated in Section 2.2.2.

The current flow usually has a much longer time constant than an action potential

and decays over time, thus a simple exponential decay is able to model the decaying

synaptic efficacy. Assuming spikes are delivered at time t = t0, t1, ..., tn, the initial

synaptic weight is set to w0 and τsyn is the synaptic time constant, the decaying

synaptic current or the conductance can be described as:

w(t) =
∑
k

w0e
−(t−tk)/τsyn . (2.10)

In this thesis we mostly employ LIF neurons and a current-based synapse model

with decaying synaptic efficacy, due to its simple mathematical expression, low numeri-

cal complexity and high-level abstraction hiding much of the detailed neural dynamics.

Therefore, at the initial stage of merging artificial Deep Learning with biologically-

plausible SNNs, we can (1) target standard LIF neurons which are supported by most

44 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

Figure 2.8: Spike-Timing-Dependent Plasticity (STDP) [Bi and Poo, 2001]. The cir-
cles record the synaptic weight change of real biological observations on 60 pairs of
hippocampal neurons. Curves of exponential decays against relative timing of pre-
and post-synaptic spikes fit well to the real biological data.

of the neuromorphic hardware systems; (2) simulate large-scale SNNs with deep ar-

chitectures without a tight limitation on computational power; and (3) have fewer

parameters thus resulting in a simplified problem.

2.2.4 Synaptic Plasticity

As mentioned in Section 2.1.3, synaptic plasticity provides the neuronal level of learn-

ing and the memory of the brain. Biological observations have provided evidence that

modulations of the synaptic efficacy depend on the relative timing of the pre- and

post-synaptic spikes [Bi and Poo, 1998]. This mechanism is known as Spike-Timing-

Dependent Plasticity (STDP) [Song et al., 2000], and the standard STDP learning

window is illustrated in Figure 2.8:

∆w =

 A+e
−∆t/τ+ , when ∆t ≥ 0 ,

−A−e∆t/τ− , when ∆t < 0 .
(2.11)

The synaptic weight is potentiated when a post-synaptic spike fires later than a pre-

synaptic spike, and the amplitude of such a potentiation is determined by the curve of

2.3. SIMULATING NETWORKS OF SPIKING NEURONS 45

exponential decay with a time constant τ+ and an initial quantity A+; however, when

a post-synaptic spike is generated before a pre-synaptic one, synaptic depression will

occur according to the exponential decay defined by τ− and −A−.

Besides the standard STDP model [Song et al., 2000], also known as the additive

model, stated in Equation 2.11, variations of the STDP learning rule have been pro-

posed to satisfy different learning speeds and classification accuracy. Multiplicative

STDP [Morrison et al., 2008] is an alternative model where the weight change is not

only dependent on the relative timing, but also on the current synaptic efficacy:

A+(w) = (wmax − w)η+ ,

A−(w) = wη− ,
(2.12)

where A+ and A− in Equation 2.11 become functions of variables w, η+ and η− define

the learning rate of the weight potentiation and depression, and wmax is the maximum

synaptic efficacy while 0 is the minimum. We use the multiplicative STDP for SNN

training in Section 6.5. It performs better than the additive STDP when used in such

a classification task, since the weight are much more distributed in the working range.

In Chapter 5 we exploit a much simplified version of asymmetric rectangular STDP

where the weight change is just a constant within an STDP window, τwin:

∆w =

η , when 0 ≤ ∆t ≤ τwin

0 , otherwise
(2.13)

We choose this simple algorithm for the straightforward linear conversion of the number

of coincident spikes to the weight update.

2.3 Simulating Networks of Spiking Neurons

In the previous section, we described neural dynamics as mathematical models at the

neuronal level. However, it is challenging to simulate a large SNN with a high volume of

synaptic connections, even using simple models such as LIF, because of the high event

rate (104 synaptic events per second per single neuron on average). Addressing this

problem, existing solutions vary from software simulators to neuromorphic hardware.

46 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

2.3.1 Software Simulators

Existing approaches to software simulation can be seen as: ‘clock-driven’ where the

neural state is updated with some fixed time resolution, or ‘event-driven’ where the

membrane potential is only modified when a spike arrives. The synchronous ‘clock-

driven’ method uses numerical integration for solving the Ordinary Differential Equa-

tions (ODEs), that describe the evolution functions of the membrane potential with

respect to time. However, with updates only on the time clocks (usually at 1 ms res-

olution), the non-linear differential equations can only be approximated rather than

solved, and the spike times lose precision since they are bound to discrete time steps.

‘Event-driven’ approaches, in comparison, are accurate since they use explicit solutions

of the ODEs and the spike arrival time is not rounded to time bins. Unfortunately,

apart from LIF neurons, all the other models described in Section 2.2.2 are analytically

unsolvable. The high synaptic event rate (104 Hz per neuron) takes no advantage of

computational efficiency using this asynchronous approach. Therefore, most of the

popular software simulators use a ‘hybrid’ solution, including NEST [Gewaltig and

Diesmann, 2007] and Brian [Goodman and Brette, 2008], where neural state is up-

dated synchronously, but the synapse operates in an event-based way.

Another software tool, PyNN [Davison et al., 2008], is a description language for

building SNNs; it abstracts away the detail of various simulators and provides uni-

fied APIs for any simulator that supports it. Consequently, neuroscientists and SNN

designers do not need to learn different ‘languages’ for specific simulators, and the

models written in PyNN are supposed to run freely on the supporting simulators.

Most of the SNN models developed in this thesis are described in PyNN and run on

NEST, and some of them are also tested on a hardware simulator, SpiNNaker [Furber

et al., 2014], which will be introduced in the following section. In Chapter 5 we develop

our own SNN simulator to implement and test a proposed learning algorithm, and the

simulator follows the synchronous convention due to its programming simplicity and

flexible neural model selection.

2.3. SIMULATING NETWORKS OF SPIKING NEURONS 47

2.3.2 Neuromorphic Hardware

Neuromorphic systems can be categorised as analogue, digital, or mixed-mode ana-

logue/digital, depending on how neurons, synapses and spike transmission are imple-

mented. Some analogue implementations exploit sub-threshold transistor dynamics

to emulate neurons and synapses directly in hardware [Indiveri et al., 2011] and are

more energy-efficient while requiring less area than their digital counterparts [Joubert

et al., 2012]. However, the behaviour of analogue circuits is hard to control through

the fabrication process due to transistor mismatch [Indiveri et al., 2011; Pedram and

Nazarian, 2006; Linares-Barranco et al., 2003], and achievable wiring densities render

direct point-to-point connections impractical for large-scale systems.

The majority of mixed-mode analogue/digital neuromorphic platforms, such as

the High Input Count Analog Neural Network (HI-CANN) [Schemmel et al., 2010],

Neurogrid [Benjamin et al., 2014], and HiAER-IFAT [Yu et al., 2012], use analogue

circuits to emulate neurons and digital packet-based technology to communicate spikes

using Address-Event Representation (AER) [Lazzaro and Wawrzynek, 1995] protocol.

This enables reconfigurable connectivity patterns between the neurons and fulfils the

real-time requirement.

Digital neuromorphic platforms such as TrueNorth [Merolla et al., 2014] use digital

circuits with finite precision to simulate neurons in an event-driven manner to minimise

the active power dissipation. Such systems suffer from limited model flexibility, since

neurons and synapses are fabricated directly in hardware with only a small subset

of parameters under the control of the researcher. The SpiNNaker many-core neu-

romorphic architecture [Furber et al., 2014] uses low-power programmable cores and

scalable event-driven communications hardware allowing neural and synaptic models

to be implemented in software. While software modelling provides great flexibility,

digital platforms generally have reduced precision (due to the inherent discretisation)

and higher energy consumption when compared to analogue platforms.

48 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

2.3.3 Neuromorphic Sensory and Processing Systems

Neuromorphic engineers have successfully produced visual and auditory silicon devices

mimicking the biological retina and cochlea, and boosted the applications of spike-

based sensory processing in artificial vision and audition.

The visual input is captured by a DVS (Dynamic Visual Sensor) silicon retina [Del-

bruck, 2008; Serrano-Gotarredona and Linares-Barranco, 2013], which is quite differ-

ent from conventional video cameras. Each pixel generates spikes when its change in

brightness reaches a defined threshold; thus, instead of buffering video into frames, the

activity of pixels is sent out and processed continuously with time. The level of activ-

ity depends on the contrast change; pixels generate spikes faster and more frequently

when they are subject to more active change. The sensor is capable of capturing

very fast moving objects (e.g., up to 10K rotations per second), which is equivalent to

100K conventional frames per second [Leñero-Bardallo et al., 2011]. However, DVSs on

the market are still expensive to purchase, thus we present an extensible behavioural

emulator of a DVS using a conventional digital camera, pyDVS [Garibaldi et al., 2016].

The binaural silicon cochlea [Liu et al., 2010] models the elementary functions of

the cochlea including the basilar membrane, the Inner Hair Cells (IHCs), and the

Spiral Ganglion Cells (SGCs). The input sound wave of each cochlea is filtered by

a 64 channel bank of cascaded filters to model the frequency distribution along the

basilar membrane. IHCs located at each frequency channel perform approximately

as half-wave rectifiers, since they release neurotransmitter only when their stereocilia

bend in one direction driven by the basilar membrane. The transformation from

mechanical waves to electrical action potentials completes at the SGCs, where four

pulse-frequency modulators at each frequency channel act like SGCs and generate

spikes with individual thresholds.

The output spikes from the sensory devices are then communicated to back-end

SNN processing using the asynchronous AER protocol. Visual/auditory recognition

on such complete neuromorphic hardware systems has emerged in pursuit of efficient

energy cost and low sensory latency. However, these hardware SNN simulators either

run on FPGAs [Neil and Liu, 2014; Kiselev et al., 2016] or analogue circuits [Qiao

et al., 2015] thus are limited in scale.

SpiNNaker provides an ideal platform for real-time visual/auditory processing with

2.3. SIMULATING NETWORKS OF SPIKING NEURONS 49

(a) Picture of the neuromorphic visual processing platform. From left to
right: a silicon retina, an FPGA board which converts AER packets to
SpiNNaker format, and a 48-node SpiNNaker system.

(b) Picture of the neuromorphic auditory pro-
cessing platform which is similar to (a) in that
a silicon cochlea (top) connects to a SpiNNaker
board (lower right) through an FPGA (left).

(c) Picture of the omni-directional
platform with embedded low-level
motor control and elementary sen-
sors: stereo silicon retinas, wheel en-
coders, and a bump-sensor ring.

Figure 2.9: Three set-ups of neuromorphic sensory and processing hardware platform
using SpiNNaker.

50 CHAPTER 2. SPIKING NEURAL NETWORKS (SNNS)

large SNN models. Figure 2.9 shows three set-ups of such ‘stand-alone’ neuromorphic

sensory and processing hardware platforms, which can be operated on their own as

closed-loop systems (Figure 2.9(c)). The visual system, shown in Figure 2.9(a), ran

a 5-layered SNN model [Liu and Furber, 2015] we designed for live gesture recogni-

tion, which contained a network of 74,210 neurons and 15,216,512 synapses, and used

290 SpiNNaker cores in parallel and reached 93.0% accuracy. We also successfully

implemented a sound localisation model of spiking neurons on an auditory system,

see Figure 2.9(b), which could operate with input spikes with sub-millisecond reso-

lution [Lagorce et al., 2015]. These works prove that real-time, large-scale, sensory

neuromorphic systems are ready for further study in effective cognition and the gen-

uine intelligence capabilities of such biological-plausible machines.

2.4 Summary

This chapter introduced the structure and behaviour of biological neurons and illus-

trated how these neural dynamics can be modelled by mathematical abstractions as

spiking neurons, which are the basic components of an SNN. The difference between

biologically-plausible spiking neuronal operations and rate-based artificial activations

holds the key to the research question: how to equip SNNs with cognitive capabili-

ties equivalent to ANNs. Finally, we gave an overview of all the tools and hardware

platforms which are used later in the thesis for SNN simulations.

Chapter 3

Deep Learning

Deep Learning research in the field of Artificial Neural Networks (ANNs) has dom-

inated state-of-the-art solutions on cognitive tasks, e.g. the performance exceeding

human-level on image classification tasks [He et al., 2015] and playing GO [Silver et al.,

2016]. Merging Deep Learning techniques into Spiking Neural Networks (SNNs), intro-

duced in the previous chapter, may provide an answer to the problem of how to operate

SNNs to perform equivalently to ANNs in cognitive tasks. In this chapter, we will give

an overview of popular architectures and models of Deep Learning in Section 3.1, and

the rest of this chapter will illustrate the mechanisms of Convolutional Networks (Con-

vNets), Autoencoders (AEs), and Restricted Boltzmann Machines (RBMs) in detail

which will be used in following chapters.

3.1 Brief Overview

Deep Learning has become the answer to increasing number of artificial intelligence

problems since Hinton et al. [2006] firstly proposed the training method of the Deep

Belief Network. However, Deep Learning is not new ‘magic’, but rather has a history

over a few decades. Its sudden success is the result of the availability of an increasing

amount of training data, the growing size of network models and greater computational

power. Therefore, all the classical Deep Learning architectures date back to the last

century, even before the ‘Deep Learning’ name was coined. In this section, we briefly

introduce some of the influencing techniques.

51

52 CHAPTER 3. DEEP LEARNING

3.1.1 Classical Models

We call the well-known and widely-used Deep Learning models ‘classical’ and give

a brief introduction to those models in this section. As mentioned above, the first

break-through in training deep, as opposed to shallow (≤ 3 layers), networks was

the greedy layer-wise strategy [Hinton et al., 2006] proposed to train stacked RBMs,

which will be described in more detail in Section 3.4. Shortly after, this method

was proved also to be efficient for training other kinds of deep networks including

stacked AEs [Bengio et al., 2007] (stated in Section 3.3). RBMs and AEs are suitable

for dimensionality reduction and feature extraction when trained with unsupervised

learning on unlabelled data. In 2012, using such an unsupervised Deep Learning

architecture, the Google Brain team achieved a milestone in the Deep Learning era;

the neural network learned to recognise cats by ‘watching’ 10 million images generated

from random frames of YouTube videos [Le, 2013].

ConvNets are biologically inspired from the significant discovery of Hubel and

Wiesel that the orientation selectivity (simple cells) and pooling mechanism (complex

cells) represent the basic functions in the primary visual cortex in cats [Hubel and

Wiesel, 1962]. These simple cells fire at a high frequency to their preferred orientation

of visual stimuli within their receptive fields (shown in Figure 2.2), small sub-regions

of the visual field. Meanwhile, a complex cell corresponds to the existence of a pat-

tern within a larger receptive field but loses the exact position of the pattern. The

NeoCognitron [Fukushima and Miyake, 1982] was the first network to mimic the func-

tions of V1 simple and complex neurons in an ANN, and later this feature detection of

single cells was improved by sharing weights among receptive fields in LeNet-5 [LeCun

et al., 1998], the typical ConvNet used today. The mechanism of shared weights forms

the essence of convolution in a ConvNet, which hugely reduces the number of weight

parameters in a network. The most significant milestones produced by deep ConvNet

dominated the best performances in the annual ImageNet Challenge [Russakovsky

et al., 2015]: AlexNet [Krizhevsky et al., 2012], VGG Net [Simonyan and Zisserman,

2014], GoogLeNet [Szegedy et al., 2015] and ResNet [He et al., 2016].

Despite the powerful capabilities of these feed-forward deep networks, sequence

processing is a challenge for them since the size of the input and output vectors are

constrained to the number of neurons. Thus Recurrent Neural Networks (RNNs),

3.1. BRIEF OVERVIEW 53

containing feed-back connections, are ideal solutions for dealing with sequential infor-

mation since their current output is always dependent on the previous ‘memory’. As

training mechanisms have become more mature, for example using the Long Short-

Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997], RNNs have shown great

success in many natural language processing tasks: language modelling [Mikolov et al.,

2010], machine translation [Sutskever et al., 2014], speech recognition [Graves and

Jaitly, 2014] and image caption generation [Karpathy and Fei-Fei, 2015].

3.1.2 Combined Approaches

The current trend in Deep Learning is to combine machine learning algorithms towards

more complex objectives such as sequential decision making and data generation.

Reinforcement Learning (RL) is inspired from animal behaviour when agents learn

to make sequential optimised decisions to control an environment. To address com-

plex decision making problems in practical life, RL requires a sufficiently abstract

representation of the high-dimensional environment. Fortunately, Deep Learning just

complements the requirement which performs effectively at dimensionality reduction

and feature extraction. The milestone achieved by the integration of RL and deep

networks, deep RL, drew everyone’s attention to artificial intelligence when AlphaGo

beat a professional human player at Go [Silver et al., 2016].

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are proposed

for training generative models of complex data. Instead of training discrimination net-

works (e.g. image classification using CovNets) and generation networks (e.g. data

sampling on RBMs) separately with different objectives, GANs train two competing

networks, one the discriminator, the other the generator, simultaneously by continu-

ously making them play games with each other. Thus, the generator learns to produce

more realistic data to fool the discriminator; meanwhile the discriminator learns to

become better at distinguishing generated from real data. Exciting achievements have

been reported in generating complex data such as realistic image generation based on

descriptions in text [Radford et al., 2015].

54 CHAPTER 3. DEEP LEARNING

Input image
28×28

Convolution
6 Kernels

@5×5

Simple Cells in
Feature Maps

6@24×24

Complex Cells in
Feature Maps

6@12×12

Pooling
@2×2

Simple Cells in
Feature Maps

12@8×8

Convolution
12 Kernels

@5×5

Complex Cells in
Feature Maps

12@4×4

Pooling
@2×2

Fully Connected
192*10

10 Label Neurons

Input Conv Conv Pool Pool FC

Figure 3.1: Typical ConvNet architecture.

3.2 Convolutional Networks

In Chapter 4, we will use a convolutional network to demonstrate a training method

for spiking deep architectures. This section aims to give a detailed introduction to

ConvNet architectures and their training with Backpropagation.

3.2.1 Network Architecture

A typical ConvNet, LeNet 3.1, shown in Figure, consists of four types of neural layers:

an input layer, convolutional (Conv) layers of simple cells, pooling (Pool) layers of

complex cells and fully-connected (FC) layers. From the left to right of Figure 3.1, we

illustrate the mechanism of the ConvNet in detail.

The pixels of the input image are normalised and fed into the first Conv layer. Every

simple cell takes inputs within its receptive field and the weights on each input pixel

are determined by the convolutional kernel which has the same size as the receptive

field. The neurons work as demonstrated in Figure 2.6(a) performing a dot product

between the weights and the input volume of a receptive field; this is followed by an

activation function. Convolving a whole input image with a kernel composes a feature

map in the Conv layer, thus in this LeNet example there are 6 feature maps in the

first Conv layer. Stride controls the output volume of a convolution such that setting

the stride to step causes the kernel to move step pixels at a time. Thus a small stride

produces more output volume and highly overlapping receptive fields. Suppose an

3.2. CONVOLUTIONAL NETWORKS 55

input image and a kernel are both squares, with side lengths of lin and lk, then the

side length of the convolved feature map is (lin − lk + 1)/stride.

The special characteristics of Conv layers lie in the local connectivity and the

parameter sharing, such that a neuron connects only to a spatially local input volume,

its receptive field; and the weights (the convolutional kernel) are shared among all the

receptive fields. Consequently, the number of parameters (trainable weights) hugely

decreases compared to all-to-all connections of the same network size.

The complex neurons of the Pool layers either output the maximum input within

their receptive fields (max pooling) or the average (average pooling), by applying a

max/average filter to non-overlapping receptive fields. The pooling process reduces

the spatial size of the feature maps but keeps the number of features. In Chapter 4,

we will use average pooling of 2 × 2 for all the Pool layers, as shown in Figure 3.1.

The average filter traverses an entire feature map with a stride of 2, and outputs the

averaged element of each receptive field to the next layer.

The next Conv layer drives 3D feature vectors with a depth of 6 (six feature maps)

to convolve with 12 3D kernels with size of 6 × 5 × 5. The example demonstrates

a common set-up using all the feature maps of the 3D feature vectors; usually it is

feasible to select a subset of the input feature maps to involve in the convolutions with

each kernel. Then a Pool layer follows the convolution. Repeating these alternating

presentations of a Conv layer and a Pool layer builds up a deeper ConvNet.

The trainable shared weights used in the Conv layer hugely reduce the number

of weight parameters in a ConvNet, while Pool layers use static convolutional kernels

to shrink the size of the network. These convolutional connections can be described

as 6c5-2s-12c5-2s, where αcβ indicates α kernels of side length β used in the Conv

layer, and 2s specifies the side length and the stride of a pooling kernel. In a ConvNet

an FC layer is usually located at the last layer (right in Figure 3.1), and connects

the last Pool layer to the output neurons with all-to-all connections. The strongest

response among the output neurons indicates to which class the input image belongs,

as illustrated in Figure 3.1 where the red neuron represents the first digit out of ten,

‘0’. There can be more than one FC layer at the end of a ConvNet, thereby building

a Multilayer Perceptron (MLP) network. However, in this thesis, we will use only a

single FC layer.

56 CHAPTER 3. DEEP LEARNING

∑
w

net
j

ijx i

x1

x
N

y
j

...

...

jth Artificial Neuron

Figure 3.2: N neurons connect to the jth neuron of the next layer. As illustrated in
Figure 2.6(a), we use a simplified artificial neuron without bias.

3.2.2 Backpropagation

We have described the feed-forward path of a ConvNet to classify an input image. In

this section we will demonstrate the training of a network by back-propagating errors

to tune the connection weights. The objective function (or loss function) estimates

an error by comparing the output vector of M dimension, y = (y1, y2, ..., yM), to

the desired label vector, t = (t1, t2, ..., tM), and the error is to be minimised during

training. Given a set of training data of K elements X = {x1,x2, ...,xK} with desired

labels T = {t1, t2, ..., tK} and the network output Y = {y1,y2, ...,yK} the Mean

Squared Error (MSE) can be seen as the objective function:

L = MSE(T,Y) =
1

2K

K∑
k=1

M∑
m=1

(ykm − tkm)2 . (3.1)

Backpropagation (BP) propagates the gradient of the loss with respect to the

weights backwards to each connection in the network. The computation requires a

closer look into the structure of a neuron, see Figure 3.2, where N neurons connect to

the jth neuron of the next layer, and the neuron converts the weighted summation of

the input, netj, to the output yj according to its activation function.

Thus the gradient of the loss L with respect to a weight wij is as follows:

∂L

∂wij
=
∂L

∂yj

∂yj
∂netj

∂netj
∂wij

= δjxi, where

δj =
∂L

∂yj

∂yj
∂netj

, and

xi =
∂netj
∂wij

.

(3.2)

3.2. CONVOLUTIONAL NETWORKS 57

The term δj represents the error gradient with respect to netj, and can be expressed

by a recursive definition:

δj =
∂L

∂yj

∂yj
∂netj

=


1

K

K∑
k=1

(ykj − tkj)f ′(netj) , if j is in an output layer

(
L∑
l

δlwlj)f
′(netj) , otherwise

, where
∂yj
∂netj

= f ′(netj) , the derivative of the activation function.

(3.3)

It is easy to obtain the first term, ∂L
∂yj

, of δj when j is an output neuron, since it

only involves a single dimension of the output vector. However, when j is in an inner

layer of the network, which connects to L neurons on the next layer, we have to take

the total derivative with respect to yj:
∑L

l δlwjl. The error propagation applies to

any form of connection in a network, such as FC and Conv layers, and the difference

only appears in the summation where the matrix product is used for the FC layer and

convolution for the Conv layer. In addition, when BP is implemented, the weights

are either transposed in the FC layer or rotated in the Conv layer compared to the

forward path.

After error propagation, the BP algorithm updates weights using the optimisation

method, gradient descent, to minimise the objective function. It modifies the weights

by small steps proportional to the negative of the gradients:

∆wij ∝ −
∂L

∂wij
= −ηδjxi , (3.4)

where η defines the length of these updating steps which is also called the learning rate.

Again, the weight update is also dependent on the types of layer, where a convolution

of the input vector x with the error gradient δ is needed in Conv layers. A detailed

description of BP training on ConvNets can be found elsewhere [Bouvrie, 2006].

Moreover, applying Stochastic Gradient Descent (SGD), the gradient over the full

training set can be approximated using only a few, even a single, training data per

weight update. Therefore k in Equation 3.3 can be seen as a randomly selected data

index, and K represents the number of elements in such a data subset, which is

also known as a batch. If we take only one data sample in each batch, the loss

function (Equation 3.1) will be estimated by the error between an output vector yk

58 CHAPTER 3. DEEP LEARNING

10 5 0 5 10
0.0

0.5

1.0

1.5

2.0
ReLU

Sigmoid

(a) Activation functions

10 5 0 5 10
0.0

0.5

1.0

1.5

2.0
ReLU

Sigmoid

(b) Derivatives of the activation functions

Figure 3.3: Activation functions: (a) sigmoid and ReLU, and (b) their derivatives.

and the single label sample tk:

Ek =
1

2

M∑
m=1

(ykm − tkm)2 , (3.5)

and the equation can be simplified by deleting the index k, assuming the error is

computed for each data sample:

E =
1

2

M∑
m=1

(ym − tm)2 . (3.6)

3.2.3 Activation Function and Vanishing Gradient

Each error gradient propagated through layers of the network consists of a chain of

multiplied factors as illustrated in Equation 3.3. The deeper a network is and the

closer a layer is to the input, the more elements are involved in the multiplication

including the derivative of the activation function. Thus, the gradient may vanish if

the derivative of the activation function is always less than 1. For the sigmoid function

example, shown in Figure 3.3(a), the derivative only peaks to around 0.25 when the

input is close to 0, and decays to its minimum as the input either increases or decreases,

see Figure 3.3(b).

The Rectified Linear Unit (ReLU) is proposed to tackle the problem of vanishing

gradients in deep networks [Nair and Hinton, 2010]. ReLU, simply defined as y =

max(0, x) and shown in Figure 3.3, has a gradient of 1 when the input is greater than

0. Hence, the error gradient is able to be back-propagated in deeper networks by

multiplying ReLU derivatives.

3.3. AUTOENCODERS (AES) 59

3.3 Autoencoders (AEs)

Autoencoders are categorised as unsupervised learning systems, since AE aims to

reconstruct its original input as closely as possible. Thus the output and input vectors

have the same dimensionality, but the hidden middle layer is allowed to have either

more, or fewer, neurons for the purpose of compressing the inputs or mapping them

to higher dimensions. Hence the AE is suitable for learning an effective representation

of the original inputs at the hidden layer, which can be seen as the encoding phase

of the AE, and reconstructing them on the output layer where the hidden vectors are

decoded.

Multiple AEs can be stacked to build deep AEs where the hidden layer of a lower AE

represents the input of the upper block, and each AE block can be trained individually

with greedy layer-wise training [Hinton et al., 2006]. A stacked AE takes advantage

of greater expressive power as does any deep network. Taking image processing as

an example, the lower AE blocks learn only simple features, such as edges and dots,

however on the upper layers more complicated and abstract features are extracted:

contours, symbols and even objects.

In this section, we will only describe the structure and training method of single

AE blocks, since the greedy layer-wise training on stacked AEs is no different from

training multiple single AEs except for different input data. Due to the AE’s simple

network architecture and training algorithm, spiking AEs will be built and trained

with a biologically-plausible training mechanism in Chapter 5.

3.3.1 Structure

Figure 3.4 shows the architecture of an AE, which is an MLP consisting of three layers

of neurons: the visible (v), hidden (h) and reconstruction (v′) layers. Both visible and

reconstruction layers have N dimensions, and the hidden layer has M . Note that AEs

usually have tied weights where the connections (wT) between v and h are transposed

to form the connections (w) from h to v′.

60 CHAPTER 3. DEEP LEARNING

h0 h1 hM

v0 v1 v2 vN

V'0 V'1 V'2 V'N

WT

W

...

...

...

Figure 3.4: A typical Autoencoder structure.

3.3.2 Training

The feedforward path of an AE, as for an MLP, non-linearly transforms the input

through two FC layers, where each neuron performs weighted summation and activa-

tion as illustrated in Figure 3.2. Training an AE is also similar to that for an MLP,

however, the difference lies in the objective where the AE aims to minimise the differ-

ence between the input v and its reconstruction v′, instead of between the output and

some labelled data (unsupervised learning). Therefore the loss function generated by

a single data sample v, described in Equation 3.6 for supervised learning, is as follow:

E =
1

2

N∑
n=1

(v′n − vn)2 , (3.7)

and the weight update, shown in Equation 3.4, is proportional to the error gradient

with respect to the weight:

∆wij ∝ −
∂E

∂wij
= −ηδjhi , (3.8)

where η is the learning rate, hi is the hidden neuron and the term δj is the error

gradient with the respect to netj, the weighted summation. The weight tuning needs

only to be applied in the reconstruction layer, since study [Xu, 1993] has proved that

updating the transposed weights wT at the hidden layer does not improve the learning

and the error gradients are usually small. Hence, δj can be calculated according to

Equation 3.3:

δj = (v′j − vj)f ′(netj) , (3.9)

3.4. RESTRICTED BOLTZMANN MACHINES (RBMS) 61

and the weight update can be simply described by:

∆wij = ηhi(vj − v′j)f ′(netj) . (3.10)

If we use ReLU as the activation function, then the above equation is as follow:

∆wij =

ηhi(vj − v
′
j) , netj > 0

0 , netj <= 0
(3.11)

3.4 Restricted Boltzmann Machines (RBMs)

RBMs share similar ideas of unsupervised learning with AEs, but aim to present a

data distribution of some training dataset, rather than reconstructing each sample of

the dataset. Thus, the RBM is an energy-based model and uses a stochastic approach.

Besides that, the structure of an RBM, see Figure 3.5, is also similar to an AE where

the visible units v bidirectionally connect to the hidden units h with strength w.

h0 h1 hM

v0 v1 v2 vN

W

...

...

Figure 3.5: A typical RBM structure.

Despite there are several statistical models and algorithms needed to explain how

RBMs work, the actual training method is rather simple thanks to the use of Con-

trastive Divergence (CD), proposed by Hinton [2002]. We can only illustrate some

of the statistical models and sampling methods involved in RBM training, a detailed

description can be found elsewhere [Fischer and Igel, 2012]. Stacked RBMs are also

trained by layer-wise greedy algorithms, thus this section will focus on training a single

RBM block.

3.4.1 Energy-based Model

In energy-based models, the probability of data point x is defined by a model function

f(x), its energy function E(x) and a partition function Z which normalises the model

62 CHAPTER 3. DEEP LEARNING

function to possibilities by adding up all possible f(x):

p(x) =
f(x)

Z
, where f(x) = e−E(x) , and Z =

∑
x

e−E(x) . (3.12)

The energy function [Hopfield, 1982] of an RBM is defined as follows:

E(v,h | Θ) = −
N∑
i=1

aivi −
M∑
j=1

bjhj −
N∑
i=1

M∑
j=1

viwijhj , (3.13)

where the visible layer has N units, the hidden layer has M , and Θ are the model

parameters used in RBMs Θ = {a,b,w} including biases a and b on the visible and

the hidden layer respectively, and the weights w between the layers. As mentioned in

Section 2.2, for simplicity we use neurons without biases in this thesis. Therefore only

the third term of the complete energy function (Equation 3.13) is kept:

E(v,h | Θ) = −
N∑
i=1

M∑
j=1

viwijhj , (3.14)

and the model parameters are reduced to Θ = {w}. Thus the joint probability of the

visible vector (input) v and the output of the hidden units h is defined as follows:

p(v,h | Θ) =
f(v,h | Θ)

Z(Θ)
, where

f(v,h | Θ) = e−E(v,h|Θ) , and

Z(Θ) =
∑
v

∑
h

e−E(v,h|Θ) .

(3.15)

3.4.2 Objective Function

Given a set of data D = {v1,v2, ...,vK}, the likelihood function of model parameters

Θ defines the probability of the observed outcomes D given Θ:

L(Θ | D) = p(D | Θ) =
K∏
k=1

p(vk | Θ) =
K∏
k=1

f(vk | Θ)

Z(Θ)
. (3.16)

Thus the objective is to maximise the likelihood L(Θ | D); that is to say, the model

parameters Θ that best define the given data D. Furthermore, in order to simplify

the product on the right-hand term in Equation 3.16 the objective function can be

replaced with the average log-likelihood:

l̂(Θ | D) =
1

K
logL(Θ | D) =

1

K

K∑
k=1

log f(vk | Θ)− logZ(Θ) . (3.17)

3.4. RESTRICTED BOLTZMANN MACHINES (RBMS) 63

The derivative of the log-likelihood with respect to a parameter θ is as follows:

∂l̂(Θ | D)

∂θ
=

1

K

∂
∑K

k=1 log f(vk | Θ)

∂θ
− ∂ logZ(Θ)

∂θ

=
1

K

K∑
k=1

∂ log f(vk | Θ)

∂θ
−
∑
x

p(x | Θ)
∂ log f(x | Θ)

∂θ

=

〈
∂ log f(v | Θ)

∂θ

〉
D

−
〈
∂ log f(v | Θ)

∂θ

〉
C∼p(v|Θ)

,

(3.18)

where < · >X denotes the mean expectation of · given data set X. The first term

of the right-hand side is easy to get with the given data, d ∈ D, and the second

term can be approximated by generating data samples C according to p(x | Θ). The

detailed derivation process can be found in the Appendix (Equation A.1). Applying

the RBM model function (Equation 3.15) to the Equation 3.18, we derive the simplified

representation of the derivative of the log likelihood:

∂l̂(Θ | D)

∂θ
=

〈
∂−E(v,h | Θ)

∂θ

〉
{D,Dh∼p(h|v,Θ)}

−
〈
∂−E(v,h | Θ)

∂θ

〉
{Cv,Ch}∼p(v,h|Θ)

,

(3.19)

where the first term of the right-hand side can be gathered from the given data,

{D,Dh}, and the second term will be approximated by sampling {Cv,Ch}. Equa-

tion A.2 in the Appendix derives the loss function of RBMs in detail. Then we plug

the RBM energy function (Equation 3.14) into the equation above, the loss derivative

with respect to the weight is:

∂l̂(Θ | D)

∂wij
= 〈vihj〉{D,Dh∼p(h|v,Θ)} − 〈vihj〉{Cv,Ch}∼p(v,h|Θ) . (3.20)

3.4.3 Contrastive Divergence

Generating data samples for the negative term of Equation 3.20 requires Gibbs sam-

pling on a Markov chain with an infinite number of steps to convergence. Gibbs sam-

pling approximates the joint probability p(v,h | Θ) with the conditionally probability

defined in RBMs:

p(hj = 1 | v) = σ(
M∑
i=1

wijvi) , p(vi = 1 | h) = σ(
N∑
j=1

wjihj) , (3.21)

where σ represents the Sigmoid activation function for Bernoulli-Bernoulli RBMs.

Figure 3.6 illustrates Gibbs sampling on an RBM by k steps where each pair (v,h)

64 CHAPTER 3. DEEP LEARNING

composes a state of the Markov chain, and the joint probability p(v,h | Θ) is approx-

imated by conditional probabilities embedded in the weights (Equation 3.21).

v0 v1 v2 vN...

h0 h1 hM...

v0

h0

v0 v1 v2 vN...

h0 h1 hM...

v1

h1

v0 v1 v2 vN...

h0 h1 hM...

v2

h2

...

v0 v1 v2 vN...

h0 h1 hM...

vk

hk

Gibbs Sampling Step 0Step 0 Step 1 Step 2 Step k

p(h|v,Θ)

p(v|h,Θ)

Figure 3.6: Gibbs sampling on a RBM. The method approximates the joint probability
p(v,h | Θ) by sampling from conditional probabilities p(h | v,Θ) and p(v | h,Θ).
Each sampled data is a pair of vk and hk.

If k →∞, the Markov chain will converge to an equilibrium which represents the

distribution of the model-generated data {Cv,Ch} described by the RBM, and Equa-

tion 3.19 will represent the derivative of the Kullback-Leibler (KL) divergence with

respect to parameter θ. The KL divergence measures the distance between two prob-

ability distributions: the training dataset {D,Dh} and the generated Gibbs samples,

{Cv,Ch}. However, if we take just a few steps, the KL divergence can be seen as a

k-step contrastive convergence (CDk). Even CD1 performs surprisingly well in RBM

training [Hinton, 2002], which means for every weight update there is only one sample

pair (v1, h1) generated from Gibbs sampling. Hence, replacing the mean expectation

with 1-step Gibbs sampled data in Equation 3.20, the RBM training using SGD can

be written as follows:

∆wij = η(v0
i h

0
j − v1

i h
1
j) , (3.22)

and v0
i is a given training data, h0

j is produced with the probability p(h | v0
i ,w), and

the model data pair (v1
i , h

1
j) is generated by 1-step Gibbs sampling.

3.5 Summary

This chapter briefly introduced the most popular Deep Learning techniques and models

for potential use in SNNs. We illustrated the structure and training procedure for three

Deep Learning models: ConvNets, AEs and RBMs, which will be applied in spiking

deep networks in the following chapters.

Chapter 4

Generalised Off-line SNN Training

In the last chapter, we described the promising Deep Learning research in the field of

Artificial Neural Networks (ANNs). An intuitive idea for bringing these Deep Learning

techniques to Spiking Neural Networks (SNNs) is either to transform well-tuned deep

ANN models into SNNs or to translate numerical calculations of weight modulations

into biologically-plausible synaptic learning rules. Based on the former approach, this

chapter proposes a generalised method to train SNNs off-line on equivalent ANNs and

transfer the tuned weights back to the SNNs, while the next chapter explores the latter

idea of converting Deep Learning algorithms directly into on-line synaptic plasticity

rules. Both chapters address the thesis question: how to operate and train SNNs to

make them as competent as ANNs on Artificial Intelligence (AI) tasks.

4.1 Introduction

There are two significant problems to be solved when training SNNs off-line. First,

an accurate activation function is needed to model the neural dynamics of spiking

neurons. In this chapter, we propose a novel activation function used in ANNs, Noisy

Softplus (NSP), to closely simulate the firing activity of Leaky Integrate-and-Fire (LIF)

neurons driven by noisy current influx. The second problem is to map the abstract

numerical values of the ANNs to physical variables, current (nA) and firing rate (Hz),

in the SNNs. Consequently we introduce the Parametric Activation Function (PAF),

y = p × f(x), which successfully associates physical units with conventional activa-

tion functions thus unifies the representations of neurons in ANNs and the ones in

65

66 CHAPTER 4. OFF-LINE SNN TRAINING

SNNs. Therefore, an SNN can be modelled and trained on an equivalent ANN using

conventional training algorithms, such as Backpropagation (BP).

The significance lies in the simplicity and generalisation of the proposed method.

SNN training, now, can be simplified to: firstly, estimate parameters for the PAF using

NSP; secondly, use the PAF version of conventional activation functions to train an

equivalent ANN; and finally transfer the tuned weights directly into the SNN without

any conversion. Regarding the generalisation, it works exactly the same as training

ANNs: the same feed-forward network architecture, BP algorithm and activation func-

tions, and uses the most common spiking neurons, standard LIF, that run on most

neuromorphic hardware platforms.

Therefore, most importantly, this research provides the Neuromorphic Engineer-

ing (NE) community with a simple, but effective and generalised off-line SNN training

method which notably simplifies the development of AI applications on neuromorphic

hardware. In turn, it enables ANN users to implement their models on neuromorphic

hardware without the knowledge of spiking neurons or programming specific hard-

ware; thereby enabling them to benefit from the advantages of neuromorphic comput-

ers: such as real-time processing, low latency, biological realism and energy efficiency.

Furthermore, the success of the proposed off-line training method paves the way to

energy-efficient AI on neuromorphic machines scaling from mobile devices to huge

computer clusters.

In this chapter, we begin by introducing existing solutions to off-line SNN training

in Section 4.2. We then propose the novel activation function, NSP, and demonstrate

how it fits the network dynamics composed of spiking neurons in Section 4.3. Sec-

tion 4.4 illustrates the generalised SNN training method using PAFs. In Section 4.5

we demonstrate the training of a spiking Convolutional Network (ConvNet), and com-

pare the proposed method to existing training algorithms.

4.2 Related Work

We specified the differences between a conventional artificial neuron and a spiking neu-

ron in Section 2.2: a regular artificial neuron comprises a weighted summation of input

data, netj =
∑
xiwi, and an activation function, f , applied to the sum, netj. However

4.2. RELATED WORK 67

...

...

A spiking neuron

Input spike
 trains (S)

wi

s1

si

sn

Output spike

train (Sy)

t

w1

wn Current
influx (I)

Synaptic
efficacy (W)

Membrane
potential (V)

sy

t

Membrane
threshold

PSPs

Action
potential
(Spike)

IS(t) w

S

Figure 4.1: A spiking neuron. Spike trains flow into a spiking neuron as current
influx, trigger linearly summed PSPs through synapses with different synaptic efficacy
w, and the post-synaptic neuron generates output spikes when the membrane potential
reaches some threshold.

the inputs of a spiking neuron (Figure 4.1) are spike trains, which generate current

influx through neural synapses (connections). A single spike creates a current pulse

with an amplitude of w, which is defined as the synaptic efficacy, and the current

then decays exponentially with a decay rate determined by the synaptic time con-

stant, τsyn. The current pulses consequently produce post-synaptic potentials (PSPs)

on the neuron driving its membrane potential to change over time, and trigger spikes

as outcomes when the neuron’s membrane potential reaches some threshold. The dy-

namics of the current influxes, PSPs, membrane potentials, and spike trains are all

time dependent, while the neurons of ANNs only cope with abstract numerical values

representing spiking rate, without timing information. Therefore, these fundamental

differences in input/output representation and neural computation form the main re-

search problem of how to operate and train biologically-plausible SNNs to make them

as competent as ANNs in cognitive tasks. In this chapter, we focus on the solutions

of off-line training where SNNs are trained on equivalent ANNs and then the tuned

weights are transferred to the SNNs.

Jug et al. [Jug et al., 2012] first proposed the Siegert formula [Siegert, 1951] to

model the response function of a spiking neuron, which worked as a Sigmoid unit in

training spiking Deep Belief Networks. The Siegert formula maps incoming currents

driven by Poisson spike trains to the response firing rate of an LIF neuron, similar

to the activation functions used in ANNs which transform the summed input to cor-

responding outcomes. The variables of the response function are in physical units,

thus the trained weights can be transferred directly into SNNs. However, the Siegert

68 CHAPTER 4. OFF-LINE SNN TRAINING

formula is inaccurate as it models the current noise as white [Liu and Furber, 2016],

τsyn → 0, which is not feasible in practice. Moreover, the high complexity of the

Siegert function and the computation of its derivative to obtain the error gradient

cause much longer training times, thus consuming more energy, when compared to

regular ANN activation functions, e.g. Sigmoid. We will illustrate these problems in

detail in Section 4.3.

A softened version of the response function of LIF neurons has been proposed [Huns-

berger and Eliasmith, 2015] and is less computationally expensive than the Siegert

function. However, the model ignores the dynamic noise change introduced by input

spikes, assuming a static noise level of the current influx. Therefore the training re-

quires additional noise on the response firing rate and on the training data; however,

the manually-added noise is far from the actual activity of the network and includes

hyper-parameters in the model.

Although the trained weights can be directly used in SNNs since both the above

LIF response functions accept and output variables in physical units, they struggle

in terms of poor modelling accuracy and high computational complexity. Moreover,

they lose the numerical abstraction of firing rates in ANNs, thus, being constrained to

SNN training. Meanwhile, other widely-used activation functions in ANNs cannot be

transformed to model SNNs. Therefore, the first problem is the accurate modelling of

the neural response activity of LIF neurons using abstract activation functions, in the

hope of (1) increasing the modelling accuracy, (2) reducing the computation complexity

and (3) generalising off-line SNN training to commonly-used ANN activation functions.

These activation functions used in ANNs without physical units are called ‘abstract’

to differ from the response functions of spiking neurons. We select them for LIF

modelling because of the simplicity and generalised use for training ANNs. Thus we

propose the activation function, NSP [Liu and Furber, 2016], in Section 4.3.3 to address

this problem.

Then the second problem is to map the abstract activation functions to physical

units used in SNNs: current in nA and firing rates in Hz. In doing so, the neuronal

activities of an SNN can be modelled with such scaled activation functions and the

trained weights can be transferred into SNNs without conversion. Instead of directly

solving this problem, an alternative way is to train an ANN with abstract activation

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 69

functions and then modulate the trained weights to fit in SNNs. Researchers [Cao

et al., 2015; Diehl et al., 2015b] successfully applied this method on less biologically-

realistic and simplified integrate-and-fire (IF) neurons. Nevertheless, these simple IF

neurons are usually difficult to implement in analogue circuits, thus they are feasible

only on digital neuromorphic hardware, e.g. TrueNorth [Merolla et al., 2014]. Tuning

these trained ANN models to adapt to simplified IF neurons is relatively straightfor-

ward, so this method sets the state-of-the-art performance. However, this chapter (in

Section 4.4) aims to address the second problem of mapping abstract activation func-

tions to the response firing activity of biologically-plausible LIF neurons. Thus, the

training can be not only simplified by using conventional simple activation functions,

such as Rectified Linear Units (ReLUs), but also the method can be generalised to

target standard LIF neurons which are supported by most neuromorphic hardware.

4.3 Siegert: Modelling the Response Function

The response function, in the context of this thesis, indicates the firing rate of a

spiking neuron in the presence of input current. In Section 4.3.1, we introduce the

first use of the Siegert formula to model the response function of an LIF neuron.

Although the Siegert formula enables off-line SNN training, it has several drawbacks,

see Section 4.3.2. Therefore, in Section 4.3.3 we propose the first abstract activation

function, NSP, to model the LIF response function.

4.3.1 Biological Background

In Section 2.2.2, we have demonstrated the LIF neuron model as follows:

τm
dV

dt
= Vrest − V +RmI(t) . (4.1)

The membrane potential V changes in response to the input current I, starting at the

resting membrane potential Vrest, where the membrane time constant is τm = RmCm,

Rm is the membrane resistance and Cm is the membrane capacitance. The central

idea in converting spiking neurons to activation units lies in the response function of a

neuron model. Given a constant current injection I, the response function, i.e. firing

70 CHAPTER 4. OFF-LINE SNN TRAINING

rate, of the LIF neuron is:

λout =

[
τrefrac − τm log

(
1− Vth − Vrest

IRm

)]−1

, when IRm > Vth − Vrest, (4.2)

otherwise the membrane potential cannot reach the threshold Vth and the output firing

rate is zero. The absolute refractory period τrefrac is included, during which period

synaptic inputs are ignored.

However, in practice, a noisy current generated by the random arrival of spikes,

rather than a constant current, flows into the neurons. The noisy current is typically

treated as a sum of a deterministic constant term, Iconst, and a white noise term, Inoise.

Thus the value of the current is Gaussian distributed with mI mean and sI
2 variance.

The white noise is a stochastic process ξ(t) with mean 0 and variance 1, which is

delta-correlated, i.e., the process is uncorrelated in time so that a value ξ(t) at time t

is totally independent on the value at any other time t′. Therefore, the noisy current

can be seen as:

I(t) = Iconst(t) + Inoise(t) = mI + sIξ(t) , (4.3)

and accordingly, Equation 4.1 becomes:

dV

dt
=
Vrest − V

τm
+
mI

Cm
+

sI
Cm

. (4.4)

We then multiply both sides of Equation 4.4 by a short time step dt, the stochastic

differential equation of the membrane potential is:

dV =
Vrest − V

τm
dt+

mI

Cm
dt+

sI
Cm

dWt

=
Vrest − V

τm
dt+

mI

Cm
dt+

sI
√

dt

Cm
r

=
Vrest − V

τm
dt+ µvdt+ σvr .

(4.5)

The last term dWt is a Wiener process; Wt+dt − Wt obeys a Gaussian distribution

with mean 0 and variance dt; thus r is a random number sampled in accordance with

a Gaussian distribution of zero mean and unit variance. The instantaneous mean µv

and variance σv
2 of the change in membrane potential characterise the statistics of V

in a short time range, and they can be derived from the statistics of the noisy current:

µv =
mI

Cm
, σv =

sI
√

dt

Cm
. (4.6)

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 71

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Current (nA)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

Noise level increases

Noise std:
0.0
0.2
0.5
1.0

Figure 4.2: Response function of the LIF neuron with noisy input currents with dif-
ferent standard deviations.

The response function [Rauch et al., 2003; La Camera et al., 2008] of the LIF neuron

to a noisy current, also known as the Siegert formula, is a function of µv and σv:

λout =

[
τrefrac + τm

∫ Vth−µvτm
σv
√
τm

Vrest−µvτm
σv
√
τm

√
π exp(V 2)(1 + erf (V))dV

]−1

. (4.7)

Figure 4.2 shows the response curves (Equation 4.7) of an LIF neuron driven by

noisy currents where the Gaussian noise is of mean mI and standard deviation sI .

The parameters of the LIF neuron are all biologically plausible (see the listed values

in Table 4.1), and the same parameters are used throughout this chapter. The bottom

(zero noise) line in Figure 4.2 illustrates the response function of such an LIF neu-

ron injected with constant current, which inspired the proposal of ReLUs. As noise

increases, the level of firing rates also rises. Thus the Softplus function approximates

the response activity to noisy current, but only represents a single level of noise; for

example, the top line in Figure 4.2 shows the curve when sI = 1.

4.3.2 Mismatch of The Siegert Function to Practice

To verify the Siegert function in practice, simulation tests were carried out using

PyNN [Davison et al., 2008] to compare the reality with the analytical results (the

Siegert function). The noisy current was produced by NoisyCurrentSource in PyNN

which is a constant current of mI added to a Gaussian white noise of zero mean and

72 CHAPTER 4. OFF-LINE SNN TRAINING

Table 4.1: Parameter setting for the current-based LIF neurons using PyNN.

Parameters Values Description

Cm 0.25 nF membrane capacitance

τm 20.0 ms membrane time constant

τrefrac 1.0 ms refractory period

Vreset -65.0 mV resting membrane potential

Vrest -65.0 mV resetting membrane potential

Vth -50.0 mV membrane threshold

Ioffset 0.0 nA offset of current influx

s2
I variance. The noise was drawn from the Gaussian distribution in a time resolution

of dt. We chose dt = 1 ms which is the finest resolution for common SNN simulators,

and dt = 10 ms for comparison. For a given pair of mI and s2
I , a noisy current was

injected into a current-based LIF neuron for 10 s, and the output firing rate was the

average over 10 trials. There were four noise levels tested in the experiments: 0, 0.2,

0.5, 1; and the mean current increased from -0.5 to 0.6 nA.

The dashed curves in Figures 4.3 illustrate the output firing rate of the LIF simu-

lations; while the bold lines are the analytical reference, the Siegert function (same as

Figure 4.2). The differences between the practical simulations and the Siegert function

enlarge when the time resolution, dt, of the NoisyCurrentSource increases from 1 ms

(Figure 4.3(a)) to 10 ms (Figure 4.3(b)). The sampled current signals (NoisyCur-

rentSource) are shown in Figures 4.4 (a) and (b). The discrete sampling of the noisy

current introduces time step correlation to the white noise, shown in Figures 4.4 (e)

and (f), where the value remains the same within a time step dt. Although both

current signals follow the same Gaussian distribution, see Figures 4.4 (g) and (h), the

current is approximately a white noise when dt = 1 ms, but a coloured noise, e.g.

increases Power Spectral Density (PSD) at lower frequency, when dt = 10 ms, see

Figures 4.4 (c) and (d). Therefore, the coloured noise of the current influx drives the

LIF neuron fire observably more intensely. Hence, the Siegert formula, Equation 4.7,

can only approximate the LIF response of noisy current with white noise; but is not

adapted to coloured noise. In practice, the current is generated by random arrivals of

input spikes with various synaptic efficiency, which also brings in coloured noise.

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 73

(a) Current sampled at dt=1 ms.

(b) Current sampled at dt=10 ms.

Figure 4.3: Recorded response firing rate of an LIF neuron driven by NoisyCur-
rentSource in PyNN, compared to the Siegert function. The NoisyCurrentSource is
sampled at every (a) 1 ms and (b) 10 ms. Averaged firing rates of 10 simulation trails
tested on four noisy levels are shown in different colours of dashed lines, and the grey
colour fills the range between the minimum to maximum of the firing rates. The an-
alytical LIF response function, the Siegert formula (Equation 4.7), is drawn in bold
lines (shown in Figure 4.2) to compare with the practical simulations. The selected
noise levels are the same with the LIF simulations, and the curves are plotted with
the same colours as the dashed lines.

74 CHAPTER 4. OFF-LINE SNN TRAINING

dt=1 ms dt=10 ms

500 520 540 560 580 600
Time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5
C

u
rr

e
n

t
(n

A
)

(a) Current sampled at dt=1 ms.

500 520 540 560 580 600
Time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
u

rr
e
n

t
(n

A
)

(b) Current sampled at dt=10 ms.

0 100 200 300 400 500
Frequency (Hz)

10-7

10-6

10-5

10-4

10-3

P
S

D
 (
V

2
/H

z)

(c) Spectrum analysis of (a).

0 100 200 300 400 500
Frequency (Hz)

10-7

10-6

10-5

10-4

10-3

P
S

D
 (
V

2
/H

z)

(d) Spectrum analysis of (b).

0 20 40 60 80
Time (ms)

5

0

5

10

15

20

25

30

35

40

A
u

to
co

rr
e
la

ti
o
n

(e) Autocorrelation of (a).

0 20 40 60 80
Time (ms)

10

0

10

20

30

40

50

A
u

to
co

rr
e
la

ti
o
n

(f) Autocorrelation of (b).

1.0 0.5 0.0 0.5 1.0
Current (nA)

0.0

0.5

1.0

1.5

2.0

G
a
u

ss
ia

n
 P

D
F

Expected Noise
 µ= 0. 00
 σ= 0. 20

Generated Noise
mean= − 0. 01
 std= 0. 20

(g) Distribution of samples of (a).

1.0 0.5 0.0 0.5 1.0
Current (nA)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
a
u

ss
ia

n
 P

D
F

Expected Noise
 µ= 0. 00
 σ= 0. 20

Generated Noise
mean= − 0. 00
 std= 0. 21

(h) Distribution of samples of (b).

Figure 4.4: NoisyCurrentSource samples noisy currents from a Gaussian distribution
every 1 ms (left) and 10 ms (right). The signals are shown in the time domain in
(a) and (b), and in the spectrum domain in (c) and (d). The autocorrelation of both
current signals are shown in (e) and (f). The distribution of the discrete samples are
plotted in bar charts to compare with the PDF of the original Gaussian distribution,
shown in (g) and (h).

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 75

A more realistic simulation of a noisy current can be generated by 100 Poisson

spike trains, where the mean and variance of the current are given by [La Camera

et al., 2008]:

mI = τsyn

∑
i

wiλi , s
2
I =

1

2
τsyn

∑
i

w2
i λi , (4.8)

where τsyn is the synaptic time constant, and each Poisson spike train connects to the

neuron with a strength of wi and a firing rate of λi. Two populations of Poisson spike

sources, for excitatory and inhibitory synapses respectively, were connected to a single

LIF neuron to mimic the noisy currents. The firing rates of the Poisson spike generators

were determined by the given mI and sI . Figure 4.5 illustrates the recorded firing rates

responding to the Poissoin spike trains compared to the mean firing rate driven by

NoisyCurrentSource in Figure 4.3. Note that the estimation of LIF response activity

using the Siegert function requires noisy current with white noise, however in practice

the release of neurotransmitter takes time (τsyn >> 0) and the synaptic current decays

exponentially Isyn = I0e
− t
τsyn . Figures 4.6 (a) and (b) show two examples of synaptic

current of 0 nA mean and 0.2 standard deviation driven by 100 neurons firing at the

same rate and with the same synaptic strength (half excitatory, half inhibitory), but

of different synaptic time constant. Therefore, the current at any time t during the

decay period is dependent on the value at the previous time step, which makes the

synaptic current a coloured noise, see Figures 4.6 (c) and (d).

We observe in Figure 4.5 (a) that the response firing rate to synaptic current is

higher than the NoisyCurrentSource for most of the current range. This is caused by

the coarse resolution (1 ms) of the spikes, thus the standard deviation of the current is

larger than 0.2, shown in Figure 4.6 (g); and the τsyn, even when as short as 1 ms, adds

coloured noise instead of white noise to the current. However, Figure 4.5 (b) shows

a similar firing rate of both the synaptic driven current and the NoisyCurrentSource,

since both of the current signals have similar distribution (Figure 4.6 (h)) and time

correlation (Figure 4.6 (f)). Nevertheless, the analytical response function, the Siegert

formula, cannot approximate either of the practical simulations (see Figure 4.3).

Although the use of the Siegert function opened the door for modelling the LIF

response function to work similarly to the activation functions used in ANNs [Jug

et al., 2012], there are several drawbacks of this method:

• most importantly, the numerical analysis of an LIF response function is far from

76 CHAPTER 4. OFF-LINE SNN TRAINING

(a) τsyn=1 ms.

(b) τsyn=10 ms.

Figure 4.5: Recorded response firing rate of an LIF neuron driven by a noisy synaptic
current, which is generated by random arrivals of Poisson spike trains, compared to
previous experiments using NoisyCurrentSource. Averaged firing rates of 10 simulation
trails tested on three noisy levels are shown in different colours of dashed lines, and
the grey colour fills the range between the minimum to maximum of the firing rates.
The other LIF simulation using NoisyCurrentSource is drawn in bold lines (same as
the dashed lines in Figure 4.3) to compare with the noisy synaptic current. The same
noise level is plotted with the same colour for both experiments. Two synaptic time
constants are tested: (a) τsyn=1 ms, to compare with NoisyCurrentSource sampled
at every 1 ms, and (b) τsyn=10 ms, to compare with NoisyCurrentSource sampled at
every 10 ms.

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 77

τsyn=1 ms τsyn=10 ms

500 520 540 560 580 600
Time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
u

rr
e
n

t
(n

A
)

(a) Current generated by spikes.

500 520 540 560 580 600
Time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
u

rr
e
n

t
(n

A
)

(b) Current generated by spikes.

0 100 200 300 400 500
Frequency (Hz)

10-7

10-6

10-5

10-4

10-3

P
S

D
 (
V

2
/H

z)

(c) Spectrum analysis of (a).

0 100 200 300 400 500
Frequency (Hz)

10-7

10-6

10-5

10-4

10-3

P
S

D
 (
V

2
/H

z)

(d) Spectrum analysis of (b).

0 20 40 60 80
Time (ms)

20

0

20

40

60

80

100

A
u

to
co

rr
e
la

ti
o
n

(e) Autocorrelation of (a).

0 20 40 60 80
Time (ms)

10

0

10

20

30

40

50

A
u

to
co

rr
e
la

ti
o
n

(f) Autocorrelation of (b).

1.0 0.5 0.0 0.5 1.0
Current (nA)

0.0

0.5

1.0

1.5

2.0

G
a
u

ss
ia

n
 P

D
F

Expected Noise
 µ= 0. 00
 σ= 0. 20

Generated Noise
mean= − 0. 02
 std= 0. 31

(g) Distribution of samples of (a).

1.0 0.5 0.0 0.5 1.0
Current (nA)

0.0

0.5

1.0

1.5

2.0

G
a
u

ss
ia

n
 P

D
F

Expected Noise
 µ= 0. 00
 σ= 0. 20

Generated Noise
mean= 0. 01
 std= 0. 21

(h) Distribution of samples of (b).

Figure 4.6: Noisy currents generated by 100 Poisson spike trains to an LIF neuron
with synaptic time constant τsyn=1 ms (left) and τsyn=10 ms (right). The currents are
shown in the time domain in (a) and (b), and in the spectrum domain in (c) and (d).
The autocorrelation of both current signals are shown in (e) and (f). The distribution
of the generated samples are plotted in bar chart form to compare to the expected
Gaussian distribution, shown in (g) and (h).

78 CHAPTER 4. OFF-LINE SNN TRAINING

accurate in practice. ‘Practice’ in the chapter means SNN simulations using LIF

neurons. Thus the inaccurate model generates errors between the estimation and

the practical response firing rate.

• the high complexity of the Siegert function causes much longer training times

and more energy, let alone the high-cost computation on its derivative.

• The Siegert function is used to replace sigmoid functions for training spiking

Restricted Boltzmann Machines (RBM) [Jug et al., 2012]. Therefore neurons

have to fire at high frequency (higher than half of the maximum firing rate) to

represent the activation of a sigmoid unit; thus the network activity results in

high power dissipation.

• better learning performance has been reported using ReLU than Sigmoid units,

so modelling spiking neurons with a ReLU-like activation function is needed.

Therefore, we propose the NSP function which provides solutions to the drawbacks

of the Siegert unit.

4.3.3 Noisy Softplus (NSP)

Due to the limited time resolution of common SNN simulators and the time taken

for neurotransmitter release, τsyn, mismatches exist between the analytical response

function, the Siegert formula, and practical neural activities. Consequently to model

the practical LIF response function (see Figure 4.7(a)) whose output firing rates are

determined by both the mean and variance of the noisy input currents, the NSP is

proposed as follows:

y = fNSP(x, σ) = kσ log[1 + exp(
x

kσ
)] , (4.9)

where x and σ refer to the mean and standard deviation of the input current, y

indicates the intensity of the output firing rate, and k, determined by the biological

configurations on the LIF neurons [Liu and Furber, 2016] (listed in Table 4.1), scales

the impact of the noise thereby controlling the shape of the curves. Note that the

novel activation function we proposed contains two parameters, the mean current and

its noise, which takes the values estimated by Equation 4.8: mI and s2
I . Since the

4.3. SIEGERT: MODELLING THE RESPONSE FUNCTION 79

(a) Response firing rate of an LIF neuron

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y
=
k
σ
lo

g[
1

+
ex

p
(x
/
k
σ
)]

Noise level increases

k : 0.16
σ : Noise std

0.01
0.2
0.5
1.0
1.5
2.0

(b) NSP

Figure 4.7: NSP models the LIF response function. (a) Firing rates measured by
simulations of an LIF neuron driven by different input currents and discrete noise
levels. Bold lines show the average and the grey colour fills the range between the
minimum and the maximum. (b) NSP activates the input x according to different
noise levels where the noise scaling factor k = 0.16.

NSP takes two variables as inputs, the activation function can be plotted in 3D, see

Figure 4.8.

Figure 4.7(b) shows the activation function in curve sets corresponding to different

discrete noise levels which mimics the responding activities of practical simulations of

LIF neurons, shown in Figure 4.7(a). It is note worthy that, the non-smooth curve

(blue line in Figure 4.7(a) generated by σ = 0) of the LIF response activities does

not fit into the NSP function. It is a limitation of using NSPs to model spiking rates

80 CHAPTER 4. OFF-LINE SNN TRAINING

x
0.4 0.2 0.0 0.2 0.4σ

0.0

0.3
0.6

0.9

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.8: Noisy Softplus in 3D.

when the noise level approaches to 0. However, we ignore the minor mismatch to

unify and simplify the model, since the results show an acceptable performance drop

in Section 4.5. In addition, scaling, shifting and parameter calibrations are essential

to accurately fit the NSP to actual LIF response activities. We will illustrate the

procedure in Section 4.4.1.

The derivative of the NSP is the logistic function scaled by kσ:

∂fNSP(x, σ)

∂x
=

1

1 + exp(− x
kσ

)
, (4.10)

which could be applied easily to back propagation in any ANN training.

4.4 Generalised Off-line SNN Training

We have briefly discussed modelling the LIF response activities of a LIF neuron with

an abstract activation function, NSP. Function transformations are essential to pre-

cisely map the numerical values of NSP to physical variables in SNNs. Therefore, to

optimise the modelling of the LIF response function, we curve fit parameters of the

NSP (e.g. Figure 4.7(b)) to approximate the actual firing activities (e.g. Figure 4.7(a))

in Section 4.4.1. Section 4.4.2 includes the parameters in the proposed activation func-

tion, PAF, to unify the presentation of activation functions for both ANNs and SNNs.

Thus, a generalised off-line SNN training method (Section 4.4.3) is completed using

PAF. Moreover, a corresponding fine tuning method is put forward to increase the

training capability in Section 4.4.4.

4.4. GENERALISED OFF-LINE SNN TRAINING 81

4.4.1 Mapping NSP to Concrete Physical Units

The inputs of the NSP function, x and σ, are obtained from physical variables as stated

in Equation 4.8: mI and sI , thus they are already in physical units (nA). Therefore,

linearly scaling up the activation function by a factor S (Hz / nA) can approximate

the output firing rate λout of an LIF neuron in Hz. Moreover, including a bias b on

the input x allows the curves set move freely on the x-axis to better fit into the actual

firing activities:

λout ' fNSP(x− b, σ)× S = kσ log[1 + exp(
x− b
kσ

)]× S . (4.11)

Suitable calibrations of the noise scaling factor k, input bias b and mapping scaling

factor S in Equation 4.11 enable NSP to closely match the practical response firing

rates of LIF neurons given various biological parameters. The parameters of (k, b, S)

are curve-fitted with the triple data points of (λout, x, σ) and the calibration currently

is conducted by linear least squares regression. The output firing rate λout is measured

from SNN simulations where an LIF neuron is driven by synaptic input currents of

Poisson spike trains; and x and σ take the mean and variance of the noisy current by

using Equation 4.8. Figure 4.9 shows two calibration results in which the parameters

were fitted to (k, b, S) = (0.18, 0.07, 201.66) when the synaptic constant is set to τsyn =

1 ms and was fitted to (k, b, S) = (0.35, 0.03, 178.91) when τsyn = 10 ms.

To keep the simple format of traditional activation functions, y = f(x), which has

no constant bias on the input, it is easy to pass the bias b to the LIF parameter,

the constant current offset, Ioffset = b. Therefore the specific parameter Ioffset of the

LIF neuron is not arbitrarily chosen, but configured by precise estimation on b. More

importantly, setting Ioffset properly on LIF neuron instead of having a constant bias

on the input of an activation function keeps the hyper-parameters unchanged in ANN

training. For example, the initial weights of a network have to be carefully set to adapt

to a constant bias on the activation function.

4.4.2 Parametric Activation Functions (PAFs)

Neurons in ANNs take inputs from their previous layer, and feed the weighted sum of

their input, netj =
∑

iwijxi, to the activation function. The transformed signal then

82 CHAPTER 4. OFF-LINE SNN TRAINING

(a) τsyn=1 ms

(b) τsyn=10 ms

Figure 4.9: NSP fits to the response firing rates of LIF neurons in concrete physical
units. Averaged firing rates of 10 simulation trails tested on three noisy levels are
shown in different colours of dashed lines, and the grey colour fills the range between
the minimum to maximum of the firing rates (same as the dashed lines in Figure 4.5).
The bold lines are the scaled NSP, where the same noise level is plotted with the
same colour as the LIF simulations. The parameters used in the experiments are as
follows: (a) τsyn=1 ms for LIF simulation, and k=0.18, S=201.66, b=0.07 for NSP; (b)
τsyn=10 ms for LIF simulation, and k=0.35, S=178.91, b=0.03 for NSP.

4.4. GENERALISED OFF-LINE SNN TRAINING 83

∑
w

net
j

ijx i

x1

x
N

y
j

...

...

jth Artificial Neuron

Figure 4.10: A copy of Figure 3.2 showing a general artificial neuron where an activa-
tion function transforms the weighted sum netj to its outcome yj.

forms the output of an artificial neuron, which can be denoted as yj = f(netj), see

Figure 4.10.

Equation 4.8 illustrates the physical interpretation of the input of an NSP function,

the noisy current influx, which has the mean of mI , and the variance of S2
I . To

express the physical parameters with the same form of the weighted summation, net,

in a conventional ANN, the mean and variance of the noisy current influx can be

represented with net x and net σ2:

net xj =
∑
i

wij(λiτsyn) , net σ2
j =

∑
i

(
1

2
w2
ij)(λiτsyn) . (4.12)

In accordance with netj =
∑

iwijxi, the input xi of an artificial spiking neuron can be

seen as:

xi = λiτsyn . (4.13)

Figure 4.11 illustrates the process that an NSP-modelled artificial spiking neuron takes

the input vector x which is converted from the input firing rate λ; transforms the

weighted sum net xj and net σ2
j to the abstract output yj; and scales up yi with the

factor S to the output firing rate λj.

If instead of multiplying every input firing rate λi by τsyn (left of Fig. 4.11) we do

it in every output firing rate after λj, (right of Fig. 4.12) we obtain the same neuron

model and structure as a typical neuron in ANNs, see Figure 4.10, that neurons take

x as input and output abstract value y.

The only difference lies in the activation function where the artificial spiking neuron

takes PAF, which is a simple linearly-scaled activation function with a parameter p.

The parameter is determined by the product of the scaling factor S and the synaptic

84 CHAPTER 4. OFF-LINE SNN TRAINING

∑

0.5w2

j

λ1

y

...

...

jth Artificial Spiking Neuron

×τsyn

x i

x1

x
N

...

... ∑

wij

ij

λ i

λN

λ j
×S

net_xj

net_σ2

j

Figure 4.11: An artificial spiking neuron modelled by NSP. A spiking neuron takes
firing rate λi as its input, which then forms the abstract numerical equivalence by
multiplying the synaptic constant: xi = λiτsyn. The NSP transforms the noisy current
influx including both the mean (net xj, solid lines) and the variance net σ2

j (dashed
lines) to the abstract firing rate yj. Finally, the output of the NSP is mapped to the
physical units, firing rates (λj) in Hz, by multiplying S.

∑

0.5w2

net_x

jy

j

jth Artificial Spiking Neuron

x i

x1

x
N

...

... ∑

wij

ij

net_σ2

j

λ j
×S ×τsyn

Parametric Activation Function

Figure 4.12: An artificial spiking neuron modelled by PAF-NSP, whose input and
output are numerical values, equivalent to those of ANNs. PAF includes the scaling
factors S and the synaptic time constant τsyn in the combined activation function,
which links the firing activity of a spiking neuron to the numerical value of ANNs.

time constant τsyn:

y = p× f(x) = S × τsyn × f(x) , (4.14)

where f(x) represents a typical conventional activation function, e.g. ReLU.

The derivative function of PAF, which is used for back propagation, is:

∂y

∂x
= p× f ′(x) = S × τsyn × f ′(x) . (4.15)

PAF not only allows NSP to model spiking LIF neurons on ANNs. Once the

parameter p is acquired the PAF can be generalised to other Relu-like activation

functions. Because Softplus and NSP will both converge to ReLU, when the input

increases, so they can share the scaling factor p. Note that the calculation of noise

level is not necessary for other activation functions, thus they only take the mean of

4.4. GENERALISED OFF-LINE SNN TRAINING 85

the current influx as the input (the solid lines in Figure 4.12). So the noise level can

be set to a constant for Softplus or considered as 0 for ReLU.

It is also significant to transform numerical values of training and testing data to

firing rates in the first/last layer of the SNN. In order to keep the firing rate in a valid

range of an LIF neuron, e.g. less than the maximum firing rates of λmax = 1/τrefrac, we

can scale the labelling data of the last layer by multiplying λmax/S during training.

Thus according to PAF (Equation 4.14), the maximum firing rate of such an output

neuron would be 1 ∗ λmax/S ∗ S = λmax. We can certainly choose a much lower rate

of λmax, say 200 Hz, to keep the NSP fit to the actual LIF response activities better,

since the parameters of PAF are curve-fitted to a limit working range of output firing

rates. For the input layer, it is the easiest to keep the original abstract values as x;

then in the SNN test, we divide x by τsyn to get the input firing rates of Poisson spike

trains, see Equation 4.13. But, it is also flexible to linearly map the numerical values

to a range of firing rates by multiplying K Hz. Then, we use x×K × τsyn as the new

input of the training network; and x×K as firing rates of spike trains in SNN testing.

4.4.3 Training Method

The simple idea of PAF presented in the previous section allows the use of common

ANN training methods to obtain SNN-compatible weights. Consequently, training

SNNs can be done in three simple steps:

1. Calibrate the parameters (k, b, S) for Noisy Softplus which models the response

firing rates of LIF neurons, thus to estimate the parameter p = S×τsyn for PAFs

and to set the LIF parameter Ioffset = b. Since (k, b, S) are solely dependent on

the biological configurations of an LIF neuron, the same p can be shared with dif-

ferent activation functions and repeatedly used for various network architectures

and applications.

2. Train any feed-forward ANN with a PAF version of a ReLU-like activation func-

tion. Training compatibility allows us to choose computationally simple activa-

tion functions to increase training speed.

As stated in Section 3.2, the Backpropagation algorithm updates weights using

the optimisation method, stochastic gradient descent, to minimise error between

86 CHAPTER 4. OFF-LINE SNN TRAINING

the labels and the predictions from the network.

3. Transfer the trained weights directly to the SNN, which should use the same LIF

characteristics used in Step 1.

4.4.4 Fine Tuning

As stated above, we can train the network with any PAF version of conventional

ReLU-like activation functions, and then fine-tune it with PAF-NSP in the hope of

improving the performance of the equivalent SNN by closely modelling the spiking

neurons with NSP. Additionally, we add a small number, for example 0.01, to all the

binary values of the labels on the training data. Although binary labels enlarge the

disparities between the correct recognition label and the rest for better classification

capability, spiking neurons seldom stay silent even with negative current influx, thus

setting labels to 0 is not practical for training SNNs. Therefore, adding an offset

relaxes the strict objective function of predicting exact labels with binary values.

There are two aspects to the fine tuning which make the ANN closer to SNNs:

Firstly, using the NSP activation functions causes every single neuron to run at a

similar noise level as in SNNs, thus the weights trained by other activation functions

will be tuned to fit closer to SNNs. Secondly, the output firing rate of any LIF neuron

is greater than zero as long as noise exists in their synaptic input. Thus adding a small

offset on the labels directs the model to approximate practical SNNs. The result of

fine tuning on a ConvNet will be demonstrated in Section 4.5.3.

4.5 Results

Finally, the proposed generalised SNN training method is put into practice. We train

a 6-layer ConvNet with PAF-NSP, and transfer the tuned weights into an equivalent

SNN. The detailed description of the experiment can be found in Section 4.5.1. We

then observe the single neuronal activities of the trained SNN (Section 4.5.2), com-

pare the learning (Section 4.5.3) and recognition performance (Section 4.5.4) between

activation functions, and estimate the power consumption of the SNN running on

neuromorphic hardware (Section 4.5.5).

4.5. RESULTS 87

4.5.1 Experiment Description

A spiking ConvNet was trained on the MNIST [LeCun et al., 1998] dataset, using the

generalised SNN training method stated above. The architecture (784-6c-6p-12c-12p-

10fc illustrated in Section 3.2) contains 28×28 input units, followed by two convolution-

pooling layers with 6 and 12 convolutional kernels each, and 10 output neurons fully

connected to the last pooling layer to represent the classified digit.

To train the ConvNet, firstly, we estimated parameter p for PAFs given LIF con-

figurations listed in Table 4.1 and τsyn = 0.005 s, p = S × τsyn = 1.085, where

(k = 0.31, b = 0.1, S = 217) were calibrated using NSP. Secondly, the training em-

ployed PAFs with three core activation functions: ReLU, Softplus and NSP to compare

their learning and recognition performance. The weights were updated using a decay-

ing learning rate, 50 images per batch and 20 epochs. Finally, the trained weights were

then directly transferred to the corresponding spiking ConvNets for recognition test

on the SNN simulator, NEST [Gewaltig and Diesmann, 2007]. To validate the effect of

fine tuning, we took another training epoch to train these models with PAF-NSP with

data labels shifted by +0.01. Then the weights were also tested on SNN simulations

to compare with the ones before fine-tuning.

At the testing stage, the input images were converted to Poisson spike trains [Liu

et al., 2016] and presented for 1 s each. The output neuron which fired the most

indicated the classification of an input image.

4.5.2 Single Neuronal Activity

To validate how well the NSP activation fits the response firing rate of LIF neurons

in SNNs, we simulated one of the PAF-NSP trained ConvNets on NEST. Ten testing

images were presented with spike trains whose firing rates were calculated as: λ =

x/τsyn. The inputs were convolved with a trained 5× 5 kernel, and the output firing

rates of the spiking neurons were recorded, see Figure 4.13.

The recorded firing rates are compared to the predictions of these PAFs: λ′ =

S × f(x) = y/τsyn, see Figure 4.14. The estimated spike counts using NSP fitted

the real recorded firing rate much more accurately than ReLU and Softplus. The

Euclidean distances,
√∑

j(λ
′
j − λj)2, between the spike counts and the firing rates

88 CHAPTER 4. OFF-LINE SNN TRAINING

(a) 10 input digits presented in Poisson spike trains.

0

10

20

30

40

50

60

70

80

90

100

(b) Pixel firing rates in Hz.

0.16

0.12

0.08

0.04

0.00

0.04

0.08

0.12

0.16

(c) 5×5 weights kernel
(synaptic efficacy in nA).

0

20

40

60

80

100

120

140

(d) Convolved output in Hz.

0

1

2

3

4

5

6

7

8

9
0

20

40

60

80

100

120

140

160

180

(e) Output firing rates of classification neurons.

Figure 4.13: Images presented in spike trains convolve with a weight kernel. (a) The
28× 28 Poisson spike trains in raster plot, representing 10 digits in MNIST. (b) The
firing rate of all the 784 neurons of the fourth image, digit ‘0’, is plotted as a 2D image.
(c) One out of six of the trained kernels (5 × 5 size) in the first convolutional layer.
(d) The spike trains plotted as firing rate of the neurons in the convolved 2D map. (e)
Output firing rates for recognising these digits.

4.5. RESULTS 89

predicted by NSP, ReLU and Softplus were 180.59, 349.64 and 1293.99 respectively.

We manually selected a static noise level of 0.45 for Softplus, whose estimated firing

rates located roughly on the top slope of the real response activity. This resulted in

a longer Euclidean distance than using ReLU, since most of the input noisy currents

were of relatively low noise level in this experiment. Hence, the firing rate driven by

the lower noise level is closer to the ReLU curve than to Softplus.

Note that there is a visible mismatch between the actual firing rates and the model

estimation on the lower right region in Figures 4.14(a, c), where the blue dots (actual

spike counts) fall lower the bound of ReLU. It is consistent with the statement in

Section 4.3.3 that the LIF response activities does not fit into the NSP function when

the noise level is low (approaching to 0). However, the minor mismatch does not result

in poor performance on classification accuracy.

0.6 0.4 0.2 0.0 0.2 0.4
Input Current(nA)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(a) Recorded data vs. ReLU.

0.6 0.4 0.2 0.0 0.2 0.4
Input Current(nA)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(b) Recorded data vs. Softplus.

0.6 0.4 0.2 0.0 0.2 0.4
Input Current(nA)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(c) Recorded data vs. NSP.

Figure 4.14: The recorded firing rate of the convolution of the same kernel with 10
images in SNN simulation, compared to the firing rate prediction by S × f(x). NSP
(a) fits to the neural response firing rate of LIF neurons more closely than ReLU (b)
and Softplus (c).

90 CHAPTER 4. OFF-LINE SNN TRAINING

Figure 4.15: Comparisons of loss during training using Noisy Softplus, ReLU and
Softplus activation functions. Bold lines show the average of three training trials, and
the grey colour illustrates the range between the minimum and the maximum values
of the trials.

Figure 4.13(e) demonstrates the output firing rates of the 10 recognition neurons

when tested with the digit sequence. The SNN successfully classified the digits where

the correct label neuron fired the most. We trained the network with binary labels

on the output layer, thus the expected firing rate of correct classification was 1× S =

217 Hz according to Equation 4.13. The firing rates of the recognition test fell to the

valid range. This shows another advantage of the NSP that we can estimate the firing

rate of an SNN by S×fNSP(x) running its equivalent ANN, instead of simulating SNNs.

Moreover, we can constrain the expected firing rate of the top layer, thus preventing

the SNN from exceeding its maximum firing rate, for example 1 KHz when the time

resolution of the simulation is set to 1 ms.

4.5.3 Learning Performance

Before looking into the recognition results, it is significant to see the learning capability

of the novel activation function, NSP. We compared the training using ReLU, Softplus,

and NSP by their loss during training averaged over three trials, see Figure 4.15. ReLU

learned fastest with the lowest loss, thanks to its steepest derivative. In comparison,

Softplus accumulated spontaneous ‘firing rates’ layer-by-layer and its derivative may

4.5. RESULTS 91

NSP ReLU Softplus
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy

DNN_Orig

SNN_Orig

SNN+FT

Figure 4.16: Classification accuracy. The trained weights were tested using the same
activation function as training (DNN Orig), then transferred to an SNN and tested on
NEST simulation (SNN Orig), and finally fine-tuned to be tested on SNN (SNN FT)
as well.

experience gradual or even vanishing gradients during back propagation, which result

in more difficult training. The recognition performance of NSP lay between these

two. The loss stabilised to the same level as Softplus, because of the same problem of

gradual gradients.

However, the learning stabilised the fastest using NSP which may be caused by

the accurate modelling of the noise. Similar findings have shown that networks with

added noise, e.g. dropout [Srivastava et al., 2014], are much faster to train. The result

is promising that NSP may shorten the training time.

4.5.4 Recognition Performance

Classification Accuracy

The classification errors for the tests are investigated by comparing the average classi-

fication accuracy among three trials, shown in Figure 4.16. At first, all trained models

were tested on the same artificial neurons as used for training in ANNs, and these

experiments were called the ‘DNN’ test since the network had a deep structure (6

layers). Subsequently, the trained weights were directly applied to the SNN without

any transformation, and these ‘SNN’ experiments tested their recognition performance

on the NEST simulator. From DNN to SNN, the classification accuracy declines by

92 CHAPTER 4. OFF-LINE SNN TRAINING

0.80%, 0.79% and 3.12% on average for NSP, ReLU and Softplus. The accuracy loss

is caused by the mismatch between the activations and the practical response firing

rates, see examples in Figure 4.14, and the strict binary labels for NSP and Softplus

activations. Fortunately, the problem is alleviated by fine tuning which increases the

classification accuracy by 0.38%, 0.19% and 2.06%, and results in the total loss of

0.43%, 0.61%, and 1.06% respectively. Softplus benefited the most from fine tuning,

since the huge mismatch (Figure 4.14(c)) of response firing rate is greatly corrected.

The improvement of NSP is obtained from the offset on the labels which helps the

network to fit practical SNNs. As the recognition performance of ReLU is already

high, there is little room for improvement. Even though the fine-tuning procedure

does its job, the gain in accuracy is the smallest for this activation function.

The most efficient training in terms of both classification accuracy and algorithm

complexity, takes PAF-ReLU for ANN training and PAF-NSP for fine tuning. The

best classification accuracy achieved by a larger spiking ConvNet (784-16c-16p-64c-

64p-10fc) was 99.07% after fine tuning, a 0.14% drop from the ANN test (99.21%).

The network reached the recognition rate of 98.7% even without fine tuning, thus we

suggest to make fine tuning an optional step for training.

Comparisons in Literature

It is useful to compare with existing SNN training methods shown in Table 4.2 where

we order them on the computation complexity (descending). The generalised training

method presented here uses simple abstract activation functions, e.g. PAF-ReLU; it

requires no modulations of trained weights to adapt to SNNs, but uses a single optional

additional processing of fine tuning; The training method is well fitted to biologically-

plausible LIF neurons, which are supported by most neuromorphic platforms. Regard-

ing the classification accuracy, it achieves the state-of-the-art performance of SNNs and

compares favourably with all the other methods using LIF neurons. The combination

of these features compose a method with exceptional performance and ease of use for

training SNNs.

4.5. RESULTS 93

T
ab

le
4.

2:
S
N

N
tr

ai
n
in

g
m

et
h
o
d
s

co
m

p
ar

is
on

.

M
et

h
o
d

A
ct

iv
a
ti

on
F

u
n

ct
io

n

B
io

lo
gi

ca
ll

y
-

p
la

u
si

b
il

it
y

A
d

d
it

io
n

al
P

ro
ce

ss
in

g
W

ei
gh

ts
C

on
ve

rs
io

n

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

(%
)

[J
u

g
et

al
.,

20
1
2]

S
ie

ge
rt

Y
e
s

N
o

N
o

94
.9

4
[S

tr
om

a
ti

as
et

a
l.

,
2
01

5a
]

[H
u

n
sb

er
ge

r
an

d
E

li
a
sm

it
h

,
20

1
5]

S
of

t
L

IF
Y

e
s

N
oi

sy
in

p
u

ts
an

d
ac

ti
va

ti
on

s
N

o
9
8.

3
7

[D
ie

h
l

et
a
l.

,
2
0
15

b
]

R
e
L

U
N

o
D

ro
p

ou
t

Y
es

9
9
.1

T
h

is
C

h
ap

te
r

P
A

F
(p
×

R
eL

U
)

Y
e
s

N
o

or
fi

n
e

tu
n

e
N

o

9
8.

7
2

9
9
.0

7
(fi

n
e

tu
n

e
)

94 CHAPTER 4. OFF-LINE SNN TRAINING

(a) Before fine tuning

(b) After fine tuning.

Figure 4.17: The classification accuracy of 3 trials (averaged in bold lines, grey shading
shows the range between minimum to maximum) over short response times, with (a)
trained weights before fine tuning, and (b) after fine tuning.

Recognition Time

As it is a major concern in neuromorphic vision, the recognition performance over short

response times is also estimated in Figure 4.17. After fine tuning, Softplus significantly

reduced the mismatch since the randomness among the three trials shrinks to a range

similar to other experiments. Fine tuning also improved its classification accuracy

and the response latency. Notice that all of the networks trained by three different

activation functions showed a very similar stabilisation curve, which means they all

reached an accuracy close to their best after only 300 ms of biological time.

4.6. SUMMARY 95

4.5.5 Power Consumption

Noisy Softplus can easily be used for energy cost estimation for SNNs. For a single

neuron, the energy consumption of the synaptic events it triggers is:

Ej = λjNjTEsyn

=
yjNjTEsyn

τsyn

,
(4.16)

where λj is the output firing rate, Nj is the number of post-synaptic neurons it connects

to, T is the testing time, and Esyn is the energy cost for a synaptic event of some

specific neuromorphic hardware, for example, about 8 nJ on SpiNNaker [Stromatias

et al., 2013]. Thus to estimate the whole network, we can sum up all the synaptic

events of all the neurons: ∑
j

Ej =
TEsyn
τsyn

∑
j

yjNj. (4.17)

Thus, it may cost SpiNNaker 0.064 W, 192 J running for 3, 000 s with synaptic events

of 8 × 106/s to classify 10, 000 images (300 ms each) with an accuracy of 98.02%.

The best performance reported using the larger network may cost SpiNNaker 0.43 W

operating synaptic event rate at 5.34 × 107/s, consume 4271.6 J to classify all the

images for 1 s each.

4.6 Summary

We presented a generalised off-line SNN training method to tackle the research prob-

lem of equipping SNNs with equivalent cognitive capability to ANNs. This training

procedure consists of three simple stages: first, estimate parameters for PAF using

NSP; second, use a PAF version of conventional activation functions for ANN train-

ing; third, the trained weights can be directly transferred to the SNN without any

further transformation.

Regarding the generalisation, the training not only uses popular activation func-

tions in ANNs, e.g. ReLU, but also targets standard LIF neurons which are widely

used on neuromorphic hardware. Therefore, the proposed method remarkably sim-

plifies the training of AI applications for neuromorphic hardware; thereby paving the

way to energy-efficient AI on the brain-like computers: from neuromorphic robots to

clusters. Moreover, it lowers the barrier for AI engineers to easily access neuromorphic

96 CHAPTER 4. OFF-LINE SNN TRAINING

hardware without the need to understand SNNs or the hardware. Furthermore, this

method requires the least computation complexity while performing most effectively

among existing algorithms. In terms of classification/recognition accuracy, the per-

formance of ANN-trained SNNs is nearly equivalent to ANNs, and the performance

loss can be partially solved by fine tuning. The best classification accuracy of 99.07%

using LIF neurons in a PyNN simulation outperforms state-of-the-art SNN models of

LIF neurons and is equivalent to the best result achieved using IF neurons. Another

important feature of accurately modelling LIF neurons in ANNs is the acquisition

of spiking neuron firing rates. These will aid deployment of SNNs in neuromorphic

hardware by providing power and communication estimates, which would allow better

usage or customisation of the hardware platforms.

Chapter 5

On-line SNN Training with

Spike-Based Rate Multiplication

In the previous chapter we argued that deep Spiking Neural Networks (SNNs) can be

trained simply off-line on equivalent Artificial Neural Networks (ANNs) and are equally

capable of classifying hand written digits as are deep ANNs. This chapter continues

the discussion of the main research problem to narrow the gap of cognitive capabilities

between spiking and conventional neural networks. Instead of transforming off-line

trained ANN models into SNNs, we explore on-line approaches which directly modulate

the plastic synapses between spiking neurons in a biologically-plausible manner.

5.1 Introduction

Before we investigate the proposed method, it is helpful to clarify what on-line learning

addresses in the context of this thesis and what special features exist in SNN training.

Researchers in neuromorphic engineering seem to take the term ‘on-line training’ for

granted [Neil, 2013; Neftci et al., 2013] without describing it clearly. The on-line

approach exploits biologically-plausible learning rules, e.g. Spike-Timing-Dependent

Plasticity (STDP). Therefore, the modulation of the synaptic weights is event-driven

by the spikes and operates in biological real time. On the contrary, ‘off-line’ training

usually takes place on an equivalent ANN and the network parameters are tuned using

traditional algorithm, e.g. gradient descent.

Therefore, some special features appear in the on-line systems. Firstly, on-line

97

98 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

systems ‘learn through play’ in that there is no separation between a training and a

testing phase. Typically, the systems learn and improve their capability continuously

as more data is fed into them. Secondly, they ‘live and learn’ which means on-line

learning never stops. Thus, it is easy for an on-line system to learn a new task, by

simply providing different data. However, once a model is trained off-line, it remains

fixed and stops learning. The brain is a natural on-line system, thus bringing its

learning techniques to SNNs will equip neuromorphic computers with genuine learning

capability, moving towards Neuromorphic Cognition.

One of the practical problems, the stability-plasticity dilemma [Grossberg, 1987], is

a typical example which only exists in artificial systems but not in the brain. Off-line

trained systems cannot learn anything new, whereas on-line learning systems easily

lose their previous knowledge. However, the brain intuitively achieves both stability

and plasticity simultaneously; it maintains gained knowledge while being plastic in

respond to new input. Hence, there will be important lessons, such as controlling

learning, protecting memories/memory segmentation, and etc., to learn from the brain

before an on-line SNN system delivers genuine learning capability.

The main difficulty in proposing effective on-line methods is the lack of knowledge

about learning in the brain. The STDP learning rule, presented by Bi and Poo [1998]

(see Section 2.2.4 for detail), and its variations make up the majority of the biologically

plausible on-line learning methods. However, the most common training algorithm for

an ANN, Backpropagation (BP), is difficult to transform into STDP, since STDP

usually works locally with a teaching signal in supervised learning; but, BP does

not provide the teaching targets for all the hidden units of a network. Therefore,

existing on-line approaches, including our proposed method, favour greedy layer-wise

unsupervised training in Deep Learning [Hinton et al., 2006].

Another problem is to transform numerical calculations of weight changes into

spike-based synaptic learning rules. Existing methods suffer from performance loss

due to imprecise translation. To address this problem, we propose the Spike-based

Rate Multiplication (SRM) method. This algorithm transforms numerical calculations

of weight tuning accurately into precise parameter configurations of equivalent STDP

rules. We select multiplication to transform into SNNs for the reason that it is the

core operation in the greedy layer-wise training of Autoencoders (AEs) and Restricted

5.2. RELATED WORK 99

Boltzmann Machines (RBMs).

Moreover, correlations between spike trains bring down the learning performance

drastically after it peaks, thus the learning has to be manually stopped to avoid per-

formance drop. The problem makes ‘live and learn’ far from achievable in practice.

Therefore, we put forward four methods to reduce the spike correlations while learn-

ing, thereby providing potential solutions to achieving genuine on-line learning on

neuromorphic hardware.

To begin with in Section 5.2 we explore the research question of on-line, event-based

deep SNN training in the literature. In Section 5.3 we describe SRM mathematically,

and explain the factors influencing the accuracy of the method. We then argue why

the learning algorithm is suited to train spiking Autoencoders (SAEs) and Spiking

Restricted Boltzmann Machines (SRBMs) in Section 5.4. During the research we

encountered the problem of correlated spikes, and propose solutions to decorrelate

spike trains in Section 5.5. Finally, experiments in Section 5.6 show that this on-line

training method achieves better performance than existing algorithms and approaches

the same, sometimes superior performance of the equivalent non-spiking methods using

detailed comparisons on the MNIST dataset.

5.2 Related Work

The first on-line training algorithm using unsupervised Deep Learning was event-based

Contrastive Divergence (evtCD) [Neil, 2013] for SRBMs, which established the feasibil-

ity of applying the STDP rule to an approximate CD algorithm. A review of training

methods for RBM algorithms is given in Section 3.4. The evtCD method divided the

learning process into potentiation and depression parts, which forms the basic design

of related research. Although it was also the first to intuitively transform numerical

calculations to STDP rules, as an initial attempt mathematical estimation of the pa-

rameters was mainly ignored. Therefore the best classification performance achieved

was only about 81.5% on the MNIST task, using purely spiking neurons. Neftci et al.

[2013] derived the division of potentiation and depression to their event-based CD

algorithm, but conducted both parts on the same neural populations which was more

100 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

biologically plausible. Therefore, a global signal was needed to differentiate the poten-

tiation and depression process. The rhythmic oscillation of these processes generated

a particular form of neural sampling [Petrovici et al., 2013]. The work focused on the

statistical aspect of the event-driven sampling, and was extended to the later work

on Synaptic Sampling Machines (S2Ms) [Neftci et al., 2016] using stochastic synapses.

The classification accuracy on MNIST was 91.9%, 1.7% lower than the conventional

RBM, however was improved to 95.4% by the S2M using the edge tool of Deep Learn-

ing: dropout [Srivastava et al., 2014]. Another similar work on SRBM training [Bur-

bank, 2015] applied the STDP rule to train SAEs in a very much biologically-plausible

manner. This work aimed at constructing artificial machine learning algorithms close

to biology, whereas the other works above focused on training spiking Deep Learning

modules with recognition capability.

The work we propose was mostly inspired by the supervised time-based spiking

learning rule, ReSuMe [Ponulak and Kasinski, 2010], where the output spikes of a

post-synaptic neuron were trained to fire at the same times as the teaching spikes,

see Figure 5.1. The teaching signal always potentiates the synaptic strength while

the output spikes of the post-synaptic neuron always depress the connection, and the

weight change ∆w updates in accordance with the exponential STDP curve against

the time difference between a post- and a pre-synaptic spike. Therefore, as illustrated

in Figure 5.1, at the beginning the teaching spike fires earlier than the post-synaptic

spike within an STDP window, τwin which makes the weight potentiate more than

it depresses; thus (shown in the middle of Figure 5.1) driven by a stronger synaptic

weight, the post-synaptic neuron fires earlier than it is supposed to, making the weight

depress a bit more than its potentiation; finally, the weight stays unchanged because

the post-synaptic neuron fires coincidently with the teaching spike, thus the weight’s

potentiation cancels out the depression.

The inspiration of the proposed method is to provide a learning rule equivalent to

ReSuMe on rate-encoded SNNs. The objective is to cause the post-synaptic neuron

to fire at the frequency of the teaching spike train. Accordingly, the weight decreases

if the output neuron fires stronger than the teaching neuron, and vice versa. The

synaptic strength stops changing when the output neuron fires at the same frequency

as the teaching signal. In the following section, we will firstly describe this idea

5.3. SPIKE-BASED RATE MULTIPLICATION (SRM) 101

Figure 5.1: A pair of pre- and post-synaptic neurons trained by ReSuMe [Ponulak and
Kasinski, 2010] with a teaching signal.

Figure 5.2: The architecture of an ADALINE network.

mathematically using the proposed term SRM, and equip the method with the ability

to learn using a biological-plausible STDP rule.

5.3 Spike-based Rate Multiplication (SRM)

Following the idea of reconstructing teaching signals in rate-based networks, we firstly

look into existing models in ANNs. If we see pre, post and teach individually as

vectors, and w as a weight matrix of the all-to-all connections between pre and post in

Figure 5.1, it will form the ADALINE (Adaptive Linear Element) [Widrow and Hoff,

1960] network, see Figure 5.2. The ‘post’ neurons perform a weighted sum on the

input data, and the error between their output and the teaching data is propagated

to update the weights, thus to train the network to generate the same output as the

102 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

teacher. The learning algorithm was named Widrow-Hoff after the researchers:

∆w = η(teach− post)pre . (5.1)

The right hand side of the equation can be seen as a subtraction of two multiplica-

tion operations, teach × pre and post × pre, times a learning rate, η. Similarly, the

unsupervised learning of AEs and RBMs has the same form of weight modulation, see

Equations 3.11 and 3.22:

∆w = η(ab− cd) . (5.2)

Especially for the training of AEs, the weight updates are the same as Equation 5.1 if

using the Rectified Linear Unit (ReLU) as the activation function.

Therefore, multiplications are the core operations in the training of these rate-

based ANN models. Thus we propose the SRM accurately to transform the product

of rates to weight tuning of event-based, biologically-plausible learning in SNNs. There

are a few steps to be followed: (1) represent the rate multiplication with simultaneous

spikes generated from a pair of connected spiking neurons; (2) capture the simultaneous

events in the weight change of the synaptic connection using the STDP learning rule.

(3) precisely transform the learning rate η to parameters used in SRM.

1. Presenting rates with spikes

Firstly, the multiplier a and the multiplicand b are encoded into Poisson spike trains

sa(t) = {sa(1), sa(2), ..., sa(T)} and sb(t) = {sb(1), sb(2), ..., sb(T)} with 1 ms resolu-

tion, where s(t) = 1 indicates a spike in the tth ms and s(t) = 0 means no spike.

Secondly, a Poisson generator fires a sequence of spikes according to its firing rate,

λ Hz, which is assigned linearly to the original multiplier/multiplicand with a scaling

factor of K. Hence, the firing rate (λx) of the Poisson generator is K times the nu-

merical value x, and can be approximated by the average spike count, NT (sx), of the

generated spike train sx(t) over time T ms:

λx = Kx ≈ NT (sx) =
1000

T

T∑
t=1

sx(t) , (5.3)

1000 is the scale factor to transform frequency per millisecond to frequency per second.

Significantly, the approximation is more accurate as the observation time (T) grows

since more spikes are generated over time and the average spike count becomes more

5.3. SPIKE-BASED RATE MULTIPLICATION (SRM) 103

Figure 5.3: Rectangular STDP curve. If the time difference between the post-synaptic
spike and the pre-synaptic spike lies in the window τwin, then the synaptic weight will
increase or decrease by ηs.

reliable. Thirdly, assuming sa(t) and sb(t) are independent Poisson spike trains the

core definition of the rate multiplication of the pair of spike trains is as follows:

λaλb ≈ NT1(sa)NT2(sb) = 106

∑T1
ta=1 sa(ta)

T1

∑T2
tb=1 sb(tb)

T2

. (5.4)

Finally, if we constrain the length of the observing time T2 to a short time window

τwin after each time step in T1, the rate multiplication can be approximated with

coincident spikes:

λaλb ≈
106

τdurτwin

τdur∑
t=1

[sa(t)

t+τwin∑
tb=t

sb(tb)] , (5.5)

where τdur replaces T to represent the length of generated spike trains during SNN

simulation. Consequently, the rate multiplication can be conducted within only the

local events in terms of time, although the accuracy may drop. Here, we define the

SRM function:

λaλb ≈ SRM(sa, sb) =
106

τdurτwin

τdur∑
t=1

[sa(t)

t+τwin∑
tb=t

sb(tb)] . (5.6)

2. Capturing coincident spikes with STDP.

The weight rise/drop according to a rectangular STDP curve can detect the spike

events of a pair of neurons when a post-synaptic spike occurs coincidently (within

τwin), see Figure 5.3:

∆w = STDP(sa, sb)

= ηs

τdur∑
t=1

[sa(t)

t+τwin∑
tb=t

sb(tb)] ,
(5.7)

where ηs represents the learning rate of the STDP rule. Therefore, the overall weight

change during time τdur is determined by the number of coincident spikes of the pair of

104 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

neurons, indicating the rate multiplication, and is described by SRM (Equation 5.6):

SRM(sa, sb) =
106

τdurτwin

τdur∑
t=1

[sa(t)

t+τwin∑
tb=t

sb(tb)]

=
106

τdurτwinηs
STDP(sa, sb)

=
106

τdurτwinηs
∆w .

(5.8)

3. Translating abstract numerical multiplication to SRM

If we separate the weight updates of Equation 5.2 to a positive ∆w+ and a negative

part ∆w−, the weight tuning can be described as:∆w+ = ηab

∆w− = −ηcd
. (5.9)

Thus, it is straight forward to estimate the parameter ηs to precisely transform the

weight update from numerical calculations to spike-based learning rules:

∆w+ = ηab =
ηλaλb
K2

≈ ηSRM(sa, sb)

K2

=
η106

τdurτwinηsK2
∆w+ ,

to make the above equation work, 1 =
η106

τdurτwinηsK2
,

thereby, ηs+ =
η106

K2τdurτwin

,

and similarly, ηs− = − η106

K2τdurτwin

.

(5.10)

So far we have accurately transformed numerical calculations of weight tuning to

precise parameters of the SRM, thereby to the parameters of the STDP rules. In

another word, the final learning algorithm is implemented by constructing the STDP

rule and setting proper parameters: the time window τdur, the learning rates ηs+

and ηs−; and during training, the weights between any two connected neuron will be

continually modified when synchronous spikes occur.

Last but not least, we state the property of the SRM algorithm:

• the accuracy of SRM is mainly controlled by τdur and τwin, where longer spike

trains and a longer STDP window express the rate more reliably.

5.4. TRAINING DEEP SNNS 105

• in our spiking neural network both the multiplier and the multiplicand are pre-

sented only as rates, which are positive quantities. Thus a negative product is

applied with weight decrease, ηs−.

• the multiplier and the multiplicand are interchangeable due to the independence

of the spike trains.

• the accuracy is independent of the neural and synaptic models of the spiking

neuron because the calculation relies only on the firing rate.

5.4 Training Deep SNNs

We have theoretically deduced the approximation of the numerical weight update to

the one-line spike-based STDP rules. This section attempts to verify the SRM method

in practice, thus we compare the learning performance of the conventional Deep Learn-

ing models to their spiking versions. We record the reconstruction performance of the

models, and carefully observe the dynamics of weights modifications, the activities of

the hidden and output neurons and the reconstruction loss. The experimental setup is

described in Section 5.4.1, and the same experiments are carried out on all the training

models for objective comparisons: AEs in Section 5.4.2, RBMs in Section 5.4.3, SAEs

in Section 5.4.4 and SRBMs in Section 5.4.5.

5.4.1 Experimental Setup

There were two set-ups of the same network architecture (Figure 5.4) where ten vis-

ible neurons connected to a layer of ten hidden neurons symmetrically with all-to-all

weights: in Experiment 1 (Exp1), each dimension (out of 10) of the input data was 1,

input1 = [1, 1, 1, ..., 1]; and in Experiment 2 (Exp2), the values ranged from 0.1 to 1

linearly with steps of 0.1, input2 = [0.1, 0.2, 0.3, ..., 1]. For both experiments, the same

input data, either input1 or input2, is presented 5, 000 times for every trial of training.

These two experiments provided a close observation of the dynamic weight change

given constant inputs. Exp1 showed how the network responded to the same input

value and reconstructed it, while Exp2 demonstrated the influence of ranging input

values and, more importantly, how different firing rates may affect the corresponding

106 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

Figure 5.4: Symmetric weights connected between visible (v) and hidden (h) units in
AEs and RBMs to reconstruct visible inputs, v′.

SNN. These experiments were run as baselines to compare with spike-based training

on the features of weight convergence, reconstruction error and neural activities.

The initial weights were randomly generated with unified distribution from 0 to 0.01

and the learning rate of conventional models η, was set to 0.001, and for spike-based

training was set to 0.0001. We kept the same initial weights for all the experiments

thus providing an accurate comparison of the weight updates. The input data vector

of ten dimensions, seen as an image, repeatedly fed into the network 5, 000 times

during training. Representing a data vector with the term ‘image’ helps us to better

demonstrate the reconstruction task, and to have a unified expression as images in the

MNIST dataset for later use. As a ’live and learn’ system, there was no end to the

learning, however for the purpose of observing the reconstruction performance, the

weights were frozen every 10 steps of training and were validated on the testing data.

Initially, AEs and RBMs were trained with clean numerical values, then with noisy

values generated by counting the spikes in Poisson spike trains. The noisy data was

gathered from the SNN experiments in Section 5.4.4. All the SNN experiments used

the same training and testing Poisson spike trains for the purpose of the unified ex-

perimental environment.

The input values were scaled up by the factor of K = 100 Hz, thus the firing rates of

the poisson spike trains are λ1 = [100, 100, 100, ..., 100] Hz and λ2 = [10, 20, 30, ..., 100]

Hz. The spike count Nτdur of the generated Poisson spike train then transformed to the

noisy input (NI) for use of conventional models: Nτdur × 1000/(τdur ×K). The scaling

factor 1, 000 converts ms to s, and the length of spike trains τdur was 100 ms when

5.4. TRAINING DEEP SNNS 107

(a) Training input of Exp1 (b) Training input of Exp2

(c) Testing input of Exp1 (d) Testing input of Exp2

Figure 5.5: Noisy input gathered from Poisson spike trains.

training, and 1, 000 ms for testing. The longer the spike trains, the less noisy the spike

counts become. The NI can be seen as distorted data by adding Gaussian noise to the

original value. Figure 5.5 shows the NI of Exp1 and Exp2; Every subfigure demon-

strates 5, 000 data vectors, each data vector is shown as a column of coloured points,

and each dimension of the input data is drawn with the same colour; every single data

vector represents the normalised firing rate of a trial of poisson spike trains, whose

actual firing rates can be calculated by multiplying the values of the vector and the

scaling factor K (100 Hz). The actual firing rates are recorded by randomly generated

poisson spike trains given the expected firing rates of λ1 = [100, 100, 100, ..., 100] Hz

and λ2 = [10, 20, 30, ..., 100] Hz. The longer a spike train presents, the more spikes

it has, and the actual firing rate is more likely to be close to the expectation. The

training poisson spike trains are 100 ms long, and the testing spike trains are 10 times

longer, thus the actual firing rates are much more noisy in training data than in the

testing data. Hence, as shown in Figure 5.5, NI added a Gaussian noise with -0.05

mean and 0.29 variance for Exp1, and -0.02 mean and 0.22 variance for Exp2; while

108 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

in terms of testing data, the means of the noise were the same, but the variances were

much smaller: 0.09 for Exp1 and 0.07 for Exp2.

To compare all the following experiments, we present the results in the same tem-

plate of figures: among such a set of figures, (a) and (b) depict the weight changes of

the two experiment set-ups (Exp1 and Exp2) which are the most important output of

the training method; (c) and (d) display the output of the visible units, the reconstruc-

tion of the input vector during testing; (e) and (f) draw the output of the hidden units

during testing and assist the observation of weight change and the reconstruction; (g)

and (h) intuitively show the loss (the mean squared error) and validate the accuracy

of the reconstructions.

Following the experiments on conventional models, we propose the training meth-

ods for SAEs and SRBMs in detail. The same experiments were then applied to the

on-line and spike-based SNN training.

5.4.2 Training AEs

Using ReLU and Equation 3.11, we can easily train a layer of AEs with such a small

network. For Exp1, Figure 5.6 shows the dynamics of the AE as more repeating

images are presented through training. The reconstruction loss reduces exponentially

to the limit of the computer’s floating-point precision (Figure 5.6(g)), and reaches 10−4

using about 600 steps. From that point the weights, visible reconstruction, and the

output of the hidden units nearly stabilise, see Figure 5.6(a,c,e). With the different

input values of Exp2, the training runs slower, taking about 1, 400 steps to reach the

same performance of 10−4 loss (Figure 5.6(h)). The reason for the slower training

is due to the weaker input which also results in lower output of the hidden units

comparing to Exp1, see Figure 5.6(f), thereby slowing down the weight increase. The

reconstructions, shown in Figure 5.6(d), of smaller values stabilises earlier than those

of higher values, since the higher output of the reconstruction requires stronger weights

and more accumulated weight updates.

The same experiments were repeated with noisy training and test data to provide

a fair comparison with the spike-based Deep Learning modules. Figure 5.7 shows the

effect of the NI, although the training stabilises at roughly the same time point. Firstly,

it generates slight fluctuations in the weight change. Secondly, the reconstruction and

5.4. TRAINING DEEP SNNS 109

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

10-29
10-27
10-25
10-23
10-21
10-19
10-17
10-15
10-13
10-11
10-9
10-7
10-5
10-3
10-1

Lo
ss

(g) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Lo
ss

(h) Output of hidden units in Exp2

Figure 5.6: Changes of weights, output of visible and hidden units, and mean squared
error (loss) during the AE training of the reconstruction tests. Experiments 1) 10
visible units fully connected to 10 hidden units with input data of all 1s; 2) the same
network fed with 10 values distributed linearly from 0.1 to 1.

110 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Output of hidden units in Exp2

Figure 5.7: Changes of weights, output of visible and hidden units, and mean squared
error (loss) during the AE training of the noisy reconstruction tests. Experiments 1)
10 visible units fully connected to 10 hidden units with the count of Poisson spikes
firing at 100 Hz which lasted 100 ms; 2) the same network fed with spike count of
Poisson spikes at firing rates ranging from 10 Hz to 100 Hz.

5.4. TRAINING DEEP SNNS 111

the output of the hidden units are noisy compared to those of clean data. However,

the noise is much reduced from the NI data compared to Figures 5.5 (c) and (d),

indicating the robustness of AEs. Finally, the losses keep at a certain level and stops

dropping. The loss in Exp2 is lower than Exp1, in other words the reconstruction on

Exp2 is closer to the input data. This is mainly caused by the weaker noise level on

the smaller input values which makes the data of Exp2 less noisy on average. So is

the reconstruction, which leads to the lower level of loss.

5.4.3 Training Noisy RBMs

Instead of using binary units and sigmoid activations for the RBM, we employed noisy

ReLU (NReLU) units to construct an noisy Restricted Boltzmann Machine (nRBM)

which was closer to biology and performed better in classification tasks [Nair and Hin-

ton, 2010]. Leaving the learning algorithm unchanged, see Equation 3.22 in Section 3.4,

the weight update is as follows:

∆wij = η(hivj − h′iv′j), (5.11)

where a Gibbs sample comprises a pare of h′i and v′j, and the new sampling method

NReLU is equivalent to generating multiple samples in the meantime and averaging

them: max(0, x +N (0, σ(x)). The lower the variance of the normal distribution, the

more samples are taken for averaging; zero variance (equivalent to ReLU) is used

when unlimited samples are generated, but at the same time the sampling itself loses

the randomness. In our experiments the variance of the normal distribution used in

NReLU is 0.1 during training.

Figure 5.8 demonstrates the training process and the test results of the nRBM; both

experiments stabilises earlier than AE training: about 400 and 1, 000 steps respectively.

Due to the randomness of the sampling in the nRBM, there are noisy fluctuations in

the weight change during training, the reconstructions and the output of hidden units

in deterministic testing. In addition, the loss stops declining at around 10−4 because

of the same reason of randomness.

The same experiments were also carried out with the identical NI, see Figure 5.9.

The weight change is slightly noisier than the experiments on clean data, but the

noise is more obvious on the output of the visible reconstruction and the hidden units.

112 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Output of hidden units in Exp2

Figure 5.8: Changes of weights, output of visible and hidden units, and mean squared
error (loss) during the nRBM training of the reconstruction tests. Experiments 1) 10
visible units fully connected to 10 hidden units with input data of all 1s; 2) the same
network fed with 10 values distributed linearly from 0.1 to 1.

5.4. TRAINING DEEP SNNS 113

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f V
is

ib
le

 U
ni

ts

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

es
 o

f H
id

de
n

U
ni

ts

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images(Steps)

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images(Steps)

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Output of hidden units in Exp2

Figure 5.9: Changes of weights, output of visible and hidden units, and mean squared
error (loss) during the nRBM training of the noisy reconstruction tests. Experiments
1) 10 visible units fully connected to 10 hidden units with the count of Poisson spikes
firing at 100 Hz which lasted 100 ms; 2) the same network fed with spike count of
Poisson spikes at firing rate ranging from 10 Hz to 100 Hz.

114 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

The same effect of the NI data can be found in Figure 5.7 where the noise in the

reconstruction is much reduced compared to the input data and the loss remains

about 10−2 and 10−2.5 after the stabilisation, although it takes less time for the nRBM

to converge than AE.

5.4.4 Training Spiking AEs

Equation 3.11 states the learning rule for AEs, which can be approximated by adding

a positive and a negative STDP in SNN training:

∆wij = ηhivj − ηhiv′j

= STDP(shi , svj)− STDP(shi , sv′j)

where, ηs =
η106

K2τdurτwin

.

(5.12)

We use simple linear Integrate-and-Fire (IF) neurons to validate the training algorithm,

whose membrane potential follows the dynamics:

Vi(t+ 1) = Vi(t) +
∑
j

wijsj(t) , (5.13)

and an IF neuron fires when the membrane potential V surpasses the membrane

threshold Vth, and V resets to Vrest after firing or when it reduces below Vrest. The

parameters used are listed in Table 5.1.

Table 5.1: Parameter setting of SRM and IF neurons for training SAEs and SRBMs.

Parameters Values Description

K 100 linear scaling factor

τdur 100 ms length of training spike trains

τwin 10 ms window length of STDP

η 10−3 learning rate of AEs and RBMs

ηs+ 10−4 positive learning rate of SAEs and SRBMs

ηs− −10−4 negative learning rate of SAEs and SRBMs

Vrest 0 mV resting membrane potential

Vth 1 mV membrane threshold

The weight increase takes place in the positive STDP learning between the neurons

of the input (v) and the hidden units (h); the weight decrease is carried out in the

negative STDP learning between the reconstruction (v′) and the hidden neurons (h).

5.4. TRAINING DEEP SNNS 115

Figure 5.4 shows the network architecture of an SAE where the hidden units connect

to the reconstruction neurons with the weight matrix w and the input neurons feed-

forward to the hidden layer with the transposed tied weights wT. The shared weights,

with the three individual populations of neurons, compose the training network of an

SAE, see Figure 5.10 (Left).

Figure 5.10: Network architecture and the learning algorithm of a spiking AE.

Figure 5.10 (Right) illustrates the learning mechanism of the SAE architecture

by giving an example of one hidden neuron hi connected to an input neuron vj and

connecting to a reconstruction neuron v′j with the same strength wij. The weight wij

rises by ηs+ (marked with an up-arrow) when a spike comes within the period of τwin

after the hidden neuron fires; and it decreases by ηs− (marked with a down-arrow) if

the reconstruction neuron generates a spike in the same time window. If either vj or

v′j spikes outside the effective STDP window, the weight will remain unchanged. The

learning continues as long as the neurons are active, however the weights may stay

relatively stable when the input firing rate is the same as the reconstruction’s.

To reproduce the experiments of the AEs, we selected the parameters (see Ta-

ble 5.1) for training SAEs and also apply the same parameters for SRBM experiments.

Each input vector (image) was presented as spiking trains with the length of 100 ms,

and the STDP window was set to 10 ms. The input values scaled up by K = 100 Hz

were used as firing rates of the spike trains. Therefore, according to Equation 5.10,

the learning rate of SAEs and SRBMs was ±10−4.

To compare with the AE experiments on NI data, Figure 5.11 records the weight

change during training and the results generated by the testing on each image presented

for 1 s. The most important and obvious difference is the weight change where the

weights do not stabilise but their values diverge during training. The reason for the

116 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure 5.11: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of the spiking AE. Experiments 1) 10 visible units fully
connected to 10 hidden units with Poisson spike trains of 100 Hz which lasted 100 ms;
2) the same network fed with 10 Poisson spike trains of firing rate ranging from 10 Hz
to 100 Hz.

5.4. TRAINING DEEP SNNS 117

phenomena will be discussed in Section 5.5. The training is slower than the AE

experiments and the loss takes longer to decrease to the same level. This is mainly

caused by the low firing rate of both input and hidden units at the beginning of the

training. Thus, few, even no, spikes triggered STDP. With the simple input of Exp1,

the training performance reaches the same level of 0.01 loss compared to the noisy

AE test; however, the SAE does not reconstruct the various input values of Exp2 as

accurately as does the AE, since the parameters τwin and τdur are relatively short. We

will present more results conducted with various parameter settings in Section 5.5.

5.4.5 Training Spiking RBMs

Figure 5.12: Network architecture and the learning algorithm of a spiking RBM.

As illustrated in Equation 5.11, the positive weight change is generated from the

multiplication of the visible and hidden units where the weight depression comes from

the product of the Gibbs sampled hidden and reconstruction values. Figure 5.12 shows

the architecture of an SRBM which consists of four layers of neurons: input v, hidden

layer h, Gibbs visible (or reconstruction) v′ and Gibss hidden h′ neurons, and the

shared weights W.

Figure 5.12 demonstrates the training of an SRBM with a pair of spiking neurons

vj and hi, the corresponding the Gibbs sampling pair v′j and h′i, and the shared weight

wij. Up-arrows mark the increase of the weight when vj fires during the time window

after the spikes of hi; meanwhile, down-arrows highlight the weight depression when

v′j generates a spike no later than τwin after h′i fires.

118 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140
160

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
50

100
150
200
250
300
350

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure 5.13: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of the spiking RBM. Experiments 1) 10 visible units fully
connected to 10 hidden units with Poisson spike trains of 100 Hz which lasted 100 ms;
2) the same network fed with 10 Poisson spike trains of firing rate ranging from 10 Hz
to 100 Hz.

5.5. PROBLEM OF SPIKE CORRELATIONS 119

Weight divergence is a more severe problem in the SRBM, see Figure 5.13. Espe-

cially for Exp1, only one hidden neuron is active on the later half of the training, thus

making the firing rate of the reconstruction jump between two states. Because of the

high firing rate of the pre-synaptic neuron, a slight weight increase may generate quite

a few spikes for the post-synaptic neuron. Therefore, more balanced activity among

hidden neurons can perform better in terms of reconstruction accuracy.

5.5 Problem of Spike Correlations

From the experiments above, the problem of the non-convergence of weight searching

appears in training of SAEs and SRBMs using SRM. Instead of stabilising at a (local)

minimum of the parameter space, the values of the weights continue to grow or to

decay, in fact to diverge, even after the loss locks to a certain level. The diverging

weights (see Figures 5.11(a, b) and 5.13(a, b)) not only make the loss increase, for

example as shown in Figure 5.13(g), but also lead the weights too far from the expected

range of the conventional AE or RBM training, refer to Figures 5.7(a, b) and 5.9(a,

b).

Note that the rate multiplication of two spike trains (stated in Equation 5.4) works

under the condition of the independence of the spike trains. However, the spike trains

generated by a layer of neurons are strongly correlated to the spikes which the lower

layer feeds them; and also influence the spike firing of the upper layer. Therefore, any

pair of spike trains v and h, and h and v′ in training SAEs are correlated, so are the

spikes of h′ and v′ of SRBMs. Thus, the unbalanced spike correlations between pairs

of spike trains cause the strength of the weights diverge.

Taking SAE training for example, the strength of some synapses continuously in-

creases because they have a relatively strong weight to trigger hidden units to fire,

but the hidden units taking their transposed weights have a weaker impact on the

firing of the reconstruction neuron. Thus the correlation between vj and hi is stronger

than between v′j and hi, making the positive weight update more frequently than it

drops. On the contrary, the decreasing weights appear in the opposite situation when

hi correlates stronger with v′j than vj. Regarding the SRBM, the training is even more

effected by the correlations where the values of the weights diverge faster.

120 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

This section proposes four solutions to reduce the correlation between spike trains,

thereby approximating AE and RBM training with equivalent spike-based on-line

learning of SAEs and SRBMs. To highlight the performance of the solutions, we

apply these methods to the same experiments above, and the default parameters are

the same as in Table 5.1.

5.5.1 Solution 1 (S1): Longer STDP Window

A stronger weight between a pair of pre- and post-synaptic neurons results in a higher

probability for the pre-synaptic neuron to trigger a post-synaptic spike in a shorter pe-

riod; a weaker connection strength usually takes longer to activate a spike. Thus SRM

using a short τwin produces a lower rate multiplication than the numerical product,

especially for the weak weights. Therefore, we use a longer square STDP window to

accumulate more evidence to improve the accuracy of SRM, thus to make SRM more

independent of the correlations between spike trains. Of course, an unlimited window

length is ideal to eliminate the effect of neural correlations, but a fair trade-off also

takes computation and memory use into account. In the experiment, we doubled the

window length to 20 ms and set ηs to ±5 × 10−5, and recorded the complete results

in Figures B.1 and B.2 in Appendix B.

To make the comparisons of all the proposed solutions more straightforward, we list

the weights and loss change from Exp2 in Figure 5.14 (SAE) and Figure 5.15 (SRBM).

The longer STDP window reduces the weight divergence so that the bidirectional

weight change slows down and it kept within a smaller range. In addition, the loss

drops to a lower level compared to the original SAE test because the longer STDP

window τwin also makes the SRM more accurate which reflects the first property of the

SRM algorithm in Section 5.3.

5.5.2 Solution 2 (S2): Noisy Threshold

We introduce a method of ‘noisy threshold’ (also called escape or hazard model) [Ger-

stner and Kistler, 2002] to generate noise in the output of spikes. The stochastic

threshold of the membrane potential drives the post-synaptic spikes firing in advance

of or behind the expected time, thus reducing the correlation between the pre- and post

5.5. PROBLEM OF SPIKE CORRELATIONS 121

O
ri

gn
al

S
A

E
S
1

S
2

S
3

S
4

(a) Exp2 Weights

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(b) Exp2 Loss

Figure 5.14: Comparisons of weights and loss of solutions for training SAE on Exp2:
[S1] longer STDP window, [S2] noisy threshold, [S3] teaching signal, and [S4] combined
solutions. 10 visible units fully connects to 10 hidden units with Poisson spike trains
of firing rate ranging from 10 Hz to 100 Hz.

122 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

O
ri

gn
al

S
R

B
M

S
1

S
2

S
3

S
4

(a) Exp2 Weights

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(b) Exp2 Loss

Figure 5.15: Comparisons of weights and loss of solutions for training SRBM on Exp2:
[S1] longer STDP window, [S2] noisy threshold, [S3] teaching signal, and [S4] combined
solutions. 10 visible units fully connects to 10 hidden units with Poisson spike trains
of firing rate ranging from 10 Hz to 100 Hz.

5.5. PROBLEM OF SPIKE CORRELATIONS 123

synaptic spikes. The Gaussian noise added to the membrane potential is randomly

generated by N (0, σ) mV, where σ is set to 0.2, 20% of Vth − Vrest. An appropriate σ

is chosen for introducing enough noise to decrease the correlation of the spike trains

and also maintain a good loss performance. The complete test results can be found in

Appendix B, see Figures B.3 and B.4.

Using the same STDP window τwin of 20 ms, the noisy membrane threshold en-

hances the decorrelation, thus the weight change remains more subtle than S1, see

Figures 5.14(a) and 5.15(a) . Furthermore, the performance of the reconstruction im-

proves in both SAE and SRBM training so that the loss reduces to a lower level and

the training accelerates to reach stabilisation.

5.5.3 Solution 3 (S3): Teaching Signal

A Poisson spike train firing at the same rate as the input spikes but generated with

a different random seed is independent of the equivalent input spike train and all

the spikes generated in the network. We call these spike trains teaching signals ts,

because they are only used for weight updates but not conducted into the network.

Then the teaching signals are used in ∆wij = STDP(tsj, hi) to replace STDP(vj, hi)

on the positive part of the weight change. Although the method decorrelates the spike

trains for weight increase, the negative updates remain influenced by the correlations.

Compared to the other solutions, this requires doubled Poisson spike trains: the input

spikes work the same to activate the network, and the teaching spikes do not impact

on the neural dynamics but only trigger learning on the synapses between the input

layer and the hidden layer.

In terms of SAE training, teaching signals alleviate the problem of correlations, as

for the noisy threshold, and the variance of the loss decreases (Figure 5.14[S3]). We

can observe a higher level of loss compared to the previous solutions, since a constant

negative bias exists in the reconstructions. It is caused by the stronger correlation on

the negative weight update, therefore, to weaken the weight decrease the reconstruction

had to be lower than expected. The reconstruction bias can be observed in the firing

rates of the reconstruction neurons recorded in the complete experimental result in

Figures B.3 and B.4 in Appendix B. Regarding the SRBM training (Figure 5.15), the

weight divergence also improves compared to S1 but is not as good as S2, since the

124 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

noisy threshold applies to the entire network whereas the teaching signal works only on

the input layer. The average reconstruction loss is also worse than S1 and S2, similar

to SAE test, because of the reconstruction bias.

5.5.4 Combined Solutions (S4)

This test combines the solutions of long STDP window, noisy threshold and teaching

signals. The results shown in both Figures 5.14 and 5.15 demonstrate the combined

effect of the solutions, in that the dynamic trained weights are between the diverg-

ing degree of S2 and S3, and the loss level is also kept in between. More detailed

experimental results can be found in Figures B.7 and B.8 of Appendices.

All of the above experiments and solutions were also tested on Leaky Integrate-

and-Fire (LIF) neurons. The results are in accordance with IF neurons and validate

the features of the SRM that the accuracy is independent of the neural model, see

Figures B.9 and B.10 in Appendix B. The LIF neuron model follows the dynamics of

its membrane potential, which decreases by a constant leak, l = 0.01 mV:

Vi(t+ 1) = Vi(t) +
∑
j

wijsj(t)− l . (5.14)

5.6 Case Study: MNIST Test

Having discussed the problem of training SAEs and SRBMs, we finally apply the

proposed methods to the MNIST task. Section 5.6.1 describes the network architecture

and the training process, and the rest of the section focuses on the performance analysis

on the trained weights (Section 5.6.2), classification accuracy (Section 5.6.3), and the

reconstruction performance (Section 5.6.4).

5.6.1 Experimental Setup

The training was conducted using a one-layer AE or RBM, see Figure 5.16, which

consisted of 794 visible units including 784 neurons representing the images, 10 label

units marking the classification, and 500 neurons in the hidden layer. During testing,

only the 784 neurons representing image pixels remained as visible units and the other

10 label units worked as the top layer of an Multi-Layer Perceptron (MLP) network for

5.6. CASE STUDY 125

Figure 5.16: AE and RBM structure for MNIST tasks.

recognising digits. The trained weights of the one-layer AE/RBM were split into the

bidirectional weights between visible and hidden units, and the forward connections

from the hidden layer to the top layer. The forward path of the network assigned

an image to a digit class, and the bidirectional connections reconstructed the input

image.

As the baseline for comparison, the same neural network architecture was first

tested on conventional AE and nRBM, and then trained on SNNs. Three epochs of

all the 60, 000 training images were fed into the network in order. In the training of

SNNs, as described above in Section 5.4.1, pixel values of images were represented by

Poisson spike trains firing at a certain frequency linearly proportional to the original

value. The overall count of spikes for each pixel was used as an NI for conventional

training, AE-NI and nRBM-NI, to provide an equal comparison to SNNs. Moreover,

all the training images were presented in sequence one by one in an on-line fashion, in

other words we used the minimum batch size of 1. In addition, the default parameters

of SNNs were the same as listed in Table 5.1 except that in the improved solutions of

SNN training the STDP window τwin was doubled to 20 ms and the learning rate ηs was

set to 5× 10−5 accordingly; the initial weights were identical for all the experiments,

126 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

as were the input spike trains.

5.6.2 Trained Weights

The first comparison is conducted directly on the trained weights after three epochs

of the entire training image set, which qualitatively demonstrates the difference of

learning performance between conventional methods and the SNN training solutions

stated above. We randomly select 49 hidden neurons out of 500 to display the weights

between the hidden and visible units (only the 784 neurons representing the images),

see Figures 5.17 and 5.18 where the grey scales from white to black represent the values

between -0.1 to 0.1. Unlike the diverging weights in the previous section, the trained

weights of all the methods stay within a similar range thanks to the large dataset

which restricts the weight searching to a certain scope.

The trained weights of AE and AE-NI show little difference. However, the original

SAE training results in noisy trained patterns where unexpected white dots appear on

the extracted digit features (Figure 5.17(c)). Because of the size limit of the figures,

it is not easy to observe the noisy dots, thus we provide a bigger size of these figures

in Appendix (Figures B.11 to B.22). The other improved SAE trainings demonstrates

a closer feature extraction to the conventional AEs.

Regarding RBM training, the results in Figure 5.18 show: extracted features of

the nRBM consist of continuous strokes although they are not as recognisable as those

of the AE, due to the randomness introduced by the noisy sampling of NReLU; the

noise in the input data leads to the noisy extracted features where discontinuity of

strokes appears; few continuous strokes are generated in the original SRBM training;

but more noticeable extracted patterns turn up with the noisy threshold solution of

SRBM-S2; patterns generated by SRBM-S3 training show similar continuous strokes

as in the original nRBM training; and combined solutions demonstrate mixed patterns

of training with S2 and S3 which is closer to the patterns trained with nRBM-NI.

In brief, from the qualitative comparisons on the trained features, the original

SAE is the only exception which produce ‘substandard’ features, noisy reconstructions,

among the SAE methods. However, in RBMs, SRBM-S3 generates the most qualitative

features of all the SRBM methods and only SRBM-S3 and SRBM-S4 achieves similar

learning performance as does the conventional nRBM-NI.

5.6. CASE STUDY 127

(a) AE (b) AE-NI

(c) Original SAE (d) SAE-S2

(e) SAE-S3 (f) SAE-S4

Figure 5.17: Trained weights after 3 epochs of MNIST training using (a) AE, (b)
AE-NI, Poisson spike trains as input data, (c) Original SAE, (d) SAE-S2, neurons
with noisy thresholds, (e) SAE-S3, extra teaching signal, and (f) SAE-S4, combined
solutions of S2 and S3.

128 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

(a) nRBM (b) nRBM-NI

(c) Original SRBM (d) SRBM-S2

(e) SRBM-S3 (f) SRBM-S4

Figure 5.18: Trained weights after 3 epochs of MNIST training using (a) nRBM,
(b) nRBM-NI, Poisson spike trains as input data, (c) Original SRBM, (d) SRBM-S2,
neurons with noisy thresholds, (e) SRBM-S3, extra teaching signal, and (f) SRBM-S4,
combined solutions of S2 and S3.

5.6. CASE STUDY 129

5.6.3 Classification Accuracy

As the most important metric to evaluate the training performance, we test the clas-

sification accuracy on SNNs to compare with conventional models. The classification

neuron having the highest spike count indicates the predicted class of the given image.

A correct recognition only happens when the prediction is the same as the label and

only one prediction exists. Thus if two output neurons generate the same number of

spikes which is the maximum, still the recognition is failed.

We start from the default configurations of the experiments, then take a closer

look into the energy considerations. Thus, there are two parameters to configure

the experiments: (1) testing time, which determines the time length an image is

presented to the network; and (2) scaling factor K, which controls the input firing

rates proportional to the pixel intensities. As the default configuration, the testing

time is set to 1 s and K=100 Hz.

Default configuration

The test with NI on conventional Deep Learning modules is the important baseline

for comparisons of conventional ANN training to the equivalent on-line biologically-

plausible learning in SNNs. Because, the NI test exploits the same training and test

data used in SNNs: the spike count of the Poisson spike trains fed into the SNNs.

Thus, the evaluations on Classification Accuracy (CA) quantitatively measures how

well the spike-based training fits to the conventional Deep Learning.

The results of conventional and spiking AE are shown in Figure 5.19(a). Most

significantly, in accordance with qualitative comparisons in Section 5.6.2, all the SAE

training, except for the original SAE, outperforms the AE-NI (93.29%) baseline and

achieves equivalent, even better CA than conventional AE with clean data (93.76%).

The training on SAEs is slower than on AE at the beginning, due to low spiking

rates (explained in Section 5.4.4). The classification performance of SAEs reaches the

AEs’ after about 50K training steps, and starts to diverge: the original SAE keeps a

CA close to that of AEs until it peaks at 92.71% using 87K steps, and then the CA

begins to decay because of the correlation problem; while both SAE-S2 and SAE-S3

have similar performance to AEs and even overtake the best CA of AEs at 93.75%

and 94.38% respectively; and the combined solution SAE-S4 performs the best among

130 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

0 20 40 60 80 100 120 140 160 180
Number of Training Images (K)

80

82

84

86

88

90

92

94

96

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Original SAE

SAE-S2

SAE-S3

SAE-S4

AE

AE-NI

(a) AEs and SAEs.

0 20 40 60 80 100 120 140 160 180
Number of Training Images (K)

80

82

84

86

88

90

92

94

96

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Original SRBM

SRBM-S2

SRBM-S3

SRBM-S4

nRBM

nRBM-NI

(b) nRBMs and SRBMs.

Figure 5.19: Classification accuracy comparing conventional models with spike-based
models. All the training starts with the same initial weights. Every 3K steps of
training, the trained weights are recorded and tested on the MNIST testing dataset
for classification accuracy. The Poisson spikes trains used for SNN simulations are
identical for all the tests.

5.6. CASE STUDY 131

all the models and achieves 94.72% CA at 171K steps. Thus, decorrelated SAEs are

proved to be as competent as AEs in classification tasks and their learning speed

closely fits to the conventional AEs.

For the RBM testing, nRBM is more sensitive to the noise of the training im-

ages than AE so that the CA of nRBM-NI slowly drops and oscillated more and

more strongly as training proceeded, see Figure 5.19(b). The peak performances of

nRBM and nRBM-NI appear on 146K and 97K steps at 94.85% and 93.16% respec-

tively. The quantitative test results of SRBMs draw a consistent conclusion with the

trained weights described qualitatively above in Section 5.6.2: the original SRBM

suffers greatly from drastic performance drop due to the spike correlation; SRBM-S2

performs slightly better since the noisy membrane threshold reduces the spike correla-

tions; SRBM-S3 operates the best which overtakes the nRBM-NI baseline and fits the

same learning curve of nRBM; and finally the performance of the combined method is

between the S2 and S3 solutions, moreover, exceeds the nRBM-NI baseline. SRBM-S3

achieves the best CA of 94.35% among the SRBM models. In short, although most of

the decorrelation solutions performs worse than those of AEs, teaching signals of the

S3 solution works extremely well for training SRBM which achieves the same CA and

reproduces the learning speed of conventional nRBM.

To compare in the literature, we highlight the advantages of the proposed method.

(1) The learning curves of the SNNs are close to the conventional ANNs which proves

the accurate estimation of the STDP parameter configurations using SRM; while ex-

isting methods [Neil, 2013; Neftci et al., 2013] pick biological settings instead of con-

figurations from mathematical analysis, which results in performance drop comparing

to the ANNs. (2) The proposed solutions decorrelate the spike trains and enable

the genuine ‘live and learn’ in on-line SNN training; however most of the published

papers [Neftci et al., 2013, 2016] only reported the peak learning performance and

manually terminated training. (3) SAEs and SRBMs achieve the cognitive capabili-

ties equivalent as the corresponding Deep Learning modules; but most of the methods

mentioned above [Neil, 2013; Neftci et al., 2013] experience a performance drop. Al-

though, Neftci et al. [2016] keep the state-of-the art accuracy of 95.6%, they exploited

the cutting-edge tool, dropout and more training epochs, but did not report the com-

parison to the corresponding non-spiking RBM-dropout. (4) Our proposed method

132 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

0 200 400 600 800 1000
Testing Time (ms)

86

88

90

92

94

96
C

la
ss

ifi
ca

tio
n

Ac
cu

ra
cy

 (%
)

Steps (K)
180 120 60

(a) SAE-S4

0 200 400 600 800 1000
Testing Time (ms)

86

88

90

92

94

96

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Steps (K)
180 120 60

(b) SRBM-S3

Figure 5.20: Classification accuracy during the entire testing time of 1 s.

is supposed to work on any spiking neuron model and requires a simple rectangular

STDP, thus easy to be implemented on general neuromorphic hardware; meanwhile

others [Neftci et al., 2013, 2016] use specific neuron/synaptic models, extra control sig-

nals and certain network architecture, which are difficult to be transferred to hardware

platforms.

Testing time

The shorter the period that each image is presented to the network, the lower

the energy required when implemented in hardware. Thus to have a closer look at

the CA performance over the testing time, we tested the CA at every ms for the

entire duration of 1 s, and the best models of SAEs and SRBMs showed the CA in

Figure 5.20. The SAE-S4 model can achieve a CA close to their best performance

using only 200 ms, which saves 80% of the time and the energy. SRBM-S3 exhibits

a continuously improving classification performance, however, as training proceeds it

takes longer for the model to converge to its best performance. Hence, about 400 ms

is needed for SRBM-S3 to perform close to its best CA.

Spiking rate

Another factor impacting energy use is the mean firing rate of the whole network. If

a close classification performance can be achieved with sparse spikes or a lower firing

rate, then the neuromorphic implementation will be more energy efficient. Figure 5.21

shows how the firing rates of the input spike trains affect the classification performance

over a testing time of 1 s. The scaling factor K of SRM used for training SAEs and

5.6. CASE STUDY 133

0 200 400 600 800 1000
Testing Time (ms)

90

91

92

93

94

95

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Max Frequency (Hz)
500
100

50
10

(a) SAE-S4

0 200 400 600 800 1000
Testing Time (ms)

90

91

92

93

94

95

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Max Frequency (Hz)
500
100

50
10

(b) SRBM-S3

Figure 5.21: Classification accuracy during the entire testing time period with increas-
ing input spike firing rate.

SRBMs was set to 100 Hz, thus we took three other values of K for comparison. For

SAE-S4, the CA of models using K of 50, 100, 500 converge quickly to a similar value.

Thus, for instance, the CA can achieve 93.5% using only half of the firing events in the

network and 200 ms for the testing period, which costs 10% of the time and energy

use comparing to the default test, but achieves merely 0.5% loss on CA. The CA of

the SRBM-S3 is more sensitive to the input rate, where the model with K = 100 Hz

achieves the highest accuracy. However, similar to SAEs, with half of the events used

in the network and 400 ms testing time, the CA is also about 0.5% lower than the

model using the preferred input rates.

According to Equation 4.16 the energy use for classifying the whole set of testing

images can be estimated more accurately. The mean synaptic event rate for various K

values is listed in Table 5.2. Hence, we can estimate their energy cost given that of a

single synaptic event of some specific neuromorphic hardware, for example, about 8 nJ

on SpiNNaker [Stromatias et al., 2013]. Thus, it may cost SpiNNaker only 0.021 W

of power running for 2, 000 s, 42 J, for the whole set of synaptic events for the entire

SAE-S4 testing on MNIST. Energy measurement on neuromorphic hardware is beyond

the scope of this Chapter, but will be thoroughly discussed in Chapter 6.

Overall comparisons

In all, SAEs are more suitable for classification tasks than SRBMs. Firstly, the

SRBM has an extra layer of Gibbs sampling, thus SAEs require fewer neurons and

generate fewer spikes, thus cause less computations and lead to a more energy-efficient

134 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

Table 5.2: Mean synaptic event rate of whole network given different scaling factor K.

K Input(Hz) SAE-S4(Hz) SRBM-S2(Hz)

10 1.04× 103 5.28× 105 5.34× 105

50 5.20× 103 2.63× 106 2.67× 106

100 1.04× 104 5.26× 106 5.33× 106

500 5.20× 104 2.62× 107 2.65× 107

implementation on neuromorphic hardware. Secondly, regarding the classification per-

formance, SAE-S4 outperform the conventional AE and all the corresponding SRBM

models. Finally, regarding the energy cost in testing only, the SRBM model loses in

the comparison due to the use of a longer testing time and a higher synaptic event

rate during classification.

5.6.4 Reconstruction

Reconstruction is another essential function of these unsupervised learning models,

such as applications of data de-noising [Xie et al., 2012] and dimension reduction [Hin-

ton et al., 2006]. Figure 5.23 shows how reconstruction improves over increasing train-

ing steps for each model. Conventional RBMs demonstrates a better reconstruction

capability than AEs in general, see Figure 5.22, thus RBMs are usually used for pre-

training AEs or Deep Belief Networks.

It is surprising to see that the original SAE and SRBM trainings perform best

in both SAE and SRBM models. A possible explanation could be overfitting. It is

easy for the models to reconstruct the images which have been shown, but difficult

to generalise the models to unseen data. Classification, here, is equivalent to image

in-painting in AEs and RBMs. Therefore, the original SAE and SRBM works well

on reconstruction but poorly on classification. Qualitatively shown in Figure 5.23,

SRBMs reconstruct the image closely to the original input, while SAEs reproduce the

image more closely to its ‘concept’, a general digit. Moreover, the original SAE and

SRBM, see Figures 5.23(c) and (i), reconstruct the input image more closely than their

improved decorrelation methods respectively.

5.6. CASE STUDY 135

0 20 40 60 80 100 120 140 160 180
Number of Training Images (K)

9

10

11

12

13

14

15

16

17

18
P

ix
e
l-

w
is

e
 L

o
ss

 (
×

10
−

3
) Original SAE

SAE-S2

SAE-S3

SAE-S4

AE

AE-NI

(a) AEs and SAEs.

0 20 40 60 80 100 120 140 160 180
Number of Training Images (K)

3

4

5

6

7

8

9

10

11

12

P
ix

e
l-

w
is

e
 L

o
ss

 (
×

10
−

3
) Original SRBM

SRBM-S2

SRBM-S3

SRBM-S4

nRBM

nRBM-NI

(b) nRBMs and SRBMs.

Figure 5.22: Loss (mean squared error) pixel-wise of the traditional training method
and spike-based models. All the trainings started with same initial weights. Every
3K training steps, the trained weights were recorded and tested on the MNIST testing
dataset for reconstruction loss. The Poisson spikes trains used for SNN simulations
are identical for all the tests.

136 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

Original 1K Steps
Loss=0.068

10K Steps
Loss=0.022

60K Steps
Loss=0.011

120K Steps
Loss=0.013

180K Steps
Loss=0.013

(a) AE

Original 1K Steps
Loss=0.069

10K Steps
Loss=0.023

60K Steps
Loss=0.014

120K Steps
Loss=0.012

180K Steps
Loss=0.012

(b) AE-NI

Original 1K Steps
Loss=0.075

10K Steps
Loss=0.026

60K Steps
Loss=0.016

120K Steps
Loss=0.015

180K Steps
Loss=0.014

(c) SAE

Original 1K Steps
Loss=0.072

10K Steps
Loss=0.030

60K Steps
Loss=0.018

120K Steps
Loss=0.015

180K Steps
Loss=0.015

(d) SAE-S2

Original 1K Steps
Loss=0.074

10K Steps
Loss=0.029

60K Steps
Loss=0.019

120K Steps
Loss=0.017

180K Steps
Loss=0.015

(e) SAE-S3

Original 1K Steps
Loss=0.073

10K Steps
Loss=0.030

60K Steps
Loss=0.019

120K Steps
Loss=0.018

180K Steps
Loss=0.018

(f) SAE-S4

Original 1K Steps
Loss=0.070

10K Steps
Loss=0.023

60K Steps
Loss=0.009

120K Steps
Loss=0.010

180K Steps
Loss=0.008

(g) nRBM

Original 1K Steps
Loss=0.072

10K Steps
Loss=0.023

60K Steps
Loss=0.009

120K Steps
Loss=0.009

180K Steps
Loss=0.008

(h) nRBM-NI

Original 1K Steps
Loss=0.073

10K Steps
Loss=0.021

60K Steps
Loss=0.009

120K Steps
Loss=0.008

180K Steps
Loss=0.007

(i) SRBM

Original 1K Steps
Loss=0.069

10K Steps
Loss=0.022

60K Steps
Loss=0.010

120K Steps
Loss=0.009

180K Steps
Loss=0.008

(j) SRBM-S2

Original 1K Steps
Loss=0.075

10K Steps
Loss=0.026

60K Steps
Loss=0.012

120K Steps
Loss=0.010

180K Steps
Loss=0.009

(k) SRBM-S3

Original 1K Steps
Loss=0.070

10K Steps
Loss=0.023

60K Steps
Loss=0.011

120K Steps
Loss=0.008

180K Steps
Loss=0.007

(l) SRBM-S4

Figure 5.23: Reconstruct of the same digit ’2’ with trained weights using conventional
AEs and RBMs to compare with their spike-based models. The Loss (Mean Squared
Error) of each reconstruction is labelled under each figure. All the reconstructions are
taken on the steps of 1K, 10K, 60K (1 epoch), 120K (2 epochs), and 180K (3 epochs)
during training.

5.7. SUMMARY 137

For the other decorrelation solutions in SAE, SAE-S2 converges slowly to the re-

construction loss level of AE-NI, while SAE-S3/S4 are sensitive to the extra teach-

ing signals when trained for reconstruction tasks, thus their performance oscillates

roughly during training. In brief, the decorrelated SAE models converge to similar

level of reconstruction loss to AE-NI, and original SAE is proved to be equivalent to

the conventional AE.

Regarding SRBM training, SRBM-S2 reaches its best loss level the earliest, how-

ever vibrates around the same level of conventional nRBM-NI as training continues.

Meanwhile, the teaching signal used in SRBM-S3 and SRBM-S4 smooth the loss curve,

and both converge to lower levels of loss than the conventional nRBMs.

Therefore, the choice of a proper spiking model for reconstruction depends on the

requirements. The original SRBM is outstanding in the reconstruction task alone

taking no account of the larger network for training and its poor classification perfor-

mance. Conversely the SAE-S2 wins in energy-efficient training, effective classification

superior than AE, and the stable reconstruction which performs equivalently to AE-NI.

5.7 Summary

This chapter answers the research question: how to train SNNs on-line with biologically-

plausible learning rules to catch up with the cognitive capabilities of conventional Deep

Learning modules. The proposed SRM method precisely transforms the numerical

multiplications, used in conventional unsupervised learning, into parameter configura-

tions of the synaptic plasticity learning rule, STDP, in three easy steps: (1) represent

rate multiplication using simultaneous spikes generated from a pair of connected spik-

ing neurons; (2) capture the simultaneous events by the weight change of the synaptic

connection using the STDP learning rule; (3) precisely transform the learning rate η

to parameters used in SRM, thereby making sure the weight change raised by STDP

is equivalent to that of original ANN training. Therefore, the SRM mathematically

estimate the precise parameter configurations of the on-line STDP rules.

The other contribution to the spike-based on-line learning lies in the solutions to

decorrelate spike trains, thus to prevent the learning performance from continuous

decay after it peaks. It addresses the difficulties of manual stop during training in the

138 CHAPTER 5. ON-LINE SNN TRAINING WITH SRM

existing methods, since the proposed decorrelation solutions enable the on-line SNN

learning to be ‘live and learn’. Therefore, it paves the way for genuine learning on

neuromorphic hardware towards Neuromorphic Cognition.

Experiments show the equivalent learning curves of SAEs and SRBMs to their

non-spiking counterparts and the promising results exhibit competent or even supe-

rior classification and reconstruction capabilities compared to the conventional Deep

Learning modules. Furthermore, in theory our method works on any spiking neuron

model and requires a simple rectangular STDP, thus can be easily implemented on

general neuromorphic hardware.

Chapter 6

Benchmarking Neuromorphic

Vision

The last two chapters have answered the main research question of this thesis show-

ing that Spiking Neural Networks (SNNs) can be trained both on-line and off-line to

achieve equivalent recognition performance of the Artificial Neural Networks (ANNs).

To provide meaningful comparisons between these proposed SNN models and other ex-

isting methods within this rapidly advancing field of Neuromorphic Engineering (NE),

we propose that a large dataset of spike-encoded images/videos is needed and a corre-

sponding evaluation methodology is also required to estimate the overall performance

of SNN models and their hardware implementations.

6.1 Introduction

Today, increasing attention is being paid to research into spike-based neural compu-

tation both to gain a better understanding of the brain and to explore biologically-

inspired computation. Within this field, the primate visual pathway and its hierarchi-

cal organisation have been extensively studied. SNNs have been successfully applied

to visual recognition and classification tasks. In addition, Neuromorphic hardware

have enabled large-scale SNNs to run in (or even faster than) real time, and also made

spike-based neural vision processing accessible on mobile robots. Besides, neuromor-

phic sensors such as silicon retinas are able to feed such mobile systems with real-time

visual stimuli.

139

140 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

A new set of vision benchmarks for spike-based neural processing are now needed

to measure progress quantitatively within this rapidly advancing field. In this chapter

we first propose an initial NE dataset based on standard computer vision benchmarks

and that uses digits from the MNIST database. This dataset is compatible with the

state of current research on spike-based image recognition. The corresponding spike

trains are produced using a range of techniques: rate-based Poisson spike generation,

rank order encoding, and recorded output from a silicon retina with both flashing

and oscillating input stimuli. In addition, a complementary evaluation methodology

is presented to assess both model-level and hardware-level performance. Finally, we

demonstrate the use of the dataset and the evaluation methodology using an SNN

model to validate the performance of the models and their hardware implementations.

With this dataset we hope to (1) promote meaningful comparisons between al-

gorithms and neuromorphic platforms in the field of NE, (2) allow comparison with

conventional non-spiking methods on image recognition, (3) provide an assessment of

the state of the art in spike-based visual recognition, and (4) help researchers identify

future directions and advance the field.

In Section 6.2, diverse neuromorphic vision tasks are introduced to illustrate the

requirements for a unified spike-based dataset. The rest of this chapter is structured

as follows: Section 6.3 elaborates the purpose and protocols of the proposed dataset

and describes the sub-datasets and the methods employed to generate them; Sec-

tion 6.4 demonstrates the suggested evaluation methodology for use with the dataset.

Section 6.5 presents an SNN case study as demonstrations of using the dataset to

assess model performance and benchmark hardware platforms. Finally, Section 6.6

summarises the chapter.

6.2 Related Work

Researchers are using the capabilities created by rapid developments in neuromorphic

engineering to address the dual aims of understanding brain functions and building

brain-like machines [Furber and Temple, 2007]. Neuromorphic engineering has deliv-

ered biologically-inspired sensors such as DVS (Dynamic Vision Sensor) silicon reti-

nas [Serrano-Gotarredona and Linares-Barranco, 2013; Delbruck, 2008; Yang et al.,

6.2. RELATED WORK 141

2015; Posch et al., 2014], which offer the prospect of low-cost visual processing thanks

to their event-driven and redundancy-reducing style of information representation.

Moreover, SNN simulation tools [Davison et al., 2008; Gewaltig and Diesmann, 2007;

Goodman and Brette, 2008] and neuromorphic hardware platforms [Furber et al., 2014;

Schemmel et al., 2010; Benjamin et al., 2014; Merolla et al., 2014] have been developed

to allow exploration of the brain by mimicking its functions and developing large-scale

practical applications [Eliasmith et al., 2012]. Achieving the brain’s energy efficiency

motivates the development of neuromorphic hardware, since the human brain has a

power consumption of only about 20 W [Drubach, 2000]. In the case of visual process-

ing, the brain can accurately recognise objects remarkably quickly, e.g. in 200 ms in

monkeys [Fabre-Thorpe et al., 1998], even with short presentations (less than 100 ms)

of the target objects [Keysers et al., 2001]. Such rapid and highly accurate recognition

is the target of modelling spike-based visual recognition.

Inspired by biological studies of the visual ventral pathway, SNN models have suc-

cessfully been adapted to visual recognition. Riesenhuber and Poggio [1999] proposed

a quantitative modelling framework for object recognition with position-, scale- and

view-invariance. Their cortex-like model has been analysed on several datasets [Serre

et al., 2007]. Recently Fu et al. [2012] reported that their SNN implementation was

capable of recognising facial expressions with a Classification Accuracy (CA) of 97.35%

on the JAFFE dataset [Lyons et al., 1998] which contains 213 images of 7 facial ex-

pressions posed by 10 individuals. According to Van Rullen and Thorpe [2002], the

first wave of spikes carry explicit information through the ventral stream and in each

stage meaningful information is extracted and spikes are regenerated. Therefore, using

one spike per neuron, similar to the first spiking wave in biology, Delorme and Thorpe

[2001] reported 100% and 97.5% accuracies on the face identification task over training

(40 individuals × 8 images) and testing data (40 individuals × 2 images).

Convolutional Neural Networks (ConvNets), inspired by the receptive fields of the

visual cortex, have been implemented on spiking neurons. An early Spiking ConvNet

model identified the faces of 35 persons with a CA of 98.3% exploiting simple inte-

grate and fire neurons [Matsugu et al., 2002]. Another Spiking ConvNet model [Zhao

et al., 2015] was trained and tested both with DVS raw data and Leaky Integrate-

and-Fire (LIF) neurons. It was capable of recognising three moving postures with a

142 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

CA of about 99.48% and classifying hand-written digits with 88.14% accuracy on the

MNIST-DVS dataset (see Section 6.3.2). In a further step forward, Camunas-Mesa

et al. [2012] implemented a convolution processor module in hardware which could be

combined with a DVS for high-speed recognition tasks. The inputs of the ConvNet

were continuous spike events instead of static images or frame-based videos. The chip

was capable of detecting the four suits in a 52-card deck which was browsed rapidly in

only 410 ms. Similarly, a real-time gesture recognition model [Liu and Furber, 2015]

was implemented by us on a neuromorphic system with a DVS as a front-end and a

SpiNNaker [Furber et al., 2014] machine as the back-end, where LIF neurons built up

the ConvNet configured with biological parameters. In this study’s largest configura-

tion, a network of 74,210 neurons and 15,216,512 synapses used 290 SpiNNaker cores

in parallel and reached 93.0% accuracy.

Spike-Timing-Dependent Plasticity (STDP) as a learning mechanism based on bio-

logical observations has been applied to vision tasks. As mentioned in Chapter 1, these

models typically comprise only two neural layers and exploit STDP and/or Winner-

Take-All (WTA) circuits on the synaptic connections. Bichler et al. [2012] demon-

strated an unsupervised STDP learning model to classify car trajectories captured

with a DVS retina. A similar model trained with STDP using a WTA circuit was

tested on a Poissonian spike presentation of the MNIST dataset achieving a perfor-

mance of 95.0% [Diehl et al., 2015a]. Another STDP trained model tested on computer

simulation reached a 93.3% CA on MNIST and had the potential to be implemented

using memristors [Bill and Legenstein, 2014]. Adding synaptic internal state enabled

STDP to work on bistable synapses, and this method achieved the best performance

of 96.5% among similar network architectures [Brader et al., 2007].

Deep Learning have exceeded human-level performance on image classification

tasks [He et al., 2015], but mainstream Deep Learning research is focussed on continu-

ous rather than spiking neural networks. The spiking deep network has great potential

to combine remarkable performance with energy-efficient training and operation. Early

research into spiking deep networks focussed on converting off-line trained deep net-

work into SNNs [O’Connor et al., 2013]. The network was initially implemented on

an FPGA and achieved a CA of 92.0% [Neil and Liu, 2014], while a later implemen-

tation on SpiNNaker scored 95.0% [Stromatias et al., 2015a]. Recent advances have

6.2. RELATED WORK 143

contributed to better translation by using modified units in a ConvNet [Cao et al.,

2015] and tuning the weights and thresholds [Diehl et al., 2015b]. The latter paper

claims a state-of-the-art performance (99.1% on the MNIST dataset) compared to

the original ConvNet. The current trend towards training deep SNNs on-line using

biologically-plausible learning methods is also promising. An event-driven Contrastive

Divergence (CD) training algorithm for Restricted Boltzmann Machines (RBMs) was

proposed for Deep Belief Networks (DBNs) using LIF neurons with STDP synapses

and verified on MNIST with a CA of 91.9% [Neftci et al., 2013]. The work extended

to use stochastic synapses, and the recognition performance increased to 95.8% [Neftci

et al., 2016]. More related work and detailed description of current research on deep

SNNs can be found in Chapter 4 and Chapter 5.

Despite the promising research on SNN-based vision recognition, there is no com-

monly used database in the format of spike stimuli. In the studies listed above, all

of the vision data used are in one of the following formats: (1) raw grey-scale images

data; (2) pixel-intensity-driven rate-based Poisson spike trains; (3) unpublished spike-

based videos recorded from DVS silicon retinas. However, in the field of conventional

non-spiking computer vision, there are a number of datasets playing important roles

at different times and with various objectives [LeCun et al., 1998; Deng et al., 2009;

Blank et al., 2005; Liu et al., 2009]. In consequence, a new set of spike-based vision

datasets is now needed to quantitatively measure progress within the rapidly advanc-

ing field of spike-based visual recognition and to provide resources to support objective

competition between researchers.

Apart from using spikes instead of the frame-based data used in conventional com-

puter vision, new concerns arise when evaluating neuromorphic vision, such as latency

and energy consumption, in addition to recognition accuracy. These concerns naturally

derive from the goal of spike-based visual recognition: mimicking the fast recognition

with low-energy processing in the brain. Therefore a set of common metrics for perfor-

mance evaluation in spike-based vision is also required to assess SNN models and their

hardware implementations. In this chapter we propose a large dataset of spike-based

visual stimuli and a complementary evaluation methodology. Just as research in this

field is an expanding and evolving activity, the dataset will be adapted and extended

to fit new requirements presented by advances in the field.

144 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

6.3 NE Dataset

6.3.1 Guiding Principles

The NE database we propose here is a developing and evolving dataset. It contains

various spike-based representations of images/videos and will also expand to include

increasing numbers of encoding methods and commonly used datasets of Computer

Vision. The spikes are either generated from spike encoding methods which convert

images or frames of videos into spike trains, or recorded from DVS silicon retinas. The

spike trains are in the format of Address-Event Representation (AER) [Mahowald,

1992] data, which are suitable for both event-driven computer simulations and neu-

romorphic systems. AER was originally proposed as a time-multiplexed spike com-

munication protocol where each time a neuron produces a spike an event is generated

that codes the spiking neuron’s address on a fast time-multiplexed digital bus. The

recorded AER data consists of a list of events, each one containing the time stamp of

a spike and the address of the neuron which generated the spike. With the NE dataset

we hope:

• to promote meaningful comparisons between algorithms and neuromorphic plat-

forms in the field of NE. The NE dataset provides a unified format of AER data

to meet the demands of spike-based visual stimuli. It also encourages researchers

to publish and contribute their data to build up the NE dataset.

• to allow comparison with conventional non-spiking methods on image recognition.

We expect the dataset to support this comparison using spiking versions of exist-

ing vision datasets. Thus, conversion methods are required to transform datasets

of images and frame-based videos into spike stimuli. More biologically-accurate

and better information preserving schemes are welcome.

• to provide an assessment of the state of the art in spike-based visual recognition.

To reveal the accuracy, speed, and energy-efficient recognition of neuromorphic

approaches, we need not only a spike-based dataset but also an appropriate eval-

uation methodology. The evaluation methodology will be constantly improving

along with the evolution of the dataset.

6.3. NE DATASET 145

• to help researchers identify future directions and advance the field. The develop-

ment of the dataset and its evaluation methodology will introduce new challenges

for the NE community. However, these must represent an appropriate degree of

difficulty: a too-easily-solved problem turns into a tuning competition, while a

problem that is too difficult will not yield meaningful assessment. So suitable

problems should continuously be added to promote future research.

6.3.2 The Dataset: NE15-MNIST

The first proposed dataset in the benchmarking system is NE15-MNIST (Neuromor-

phic Engineering 2015 on MNIST). NE15-MNIST is the spiking version of an original

non-spiking dataset which was downloaded from the MNIST Database of Handwritten

Digits [LeCun et al., 1998] website1. Due to its straightforward target of classifying

real-world images, the plain format of the binary data and simple patterns, MNIST has

been one of the most popular datasets in computer vision for over 20 years. MNIST

is a popular task among the neuromorphic vision research community. The converted

MNIST dataset consists of four subsets which were generated for different purposes:

• Poissonian, which encodes each pixel as a Poisson spike train and is intended

for benchmarking existing rate-based SNN models.

• FoCal (Filter Overlap Correction ALgorithm), to promote the study of spatio-

temporal algorithms applied to recognition tasks using small numbers of input

spikes. This subset is built by my colleague Garibaldi Pineda-Garćıa.

• DVS recorded flashing input, to encourage research into fast recognition methods

to mimic the rapid and accurate ‘core recognition’ in the primate ventral visual

pathway [DiCarlo et al., 2012].

• DVS recorded moving input, to trigger the study of algorithms targeting con-

tinuous input from real-world sensors for implementation, for example, on mo-

bile neuromorphic robots. This subset is contributed by our cooperator Teresa

Serrano-Gotarredona.

The dataset is published in the GitHub: https://github.com/NEvision/NE15.

1http://yann.lecun.com/exdb/mnist/

https://github.com/NEvision/NE15
http://yann.lecun.com/exdb/mnist/

146 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

6.3.3 Data Description

Two file formats are supported in the dataset: the jAER format [Delbruck, 2008] (.dat

or .aedat), and binary files in NumPy [Walt et al., 2011] (.npy) format. The spikes

in jAER format, whether recorded from a DVS retina or artificially generated, can be

displayed by the jAER software. Figure 6.1(a) is a snapshot of the software displaying

a .aedat file which was recorded from a DVS retina [Serrano-Gotarredona and Linares-

Barranco, 2013]. The resolution of the DVS recorded data is 128×128. The second

spike-based format used is a list of spike source arrays in PyNN [Davison et al., 2008],

a description language for building spiking neuronal network models. Python code

is provided for converting from either file format to the other. The duration of the

artificially-generated data can be configured using the Python code provided, while

the recorded data varies in duration: 1 s for the flashing input, and 3.2 to 3.4 s for the

moving input.

Figure 6.1: Snapshots of the jAER software displaying spike-encoded videos. The same
image of digit ‘0’ is transformed into spikes by DVS recording and Poisson generation,
where (a) and (b) show the snapshots of the jAER software. They visualise the spike
counts for each pixel of an image. (c) A raster plot of the Poisson spike trains.

6.3. NE DATASET 147

Poissonian

The timing of spikes in the cortex is highly irregular [Squire and Kosslyn, 1998]. An

interpretation is that the inter-spike interval reflects a random process driven by the

instantaneous firing rate. If the generation of each spike is assumed to be independent

of all other spikes, the spike train is seen as a Poisson process. The spike rate can be

estimated by averaging the pooled responses of the neurons.

As stated above, rate coding is generally used in presenting images as spike trains.

The spike rate of each neuron accords with the intensity of the corresponding pixel.

Instead of providing exact spike arrays, we share the Python code for generating the

spikes. Each recognition system may require different spike rates and durations. The

generated Poisson spike trains can be in both jAER and PyNN spike source array

formats. Thus, it is easy to visualise the digits and also to couple the spike trains

into spiking neural networks. Because different simulators generate random Poisson

spike trains with different mechanisms, languages and codes, using the same dataset

enables performance evaluation on different simulators without the confusion created

by differences in input. The same digit displayed in Figure 6.1(a) can be converted

into Poisson spike trains, see Figure 6.1(b). A raster plot of the Poisson spike trains

is shown in Figure 6.1(c).

Rank Order Encoding

A different way of encoding spikes is to use a rank order code; this means keeping just

the order in which the spikes fired and disregarding their exact timing. Rank-ordered

spike trains have been used in vision tasks under a biological plausibility constraint,

making them a viable way of encoding images for neural applications [Van Rullen and

Thorpe, 2001; Sen and Furber, 2009; Masmoudi et al., 2010]. Rank Order Coding

(ROC) can be performed using an algorithm known as the FoCal algorithm [Sen and

Furber, 2009]. This algorithm models the foveola, the highest resolution area of the

retina, with four ganglion cell layers each with a different scale of centre-surround re-

ceptive field [Kolb, 2003]. The detailed description of the algorithm was demonstrated

by Garibaldi Pineda-Garćıa in the published paper [Liu et al., 2016] and the source

Python scripts to transform images to ROC spike trains, and to convert the results

into AER and PyNN spike source arrays, can be found in the dataset website.

148 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

DVS Sensor Output with Flashing Input

The purpose of including the subset with DVS-recorded flashing digits is to promote

research into rapid and accurate ‘core recognition’, thus to encourage research into

non-rate-based algorithms to shorten the recognition time.

Each digit was shown alternating with a blank image and each display lasted

one second. The digits were displayed on an LCD monitor in front of the DVS

retina [Serrano-Gotarredona and Linares-Barranco, 2013] and were placed in the centre

of the visual field of the camera. Since there are two spike polarities - ‘ON’ indicating

an increase in the intensity while ‘OFF’ indicates a decrease - there are ‘ON’ and

‘OFF’ flashing recordings respectively per digit. In Figure 6.2, the burstiness of the

spikes is illustrated where most of the spikes occur in a 30 ms time slot. In total, this

subset of the database contains 2×60K recordings for training and 2×10K for testing.

DVS Sensor Output with Moving Input

The subset of DVS recorded moving digits is provided by Teresa Serrano-Gotarredona,

and is presented to address the challenges of position- and scale- invariance in computer

vision. MNIST digits were scaled to three different sizes, using smooth interpolation

algorithms to increase their size from the original 28×28 pixels, and displayed on

the monitor with slow motion. The same DVS [Serrano-Gotarredona and Linares-

Barranco, 2013] used in Section 6.3.3 captured the movements of the digits and gen-

erated spike trains for each pixel in its 128×128 resolution. A total of 30K recordings

were made: 10 digits, at 3 different scales, 1K different handwritten samples for each.

6.4 Performance Evaluation

New concerns about the latency and energy cost arise over performance assessment

on SNNs, thereby highlighting the advantages of spike-based processing [Tan et al.,

2015]. Therefore we propose corresponding evaluation metrics and suggest a sufficient

description of SNN models in this section. Once a model is implemented on a neu-

romorphic platform, the hardware performance can also be evaluated by running the

particular model. This model-specific assessment provides more robust comparisons

between hardware platforms by using the same network topology, neuron and synaptic

6.4. PERFORMANCE EVALUATION 149

Figure 6.2: DVS sensor with flashing input. Blue is used for ‘ON’ events and green for
‘OFF’ events. (a) The raster plot shows spikes generated by individual neurons over
time. It is hard to recognise the total number of spikes due to the large number of
neurons involved in the figure. Thus all the spikes are ordered in time, and displayed
in the figure below. (b) The raster plot shows the ordered spike sequence over time.
The total number of spikes is around 7K for both ‘ON’ and ‘OFF’ events. The bursty
nature of the resulting spikes is illustrated, where most of the spikes occur in a 30 ms
time slot.

models, and learning rules. Consequently, a complementary evaluation methodology

is essential to provide common metrics and assess both the model-level and hardware-

level performance.

6.4.1 Model-level Evaluation

A suggested description of an SNN model is shown in Table 6.1 where the perfor-

mance evaluation metrics are in bold and the SNN specific description is in italics.

Because SNNs introduce the time dimension and spike-based processing, additional

150 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

performance metrics become relevant in addition to classification accuracy: recogni-

tion latency and the number of synaptic events.

Recognition latency measures how fast spikes are conveyed through the layers of

network to trigger the recognition neurons. DiCarlo et al. [2012] considered the rapid

(<200 ms) and accurate vision recognition in the brain as the essential problem of

object recognition. For real-time systems with live visual inputs, such as robotic

systems, a short response latency helps make fast decisions and take rapid action.

The latency is measured as the time difference between the first spike generated by

the output layer and the first spike from the input layer.

A spike event is a synaptic operation evoked when one action potential is transmit-

ted through one synapse [Sharp et al., 2012]. Fewer spike events imply lower overall

neural activity and lower energy consumption. The number of synaptic events can be

measured as ‘Sopbs’, synaptic operations per biological second.

Table 6.1: SNN descriptions at the model level

Input
converting methods
preprocessing

Network
topology
neuron and synaptic type

Training
supervised or not
learning rule
biological training time

Recognition

classification accuracy
response latency
number of synaptic
events
biological testing time
input spiking rate

Alongside the SNN evaluation metrics, a sufficient description of a network model

is required so that other researchers can reproduce it and compare it with other mod-

els. First of all, the input of an SNN model is specified. The description includes the

transformation method for converting raw images to spike trains, and the preprocessing

6.4. PERFORMANCE EVALUATION 151

either to images or spikes. Filtering the raw image may ease the classification/recog-

nition task while adding noise may require more robustness in the model. Secondly, as

with the evaluation of conventional artificial neural networks, a description of the net-

work characteristics provides the basis for the overall performance evaluation. Sharing

the network details not only makes the model reproducible but also inspires fellow sci-

entists to build up new solutions based on existing work, thereby generating a positive

feedback loop where everybody wins. The main characteristics include the network

topology and the neural and synaptic models. The network topology defines the num-

ber of neurons used for each layer and the connections between layers and neurons.

It is essential to state the types of neural and synaptic model (e.g. current-based

LIF neuron) utilised in the network and the parameters configuring them, because

neural activities differ significantly between configurations. Any non-neural classifier,

sometimes added to aid the design or enhance the output of the network, must also

be specified. Thirdly, the training procedure determines the recognition capability of

a network model. Specifying the learning algorithm with its mechanism (supervised,

semi-supervised and unsupervised) helps the reader understand the core features of

the model. A detailed description of new spike-based learning rules will be a great

contribution to the field due to the present paucity of spatio-temporal learning algo-

rithms. Most publications reflect the use of adaptations to existing learning rules;

details on these modifications should be clear and unambiguous. In conventional com-

puter vision, the number of iterations of training images presented to the network

play an important role. Similarly, the biological training time determines the amount

of information provided for training an SNN. Finally in the testing phase, as well as

the performance evaluation metrics stated above, specific configurations of the input

spikes are also essential. This includes details of the way samples are presented to the

network: spiking rates, and biological time per test sample. The combination of these

two factors determines how much information is presented to the network. Following

the formatted evaluation as in Table 6.1, Table 6.2 lists a few SNN models for MNIST

classification, although some details are missing.

152 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

Table 6.2: Model-level comparison

Input Network Training Recognition

[Brader
et al.,
2007]

Poisson

Two layer,
LIF neurons

bistable synapse

Semi-supervised,
STDP, calcium

LTP/LTD
96.5%

[Diehl
et al.,
2015a]

Poisson

Two layers, LIF
neurons,

inhibitory
feedback

Unsupervised,
WTA, STDP,
200K s times
15 iterations

95%

[Neftci
et al.,
2013]

Thresholding,
Poisson

Two layers,
RBM,

LIF neurons

Event-driven
contrastive
divergence

(eCD),
unsupervised

91.9%
1 s per test

[Neftci
et al.,
2016]

Thresholding,
Poisson

Two layers,
RBM,

LIF neurons

Synaptic
Sampling

Machine + eCD,
unsupervised

95.8%
250 ms per test

[Stromatias
et al.,
2015b]

Poisson
Four layers,

RBM,
LIF neurons

Off-line trained,
unsupervised

94.94%
16 ms latency
1.44M Sopbs

[Diehl
et al.,
2015b]

Poisson
Six layers,
ConvNet,

IF neurons

Off-line trained
with ReLU,

weight
normalisation

99.1%,
0.5 s per test

[Zhao
et al.,
2015]

Thresholding
or DVS

Simple (Gabor),
Complex (MAX)
and Tempotron

Tempotron,
supervised

91.3%(Thresholding)
11 s per test
88.1%(DVS),
2 s per test

Chpt4 Poisson
Six layers,
ConvNet,

LIF neurons

Off-line trained
with ReLU,

Noisy Softplus
fine-tune

99.07%,
1 s per test
35.24 ms

53.4M Sopbs

Chpt5 Poisson
Two layers,

Autoencoders (AE),
LIF neurons

Event-driven,
spike-based AE
18K s training,
unsupervised

94.72%,
1 s per test
21.68 ms

5.26M Sopbs

Case
Study Poisson

Fully connected
decision layer,
LIF neurons

K-means clusters,
Supervised STDP
18K s of training

92.99%
1 s per test

13.82 ms latency
4.17M Sopbs

6.4. PERFORMANCE EVALUATION 153

T
ab

le
6.

3:
H

ar
d
w

ar
e-

le
ve

l
co

m
p
ar

is
on

S
y
st

em
N

eu
ro

n
M

o
d

el
S

y
n

ap
ti

c
P

la
st

ic
it

y
P

re
ci

si
on

S
im

u
la

ti
on

T
im

e

E
n

er
gy

U
sa

g
e

S
p

iN
N

ak
er

[S
tr

om
a
-

ti
as

et
al

.,
2
01

3
]

D
ig

it
a
l,

S
ca

la
b

le

P
ro

gr
a
m

m
ab

le
N

eu
ro

n
a
n

d
S
y
n

ap
se

,
A

x
on

al
d

el
ay

P
ro

gr
am

m
ab

le
le

ar
n

in
g

ru
le

11
-

to
14

-b
it

sy
n

ap
se

s

R
ea

l-
ti

m
e

F
le

x
ib

le
ti

m
e

re
so

lu
ti

on

8
n

J
/
S

E

T
ru

eN
or

th
[M

er
ol

la
et

a
l.

,
20

1
4
]

D
ig

it
al

,
S

ca
la

b
le

F
ix

ed
m

o
d

el
s,

C
o
n

fi
g

p
a
ra

m
s,

A
x
o
n

a
l

d
el

ay

N
o

p
la

st
ic

it
y

12
2

b
it

s
p

ar
am

s
&

st
at

es
,

4-
b

it
/

4
va

lu
es

sy
n

ap
se

s1

R
ea

l-
ti

m
e

26
p

J
/S

E

N
eu

ro
gr

id
[B

en
ja

m
in

et
al

.,
20

1
4]

M
ix

ed
-

m
o
d

e,
S

ca
la

b
le

F
ix

ed
m

o
d

el
s,

C
on

fi
g

p
ar

a
m

s
F

ix
ed

ru
le

13
-b

it
sh

ar
ed

sy
n

ap
se

s
R

ea
l-

ti
m

e
9
41

p
J
/S

E

H
I-

C
A

N
N

[S
ch

em
m

el
et

a
l.

,
20

1
0]

M
ix

ed
-

m
o
d

e,
S

ca
la

b
le

F
ix

ed
m

o
d

el
s,

C
on

fi
g

p
ar

a
m

s
F

ix
ed

ru
le

4-
b

it
/

16
va

lu
es

sy
n

ap
se

s

F
as

te
r

th
an

re
al

-t
im

e2

7
.4

1
n

J
/S

E
(n

et
w

o
rk

on
ly

)

H
iA

E
R

-
IF

A
T

[Y
u

et
a
l.

,
20

1
2]

M
ix

ed
-

m
o
d

e,
S

ca
la

b
le

F
ix

ed
m

o
d

el
s,

C
on

fi
g

p
ar

a
m

s
N

o
p

la
st

ic
it

y

A
n

al
og

u
e

n
eu

ro
n

/s
y
-

n
ap

se
R

ea
l-

ti
m

e
2
2-

p
J
/S

E
[P

a
rk

et
al

.,
2
01

4]

a
W

e
co

n
si

d
er

th
em

4-
b

it
sy

n
ap

se
s

b
ec

au
se

it
is

on
ly

p
os

si
b

le
to

ch
o
o
se

b
et

w
ee

n
4

d
iff

er
en

t
si

g
n

ed
in

te
g
er

s
a
n

d
w

h
et

h
er

th
e

sy
n

a
p

se
is

a
ct

iv
e

o
r

n
o
t.

b
A

m
ax

im
u

m
sp

ee
d

-u
p

of
u

p
to

10
5

ti
m

es
re

al
ti

m
e

h
as

b
ee

n
re

p
o
rt

ed
.

154 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

6.4.2 Hardware-level Evaluation

A direct comparison between neuromorphic platforms is a non-trivial task due to

the different hardware implementation technologies as mentioned in Section 2.3.2.

Table 6.3 attempts to describe the neuromorphic hardware platforms with reference to

different aspects of SNN simulation. The scalability of a hardware platform determines

the network size limit of a neural application running on it. Considering the various

neural and synaptic models, plasticity learning rules and lengths of axonal delays, a

programmable platform offers flexibility to support diverse SNNs while a hard-wired

system supporting only specific models is advantageous due to its energy-efficiency and

simpler design and implementation. The classification accuracy of an SNN running

on a hardware system can be different from the software simulation, since hardware

implementations may impose limits on the precision used for the membrane potentials

of neurons (for the digital platforms) and the synaptic weights. Simulation time is

another important measure when running large-scale networks on hardware. Real-

time implementation is an essential requirement for robotic systems because of the

real-time input from the neuromorphic sensors. Running faster than real time is

attractive for large and long simulations. It is interesting to compare the performance

of each platform in terms of energy requirements, especially if the platform targets

mobile applications and robotics. Some researchers have suggested the use of energy

per synaptic event (J/SE) [Sharp et al., 2012; Stromatias et al., 2013] as an energy

metric because the large fan in and out of a neuron means that synaptic processing

tends to dominate the total energy dissipation during a simulation. Merolla et al.

[2014] proposed the number of synaptic operations per second per Watt (Sops/W).

These two measures are equivalent, since J/SE×Sops/W = 1.

However, the typical reported simulation time and energy use for the various plat-

forms is under different SNN models, making the comparisons problematic. Model-

specific hardware metrics would provide robust comparisons between platforms and

expose how different networks influence the metrics on particular hardware. The pro-

posed evaluation metrics consist of the feasibility, classification accuracy, sim-

ulation time and energy use. A particular SNN model is feasible to run on a

particular hardware platform only when the network size is under the platform’s limit,

the neural and synaptic models are supported, and the learning rule is implemented.

6.5. RESULTS 155

CA also plays a role in hardware evaluation because of the precision limits that may

be imposed by the platform. Due to the limited hardware resources, simulation time

may accelerate or slow down according to the network topology and spike dynamics.

Similarly, energy costs vary with different networks and neural and synaptic models.

6.5 Results

In this section, we present a recognition SNN model working on the Poissonian subset

of the NE15-MNIST dataset. The network components, training and testing meth-

ods are described along the lines set out in Section 6.4.1. The recognition result is

evaluated using the proposed metrics: classification accuracy, response latency and

number of synaptic events. As tentative benchmarks the models are implemented on

SpiNNaker to assess the hardware-level performance against software simulators. Pre-

senting proper benchmarks for vision recognition systems is still under investigation;

the case study only make a first attempt.

The case study is a simple two-layer network where the input neurons receive

Poisson spike trains from the dataset and form a fully connected network with the

decision neurons. There is at least one decision neuron per digit to classify a test input.

The neuron with the highest output firing rate classifies a test image as the digit it

represents. The model utilises LIF neurons, and the parameters are all biologically

valid, see the listed values in Table 6.4. The LIF neuron model follows the membrane

potential dynamics (Equation 4.1):

τm
dV

dt
= Vrest − V +RmI(t) , (6.1)

where τm is the membrane time constant, Vrest is the resting potential, Rm is the

membrane resistance and I is the synaptic input current. In PyNN, Rm is represented

by Rm = τm/Cm, where Cm is the membrane capacitance. A spike is generated when

the membrane potential goes beyond the threshold, Vthresh and the membrane potential

then resets to Vreset. In addition, a neuron cannot fire within the refractory period,

τrefrac, after generating a spike.

The connections between the input neurons and the decision neurons are plastic,

so the connection weights can be modulated during training with a multiplicative

156 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

STDP learning rule, refer to Section 2.2.4 for more detail. The model is described

with PyNN and the code is published in the Github repository with the dataset.

As a potential benchmark, this system is composed of simple neural models, trained

with standard learning rules and written in a standard SNN description language.

These characteristics allow the same network to be tested on various simulators, both

software- and hardware-based.

Both training and testing use the Poissonian subset of the NE15-MNIST dataset.

This makes performance evaluation on different simulators possible with the unified

spike source array provided by the dataset. In terms of this case study, the performance

of the model was evaluated with both software simulation (on NEST [Gewaltig and

Diesmann, 2007]) and on a hardware implementation (on SpiNNaker).

In order to fully assess the performance, different settings were configured on the

network, such as network size, input rate and test image duration. For simplicity of

describing the system, a set of standard configuration is used as the example in the

following sections.

Table 6.4: Parameter setting for the current-based LIF neurons using PyNN.

Parameters Values Description

Cm 0.25 nF membrane capacitance

τm 20.0 ms membrane time constant

τrefrac 2.0 ms refractory period

Vreset -70.0 mV resting membrane potential

Vrest -65.0 mV resetting membrane potential

Vthresh -50.0 mV membrane threshold

Ioffset 0.0 nA offset of current influx

6.5.1 Training

There are two layers in the model: 28×28 input neurons fully connect to 100 decision

neurons. Each decision neuron responds to a certain digit template. In the standard

configuration, there are 10 decision neurons responding to each digit with slightly

different templates. Those templates are embedded in the connection weights between

the two layers. Figure 6.3(a) shows how the connections to a single decision neuron

are tuned.

6.5. RESULTS 157

Figure 6.3: The (a) training and (b) testing model of the proposed case study SNN:
STDP learning with supervised teaching signal.

The training set of 60K hand written digits are firstly classified into 100 classes,

10 subclasses per digit, using K-means clusters. K-means clustering separates a set

of data points into K subsets (clusters) according to the Euclidean distance between

them. Therefore each cluster tends to form a boundary within which the data points

are near to each other. In this case, all the images of the same digit (a class) are

divided into 10 subclasses by assigning K=10. Then the images in a certain subclass

are used to train a template embedded in the synaptic weights to the corresponding

decision neuron. The firing rates of the input neurons are assigned linearly according

to their intensities and the total firing rate of all the 28×28 input neurons is normalised

to 2K Hz, that is, the sum of the firing rates of all of the input neurons is 2K Hz. All

the images together are presented for 18K s (about 300 ms per image) during training

and at the same time a teaching signal of 50 Hz is conveyed to the decision neuron

to trigger STDP learning. The trained weights are plotted in accordance with the

positions of the decision neurons in Figure 6.3(b).

6.5.2 Testing

After training the weights of the plastic synapses are set to static, keeping the state

of the weights at the last moment of training. However, during training the synaptic

158 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

plasticity holds a hard limit of 0 on the weight strength, thus excitatory synapses

cannot change into inhibitory. To investigate how inhibitory connections influence

the classification performance, the weak weights were set to negative with identical

strengths. Results show that inhibitory synapses significantly reduced the output firing

rates while keeping a good classification ability. Thus the strategy of replacing weak

weights with the same negative values was used throughout the case study.

The feed-forward testing network is shown in Figure 6.3(b) where Poisson spike

trains are generated the same way as in the training with a total firing rate of 2K Hz

per image. The input neurons convey the same spike trains to every decision neuron

through its corresponding trained synaptic weights. One test trial contains 10K images

in total and each image is presented once and lasts 1 s with a 0.2 s blank period between

consecutive images. The output neuron with the highest firing rate determines which

digit is recognised. With the standard training configuration, we compared the CA

of different simulations of the same SNN model. Using the trained weights from the

NEST simulation, the accuracy of the recognition on NEST reached 90.03%, and this

accuracy was also achieved on SpiNNaker. When the network was both trained and

tested on SpiNNaker the recognition accuracy was 87.41%. Using these weights in

NEST yielded a similar result (87.25%). The reduction in CA using the SpiNNaker

trained weights was due to precision loss caused by the limited fast memory and

the necessity for fixed-point arithmetic to ensure real-time operation. It is inevitable

that numerical precision will be below IEEE double precision at various points in the

processing chain from synaptic input to membrane potential. The main bottleneck is

currently in the ring buffer where the total precision for accumulated spike inputs is

16-bit, meaning that individual spikes are realistically going to be limited to 11- to

14-bit depending upon the probabilistic headroom calculated as necessary from the

network configuration and spike throughput [Hopkins and Furber, 2015].

6.5.3 Evaluation

Evaluation starts from the model-level, focusing on the spike-based recognition analy-

sis. As mentioned in Section 6.4.1, CA, response time (latency) and the total number of

synaptic events are the main concerns when assessing the recognition performance. In

our experiment, two sets of weights were applied: the original STDP trained weights,

6.5. RESULTS 159

and the same weights strengthened 10 times (which we call scaled-up weights). The

spike rates of the test samples were also modified, ranging from 10 to 5K Hz.

Figure 6.4: Accuracy, response time (latency) and synaptic event rate (Sopbs) change
over test time and input firing rate per test image. The test time is the duration of
the presence of a single test image, and the input firing rate is the summation of all
the input neurons. Original trained weights are used (up-pointing triangles with solid
line) as well as the scaled up (×10) weights (down-pointing triangles with dashed line).

160 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

We found that accuracy depends largely on the time each sample is exposed to the

network and the sample spike rate (Figure 6.4). Figure 6.4(a) shows that the CA is

better as exposure time increases. The longer an image is presented, the more informa-

tion is gathered by the network, so the accuracy climbs. Classification accuracy also

increases when input spike rates are augmented (Figure 6.4(b)). Given that the spike

trains injected into the network are more intense, the decision neurons become more

active, and so does the output disparity between them. Nonetheless, it is important

to know that these increases in CA have a limit, as is shown in the aforementioned

figures. With stronger weights, the accuracy is much higher when the input firing rate

is less than 2K Hz.

The latency of an SNN model is the result of the input firing rates and the synaptic

weights. We measured the latency of each test by getting the time difference of the

first spike generated by any decision neuron in the output layer and the first spike

of the input layer. As the input firing rates grow, there are more spikes arriving

at the decision neurons, triggering them to spike sooner. A similar idea applies to

the influence of synaptic weights. If stronger weights are taken, then the membrane

potential of a neuron reaches its threshold earlier. Figure 6.4(d) indicates that the

latency is shortened with increasing input firing rates with both the original and

scaled-up weights. When the spiking rate is less than 2K Hz, the network with stronger

weights has a much shorter latency. As long as there are enough spikes to trigger the

decision neurons to spike, increasing the test time will not make the network respond

sooner (Figure 6.4(c)).

At the default configuration of the SNN model, each input neuron connects to all

of the 100 decision (output) neurons with both excitatory and inhibitory projections.

Thus the synaptic events happening in the inter-layer connections are 200 (100×2)

times the total input firing rate. Figure 6.4(e) shows the stable Sopbs of the entire

network when the input firing rate is held at 2K Hz and the test time increases. The

firing rates of the output layer are relatively small, and are 0.1% and 1.5% of the total

Sopbs using original and scaled-up weights respectively. The variations in the total

Sopbs lie in the firing rate of the output layers only, and the stronger connections

lead to the higher firing rates. Likewise, the output neurons are more active with

stronger connection weights, and the gap widens as the input firing rate increases, see

6.5. RESULTS 161

Figure 6.4(f). Although the variations in the Sopbs climb to around 8 kHz, it is not

obvious in the figure because the output firing rates are relatively low and therefore

so are the differences.

The network size not only influences the accuracy of a model but also the time

taken for simulation on specific platforms, thus impacting the energy usage on the

hardware. For the purpose of comparing the accuracy, simulation time, number of

synaptic events and energy usage, different configurations have been tested on NEST

(working on a PC with CPU: i5-4570 and 8G bytes memory) and on SpiNNaker. The

same experiment was run 4 times with different random seeds; the average performance

estimation is listed in Table 6.5. The input rates in all of the tests are 5K Hz, and each

image is presented for 1 s with a 0.2 s blank period between consecutive images during

which the model receives no input. The configurations only differ in the number of

templates (subclasses/clusters) per digit.

As the network size grows there are more decision neurons and synapses connecting

to them, thus the simulation time on NEST increases. On the other hand, SpiNNaker

works in (biologically) real time and the simulation time becomes shorter than the

NEST simulation when 1K patterns per digit (1K decision neurons per digit) are used.

The NEST simulation was run on a desktop PC, and the power use was measured by

a meter socket and estimated by subtracting the usage of idle OS operation from the

usage running the simulation. In doing so, the power consumption of the resources

needed to run the simulation is better approximated. The SpiNNaker test was run on

a Spin4 board which has 48 chips and exposed pins to measure electrical quantities.

A built-in Arduino board provided a measurement read out of the power usage of the

chips. For the same goal of estimating just the required resources, only the active

chips were measured. Even with the smallest network, SpiNNaker wins in the energy

cost comparison, see Figure 6.5. Among different network configurations, the model

with 500 decision neurons (50 clusters per digit) reaches the highest recognition rate of

92.99% on average having a latency of 13.82 ms mean and 2.96 ms standard deviation.

And there are standard deviations of 2.57% on CA and of 1.17 ms on the latency over

10 testing digits. The total number of synaptic events is around 4.17M Sopbs, where

only 7K spikes are generated in the output layer. The NEST simulation costs 767.67 s

on average for the entire 12K s biological-time test, 20 W in power use on the PC and

162 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

T
ab

le
6.5:

C
om

p
arison

s
of

N
E

S
T

(N
)

on
a

P
C

an
d

S
p
iN

N
aker

(S
)

p
erform

an
ce

averaged
over

10
trials.

S
u
b

classes
p

er
d
igit

1
10

50
100

1000

A
v
g.

resp
on

se
18.03

14.25
13.82

13.57
13.15

laten
cy

(m
s)

A
v
g.

sy
n
ap

tic
83,691.48

835,274.98
4,173,392.03

8,343,559.69
83,385,785.67

even
ts

(S
op

b
s)

A
ccu

racy
N

79.63±
0.23

91.42±
0.13

92.99±
0.15

87.05±
0.21

89.63±
0.08

(%
)

S
79.57±

0.31
91.39±

0.09
92.99±

0.08
87.00±

0.26
89.58±

0.24

A
v
g.

S
IM

N
445.09

503.21
767.67

1,131.09
12,027.75

tim
e

(s)
S

12K

P
ow

er
N

20
20

20
19

17

(W
)

S
0.38

0.38
0.41

0.44
1.50

E
n
ergy

N
8.90

10.06
15.34

21.50
208.25

(K
J
)

S
4.56

4.56
4.92

5.28
18.00

6.6. SUMMARY 163

15.35 KJ of energy, while SpiNNaker works in real time using 4.92 KJ of energy at a

power of 0.41 W (see Table 6.5). This result provides a baseline for comparison with

other SNN models and neuromorphic hardware, and no optimisation is applied.

Figure 6.5: Energy usages of different network size both using NEST (blue) on a PC
and SpiNNaker (black).

6.6 Summary

This chapter put forward the NE dataset as a unified resource to quantitatively mea-

sure progress within the field of neuromorphic vision. It enables not only objective

comparisons among SNNs, but also between conventional ANNs and these spike-based

models. In addition, as an evolving dataset, it catches up with the cutting-edge tech-

nologies thereby promoting future research in NE.

The current dataset NE-15 contains four spike-based subsets aiming at different

purposes: (1) the Poissonian subset is intended for testing rate-based recognition

methods; (2) the rank-order coded subset aims at spatio-temporal algorithms; (3) the

DVS recorded flashing input subset encourages fast recognition; and (4) the other DVS

recorded moving input is designed for mobile neuromorphic robots and is a suitable

test for invariant object recognition.

The proposed complementary evaluation methodology is the first to analytically

assess SNN models and the neuromorphic hardware simulators. We carefully selected

response latency and the number of synaptic events for model-level evaluation; plus,

164 CHAPTER 6. BENCHMARKING NEUROMORPHIC VISION

simulation time and energy usage for evaluating hardware performance. These special

evaluation metrics highlight the strengths of spike-based AI tasks.

A potential benchmark system is evaluated using the Poissonian subset of the

NE15-MNIST dataset. This example demonstrates a recommended way of using the

dataset, describing the SNN models and evaluating the system performance. The case

study provides a baseline for robust comparisons for SNN models and their hardware

implementations, and also validates the feasibility of the database and its evaluation

methodology.

Building up this dataset is a team work, I claim my own contributions are two

subsets of the dataset out of four, the complementary evaluation methodology and the

on-line learning case study.

Chapter 7

Conclusion and Future Work

In this chapter, we will confirm the hypotheses proposed in Chapter 1 to answer the

thesis question: how to close the gap between the cognitive capabilities of Spiking

Neural Networks (SNNs) and Artificial Neural Networks (ANNs) on Artificial Intel-

ligence (AI) tasks. This involves introducing sub-topics on how we arrived at this

confirmation, what are the main contributions, and how this work challenges previous

research. This will be followed by a statement of the current limitations of our study,

potential methods for tackling these limitations, and directions for further research.

7.1 Confirming Research Hypotheses

1. Deep SNNs can be successfully and simply trained off-line where the

training takes place on equivalent ANN and the tuned weights then trans-

ferred back to the SNNs, thus making them as competent as ANNs in

cognitive tasks.

The key problem of such an off-line method lies in the transformation of ANN mod-

els to SNNs. In Chapter 4, we broke down the problem into two smaller parts and

solved them with proposed novel activation functions: Noisy Softplus (NSP) and the

Parametric Activation Function (PAF). NSP accurately models the output firing ac-

tivity in response to the current influx of a Leaky Integrate-and-Fire (LIF) neuron. It

tackles the first problem of modelling discrete, spike-based neural computation with

continuous activation functions of abstract values in ANNs. Next, PAF addresses the

other problem of mapping these numerical values to concrete physical units in SNNs:

165

166 CHAPTER 7. CONCLUSION AND FUTURE WORK

input currents in nA and output firing rates in Hz. Therefore, a standard LIF neuron

of biologically-valid parameters can be represented as a PAF-NSP neuron in ANN.

Consequently, an ANN comprised of PAF-NSP neurons can work equivalently to an

SNN of LIF neurons; and the weights of this ANN model could be transferred to the

SNN without any transformation. Moreover, the training of PAF-NSP neurons can

be generalised to a PAF version of conventional activation functions, which greatly

reduces the computational complexity.

On one hand, this research contributes to the NE community a simple off-line

SNN training method. It enables any feed-forward SNN to be modelled and trained

on an equivalent ANN, and thus resolves the difficulties of transforming ANN models to

SNNs. On the other hand, the method is generalised in terms of spiking neural models

and hardware platforms, since it works on standard LIF neurons which are supported

by most neuromorphic hardware. Hence, AI engineers are capable of implementing

their ANN models on NE platforms without knowledge of SNN or hardware-specific

programming, thereby benefiting from neuromorphic hardware in many ways: such as

energy-efficiency, biological realism, low latency and real-time processing.

Among the existing approaches, this method is the first and only one that unifies

the representation of neurons in ANNs and the spiking ones in SNNs using abstract

activation functions, while some other approaches [Jug et al., 2012; Hunsberger and

Eliasmith, 2015] directly handle physical units. In terms of modelling accuracy, NSP

not only takes the noise of the current influx brought by the random arrival of spikes

into account, which is missing in soft LIF [Hunsberger and Eliasmith, 2015], but also

includes coloured noise where the Siegert formula [Jug et al., 2012] only works on

white noise. Regarding simplicity, this training method performs effectively using

Rectified Linear Units (ReLUs), however, other studies [Jug et al., 2012; Hunsberger

and Eliasmith, 2015] suffer from high computational complexity. In addition, thanks

to the accurate modelling of PAF, the trained weights are ready to use on SNNs, while

previous approaches [Cao et al., 2015; Diehl et al., 2015b] require an extra step to

adapt the trained weights to the SNN. Moreover, comparing to the requirements of

specific neural models [Cao et al., 2015; Diehl et al., 2015b] and the hardware-specific

training methods [Diehl et al., 2016b,a; Esser et al., 2015], our approach is generalised

to target standard LIF neurons and neuromorphic hardware platforms.

7.1. CONFIRMING RESEARCH HYPOTHESES 167

To validate the cognitive capability of the SNN models, we compared the classifica-

tion accuracy of the spiking ConvNets to the non-spiking ANNs. The performance was

nearly equivalent, and the best classification accuracy achieved 99.07% on the MNIST

task which outperformed state-of-the-art SNN model of LIF neurons [Hunsberger and

Eliasmith, 2015] and equalled the best result using simplified IF neurons [Diehl et al.,

2015b]. Therefore, we confirm the hypothesis with the first contribution of this thesis:

providing the NE community a simple, but effective, generalised, off-line deep SNN

training method.

2. Unsupervised Deep Learning modules can be trained on-line on SNNs

with biologically-plausible synaptic plasticity to demonstrate a learning ca-

pability equivalent to ANNs.

On-line training aims to bring biologically-plausible learning rules to SNNs to equip

neuromorphic computers with genuine learning capabilities. Instead of transforming

off-line trained ANN models to SNNs, on-line methods face the problem of translating

numerical computations for training Deep Learning modules into spike-based synaptic

plasticity rules. Multiplication is the core operation in the unsupervised Deep Learn-

ing algorithms, Autoencoders (AEs) and Restricted Boltzmann Machines (RBMs). In

Chapter 5 we found that the product of two numerical values could be represented

with rate multiplication of a pair of rate-coded spike trains; and the proposed for-

malised Spike-based Rate Multiplication (SRM) method precisely transformed the

product of rates to the number of simultaneous spikes generated from a pair of con-

nected spiking neurons. Most importantly, the simultaneous events were captured by

the weight change of the synaptic connection using the Spike-Timing-Dependent Plas-

ticity (STDP) learning rule. Therefore, the SRM tackles the problem of translating

the weight tuning from numerical computations to event-based, biologically-plausible

learning rules in SNNs.

Spiking AEs and RBMs can be trained with SRM by sharing the synaptic weights

between ab and cd, and applying symmetric learning rates ±ηs on the weight changes

respectively. The performance approaches the same, sometimes even superior, classifi-

cation and reconstruction capabilities compared to their equivalent non-spiking mod-

els. In addition, the numerical analysis of the proposed algorithm accurately estimates

168 CHAPTER 7. CONCLUSION AND FUTURE WORK

the learning rate ±ηs, thus closely mimicking the learning behaviour of the AE and

RBM modules, and improves the learning performance compared to existing methods.

Thanks to the accurate parameter estimation, the classification results (94.72% for

SAE and 94.35% for SRBM) have outperformed most existing on-line models. Neil

[2013] ignored the model formalisation and accurate parameter settings thus achieved

its best performance only at 81.5%. Neftci et al. [2013] conducted training on a

recurrent network which was more biologically plausible, but with a different goal of

neural sampling this method achieved a worse classification at 91.9%. Their extended

work [Neftci et al., 2016] improved the performance to the state-of-the-art, 95.6%, but

requires extra Deep Learning technique, dropout [Srivastava et al., 2014], and more

training epochs. Nevertheless, Neftci et al. [2016] did not compare the trained SNN to

the non-spiking counterpart, RBM-dropout; while our method closely reproduced the

learning curves of the equivalent ANNs. Moreover, our proposed method successfully

decorrelates spike trains, thereby solving the problem of performance drop caused by

the spike correlation. Therefore, this method enables the genuine ‘live and learn’

in on-line SNN training. Furthermore, in theory our method works on any spiking

neuron model and requires a simple rectangular STDP, thus can be easily implemented

on general neuromorphic hardware. However, it is more difficult for other existing

approaches [Neftci et al., 2013, 2016] to work on hardware platforms since they ask for

either specific neural/synaptic models or extra external signals to control the learning.

Our second contribution is the formalisation of an STDP-based unsupervised learn-

ing algorithm for spiking AE (SAE) and spiking RBM (SRBM). The promising results

of equivalent or even superior classification and reconstruction capabilities of SAEs and

SRBMs compared to their conventional ANN-based methods confirms the hypothesis

that SNNs have learning ability as competent as deep ANNs.

3. A new set of spike-based vision datasets can provide resources and

corresponding evaluation methodology to support objective comparisons

and measure progress within the rapidly advancing field of NE.

In Chapter 6 we presented a dataset containing four different spike representations of

the MNIST stationary hand-written digit database. The Poissonian subset is intended

for benchmarking existing rate-based recognition methods. The rank-order coded

7.1. CONFIRMING RESEARCH HYPOTHESES 169

subset, FoCal, encourages research into spatio-temporal algorithms for recognition

applications using only small numbers of input spikes. Fast recognition can be verified

on the DVS recorded flashing input subset, since just 30 ms of useful spike trains are

recorded for each image. Another DVS recorded moving input can be used to test

mobile neuromorphic robots. Orchard et al. [2015] presented a neuromorphic dataset

using a similar approach to capture moving input, but the spike trains were obtained

with micro-saccades. This dataset aims to convert static images into neuromorphic

vision input, while the recordings of moving input in this thesis are intended to promote

position-invariant recognition. Therefore, the datasets complement each other.

The proposed complementary evaluation methodology is essential to assess both

the model-level and hardware-level performance of SNNs. In addition to classification

accuracy, response latency and the number of synaptic events are specific evaluation

metrics for model-level spike-based processing; plus, simulation time and energy usage

are for evaluating hardware performance. These carefully selected evaluation metrics

highlight the strengths of spike-based AI tasks. It is also important to describe an SNN

model in sufficient detail to share the network design. The network size of an SNN

model that can be built on a hardware platform will be constrained by the scalability

of the hardware. Neural and synaptic models are limited to those that are physically

implemented, unless the hardware platform supports programmability. Any attempt

to implement an on-line learning algorithm on neuromorphic hardware must be backed

by synaptic plasticity support. Therefore running an identical SNN model on different

neuromorphic hardware exposes the capabilities of such platforms. If the model runs

smoothly on a hardware platform, it then can be used to benchmark the performance

of the hardware simulator in terms of simulation time and energy usage. Classification

accuracy is also a useful metric for hardware evaluation because of the limited precision

of the membrane potential and synaptic weights.

A third contribution of the thesis provides the NE community with a dataset and its

corresponding evaluation methodology for comparisons of SNN models and NE plat-

forms, thus to measure the progress towards Neuromorphic Cognition. The successful

baseline test of a benchmark system has been evaluated using the Poissonian subset

of the NE15-MNIST dataset, which validates the feasibility of the database and its

evaluation. There, we confirm the hypothesis that the dataset provides resources and

170 CHAPTER 7. CONCLUSION AND FUTURE WORK

supports fair comparisons among SNN models and their hardware implementations.

7.2 Future Work

Though the research aim has been mostly achieved by the work presented in this thesis,

some limitations still remain to be addressed in the future. In addition, this work has

inspired new directions for future work to continue and expand the current research.

7.2.1 Off-line SNN Training

The current limitation prohibiting the off-line SNN training method from wide use lies

in the lack of supporting tools. This requires the development of a set of software and

libraries. Besides, we will look into networks with feedback connections, Recurrent

Neural Networks (RNNs), thus to adapt the off-line training method to most network

architectures. Moreover, some initial studies following our research have successfully

applied the proposed method to various applications.

Supporting software tools. The plan of developing software and libraries in the

near future includes:

• parameter calibration of p for PAF given LIF neuron configurations, which in-

volves automatic SNN simulations with different levels of current and noise,

followed by curve fit with the activation function NSP.

• supporting libraries for SNN training in popular Deep Learning platforms, e.g.

Tensorflow [Abadi et al., 2016], which will include the proposed activation func-

tions NSP and PAF in the ANN models.

• a unified template to describe any ANN model and an automation tool that

reads platform-dependent trained models into the designed template. The tool

will not only help to translate ANN models to SNNs, but also contribute to the

cross-platform transfer learning and use of pre-trained models in Deep Learning.

• a translation tool that converts the tuned ANN models into SNNs described in

the PyNN [Davison et al., 2008] language, thus the SNN model can run on any

software simulator or neuromorphic hardware as long as PyNN is supported.

7.2. FUTURE WORK 171

Recurrent Neural Networks. It is difficult to make SNNs work with recurrent

architectures, since a spiking neuron simultaneously takes input from both the lower

level on the feed-forward path and the upper level on the feedback path. However,

in ANNs the feed-forward and feedback paths work alternately on separate steps.

Therefore, the proposed SNN training method only applies to feed-forward networks.

One of the major future goals is to propose a general method to run recurrent SNNs

which perform equivalently to RNN models.

Applications. The simple off-line SNN training method has enabled and encouraged

interesting applications to run in SNNs.

• Ensemble models [Krogh and Vedelsby, 1995] have been trained with NSP neu-

rons and will be transferred onto the SpiNNaker system [Furber et al., 2014].

Usually an ensemble model runs several identical neural networks with statistical

features in parallel, thus occupies huge computing resources. Operating ensem-

ble models on SNNs can take the advantages of energy-efficiency and massively-

parallel processing on Neuromorphic Hardware.

• Speech recognition of simulated spikes from a cochlea model has achieved a

promising accuracy at the initial test-idea stage. We used spike count per frame

per frequency channel as a pixel in a spectrum image, and trained CNNs based

on these spectrum images. The trained weights were transferred directly to an

equivalent convolutional SNN. The next step is to implement the model entirely

on neuromorphic hardware including the cochlea and the SNN, thus to run it in

real time.

• An 18-layer residual network [He et al., 2016] has been trained for the task of

recognising human facial expressions using the KDEF dataset [Lundqvist et al.,

1998]. Notably, this is, so far, the deepest network trained with NSP and the

recognition performance (94.95%) has outperformed ReLU (92.45%). It will

be interesting to analyse the differences of recognition accuracy and robustness

using NSP and other activation functions. Thus it may answer the question how

the brain delivers strong cognitive ability with stochastic and noisy signals.

172 CHAPTER 7. CONCLUSION AND FUTURE WORK

• A further goal is to implement deep SNNs fit for ImageNet [Deng et al., 2009]

tasks, which will also require modelling various functions of Deep Learning on

spiking neurons, such as max-pooling and batch normalisation.

7.2.2 On-line Biologically-plausible Learning

The proposed on-line learning method is limited to rate coding and greedy layer-wise

training. Thus, we will explore alternative coding schemes and training algorithms to

increase the effectiveness of the on-line learning methods. In addition, we will merge

novel Deep Learning techniques into the biologically-plausible SNN training to improve

the cognitive performance and also decrease the energy consumption when running on

neuromorphic hardware.

Beyond rate coding. Although rate coding has shown good performance on train-

ing spiking Deep Learning modules on-line, time-based coding and rank-order coding

which carry more information per spike, are expected to have better or faster learning

capabilities [Gautrais and Thorpe, 1998]. We have proposed a similar on-line learning

algorithm for training precise-timing based spiking AEs and RBMs, which although

still in the test-idea stage, result of the prototype has shown much faster learning

speed than the rate-coding mechanism.

Backpropagation alternatives. The STDP rule usually works locally with a teach-

ing signal in supervised learning, however, error backpropagation (BP) does not pro-

vide the teaching targets for all the hidden units of a network. Thus, BP with gradient

descent is believed to be difficult to transfer to SNNs and alternative methods with lo-

cal training algorithms are preferred. Despite the success of greedy layer-wise training

of AEs and RBMs, Random Back-Propagation (RBP) is also an alternative to back-

ward targets with fixed random weights for hidden layers. Therefore, RBP fits to the

local learning rules of synaptic plasticity in SNNs. Initial work [Samadi et al., 2017;

Neftci et al., 2017] has shown that these random feedback weights work effectively to

replace precise BP, but endures complex neuron/synaptic models and network archi-

tectures. In the future, we will continue the investigation in BP alternatives within

on-line SNN training.

7.2. FUTURE WORK 173

Biologically-plausible Reinforcement Learning. The modulation of STDP by a

third factor such as dopamine has potentially interesting functional consequences that

turn STDP from unsupervised learning into a reward-based learning paradigm [Izhike-

vich, 2007] which addresses Reinforcement Learning. Merging advanced neuroscience

findings and Deep Learning mechanisms onto on-line SNN training will be the trend

for future work.

State-of-the-art Performance. Synaptic Sampling Machines (S2Ms) [Neftci et al.,

2016] employing a dropout [Srivastava et al., 2014] mechanism which hugely improved

the performance on MNIST tasks from 91.9% to 95.6%. Thus applying novel Deep

Learning techniques for SNN training is also in the future work to improve the state-

of-the-art performance..

Genuine Learning on Neuromorphic Hardware. On-line training is a necessary

means towards Neuromorphic Cognition where the hardware computers learn while

they operate. The main concerns are the learning speed and the power consumption,

which will be compared to off-line training methods and conventional ANN training.

It is still an open question how to perform the human-level cognition and at the same

time achieve the low power cost by on-line learning.

7.2.3 Evaluation on Neuromorphic Vision

Since new problems will continue to arise before vision becomes a solved problem,

the NE dataset will evolve as research progresses. The number of vision datasets will

increase and the corresponding evaluation methodologies will evolve. The conversion

methods for transforming images and videos into spike trains will advance.

Face recognition dataset. As mentioned in Section 6.1, face recognition has be-

come a hot topic in SNN approaches, however there is no unified spike-based dataset

to benchmark these networks. Thus, the next step is to include face recognition

databases. While viewing an image, saccades direct high-acuity visual analysis to a

particular object or a region of interest and useful information is gathered during the

fixation of several saccades in a second. It is possible to measure the scan path or

174 CHAPTER 7. CONCLUSION AND FUTURE WORK

trajectory of the eyeball and those trajectories show particular interest in eyes, nose

and mouth while viewing a human face [Yarbus, 1967]. Therefore, our plan is also to

embed modulated trajectory information to direct the recording using DVS sensors to

simulate human saccades.

Converting images to spikes. Although Poisson spikes are the most commonly

used external input to an SNN system, there are several in-vivo recordings in dif-

ferent cortical areas showing that the inter-spike intervals (ISI) are not Poissonian.

Thus Deger et al. [2012] proposed new algorithms to generate superposition spike

trains of Poisson Processes with Dead-time (PPD) and Gamma processes. Including

novel spike generation algorithms in the dataset is one aspect of future work.

Invariant object recognition Each encounter of an object on the retina is unique,

because of the illumination (lighting condition), position (projection location on the

retina), scale (distance and size), pose (viewing angle), and clutter (visual context)

variabilities. The brain, however, recognises a huge number of objects rapidly and ef-

fortlessly even in cluttered and natural scenes. To explore invariant object recognition,

the dataset will include the NORB (NYU Object Recognition Benchmark) dataset [Le-

Cun et al., 2004], which contains images of objects that are first photographed in ideal

conditions and then moved and placed in front of natural scene images.

Video processing Action recognition will be the first problem of video processing

to be introduced in the dataset. The initial plan is to use the DVS retina to con-

vert the KTH [Schüldt et al., 2004] and Weizmann [Blank et al., 2005] benchmarks

to spiking versions. Meanwhile, using the proposed software DVS retina [Garibaldi

et al., 2016] to transform frames into spike trains is also on the schedule. By doing

this, a huge number of videos, such as those in YouTube, can be converted automati-

cally into spikes, therefore providing researchers with more time to work on their own

applications.

Sharing and collaboration Overall, it is impossible for the dataset proposers to

provide enough datasets, converting methods and benchmarking results, thus we en-

courage other researchers to contribute to the dataset allowing future comparisons

7.3. CLOSING REMARKS 175

using the same data source. They can also share their spike conversion algorithms by

generating datasets to promote the corresponding recognition methods. Neuromor-

phic hardware owners are welcome to provide benchmarking results to compare their

system’s performance.

7.3 Closing Remarks

Energy-efficient neuromorphic hardware platforms have been successfully used to sup-

port large-scale simulations of biologically-plausible SNNs for brain understanding, but

they are still far from intelligent enough to achieve Neuromorphic Cognition. Mean-

while, Deep Learning techniques in the field of ANN have driven simple rate-based

artificial neurons to surpass human-level capabilities in cognitive tasks, e.g. vision.

Thus, to equip these powerful brain-inspired neuromorphic computers with cognitive

capabilities, this thesis contributes to close the gap of the performance between SNNs

and ANNs on AI tasks.

One of the major contributions is a simple off-line SNN training method which

models and trains any feed-forward SNN on an equivalent ANN, and enables the

trained weights work equivalently on the SNN without any conversion. It significantly

simplifies the development of AI applications on neuromorphic hardware thanks to the

simple training process and the use of standard LIF neurons which are supported by

most neuromorphic hardware platforms. The success of the generalised off-line method

paves the way to energy-efficient AI from mobile devices to huge computer clusters.

Taking one step towards Neuromorphic Cognition, the on-line learning method

has also been investigated to train Deep Learning modules on SNNs. The proposed

method tackles the problem of accurately translating the weight tuning from numerical

computations to event-based, biologically-plausible STDP rules in SNNs; and is the

first to address the continuous performance drop caused by the spike correlations.

In doing so, it directs the future work to formalise event-based learning to closely

mimic the numerical computations in conventional ANNs. The development of on-line

training will equip the neuromorphic computers with genuine learning capabilities.

Last but not least, this work contributes to the NE community with a unified

176 CHAPTER 7. CONCLUSION AND FUTURE WORK

dataset to evaluate SNNs’ performance at both model and hardware level. The corre-

sponding evaluation methodology will promote meaningful comparisons between these

proposed SNN models and other existing methods within this rapidly advancing field.

Moreover, we hope to provide objective comparisons between conventional ANNs and

SNNs, in order to give prominence to low latency and energy consumption on neuro-

morphic hardware.

Appendix A

Detailed Derivation Process of

Equations

In Chapter 3, we investigated the derivative of the log-likelihood with the respect to

a parameter θ in general format (Equation 3.18) and in RBM (Equation 3.19). The

following Equations A.1 and A.2 give the detailed derivation process.

In energy-based models, the probability of data point x is defined by a model

function f(x), its energy function E(x) and a partition function Z which normalises

the model function to possibilities by adding up all possible f(x). The second term of

the right hand side in Equation 3.18, the derivative of the log partition function Z, is

as follows:
∂ logZ(Θ)

∂θ
=

1

Z(Θ)

∂Z(Θ)

∂θ

=
1

Z(Θ)

∑
x

∂f(x | Θ)

∂θ

=
1

Z(Θ)

∑
x

f(x | Θ)
1

f(x | Θ)

∂f(x | Θ)

∂θ

=
∑
x

f(x | Θ)

Z(Θ)

∂ log f(x | Θ)

∂θ

=
∑
x

p(x | Θ)
∂ log f(x | Θ)

∂θ

=

〈
∂ log f(c | Θ)

∂θ

〉
C∼p(x|Θ)

,

(A.1)

where < · >X denotes the mean expectation of · given data set X. The first term of

the right-hand side is easy to get with the given data, d ∈ D, and the second term

can be approximated by generating data samples C according to p(x | Θ).

177

178 APPENDIX A. DETAILED DERIVATION PROCESS OF EQUATIONS

Applying the RBM model function in Equation 3.15 to Equation A.1, the derivative

of the log-likelihood with respect to a parameter θ is as follows::

∂l̂(Θ | D)

∂θ
=

〈
∂ log f(d | Θ)

∂θ

〉
D

−
〈
∂ log f(c | Θ)

∂θ

〉
C∼p(x|Θ)

=

〈
∂ log

∑
h e
−E(v,h|Θ)

∂θ

〉
D

−
〈
∂ log

∑
h e
−E(v,h|Θ)

∂θ

〉
C∼p(v|Θ)

=

〈∑
h

e−E(v,h|Θ)∑
h e
−E(v,h|Θ)

· ∂−E(v,h | Θ)

∂θ

〉
D

−

〈∑
h

e−E(v,h|Θ)∑
h e
−E(v,h|Θ)

· ∂−E(v,h | Θ)

∂θ

〉
C∼p(v|Θ)

=

〈∑
h

p(v,h | Θ)

p(v | Θ)
· ∂−E(v,h | Θ)

∂θ

〉
D

−

〈∑
h

p(v,h | Θ)

p(v | Θ)
· ∂−E(v,h | Θ)

∂θ

〉
C∼p(v|Θ)

=

〈∑
h

p(h | v,Θ) · ∂−E(v,h | Θ)

∂θ

〉
D

−

〈∑
h

p(h | v,Θ) · ∂−E(v,h | Θ)

∂θ

〉
C∼p(v|Θ)

=

〈〈
∂−E(v,h | Θ)

∂θ

〉
Dh∼p(h|v,Θ)

〉
D

−

〈〈
∂−E(v,h | Θ)

∂θ

〉
Ch∼p(h|cv,Θ)

〉
Cv∼p(v|Θ)

=

〈
∂−E(v,h | Θ)

∂θ

〉
{D,Dh∼p(h|v,Θ)}

−
〈
∂−E(v,h | Θ)

∂θ

〉
{Cv,Ch}∼p(v,h|Θ)

.

(A.2)

The first term of the right-hand side can be gathered from the given data, {D,Dh},

and the second term can be approximated by generating model data samples {Cv,Ch}.

Appendix B

Detailed Experimental Results for

Chapter 5

In Chapter 5, Figures 5.14 and 5.15 show the comparisons of different solutions for

reducing correlations in training spiking Autoencoders (SAEs) and spiking Restricted

Boltzmann Machines (SRBMs). In this section, Figures B.1 to B.8 present the detailed

experimental results for this comparison.

To validate the learning capability of the proposed off-line training method on

Leaky Integrate-and-Fire(LIF) neurons, Figures B.9 and B.10 demonstrate the results

conducting the same experiments shown in Figures 5.14 and 5.15.

In addition, to provide a closer observation of the trained weights in Figures 5.17

and 5.18, the enlarged images are shown in Figures B.11 to B.22.

179

180 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.1: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking AE with Solution 1. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

181

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140
160
180

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
50

100
150
200
250
300
350

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.2: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking RBM with Solution 1. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

182 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.3: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking AE with Solution 2. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

183

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80
90

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.4: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking RBM with Solution 2. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

184 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140
160

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80
90

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.5: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking AE with Solution 3. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

185

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140
160
180

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
50

100
150
200
250
300
350

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.6: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking RBM with Solution 3. Experiments 1) 10 visible
units fully connected to 10 hidden units with Poisson spike trains of 100 Hz which
lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate ranging
from 10 Hz to 100 Hz.

186 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.7: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking AE with combined solutions. Experiments 1) 10
visible units fully connected to 10 hidden units with Poisson spike trains of 100 Hz
which lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate
ranging from 10 Hz to 100 Hz.

187

(a) Weights of Exp1 (b) Weights of Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(c) Reconstruction of visible units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0

20

40

60

80

100

120

Fi
ri

ng
 R

at
e

(H
z)

(d) Reconstruction of visible units in Exp2

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
20
40
60
80

100
120
140

Fi
ri

ng
 R

at
e

(H
z)

(e) Output of hidden units in Exp1

0 1000 2000 3000 4000 5000
Images (100 ms per Image)

0
10
20
30
40
50
60
70
80
90

Fi
ri

ng
 R

at
e

(H
z)

(f) Output of hidden units in Exp2

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(g) Loss of Exp1

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(h) Loss of Exp2

Figure B.8: Weights and firing rates of visible and hidden units change during training
of the reconstruction tests of spiking RBM with combined solutions. Experiments 1)
10 visible units fully connected to 10 hidden units with Poisson spike trains of 100 Hz
which lasted 100 ms; 2) same network fed with 10 Poisson spike trains of firing rate
ranging from 10 Hz to 100 Hz.

188 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

O
ri

gn
al

S
A

E
S
1

S
2

S
3

S
4

(a) Exp2 Weights

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(b) Exp2 Loss

Figure B.9: Comparisons of weights and loss of solutions for training SAE on Exp2
using LIF neurons: [S1] longer STDP window, [S2] noisy threshold, [S3] teaching
signal, and [S4] combined solutions. 10 visible units fully connected to 10 hidden units
with Poisson spike trains of firing rate ranging from 10 Hz to 100 Hz.

189

O
ri

gn
al

S
R

B
M

S
1

S
2

S
3

S
4

(a) Exp2 Weights

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

0 1000 2000 3000 4000 5000
Images

10-4

10-3

10-2

10-1

100

Lo
ss

(b) Exp2 Loss

Figure B.10: Comparisons of weights and loss of solutions for training SRBM on Exp2
using LIF neurons: [S1] longer STDP window, [S2] noisy threshold, [S3] teaching
signal, and [S4] combined solutions. 10 visible units fully connected to 10 hidden units
with Poisson spike trains of firing rate ranging from 10 Hz to 100 Hz.

190 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.11: Trained weights after 3 epochs of MNIST training using AE, same as
Figure 5.17(a).

191

Figure B.12: Trained weights after 3 epochs of MNIST training using AE-NI, same as
Figure 5.17(b).

192 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.13: Trained weights after 3 epochs of MNIST training using Original SAE,
same as Figure 5.17(c).

193

Figure B.14: Trained weights after 3 epochs of MNIST training using SAE-S2, same
as Figure 5.17(d).

194 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.15: Trained weights after 3 epochs of MNIST training using SAE-S3, same
as Figure 5.17(e).

195

Figure B.16: Trained weights after 3 epochs of MNIST training using SAE-S4, same
as Figure 5.17(f).

196 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.17: Trained weights after 3 epochs of MNIST training using nRBM, same as
Figure 5.18(a.)

197

Figure B.18: Trained weights after 3 epochs of MNIST training using nRBM-NI, same
as Figure 5.18(b).

198 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.19: Trained weights after 3 epochs of MNIST training using Original SRBM,
same as Figure 5.18(c).

199

Figure B.20: Trained weights after 3 epochs of MNIST training using SRBM-S2, same
as Figure 5.18(d).

200 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

Figure B.21: Trained weights after 3 epochs of MNIST training using SRBM-S3, same
as Figure 5.18(e).

201

Figure B.22: Trained weights after 3 epochs of MNIST training using SRBM-S4, same
as Figure 5.18(f).

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S. (2009). The
cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In
High Performance Computing Networking, Storage and Analysis, Proceedings of the
Conference on, pages 1–12. IEEE.

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite,
R. E., Lent, R., Herculano-Houzel, S., et al. (2009). Equal numbers of neuronal and
nonneuronal cells make the human brain an isometrically scaled-up primate brain.
Journal of Comparative Neurology, 513(5):532–541.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In Advances in neural information processing systems,
pages 153–160.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bus-
sat, J.-M., Alvarez-Icaza, R., Arthur, J. V., Merolla, P., Boahen, K., et al. (2014).
Neurogrid: a mixed-analog-digital multichip system for large-scale neural simula-
tions. Proceedings of the IEEE, 102(5):699–716.

Bi, G.-q. and Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
Journal of neuroscience, 18(24):10464–10472.

Bi, G.-q. and Poo, M.-m. (2001). Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annual review of neuroscience, 24(1):139–166.

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C. (2012).
Extraction of temporally correlated features from dynamic vision sensors with spike-
timing-dependent plasticity. Neural Networks, 32:339–348.

Bill, J. and Legenstein, R. (2014). A compound memristive synapse model for statis-
tical learning through STDP in spiking neural networks. Frontiers in neuroscience,
8.

Blank, M., Gorelick, L., Shechtman, E., Irani, M., and Basri, R. (2005). Actions as
space-time shapes. In Computer Vision, 2005. ICCV 2005. Tenth IEEE Interna-
tional Conference on, volume 2, pages 1395–1402.

202

BIBLIOGRAPHY 203

Bouvrie, J. (2006). Notes on convolutional neural networks.

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural computation, 19(11):2881–
2912.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons. PLoS
Comput Biol, 7(11):e1002211.

Burbank, K. S. (2015). Mirrored stdp implements autoencoder learning in a network
of spiking neurons. PLoS Comput Biol, 11(12):e1004566.

Byrne, J. H., Heidelberger, R., and Waxham, M. N. (2014). From molecules to net-
works: an introduction to cellular and molecular neuroscience. Academic Press.

Camunas-Mesa, L., Zamarreño-Ramos, C., Linares-Barranco, A., Acosta-Jiménez,
A. J., Serrano-Gotarredona, T., and Linares-Barranco, B. (2012). An event-driven
multi-kernel convolution processor module for event-driven vision sensors. Solid-
State Circuits, IEEE Journal of, 47(2):504–517.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer Vision,
113(1):54–66.

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Per-
rinet, L., and Yger, P. (2008). PyNN: a common interface for neuronal network
simulators. Frontiers in neuroinformatics, 2.

De Garis, H., Shuo, C., Goertzel, B., and Ruiting, L. (2010). A world survey of artificial
brain projects, Part I: Large-scale brain simulations. Neurocomputing, 74(1):3–29.

Deger, M., Helias, M., Boucsein, C., and Rotter, S. (2012). Statistical properties
of superimposed stationary spike trains. Journal of computational neuroscience,
32(3):443–463.

Delbruck, T. (2008). Frame-free dynamic digital vision. In Proceedings of Intl. Symp.
on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, pages
21–26.

Delorme, A. and Thorpe, S. J. (2001). Face identification using one spike per neuron:
resistance to image degradations. Neural Networks, 14(6):795–803.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: a
large-scale hierarchical image database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 248–255.

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the brain solve visual
object recognition? Neuron, 73(3):415–434.

Diehl, P. U., Cook, M., Tatsuno, M., and Song, S. (2015a). Unsupervised learning

204 BIBLIOGRAPHY

of digit recognition using spike-timing-dependent plasticity. Frontiers in Computa-
tional Neuroscience.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015b).
Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing. In Neural Networks (IJCNN), 2015 International Joint Conference on,
pages 1–8. IEEE.

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella, G.
(2016a). Truehappiness: Neuromorphic emotion recognition on Truenorth. In Neu-
ral Networks (IJCNN), 2016 International Joint Conference on, pages 4278–4285.
IEEE.

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016b). Conver-
sion of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware. arXiv preprint.

Drubach, D. (2000). The brain explained. Prentice Hall.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., and
Rasmussen, D. (2012). A large-scale model of the functioning brain. Science,
338(6111):1202–1205.

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).
Backpropagation for energy-efficient neuromorphic computing. In Advances in Neu-
ral Information Processing Systems, pages 1117–1125.

Fabre-Thorpe, M., Richard, G., and Thorpe, S. J. (1998). Rapid categorization of
natural images by rhesus monkeys. Neuroreport, 9(2):303–308.

Fischer, A. and Igel, C. (2012). An introduction to restricted Boltzmann machines.
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applica-
tions, pages 14–36.

Fu, S.-Y., Yang, G.-S., and Kuai, X.-K. (2012). A spiking neural network based cortex-
like mechanism and application to facial expression recognition. Computational
intelligence and neuroscience, 2012:19.

Fukushima, K. and Miyake, S. (1982). Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition. In Competition and cooperation
in neural nets, pages 267–285. Springer.

Furber, S. and Temple, S. (2007). Neural systems engineering. Journal of the Royal
Society interface, 4(13):193–206.

Furber, S. B., Galluppi, F., Temple, S., Plana, L., et al. (2014). The SpiNNaker
Project. Proceedings of the IEEE, 102(5):652–665.

Garibaldi, P.-G., Camilleri, P., Liu, Q., and Furber, S. (2016). pyDVS: An extensible,
real-time Dynamic Vision Sensor emulator using off-the-shelf hardware. In 2016
IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–7.

BIBLIOGRAPHY 205

Gautrais, J. and Thorpe, S. (1998). Rate coding versus temporal order coding: a
theoretical approach. Biosystems, 48(1):57–65.

Gerstner, W. and Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics:
from single neurons to networks and models of cognition. Cambridge University
Press.

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Schol-
arpedia, 2(4):1430.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680.

Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networks
in Python. Frontiers in neuroinformatics, 2.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks. In ICML, volume 14, pages 1764–1772.

Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orienta-
tion columns of cat visual cortex. Proceedings of the National Academy of Sciences,
86(5):1698–1702.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive
resonance. Cognitive science, 11(1):23–63.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735–1780.

Hodgkin, A. L. and Huxley, A. F. (1939). Action potentials recorded from inside a
nerve fibre. Nature, 144(3651):710–711.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of

206 BIBLIOGRAPHY

physiology, 117(4):500.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558.

Hopkins, M. and Furber, S. (2015). Accuracy and efficiency in fixed-point neural ODE
solvers. Neural computation, 27(10):2148–2182.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–
154.

Hunsberger, E. and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.
arXiv preprint.

Indiveri, G., Chicca, E., and Douglas, R. J. (2009). Artificial cognitive systems: from
VLSI networks of spiking neurons to neuromorphic cognition. Cognitive Computa-
tion, 1(2):119–127.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-
Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., et al.
(2011). Neuromorphic silicon neuron circuits. Frontiers in neuroscience, 5.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on
neural networks, 14(6):1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
transactions on neural networks, 15(5):1063–1070.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral cortex, 17(10):2443–2452.

Johansson, R. S. and Birznieks, I. (2004). First spikes in ensembles of human tactile
afferents code complex spatial fingertip events. Nature neuroscience, 7(2):170–177.

Joubert, A., Belhadj, B., Temam, O., and Héliot, R. (2012). Hardware spiking neurons
design: analog or digital? In Neural Networks (IJCNN), The 2012 International
Joint Conference on, pages 1–5. IEEE.

Jug, F., Lengler, J., Krautz, C., and Steger, A. (2012). Spiking networks and their
rate-based equivalents: does it make sense to use Siegert neurons? In Swiss Soc.
for Neuroscience.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3128–3137.

Keysers, C., Xiao, D.-K., Földiák, P., and Perrett, D. (2001). The speed of sight.
Journal of cognitive neuroscience, 13(1):90–101.

Kiselev, I., Neil, D., and Liu, S.-C. (2016). Event-driven deep neural network hardware

BIBLIOGRAPHY 207

system for sensor fusion. In Circuits and Systems (ISCAS), 2016 IEEE International
Symposium on, pages 2495–2498. IEEE.

Kolb, H. (2003). How the retina works. American scientist, 91(1):28–35.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

Krogh, A. and Vedelsby, J. (1995). Neural network ensembles, cross validation, and
active learning. In Advances in neural information processing systems, pages 231–
238.

La Camera, G., Giugliano, M., Senn, W., and Fusi, S. (2008). The response of cortical
neurons to in vivo-like input current: theory and experiment. Biological cybernetics,
99(4-5):279–301.

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L. A., Liu, S.-C., Furber, S. B., and
Benosman, R. B. (2015). Breaking the millisecond barrier on SpiNNaker: imple-
menting asynchronous event-based plastic models with ececond resolution. Frontiers
in Neuroscience, 9:206.

Lazzaro, J. and Wawrzynek, J. (1995). A multi-sender asynchronous extension to the
AER protocol. In Advanced Research in VLSI, Conference on, pages 158–158. IEEE
Computer Society.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 8595–8598. IEEE.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods for generic object
recognition with invariance to pose and lighting. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–97.

Leñero-Bardallo, J. A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). A
3.6 µs latency asynchronous frame-free event-driven dynamic-vision-sensor. Solid-
State Circuits, IEEE Journal of, 46(6):1443–1455.

Linares-Barranco, B., Serrano-Gotarredona, T., and Serrano-Gotarredona, R. (2003).
Compact low-power calibration mini-DACs for neural arrays with programmable
weights. Neural Networks, IEEE Transactions on, 14(5):1207–1216.

Liu, J., Luo, J., and Shah, M. (2009). Recognizing realistic actions from videos “in the
wild”. In Computer Vision and Pattern Recognition, 2009. CVPR. IEEE Conference
on, pages 1996–2003.

Liu, Q. and Furber, S. (2015). Real-time recognition of dynamic hand postures on a
neuromorphic system. In Artificial Neural Networks, 2015. ICANN. International

208 BIBLIOGRAPHY

Conference on, volume 1, page 979.

Liu, Q. and Furber, S. (2016). Noisy Softplus: a biology inspired activation func-
tion. In International Conference on Neural Information Processing, pages 405–412.
Springer.

Liu, Q., Patterson, C., Furber, S., Huang, Z., Hou, Y., and Zhang, H. (2013). Modeling
populations of spiking neurons for fine timing sound localization. In Neural Networks
(IJCNN), The 2013 International Joint Conference on, pages 1–8. IEEE.

Liu, Q., Pineda-Garćıa, G., Stromatias, E., Serrano-Gotarredona, T., and Furber, S. B.
(2016). Benchmarking spike-based visual recognition: a dataset and evaluation.
Frontiers in Neuroscience, 10.

Liu, S.-C., van Schaik, A., Minch, B., and Delbruck, T. (2010). Event-based 64-channel
binaural silicon cochlea with Q enhancement mechanisms. In Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 2027–2030.

Lundqvist, D., Flykt, A., and Öhman, A. (1998). The Karolinska directed emotional
faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology
section, Karolinska Institutet, (1998).

Lyons, M., Akamatsu, S., Kamachi, M., and Gyoba, J. (1998). Coding facial ex-
pressions with Gabor wavelets. In Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference on, pages 200–205.

Mahowald, M. (1992). VLSI analogs of neuronal visual processing: a synthesis of form
and function. PhD thesis, California Institute of Technology.

Marieb, E. N. and Hoehn, K. (2007). Human anatomy & physiology. Pearson Educa-
tion.

Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2):153–
160.

Masmoudi, K., Antonini, M., Kornprobst, P., and Perrinet, L. (2010). A novel bio-
inspired static image compression scheme for noisy data transmission over low-
bandwidth channels. In Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, pages 3506–3509.

Matsugu, M., Mori, K., Ishii, M., and Mitarai, Y. (2002). Convolutional spiking neural
network model for robust face detection. In Neural Information Processing, 2002.
ICONIP’02. Proceedings of the 9th International Conference on, volume 2, pages
660–664.

Mead, C. (1989). Analog VLSI and neural systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., Jackson, B. L., Imam, N., Guo, C., Nakamura, Y., et al. (2014). A million
spiking-neuron integrated circuit with a scalable communication network and inter-
face. Science, 345(6197):668–673.

BIBLIOGRAPHY 209

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Re-
current neural network based language model. In Interspeech, volume 2, page 3.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable multicore ar-
chitecture with heterogeneous memory structures for dynamic neuromorphic asyn-
chronous processors (dynaps). IEEE Transactions on Biomedical Circuits and Sys-
tems, PP(99):1–17.

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of
synaptic plasticity based on spike timing. Biological cybernetics, 98(6):459–478.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 807–814.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2013).
Event-driven contrastive divergence for spiking neuromorphic systems. Frontiers in
neuroscience, 7.

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven random
back-propagation: enabling neuromorphic deep learning machines. Frontiers in
Neuroscience, 11.

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G. (2016).
Stochastic synapses enable efficient brain-inspired learning machines. Frontiers in
Neuroscience, 10:241.

Neil, D. (2013). Online learning in event-based restricted Boltzmann machines. Mas-
ter’s thesis, Institute of Neuroinformatics, ETH Zurich.

Neil, D. and Liu, S.-C. (2014). Minitaur, an event-driven FPGA-based spiking network
accelerator. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
22(12):2621–2628.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
PLoS Comput Biol.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time
classification and sensor fusion with a spiking deep belief network. Frontiers in
neuroscience, 7.

O’Connor, P. and Welling, M. (2016). Deep spiking networks. arXiv preprint
arXiv:1602.08323.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in Neu-
roscience, 9(437).

Park, J., Ha, S., Yu, T., Neftci, E., and Cauwenberghs, G. (2014). A 65K-neuron
73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array
transceiver. In Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE,

210 BIBLIOGRAPHY

pages 675–678. IEEE.

Pedram, M. and Nazarian, S. (2006). Thermal modeling, analysis, and management in
VLSI circuits: principles and methods. Proceedings of the IEEE, 94(8):1487–1501.

Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., and Meier, K. (2013). Stochastic
inference with deterministic spiking neurons. arXiv preprint arXiv:1311.3211.

Ponulak, F. and Kasinski, A. (2010). Supervised learning in spiking neural networks
with ReSuMe: sequence learning, classification, and spike shifting. Neural Compu-
tation, 22(2):467–510.

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).
Retinomorphic event-based vision sensors: bioinspired cameras with spiking output.
Proceedings of the IEEE, 102(10):1470–1484.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., and
Indiveri, G. (2015). A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses. Frontiers in neuroscience, 9:141.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Rauch, A., La Camera, G., Lüscher, H.-R., Senn, W., and Fusi, S. (2003). Neocortical
pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents.
Journal of neurophysiology, 90(3):1598–1612.

Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., Jackson,
R. B., et al. (2011). Campbell biology. Pearson Boston.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature neuroscience, 2(11):1019–1025.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet large scale visual recog-
nition challenge. International Journal of Computer Vision, 115(3):211–252.

Samadi, A., Lillicrap, T. P., and Tweed, D. B. (2017). Deep learning with dynamic
spiking neurons and fixed feedback weights. Neural computation.

Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., and Millner, S. (2010).
A wafer-scale neuromorphic hardware system for large-scale neural modeling. In
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on, pages 1947–1950.

Schüldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: a local
SVM approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, volume 3, pages 32–36. IEEE.

Sen, B. and Furber, S. (2009). Evaluating rank-order code performance using a
biologically-derived retinal model. In Neural Networks, 2009. IJCNN. International

BIBLIOGRAPHY 211

Joint Conference on, pages 2867–2874. IEEE.

Serrano-Gotarredona, T. and Linares-Barranco, B. (2013). A 128×128 1.5% contrast
sensitivity 0.9% FPN 3µs latency 4 mW asynchronous frame-free dynamic vision
sensor using transimpedance preamplifiers. Solid-State Circuits, IEEE Journal of,
48(3):827–838.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 29(3):411–426.

Sharp, T., Galluppi, F., Rast, A., and Furber, S. (2012). Power-efficient simulation
of detailed cortical microcircuits on SpiNNaker. Journal of neuroscience methods,
210(1):110–118.

Siegert, A. J. (1951). On the first passage time probability problem. Physical Review,
81(4):617.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature neuroscience, 3(9):919–
926.

Squire, L. R. and Kosslyn, S. M. (1998). Findings and current opinion in cognitive
neuroscience. MIT Press.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). Power analysis of
large-scale, real-time neural networks on SpiNNaker. In Neural Networks (IJCNN),
The 2013 International Joint Conference on, pages 1–8.

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S.-C., and Furber, S. (2015a).
Scalable energy-efficient, low-latency implementations of trained spiking deep belief
networks on SpiNNaker. In Neural Networks (IJCNN), 2015 International Joint
Conference on, pages 1–8. IEEE.

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-C.
(2015b). Robustness of spiking deep belief networks to noise and reduced bit preci-
sion of neuro-inspired hardware platforms. Frontiers in neuroscience, 9.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

212 BIBLIOGRAPHY

neural networks. In Advances in neural information processing systems, pages 3104–
3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9.

Tan, C., Lallee, S., and Orchard, G. (2015). Benchmarking neuromorphic vision:
lessons learnt from computer vision. Frontiers in Neuroscience, 9(374).

Van Rullen, R. and Thorpe, S. J. (2001). Rate coding versus temporal order coding:
what the retinal ganglion cells tell the visual cortex. Neural computation, 13(6):1255–
1283.

Van Rullen, R. and Thorpe, S. J. (2002). Surfing a spike wave down the ventral stream.
Vision research, 42(23):2593–2615.

Von Der Malsburg, C. (1994). The correlation theory of brain function. In Models of
neural networks, pages 95–119. Springer.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits.

Xie, J., Xu, L., and Chen, E. (2012). Image denoising and inpainting with deep neural
networks. In Advances in Neural Information Processing Systems, pages 341–349.

Xu, L. (1993). Least mean square error reconstruction principle for self-organizing
neural-nets. Neural networks, 6(5):627–648.

Yang, M., Liu, S.-C., and Delbruck, T. (2015). A dynamic vision sensor with 1%
temporal contrast sensitivity and in-pixel asynchronous delta modulator for event
encoding. Solid-State Circuits, IEEE Journal of, 50(9):2149–2160.

Yarbus, A. L. (1967). Eye movements during perception of complex objects. Springer.

Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012). 65K-neuron
integrate-and-fire array transceiver with address-event reconfigurable synaptic rout-
ing. In Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE, pages
21–24.

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015). Feedfor-
ward categorization on AER motion events using cortex-like features in a spiking
neural network. Neural Networks and Learning Systems, IEEE Transactions on,
26(9):1963–1978.

	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	List of Acronyms
	List of Symbols
	Introduction
	Motivation and Aims
	Thesis Statement and Hypotheses
	Contributions
	Papers and Workshops
	Papers
	Workshops

	Thesis Structure
	Summary

	Spiking Neural Networks (SNNs)
	Biological Neural Components
	Neuron
	Neuronal Signals
	Signal Transmission

	Modelling Spiking Neurons
	Neural Dynamics
	Neuron Models
	Synapse Model
	Synaptic Plasticity

	Simulating Networks of Spiking Neurons
	Software Simulators
	Neuromorphic Hardware
	Neuromorphic Sensory and Processing Systems

	Summary

	Deep Learning
	Brief Overview
	Classical Models
	Combined Approaches

	Convolutional Networks
	Network Architecture
	Backpropagation
	Activation Function and Vanishing Gradient

	Autoencoders (AEs)
	Structure
	Training

	Restricted Boltzmann Machines (RBMs)
	Energy-based Model
	Objective Function
	Contrastive Divergence

	Summary

	Off-line SNN Training
	Introduction
	Related Work
	Siegert: Modelling the Response Function
	Biological Background
	Mismatch of The Siegert Function to Practice
	Noisy Softplus (NSP)

	Generalised Off-line SNN Training
	Mapping NSP to Concrete Physical Units
	Parametric Activation Functions (PAFs)
	Training Method
	Fine Tuning

	Results
	Experiment Description
	Single Neuronal Activity
	Learning Performance
	Recognition Performance
	Power Consumption

	Summary

	On-line SNN Training with SRM
	Introduction
	Related Work
	Spike-based Rate Multiplication (SRM)
	Training Deep SNNs
	Experimental Setup
	AEs
	Noisy RBMs
	Spiking AEs
	Spiking RBMs

	Problem of Spike Correlations
	Solution 1 (S1): Longer STDP Window
	Solution 2 (S2): Noisy Threshold
	Solution 3 (S3): Teaching Signal
	Combined Solutions (S4)

	Case Study
	Experimental Setup
	Trained Weights
	Classification Accuracy
	Reconstruction

	Summary

	Benchmarking Neuromorphic Vision
	Introduction
	Related Work
	NE Dataset
	Guiding Principles
	The Dataset: NE15-MNIST
	Data Description

	Performance Evaluation
	Model-level Evaluation
	Hardware-level Evaluation

	Results
	Training
	Testing
	Evaluation

	Summary

	Conclusion and Future Work
	Confirming Research Hypotheses
	Future Work
	Off-line SNN Training
	On-line Biologically-plausible Learning
	Evaluation on Neuromorphic Vision

	Closing Remarks

	Detailed Derivation Process of Equations
	Detailed Experimental Results

