
CONFIGURING A MASSIVELY

PARALLEL CMP SYSTEM FOR

REAL-TIME NEURAL

APPLICATIONS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2009

By

M. Mukaram Khan

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 16

1.1 Background . 16

1.2 Motivation . 18

1.3 Aim and Objectives . 19

1.4 Contributions . 20

1.5 Thesis structure . 21

1.6 Publications . 23

2 The Brain – Nature’s Masterpiece 25

2.1 Introduction . 25

2.2 Basic Neural Structure . 26

2.2.1 Membrane . 27

2.2.2 Axon . 28

2.2.3 Dendrite . 29

2.2.4 Synapse . 30

2.3 Membrane Potential . 30

2.4 Action Potential . 32

2.5 Synaptic Transmission . 34

2.6 Neural Networks . 35

2.7 Neural Computation . 36

2

2.8 Temporal Dynamics . 40

2.9 Adaptability and Learning . 41

2.10 Summary . 44

3 The Brainbox – Learning From Nature 45

3.1 Computer Simulations . 45

3.2 Neural Network Simulation . 47

3.3 Expected Features . 51

3.3.1 Biological Realism . 51

3.3.2 Scale of Simulation . 52

3.3.3 Simulation Time . 52

3.3.4 Abstraction Level . 53

3.3.5 Interactive Control . 53

3.4 Software Neural Simulations . 53

3.4.1 Example Software Simulations 54

3.4.2 Limitations of Software Simulation 55

3.5 Hardware Neural Simulations . 56

3.5.1 Remaining Challenges . 57

3.6 Summary . 58

4 The SpiNNaker Computing System 60

4.1 Introduction . 60

4.2 SpiNNaker Objectives . 60

4.3 Architectural Overview . 61

4.3.1 SpiNNaker Processing Node 63

4.3.2 SpiNNaker CMP . 65

4.3.3 Inter-Neuron Communication 66

4.3.4 System-level Behaviour . 71

4.4 Main Features . 72

4.5 The SpiNNaker Application Model 75

4.6 Hardware Support . 78

4.7 Development constraints . 79

4.8 User Expectations . 82

4.9 Summary . 83

3

5 System-Level Simulation 85

5.1 Introduction . 85

5.2 Simulating a Complete Computing System 86

5.2.1 Related Work . 87

5.2.2 SpiNNaker Complete System Model 88

5.3 System-level Simulation Options 89

5.4 SystemC Transaction-Level Modelling 90

5.5 Advantages of SystemC TLM . 90

5.5.1 Levels of Abstraction . 91

5.5.2 Early Software Development 92

5.5.3 Architecture Analysis . 92

5.5.4 Functional Verification . 92

5.5.5 Open Source Industry Standard 93

5.5.6 Real-time Debug Support 93

5.6 SpiNNaker System-Level Simulation 93

5.6.1 SpiNNaker UTF-PV Model 94

5.6.2 SpiNNaker UTF-AV Model 95

5.6.3 SpiNNaker TF-AV(CX) Model 96

5.6.4 SpiNNaker TF-AV(CA) Model 98

5.7 Functional Validation . 99

5.7.1 Case Study I . 100

5.8 Case Study II . 104

5.8.1 Case Study III . 107

5.9 Hardware Functional Verification 109

5.10 Summary . 110

6 Multi-CMP Systems Configuration 111

6.1 Introduction . 111

6.2 CMP Configuration Challenges 112

6.3 Related Work . 116

6.3.1 Blue Gene Configuration Process 116

6.3.2 Cray XT3 Configuration Process 119

6.4 SpiNNaker - A Novel Architecture 122

6.5 SpiNNaker Configuration Requirements 123

6.6 Summary . 125

4

7 SpiNNaker Configuration Process 127

7.1 Introduction . 127

7.2 SpiNNaker Boot-up Process . 129

7.3 The Application Loading Process 135

7.4 Configuration Issues . 138

7.5 Evaluation Work . 142

7.5.1 CMP Boot-up . 142

7.5.2 Application Loading . 143

7.5.3 Impact of Ethernet Connections 147

7.6 Summary . 148

8 Fault-Tolerance 149

8.1 Introduction . 149

8.2 Fault-tolerance In Computing Systems 150

8.3 SpiNNaker Fault-tolerance Support 152

8.4 Fault-Tolerance in the Configuration Process 156

8.4.1 Monitor Processor Selection 156

8.4.2 Boot ROM Failure . 156

8.4.3 Chip-level Recovery . 157

8.4.4 NN Diagnostics and Recovery 158

8.4.5 Connection to the Host PC 162

8.5 Fault-Tolerance in Application Loading 162

8.6 Evaluation Work . 163

8.6.1 Chip-level Recovery . 163

8.6.2 NN Diagnostics and Recovery 164

8.6.3 Application Loading . 166

8.7 Summary . 168

9 SpiNNaker Hardware Abstraction Layer 169

9.1 Introduction . 169

9.2 Hardware Abstraction Layer . 170

9.3 Abstracting SpiNNaker . 172

9.3.1 Boot-up Instructions . 172

9.3.2 Neural Support Functions 173

9.3.3 Interrupt Service Routines 173

9.3.4 Optimal and Safe Device Interface 174

5

9.3.5 Device Exception Handling 175

9.3.6 Fault-Recovery Procedures 175

9.3.7 Shared Memory Message-passing 175

9.3.8 SpiNNaker-Host Communication 179

9.4 Host PC User Interface . 180

9.5 Application Development Process 182

9.6 Summary . 182

10 Conclusions 184

10.1 Dissertation Summary . 184

10.2 Research Analysis . 186

10.2.1 Response to Research Objectives 186

10.2.2 Strengths of the Configuration Process 188

10.2.3 Limitations . 191

10.3 Suggested Future Directions . 192

10.4 Research Implications . 193

Bibliography 194

A SpiNNaker Inter-CMP NN Communication Protocol 204

A.1 Introduction . 204

A.2 System-level Configuration Process 205

A.3 NN Diagnostic Process . 205

A.4 Application Loading Flood-fill Process 207

B SpiNNaker-Host PC Communication Protocol 208

B.1 Introduction . 208

B.2 Ethernet Frame Instructions . 210

B.3 P2P Communication Instructions 212

6

List of Tables

5.1 Performance of PDP on PC vs. on SpiNNaker [KJFP07]. 107

7.1 Configuration Issues Handling Approaches. 138

7.2 CMP-level Boot-up Process Time 143

8.1 NN Diagnostic and Recovery Process-Time Taken. 164

A.1 System-level Configuration Instructions. 205

A.2 NN Diagnostic and Recovery Instructions. 206

A.3 Application Loading Floodfill Instructions. 207

B.1 Host-System Communication Instructions. 210

B.2 Inter-CMP P2P Communication Instructions. 214

7

List of Figures

2.1 Neural Structure (from [Izh07], fig 1.1 page 2). 26

2.2 A Typical Neuron (from [Wik09a]). 27

2.3 Ionic Channels in Neural Membrane (from [DA01], fig. 5.8 page

169)). 28

2.4 Inter-neuron Synapse (from [DA01], fig 1.2 page 6). 29

2.5 Ionic Channel Interplay to Develop Membrane Potential (from [Wik09d]). 31

2.6 Membrane equivalent conductance (g) and voltage (v) as a result

of interplay between Na+ conductance (gNa) and K+ conductance

(gK) as measured by Hodgkin and Huxley [HH52] (they used a

resting potential of 0 mV instead of -65 mV for computational

simplicity). 33

2.7 Equivalent Electric Circuit for Ionic Channels used by Hodgkin

and Huxley (from Hodgkin and Huxley [HH52]). 38

2.8 Empirical Variables used by Hodgkin and Huxley (from Hodgkin

and Huxley [HH52]). 39

2.9 Threshold potential as noted by Hodgkin and Huxley [HH52] at 180

C (bottom graph) and 200 C (upper graph) (they used a resting

potential of 0mV instead of -65mV for computational simplicity). 40

2.10 Inter-spike Interval (isi) (from [DA01], fig 1.15 page 33). 41

2.11 Spike Timing Dependent Plasticity (STDP) (from [EMIE04], fig. 3). 42

3.1 Multi-disciplinary Interest in Neural Simulation (adapted from [Tra02],

fig 1.2 page 6.) . 47

3.2 Traditional Multilayer Neural Network. 49

4.1 SpiNNaker Computing System [Pro07]. 62

4.2 SpiNNaker Processing Node [Pro07]. 64

4.3 SpiNNaker CMP [Pro07]. 66

8

4.4 Spike Communication Network [PBF+08] 67

4.5 Packet Format [Pro07]. 68

4.6 Multicast Routing – Default Routing. 69

4.7 Multicast Routing – Masking the Bits. 69

4.8 Multicast Routing – Emergency Routing. 70

4.9 NN Packet Routing (a) To a particular neighbour (b) Broadcast

to all six neighbours (c) Peak and poke. 71

4.10 SpiNNaker System - a conceptual view. 72

4.11 SpiNNaker Standard Application Model - Stimulus Update Process

on Receipt of a Spike. 77

4.12 SpiNNaker Evnet-driven Application Model with the Help of ISRs. 79

5.1 Classic Hardware Design Flow [Ghe05]. 89

5.2 TLM Design Flow [Ghe05]. 91

5.3 SpiNNaker CMP Model - UTF-PV. 94

5.4 SpiNNaker CMP Model with Component-level Architectural De-

tails - UTF-AV. 95

5.5 SpiNNaker System-level Model (TF-AV(CA)) with Real-time Code

and System Debugging. 98

5.6 Simulation Performance, SystemC vs. Verilog Model. 100

5.7 Neuron mapping to the processors in a 4-CMP (C00-C11) SpiN-

Naker system, each CMP containing 4-application (fascicle) pro-

cessors (P00-P11). A 32-bit neuron’s address (shown in the bot-

tom) is formed by placing the CMP ID (X=0, Y=0 for chip C00)

in the 16 most significant bits, processor ID (X=0, Y=0 for pro-

cessor P00) in the next 6 bits, while the neuron ID (X=n, Y=m

for neuron Nnm) is in the 10 least significant bits [KLP+08]. . . . 101

5.8 Route Setup [KLP+08]. 102

5.9 A Typical Multilayer NN Model [KLP+08]. 104

5.10 PDP Neural Mapping [KLP+08]. 105

5.11 Simulation of the PDP Model on the SpiNNaker System [KLP+08]. 106

5.12 Spike Train from Izhikevich Neurons [JFW08]. 108

5.13 Spike Train from Izhikevich Neurons with a 4-CMP SpiNNaker

System-level Model [RKJ+09]. 108

6.1 Blue Gene/L - System Overview [ea03]. 116

9

6.2 Blue Gene/L - Compute Node’s Block Diagram [ea03]. 117

6.3 Cray XT3 Massively Parallel Computing System [ea08]. 120

6.4 Cray XT3 - System Overview [Inc05b]. 120

7.1 The SpiNNaker Boot-up Process - Phase I. 130

7.2 Event-Driven System-level Configuration. 133

7.3 The SpiNNaker Boot-up Process - Phase II. 134

7.4 Selective Forward Flood-fill. 136

7.5 Flood-fill Process - Sequence Diagram. 137

7.6 Application Loading Process - Flood-fill Approaches [KNJ+08b,

KNJ+08a, KNR+09]. 144

7.7 Application Loading Process - Impact of System Size (10-Kbyte

Date with 1 Ethernet Connection to the Host PC) [KNJ+08b,

KNJ+08a, KNR+09]. 145

7.8 Application Loading Process - Impact of Data Size (32x32 Nodes

System with 1 Ethernet Connection to the Host PC) [KNJ+08b,

KNJ+08a, KNR+09]. 146

7.9 Application Loading Process - Impact of Ethernet Connections

(10-Kbyte Date on a 256x256 Node System) [KNJ+08b, KNJ+08a,

KNR+09]. 147

8.1 NN Diagnostic and Recovery Process. 159

8.2 Fault-tolerance in Application Loading Process with Varying Num-

bers of Ethernet Connections [KNR+09] 167

9.1 Hardware Abstraction Layer [SY03]. 170

9.2 Sequence Diagram - SpiNNaker On-chip Interprocessor Message

Passing using MC packets. 176

9.3 Interprocessor Message Passing in a SpiNNaker CMP using Shared

Memory, (a) Send side, (b) Receive side. 177

9.4 Analysis of Interprocessor Message Passing Techniques. [SY03]. . . 178

9.5 Host PC Graphical User Interface. 180

9.6 SpiNNaker Application Development Process. 181

10.1 Example Real-time Interactive Neural Application on SpiNNaker

Controlling a Robotic Arm. 193

10

B.1 The Ethernet Frame Format used for SpiNNaker-Host Communi-

cation. 209

11

Abstract

Configuring a million-core parallel system at boot time is a difficult process when

the system has neither specialised boot-up hardware support nor a preconfigured

default state that puts it in operating condition. The SpiNNaker massively-

parallel computing system has been designed to support large-scale simulations

of biologically-inspired neural networks in real-time. The system building block

is a Chip Multiprocessor (CMP) using low-power embedded processors, with an

asynchronous network-on-chip to support high-performance, scalable, and fault-

tolerant parallel distributed processing. Where most large CMP systems feature

a sideband network to complete the boot process, SpiNNaker has a single homo-

geneous network interconnect for both application inter-processor communication

and system control functions such as boot load and run-time user-system inter-

action. This network improves fault tolerance and makes it easier to support

dynamic run-time reconfiguration. However, it requires a boot process that is

transaction-level compatible with the application’s communications model.

Since SpiNNaker uses event-driven asynchronous communication throughout,

the loader operates with purely local control: there is no global synchronisation,

state information, or transition sequence. A novel two-stage unfolding boot-up

process efficiently configures a multi-CMP SpiNNaker into an integrated com-

puting system and loads the application using a high-speed flood-fill technique

with support for run-time reconfiguration. SystemC simulation of a multi-CMP

SpiNNaker system indicates an error-free CMP configuration time of ≈1.3 ms,

while a high-level simulation of a full-scale system (with 64,000 CMPs) indicates

a mean application-loading time of ≈20 ms for a 100-Kbyte application that is

virtually independent of the size of the system.

The configuration process also supports application development through a

hardware abstraction layer (HAL) that provides architectural visibility appropri-

ate to the developer’s purpose.

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13

Copyright

i The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

14

Acknowledgements

I would like to thank my colleagues in the APT group, especially from the SpiN-

Naker project, for providing a wonderful company without which IT302 would

have been a boring place. I want to thank them all for their support that saved

me a lot of effort and time. My special thanks to Viv Woods for refining my

writings which let me concentrate on my work. Luis has always been available

for help when ever required. The list of my publication would have not been

that long if Alex was not on our side, and my implementation would have been

behind schedule if Xin Jin was not there to help me. Steve Temple, Jim Garside

and Mikel have been very patient in helping me refine my protocols and their

verification. Eustice, Jian, Shufan, Yebin, Dom, Cameron, Frencesco, and Zenyu

have been a great help on many occasions in enabling me to understand part

of my work related to their research areas. Javier’s helpful and timely response

from Spain made a long-distance collaboration possible during my research. I

wish to thank them all for their time and help. I also want to thank our partners

in the University of Southampton for their hospitality and nice company during

this project.

My special thanks to Steve Furber for being so helpful to me. He has always

been an inspiration for me during this research, and I look forward to having a

continued research collaboration with him during my academic career.

I dedicate my thesis to my wife Sabeen and children Muazam, Maham and

Mahad, who deserved much more time and attention than I could manage to give

them during my PhD.

My thanks to E. Izhikevich and P. Dayan for permitting me to use diagrams

from their publications. Last but not the least, I am grateful to NUST Pakistan,

HEC Pakistan, and EPSRC UK who supported me in paying my utility bills.

15

Chapter 1

Introduction

“As our understanding grows about how the brain perceives, thinks and remem-

bers, so does our ability to devise machine intelligence When it was realized

that the brain is not a serial processor of information but rather an extraordinar-

ily complex parallel system, the field of computer science turned to a new kind

of computer - massively parallel processors - The long-term possibilities have

the flavour of science fiction and raise the most basic questions of philosophy and

ethics. Can we someday create machine minds as capable as, or even more capable

than, the human mind in all its ramifications, including the ability to create and

evaluate new concepts? .. Can we someday develop instrumentation to “read”

the mind? Can thoughts and knowledge someday be implanted in the mind or

transferred from one mind to another? Can our intellectual capabilities someday

be substantially enhanced by “symbiosis” with machine intelligence?The pace

of developments in neuroscience and in computer science is so rapid and acceler-

ating that many of these science-fiction-like possibilities may become realities in

your lifetime.” Richard F. Thompson [Tho00]

1.1 Background

By most qualified definitions, a computer is taken to be “a machine that manip-

ulates data according to a list of instructions” [Wik09b]. In more general terms,

“a computer is an electronic machine that can receive, process and present infor-

mation [based on a set of instructions]” [Wik09c]. Originally the term referred to

a person who did mathematical calculations using a mechanical device [Wik09b].

From their inception, it was commonplace to compare computers with brains and

16

CHAPTER 1. INTRODUCTION 17

to find similarities between the two. However, the two “devices” outweigh each

other in their respective strengths: computers are fast, accurate and have a large

capacity to store data, while brains are flexible, fault-tolerant and highly con-

current in their operations [FT07]. There have been many endeavours to design

a computing device with a union of the two differing domains, though the two

contribute to the same end. Over the last half a century or more of the evolution

of programmable computers, we (computer scientists) have been trying to bridge

this gap and are learning from neurobiology to build “brain like computers”: com-

puting devices characterised by their ability to adapt to the environment, having

an interactive and error-prone behaviour, employing highly-parallel distributed

processing, and still being fast and accurate. However, this requires a detailed

understanding of the brain which we are still lacking.

The brain is probably the most complex structure in the universe and is the

last mystery to be revealed by humans [Tra02]. Our brain consists of 1011 neurons

having more than 1015 connections each of which can transmit an information

signal a few times a second. Each neuron, with its connections, contributes to

a very complex biological system which has not yet been fully understood. The

least understood aspect is the emergent behaviour exhibited by a population of

neurons (a neural network), which collectively display a holistic behaviour quite

different from individual neurons. Many discoveries over the last few decades

have improved our understanding of the nervous system. New techniques, such

as Functional Magnetic Resonance Imaging (fMRI) etc, are adding considerably

to this knowledge-base. Mathematical models based on these discoveries and

computer simulations based on hypothesised mathematical models are helping us

to understand phenomenological observations of neurons and their interactions.

A few detailed mathematical models can simulate biological neurons realistically,

however, they are too complex to simulate a large population of neurons on a

general-purpose computer [FT07].

The SpiNNaker project at the University of Manchester aims to realise large-

scale neural simulations using biologically realistic mathematical models. Our

aim is two-fold: firstly adopting known biological engineering principles from

the brain to develop a fault-tolerant massively-parallel computing system using a

low-power architecture. Secondly, using this large-scale neural network simulation

engine in collaboration with multi-disciplinary researchers to discover more about

the brain’s functionality. It is intended to use the resulting discoveries to improve

CHAPTER 1. INTRODUCTION 18

the hardware system, making it operate in a manner more akin to the human

brain [FT07]. This iterative process to “explore and synthesize”, in order to

bridge the gap between the man-made and natural computing systems, should

help us learn how to build a more flexible, interactive and robust computing

device.

SpiNNaker is based upon an Application Specific Integrated Circuit (ASIC)

design using state-of-the-art technologies such as the Chip Multiprocessor (CMP)

and asynchronous inter-processor communication. To simulate a large-population

of neurons, it uses an event-driven application model akin to real-time embedded

applications. The architecture and application model are quite different from

those used in conventional computing systems. For an application to make op-

timal use of the designed features, it is important to configure the SpiNNaker

system properly and manage its resources at run-time to support real-time sim-

ulations of large-scale neural networks.

1.2 Motivation

The main motivation for this research has spun out from the objectives of design-

ing the SpiNNaker massively-parallel computing system, i.e. to support under-

standing the brain by providing a high-performance simulation engine to support

large-scale neural modelling to the scale of a part of the nervous system. This

requires researchers from multiple disciplines to use SpiNNaker for a variety of

applications using various kinds of mathematical models (spiking neurons vs.

multi-layer perceptrons, biologically realistic neurons vs. simple spiking neurons

etc). It implies that developers would wish to develop their applications for SpiN-

Naker without delving into its architectural complexities, or to port their existing

applications to the SpiNNaker computing system without much difficulty. This

requires configuration of the hardware for specific application requirements, pro-

viding support to the developers in the form of ready-made functions to hide

the architectural details at higher levels of implementation, providing middle-

layer support functions to help transform an application into the SpiNNaker-

application-model, and mapping the neural network to the available resources to

make optimal use of them.

In this research we aim to provide application support for real-time large-scale

neural simulations on the SpiNNaker multi-CMP system. We intend to provide a

CHAPTER 1. INTRODUCTION 19

personal-computer (PC) like environment to application developers, application

users and system administrators interacting with SpiNNaker. We want to mo-

tivate developers to develop or to port existing applications to SpiNNaker with

minimal effort. We also wish to support an interactive system administration for

resource management and run-time fault handling.

1.3 Aim and Objectives

The aim of this research is to “devise a configuration process for a multi-CMP

system to configure the system at run-time as required by the application, and

then to load the tailored application at run-time using the SpiNNaker inter-

chip communication interconnect”. The research is directed toward achieving the

following objectives:

• Performance: To make the system available to the application by efficiently

testing and initializing the SpiNNaker-CMPs at configuration time, and

interactively configuring the system, as a whole, at run-time as required by

the application. This also implies that the system be configured to make

optimal use of its resources, and support the application execution to make

full use of its designed features.

• Scalability: SpiNNaker is a scalable computing system i.e. a system of

almost any desired scale can be assembled by linking the SpiNNaker CMPs

together. The configuration process should be independent of the scale of

the system with regards to initialization and loading applications.

• Fault-tolerance: SpiNNaker has been designed as a reconfigurable and fault-

tolerant computing system. However, the system depends on the software to

make full use of these features. The configuration process should use these

features to support autonomous fault recovery at run-time. At the same

time, the configuration process itself should be robust enough to be able to

bring the system to an operational state despite some chip- or system-level

malfunctions.

• Interactive Support: The process should provide run-time support to enable

users to interact with the application and a visualization of the state of the

application or the system at any point in time. This is important, for

CHAPTER 1. INTRODUCTION 20

example, to provide stimuli to the neural application at run time and to

get responses as a result of these stimuli. It is also important for system

diagnostic and debugging support.

1.4 Contributions

The research has contributed in providing:

• A high-level instruction- and cycle-accurate simulation model of a multi-

CMP system, developed much before the hardware design of the systems to

support the conceptual validation of the application model, detailed design

verification and architectural exploration, and application development for

the SpiNNaker multi-CMP system (Chapter 5).

• A novel process to configure a multi-CMP system at run-time using a real-

time event-driven application model, with characteristics of efficiency, scal-

ability, and fault-tolerance (Chapter 7).

• A novel event-driven application loading process to load a tailored appli-

cation efficiently, from outside the system, onto a multi-CMP system at

run-time in a scalable way (Chapter 7).

• A novel real-time chip- and system-level fault-tolerance mechanism to im-

prove system availability by timely fault-detection and run-time recovery

to attempt to recover a faulty chip-component or a faulty chip (Chapter 8).

• A novel protocol to provide interactive communication between the user and

the system/application by bridging between the Ethernet network, which

connects the system with the user interface on a Host PC, and the SpiN-

Naker packet-switching Communication Network, which interconnects the

SpiNNaker CMPs (Chapeter 9).

• A Hardware Abstraction Layer (HAL) library of useful functions and device

drivers to support application development for the SpiNNaker computing

system without the need for a developer to have detailed knowledge of the

underlying hardware architecture (Chapter 9).

CHAPTER 1. INTRODUCTION 21

1.5 Thesis structure

The thesis comprises 10 chapters as follows:

• Chapter 2 is a review of the literature on neural computation which forms

the main motivation for the SpiNNaker project to deliver a massively-

parallel multi-CMP neural network simulation engine to support large-scale

simulation of biologically-realistic neural populations. This chapter explains

the neural dynamics which result in information processing in a neuron, its

communication to other neurons, and the resultant learned behaviour of the

nervous system. It is important to understand these phenomena to under-

stand potential applications for the SpiNNaker computing system. A rea-

sonable explanation of neural structures and their functionality in generat-

ing an overall spatio-temporal neural information processing system would

fill a complete book. However, we focus on only those concepts related

to the understanding of the real-time application model for the SpiNNaker

computing system.

• Chapter 3 focuses on the need to create computer simulations to explore

neural information processing in neural populations (neural networks). A

few software-based approaches to the simulation of large-scale neural net-

works are reviewed with their limitations necessitating purpose-built hard-

ware engines for high performance. The chapter concludes with motiva-

tion for designing SpiNNaker as an Application Specific Integrated Circuit

(ASIC) to support large-scale neural simulations.

• Chapter 4 highlights the objectives of the SpiNNaker computing system, its

architecture, and certain important features from the programmer’s point

of view. The envisaged standard application model to support large-scale

neural simulations with the SpiNNaker computing system is explained. Fi-

nally, a few important guidelines for software developers writing neural

applications for SpiNNaker are given, along with some users’ expectations

acquired from our interaction with potential users.

• Chapter 5 covers our motivation for creating a system-level model for the

SpiNNaker computing system. The available choices for simulating a System-

on-Chip (SoC) i.e. high-level simulation vs. typical Register-Transfer-Level

(RTL) modelling are described. This chapter also gives an overview of the

CHAPTER 1. INTRODUCTION 22

SystemC Transaction Level Modelling (TLM) technique as a choice for high-

level simulation. Our experiences while creating a novel complete-system

model for a multi-CMP system to an instruction- and cycle-accurate level

are covered in this chapter. The chapter then presents some case studies

performed to validate the accurate behaviour of the model at chip- and

system-level, and a few experiments performed with the help of this simu-

lation to verify the design objectives of the SpiNNaker computing system.

The chapter also presents the test chip verification process with the help of

the SystemC system-level and Verilog top-level behavioural models.

• Chapter 6 highlights some multi-CMP configuration challenges. Some work

from the literature is presented to examine a few approaches to deal with

these challenges. We describe some peculiarities of the SpiNNaker system,

a truly multi-CMP system, to justify why the configuration processes used

in the past are not suitable for SpiNNaker. We also identify the required

features from the SpiNNaker configuration process.

• Chapter 7 explores the configuration challenges specific to the SpiNNaker

architecture in the light of those already described in Chapter 6. The pro-

posed configuration and application loading protocols for a multi-CMP sys-

tem are presented in the context of the SpiNNaker system. Some experi-

mental results are given to justify our claim that we meet our objectives.

• Chapter 8 introduces the fault-tolerance features of the SpiNNaker config-

uration process proposed in this thesis. Some fault-tolerance concepts are

reviewed in the context of real-time computing systems and the hardware

support in the SpiNNaker computing system to facilitate fault-resilience

is explained. Finally, the chapter explains how the configuration process

uses the SpiNNaker fault-tolerance features to make it a reliable computing

system.

• Chapter 9 gives some details of the Hardware Abstraction Layer (HAL)

developed to help the programmers by hiding the architectural details and

to ease application development for the SpiNNaker computing system. The

purpose is to make optimal use of the designed features in the SpiNNaker

hardware, of which the programmer may not be aware. The chapter also

describes a few features of a proposed user interface to interact with the

CHAPTER 1. INTRODUCTION 23

system.

• In the last chapter of this dissertation we conclude and summarise our

research work. A few important aspects related to this research have been

highlighted which could not be addressed due to paucity of time or being

out of scope, and which provide a good starting point for future research.

1.6 Publications

The following publications include aspects of the work described in this disserta-

tion:

• M.M. Khan, D.R. Lester, L.A. Plana, A. Rast, X. Jin, E. Painkras, and S.B.

Furber. “SpiNNaker: Mapping Neural Networks onto a Massively-parallel

Chip-multiprocessor”. In Proc. Intl. Joint Conf. on Neural Networks

(IJCNN2008), 2008 June 1-6 Hong Kong. (included in Chapters 4 & 5).

• M.M. Khan, J. Navaridas, X. Jin, L.A. Plana, J.V. Woods, and S.B. Furber.

“Real-time Application Support for a Novel SoC Architecture”. In Proc.

4th UK Embedded Forum, Southampton, UK, September 2008. (Chap-

ters 4, 7 & 9).

• M. Khan, X. Jin, S. Furber, and L.A. Plana. “System-level Model for a

GALS Massively Parallel Multiprocessor”. In Proc. 19th UK Asynchronous

Forum, page 19-22, September 2007. (Chapters 4 & 5).

• M.M. Khan, J. Navaridas, X. Jin, L.A. Plana, J.V. Woods, and S.B. Furber.

“Configuring a GALS CMP System for Real-time Applications”. In Proc.

20th UK Asynchronous Forum, September 2008. (Chapters 4 & 7).

• M.M. Khan, L.A. Plana, J.V Woods, and S.B. Furber. “System-level Model

for SpiNNaker CMP System”, 1st International Workshop on Rapid Simu-

lation and Performance Evaluation: Methods and Tools (RAPIDO’09) held

in conjunction with the 4th International Conference on High-Performance

and Embedded Architectures and Compilers (HiPEAC2009) Paphos, Cyprus,

January 25-28, 2009. (Chapters 4 & 5).

• M.M. Khan, J. Navaridas, A.D. Rast, X. Jin, L.A. Plana, M. Luján, J.V.

Woods, J. Miguel-Alonso and S.B. Furber. “Event-Driven Configuration

CHAPTER 1. INTRODUCTION 24

of a Neural Network CMP System over a Homogeneous Interconnect Fab-

ric”, to appear in Proc. of Intl. Symposium on Parallel and Distributed

Computing (ISPDC2009) 1-3 July 2009 Lisbon Portugal. (Chapters 4, 7

& 9).

• Luis A. Plana, Steve B. Furber, Steve Temple, Mukaram Khan, Yebin Shi,

Jian Wu, and Shufan Yang. “A GALS Infrastructure for a Massively Par-

allel Multiprocessor”. IEEE Design & Test of Computers, 24(5):454463,

Sept-Oct. 2007. (Contributions in the validation process using the system-

level model; Chapter 5).

• Alexander Rast, Xin Jin, Mukaram Khan, Steve Furber, “The Deferred

Event Model for Hardware Oriented Spiking Neural Networks”, 15th Intl.

Conf. on Neural Information Processing (ICONIP2008), 2008 Nov. 25-

28, Auckland, New Zealand. (Contributions in defining the SpiNNaker

architecture specific to the spike communication infrastructure and deriving

the results with the help of the system-level model (Chapters 4 & 5)).

• A.D. Rast, S. Yang, M. Khan, and S.B. Furber. “Virtual Synaptic Intercon-

nect using an Asynchronous Network-on-Chip”. In Proc. Intl. Joint Conf.

on Neural Networks (IJCNN2008), 2008 June 1-6 Hong Kong. (Contribu-

tions in defining the SpiNNaker architecture and hardware abstraction layer

functions at application level to make use of DMA operations (Chapter 4

& Chapter 7)).

• A.D. Rast, M.M. Khan, X. Jin, L.A. Plana and S.B. Furber, “A Universal

Abstract-Time Platform for Real-Time Neural Networks” to appear in proc.

of Intl. Joint Conf. on Neural Networks (IJCNN2009), 2009 June 14-19

Atlanta Georgia (USA). (Contributed in defining the SpiNNaker architec-

ture specific to the axonal conductance delays in the spike communication

infrastructure, setting up experiments with large population of neurons,

and deriving the results with the help of a multi-CMP system-level model

(Chapter 4 & 5)).

• A. Rast, S. Furber, D. Lester, S. Temple, L. Plana, E. Painkras, M. Khan, J.

Wu, Y. Shi, S. Yang and X. Jin, “Abstracting both Architecture and Time:

The SpiNNaker Neuromimetic Modelling Platform”, ESSDERC2008, 15-19

Sep, Edinburgh.

Chapter 2

The Brain – Nature’s

Masterpiece

”The human brain is by far the most complex structure in the known universe.

The extraordinary properties of this three or so pounds of soft tissue have made

it possible for Homosapiens to dominate the earth, change the course of evolution

through genetic engineering, walk on the moon, and create art and music of sur-

passing beauty. We do not yet know the limits of the human mind and what it

can accomplish” Richard F. Thompson [Tho00]

2.1 Introduction

SpiNNaker’s target application is the simulation of biologically-realistic neural

networks. Neural networks are characterised by parallel distributed processing

employing a massive number of small independently functional processing units

(neurons) with a tremendous amount of connectivity. Several key properties of

“real” neural networks drive the design of SpiNNaker’s application-specific archi-

tecture. It is, therefore, important to understand a neuron’s functional behaviour

in order to comprehend the intended applications for the SpiNNaker massively-

parallel computing system. Neurons communicate through spikes: short-duration

impulses [DA01] (Figure 2.11). It is usual to abstract the spike to an instanta-

neous pulse, or event, triggered when the neuron reaches a certain threshold

value [Me98]. The neuron’s spike is characterised by a temporal delay on a mil-

lisecond scale during its development and firing due to its biochemical properties.

1The diagrams from publications are included with the authors’ permission.

25

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 26

Figure 2.1: Neural Structure (from [Izh07], fig 1.1 page 2).

The spiking behaviour of neurons with the associated temporal characteristics

is called the neural dynamics of the nervous system and controls its functional

behaviour including stimulus-response and learning.

This chapter will first explore briefly some neural structures to make the

later discussion accessible to readers who may have a limited knowledge of the

nervous system. This is important to introduce these concepts from a neural

computation point of view as these will be referred a number of times in the later

chapters. The chapter then focuses on a few neural dynamics phenomena which

contribute together to the information processing mechanism in neurons and then

to a collective intelligent behaviour from the nervous system. We culminate

this discussion by describing a valuable effort to capture neural dynamics using

a mathematical model to help reproduce this behaviour within the computer

simulations. The chapter will end with an introduction to learning dynamics

in neural networks. We shall not go into the details of these concepts to avoid

unnecessary digressions as this research is not directly based on neural dynamics.

2.2 Basic Neural Structure

The neurons (Figure 2.2) are the basic functional unit of the nervous system [Tho00].

Neurons are like other body cells in most respects. However, they are specialized

in their behaviour in order to process and transmit information to other neurons

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 27

Figure 2.2: A Typical Neuron (from [Wik09a]).

or muscles. The brain’s behaviour, as a whole, depends on the way its neurons are

organized, so to understand the brain it is important to understand neurons and

their information processing mechanisms. A neuron’s functionality is defined by

its microstructure and connectivity to other neurons. One major characteristic of

neurons that differentiates them from the other body cells is the structure of their

cell membrane, which is made specifically to transmit and receive information.

Neurons are specialized in information processing, utilizing special electrophys-

ical and chemical processes [Tra02]. There are many different types of neuron

based on their size, shape, and physiological properties. However, many features

of neurons can be generalized to almost all types of neuron.

The following sections describe some important parts of a neuron which con-

tribute to its functional behaviour.

2.2.1 Membrane

The neural membrane is made of organic fluid (phosphoric acid and fatty acid),

about 3-4 nm in thickness [DA01], that keeps a neuron intact in the ionic wa-

ter solution inside and around it. The ionic solution contains ions which are

mostly sodium (Na+), potassium (K+), calcium (Ca+2), and chloride (Cl−). The

membrane is impermeable to most charged molecules, which causes it to behave

like a capacitor separating charges along its interior and exterior surfaces. The

cell membrane contains some protein molecules scattered throughout it. These

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 28

Figure 2.3: Ionic Channels in Neural Membrane (from [DA01], fig. 5.8 page 169)).

molecules are the chemical receptors of charged ions and are called ion channels

as shown in Figure 2.3. Charged ions attach to the appropriate protein molecules

on the cell membrane and may cause various changes in both the membrane and

the inner process of the neuron [Tho00]. There can be more than a dozen types

of ion channel in a cell membrane, with a total number of channels in a neuron’s

membrane ranging from hundreds to thousands [Tho00]. Most of these channels

form valves to allow specific ions to enter or leave the cell body and are named

after the ions they allow to pass, i.e. a Na+ ion channel will let only Na+ ions to

pass through it. Some channels are always open and are called leakage channels

while the other channels are normally closed and are activated by certain changes

in the membrane.

2.2.2 Axon

Each neuron has only one axon as an output terminal to other neurons, gland cells

or muscles. The axon may branch and send multiple fibres to attach to the other

neurons through its axon terminals (Figure 2.2). The axons are filled with tiny

tubes running the length of the axons from the cell body to the synaptic terminals

called microtubules. Chemical substances called neurotransmitters, which are

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 29

Figure 2.4: Inter-neuron Synapse (from [DA01], fig 1.2 page 6).

produced in the cell body, are transported to the axon terminals with the help

of these microtubules. The chemicals move in both directions with the help of a

fast and a slow process with a transportation speed of 10-20 millimetres per day

and 1 millimetre per day respectively. The larger axons are covered with a sheath

of fatty insulation called myelin (Figure 2.2). Myelin considerably increases the

speed of conduction in an axon [Tho00]. Once an axon is fully developed, it is

covered by many layers of myelin.

2.2.3 Dendrite

Dendrites are thought to be an extension of the cell body’s receptive surface.

These are the fibres around neuron (Figure 2.2) which give a neuron its typical

tree-like shape. They may range from a few short fibres to a huge mass of en-

tangled bushes. A typical neuron can have 10,000-100,000 dendrites. The axons

from one neuron can attach to the cell body of another neuron directly or through

these dendrites to form synapses (Figure 2.1). The dendrites of many neurons

are covered with thousands of little extensions called dendritic spines. The spine

is the postsynaptic part of the synapse made with the presynaptic axon-terminal

from some other neuron [Tho00].

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 30

2.2.4 Synapse

One way that neurons are different from other body cells is that they make

synapses with other neural tissues with the help of their axons. Synapses (Fig-

ure 2.4) are the point of functional contact formed by axons to the other neurons

at their dendrites or cell bodies. Synapses can be divided into two basic types:

electrical and chemical synapses [Tho00]. The mammalian brain predominantly

contains chemical synapses. The neuron contributing its axon to a synapse is

termed as a presynaptic neuron while the neuron on whose dendrite or cell body

the axon is attached is called the postsynaptic neuron. Axon terminals contain

a large number of chemical pockets called vesicles which are filled with neuro-

transmitters. The attachment point on the postsynaptic neuron forms a dense

staining band that defines the extent of the the synapse. In between the pre-

and postsynaptic contact points, there is a space of about 20 nm called synaptic

cleft. When a synapse is active, the vesicles open and release neurotransmitters

into the synaptic cleft. These are received by chemical receptor molecules on the

surface of postsynaptic neurons. A synapse can either be excitatory or inhibitory

depending on the type of neurotransmitter being released by the presynaptic neu-

ron. The excitatory synapses increase the activation of target neurons while the

inhibitory synapse reduce their activation.

Various types of neurotransmitter with specific properties are found in the

nervous system. These neurotransmitters regulate neurotransmitter-gated ion

channels which, in turn, regulate the ionic conductances of the membrane through

the binding of particular neurotransmitters. On receipt of a specific neurotrans-

mitter, these channels allow ions of specific size and shape to pass through them.

Each neurotransmitter affects the receiving neuron in a different way.

2.3 Membrane Potential

The concentration of ions is not the same within and outside a neuron as shown in

Figure 2.5. This difference between the ion concentration causes a concentration

gradient across the neuron’s membrane. The concentration of K+ is much higher

inside the neuron than in the the fluid outside the cell. The leakage-channels allow

the K+ from the ionic solution inside the neuron to move outside to balance its

concentration under a diffusion force caused by the concentration gradient. The

solution inside the neuron contains negatively charged protein ions P2− which

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 31

Figure 2.5: Ionic Channel Interplay to Develop Membrane Potential
(from [Wik09d]).

always remain inside the cell because of their large size [Tho00]. The diffusion

process leaves an excess of negative charge inside the neuron and an excess of

positive charge outside the cell body which causes a strong electric potential across

the cell membrane. The electric force is in the opposite direction to the diffusion

force and tries to stop K+ flow. The two forces, i.e. the ion concentration

gradient and the electric potential, will eventually balance each other to stop

further transportation of K+ ions from inside to outside the cell membrane. The

neuron settles at an equilibrium state with a concentration of K+ ions of 400

and 20 millimoles per litre inside and outside the cell respectively. The resting

membrane potential due to K+ can be found using the Nernst equation [Tho00]

as:

V =
RT

kF
log

[I+]in
[I+]out

(2.1)

where k, R and F are constants, T is the absolute temperature and [I+] is the

concentration of positive ions. At a normal temperature of 180 Celsius RT
kF

= 58

and the Nernst equation gives a resting potential of K+ [Tho00] as:

V = 58log[
20

400
] = −75.46mV ≈ −75mV (2.2)

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 32

Similarly, the other ion concentrations, such as those of Na+, Cl− and Ca+2, are

greater on the outside of the cell membrane, however, these do not contribute

substantially to the resting potential as the Na+, Cl− and Ca+2 ion channels

are not affected too much by the concentration diffusion force. These are mostly

voltage-gated or neurotransmitter-gated channels as compared to the K+ channel

which are mostly diffusion-gated leakage channels. The Nernst equation can

be extended to take into account the effect of these channels as well [Izh07],

eventually leading to the resting potential of a neuron, which is typically about

Vrest = −65mV [Tra02].

2.4 Action Potential

As discussed earlier, the membrane at rest is slightly permeable to Na+ (1

20
th

the permeability of K+) due to leakage channels. When a large quantity of

neurotransmitter is released by the presynaptic neuron or a small quantity of it

released by a few presynaptic neurons in a short span of time, this can trigger

a stronger response in the postsynaptic neuron’s membrane potential. If the

neurotransmitter is excitatory, it will move the potential difference in a positive

direction (from -65mV to -30mV - threashold potential) and activate the cell

membrane, developing an action potential across the membrane. This opens all

Na+ channels suddenly, making the membrane permeable to Na+. The diffusion

force due to the strong concentration of Na+ outside the cell body pushes Na+

inside the cell (Figure 2.5). As there are more negatively charged ions (protein

ions) inside the cell, the positive Na+ ions rush inside due to electrical force as

well. Both forces, i.e. the diffusion force and the electrical force, act in the same

direction to bring the Na+ inside the cell body with 500 times more permeability

for Na+ than the one it has in the resting state. In a short period, the membrane

potential reaches a Na+ equilibrium value of +50mV (an increase of ≈ 100mV

in the membrane potential from its resting potential), which closes the Na+

channels. At the same time a few voltage-gated K+ channels which are normally

closed at the resting potential are opened, letting K+ move outside more freely

than at rest. This removes K+ from the cell bringing the membrane potential

towards its resting potential. As the opening and closing of the K+ channels is

slower than the Na+ gates, the K+ gates remain open while the Na+ gates are

closed, as a result of which the membrane potential goes toward -75mV (more

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 33

Figure 2.6: Membrane equivalent conductance (g) and voltage (v) as a result of
interplay between Na+ conductance (gNa) and K+ conductance (gK) as measured
by Hodgkin and Huxley [HH52] (they used a resting potential of 0 mV instead of
-65 mV for computational simplicity).

negative than the resting potential), i.e. towards the K+ equilibrium potential.

This state of more negative voltage than the resting potential remains for a few

milliseconds and is called the afterpotential state or hyperpolarization.

The few voltage-gated K+ channels close eventually and the potential returns

back to the normal resting (-65mV) voltage. The period when the Na+ channels

are open, and the spike of action potential develops and decays, is called the

absolute refractory period. During this period the neuron can not be electrically

stimulated to generate another action potential [Tho00]. After the spike, i.e. in

the afterpotential period, the neuron can be electrically activated, however, it

requires a very strong electrical stimulus. Normally neurons do not spike during

this period. This is called the relative refractory period. The hyperpolarization

of the neuron relative to its resting voltage causes the voltage-dependent K+

channels to close and the voltage-dependent sodium channels to deactivate, even-

tually reinstating the normal resting potential of the neuron. Figure 2.6 shows

the interplay of the ionic conductances due to the opening and closing of the ionic

channels during the process of action potential. The graph labelled V shows the

resultant membrane potential as an accumulated voltage across the membrane.

With the repeated generation of action potentials, resulting in repeated out-

flow of K+ and inward flow of Na+, the K+ concentration will decrease and

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 34

Na+ concentration will increase within the cell. This will ultimately reduce the

probability of generating an action potential. At this stage, the action potential

can be generated with the help of yet another type of ion channel called an ion

pump, which can transfer ions against their concentration gradient. The process

is expensive as a neuron requires energy for this process [Tra02].

2.5 Synaptic Transmission

Information processing in the brain is dependent on the transmission of signals

between the neurons. Chemical synapses are the main source of information

transfer in the nervous system [Tra02]. The cell membrane has a relatively high

resistance and accumulates charge on both sides creating a capacitor effect. The

action potential is generated at the stem of the axon where it starts from the

neuron’s body. As the Na+ moves into the axon at the site of the action potential,

the region closer to the site begins to become relatively less negatively charged

from its resting potential due to N+ ions, a process called depolarization. The rate

of depolarization depends on the membrane capacitance. The patch of membrane

immediately next to the place where the Na+ gates open will then reach the Na+

gate opening threshold voltage. In this way the action potential continuously

moves down the axon until it reaches the axon terminal which contains normally

closed Ca+ channels. The arrival of the action potential opens these channels

briefly, causing an influx of Ca+ ions due to the diffusion gradient as Ca+ ions

are more in number outside the cell membrane than inside it. The Ca+ ions then

trigger the release of neurotransmitters. The released neurotransmitter at the

synapse enters the cleft and attaches the postsynaptic membrane.

As a result of excitatory neurotransmitters the neurotransmitter-gated Na+

channels open in the postsynaptic neuron. The postsynaptic neuron becomes

depolarized and if reaches a threshold potential, the voltage-gated Na+ channels

will open, generating an action potential and so on. This process is time con-

suming as it takes a few milliseconds from the time the action potential reaches

the presynaptic axon terminal to the point where the postsynaptic neuron is de-

polarised. It is believed that the sodium channels are situated closer to the axon

stem and along the axon, as the rest of the cell body and the dendrites are cov-

ered with axons from other neurons and thus act as if myelinated. Because of

this reason, the action potential is generated closer to the point the axon emerges

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 35

from the cell body and travels along the axon towards its terminal rather than

moving in the opposite direction [Tra02]. Normally, the activation of a single

excitatory synapse on a neuron will not cause it to develop an action potential.

It may require a number of synapses to be activated together in a short span

of time and influence the postsynaptic neuron together - a phenomenon called

spatial summation. If the synapses are far apart, they may not generate an action

potential on being activated together. However, if they are activated repeatedly

at a fast enough rate, they will sum over time and generate an excitatory postsy-

naptic potential (EPSP) to cause an action potential in the postsynaptic neuron.

This phenomenon is called temporal summation [Tra02].

2.6 Neural Networks

Each neuron connects with on the order of 1000 other neurons (some may receive

even more than 100,000 input connections). A small number of interconnected

neurons can exhibit complex behaviour and information processing capabilities

not present in a single neuron [DA01, Tra02]. There is still little understand-

ing of such non-linear interacting systems which are characterised by additional

information processing capabilities beyond that of single neurons, such as present-

ing information in a distributed manner. A combination of such networks in a

specific area of the nervous system is able to perform even more complex informa-

tion processing tasks. It is the neural interaction in large population of neurons

that enables their processing abilities different from a single neuron. This forms

a system of interacting processing units with emergent properties. Emergence

is probably the most defining property of neural networks which distinguishes

these from parallel computing in classical computer science [Tra02]. Interacting

real-time systems have unique properties beyond combined properties of single

processors and the outcome may not be deterministic, while in a typical parallel

computing system we distribute a large and complex job across independent algo-

rithmic threads to speed up the processing but to get the same result. Emergent

systems, however, are rule-based systems. Neural networks are also governed by

a finite set of rules or fundamental laws [Tra02]. These rules are not fully under-

stood in case of the nervous system and some people are convinced that a simple

set of rules explaining brain functions might never be discovered, or even after

discovering some of these rules we might not have sufficient understanding of

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 36

this most complex emergent system in the universe. However, there is enormous

progress to this end, and today we know much more than we knew a decade ago.

2.7 Neural Computation

Brain imaging techniques, such as fMRI (Funcational Magnetic Resonance Imag-

ing) etc, have enabled us to discover activities in various regions of the brain

while performing a specific mental task. We can spot the temporal interaction

among neurons or groups of neurons as a result of a particular activity and trace

the flow of information from stimulus to a resulting response. Such techniques

have provided a huge amount of useful data about the information processing

mechanisms inside the brain. New quantitative hypotheses about neural func-

tions are being formulated inviting more specific experimental analysis to test

these hypotheses. For a realistic understanding of the brain’s functionality, it

is important to devise hypotheses precisely and to test them experimentally to

verify or disprove them [Tra02]. We need to discover the brain’s behaviour at two

levels i.e. at the individual neuron level to discover the information processing

mechanism and the way it interacts with other neurons, and at the neural net-

work level to understand the minimal features contributing to certain emergent

properties of these networks [Tra02].

One such empirical hypothesis and a resultant model was presented by Alan

Hodgkin and Andrew Huxley in 1948 [HH52]. They quantitatively described the

form of action potentials using numerical equations long before ion channels were

known or the details of the neural spiking process were measured directly [Izh07].

The Hodgkin-Huxley mathematical model is the most accepted one to capture

neural dynamics in biological neurons [Izh07]. They formulated this model based

on their experiments on the giant axon of a squid. As per this model, the num-

ber of open ion channels is proportional to an electric conductance gion and the

movement of ions through these channels (electric current) Iion. The resultant

equilibrium potential for a particular channel Eion created across the membrane is

relative to its resting potential V . The relationship between the electric potential,

the current and the conductance is given by Ohm’s law [Tra02] as

Iion = gion(V − Eion) (2.3)

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 37

As described before, three types of channel contribute to the changes in the mem-

brane potential, i.e. the leakage channels and the voltage dependent K+ and Na+

channels. The voltage controlled channels have varying conductances which are

dependent on the number of channels opened at a particular time. Hodgkin and

Huxley attached an empirical behaviour to these channels which they found from

their experiments. They defined the conductances of these channels using three

variables chosen appropriately to approximate their behaviour to the experimen-

tal data. The variables n, m and h describe the activation of K+ and Na+, and

the inactivation of Na+ channels respectively. The effect of these variables on

the channel conductances is given by,

gK = gKn4 (2.4)

gNa = gNam
3h (2.5)

These variables represent the number of activation or inactivation gates such

as the voltage-gated K+ current with four activation gates (represented as n4),

and the voltage-gated Na+ current with three activation gates (m3) and one

inactivation gate (h1) [Izh07].

The dynamics of the neuron with respect to each channel is captured by,

dx/dt = −1/(τx(V)) ∗ [x− x0(V)] (2.6)

where x can be substituted by each variable i.e. n, m or h in turn. Hodgkin

and Huxley selected these variables to get a reasonable fit to the experimental

data. This equation describes the voltage dependence of K+ and Na+ channels.

The leakage channel is static with constant conductance gL.

Figure 2.7 shows an equivalent electric circuit with three conductances to

represent three channels i.e. the leakage channel, the K+ channel and the Na+

channel with their own batteries (the ion potential difference due to the con-

centration gradient which tends to move the charges in the direction of lower

concentration). The electric charge stored by the neuron is formally represented

by the voltage and its capacitance C in parallel with the three resistors as shown

in Figure 2.7. The combined effect of all these components can be formalized by

Kirchhoff’s law as,

C
dV

dt
= −ΣI ion + I(t) (2.7)

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 38

Figure 2.7: Equivalent Electric Circuit for Ionic Channels used by Hodgkin and
Huxley (from Hodgkin and Huxley [HH52]).

This first order equation describes the change in membrane potential with

time. I(t) is an external current such as the current from neurotransmitter-gated

ion channels. By combining the equations together [Izh07] we get,

dV

dt
= −gKn4(V −EK)− gNam

3h(V − ENa)− gL(V − EL) + I(t) (2.8)

The variables n, m and h can be computed by:

dn

dt
= α(V)(1− n)− β(V)n (2.9)

dm

dt
= α(V)(1−m)− β(V)m (2.10)

dh

dt
= α(V)(1− h)− β(V)h (2.11)

where

αn(V) = 0.01
10− v

exp(10−V
10

)− 1
(2.12)

βn(V) = 0.125exp(
−V

80
) (2.13)

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 39

Figure 2.8: Empirical Variables used by Hodgkin and Huxley (from Hodgkin and
Huxley [HH52]).

αm(V) = 0.1
25− V

exp(25−V
10

)− 1
(2.14)

βm(V) = 4exp(
−V

18
) (2.15)

αh(V) = 0.07exp(
−V

20
) (2.16)

βh(V) =
1

exp(30−V
10

) + 1
(2.17)

The parameter values were set by Hodgkin and Huxley by shifting the mem-

brane potential approximately +65mV (representing the -65mV resting poten-

tial at 0mV as a reference voltage) to bring Vrest ≈ 0V for the sake of conve-

nience [Izh07]. By restoring the membrane potential back to its original value,

we get Vrest ≈ −65mV . The shifted values of equilibrium ion potentials are,

EK = −12mV, ENa = 120mV, EL = 10.6mV . While the maximal conductances

values are, gK = 36mS/cm2, gNa = 120mS/cm2, gL = 0.3mS/cm2.

The capacitance around the membrane C = 1µF/cm2 and the applied exter-

nal current is I = 0µA/cm2. Functions α(V) and β(V) define the transition rates

between the open and closed states of the channels. In Equation 2.8 the ionic

currents are K+ (IK), Na+ (INa) and leakage (IL). The leakage current is the

Ohmic leakage current carried mostly by Cl− ions [Izh07]. In a standard form

the ionic variables (n, m and h) are are shown in Figure 2.8.

In order for a neuron to generate an action potential, the densities of these

channels have to exceed a certain threshold depending on the temperature. The

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 40

Figure 2.9: Threshold potential as noted by Hodgkin and Huxley [HH52] at 180

C (bottom graph) and 200 C (upper graph) (they used a resting potential of 0mV
instead of -65mV for computational simplicity).

behaviour of this model as measured by Hodgkin and Huxley is shown in Fig-

ure 2.9.

2.8 Temporal Dynamics

Neurons communicate with the help of action potentials, spikes, which travels as

an all-or-nothing boolean operation i.e. the information is passed by the pres-

ence or absence of a pulse, but not by its size or shape [Me98]. This theory

generates a very important question: How does the brain process information

and store/retrieve it if the only means of communication is the action poten-

tial pulse? Most researchers now believe the answer to this question lies in the

spike timing, which may be used by our nervous system to code/decode infor-

mation [Me98, Izh07, DA01]. Besides this, the neural dynamics in the nervous

system is tied to a temporal behaviour which is dictated by the biochemical pro-

cesses inside neurons. This sets an upper bound on the spike frequency from a

neuron in the domain of a few 100Hz (i.e. a few spikes every second or normally

a spike after a few milliseconds) as shown in Figure 2.10. An action poten-

tial lasts for about 1 ms. After the action potential, the process of absolute

refractory and relative refractory prohibits a neuron from firing for a few mil-

liseconds [DA01]. This implies that a neuron can spike at a frequency not more

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 41

Figure 2.10: Inter-spike Interval (isi) (from [DA01], fig 1.15 page 33).

than a few 100s of Hz. The process of spike transmission in the axon also in-

volves a delay called the axonal conduction delay due to the physiological process

of opening the ionic channels along the axon’s length (ranging from a few mm to

a metre [Tho00]). The spike transmission velocity in a myelinated axon has been

measured as ≈ 1m/s, while in the non-myelinated axon it is only ≈ 0.15m/s,

which introduces an average axonal delay of up to 10ms [EMIE04] (and it may

be more in some cases). The process of post synaptic potentiation as a result of

spike receipt also involves some delay in opening ion channels. It has been discov-

ered that a neuron performs computation on localized regions of its dendritic tree

(dendritic compartments [Me98, Izh07, DA01]), which involves a further delay in

passing on the pulse to the cell body and thus generating an action potential. Fig-

ure 2.10 from Dayan et al. shows the inter-spike interval of a typical pyramidal

neuron in mammalian neocortex and the spike rate of cortical neurons in normal

circumstances. We include this figure to give an idea of the spike frequencies in

the nervous systems (the proportion of active neurons in the nervous systems at

any one time are only ∼0.01-1% [DA01]).

2.9 Adaptability and Learning

Activity-dependent synaptic adaptability or synaptic plasticity is widely consid-

ered to be the basic phenomenon of learning and believed to be the primary

contributor to the development of neural circuits [DA01]. Donald Hebb in 1949

proposed a learning mechanism which has since become known as the Hebbian

Learning rule. As per this rule, if neuron A often contributes to the firing of neu-

ron B, then the synapse from neuron A to neuron B should strengthen [DA01].

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 42

Figure 2.11: Spike Timing Dependent Plasticity (STDP) (from [EMIE04], fig. 3).

In other words, the synaptic changes are in proportion to the correlation or co-

variance of the activities of the pre- and postsynaptic neurons. Experimental

results in many parts of the brain have proved to be activity-dependent pro-

cesses. Experimental results show that generally in our nervous systems, high-

frequency stimulation for a long-enough period causes synaptic potentiation (an

increase in synaptic weights), and long-lasting low-frequency stimulation induces

synaptic depression (a decrease in the synaptic weights) [DA01]. These effects

are termed long-term potentiation (LTP) and long-term depression (LTD). The

synaptic strength is affected by these stimulations with a transient or long-lasting

effects. As a general guideline, the changes that persist for up to tens of minutes

or longer are LTP and LTD while very long-lasting effects are caused by protein

synthesis [DA01]. It is believed that the postsynaptic concentration of Ca+ plays

a major role in both LTP and LTD. The process as a whole is termed synaptic

plasticity and contributes to the learning in the nervous systems. Basic Hebbian

learning rule can be described by the following relation:

τω
dw

dt
= vu (2.18)

where τω is the time constant controlling the rate of weight change, w is a vector

defining all the synaptic weights in the network, while v is the postsynaptic

activity evoked directly by the presynaptic activity u.

There are many forms of Hebbian learning process found in the literature,

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 43

however, we shall discuss only timing dependent plasticity, called Spike Timing

Dependent Plasticity (STDP), as an example of a learning process. Experiments

have shown a strong relationship between the timing of pre- and postsynaptic

action potentials [DA01], and this is attracting the attention of researchers. As

per this rule, synaptic plasticity occurs only if the difference in the pre- and post-

synaptic spike times falls within a window of roughly ±50ms [DA01]. The sign

(potentiation or depression) depends on the order of stimulation i.e. a presynap-

tic spike that precedes a postsynaptic action potential induces LTP, respectively a

presynaptic spike that follows a postsynaptic action potential will produce LTD.

The rule is directly in line with the basic Hebbian hypothesis as a synapse is

strengthened only when a presynaptic action potential precedes a postsynaptic

action potential. Figure 2.11 shows the relative timing of the pre- and postsynap-

tic action potentials and its effect on the amount and type of plastic modification.

The figure shows in vivo experimental results from a pair of cortical neurons of

a tadpole.

The following relation from Dayan et al. [DA01] describes the STDP process

in a neural network:

τω
dw

dt
=

∫

∞

0

dτ(H(τ)v(t)u(t− τ) + H(−τ)v(t− τ)u(t)) (2.19)

where τ is the temporal difference between the times when the firing rates of pre-

and postsynaptic neurons are evaluated, function H(τ) determines the rate of

synaptic change due to postsynaptic activity separated from presynaptic activity

by time τ . The relation is based on the assumption that the rate of synaptic

change is proportional to the product of the pre- and postsynaptic rates which

is in accordance with the basic Hebbian rule. The first term on the right side of

the relation represents LTP and the second represents LTD for a positive H(τ)

with positive τ and negative with a negative τ . Again u and v are the pre- and

postsynaptic activities. while the H(τ) is given by [EMIE04] as:

H(τ) = A+e−t/τ+ for t > 0, (2.20)

H(τ−) = A−et/τ− for t < 0 (2.21)

where A± is the weight-dependent coefficient. A constant value of these coeffi-

cients introduces additive learning.

CHAPTER 2. THE BRAIN – NATURE’S MASTERPIECE 44

2.10 Summary

In order to understand a neural simulation application, it is important to un-

derstand the dynamics of biological neurons and their collective behaviour as a

population of neurons interconnected to form a neural network. Our brain is

made of billions of neurons - functionally independent processing units with a

tremendous amount of connectivity. The neuron’s behaviour is dictated by its

electro-physiological properties controlled by chemical ions inside and around its

cell body. The concentration of these ions is maintained by the concentration

diffusion and electric forces at the neuron’s normal resting potential. Stimuli to

a neuron in the shape of neurotransmitters cause an action potential - a spike

or pulse. Neurons communicate with each other and with the muscles/glands

using these spikes. All our body movements, responses to our senses and learn-

ing/memories are controlled with these spikes. Much is known about the neural

and learning dynamics in the nervous systems. However, a lot remains to be

discovered, especially the emergent behaviour of neural networks and phenomena

of short/long term information storage. Many mathematical models have been

proposed based on empirical hypotheses to capture the neural dynamics in the

nervous systems. There is a need to explore more using these models and to refine

them based on the in vivo experiments to understand the collective behaviour of

large neural networks.

Chapter 3

The Brainbox – Learning From

Nature

“The computer models (neural simulations) allowed us to perform

experiments that are impossible (physically or ethically) to carry out

with animals”

Eugene M. Izhikevich and Gerald M. Edelman [IE08]

3.1 Computer Simulations

Easy access to increasingly powerful computing systems, together with advances

in the computational processes needed to capture accurately the behaviour of

very complex systems, has made computer based modelling an attractive research

tool [HG93]. Investigating complex phenomena with the help of computer sim-

ulations has become an established practice in science and engineering [HE88].

In physics, chemistry and biology, computer-based simulations are used to re-

search problems in complex processes related to dynamical systems, large-scale

structures, protein mechanics and cell metabolism etc. From heavy mechanical

industry to medical sciences, computer simulations are used to refine the costly

processes that cannot be carried out repeatedly with actual subjects. In aircraft

design, building and flying a prototype to evaluate design changes is hazardous

and expensive, besides it being extremely difficult to record accurately the desired

effects. In general, we are not in the fortunate position of being able to test under

all intended environmental conditions as these are under the control of nature.

45

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 46

Similarly, in medical sciences many animals ‘sacrifice’ their lives in the pursuit of

enhancing human life expectancy. Computer simulations are the most suitable

alternatives for such experiments and can, in some cases, reduce cost as well as

avoid those of animal subjects [HE88]. One advantage of computer modelling is

that a specific design feature can be tested against a particular environmental

effect in isolation (or a combination of only desired effects), which is not possible

in reality. For example, the effect of side wind at varying speed on the design of

an aircraft can easily be simulated, which may be impossible to achieve in flight

tests.

Human imagination and thinking has been a mystery for many centuries.

The quest goes back to ancient times when we assumed the existence of some

spiritual power (soul) to control our imagination [RCAT97]. To the Egyptians,

the thinking process was controlled by the heart. So the brain was removed from

a mummy’s skull believing it to be of no significant use in the second life. During

the last century, increasing discoveries about the mammalian nervous system

at the behavioural level invited research communities from multiple disciplines

to explore the brain. The successful use of neural networks (NN) by Artificial

Intelligence (AI) and psychology, such as in the areas of character and speech

recognition, adaptive systems, and robotics etc., brought a lot of public and

commercial interest into the research. The 21st century was expected to be the

era of intelligent machines with human-like behaviour. However, we could not

sustain the expected pace in AI due to our lack of understanding of “intelligence”

before attempting to build an “intelligent machine” [HSB04]. Further discoveries

in neuroscience forced researchers in computer science to pay more attention to

understanding the brain [Izh03b] before creating “brain-like” artefacts.

With multi-disciplinary collaboration, computer-based modelling is starting

to converge with the behaviour of in vivo neurons. Neural simulations have

started to explore biologically-plausible models of the neural network’s behaviour.

Figure 3.1 illustrates a multi-disciplinary interaction among researchers for the

use of neural simulation. Acquiring an insight into the brain’s functionality,

making an accurate mathematical model based on those discoveries, and then

using these models to develop computer simulations of in vitro experiments is

becoming the most viable option for exploring the mysteries of the brain [Tra02].

A two-way process wherein computer scientists and neuroscientists educate each

other is facilitating research in the two disciplines. As a result the end users in

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 47

Figure 3.1: Multi-disciplinary Interest in Neural Simulation (adapted
from [Tra02], fig 1.2 page 6.)

the fields of medical science, computer applications, robotics, AI, and psychology

etc. are benefiting from these advances.

This chapter focuses on the need for creating computer simulations of popula-

tions of neurons (neural networks). Software-based neural simulation approach is

explored in a review of the literature understanding its limitations in simulating

large populations of neuron using biologically-realistic neural modelling. Some

attempts in the past to implement these simulations in hardware, for better per-

formance, are also described. The chapter ends with a discussion of the need

to design an Application Specific Integrated Circuit (ASIC) computing system

specifically for the purpose of supporting large-scale neural simulations.

3.2 Neural Network Simulation

For a correct computer simulation of any real object, we need to capture the

object’s structure, its functionality, and the environment affecting its behaviour.

For an aircraft simulation, we simulate its functionality with a mathematical

model, its structure is defined by design parameters, while the environment is

generated by simulating the effect of various outside factors affecting the flight in

isolation or in any combination. Only a correct model can lead to a functionally

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 48

correct design. In the case of neural simulation, the results can only be correct if

we are simulating neural structure, functionality and environment as realistically

as possible. The neural functionality is simulated using mathematical models that

capture a neuron’s dynamics, the network structure is controlled using variables

and constants, while the environment is controlled by the neural connectivity. It

is then important to simulate this population in a realistic manner, incorporating

internal and external factors affecting the population’s behaviour, such as noise

and external stimuli [Tra02]. A neural model based on assumed functionality or

imaginary connectivity may lead to unrealistic results [Izh03b].

Often, a complex simulation that uses high-fidelity details may result in a

more complex model than the simulation objectives require [Tra02]. The simu-

lation cost can, however, be reduced through the use of abstract modelling tech-

niques [MM00]. These techniques reduce the model complexity by eliminating,

grouping, or estimating model variables at a less-detailed level without grossly

affecting the simulation results. Key issues in the abstraction process involve

identifying minor structural and functional details, the leaving out of which does

not affect the intended simulation objectives. However, the level of abstraction

must be chosen carefully as wrong assumptions may lead to wrong results. The

level of abstraction depends on the scientific question being investigated. If we

are interested in the development and verification of a hypothesis related to the

ionic conductances and the resultant generation of action potential in neurons,

a detailed cellular level simulation capturing the complexity of a single neuron

would be required such as that defined by Hodgkin and Huxley [Izh03b]. How-

ever, the simulation of a single neuron may fail to exhibit a holistic view of the

complex behaviour and information processing mechanisms in a large neural net-

work [Tra02]. The understanding of networks of interacting neurons is an area of

major interest in many disciplines as there is not enough understanding of such a

“non-linear interacting system” [Tra02]. Large neural networks have information

processing capabilities, as a whole, beyond those of single neurons, such as repre-

senting information in a distributed manner. Contrary to a human-made artifact

such as an aircraft, where the structure of each component with its functionality

is known, a neural processing model is not understood in detail at the individual

neuron and group level. Various mathematical models have been proposed to

capture the functionality of neurons at various level of detail. Izhikevich [Izh03b]

gives a detailed account of all of these models with their biological plausibility and

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 49

Figure 3.2: Traditional Multilayer Neural Network.

the computational power required to simulate them. One might wish to model

neurons with their all known biological features, however, such an implementa-

tion may be too computationally expensive to simulate large neural network with

the available resources.

A traditional neural network computer application such as the Light Effi-

cient Network Simulator (lens) [Roh99], used in AI and psychology for training

neural networks for various applications, uses rate-coded models. Rate-coded

neural networks use the ‘mean firing rate’ (over time, over several repetitions, or

over a population of neurons) as a means of information representation [Me98].

The neuron adds the weighted input values to compute the output using some

mathematical function (such as the McCulloch-Pitts or sigmoid function [Tra02].

Traditional multilayer neural networks are based on a number of neuron layers

including an input and output layer along with a number of intermediate hidden

layers as shown in Figure 3.2. Each layer consists of an arbitrary number of neu-

rons. The input layer provides the initial input state of the network, while each

neuron in the middle layer accumulates weighted inputs from the previous or the

same layer to give its output to the neurons in the same or the next layer. For

supervised learning, the difference (delta) of the output from the required output

is back-propagated to all connected neurons in the previous layers to adjust their

connection weights and reduce the output errors. Many types of neural network

such as feed-forward, simple recurrent, backpropagation through time, and fully

recurrent etc., can be implemented with these simulators [Roh99]. These sim-

ulators model basic functions of neurons such as spiking (sending data among

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 50

neurons), weighted connections, functionality to accumulate the inputs and fire

outputs. However, they lack the ability to simulate the correct behaviour of bio-

logical neurons as they do not capture the correct temporal spiking dynamics of

individual neurons as stated in Chapter 2. In these models, the average firing rate

for a single neuron is well defined under stationary conditions or over a period

long enough to achieve an output. However, none of these conditions resembles

those of biological neurons in most of their temporal behaviours [Me98].

Over the last few years the emphasis of research in neural network simulation

has been towards pulse-coupled spiking neuron models for biological realism. The

proposed models range from very detailed but computationally expensive models,

such as that from Hodgkin and Huxley [Tra02], to the very simple Integrate-and-

Fire (I&F) neural model. A detailed analysis of these models has been presented

by Izhikevich [Izh03b] along with their capability to exhibit most of the promi-

nent biological features and their computational complexity. Neuroscientists feel

comfortable with the models that capture details down to ion channels, such as

that from Hodgkin and Huxley, while computer scientists are happy to simu-

late simple models such as the I&F model. Each one’s preference is a matter of

concern to the other group as the Hodgkin and Huxley model [HH52] is compu-

tationally very expensive while the I&F is too naive to be biologically accurate.

An efficient and realistic simulation warrants a compromise between the two ex-

tremes. The Izhikevich model [Izh03a] is one such compromise that exhibits most

of the behaviours expected from biological neurons [Izh03b]. The mathematical

model from Izhikevich that captures the dynamics of spiking neurons [Izh03b] is

as follows:

v
′

= 0.04v2 + 5v + 140− u + I (3.1)

u
′

= a(bv − u) (3.2)

with after-spike resetting as:

if v ≥ +30mV, then







v ←− c

u←− u + d
(3.3)

where v is the membrane potential of the neuron, u is the membrane recovery

variable which takes care of K+ activation and Na+ inactivation currents and

provides negative feedback to v. After the potential reaches a threshold (+30mV),

the membrane potential and the recovery variable are reset as per Equation (3.3)

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 51

above. 0.04v2 + 5v + 140 is chosen empirically to scale v to mV and time to

ms [Izh03b].

The model claims to exhibit all known firing pattern of cortical neurons by

suitable choice of its parameters a, b, c, and d [Izh03a]. The model is computation-

ally comparable with the I&F model as it takes only 13 floating-point operations

to simulate 1 ms (compared to 4 floating-point operations for the simplest form

of I&F). It is efficient compared to the Hodgkin and Huxley model [HH52] which

takes 1200 floating-point operations to simulate 1 ms of biological time [Izh03b].

The model is suitable for the simulation of large-scale neural networks as shown

by Izhikevich [EMIE04, IE08].

In the following sections, various approaches to neural simulation will be dis-

cussed to highlight the importance of creating an efficient simulation engine as a

motivation for the SpiNNaker research project. Though typical rate-coded mul-

tilayer perceptron (MLP) neural network simulations have made great contribu-

tions to research in understanding the brain and neural applications, to conserve

space this chapter focuses only on neural simulations using biologically-inspired

models.

3.3 Expected Features

Neural simulations are performed with various objectives such as understand-

ing the behaviour of an arbitrary size of neural population (a neural network)

to investigate various aspects of neural dynamics or learning. These may also

be directed towards understanding the working of a particular part of the brain

based on data obtained from biological investigations such as fMRI. Moreover,

the objective may also be to test hypotheses relating to the functionality of an

individual neuron or a group of neurons, or to investigate the information pro-

cessing taking place in a particular portion of the brain as a result of known

stimuli etc. Whatever the objective may be, in general, the neural simulations

are expected to share the following expected features:

3.3.1 Biological Realism

To obtain reliable results, an experimental model must capture functionality as

realistically as possible. Additionally, we must simulate the correct environment

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 52

to simulate valid behaviour of the model. A wrong assumption will produce in-

accurate results leading to unrealistic inferences. As discussed earlier, neural ap-

plications based on unrealistic neural models delivered results that were far from

reality. Reliable results from a neural simulation can be obtained only if the math-

ematical model is based on realistic and exhaustive study of biologically-realistic

functional data. For this purpose a modeller needs to have enough knowledge or

have a close interaction with biological researchers to capture the true function-

ality of the neuron. Often, a particular neural model may successfully be able to

depict an accurate behaviour of a single neuron, however, using the same model

may fail to generate an accurate behaviour of a population of neurons due to

many factors such as spike communication noise [Tra02] or non determinism in

the spiking probability of the neurons under certain conditions. In this case, the

model needs to be revised with the help of biological statistics to ensure that it

exhibits appropriate collective behaviour.

3.3.2 Scale of Simulation

For a meaningful functional behaviour of a biologically-plausible neural network

at the scale of the functional units in the mammalian brain, such as the visual

or auditory system, we need to simulate a sizable population of neurons [Tra02].

A reasonable size of neural network to simulate such functions in a mammalian

brain is of the order of 100,000 neurons [EMIE04, IE08]. Medical scientists often

need a simulation to encompass a specific region of the brain to understand the

effects of stimuli and to verify expected responses. This requires a simulation of

a network consisting a population in the order of millions of neurons. In order

to simulate the social behaviour of mammals, we may be required to simulate a

basic mammalian brain such as that of a rat containing 2x109 neurons.

3.3.3 Simulation Time

As described in Chapter 2, neural dynamics is characterised by its temporal be-

haviour on millisecond time-scale [Tho00, Izh03b, Tra02]. Ideally, for a simulation

with real-time stimulus and response behaviour, we should simulate neural net-

works in real time. However, for a large-scale neural simulation to the scale of

millions or billions of neurons with biological realism, we require huge computing

resources or it will not be possible to simulate the neural population behaviour

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 53

in real biological time. We can achieve this either by simulating a small popula-

tion of neurons with limited functionality, or we need a very powerful computing

system.

3.3.4 Abstraction Level

For any computer-based simulation, we need to abstract the the details of the

modelled artifact for efficient simulation on the underlying computing system.

Neuroscience can provide the details of a neuron’s behaviour down to molecular-

level, ionic-level, or cellular-level. Depending on the aim of the simulation, we

can ignore the details unnecessary for the behaviour we aim to simulate. If we are

interested in a behaviour-level simulation of a large population of neurons, ionic-

and molecular-level activities in each neuron may not matter; thus they can be

abstracted away. The abstraction level chosen, however, depends on the desired

objective and may require the use of a different model for each such objective.

3.3.5 Interactive Control

In an aircraft simulation we need to have some control over the factors affecting

the behaviour of the aircraft in order to view their individual or combined effects.

In the same way, a neural simulation should provide support for user interaction

to manipulate factors affecting the behaviour of the network and to analyse it

accurately. The behaviour of mathematical neural models can be controlled by

adjusting their parameters. A neural simulation should provide means to control

such parameters externally. Similarly, the user may wish to view the state of

simulation at a particular point in time for diagnostic purposes to examine the

effect of a particular stimulus or the effect of particular neural activity over a

period of time.

3.4 Software Neural Simulations

Computer Engineers have long been looking for a computationally-efficient model

to emulate a reasonable population of spiking neurons. In the past, with lim-

ited processing power and memory resources, the Leaky-Integrate-and-Fire(LIF)

model was used most extensively for research. Even now, this model is still used

extensively and evolved further because of its computational simplicity. However,

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 54

as stated above, the research communities in computer science and neuroscience

have are sceptical about its biological basis. Recent discoveries have forced re-

searchers to look against biologically-inspired mathematical models of spiking

neurons such as that from Hodgkin and Huxley [HH52]. Much research has fo-

cused on an intermediate solution to provide models with biological accuracy but

not at the cost of computational efficiency [Izh03b]. Izhikevich’s spiking neural

model [Izh03a], which has been empirically derived from the Hodgkin and Huxley

model [Izh07], is a result of one such effort that exhibits most known behaviours

from many types of biological neuron and has reasonably low computational com-

plexity [Izh03b]. In the following sections example software-based simulations are

explored, and their limitations are described.

3.4.1 Example Software Simulations

Numerous simulations of spiking neural networks have been carried out in the past

with various objectives employing various neural models. However, there are very

few examples of large-scale neural simulations using biologically-realistic models.

Here we present a few such examples to evaluate software-based approaches to

large-scale neural network simulations.

E.D. Lumer et al. created a large-scale computer model in 1997 to study the

synchronous rhythms in the thalmocortical system simulating 65,000 spiking neu-

rons and 5 million connections from the visual sensory region [LET97a, LET97b].

The model used the I&F spiking neuron model to exhibit the neural dynamics

of individual neurons. The simulation was driven with external stimuli and the

neural state for all the neurons was recorded. The model simulated a 0.5 ms time

step in 5 seconds on a Sun SPARC-20 workstation. The work claims to simulate

the neural responses to visual input and the resultant synchronous oscillations,

similar to the fast rhythms recorded in vivo. By systematically modifying physi-

ological and structural parameters in the model, specific network properties were

found to play major roles in the generation of this rhythmic activity. In another

simulation performed with the same computer model, Lumer et al. studied the

normal behaviour of the model during visual stimulation for the effects of dis-

rupting synchrony by introducing a random jitter of a few milliseconds in the

timing of action potentials.

Izhikevich performed a simulation of a biologically-inspired neural network

consisting of 100,000 neurons with about 8.5 million synaptic connections in

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 55

2004 in order to study the effect of axonal conductance delays and Spike-Time-

Dependent-Plasticity (STDP) on the formation of neural groups [EMIE04]. The

Izhikevich-Simple-Neural-Dynamics-Model [Izh03a] was used to depict the neural

dynamics of the neurons while the learning process (synaptic weights adjustment)

was based on the STDP model proposed by Markram [MLFS97]. The simulation

provided valuable results to help understand the behaviour of large-scale neural

populations; which is not possible with a single neuron simulation. In another

experiment performed by Izhikevich with G.M. Edelman in 2008, a population of

1 million spiking neurons was simulated with about half a billion synaptic con-

nections [IE08]. The simulation aimed at understanding spontaneous activities,

sensitivity of the group’s behaviour to the changes in the individual neuron’s re-

sponses and the functional connectivity in the mammalian brain by simulating

multiple cortical regions and the connections among them. The density of neurons

and synapses was reduced by a factor of 4 to reduce computational complexity.

The initialization data was acquired from Diffusion Tensor Imaging (DTI) and

fMRI scans of human, cat and rat brains.

The famous Blue Brain project [Mar06] was started in 2005, as a joint venture

between EPFL Switzerland and IBM, with a view to reverse-engineering the mam-

malian brain, to investigate brain function and dysfunction through a detailed

neural simulation. In its first phase, the project aimed to build a cellular-level

model of a 2-week-old rat somatosensory neocortex corresponding to the dimen-

sions of a Neo-Cortical Column (NCC) adopting biologically-accurate Hodgkin

Huxley ion channel models for individual neurons. An NCC model comprising

10,000 neurons with trillions of possible connections was simulated employing the

huge computational power of an IBM Blue Gene(L) supercomputer with up to

8192 processors. Currently, the time required to simulate the circuit is about two

orders of magnitude larger than biological time simulated. The Blue Brain team

is working to streamline the computation so that the circuit can function in real

biological time [Swi08].

3.4.2 Limitations of Software Simulation

Software simulations are very flexible and reusable as changes can easily be in-

corporated, and further simulations can be built using the modules from previous

attempts. However, as the simulation performance is dependent on the under-

lying hardware platform, the scale of neural simulation and the simulation time

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 56

depend on the computational power which is limited in case of a general-purpose

computing system. The performance is further reduced by the overheads intro-

duced by the operating system and other applications running at the same time.

As a result, we need either to reduce the size of the simulation or to abstract the

functional details. Either approach affects the speed of simulation and usually a

large-scale simulation with reasonable functional details runs much slower than

the simulated neural networks, as noticed in the above examples. Simulation time

is not important for rate-coded-models as these networks are not normally char-

acterised by their temporal behaviour. However, for a spiking neural simulation,

the information processing depends on the spike timing which is very important

for the neural dynamics and learning behaviour. As a result, biologically-inspired

models with fine level of details may take considerably larger than the real time

to simulate a short duration of neural activity.

As stated in the last section, the neural network simulation model by E.D.

Lumer et al. simulated 0.5 ms of activity for a population of 65,000 neurons in 5

seconds on a Sun SPARC-20 workstation using the simplest spiking neuron model.

Similarly, the first simulation by Izhikevich[EMIE04] took about 60 seconds on a

1-GHz Pentium PC to simulate 1 second of simulated neural activity with 100,000

neurons using the Izhikevich ‘simple’ spiking neuron model. The same was true

for his second simulation with 1 million neurons that took 1 minute to simulate

one second of neural activity in the brain on a 60 (3-GHz) PC cluster. In Blue

Brain simulation, they could simulate a NCC comprising 10,000 neurons with an

improved version of the biologically-accurate Hodgkin and Huxley [HH52] model

on Blue Gene (L) supercomputer, the fastest machine in the world at the time of

simulation, taking double the time the brain takes.

The computer science research community now seems convinced that the use

of dedicated hardware is necessary in order to simulate large-scale neural network

in biological real time, such as the Field-Programmable Gate Arrays (FPGAs)

or Application Specific Integrated Circuits (ASICs). The best way to build such

hardware is, however, not yet determined.

3.5 Hardware Neural Simulations

Some notably successful efforts have been made in the past to ‘grow’ neural

networks in hardware, employing both analogue and digital circuits, for better

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 57

performance. The ‘Neuromorphic Chip’ by Indiveri [GID06] at the University

of Salento, Italy, the “Distributed and Locally Reprogrammable Address-Event

Receiver” by Alan Murray’s group in Edinburgh [BMW08] and the “Configurable

Wafer-Scale Hardware System” to model large-scale biological neural networks

by Fieres et. al at Ruprecht-Karls University, Heidelberg Germany [FSM08] are

some examples of analogue circuit design. However, all of these examples are

on an experimental basis to grow only small-scale neural populations in order to

establish the feasibility of neural modelling using analogue signalling techniques

for inter-neuron communication.

On the digital circuit side, Tuffy et. al [TMM+06] uses time-multiplexing

circuitry to facilitate inter-neuron communication to simulate neurons. However,

the neural application is hard-wired with the achievable on-chip densities lim-

ited to about 3000 neurons/chip [RYKF08] due to the use of a bus architecture

for spike communication. Reconfigurable FPGA architectures, e.g. [HAM07], are

another popular technique. Here the entire network is multiplexed by swapping

out physical components. FPGAs are also popular for component abstraction

e.g. Porrmann’s implementation of neural networks on a reconfigurable hardware

accelerator [PWKR02]. The component abstraction technique reduces size by

developing modules with generic functionality, which can implement arbitrary

neural function (often with some simplification). FPGAs, however, are notori-

ous for high power consumption, slow speed, and cumbersome reconfiguration.

Application-specific hardware embedding dedicated abstract neural components,

such that by Eickhoff [EKR06], is emerging as an alternative solution. These

devices can be very general-purpose but still suffer from routing overheads unless

combined with time-multiplexing techniques. The advantage of hardware simu-

lation, common to all these examples, is the simulation speed that matches or

exceeds the biological real time.

3.5.1 Remaining Challenges

The implementation of spiking neural networks on specially-designed hardware for

accelerating neural simulation has encouraged the research community to adopt

biologically-inspired spiking neuron models for neural simulation. Some experi-

mental success stories demonstrate the efficient modelling of neural networks in

hardware. However, these efforts lack some of the expected features of an effec-

tive neural simulation described in Section 3.3. Almost all of these efforts with

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 58

hardware implementation simulate small-scale neural populations much below the

scale of a functional unit in the mammalian brain. No hardware implementation,

to our knowledge, uses a biologically-realistic model which displays the major

behavioural characteristics of spiking neurons (the I&F model, which is not bio-

logically plausible [Izh03b], is mostly used in these implementations). One more

problem is the rigid implementation approach i.e. the hardware is designed with

a fixed spiking neural model embedded into the design which cannot be changed

at run-time. If we want to refine the model or use a different neural model,

this is not possible with these implementations. The brain has many classes of

neurons which display differing behaviours. A particular neural model may not

capture every kind of neuron’s behaviour, or at least a different set of parameters

is required to exhibit different behaviours. Techniques described previously do

not offer this facility to model various types of neurons or to change parameters

at run-time. Lastly, these models operate at hardware speed with no relation to

the real-time neural activity in the brain, i.e. either these are faster or slower

than the simulated biological neural network. We run a model and then try to

establish a temporal relationship with the in vivo nervous system. If we want to

use these hardware platforms to interact with some artificial artifact such as a

hominoid robot, we require additional hardware to incorporate real-time delays

in stimuli and responses travelling between the simulation and the robot.

3.6 Summary

Computer-based simulation is a very effective tool for investigating the behaviour

of an existing or under-design artifact. Almost all engineering and physical sci-

ence disciplines use simulation to understand complex phenomena and use the

knowledge acquired to build new applications or improve the existing artifacts.

Computer simulations also help in situations where repeated experiments with

actual subjects may not be possible due to health-and-safety or social and ethical

regulations such as those related to medical science. The human brain is a mas-

terpiece of nature’s engineering characterized by its performance, fault-tolerance,

power consumption and heat dissipation. A balanced combination of these fea-

tures is yet to be achieved by human engineering. This calls for scientists and

engineers to learn from biology to explore the underlying principles and tech-

niques employed by nature which need to be incorporated in man-made artifacts.

CHAPTER 3. THE BRAINBOX – LEARNING FROM NATURE 59

Computer-based simulations of large-scale neural networks help us to understand

the functional and structural behaviour of the mammalian brain. A realistic sim-

ulation to provide reliable results requires simulation of a large-scale neural net-

work using biologically-plausible mathematical models with a reasonable degree

of detail commensurate with the desired results. Simulating large-scale spiking

neural networks in real-time requires a computing platform with significant com-

puting resources. Software-based simulations with their inherent overheads over a

general-purpose computing system cannot reach this objective. Neural networks

grown on FPGAs are limited in their scale and suffer from some other problems.

To simulate the brain, we need to alter our engineering paradigm to conform to

the biological engineering concepts. Biology believes in simplicity, parallelism,

redundancy and slow processing at the micro-level to generate high-performance

and fault-tolerant functional units at the macro-level. There is a need for an

ASIC designed neural network simulation engine (i.e. a “brainbox”) to simulate

large-scale spiking neural networks in biological real time so that the functional

mysteries of nature’s engineering can be understood.

Chapter 4

The SpiNNaker Computing

System

4.1 Introduction

The SpiNNaker research project at the University of Manchester started in 2006

with an aim to provide a high-performance computing platform for large-scale

neural simulations in biological real time. The previous chapter identified a need

for a specially-designed hardware platform to support large-scale spiking neural

network simulation in real time. This chapter introduces the SpiNNaker com-

puting system (known as the “brainbox”), which is designed to model a part of

the mammalian brain to the scale of a functional unit in the neocortex; it is an

Application Specific Integrated Circuit (ASIC) platform for large-scale spiking

neural simulation. This chapter highlights SpiNNaker’s objectives, architecture,

certain important features from the developer’s point of view, and an envisaged

standard application model to support large-scale neural simulations. Finally a

few important guidelines to develop applications for SpiNNaker are given along

with some users’ expectations acquired from our interaction with potential users

of the SpiNNaker computing system.

4.2 SpiNNaker Objectives

The SpiNNaker computing system has been designed to support large-scale neu-

ral simulation using highly-parallel distributed computing with high-bandwidth

inter-process communication. The envisaged computing system comprises up to

60

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 61

1 million low-power embedded processing cores interconnected by an efficient

packet-switching asynchronous network. Inspired by biology, the system is being

designed with following objectives in mind:

• High-performance

• Scalability

• Fault-tolerance

• Low power consumption

.

The aim is to enable the simulation of over 1-billion spiking neurons using

a biologically-inspired neural dynamics model of simple spiking neurons such as

that from Izhikevich [Izh03a]. With its 1 millions processors running at 200MHz,

we are expecting a throughput of over 200 tera-instructions per second. The

processors are organized in small Chip-Multiprocessor (CMP) Systems-on-Chip

(SoC) for better scalability and fault-tolerance. A system of the desired scale

can be assembled by connecting the required number of CMPs. Circuit boards

with varying numbers of interconnected CMPs will be available to be connected

together to form computing systems with varying throughput. Design effort has

concentrated on producing a reliable system with fault-tolerance at both com-

ponent and system level. Despite the scale of the system, we try to keep the

system as ‘green’ as possible by using low-power embedded processing cores and

a power-efficient network to connect them. The energy-efficiency per instruction

is far from being close to that of the mammalian brain. However, it is much

lower than typical massively-parallel computing systems of this scale. Besides its

low-power hardware design, we propose a power-efficient application model for

the SpiNNaker computing system that further reduces the power consumption by

removing software overheads and keeping its embedded processing cores in sleep

mode for most of the time.

4.3 Architectural Overview

The SpiNNaker computing system can be considered as a large cluster of multi-

core, independently-functional, personal computers (PCs), where each PC can

run a number of homogeneous or heterogeneous processes to execute an overall

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 62

Figure 4.1: SpiNNaker Computing System [Pro07].

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 63

system-wide parallel distributed application. In a cluster, the processing nodes

communicate by passing inter-process messages or through a shared memory.

Each process runs independently and its state depends on the initial state, the

information received from the other processes over time, and the processing per-

formed on the information received. In SpiNNaker, the user interacts with the

system and the application with the help of a PC connected to the SpiNNaker

system, called the “Host PC”. The Host PC communicates with the system

through Ethernet links connecting one or a few chips on the system as shown

in Figure 4.1 (a). The SpiNNaker system may comprise varying numbers of

SpiNNaker-CMPs interconnected via their six bidirectional links as shown in the

Figure 4.1 (b) to form a toroidal mesh. The SpiNNaker-CMP (Figure 4.1 (c))

contains a router to join the external links and to connect the 20 on-board pro-

cessing nodes with the help of an asynchronous packet-switching network. Each

processing node (Figure 4.1 (d) is itself an independently functional unit with its

own resources to support neural computation. Along with the processing nodes,

each CMP contains chip-level shared resources such as memory. A detailed de-

scription of these components is given in the succeeding paragraphs. The system

is divided into three levels of hierarchy: at system-level SpiNNaker behaves like

a cluster of PCs, at CMP-level it is a multicore PC along with memory and net-

working resources, while at the processing-node level it is like a PC less its mass

memory and networking infrastructure. The succeeding sections give a bottom-up

description of the SpiNNaker computing system at various levels.

4.3.1 SpiNNaker Processing Node

The SpiNNaker computing system uses low-power embedded ARM processors to

execute neural processing code. We have chosen ARM968E-S from the ARM9E

family for its high instruction throughput, low power consumption and small

area [Ltd08a]. Each processing node (Figure 4.2) is formed around the ARM968E-

S processing core with its dedicated Tightly Coupled Memories (TCMs) compris-

ing a 32-Kbyte instruction memory and a 64-Kbyte data memory. Running at 200

MHz, the ARM968 can model over 1000 simple spiking neurons in real time, using

models such as that of Izhikevich. The processor’s private memory is sufficient

to contain both code and neural state data for over 1000 simple spiking neurons.

To support the neural processing, each ARM core is provided with supporting

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 64

32KB

ITCM

DTCM

64KB

CpuClk

(~200MHz)

Clock

Buf/Gen
AXIClk

DMAClk

AHBClk

ARMClk

CCClk

Timer / Counter

Controller

Interrupt

Communications

Controller

ARM968E−S

AHB−Lite M

Controller

System NoC

Comms NoC

CHAIN Gateway

DMA

AHB M AHB S

AHB S

AHB2

AHB S

IRQ

TClk

ARM IRQ/FIQ

ARMClk

AHBClk

AXIClk

DMAClk

CCClk

AXI Master

JTAG

AHB1AHBClk

AHBClk

AHBClk

Figure 4.2: SpiNNaker Processing Node [Pro07].

peripherals including a Timer, an Interrupt Controller, a Communication Con-

troller and a DMA Controller connected via an AMBA High-performance Bus

(AHB). The Timer notifies the processor each millisecond to help perform the

neural processing in real-time. We use the ARM Vector Interrupt Controller

(VIC) which provides 16 vectored interrupts so that the processor can directly

read the address of the related interrupt handling code from the VIC’s vector ad-

dress register. This reduces the execution time required to handle the interrupts

and improves performance. The Communication Controller communicates with

the asynchronous Network-on-Chip (NoC) connecting the processing nodes. It

helps form packets before sending these to the other processors and decomposes

them on arrival. The DMA controller provides a bridge to access the chip’s re-

sources over its asynchronous NoC. The DMA efficiently transfers data to/from

the local memory from/to the chip shared memory while the processor is busy in

its computation.

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 65

4.3.2 SpiNNaker CMP

Each SpiNNaker CMP (Figure 4.3) may contain up to 20 processing nodes each

of which may implement a neural process to simulate a fascicle (a group of neu-

rons with associated inputs) of spiking neurons. Each chip is provided with

additional resources such as the System RAM, Boot ROM, System Controller,

Ethernet Controller and a Multicast Router (MCRouter). These components are

connected to the processing cores via an asynchronous Network-on-Chip (NoC)

called the System NoC. The System Controller is a collection of important con-

trol registers used for chip-level configuration and management. It maintains

the state of all chip resources. The Ethernet Controller can connect any chip to

the Host PC while the MCRouter routes packets among processing nodes on the

same or on other connected chips using another asynchronous network called the

Communication NoC.

The processors have sufficient local memory to hold the neural dynamics code

and the neural state information. However, this memory is inadequate for the

synaptic information related to the simulated neurons. If 4 bytes are used to

represent the information for each synapse (i.e. the weight and axonal conduc-

tance delay associated with that synapse), we require a minimum of (1000x1000x4

bytes) 4-Mbyte for each processor and hence a minimum of 80-Mbyte is required

for the CMP with 20 on-board processors. To satisfy this, an off-chip SDRAM of

1-Gbit is provided to the synaptic information. The SDRAM is shared among the

20 processing cores and transfers information from/to the processors’ TCMs as

required, using the DMA Controller. SDRAM has been kept off-chip to support

future upgrading of memory to a larger size. The SDRAM is connected to the pro-

cessing cores through the DMA Controller via the System NoC which servers as a

high-bandwidth shared medium among the 20 processing cores [RYKF08]. Both

the NoCs are based on Silistix Ltd’s CHAIN (CHip Area Interconnect) technology

developed at the University of Manchester [PFT+07] and provide a bandwidth of

1-Gbit/s at a much reduced power consumption; such a throughput is not possible

with most typical bus architectures. Each chip has six bidirectional asynchronous

links to connect the on-chip MCRouter with those on six neighbouring chips.

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 66

2Gb/s

Comms NoC
(Input) (Output)

Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

PL340 SDRAM I/F

1GB DDR SDRAM

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

ROM

System System

Ctlr
Ethernet

Ether MII

System

RAM

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG

Debug

10MHzTestReset
IRQ

Router

control

Decode

Packet Routing Output

Engine Select

I/O Port

AXI Slave AXI Slave AXI SlaveAXI SlaveAXI Slave

Packet Router

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlr

AXI Slave

CommCtlr

Input

Links

Output

Links

AXI Master

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClk

Figure 4.3: SpiNNaker CMP [Pro07].

4.3.3 Inter-Neuron Communication

Neurons communicate by sending spikes (action potentials) to each other. In

spiking neural networks the only information a spike carries is the time of its firing

and its source (the neuron it comes from). While the neurons are simulated on

the processing nodes, the inter-neuron spike transmission between the processing

nodes is supported as small (40- or 72-bits) packets over an asynchronous packet-

switching network called “Communication Network” (Figure 4.4) connecting the

on-chip processing nodes with the on-chip router, and then directly connecting

the chips together through their six links. The hub of this network in each chip

is a specially-designed on-chip router (the MCRouter) that routes the packets

(spikes) to 20 internal outputs corresponding to on-chip processing nodes and to

the 6 outward links connecting to other chips. The MCRouter can multicast a

packet to any combination of the internal processors and the external links as a

result of source-based associative routing. The multicast feature of the MCRouter

helps simulate high spike fanout as the neuron’s axons may be connected to

other neurons located in the processing nodes on the same or other chips. The

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 67

CCCCCCCC

Output NoC fabric

S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A

A−>S A−>S A−>S A−>S

TX TXTX TX TX TX

INTER−CHIP LINKS ON−CHIP PROCESSORS

RX RXRX RX RX RX CC CC CC CC

Input NoC fabric

A−>S

S−>A S−>A S−>AS−>A

INTER−CHIP LINKS ON−CHIP PROCESSORS

BUFBUFBUFBUF BUFBUF BUFBUFBUFBUF

ROUTER

1
0

0
 M

H
z

2
0

0
 M

H
z

1
0

0
 M

H
z

Figure 4.4: Spike Communication Network [PBF+08]

packets from six neighbouring chips and 20 on-chip processing nodes are serialized

by the on-chip part of the Communication Network before passing these to the

MCRouter. A system of any desired scale can then be formed by linking chips to

each other with the help of their six bidirectional links, continuing this process

until the system wraps around to form a toroidal mesh of interconnected chips

as shown in Figure 4.10.

The Communication Network supports three types of packet: Multicast (MC),

Point-to-Point (P2P) and Nearest-Neighbour (NN). MC packets are used to sup-

port spike communication among the neurons in each processing core, P2P and

NN packets are used mainly for system management and diagnostic/configura-

tion purposes. Figure 4.5 shows the composition of these packets. Each packet

contains a 32-bit routing key which provides information to the MCRouter. The

routing key is a 32-bit source address in the case of a MC packet, 16-bit source

and 16-bit destination addresses in the case of a P2P packet, and a 32-bit instruc-

tion or memory address in case of an NN packet. The packet also contains an

8-bit control field to specify the type of packet, certain control fields to support

the router in packet handling, and a parity bit for error detection during packet

transmission. Besides this, a packet may contain an optional 32-bit payload to

transfer data. The MC and P2P packets are routed with the help of routing

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 68

Figure 4.5: Packet Format [Pro07].

tables which require configuring before use, while the NN packet routing is hard-

wired into the router and thus does not require any configuration. For multicast

neural communication, the MCRouter contains 1-K words of associative mem-

ory as a look-up table to find a multicast route associated with the incoming

packet’s routing key. P2P packets are routed using destination chip-address with

the help of a routing table with 64-K routing entries in each router, and is used by

the monitor processors for system-level management. The MC and P2P packets

contain a timestamp in their control. The MCRouter maintains a record of the

timephase which is inserted in all the locally generated packets and is used to

delete off-chip packets arriving from other chips that are two phases old. This

feature helps remove free wandering invalid packets from the network [Pro07].

The MCRouter is an efficient hardware component which can route one packet

per cycle at 200 MHz with the help of its six stage pipeline, multicasting it

simultaneously to a subset of its 26 outputs (20 on-chip processors and 6 out-going

links). The Communication Network supports a bandwidth of up to 8-Gbps per

chip [PFT+07]. The following are some of the main features of the SpiNNaker

inter-processor Communication Network:

• Default Routing: If no match is found, the router passes the packet to the

link diagonally opposite to the incoming one. This process is called ‘default

routing’ (Figure 4.6) and it helps to reduce the number of entries in the look-

up table as with this technique we only require router entries at the source,

destination, and on those chips where the packet needs to change direction.

The global packet-switching network to support spike communication has

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 69

O

D

I D T

Figure 4.6: Multicast Routing – Default Routing.

Figure 4.7: Multicast Routing – Masking the Bits.

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 70

Figure 4.8: Multicast Routing – Emergency Routing.

been hierarchically organized to keep the address space to a manageable

scale. On the global network, only chip addresses are visible. Each chip

maintains a chip-level private subnet of 20 processing nodes which is visible

only to the local router, while an individual neuron’s identifier is local to the

processing node. With this scheme we can keep the global address space to

a limited number of entries in the routing tables. The router masks the bits

containing the individual neuron identifier to look up only against the chip

address and fascicle identifier as shown in Figure 4.7. The fascicle identifier

is included in this lookup to identify packets destined for the local chip.

This way, for a fascicle size of 256 neurons we can mask 8 bits carrying the

neuron’s identifier and thus can reduce the number of entries in the routing

table to 64 instead of 16,384 (= 214) with a source identifier of 14 bits as

shown in Figure 4.7.

• Emergency Routing: To deal with transient congestion at the outer links,

a packet can be routed to its adjacent link as a measure of “emergency rout-

ing” as shown in Figure 4.8. The neighbouring chip’s router then returns

the packet to its correct path.

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 71

Figure 4.9: NN Packet Routing (a) To a particular neighbour (b) Broadcast to
all six neighbours (c) Peak and poke.

• NN Packet Routing: The NN type of packet is used for system config-

uration and diagnostic purposes. The packet can only travel among the

nearest neighbours and does not require any configuration at the router.

The SpiNNaker CMP can send an NN packet to any particular neigh-

bour (Figure 4.9(a)) or to all the six neighbours at one time (NN broad-

cast)(Figure 4.9(b)). The NN packet can also be used by a chip to read

from the chip resources of any of its six neighbouring chips or to write to

any of its writeable location (peak and poke)(Figure 4.9(c)).

4.3.4 System-level Behaviour

The SpiNNaker computing system is connected to the Host PC by linking any

one (or more) chip(s) through an on-chip Ethernet link as shown in Figure 4.10.

Each chip is provided with an Ethernet Interface which can be connected to

the Host PC with the help of a Physical Layer Module (PHY). However, in

the presence of an existing efficient inter-chip network, only one chip or a few

of these are connected to the Host PC and the Communication Network can

be used for communication between chips. SpiNNaker has been designed as a

“Universal Spiking Neural Network Architecture” to support a variety of neural

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 72

Figure 4.10: SpiNNaker System - a conceptual view.

network models. To this end, no neural dynamics model has been preloaded

during manufacture. The system is designed to be configured for the required

neural application at run-time. The Host PC provides the SpiNNaker system’s

interaction with the outside world and the same can be used for passing stimuli

and responses to the application at run-time. The Host PC is also intended to

support system debugging and to provide user-level interaction with the system

or the application running on the SpiNNaker system.

4.4 Main Features

The following are the main feature of the SpiNNaker massively-parallel computing

system:

1. Parallel Distributed Processing. SpiNNaker provides real-time paral-

lelism where a neural process simulating a number of neurons runs indepen-

dently in a separate application (fascicle) processor. As each process has a

separate image in the processor’s TCM, we can run heterogeneous neural

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 73

dynamics models concurrently on various processing nodes. This is an im-

portant feature which allows the simulation of heterogeneous neural models

in the context of a large neural network application with many types of neu-

rons performing various types of functions concurrently. Various jobs can

be distributed among the on-board processors in the SpiNNaker CMP, such

as a processor running an operating system to manage the chip resources

and communicate with the Host PC for system level managerial jobs while

a group of other processors are simulating neural dynamics to update the

neurons’ state. Yet another processor may be looking after the adaptive

connectivity as a result of Hebbian-learning performed by the application

processors.

2. Dynamically Configurable Network. The spike communication net-

work is organised for inter-neuron connectivity by configuring the routing

tables at run time. Thus, the Communication Network is very flexible and

can support any type of connectivity in a neural network. Any neuron in

any processing core can communicate with any other neuron in the system

with a few micro seconds transmission delay over the Communication Net-

work. This feature allows neurons to be placed virtually anywhere in the

system, though physically co-located in the nervous system. We propose

the co-location of neurons to form fascicles (a group of neurons with re-

lated inputs) on the same processing core or on the same chip (in case of

large size fascicles) to reduce network congestion [KLP+08]. The toroidal

form of the network provides multiple paths between any two neurons, and

the routing tables can be configured for the optimal path (with respect to

time or distance as the two may be different due to traffic conditions). The

routing tables can be reconfigured at run-time by one of the processors as

a result of learning or to handle congestion. The ability to reconfigure the

network at run-time helps fault-tolerance at the system-level.

3. Large Distributed Memory. The chip has three levels of memory: fast

local memory with each processing core, on-chip shared System RAM, and

an off-chip relatively large (1-Gbit) SDRAM. The processing core’s local

memory is used for critical data such as the neural dynamics code and neural

state data for the 1000 simulated neurons. Each processor has sufficient

local instruction memory (32-Kbyte) to hold real-time application code such

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 74

as the Interrupt Service Routines and the neural dynamics code, while the

data memory (64-KB) is sufficient to hold the neural state information

and a lookup table to point to the relevant synaptic data from SDRAM

as and when required. Off-chip SDRAM is used to hold data not required

urgently, such as the synaptic data for the 20,000 neurons being simulated

on a chip which is only required selectively when a neuron receives a spike.

The on-chip System RAM is relatively faster than the SDRAM and is used

mainly for inter-processor message passing and by one of the processors for

the chip-level management, such as keeping recovery routines, chip status,

chip-level global variables, and an image of the microkernal (if used). The

DMA controller in each processing node localizes the view of the data in

the SDRAM by seamlessly transferring data in and out of the local memory

on demand.

4. Connectivity to the Outside World. The system can communicate

with the outside world by connecting its chip to the Host PC using on-chip

Ethernet interface. This link can be used to give a system-wide view to the

user on the Host PC and is intended to be used for the system configuration

and loading the neural application into the system at run-time. It can also

be used to communicate with the application at run-time. Run-time system-

level management and fault-handling can also be performed with the help

of this link.

5. Scalability. The SpiNNaker computing system has been implemented as

CMPs. This allows a system of the desired throughput to be built with up

to 64xK chips. Even a system with only one SpiNNaker-CMP can func-

tion independently to simulate a population of up to 20,000 neurons with

their connectivity defined in the MCRouter which can route packets among

the on-chip processors. PCBs with varying numbers of SpiNNaker CMPs

(16x16, 32x32 etc.) can be made available to assemble computing systems

of the desired scale.

6. Low Power. The SpiNNaker-CMP uses the processing cores from the

“smallest and lowest power” ARM9E family [Ltd08a]. The processing nodes

are designed specifically for running a neural simulation as an embedded

real-time application. The ARM968E-S is chosen for its efficient and suffi-

cient TCM to run a neural simulation for a group of spiking neurons. The

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 75

processor has efficient low latency bus interfaces (an AHB-Lite master- and

slave-interface) for the DMA to reduce power consumption and improve

responsiveness [Ltd08a]. The processor has dual-banked TCM data mem-

ory providing full bandwidth access by the core and DMA. The SpiNNaker

standard application model, explained in Section 4.5, also helps to preserve

energy by keeping the processor in a sleep state whenever there is no useful

work to be done.

7. Fault-tolerance. The SpiNNaker hardware supports error detection for

several types of chip-component faults, and fault handling through config-

uration and management software. The SpiNNaker system provides redun-

dant resources at each level of its design to support fault-tolerance. The

SpiNNaker fault-tolerance features will be discussed later in Chapter 8.

4.5 The SpiNNaker Application Model

The SpiNNaker CMP system has been designed to support spiking neuron simula-

tions in real time. One of the ways in which spiking neuron models are considered

different from typical rate-coded models is in their temporal behaviour [Me98].

This means that the model simulating a neuron has to exhibit temporal proper-

ties very close to those of a biological neuron. As explained in Chapter 2, neu-

rons can be considered as event-sensitive cells which keep changing their state,

i.e. their membrane potential, over their life span; this activity is in millisec-

ond domain [Tho00, Tra02, Me98]. Each neuron can receive input spikes on

its dendrites (in the order of 1000) and send an output spike through its axon

(to multiple dendrites of other neurons). These input and output events cause

the neuron state (the membrane potential) to change on a millisecond time-scale.

From a real-time neural modelling point of view, the modelled neurons should dis-

play accurate neural state at a millisecond granularity with correct input/output

spike activity. This model is quite different from a typical Multi-layer Perception

(MLP) rate-coded neural network simulation model [Roh99], where all neurons

in the network update themselves on synchronized ‘ticks’ of a clock which does

not follow any real-time temporal logic.

In SpiNNaker a fascicle (group) of neurons is simulated by a neural process

running on an ARM968 processing core. This process is responsible for updating

each neuron’s state at 1 millisecond intervals based on the mathematical model

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 76

employed to exhibit neural dynamics for the simulated neurons. This process

is also responsible for accumulating the stimuli (synaptic weights) on receipt of

spikes during each update interval. Spike transmission is realized with the help of

multicast packets over the Communication Network. The ‘spike-received’ event is

initiated by incoming packets to a processing node. The neural process identifies

the target neuron(s) in its fascicle with the help of the source Identifier (ID)

received as part of the routing key. Each processor maintains a connectivity

lookup table for this purpose. For each target neuron, the process adds the

synaptic weight associated with the synapse between the source and target neuron

to the accumulated stimulus for the target neuron during that update interval.

We abstract the analogue behaviour of a neuron by continuously updating its state

with millisecond granularity as a function of the accumulated stimulus received

for the duration of the last millisecond. As a result of this update, some neurons’

state may warrant firing a spike. A spike is sent as an MC packet containing a

routing key composed of the source ID of the spiking neuron, the fascicle ID and

chip-address. The routing tables in each chip are configured to map the simulated

neural network’s inter-neuron connectivity onto the SpiNNaker hardware. The

MCRouter in each chip directs the spike packets to the destination neurons on

either the local processing nodes or in the direction of the chip(s) containing those

neurons.

In biological neural networks, spike transmission is characterised by axonal

delays of some milliseconds (1 ms to 40 ms [Tho00]) as the spike travels with

a maximum speed not more than a few metres per second. However, the spike-

packets in the SpiNNaker system travel at electronic speed taking a few mi-

croseconds. For realistic temporal behaviour, we need to present the spikes to

the neurons only at their exact real time i.e. a spike received now should be de-

layed by its associated axonal delay before being accumulated into the neuron’s

stimulus [RKJ+09]. We maintain time-based bins for each neuron to accumulate

stimuli until this projected update time [JFW08] as shown in Figure 4.11. The

axonal delay is stored along with the synaptic weight associated with each con-

nection in the SDRAM, while the lookup table that points to this information

is maintained in the data TCM. On receipt of a spike, the neural process looks

up the corresponding connection information against the routing key (the source

neuron’s ID) in the received packet. On receipt of this information, the synaptic

weight is accumulated into each connected neuron’s stimulus bin corresponding

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 77

Figure 4.11: SpiNNaker Standard Application Model - Stimulus Update Process
on Receipt of a Spike.

to the axonal delay on that connection [JFW08].

As explained in Section 4.3.2, synaptic information is stored in the SDRAM.

With this separation of data from the processing core, on the receipt of a spike the

neural process must retrieve relevant synaptic information into the local mem-

ory before accumulating the synaptic weight into the projected stimulus bin as

shown in Figure 4.11. As fetching relevant data from SDRAM introduces a de-

lay during which the processor may receive more spikes, the job of fetching data

from SDRAM is assigned to the DMA Controller. The data retrieval time is still

insignificant relative to the axonal delay and does not incur too much overhead

to update the state of all simulated neurons. Completion of data retrieval is in-

dicated to the processor with a ‘DMA-completion’ event, upon which the neural

process adds the weight to the relevant stimulus bin in the local memory as shown

in Figure 4.11.

This process continues in real-time to maintain an up-to-date neural state of

every neuron in the simulated neural network. As the neurons do not fire more

than once in a millisecond and at any time normally only 0.1-1% of the neurons

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 78

are firing, we expect each processing core to remain idle for a considerable amount

of its simulation time. To conserve energy, we put the processor to sleep during

its idle time.

4.6 Hardware Support

These three events, i.e. the spike-received event, the update-interval (millisecond)

event, and the DMA-completion event govern the functionality of the neural dy-

namics to maintain the neural state for each neuron in the fascicle processor.

The events are signalled by hardware interrupts from the processing node’s pe-

ripherals to its Interrupt Controller. The Communication Controller generates

packet-received (spike) interrupts, the Timer is configured to provide an interrupt

to the Interrupt Controller after every update interval (millisecond), while the

third interrupt is generated by the DMA controller to indicate DMA-completion.

The Vectored Interrupt Controller (VIC) in each processing node can be con-

figured to present the address of the relevant Interrupt Service Routine (ISR)

for each interrupt to the processor. This saves processing time as the processor

does not have to poll to find the source of the interrupt. The VIC can also be

configured to prioritise nested interrupt handling by the processor. The neural

dynamics process is implemented with the help of the ISRs associated with these

interrupts. The ISR for the packet-received interrupt reads the packet from the

Communication Controller, uses the lookup table to find the address in SDRAM

containing the relevant synaptic information, and requests a DMA operation to

fetch the relevant data from the SDRAM. The ISR associated with the DMA-

completion interrupt accumulates the synaptic weights for each connected neuron

in the stimulus bin corresponding to the associated axonal delay. The ISR for

the Timer interrupt calls a function to update the neural states of all neurons

in the fascicle processor. Figure 4.12 shows the standard application model with

the ISRs along with their proposed priorities.

With this application model, we run the whole application with the help

of ISRs in a manner akin to an embedded real-time event-driven application.

This provides an efficient model of execution without the need for a scheduler at

the processing nodes. The application runs under the control of the VIC which

prioritises the scheduling of the ISRs as hardware threads running as part of a

neural process on each application processor. Besides performance, the system

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 79

Figure 4.12: SpiNNaker Evnet-driven Application Model with the Help of ISRs.

conserves energy by putting the processors into the sleep mode after every ISR.

4.7 Development constraints

The following are some of the constraints to be kept in mind while developing an

application for SpiNNaker:

• Memory Usage. As described earlier, the SpiNNaker system has a lot

of memory. However, it is distributed over the whole system. The neural

simulation code is run from the processor’s local instruction memory and

the neuron state data is kept in the local data memory which is very limited

in size (32-Kbyte instruction and 64-Kbyte data TCM). This will impose

a limitation on the choice of spiking neural model, the implementation

technique, or the number of neurons to be simulated in each processor.

This implies that the application developer cannot use the memory without

regard to its size; the critical code and data must be kept within the local

memory limits, while other data is kept outside the local memory. As there

is no hardware memory management unit, scheduler, or paging software in

the application processors, the application developer needs to incorporate

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 80

these features in his code if he wishes to use the external memory for his

application. A large application can be run from the SDRAM, but the

performance may not meet the real-time requirement.

• Routing Table Size. There are only 1000 (32-bit) entries in the multi-

cast routing table. The neural connectivity in the nervous system is based

on locality and grouping; most connections are to neurons in close vicinity

and neurons are grouped with related inputs [EMIE04]. The number of

table entries seems insufficient. However, if we configure the system intelli-

gently [KLP+08], these entries are sufficient to simulate a large-scale spiking

neural network. We propose grouping neurons with related inputs in the

same processor to require very few entries in the routing tables. Besides

this, if we use the multicast feature of the router to send a packet towards

many output ports at the same time, many routes can be combined to utilise

only one routing entry. As a guide a router should have an entry for the

packets originating that chip, destined to that chip, or changing direction

in this chip en route. Other packets take the default route as explained

in Section 4.3.3. It is important that the application is configured metic-

ulously for optimal neural mapping to keep the router entries within the

limit.

• Efficient Code. To simulate the behaviour of a real-time neural network,

the neural process in each processor needs to update the neurons’ state in

each millisecond. During this time, the processor may receive a number of

spikes along with other interrupts such as DMA completion, shared memory

message passing or error detection interrupts from its peripherals. Neural

simulation functions are performed by ISRs, which prohibit any lower pri-

ority interrupts during their execution. To meet update interval bounds of

1 millisecond and to enable the processor to process all interrupts, these

functions must be coded efficiently or a delayed response to an important

interrupt may have unwanted effects on the overall application.

• Synaptic Mapping. An SDRAM of up to 1-Gbit has been provided with

each SpiNNaker-CMP to hold the synaptic information associated with each

dendritic link to the on-chip neurons. Approximately 4 bytes are required

to hold the synaptic weight and axonal delay with the index of the neuron

in the chip. If a spike is targeted to all (1000) simulated neurons, we need

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 81

to bring in 4-Kbytes of data from the SDRAM on each spike receipt and

then accumulate the stimuli for all the neurons before the next millisecond

interrupt. As all 20 on-chip processors are performing the same kind of

activity, the SDRAM access may slow down the process. An efficient scheme

is required to make the process efficient. One such technique is to divide the

SDRAM into 20 segments, one for each processor, to minimise contention

for data access. Similarly, creating a lookup table in the data TCM can

reduce the time required to bring the data into the local memory.

• Debugging Support. SpiNNaker application developers and users will

wish to see simulation results in some readable form for comparison with

expected results. Unlike a normal PC application, the debugging and diag-

nostics of a large-scale massively-parallel computing system running a real-

time application are not simple. In a real-time system the state changes

continuously, whereas for diagnostic/debugging purposes we need to have

a stable application state at some point in time. This is difficult to achieve

in a continuously running system.

• Synchronization. The system as a whole is distributed with no centralized

clock. However, for system-wide behaviour we need a synchronized notion

of time for certain application requirements such as stimulus and response,

passing application state, or timestamping the application state. This is

a difficult problem to handle and can only be done by defining an accept-

able time skew, such as a few microseconds, with the help of synchronizing

broadcast packets. The application developer needs to keep this constraint

in mind, or devise some way to achieve application-level synchronization

with the help of packets.

• Event-Based Model. Any type of neural network, from a typical rate-

coded MLP to a biologically-inspired spiking neural model, can be im-

plemented on the SpiNNaker computing system. However, the hardware

has been designed specifically to support an even-driven application model.

There are many ways a neural application can be implemented on SpiN-

Naker, however, for efficient use of the hardware and to gain maximum

performance, we propose using the SpiNNaker application model for appli-

cation development (as explained in Section 4.5).

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 82

4.8 User Expectations

The majority of researchers working with neural network applications still use

rate-coded MLP neural networks. In the World Congress on Computer Intel-

ligence (WCCI2008), of over 1600 papers presented on neural simulations or

applications, only a few used spiking neural networks (mostly using primitive

Integrate-and-Fire spiking neuron model). This reflects the amount of work be-

ing done in the area of MLP neural networks. Spiking neural networks are not

yet a well-explored area of research and transforming the work done with MLPs

to spiking neurons is not an easy task. From another viewpoint, neuroscientists

may not be happy with computer scientists’ levels of abstraction, which may ob-

scure “minor” details “vital” to them such as the ion channels, ion concentration,

dendritic compartments potentiation, and slow chemical messaging etc. Another

problem is the effort required to map an existing spiking neural network onto

SpiNNaker or change the already-developed applications to conform to the SpiN-

Naker application model. Some concerns which emerged during discussions with

the potential users are summarised here:

• Researchers wishing to carry on working with MLP neural networks, such

as those from psychology and artificial intelligence, might want to use SpiN-

Naker for its high computational power to run large-scale neural network

applications. However, they won’t wish to change their applications to

conform to the spiking neural network models. This requires altering the

SpiNNaker application model to suit rate-coded neural networks. It poses a

challenge for the system engineers and application developers in the SpiN-

Naker project to tailor the SpiNNaker execution model to support sigmoid

neural networks or to run these applications as event-driven applications

without the notion of real time.

• Some neuroscientists may wish to simulate very detailed models of spiking

neurons to visualise the effects of some organic or chemical factors on the

neuron’s behaviour. A detailed neural model such as a refined form of the

Hodgkin and Huxley model would be their choice, with inherent compu-

tational cost. Such models can be implemented on SpiNNaker at a much

reduced scale. Conversely, a class of researchers in computer science may

wish to have a large-scale neural simulation to visualise the behaviour of a

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 83

large-scale neural population using very simple (Integrate-and-Fire) mod-

els. It is a challenge for the SpiNNaker system team to meet such a variety

of researchers’ demands.

• Developers of neural network applications on a PC or PC cluster may be

concerned about the low-level details of the SpiNNaker computing system.

The development constraints explained in Section 4.7 imply that the devel-

opers must write their code at a device-level using the ARM instructions

set, optimised for speed and memory size. Developers familiar with high-

level compilers and MPI over advanced operating systems which abstract

the architectural details and give a single PC view of a cluster, may wish

to have the same level of abstraction for the SpiNNaker system. They may

wish to have a Hardware Abstraction Layer (HAL) to insulate them from

the architectural intricacies of the SpiNNaker computing system and an

API with low-level functions to automatically transform their applications

written for a single PC or a PC cluster to the SpiNNaker architecture.

They may also wish to have a user-friendly interface at the Host PC to

help configure their applications for SpiNNaker, debug the application, and

interactively communicate with it at run-time to obtain meaningful results.

4.9 Summary

The SpiNNaker massively-parallel computing system has been designed specifi-

cally to provide a high-performance and fault-tolerant hardware simulation engine

for simulating large-scale neural networks in real-time. The system is built around

CMP technology using simple low-power embedded processing cores along with

the use of an asynchronous NoC to conserve energy and minimise heat dissipa-

tion. It is a scalable architecture where the CMPs can be connected together

to form a system of the desired throughput over an efficient asynchronous in-

terconnect. The system supports parallel distributed computing to enable the

running of large applications with special emphasis on fault-tolerance. The stan-

dard application model proposes running an application as a real-time embedded

application consuming low power. In this model, all processors remain in a sleep

mode unless woken up by some event. The event-driven application is based on

the ISRs called as a result of interrupts from the interrupt controller. The whole

application is run through the ISRs which are responsible for performing specific

CHAPTER 4. THE SPINNAKER COMPUTING SYSTEM 84

jobs before forcing the processor to sleep again. For an efficient application to

simulate a real-time behaviour, an application developer needs to make use of the

design features of the SpiNNaker computing system to obtain maximum use of

its ASIC design. The design also poses some challenges to the SpiNNaker team

to satisfy potential users already working with the MLP neural networks who

wish to use SpiNNaker for running MLP applications with better performance.

We need to provide them with some hardware abstraction layer to enable them

to transform their current applications for running on the SpiNNaker computing

system.

Chapter 5

System-Level Simulation

5.1 Introduction

Hardware components can be designed, synthesised and tested with the help

of commercially available Computer Aided Design (CAD) tools, which can ex-

actly simulate their behaviour in the design phase. However, component-level

simulation may fail to exhibit a holistic view of a complete computing system’s

functionality. A system-level simulation models an entire system and is able to

simulate application-level functionality. It can help in developing and testing ap-

plications for a hardware platform while the system is still in its design phase.

These models provide a reasonably accurate picture of the system in terms of

their functionality and performance. Besides this, software simulation of a full

hardware system before its fabrication helps in studying architectural tradeoffs.

This is especially true in the case of a System-on-Chip (SoC) which consists of

many independently functional components including Intellectual Property (IP)

modules. These systems are hard to build and debug, and require a rigorous sys-

tematic approach to design as debugging by trial and error can not be afforded

in hardware manufacturing [Fur05]. Software modelling techniques must to be

employed to verify an architecture for functional correctness during its design

phase.

As part of this research, a complete system simulation of a multi-CMP SpiN-

Naker system has been developed for design verification and application devel-

opment/testing. We adopted the SystemC Transaction Level Modelling (TLM)

technique to model the SpiNNaker CMP with all its architectural details. In

85

CHAPTER 5. SYSTEM-LEVEL SIMULATION 86

TLM-based modelling we are not concerned with the accuracy at signal and reg-

ister level but concentrate on an accurate behaviour at a broad functional level,

simulating inter-component communication as atomic transactions. We can sim-

ulate a complete system at various levels of abstraction to achieve simulation

performance depending on the level of detail required.

This chapter covers our motivation for creating a system-level model of the

SpiNNaker computing system. The available choices for simulating a System-

on-Chip (SoC) are discussed i.e. high-level (transaction-level) modelling vs. a

typical Register Transfer Level (RTL) simulation. An overview of the SystemC

TLM technique as a choice for high-level simulation is analysed. To conclude, we

describe the verification performed to validate the model itself and its abilities to

simulate an accurate behaviour at chip- and system-level, and the experiments

performed with the help of this simulation to verify the design objectives of the

SpiNNaker computing system.

5.2 Simulating a Complete Computing System

A complete system simulation captures an entire computing system at its full

instruction set architecture level, allowing it to run intended applications unal-

tered [AM00], while providing an accurate timing model. These simulations allow

the development and testing of target applications while the actual hardware is

still in the design phase. As these simulations are software-based, they are fully

deterministic in behaviour and can be tailored for specific uses, and allow a test-

bench to be attached for analysis without interfering with the actual system’s

functionality. A system-level simulation also facilitate the temporal debugging

of an entire target system along with its target application as a single package.

This is important if the hardware is being designed for a specific application and

we want to verify the design for its intended objectives. These simulations are

especially helpful for testing real-time applications as the application and the un-

derlying hardware can reliably be debugged simultaneously for real-time analysis.

As the model is functionally identical to a real system the application can be run

unmodified, limiting the sources of error to those introduced by the hardware.

Besides functional correctness, a system-level model is usually reliable in pre-

dicting execution time at the desired temporal resolution. However, high-fidelity

temporal accuracy jeopardizes simulation speed, so for the simulation of a large

CHAPTER 5. SYSTEM-LEVEL SIMULATION 87

computing system running a complex application, we need to trade temporal ac-

curacy for speed by approximating low-level details. The degree of approximation

depends on the simulation objectives [AM00].

5.2.1 Related Work

In the past, there has been a little research on complete system-level simulation

for a multiprocessor computing system. Mostly, commercially-available simula-

tors are used to test the functionality of an SoC-based hardware design. One such

example is SimOS [Ros95, Her96], which originated as a PhD research project

but was commercialized later to facilitate application testing. The simulator

supports a number of commercially-available processors, memory blocks, con-

trollers, DMA and other active and passive components. Initially designed to

work as a single processor simulator, it was later upgraded to support multi-core

parallel computing systems to a certain scale. However, the system does not sup-

port the simulation a very large-scale computing system (such as SpiNNaker),

as the performance goes down (at least linearly) as we increase the number of

processors [Her96]. The model is also not suitable for a distributed computing

architecture (such as the one proposed for SpiNNaker), as all the processing cores

use a single application image. Moreover, as SimOS has been designed to support

most commonly-available commercial architectures, customizing it to conform to

non-compatible changes requires a substantial implementation effort.

Two similar system-modelling tools are Augmint [AS96] and SimpleScalar [BA97].

Both simulators support multiprocessor systems based on the x86 architecture.

These, however, are not complete computing system simulations and are pri-

marily used for examining the functionality of one particular set of components

at a time [ea03]. The complete system simulation for temporal debugging of

general-purpose operating systems and workloads by Albertsson et al. [AM00] is

another example of a complete system simulation based on the Simics simula-

tor from Virtutech [Ltd08b]. They developed their own models for the compo-

nents not available in the Virtutech Model Library and developed an interface

to support temporal debugging of the application along with the hardware sys-

tem. Simics [Ltd08b] supports multi-core simulations with a variety of processing

cores and other peripherals. It is a very sophisticated tool with a graphical user-

interface and application development/debugging tools to support a full-scale SoC

hardware-software co-design at TLM level. However, it is a proprietary simulator

CHAPTER 5. SYSTEM-LEVEL SIMULATION 88

and requires licences for the components being used from its library.

IBM created a full-scale system simulation, BGLSim, for its Blue Gene/L com-

puting system, acquiring many functionality features from SimOS to add to their

already-available multiprocessor simulator called Mambo [ea03]. The simulation

was run on a Linux cluster to simulate a complete massively-parallel computing

system. A Linux kernel image was loaded into the IBM PPC processors’ models

to support running applications. A number of applications were run for collecting

performance statistics, debugging new applications and validating design choices

before building the actual hardware [ABBea03]. However, the model is propri-

etary to IBM, models IBM-based architectures, and uses proprietary libraries to

implement the system.

5.2.2 SpiNNaker Complete System Model

SpiNNaker is a fully-distributed computing system with three levels of functional

hierarchy. At the lowest-level, ARM processing cores along with their peripherals

form independently functional processing nodes. At an intermediate-level, 20

such nodes are interconnected via an asynchronous Network-on-Chip (NoC) along

with other chip components such as MCRouter, System RAM, ROM, SDRAM,

Ethernet Controller etc. in the form of the SpiNNaker CMP. At the highest level,

multiple SpiNNaker CMPs are connected using an asynchronous interconnect to

form the SpiNNaker computing system. As the nodes at each hierarchical level

are independent functional units which interact by sending and receiving packets

over an asynchronous communication infrastructure, the system at one level up

in hierarchy may generate a holistic behaviour quite different from its underlying

components. The spike communication, for example, cannot be simulated with

a single processing node. Similarly, the application loading mechanism is quite

different in a multi-CMP system from one with a single chip connected to the

Host PC. The former requires the transmission of the application received from

the Host PC as Ethernet frames to the other chips using small packets on the

asynchronous packet-based interconnect, while the latter receives these for its

own use only and is quickly ready for execution. A neural simulation on a multi-

CMP system requires more configuration than a single CMP application. For

these reasons, a complete system-level simulation for the SpiNNaker computing

system was considered important to understand and verify the system behaviour

with single and multiple chips.

CHAPTER 5. SYSTEM-LEVEL SIMULATION 89

Figure 5.1: Classic Hardware Design Flow [Ghe05].

5.3 System-level Simulation Options

Hardware Description Languages (HDL), such as Verilog and VHDL, are useful

for implementing specifications and evaluating various architectural trade-offs

during the hardware design phase. These are an important tool for simulating

component behaviour at Register-Transfer Level (RTL). Once a component has

been simulated correctly, the code can be synthesized using physical libraries.

However, these languages are not suitable for modelling large-scale systems as

the high-fidelity component details become a performance bottleneck. Another

disadvantage of using an HDL is its inability to simulate a model at various

levels of abstraction as required in the initial phases of hardware design. A

typical design flow for designing a piece of hardware using an HDL is shown in

Figure 5.1.

High-level languages such as C++ can simulate a complex system architec-

tures, such as an SoC, much faster than its HDL model. For example, booting

Linux takes 30 seconds on a C++ based high-level simulator of an SoC design,

7 hours on a hardware-accelerated VHDL simulator and more than 20 days on

an RTL model with standard VHDL [ABBea03]. With a high-level language, we

CHAPTER 5. SYSTEM-LEVEL SIMULATION 90

can capture various views of the design at various levels of abstraction. How-

ever, a high-level language may not capture an accurate architectural behaviour

for lack of standard hardware related features readily available in the HDL. The

model developed with C++ is of no use at later phases of the design cycle such

as logical and physical compilation. Moreover, in the absence of a standard C++

modelling technique, it is difficult to reuse the component models and share them

among developers. There is a need to have a system-level simulation using higher

languages such as C++, but the modelling practice needs to be standardised to

be shared among developers around the world. Moreover, some standard hard-

ware oriented features may be acquired from the HDL which can then be used as

standard practice by all users with a common backend simulator.

5.4 SystemC Transaction-Level Modelling

A solution to all the issues in the last section, is a blend of HDL constructs

with a high-level language in the form of the SystemC library, which provides

an ability to achieve clear levels of abstraction with high simulation speed. Sys-

temC has introduced Transaction Level Modelling (TLM) at a functional level

of abstraction, which has proved to be the key to the fairly fast acceptance for

this methodology by the hardware industry and the research communities. There

are no proprietary issues affecting a purchase decision for a costly design tool.

SystemC supports modelling hardware and software together at multiple levels

of abstraction [Pan01]. This improves design productivity through a more reli-

able design methodology within a shorter design time-frame to enable software

development earlier in the SoC design flow i.e. hardware/software co-design. The

advantage is an architectural exploration to analyse the potential effects at various

abstraction levels, balancing the trade-offs between speed and accuracy [Ghe05].

TLM has introduced a new SoC design flow as shown in Figure 5.2.

5.5 Advantages of SystemC TLM

Over the last a few years, SystemC TLM has emerged as the most successful

technique for system-level modelling. For SoC design, it has become a standard

for early functional validation due to its reliable methodology which improves de-

sign productivity. The following sections give the main features of SystemC TLM

CHAPTER 5. SYSTEM-LEVEL SIMULATION 91

Figure 5.2: TLM Design Flow [Ghe05].

modelling [Ghe05] which make it a popular choice for system-level modelling.

5.5.1 Levels of Abstraction

In contrast to HDL-based simulation, SystemC TLM supports system simulation

at various levels of abstraction. At the highest level of the design flow, it supports

algorithmic modelling without detailed specification. As this captures only the

design algorithm regardless of the implementation details, an algorithmic model

has the advantage of having high simulation speed. However, at this level there

is no notion of hardware or software components. The TLM Untimed Functional

Model at Programmer’s View (UTF-PV) is an example of such simulation. At

the second level of abstraction, the model can be refined to include architectural

details at a coarse level. The system comprises components communicating at

transaction level without clocks, latency, or recovery time involved. This model,

the Untimed Functional model with Architectural View (UTF-AV), is slower than

the algorithmic model but provides greater detail. A Timed Functional Model at

Cycle Approximation (TF-AV(CX)) and Cycle Accurate (TF-AV(CA)) levels are

comparable with RTL for their timing behaviour and can be used for software

development if an Instruction Set Simulator (ISS) model for the processing core

CHAPTER 5. SYSTEM-LEVEL SIMULATION 92

has been implemented. Even at this level of detail and accuracy, the TLM is

many times faster than the RTL simulation and can be prepared in much less

time than that required for RTL. SystemC also supports RTL modelling at signal

and pin level, however, at the time of writing this thesis, the methodology is not

mature enough to compete with standard HDL-based modelling.

5.5.2 Early Software Development

The most feasible way to develop software for target hardware is with the help

of an HDL emulator or an FPGA prototype. However, the availability of these

models is too close to the end of the hardware development to offer any time

saving. The hardware design issues revealed by software testing at this stage will

be too costly to fix. The TLM SoC platform can be developed on delivery of the

system specifications. The target platform is available for software development

much earlier in the SoC design cycle. Hardware and software development can

start in parallel while the hardware is still in the design stage, the system can

be verified functionally, and the hardware can be improved on the basis of feed-

back from software development. The TLM-based model can also be used as a

“golden model” for verifying the RTL functional model as it is very close to the

specifications.

5.5.3 Architecture Analysis

SystemC TLM offers an opportunity to explore a system’s architecture shortly

after the system specification is complete. An untimed functional model with only

functional delays can be used to study the conceptual feasibility of the system

while the timed TLM can be used for a thorough architectural analysis. A system

optimization or modification can be tested in time- and cost-efficient way. Besides

this, it can help improve design consistency between the hardware and software

teams as both are working with the same functional model.

5.5.4 Functional Verification

TLM is the executable specification of a given design [Ghe05] that captures the

intended behaviour perceived by the system designer. The software tests devel-

oped to evaluate the TLM can also be reused for functional verification of the

CHAPTER 5. SYSTEM-LEVEL SIMULATION 93

RTL model and the two results can be compared. TLM can thus save significant

verification time.

5.5.5 Open Source Industry Standard

Hardware vendors have provided numerous methodologies and tools to support

modelling tasks such as real-time performance estimation, executable specifica-

tion, and hardware software co-simulation. However, they share little in modelling

methodology. With these tools it is usually difficult to move from one abstraction

layer to another due to the lack of any common interface strategy [HLWW02].

With the SystemC TLM IEEE standard [Com06] in place, all Electronic Design

Automation (EDA) companies and Integrated Circuit (IC) suppliers comply with

the same standard while implementing their SystemC class libraries which can

be easily incorporated in all SystemC supported SoC design tools. Over a period

of time, this has become an industry standard to be followed by all the hardware

vendors for system-level modelling. The reference simulator along with standard

TLM class libraries are available as open source public distributions at the Open

SystemC Initiative (OSCI) and are supported by all known computer hardware

vendors. Even the proprietary EDA tools conform to the same standard and a

model designed with the help of the OSCI TLM library can be incorporated in

any EDA tool supporting SystemC.

5.5.6 Real-time Debug Support

As the hardware and software are both simulated as one package in a high-

level language, both can be debugged at the same time to understand real-time

hardware-software interactions. This is important for verifying the design concept

at an early stage of the system design as a feasibility study.

5.6 SpiNNaker System-Level Simulation

For a system-level simulation of the SpiNNaker computing system, we have

adopted the SystemC approach defined by the OSCI TLM principles [Gro02,

Ghe05]. The implementation details of the model are described in the following

sub-sections.

CHAPTER 5. SYSTEM-LEVEL SIMULATION 94

Figure 5.3: SpiNNaker CMP Model - UTF-PV.

5.6.1 SpiNNaker UTF-PV Model

As a first step in the system-level modelling, an Untimed Functional Model with

a Programmers View (UTF-PV) [Joh06] was prepared without any architectural

details (Figure 5.3). The purpose was to depict how a single-chip system will ap-

pear to a programmer at an abstract level. A test-bench was incorporated to test

the functionality at application level. To test the packet-based communication,

on-chip routing functionality was provided to route packets algorithmically at var-

ious ports of the chip connected to the testbench. The purpose was to examine the

functionality of a SpiNNaker Chip-Multiprocessor (CMP) from a programmer’s

perspective focusing on how the on-chip processing nodes communicate with each

other and with the off-chip nodes. Some basic chip-level functions, such as the

support for sending and receiving packets, were visualized from the programmer’s

view and implemented at an abstract level as no architectural details were incor-

porated into the model. The model was based on the design specification from

the initial SpiNNaker datasheet [Pro07]. The model used the channels from the

standard OSCI SystemC library and the OSCI SystemC reference simulator was

used to simulate the SpiNNaker CMP behaviour.

CHAPTER 5. SYSTEM-LEVEL SIMULATION 95

Figure 5.4: SpiNNaker CMP Model with Component-level Architectural Details
- UTF-AV.

5.6.2 SpiNNaker UTF-AV Model

The SpiNNaker algorithmic model was refined in the second stage of its evolution

into an Untimed Functional Model with Architectural View (UTF-AV)(Figure 5.4).

In this stage, the model provided the architectural details as per the device speci-

fications listed in the SpiNNaker datasheet. Complete functionality and architec-

tural details were incorporated in various chip components such as the Commu-

nication Controller, Interrupt Controller, Timer, Router, Communication NoC,

System NoC and memory blocks. The components whose functional specifica-

tion was not cleared at that time, such as the System Controller, the TX/RX

Inter-chip Interface, Watchdog Timer and the Ethernet Controller etc, were not

included in the model. The details were taken from the datasheet before hard-

ware design work had started on any of the components. A dynamic associative

memory model was created to implement huge amount of SpiNNaker memory

on a normal PC with its limited memory. The model used TLM bidirectional

request-response channels from the SystemC TLM library to support the com-

munication on the AMBA High-performance Bus (AHB) and System NoC, while

TLM unidirectional channels were used for the Communication NoC. The model

was then extended to multiple chips with logical connectivity that could be recon-

figured automatically at run-time with the help of parameters in a configuration

CHAPTER 5. SYSTEM-LEVEL SIMULATION 96

file. The model was not fully untimed as we incorporated some estimated func-

tional communication delays to acquire an estimated temporal behaviour of the

application.

We conducted a case study to verify the system-level model in the first place,

and then to understand the behaviour of SpiNNaker multi-chip system under a

potential application workload. Details of this case study are described later.

Based on our analysis some important design decisions were taken to meet new

requirements exposed by the analysis, such as support for a Nearest Neighbour

(NN) packet for diagnostics and debugging, the need for a System Controller with

registers to support chip-level control functions etc. The design of Communication

Controller was improved to include incoming and outgoing packet buffers and a

dedicated register for incoming packets with some new interrupts to support the

intended applications. In the same way, the MCRouter’s Design was changed

to include outgoing packet buffers and an error-handling mechanism. The need

to have an Ethernet Controller on the SpiNNaker CMP to connect the system

to the Host PC was realised and it was felt that the chip’s external packet-

receiving (Rx) interface should add the incoming port number before passing

the packet to the router to assist the router in its routing decision, and then

to pass this information to the processing node for application requirements.

The most important contribution of this model was that it exhibited the multi-

chip behaviour of the SpiNNaker computing system running a message passing

application; this was a feasibility validation for the system design and gave us

future milestones to be achieved with a very clear view of the actual system. At

this point, we also started research into how to configure this system in the most

dynamic way to support a variety of neural applications.

5.6.3 SpiNNaker TF-AV(CX) Model

The SpiNNaker UTF-AV model clarified many aspects of the SpiNNaker comput-

ing system. However, it lacked a real-time communication behaviour for studying

how communication delays would impact the application. An intended applica-

tion was developed with the ARM Instruction Set Simulator (ISS) on the AR-

Mulator from ARM Ltd. [JFW08] which gave us a confidence in the SpiNNaker

standard application model on the processing node. However, this work was con-

fined to only one processing node’s behaviour, simulating 1000 spiking neurons

CHAPTER 5. SYSTEM-LEVEL SIMULATION 97

using the Izhikevich spiking neuron model [Izh03a]. Some realistic communica-

tion behaviour was needed in a multi-chip system to analyse the feasibility of the

SpiNNaker system. With this in mind, we transformed our SpiNNaker UTF-AV

model into a cycle approximate Time Functional Model with Architectural View

(TF-AV(AX)). The intention was to provide cycle-approximate behaviour of the

system by incorporating the timing statistics obtained from HDL simulations

and the commercial IP datasheets. We simulated all synchronous components at

their specified clock speeds such as processors, AHB, Communication Controller,

Router, Interrupt Controller and the memories. As the design work on some

hardware components such as the Communication Controller and the Router

had progressed to generate a behavioural simulation, we calibrated our model’s

functionality to match exactly their HDL simulations at cycle-level granularity.

A SystemC Intellectual Property (IP) model for the System NoC provided

by Silistix Ltd. was incorporated into the model. As the IP was using com-

munication interfaces from the Co-Ware Ltd. components library, these were

made to communicate with TLM-based request-response channels with the help

of “transactors” (modules to translate transactions between two different com-

munication protocols [Joh06]). The processing core model was not implemented

as an ISS as it was to be provided by ARM Ltd. In the absence of an ISS, the

model could not run an application image developed to run on ARM968. To cope

with the problem, the ARMulator was used to acquire the processing time, while

the SpiNNaker TF-AV(CX) model provided communication delays corresponding

to the multi-chip SpiNNaker application. The two results were then combined

to produce an estimated overall application behaviour. As the application runs

asynchronously in a parallel distributed manner over the SpiNNaker computing

system with inter-process packet communication, this behaviour approximation

is very close to the actual application behaviour (this was supported by our later

cycle-accurate ISS based system-level model).

We conducted a case study to run a real-world application intended for the

SpiNNaker computing system using the same methodology to validate the system

performance; the case study will be described later. The SpiNNaker TF-AV(CX)

model runs more slowly than its untimed model, however, it is much faster than

the HDL simulation in development and running time. The model helped the

SpiNNaker team take a few more design decisions based on its behavioural results,

such as a change in the router design to disable or delay emergency routing to

CHAPTER 5. SYSTEM-LEVEL SIMULATION 98

Figure 5.5: SpiNNaker System-level Model (TF-AV(CA)) with Real-time Code
and System Debugging.

support Multi-layer Perceptron (MLP) neural network modelling. Besides this,

the System Controller’s composition was specified based on the envisaged chip-

level management functions, the Communication Controller design was improved,

the neighbouring chips’ communication mechanism using NN packets was clearly

defined, and the Ethernet controller’s functionality was defined.

5.6.4 SpiNNaker TF-AV(CA) Model

The SpiNNaker TF-AV Model can simulate SpiNNaker inter-chip communication

in a cycle-approximate time and supports high-level applications with its high-

level processor models. However, in the absence of an ISS model for the ARM

processing cores, a real SpiNNaker application could not be developed and run

on the model. This was due to the non-availability of a stand-alone SystemC

IP for the ARM968 processing core. The TLM model for the ARM968 proces-

sor and other ARM-based components required us to run the model as part of

the ARM SoC Designer and its simulator. In the third stage of the SpiNNaker

system-level model development, we ported all our modelled components into the

CHAPTER 5. SYSTEM-LEVEL SIMULATION 99

SoC Designer and used the ARM-provided SystemC models for all the compo-

nents provided by ARM such as the ARM968 ISS, Interrupt Controller, Timer,

AHB, Watchdog Timer, memories and external memory controller. As the SoC

Designer simulates timing at the minimum granularity of a component’s clock

cycle, without any support for the asynchronous components, we simulated the

asynchronous communication in terms of a relevant master component’s clock

cycles e.g. the 13-15 nanosecond real-time delay at the TX interface has been

simulated by 3 router clock cycles at 200MHz clock speed (5 nanoseconds per

cycle).

The model can be used for application development, testing and running

just like the actual hardware. We use the ARMCC compiler and ARM-ASM

assembler from ARM to produce an ARM968 instruction set binary image to

be loaded into all the processing cores in the model. We can simulate a single-

or multi-chip configuration with varying numbers of processing cores controlled

by model-parameters. The model is being used extensively for design validation

and application development/debugging purposes by the SpiNNaker team. The

model supports debugging for hardware, software or both at once in the real

application time (Figure 5.5). We can place breakpoints at the communication

lines, buses, memory locations etc for hardware debugging. The code, at the

same time, can be debugged with the help of the ARM RealView Debugger at

cycle- or instruction-level granularity. The simulation runs in the SoC Simulator

GUI, which helps debugging and profiling in an interactive way.

We carried out yet another case study with the help of this ISS system-level

model to verify our application developed with the ARMulator [JFW08]. Sim-

ulation performance running sample configuration code on the SpiNNaker TF-

AV(CA) model vs. the Verilog-based top-level logical model of the SpiNNaker-

CMP is shown in Figure 5.6. The results show that the SpiNNaker SystemC

system-level model is about 1000 times faster than the Verilog top-level be-

havioural model for SpiNNaker.

5.7 Functional Validation

Before using the system-level model to validate that SpiNNaker’s design meets

the envisaged objectives, the model itself was verified for correctness. Extensive

functional testing of each component’s SystemC model was undertaken comparing

CHAPTER 5. SYSTEM-LEVEL SIMULATION 100

Figure 5.6: Simulation Performance, SystemC vs. Verilog Model.

its results with the Verilog simulation for functional correctness and cycle-level

accuracy. Having established a cycle-accurate behaviour for an individual com-

ponent, it was incorporated into the system-level model. To test the functional

correctness of the system at various levels of abstraction we carried out various

case studies which gave us a confidence in the system-level model, and also in the

SpiNNaker design. These case studies are described in the following sub-sections.

5.7.1 Case Study I

This was a very simple case study designed to verify the communication infras-

tructure of the multi-chip SpiNNaker computing system with the help of the

SpiNNaker UTF-AV model [KLP+08]. In the absence of a spiking neuron appli-

cation for SpiNNaker, we created a sample application with a varying number

of neurons to send spikes to each other with random inter-neuron connectivity.

SpiNNaker requires mapping the underlying neural network into its processing

nodes. Assignments of neurons to processors can be arbitrary, i.e. any neuron

can be allocated to any processor. The routing tables are configured accordingly

to establish the defined connectivity among the neurons. The following mapping

technique was adapted for this case study.

• As a first step in the mapping process every neuron was assigned to a

particular processor in a 16-CMP (each CMP containing 4 application pro-

cessors) system. Given the absolute flexibility in assignment, this was a

heuristically-driven step. Figure 5.7 shows a small (8x8 neurons, each neu-

ron shown as a black circle) section of a 2D neural network. In the nervous

system, the neural networks exhibit locality of connection, i.e., neurons tend

to make most of their connections with nearby neurons, forming clusters;

CHAPTER 5. SYSTEM-LEVEL SIMULATION 101

NEURON ADDRESS

P00

C01

C10

C11

C00

P01 P11

P10

P01 P11

P10

P01 P11

P10P00

P01 P11

P10P00

P00

X Y X Y X Y

Figure 5.7: Neuron mapping to the processors in a 4-CMP (C00-C11) SpiNNaker
system, each CMP containing 4-application (fascicle) processors (P00-P11). A
32-bit neuron’s address (shown in the bottom) is formed by placing the CMP
ID (X=0, Y=0 for chip C00) in the 16 most significant bits, processor ID (X=0,
Y=0 for processor P00) in the next 6 bits, while the neuron ID (X=n, Y=m for
neuron Nnm) is in the 10 least significant bits [KLP+08].

these clusters are sometimes known as fascicles. Therefore, assigning neigh-

bouring neurons to the same processor, or processors in the same chip, will

result in shorter routes and, thus, less inter-chip traffic. Figure 5.7 shows

a very simple, ‘rectangular’ assignment of neurons to processors (labelled

Pnn) and chips (labelled Cnn).

• The second step in the process was to map each neuron into the SpiNNaker

virtual address space. As explained in Chapter 4, the routers can associate

neurons in groups and a spike to that group is routed using a single rout-

ing table entry in the MCRouter. We identify each neuron by combining

the chip ID (chip-X and chip-Y i.e the chip-address’s x- and y-coordinate

respectively in a 2D chip matrix), the processor ID (proc-X and proc-Y in

a 2D processor matrix in each CMP), and the neuron identifier (neuron-X

and neuron-Y in a 2D matrix of neurons in a group of neurons being simu-

lated in a processor) as shown at the bottom of Figure 5.7. This mapping

of neurons guarantees that neurons which have been assigned to the same

processor can be grouped in the same routing entry. By giving proper val-

ues to the router entry masks, neurons assigned to different processors in

CHAPTER 5. SYSTEM-LEVEL SIMULATION 102

O

D

I D T

Figure 5.8: Route Setup [KLP+08].

the same chip can also be grouped in the same entry, if adequate.

• Once the neurons have been assigned to processors and mapped into the

virtual address space, routing information can be generated. The first step

is to set up a route for every connection in the neural net. The process is

driven by two criteria: the route should go through the minimum number

of routers, and should result in the minimum number of router entries.

These criteria should optimize the use of router resources and should also

have a positive impact on network traffic. The ‘default’ routing mechanism,

introduced in Chapter 4, was used to eliminate the need for routing entries

in most routers along the selected routes. An example which shows how

routes are ‘setup’ is illustrated in Figure 5.8. A packet sent from the ‘origin’

node (labelled O in the figure) to the ‘target’ node (labelled T) traverses the

predefined route shown. The route is one of the (possibly many) shortest

routes available, which will comprise, at most, two straight segments that

meet at the ‘inflection’ or turning node (labelled I). The segments may

contain intermediate nodes (labelled D). If a multicast packet is sent along

the route described above, routing entries are needed in nodes O, I and T,

while the rest of the nodes, i.e. D nodes, can take advantage of the default

routing mechanism. Default routing can reduce the size of the routing tables

significantly, especially in long-distance neuron connections.

• Once a route has been set up for every connection associated with a neuron,

the next step combines the individual routing entries into multicast routing

entries. This must be done carefully, given that some of the individual

routes rely on default routing. As a result of this step, ‘primitive routing

CHAPTER 5. SYSTEM-LEVEL SIMULATION 103

tables’ are generated, so called because each table has, at most, one routing

entry per neuron. In most cases, due to the locality of connections and the

use of default routing, routers would not require a routing entry for a large

majority of the neurons.

• The final step in the process is to generate minimal routing tables. For

this purpose, the tables were treated as logic functions: the multicast en-

tries constitute the on-set of the function, the default entries constitute

the off-set and ‘unrelated’ neurons, i.e., those that have no routes travers-

ing the node, were considered the ‘don’t-care’ set. An application called

Espresso [RSV87], a well-established logic minimizer, was used to minimize

the tables.

An application called ‘SpiNNit’ was developed to automate the process and

this was used in the generation of the expected results to be compared for val-

idation. For this case study, we mapped 4 neurons to each fascicle processor.

Each chip contained four fascicle processors while the system consisted of 4x4

(16) chips. The neurons’ mapping information was provided to SpiNNit to de-

termine the routing table entries for the on-chip routers’ multicast lookup and

mask tables. Sample packet files for each processor were created by SpiNNit

with expected output files containing the packets each fascicle processor should

receive at the end of the simulation. The simulation recorded the output packets

with one output file for each processor. While the fascicle output files recorded

the received packets, monitor output files contained any packet dropped due to

some error such as long lasting congestion, parity error, or time-phase error. It

was difficult to check all output files manually against their expected output files

and then trace any unexpected or dropped packets. An automated process was

created with the help of the transaction recording functionality of the SystemC

Verification (SCV) library. This compared the output with the expected outputs

and generated a report for any missing or unexpected packets found in any fasci-

cle output file. The experiment was run using the SpiNNaker system-level model

several times with many variations for debugging and verification purposes and,

after some debugging and bug-fixing, the results matched the expected behaviour.

CHAPTER 5. SYSTEM-LEVEL SIMULATION 104

Figure 5.9: A Typical Multilayer NN Model [KLP+08].

5.8 Case Study II

This case study was performed as a feasibility study to test a rate-coded Multi-

Layer Perceptron (MLP) neural network application on SpiNNaker [KLP+08,

KJFP07]. The application was run on the SpiNNaker TF-AV(CX) model for the

communication results and ARMulator for processing results. A typical MLP

neural network learning algorithm consists of an input layer, an output layer and

a number of hidden layers each containing neurons with the connectivity as shown

in Figure 5.9. Psychologists use a similar model, known as a Parallel Distributed

Processing (PDP) for neural network learning in the psychology world. We carried

out this case study in collaboration with researchers in the School of Psychological

Sciences, at the University of Manchester. They have been using a PC Cluster

to run the simulation with an application called the Light Efficient Network

Simulator (LENS) [Roh99]. In MLP models, every neuron in a layer can receive

input from many neurons (depending on the connectivity level) in the preceding

layer. The inputs are multiplied by the connection weights and then summed to

produce the output to the next layer. The output layer neurons add the weighted

inputs to generate the activation using an activation function. The output is used

with the target output to compute the error (delta) to back-propagate synaptic

updates. The PDP model is quite different from a spiking neural model, as

the packets have to carry a payload as input to the next layer and there is no

notion of real-time processing involved. Moreover, many inputs can converge at

the same target neuron at the same time, which may cause a bottleneck for the

Communication Network.

These variations complicated the task for the communication system of SpiN-

Naker. However, we used a different mapping scheme and the flexibility in the

CHAPTER 5. SYSTEM-LEVEL SIMULATION 105

Figure 5.10: PDP Neural Mapping [KLP+08].

SpiNNaker architecture to circumvent this problem. Instead of using a direct,

one-unit-to-one-processor mapping with the inherent risk of traffic congestion at

target units, we cast the problem as a matrix multiplication problem. Consider

the neurons as partial result-computing units and feed the results forward to the

next layer units which accumulate these results and then pass them to those fur-

ther ahead, until they are received by the output layer to compute the activation

and delta. The same process is repeated in reverse for the back-propagation of

the delta.

We divided the large matrix computational problem into small portions, as-

signing one portion to each processor out of the many spread over different chips.

To further reduce the router traffic we decided to pass on results among the

processors on the same chip using a shared-memory message-passing technique

with the help of on-chip System RAM. The partial results sent to the processors

outside the chip were passed as multicast packets after configuring the routing

tables as per the procedure described above. As shown in Figure 5.10, the dark

coloured and light coloured processors in processor columns marked as ‘A’ in

each chip compute partial products from the input vector and the weight matrix,

and pass these to their corresponding coloured processors marked as number 2

and 3 respectively using a shared-memory message-passing technique. Processors

number 2 and number 3 on each chip in the chip columns ‘C1’ to ‘C4’ send their

CHAPTER 5. SYSTEM-LEVEL SIMULATION 106

Figure 5.11: Simulation of the PDP Model on the SpiNNaker System [KLP+08].

results to processors number 1 in rows ‘R1’ and ‘R2’ respectively using multicast

packets. After a specified interval, the same procedure is repeated for dark and

light coloured processors in processor columns ‘B’ on each chip. The processors

number 1 are the output layer processors that compute the activation output and

the partial delta values. In the second phase of the feed-forward pass, processor

1 of each chip in chip-column ‘C1’ will multicast the partial delta result to all

number 2 processors in row ‘R1’, processor 1 in column ‘C2’ will multicast to

all number 2 processors in row ‘R2’ and so on. During back-propagation, the

computed delta is transmitted backward following the reverse path.

The routing tables for forward and backward path multicast packets were

computed with the help of SpiNNit for various scales of the SpiNNaker system.

Because the ARM968 core was modelled at an abstract level in the SpiNNaker

TF-AV(CX) system-level model, the computation was performed using the cycle-

accurate ISS model of ARM968 processor in the ARM Ltd. RealView ARMulator

to acquire accurate computational timing including the time for shared-memory

message passing. We implemented the PDP model in C++ for the system-level

model incorporating the processing delays acquired from RealView ARMulator

and simulated a 195-chip SpiNNaker computing system. As the model gives

CHAPTER 5. SYSTEM-LEVEL SIMULATION 107

Table 5.1: Performance of PDP on PC vs. on SpiNNaker [KJFP07].

Exp. no. Hidden units 3.2 GHz PC 500 chips SpiNNaker Speed-up
1 50 151 (s) .42 (s) 357.86 (times)
2 450 394 .77 509.44
3 1050 993 1.63 609.28
4 2050 2613 4.04 647.23
5 3050 5040 7.51 671.28
6 4050 8497 12.04 705.61
7 4450 10126 14.15 715.42

accurate timing for the communication, the resulting simulation time was ap-

proximately what we expect on the SpiNNaker hardware. The simulation results

with a comparison to the LENS simulation on a PC are shown in Table 5.1

and Figure 5.11. In this case study, as before, we managed to keep the rout-

ing table entries to a minimum with the help of default routing, masking and

shared-memory message-passing techniques.

5.8.1 Case Study III

We carried out this case study with the help of the SpiNNaker TF-AV(CA) model

using the ISS model for the ARM968 processing cores. The purpose of this

case study was to verify the design objectives of the SpiNNaker computing sys-

tem by running a spiking neural network application on a simulated multi-CMP

SpiNNaker machine. The application was developed with the help of the ARM

ARMulator ISS model for a single ARM968 processor, and then tested on the

SpiNNaker multi-CMP system-level model. It is an event-driven real-time appli-

cation [JFW08] using the Izhikevich spiking neural dynamics model [Izh03a]. The

application simulates 1000 neurons on each processing core with a random neu-

ral connectivity defined by the routing tables. The synaptic weights and axonal

delays for inter-neuron synapses are chosen randomly and stored in the SDRAM

with each chip. The spikes are passed among the neurons as multicast packets

which are routed by the on-chip routers to relevant on-chip/off-chip processors.

The application is based on the SpiNNaker standard application model explained

in Section 4.5 of Chapter 4. The same code developed earlier for the ARMula-

tor was run on a single-CMP and a 4-CMP SpiNNaker system-level model, each

CHAPTER 5. SYSTEM-LEVEL SIMULATION 108

Figure 5.12: Spike Train from Izhikevich Neurons [JFW08].

Figure 5.13: Spike Train from Izhikevich Neurons with a 4-CMP SpiNNaker
System-level Model [RKJ+09].

CHAPTER 5. SYSTEM-LEVEL SIMULATION 109

CMP containing three processing nodes. The neural mapping was worked out

with the help of an application which generated the synaptic-data look-up tables

for data TCM and routing tables entries for on-chip routers according to the

defined mapping. The application along with the routing tables was loaded into

the CMPs and run for varying intervals of time. The neurons’ initial state was

chosen randomly while keeping a few neurons in a hyper-active state to stimulate

initial spike activity in the system. Each neuron’s spike activity was recorded in

the output files for spike pattern analysis. The results for a single chip simulation

are shown in Figure 5.12 and those from a 4-CMP simulation are shown in Fig-

ure 5.13. Results are comparable with those produced with the ARMulator for a

single processing core [JFW08]. These results provide satisfactory verification of

the design and functionality of the SpiNNaker system.

5.9 Hardware Functional Verification

The SpiNNaker system-level model has been used extensively in the design ver-

ification of the SpiNNaker CMP. A top-level RTL model for the test chip has

been created comprising two processing nodes and all the chip-level components

for exhaustive component-level and integrated testing before sending the chip for

fabrication. The system-level model has been used as a golden model for the func-

tional verification of the hardware components. The test cases were prepared and

tested on the system-level model before executing on the RTL top-level model.

The process helped spot a few critical problems in some components which could

not be spotted earlier during component-level RTL validation. Similarly, a few

bugs traced in the system-level model were also removed to match the functional-

ity of the two models. Detailed testing of the Communication Network including

the MCRouter and the Communication Controller, the DMA controller, and the

Ethernet Controller was carried out during this process. Besides testing these

components, the tests helped in understanding and refining the behaviour of

these subsystems as part of the SpiNNaker CMP.

The model is also being used for application development for the SpiNNaker

computing system. Ongoing work on the SpiNNaker standard application using

the Izhikevich model, the implementation of Spike Timing Dependent Plastic-

ity (STDP) on SpiNNaker, and refinement of the Parallel Distributed Processing

CHAPTER 5. SYSTEM-LEVEL SIMULATION 110

(PDP) model are using the SpiNNaker system-level model for application devel-

opment and testing.

5.10 Summary

A complete system-level model gives a holistic view of a computing system’s func-

tionality while the hardware is still in its design phase, which is not possible with

component-level simulation. Simulating a large-scale massively-parallel comput-

ing system of the scale of SpiNNaker with conventional HDL is very difficult in

terms of performance and development time. Presently, commercially-available

complete system simulations do not suit system-level modelling for SpiNNaker

due to their limited scope or proprietary nature. For these reasons a complete

system-level simulation of the SpiNNaker massively-parallel computing system

was developed using the SystemC TLM technique as part of the SpiNNaker re-

search project. The model contributed effectively in refining the architectural

design, evolving/resolving system-level functionality issues, and verifying the

functionality of the system at component and system level. The TLM design

principles have been adopted while evolving the system-level model from algo-

rithmic modelling (UTF-PV) to the cycle accurate instruction set simulator with

full architectural functionality (TF-AV(CA)). The end product is very close in

functional behaviour to the actual hardware. We have been able to develop, de-

bug and test applications intended for the actual SpiNNaker computing system,

while the system is still in the design phase. Extensive testing has been carried

out to verify that the SpiNNaker system-level model exhibits a behaviour close

to that of the actual hardware. The system-level model helped verify the design

objectives of the SpiNNaker computing system through the use of case studies to

test two quite different potential applications for SpiNNaker.

Chapter 6

Multi-CMP Systems

Configuration

6.1 Introduction

Over the last few years, miniaturization in computer manufacturing has shrunk

the size of computing devices to fit in a pocket. This is a direct consequence

of high-level integration motivated by customer demand [Fur05]. On the basis

of these industrial trends, we can predict the future of computing devices in the

years to come. A direct implication of this development is the integration of

many independent components in a system to form a System-on-Chip (SoC); a

concept that has moved the manufacturing industry forward beyond conventional

Very-Large-Scale-Integration (VLSI). Technology today allows the incorporation

of hundreds of intellectual property (IP) blocks onto a single high-performance

SoC. High-performance computing machines designed to run complex applica-

tions, such as databases, web or search engine servers, mathematical modelling,

and scientific applications etc, have started to use the same technology. Instead

of using a single powerful and complex processor with floating-point and multi-

media functionality, SoC designs are adapting to use multiple simple processors

to run these applications with process- or thread-level parallelism.

The Chip-Multiprocessor (CMP) design is a combination of the two approaches

i.e. SoC design to integrate multiple resources on a single chip, and the grouping

of multiple simple processing cores onto a chip for multiprocess/multithreaded

111

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 112

computing. Besides avoiding the micro-electronics bottlenecks in designing com-

plex high-end processors with very large number of transistors, this is a con-

sequence of the requirements of present day commercial application which are

mostly transaction-based and can be run in parallel [BKM+00]. The CMP adopts

a hierarchically-partitioned design with replicated modules on a chip, allowing the

use of short interconnects to improve performance [BKM+00, HNO97].

CMP-based design brings with it some design- and application-level chal-

lenges, such as design complexity, on-chip interconnections, area management,

power and heat management, inter-process synchronization, process/thread map-

ping to the CMP processors, debugging support, and configuration for optimal

use of resources to support parallel distributed applications [CFBC06, CACY+06,

LM06, LBHS06, LLB+06]. The issues are more challenging in a multi-CMP com-

puting system; a completely distributed computing system mostly without central

shared resources and synchronisation mechanism.

This chapter highlights some multi-CMP system configuration challenges and

presents the configuration process in two well-known large-scale multi-CMP com-

puting systems to examine the approaches adopted to deal with these issues. To

conclude, some peculiarities of SpiNNaker, a truly multi-CMP system, are given

to justify the reasons for devising a novel configuration process for SpiNNaker.

6.2 CMP Configuration Challenges

Multi-CMP computing systems are characterized by their concurrent process-

ing and inter-process communication mechanism to run parallel distributed ap-

plications. From the application’s perspective, the most important issue in a

CMP-based system is the inter-process synchronization, and to use a large multi-

CMP system as a unified computing system for running a single large applica-

tion [MBH+05]. In CMP-based systems, processing nodes are independent func-

tional units centred around a processing core with dedicated supporting periph-

erals to support parallel distributed computing. There is no central system-wide

clock as the CMPs are connected via an asynchronous network to form a multi-

CMP computing system. A multi-CMP system can be viewed as being similar

to a PC-cluster running a single or multiple applications in parallel. We need to

configure these systems to have a unified system-wide view and to support the

running of large applications in a distributed manner. The configuration process

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 113

in such a system involves initializing each CMP’s components, configuring the

intra- and inter-CMP communication infrastructure, configuring all the CMPs to

work in collaboration, configuring the system to interact with the outside world,

loading an application (or a number of applications with system-level partition-

ing), and providing a means for the user to interact with the application at run-

time. Besides these, the process needs to provide component- and system-level

fault handling, as a large-scale multi-CMP system may suffer run-time faults.

The following are some of the major issues involved in the configuration of a

multi-CMP computing system.

• System-level Synchronization: In a system comprising multiple CMPs, a

large number of concurrent processors are working autonomously without

central control. For a single parallel distributed application, however, the

processes need to synchronize their activities to maintain a unified appli-

cation state. For example, in a cluster of PCs, individual processes may

compute chunks of result and pass these to some other processes which ac-

cumulate these results, which may then be passed to a process producing

the final result. There is a need to synchronise this activity as the outputs

from some processes may depend on inputs from others. Synchronization

is achieved using inter-process communication. To run a real-time spiking

neural network on a multi-CMP system, for example, it is important to

synchronize the processes at millisecond temporal granularity to model bio-

logical behaviour. Similarly, in the SpiNNaker Communication Network, if

we want to discard free-wandering errant packets based on their timephase,

we need to have a synchronized notion of time (within acceptable time

bounds) across the whole system.

• Inter-process Communication: In a multi-CMP system shared-memory message-

passing communication is not possible between the processors in different

CMPs in the absence of a shared global memory. The only way processes

can communicate across the system is by passing messages as packets. For

packet-based communication, the communication infrastructure needs to

be configured and the processes need to follow a communication protocol

as per the network configuration. The configuration process also needs to

support the application in sending/receiving and interpreting these pack-

ets. Besides supporting the application, the communication infrastructure

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 114

is also important for supporting the user’s interaction with the application

and the system.

• Chip-level Initialization: During power-on self-test the chip components

must be tested and initialized by the processors. This requires a chip-level

coherence among the concurrently-running on-chip processors. This may be

achieved by hard-wiring a bootstrap processor in each chip at design-time to

configure the chip-level shared resources, instead of all the processors trying

to do the same job. Similarly, the chip can have a Boot ROM to contain

initial bootstrap instructions to test and initialize the processing nodes and

the CMP resources. However, reliance on a single boot-processor and on a

Boot ROM to initialize a CMP may introduce a single-point-of-failure which

may render an otherwise healthy chip non-functional. The chips should also

be initialized to interact with other chips and the outside world.

• Application Loading: A multi-CMP computing system should be able to

support the running of a variety of applications and be scalable to match

computational requirements. As there is no centralized storage and each

processing node needs to use its dedicated application image to run a part

of the application, the configuration process should be able to load the

application dynamically into the system. We also need to devise some way

to partition the system to run multiple applications simultaneously or to

use the whole system for running a single large application. Additionally,

the application needs to be loaded to individual CMP memories so that

the processing nodes can run the application with the relevant data readily

available. This can be done with the help of the system’s connection to the

outside world and the communication infrastructure available, or a separate

dedicated network is required in addition to the application-specific inter-

CMP network, to load the application and interact with the application

from outside the system.

• Fault-handling: A large system comprising numerous processing elements

and memory resources may get some expected or unexpected faults at run-

time. It is difficult to trace a fault in a large-scale parallel distributed

system and rectify it at run-time without disturbing the system’s state. A

centralized error recovery mechanism may itself introduce errors. The best

solution is to provide distributed autonomous fault-detection and recovery

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 115

mechanisms at various levels to detect the faults and to recover the system

at run-time, or isolate an irreparable component to avoid disturbance to the

rest of the system. This requires the configuration process to provide an

autonomous chip- and system-level fault-handling mechanism and support

for reporting unhandled faults to the the user.

• Connection to the Outside World: A CMP-based system needs to commu-

nicate with the outside world for application loading, user-level interaction

with the application, and visualizing the state of the application. Vari-

ous techniques with inherent pros and cons can be used for this purpose

such as connecting each CMP to a central service node with the help of a

dedicated network, or connecting a service node via the already-available

network connecting all the CMPs, etc.

• Chip-/System-level Monitoring: To manage the system and the application,

we need some system/application monitoring and management facility for

the user. Either a part of the management application can run on each

processor to support the monitoring, or a processor on each chip be ded-

icated to perform as a “monitor processor”. The later is a better option

as it allows the rest of the processors on each chip to be dedicated to the

application execution without run-time disruption. The monitor proces-

sors in a multi-CMP system can be used for system-wide management in a

distributed manner. A distributed operating system (OS) can also be run

with the help of these processors across the whole system for better system-

level management. The monitor processor can also be used for CMP-level

coherence and chip- or system-level fault handling, and reconfiguration.

• Interactive Control: The user needs to interact with the application/system

at run-time for exchange of data, to debug an application, diagnose the

system for performance or faults, or to view the state of the application at

some point in time. It is very difficult to achieve a system-wide coherent

state of the application at run-time in a large-scale dynamic massively-

parallel computing system.

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 116

Figure 6.1: Blue Gene/L - System Overview [ea03].

6.3 Related Work

The following sections present the configuration process in two large-scale massively-

parallel multi-CMP systems to examine how these architectures handle the con-

figuration issues to support large-scale parallel distributed applications. The two

architectures have been selected as being large-scale multi-CMP system inter-

connected in a torus by connecting each chip to six neighbouring chips using a

packet-based network. Similar to SpiNNaker, the two architectures have been de-

signed to run parallel applications distributed on their independently-functional

compute nodes with dedicated memory and other resources.

6.3.1 Blue Gene Configuration Process

IBM’s Blue Gene/L (BG/L) supercomputer comprises up to 65,536 CMP nodes

designed around embedded PowerPC processors [HBB+05]. The system gives an

overall peak computing power of 180 or 360 teraflops depending on the utilization

mode. The BG/L represented a new level of scalability for parallel systems with

the largest integration of computing nodes of its time; it was rightly declared the

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 117

Figure 6.2: Blue Gene/L - Compute Node’s Block Diagram [ea03].

fastest supercomputer in the world until 2007.

Functionally, the BG/L system can be divided into three parts: the Compu-

tational Core, the Control Infrastructure and the Service Infrastructure [GBea05].

The Computational Core comprises 64Ki1 nodes, each consisting of 2 PowerPc400s

running at 700 MHz. One of these is used for user applications while the other

is used for configuration, networking support and chip management. Two such

compute nodes share one “node card” with additional SDRAM. Each compute

node has six bi-directional links for connection with other compute nodes and

these are interconnected using a 64x32x32 three dimensional torus [ABCea05].

The network provides reliable, deadlock free, but unordered delivery of packets

(up to 256 bytes) using minimal adaptive routing and broadcasting. The system

can be partitioned into several independent subsystems capable of performing

independent jobs. The Control Infrastructure comprises 1024 I/O nodes which

are like compute nodes but with more memory. This infrastructure is used to

provide an interface to the computational core to interact with the outside world.

Each I/O node is a Linux box to facilitate user interaction with the system using

an Ethernet connection [OBea05].

To a user, the system appears as a 1024 node Linux cluster, each node a 64-way

11Ki=1024

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 118

multiprocessor machine. The Service Infrastructure comprises varying numbers of

service nodes to form a traditional Linux cluster which resides outside the BG/L

Computational Core. The service nodes communicate with the computational

core with the help of I/O nodes using packets over a separate dedicated Ethernet.

This infrastructure is used for configuring, controlling and monitoring the system.

I/O nodes use Linux while the compute nodes use the BG/L Run-Time Supervisor

(BLRTS) kernel. These Operating Systems (OS) are local to the nodes while the

global OS runs on the service nodes and is responsible for booting up, monitoring

and job launching. A Database-Management-System (DBMS) with a central

database is used over the global OS to maintain the state of the system and

system partition information which is updated periodically [HBB+05].

There is no Boot ROM in the compute nodes, rather the whole initialization

is done at run-time by the service nodes through the Ethernet [HBB+05]. A small

boot loader is first written directly to each nodes local memory by the service

nodes. This loader receives and loads the boot image into the memory using

packet-based messages from the service nodes. The boot image is the same for all

compute nodes while the I/O nodes have a second type of boot image. The size

of this common boot image broadcast to these nodes is 64 KB for the compute

nodes and 2MB for the I/O nodes. After this common information, each node is

“personalized” by assigning distinct torus coordinates, a tree address and an IP

address. The BLRTS implements a system call to request the node personality.

System monitoring and job execution is done by a combined action of the service

and the I/O nodes which maintain log files to this effect. For a particular job the

user specifies the size and shape of a partition and based on this the global OS

selects a set of compute nodes to form the partition.

The booting-up process in Blue Gene/L is based on the concept that the

service node can control the computational core to the lowest level of granular-

ity [HBB+05]. The communication between service and compute nodes is based

on packets using Ethernet, which are dropped at a control FPGA chip attached

to each node card. The control FPGA converts the packet based communications

to JTAG (IEEE 1149.1) commands for the compute nodes. One control FPGA

can drive up to 36 node cards. The packets containing a common boot loader

and boot image are broadcast through this infrastructure. Similarly information

collected from both types of nodes such as faults or acknowledgments etc. is

transferred back to the service node by these control FPGA chips in the form of

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 119

User Datagram Protocol (UDP) packets. For this purpose each compute node

provides an extension to the basic design in terms of JTAG compliant ports and

supporting hardware [HBB+05].

Besides this, certain system-level configurations are also performed such as

control register initialization and Test Access Port (TAP) controller configuration

to support initial boot-loader loading into the memory and non-intrusive access to

device control registers for control, debug and monitoring purposes. The JTAG

on each PPC440 can directly access a compute nodes 16Kbyte portion of L2

SRAM logically located at the top of the 32-bit decoded address space of the

PPC440 and contains the default reset vector. It contains the instructions to

be executed after startup or reset. JTAG writes the boot code from the service

node at this place for PPC440 boot-up. The same facility of directly accessing

this portion of the memory is used by the service nodes to do other control and

house-keeping functions. This communication is given the highest priority in the

arbitration to make the boot-up and control functions very efficient, however, it

does not affect other traffic because of its small packets size. This feature is useful

for handling run-time problems and investigating any boot-up issues. After the

Ethernet connection is established, the same JTAG communication is used to

load the application into the compute nodes’ memories.

For fault-tolerance a self-test mechanism is kept in each chip to perform system

diagnostics [HBB+05]. During initial built-in self-test, chips failing to pass all

tests are marked as dead-chips. The service node also provides a system-debug

facility to the designers/system-administrator with the help of a debug I/O port

on each compute node and used only when Ethernet is not enabled. Several on-

chip signals of interest to the chip logic designer are multiplexed onto the debug

port. The operation of the debug does not interfere with the normal operation of

the chip.

6.3.2 Cray XT3 Configuration Process

The XT3 is Crays third-generation massively-parallel processing system [ea08]

designed to run large-scale parallel applications. This is a multi-node system

connected in a 3D torus through Cray XT3 interconnect and the Cray SearStar

routing mechanism (Figure 6.3). Its Compute Processing Element (PE) is an

SoC based on a dual-core AMD Opteron processor coupled with its memory

and dedicated communication resources. Another type of PE, the Service PE, is

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 120

Figure 6.3: Cray XT3 Massively Parallel Computing System [ea08].

Figure 6.4: Cray XT3 - System Overview [Inc05b].

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 121

used for I/O, login, and network/system management functions [Inc05b]. Four

Compute PEs are grouped into a compute blade for scalability. Each Compute PE

is attached to a SearStar communication chip containing a DMA engine, hyper

transport links, a communication and management processor, an interconnect

router and service port. An on-chip router on the communication chip connects

each node (compute node and communication chip) to six neighbouring nodes in

a 3D torus topology with a peak link speed of 7.6 GB/s. The router also contains

an error correction and retransmission mechanism [Inc05b].

The DMA engine has its own PPC440 processor for message preparation and

demultiplexing tasks to leave the Opteron free to focus on computing tasks. The

operating system on Opteron works together with the DMA engine to provide

a direct path for an application to communicate to the hardware without any

interruption or traps. In case of a bad connection, a link can still be made

operational by configuring it to run in a degraded mode. The system is highly

scalable and can be made to combine in various numbers of system cabinets.

A 320 cabinet system contains 30,508 compute nodes, 106 service nodes, 239

terabytes of memory, and is connected via a 40x32x24 3D torus interconnect

(Figure 6.4). Each Compute PE contains 1 to 8 Gbytes of memory with a 1

Mbyte cache to serve the Opteron microprocessor. Each node is connected to the

system interconnect at 6.4 Gb/s. The interconnect is devoid of any switches etc

which saves cost and complexity while connecting tens of thousands of nodes.

Each communication chip provides a service port which connects each Com-

pute PE to a separate dedicated management network (Ethernet) and bridges

between the management network and the system interconnect [Inc05b]. This

allows the monitoring system to have access to all registers and memory in the

system. The management network is used for boot-up, maintenance and mon-

itoring of the system during initialization and while running applications. A

proprietary CrayXT3 Catamount microkernel is designed to run on the compute

nodes and provides a computational environment without too much overhead,

besides helping the system to scale to tens of thousands nodes. The microkernel

interacts with the application in a very limited manner and provides fine-grain

synchronization, high performance and low-latency communication. It is used

only for scheduling, memory management and virtual memory addressing.

The Service PEs run a full Linux OS and can be configured to provide login,

I/O management, or any system/network services. Applications are run using a

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 122

login service node on dedicated sets of compute nodes which are partitioned by

the system administrator. Fast interconnection with no contention in the memory

modules provides a fast boot-up mechanism with minimum downtime [Inc05b].

The Cray configuration/management process integrates hardware and software

components to support run-time application execution, system monitoring and

fault-handling. An independent monitor system with separate processing and

network resources monitors and manages major resources in the Cray XT3 sys-

tem. The same system is used to manage the interconnect, to monitor and display

the system state to the system administrator, and to power up and down the sys-

tem. The system-level recovery in the case of any malfunction is also managed

with the system management system. The management system does not use

any resources from the system and recovers any part of the system from failures

while the system is still running. Single-points-of-failure have been minimized

with redundancy or alternative workarounds in the design and hence the system

remains operational even if a (non critical) portion of it is non functional. The

communication chips, processors, and memory units etc are all field replaceable

and upgradeable [Inc05a, Inc05b, AKB+07a].

6.4 SpiNNaker - A Novel Architecture

As explained in Chapter 4, SpiNNaker has been designed as a massively-parallel

multi-CMP system consisting of up to 64Ki SpiNNaker CMPs, each comprising

up to 20 independent functional processing nodes. Although the architecture

is based on SoC design, it is quite different from other SoC-based multi-chip

architectures (Blue Gene/L and Cray XT3). The Blue Gene/L processing node

consist of only two processors with one processor already hard-wired for control

and boot-strap while the other is used as an application processor. Similarly, in

the Cray XT3 the boot process is performed with the help of the service processor

on the communication chip which is controlled externally by the service node with

the help of the management network. This introduces a single point-of-failure

as the chip cannot be brought up to the running state if the service (monitor)

processor is dead. In the Blue Gene/L system, there is no Boot ROM, the boot

loader and the boot image is loaded at run-time with the help of an Ethernet.

However, the process requires the connection of all the processing nodes with the

help of a separate Ethernet. This duplicates the networking in the presence of a

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 123

64x32x32 torus already connecting the compute nodes at the cost of extra energy

and maintenance.

In SpiNNaker, we rely only on the inter-chip interconnect for communication

among the CMPs, which reduces the overhead of maintaining large networking

resources and keeps the system size manageable. The Blue Gene and Cray XT3

both use Internet Protocol by assigning IP addresses to their computation nodes

which introduces computation and communication overhead with extra memory

required to run the IP protocol at each chip. In SpiNNaker we use low-power

processing cores (200MHz ARM vs. 750MHz PPC440 or 2.6GHz AMD Opteron)

with sufficient local memory to run application-specific code efficiently at much

reduced power consumption. The application is distributed over all the appli-

cation processors concurrently and does not require any software scheduler or

operating system (Chapter 4 Section 4.5). In both the above mentioned systems,

the compute nodes communicate with the outside world with the help of a sep-

arate management network, while in SpiNNaker the system is connected to the

Host PC with the help of only one (or a few for redundancy) chip(s) from where

the same inter-CMP interconnect is used to pass messages between the Host PC

and any chip in the system. Unlike BG(L), the SpiNNaker interconnect does not

require any switches or network infrastructure to connect its CMPs, rather the

chips are interconnected directly through their six I/O links to form a network

of CMPs.

These peculiarities of SpiNNaker distinguish it from other CMP-based systems

and require a novel configuration process to be devised. The next section describes

some of the configuration requirements pertinent to the SpiNNaker multi-CMP

system.

6.5 SpiNNaker Configuration Requirements

SpiNNaker can support neural simulations with a variety of neural network types

and application models. The system is a generic processor resource: “a universal

neural network architecture”. There are, as a result, several key system con-

figuration considerations to enable it successfully load and run a given neural

network [KNR+09].

• Selecting a “Monitor Processor”: For chip-level management, we require

one processor out of the 20 on each chip to be the monitor processor. The

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 124

monitor processor has 4 roles: pre-boot chip-level configuration and test-

ing, boot-time system-wide configuration, run-time chip-level fault han-

dling, and supporting run-time system-level management. It must perform

these management tasks without interfering with the application processors

running the neural application. SpiNNaker chips, however, do not have a

dedicated monitor processor, therefore, the boot process needs to select a

processor per chip to perform this job.

• Breaking System Symmetry: To route a (P2P or MC) packet to its destina-

tion, the chips need unique addresses. SpiNNaker chips are identical with

no hard-wired addresses, while the SpiNNaker system is organized as a sym-

metric toroid with no starting point. Before any application can run on the

SpiNNaker system, we need to configure the chips with unique addresses to

enable inter-process communication.

• Run-time Configuration: To conserve the CMP area, the Boot ROM size

has been kept to a minimum, just sufficient to support initial testing and

device initialization. The remaining CMP- and system-level configuration

must be performed from outside the system for better flexibility and fault-

tolerance. We need to configure the CMPs to collaborate with each other

to form SpiNNaker as an integrated system. It is, however, desired that the

Boot ROM should not introduce a single point-of-failure.

• Application Loading: SpiNNaker CMPs are not pre-configured to simulate a

particular neural dynamic model; they can simulate arbitrary spiking neural

models. This means the user initially configures the application outside the

system, then loads it. Hence, we need a detailed methodology to load the

neural application with associated data to each chip in an efficient and

scalable way.

• Network Configuration: The configuration process needs to configure the

on-chip router as per the neural mapping (i.e. the neurons mapped on the

processors by the application) to conform to the neural network being sim-

ulated. A neural network is simply a configuration, not in itself a running

application. Much like an FPGA, the boot process can configure the net-

work once and then the target application can be run many times without

reloading the system. Therefore although a fast boot time is desirable, it is

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 125

not necessary to consider this time as a function of the time to run a given

application - the neural network is not a terminating “program”.

• Communication to the Outside World: SpiNNaker needs to be attached

to a Host PC to load the neural application and interact with the user.

Typically, the Host PC would be a normal PC, necessitating some way of

connecting SpiNNaker to it. Every chip has an Ethernet interface, but given

that only one or at most a few chips would connect to the Host, there must

be a protocol bridging the Ethernet communication (between the Host PC

and Host-connected chips) and packet-based communication (among the

CMPs).

• Run-time Interactive Support: Once the application is running, we need

to interact with the system to examine the state of hardware devices and

the application running on the chips. A common communication language

using small packets to interact with each chip’s monitor processor is needed.

6.6 Summary

CMP technology is expected soon to take over from conventional computing

system design for its better performance, scalability, power-efficiency and fault-

tolerance. A multi-CMP system provides computing power to run very complex

scientific applications beyond the scope of conventional high-end workstations,

or a cluster of them, in a much more cost-effective manner using process/thread

level parallelism. Such a system can be viewed as a PC cluster, each a multi-core

workstation interconnected over an asynchronous network performing parallel

distributed computing. This brings in new challenges for the use of such sys-

tems, such as intra-CMP and inter-CMP application-level synchronization and

the user’s interaction with applications etc. These challenges require configuring

these systems in a way to support efficient inter-process communication, system-

/application-level run-time interaction, application loading, and fault-handling

etc. The purpose is to protect the user from architectural complexities and

present the system as a one computing unit as if the user were working on a

single PC. Various multi-CMP systems have been reviewed to investigate the

manner these issues are being handled. SpiNNaker is a novel multi-CMP system

designed with a specific purpose. It has been especially architected to support

CHAPTER 6. MULTI-CMP SYSTEMS CONFIGURATION 126

large-scale neural simulations using low-power embedded processors, networked

with an asynchronous interconnect. Its architecture is quite different from other

SoC-based computing systems such as the IBM’s Blue Gene and Cray’s XT3.

Though faced with similar configuration challenges, SpiNNaker needs a differ-

ent way to tackle these problems due to its unique architecture. This provides

a motivation to research these issues in the context of the SpiNNaker comput-

ing system to devise a mechanism suitable for multi-CMP computing systems

designed following SpiNNaker’s architectural principles.

Chapter 7

SpiNNaker Configuration Process

7.1 Introduction

Chip-Mutliprocessor (CMP) architecture uses multiple simple and low-power pro-

cessing cores providing the best choice for the present day’s applications with

process- or thread-level parallelism. The CMP follows a hierarchical partitioned

design approach with replicated modules using short and fast communication me-

dia as compared to those of conventional systems [BKM+00]. Once a CMP with

an on-chip networking and routing mechanism is produced, a number of such

chips can be connected together to form a scalable multi-CMP high-end server

machine. This approach is being adopted by most high-end machine vendors

such as IBM in its Power4-based systems [TDF+02], Compaq in its Piranha-

based systems [BKM+00], Sun in its next generation Niagara T2 UltraSPARC

system [AKB+07b], and Cray in its XT series machines [Inc05b, AKB+07a] etc.

As explained in Chapter 6, multi-CMP system design brings with it a num-

ber of application-level challenges such as system-wide synchronization, system-

level configuration, an application loading mechanism, debugging, and run-time

user-application interaction. We also examined a few SoC based multi-chip sys-

tems for studying configuration strategies adopted to understand how these chal-

lenges have been handled in these systems. The chapter ended with a conclusion

that we need a novel configuration and application loading mechanism for the

SpiNNaker multi-CMP system because of its novel architecture. As described

in Chapter 4, SpiNNaker is a scalable multi-CMP system for running complex

neural simulation with inherent process- and thread-level parallelism. Simulating

large, biologically-realistic neural networks is an excellent candidate application

127

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 128

for distributed processing systems: indeed, the consensus in the modelling com-

munity is that it may be necessary to use dedicated hardware with architectures

more closely similar to the brain for large-scale neural modelling within realistic

resource limitations [JSR+97]. It is efficient to simulate a spiking neural network

as an event-driven real-time application [JFW08], a model quite different from

typical parallel applications and more akin to embedded applications [Kop97].

A system for neural network simulation will be, correspondingly, architecturally

different from parallel systems designed mostly for general-purpose computing.

SpiNNaker adopts event-driven models of computation, and its boot-time config-

uration can make fewer assumptions about the initial state of the system than

“conventional” parallel multiprocessor systems.

SpiNNaker provides no side-band communication channel for boot processes:

the system boot must use the same communication fabric as the application. All

processors on the chip are identical; there is no dedicated processor hard-wired or

preconfigured to run the boot process. The task, therefore, is as follows: It is nec-

essary to configure a symmetric massively-parallel system using only the resources

available at run time, even though the functionality of these resources themselves

depends upon having been configured. The configuration process must do this

efficiently and without contention, even though individual processors have only lo-

cal state information available, i.e. the system can use no global state information

to configure itself. The system must somehow break symmetry, assign and load

memory resources, configure communications, and start up the processors, while

balancing concurrency and resource contention for maximum efficiency. Where

previous solutions [HBB+05, Inc05b] have typically used side-band communica-

tions or dedicated preconfigured resources, SpiNNaker confronts the challenge of

configuring an isotropic undifferentiated parallel processing system head-on. One

approach would be to make no assumptions about the application and consider

it as a problem in general-purpose computing, leading to a set of standardised,

generic configuration techniques. However, since numerous studies indicate that

parallel processing works best with specific applications that have inherent paral-

lelism, it seems reasonable to design parallel systems around a target application,

whose boot process could be correspondingly specialised.

A flexible and efficient boot loading of distributed applications is an essential

support process for the SpiNNaker multi-CMP massively-parallel system orga-

nized over a homogeneous communication fabric [KNR+09]. This chapter presents

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 129

the SpiNNaker multi-CMP system configuration process and a run-time appli-

cation support mechanism. The process has been designed specifically for the

SpiNNaker massively-parallel multi-CMP system. However, the techniques used

may also be useful in other multi-CMP systems based on linking functionally-

independent CMPs over an asynchronous network; a concept taking over the

high-end computing industry. Some experimental results are also presented at

the end to justify our claimed objectives.

7.2 SpiNNaker Boot-up Process

The SpiNNaker multi-CMP system is configured in two phases. In the first phase,

the processors run the Boot ROM code in batch mode to test processing cores

and on-chip peripherals independently. In the second phase, the configuration

process follows the SpiNNaker event-driven model to configure the whole system

at run-time. The two phases are explained in the succeeding sections.

Phase I - Chip Level Configuration

Each SpiNNaker CMP must perform basic power-on testing and initialization

based on the instructions in the Boot ROM. Initially the ARM968 Tightly Cou-

pled Memory (TCM) is disabled and the processors access a high-interrupt-vector

in Boot ROM at power-on reset. At this point, all the processors run at very low

frequency (10 MHz) to conserve energy. After testing and enabling the TCM, the

boot-strap code is copied to the local instruction memory (ITCM) of each proces-

sor for better performance. The process of copying the code from the boot ROM

simultaneously by the 20 processing cores causes a bit of contention. However,

once the code is in the local memory each processor can run it independently.

As part of the initial boot-up, each processor follows the following sequence of

actions (Figure 7.1).

• Each processor performs a power-on self-test (POST) on the processing

core’s peripherals, i.e. the Communication Controller, the Vector Interrupt

Controller, the Timer and the Direct Memory Access (DMA) Controller,

to identify any fault. For every processing node to function properly, it is

important that all its peripherals should be functional. In case of a failure,

the processing node puts itself into a sleep mode to avoid any disruption to

the CMP.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 130

Figure 7.1: The SpiNNaker Boot-up Process - Phase I.

• Each processor initializes its peripherals to work on a default setting. The

Communication Controller is initialized to send and receive packets, the

timer is initialized to generate an interrupt after every millisecond to be

used for synchronizing system-wide activities with millisecond granularity,

the Vector Interrupt Controller is configured to pass on basic interrupts

such as the packet received, error interrupts and the timer interrupt, while

the DMA is set-up to carry out DMA read/write operations and to raise

any error interrupt.

• Unlike most CMP systems, the monitor processor is not hard-wired at de-

sign time as this might introduce a single point-of-failure. In the SpiNNaker

CMP, the monitor processor is selected from the 20 on-board processors at

run-time with the help of the boot-up instructions. To this end, all healthy

processors compete to access the System Controller across the System NoC.

The System NoC’s arbiter allows only one processor to access the System

Controller in case of an access contention, and the first processor to gain

this access is selected by the System Controller as the monitor processor.

The system controller writes the ID of the selected monitor processor to one

of its registers, which all other processors look up to identify the monitor.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 131

• All processors inform the System Controller of their state. For this pur-

pose a specific register has been included in the System Controller. Each

processor, after successful test and initialization of its peripherals, sets the

bit corresponding to its ID in this register. This information provides the

monitor processor with the state of other processors. This information is

used later for chip management, application configuration and reporting

the state of the chip to the Host PC as explained later. Additionally, the

system controller maintains the state of other chip resources which can be

queried from the outside with the help of the monitor processor.

At this stage all processors, except the monitor, go into sleep mode. The

monitor processor, which is now managing the chip, performs chip-level testing

and initialization. The following sequence is adopted by the monitor processor:

• It switches the chip clock to a faster frequency i.e. 200MHz. This feature

is controlled with the help of the Phase-Lock-Loop (PLL) control register

in the System Controller.

• It performs detailed device-level tests and writes the state of chip-resources

to the System Controller for later reporting to the Host PC outside the

SpiNNaker system.

• It initializes the chip’s resources such as the PL340 SDRAM Controller,

Router, and the System Controller etc. At this moment, the router can

route only the Nearest Neighbour (NN) packets as the other two types of

packet (Multicast (MC) and Point-to-Point (P2P)) require relevant routing

tables to be configured.

• It establishes if a PHY (Ethernet Physical Layer Module) is present. If so,

this chip may be the one (or one of those) connected to the Host PC. The

monitor processor initializes the PHY, and if a live connection to the Host

PC is detected, it initializes the Ethernet Interface to start receiving frames.

If there is no live connection, it does only the basic initialization of the

Ethernet Interface and PHY. In this case, a detailed Ethernet Configuration

is performed later, on receipt of a “connection-up” PHY-Interrupt event.

If, however, the monitor processor does not detect a PHY, it disables the

Ethernet Interface to save power.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 132

• It carries out basic functional tests such as sending a test NN packet to

itself for testing correct functionality of the on-chip Communication NoC,

sending a loop back Ethernet frame to test the Ethernet functionality, and

testing for DMA read/write operations.

• It performs a chip-level recovery to restore any faulty chip components

using embedded recovery routines. It can also reset or disable the clock

of a malfunctioning application processor to restore or isolate it as part of

chip-level recovery.

• It tests connections to neighbouring chips by broadcasting a “Hello” NN

packet to all neighbours, marking any faulty links or neighbours. This

initiates a “nearest neighbour diagnostic process” to identify any dead chip

and to recover, reset or isolate it.

• It configures the Watchdog Timer’s interrupt and reset mechanism to reset

the monitor processor or the whole chip in case of a non-responsive monitor

processor as part of chip-level recovery. The mechanism will be explained

later in Chapter 8.

After this process, the monitor processor also enters sleep mode putting the

chip in listening mode waiting for internal (from Timer or Watchdog Timer etc)

and external events (packets or Ethernet frames etc) notified as interrupts.

Phase II - System Level Configuration

In this phase, the configuration process runs as an event-driven application under

the control of the Vector Interrupt Controller. At the chip(s) connected to the

Host PC, the PHY generates connection-related events and the Ethernet Interface

generates a “frame-received” event as an interrupt to the monitor processor. On

all chips, the Monitor processor’s Communication Controller generates a “packet-

received” event when a message arrives from a neighbouring chip. Each interrupt

triggers a different Interrupt Service Routine (ISR) to run the code for the related

configuration job before putting the monitor processor to sleep again as shown

in Figure 7.2. These two different event-driven processes, i.e. the packet-received

and the Ethernet frame-received, use two separate communication protocols. The

two protocols are explained in Appendix A and Appendix B of this thesis. The

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 133

Figure 7.2: Event-Driven System-level Configuration.

monitor processor on the Host-connected chip translates between the two proto-

cols, converting the Ethernet frames it gets from the Host PC to packet-based

messages, then issuing them either as broadcast or chip-specific NN packets.

Besides these two interrupts, timer- and DMA-interrupts are also used in this

process to support a process-timeout and memory-transfer operations as part of

system-level configuration process. Figure 7.3 shows the flow of phase II of the

SpiNNaker configuration process.

From Phase I, each chip should receive a Hello message from all its neighbours

within a certain time. If a given link times out, the monitor processor activates

a “neighbour diagnostic” routine which establishes the problem and tries to cure

the faulty chip. The process will be explained in Chapter 8.

Following any necessary time for the neighbours diagnostic process, the chips

start executing event-driven system-level configuration. This, the main compo-

nent of system-level boot-up, operates as follows.

• The chip(s) connected to the Host PC notify the system readiness to the

Host PC by sending a “Hello” frame, indicating that the system has now

completed its Phase I process and the NN diagnostics.

• The Host PC nominates one of the Host-connected chips to be the “reference

chip” i.e. the one to bear the reference address (0,0) and notifies it of the

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 134

Figure 7.3: The SpiNNaker Boot-up Process - Phase II.

number of chips in the system. It then instructs the chips to assign unique

chip addresses dynamically. The origin chip broadcasts its address with

the size of the system. The adjacent chips compute their addresses by size

modulo addition to find a relative address (x,y) in a 2D SpiNNaker torus,

and broadcast their address forward. This process continues outward to

cover the whole system.

• Each chip configures its P2P table based on the logical location of the chips

based on the size of the system to perform default P2P routing. (The

application can later modify these tables according to the system-level con-

figuration).

• The Host PC requests the system state. Each chip reports its state to the

origin chip using P2P packet(s). The origin chip accumulates these states

and reports the result to the Host PC.

• The Host PC loads a micro-kernel and run-time configuration code to the

chips using a flood-fill mechanism as explained in Section 7.3.

• The Host PC loads the application to the chips using the flood-fill mecha-

nism as explained in Section 7.3.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 135

• The Host PC computes the MC routing tables with the help of a user-

interface application as per the user’s application model according to the

chips’ state.

• The Host PC configures the routing tables for each chip with the help of

P2P packets as computed in the previous step.

• The Host PC instructs the monitor processors to activate the application

processors to load the application to their local memories and start running

the application.

• The Host PC interacts with the system either to carry stimuli/responses

on behalf of the application or to interrogate the state of the system or the

application.

The protocol follows a set of instructions defined in Appendix B, passed be-

tween the Host PC and the SpiNNaker system using Ethernet frames.

7.3 The Application Loading Process

A typical SpiNNaker application will need to load neural support data into each

SpiNNaker chip’s memory before it can start its execution. The data may in-

clude the initial state of the application, neural network mapping, inter-neuron

connectivity information, and synaptic information. In addition, a micro-kernel

and the utility functions library for the monitor processor may also need to be

loaded into each chip. We need an efficient way to load this data in the minimum

possible time.

An efficient and fault-tolerant mechanism has been devised to load the appli-

cation and data into the chips. During the inter-chip flood-fill process each CMP

uses NN packets to send a 32-bit word of data at a time to its 6 neighbouring

chips. The receiving chips store the data and broadcast it on to their neighbours.

A pipelined “wave” of data thus flows from the Host-connected chip(s) to the

whole system. To maintain data flow control, we have devised a special instruc-

tion set to be used with NN packets, the instructions are included as Appendix A

to this thesis. The SpiNNaker address space 0x0F800000-0x0FFFFFFF has been

reserved for specific instructions in the NN packet’s address field. The monitor

processor interprets an NN packet with an address in this range as a particular

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 136

Figure 7.4: Selective Forward Flood-fill.

configuration process instruction or a response to such an instruction. This pro-

tocol covers instructions to serialize the data, control the flow of data, requesting

missing bits of data and various other configuration instructions. We have devised

various flood-fill mechanisms such as “broadcast” or “selective forward multicast”

which gives various performance vs. robustness tradeoffs. Figure 7.4 shows one

such mechanism for flood-filling the data in the SpiNNaker system. Figure 7.5

shows the sequence diagram of the flood-fill mechanism which works as follows:

• The Host PC loads the application and data as small (1-8K) data blocks

to the system. It sends a data block along with its size, start address,

and block-level (Cyclic Redundancy Check (CRC)) checksum to the Host-

connected chip(s) one data-block at a time using Ethernet frames.

• Each Host-connected chip performs a checksum test on the block to ensure

its correct receipt. If an error occurs, it requests the Host PC to resend the

block.

• The chip(s) connected to the Host PC send an instruction through an NN

packet to indicate the size of the block to be transmitted and the starting

location to store it in the SpiNNaker chip address space.

• The system inserts the physical address of the word into the routing key of

the NN Packet to help serialization and duplication control.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 137

Figure 7.5: Flood-fill Process - Sequence Diagram.

• Each neighbouring chip dedicates a memory space in its data TCM equiv-

alent to the size of the data block being received. It also initializes a “word

received” bitmap with a number of bits equal to the number of words in the

block. On receipt of a packet, it will inspect the corresponding bit against

the routing key (address) of the data in the packet. If a word has already

been received, it will neither be stored in the memory buffer nor be trans-

mitted further. Missing words (zeroes in the bitmap) can be requested from

neighbours at the end of the flood fill.

• The last NN packet of data contains an instruction indicating the end of

the block along with the block-level checksum in the payload.

• If the block passes the CRC test, the receiving chips load it into the specified

location in the memory address space.

• If the received block contains the application, the chip loads it into local

memory, ready to be executed on receipt of an instruction from the Host

PC.

• The flood-fill process ensures that each chip receives the transmitted word

at least twice during the flood-fill process, ensuring data delivery to each

chip.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 138

• At the end of the flood-fill process, the Host PC requests the state of each

chip along with blocks received. At this stage, the chips can request missing

blocks from each other or from the Host PC.

• During the “neighbouring chip recovery” process, chips surrounding the

faulty one can transport the data locally to the recovered chip.

7.4 Configuration Issues

Chapter 6 gives some important application-level issues in a multi-CMP system

which the configuration process needs to look into to present a system-wide inte-

grated view of the system to the user. Table 7.1 presents a comparison of various

approaches used in the three architectures to handle these issues.

Table 7.1: Configuration Issues Handling Approaches.

S/

No

Configuration

Issues

System How Handled?

1 Chip manage-

ment

BG(L) By a dedicated service processors running

BLRTS kernel.

Cray XT4 Jointly by a service processor on the com-

munication chip and the main Opteron pro-

cessor with the help of an operating system.

SpiNNaker By a monitor processor on each chip.

2 Selection of

monitor proc.

BG(L) A service processor is hardwired in each

CMP at the design-time.

Cray XT4 A service processor is kept for initial boot-

up in the communication chip. Later on,

the monitoring is done by the Opteron main

processor.

SpiNNaker Selected at configuration time with the help

of a random selection process to minimize

single points-of-failure.

3 Chip-level

testing/initial-

ization

BG(L) Performed with the help of boot-up code

loaded externally using JTAG and a dedi-

cated Ethernet, attaching each CMP to a

service node.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 139

Cray XT4 Performed externally through a separate

management network connected to each

Compute PE which allows it to access all

registers and memories.

SpiNNaker Done with the help of boot-up code in each

chip’s Boot ROM. Each processor initializes

its peripherals while the chip-level shared

resources are tested and initialized by the

monitor processor.

4 System-wide

configuration

BG(L) Performed externally with the help of a

global operating system using the Ethernet

network. The service nodes communicate

with the operating system on the service

processor in each CMP to integrate the sys-

tem and manage it.

Cray XT4 Initial configuration is done with the help of

a management network and service proces-

sor on the communication chip, later on it

is done using the operating system on the

Compute PE’s Opteron.

SpiNNaker Done with the help of the same homoge-

neous asynchronous network used for the ap-

plication. The Host PC is attached to only

one or a few chips to interact with the entire

system.

5 Application

loading

BG(L) Initially a small boot-loader is loaded exter-

nally to each chip’s local memory to con-

figure the Ethernet network and understand

application loading protocol. Following this

the application is loaded into each CMP’s

local memory using Ethernet network and

service processor on each chip running boot-

up code.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 140

Cray XT4 It is done using the management network.

The application can also be accessed from

the central file system using the system-

interconnect, after the initial configuration.

SpiNNaker The system-wide flood-fill process to load

the application and data using the same

inter-CMP interconnect to be used by the

application. No global shared file system or

storage accessible to the CMPs.

6 Network config-

uration

BG(L) With the help of boot-code loaded to each

node, each chip is assigned a torus intercon-

nect address and an IP address. Following

this, the inter-CMP torus is configured to

carry packets.

Cray XT4 Done externally using the management net-

work and the service processor. Both the

networks i.e. the Ethernet and the system-

interconnect are configured initially.

SpiNNaker The network does not require configuring for

initial configuration and the flood-fill pro-

cesses. Later it is configured externally with

the help of the same interconnect.

7 Inter-process

communication

BG(L) With the help of (256-byte) packets on the

torus interconnect.

Cray XT4 With the help of (64-bytes) packets on

the torus interconnect. Shared memory

OpenMP is used for messages within a node.

A global shared file system can also be ac-

cessed through the DMA controller and the

system-interconnect.

SpiNNaker With the help of (5-9 byte) packets. No

shared system-wide file system or storage.

Shared memory message passing within a

CMP.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 141

8 System-wide

synchronization

BG(L) Performed with the help of an external net-

work, and later by the torus interconnect

using a global operating system and DBMS

interacting with the BLRTS kernel running

on the service processors.

Cray XT4 Performed using the on-chip and global op-

erating systems on the service nodes com-

municating over the system-interconnect

and a separate management network.

SpiNNaker Can be achieved by broadcasting NN pack-

ets around the system on the instructions of

the Host PC.

9 System mon-

itoring/ man-

agement

BG(L) With the help of external network using ser-

vice nodes. The state of the system is main-

tained using a DBMS and a global operat-

ing system collaborating with the BLRTS

microkernel running on each CMP.

Cray XT4 With the help of a management network

connecting all the compute nodes. A global

system-wide operating system gives an inte-

grated view of the system with a graphical

view for easy system management.

SpiNNaker Done by the Host PC using the same Com-

munication Network used by the applica-

tion. A graphical user interface is intended

to give an integrated view of the whole sys-

tem using the system interconnect and the

Host-system interconnect.

10 User-

Application

interaction

BG(L) With the help of external network and the

global operating system.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 142

Cray XT4 Initially with the management network,

but later with both management net-

work and system-interconnect as the service

nodes are directly attached to the system-

interconnect.

SpiNNaker With the help of the user interface on the

Host PC using the same system intercon-

nect.

7.5 Evaluation Work

7.5.1 CMP Boot-up

The SpiNNaker multi-CMP configuration protocol and the application loading

process for the SpiNNaker system have been developed using the ARM RealView

Development Suite to generate a loadable Boot ROM binary image for ARM968E-

S processing cores. We tested the code for its functional correctness, perfor-

mance and scalability on the cycle accurate system-level TF-AV(CA) model of

SpiNNaker described Section 5.6.4, and a top-level Verilog behavioural model.

Phase I of the boot-up process is straightforward batch mode code loaded by

each ARM968E-S to its ITCM from the Boot ROM and executed independently

for processing-node initialization, and later by the monitor processor to initialize

the chip. Table 7.5.1 shows the boot-up time as the number of ARM968 CPU

cycles (with a 200MHz target clock rate as in the SpiNNaker CMP) on the Sys-

temC system-level model. Code execution time does not depend on the number

of CMPs in a multi-CMP SpiNNaker computing system since it runs concurrently

on all the chips. The time is slightly affected by the number of processing nodes

in a CMP as they share the same Boot ROM to read and copy the boot-up code

to their ITCM which introduces System-NoC access contention. Column 3 shows

the number of ARM968 CPU cycles (at 200MHz) used to execute chip-level boot

code (except CRC table initialization which takes 1.09ms), while column 4 shows

the simulation speed on the host PC (an Intel Core2 duo 1.6GHz, 2GB RAM

running WindowsXP).

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 143

Table 7.2: CMP-level Boot-up Process Time

No. of CMPs No. of Procs. per CMP No. of CPU Cycles Sim. Time (sec)
1 1 275887 6.00
1 3 275990 8.28
5 3 275990 41.60
9 3 275990 77.86

7.5.2 Application Loading

For phase II and the application loading process, we carried out our experiments

on the SpiNNaker TF-AV(CA) system-level model (Chapter 5, Section 5.6.4)

for functional correctness. To test the performance and scalability of various

proposed application loading algorithms, experiments were carried out with the

help of a high-level event-driven network simulator [KNJ+08b, KNJ+08a] for a

multi-CMP SpiNNaker computing system with various sizes (up to 64Ki CMPS).

We experimented with the following distribution algorithms for the applica-

tion loading flood-fill process:

• 2Msg Forward (Figure 7.6a): the monitor processor sends messages to the

adjacent neighbours on the links diagonally opposite to the one it received

the packet from i.e. in to the chips (x+1, y) and (x, y+1) in 2D torus con-

figuration of the SpiNNaker multi-CMP system. These are the minimum

number of packets required to perform an efficiently-pipelined flood-fill dis-

tribution of the application. Each packet needs 1 router cycle i.e. a chip

will use two router cycles to forward the message.

• 3Msg Forward (Figure 7.6b): this mechanism operates like the 2Msg for-

ward, except that the packet is sent to the diagonally opposite link and its

two adjacent links. The process is slower than the 2Msg Forward as it takes

three router cycles to send packets to three neighbours, however, it is more

reliable as it ensures that each chip receives a packet at least twice, which

is not the case with the 2Msg Forward algorithm.

• 5Msg Forward (Figure 7.6c): this process causes a CMP to send a copy

of the packet to all neighbours except the one it received the packet from.

This requires 5 router cycles as each neighbouring chip is sent the same

packet individually.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 144

Figure 7.6: Application Loading Process - Flood-fill Approaches [KNJ+08b,
KNJ+08a, KNR+09].

• Broadcast (Figure 7.6d): the monitor processor on each chip uses the NN

broadcast feature to send a copy of each packet to all its nearest neighbours

using only 1 router cycle.

• rndXX: like 2Msg Forward but adds (XX%) probability to send packets to

the other neighbours i.e. a packet is forwarded to either 2, 3, 4, or 5 neigh-

bouring chips selected randomly to avoid fixed inter-chip traffic congestion.

We tested probability values 25% (rnd25), 50% (rnd50) and 75% (rnd75).

We implemented the proposed algorithms and tested them on the SpiN-

Naker system-level TF-AV(CA) model connected to an external application us-

ing TCP/IP sockets to flood-fill the application and data into the system model.

The timing computed for the Ethernet frame and packet delays on a 9xCMP

SpiNNaker TF-AV(CA) model was used in the high-level SpiNNaker network

simulation to acquire approximately the same accuracy. The high-level model

simulates the behaviour of the inter-CMP asynchronous interconnect capturing

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 145

Figure 7.7: Application Loading Process - Impact of System Size (10-Kbyte Date
with 1 Ethernet Connection to the Host PC) [KNJ+08b, KNJ+08a, KNR+09].

the traffic load, network congestion, packets dropped at each node due to con-

gestion, and inter-chip link blockage etc. We tested the system using 1, 2 and 4

Ethernet connections to the Host PC connected to the CMPs at location (0,0),

(X/2,Y/2),(X/2,0) and (0,Y/2) in the 2D SpiNNaker torus as explained in Chap-

ter 4. We tested various network sizes, all of them square, ranging from 32x32

to 256x256. For these experiments, we used an error-free configuration of the

network as the purpose was to analyse the configuration process for performance

and scalability.

Impact of System Size

Figure 7.7 shows the results of our experiments conducted with high-level SpiN-

Naker network simulation. We flood-filled a fixed amount of data (8KB Ap-

plication + 16KB data = 24KB) on the SpiNNaker system with 32x32, 64x64,

128x128, and 256x256 chips.

The results show that the 2Msg Forward mechanism is the best in perfor-

mance, followed by rnd25, 3Msg Forward, broadcast, rnd50, rnd75, and 5Msg

Forward respectively. Though in the broadcast mechanism each chip takes only

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 146

Figure 7.8: Application Loading Process - Impact of Data Size (32x32 Nodes Sys-
tem with 1 Ethernet Connection to the Host PC) [KNJ+08b, KNJ+08a, KNR+09].

one router cycle to send a copy of the packet to its six neighbouring chips, it

does not give the best performance. This is due to the network congestion caused

by broadcasting the packet to all chips by all chips, which reduces the network

performance as the recipient router runs out of buffer space having to wait for

the monitor processor to clear the packets. Each chip gets 6 copies of the same

packet which the monitor processor has to receive before discarding the dupli-

cates. 5Msg Forward is the worst for taking the maximum router cycles (5) for

sending the packet to neighbours individually, and introducing almost the same

amount of congestion as with the broadcast. The 2Msg Forward algorithm is the

fastest method, however, it is not very robust as the algorithm does not ensure

that each chip receives duplicate packets which may prevent all the chips in a

pipeline from receiving the data if some chip in the start does not get a packet

due to a chip or link error. For all distribution policies, the application load

time in a large multi-CMP system is virtually independent of both the number

of Ethernet connections and the system size. The only relevant parameters are

the amount of data and the distribution policy. This is because of the perfect

pipelining of the packet distribution mechanisms.

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 147

Figure 7.9: Application Loading Process - Impact of Ethernet Connections (10-
Kbyte Date on a 256x256 Node System) [KNJ+08b, KNJ+08a, KNR+09].

Impact of Data Size

Figure 7.8 shows the impact of data size on the flood-fill process of loading

the application and data into the SpiNNaker multi-CMP system. We experi-

mented with varying sizes of data (application+supporting data) i.e. 8KB+16KB,

16KB+32KB, and 32KB+64KB of application plus supporting data into the

SpiNNaker system comprising 128x128 SpiNNaker CMP. We used only one Eth-

ernet connection between the system and the Host PC.

The results show that the process of application loading is dependent on the

size of data to be loaded, however, the total time taken (20 ms for 32KB+64KB

data) is not that high. The efficiency of the distribution algorithms is the same as

that explained in the previous experiment for the impact of system size. These

are the expected results as we are required to send more Ethernet frames and

thus more packets in the pipeline to load larger amount of data.

7.5.3 Impact of Ethernet Connections

Figure 7.9 shows the results of the simulation conducted to evaluate the impact

of the number of Ethernet connections between the Host PC and the multi-CMP

SpiNNaker system. We used a SpiNNaker system with 128x128 CMPs to load a

32KB application with 64KB of supporting data (as expected to be loaded in the

SpiNNaker system without synaptic data).

CHAPTER 7. SPINNAKER CONFIGURATION PROCESS 148

Surprisingly, the flood-fill process does not depend substantially on the num-

ber of Ethernet links to the Host PC in a large multi-CMP system, exhibiting

negligible performance gain with 4 Ethernet links. This is because of the efficient

Communication Network and the pipelined flood-fill application loading process.

For a large system size and large amount of data, the improvement gained by

multiple Ethernet connections is not pronounced. However, the redundancy of

connections to the Host PC provides better reliability by reducing single points-

of-failure for application loading. This will be further explained in Chapter 8.

7.6 Summary

Configuring a multi-CMP system at run-time to load and run a variety of appli-

cations is a challenge in an asynchronous distributed structure. The SpiNNaker

massively-parallel computing system is a novel multi-CMP system with many in-

house designed components. SpiNNaker has been designed to support most spik-

ing neural networks simulations. To achieve this objective, SpiNNaker presents a

“blank-slate” view to load a variety of neural applications at run-time and con-

figuring the system according to the application. A novel configuration process

has been devised as part of this research to configure a multi-CMP SpiNNaker

system dynamically and load the application at run-time. Experimental results

verify our claims for the process to be highly efficient and scalable. Although the

process has been devised for the SpiNNaker multi-CMP system, it is expected to

be useful for other multi-CMP systems.

Chapter 8

Fault-Tolerance

”Our brains keep working despite frequent failures of their component neurons,

and this ‘fault-tolerant’ characteristic is of great interest to engineers who wish

to make computers more reliable,...” S. B. Furber [New06]

8.1 Introduction

Natural artifacts are, generally, more reliable than their man-made replacements.

The human nervous system is an engineering masterpiece which human engi-

neering is still not approaching in terms of efficiency, power consumption, heat

dissipation, or robustness. Despite using massive numbers of small processing

units which form complex interconnections, the human brain is a very fault-

tolerant “real-time” system. Nature uses the principles of resource redundancy,

self-organization, adaptability, local reconfiguration, and autonomous local recov-

ery to maintain reliability in the nervous system. Computer science, during its

60 years of exponential evolution, has yet to achieve this level of reliability in its

engineered components. There is a need to reconsider our engineering methodol-

ogy to align with that of nature in order to design reliable components, otherwise

catastrophic incidents and expensive industrial losses may continue, such as the

deadly accident of space-shuttle Challenger due to component malfunction.

One of the objectives of the SpiNNaker project is to learn the principles of

designing fault-tolerant systems from biology. Our aim is to use the known to

discover the unknown i.e. to use engineering techniques from nature to design

a fault-tolerant computing system, and then to use this platform to explore fur-

ther and to improve our hardware. SpiNNaker has been designed to simulate

149

CHAPTER 8. FAULT-TOLERANCE 150

a part of the nervous system in biological real time. The biologically-inspired

neural networks have to be temporally correct within a required temporal granu-

larity (a millisecond in case of functional simulation of spiking neuron to capture

spike dynamics and the learning behaviour of a neural network) [Me98, DA01].

The SpiNNaker computing system running such a simulation functions like a

“real-time system” and has to simulate the both “logically and temporally cor-

rect” [Gre08] behaviour of the simulated neural network. This means that be-

sides producing functionally correct results, the SpiNNaker computing system

must perform these functions within an explicit timeframe or the results may not

be realistic. A real-time system has to be fault-tolerant or it fails to perform

in real-time [Kop97]. Conversely, a fault-tolerant system qualifies as a real-time

system as all the fault-handling functions have to meet some temporal deadlines

to maintain the usefulness of the system [Gre08].

The SpiNNaker computing system depends on its configuration process to

make use of its specially designed fault-tolerance features. On the other hand,

the SpiNNaker configuration process has been devised to be as fault-resilient as

possible so as to bring the system into functional state despite component-level

malfunction up to a certain degree. This chapter introduces the fault-tolerance

features of the SpiNNaker configuration process proposed in this thesis. The

chapter begins with a review of some fault-tolerance concepts in the context of

real-time computing systems, followed by a description of the hardware support

in the SpiNNaker computing system to facilitate fault-tolerance. At the end, the

chapter explains how the configuration process uses SpiNNaker’s fault-tolerance

features to make it a reliable computing system.

8.2 Fault-tolerance In Computing Systems

System fault-tolerance requires the system to be able to detect an error and

restore itself autonomously to a reasonable operational state, or at least to notify

the problem to the user (if possible) [RLT78]. “A system is considered to be

fault tolerant if it can continue to operate in the presence of failures (albeit, with

perhaps degraded performance)” [Gre08]. While devising a completely fault-

tolerant system and able to recover from any real-time failure is difficult, certain

faults can easily be trapped and corrected, restoring the system to at least a

minimal level of functionality. One of the central issues related to fault-tolerance

CHAPTER 8. FAULT-TOLERANCE 151

in real-time systems is the cost of recovery : the time and resource utilization

needed to correct a fault. Sometimes the recovery time may be so long that the

source error propagates, causing further undesirable faults [Gre08]. In that case,

it may be more practical to isolate a faulty component than to try to restore it.

However, we cannot isolate a critical component upon which other components

depend. We can minimise the risk of such points of failure through resource

redundancy or alternative workaround mechanisms.

Before discussing fault-tolerance techniques in a computing system, it is worth-

while to introduce some basic terms. “When the behaviour of a system deviates

from that which is specified for it”, this is called failure [RLT78]. System fail-

ure is an event that affects the reliability of a system. The term error means

“an incorrect state of the system” [RLT78], while a fault is “the mechanical or

algorithmic cause of an error” [RLT78]. Undesirable events are called hazards

which can cause defects or faults which eventually lead to failures. In the worst

case, failures can propagate to cause a catastrophic breakdown or mishap. The

following relationship shows the inter-relationship of these terms in a computing

system [Gre08].

fault =⇒ failure =⇒ hazard =⇒ mishap

Real-time systems can be divided into two types: hard-lined and soft-lined. A

hard-lined real-time system that misses its time constraints may bring a system

into a mishap, examples include safety equipment and aircraft control systems,

while in soft-lined systems the time constraints are desirable but do not cause a

severe failure [Kop97].

Fault-tolerance in a computing system may involve all or most of the following

techniques.

• Fault Detection: The purpose of fault detection is the prevention of a system

failure by recognizing when a fault may be about to happen [RLT78]. A

computing system can have diagnostic mechanisms which run periodically

to identify potential problems or devices can be designed to detect faults at

run-time and report these to the user or the application.

• Fault Treatment: A detected error may be only a symptom of the fault

that caused it. We need to find out the exact nature of the problem and

its potential effects before taking measures to avoid failure. Many faults

may cause a similar error and sometimes ignoring the fault and continuing

CHAPTER 8. FAULT-TOLERANCE 152

to provide the current service may be the best alternative [RLT78]. The

fault treatment process may require a detailed assessment to determine the

extent of the damage (though this is not possible in some real-time systems).

• Error Recovery: This is a process which attempts to correct, mitigate, or

contain failures so that no further problems are introduced [Gre08]. Some

options to error recovery may be (but are not limited to):

1. Replacement: i.e. replacing a component with a spare one. This relies

on component redundancy.

2. Reconfiguration: i.e. to reconfigure a faulty system (or a part of it)

to bring it out of a faulty state [RLT78]. This involves changing the

failed component’s internal configuration and/or its interactions until

a desired functionality is restored [Gre08]. It does not guarantee full

recovery, however, it is one of the most viable options in use in self-

adaptive hardware.

• Fault Isolation: i.e. to attempt to isolate the fault in a component or isolate

the faulty component (if it cannot be recovered) to avoid propagating the

error.

• Error Reporting: i.e. to report the error to the user if it cannot be recovered

autonomously so that the user can either repair the system or shut it down.

• Fault Masking: i.e. producing an output with redundant resources and then

selecting the correct output with voting [Gre08]. This technique is rarely

used in embedded real-time systems and is not used in SpiNNaker either.

8.3 SpiNNaker Fault-tolerance Support

As explained before, the SpiNNaker computing system simulating biologically-

inspired spiking neural networks is a real-time system. The system has soft real-

time bounds i.e. the crossing of a millisecond limit while updating the neural

state of all (1000) simulated neurons in a processor is desired, however, it does

not cause a catastrophic system failure. The fact that the nervous system’s spike

communication is non-deterministic and noisy [Me98, DA01] does not invalidate

the real-time behaviour of a simulated neural network. Moreover, the difference

CHAPTER 8. FAULT-TOLERANCE 153

of electronic transmission speed (in the SpiNNaker Communication Network) and

the action potential propagation speed (in the nervous system) gives a tolerance

of more than a millisecond between the receipt of a spike to its effect as explained

in Section 4.5, which enables the delay in missing the update-interval time limit

to be caught up.

SpiNNaker uses both error-recovery techniques, i.e. replacement and recon-

figuration, to maintain its run-time functionality. The fault recovery process

is autonomous and runs as an event-driven application (Section4.5) as part of

the SpiNNaker configuration process. The SpiNNaker configuration code for the

processors, and particularly for the monitor processor, contains fault-recovery

routines to handle certain envisaged faults. The monitor processor in each chip

is responsible for dealing with chip-level fault-handing and contributes to the

system-wide fault-tolerance with the help of the Host PC, while the other proces-

sors continue to run the application. The configuration process uses SpiNNaker’s

specially-designed fault-tolerance features to provide a support for run-time lo-

cal recovery, isolation of faulty components, and local reconfiguration controlled

by the monitor processor. The following hardware support is provided in the

SpiNNaker computing system to support fault-tolerance:

• Fault-detection: Most SpiNNaker CMP components such as the Router,

Ethernet Interface, PHY, DMA Controller, Communication Controller, and

Watchdog Timer, have error-detection hardware, and report exceptions to

the processors as interrupts. The Router and Communication Controller

detect and report faults in the Communication Network. They can detect

and report on packets received with parity errors, time-phase errors, framing

errors, and invalid packet type errors. Besides this, the router reports to

the monitor processor on emergency routed packets and packets removed

from the network due to congestion on the links to the other neighbouring

chips. The router can keep a record of dropped packets while preserving

the packet contents. The monitor processor can, if necessary, regenerate

the dropped packets to send these via other lightly loaded routes. The

Communication Controller interrupts its local processor to handle the error

locally, while the router report the error to the monitor processor to handle

the fault locally at the CMP level.

• Redundant Processing Nodes: Each CMP has about 20 processing nodes

CHAPTER 8. FAULT-TOLERANCE 154

which are similar in all respects. Any processor can be assigned to per-

form any specific task as the processing node job assignment has been kept

soft and is configured dynamically at run-time. Even the selection of the

monitor processor in each chip is kept under software control to support

fault-tolerance, as a hard-wired monitor processor introduces a single-point-

of-failure. Though the processing nodes’ IDs are hard-wired, these are only

for configuration purposes. The software can configure their soft addresses

to run the same application irrespective of a particular processing node fail-

ing. The SpiNNaker application model proposes keeping a few processors

as spare to allow run-time replacement.

• Redundant Ethernet Connections: While only one Ethernet connection is

necessary to connect SpiNNaker to the Host (and there is a little perfor-

mance gain from using more than one link during a flood-fill process in

a large scale system (Chapter 7, Section 7.3)), we connect the SpiNNaker

system to the Host PC using two or more Ethernet connections for re-

dundancy and thus better fault-tolerance. This, again, minimises single

points-of-failure.

• Reconfigurable Chip Addresses: The SpiNNaker CMPs are not hard-wired

with fixed addresses. The chips are assigned virtual addresses for packet

routing at run-time. With this scheme we can implement any networking

topology and isolate any non-functional chip(s). This also allows reassigning

the job of a dead-chip to a spare one by reconfiguring the Communication

Network at run-time.

• Reconfigurable Routing: The router in each chip is fully reconfigurable.

Initially, the router can route only NN packets which go to the six near-

est neighbours without any knowledge of the chip addresses. For multicast

(MC) and point-to-point (P2P) packets, we need to configure the routers to

establish links between the processing nodes located in the various CMPs.

SpiNNaker allows reconfiguring these routing tables at run-time. This soft

configuration and ability to reconfigure at run-time improves system relia-

bility as a broken or congested link can be avoided by local reconfiguration

of the routing tables by the monitor processor or externally by the Host PC.

Each router contains redundant entries in the routing tables to be reused

for reconfiguration. If a part of a routing table is damaged, the remaining

CHAPTER 8. FAULT-TOLERANCE 155

entries can be used to configure routes. A dead processor in a chip or a

dead chip in the system can be isolated by configuring the routing tables

not to send packets to them.

• Lookup Point-to-point Routing: The chips are arranged in a 2D network

with their addresses assigned in 2D Cartesian space along (x,y) axes. The

P2P packets are routed logically based on the destination chip’s address

(x,y) using algorithmic routing. However, we use look-up routing tables

for P2P routing to allow tailored routing and reconfiguration in favour of

better reliability. The P2P routing table not only helps in isolating a dead

chip but can also be reconfigured at run-time to avoid congested routes or

to provide multiple paths.

• Emergency Routing: The router can automatically handle a transient fault

at its transmission links by using a hard-wired emergency routing mech-

anism. This mechanism copes with transient faults caused by congestion

or other errors on the inter-chip links without having to reconfigure the

routing tables. If, however, the fault persists on any particular link or

two consecutive ports are blocked, causing packets to be dropped due to

failed emergency routing, the router informs the the monitor processor af-

ter dumping the dropped packet into its registers. The monitor processor

can reconfigure the routing table to avoid sending packets to this link, after

analysing the situation at the router.

• Watchdog Timer: Each SpiNNaker CMP contains a watchdog timer to trap

a non-responsive chip. The purpose is to monitor the monitor processor’s

health in each chip and to contribute to the system-wide management.

The monitor processor needs to reset the watchdog timer after a specified

interval, failure to do so resets the monitor processor or the whole chip.

• RAM-ROM Remapping: Each chip boots from the Boot ROM on power-

on. We keep the minimum possible code in the Boot ROM to support only

initial testing and initialization of the chip resources. However, to avoid a

single point-of-failure in the case of a malfunction in the Boot ROM, the

SpiNNaker CMP can use the System RAM in place of the Boot ROM. The

System Controller can remap the Boot ROM address in the System NoC

to point to the System RAM.

CHAPTER 8. FAULT-TOLERANCE 156

• System Controller: The System Controller on each SpiNNaker CMP plays

a vital role in chip management and local fault-tolerance. It maintains the

state of all the processors and chip resources which can be viewed by all the

neighbouring chips using the NN peak-and-poke feature. The System Con-

troller has been designed to allow a reset of only selected processing cores,

a selected processing node (a processing core along with its supporting pe-

ripherals), selected chip-components (sub-systems) in the chip, or the whole

CMP. The purpose is to recover locally from deadlocked states. Besides

this, the System Controller also contains support to disable any processing

node in order to isolate a faulty processor. The inter-CMP transmission

and receive links can also be reset or disabled with the help of the System

Controller.

8.4 Fault-Tolerance in the Configuration Pro-

cess

The SpiNNaker configuration process makes use of the fault-tolerance features in

the SpiNNaker design to provide a fault-tolerant hardware platform to the user.

The following sections describe some important fault-tolerance features of the

SpiNNaker configuration process.

8.4.1 Monitor Processor Selection

Contrary to a typical CMP-system where a monitor processor is hard-wired at

design time, thus introducing a single point-of-failure, SpiNNaker chips do not

have a dedicated monitor processor. The configuration process selects the monitor

processor from the healthy processors for better fault-tolerance. The monitor

process can be replaced by any other healthy processor at run-time, in case of

any problem with the monitor processor.

8.4.2 Boot ROM Failure

In case of a Boot ROM failure, the configuration process makes use of the RAM-

ROM address remapping feature to use System RAM for the boot-up process

with the help of a neighbouring chip. The process is described later.

CHAPTER 8. FAULT-TOLERANCE 157

8.4.3 Chip-level Recovery

To detect and recover a faulty SpiNNaker CMP a detailed chip-level recovery

mechanism has been devised which uses specially-designed features in the chip.

During chip-level initialization, the monitor processor tests all the devices and

tries to reset any faulty components. This may allow a device to recover from a

transient fault. If, however, a device does not respond after reset, the monitor

processor records its state and informs the Host PC while reporting the chip’s

state. Similarly, each processing node informs the System Controller of its state

which is recorded in a special register. The monitor processor tries to bring a dead

processing node up by resetting it, or informs the Host PC. During application

execution, all the processors’ activity (sleeping or active) is recorded in the System

Controller. The monitor processor can poll this information to examine any non-

responsive processor. A suspected processor can be sent an interrupt to see if

it responds, a failure to do so may warrant the monitor processor resetting the

faulty processing node.

The chip-level management and recovery depends on the health of monitor

processor, which itself may be deadlocked due to a hardware or software fault.

A Watchdog timer in each chip detects a non-responsive monitor processor and

informs the System Controller to reset it or replace it with a healthy one. The

Watchdog generates an interrupt after a specified interval and a reset signal if

the interrupt is not cleared in the next interval of the same length of time. The

Watchdog interrupt line is connected to all the processing nodes, besides being

available to the System Controller. The System Controller contains a special

register to record the reason for the last reset i.e. the power-on reset, Watchdog

chip-level reset, or a Watchdog soft reset to only the monitor processor. The

System Controller allows setting an option to reset the monitor processor on the

Watchdog interrupt for configuration flexibility. We implemented the following

two options in our configuration process to recover a non-responsive chip:

• Reset on Watchdog Interrupt: with the help of the System Controller, we

can configure the monitor processor’s soft reset on receiving the Watchdog

Timer’s interrupt. If this feature is enabled, the monitor processor is re-

quired to reset the Watchdog’s counter periodically before the Watchdog

generates an interrupt. Failure to do this will cause the System Controller

to generate a soft reset to the monitor processor i.e. only the monitor pro-

cessor (without its peripherals) will be reset. It is an efficient process which

CHAPTER 8. FAULT-TOLERANCE 158

relieves the monitor processor from handling an interrupt while doing its

processing. Resetting the watchdog timer is only a 2-3 instruction routine

as compared to the interrupt service routine which takes 12-13 instructions

besides saving the context and changing the operational mode during which

the monitor processor may have to divert from an important job.

• Event-Driven Reset: The previous option is efficient. However, it requires

the monitor processor to continuously take care of resetting the watchdog

before the lapse of the Watchdog’s configured interval. Contrary to this,

the second option uses an event-driven chip-recovery process whereby the

monitor processor enables the Watchdog interrupt in its interrupt controller

and clears the interrupt whenever it is received. Failure to do this causes the

Watchdog to generate a reset signal to all the processing nodes, eventually

resetting the whole chip. This feature is dangerous in that the application

processors and the chip will lose their state as a result of only the monitor

processor’s misbehaviour.

The two options are available to the user and the configuration depends on

the user’s preference.

8.4.4 NN Diagnostics and Recovery

As described in Chapter 4, the MCRouter on each chip can support MC, P2P

and NN packets. An NN packet can travel only between two adjacent chips.

However, with the help of an NN packet a chip can broadcast a packet to all its 6

neighbours at the same time, can communicate with any of its chip individually,

or peek-and-poke any of its neighbouring chip’s resources. The peek and poke

feature of the NN packet has been designed specifically to help bring up a dead

chip during the configuration process. Using this feature, the chips surrounding

a dead chip try to diagnose the reason by reading the information recorded in the

dead chip’s System Controller.

As described in Chapter 7, at the end of the configuration process phase

I, each chip tries to check its connections with six other chips by reading the

neighbouring chips’ status from their System Controllers using NN packets. If a

chip does not get a response packet back or the status indicates a problem in any

chip, the six chips neighbouring a dead chip activate a “neighbour diagnostic”

routine to recover the dead chip.

CHAPTER 8. FAULT-TOLERANCE 159

Figure 8.1: NN Diagnostic and Recovery Process.

CHAPTER 8. FAULT-TOLERANCE 160

The following process of neighbour diagnosis and recovery, as graphically rep-

resented in Figure 8.1, is adopted by the monitor processor on all the chips:

• If a chip fails to read from a link after a specified interval, there is a pos-

sibility of a dead chip or broken links between the two chips. The chip on

either side resets its non-responsive links before checking the link again. The

process is repeated a number of times to ensure recovery from a transient

error.

• If a link does not respond after a number of resets, the chip marks the link

as dead.

• Each chip sends a Hello message to the chips with live links.

• If a Hello message is not received during a specified interval or the chip

status, read earlier while checking the links, indicates a problem in the

chip, the NN Recovery process in the neighbouring chips tries to recover

the dead chip. For this purpose, a “nurse chip” is selected from the healthy

neighbouring chips with live links to the dead chip. The process of nurse

chip selection will be described later.

• The nurse chip reads the monitor processor ID register and the processor’s

status registers from the dead chip’s System Controller to diagnose the

problem. If the monitor processor has been selected and the chip resource

state indicates more than one healthy processor, the nurse chip changes the

monitor processor ID register to point to another healthy processor, disables

the dead monitor processor, and resets the newly selected processor to take

over as the monitor processor. This will avoid reinitializing the whole chip

and any disruption to the application running on the application processors,

and keeps the state of the chip intact. The nurse chip can also reset all the

processors in the initial configuration process to restart the selection of the

monitor processor. In this case, the System Controller will ensure that the

same processor is not selected as the monitor processor.

• If the System Controller is unchanged, the nurse chip tries to read the

Boot ROM and does some basic testing to examine its state. If it discovers

any problem with the Boot ROM, the nurse chip copies the code from its

own Boot ROM into the System RAM of the dead chip, and then remaps

CHAPTER 8. FAULT-TOLERANCE 161

the address of the Boot ROM in the System NoC to the System RAM. It

then resets all the processors to restart the chip-level boot process from the

remapped location.

• If the nurse chip can not determine a viable recovery solution, it resets the

whole chip in an attempt to recover from an unknown transient problem.

• if nothing works, it isolates the chip by disabling the clocks of all the pro-

cessors on the dead chip and reports the matter to the Host PC.

Selecting a nurse chip from the six neighbouring chips surrounding a dead chip

is an interesting issue in a fully distributed system. We considered the following

three options for selecting the nurse chip:

• Fixed: a fixed neighbour is always selected as the nurse chip, e.g. the chip

on link ’0’ of the dead chip may be selected to perform this task. This is

the easiest implementation for the dead-chip recovery process. However, it

introduces single point-of-failure i.e. the process cannot proceed if the link

or the chip on port ’0’ of the dead chip is out of order.

• Central: the chips report their state along with the state on their links to

the Host PC as part of the configuration process phase II. After acquiring

the state of the whole system, the Host PC nominates one of the dead-chip’s

healthy neighbouring CMPs with active links to cure the dead chip. The

protocol is simple and does not introduce single point-of-failure, however,

the process is not autonomous and will take a while to cure a dead chip as

the Host PC will nominate a nurse chip only after receiving the state of all

the chips.

• Dynamic: the six neighbouring chips collaborate to decide which one of

them should become the nurse chip. For this, the six neighbouring chips

read the arbitration register of the dead chip’s System Controller used to

select the monitor processor, and the one getting the first access (a re-

turn value 0x80000000) is selected as the nurse chip (this uses the monitor

processor selection process as explained in Chapter 7).

CHAPTER 8. FAULT-TOLERANCE 162

8.4.5 Connection to the Host PC

An Ethernet interface has been provided on each SpiNNaker CMP to connect

it with the outside world as described in Chapter 4 (Figure 4.10). Using the

on-chip Ethernet, a single SpiNNaker CMP can be configured to work as a fully

functional SpiNNaker system connected to the Host PC, which can simulate a

neural network of up to 20,000 neurons. The process can be refined to allow

a multi-CMP SpiNNaker system to be divided into more than one subsystem

to run different neural simulations at the same time by configuring its routing

tables to partition the system and connecting each partition to the Host PC using

Ethernet connections. In an integrated multi-CMP SpiNNaker, we can configure

more than one Ethernet link to connect the system to the Host PC to provide

redundant links. The results in Chapter 7 show that loading the application with

more than one link does not improve the performance of the process. However,

the redundant links improve the reliability of the process by minimising single

points-of-failure as a single link can malfunction at run-time to lose the connection

with the system.

8.5 Fault-Tolerance in Application Loading

The application load process uses broadcast (or multicast) to flood-fill the appli-

cation and its data into the chips. As a consequence of the flood-fill process, each

chip receives redundant data, ensuring delivery of all the data and its associated

application. Chapter 7 shows that the 2Msg forward technique to flood-fill data

is the best in performance, however, this does not ensure delivery of all packets

to each chip twice. The configuration process favours an approach that delivers

redundant packets to each chip for fault-tolerance. In the case of no redundancy,

a chip expecting to receive packets only from a broken link will remain void of

data and, thus, will not pass the data onward, leaving all the chips in that direc-

tion without the application. The redundant packets can also be used to verify

the data by comparing the two packets. While each chip thus receives the same

application, the monitor processor configures the application according to its chip

location. Since each chip contains the the same application, any chip can be re-

configured at run-time to take on the role of some other chip, and can likewise

locally provide missing data to a chip that recovers from its initial faulty state.

CHAPTER 8. FAULT-TOLERANCE 163

8.6 Evaluation Work

8.6.1 Chip-level Recovery

We experimented with the chip-level recovery process in the case of the monitor

processor’s malfunction at run-time. The Watchdog timer was configured to

detect a non-responsive monitor processor and notify the System Controller. The

following scenarios, as explained in Section 8.4.3, were implemented and tested:

• Reset on Interrupt: For this test, we configured the Watchdog timer to

generate an interrupt after every 20ms. The System Controller was con-

figured to generate a reset signal to the monitor processor on receipt of an

interrupt from the Watchdog timer. We configured the Timer Controller

interrupt service routine for the monitor processor to reset the Watchdog

timer’s counter after every 9ms. This ensures that the watchdog counter is

reset twice before a reset could be generated. We then disabled the Timer

interrupt to let the watchdog generate an interrupt after 20ms. The moni-

tor processor was reset by the System Controller (using a soft-reset i.e. only

the monitor processor itself, and not its peripherals). The boot-up process

checked the reason for the reset code (which was the Watchdog Interrupt as

expected) in the System Controller before starting the chip-level initializa-

tion and avoided the testing and initialization of the chip resources as the

state in the System Controller indicated healthy chip resources. The pro-

cess took ∼0.9ms to bring the chip up as compared to the normal ∼1.3ms

from a cold start.

• Event-Driven Reset: In this option, we configured the Watchdog to generate

an interrupt after every 10ms and then to generate a reset signal after the

same interval. The monitor processor was configured to enable the Watch-

dog interrupt in its interrupt controller, and cleared the interrupt in the

Watchdog timer to avoid getting a reset after another 10ms. We then dis-

abled the watchdog interrupt in the monitor processor interrupt controller

to allow the Watchdog to generate a reset signal to all the processors. After

20ms all the processors in the SpiNNaker CMP were reset by the Watchdog

timer. The process took the normal chip-level cold boot-up time (∼1.3ms)

as the whole chip was configured again .

CHAPTER 8. FAULT-TOLERANCE 164

8.6.2 NN Diagnostics and Recovery

Here we present our results for the NN diagnostics and recovery process. We

evaluated the following scenarios with this process:

• Inter-CMP Broken Links: The links between Chip(0,0) and Chip(1,0) in a 4-

chip SpiNNaker system were disabled to test this situation. In the first case,

we temporarily disabled the links in the SpiNNaker SystemC simulation in

a way to be fixed on reset. In the second case, we permanently broke the

links between the two chips. In the first case the chips reset the links and

recovered from the problem, while in the second they marked their links as

broken after enquiring from their common neighbour. The two situations

took different times as shown in Table 8.1.

• Monitor Processor Non-responsive: In this case two situations were tested.

In the first situation we recovered the dead-chip by replacing a monitor

processor, disabling the first one and sending a reset to the newly selected

monitor processor to take over. In the second situation, we reset all the

processors to restart the boot-up from the scratch. Table 8.1 shows the

time taken by the two recovery processes.

• Boot-ROM Broken: In this case, the boot-up code was not copied to

Chip(0,0) in a 4-chip SystemC simulation of a multi-CMP SpiNNaker. We

implemented the fixed technique for selecting Chip(1,0) as the nurse chip

to bring the dead chip up. Table 8.1 shows the time taken by this process

to bring up the dead chip (Chip(0,0)).

Table 8.1: NN Diagnostic and Recovery Process.

S/No Fault Measure Taken Time

1 Inter-chip link

broken

Each Chip resets its non-

responsive links. The process is

repeated a number of times after

a delay of 3ms before giving up.

0.48µs.

CHAPTER 8. FAULT-TOLERANCE 165

2 Inter-chip link

broken and

could not be

repaired

Disable link and communicate

through a common neighbour.

The non-responsive link was re-

set thrice at 3.9ms, 6.1ms and

8.9ms after the boot-up. After

three resets, the link was dis-

abled and marked as dead in the

ITCM to avoid sending packets

to this port.

6ms

3 Monitor pro-

cessor not

responding

Option 1: (if the chip config-

uration has already been done

by the previous monitor proces-

sor) the nurse chip changes the

monitor processor ID to another

processor, disables the current

monitor processor and resets the

newly selected processor to take

over as the monitor processor

1.09ms

4 Monitor Pro-

cess not re-

sponding

Option 2: (if the chip has not

been initialized) the nurse chip

resets all processors to restart

the boot process.

1.37ms

5 Boot ROM bro-

ken

The nurse chip loads the Boot

ROM image to the dead-chip’s

System RAM, remaps RAM-

ROM address and resets proces-

sors to boot from the System

RAM.

13.2ms (12ms to

load the boot

ROM)

6 Nurse-chip

failed to bring

the dead-chip

up

disable all processors’ clocks in

the dead chip and report to the

Host PC

1.2µs.

CHAPTER 8. FAULT-TOLERANCE 166

8.6.3 Application Loading

We have conducted various experiments to prove that the application loading pro-

cess does succeed in various situations of faults in the Communication Network.

We considered the following link failure modes:

• Vertical Compartments: all the links along the x-axis in a 2D torus configu-

ration of the SpiNNaker multi-cmp system were treated as blocked, leading

to a network split into multiple columns. We did not, however, disable the

diagonal links, so the network is not completely split.

• Horizontal Compartments: all the links along the y-axis were disabled, to

partition the network in multiple rows in a SpiNNaker 2D torus configura-

tion. As above, the diagonal links remained intact.

• Cross Links: the union of the previous two, i.e. both the horizontal and ver-

tical links were disabled splitting the network into four square sub-networks.

The chips could only communicate through their diagonal links.

• Random Link Failure: a random set of link failures was tested in this

case. We tested systems with various degrees of network degradation. We

tested the system with random link failures of L/256(rnd1), L/128(rnd2),

L/64(rnd3) and L/32(rnd4) links, where L is the number of total links

(64K*6=384K) in the system. It gave 1K to 64K link failures.

We tested the system using 1, 2 and 4 Ethernet connections to the Host PC

from the CMPs located at (0,0), (X/2,Y/2),(X/2,0) and (0,Y/2) where X and Y

are the number of CMPs along X- and Y-axis respectively in the SpiNNaker 2D

toroidal configuration (Chapter 4 Fig. 4.10). Finally, we tested different network

sizes, all of them square, ranging from 32x32 to 256x256. Figure 8.2 shows the

effect of the number of Ethernet connections on the application loading process

in the presence of faulty inter-CMP links as explained above. Though connecting

the Host PC at more than one point to the SpiNNaker system does not improve

the application loading time in a large-scale system (Chapter 7 Section 7.5), it

does improve the fault-tolerance of the process as a chip can receive a packet from

various directions. It is particularly important if the network is split in various

regions due to link failures. Here, the broadcast mechanism proves to be the

most robust by losing no packets in any failure setting, while the 3Msg forward

CHAPTER 8. FAULT-TOLERANCE 167

Figure 8.2: Fault-tolerance in Application Loading Process with Varying Numbers
of Ethernet Connections [KNR+09]

CHAPTER 8. FAULT-TOLERANCE 168

provides reasonably good fault-tolerance as it is not affected by horizontal and

vertical failed links and random link failures up to 8K (a system degradation of

about 2%). The 2Msg forward technique is the worst in robustness, though the

best in performance as proved in Chapter 7.

8.7 Summary

Fault-tolerance in hardware systems is not a new idea. Many clever techniques

have been devised to make computing devices sufficiently reliable, especially

mission-critical embedded systems. Nature is known for engineering reliable sys-

tems, and our brain is one such example. The history of computing system

failures suggests that it is worth spending more time and resources in order to

improve the fault-tolerance of our products. May be we can learn from nature

how to do this better. In the SpiNNaker project, one of our objectives is to de-

sign a high-performance and fault-tolerant computing system in order to explore

nature’s engineering methodologies in producing fault-tolerant systems. We use

known fault-tolerance techniques from computing systems and provide support

for experimenting with the techniques biology uses to make its systems fault-

resilient. The SpiNNaker computing system provides support to detect a number

of faults and recover from these with the help of software. SpiNNaker has been

designed as a modular and reconfigurable system with redundant resources and

specially-designed fault-tolerance features to provide a reliable real-time hard-

ware neural simulation engine. The SpiNNaker configuration process makes use

of these features to bring the system up reliably and to load applications into the

system. SpiNNaker running a spiking neural network in biological real time acts

like a real-time system. As a real-time system has to be fault-tolerant to perform

in real-time, the SpiNNaker configuration process ensures this in the absence of

an operating system. The experimental results shows the performance of some

of the techniques implemented as part of the SpiNNaker configuration process.

Chapter 9

SpiNNaker Hardware

Abstraction Layer

9.1 Introduction

The SpiNNaker computing system is an Application Specific Integrated Circuit

(ASIC) design composed of off-the-shelf Intellectual Property (IP) hardware re-

sources from various vendors and in-house designed components to perform spe-

cific functions in the context of the overall SoC design objectives. The target

users are multi-disciplinary scientists and engineers developing or using neural

network applications in the neural computation research space. Present day neu-

ral applications are being developed using a variety of software tools targeted at

conventional computing systems. The main motivation for the SpiNNaker design

emerges from the limitations of general-purpose computers in terms of their per-

formance when simulating large-scale neural networks using biologically-inspired

neural models (as described in Chapter 3). There is a large collection of devel-

oped applications based on decades of research work ready for a suitable hardware

platform. The SpiNNaker multi-CMP massively-parallel computing system is one

realization of a long-awaited need to enable the simulation of large neural popu-

lations in their biological real time. With a large-scale neural network simulator,

such as SpiNNaker, there is now a need to port these applications to this system

without undue concern with the architectural details of this computing device.

The solution is to devise an abstraction layer to interact with the hardware and

provide a high-level Application Programming Interface (API) to application de-

velopers without the knowledge of the underlying hardware and to enable them to

169

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 170

Figure 9.1: Hardware Abstraction Layer [SY03].

develop their own applications without detailed knowledge of the physical-layer

complexities.

This chapter highlights the importance of developing a hardware abstraction

layer in a computing system, especially in a purpose-built computing device that

is architecturally unique from a normal software developer’s perspective. The

chapter describes the contribution as part of this research to provide an abstrac-

tion layer in the form of a library of useful functions to facilitate the development

of neural applications without needing much knowledge of the SpiNNaker archi-

tecture. In conclusion, some evaluation work performed to test the correctness

and performance of some of the useful functions is presented.

9.2 Hardware Abstraction Layer

Software component reuse necessitates a hardware dependent software API at the

lowest level to interact directly with the hardware and to provide a common inter-

face to the applications running on top. It is used to port the operating systems

and applications on varying number of computer architectures easily. The inter-

face is called the “Hardware Abstraction Layer” (HAL) or the “Board Support

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 171

Package” (BSP) [SY03]. The HAL comprises all the software “directly depen-

dent on the underlying hardware” [SY03] and may constitute boot-up instruc-

tions, code for configuring and accessing hardware components (device drivers),

context saving and switching mechanisms, interrupt service routines to handle

device-level interrupts during application execution, and device-exception han-

dling routines etc. Figure 9.1 shows how a HAL should provide an interface

between the hardware and the application. In its simplest form a HAL can be

considered as a “nano-kernel” which is a combination of interrupt service routines

and task stacks [PBK91]. Mostly HALs form part of an operating system and

their definition is also specific to the vendor’s operating system. For example,

in the case of Windows CE, the HAL or BSP consists of boot-up instructions,

the OEM abstraction layer, device drivers, and configuration code [SY03]. A

variety of device drivers are provided in a library, from which ones specific to the

architecture are installed with the help of a configuration tool called “Platform

Builder” [SY03]. Other commercial operating systems follow similar techniques.

For SoC design, especially in CMP architectures, besides software reuse, the

HAL has to deal with concurrent processes/threads which requires a notion of

synchronization using some mechanism of inter-process communication. In the

SoC design cycle, using a system-level modelling approach for hardware/software

co-design, we can finalize the hardware/software interface early in the design pro-

cess to start developing the software in parallel with the hardware design. Thus

the HAL can be developed along with the application. In such a case the appli-

cation can be developed on a PC without reference to the hardware architecture

which would be taken care of by the HAL. The Virtual Socket Interface Alliance

(VSIA) [All00] has been trying to standardize its specifications for developing a

HAL API to make it acceptable to most hardware and software vendors. How-

ever, in the case of SoC designs having application-specific architectures with

newly designed components, a fixed standard API may not be feasible. Sungjoo

et al. [SY03] highlight the following three major issues while implementing a HAL

for an SoC design.

• HAL Modelling: In the case of an SoC the software development starts

in parallel with the hardware design, which initiates the specifying and

implementing of a HAL for the hardware which is still in the design phase.

Because the target hardware is not ready, the HAL cannot be verified.

This requires modelling of the HAL along with modelling the SoC during

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 172

the initial phases of hardware/software co-design. The modelled HAL can

then be tested on the TLM or RTL system-level model.

• Application Specific HAL: A generic HAL API may be suitable for most

available hardware components, however, if an SoC has been designed for

a specific application with many in-house components, it may be easier to

devise a new HAL than to port a nano-kernel to conform to the newly

devised architecture; this is the case with the SpiNNaker architecture. A

case study conducted to find a suitable off-the-shelf micro-kernel for SpiN-

Naker concluded that it would be easier to write dedicated device drivers

and other functional routines than to use an existing open-source embedded

microkernel.

• Manual HAL Design: For an SoC design, it is necessary either to implement

the HAL manually or to configure it for a specific set of components on the

SoC board. Even with a configuration tool, it is necessary to extend the

API by writing drivers for components not supported by the library. The

process is time consuming and error prone for SoC designs.

9.3 Abstracting SpiNNaker

The SpiNNaker HAL has been implemented manually because of its specific-to-

application design and the use of in-house designed components, especially in

dealing with inter- and intra-CMP communication. Most of these functions have

been implemented in ARM assembly-code for optimal performance to support

real-time applications. The SpiNNaker HAL consists of the following classes of

functions.

9.3.1 Boot-up Instructions

The SpiNNaker HAL includes the implementation of the boot-up process de-

scribed earlier in Chapter 7. The code includes instructions for the reset handler,

stacks and heap initialization, the component-level Power-on-Self-Test (POST),

local and chip-level memory tests, processing node and chip-level device test, and

the initialization of these devices for default functionality. The instructions also

load the boot-up code into the local instruction TCM of each processing core.

As described in Chapter 7, in the boot-up process the instructions configure the

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 173

SpiNNaker CMP in phase I and helps with system-level integration in phase II

of the configuration process. The instructions also configure the chips to support

application loading into the system from the Host PC.

9.3.2 Neural Support Functions

The SpiNNaker HAL API provides certain routines to facilitate neural simulation

on SpiNNaker. One such facility is the support of inter-neuron spike communi-

cation. The HAL provides functions to the programmer to facilitate sending and

receiving spikes. The functions communicate with the Communication Controller

to emulate sending spikes using Multicast packets determined by the parameters

provided by the programmer. The library also provides functions to set up rout-

ing tables in the on-chip router to facilitate inter-neuron communication. This

function also ensures that the router is configured to disable unused entries in

the routing tables to discard any unwanted packets from the network. The HAL

library provides functions to support the synaptic data transfer using DMA oper-

ations to provide a localised view of the synaptic data. Again care has been taken

to make the functions optimal by using design features of the DMA Controller,

System NoC and the SDRAM controller (e.g. performing double-word transfers

with maximum burst size to make full use of the AXI interface of the System

NoC to access SDRAM). Similarly the functions report to the application if an

already-requested DMA operation is in process.

9.3.3 Interrupt Service Routines

The HAL library implements the Interrupt Service Routines (ISR), including

the context saving and restoring mechanisms, for all possible interrupts. As

the SpiNNaker application model (Chapter 4) uses these ISRs to execute the

spiking neural application as an event-driven real-time application, an entry point

is provided in each ISR to the user’s application. A list of these entry points

will be made available to users for application development. Users can employ

their own implementation of these functions while developing applications on

a PC, however, “including” the SpiNNaker HAL library ensures that the user

defined functions are “called” in the ISRs to integrate the application with the

configuration process code.

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 174

9.3.4 Optimal and Safe Device Interface

The SpiNNaker HAL is intended to make an optimal and safe use of the SpiNNaker-

CMP resources. Accessing the hardware using the device driver functions will

ensure that application-specific features of a device, unknown to a programmer

writing a high-level application, are made use of. This also ensures the avoid-

ance of any undesirable access to a feature kept for diagnostic purposes, or an

accidental misuse of a feature. For example, the optimal DMA operation is with

double-word size and a burst size of 16, however, a double-word access to the

System RAM is not supported and generates an AXI error in the DMA. Simi-

larly, burst size has no effect on the Router access through DMA operation as

the Router is provided with an AHB interface. The HAL functions for DMA

operations ensure that a function with appropriate options is initiated based

on the target devices. The Communication Controller has been optimally de-

signed to support neural spike communication i.e. a spike can be sent by just

one ARM instruction to write in one of the Communication Controller’s register

provided the configuration process has configured the Communication Controller

properly. The library provides the default “sendSpike()” function along with a

few more functions with various options to support interprocess communication

using multicast (MC), point-to-point (P2P), and nearest-neighbour (NN) pack-

ets. Sometimes, sending a packet may require writing the control byte and the

source-chip address to the control register (R0) of the Communication Controller,

which contains some “sticky” information bits indicating the transmission side

buffer status to help the application. An accidental clearing of these bits may

provide false information to the application resulting in packets being lost due to

congestion in the Communication Network. The sendPacket() function from the

SpiNNaker application library takes care of these aspects.

For proper functioning of the Router, the Router’s initialization routine in the

SpiNNaker HAL sets the unused entries in the Router’s Mask table to 0x00000000

and those of its Key table to 0xFFFFFFFF , which invalidates every bit in the

packet routing key ensuring that a packet with an invalid routing key is rejected

and removed from the Communication Network [Pro07]. Similarly, the unused

entries in the Router’s point-to-point table are initialized to be directed toward

the local monitor processor and removed from the network, or a P2P packet with

a certain invalid destination key in a point-to-point packet may keep roaming the

SpiNNaker Communication Network causing undesirable congestion. The router

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 175

initialization routine makes sure that the MCRouter is configured properly.

Chip-level shared variables are maintained in the shared memory to maintain

chip-level configuration status. Similarly, for inter-processor message passing, the

processors’ mailboxes are kept in the shared memory. In the case of RAM-ROM

mapping, a neighbouring chip can load its Boot ROM code into the dead chip’s

System RAM to be used as the Boot ROM, in which case the System RAM can

not be used for this purpose. There is no hardware memory protection unit in

the SpiNNaker CMP, so it is the responsibility of the programmer to take care

of these memory locations. The SpiNNaker HAL takes care of these addresses in

its functions to protect the shared memory locations.

9.3.5 Device Exception Handling

Most devices on a SpiNNaker CMP generate exceptions on detection of a fault,

as explained in Chapter 8. These faults are reported as interrupts to all the

processors, however, the interrupts from the chip-level shared devices are serviced

by the monitor processor. The interrupt handlers for these interrupts call various

error handling routines from the SpiNNaker HAL library to diagnose the errors

and provide a remedial measure where possible. The application can direct these

handlers to custom error handling codes by changing the entry points in the ISRs.

9.3.6 Fault-Recovery Procedures

Chip- and system-level fault-handling routines have also been implemented as

part of the SpiNNaker HAL library. These provide support for system-wide fault-

tolerance mechanisms as explained in Chapter 8. The routines include handling

chip-level recovery as a result of chip-level reset by the Watchdog timer, and

functions to cure a dead chip as a result of the nearest-neighbour diagnostic

process explained in Chapter 8. The SpiNNaker HAL also provides a limited

support to manage fault-handling externally from the Host PC at run-time.

9.3.7 Shared Memory Message-passing

Besides providing inter-neuron communication using packets on the SpiNNaker

Communication Network, the HAL library also provides a mechanism for shared

memory inter-process communication among the processors within a chip. This

has been implemented using a locking mechanism in the System Controller to

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 176

Figure 9.2: Sequence Diagram - SpiNNaker On-chip Interprocessor Message Pass-
ing using MC packets.

obtain a lock to the destination processor, individual mailboxes in the shared

memory (system RAM or SDRAM) for each on-chip processor to place the data

to be sent, and the processor interrupt mechanism in the System Controller to

notify the destination processor about the message. This mechanism is used to

reduce traffic congestion on the Communication Network, to transfer data among

on-chip processors.

We have devised the following three message passing methods with varying

performance depending on the data size as shown in Figure 9.4.

• Multicast Packets: This method uses the on-chip router to pass messages

as small packets carrying 32-bit data. This process requires configuring the

router to route packets to particular on-chip processors, and then send the

data with the help of a series of multicast packets. The routing key is used

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 177

Figure 9.3: Interprocessor Message Passing in a SpiNNaker CMP using Shared
Memory, (a) Send side, (b) Receive side.

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 178

Figure 9.4: Analysis of Interprocessor Message Passing Techniques. [SY03].

to indicate the destination processor along with certain instruction bits to

the destination processor about the handling of data. Figure 9.2 shows the

message passing algorithm using multicast packets.

• Shared Memory without DMA: This method uses on-chip shared memory

(System RAM or SDRAM) to pass messages. The process is shown in

Figure 9.3. The DMA operation is not used in this process as sometimes

the DMA may be busy doing a more important job such as transferring

synaptic data in and out of SDRAM etc. The data write/read operations are

performed as single word write/read to/from the mailboxes. The method

is more efficient than the one with DMA operation for small sizes of data

as it does not involve the overheads involved in configuring the DMA.

• Shared Memory with DMA: This method is the same as above except we

use DMA operations to read/write data to/from the shared memory. The

method with DMA operations is more efficient for large sizes of data, as

it uses the System NoC optimally with the maximum word and burst size

allowed by the target device.

.

To ensure uninterrupted communication, the process uses a specially-designed

locking (mutual exclusion) mechanism in the System Controller to lock access to

a processor in the SpiNNaker CMP that has not already been locked. Figure 9.3

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 179

shows the algorithm for the message passing mechanism using shared memory.

Each processor has been provided with a private mailbox of variable length (con-

trolled by the application) to enable crossbar inter-processor communication. The

first word in the mailbox is used to convey a meaningful message, followed by

the data to be transferred. After acquiring a lock, the source processor writes an

instruction in the first word of the mailbox and if data needs to be sent to the

target processor, this is written in the remaining mailbox. The source processor

sends an interrupt to the target processor with the help of the System Controller.

The target processor reads the instruction in the first word of its mailbox and

reads the data from its mailbox or writes the required data as a new message-

passing request. At the end of the message receipt, the target processor clears the

lock to itself and sends an acknowledgment interrupt to the source after writing

an acknowledgment message in its mailbox.

9.3.8 SpiNNaker-Host Communication

As discussed in Chapter 7, one of the challenges of configuring a multi-CMP

system is to provide a mechanism whereby the user or system administrator can

communicate with the application and the system. The SpiNNaker HAL library

includes functions to support this communication at run-time using Ethernet

frames and NN or P2P packets depending on the broadcast or point-to-point

message. The library also supports functions for the NN packet communication

used for system-level configuration in phase II of the configuration process and

the application loading process as explained earlier in Chapter 7. The library

also provides support to transform between the two types of communication (i.e.

Ethernet frames and NN packets) on the Host-connected chips.

To handle the Ethernet communication, the Ethernet device driver imple-

mented as part of the HAL library provides optimal functions to send and receive

frames. The functions provide support for data transfer between the Ethernet

controller and the local memory with or without the DMA operation depending

on the size of data in order to avoid the DMA configuration overheads in the case

of small size frames. We have devised an instruction set to be used as a commu-

nication protocol between the Host PC and the Host-connected CMP. A 4-byte

instruction is passed along with 2-byte length of data after the TCP/IP headers

for this purpose. A few options as part of flood-fill or CMP-specific instructions

are also passed in 12-16 bytes after the instruction. The frame format used in this

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 180

Figure 9.5: Host PC Graphical User Interface.

communication is explained in Appendix B. To handle the inter-CMP communi-

cation based on instructions from the Host PC, we use either NN or P2P packets

to send a message to all the chips or specifically to a particular chip respectively.

We use the address space 0x0F800000 to 0x0FFFFFFF in the routing key of the

NN packet to convey a specific instruction. Some of the useful instructions used

in the Ethernet frames and the P2P packets are listed in Appendix B.

9.4 Host PC User Interface

We are developing a user interface to be available on the Host PC. The purpose is

to provide support for configuring the system i.e. boot-up, enquiring the state of

the system, configuring the application based on the system-state before loading

it into the system, loading the application into the system, and interactively man-

aging the system/application for state reporting and fault-handling. It provides

a graphical view of the SpiNNaker multi-CMP system for system management.

The same interface can be used by users to communicate with the system. In the

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 181

Figure 9.6: SpiNNaker Application Development Process.

context of a spiking neural simulation running in biological real time, the user

may wish to provide run-time stimuli to the application and expect to receive

responses. This can be done with the help of this interface. One of the purposes

in providing this interface is to provide a local view of the system to the user or

application developer whereby the user feels to be working on the local PC. The

user’s interface aims to show a graphical 2D view of the whole system as shown

in Figure 9.5. The interface will connect itself with the SpiNNaker system using

one or more Ethernet connections as explained in Chapter 4. The configuration

application at the Host PC will run as part of the user’s interface to interac-

tively configure the system in phase II of the configuration process as explained

in Section 7.2.

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 182

9.5 Application Development Process

The proposed process of application development for the SpiNNaker computing

system is to develop a conceptual neural network application on a normal PC,

configure it on the Host PC as per available resources (i.e. the number of CMPs

in the system and number of processing nodes in each CMP) using a configuration

application, and then to compile the neural simulation application based on these

configuration files by “including” the SpiNNaker HAL library. The process is

shown in Figure 9.6 with the input to various processes and their output. We use

XML format for the configuration files describing the structure of the top-level

neural network. The basic idea is to automate the process of the application

development on a PC in a way which is seamless to the architectural differences.

The configuration files take care of the following two aspects:

• Mapping the neurons onto the processing nodes distributed among the

CMPs. The mapping should ensure load balancing among the processing

nodes for application processing. Mapping should also group the neurons

on the processing nodes so that neurons with co-related inputs (“fascicles”)

are grouped at the same processor to minimize traffic congestion.

• The routing tables in each CMP are configured taking into account the neu-

ral mapping onto the processing nodes. Two biologically co-located neurons

may be placed at any location in the system, provided the routing tables

have been properly configured to establish spike communication between

them.

9.6 Summary

For easy application development on a hardware architecture and to provide sup-

port for an optimal use of its resources, it is important to provide a HAL for appli-

cation developers to protect them from the underlying architectural details. HAL

development does not follow a standard approach in the case of SoC design, es-

pecially in application-specific architectures using custom-designed components,

which instead require the manual development of the HAL. The SpiNNaker SoC

has been designed specifically to support optimal spiking neuron simulation and

its expected users include researchers from multiple disciplines who would wish

CHAPTER 9. SPINNAKER HARDWARE ABSTRACTION LAYER 183

to use it for developing and/or running neural simulations in real time. To facil-

itate varying interests, a HAL has been designed for the SpiNNaker computing

system to facilitate application development and run-time interaction with the

system. The SpiNNaker HAL includes functions to support chip-level boot up,

system-level configuration, application loading, fault-handling routines, a Host-

system communication mechanism, and other application support functions to

enable developing neural applications for the SpiNNaker computing system. A

systematic application development process is being proposed for SpiNNaker us-

ing a SpiNNaker API library in order to help developers of neural applications

without being concerned too much about the underlying architecture, as well as

to make optimal use of the designed features.

Chapter 10

Conclusions

This chapter summarises the dissertation and analyzes the proposed solutions in

the light of the research objectives set forth at the start of this research. The

strengths and limitations of the SpiNNaker configuration process, as proposed in

this research, are presented along with certain aspects related to this research

which could not be looked into due to the paucity of time. The chapter concludes

with an envisaged implication of this research.

10.1 Dissertation Summary

In the initial chapters, a brief explanation of the neural dynamics contributing to

the information processing inside neurons and inter-neuron communication was

presented, along with the resulting combined neural network behaviour in the

nervous system (Chapter 2). These two phenomena i.e. neural processing and

the inter-neuron communication are the basis for designing a novel Application-

Specific Integrated Circuit (ASIC) architecture in the form of the SpiNNaker

massively-parallel neural net simulator. It is important to understand these phe-

nomena to understand the SpiNNaker real-time application model devised to

make optimal use of the SpiNNaker architecture. We also highlighted certain

mysteries about the brain which require extensive exploration, such as the neu-

ral processing mechanism causing neurons to exhibit varying spiking behaviour

in the presence of similar inputs, learning mechanisms as a result of temporal

co-relation of inter-neuron communication, and the emergent properties of a pop-

ulation of neurons contributing to the stimulus/response behaviour from various

184

CHAPTER 10. CONCLUSIONS 185

part of the nervous system. The thesis then focused on the need to create com-

puter simulations for large populations of neurons (neural networks) (Chapter 3)

to understand neural information processing and the spatio-temporal behaviour

of these networks. A few software- and hardware-based approaches to simulate

large-scale neural populations from the literature were analysed highlighting their

limitations which motivated the building of a specific-to-purpose large-scale hard-

ware simulation engine for better performance. The thesis discussed the need for

designing a scalable and high-performance neural network simulator with specific

features to support distributed parallel processing inside each neuron and the

massive inter-neuron communication. The objectives in designing the SpiNNaker

computing system were highlighted along with a description of its architecture.

The SpiNNaker application model to support large-scale neural simulations on

the SpiNNaker computing system was also explained (Chapter 4). Some users’

expectations were captured which provided a motivation for this research to fa-

cilitate the application development and the system’s use to make it useable by

a variety of potential users.

In the later part of this dissertation, the focus was on the research work

performed to devise a mechanism to support real-time neural applications on the

SpiNNaker massively-parallel computing system. The need for creating a system-

level model of the SpiNNaker computing system was explained in Chapter 5, to

verify the proposed configuration mechanism and to develop and test neural ap-

plications for SpiNNaker. Our experience while creating a novel complete-system

model for a multi-CMP system to an instruction- and cycle-accurate level were

described, along with a description of the process adopted to verify the system-

level model with the help of case studies. This model is one of the most im-

portant contributions of this research, as not only did it provide a verification

platform to validate the SpiNNaker configuration process but it also was very

useful in validating the design objectives of the SpiNNaker computing system.

The SpiNNaker system-level model is being used for application development

for SpiNNaker and verification of the hardware components. The configuration

process for two multi-CMP systems was presented in Chapter 6 to capture the

configuration issues and some implemented solutions to large-scale multi-CMP

computing systems. We also presented a few important peculiarities of the SpiN-

Naker computing system which invalidated the configuration process that is used

CHAPTER 10. CONCLUSIONS 186

in most multi-CMP systems. The dissertation, then, presented the proposed con-

figuration and application loading process in Chapter 7 after highlighting some

configuration challenges specific to the SpiNNaker architecture in line with the

ones already described in Chapter 6. Experimental results were presented to

verify that the research objectives had been met. One chapter (Chapter 8) was

dedicated to the introduction of the fault-tolerance features of the SpiNNaker

configuration process to make SpiNNaker a reliable computing system. At the

end of this dissertation, some details of the SpiNNaker Hardware Abstraction

Layer (HAL), developed to help programmers in application development for the

SpiNNaker computing system were presented (Chapter 9). A few features of a

proposed user interface to interact with the system were also presented as ongoing

work.

10.2 Research Analysis

10.2.1 Response to Research Objectives

In response to the research objectives outlined in Chapter 1 Section 1.3, the

following describes how this research has tried to meet its objectives:

• In response to objective of efficiently testing and configuring all the devices

in each CMP of the SpiNNaker computing system to enable running an

application on it, Chapter 6 shows that it takes only about ∼1.3 ms to test

all the chip devices and configure them to the default setting optimal for

the standard SpiNNaker application model. The time is independent of the

number of CMPs in the SpiNNaker system as the process of initialization

is run concurrently by all the CMPs from their Boot ROMs. The process

is almost independent of the number of processing nodes inside a CMP

as the code is loaded into each processor’s tightly coupled memory before

execution and run concurrently until the monitor processor is selected. A

slight delay is caused by more processing nodes for contention to access

Boot ROM while loading the code to the local memory, however, this delay

is not substantial. After its selection, only the monitor processor in each

CMP configures the remaining chip resources while the other (application)

processors are in sleep mode. This avoids contention on the shared com-

munication medium (System-NoC) and the shared memory (Boot ROM),

CHAPTER 10. CONCLUSIONS 187

thus making the process quite efficient.

• In response to the question of configuring a multi-CMP system externally

at run-time to make it to work as one integrated system using the homo-

geneous CMP-interconnect fabric to be used by the application, a novel

multi-CMP configuration process was proposed in Chapter 6. The process

configures all the CMPs in the system to collaborate in an integrated sys-

tem establishing inter-CMP communication and the SpiNNaker system’s

communication with the Host PC. The process uses the SpiNNaker event-

driven application model with the help of nearest neighbour packets over

the asynchronous system interconnect for this purpose. A novel communi-

cation protocol using nearest neighbour packets has been devised to manage

the SpiNNaker configuration process with the help of functions embedded

into each CMP’s Boot ROM.

• We tackled the objective of loading a tailored neural simulation applica-

tion into the SpiNNaker system, in a scalable way, in Chapter 6. A novel

asynchronous application loading process has been presented, which uses

the SpiNNaker event-driven application model. We have shown empirically

that the process is quite efficient and scalable (i.e. the process is virtually

independent of the size of the system in a large-scale multi-CMP system).

As per the proposed process, a pipelined wave of application packets fan-

out from the Host-connected chip(s) to wrap the whole system, whereby

loading a typical application of 100-KB in less than ∼20 ms, irrespective of

the size of the system.

• The question of supporting neural simulation applications using the SpiN-

Naker real-time event-driven application model over the SpiNNaker multi-

CMP system was answered in Chapter 9. The SpiNNaker Hardware Ab-

straction Layer (HAL) was devised as part of this research to support ap-

plication development for the SpiNNaker computing system. During the

CMP initialization process, we configure each processing node to run the

SpiNNaker event-driven application model with the help of template Inter-

rupt Service Routines (ISRs) with a user-application entry point in each

ISR.

CHAPTER 10. CONCLUSIONS 188

• The objective of enabling users to communicate interactively with the sys-

tem and the application for diagnostics or real-time interactive application

support was looked into in Chapter 9. The process uses the Ethernet con-

nection between the Host PC and the SpiNNaker system for the commu-

nication between the user interface on the Host PC and the application

running on the SpiNNaker multi-CMP system. The monitor processor on

the Host-connected CMP transforms the Ethernet frame-based communi-

cation into small P2P packets which are then forwarded to the destination

chip’s monitor processor. This way, monitor processors on all the chips con-

tribute to exhibit an integrated system-wide view of the whole SpiNNaker

multi-CMP system on the Host PC. The proposed user interface is intended

to diagnose each individual CMP and its devices interactively with the help

of a Graphical User’s Interface (GUI). The same procedure is used to com-

municate with the application at run-time to view the application state or

to communicate with the application to provide the stimuli to it and get

the responses back.

• On how to make the configuration process and application execution pro-

cess fault-tolerant both at CMP- and system-level, we presented the fault-

tolerance features implemented as part of the SpiNNaker configuration pro-

cess in Chapter 8. We evaluated the proposed features empirically for their

real-time performance and robustness. The configuration process was de-

vised with the aim to minimize single points-of-failure at each stage of its

execution, however, if such a situation arises, the fault-recovery functions

are use to recover the system in minimum possible time without interfering

with the neural application.

10.2.2 Strengths of the Configuration Process

• No Separate Configuration Network: In contrast to the other multi-CMP

systems, such as Blue Gene(L) or Cray XT-3 (Chapter 6), the SpiNNaker

multi-CMP system does not use a separate dedicated network to configure

the system and to load the application into each CMP. We use the same

homogeneous inter-CMP fabric for this purpose, which is later used by the

application for inter-process communication. This reduces the overhead of

CHAPTER 10. CONCLUSIONS 189

maintaining another network alongside SpiNNaker’s internal network, alle-

viating the need for extra switches, wires and other network infrastructure

to be used for this purpose. The fact that the SpiNNaker packet switch-

ing Communication Network is very efficient as compared to an Ethernet

connecting all CMPs to the Host PC makes the application loading process

much faster. The process makes use of the broadcast feature of the nearest

neighbour packet along with the router’s capability to broadcast this type

of packet to all six neighbours in only one router cycle. Moreover, it does

not require any network configuration to start the flood-fill process as the

router has been hard-wired to handle NN packets.

• Performance: The SpiNNaker configuration process has been optimized for

performance and code size. The code has been written in ARM assembly

language with optimal instructions at the device level. The process uses

the same asynchronous event-driven application model right from chip ini-

tialization, that is used by the SpiNNaker application itself. By doing this

the application template is already loaded and running in the system and

the remaining application, once loaded, is easily plugged into the template.

This avoids the need for separate code for initialization which otherwise

would be useless once the application is loaded. The device drivers have

been written for optimal use of all of the components’ features.

• Scalability: The configuration and application loading process makes full

use of the parallel and hierarchical architecture of the SpiNNaker comput-

ing system, thereby making the process very scalable. Each CMP contains

a local copy of the code which is copied by each processor to its local mem-

ory, making the configuration process independent of the number of proces-

sors in each CMP and the number of CMPs in the SpiNNaker multi-CMP

system. A perfectly-pipelined application-loading mechanism propagates

waves of data emanating from the Host-connected CMP to all the chips

which makes the process virtually independent of the size of the system.

Network congestion may affect the performance; however, adopting a selec-

tive flood-fill process in the forward direction (Chapter6) can help overcome

this problem.

• Fault-tolerance: The proposed mechanism makes full use of the fault-tolerance

features designed specifically in the SpiNNaker computing system to make

CHAPTER 10. CONCLUSIONS 190

the system highly fault-tolerant at run-time. The process itself has been

devised to be robust enough to succeed in the wake of envisaged hardware

faults. We attempt to minimize single points-of-failures in the process and

provide fault-handling routines to cope with likely hardware faults. The

process has been designed to bring faulty components back into service or

isolate them to avoid disruption to the other components. The objective

is to bring each SpiNNaker CMP up despite a small number of faulty pro-

cessing nodes, and to bring the SpiNNaker system up despite a few dead

(or partially dead) CMPs.

• Real-time Host-system Interaction Support: The proposed mechanism im-

plements an interactive Host-system communication protocol whereby the

Host PC can communicate with the whole system at run-time to externally

configure the system and load an application into it. The protocol has been

refined to enable the Host PC to communicate with any individual CMP

in the system to diagnose its state. This mechanism can be used to pro-

vide a user-system or user-application run-time interaction for system- or

application-level management.

• Application Development Support: A by-product of the proposed configu-

ration mechanism is a library of useful functions compiled to help software

development for the SpiNNaker computing system. The library has been or-

ganized with a hierarchy of functions to support the development of neural

applications without worrying about the underlying devices in the system or

its architecture. We have organised the library into a hierarchy of functions

from low-level device handling functions to application-level constructs to

help developers at multiple levels.

• User Interface: Work is still ongoing on a high-level graphical user interface

(GUI) for the Host PC to interact graphically with the system at run-time.

The GUI intends to provide many automated features to support run-time

application configuration, diagnostic/debugging, real-time system reconfig-

uration, and application state reporting. The purpose is to provide a user

with a feeling of working on a PC by virtualizing the low-level functional

details.

CHAPTER 10. CONCLUSIONS 191

10.2.3 Limitations

• Global Synchronization: The system is highly asynchronous with indepen-

dent clocks and asynchronous inter-chip communication. This is quite ex-

pected of a large distributed system. However, we need to have some kind

of system-wide synchronisation for certain application requirements as ex-

plained in Chapter 5. This is very difficult to achieve with no global clock

in the system and without a central synchronisation mechanism. The pro-

posed mechanism is to synchronise the system at a coarse granularity of a

few milliseconds with the help of NN packets broadcast to all the CMPs

(just as in the flood-fill process) after a certain period during application ex-

ecution. The mechanism has not yet been fully implemented in the absence

of a full-scale application.

• Run-time Application State: Many neural network applications, especially

ones based on multi-layer perceptron (MLP) neural networks, require the

state of the application to be reported to the user after a certain period

of its execution, as already explained as a user’s expectation in Chapter 5.

The state of a certain number of neurons may also need investigating for de-

bugging purposes. This is, however, very difficult to acquire in a large-scale

dynamic distributed system. We can timestamp the state of the system at

certain points in time, however, in the absence of a global clock there may

be a timing skew. Moreover, getting a huge amount of data from the system

to the Host PC for viewing the state of the neural network may be a very

time-consuming process, interfering with the run-time application during

its inter-process communication.

• Limited Fault-handling: We have tried to handle most expected hardware

faults, however, this does not mean that the process can handle all faults oc-

curring at run-time. Very simple fault-handling routines have been written

in view of the limited memory in the monitor processor. Our aim is to start

with very simple solutions and then to refine the fault-tolerance mechanism

in the course of system evolution. The fact that SpiNNaker has been de-

signed as a fully reconfigurable system, which can be externally diagnosed

and reconfigured at run-time, allows us to keep a very simple first layer

of fault-tolerance within the system while employing a more sophisticated

mechanism interactively at run-time.

CHAPTER 10. CONCLUSIONS 192

• Limited Management Support: We intend to provide the system state in

a graphical form to the user at the Host PC. However, this feature is still

not fully implemented and will be refined with the passage of time. This is

being looked into as a separate research project as part of the SpiNNaker

research project.

• Lack of Dynamic Reconfiguration: Neural networks reconfigure their con-

nectivity based on run-time learning. The SpiNNaker system provides sup-

port whereby the network can be reconfigured internally or externally to

change the neural connectivity at run-time. The configuration process does

not, however, provide high-level support for this feature at the moment.

The problem is being looked into as a separate PhD research project in the

SpiNNaker research group.

10.3 Suggested Future Directions

As described before, the configuration process proposed in this research is not a

perfect solution and does allow room for improvement. A few research aspects

could not be looked into due to the paucity of time, as was mentioned in Sec-

tion 10.2.3 of this chapter. The work as part of the SpiNNaker research project

is still in progress on areas such as the user interface at the Host PC, adaptive

neural network reconfiguration at run-time based on neural learning dynamics,

run-time user-application interaction to enable reporting of the state of appli-

cation to the user, global synchronization for routing and application support,

and system-level diagnostics including network performance monitoring. SpiN-

Naker network management and dynamic network reconfiguration are ongoing

PhD research topics as part of the SpiNNaker research group, while the work on

the SpiNNaker user interface is being carried out in collaboration with the SpiN-

Naker application group at the University of Southampton. Similarly, the neural

application mapping along with the underlying neural network configuration is

being looked into by the University of Southampton. Besides this, we are trying

to provide a few sample spiking neural network implementations as part of the

user interface as a tutorial to motivate users to work on the SpiNNaker neural

network simulator. The work is being done as a separate PhD project.

CHAPTER 10. CONCLUSIONS 193

Figure 10.1: Example Real-time Interactive Neural Application on SpiNNaker
Controlling a Robotic Arm.

10.4 Research Implications

This research is a starting point towards building an interactive real-time neural

application for the SpiNNaker computing system. The purpose of such interac-

tive applications is to explore the mammalian nervous system at various levels of

detail, starting from understanding the information processing mechanism in in-

dividual neurons to understand the emergent behaviour of neural networks. The

SpiNNaker configuration and application support mechanism, proposed in this

dissertation, can support a variety of neural applications during their develop-

ment, configuration and execution. Figure 10.1 shows an envisaged interactive

application model in which a neural application running on SpiNNaker is re-

sponding to stimuli received from a web-cam and passing back responses to a

robotic arm to control a ball. The user-interface on the Host PC interacts in two

directions, i.e. receiving the input from the web-cam to pass to the SpiNNaker

system and receiving the responses from the system to pass to the robotic hand.

The neural application does real-time processing of these inputs to formulate a

response to be sent back as output. The response generated at a certain loca-

tion of a multi-CMP system would be transported to the Host-connected chip in

the form of multicast packets, which would pass it to the Host PC as Ethernet

frame(s). A similar process can take place to control a hominoid robot with the

help of a “remote brain” being simulated by the SpiNNaker computing system.

The application-support-process proposed in this dissertation is expected to pro-

vide useful execution support to such applications with the help of the SpiNNaker

HAL functions.

Bibliography

[ABBea03] G. Almasi, R. Bellofatto, J.e. Brunheroto, and et al. An Overview

of the BlueGene(L) System Software Organization. In Euro-Par ’03

Conference on Parallel and Distributed Computing, 2003.

[ABCea05] N. R. Adiga, M. A. Blumrich, D. Chen, and et al. Blue Gene/L

torus interconnection network. IBM Journal of Research and Devel-

opment, 49:289–301, 2005.

[AKB+07a] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fa-

hey, R. Sankaran, and P. H. Worley. Cray XT4: An early eval-

uation for petascale scientific simulation. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing (SC ’07), Novem-

ber 2007.

[AKB+07b] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fa-

hey, R. Sankaran, and P. H. Worley. UltraSPARC T2: A Highly-

Threaded, Power-Efficient, SPARC SoC. In Proceedings of Asian

Solid-State Circuirts Conference (A-SSCC 2007), November 2007.

[All00] Visual Socket Interface Allience. System-Level Interface Behavioral

Documentation Standard (SLD 1 1.0). VSIA, sld 1 1.0:2000 edition,

Mar. 2000.

[AM00] Lars Albertsson and Peter S Magnusson. Using Complete System

Simulation for Temporal Debugging of General Purpose Operating

Systems and Workloads. In In Proceedings of Mascots 2000, pages

191–198. Society Press, 2000.

[AS96] J. Torrellas A. Sharma, A.T. Nguyen. Augmint - a Multiproces-

sor Simulation Environment for Intel x86 Architectures - Technical

194

BIBLIOGRAPHY 195

Report. Center for Supercomputing Research and Development -

University of Illinois at Urbana-Champaign, 1996.

[BA97] Doug Buger and Todd M. Austin. The SimpleScaler Tool Sset, Ver-

sion 2.0. The University of Wisconsin-Madison Computer Sciences

Department Technical Report no. 1342, June 1997.

[BKM+00] L.A. Barroso, K.Gharachorloo, R. McNamara, A. Nowatzyk,

S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a

scalable architecture based on single-chip multiprocessing. In Com-

puter Architecture, 2000. Proceedings of the 27th International Sym-

posium on, pages 282–293, 2000.

[BMW08] Simeon A. Bamford1, Alan F. Murray, and David J. Willshaw.

Large Developing Axonal Arbors Using a Distributed and Locally-

Reprogrammable Address-Event Receiver. In Proc. 2008 Int’l Joint

Conf. on Neural Networks (IJCNN2008), 2008.

[CACY+06] Isci Canturk, Buyuktosunoglu Alper, Cher Chen-Yong, Bose Pradip,

and Martonosi Margaret. An Analysis of Efficient Multi-Core Global

Power Management Policies: Maximizing Performance for a Given

Power Budget. In MICRO 39: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, pages

347–358, Washington, DC, USA, 2006. IEEE Computer Society.

[CFBC06] P. Crowley, M. A. Franklin, J. Buhler, and R. D. Chamberlain. Im-

pact of CMP Design on High-Performance Embedded Computing.

In Proc. of 10th High Performance Embedded Computing Workshop,

pages 33–34, September 2006.

[Com06] IEEE Design Automation Standards Committee. IEEE Standard

SystemC Language Reference Manual. IEEE Computer Society, std.

1666-2005 edition, Mar. 2006.

[DA01] Peter Dayan and L.F. Abbott. Theoretical Neuroscience. MIT Press,

Cambridge, 2001.

[ea03] L. Ceze et al. Full Circle: Simulating Linux Clusters on Linux Clus-

ters. In Fourth LCI International Conference on Linux Clusters The

HPC Revolution, 2003.

BIBLIOGRAPHY 196

[ea08] S. R. Alam et al. An Evaluation of the Oak Ridge National Labo-

ratory Cray XT3. International Journal of High Performance Com-

puting Applications archive, 22:52–80, February 2008.

[EKR06] R. Eickhoff, T. Kaulmann, and U. Rückert. SIRENS: A Simple Re-

configurable Neural hardware Structure for Artificial Neural Network

Implementations. In Proc. 2006 Int’l Joint Conf. Neural Networks

(IJCNN2006), pages 2830–2837, 2006.

[EMIE04] J. A. Gally E. M. Izhikevich and G.M. Edelman. Spike-Timing Dy-

namics of Neuronal Groups. Cerebral Cortex, 14(8):933–944, 2004.

[FSM08] Johannes Fieres, Johannes Schemmel, and Karlheinz Meier. Real-

izing Biological Spiking Network Models in a Configurable Wafer-

Scale Hardware System. In Proc. 2008 Int’l Joint Conf. on Neural

Networks (IJCNN2008), 2008.

[FT07] Steve Furber and Steve Temple. Neural Systems Engineering. J. R.

Soc. Interface, 4(13):193–206, April 2007.

[Fur05] S. B. Furber. Future Trends in SoC Interconnect. In IEEE Inter-

national Symposium on Design, Automation and Test (VLSI-TSA-

DAT), pages 290–293, April 2005.

[GBea05] A. Gara, M. A. Blumrich, and D. Chen et al. Overview of the

Blue Gene/L system architecture. IBM Journal of Research and

Development, 49:289–301, 2005.

[Ghe05] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM

Concepts and Applications for Embedded System. Springer Publish-

ers, New York, NY, USA, 2005.

[GID06] E. Chicca G. Indiveri and R. Douglas. A VLSI Array of Low-power

Spiking Neurons and Bistable Synapses with Spike-Timing Depen-

dent Plasticity. IEEE Trans. Neural Networks, 17(1), January 2006.

[Gre08] G.W. Greenwood. Attaining Fault Tolerance through Self-

adaption: The Strengths and Weaknesses of Evolvable Hardware

BIBLIOGRAPHY 197

Approaches. In Proc. 2008 World Congress on Computer Intelli-

gence (WCCI2008), pages 368 – 387. Springer-Verlag Berlin Heidel-

berg, 2008.

[Gro02] T. Grotker. Computer Simulation Using Particles. Kluwer Academic

Publishers, Boston, 2002.

[HAM07] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward

Neural Network Implementation in FPGA Using Layer Multiplexing

for Effective Resource Utilization. IEEE Trans. Neural Networks,

18(3):880–888, May 2007.

[HBB+05] R. A. Haring, R. Bellofatto, A. A. Bright, P. G. Crumley, M. B. Dom-

browa, S. M. Douskey, M. R. Ellavsky, B. Gopalsamy, D. Hoenicke,

T. A. Liebsch, J. A. Marcella, and M. Ohmacht. Blue Gene/L com-

pute chip: Control, test and bring up intrastructure. IBM Journal

of Research and Development, 49:289–301, 2005.

[HE88] Roger W. Hockney and James W. Eastwood. Computer Simulation

Using Particles. CRC Press, New York, 1988.

[Her96] S. Herrod. The simOS Simulation Environment - Technical Report.

Computer Systems Laboratory - Stanford University, 1996.

[HG93] B.A. Huberman and N.S. Glance. Evolutionany Games and Com-

puter Simulations. National Academy of Science USA, 90:7716–7718,

August 1993.

[HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of mem-

brane current and its application to conduction and excitation in

nerve. Journal of Physiology, 117(4):500544, 1952.

[HLWW02] Anssi Haverinen, Maxime Leclercq, Morman Weyrich, and Drew

Wingard. White Paper - SystemC Based SoC Communication Mod-

eling for the OCP Protocol. www.ocpip.org, v1.0 edition, Oct. 2002.

[HNO97] L. Hammond, B. A. Nayfeh, and K. Olukotun. A Single Chip Mul-

tiprocessor. IEEE Computer Magazine, 30:79–85, April 1997.

BIBLIOGRAPHY 198

[HSB04] Jeff Hawkins and Sandra Blakeslee. On Intelligence. Times Books,

Henry Holt and Company, New York, 2004.

[IE08] E. M. Izhikevich and Gerald M. Edelman. Large-scale Model of

Mammalian Thalamocortical Systems. Proceedings of the National

Academy of Sciences, 105(9):cmp3593–3598, March 2008.

[Inc05a] Cray Inc. Cray X1E Datasheet. http://ed-thelen.org/ comp-hist/

CRAY-1- HardRefMan/ CRAY-1-HRM.html, January 2005.

[Inc05b] Cray Inc. Cray XT3 Datasheet. Cray Inc., http://www. craysuper-

computers. com/ downloads/ CrayXT3/ CrayXT3 Datasheet. pdf,

January 2005.

[Izh03a] E.M. Izhikevich. Simple Model of Spiking Neurons. IEEE Trans. on

Neural Networks, 14:1569–1572, November 2003.

[Izh03b] E.M. Izhikevich. Which Model to Use for Neocortical Spiking Neu-

ron. IEEE Trans. on Neural Networks, 14:1569–1572, November

2003.

[Izh07] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Ge-

ometry of Excitability and Bursting. The MIT Press, Cambridge

Massachusetts, London England, 2007.

[JFW08] X. Jin, S.B. Furber, and J.V. Woods. Efficient Modelling of Spiking

Neural Networks on a Scalable Chip Multiprocessor. In Proc. 2008

Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.

[Joh06] Long John. Comprehensive SystemC Training - Training Manual.

Doulos UK., http://www.doulos.com/, 2006.

[JSR+97] A. Jahnke, T. Schönauer, U. Roth, K. Mohraz, and H. Klar. Simu-

lation of Spiking Neural Networks on Different Hardware Platforms.

In 7th Int’l Conf. on Artificial Neural Networks (ICANN ’97), 1997.

[KJFP07] M. Khan, X. Jin, S. Furber, and L.A. Plana. System-Level Model

for a GALS Massively Parallel Multiprocessor. In Proc. 19th UK

Asynchronous Forum, pages 9–122, September 2007.

BIBLIOGRAPHY 199

[KLP+08] M.M. Khan, D.R. Lester, L.A. Plana, A. Rast, X. Jin, E. Painkras,

and S.B. Furber. Spinnaker: Mapping Neural Networks onto a

Massively-Parallel Chip Multiprocessor. In Proc. 2008 Int’l Joint

Conf. on Neural Networks (IJCNN2008), 2008.

[KNJ+08a] M.M. Khan, J. Navaridas, X. Jin, L.A. Plana, J.V Woods, and S.B.

Furber. Configuring a GALS CMP System for Real-time Applica-

tions. In Proc. 20th UK Asynchronous Forum, pages 9–122, Septem-

ber 2008.

[KNJ+08b] M.M. Khan, J. Navaridas, X. Jin, L.A. Plana, J.V Woods, and S.B.

Furber. Real-Time Application Support for a Novel SoC Architec-

ture. In Proc. 4th UK Embedded Forum, Southampton, UK, Septem-

ber 2008.

[KNR+09] M.M. Khan, J. Navaridas, A.D. Rast, X. Jin, L.A. Plana, M. Luján,

J.V. Woods, J. Miguel-Alonso, and S.B. Furber. Event-Driven Con-

figuration of a Neural Network CMP System over a Homogeneous

Interconnect Fabric. In In Proceedings of International Symposium

on Parallel and Distributed Computing (ISPDC2009), June 2009.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed

Embedded Applications. Kluwer Academic Publishers, 1997.

[LBHS06] Yingmin Li, David Brooks, Zhigang Hu, and Kevin Skadron. Per-

formance, Energy, and Thermal Considerations for SMT and CMP

Architectures. In Proceedings of the 11th International Symposium

on High-Performance Computer Architecture, pages 71–82, 2006.

[LET97a] ED Lumer, GM Edelman, and Tononi. Neural dynamics in a model

of the thalamocortical system. I. Layers, loops and the emergence of

fast synchronous rhythms. Cereb. Cortex, 7(3):207–227, 1997.

[LET97b] ED Lumer, GM Edelman, and Tononi. Neural dynamics in a model

of the thalamocortical system. II. The role of neural synchrony tested

through pcmperturbations of spike timing. Cereb. Cortex, 7(3):228–

236, 1997.

BIBLIOGRAPHY 200

[LLB+06] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP Design

Space Exploration Subject to Physical Constraints. In In 12th In-

ternational Symposium on High Performance Computer Architecture

(HPCA-12), 2006.

[LM06] J. Li and J. Martinez. Dynamic Power-Performance Adaptation of

Parallel Computation on Chip Multiprocessors. In In Proceedings of

the 12th International Symposium on High-Performance Computer

Architecture (HPCA-12), 2006.

[Ltd08a] ARM Ltd. Arm968E-S Processor. ARM Official Website, May 2008.

http:// www. arm. com/ products/ CPUs/ ARM968E-S. html, ac-

cessed on 31 May 2008.

[Ltd08b] Virtutech Ltd. SIMICS: Virtualized Software Development. http://

www. virtutech. com/, San Jose, CA 95110 USA, 4.0 edition, Octo-

ber 2008.

[Mar06] Henry Markram. The Blue Brain Project. Nature Reviews Neuro-

science, 7:153–160, February 2006.

[MBH+05] Michael R. Marty, Jesse D. Bingham, Mark D. Hill, Alan J. Hu,

Milo M.K. Martin, and David A. Wood. Improving Multiple-CMP

Systems Using Token Coherence. In In Proceedings of the 11th In-

ternational Symposium on High Performance Computer Architecture

(HPCA-11), 2005.

[Me98] W. Maass and C. M. Bishop (ed). Pulsed Neural Networks. MIT

Press, Cambridge, Massachusetts, 1998.

[MLFS97] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann. Regulation

of synaptic efficacy by coincidence of postsynaptic aps and epsps.

Science, 213-215:153–160, 1997.

[MM00] Robert M. McGraw and Richard A. MacDonald. Abstract Modeling

for Engineering and Engagement Level Simulations. In WSC ’00:

Proceedings of the 32nd conference on Winter simulation, pages 326–

334, San Diego, CA, USA, 2000. Society for Computer Simulation

International.

BIBLIOGRAPHY 201

[New06] BBC News. Scientists to Build ’Brain Box’, July 2006.

http://news.bbc.co.uk/1/hi/england/manchester/5187596.

stm.

[OBea05] M. Ohmacht, R. A. Bergamaschi, and S. Bhattacharya et al. Blue

Gene/L compute chip: Memory and Ethernet subsystem. IBM Jour-

nal of Research and Development, 49:289–301, 2005.

[Org09] TCP DUMP Org. Tcp dump libpcap. Website Resource, May 2009.

http:// www. tcpdump. org/, accessed on 19 May 2009.

[Pan01] P.R. Panda. SystemC A Modeling Platform Supporting Multiple

Design Abstractions. In ACM ISSS 01, Montreal Quebec, Canada,

2001.

[PBF+08] L.A. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y. Shi, and J. Wu.

An On-Chip and Inter-Chip Communications Network for the Spin-

naker Massively-Parallel Neural Net Simulator. In Proc. Second

ACM/IEEE International Symposium on Networks-on-Chip (NoCS

2008), pages 215 – 216, 2008.

[PBK91] D. Probert, J. L. Bruno, and M. Karaorman. SPACE: A New Ap-

proach to Operating System Abstraction. In In International Work-

shop on Object Orientation in Operating Systems, pages 133–137,

1991.

[PFT+07] Luis A. Plana, Steve B. Furber, Steve Temple, Mukaram Khan,

Yebin Shi, Jian Wu, and Shufan Yang. A GALS Infrastructure for

a Massively Parallel Multiprocessor. IEEE Design & Test of Com-

puters, 24(5):454–463, Sept.-Oct. 2007.

[Pro07] The SpiNNaker Project. SpiNNaker - a Chip Multiprocessor for Neu-

ral Network Simulation. The University of Manchester, 0.5 (draft)

edition, Nov. 2007.

[PWKR02] M. Porrmann, U. Witkowski, H. Kalte, and U. Rückert. Implemen-

tation of Artificial Neural Networks on a Reconfigurable Hardware

Accelerator. In Proc. 2002 Euromicro Conf. Parallel, Distributed,

and Network-based processing, pages 243–250, 2002.

BIBLIOGRAPHY 202

[RCAT97] G. Lindzey R. C. Atkinson and R. F. Thomspon, editors. How

Brain Thinks - Evolvig Intellegence, Then and Now. Wiedenfeld

& Nicolson, The Orien Publising Group, London, 1997.

[RKJ+09] A.D. Rast, M.M. Khan, X. Jin, L.A. Plana, and S.B. Furber. A

Universal Abstract-Time Platform for Real-Time Neural Networks.

In Proc. 2009 Int’l Joint Conf. on Neural Networks (IJCNN2009),

2009.

[RLT78] B. Randell, P. Lee, and P. C. Treleaven. Reliability Issues in Com-

puting System Design. ACM Comput. Surv., 10(2):123–165, 1978.

[Roh99] D. L. T. Rohde. LENS: The light, efficient network simulator ver-

sion 2.63. http://tedlab.mit.edu/ dr/Lens/ - Retrieved 17 June 2007,

1999.

[Ros95] M. Rosenblum. Complete Computer Simulation: The SimOS Ap-

proach. IEEE Parallel and Distributed Technology, 1995.

[RSV87] R.L. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Min-

imization for PLA Optimization. IEEE Trans. on Computer-Aided

Design, 6(5):727–750, September 1987.

[RYKF08] A.D. Rast, S. Yang, M. Khan, and S.B. Furber. Virtual Synaptic In-

terconnect Using an Asynchronous Network-on-Chip. In Proc. 2008

Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.

[Swi08] EPFL Switzerland. Blue Brain Project. www source, 2008.

[SY03] Ahmed A. Jerraya Sungjoo Yoo. Introduction to Hardware Abstrac-

tion Layers for SoC. In in Proc. of Design, Automation and Test in

Europe Conference and Exhibition (DATE’03), page 10336, march

2003.

[TDF+02] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr. H. Le, and B. Sinharoy.

Power4 System Microarchitecture. IBM Journal for Research and

Development, 46:1–25, January 2002.

[Tho00] R. F. Thomspon(ed). The Brain - A Neuroscience Primer.

W.H.Freeman and Company, Worth Publisher, New York, 3 edition,

2000.

BIBLIOGRAPHY 203

[TMM+06] F. Tuffy, L. McDaid, M. McGinnity, J. Santos, P. Kelly, V. W.

Kwan, and J. Alderman. A Time-Multiplexing Architecture for

Inter-Neuron Communications. In Proc. 2006 Int’l Conf. Artificial

Neural Networks (ICANN 2006), pages 944–952, 2006.

[Tra02] Thomas P. Trappenberg. Fundamentals of Computational Neuro-

science. Oxford University Press, New York, 2002.

[Wik09a] Wikipedia. Axon. Website Resource, Feb 2009. http://en.

wikipedia.org/wiki/Axon, accessed on 13 Feb 2009.

[Wik09b] Wikipedia. Computer. Website Resource, Feb 2009. http://en.

wikipedia.org/wiki/Computer, accessed on 13 Feb 2009.

[Wik09c] Wikipedia. Hp computer. Website Resource, Feb 2009. http://docs.

hp.com/en/32650-90871/go01.htm, accessed on 13 Feb 2009.

[Wik09d] Wikipedia. Resting potential. Web Resource, Feb 2009. http:// fac-

ulty. stcc.edu/AandP/AP/AP1pages/nervssys/unit10/resting. htm,

accessed on 13 Feb 2009.

Appendix A

SpiNNaker Inter-CMP NN

Communication Protocol

A.1 Introduction

This appendix describes the instructions used with nearest neighbour (NN) pack-

ets to facilitate phase II of the boot-up process (system-level integration) and the

application loading (flood-fill) process. The SpiNNaker address space 0x0F800000-

0x0FFFFFFF has been dedicated to be used for specific instructions in the NN

packet’s routing key. An NN packet (Chapter 4 Figure 4.5) with NN-route type

set as “normal” and containing 0x0F8 in bits 31-20 of its routing key is treated by

the monitor processor at the recipient chip as an instruction packet or a response

to its previous instruction. An NN packet with routing key contents other than

this range is taken to carry data in its payload and a SpiNNaker CMP physical

address in its routing key as part of the application loading flood-fill process as

explained in Chapter 7. The instructions cover those to request chip status, re-

port chip status, assign chip addresses, start the flood-fill process, and to control

the communication between the Host PC and a specific chip in the system during

system-level configuration. As part of application loading process, this proto-

col includes instructions to serialize the data, control the flow of data, request

missing data, and some other configuration instructions. We have also devised

instructions to control the nearest neighbour diagnostic and recovery process as

explained in Chapter 8. The following sections list some of these instructions:

204

APPENDIX A. SPINNAKER INTER-CMP NN COMMUNICATION PROTOCOL205

A.2 System-level Configuration Process

Table A.1 gives the instructions used in the system-level configuration process

with their meaning given in front of each instruction:

Table A.1: System-level Configuration Instructions.

Value Instruction Meaning

221 NN CONF SYS SIZE Size of system is in the packet’s payload

222 NN CONF USE TIME

PHASE

Timephase duration (number of millisec-

onds) to be used for counting timephase for

the router. The value is in the packet’s pay-

load.

223 NN CONF RESET TIME

PHASE

reset the time phase to 0.

224 NN CONF BREAK SYM-

METRY

Break the symmetry, i.e. the chip should

compute its relative address and assign it

to itself, the sender’s address in the pay-

load and the direction of sender in the “NN-

route” field of the control-field.

225 NN CONF SEND OK RE-

PORT

Request to send short status report to the

Host-Connected chip

226 NN CONF REPORT

ALL FINE

It is a status report from a chip indicating

the chip is OK.

227 NN CONF REPORT

WITH STATUS

Request to send a detailed status report to

the Host-Connected chip

228 NN CONF BOOT INTRS

DONE

Extra boot instructions loading completed,

start running from the address in the pay-

load

229 NN CONF APP LOAD

DONE

Application download completed, start exe-

cuting it from the address in the payload

A.3 NN Diagnostic Process

Table A.2 lists the instructions used as part of nearest neighbour diagnostic and

recovery process as explained in Chapter 8:

APPENDIX A. SPINNAKER INTER-CMP NN COMMUNICATION PROTOCOL206

Table A.2: NN Diagnostic and Recovery Instructions.

Value Instruction Meaning

231 NN DIAG HELLO A message from a neighbour to others,

“hello i am alive”. No payload with this

packet. The sender’s location is received by

the receiver in the “NN-route” field of the

packet’s control. No response is expected

by the sender.

232 NN DIAG HOW R U A message from a neighbour to others, “how

are you”? The sender expects a response

back i.e. a response with “hello i am alive”

from that particular neighbour.

233 NN DIAG HAVE U

HEARD OUR N

A message from a neighbour to others, “have

you heard from my neighbour on your link

X”. (link X is given in the Routing key bits

11-0). No payload is attached. The sender

expects a response.

234 NNDIAG DEAD CHIP

WHO TO CURE

A message from a neighbour to others,

“Chip number X to do the nurse chip”.

Number X is given in the Routing key bits

11-0.

235 NN DIAG YES I HEARD A message from a neighbour to an other

chip, “yes i have heard from our common

neighbour”. Sent as a response to a packet

asking the health of a common neighbour.

236 NN DIAG NO I DIDNOT A response from a neighbour to an other

chip, “no i have not heard from the neigh-

bour on the link in Routing key bits 11-0”.

No payload is attached. It is a response to

the sender’s request.

APPENDIX A. SPINNAKER INTER-CMP NN COMMUNICATION PROTOCOL207

237 NN DIAG ASK N TO RE-

SET LINKS

A message from a neighbour to an other

chip, “ask the common neighbour to reset

the link towards me and resend hello mes-

sage while i am doing this on my side”. No

payload is attached.

A.4 Application Loading Flood-fill Process

The instructions used to control the application loading flood-fill process in the

SpiNNaker computing system (as explained in Chapter 7) are listed in Table A.3:

Table A.3: Application Loading Floodfill Instructions.

Value Instruction Meaning

211 NN FF START Start of block-level flood-fill. The block size

given in routing key bits 11-0 and starting

address in the payload.

212 NN FF END End of current block-level broadcast mes-

sage, block-level CRC in the payload (in case

of standard 32 bit CRC).

213 NN FF INTERRUPT Interrupt current broadcast.

214 NN FF RESUME Resume the interrupted broadcast.

215 NN FF CRC Block level checksum, size of CRC in the

routing key bits 11-0, for 4-bytes of CRC in

the payload (in case of CRC more than 32

bits).

216 NN FF REMAINING CRC Remaining 4-bytes of the block-level CRC (if

CRC is more than 32 bits), sequence number

in routing key bits 11-0.

Appendix B

SpiNNaker-Host PC

Communication Protocol

B.1 Introduction

The SpiNNaker computing system is attached to a Host PC for system-wide con-

figuration, application loading, fault-handing, and run-time user interaction with

the system/application. This appendix describes the protocol devised to estab-

lish real-time communication between the Host PC and the SpiNNaker system,

as described in Chapter 9. We have devised an instruction set to manage the

Ethernet-based communication between the Host PC and the Host-connected

CMP. A 4-byte instruction is passed along with 2-bytes of data in the Ether-

net frame. A few instructions need further options, such as the one related to

the flood-fill process or instructions specific to a particular CMP in the sys-

tem. These options are passed in 12-16 bytes after the instruction. The frame

format used in this communication is shown in Figure B. The frame uses a place-

holder for the TCP/IP headers to support TCP/IP protocol on SpiNNaker, how-

ever, SpiNNaker-Host PC Communication Protocol is independent of the use of

TCP/IP. The frame handler routine in the SpiNNaker boot-up code interprets

the instructions directly from the frame. The TCP/IP headers are included to

support applications relying on the TCP/IP protocol and to enable connecting

SpiNNaker with TCP/IP network. In the absence of TCP/IP the Host PC uses

TCP dump supported PCap library [Org09], that provides an access to the full

Ethernet frame, to communicate with the SpiNNaker system using directly the

208

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL209

Ethernet frames. If SpiNNaker is directly connected to the Host PC Ethernet in-

terface, the only required fields to establish the communication are the Ethernet

address of the Host PC and that of the Ethernet Interface on the Host-connected

chip. In that case, the TCP/IP header fields can be padded with some invalid

data.

Figure B.1: The Ethernet Frame Format used for SpiNNaker-Host Communica-
tion.

The option fields after the SpiNNaker instruction are used for some specific

instructions requiring more information on how to handle the data in the data

field. During the flood-fill process some extra options are sent with the instruction

in the option fields following the instruction in the Ethernet frame. The data-

block size is sent in the 4 bytes of the SpiNNaker Instruction Option1 field,

which is followed by the start address of the data-block in the next 4 bytes i.e.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL210

the SpiNNaker Instruction Option2. The Host PC sends the block-level CRC for

the data-block in the next 4-bytes i.e. in Instruction Option3 field.

The following sections list the instructions used for the Ethernet and P2P

communication protocols.

B.2 Ethernet Frame Instructions

Some important instructions which are used as part of the SpiNNaker-Host com-

munication protocol are listed in Table B.1:

Table B.1: Host-System Communication Instructions.

Value Instruction Meaning

51 WAIT FOR HELLO Message from the Host PC to the Host-

connected chip or from the connected chip to

the Host PC, “please wait for my response,

I am busy at the moment”.

52 HELLO Message from the Host PC to the Host-

connected chip or from the connected chip

to the Host PC, “hello I am ready to start

the handshake”.

53 FLOOD FILL Message from the Host PC to the Host-

connected chip, “start block-level flood fill”.

The data block (1-K at the moment), is sent

with the frame. The next word in the frame

after the instruction bytes contains the size

of the block. The second word after the in-

struction bytes contains the physical address

to copy the block to, and the third word

contains a 32-bit block-level CRC. The data

block starts from the fourth word after the

instruction.

54 END FLOOD FILL Message from the Host PC to the Host-

connected chip, “end of the current flood-

fill process”. The Host PC expects an ack

frame.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL211

55 SEND ACK FRAME Message from the Host PC to the Host-

connected chip, forcing the Host-connected

chip to send an ack frame for which the Host

PC has been waiting for a long time.

56 BREAK SYMMETRY Message from the Host PC to the Host-

connected chip, “Host-connected chip to as-

sign itself (0,0) address and then ask the

other chips to compute and assign their rel-

ative chip addresses”.

57 SEND STATUS REPORT Message from the Host PC to the Host-

connected chip, “accumulate and send the

chip status for all the chips.”

58 REPORT OK Message from the Host-connected chip to

the Host PC, “the frame contains the sta-

tus of the chips in pairs of two words” i.e. a

word contains the chip address followed by

its status in next 32 bits.

59 P2P IN COMM Message from the Host PC to the Host-

connected chip, “point to point communica-

tion for a particular chip”, eg. sending rout-

ing table entries etc. The word after the in-

struction contains the destination chip’s ad-

dress, while the word next to this will con-

tain the size of data for the destination chip.

The data block to be sent to the destination

chip starts from the fourth word after the

instruction.

60 P2P OUT COMM Message from the Host-connected chip to

the Host PC, a response from the source chip

to the Host PC. In case of the data to be sent

to the Host PC, the Host-connected chip will

accumulate the data to form a frame to be

sent to the Host PC.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL212

61 START APPLICATION Message from the Host PC to the Host-

connected chip, “the application has been

loaded, start executing it from address X”.

Address X in the word after the instruction.

62 WAIT FOR ACK Message from the Host PC to the Host-

connected chip or from the connected chip

to the Host PC, “wait for ack as I am busy

doing the previous job”.

B.3 P2P Communication Instructions

We have devised a protocol to support run-time interactive communication be-

tween the Host PC and a particular chip in the multi-CMP SpiNNaker system.

This communication is essential for the following purposes:

• Network Configuration: As part of system-wide configuration, we need to

configure the on-chip routing tables on each SpiNNaker CMP to support

the application to simulate a particular neural network. The routing tables

are produced outside the system during application configuration process

which computes the mapping for the neurons on processors on each CMP,

the lookup tables for the synaptic data in the SDRAM, and the routing

tables for each chip. This data is specific to each chip and can not be

flood-filled.

• System-level Management: We need to periodically acquire the state of

the system and the Communication Network to update the user interface.

The system’s state is obtained by interrogating the monitor processor on

each chip to report the state of the chip and its communication activity.

This requires communicating with individual chips or the chip may need to

update their state periodically by sending P2P packets to the Host PC.

• Fault-handling: The faults, which can not be handled locally by the mon-

itor processor, are reported to the Host PC. The Host PC then needs to

communicate with the faulty chip or to its neighbouring chips to recover it.

It is done with P2P communication between the Host PC and a particular

chip in the system.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL213

• Application Support: The application may require the user to interact with

it at run-time for either to pass on stimuli/responses or to report a par-

ticular state. Besides this, the user may wish to visualize the state of any

particular part of the neural network (neurons’ state or synaptic data per-

taining to some neurons) during the application execution. This requires

P2P communication between the Host PC and a particular CMP.

For the reasons mentioned above, we have devised a protocol to support this

communication using Ethernet frames and P2P packets. The communication

between the Host PC and the Host-connected chip takes place using Ethernet

Frames, whereas the Host-connected chip transforms this communication into a

packet-based communication to pass the messages to a specific chip, or vice versa.

For the Ethernet communication we use the P2P instruction set given in

Table B.2 to support P2P communication, in addition to the instructions given

in Table B.1 to help the monitor processor interpret the Ethernet frame. The P2P

instructions are passed in the first 2 bytes of the SpiNNaker Instruction Option1

field of the Ethernet frame as shown in Figure B.1. The address of the destination

chip is passed in the remaining 2 bytes of SpiNNaker Instruction Option1 field.

In the case of a data transfer, the size of the data is passed in the SpiNNaker

Instruction Option2 field of the frame and a block-level CRC is passed as the

SpiNNaker Instruction Option3.

On receipt of an Ethernet Frame for a P2P communication, the monitor pro-

cessor on the Host-connected chip sends messages to the specific chips using

P2P packets. To establish a reliable P2P communication over the SpiNNaker

Communication Network, we have devised an acknowledgement based protocol.

In case of a single instruction, the destination chip sends an acknowledgement

after receiving the packet. While, for data transfer, we use a sliding window

flow control protocol with window size 4 which is controlled using the “sequence

number” field of the P2P packet (Chapter 4 Figure 4.5). As per this protocol,

the destination chip sends acknowledgement packet on receiving ‘0b11’ in the

sequence number (or the end of communication if it happens before receiving a

packet with ‘0b11’). The instructions are sent as part of the payload in the P2P

packet containing 0x08F in its bits 31-20 to indicate that the payload contains

an instruction. The instruction is sent in bits 19-12 and the size of data block

to follow is sent in bits 11-0. The data packets will contain 32-bit data in their

payload with a 2-bit incremental sequence number in the packet’s control field.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL214

The routing key contains a 16-bit destination address and a 16-bit source address

for routing purposes. The block-level CRC is sent at the end of the data-block,

followed by an instruction indicating an end to the transmission. The same 8-bit

P2P instructions are used in both the Ethernet frame and P2P packets. Some of

the P2P instructions are given in Table B.2:

Table B.2: Inter-CMP P2P Communication Instructions.

Value Instruction Meaning

21 P2P COMM REPORT

STATUS

A message from the source chip to the des-

tination chip, “send me the chip status”.

The sender expects a response. Response

to piggy back the ack packet.

22 P2P COMM GET DATA A message from the source chip to the des-

tination chip, “receive the data to be copied

to memory”, size of data in the bits 11-0 of

the payload. Next packet to carry the start-

ing address of the block to be copied. The

sender expects an ack.

23 P2P COMM SEND DATA A message from the source chip to the desti-

nation chip, “send the data from the mem-

ory”, size of data in the bits 11-0, next

packet to carry the starting address of the

block to be copied. The sender expects an

ack followed by a series of packets to carry

data.

24 P2P COMM DIAG CHIP A message from the source chip to the desti-

nation chip, “be the nurse chip to repair chip

on your port X”. Port number X is sent in

bits 11-0 of the payload. Ack is expected by

the sender.

25 P2P COMM RESET CHIP A message from the source chip to the desti-

nation chip, “reset chip on your port in bits

11-0 of the payload”.

APPENDIX B. SPINNAKER-HOST PC COMMUNICATION PROTOCOL215

26 P2P COMM DISABLE

CHIP

A message from the source chip to the desti-

nation chip, “disable the processors on chip

on your port number given in bits 11-0 of

the payload”.

27 P2P COMM DISABLE

NN PROC

A message from the source chip to the desti-

nation chip, “disable the processor (proces-

sor ID in bits 11-8), on your neighbouring

chip towards your port number given in bits

7-0 of the payload”.

28 P2P COMM RESET LINK A message from the source chip to the desti-

nation chip, “reset your links corresponding

to high-bits (1) in bits 11-0 of the payload”.

29 P2P COMM DISABLE

LINK

A message from the source chip to the des-

tination chip, “disable your link correspond-

ing to high-bits (set to 1) in bits 11-0 of the

payload”.

30 P2P COMM DATA FOR

HOST

A message from the source chip to the des-

tination chip, “receive data as a response to

your request request”.

31 P2P COMM ACK A message from the source chip to the des-

tination chip, “ack for the P2P packet re-

ceived”.

