
WORKLOAD-ADAPTATION IN
MEMORY CONTROLLERS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2015

By
Mohsen Ghasempour

School of Computer Science

Contents

Abstract 13

Declaration 15

Copyright 16

Acknowledgements 17

1 Introduction 18
1.1 Memory Challenges . 19
1.2 Contributions . 21
1.3 Thesis Organisation . 23

2 Background and Motivation 25
2.1 Overview of DRAMs . 25
2.2 DRAMs: Basic Circuits and Architecture 27

2.2.1 DRAM Cell . 27
2.2.2 DRAM Array . 28
2.2.3 DRAM Bank . 28
2.2.4 DRAM Device . 29

2.3 DRAMs: Memory Access Protocol 29
2.3.1 Basic DRAM Commands 31
2.3.2 Row-Buffer Access Classification 34

2.4 DRAM vs SDRAM . 36
2.5 DRAMs: Memory System Organisation 36

2.5.1 DRAM Rank . 36
2.5.2 DRAM Channel . 36

2.6 DRAM Memory Controller . 37

2

2.6.1 Address Mapping . 38
2.6.2 Command Scheduling . 39
2.6.3 Row-Buffer Management 40
2.6.4 Reliability Monitor . 41

2.7 Performance, Power and Reliability 41
2.7.1 Memory Access Pattern . 41
2.7.2 Susceptibility to Address Translation 42
2.7.3 Susceptibility to Page Closure Policy Prediction 43
2.7.4 Susceptibility to Error Detection 43

2.8 Future Memory Technology and Scalability Challenges 44
2.8.1 DDR4 DRAM . 44
2.8.2 Hybrid Memory Cube (HMC) 45
2.8.3 Non-Volatile Memory . 45

2.9 Workload Adaptation . 45

3 Experimental Methodology 47
3.1 Tools Development . 47

3.1.1 A Simple DRAM Simulator 47
3.1.2 A Synthetic Kernel Generator (SKG) 48

3.2 Evaluation Platform . 50
3.2.1 USIMM: The Utah Simulated Memory Module 50

3.3 Evaluated Benchmark Suites . 51
3.3.1 Workload Characterisation 52

4 HAPPY: Hybrid Address-based Page PolicY 55
4.1 Introduction . 55
4.2 Background on DRAM Page Closure Policy 57
4.3 HAPPY:Hybrid Address-based Page PolicY 59

4.3.1 HAPPY: Basic Principles . 59
4.3.2 HAPPY: Access-based Prediction 59
4.3.3 HAPPY: Time-based Prediction 62
4.3.4 HAPPY: Further Possible improvements 64
4.3.5 HAPPY: Intuition . 64

4.4 Evaluation Methodology . 65
4.5 Results and Discussions . 68

4.5.1 Prediction Accuracy . 69

3

4.5.2 Performance Analysis . 70
4.5.3 Sensitivity to Memory Size 72
4.5.4 Scalability with Memory Size 73
4.5.5 Prediction Algorithms - Weakness and Strength 74
4.5.6 Flexibility . 75

4.6 Related Work . 76
4.7 Summary . 77

5 DReAM: Dynamic Re-arrangement of Address Mapping 79
5.1 Introduction . 79
5.2 Background on DRAM Address Mapping 80

5.2.1 Motivation - Address Mapping Analysis 82
5.3 DReAM: Dynamic Re-arrangement of Address Mapping 84

5.3.1 DReAM - Online Prediction of Address Mapping 84
5.3.2 DReAM - Data Migration Solutions 91
5.3.3 DReAM - Overview of Architecture 99

5.4 Evaluation Methodology . 104
5.5 Results and Discussions . 107

5.5.1 Bit-Change Rate vs Performance Improvement 107
5.5.2 Performance Analysis . 107
5.5.3 Data Relocation Analysis . 111
5.5.4 Storage Overhead and Scalability 112

5.6 Related Work . 114
5.7 Summary . 115

6 ARMOR: A Run-time Memory hot-row detectOR 117
6.1 Introduction . 117
6.2 Background on Row Hammer Error 120

6.2.1 DRAM Refresh . 120
6.2.2 Row Hammer Effect - Corrupting Data without Writing . . . 121

6.3 Row Hammer: Analytical Analysis 122
6.4 ARMOR: A Run-time Memory hot-row detectOR 124

6.4.1 ARMOR - Basic Principles 124
6.4.2 ARMOR - Overview of Architecture 125

6.5 ARMOR Applications . 129
6.5.1 Target Row Refresh . 130

4

6.5.2 ARMOR Cache Solution . 130
6.6 Evaluation Methodology . 131
6.7 Results and Discussions . 134

6.7.1 Benchmark Profiling . 135
6.7.2 Performance Analysis . 139
6.7.3 Hot-Row Table Size vs Accuracy 143
6.7.4 Scalability . 145
6.7.5 ARMOR Cache Performance 145

6.8 Related Work . 147
6.9 Summary . 148

7 A Workload Adaptive Memory Controller 150
7.1 Introduction . 150
7.2 Evaluation Methodology . 151

7.2.1 Baseline vs. Adaptive Memory Controller 151
7.3 Results and Discussions . 152

7.3.1 Performance Analysis . 152
7.3.2 Implementation Cost Analysis 155

7.4 Summary . 157

8 Conclusions and Future Work 159
8.1 Conclusions . 159
8.2 Future Work . 163

9 Publications, Patent and Commercialisation 164

Bibliography 166

5

List of Tables

2.1 Summary timing constraints of DRAM. 30

3.1 Standard workloads and benchmark suites. 51

4.1 Cost of page-hits and page-misses when using different page closure
policies. 57

4.2 USIMM configuration parameters. 66
4.3 Evaluated workloads and benchmark suites. 66
4.4 Randomly generated multithread workloads. 68
4.5 Required performance counters for different page closure policies. . . 74

5.1 USIMM configuration parameters. 105
5.2 Evaluated workloads and benchmark suites. 106
5.3 Randomly generated multithread workloads. 107

6.1 ACTth for different evaluated DRAM modules. 123
6.2 USIMM configuration parameters used in the experiments. 132
6.3 Evaluated workloads and benchmark suites. 133
6.4 Synthetic kernel generator configuration parameters used to produce

the synthetic kernels. 134
6.5 Synthetic workloads. 134
6.6 Randomly generated Multithread workloads. 135

7.1 Implementation options for standard and adaptive memory controller. 152

6

List of Figures

1.1 Memory hierarchy. 19
1.2 Internal structure of a DRAM device. 20
1.3 An abstract view of the developed adaptive memory controller. 23

2.1 A Memory Module. 25
2.2 A typical computer system memory hierarchy. 26
2.3 A basic DRAM cell structure. 27
2.4 A basic DRAM array structure. 28
2.5 A DRAM bank structure. 29
2.6 A DRAM device structure. 31
2.7 Row access command timing. 32
2.8 Column read command timing. 32
2.9 Column write command timing. 33
2.10 Precharge command timing. 34
2.11 Refresh command timing. 35
2.12 A DRAM rank structure. 37
2.13 Different industrial memory organisations. 38
2.14 An abstract view of a DRAM controller. 38
2.15 Examples of address mapping using different schemes. 39

3.1 A simple DRAM simulator. 48
3.2 Block diagram of the synthetic kernel generator. 49
3.3 MPKI for the SPEC benchmark suite. 52
3.4 MPKI for the PARSEC, BIOBENCH and Commercial benchmark suites. 52
3.5 MPKI for the HPC benchmarks. 52
3.6 IPC for the SPEC benchmark suite. 53
3.7 IPC for the PARSEC, BIOBENCH and Commercial benchmark suites. 53
3.8 IPC for the HPC benchmarks. 53

7

3.9 Read latency for the SPEC benchmark suite. 54
3.10 Read latency for the PARSEC, BIOBENCH and Commercial bench-

mark suites. 54
3.11 Read latency for the HPC benchmarks. 54

4.1 Performance of static page policies for all workloads. 58
4.2 Basic structure of hybrid page policy. 60
4.3 HAPPY implementation of hybrid page policy. 61
4.4 Example of HAPPY majority vote decision. 61
4.5 Basic structure of the Intel-adaptive page policy predictor. 62
4.6 HAPPY implementation of Intel-adaptive page policy predictor. . . . 63
4.7 Different address mappingg schemes. 67
4.8 Prediction accuracy for different predictors. 70
4.9 Average execution time normalised to static profiling for the single-

thread workloads. 71
4.10 Execution time normalised to static profiling for HPC workloads. . . . 71
4.11 Execution time normalised to static profiling for SPEC workloads. . . 71
4.12 Execution time normalised to static profiling for PARSEC, BIOBENCH

and Commercial workloads. 71
4.13 Execution time normalised to static profiling for multithread workloads. 71
4.14 Page-hit prediction accuracy with different address mappings. 73
4.15 Page-miss prediction accuracy with different address mappings. . . . 73
4.16 Scalability of different page closure prediction algorithms. 74

5.1 DRAM device organisation. 81
5.2 Two different address mapping schemes. 82
5.3 Different address mapping schemes. 83
5.4 Performance comparison of different address-mapping schemes. . . . 84
5.5 Address mapping profiling for BIOBENCH and COMMERCIAL bench-

mark suites. 85
5.6 Address mapping profiling for HPC benchmarks. 85
5.7 Address mapping profiling for PARSEC benchmark suite. 85
5.8 Address mapping profiling for SPEC benchmark suite. 85
5.9 Bit-counters mechanism. 86
5.10 Extracted bit-change pattern for the COMMERCIAL benchmark suite. 87
5.11 Extracted bit-change pattern for HPC benchmarks. 88

8

5.12 Extracted bit-change pattern for PARSEC benchmark suite. 88
5.13 Extracted bit-change pattern for SPEC benchmark suite. 89
5.14 Extracted bit-change pattern for BIOBENCH benchmark suite. 89
5.15 DReAM flowchart. 95
5.16 DReAM architecture. 99
5.17 DReAM monitoring counter structure. 100
5.18 Different data migration scenarios. 101
5.19 Basic structure of the USIMM scheduler. 106
5.20 Comparison between the bit-change rate improvement predicted by

DReAM and the overall performance improvement. 108
5.21 Execution time (normalised to baseline) achieved for BIOBENCH and

COMMERCIAL benchmark suites. 109
5.22 Execution time (normalised to baseline) achieved for HPC benchmarks. 110
5.23 Execution time (normalised to baseline) achieved for PARSEC bench-

mark suite. 110
5.24 Execution time (normalised to baseline) achieved for SPEC benchmark

suite. 110
5.25 Final execution time (normalised to baseline) achieved for multithread

benchmarks. 111
5.26 The analysis of inter and intra bank data relocation required by DReAM

online. 112
5.27 DReAM address-mapping prediction phase implementation cost. . . . 113
5.28 DReAM data migration phase implementation cost. 113
5.29 Memory footprint for all the evaluated workloads. 114
5.30 Associated cost of partial data migration for DReAM. 114

6.1 DRAM Cell. 120
6.2 Row Hammer phenomenon. 121
6.3 Hot time windows. 125
6.4 ARMOR overview. 126
6.5 Time-based Shift Register. 127
6.6 Dynamic Counter Allocator. 128
6.7 Average activation intervals to each bank for BIOBENCH benchmark

suite. 136
6.8 Average activation intervals to each bank for COMMERCIAL bench-

mark suite. 136

9

6.9 Average activation intervals to each bank for HPC benchmarks. 137
6.10 Average activation intervals to each bank for PARSEC benchmark suite. 137
6.11 Average activation intervals to each bank for SPEC benchmark suite. . 138
6.12 Induced unique number of row-aggressors. 139
6.13 Total row aggressors during execution time. 139
6.14 Average activation intervals to each bank for HPC benchmarks. 140
6.15 Performance overhead of ARMOR and PARA for standard workloads. 141
6.16 Performance overhead of ARMOR and PARA (with the higher Proba-

bility Values) for standard workloads. 141
6.17 ARMOR overhead for synthetic kernels with various access distribution.142
6.18 PARA overhead for synthetic kernels. 143
6.19 PARA miss-rate for synthetic kernels. 143
6.20 Performance overhead of ARMOR and PARA for multithreaded work-

load mixes. 144
6.21 The required number of table entries to detect the possible row-hammer

errors. 144
6.22 Storage overhead for different memory capacities. 145
6.23 Execution time improvements considering buffering entire row. 146
6.24 Execution time improvements considering buffering cache lines. . . . 146

7.1 An overview of the adaptive and baseline memory controllers. 151
7.2 Execution time comparison between the adaptive and the baseline mem-

ory controller (normalised to the baseline execution time). 152
7.3 The profiled execution time for the baseline memory controller. 153
7.4 The profiled execution time for the adaptive memory controller. . . . 154
7.5 Final performance improvement achieved for BIOBENCH and COM-

MERCIAL benchmark suites. 154
7.6 Final performance improvement achieved for HPC benchmarks. . . . 155
7.7 Final performance improvement achieved for PARSEC benchmark suite.155
7.8 Final performance improvement achieved for SPEC benchmark suite. 155
7.9 Implementation cost comparison between the baseline and the adaptive

memory controller. 156
7.10 The implementation cost of the adaptive memory controller profiled

base on the cost of HAPPY, DReAM and ARMOR. 157

9.1 ARMOR logo. 165

10

Acronyms

AAI Average Activation Intervals. 136

ARMOR A Run-time Memory hot-row detectOR. 15

DCA Dynamic Counter Allocator. 126

DIMM Dual In-line Memory Module. 26

DRAM Dynamic Random Access Memory. 14

DReAM Dynamic Re-arrangement of Address Mapping. 15

EAMS Estimated Address-Mapping Scheme. 95

ECC Error Correcting Codes. 42

FCFS First Come First Served. 41

FPGAs Field-Programmable Gate Arrays. 14

FR-FCFS First Ready First Come First Served. 41

GMEAN Geometric Mean. 70

GPUs Graphics Processing Units. 14

HAPPY Hybrid Address-based Page PolicY. 14

HMC Hybrid-Memory Cubes. 22

HTW Hot Time Window. 125

IPC Instruction Per Clock cycle. 53

11

JEDEC Joint Electron Device Engineering Council. 20

LLC Last-Level Cache. 26

MC Mistake Counter. 63

MF Memory Footprint. 68

MPKI LLC Misses Per Kilo Instructions. 50

MSC Memory Channel Storage. 94

MT Migration Table. 96

NaCl Native Client. 119

PAMS Pre-defined Address-Mapping Scheme. 95

PARA Probabilistic Adjacent Row Activation. 123

PCM Phase-Changed Memory. 46

RI Refresh Interval. 124

ROI Region Of Interest. 93

SDRAM Synchronous Dynamic Random Access Memory. 37

SKG Synthetic Kernel Generator. 49

ST Swap Table. 96

TC Timeout Counter. 63

TR Timeout Register. 63

TRR Target Row Refresh. 46

TSRF Time-based Shift Register Filter. 126

TSV Through-Silicon Via. 46

USIMM Utah Simulated Memory Module. 51

12

Abstract

WORKLOAD-ADAPTATION IN MEMORY CONTROLLERS

Mohsen Ghasempour
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

Advanced development in processor design, increasing the heterogeneity of com-
puter system, by involving Graphics Processing Units (GPUs), Field-Programmable
Gate Arrays (FPGAs) and custom accelerators, and increasing the number of cores
and threads in such systems puts extra pressure on the main memory, demanding a
higher performance. Current computing trends are putting ever more pressure on main
memory. In modern computer systems, this is generally Dynamic Random Access
Memory (DRAM) which consists of a multi-level access hierarchy (e.g. Rank, Bank,
Row etc.). This heterogeneity of structure implies different access latencies (and power
consumption), resulting in performance differences according to memory access pat-
terns. DRAM controllers manage access and satisfy the timing constraints and now
employ complex scheduling and prediction algorithms to mitigate the effect on per-
formance. This complexity can limit the scalability of a controller with the size of
memory, while maintaining performance. The focus of this PhD thesis is to improve
performance, reliability and scalability (with respect to memory size) of DRAM con-
trollers. To this end, it covers three significant contributors to the performance and
reliability of a memory controller: ‘Address Mapping’, ‘Page Closure Policies’ and
‘Reliability Monitoring’. A detailed DRAM simulator is used as an evaluation plat-
form throughout this work. The following contributions are presented in this thesis.

Hybrid Address-based Page PolicY (HAPPY): Memory controllers have used
static page-closure policies to decide whether a row should be left open (open-page
policy) or closed immediately (close-page policy) after use. The appropriate choice
can reduce the average memory latency. Since access patterns are dynamic, static page
policies cannot guarantee to deliver optimum execution time. Hybrid page policies
can cover dynamic scenarios and are now implemented in state-of-the-art processors.
These switch between open-page and close-page policies by monitoring the access

13

pattern of row hits/conflicts and predicting future behaviour. Unfortunately, as the
size of DRAM memory increases, fine-grain tracking and analysis of accesses does
not remain practical. HAPPY proposes a compact, memory address-based encoding
technique which can maintain or improve page closure predictor performance while
reducing the hardware overhead. As a case study, HAPPY is integrated, with a state-
of-the-art monitor – the Intel-adaptive open-page policy predictor employed by the
Intel Xeon X5650 – and a traditional Hybrid page policy. The experimental results
show that using the HAPPY encoding applied to the Intel-adaptive page closure policy
can reduce the hardware overhead by 5× for the evaluated 64 GB memory (up to 40×
for a 512 GB memory) while maintaining the prediction accuracy.

Dynamic Re-arrangement of Address Mapping (DReAM): The initial location
of data in DRAMs is determined and controlled by the ‘address-mapping’ and even
modern memory controllers use a fixed and runtime-agnostic address-mapping. On
the other hand, the memory access pattern seen at the memory interface level will be
dynamically changed at run-time. This dynamic nature of memory access pattern and
the fixed behaviour of address mapping process in DRAM controllers, implied by using
a fixed address-mapping scheme, means that DRAM performance cannot be exploited
efficiently. DReAM is a novel hardware technique that can detect a workload-specific
address mapping at run-time based on the application access pattern. The experimental
results show that DReAM outperforms the best evaluated baseline address mapping by
5%, on average, and up to 28% across all the workloads.

A Run-time Memory hot-row detectOR (ARMOR): DRAM needs refreshing
to avoid data loss. Data can also be corrupted within a refresh interval by crosstalk
caused by repeated accesses to neighbouring rows; this is the row hammer effect and
is perceived as a potentially serious reliability and security threat. ARMOR is a novel
technique which improves memory reliability by detecting which rows are potentially
being “hammered” within the memory controller, which can then insert extra refresh
operations. It can detect (and thus prevent) row hammer errors with minimal execution
time overhead and hardware requirements. Alternatively by adding buffers inside the
memory controller to cache such hammered rows, execution times are reduced with
small hardware costs. The ARMOR technique is now the basis of a patent applicant
and under process for commercial exploitation.

As a final step of this PhD thesis, an adaptive memory controller was developed
integrating HAPPY, DReAM and ARMOR into a standard memory controller. The
performance and the implementation cost of such an adaptive memory controller were
compared against a state-of-the-art memory controller, as a baseline. The experimental
results show that the adaptive memory controller outperforms the baseline, on average
by 18%, and up to 35% for some workloads, while requiring around 6 KB-900 KB
more storage than the baseline to support a wide range of memory sizes (from 4 GB
up to 512 GB).

14

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

15

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=
487), in any relevant Thesis restriction declarations deposited in the University
Library, The University Library’s regulations (see http://www.manchester.ac.uk/
library/aboutus/regulations) and in The University’s policy on presenta-
tion of Theses

16

Acknowledgements

First and foremost, I would like to thank my supervisors, Dr. Mikel Luján and Dr. Jim
Garside, for their mentorship, dedication, and support throughout my PhD study. Mikel
has not only been a constant source of excellent, technically sound advice, but also a
joy to work with. He has always been a great source of motivation and my PhD study
would not be possible without his financial and educational support. Jim has always
been patient and a supportive supervisor spending a significant amount of time and
effort supervising me. His technical advice improved my research quality and his
excellent comments and feedback helped me improving my writing significantly.

I have learned a lot from my fellow graduate students, friends and colleagues at
Advanced Processor Technologies (APT) group in the school of computer science at
The University of Manchester. Specially, I would like to thank John Mawer for his ex-
cellent technical comments and feedback on my ideas. Also, I would like to thank him
for accepting to be one of my thesis readers and appreciate his feedback to improve the
content of this PhD thesis. I want to thank my collaborator Dr. Aamer Jaleel, principal
research scientist at Nvidia, whose advice had an important role to develop the evalu-
ation methodology of this PhD thesis. I would like to thank Professor Stephen Furber
and Professor George Constantinides for taking the time to be my thesis examiners.

On a more personal note, I would like to thank my family in IRAN for their unwa-
vering support and encouragement. I would like to thank my parents for their support,
both emotionally and financially, and encouraging me to pursue a PhD. Finally, I want
to thank my wife, Farideh, for her love, support, patience and faith. Finishing this PhD
thesis was not possible without her unwavering support and encouragement.

17

Chapter 1

Introduction

At least as early as in 1995 researchers have postulated that the performance improve-
ment of computers will cease ‘soon’ [WM95]. They reasoned that, at some point,
processors would become much faster than memory and thus the program execution
time would depend on the memory performance and how fast main memory can feed
the data required by a processor. They referred to this situation as “hitting the memory
wall” [WM95].

For decades, continuous advancement in device technology has improved proces-
sors’ performance by increasing the clock frequency. However, as Moore’s law is
coming to an end, the scaling of transistors is no longer a reliable solution for further
improvements of future processors. Therefore, the processor industry shifted to mul-
ticore systems in the past decade to take advantage of thread-level parallelism to keep
the efficiency of modern processors up.

Nowadays, as was postulated, system performance is not normally processor-bound.
In this situation, the main bottleneck is shifted toward the memory hierarchy and espe-
cially the main memory. Figure 1.1 presents a typical memory hierarchy. Typically, the
main memory is populated with DRAM modules that, in general, operate at a lower
frequency than the processor. In this situation, it is crucial to utilise the maximum
bandwidth offered by DRAMs to minimise the degradation of overall system perfor-
mance.

DRAM stands for Dynamic RAM (Random Accessed Memory). RAM refers to
a memory device that allows a data block to be read or written in almost the same
amount of time regardless of the address of the block. Despite this, a DRAM is not
truly randomly accessible. Depending on the order of different memory accesses to the
data blocks, the access latency might vary significantly. Due to the internal structure

18

1.1. MEMORY CHALLENGES 19

DDR DDR DDR DDR

Main Memory

DDR DDR DDR DDR

L1 - I Cache L1 - D Cache

L2 - Cache

Core 1

L1 - I Cache L1 - D Cache

L2 - Cache

Core 2

L3 - Cache

Processor

Memory Controller

Bottleneck

Figure 1.1: Memory hierarchy.

of DRAMs, described in Chapter 2, the performance of DRAMs is dependent on the
application behaviour and memory access patterns. Moreover, the high level of paral-
lelism in multicore systems increases the level of randomness of the memory access
patterns that makes the DRAMs’ performance even more unpredictable.

The sensitivity of DRAMs to memory access patterns at run-time affects all the
efficiency aspects of the memory system from Performance to Power including Relia-

bility. In the next section, memory challenges are discussed in more detail.

1.1 Memory Challenges

At a high level, a DRAM device is organised in a 3D structure consisting of multiple
Banks, Rows and Columns (Figure 1.2). To access a DRAM module specific timing
constraints complying with Joint Electron Device Engineering Council (JEDEC) stan-
dard [SPE09] have to be respected. For instance, two consecutive accesses to different
rows within the same bank (i.e. Page Miss) must be delayed allowing DRAMs to close

20 CHAPTER 1. INTRODUCTION

the previous opened row and activate a new row. On the other hand, consecutive ac-
cesses to the same row within the bank delivers lower access latency than the previous
example since the target row is prepared to be accessed by the first memory access (i.e.
Page Hit).

DRAM Bank

DRAM
Array

Global Row Buffer

Bank
Bank

Bank

Global Row Buffer

DRAM Device
DRAM Array

Rows

Columns

Figure 1.2: Internal structure of a DRAM device.

DRAM controllers are devised to take care of these timing constraints while issuing
desired commands (e.g. read/write commands) to a DRAM module. However, the
sensitivity of DRAM modules to the memory access pattern has demanded a memory
controller with more capabilities than traditional memory controllers. Thus, memory
controllers have started to employ algorithms to predict memory access patterns and
re-order memory requests to minimise the memory access latency.

Performance, power and reliability of DRAMs depend upon the application run-
time behaviour (order of memory requests, timing interval between each request etc.).
For instance, as will be discussed in chapter 2, Page Misses are one of the most harmful
phenomena that affect the efficiency aspects of a DRAM. The most obvious drawback
of a Page-Miss is increasing the memory latency, and consequently, degrading the
performance. Also, a Page-Miss increases the power consumption as it imposes ex-
tra DRAM operations, precharging the previously opened row and activating a new
row. Moreover, depending on the occurrence pattern of Page-Misses, they might af-
fect the reliability of DRAMs by corrupting the data in the specific DRAM cells (i.e.
the RowHammer phenomenon [KDK+14]). Considering this phenomenon in DRAMs
and its dependence on the memory access behaviour, the focus of designing modern
memory controllers is to detect and reduce the possibility of page-miss occurrence at
run time.

1.2. CONTRIBUTIONS 21

Although it is not possible to know the future access pattern, it is possible to make
a prediction based on past behaviour. In principle, gathering more (statistical) infor-
mation may enable better prediction. A complete access trace over the size of DRAM
is infeasible as it would require storage of the same order as the memory itself. The
problem is to discern what can be collected at a sensible cost – in energy and processor
die area – to give ‘adequate’ prediction accuracy.

Probably the most challenging issue while designing a memory controller is con-
sidering that the memory controller is a part of the processor die area. This means that
increasing the complexity of memory controllers will increase the overall processor
area which may not be economical. This constrains the accuracy and scalability of
scheduling and prediction algorithm implemented. On the other hand, the scalability
of emerging modern memory technologies such as DDR4 [Mic14b, Mic14a, LCC+07,
SNS+13] or Hybrid-Memory Cubes (HMC) [Mic14d, Mic14e, Paw11] demands new
designs of future memory controllers. For instance, HMC, introduced by Micron, is
a 3D stacked multibank DRAM that provides 15× more bandwidth than conventional
DDR3 modules and requires 70% less energy and 90% less space than existing mod-
ern memory technologies [Mic14d]. Moreover, the 3D structure of this memory system
makes it extremely scalable in comparison with normal DRAM systems.

Overall, considering the demands for a more scalable and efficient memory con-
troller on future computer architectures motivated this PhD thesis to improve the per-
formance of key components of a traditional memory controller.

1.2 Contributions

The focus of this PhD thesis is to improve the workload adaptivity of DRAM con-
trollers to improve the Performance and Reliability of memory systems. To this end,
a set of contributions is presented to redesign key components of a traditional DRAM
controller. DRAM controllers leverage various page closure policy predictors (to leave
a page open or close a page in advance) to mitigate the performance and power degra-
dation imposed by Page-Misses. However, designing an efficient page closure policy
predictor requires extra cost of implementation (i.e. area and power) and increases
the complexity of DRAM controllers. This thesis proposes an efficient and scalable

encoding-based technique which can improve the performance of DRAMs’ page clo-
sure predictors with a lower cost of implementation in comparison with state-of-the-art
techniques. As a case study, HAPPY was integrated with a state-of-the-art monitor –

22 CHAPTER 1. INTRODUCTION

the Intel-adaptive open-page policy predictor employed by the Intel Xeon X5650 CPU
[Int] – and a traditional Hybrid page policy. These are evaluated intensively across
wide range of workload mixes consisting of single-thread and multi-thread applica-
tions. The experimental results show that using the HAPPY encoding applied to the
Intel-adaptive page policy can reduce the hardware cost by 5× for the evaluated 64 GB
memory (up to 40× for a 512 GB memory) while maintaining the prediction accuracy.
Effectively, HAPPY can achieve a similar (or slightly better) performance to existing
high performance industry and academic predictors at much smaller hardware over-
head.

Data placement in DRAMs, determined by how the physical addresses are mapped
across the 3D space of channel, bank and row, has a significant effect on the perfor-
mance. Memory controllers use fixed and runtime-agnostic address mappings to trans-
late the physical address requested by a processor to the internal structure of DRAMs.
However, a fixed address mapping scheme cannot guarantee to deliver optimum data
placement for a range of workloads. This thesis presents DReAM (Dynamic Re-
arrangement of Address Mapping), a novel hardware technique based on approximat-
ing the entropy of each memory address bit for a set of memory requests, to generate a
workload specific address mapping at run-time. To re-arrange the address mapping dy-
namically at run-time DReAM needs to support the online-data migration imposed by
changing the address-mapping scheme. DReAM investigates different hardware-based
solutions for data-migration with different levels of complication. The proposed solu-
tions were evaluated over a wide range of mapping-sensitive and mapping-insensitive
workload mixes. The experimental results show that the on-the-fly detected workload
specific address mapping scheme produced by DReAM improves the performance of
the memory system in comparison with the best static baseline address mapping evalu-
ated in this PhD thesis. Overall, DReAM outperforms the permutation-based address-
mapping scheme (the best evaluated baseline) by 5%, on average, and up to 28% across
all the workloads. DReAM is complementary to existing schedulers in memory con-
trollers and is the first on-the-fly mechanism capable of generating workload specific
address-mappings without requiring the running applications to stop.

Due to the volatile nature of DRAM memory controllers need to issue refresh com-
mands at specific time intervals to avoid losing stored data. Another not so well known
means of losing or corrupting stored data within a refresh interval is to have a sequence
of memory requests requiring a DRAM row to be activated very frequently. This can
corrupt the data in the rows that are physically adjacent to the accessed row; the Row

1.3. THESIS ORGANISATION 23

Hammer effect. The data corruption is due to electrical disturbance and segmented
memory or page protection cannot guarantee isolation of two or more programs when
they are using memory mapped to adjacent physical rows. Moreover, ECC modules
are not very efficient in this situation since they cannot detect multi-bit errors. This
thesis proposes ARMOR which is a novel hardware technique that improves memory
controllers by detecting which specific rows are at risk of being “hammered” with-
out interfering with the processors. In addition, ARMOR can detect and prevent row
hammer errors with minimal performance overhead and hardware requirements. The
experimental results over a wide range of memory intensive workloads show that AR-
MOR incurs virtually no execution time overhead for the workloads. When buffers are
added to the memory controller to capture such hammered rows, the execution times
can also be improved with small hardware costs.

Finally, this thesis integrates HAPPY, DReAM and ARMOR as a part of a uniform
system to develop an ‘adaptive’ memory controller. Figure 1.3 presents a high level
overview of such a memory controller. The performance of this adaptive memory
controller is compared against a state-of-the-art memory controller configured with
the best parameters achieved in each Chapter.

CPU

Request
Streams

GPU

I/O

Address

Translation

(DReAM)

Bank 0

Bank 1

Bank 7

Scheduler

Queue Pool

Row-Buffer

Management

(HAPPY)

Reliability Monitor

(ARMOR) DDR DDR DDR DDR

DDR DDR DDR DDR

DDR DDR DDR DDR

Main Memory

DRAM Controller

Figure 1.3: An abstract view of the developed adaptive memory controller.

1.3 Thesis Organisation

The rest of this thesis is organised as follows. Chapter 2 provides general background
and motivation of this PhD thesis. Chapter 3 presents the experimental methodol-
ogy. The three techniques outlined in Section 1.2 each have a chapter dedicated to
them; these are largely intended to be standalone studies of each technique. Chapter 4
presents HAPPY, a hybrid address-based page closure policy to mitigate the effect of
Page-Misses in DRAMs. Chapter 5 proposes DReAM, a highly efficient technique that

24 CHAPTER 1. INTRODUCTION

dynamically changes the address-mapping scheme of DRAMs at run-time. Chapter 6
describes ARMOR, an accurate hot-row detector scheme to improve the reliability in
DRAMs. Chapter 7 integrates HAPPY, DReAM and ARMOR to develop an adap-
tive memory controller and investigates the overall performance improvement of the
memory system taking advantage of all three techniques proposed. Finally, Chapter 8,
concludes this PhD thesis and discusses future work.

Chapter 2

Background and Motivation

2.1 Overview of DRAMs

DRAMs play a significant role as the main memory of modern computer architectures.
Performance, power and reliability of computer systems are highly affected by DRAM
architectures. A typical DRAM module, as can be found in a general purpose com-
puter, is pictured in figure 2.1. More specifically, this figure depicts a Dual In-line
Memory Module (DIMM) that consists of multiple DRAM devices (i.e. black rectan-
gles) plus corresponding circuitry. In general, due to the internal structure of DRAM
devices, the performance of these memory systems depends on the application be-
haviour. This means that, depending on the internal state of DRAMs and the memory
access pattern, the response time of the overall memory system can vary significantly.
This phenomenon makes the overall performance of computer systems unpredictable.

Figure 2.1: A memory module [eTe14].

Figure 2.2 presents a high level overview of a typical computer systems’ memory
hierarchy. Typically, modern processors consist of multiple cores. Each core has its
own private caches (in figure 2.2 L1 and L2 are private) and shares the Last-Level

25

26 CHAPTER 2. BACKGROUND AND MOTIVATION

Cache (LLC) with other cores in the system. The next level of memory hierarchy is
the main memory consisting of DRAM modules which are connected to the processor
through a Memory Controller.

This figure provides some insight into the memory latency expected for different
levels of memory hierarchy. Typically, accessing off-chip memory (DRAMs) is a very
expensive process due to the high latency of IOs. In this situation, the dynamic be-
haviour of the DRAM modules can impose an extra latency on the off-chip memory
accesses which degrades the overall system performance.

Main Memory

Hard Disk

Processor

~4 Cycles

~10 Cycles

~40 Cycles

~100-300 Cycles

Approximate
Access Latency

L1 I-Cache L1 D-Cache

L2 Cache

Core
L1 I-Cache L1 D-Cache

L2 Cache

Core

L3 Cache

Memory Controller

Figure 2.2: A typical computer system memory hierarchy.

To get a better insight into the main reason behind this dynamic behaviour of
DRAM systems, the internal organisation of DRAMs will be discussed in more de-
tail in the following sections.

2.2. DRAMS: BASIC CIRCUITS AND ARCHITECTURE 27

2.2 DRAMs: Basic Circuits and Architecture

In this section, basic DRAM architecture and organisation will be discussed in detail.

2.2.1 DRAM Cell

A DRAM cell is the smallest storage unit of a DRAM device. A schematic represen-
tation is shown in figure 2.3. It consists of a capacitor connected to a bit-line via a
transistor, which is controlled by a word-line. When the word-line is asserted the ca-
pacitor is connected to the bit-line. If the bit-line is driven when word-line is asserted
then the value will be stored on the capacitor, a write operation.

To read the cell the bit-line is first precharged, by changing the line to a known
driver voltage and then disconnecting the driver. When the word line is asserted if both
the bit-line and the capacitor are at the same voltage then the bit-line potential will
remain unchanged; if, however, they are different charge sharing will occur resulting
in a detectable change of voltage on the bit-line. The presence or absence of this
change indicates the state of the bit. It should be noted that the charge sharing will also
cause the capacitor’s voltage to change, so after reading, the voltage has to be restored
by driving the cell back to its original value. Furthermore, over time the charge on the
capacitor will leak away, so it needs to be refreshed regularly hence the name dynamic
memory.

DRAM Cell

Word Line

Bit Line

Figure 2.3: A basic DRAM cell structure.

28 CHAPTER 2. BACKGROUND AND MOTIVATION

2.2.2 DRAM Array

A DRAM array consists of DRAM cells populated in ‘Rows’ and ‘Columns’. Fig-
ure 2.4 presents an abstract structure of a DRAM array. As this figure depicts, word-
lines are connected to all the transistors located in a horizontal line (a DRAM Row).
This means that raising the word-line will activate all the transistors in one row. Simi-
larly, bit-lines are connected to all the DRAM cells located in a vertical line (a DRAM
Column). This implies that, at any given time, only one row can be activated to avoid
collision of capacitors’ charges. Rows and Columns are separately addressable and
some physical address bits are used to address a specific row – and others a column –
within a DRAM device. In the literature a DRAM’s row may also be referred to as a
DRAM Page.

DRAM Array

Rows

Columns

Word Line

Bit LineBit LineBit LineBit Line

Word Line

Word Line

Word Line

Bit Line

Rows

 Columns

Figure 2.4: A basic DRAM array structure.

2.2.3 DRAM Bank

A DRAM Bank comprises a DRAM array plus a Sense Amplifier (or Row Buffer).
During normal DRAM’s operation, a row and column decoder are used to decode
the accessed row and column addresses to internal row and column IDs. In the first
step, a DRAM device will bring the entire accessed row to the sense amplifier which
amplifies the signals and holds the row’s state in a latch. Then the desired data can be
accessed by decoding the column address and a read or write operation can be carried
out. Figure 2.5 depicts an overview of a DRAM bank organisation. Typically, DRAM
banks have a relatively narrow data bus (e.g. 4-16 bit) which means for each read/write
request only part of the requested data can be provided by each bank. This is because
of implementation limitations and challenges such as maximum current limitation etc.

2.3. DRAMS: MEMORY ACCESS PROTOCOL 29

Moreover, since accesses from the sense amplifier are faster than from the DRAM
array, it is usual to burst data serially from the sense amplifier for a specific size such
as a cache-line size. This improves the bandwidth but mandates that adjacent addresses
are in the same row.

DRAM Bank

R
o

w
 D

e
co

d
e

r

Column Decoder

Sense Amplifier

Row Address

Column Address

Figure 2.5: A DRAM bank structure.

2.2.4 DRAM Device

A DRAM Device (black rectangle in figure 2.1) comprises multiple DRAM banks
which can be accessed in parallel. However, since the existing banks within a DRAM
device share resources such as the communication bus, address decoders etc. only one
bank at a time can transfer data to the output world. This means that the transfer rate
of each device is limited to the transfer rate of a DRAM bank which, as discussed, is
about 4-16 bit wide (depending on DRAM model).

2.3 DRAMs: Memory Access Protocol

To access a DRAM a set of processes, manifested by particular commands, must be
used. Each of these has its own timing constraints. Table 2.1 presents some of these
timing parameters [JNW10]. In general, a combination of a specific set of commands
along with the timing constraints depicted in Table 2.1 construct the DRAM access
protocol which will be discussed in this section.

30 CHAPTER 2. BACKGROUND AND MOTIVATION

Timing Parameters Description
TBurst Data burst duration. The time period that a data burst occu-

pies on the data bus. Typically 4 or 8 beats of data. In DDR
SDRAM, 4 beats occupy 2 full clock cycles.

TCAS Column Access Strobe latency. The time interval between
column access command and the start of data return by the
DRAM device(s). Also known as TCL.

TCCD Column-to-Column Delay. The minimum column com-
mand timing, determined by internal burst (prefetch) length.

TCMD Command transport duration. The time period that a com-
mand occupies on the command bus as it is transported from
the DRAM controller to the DRAM devices.

TCWD Column Write Delay. The time interval between issuance of
the column-write command and placement of the first data
on the data bus by the DRAM controller.

TFAW Four (row) bank Activation Window. A rolling time-frame
in which a maximum of four-bank activation can be en-
gaged. Limits peak current profile in DDR2 and DDR3 de-
vices with more than 4 banks.

TRAS Row Access Strobe. The time interval between row access
command and data restoration in a DRAM array. A DRAM
bank cannot be precharged until at least TRAS time after the
previous bank activation.

TRC Row Cycle. The minimum time interval between accesses
to different rows in a bank.

TRCD Row to Column command Delay. The time interval between
row access and data being ready at sense amplifiers.

TRFC Refresh Cycle time. The minimum time interval between
Refresh and Activation commands.

TRP Row Precharge. The time interval that it takes for a DRAM
array to be precharged for another row access.

TRRD Row activation to Row activation Delay. The minimum time
interval between two row activation commands to the same
DRAM device. Limits peak current profile.

TRTP Read to Precharge. The time interval between a read and a
precharge command.

TWR Write Recovery time. The minimum time interval between
the end of a write data burst and the start of a precharge
command. Allows sense amplifiers to restore data to cells.

TWTR Write To Read delay time. The minimum time interval be-
tween the end of a write data burst and the start of a column-
read command. Allows I/O gating to overdrive sense ampli-
fiers before the read command starts.

Table 2.1: Summary timing constraints of DRAM [JNW10].

2.3. DRAMS: MEMORY ACCESS PROTOCOL 31

DRAM Bank

Sense Amplifier

DRAM Bank

Sense Amplifier

DRAM Bank

Sense Amplifier

DRAM Bank

R
o

w
 D

e
co

d
e

r

Column Decoder

Sense Amplifier

DRAM Device

Data Out

Figure 2.6: A DRAM device structure.

2.3.1 Basic DRAM Commands

In this section, five basic and crucial DRAM commands will be discussed; Row Access,
Column-Read, Column-Write, Precharge and Refresh.

Row Access Command

This is an initialisation command that needs to be issued to move data from the DRAM’s
cells in the DRAM array to the sense amplifiers (Row-Buffer) and to restore data back
to the DRAM array (as part of the same command). It is also known as an Activa-

tion Command, which is accompanied by a subset of the address bits to select the row.
Considering the main operation of this command, there are two main timing param-
eters associated with it: Row Column Delay (TRCD) and Row Access Strobe latency

(TRAS). TRCD is the time it takes to move data from DRAM cells to the sense am-
plifier. After TRCD the data is ready for read and write operations. In this situation,
although data is ready to access in the Row-Buffer it is not fully restored back to the
DRAM cells. TRAS specifies the delay required to restore data to the DRAM array
from the row access command. The sense amplifiers cannot be precharged until TRAS

has passed. Figure 2.7 presents the associated timing parameters to the row access
command.

32 CHAPTER 2. BACKGROUND AND MOTIVATION

Row Access CMD

TRCD

Data to Row buffer Data Restore to DRAM cells

TRAS

Time

Figure 2.7: Row access command timing.

Column-Read Command

This command transfers selected data from the sense amplifiers over the data bus to the
memory controller. There are three timing parameters associated with this command;
Column Access Strobe latency (TCAS), Column-to-Column Delay (TCCD) and Data

burst duration (TBurst). TCAS, also known as TCL, is the time it takes after a column
read command is issued for the DRAM device to place data on the data bus. Internally,
DRAM devices move data in a short and continuous burst. The duration of these bursts
is called TCCD. Similarly, the data will be placed on the data bus in bursts but with a
longer burst period which is called TBurst. Figure 2.8 depicts the associated timing
parameters to the column read command.

Column Read CMD

TCAS

Data Read

TBurst

Time

I/O gating

Place Data on the Data bus

TCCD

Figure 2.8: Column read command timing.

Column-Write Command

The column-write command is fairly similar to the column-read command with the
difference that the direction of data movement is reversed. This command moves data
from the memory controller to the sense amplifier. One specific timing parameter as-
sociated with this command is Column Write Delay (TCWD). This specifies the time
between issuance of a column-write command and placing of the data on the data bus

2.3. DRAMS: MEMORY ACCESS PROTOCOL 33

by the memory controller. Moreover, there are two other timing parameters that corre-
spond to the column write command in specific situations; Write Recovery (TWR) and
Write-To-Read turnaround (TWTR). The TWR is the time it takes to transfer the written
data to the DRAM array. This timing must be respected in the case of a precharge com-
mand that follows the column write command. In addition, since both read and write
operation use a common data bus there is a timing constraint that must be taken into
consideration when changing the direction of the I/Os. TWTR is the time that it takes
to release the I/O resources by the write command. This timing must be respected in
the case of a read command that follows the write command. Figure 2.9 shows the
corresponding timing parameters to the column write command.

Column Write CMD

TCWD

Bank access: Write to DRAM Array

TBurst

Time

I/O gating

Place Data on the Data bus

TWR

TWTR

Figure 2.9: Column write command timing.

Precharge Command

It has been discussed that each bank within a DRAM device has only one Row-Buffer
and it has been explained that the first step to access a row is the activation process that
moves data from DRAM array to the row-buffer. Thus, the located data in the row-
buffer is ready to perform a read/write operation. In this situation, accessing a different
row within the same bank is not possible since the row-buffer is already occupied. The
Precharge Command solves this problem by resetting the row-buffer and correspond-
ing bit-lines. This prepares them for another row-access command within the same
bank. The associated timing parameter for this command is called Row Precharge

(TRP). TRP is the time it takes to precharge the row-buffer and corresponding bit-lines
properly after the assertion of the precharge command. Considering the TRP described
here and the Row Access Strobe latency (TRAS) described before, a new timing param-
eter can be defined as Row Cycle (T RC = T RAS+ TRP) which is the timing constraint

34 CHAPTER 2. BACKGROUND AND MOTIVATION

of accessing two different rows within the same bank. Figure 2.10 presents the timing
parameters associated to the precharged command.

Precharge CMD

TRC

Bank Precharge

TRAS

Time

Data Restore to DRAM cells from previous Command

TRP

Figure 2.10: Precharge command timing.

Refresh Command

Due to the dynamic nature of DRAMs and considering the basic structure of a DRAM
cell presented in figure 2.3, the electrical storage in DRAM cells is not persistent. It
means that a DRAM cell will lose its charge, and as a result its stored value, gradually
over time. Therefore, to maintain data integrity, the data values must be read and
restored to their original value periodically. The purpose of the Refresh Command

in DRAMs is to perform this periodic read out and restoration of data. In theory,
the Refresh process can guarantee data integrity in DRAMs if the time interval of
refresh command issuance is shorter than the minimum retention time of the DRAM
cells (worst case scenario). For modern DDR3 memory systems the DRAM cell’s
retention time is around 64 ms. Thus, the memory controller must issue a refresh
command to every row at least every 64 ms. The associated timing parameter to the
refresh command is Refresh Cycle Time (TRFC) which is the timing constraint between
a refresh command and the next activation to the same row. An overview of the timing
parameters associated with the refresh command is presented in figure 2.11.

2.3.2 Row-Buffer Access Classification

Row-Buffer access classifications affect many aspects of a memory system including
Performance, Power and Reliability. Considering the basic operation of DRAMs and
the associated access protocol discussed in the previous section, a memory access to a
DRAM device can be classified in three different categories; Page-Hit, Page-Miss and

2.3. DRAMS: MEMORY ACCESS PROTOCOL 35

Refresh CMD

TRC

Row Access to all banks

TRAS

Time

TRP

Precharge all banks Row Access to all banks Precharge all banks

TRAS TRP

TRFC

Additional time to refresh multiple rows within
a Refresh command

Figure 2.11: Refresh command timing.

Page-Empty. The memory latency of a specific memory access can be significantly dif-
ferent depending on the category that the memory request falls into. In the following,
each category and its associated timing parameters will be discussed.

Page-Empty

To perform a read or write operation in a DRAM device the target row must be acti-
vated (moved to the Row-Buffer) first. In this scenario if the Row-Buffer is empty the
accessed row will be activated and ready for a read/write operation after TRCD. This is
called “Page-Empty”.

Page-Hit

Considering two memory requests to the same row within the same bank, after the first
memory request the target row is open in the Row-Buffer. Thus, the second memory
request does not need to wait for TRCD and the read/write operation can be done im-
mediately. This is called a “Page-Hit” which delivers the lowest access latency across
the Row-Buffer access classifications.

Page-Miss

Considering two consecutive memory requests to different rows within the same bank,
since after the first access the Row-Buffer holds the previously target row then to ac-
cess a new row the row buffer must first be precharged before the second row can be
activated. This imposes an extra TRP to the overall memory access latency. Moreover,
the Row-Buffer cannot be precharged until the data is fully restored to the DRAM cells

36 CHAPTER 2. BACKGROUND AND MOTIVATION

(TRAS). Therefore, T RC = T RAS+ TRP is the memory latency of accessing different
rows within the same bank. This is called a “Page-Miss” which imposes the highest
access latency in a DRAM device.

2.4 DRAM vs SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a version of DRAM.
Traditional DRAM has an asynchronous interface which means that it responds to its
control inputs as soon as they arrive. On the other hand, SDRAM has a synchronous
interface with the processor clock cycle. SDRAM uses this clock to pipeline the incom-
ing commands from processor. This means that the chip can accept new commands
while processing the previous command. Therefore, this increases the throughput in
comparison with an asynchronous DRAM.

2.5 DRAMs: Memory System Organisation

A basic overview of a DRAM device’s internal structure was presented in the previous
section. In this section, different organisations of a DRAM device that are currently
used in memory systems will be discussed .

2.5.1 DRAM Rank

It was mentioned that each DRAM device has a narrow data bus. Thus, to improve
the performance of DRAM modules multiple DRAM devices work in parallel within
a Rank to provide the bandwidth required by modern processors. Typically, a DRAM
rank is designed to support 64-bit data for each read or write request. Furthermore,
modern DRAM DDR3 memory systems are restricted to perform read or write oper-
ations in bursts (generally limited to a fixed burst size of 4 or 8 items). In this way
for each read/write operation 64 bytes of data can be delivered by the DRAM module
which is enough to fill a cache-line. Figure 2.12 presents an overview of a DRAM rank
organisation with a 64-bit wide data bus.

2.5.2 DRAM Channel

A DRAM channel is the physical connection between a processor and the DRAM
modules. Multiple DRAM modules, each of which can consist of 1 to 4 ranks, can

2.6. DRAM MEMORY CONTROLLER 37

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

16
-b

it

64-bit

16
-b

it

16
-b

it

16
-b

it

DRAM Rank

Figure 2.12: A DRAM rank structure.

be placed on a DRAM channel. A processor communicates with DRAM modules
through a Memory Controller which will be discussed in detail in the next section. In
general, each processor can support multiple memory controllers each of which can
manage single or multiple memory channels. Figure 2.13 presents a few examples of
existing memory organisations [JNW10]. Figure 2.13a shows a simple processor with
one memory controller that manages only one channel. Figure 2.13b depicts the Intel
i875P system controller that has one memory controller that manages two channels
at the same time, each of which is 64-bit wide. Similarly, figure 2.13c presents the
Intel i850 memory system where one memory controller handles two physical chan-
nels with narrower data width (i.e. 16-bit) than the Intel i875P. Figure 2.13d, shows
the Intel i925X memory system that has two independent memory controllers each of
which can manage different 64-bit wide channels. Having independent memory con-
trollers increases the efficiency of the memory system since the memory pressure will
be distributed.

2.6 DRAM Memory Controller

The memory controller is the key component of a computer architecture that is in
charge of handling communication between the processor and the main memory. In
modern computer systems, the memory controller is implemented on the same silicon
die as the processor to reduce the communication latency as much as possible. Since,
in the multicore era, the main performance bottleneck has moved toward the memory
system (rather than processors) the performance of DRAM controllers has become
critical. In this section, a high level overview of a modern DRAM memory controller
will be investigated and its key components will be analysed in detail. Figure 2.14
presents a abstract view of a DRAM memory controller. This figure is simplified to

38 CHAPTER 2. BACKGROUND AND MOTIVATION

Memory

Controller
Processor

DDRDDRDDRDDR

DRAM Channel
64-Bit

(a) Typical Single Channel Organisation.

Memory

Controller

Intel i875P
Processor

DDRDDRDDRDDR

DRAM Channel

128-Bit

DDRDDRDDRDDR

DRAM Channel

64-Bit

64-Bit

(b) Intel i875P memory organisation.

Memory

Controller

Intel i850
Processor

DDRDDRDDRDDR

DRAM Channel

32-Bit

DDRDDRDDRDDR

DRAM Channel

16-Bit

16-Bit

(c) Intel i850 memory organisation.

Memory

Controller

Intel i925X
Processor

DDRDDRDDRDDR

DRAM Channel
64-Bit

Memory

Controller DDRDDRDDRDDR

DRAM Channel
64-Bit

(d) Intel i925X memory organisation.

Figure 2.13: Different industrial memory organisations [JNW10].

show only the main components of such a system.

CPU

Request
Streams

GPU

I/O

Address

Translation

Bank 0

Bank 1

Bank 7

Scheduler

Queue Pool

Row-Buffer

Management

Reliability Monitor
DDR DDR DDR DDR

DDR DDR DDR DDR

DDR DDR DDR DDR

Main Memory

DRAM Controller

Figure 2.14: An abstract view of a DRAM controller.

The main four components highlighted in figure 2.14 are described as follows.

2.6.1 Address Mapping

The address mapping unit is one of the most important components of a DRAM con-
troller and has a significant effect on the overall performance of the memory system.
The first step to service a memory request is to decompose the physical address to
the internal structure of the memory system. This process maps given physical ad-
dress bits (e.g. 32 address bits) to their corresponding Channel, Rank, Bank, Row
and Column indices of a given memory organisation. Typically, DRAMs use a fixed

address-mapping scheme. Figure 2.15 presents an example of how a physical address

2.6. DRAM MEMORY CONTROLLER 39

is divided to the corresponding DRAM internal structure using two different address
mapping schemes.

(0x44AB082F)

0100 0100 1010 1011 0000 1000 0010 1111

Row Bank

Rank

Column Block Offset

0100 0100 1010 1011 0000 1000 0010 1111

Row Bank

Rank

Column Block Offset

Physical
Address

Address Mapping 1

Address Mapping 2

Figure 2.15: Examples of address mapping using different schemes.

As presented in figure 2.15, an address-mapping scheme simply dictates which
part of the physical address is used to address specific parts of DRAMs. Although,
this process looks very simple, choosing different address mapping schemes can have
a significant effect on the overall performance of a memory system. The rationale
behind this is that the address translation process has a strong correlation with the
data placement in the memory. Therefore, choosing one address-mapping scheme
might distribute consecutive memory requests to different banks and choosing another
address-mapping scheme might place consecutive memory requests to different rows
within the same banks. In the first case, since the multiple banks can be accessed in
parallel, the consecutive memory requests can be serviced in parallel but in the second
scenario consecutive memory accesses to different rows within the same bank cause
a large number of page-misses and, as a result, degrade the memory latency signifi-
cantly. There are a few novel address-mapping schemes that have been proposed by
other researchers in this area to mitigate page-misses [KSJ11, ZZZ00].

2.6.2 Command Scheduling

In the second phase, after the translation process, the translated memory requests will
be placed in different request queues depending on their target bank. It has been dis-
cussed that to service a memory request multiple commands must be issued (e.g. AC-

TIVATION, READ/WRITE, PRECHARGE, etc.). To take advantage of the maximum
available parallelism in a memory system DRAM controllers employ a Scheduler to

40 CHAPTER 2. BACKGROUND AND MOTIVATION

re-order the issuable memory request from the request queues. The main aim of the
scheduling process is to reduce the page-misses and to increase the page-hits in the
system. Therefore, a scheduler can prioritise memory requests targetting the open row
within a bank over those that target other rows within the same bank.

In general, there are two traditional scheduling algorithms called First Come First
Served (FCFS) and First Ready First Come First Served (FR-FCFS). The FCFS algo-
rithm schedules the memory requests according to their order of arrival. This deliv-
ers a poor level of parallelism. On the other hand, FR-FCFS scheduler scans the re-
quest queue and prioritises the memory request whose target destination is ready (i.e.
memory request targetting an open row within a bank). In addition to the traditional
scheduling algorithms, there has been a significant number of other novel algorithms
developed to improve the performance of memory systems [EMF+11, KPMHB11,
MM08, IFSK12, MKK+12, LWWX12].

2.6.3 Row-Buffer Management

Considering the basic operation of DRAMs explained so far, accessing a row implies
transferring the entire row to the row-buffer (sense amplifier). Thus, after performing
the read or write operation a DRAM device can either keep data in the row-buffer or
return the data to the original row. DRAM controllers employ techniques, collectively
called the Row-Buffer Management Policy, to decide either to leave a row-buffer open
or close it immediately after it has been accessed. This decision can have a significant
effect on the access latency for the next memory request to the same bank. Typically,
there are two traditional (static) Row-Buffer management policies that are used by
DRAM controllers: Open-Page and Close-Page. A memory controller that employs
an Open-Page policy leaves a page open after it has been accessed. This reduces the
access latency of the next memory request to the same bank and the same row since
the target row is open and there is no extra cost to opening it again (Page-Hit). This
policy is desired for workloads with high-locality behaviour. On the other hand, a
memory controller that employs the Close-Page policy closes a row immediately after
it has been accessed. This reduces the access latency for the next memory request to
a different row within the same bank since the row-buffer has been prepared (closed)
in advanced for the new row to be activated. This page policy is desired for workloads
with random memory access behaviour.

In addition to the static page closure policies, modern memory controllers also take
advantage of Hybrid (Dynamic) page policies which are a combination of Open-Page

2.7. PERFORMANCE, POWER AND RELIABILITY 41

and Close-Page policies. This type of policy, instead of using a fixed page closure
policy, monitors the memory access pattern at run time and switches between static
policies considering the locality and randomness of the memory accesses. Although,
the idea of Hybrid page closure polices looks promising the main challenge is the
compromising of the prediction accuracy and cost of implementation. There are a
number of previously published works in this area [KSJ11, ANBD11, XAD09, SM05a,
MC07].

2.6.4 Reliability Monitor

The performance of all the components described so far (i.e. Address-Mapping schemes,
Schedulers and Row-Buffer management policies) can all affect both the Performance

and Power of the memory system. Reliability of memory systems is another crucial
factor that must be taken into consideration when designing a computer architecture.
Typically, DRAM controllers do not employ a standard standalone Reliability Monitor
unit as is highlighted in figure 2.14. The highlighted block in this figure represents
a combination of different fault tolerant techniques, such as Error Correcting Codes
(ECC), that a DRAM controller implements to take care of reliability issues. Em-
ploying smaller memory technology makes DRAM cells more vulnerable to errors.
Therefore, modern DRAM controllers employ more resources to implement different
fault detection and correction techniques to overcome this issue.

2.7 Performance, Power and Reliability

In this section, considering the basic background on DRAM systems discussed so far,
the potential performance and reliability improvement of DRAM-based memory sys-
tems will be investigated. Referring to Figure 2.14, it has been highlighted that there
are a few critical component in a DRAM controller whose performance has a signif-
icant effect on the overall memory systems. In this section, the effect of these key
component on the performance and reliability of the overall memory system will be
discussed.

2.7.1 Memory Access Pattern

DRAMs’ performance, power and reliability are susceptible to the memory access
pattern. Due to the heterogeneous nature of the internal structure of these memory

42 CHAPTER 2. BACKGROUND AND MOTIVATION

systems, accessing different locations of a DRAM device imposes different latencies
and energy consumptions on the overall memory system. In addition, following a
specific access pattern while performing read/write operations to the DRAM arrays
can affect the reliability of the memory system.

Data placement is one of the factors that affects the memory access pattern and,
as a result, the overall performance of the memory system. The key components of a
DRAM controller, highlighted in Figure 2.14, will affect the data placement and the
memory access pattern in one way or another. In the following sections, the effect of
each component on the memory access pattern will be investigated more closely to see
how these components can affect the performance, power and reliability of a DRAM
device.

2.7.2 Susceptibility to Address Translation

The address translation process is one of the most significant factors in determining
the final latency and power for each specific memory request. Considering a sequence
of memory requests, each requested address will be mapped to its destination (i.e.
channel, rank, bank, row and column) based on a pre-defined address-mapping scheme
employed by the DRAM controller. In other words, the address translation process
controls the data placement.

Data placement in DRAMs has a strong correlation with the memory access pat-
tern. For instance, placing consecutive cache-lines in a DRAM’s row can improve
the locality of memory access pattern and placing consecutive cache-lines in different
banks can increase the level of parallelism of memory access pattern (depending on
the application access pattern). Therefore, if the application behaviour is known in
advance, choosing an optimum address mapping scheme can bias the memory access
pattern towards minimum page-misses and maximum page-hits. This will improve
the memory access latency as well as the power of the memory system. However,
memory controllers employ a predefined address-mapping scheme without any knowl-
edge about the application access behaviour. Hence, if the application access behaviour
complies with the predefined address-mapping scheme it can improve the memory per-
formance but if it does not, then the performance of memory system can be degraded
significantly.

2.7. PERFORMANCE, POWER AND RELIABILITY 43

2.7.3 Susceptibility to Page Closure Policy Prediction

The row-buffer management policy (also known as the ‘Page Closure Policy’) is an-
other critical component that has a strong interaction with the memory access pattern.
Considering the traditional page closure policies, leaving a row open (i.e. Open-Page)
or closing it immediately after it has been accessed (i.e. Close-Page) can deliver differ-
ent memory access latency depending on the memory access pattern. For instance, if
consecutive memory accesses go to the same row and the memory controller employs
an open-page policy the memory access latency will be improved. Using a close-
page policy in this case would degrade the performance of the memory system. The
hybrid page closure policies try to predict the memory access pattern and switch be-
tween open-page and close-page policy at run time. Similarly to the address translation
process, page policy prediction outcome can significantly affect the performance and
power of the memory system.

2.7.4 Susceptibility to Error Detection

Maintaining data integrity in DRAMs is one the most crucial factors in the area of
memory system design. Modern memory systems often employ ECC modules to im-
prove the reliability of DRAMs. To get a better insight into the importance of reliabil-
ity, some server-grade memory systems accept a 12.5% area overhead just to imple-
ment these ECC modules [KDK+14]. One of the harmful kinds of error in DRAMs
are those where their possibility of occurrence depends on the application behaviour.
Since the application behaviour changes dynamically, the possibility of occurrence of
these types of error also changes at run time, which makes it very difficult to capture
them. One specific type of error with such a dynamic nature of occurrence is called the
Row Hammer phenomenon [Mik, Mica, KDK+14] which can be categorised as Distur-
bance Errors. A Row Hammer phenomenon will happen if the number of activations
of a specific row (which is known as Row-Aggressor) exceeds a specific threshold
within the refresh interval. In this situation the neighbouring rows (known as Victim-
Row) to the row-aggressor may start losing their data. Since an activation stream to a
DRAM module depends on the application access pattern, Row Hammer occurrence
also depends on the memory access pattern.

44 CHAPTER 2. BACKGROUND AND MOTIVATION

2.8 Future Memory Technology and Scalability Chal-
lenges

The traditional approach to scaling down memory technology and the advanced devel-
opment of designing novel memory systems such as HMC, both facilitate the employ-
ment of high capacity memory systems in modern computer architectures and data
centres. This reveals a new challenge for memory controller designers; Scalability.
Moreover, some of the recent approaches for data centres, such as keeping the entire
database in DRAM, RAMCloud (e.g. 64 TB of DRAMs) [Joh], turn the scalability
issue into a serious problem for future DRAM-based architectures.

In the previous section, the susceptibility of the key components of a modern
DRAM controller to memory access patterns has been discussed. One solution to mit-
igate this susceptibility is to develop an access pattern aware memory controller that
can adapt itself to the application behaviour. Developing a workload adaptive memory
controller requires careful monitoring and analysis of the workload behaviour at run
time using prediction algorithms and pattern detection techniques. Typically, this im-
poses extra hardware overhead on the memory controller design. In this situation, the
scalability of modern memory systems demands scalable prediction and monitoring
algorithms to be implemented in the memory controller.

In the following, some of the state-of-the-art memory technologies available in the
market are briefly discussed.

2.8.1 DDR4 DRAM

Double Data Rate Fourth generation Dynamic Random-Access Memory (DDR4 DRAM)
is the next generation of DRAM memory that delivers a better performance and power
than the previous generation (DDR3). In summary, it has a lower operating volt-
age (1.2 V), higher clock frequency (up to 1.6 GHz), higher device density (2 Gb-
16 Gb), higher number of banks per device (16) and faster burst access by employing
up to 4 Bank Groups (BG) than DDR3 memory systems [Mic14b, Mic14a, SNS+13,
LCC+07].

One of the important features of DDR4 as opposed to its predecessor, DDR3, is
its ability to mitigate row hammer error as discussed in Chapter 6. By definition,
aggressive activation of a specific row (above a certain threshold) in a DRAM within a
refresh interval can cause data corruption in the neighbouring rows. The latest DDR4

2.9. WORKLOAD ADAPTATION 45

modules uses Target Row Refresh (TRR) mode to mitigate row hammering. TRR
allows DRAM controllers to request the refreshing of the neighbouring rows of a target
address (row aggressor). For instance, TRR mode has been included in the latest 4 Gb
Micron devices (MT40A1G4HX-083E) [Mic14c]. Note that there is still a demand for
detecting row aggressors before a TRR command to be issued.

Moreover, the DDR3 DRAMs that have been shipped to the market so far do not
have inbuilt support to mitigate row hammer errors. To address this issue, Chapter 6
of this PhD thesis presents a technique to prevent row hammer error.

2.8.2 Hybrid Memory Cube (HMC)

HMC is a 3D stacked multibank DRAM that provides 15× more bandwidth than con-
ventional DDR3 modules and requires 70% less energy and 90% less space than exist-
ing modern memory technologies. HMCs use Through-Silicon Via (TSV) technology
to create a 3D stack of standard DRAM memory dies (typically 4 or 8). It has more
data banks than traditional DRAMs and its unique 3D structure makes it scalable in
comparison with normal DRAM systems. The HMC memory controller is integrated
into the memory package as a separate logic die [Paw11, Mic14d, Mic14e].

2.8.3 Non-Volatile Memory

Non-Volatile memories are another category of promising future memory technology.
For instance, Phase-Changed Memory (PCM) is a type of non-volatile random-access
memory that, due to its physical nature, can switch between crystalline and amorphous
states in response to heating. PCMs take advantage of this alterable physical and elec-
trical properties to store information in memory systems and since there is no need for
electrical power to hold a PCM’s physical state it is a non-volatile memory. Moreover,
this type of non-volatile memory is able to achieve some intermediary physical state,
between crystalline and amorphous state, that allows them to store multiple bits in a
single memory cell [WRK+10, JD04, Mic14f, IBM14].

2.9 Workload Adaptation

According to the discussion in this chapter so far, it can be concluded that all the
performance aspect of a DRAM controller can be affected by the application behaviour
and the memory access pattern. Therefore, this PhD thesis describes an investigation

46 CHAPTER 2. BACKGROUND AND MOTIVATION

into the possibility of developing a workload adaptive DRAM controller, improving
the flexibility and adaptivity of individual key components in such a system.

In a high level overview, Figure 1.3 in Section 1 presented how a traditional mem-
ory controller (figure 2.14 in section 2.6) will be affected by the outcome of the re-
search that has been carried out while producing this thesis. To sum up, this PhD
thesis proposes three different techniques (i.e. HAPPY, DReAM and ARMOR) to im-
prove performance and scalability of three key components of a DRAM controller by
increasing the flexibility and adaptivity of each component to the application memory
access behaviour at run time. Thereby, by integrating these new adaptive components,
this thesis presents a proposal for a novel and scalable workload adaptive memory
controller to improve overall performance of the memory system.

Chapter 3

Experimental Methodology

This chapter presents the experimental methodology used in the research presented in
this PhD thesis as well as including a brief description of the tools that have been devel-
oped to speed up this research process. The methodology presented here is a general
overview and highlights the common strategy that has been employed in the next three
chapters. However, each of the following chapters might use slightly different mem-
ory parameters to investigate the corner cases, depending on the nature of the targeted
problem.

3.1 Tools Development

During this research several tools were developed to understand the basic infrastruc-
ture of DRAMs, speed up the research process and improve the evaluation phase of
the proposed techniques. A brief summary of the two main platforms that have been
employed are described below.

3.1.1 A Simple DRAM Simulator

Figure 3.1 presents a screenshot of the simple DRAM simulator developed in the ini-
tial stage of this PhD work. The eight lower right 3D graphs depicted in this figure
monitor the memory access pattern of eight internal banks of a DRAM. Each memory
access to the DRAM is presented as a coloured point in these graphs depending on
the access latency of the memory request. The main purpose of developing this plat-
form was to study memory access patterns, in a graphical format, when using different
memory configurations. For instance, the effect of different address-mapping schemes

47

48 CHAPTER 3. EXPERIMENTAL METHODOLOGY

on the memory access pattern can be investigated for different workloads using this
tool. Moreover, this tool will accept some of the main DRAM timing constraints as in-
puts and generate a rough estimate of the execution time for different workloads based
on their memory access traces. The experimental results produced by this tool were
the main motivation to develop DReAM (Chapter 5), one of the core contributions to
this PhD research which is a technique to change the address-mapping schemes at run
time.

Figure 3.1: A simple DRAM simulator.

3.1.2 A Synthetic Kernel Generator (SKG)

The evaluation methodology is one of the most important parts in the research and can
have a significant effect on the final results and conclusions. To debug the simulation
infrastructure and improve the evaluation methodology a Synthetic Kernel Generator
(SKG) is developed. In general, and more specifically in the computer architecture
related research area, there is no single benchmark that can be used to evaluate all the
aspects of a computer architecture. Typically, each benchmark has been designed to
simulate specific behaviour. For instance, five different benchmark suites were used
to evaluate all the techniques proposed in this PhD thesis. However, there are special
behaviour and corner cases that are not covered by these standard benchmarks. To
investigate these special and extreme cases some synthetic kernels are generated us-
ing SKG. This tool provide a flexible platform to generated a wide range of synthetic

3.1. TOOLS DEVELOPMENT 49

kernels with full control on the memory access pattern, memory intensity, access dis-
tribution etc. Figure 3.2 presents a high level overview of the internal structure of this
tool. This tool was mainly used to generate the synthetic kernels required to evaluate
the technique proposed in Chapter 6 (ARMOR).

Memory Access Pattern Memory Access Distribution

Memory Access Intensity

Memory Trace Configuration

Read/Write Intensity Row-Hammer Configuration

Simulation of Application Phase

Internal DRAM Configuration

Synthetic Kernel Generator

Figure 3.2: Block diagram of the synthetic kernel generator.

A brief summary of the functionality of each block in Figure 3.2 follows:

• Internal DRAM Configuration: this module accepts different parameters to
configure the internal structure of the DRAMs, such as the number of channels,
ranks, banks, rows, columns, cache-line size etc.

• Memory Trace Configuration: this module accepts some parameters, such as
LLC Misses Per Kilo Instructions (MPKI), Simulation Length or Trace Size, to
produce a memory trace with the desired specification.

• Memory Access Pattern: this module uses different parameters to produce
memory traces with various access patterns (e.g. sequential or random).

• Memory Access Distribution: this module manages the memory access distri-
bution across the memory space. For instance, using this module it is possible
to generate a memory trace that only uses two specific banks of one specific
channel in the system etc.

50 CHAPTER 3. EXPERIMENTAL METHODOLOGY

• Memory Access Intensity: this module controls the time interval between mem-
ory accesses. Therefore it is possible to tune this time interval to have high or
low intensive memory traces.

• Simulation of Application Phase: this module makes it possible to change the
application access pattern between sequential or random with a fixed or random
time interval. Therefore, it is possible to simulate different application phases
with different behaviour.

• Read/Write Intensity: this module manages the distribution of read and write
in the memory traces with a programable ratio. Thus it is possible to generate
memory traces that are either write or read intensive.

• Row-Hammer Configuration: this module is designed to produce the row ham-
mer effect in the generated memory traces. For instance, using this module it is
possible to specify the desired number of row-aggressors with different distribu-
tion of occurrence such as, Uniform, Gaussian and Poisson distribution. Thus,
this tool can produce different row-aggressors by accessing random rows more
frequently than others using different access pattern.

3.2 Evaluation Platform

The Utah Simulated Memory Module (USIMM) [CBS+12] was used as the main eval-
uation platform for the experiments described in this PhD thesis. The initial version
of this simulator was significantly improved and extended to support various address-
mapping schemes, page-management policies, row-hammer monitoring etc. USIMM
is introduced briefly below.

3.2.1 USIMM: The Utah Simulated Memory Module

USIMM is a trace-based cycle accurate DRAM simulator developed by Utah univer-
sity [CBS+12]. Initially, it was introduced in a memory scheduling competition in
conjunction with one of the top international conferences in the area (ISCA39). The
initial version of USIMM supports a FR-FCFS scheduling algorithm. USIMM sup-
ported only two static page management policies (i.e. Open-Page and Close-Page)
which was extended by this work to support five different dynamic page management

3.3. EVALUATED BENCHMARK SUITES 51

policies described in Chapter 4. Initially, this simulator supported two different ad-
dress mapping schemes to maximise page locality and bank-level parallelism, this was
extended by this work to support two state-of-the-art address mapping schemes (min-
imalist open-page [KSJ11] and permutation-based page interleaving [ZZZ00]). In ad-
dition to the mentioned improvements, USIMM was extended to support ARMOR,
the row hammer solution explained in Chapter 6. Finally, USIMM was extended to
support specific performance counters to monitor and extract the patterns required by
different techniques proposed in this PhD thesis.

3.3 Evaluated Benchmark Suites

The workloads include a wide range of memory intensive applications (48 workloads)
from different benchmark suites (PARSEC [BKSL08], SPEC [Dix91], BIOBENCH
[AJW+05], HPC and COMMERCIAL) and representative regions of interest for each
application. Table 3.1 lists the workloads and their corresponding benchmark suites.

Benchmark Suites
SPEC PARSEC COMMERCIAL

GemsFDTD r astar B canneal comm1
bzip2 l bzip2 t streamcluster comm2

cactusADM b gcc 1 blackschols comm3
gcc 2 gcc c facesim comm4
gcc cp gcc g ferret comm5
gcc sc mcf r fluidanimate BIOBENCH
milc s omnetpp o freqmine mummer

soplex r sphinx3 a swaption tigr
xalancbmk r zeusmp z HPC
libquantum leslie hpc1 - hpc13

Table 3.1: Standard workloads and benchmark suites.

In addition to the single-thread workloads presented here, each proposal (i.e. HAPPY,
DReAM and ARMOR) will be evaluated against multithread workload mixes built by
combining the single thread applications. Each chapter considers a different set of
multithread workload mixes to evaluate each proposal on desired application access
behaviour. For, instance in Chapter 6, the multithread workload mixes are produced to
increase the possibility of row hammer error occurrence. Therefore, each chapter in-
cludes a table of multithread workload mixes describing which combination of single
thread application used in each mix.

52 CHAPTER 3. EXPERIMENTAL METHODOLOGY

3.3.1 Workload Characterisation

As discussed, DRAM performance is susceptible to application access patterns and
workload behaviour. Therefore, it is crucial to evaluate the techniques proposed in
this PhD thesis over a wide range of workloads with different characterisations. In
this section some of these characterisations such as Instruction Per Clock cycle (IPC),
LLC Misses (defined as Misses Per Kilo Instructions (MPKI)) and Read Latency of
each application are profiled. Figure 3.3 to Figure 3.5 presents the MPKI for all the
workloads. These results shows that the evaluated workloads cover a wide range of
MPKI (between 2 to 70 LLC misses per 1000 instructions).

0"
10"
20"
30"
40"
50"
60"

sp
ec
_G

em
sF
DT

D_
r"

sp
ec
_a
st
ar
_B

"

sp
ec
_b

zi
p2

_l
"

sp
ec
_b

zi
p2

_t
"

sp
ec
_c
ac
tu
sA
DM

_b
"

sp
ec
_g
cc
_1
"

sp
ec
_g
cc
_2
"

sp
ec
_g
cc
_c
"

sp
ec
_g
cc
_c
p"

sp
ec
_g
cc
_g
"

sp
ec
_g
cc
_s
c"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_l
ib
qu

an
tu
m
"

sp
ec
_m

cf
_r
"

sp
ec
_m

ilc
_s
"

sp
ec
_o

m
ne

tp
p_

o"

sp
ec
_s
op

le
x_
r"

sp
ec
_s
ph

in
x3
_a
"

sp
ec
_x
al
an

cb
m
k_
r"

sp
ec
_z
eu

sm
p_

z"

M
PK

I"

Figure 3.3: MPKI for the SPEC benchmark suite.

0"
5"

10"
15"
20"
25"
30"
35"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_c
an

ne
al
"

pa
rs
ec
_f
ac
e"

pa
rs
ec
_f
er
re
t"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_f
re
q"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

pa
rs
ec
_s
w
ap

t"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_=

gr
"

co
m
m
1"

co
m
m
2"

co
m
m
3"

co
m
m
4"

co
m
m
5"

M
PK

I"

Figure 3.4: MPKI for the PARSEC, BIOBENCH and Commercial benchmark suites.

0"
10"
20"
30"
40"
50"
60"
70"
80"

hp
c1
"

hp
c2
"

hp
c3
"

hp
c4
"

hp
c5
"

hp
c6
"

hp
c7
"

hp
c8
"

hp
c9
"

hp
c1
0"

hp
c1
1"

hp
c1
2"

hp
c1
3"

M
PK

I"

Figure 3.5: MPKI for the HPC benchmarks.

Figure 3.6 to Figure 3.8 depict the IPC for all the workloads running on the x86
architecture. These results show the IPC changed between 0.2 to 1.6 across different

3.3. EVALUATED BENCHMARK SUITES 53

workloads.

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"

sp
ec
_G

em
sF
DT

D_
r"

sp
ec
_a
st
ar
_B

"

sp
ec
_b

zi
p2

_l
"

sp
ec
_b

zi
p2

_t
"

sp
ec
_c
ac
tu
sA
DM

_b
"

sp
ec
_g
cc
_1
"

sp
ec
_g
cc
_2
"

sp
ec
_g
cc
_c
"

sp
ec
_g
cc
_c
p"

sp
ec
_g
cc
_g
"

sp
ec
_g
cc
_s
c"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_l
ib
qu

an
tu
m
"

sp
ec
_m

cf
_r
"

sp
ec
_m

ilc
_s
"

sp
ec
_o

m
ne

tp
p_

o"

sp
ec
_s
op

le
x_
r"

sp
ec
_s
ph

in
x3
_a
"

sp
ec
_x
al
an

cb
m
k_
r"

sp
ec
_z
eu

sm
p_

z"

IP
C"

Figure 3.6: IPC for the SPEC benchmark suite.

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"
1.8"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_c
an

ne
al
"

pa
rs
ec
_f
ac
e"

pa
rs
ec
_f
er
re
t"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_f
re
q"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

pa
rs
ec
_s
w
ap

t"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_?

gr
"

co
m
m
1"

co
m
m
2"

co
m
m
3"

co
m
m
4"

co
m
m
5"

IP
C"

Figure 3.7: IPC for the PARSEC, BIOBENCH and Commercial benchmark suites.

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"

hp
c1
"

hp
c2
"

hp
c3
"

hp
c4
"

hp
c5
"

hp
c6
"

hp
c7
"

hp
c8
"

hp
c9
"

hp
c1
0"

hp
c1
1"

hp
c1
2"

hp
c1
3"

IP
C"

Figure 3.8: IPC for the HPC benchmarks.

Figure 3.9 to Figure 3.11 show the read latency for all the workloads. The experi-
mental results show the read latency of 100 to 200 clock cycles across all workloads.

The general characterisation of different workloads presented in this section shows
that a wide range of applications with different characteristics is used to evaluate the
techniques proposed in this PhD thesis. However, there are more interesting character-
istics that can be extracted from each application that will be investigated in the next
three chapters depending on the targeted problem in each chapter.

54 CHAPTER 3. EXPERIMENTAL METHODOLOGY

0"

50"

100"

150"

200"
sp
ec
_G

em
sF
DT

D_
r"

sp
ec
_a
st
ar
_B

"

sp
ec
_b

zi
p2

_l
"

sp
ec
_b

zi
p2

_t
"

sp
ec
_c
ac
tu
sA
DM

_b
"

sp
ec
_g
cc
_1
"

sp
ec
_g
cc
_2
"

sp
ec
_g
cc
_c
"

sp
ec
_g
cc
_c
p"

sp
ec
_g
cc
_g
"

sp
ec
_g
cc
_s
c"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_l
ib
qu

an
tu
m
"

sp
ec
_m

cf
_r
"

sp
ec
_m

ilc
_s
"

sp
ec
_o

m
ne

tp
p_

o"

sp
ec
_s
op

le
x_
r"

sp
ec
_s
ph

in
x3
_a
"

sp
ec
_x
al
an

cb
m
k_
r"

sp
ec
_z
eu

sm
p_

z"

Cl
oc
k"
Cy
cl
es
"

Figure 3.9: Read latency for the SPEC benchmark suite.

0"

50"

100"

150"

200"

250"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_c
an

ne
al
"

pa
rs
ec
_f
ac
e"

pa
rs
ec
_f
er
re
t"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_f
re
q"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

pa
rs
ec
_s
w
ap

t"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_<

gr
"

co
m
m
1"

co
m
m
2"

co
m
m
3"

co
m
m
4"

co
m
m
5"

Cl
oc
k"
Cy
cl
es
"

Figure 3.10: Read latency for the PARSEC, BIOBENCH and Commercial benchmark
suites.

0"
50"

100"
150"
200"
250"
300"

hp
c1
"

hp
c2
"

hp
c3
"

hp
c4
"

hp
c5
"

hp
c6
"

hp
c7
"

hp
c8
"

hp
c9
"

hp
c1
0"

hp
c1
1"

hp
c1
2"

hp
c1
3"

Cl
oc
k"
Cy
cl
es
"

Figure 3.11: Read latency for the HPC benchmarks.

Chapter 4

HAPPY: Hybrid Address-based Page
PolicY

4.1 Introduction

The performance of DRAM is sensitive to the memory access pattern of the running
applications. Accesses to a DRAM device can be categorised in three ways: page-
empty, page-hit and page-miss. If a memory request goes to a bank which has no open
row the access called ‘page-empty’. In this situation an activation command is required
to open the desired row. If a memory request goes to a row which is already open then
it is a ‘page-hit’ and the request can be serviced fairly cheaply. Finally, if a memory
request goes to a different row from the open one in a bank it is a ‘page-miss’ which
imposes an extra latency on the memory system; the open row must be closed before
the desired row can be opened.

Traditionally DRAM controllers have used a static row-buffer access policy, either
open-page or close-page, to decide whether a row should be left open or closed im-
mediately after their access [JNW10]. For workloads with high locality of accesses
open-page works best since the target row is already open and multiple accesses to that
row can be serviced with one activation. However, for workloads with more random
memory accesses, close-page is a better option. In this case a row will be closed im-
mediately after a memory access so the next memory request within the same bank
does not need to wait for the precharge process of the open row. Moreover, neither the
open-page nor close-page policy can deliver the ‘best’ execution time for all workloads
due to the dynamic nature of memory accesses. In this situation a hybrid-page policy,
which is a mixture of open-page and close-page, is more desirable [KDD10].

55

56 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

Different techniques have been proposed to select between open-page and close-
page in DRAM memory controllers [KSJ11, ANBD11, XAD09, SM05a]. Access-

based techniques are those that monitor and keep a history of the row hits and row
misses at different granularities in DRAMs to make a prediction of the future page
closure policy. On the other hand, time-based techniques focus on predicting the op-
timum time that a row should be left open. In general, these techniques rely on pre-
dictors that monitor the number of accesses per row, the number of row hits or row
misses, the time between hits or misses etc. to predict the page closure poilicy for each
row in DRAM. Intel included two time-based techniques in the Xeon X5650 [Int].
As the size of DRAM increases with data analytic applications, having a fine-grain
prediction and monitoring scheme becomes inefficient and not scalable. On the other
hand going toward coarse-grain schemes reduces the accuracy of the prediction. A
key challenge for page-closure techniques is to balance the hardware overhead and the
prediction accuracy. The trend towards keeping entire databases in DRAM, such as
RAMCloud (64 TB of DRAM) [Joh] or Facebook using 150 TB of DRAM with mem-
cache [ORS+11], turns the scalability issue into a critical problem for future DRAM
systems. This chapter presents a scalable and compact memory address-based encod-
ing technique, called HAPPY, that can be employed in DRAM memory controllers.
HAPPY is an efficient encoding that reduces the cost of implementation of existing
page closure techniques while maintaining the prediction accuracy of the original im-
plementation. As case studies, this chapter shows how to integrate HAPPY with a
state-of-the-art implementation – the Intel-adaptive open-page policy employed by In-
tel [Dod06, Int] – and with a traditional hybrid-page policy. HAPPY and existing page
closure techniques are evaluated across a wide range of workload mixes consisting of
single-thread and multi-thread applications. The experimental results show that using
the HAPPY memory address-based encoding applied to the Intel-adaptive page policy
can reduce the hardware cost of implementation by 5× for the evaluated 64 GB mem-
ories (up to 40× for a 512 GB memory) while maintaining the prediction accuracy. In
other words, HAPPY achieves similar, or better, performance to existing high perfor-
mance industry and academic techniques while requiring less hardware overhead.

4.2. BACKGROUND ON DRAM PAGE CLOSURE POLICY 57

4.2 Background on DRAM Page Closure Policy

DRAM controllers employ a page closure policy to alleviate the effect of page-misses
on the memory system’s performance. The most common schemes are the open-page
and the close-page policy. A DRAM that uses the open-page policy will leave the
last accessed row open in the row buffer to eliminate the activation cost of the next
memory request to the same row. A DRAM that uses the close-page policy will close a
row immediately after it has been accessed to eliminate the possibility of getting page-
miss for the next memory request [Kee08]. In general the open-page policy is more
desirable for systems with high access locality and the close-page policy is desired for
systems with highly random access behaviour. Table 4.1 presents the timing cost of
page-hits and page-misses when using the static page closure policies.

Page Policy Page Hit Page Miss
Open-Page tCL tRCD + tCL + tRP
Close-Page tRCD + tCL tRCD + tCL

Static Profiling tCL tRCD + tCL

Table 4.1: Cost of page-hits and page-misses when using different page closure
policies.

Motivation: Figure 4.1 depicts the execution time (normalised to open-page pol-
icy) of all the workloads that are used in this chapter using open-page and close-page
policy. The results show that around 68% of workloads ‘prefer’ the open-page pol-
icy while 32% of workloads deliver a better performance using the close-page policy.
According to this figure, a memory system that employs the open-page policy can
save up to 18%, in comparison with the close-page policy, when running ‘libquantum’
from the SPEC benchmark and, at the same time, might lose up to 18% when running
‘tigr’ from the BIOBENCH benchmark. Therefore, there is almost 40% performance
variation in the system depending on the static page policy that a memory controller
employs. This is motivation enough for researchers to start thinking about developing
dynamic page policies that switch between open- and close-page policy at run time
based on the application access behaviour.

The Static Profiling presented in Table 4.1 shows the cost of page-hits and page-
misses when the memory controller selects the best static page closure policy scheme
for each workload by static profiling of memory accesses. The static profiling provides
a baseline to evaluate the performance of dynamic page closure policies discussed in
this chapter.

58 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

0.70$

0.80$

0.90$

1.00$

1.10$

1.20$

1.30$

sp
ec
.li
bq

ua
nt
um

$

sp
ec
_m

cf
_r
$

sp
ec
_m

ilc
_s
$

hp
c4
$

sp
ec
_s
op

le
x_
r$

sp
ec
_s
ph

in
x3
_a
$

sp
ec
_o

m
ne

tp
p_

o$

sp
ec
_g
cc
_c
p$

sp
ec
_a
st
ar
_B

$

pa
rs
ec
_s
tr
ea
m
cl
us
te
r$

sp
ec
_g
cc
_c
$

hp
c1
$

hp
c1
0$

hp
c7
$

hp
c2
$

sp
ec
_g
cc
_1
$

hp
c6
$

hp
c8
$

hp
c1
2$

sp
ec
_x
al
an

cb
m
k_
r$

hp
c1
1$

sp
ec
_G

em
sF
D
TD

_r
$

hp
c5
$

sp
ec
_g
cc
_g
$

hp
c9
$

sp
ec
_g
cc
_2
$

sp
ec
_g
cc
_s
c$

sp
ec
_b

zi
p2

_t
$

pa
rs
ec
_f
ac
es
im

$

hp
c1
3$

sp
ec
_z
eu

sm
p_

z$

hp
c3
$

pa
rs
ec
_f
er
re
t$

pa
rs
ec
_f
re
qm

in
e$

co
m
m
5$

pa
rs
ec
_b

la
ck
sc
ho

le
s$

pa
rs
ec
_s
w
ap

J
on

s$

pa
rs
ec
_fl

ui
da

ni
m
at
e$

sp
ec
_c
ac
tu
sA
D
M
_b

$

co
m
m
4$

sp
ec
_b

zi
p2

_l
$

co
m
m
3$

co
m
m
2$

co
m
m
1$

pa
rs
ec
_c
an

ne
al
$

bi
ob

en
ch
_m

um
m
er
$

bi
ob

en
ch
_J

gr
$

N
or
m
al
is
ed

$E
xe
cu
J
on

$T
im

e$

68% Open Page 32% Close Page

Figure 4.1: Performance of static page policies for all workloads.

Motivated by this observation, Hybrid page closure policies have emerged. This
type of page policy uses various prediction algorithms to switch dynamically between
the open-page and close-page policies according to the application access behaviour.
Prediction accuracy and scalability are the two main challenges of designing such page
policy predictors. In general, there is a linear relationship between the memory size
and the resources required to monitor the memory access pattern of that memory space.
Thus, as the memory size grows, the cost of the page closure policy predictor grows
and, as a result, the memory controller complexity and area of the implementation
increases. In modern computer architectures, the memory controller is integrated on
the die as a part of the processor. Thus, increasing the size of the memory controller
increases the die area of the processor which may not be economical.

Overall, considering the scalability of emerging memory systems such as HMCs,
increasing interest in using large amounts of DRAM instead of disk storage in servers
and database applications for instance using 64 TB of DRAMs in RAMCloud [Joh,
OAE+10, ORS+11] and using 150 TB of DRAMs by Facebook in memcached [ORS+11]
these trends demand a scalable approach for efficient design.

In the next section, HAPPY is introduced as an efficient technique to address the
scalability problem of the page closure policy prediction technique for DRAM memory
systems.

4.3. HAPPY:HYBRID ADDRESS-BASED PAGE POLICY 59

4.3 HAPPY:Hybrid Address-based Page PolicY

4.3.1 HAPPY: Basic Principles

HAPPY is a compact memory address-based encoding built on the observation that
there is a strong correlation between physical address bit values and the internal struc-
ture of DRAMs. Understanding the basic operation of DRAMs shows that one of the
first steps to access the DRAM structure is the address mapping process. During this
process, the physical address bits provided by a core are translated to the corresponding
channel, rank, bank, row and column of a DRAM device using a fixed and pre-defined
address-mapping algorithm. Having a fixed translation mapping creates a strong corre-
lation between physical address bits and the DRAM’s structure. It means that, if some
useful information can be extracted from the physical address bits after translation, it
is possible to extract the same information before this stage.

All the page closure algorithms proposed so far focus on monitoring the memory
access behaviour after the translation phase. In general, these techniques use different
performance counters on a channel, bank or row basis to monitor page hits/conflicts,
the time that a row could be kept open etc. HAPPY proposes a novel binary-encoding
scheme with performance counters storing the page closure history directly from the
physical address bits. In other words, HAPPY introduces one predictor per physical
address bit to forecast the page closure policy of each row in the memory system
according to the run-time memory accesses.

Sections 4.3.2 and 4.3.3 show how HAPPY can be applied to the two main page
closure categories: access-based and time-based techniques. One traditional and one
state-of-the-art technique are illustrated to demonstrate how the HAPPY encoding can
be applied to different systems with different implementation characteristics.

4.3.2 HAPPY: Access-based Prediction

To demonstrate how HAPPY can be applied to access-based algorithms the traditional
hybrid-page policy algorithm is selected. This employs simple, saturating counters to
monitor the memory access pattern and dynamically switch between open- and close-
page policy at run time. Figure 4.2 depicts the basic structure of such page closure
policy predictors.

In this technique, one saturating counter (e.g. a 2-bit counter) is assigned to each
row of a DRAM bank. Every time that a row-miss occurs the corresponding counter is

60 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

OP Weak OP Weak CP CP
Conflict

Hit Hit Hit

Conflict Conflict

Row Buffer

0 0 Row 1

0 0 Row 0

0 0 Row 32,768

DRAM Bank

2-bit Saturating Counter

Figure 4.2: Basic structure of hybrid page policy.

incremented; Whenever a row-hit occurs the counter is decremented. For each memory
request, the accessed row’s counter value determines the page closure policy; if the
value is 0 or 1 the open-page policy is predicted and if it is 2 or 3 the close-page policy
is predicted. However, having a counter for each row in a DRAM device imposes a
high area and power overhead to the memory system. For example, a 4 GB DRAM
memory system with 1 channel, 2 ranks, 8 banks and 32,768 rows per bank, require
524,288 counters, which is not scalable (analysis presented in Section 4.5).

Figure 4.3 depicts the HAPPY implementation of a Hybrid page policy. The binary
representation of the requested physical address is a pattern of zeros and ones. HAPPY
dedicates two encoding counters per physical address bit location: one counter to mon-
itor the position when its value is ‘1’ and one to monitor it when it is ‘0’. Training of
these counters is similar to the original implementation of Hybrid; that means for every
page conflict the counter corresponding to each physical address bit is incremented and
for every page hit the same counter will be decremented. Considering the page-hits and
page-misses happen on a row basis then there is no need to monitor all the available
physical address bits. Thus, the physical address bits corresponding to columns and
cache-lines offset are not used. This reduces even further the implementation costs of
HAPPY.

Having done this, each physical address bit correlates with the possibility of get-
ting page hit/conflict depending on the value of that bit. Therefore, for a given physical
address the likelihood of getting page hit/conflict can be calculated simply by consid-
ering all the participant bit’s counter values in the requested address and using one of
the following techniques: Majority vote or Aggregation.

Majority vote: Figure 4.4 explains this scheme using a simple example. Each
physical address bit has a counter which has its own standalone vote to choose an
open- or close-page policy for the requested physical address. The page closure policy

4.3. HAPPY:HYBRID ADDRESS-BASED PAGE POLICY 61

Encoding ‘1’

Address Bits 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1

0xC66EB

OP Weak OP Weak CP CP
Conflict

Hit Hit Hit

Conflict Conflict

Row Bank

1 1 0 0

Rank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0

Physical Address

Encoding ‘0’Encoding

Counters

Figure 4.3: HAPPY implementation of hybrid page policy.

vote of each bit can be extracted by looking at the more significant bit of the saturating
counters. If this bit is ‘0’ there is an open-page policy vote and if the value is ‘1’
there is a close-page policy vote. As the name of decision implies, the final vote is
determined by the majority vote across all the counters.

1 1 0 0 1 1 0 1 1 1 0 1 0 1 1

0xC66EB

1 1 0 0

0 0 0 2 0 0 0 0 0 0 3 0 3 0 00 0 1 3

0 1 0 0 2 2 0 0 1 1 0 0 0 0 33 2 0 0

Physical Address

C
P

C
P

O
P

C
P

O
P

O
P

O
P

C
P

C
P

C
P O
P

C
PO
P

O
P

O
P

O
P

C
P

C
P

O
P

Close Page Votes: 9

Open Page Votes: 10

Final Decision: Open Page

‘0’ Counters

‘1’ Counters

Figure 4.4: Example of HAPPY majority vote decision.

Aggregation: the final page closure policy decision can also be determined by
comparing the aggregation of the all the counters’ values, Equation (4.1), against a
certain threshold, Equation (4.2).

i f ∑AddressBitCounters < T hreshold→ Open Page

else →Close Page
(4.1)

62 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

T hreshold =
AddressBitsWidth×CounterSaturatingValue

2
(4.2)

The experimental results show similar results using either majority or aggregation,
thus only the majority vote decision scheme is used in the final experimental results.

4.3.3 HAPPY: Time-based Prediction

As a case study to show how HAPPY can be applied to a time-based prediction algo-
rithm, the Intel-adaptive open-page policy [Raj] employed by the Intel Xeon X5650
[Dod06, Int] is chosen. The basic structure of such a page closure policy is presented
in Figure 4.5.

DRAM
Bank

Row Buffer

Tim
eo

u
t

C
o

u
n

te
r

COMP

Tim
eo

u
t

R
egiste

r

Close0000

0001

0010

0011

1100

1101

1110

1111

Less Aggressive
Page Closing

Policy

More Aggressive
Page Closing

Policy

Mistake Counter

Adjust

In
cr

e
m

en
t D

ecrem
e

n
t

H
ig

h
 T

h
re

sh
o

ld
Lo

w
 T

h
re

sh
o

ld

Figure 4.5: Basic structure of the Intel-adaptive page policy predictor.

The integrated memory controller used in this Intel processor can be configured at
boot time to employ one of the following three different page closure policy schemes:
close-page, fixed-open and Intel-adaptive open page. The fixed-open page policy keeps
a row open for a fixed period of time and closes it after that. The Intel-adaptive scheme
is an advanced version of the fixed-open schemes. Similar to the fixed-open policy,
in this structure, each row buffer within a bank has a Timeout Counter (TC) and a
Timeout Register (TR). A row will be kept open until TC reaches the TR and then
closed. However, the initial TR might not be a suitable value for all the benchmarks.
Thus, the Intel-adaptive scheme provides a technique to update the TR at run time
using a 4-bit Mistake Counter (MC). Whenever a page conflict happens that could
have been a page-empty, since there was enough time to precharge the last accessed
row, then the MC is decremented. Whenever a page empty could have been a page-hit,
since the row being accessed is the same as the last accessed row in that bank, then
the MC is incremented. After a specific time interval the MC will be checked against
a predefined low and high threshold to see if either a less or more aggressive page

4.3. HAPPY:HYBRID ADDRESS-BASED PAGE POLICY 63

closure policy is required. If the MC is higher than the high-threshold then the TR
will be incremented to keep the accessed row open for a longer period and if the MC
is lower than the low-threshold the TR will be decremented to close the accessed row
sooner.

Figure 4.6 depicts the HAPPY implementation of the Intel-adaptive open page pol-
icy. This time the aim is to extract the timeout value for each row to be kept open from
the physical address bits. The same methodology explained in the previous section is
used to address the issue; the only difference is that instead of using simple saturat-
ing counters a monitor unit is dedicated to each physical address bit location. Each
monitoring unit includes a MC and a TR with the same function as the original imple-
mentation of Intel-adaptive page policy. A global timeout counter is still required to
keep track of row closing and opening times on a per bank basis.

Encoding ‘1’

Address Bits 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1

0xC66EB

Row Bank

1 1 0 0

Rank

MMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMM

Physical Address

Encoding ‘0’Encoding

Counters

Timeout
Register

0000

0001

0010

0011

1100

1101

1110

1111

Less Aggressive
Page Closing

Policy

More Aggressive
Page Closing

Policy

Mistake Counter

Adjust

In
cr

e
m

en
t D

ecrem
e

n
t

H
ig

h
 T

h
re

sh
o

ld
Lo

w
 T

hr
es

ho
ld

Monitoring Unit

Figure 4.6: HAPPY implementation of Intel-adaptive page policy predictor.

Updating the MCs is as before but this time it is applied per physical address bit
basis rather than per bank. Moreover, instead of having a global timeout register per
bank, the time period that a row can be kept open will be calculated from the aggrega-
tion of all the participant bits for an accessed physical address.

64 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

To make a fair comparison between HAPPY and original implementation of this
page policy, the size of the MC is chosen as before (e.g. 4-bit) and the size of TR at
each physical bit location is chosen to be small enough that the maximum time that a
row can be kept open is equal to having one global TR per bank.

4.3.4 HAPPY: Further Possible improvements

This chapter is mainly intended to explain the basic principles behind HAPPY and
how it can significantly improve the scalability of the prediction algorithms. However,
a significant reduction in the cost of implementation provides further opportunity to
design a more efficient and accurate predictor.

For instance, the experimental results show that increasing the size of saturating
counters from 2-bit to 4-bit for the first case study can improve the prediction accuracy
and, as a result, the performance of memory system. However, for a 4 GB DRAM
that requires around 500K saturating counters; two extra bits per counter impose a
significant area and power overhead to the system which is impractical. Considering
that HAPPY can reduce the cost of implementation by 13,000× (for a 4 GB DRAM)
without harming the performance there is enough space to increase the counter size
with negligible overhead.

4.3.5 HAPPY: Intuition

• Observation: The main intuition behind HAPPY is based on the observation
that addresses that are spatially close together tend to have a similar page-closure
policy preference. HAPPY is devised to exploit such behaviour by fine grain
monitoring of physical address bits’ access pattern.

• Ensemble Methods: Although HAPPY is devised based on a careful observa-
tion of the basic concepts and operations of DRAMs, there are Machine Learning
principles that can justify the intuition behind HAPPY. A mathematical/theoret-
ical framework that can explain HAPPY is that of Ensemble Methods [SW11].
The family of algorithms categorised as Ensemble methods combines multiple
(normally simple) predictors. The theory explains how combining such predic-
tors can obtain a much improved predictor, provided certain diversity properties
among the predictors are met. Random forest, and neural networks are exam-
ples of very successful prediction algorithms part of the ensemble family. This

4.4. EVALUATION METHODOLOGY 65

chapter addresses an online learning scenario and uses a fixed number of predic-
tors with a non-linear combination function. When applying HAPPY to Intel-
adaptive, a pair of simple predictors will be generated per physical address bit
and a regression problem will be solved. Each pair of predictors is trained using
a different single physical bit (different features) and each member of the pair is
trained using only Zero or One occurrences (different dataset).

4.4 Evaluation Methodology

Investigating the page closure prediction algorithms for DRAMs requires a careful
evaluation. These types of algorithm are highly sensitive to the application access pat-
tern, therefore their evaluation using only a small set of workloads with the specific
access pattern and for specific memory configuration cannot explore the real capabili-
ties of each scheme. To address this, an intensive evaluation was carried out, described
as follows:

Simulator: as described in Chapter 3, USIMM [CBS+12] was used as the main
simulation platform for these experiments. USIMM was modified to support five dif-
ferent, existing page closure policies (i.e. Open-Page, Close-Page, Hybrid, Fixed-
Open and Intel-adaptive open page) plus the two implementations of HAPPY which
were discussed in section 4.3 (i.e. Hybrid-HAPPY and Intel-adaptive-HAPPY). A FR-
FCFS scheduling algorithm was used in the experiments. HAPPY was evaluated based
on different memory configurations, 2 GB for single-thread and 4 GB for multithread
workloads. To increase the memory congestion USIMM is configured with 1 chan-
nel and 1 rank. The USIMM system configuration parameters that were used in the
experiments in this chapter are captured in Table 4.2.

Address Mapping Schemes: The number of page conflicts in DRAMs, and as a re-
sult the memory performance, is susceptible to the memory address mapping scheme.
The experiments consider three different address mappings presented in Figure 4.7.
The first mapping (1) is a standard mapping to maximize row buffer locality. The next
two address interleaving policies are schemes proposed by Kaseridis et al. [KSJ11]
and Zhang et al. [ZZZ00]. The proposed mapping by Zhang et al. XORs part of the
address bits with the bank address bits to produce a new bank index (see Figure 4.7b).
Kaseridis et al. [KSJ11] extend this technique by producing the column index using a
different section of physical address bits (Figure 4.7c). Both techniques aim to reduce
page conflicts in DRAMs. The experiments show that the permutation-based page

66 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

Model Description Value

Processor
Clock Speed 3.2 GHz

Pipeline depth 10
ROB size 128

Memory System

Bus Speed 800 MHz
Number of Channels 1-4
Ranks per channel 1

Bank per rank 8
Row per bank 65,536

Cache line per row 128
Cache line size 64 Byte

Table 4.2: USIMM configuration parameters.

interleaving (address mapping 2) performs better for most of the workloads. There-
fore, this address mapping scheme is employed in all the experiments. Focusing on
the best page closure policy (i.e. Intel-Adaptive-HAPPY), the sensitivity of HAPPY’s
prediction accuracy to all the three address mappings schemes is investigated.

Workloads: As described in Chapter 3, the workloads include a wide range of
memory intensive applications (i.e. 48 workloads) from different benchmark suites
(PARSEC [BKSL08], SPEC [Dix91], BIOBENCH [AJW+05], HPC and COMMER-
CIAL) and representative regions of interest for each application. For a recap, Table 4.3
lists the workloads and their corresponding benchmark suites. A prefix is added to each
application that will facilitate the naming of multi-thread workloads constructed from
these applications later on.

Benchmark Suites
SPEC PARSEC COMMERCIAL

(a) GemsFDTD r (k) astar B (u) canneal (D1) comm1
(b) bzip2 l (l) bzip2 t (v) streamcluster (D2) comm2

(c) cactusADM b (m) gcc 1 (w) blackschols (D3) comm3
(d) gcc 2 (n) gcc c (x) facesim (D4) comm4
(e) gcc cp (o) gcc g (y) ferret (D5) comm5
(f) gcc sc (p) mcf r (z) fluidanimate BIOBENCH
(g) milc s (q) omnetpp o (A) freqmine (E) mummer

(h) soplex r (r) sphinx3 a (B) swaption (F) tigr
(i) xalancbmk r (s) zeusmp z HPC
(j) libquantum (t) leslie (C) hpc1 - hpc13

Table 4.3: Evaluated workloads and benchmark suites.

4.4. EVALUATION METHODOLOGY 67

Row RA Bank CH Column Block Offset

(a) Mapping 1: Maximise row-buffer locality

RA BankCH Column Block Offset

Row

Row RA BankCH Column Block Offset

XOR

(b) Mapping 2: Permutation-based Page Interleaving [ZZZ00]

RA BankCH Column Block Offset

Row

XOR

Col

Row RA BankCH Column Block OffsetCol

(c) Mapping 3:Minimalist Open-Page Scheme [KSJ11]

Figure 4.7: Different address mappingg schemes.

The USIMM simulator can run arbitrary multi-application workloads using multi-
ple traces. To increase the variety of memory access patterns, USIMM was set up for
multi-applications to produce 22 random workload mixes; a combination of 4-thread,
8-thread and 16-thread applications. Table 4.4 listed these multithread workloads con-
sidering the prefix of single thread workloads presented in Table 4.4. Overall the ex-
periments consider 70 workload mixes.

Memory Footprint (MF): To evaluate the performance of page closure predictors
a careful study has to be carried out otherwise the performance and accuracy numbers
might be misleading. For instance, if an application targets a very small portion of
memory then it might be possible to predict its behaviour using a very small number of
performance counter whereas if the application accesses all over of the memory space
then it might be more difficult to keep track of the application access pattern with only
a few counters (e.g. HAPPY). To have a fair evaluation methodology the memory

68 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

Multithread Workloads
MIX1: (w-D3-D3-F) MIX12: (b-n-s-w)
MIX2: (D1-D5-E-F) MIX13: (w-D1-D5-x-y-z-t-F)
MIX3: (D1-x-y-F) MIX14: (D1-D4-D5-x-z-x-B-F)
MIX4: (D2-D4-A-F) MIX15: (D1-D4-D5-j-E-D5-v-F)
MIX5: (D2-D4-j-E) MIX16: (D2-D4-D5-z-A-A-D4-F)
MIX6: (D2-y-t-F) MIX17: (C5-C6-u-l-e-o-p-h)

MIX7: (D4-D5-g-F)
MIX18: (C13-C14C17-C18-C21-C2-C4-v-k-l-c-m-e-n-h-
s)

MIX8: (D4-x-x-F) MIX19: (C13-C18-C21-C2-C6-u-v-C21-u-l-l-o-t-p-h-s)

MIX9: (x-y-z-F)
MIX20: (C14-C17-C21-C22-C2-C4-C5-C8-C14-C21-
C4-k-e-o-a-p)

MIX10: (C21-C22-C4-
b)

MIX21: (C17-C21-u-C17-q-q-i-t-o-b-o-a-t-p-q-i)

MIX11: (C5-C6-u-e) MIX22: (C18-C22-C5-C6-C8-u-k-l-d-e-n–o-p-q-h-r)

Table 4.4: Randomly generated multithread workloads.

traces should cover a wide range of access pattern. To this aim, the total number of
physical pages accessed (Memory Footprint) was monitored at run time and the results
show that the single thread applications have the average MF of 30% (up to 97%), the
4-thread workloads have the average MF of 50% (up to 75%), the 8-thread workloads
have the average MF of 70% (up to 85%) and the 16-thread workloads have the average
MF of 95% (up to 99.8%).

4.5 Results and Discussions

This section analyzes the different page closure policy prediction schemes compared
with using HAPPY by looking at execution time, accuracy and scalability. Before
jumping to the result graphs the following summary might be helpful:

• The HAPPY implementation of Hybrid page policy is called Hybrid-HAPPY for
brevity.

• The HAPPY implementation of Intel-adaptive open-page policy is called Intel-
adaptive-HAPPY for brevity.

• Figure 4.8 presents the prediction accuracy in terms of page hit and misses.

4.5. RESULTS AND DISCUSSIONS 69

• The results in Figure 4.9 and Figure 4.10-4.13 are normalized to the ‘Static Pro-
filing’; the lower the bar the better performance.

• Overall, the HAPPY implementations perform similarly to (or better than) state-
of-the-art policies while reducing significantly the hardware overheads for dy-
namic page closure policies. Note that while average geometric mean perfor-
mance improvements are single digits (5%-8%), HAPPY requires a minimum
5× less storage overhead than earlier techniques. Unlike prior proposals, the
hardware overhead of HAPPY is scalable with the DRAM memory size.

• Figures 4.14 and 4.15 present the prediction accuracy of the best predictors
(Intel-adaptive and Intel-Adaptive-HAPPY) analysing the effect of different ad-
dress mapping schemes. This can be observed that Intel-Adaptive-HAPPY using
fewer hardware resources delivers a slightly better accuracy (i.e. 2%) than Intel-
Adaptive for all three address mapping schemes.

4.5.1 Prediction Accuracy

Understanding the prediction accuracy for the different types of page closure predic-
tors has its pitfalls. For instance, prediction accuracy in the case of Hybrid predictors
is straightforward as the prediction outcome is either opening or closing a page (binary
classification). However, in the case of the Intel-adaptive technique the accuracy needs
to be described based on the timeout value (regression). Consider a scenario where a
page has to be open for 40 clock cycles to get a page hit and Intel-adaptive predicts 39
clock cycles. In this case the prediction accuracy should be calculated differently. To
have a fair evaluation across all the predictors with a different nature of prediction, we
calculate the prediction accuracy based on the Page-Hit and the Page-Miss prediction
outcome. The main purpose of using page policy predictors is to increase the page
hits and reduce the page misses in the DRAM. Thus, the Oracle page-hits (maximum
possible page-hits when having a perfect predictor) and Oracle page-misses (minimum
possible page-misses when having a perfect predictor) were calculated. Then the ac-
tual page-hits and page-misses occurring during execution time of each workload were
evaluated against the oracle numbers. Figure 4.8 presents the prediction accuracy (Ge-
ometric Mean (GMEAN)) of different predictors across all the workloads evaluated.
The open-page and close-page policies deliver the maximum prediction accuracy for
page-hits and page-misses, respectively. This happens because an open-page policy
leaves all the pages open and then it can cover all the possible page-hits in the system

70 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

and none of the page misses. A close-page policy behaves similarly but in the opposite
scenario. The hybrid-page policy delivers a moderate page-miss and page-hit predic-
tion accuracy (around 60%). The Intel-adaptive and fixed-open both deliver a good
prediction accuracy for both page-hits (80% and 75.8%) and page-misses (83.5% and
90.4%) respectively. Overall, the HAPPY implementation of both Intel-adaptive and
hybrid are slightly more accurate than the original implementation. These prediction
accuracy numbers justify the execution time presented in Figure 4.9. Also, from the
accuracy results it can be concluded that the page-hit prediction accuracy has a higher
impact on the overall execution time than the page-miss prediction accuracy.

100#

0#

68.3# 68.9#

75.8# 80.0# 81.9#

0#

100#

59.0# 61.5#

90.4#
83.5# 84.9#

0#

20#

40#

60#

80#

100#

Ope
n1P

age
#

Clo
se1P

age
#

Hyb
rid#

Hyb
rid1

HAP
PY#

Fixe
d1O

pen
#

Inte
l1ad

apE
ve#

Inte
l1ad

apE
ve1

HAP
PY#Pr

ed
ic
Eo

n#
Ac

cu
ra
cy
#(%

)#

Page1Hit# Page1Miss#

Figure 4.8: Prediction accuracy for different predictors.

4.5.2 Performance Analysis

Figure 4.9 summarises the performance of different prediction algorithms, normalised
to static profiling, for all the benchmarks. Each bar graph in this figure represents the
GMEAN of the execution time for the number of running workloads for each category.
The detailed performance of the prediction algorithms for individual workloads is pre-
sented in Figures 4.10–4.12. These figures again confirm that a static page closure
policy cannot deliver the optimum execution time for all the workloads. The corre-
sponding workloads for HPC and SPEC benchmarks mostly prefer open-page policy.
On the other hand, the corresponding workloads for PARSEC, BIOBENCH and COM-
MERCIAL workloads mostly prefer close-page policy.

4.5. RESULTS AND DISCUSSIONS 71

0.90$

0.95$

1.00$

1.05$

1.10$

SPEC$ PARSEC$ BIOBENCH$ HPC$ COMMERCIAL$ GMEAN$

N
o
rm

a
li
se
d
$E
xe
cu
A
o
n
$T
im

e
$

StaAc$Profiling$ OpenHPage$ CloseHPage$ Hybrid$ HybridHHAPPY$ FixedHOpen$ IntelHadapAve$ IntelHadapAveHHAPPY$

Figure 4.9: Average execution time normalised to static profiling for the single-thread
workloads.

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

1.04$

hpc1$ hpc2$ hpc3$ hpc4$ hpc5$ hpc6$ hpc7$ hpc8$ hpc9$ hpc10$ hpc11$ hpc12$ hpc13$

N
or
m
al
is
ed

$E
xe
cu
=
on

$T
im

e$

Sta=c$Profiling$ OpenFPage$ Close$Page$ Hybrid$ HybridFHAPPY$ FixedFOpen$ IntelFadap=ve$ IntelFadap=veFHAPPY$

Figure 4.10: Execution time normalised to static profiling for HPC workloads.

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

1.04$

Gem
sFD

TD_
r$

asta
r_B

$
bzip

2_l$
bzip

2_t
$

cac
tus

ADM
_b$

gcc
_1$

gcc
_2$ gcc

_c$
gcc

_cp
$

gcc
_g$

gcc
_sc

$

lesl
ie3d

_l$

libq
uan

tum
$

mcf
_r$

mil
c_s

$

om
net

pp_
o$

sop
lex_

r$

sph
inx3

_a$

xala
ncb

mk
_r$

zeu
smp

_z$N
or
m
al
si
ed

$E
xe
cu
Ko

n$
Ti
m
e$

StaKc$Profiling$ OpenPPage$ Close$Page$ Hybrid$ HybridPHAPPY$ FixedPOpen$ IntelPadapKve$ IntelPadapKvePHAPPY$

Figure 4.11: Execution time normalised to static profiling for SPEC workloads.

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

1.04$

black$ canneal$ face$ ferret$ fluid$ freq$ stream$ swapt$ mummer$ =gr$ comm1$ comm2$ comm3$ comm4$ comm5$

N
or
m
al
is
ed

$E
xe
cu
=o

n$
Ti
m
e$

Sta=c$Profiling$ OpenJPage$ Close$Page$ Hybrid$ HybridJHAPPY$ FixedJOpen$ IntelJadap=ve$ IntelJadap=veJHAPPY$

Figure 4.12: Execution time normalised to static profiling for PARSEC, BIOBENCH
and Commercial workloads.

0.9$

0.95$

1$

1.05$

1.1$

1.15$

1.2$

MIX1$ MIX2$ MIX3$ MIX4$ MIX5$ MIX6$ MIX7$ MIX8$ MIX9$ MIX10$ MIX11$ MIX12$ MIX13$ MIX14$ MIX15$ MIX16$ MIX17$ MIX18$ MIX19$ MIX20$ MIX21$ MIX22$ GMEAN$

N
or
m
al
is
ed

$E
xe
cu
@o

n$
Ti
m
e$

Sta@c$Profiling$ OpenJPage$ CloseJPage$ Hybrid$ HybridJHAPPY$ FixedJOpen$ IntelJadap@ve$ IntelJadap@veJHAPPY$

Figure 4.13: Execution time normalised to static profiling for multithread workloads.

72 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

Overview: The experimental results show that the best page closure prediction
scheme (i.e. Intel-adaptive-HAPPY) delivers 5% and 8% better average performance
across all the workloads (up to 12% and 20%) in comparison with open-page and
close-page policy respectively. Overall, the HAPPY implementation of both Hybrid
and Intel-adaptive achieved similar performance when compared with the original im-
plementation of these page closure policies albeit with a much lower hardware over-
head. Comparing the Intel-adaptive with the Intel-adaptive-HAPPY page policy shows
that the HAPPY implementation can reduce the cost of implementation by 5× for the
evaluated 64 GB memory size (up to 40× for a memory size of 512 GB) while main-
taining the prediction accuracy. Similar behaviour can be observed for Hybrid and
Hybrid-HAPPY. Hybrid-HAPPY shows 182,000× reduction in cost of implementa-
tion for the evaluated 64 GB memory size (up to 1.2M× for memory size of 512 GB)
while maintaining the prediction accuracy.

Similarly, as Figure 4.13 presents, for multi-thread applications, even with a very
high MF, HAPPY performance is consistent and delivers similar or slightly better
performance than the original implementation. The experimental results show that
Intel-adaptive-HAPPY delivers 5% and 14% better average performance across all the
workloads (up to 9% and 22%) in comparison with open-page and close-page policy
respectively.

Sensitivity to Address Mapping Schemes: To investigate the sensitivity of HAPPY
to different address mappings the best page closure policy (i.e. Intel-adaptive-HAPPY)
across all the predictors presented in this paper is selected and evaluated against the
three address mappings presented in Figure 4.7. Figures 4.14 and 4.15 illustrate the
prediction accuracy of Intel-adaptive (original and HAPPY implementation) using the
different mapping schemes. These results show that the HAPPY implementation of
Intel-adaptive always delivers identical or slightly better results than the original im-
plementation no matter which address mapping is used.

4.5.3 Sensitivity to Memory Size

HAPPY was evaluated for up to 64 GB DRAM and the results shows that it has a con-
sistent behaviour as the memory size increases. The experimental results suggest that
the effective factor in HAPPY performance is the utilisation of memory address space
rather than the size of memory. For this reason, a 4 GB memory organisation with up
to 99.8% memory space utilisation is considered for the multithread experiments (re-
sults are presented in Figure 4.13). Even in this situation, the results show that HAPPY

4.5. RESULTS AND DISCUSSIONS 73

0"

20"

40"

60"

80"

100"

Mapping"1" Mapping"2" Mapping"3"

Pr
ed

ic
4o

n"
Ac

cu
ra
cy
"(%

)"
Intel?adap4ve" Intel?adap4ve?HAPPY"

Figure 4.14: Page-hit prediction accuracy with different address mappings.

0"

20"

40"

60"

80"

100"

Mapping"1" Mapping"2" Mapping"3"

Pr
ed

ic
4o

n"
Ac

cu
ra
cy
"(%

)"

Intel?adap4ve" Intel?adap4ve?HAPPY"

Figure 4.15: Page-miss prediction accuracy with different address mappings.

delivers a competitive performance against the original implementation of both Hybrid
and Intel-adaptive page policies while reducing the hardware overhead significantly.

4.5.4 Scalability with Memory Size

Figure 4.16 depicts the required storage (bytes) for each prediction algorithm for dif-
ferent sizes of memory. The HAPPY implementation of the hybrid prediction tech-
nique is orders of magnitude (e.g. up to 1.2M×) cheaper than the original implemen-
tation while it delivers similar performance to original implementation. In the case of
Intel-adaptive page closure policy, the HAPPY implementation requires slightly more
resources than the original implementation for memory sizes of less than 8 GB. How-
ever, as the memory size grows, the Intel-adaptive-HAPPY uses less area than the
original implementation up to 40× for a memory size of 512 GB. Table 4.5 depicts
the required performance counters for different page closure policies with and without

74 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

HAPPY considering a memory system with X channels, Y ranks, Z banks and W rows.

1"

10"

100"

1,000"

10,000"

100,000"

1,000,000"

10,000,000"

100,000,000"

4"G
B"

8"G
B"

16
"GB
"

32
"GB
"

64
"GB
"

12
8"G
B"

25
6"G
B"

51
2"G
B"Re

qu
ire

d"
St
or
ag
e"
(B
yt
es
)"

Memory"Size"

Hybrid" HybridBHAPPY" IntelBadapJve" IntelBadapJveBHAPPY"

Figure 4.16: Scalability of different page closure prediction algorithms.

Implementation Required Counters
Hybrid X×Y ×Z×W

Hybrid-HAPPY (log2 X + log2Y + log2 Z + log2W)×2
Intel-adaptive (X×Y ×Z)×2
Intel-HAPPY (log2 X + log2Y + log2 Z + log2W)×4

Table 4.5: Required performance counters for different page closure policies.

4.5.5 Prediction Algorithms - Weakness and Strength

Due to the nature of implementation and structure of each predictor, each might or
might not work in a specific situation. Here, such situations are discussed.

Static Policies: the open-page policy works best for high locality workloads but
degrades the performance of DRAMs significantly for workloads with highly random
or dynamic memory accesses. The close-page policy has the completely opposite be-
haviour. PARSEC and SPEC workloads are good examples which show the different
behaviour of open-page and close-page policies (see Figure 4.11 and Figure 4.12).

Fixed-Open: The performance of this type of algorithm is fairly susceptible to
its predefined timeout value. Similarly to the methodology presented in [KSJ11], this
value is selected to be equal to tRC, that is the minimum time limitation between con-
secutive accesses to different rows within a bank, in the experiments. This time delay

4.5. RESULTS AND DISCUSSIONS 75

provides enough opportunity to capture a possible page hit; it does, according to the
results presented in Figure 4.9. However, for non-memory intensive threads with high
locality or memory intensive with low locality (e.g. ‘mummer’ and ‘tigr’) this tech-
nique might not work well. The reason is that, for the first category, the time interval
between memory requests might be higher than the fixed timeout value which means
this technique will close the row before a page hit happens. Similarly, for the sec-
ond category the time interval between memory requests might be lower than the fixed
timeout value, which means that a row would be kept open for an unnecessary time
which, most likely, would lead to other page conflicts.

Hybrid: the integrated saturating counters employed in this category (either the
original or HAPPY implementation) are trained by the number of page-hits and page-
conflicts that they face. Therefore, the prediction accuracy of these types of techniques
is fairly sensitive to the distribution of page hits/conflicts within DRAMs. For instance,
‘streamcluster’ presents such a behaviour.

Intel-adaptive: our experiments show that this prediction algorithm is the best
across all the presented schemes in this paper. However, one weakness of this tech-
nique is the updating granularity of TR. In our experiments, every time that checking
of the MC suggests a more or less aggressive page closure policy, TR is incremented
or decremented by one respectively. Updating granularity by one step (increment or
decrement) delivers a fine tuning of the TR but reduces the training rate of the over-
all prediction technique. This means that, for workloads where the application access
pattern behaviour changes frequently (e.g. between high and low locality accesses pat-
tern) within different time phases, the Intel-adaptive scheme might not be able deliver
its best performance. Similar behaviour can be observed in ‘canneal’ or ‘comm1’.

HAPPY: so far only the advantages of HAPPY are explained. However, like all
the other proposed techniques, HAPPY also has weaknesses. Considering the global
nature of a HAPPY implementation it is expected that HAPPY cannot perform as
efficiently as fine grain schemes for workloads with fairly dynamic behaviour targeting
a small part of DRAMs locally. This can be seen in workloads like ‘tigr’.

4.5.6 Flexibility

HAPPY is the proof of the concept that the physical address bits can be the source of
useful information that can be extracted using the right encoding and decoding tech-
niques. This makes HAPPY a fairly flexible tool that can be applied to different predic-
tion algorithms that have not been practical due to the cost of implementation, making

76 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

them feasible. In this thesis HAPPY was applied to two completely different prediction
schemes and showed how the performance and scalability of these schemes improved.

4.6 Related Work

Succinctly, prior research in this area can be categorized in two main groups: access-
based and time-based techniques.

Access-based techniques are those that monitor and keep a history of the row
hits and row misses at different granularities in DRAMs enabling them to make a
prediction of the future page closure policy for each row or bank within a DRAM
memory system. Xu et al. [XAD09] proposed a two-level dynamic SDRAM policy
predictor which collects the row hit/miss behaviour for the last n accesses in a history
register. For each entry in the history register, there is a 2-bit saturating counter that
keeps track of the page closure policy for each access. Huan et al. [HLHL06] proposed
the Processor-Directed dynamic page policy where the processor keeps track of the last
row access to each bank to predict page hits or misses for future memory requests. The
processor sends this information to the memory controller to specify the page closure
for the next memory access. Awashti et al. [ANBD11] keep track in a history table
of the number of accesses each row has before closing it. When a row is open the
number of expected accesses to that row is looked up, if there is no recorded entry for
the accessed row in the history table that row is kept open. However if there is an entry
for the accessed row it will be closed after the expected number of accesses suggested
by the history table. More techniques using access-based page closure prediction can
be found in [PP03, MC07, MAW01, SM04, SM05a, SM05b, Sch97].

Time-based techniques mainly focus on predicting the optimum time that a row
can be left open. Blackmore [Bla13] presented a quantitative analysis of page closure
predictors. This work specifically focused on the Intel-adaptive page policy structure
and tried to improve it by introducing the inter-arrival distribution concept. Stonkovic
et al. [SM05a] used the concept of live-time and dead-time to predict the page closure.
The live-time is the time interval between opening a row until the last access to that row
while dead-time is the interval from the last access to an open row until its closing. If
the predictor predicts a zero live-time or if it predicts that the row has entered its dead-
time period, then the row will be closed immediately after the DRAM access otherwise
it will be kept open for future accesses. In another work, Kaseridis et al. [KSJ11] used
the concept that in DRAMs there is a minimum time limitation of tRC between two

4.7. SUMMARY 77

activations within a bank and speculatively leave the pages open for the tRC period.
To sum up, HAPPY is the only technique which considers an encoding based on

the memory address bits offering a compact means of storing history to inform the
predictions. In addition, it has been shown how to apply HAPPY to time-based (i.e.
Intel-adaptive HAPPY) and access-based techniques (i.e. Hybrid HAPPY).

4.7 Summary

DRAM performance depends on the memory access pattern and, more specifically, the
number of page-hit and page-conflicts that occur at run time. Modern DRAM con-
trollers employ advanced page closure policy predictors to improve performance by
trying to transform page-conflicts into page-empty (e.g. by closing the last accessed
row at the “right time”), and page-empty cases into page-hits (e.g. by keeping open the
last accessed row for longer time). However the main challenge is to balance the pre-
diction accuracy of these predictors with manageable hardware overheads (scalability)
as we increase the size of DRAM.

In this chapter, HAPPY – a compact and efficient binary-encoding technique –
was described to alleviate the scalability problem of DRAM page closure predictors.
HAPPY relies on the simple observation that there is a strong correlation between the
physical address bits of memory addresses requested by processors and the internal
structure of the DRAM as there is a fixed-address mapping scheme. Thus, the physical
address bits carry the information that a memory controller needs to predict the page-
hit or page-conflict for a particular access. Considering this, the required performance
counters and monitoring units needed by the page closure prediction algorithms can be
encoded from the physical address bits. Doubling the size of DRAM only implies one
extra physical address bit. This means that with HAPPY only two extra monitoring
units are required to predict the DRAM page closure policy when the size of memory
is doubled. In other words, HAPPY offers the lowest hardware overhead to implement
dynamic DRAM page closure predictor algorithms.

HAPPY was evaluated by applying it to a traditional Hybrid page closure pol-
icy, as well as the state-of-the-art Intel-adaptive open page policy included in Intel
Xeon X5650. The experimental results show that the HAPPY implementation of Intel-
adaptive page policy can reduce the cost of implementation by 5× for the evaluated
64 GB memory size (up to 40× for a memory size of 512 GB) while maintaining the

78 CHAPTER 4. HAPPY: HYBRID ADDRESS-BASED PAGE POLICY

prediction accuracy. The other case study shows 182,000× reduction in cost of im-
plementation for the evaluated 64 GB memory size (up to 1.2M× for memory size
of 512 GB) while maintaining the prediction accuracy. The experiments have also
reported the accuracy of the predictors and have studied the sensitivity towards the
memory address-mapping. In both scenarios, HAPPY maintains its key advantage of
offering no degradation of prediction accuracy while reducing significantly the hard-
ware overhead.

Chapter 5

DReAM: Dynamic Re-arrangement of
Address Mapping

5.1 Introduction

Increasing the number of general purpose cores and accelerator cores (e.g. GPU cores)
integrated into a single chip and competing for access to DRAM, demands better per-
formance from the main memory. In this situation, exploiting the maximum perfor-
mance obtainable from the memory system is crucial. However, due to the internal
structure and organisation of DRAMs, described in Chapter 2, there is always some
memory bandwidth (Performance) wasted due to internal conflicts. One of the most
serious conflicts in a DRAM memory system is referred to as a page-conflict (or row-
conflict). This happens when two consecutive memory requests go to different rows
within the same bank. In this situation, these memory requests must be serviced one
after another which causes a high access latency for the second request. Dealing with
page conflicts becomes even more challenging considering the fact that they are com-
pletely dependent on the memory access pattern. This means that the rate of page
conflicts and the time of their occurrence change dynamically according to the appli-
cation behaviour.

To mitigate the vulnerability of DRAM performance to page conflicts, state-of-the-
art memory controllers have evolved into complex hardware components employing
subsystems such as schedulers. These schedulers take advantage of workload runtime
information (the sequence of memory requests) to reduce page conflicts. An important
role of the scheduler is to minimise DRAM page conflicts (or row conflicts) by reorder-
ing the memory commands that are available to issue to the DRAM. However, the main

79

80CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

limitation for schedulers is the number of options (memory requests) that they have to
choose from at the time of scheduling. In general, the number of available memory
requests at the time of scheduling is limited by data dependencies between memory
requests, the number of running threads, the number of cores etc. The freedom avail-
able significantly affects the scheduler performance. Therefore, there are conflicts that
schedulers cannot eliminate. These page conflicts result from the address-mapping
and data placement in DRAMs. As discussed in the next section, the address mapping
is a process that maps the physical address bits provided by processors to the inter-
nal structure of DRAMs. This process controls the initial data placement in DRAMs.
Thus, it is important to understand how to select a good address-mapping scheme to
place and distribute data in DRAM devices to mitigate page conflicts. This is pos-
sible using a software-only approach; e.g. with OS support and intelligent memory
allocators. However, this option faces complex problems when considering multiple
independent applications executing concurrently, or with virtualised scenarios (both
hypervisors and containers) and relies on software being compiled for specific mem-
ory hardware.

This chapter presents DReAM (Dynamic Re-arrangement of Address Mapping), a
novel hardware technique based on approximating the entropy of each memory address
bit for a set of memory requests, to generated workload specific address-mappings at
run-time. To re-arrange the address mapping at run-time DReAM needs to support the
online-data migration imposed by changing the address-mapping scheme. DReAM
proposes four hardware-based solutions for data-migration inside DRAM with differ-
ent levels of complication. The proposed solutions were evaluated over a wide range
of mapping-sensitive and mapping-insensitive workload mixes. Three different ad-
dress mapping schemes were evaluated over all the workloads and the best one was
chosen to compare against DReAM. Overall, DReAM is complementary with exist-
ing schedulers in memory controllers and is the first on-the-fly mechanism capable of
generating workload specific address-mappings without requiring to stop the running
applications.

5.2 Background on DRAM Address Mapping

To recap what was discussed in Chapter 2, a brief background of DRAMs will be
reviewed here with the focus on the address mapping process. Figure 5.1 presents the

5.2. BACKGROUND ON DRAM ADDRESS MAPPING 81

basic organisation of a DRAM device. Each DRAM device consists of multiple banks
each of which has a data array and one row buffer. In practice, the data array within a
bank consists of multiple subarrays, each of which has its own local row buffer. The
local row buffers within a bank are connected to other local row buffers as well as the
global row buffer. There are some interesting works by Chang et al. [CLC+14], Kim
et al. [KSL+12] and Seshadri et al. [SKF+13] to exploit these subarrays to improve
the DRAM performance and bulk data copy in DRAMs.

Bank

Subarray

Subarray

Subarray

Global Row Buffer

Rows

Local Row Buffer

Bank
Bank

Bank

Global Row Buffer

DRAM Device Subarray

Global Row Buffer

Figure 5.1: DRAM device organisation.

The address mapping mechanism for DRAMs transforms the flat 1D of physical
addresses into the internal 2D structure of DRAMs devices (row & column). Figure 5.2
illustrates how one physical address can be interpreted with two different mapping
schemes. Most memory systems contain DIMMs and a DIMM can have multiple
ranks of DRAMs. Multiple DIMMs can be placed on a channel; i.e. the physical
connection between a memory controller and DRAMs [JNW10]. The reason for these
many hierarchical levels is to maximise the parallelism that can be exploited when
servicing multiple memory requests.

In general an address-mapping scheme extracts the corresponding address for Chan-
nel, Rank, Bank, Row and Column from the physical address. Due to the internal
structure and electronic circuit characterisation of the DRAMs, consecutive access to
different memory locations can have a different memory cost depending on the previ-
ous state of the memory. For instance, if there are two consecutive accesses to the same
row in the same bank of a DRAM, the second access can have significantly smaller la-
tency than the first access since the target row has been ‘opened’ by the first memory
request. On the other hand, if there are two consecutive accesses to different rows
within the same bank, the second access has significantly higher latency in compar-
ison with the first access. The reason is that, in this case, the previous row must be
‘closed’ before the new row is ‘activated’. These scenarios describe a page-conflict

82CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

0x594B9AF

1

Memory Request

111010110011101001010011010

Row: 9,518 Column: 431Bank: 5

Rank: 0

1111010110011101001010011010

Row: 14,767Column: 594Bank: 5

Rank: 0Scheme 1

Scheme 2

Figure 5.2: Two different address mapping schemes.

and degrades the overall performance of DRAMs.
Page-conflicts are sensitive to the data placement in DRAMs and data placement

is determined by the address-mapping schemes in the first place. Therefore, choosing
an address mapping scheme carefully can reduce the page-conflicts and improve the
performance of DRAMs.

5.2.1 Motivation - Address Mapping Analysis

Figure 5.3 presents three different well-known address-mapping schemes currently
employed by modern DRAM controllers. The first mapping (Figure 5.3a) is a stan-
dard mapping intended to exploit the spacial locality by placing the column address
at the bottom. The next two address interleaving policies are schemes proposed by
Kaseridis et al. [KSJ11] and Zhang et al. [ZZZ00]. The proposed mapping by Zhang et

al. XORs some of the row address bits with the bank’s address bits to produce a new
bank index (Figure 5.3b). This tries to change the bank ID whenever the Row ID is
changed to reduce the page-conflict. Kaseridis et al. [KSJ11] extend this technique
by producing the column index using a different section of the physical address (Fig-
ure 5.3c). Both techniques aim to reduce page conflicts in DRAMs.

There might be other variations of address-mapping schemes, in addition to those
presented in this figure, that can be used to perform the required translation phase to
service a memory request. However, the important point to consider is that current
memory controllers can only use one such address-mapping scheme to translate the
physical address to the internal structure of DRAMs. Moreover, modern DRAM con-
trollers are limited to perform read/write operations in bursts (typically bursts of 4 or 8

5.2. BACKGROUND ON DRAM ADDRESS MAPPING 83

items). This implies that some bits are used as a block offset, as shown in Figure 5.3.

Row RA Bank CH Column Block Offset

(a) Mapping 1: Maximise row-buffer locality (Baseline)

RA BankCH Column Block Offset

Row

Row RA BankCH Column Block Offset

XOR

(b) Mapping 2: Permutation-based Page Interleaving [ZZZ00]

RA BankCH Column Block Offset

Row

XOR

Col

Row RA BankCH Column Block OffsetCol

(c) Mapping 3:Minimalist Open-Page Scheme [KSJ11]

Figure 5.3: Different address mapping schemes.

To motivate the technique presented in this chapter, Figures 5.4 to 5.8 present a
performance comparison of different address-mapping schemes for all the benchmarks
evaluated in this chapter. Each bar in these graphs represents the execution time nor-
malised to the baseline address-mapping scheme (address mapping 1 in Figure 5.3).
These experimental results suggest that a pre-defined address mapping scheme is not
efficient in all situations and thus employing a fixed address mapping scheme cannot
deliver the best execution time across all workloads.

According to Figure 5.4, the Permutation address mapping scheme almost always
(except for the BIOBENCH benchmark) delivers a better average (GMEAN) execution
time compared with the two other address mapping schemes. This address mapping is
chosen as the best baseline of those presented in this chapter to be compared against
DReAM address mapping.

84CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

1.04$

1.06$

BIOBENCH$ COMMERCIAL$ HPC$ PARSEC$ SPEC$ GMEAN$

N
or
m
al
is
ed

$E
xe
cu
Do

n$
Ti
m
e$

Baseline$ PermutaDon$ Minimalist$

Figure 5.4: Performance comparison of different
address-mapping schemes.

5.3 DReAM: Dynamic Re-arrangement of Address Map-
ping

DReAM is a novel technique to analyse the memory access pattern (produced either
by single or multi-thread applications) at run-time and estimate an efficient address-
mapping scheme, that reduces page-conflicts and improves page-hits. DReAM con-
sists of two main phases: ‘online prediction of address mapping’ and ‘on-the-fly data
migration’ that will be discussed in the following sections.

5.3.1 DReAM - Online Prediction of Address Mapping

The first step is to discover whether the current workload, a set of executing applica-
tions, is a good match with the baseline address mapping scheme. To investigate the
efficiency of a baseline mapping it is useful to recap the address mapping process from
a slightly different angle. As described in the previous section, a baseline address-
mapping scheme decides which physical address bits should be used to address which
specific part of a DRAM device (e.g. rank, bank, row etc.). Therefore, a physical
address is divided into different sets of bits each set pointing to a specific part of the
internal hierarchy of the DRAM system.

Considering consecutive requests to a DRAM module, the changing rate of each
physical address bit (as a result of the changing rate of each bit within different sets)
in comparison with the previous access has a strong correlation with the changing rate
of a specific DRAM location that has been accessed. On the other hand, accessing
different rows within the same bank causes page-conflicts and imposes a power and

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 85

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

mummer$.gr$ comm1$ comm2$ comm3$ comm4$ comm5$

N
or
m
al
is
ed

$E
xe
cu
.o

n$
Ti
m
e$

Baseline$ Permuta.on$ Minimalist$

Figure 5.5: Address mapping profiling for BIOBENCH and COMMERCIAL
benchmark suites.

0.85%

0.90%

0.95%

1.00%

1.05%

1.10%

1.15%

1.20%

hpc1% hpc2% hpc3% hpc4% hpc5% hpc6% hpc7% hpc8% hpc9% hpc10% hpc11% hpc12% hpc13%

N
or
m
al
is
ed

%E
xe
cu
=o

n%
Ti
m
e%

Baseline% Permuta=on% Minimalist%

Figure 5.6: Address mapping profiling for HPC benchmarks.

0.80$

0.85$

0.90$

0.95$

1.00$

1.05$

1.10$

1.15$

black$ canneal$ face$ ferret$ fluid$ freq$ streamcluster$ swapt$

N
or
m
al
is
ed

$E
xe
cu
?o

n$
Ti
m
e$

Baseline$ Permuta?on$ Minimalist$

Figure 5.7: Address mapping profiling for PARSEC benchmark suite.

0.80$

0.85$

0.90$

0.95$

1.00$

1.05$

1.10$

Ge
ms
FD
TD
_r$

ast
ar_
B$

bz
ip2
_l$

bz
ip2
_t$

ca
ctu
sA
DM

_b
$

gcc
_1
$

gcc
_2
$

gcc
_c
$

gcc
_c
p$

gcc
_g
$

gcc
_sc
$

les
lie
3d
_l$

lib
qu
an
tum

$

mc
f_r
$

mi
lc_
s$

om
ne
tpp
_o
$

so
ple
x_
r$

sp
hin
x3
_a
$

xa
lan
cb
mk
_r$

zeu
sm
p_
z$N

or
m
al
is
ed

$E
xe
cu
Jo

n$
Ti
m
e$ Baseline$ PermutaJon$ Minimalist$

Figure 5.8: Address mapping profiling for SPEC benchmark suite.

performance overhead. Therefore, ideally, it is desired to keep the change rate of the
physical address bits that are used to address the row, as low as possible to reduce the

86CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

row switches within a bank,
DReAM estimates how much each physical address bit changes by observing mem-

ory requests over a period of time as a means of generating improved memory map-
pings. The estimations of change per bit require minimum extra hardware; one counter
per physical address bit per memory controller. Those bits changing the most have
higher entropy and those bits changing the least have smaller entropy. Understand-
ing the approximated entropy is enough to generate a new improved workload-specific
address mappings.

For a given period, these counters (or frequency change estimators) keep track of
the number of changes of each bit of the physical address in comparison with the
previous memory address request. The given period creates time windows and can be
based on number of clock cycles or number of memory requests. Figure 5.9 shows an
example of five consecutive accesses (physical address) to demonstrate the function of
these counters. The counter value of the two highlighted bits shows that bit 16 and bit
27 have been changed once and 4 times, respectively, in the last five memory requests.

0x594B9AF

0

C
o

n
s

e
c

u
ti

v
e

 R
e

q
u

e
s

t

000020002022001000002002040Counters

0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1

0x1B42B8F 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

0x4B429AF 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1

0x0B431AF 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1

0x59439AF 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1

Physical Address bit

Figure 5.9: Bit-counters mechanism.

These counters generate a pattern (or signature) that is representative of the current
memory access behaviour as perceived by the memory controller. Figures 5.10 to 5.14
show such a signature extracted from these counters for all the benchmarks evaluated
in this chapter. The X-axis in each plot represents the corresponding counter ID per
physical address bits and Y-axis shows the overall bit change rate over the application
execution time.

There is an exponential growth in the rightmost 5 bits of almost all the patterns.

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 87

This is due to spacial locality that implies accessing the sequential physical addresses.
Looking at these pattern and the address-mapping schemes presented in Figure 5.3
justifies why the column address bits are typically placed in the bottom of the phys-
ical address space. In this way, the memory requests accessing consecutive cache
lines will be mapped to the consecutive columns within the same row (i.e. Page-Hit).
There is another interesting behaviour that can be observed from these patterns. For
instance, Figure 5.12c and Figure 5.13m show an overshoot (i.e. high change rate) for
bit 14. Considering the address-mapping scheme presented in Figure 5.3 bit 14 will
be mapped to the row address space. Thus, the high change rate of this bit increases
the possibility of changing row within the same bank (i.e. Page-Miss). This suggests
that most likely these two workloads (face and libquantum) suffer from a high rate of
page-conflict.

01020
0

0.5

1

1.5

2x 10
5

(a) Comm1
01020

0

5

10

15x 10
4

(b) Comm2
01020

0

5

10

15x 10
4

(c) Comm3
01020

0.5

1

1.5

2x 10
5

(d) Comm4

01020
0

0.5

1

1.5

2x 10
5

(e) Comm5

Figure 5.10: Extracted bit-change pattern for the COMMERCIAL benchmark suite.

Address Mapping Prediction

Given the signature for a set of running applications, the next issue is how to generate
an optimised address-mapping scheme. The idea is to map the physical address bits
with low variation to rows (to reduce the row switching or page-conflicts), the physical
address bits with medium variation to banks and the physical address bits with high-
est rate of change to columns to increase the locality and decrease the page conflicts.
Moreover, it is possible to limit DReAM to re-arrange only some of the physical ad-
dress bits to mitigate the associated cost of the address mapping change in DRAMs
that will be discussed later.

88CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

01020
0

0.5

1

1.5

2x 10
5

(a) hpc1
01020

0.5

1

1.5

2x 10
5

(b) hpc2
01020

0.5

1

1.5

2x 10
5

(c) hpc3
01020

0

0.5

1

1.5

2x 10
5

(d) hpc4

01020
0.5

1

1.5

2x 10
5

(e) hpc5
01020

0.8

1

1.2

1.4

1.6x 10
5

(f) hpc6
01020

0.5

1

1.5

2x 10
5

(g) hpc7
01020

0.5

1

1.5

2x 10
5

(h) hpc8

01020
0.5

1

1.5

2x 10
5

(i) hpc9
01020

0.5

1

1.5

2x 10
5

(j) hpc10
01020

0.5

1

1.5

2x 10
5

(k) hpc11
01020

0.5

1

1.5

2x 10
5

(l) hpc12

01020
0.5

1

1.5

2x 10
5

(m) hpc13

Figure 5.11: Extracted bit-change pattern for HPC benchmarks.

01020
0

0.5

1

1.5

2x 10
5

(a) black
01020

0

5

10

15x 10
4

(b) caneal
01020

0

0.5

1

1.5

2x 10
5

(c) face
01020

0

0.5

1

1.5

2x 10
5

(d) ferret

01020
0

0.5

1

1.5

2x 10
5

(e) fluid
01020

0

0.5

1

1.5

2x 10
5

(f) freq
01020

0

1

2

3x 10
5

(g) stream
01020

0

0.5

1

1.5

2x 10
5

(h) swapt

Figure 5.12: Extracted bit-change pattern for PARSEC benchmark suite.

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 89

01020
0

0.5

1

1.5

2x 10
5

(a) astar-B
01020

0.5

1

1.5

2x 10
5

(b) bzip2-l
01020

0.5

1

1.5

2x 10
5

(c) bzip2-t
01020

0.8

1

1.2

1.4

1.6x 10
5

(d) cactusADM-b

01020
0

0.5

1

1.5

2x 10
5

(e) gcc-1
01020

0

0.5

1

1.5

2x 10
5

(f) gcc-2
01020

0

0.5

1

1.5

2x 10
5

(g) gcc-c
01020

0.5

1

1.5

2x 10
5

(h) gcc-cp

01020
0

0.5

1

1.5

2x 10
5

(i) gcc-g
01020

0

0.5

1

1.5

2x 10
5

(j) gcc-sc
01020

0.5

1

1.5

2x 10
5

(k) GemsFDTD-r
01020

0.5

1

1.5

2x 10
5

(l) leslie3d-l

01020
0

0.5

1

1.5

2x 10
5

(m) libquantum
01020

0

0.5

1

1.5

2x 10
5

(n) mcf-r
01020

0

0.5

1

1.5

2x 10
5

(o) milc-s
01020

0

0.5

1

1.5

2x 10
5

(p) omnetpp-o

01020
0

0.5

1

1.5

2x 10
5

(q) soplex-r
01020

0

0.5

1

1.5

2x 10
5

(r) sphinx3-a
01020

0

0.5

1

1.5

2x 10
5

(s) xalancbmk-r
01020

0.5

1

1.5

2x 10
5

(t) zeusmp-z

Figure 5.13: Extracted bit-change pattern for SPEC benchmark suite.

01020
0

5

10

15x 10
4

(a) mummer
01020

0

5

10

15x 10
4

(b) tigr

Figure 5.14: Extracted bit-change pattern for BIOBENCH benchmark suite.

90CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

To produce a new address mapping scheme at run-time the following procedure
will be carried out:

• The bit-change rate of physical address bits will be monitored for each time-
window.

• A new address mapping scheme will be estimated based on each time-window,
monitoring information.

• The bit-change rate monitored, based on the pre-defined and new address map-
ping schemes for each time-window will be compared.

• If the new address-mapping scheme can improve the bit-change rate in com-
parison with the baseline address-mapping above a desired (and programmable)
threshold (for consecutive time-windows defined by ‘Consistency Threshold’)
then the new address mapping will be used as the primary address mapping
scheme in the system.

Mathematical Insight

Intuitively, DReAM proposes a simple technique to detect an application-specific ad-
dress mapping scheme based on the physical address bit-change monitoring process.
However, the question is to find an analytical proof to show that the application-specific
address-mapping scheme predicted using this method can actually improve the perfor-
mance of the memory system.

As discussed, the predicted address-mapping scheme will be exploited only if it can
reduce the bit-change rate, in comparison with the baseline address mapping, beyond a
certain threshold. This means that DReAM assumes that there is a correlation between
the bit-change rate of physical address bits and the performance of DRAMs. To inves-
tigate this, the correlation coefficient between the average bit-changed improvement
reported by DReAM and the performance improvement of memory system, while us-
ing the DReAM address mapping, was investigated. The experimental results show
that there is a strong correlation, 0.89 with a very small P-value (i.e. 1.97× 10−15),
between the bit-change rate and the final performance improvement. This justifies why
the predicted address mapping scheme proposed by DReAM can improve the perfor-
mance of DRAMs.

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 91

This section presented how DReAM can detect an efficient address mapping scheme
at run-time. Employing such a workload-specific address-mapping scheme aims to dis-
tribute the frequently accessed rows across the available banks. However, changing the
address-mapping scheme of a DRAM, on-the-fly, has a very important obstacle which
is the requirement for Data Migration. Initially, a DRAM places data into memory
based on a pre-defined address mapping scheme. Therefore, changing the address-
mapping scheme implies that the data previously loaded into the DRAM cannot be
accessed using the new address mapping scheme. Thus, before employing the new ad-
dress mapping, the existing data in DRAMs must be migrated to a new location based
on the new address mapping scheme.

However, as discussed earlier, it is possible to limit DReAM to re-arrange only
some of the physical address bits. For instance, if DReAM rearranges the physical
address bits associated with columns then every column in the DRAM must be mi-
grated to a new location. On the other hand, if DReAM only rearranges the physical
address bits associated with rows without changing the column address bits then the
location of columns inside rows will not be changed. Considering such limitations for
DReAM implies different migration costs. This research investigates the data migra-
tion at page-level (migrating rows without changing the column location). The Data

Migration challenge will be discussed in more detail in the next section.

5.3.2 DReAM - Data Migration Solutions

DReAM provides an opportunity for page-conflict reduction in DRAMs and, as a re-
sult, improves the performance of the overall memory systems. However, as explained,
DReAM also imposes some overhead to the system due to the required data migration
process. In this section, different scenarios will be investigated to exploit recent and
emerging memory technologies to alleviate the cost of data migration.

Scenario 1 - Offline Data Migration

This scenario explains the simplest DReAM implementation that imposes a minimal
hardware overhead on the overall memory system. In general, this scenario is well
suited for application-specific computer architectures, such as datacenter and database
systems, where a specific application is running on the system repeatedly. For instance,
in a database system, depending on the type of database (e.g. financial, medical etc.),

92CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

usually only a few specific queries with minor variations are used to search for specific
data. Moreover, in the big-data research area running a query over a database might
take a few days or weeks. This produces a specific memory access pattern in the system
that usually is consistent over a long period of time.

In this implementation, the memory access pattern of applications (single or mul-
tithread) will be monitored at run-time for a desired period (e.g. it can be a few hours,
a few days etc). This period is called the Region Of Interest (ROI). Ideally, the ROI
should be chosen to be long enough to represent the application access behaviour. For
instance, if the ROI for a medical database is chosen to be one day, then the memory
access pattern of almost all the possible queries that are usually run on the database
during the day can be covered by the ROI.

In this situation, DReAM will estimate an optimised address-mapping scheme
based on the average bit-change rate extracted from the dedicated counters per phys-
ical address bits for the entire ROI. This new mapping will be saved in the memory
controller and upon rebooting the system user has an option to choose the DReAM
address mapping scheme over the baseline from the system BIOS. Thus, whenever the
user reboots the system the memory controller can employ a new address mapping
that is estimated based on the DReAM calibration mode. A similar approach has been
implemented for the Intel-adaptive page policy and a special beta BIOS provided by
ASUS that allows the user to choose a desired page closure policy at system start up
[Raj].

In this scenario, there is a penalty for the rebooting process but after that, as far
the usual workloads running on the system are concerned, the overall performance of
the memory system will be improved by taking advantage of the new address-mapping
scheme. This is why this scenario is well suited for systems with consistent behaviour
over time.

Scenario 2 - Online Data Migration using Non-Volatile Memory Technology

This scenario takes advantage of a novel non-volatile DIMM structure, that includes
flash devices in the same DIMM as DRAM, to avoid rebooting the system as required
by the first scenario. For instance, ArxCis-NV [Vika, Vikc, SK14] is a non-volatile
DDR3 DIMM which is already available in the market, produced by Viking Tech-
nology [webb]. The preliminary aim of ArxCis-NV is to preserve critical data in the
event of power or system failure. This memory structure continuously monitors volt-
age levels from the host system and, in the case of a voltage drop, triggers a SAVE

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 93

function which mirrors DRAM states to the flash memory. In this situation, ArxCis-
NV uses backup power provided by embedded supercapacitors to transfer data into the
non-volatile flash. At reboot time data will be restored from flash similarly.

DReAM will use the functionality provided by ArxCis-NV in a slightly different
manner. The only difference is that the ArxCis-NV triggers the SAVE functions in the
case of voltage drop but DReAM triggers the SAVE function whenever a new address-
mapping scheme is detected at application run-time. Therefore, the existing data in the
DRAM will read using the pre-defined address-mapping scheme and copy to the flash,
and after that, data will be restored to the DRAM using the predicted address-mapping
scheme. According to the datasheet of ArxCis-NV the read and write bandwidth of
this module is 4 GB/s which means the content of 4 GB DRAM can be copied in 1
second and restored in 1 second [Vikb]. Therefore, there is a 2 second penalty each
time that DReAM changes the address mapping scheme. This delay is much smaller
than the delay imposed by rebooting the system.

Scenario 3 - Online Data Migration using NanoCommit

Although the second scenario imposes a lower overhead for the data migration process
than the first scenario in reality there is no need to copy all the data back from flash
when the address-mapping is changed. The reason is that some of the existing data
in DRAM might not be needed anymore by the application. Thus, a more elegant ap-
proach would be to return data to the memory only when it has been requested again.
To demonstrate this scenario, Memory Channel Storage (MSC) [Diaa] and NanoCom-
mit technology [Diab] can be used which were invented by Diablo Technology [weba].

The main principles behind MSC is to bypass the traditional interface between non-
volatile memory (e.g. flash) and memory subsystem to provide a shorter and faster path
from a CPU to the massive data storage offered by non-volatile memories. Similar, to
the second scenario, MSC also employs flash memory on the same DIMM that houses
DRAMs. Diablo Technology has invented another technology on top of MSC which is
called NanoCommit [Diab]. Using NanoCommit, all the write operation to the DRAM
devices will be also written to the flash memory with a latency of 48 ns. This allows
DRAM modifications to be rapidly made persistent in flash.

DReAM can take advantage of MSC and NanoCommit to mitigate the cost of on-
line data migration. Assuming that MSC and NanoCommit are in place, in the case of
any changes in the address-mapping scheme using DReAM, there is no need to copy

94CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

DRAM contents to the flash since data is already in flash. On the other hand, as dis-
cussed, there is no need to copy all the data back to DRAMs from flash before any
access to data. A more efficient solution is to move data from flash to the DRAMs
based on the memory requests. Therefore, there is no unnecessary cost for migrating
data which are not needed anymore. This reduces the cost of data migration signifi-
cantly in comparison with scenario 2.

Scenario 4 - Online Data Migration using a novel DRAM Structure

The last three scenarios take advantage of existing memory architectures to perform
the data migration required by DReAM. However, in all of the aforementioned sce-
narios, data will be migrated using off-chip communication links which imposes huge
overhead to the overall data migration cost. Probably, a more efficient solution would
be migrating data inside the DRAM device which requires some modification to the
internal structure of this memory system. The fourth scenario investigates the pos-
sibility of performing on-the-fly data migration inside a DRAM device by proposing
some modification to the internal structure of this memory system. In the following a
high-level overview of the necessary steps to perform the online data migration inside
DRAM will be discussed.

Basic Procedure

Figure 5.15 presents the basic flowchart of servicing a memory request while using
DReAM considering the fourth data migration scenario. As discussed, to minimise the
overhead of migration, a row is migrated only when it has been accessed. In practice,
this means that the migration occurs gradually as described in the following.

On the first access to a row, the requested physical address is translated to the
internal structure of the DRAM using both the Pre-defined Address-Mapping Scheme
(PAMS) and the Estimated Address-Mapping Scheme (EAMS). The translated address
by PAMS (called address ‘A’) is the source row address and the translated address
by EAMS (called address ‘B’) is the destination row address. There are two main
functions that might be applied on the requested address in different situations which
are Migration and Swap. The requirement for these two function and what they are will
be discussed later on in this section and they are declared here just for initial familiarity
to explain the flowchart.

The first step is to determine if the accessed row is in its original location, pointed
to by PAMS, or not. Two bits are dedicated to each row in a DRAM bank to keep

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 95

Wait For a
Memory Request

Translate the address using both
PAMS & EAMS

Migrated ?
Service The Memory Request

Using EAMS
YES

Swapped ?

NO

Find the swapped row

YES

Service The Memory Request
Using PAMS

NO

Service The Memory Request
From the swapped row

Migration
&

Swap
 Process

Figure 5.15: DReAM flowchart.

track of the current status of that row: one bit (Migration-Bit) to determine if the row
has been moved to its new location (migrated) and one bit (Swap-Bit) to determine
if the row has been swapped (this process will be discussed later). Two tables can
be dedicated to accommodate these bits for the entire DRAM module: the Migration
Table (MT) and the Swap Table (ST). At this point several situations might happen:

• If the requested row is in its original location (the migration-bit and swap-bit are
0) then:

1. The PAMS will be used to access and service the requested row.

2. The requested row will be migrated to the destination location pointed by
EAMS.

3. If the destination location is occupied by a different row then intuitively
the content of destination row also needs to be migrated to a third place.
This can produce a chain of unnecessary data migration which is costly. To
avoid this, a simple row-swap algorithm is employed which means that in
such situations the content of the destination row will be swapped with the
content of the source row (and the corresponding swap-bit will change to
1).

• If the requested row has been migrated:

96CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

1. The EAMS will be used to access and service the requested row.

• If the requested row has been swapped:

1. The swapped location will be calculated by applying the reverse address-
mapping mechanism to the source location.

2. Step 1 will be repeated until the swap-bit of the location pointed by the
reverse address mapping scheme is 0.

3. The request will be serviced.

4. The requested row will be migrated to the destination location pointed by
EAMS.

5. A swap will be performed if it is necessary.

To make all this happens inside DRAM some modification needs to be done to the
traditional structure of DRAMs which is explained below.

Required DRAM Modification

Modifying the internal structure of DRAMs is a complex and expensive process which
needs an intensive evaluation. To have a fair and realistic demonstration of the fourth
scenario, two techniques from previously published works are considered: RowClone
[SKF+13] and SALP [KSL+12]. RowClone proposed some modification to DRAMs
to perform internal bulk data copy and similarly SALP suggested some modifications
to the structure of DRAM to exploit subarray-level parallelism. In the following it
will be explained how these two techniques can be used to perform the online data
migration inside DRAMs.

There are two main requirements for DReAM to perform data migration in a
DRAM device: the capability of bulk data copy inside DRAM and the capability of
on-the-fly buffering of the entire row to perform the swap operation. Both of these
requirements have been studied individually by previous work to address different is-
sues, using existing subarray level parallelism in DRAMs,[SKF+13, KSL+12] which
are described briefly in the following.

Bulk Data Copy in DRAM: Seshadri et al. [SKF+13] exploits the existing sub-
arrays per bank in DRAMs to copy the entire row from one location to another inside
DRAMs. Depending on the location of the source and destination rows, there are three
different scenarios that should be considered: (i) copying between two rows within the

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 97

same subarray (intra-subarray), (ii) copying between two rows in different subarrays
in the same bank (inter-subarray), (iii) copying between two rows in different banks
(inter-bank).

• Intra-subarray: In this scenario, the source and destination rows share the same
row-buffer. Therefore, the copying process involves two main steps: (1) load-
ing the source row into the row-buffer and (2) loading the row-buffer into the
destination row. The first step can easily be done by activating the source row
which connects the bitlines of the source row to the row-buffer. Therefore, the
source row will be loaded into the row-buffer. The next step is simply copy
the row-buffer contents to the destination row by connecting the bitlines of the
destination row to the row-buffer. However, it is not possible since the source
row is still connected to the row-buffer (its wordline is raised) and the origi-
nal implementation of DRAMs does not allow the raising of two wordlines at
the same time. This is because all the rows within the same bank share one
row-decoder. On the other hand, although precharging the source row lowers
the wordline of the source row it also clears the row-buffer contents. To solve
this issue, Seshadri et al. [SKF+13] proposed a new DRAM command called
DEACTIVATION that only lowers the wordline of the source row without clear-
ing the row-buffer. Therefore, after issuing the DEACTIVATION command to
the source row, the destination row can be activated using an Activation com-
mand. Hence, the content of row-buffer will be loaded to the destination row.
As they evaluated, this scenario requires the minimal modification to DRAM
device, 0.0016% die-size overhead.

• Inter-subarray: In this scenario, the source and destination rows are located
in different subarrays. Therefore, it is not possible to use the wide bitline/row-
buffer communication bus to transfer data. Instead, data must be transferred
using the 64-bit I/O bus that connects to all the row-buffers inside the same bank
as well as to all the row-buffers in different banks. Intuitively, since both sub-
arrays are in the same bank, it is possible to read from source row-buffer from
one subarray and write to the destination row-buffer in the other subarray. How-
ever, the first problem is that the original read or write commands transfer data
on the I/O bus to/from the DRAM device’s data-pins which is unnecessary for
the purpose of copying data inside DRAM. Therefore, Seshadri et al. [SKF+13]
proposed a new DRAM command called TRANSFER that reads data from the

98CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

source row-buffer and writes it to the destination row-buffer using the I/O bus
without transferring data to the chip’s data pins. To copy the entire row multiple
TRANSFER commands must be issued by the memory controller. Seshadri et

al. shared that the additional control logic to implement the TRANSFER com-
mand (disconnect the I/O bus from data pins) incurs a negligible 0.01% die size
increase [SKF+13].

On the other hand, since both subarrays use the same bank’s I/O buffer to per-
form the read and write operation then the bank’s I/O buffer has to switch be-
tween reading data from the source row-buffer (64-bit) and writing data to the
destination row-buffer (64-bit). As discussed in Chapter 2, there is a cost as-
sociated with I/O switching between read and write operation. To work around
this issue, Seshadri et al. [SKF+13] proposed saving one row in each bank as a
temporary buffer to first copy data from the source row-buffer to a different bank
and then to write it back to the destination row buffer. In this way the source
bank’s I/O buffer only performs the read and the destination bank’s I/O only per-
forms the write operation. They state that the capacity loss associated with one
temporary buffer per bank is negligible, 0.0015%.

• Intra-bank: this scenario is similar to the previous scenario with one difference;
since the source and destination rows are in different banks then they do not share
a row-decoder. Therefore, both source and destination rows can be activated at
the same time in different banks. Thus, the content of source row-buffer can be
transferred using several TRANSFER commands to the destination row-buffer.

Subarray-Level Parallelism: As also discussed in Chapter 2, Kim et al. [KSL+12]
observed that a DRAM bank is not implemented as a monolithic component with a sin-
gle row buffer. Instead, each bank consists of multiple subarrays, each of which has
its own local row-buffer. Based on this observation they proposed some small mod-
ification to DRAMs to be able to exploit subarray level parallelism. They discussed
three different levels of modification to DRAM to improve the access latency by mak-
ing subarrays work independently. Part of this work which, is more interesting from
the point of view of this research, is that called MASA. The key idea of MASA is to
allow multiple activated subarrays in the same bank. As discussed, MASA imposes (i)
a designated-bit latch to each subarray, (ii) a new DRAM command, subarray-select
(SA-SEL) and (iii) routing of a new global wire. Based on their experimental method-
ology, they showed that the required extra latches imposes 0.15% area overhead and

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 99

consumes 72.2 µW additional power for each ACTIVATE command. Moreover, they
evaluated that there is an extra 0.56 mW of static power in the steady state imposed by
multiple activation of subarrays (there is a baseline static power of 48 mW per DRAM
chip so this value is negligible). Furthermore, they estimated that the power con-
sumption of the new SA-SEL command is about 50% of the ACTIVATED command
[KSL+12] .

Having explained the above techniques, an overview of the DReAM architecture
will be explained in the following sections.

5.3.3 DReAM - Overview of Architecture

Figure 5.16 presents a high-level overview of the DReAM architecture. DReAM in-
cludes two main phases, Address-Mapping Estimation and Online Data Migration.

PAMS

DReAM
Address-Mapping Estimation

DReAM
Monitoring & Pattern Extraction

Migration Table

Swap Table

Address-Translation

Stream of Memory Requests

Reverse Mapping

Translation

EAMS

C
o

lu
m

n

C
h

a
n

n
e

l

R
an

k

B
a

n
k

R
o

w

History-Tables

Servicing the
Memory Request

Migration Process

Swap Process

DReAM Monitoring DReAM Data Migration

Figure 5.16: DReAM architecture.

100CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

Address-Mapping Estimation

Address-Mapping Estimation requires minimal architecture support. Only one counter
per physical address bit, a history register to hold the last accessed address and an
array of XORs to detect the bit-change between two consecutive memory requests
are required to extract the access pattern at run-time. Figure 5.17 presents a simple
overview of such a structure. In this structure each bit of the currently accessed ad-
dress will be XORed with the corresponding bit of the last accessed address. Then, if
there is a difference in the accessed bit the corresponding counter will be incremented.
This will produce a pattern of physical address bit changes over a period that can be
employed to estimate an application-specific address-mapping scheme. The key idea is
to map the physical address bits with lower order of changes to rows, physical address
bits with higher order of changes to banks and columns to reduce page-conflicts and
increase page hits in the system. Moreover, having the information of physical address
bit behaviour extracted from DReAM’s monitoring unit, one can decide to reorganise
the address-bits for a specific purpose rather than just a reduction in page-conflicts.

4

0

0

9

1

1

2

0

1

1

1

0

1

1

0

5

1

1

5

0

1

8

0

0

7

1

0

6

1

1

Counter Array

Last Access

Current Access

Figure 5.17: DReAM monitoring counter structure.

Data Migration - Operation

The Data Migration required by DReAM can be described considering the following
observations:

First, all the local row buffers (one local row buffer in each subarray) within a bank
are connected to the global row buffer using global bitlines and all the row-buffers
(either local or global) within a DRAM device are connected together using a narrow
I/O bus (64-bit wide) [Ito01, KSL+12]. Second, considering the modification proposed
by Kim et al. [KSL+12] the DRAM module supports MASA. This supports multiple

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 101

activation of subarrays while only one of them can be connected to the global bitline
at a time.

Figure 5.18 presents the possible scenarios in which data migration might happen.
To describe the following scenarios it is assumed that the destination row always has
been occupied by another row (the worst case scenario) and thus a swap process is
necessary.

Subarray 1

Local Row Buffer 1

Destination Row

Global Row Buffer

Bank A

Source Row

(a) Intra-Subarray

Subarray 1

Local Row Buffer 1

Source Row

Subarray 2

Local Row Buffer 2

Destination Row

Global Row Buffer

Bank A

(b) Inter-Subarray

Subarray 1

Local Row Buffer 1

Global Row Buffer

Bank A

Source Row

Subarray 1

Local Row Buffer 1

Destination Row

Global Row Buffer

Bank B

6
4

-b
it

 I/
O

(c) Inter-Bank

Figure 5.18: Different data migration scenarios.

Intra-subarray Migration: In this scenario (5.18a), source and destination rows
are both in the same subarray. Therefore to perform the migration and swap operation
the following procedure will be followed.

1. Activate the source row and load its contents into the global row-buffer.

2. Activate the destination row locally and load its contents to the local row-buffer 1.

3. Connect the local bitline of source row to the local row-buffer. This will copy
the destination row to the source row.

4. Connect the global row-buffer to the destination row. This will copy the source
row to the destination row.

Inter-subarray Migration: In this scenario (5.18b), source and destination rows
are in different subarrays within the same bank. One possible way to swap data in
source and destination is to make a copy of the source row in the global row-buffer and
then use the narrow I/O bus to transfer the destination row from the local row-buffer
2 to the local row-buffer one. Finally copy the source row from the global row buffer
to the local row-buffer two and then to the destination row. However, there is only one
I/O per bank which will be used for read and write operations. As discussed before,

102CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

reading from one row-buffer and writing back to the other row-buffer imposes extra
penalty each time the I/O switches between read and write mode. To workaround this
issue, the following procedure is suggested to perform the migration and swap process
in this scenario.

1. Activate the source row to the global row-buffer and destination row to the local
row-buffer 2.

2. Transfer the source row (located in the global row buffer of bank A) to the global
row-buffer of bank B using the narrow I/O bus.

3. Connect the global bitlines of bank A to the local row-buffer 2 to load its content
the global row buffer.

4. Connect the global row-buffer of bank A to the local row-buffer 1 and the source
row. This will copy the destination row to the source row.

5. Transfer source row from the global row-buffer in bank B to the local row-buffer
2 in bank A.

6. Connect the local bitlines of the local row-buffer 2 to the destination row. This
will copy the source row to the destination row.

Inter-bank Migration: in this scenario (5.18c), source and destination rows are
in different banks. Therefore, both of source and destination rows can be activated in
parallel. Thus, the following procedure is suggested to perform migration and swap
process for this scenario:

1. Activate both source and destination row and load their contents into their local
row-buffer.

2. Put bank A into the read mode and put bank B into the write mode.

3. Transfer the source row from local row-buffer 1 in bank A to the global row
buffer of the bank B using the narrow I/O bus.

4. Put bank A into the write mode and put bank B into the read mode.

5. Transfer the destination row from local row-buffer 1 in bank B to the global row
buffer of the bank A using the narrow I/O bus.

6. Connect the global bitlines of the global row-buffer in bank A to the source row
and the global row-buffer of bank B to the destination row.

5.3. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING 103

Data Migration - Timing Overhead

The main procedure to perform the online data migration has been discussed so far.
In this section the timing overhead imposed by data migration will be discussed. In
practice, considering the existing bank-level parallelism in DRAMs, it is possible to
overlap some parts of the data migration process with other functions in the system.
For, instance it is possible to perform data migration from bank ‘A’ to bank ‘B’ while
other banks in the system are servicing memory requests. However, for the sake of
simplicity, in this chapter it is assumed that all the DRAM functions will be stalled
while data migration is in process.

As discussed, data migration can happen in three different scenarios: Intra-subarray,
Inter-subarray and Inter-bank. The three scenarios have been explained but, consider-
ing the main aim of address re-mapping, minimising the page conflicts, it is possible to
ignore the first two scenarios (i.e. Intra-subarray and Inter-subarray). The rationale be-
hind this is that in these two scenarios a row will be swapped with another row within
the same bank. Therefore, considering the page-conflicts definition, changing a row
location within the same bank cannot help to avoid this phenomenon. Then, based on
the available information in MT and ST tables DReAM will not perform the intra-bank
data migration which will reduce the overall overhead.

Considering the above observations, the third data migration scenario is the only
one that imposes extra latency to the overall execution time of a running application.
Thus, the latency overhead imposed by the data migration for each workload is simply
the number of inter-bank migration times cost of transferring a row using the internal
narrow I/O (i.e. 64-bit) bus. Considering the transfer rate of 64 bits/clock and a row
buffer size of 4 Kbit (per device) then 64 clock cycles are required to transfer a row
from one bank to another. Another 64 clock cycles are required in the case that a swap
is necessary. Therefore in the worst case scenario, the penalty for each data relocation
between two banks is 128 memory clock cycles. Assuming that the CPU clock cycle
is 4 times faster than the memory clock cycle then the data migration penalty is 512
CPU clock cycles. In a very pessimistic situation it is assumed that the processor will
be stalled while the data migration is happening. Therefore the 512 clock cycles times
the number of required inter-bank data migrations is an extra overhead imposed on the
overall execution time.

104CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

Rollback Process to Avoid Degradation Loop

DReAM predicts an application-specific address mapping scheme based on the mon-
itoring period of the past application access pattern. However, it is not guaranteed
that the application access pattern will not change again in the future. Therefore, the
predicted address-mapping scheme by DReAM might not be efficient anymore and,
as a result, using such an address-mapping scheme might degrade the performance of
the DRAMs (i.e. Degradation Loop). To work around this issue, DReAM supports a
‘Rollback’ procedure.

As discussed in Section 5.3.1, DReAM will switch to the predicted address-mapping
scheme if the new mapping can improve the bit-change rate in comparison with the
baseline, over a pre-defined threshold, for consecutive time windows (defined by the
‘Consistency Threshold’). A similar approach will be used to evaluate the efficiency of
the predicted address-mapping at run-time. DReAM keeps monitoring the bit-change
pattern over the time-windows even after a new address-mapping scheme is predicted.
If the bit-change improvement of the predicted address-mapping scheme no longer
outperforms the baseline DReAM will switch back to the pre-defined address map-
ping scheme. This triggers the roll back function to return the migrated rows to their
original location. In this situation the memory controller can switch between at least
two address-mapping schemes based on the application access pattern. A third address
mapping scheme can be employed if the rollback process completes which means that
all the rows migrated by the previous address-mapping have moved back to their orig-
inal locations.

5.4 Evaluation Methodology

This section describes the evaluation methodology used to investigate the performance
of DReAM in different situations. Although Section 5.3.2 described four different data
migration scenarios, only the first (Section 5.3.2) and the last (Section 5.3.2) scenarios
are evaluated in this thesis. The reason is that the workloads available in this work are
not representative of applications, with a very long execution time, desired to evaluate
scenarios 2 and 3.

Simulator: as described in Chapter 3, USIMM [CBS+12] was used as the main
simulation platform for these experiments. USIMM was modified to support Permeation-
based Page Interleaving [ZZZ00] and Minimalist Open-Page scheme plus a full im-
plementation of the DReAM architecture. DReAM was evaluated based on a 4 GB

5.4. EVALUATION METHODOLOGY 105

DRAM organised in 1 Channel, running single core applications. To increase the ran-
domness of memory access patterns the size of memory was fixed while running mul-
tithread applications. The USIMM system configuration parameters that were used in
the experiments of this chapter are captured in Table 5.1.

Model Description Value

Processor
Clock Speed 3.2 GHz

Pipeline depth 10
ROB size 128

Memory System

Bus Speed 800 MHz
Number of Channels 1
Ranks per channel 1

Bank per rank 8
Row per bank 65,536

Cache line per row 128
Cache line size 64 Byte

Table 5.1: USIMM configuration parameters.

Scheduler: The basic structure of the baseline USIMM scheduler is presented in
Figure 5.19. In this structure, every memory request will be placed in either the read
or write queue. In general, write requests have less priority than read requests since
they are mainly write backs from the last level cache. Therefore the scheduler gives
the higher priority to service the read requests. The write queue has a low and high
water mark. The scheduler keeps servicing read requests until the number of write
requests passes the high water mark. Then the scheduler services the write queue until
the number of write requests drops below the low water mark. A FR-FCFS scheduling
algorithm is used in our experiments.

Address Mapping Schemes: The memory access pattern, and as a result the num-
ber of page conflicts in DRAMs, can be affected by the pre-defined memory address
mapping scheme. The experiments consider three different address mappings pre-
sented in Figure 5.3. The experimental results presented in Section 5.2.1 (Figure 5.4)
show that the Permutation-based Page interleaving policy (Mapping 2) performs best
for most of the workloads. Therefore, this address mapping scheme is employed as a
fair baseline to compare with the DReAM scheme.

Workloads: As described in Chapter 3, the workloads include a wide range of
memory intensive applications (i.e. 48 workloads) from different benchmark suites
(PARSEC [BKSL08], SPEC [Dix91], BIOBENCH [AJW+05], HPC and COMMER-
CIAL) and representative regions of interest for each application. To recap, Table 5.2

106CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

Low High

Scheduler

Read Queue

Write Queue

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

D
R

A
M

 R
an

k

Figure 5.19: Basic structure of the USIMM scheduler.

lists the workloads and their corresponding benchmark suites. An identifier is assigned
to each application to facilitate the naming of multithread workloads constructed from
these applications.

Benchmark Suites
SPEC PARSEC COMMERCIAL

(a) GemsFDTD r (k) astar B (u) canneal (D1) comm1
(b) bzip2 l (l) bzip2 t (v) streamcluster (D2) comm2

(c) cactusADM b (m) gcc 1 (w) blackschols (D3) comm3
(d) gcc 2 (n) gcc c (x) facesim (D4) comm4
(e) gcc cp (o) gcc g (y) ferret (D5) comm5
(f) gcc sc (p) mcf r (z) fluidanimate BIOBENCH
(g) milc s (q) omnetpp o (A) freqmine (E) mummer

(h) soplex r (r) sphinx3 a (B) swaption (F) tigr
(i) xalancbmk r (s) zeusmp z HPC
(j) libquantum (t) leslie (C) hpc1 - hpc13

Table 5.2: Evaluated workloads and benchmark suites.

To increase the variety of memory access patterns, USIMM was set up for multi-
applications to produce 20 random workload mixes; a combination of 4-thread and
8-thread applications. Table 5.3 lists these multi-core workloads employing the prefix
of single thread workloads presented in Table 5.2.

5.5. RESULTS AND DISCUSSIONS 107

Multithread Workloads
MIX1: (C13-C5-x-t) MIX11: (C9-C13-C5-w-x-t-j-q)
MIX2: (C9-w-j-q) MIX12: (C8-C3-w-x-y-a-t-j)
MIX3: (w-x-y-t) MIX13: (C8-C5-x-y-a-t-p-q)
MIX4: (C8-C5-t-p) MIX14: (C9-C12-C13-C9-C12-C12-p-q)
MIX5: (t-t-p-g) MIX15: (C13-x-t-g-p-t-p-g)
MIX6: (C8-w-p-q) MIX16: (C8-C3-C5-w-C5-C5-p-q)
MIX7: (C3-C5-C5-C5) MIX17: (C9-w-y-w-w-a-t-g)
MIX8: (C9-w-y-w) MIX18: (C13-C3-x-C13-a-a-p-g)
MIX9: (C12-C13-a-a) MIX19: (C12-C13-y-a-a-a-g-q)
MIX10: (x-t-j-q) MIX20: (x-y-p-a-x-a-p-q)

Table 5.3: Randomly generated multithread workloads.

5.5 Results and Discussions

This section investigates the performance of DReAM for different scenarios over a
wide range of workloads.

5.5.1 Bit-Change Rate vs Performance Improvement

As discussed in Section 5.3.1 there is a strong correlation between bit-change rate
and performance improvement. Figure 5.20 shows the bit-change rate improvement
reported by DReAM and the final performance improvement achieved using the pre-
dicted address-mapping scheme by DReAM. The correlation between these two met-
rics can be observed from this figure. The experimental results show that there is a
correlation coefficient of 0.89 with a very small P-value (i.e. 1.97× 10−15), between
the bit-change rate and the final performance improvement.

5.5.2 Performance Analysis

In this section the performance improvement of DReAM will be investigated. Before
jumping to the result graphs the following summary might be helpful:

• The performance numbers presented in in this section are normalised to the base-
line (Permutation Address-mapping) which delivers the best average execution
time amongst three address-mapping schemes presented in Figure 5.3.

• Figures 5.21 to 5.24 show the normalised execution time for different benchmark
suits.

108CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

0"

5"

10"

15"

20"

25"

30"

35"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_2

gr
"

co
m
m
1"

co
m
m
2"

co
m
m
3"

co
m
m
4"

co
m
m
5"

hp
c1
"

hp
c2
"

hp
c3
"

hp
c4
"

hp
c5
"

hp
c6
"

hp
c7
"

hp
c8
"

hp
c9
"

hp
c1
0"

hp
c1
1"

hp
c1
2"

hp
c1
3"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_c
an

ne
al
"

pa
rs
ec
_f
ac
e"

pa
rs
ec
_f
er
re
t"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_f
re
q"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

pa
rs
ec
_s
w
ap

t"

sp
ec
_G

em
sF
DT

D_
r"

sp
ec
_a
st
ar
_B

"

sp
ec
_b

zi
p2

_l
"

sp
ec
_b

zi
p2

_t
"

sp
ec
_c
ac
tu
sA
DM

_b
"

sp
ec
_g
cc
_1
"

sp
ec
_g
cc
_2
"

sp
ec
_g
cc
_c
"

sp
ec
_g
cc
_c
p"

sp
ec
_g
cc
_g
"

sp
ec
_g
cc
_s
c"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_l
ib
qu

an
tu
m
"

sp
ec
_m

cf
_r
"

sp
ec
_m

ilc
_s
"

sp
ec
_o

m
ne

tp
p_

o"

sp
ec
_s
op

le
x_
r"

sp
ec
_s
ph

in
x3
_a
"

sp
ec
_x
al
an

cb
m
k_
r"

sp
ec
_z
eu

sm
p_

z"

Im
pr
ov
em

en
t"(
%
)"

Prdicted"BitSChange"Rate"Improvement" Performance"Improvement"

Figure 5.20: Comparison between the bit-change rate improvement predicted by
DReAM and the overall performance improvement.

• The presented results for DReAM-Offline in Figures 5.21 to 5.24 correspond
to the first data migration scenario described in Section 5.3.2. As discussed,
the offline mapping is desired only in the case of applications with a consistent
behaviour and will be achieved after a long calibration period (long ROI). There-
fore, the rebooting cost will be negligible considering the long running period
of the application. Thus, in the results presented in these figures the cost of re-
booting is ignored and only the efficiency of the address mapping detected by
DReAM in comparison with the baseline mapping is investigated.

Figure 5.21 presents the execution time, normalised to baseline, for BIOBENCH
and COMMERCIAL benchmarks. This result suggests that the baseline address-
mapping scheme is good enough for the workloads presented in these benchmarks and
DReAM is not able to predict a better address mapping scheme. Therefore, there is no
bit-change rate improvement when using DReAM in comparison with the baseline and
the small degradation by DReAM-Offline (i.e. around 1%) manifested in Figure 5.21
is due to slightly different access patterns caused by re-ordering the baseline address
bits. This can be counted as noise.

On the other hand, DReAM-Online mitigates this issue by on-the-fly checking the
bit-change improvement, between two consecutive time windows, against a predefined
threshold. For instance in these experiments DReAM-Online employs the new address
mapping only if it can improve the bit change rate by more than 7%. Thus, although
DReAM cannot predict a better address mapping scheme than the baseline it does not
degrade the performance for most of the cases. A similar behaviour can be observed

5.5. RESULTS AND DISCUSSIONS 109

for Figure 5.22 to Figure 5.24.
Overall, the DReAM-Offline outperforms the permutation-based address-mapping

scheme (the best evaluated baseline) by 5%, on average, and up to 28% across all the
workloads. In the case of the DReAM-Online, 12 workloads satisfy the DReAM’s
threshold at run-time (i.e. improve the bit change rate by more than 7%) and for these
workloads the DReAM-online outperforms the baseline by 4.5%, on average, and up
to 23%.

Considering the results presented in Figure 5.24, libquantum achieved a significant
performance improvement taking advantage of DReAM. To justify this outcome, it
is useful to have a look at the extracted pattern for this workload presented earlier in
Figure 5.13m. This figure shows that there is a high change rate for bit 14 (see the
overshoot in this figure). As discussed in the corresponding section, this bit is mapped
to the row address space. This increases the possibility of accessing different rows
within the same bank (i.e. Page-Conflict) and so imposes a significant performance
overhead. DReAM simply assigns this bit to the column address space by replacing it
with a bit with a minimal change rate. In this situation, the excessive change rate of this
bit increases the possibility of accessing different columns within the same row (i.e.
Page-Hit) which improves the performance significantly. This is why this workload
has achieved such a considerable performance improvement.

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

mummer$.gr$ comm1$ comm2$ comm3$ comm4$ comm5$

N
or
m
al
is
ed

$E
xe
cu
.o

n$
Ti
m
e$

Baseline$ DReAMCOffline$ DReAMCOnline$

Figure 5.21: Execution time (normalised to baseline) achieved for BIOBENCH and
COMMERCIAL benchmark suites.

Figure 5.25 depicts the execution time normalised to the baseline for the ran-
domly selected multithread workloads presented in Table 5.3. These results show that
DReAM can still predict a better address mapping scheme than the baseline even in the
case of multithread workloads which produce a highly random memory access pattern.

110CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

0.80$

0.85$

0.90$

0.95$

1.00$

1.05$

hpc1$ hpc2$ hpc3$ hpc4$ hpc5$ hpc6$ hpc7$ hpc8$ hpc9$ hpc10$ hpc11$ hpc12$ hpc13$

N
or
m
al
is
ed

$E
xe
cu
=o

m
$T
im

e$

Baseline$ DReAMEOffline$ DReAMEOnline$

Figure 5.22: Execution time (normalised to baseline) achieved for HPC benchmarks.

0.90$

0.92$

0.94$

0.96$

0.98$

1.00$

1.02$

black$ canneal$ face$ ferret$ fluid$ freq$ stream$ swapt$

N
o
rm

a
li
se
d
$E
xe
cu
A
o
n
$T
im

e
$

Baseline$ DReAMHOffline$ DReAMHOnline$

Figure 5.23: Execution time (normalised to baseline) achieved for PARSEC
benchmark suite.

0.70$

0.75$

0.80$

0.85$

0.90$

0.95$

1.00$

1.05$

Ge
ms
FD
TD
_r$

ast
ar_
B$

bz
ip2
_l$

bz
ip2
_t$

ca
ctu
sA
DM

_b
$

gcc
_1
$

gcc
_2
$
gcc
_c
$

gcc
_c
p$

gcc
_g
$

gcc
_sc
$

les
lie
3d
_l$

lib
qu
an
tum

$

mc
f_r
$

mi
lc_
s$

om
ne
tpp
_o
$

so
ple
x_
r$

sp
hin
x3
_a
$

xa
lan
cb
mk
_r$

zeu
sm
p_
z$N

or
m
al
is
ed

$E
xe
cu
Ko

n$
Ti
m
e$ Baseline$ DReAMMOffline$ DReAMMOnline$

Figure 5.24: Execution time (normalised to baseline) achieved for SPEC benchmark
suite.

To conclude, the DReAM performance is independent of single or multithread ap-
plication and only depends on the final memory access pattern produced at the memory

5.5. RESULTS AND DISCUSSIONS 111

0.9$

0.92$

0.94$

0.96$

0.98$

1$

1.02$

M
IX
_1
$

M
IX
_2
$

M
IX
_3
$

M
IX
_4
$

M
IX
_5
$

M
IX
_6
$

M
IX
_7
$

M
IX
_8
$

M
IX
_9
$

M
IX
_1
0$

M
IX
_1
1$

M
IX
_1
2$

M
IX
_1
3$

M
IX
_1
4$

M
IX
_1
5$

M
IX
_1
6$

M
IX
_1
7$

M
IX
_1
8$

M
IX
_1
9$

M
IX
_2
0$

GM
EA

N
$N
or
m
al
is
ed

$E
xe
cu
iA
on

$T
im

e$
Baseline$ DReAMGOffline$ DReAMGOnline$

Figure 5.25: Final execution time (normalised to baseline) achieved for multithread
benchmarks.

interface level. This pattern can either be produced by a single thread or multithread
workloads. In this situation, depending on the extracted pattern from the dedicated
physical address bit counters, DReAM might be able to predict a more efficient ad-
dress mapping scheme than the baseline.

5.5.3 Data Relocation Analysis

As discussed, the data relocation required by DReAM is composed of two main sce-
narios: Migration and Rollback. To recap, migration happens as soon as a new address
mapping scheme is detected, then the previously located data in DRAM needs to be mi-
grated to the new location. On the other hand, if DReAM detects that the new address
mapping does not outperform the baseline address mapping scheme then it rolls back
the data to its original location. In the following some statistical analysis of migrations
and rolls back required by DReAM will be discussed.

Migration vs. Rollback

The experimental results (presented in Figure 5.21 to Figure 5.24) show that 12 stan-
dard workloads undergo dynamic data relocation. Out of these 12 workloads only two
workloads require data rollback which are ‘ferret’, with 10% of data relocation spent
on data rollback, and ‘libquantum’, with 39% of data relocation spent on data rollback.

Inter Bank vs. Intra Bank Data Relocation

Figure 5.26 presents the intra and inter bank distribution of data relocation required
by DReAM. According to this figure 87.5% of data relocation happens between banks
(Inter-bank relocation) and 12.5% happen within banks (Intra-bank relocation). As

112CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

discussed, DReAM does not perform the Intra-bank scenarios to reduce the data relo-
cation’s cost.

0%#

20%#

40%#

60%#

80%#

100%#

co
mm

5#
hp
c5
#

hp
c9
#

hp
c1
1#

hp
c1
2#

bla
ck# fac

e#

fer
ret
#

flu
id#

fre
q#

sw
ap
t#

lib
qu
an
tum

#

Da
ta
#R
el
oc
aB

on
#

Intra&Bank& Inter&Bank&

Figure 5.26: The analysis of inter and intra bank data relocation required by DReAM
online.

5.5.4 Storage Overhead and Scalability

The storage overhead imposed by DReAM will be discussed in this section. As dis-
cussed, DReAM consists of two main phases: Address Mapping Prediction and Data
Migration. The associated cost of implementation for both of these phases are as fol-
lows.

Address Mapping Prediction: As discussed in Section 5.3.1, there is only one
counter and one XOR gate per physical address bit and one history buffer to keep track
of the last access address is required to extract the monitoring pattern. Thus, assuming
a sampling window of 250K memory requests, 18-bit counters times the number of
physical address bits are the main storage overhead for the first phase of DReAM.
Figure 5.27 presents the storage required by the address-mapping prediction phase of
DReAM for different memory sizes. This is effectively negligible as an area overhead.

Data Migration: According to the discussion in Section 5.3.2, the first three data-
migration scenarios do not require any storage overhead. However, the fourth sce-
nario (i.e. online data migration) needs to keep track of migrated and swapped pages.
Therefore the required MT and ST impose extra storage overhead to the overall mem-
ory system. Figure 5.28 depicts the overall storage overhead imposed by online data
migration.

The result presented in Figure 5.28 is based on the assumption that all the existing
rows in a DRAM will be migrated which is not a fair assumption. This is because the
application access pattern of individual workloads has a limited ‘memory footprint’.

5.5. RESULTS AND DISCUSSIONS 113

0"

10"

20"

30"

40"

50"

60"

70"

4G" 8G" 16G" 32G" 64G" 128G" 256G" 512G"

St
or
ag
e"
O
ve
rh
ea
d"
(B
yt
es
)"

Memory"Capacity"

Figure 5.27: DReAM address-mapping prediction phase implementation cost.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

4G" 8G" 16G" 32G" 64G" 128G" 256G" 512G"

St
or
ag
e"
O
ve
rh
ea
d"
(M

B)
"

Memory"Capacity"

Figure 5.28: DReAM data migration phase implementation cost.

Here, the memory footprint is defined as the portion of memory space that each work-
load required.

In practice, it is possible to limit the total number of rows that can be relocated
at run-time (Partial Data Migration). To investigate the probability of the partial data
migration, Figure 5.29 presents the memory footprint for all the workloads evaluated
in this chapter. This result shows only 3.7% average memory footprint for all the
workloads. Moreover, it shows that 85% of the evaluated workloads access less than
5% of all the rows in the system.

Considering the above observations the associated cost of data migration in the
case that there is 5% (to investigate average cases) and 25% (to investigate the corner

114CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

0"

5"

10"

15"

20"

25"

30"
sp
ec
_b

zi
p2

_l
"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

sp
ec
_b

zi
p2

_t
"

sp
ec
_s
ph

in
x3
_a
"

sp
ec
_a
st
ar
_B

"
sp
ec
_g
cc
_s
c"

hp
c1
"

sp
ec
_g
cc
_c
p"

sp
ec
_z
eu

sm
p_

z"
co
m
m
5"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_f
re
q"

sp
ec
_l
ib
qu

an
tu
m
"

hp
c7
"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_g
cc
_1
"

pa
rs
ec
_s
w
ap

t"
sp
ec
_x
al
an

cb
m
k_
r"

pa
rs
ec
_f
er
re
t"

sp
ec
_g
cc
_2
"

sp
ec
_g
cc
_c
"

bi
ob

en
ch
_A

gr
"

hp
c1
3"

sp
ec
_g
cc
_g
"

pa
rs
ec
_fl

ui
d"

co
m
m
4"

hp
c2
"

sp
ec
_o

m
ne

tp
p_

o"
pa

rs
ec
_f
ac
e"

hp
c1
0"

hp
c6
"

hp
c5
"

hp
c4
"

hp
c9
"

co
m
m
1"

hp
c8
"

hp
c3
"

co
m
m
3"

pa
rs
ec
_c
an

ne
al
"

hp
c1
2"

sp
ec
_c
ac
tu
sA
DM

_b
"

hp
c1
1"

sp
ec
_s
op

le
x_
r"

bi
ob

en
ch
_m

um
m
er
"

co
m
m
2"

sp
ec
_m

ilc
_s
"

sp
ec
_G

em
sF
DT

D_
r"

sp
ec
_m

cf
_r
"

M
em

or
y"
Fo
ot
pr
in
t"(
%
)"

Figure 5.29: Memory footprint for all the evaluated workloads.

cases) limitation in the number of migrated pages were investigated (Figure 5.30). Ac-
cording to Figure 5.30 the storage cost of data migration can be reduced significantly
by considering the partial data migration.

0"

1"

2"

3"

4"

5"

4G
"

8G
"

16
G"

32
G"

64
G"

12
8G
"

25
6G
"

51
2G
"

St
or
ag
e"
O
ve
rh
ea
d"
(M

B)
"

"5%"Migra<on" ""25%"Migra<on"

Figure 5.30: Associated cost of partial data migration for DReAM.

5.6 Related Work

The shortfalls of DRAMs with respect to page conflicts are widely recognised in the
area of memory system design. Prior work proposed a wide range of different tech-
niques such as memory interleaving schemes, scheduling algorithms and some archi-
tectural modifications to the current structure of DRAMs to mitigate this issue. For
instance, Zhang et al. [ZZZ00] proposed a page interleaving scheme to reduce page

5.7. SUMMARY 115

conflicts and exploit data locality. Hsu et al. [HS93] proposed another memory inter-
leaving scheme to address the same issue. There are many other interesting works in
the area of developing new scheduling algorithms[EMF+11, IMMC08, KHMHB10,
KPMHB11, MM07, MM08, NALS06] that prioritise servicing certain memory re-
quests to reduce page conflicts and improve the memory performance. Some other
types of work in this area are those that propose either a new architecture for DRAMs
or a small modification to the traditional structure of these memory systems. For in-
stance, Sudan et al. [SCN+10] propose a technique to recognise the highly accessed
data in DRAM and place them in the same row to improve the data locality. Kim et

al. [KSL+12] proposed a technique to exploit the existing subarray level parallelism
in DRAMs to improve the bank conflicts. PARDIS by Bojnordi et al. [BI12] is a
programmable memory controller that can be configured using a specific instruction
set architecture (ISA). Although the focus of this work was not on developing opti-
mised address-mapping scheme they configured PARDIS by the application-specific
address mapping heuristic achieved by offline profiling analysis and presented a good
performance improvement in the memory system.

5.7 Summary

This chapter introduced DReAM (Dynamic Re-arrangement of Address Mapping)
which is a novel hardware technique based on approximating the entropy of each mem-
ory address bit for a set of memory requests. DReAM identifies which bits are chang-
ing the most (higher entropy) and which change the least (lower entropy). DReAM
presents three main contributions: first, a low-cost pattern recognition technique is
developed to extract the memory access pattern at run time. Then, a methodology
is proposed to estimate an optimised address-mapping scheme based on the detected
access pattern. Finally, a technique is proposed for the on-the-fly migration of data
within DRAMs to reduce page conflicts.

An extensive performance evaluation was carried out with 48 different workloads
from 5 benchmark suites. By keeping the memory size constant while increasing the
number of cores the randomness of the behaviour of the memory access pattern is in-
creased significantly, which might impose a high rate of page conflicts in the memory
system. In such a situation DReAM shows that it is still able to detect the application
access pattern and estimate an optimised address-mapping scheme that improves the

116CHAPTER 5. DREAM: DYNAMIC RE-ARRANGEMENT OF ADDRESS MAPPING

performance of the memory systems in comparison with the baseline mapping. Over-
all, DReAM-Offline outperforms the permutation-based address-mapping scheme (the
best evaluated baseline) by 5%, on average, and up to 28% across all the workloads. In
the case of DReAM-Online, 12 workloads satisfy DReAM’s threshold at run-time (i.e.
improve the bit change rate by more than 7%) and for these workloads DReAM-online
outperforms the baseline by 4.5%, on average, and up to 23%.

DReAM is complementary to existing schedulers in memory controllers and is the
first on-the-fly mechanism capable of generating workload specific address-mappings
without requiring running applications to be stopped.

Chapter 6

ARMOR: A Run-time Memory
hot-row detectOR

6.1 Introduction

Despite nonvolatile memory technologies starting to make inroads, the main memory
market for computer systems is dominated by DRAM. As DRAM manufacturers con-
tinue to move to smaller technology nodes, they are trying to optimize manufacturing
costs and memory performance without degrading reliability [MDB+02, JHG13]. The
increased density and smaller storage cells make DRAM cells more susceptible to dif-
ferent type of noise such as electromagnetic coupling between cells [FK91, MSY+90,
TTK+92].

In June 2014 Kim et al. [KDK+14] empirically demonstrated that despite the best
effort to mitigate disturbance errors, a high percentage of DRAM modules suffer from
this phenomenon (i.e. 110 modules out of 129 DRAM modules sourced from three dif-
ferent memory manufacturers were tested). In particular for the most recent modules,
those dated in the last two years, all but one module was affected. The corruption of
stored data was achieved by memory requests requiring a particular DRAM row to be
activated above certain thresholds; this has been called the row hammer effect.

When dealing with a row hammer scenario, the data corruption affects the physi-
cally neighbouring rows, not the highly activated row. Thus, it is possible to modify
the contents of a physical DRAM row (typical sizes 1KB-4KB for DDR3) by acti-
vating a different row. In other words, segmented memory or page protection cannot
guarantee isolation of two or more programs when they are using memory mapped to

117

118 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

adjacent physical rows. For example, consider a program which uses the SSE instruc-
tion clflush (not privileged) and allocates regions of memory which are page aligned
and of size equal to the OS page size. If the program allocates half of the physical
memory available but randomly frees whole OS pages, then the physical address space
will be highly partitioned. Just hammering the end and beginning of each page by re-
peatedly calling clflush may be enough to corrupt the other programs’ data with a high
probability.

Google’s Project Zero engineers have recently exploited the vulnerability of DRAMs
to row hammer error to gain kernel privilege and run unauthorized code [Mara]. In an-
other case study, they demonstrated how a Native Client (NaCl) [Chr] program can
escalate privilege to escape from NaCl’s x86-64 sandbox and obtain the ability to call
the host OS’s syscalls directly. They have also released c-code that can be run on
personal computers to check if the system susceptible to row hammer error [Marb].
According to their experiments, 15 out of 29 evaluated laptops from different vendors
were susceptible to the row hammer error.

Security attacks using the clflush instruction may not look threatening as the pro-
gram would have had to already gain execution rights on the machine. However, more
severe security implications would occur if simply accessing a web page was enough
to generate row-hammer effects. Javascript applications have become ubiquitous on
web pages (e.g. Google.com, Facebook.com, Youtube.com, Yahoo.com, Baidu.com,
Wikipedia.com, Twitter, Amazon.com, etc.) and, by default in Chrome, Firefox, Sa-
fari and Internet Explorer, Javascript is enabled; less than 2% of web users disable
Javascript. Despite Javascript being initially an interpreted language, sophisticated JIT
compilers are now the norm; e.g. Chrome uses V8 [Goo]. Although Javascript applica-
tions will not have access to the clflush instructions, row-hammer could be achieved
by taking into account the set-associativity and generating mapping misses in the Last
Level Cache (LLC).

For simplicity, assume a LLC with 2-way set associativity and size 4KB. A C
program with an array of integers X of size at least three times bigger than the LLC,
e.g. 16KB, and the following inner loop would generate numerous evictions (mapping
misses) and updates to main memory:

6.1. INTRODUCTION 119

// C code

int X[]; // 16KB

...

X[i] += 1;

// occupy one entry in a given set

X[i + 1024] += 2;

// occupy another entry in the same set

X[i + 2048] += X[constant] + X[constant + 1024]

// eviction due to mapping miss

...

The equivalent Javascript program uses Typed Arrays and would look very similar:

// Javascript code

var X[] = new Int32Array(4 * 1024); // 16KB

...

X[i] += 1;

// occupy one entry in a given set

X[i + 1024] += 2;

// occupy another entry in the same set

X[i + 2048] += X[constant] + X[constant + 1024]

// eviction due to mapping miss

...

Current LLC from Intel, AMD, ARM, PowerPC and UltraSparc are predominantly
16-way or 8-way set associative with the largest LLC holding 30MB. With this infor-
mation, it is possible to modify the above Javascript snippet to generate evictions and
memory updates due to mapping misses.

Motivated by security, this section proposes an efficient and scalable technique,
called ARMOR (A Run-time Memory hot-row detectOR), to overcome disturbance
errors in DRAMs. This is the first work that detects hot-rows at run time with guaran-
tees as well as allowing reduction in the level of accuracy in a controlled manner. The
evaluation of ARMOR compares it directly with the PARA technique [KDK+14] for
standard benchmarks as well as kernels representing malicious codes.

120 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

6.2 Background on Row Hammer Error

This section presents general background on the internal structure and operation of
DRAMs to explain the row-hammer data corruption effect.

Figure 6.1 presents a low-level structure of a DRAM cell. Each DRAM cell con-
sists of a transistor and a capacitor which are connected to the bitline wire and wordline
wire. Typically, a fully charged capacitor holds logical ‘1’ and fully discharged capac-
itor holds logical ‘0’ value. A wordline is connected to all cells located in a row and
a bitline is connected to all rows in a column. To access a row the corresponding
wordline will be raised to a high voltage. This operation enables all the transistors in
the target row and, as a result, the capacitors will be connected to their corresponding
bitlines. In this way, the row data (capacitors’ charges) is amplified by the sense am-
plifier, and is transferred to the row buffer ready for reading and updating. This entire
operation is called row activation. In this process the capacitors will be discharged and
restored to their former value. At the end, by lowering the wordline the transistors will
be turned off and capacitors will be disconnected from bitlines [JNW10, Ito01, Kee08].

DRAM Array

Rows

Columns

DRAM Cell

Word Line

Bit Line

Figure 6.1: DRAM Cell.

6.2.1 DRAM Refresh

Considering the electronic circuit of a DRAM cell (Figure 6.1) the charge stored
in these cells is not persistent. This is because capacitors will lose their electric
charge over time due to various types of leakage [SHU+00, RMMM03]. Thus, each
DRAM cell has a limited retention time. According to the DDR3 DRAM specification
[SPE09], each DRAM cell has a retention time of 64 ms, which means after 64 ms,
DRAM cells are susceptible to lose their data. Therefore, all the DRAM cells must be
refreshed within 64 ms to sustain data reliability.

6.2. BACKGROUND ON ROW HAMMER ERROR 121

To refresh a DRAM cell the memory controller issues a Refresh command at a
specific time interval to make sure that all the rows within the system are refreshed
at least every 64 ms. Originally, a refresh command was issued, by the memory con-
troller, to each row in the system. However, as the size of memory and number of rows
increase in modern DRAM devices issuing one refresh command per row becomes im-
practical. In this situation the memory controller only issues a fixed number of refresh
commands within a refresh period (e.g. 8192 Refresh Commands) and each refresh
command refreshes multiple rows at the same time.

6.2.2 Row Hammer Effect - Corrupting Data without Writing

The ‘Row-Hammer’ effect is not well known, but was highlighted by a test equipment
company called Teledyne LeCroy [Mik, Mica] in the context of DDR4 DRAM. They
observed that ‘aggressive’ activations of a specific row in a DRAM can corrupt adja-
cent rows’ data. In reality this phenomenon is a specific type of Disturbance Error that
occurs due to intensive interaction between electronic components that are supposedly
isolated from each other [KDK+14].

DRAM Bank

Global Row Buffer

Row Aggressor

Row Victims

Aggressive

Activation

Figure 6.2: Row Hammer phenomenon.

Row-hammer in DRAMs can occur when a specific wordline of a DRAM is ac-
tivated repeatedly within one refresh interval. In this situation the neighbouring cells
leak charge at faster rate than expected. Thus, the retention time of such cells is re-
duced to less than 64 ms which means that these cells may lose their data (charge)
before refresh happens. Subsequently, in refreshing these corrupted cells the wrong
data will be read and written back again (figure 6.2). Moreover, ECC modules are not
very efficient in this situation since they cannot detect multi-bit errors.

122 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

Kim et al. [KDK+14] provided the first empirical study in a peer-reviewed compre-
hensive study that demonstrated the existence of disturbance errors and more specifi-
cally the row-hammer effect in commodity DRAM devices. This chapter focuses on
proposing a hardware solution to overcome the row-hammer issue instead of proving
its existence.

Possible Intuitive Solution: One straightforward solution to mitigate row-hammer

is to simply increase the refresh rate for all the rows in the memory system. Although,
this approach might alleviate the row-hammer issue it imposes an unnecessary power
and performance overhead to the system. Probably the most intuitive solution is to
detect the rows with high activation value (i.e. ‘hot’ rows) and refresh their (physi-
cal) neighbours. A simple method to recognise hot rows in a DRAM is to dedicate
a counter per row to keep track of the number of activations of each row. However,
having one counter per row introduces a significant area and power overhead to the
memory controller. Kim et al. [KDK+14] investigated general techniques used to find
frequent items from a stream of items, such as: Bloom Filters [Blo70, CM03], Mor-
ris Counters [Mor78] and some other standard techniques [KSP03] to identify the hot
rows. However, none of the mentioned techniques is scalable as the size of main mem-
ory increases or can guarantee successful row hammer identification/correction. Thus,
Kim et al. proposed Probabilistic Adjacent Row Activation (PARA) to overcome row
hammer. The key idea behind PARA is that every time a row is opened and closed
one of its adjacent rows is refreshed (e.g. opened) with some low probability. Thus, if
a particular row is opened and closed repeatedly then, statistically, the adjacent rows
will be refreshed. However, due to the probabilistic nature of this technique and con-
sidering that the row hammer phenomenon is a security issue, PARA is not a reliable
solution to address this error.

This chapter proposes a native memory hot row detector instead of trying to apply
the mentioned traditional techniques to find the hot rows.

6.3 Row Hammer: Analytical Analysis

To develop an optimised solution for row-hammer it is important to understand when
this phenomenon might happen. There are a few significant factors that should be taken
into consideration when analysing row hammer problems that are briefly explained
next.

6.3. ROW HAMMER: ANALYTICAL ANALYSIS 123

Refresh Interval (RI): it has been discussed that every 64 ms the DRAM must
refresh all the rows in the system. Therefore, RI is the maximum time period over
which row-hammer events can occur.

Activation Threshold (ACTth): the minimum number of activations required to
induce the error is called the ACTth. Kim et al. [KDK+14] have done an extensive
evaluation of row-hammer effects on a wide range of DRAM devices (i.e. 129 DRAM
Modules) from three major DRAM manufacturers and they ended up with three differ-
ent ACTth for this set of DRAM devices which are presented in Table 6.1. ACTth of
139k is used in the experiments presented in this chapter.

Modules ACTth
Module A 139K
Module B 155K
Module C 284K

Table 6.1: ACTth for different evaluated DRAM modules in [KDK+14].

Minimum Activation Interval (MINAI): the minimum interval to activate a row
within the DRAM device is limited to TRC – that is the time interval between accessing
a row and restoring data to the DRAM array plus the precharge time. In the experi-
mental results presented in this chapter, MINAI is around 49 ns (MINAI = TRC = 49
ns).

Maximum Possible ACT per RI (MAXACT): considering the above definitions
the maximum possible number of activation commands that can be issued to a bank
within RI is:

MAXACT =
RI

MINAI
=

64ms
49ns

≈ 1.3 M (6.1)

Aggressor and Victim: the repeatedly opened rows are called ‘aggressor rows’
or ‘hot-rows’, if they reach the ACTth, that cause the error and the neighbours of an
aggressor row which may be affected by row hammering are called ‘victim rows’.

Maximum Possible Aggressors Per RI (MAXaggressor): considering the MAXACT

and the ACTth, the maximum possible number of aggressor rows per RI, assuming
ACT th = 139K, can be calculated from equation (6.2).

MAXaggressor =
MAXACT

ACT th
=

1.3M
139K

≈ 10 (6.2)

MAXaggressor suggests that there can only be a few aggressor rows (≈ 10 aggressor rows)

124 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

per bank per RI out of the millions which exist in the system. This leads to the fact that
there must be a specific behaviour in the activation stream to create aggressor rows,
which is one of the main principles behind ARMOR.

6.4 ARMOR: A Run-time Memory hot-row detectOR

It has been shown that there can only be a few potentially critical row aggressors within
RI (e.g. MAXaggressor ≈ 10). Thus, a solution is to only keep track of potential row-
aggressors’ activation behaviour rather than monitoring all the available rows in the
system. The main challenge is then how to detect the potential hot-rows in the system.

6.4.1 ARMOR - Basic Principles

In the previous section, it was suggested that there should be a specific behaviour in
the stream of activation issued to a bank to produce row-hammer problem. To identify
such an activation pattern at run time, assume that the activation stream to hot-rows
follows a uniform distribution. This means that there is a fixed time interval between
each activation that goes to a hot-row in a DRAM bank. In this situation, it is possible
to define a minimum requirement that each row must satisfy to be identified as hot.

Potential Hot-Rows Condition: considering the previous assumption (e.g. uni-
form distribution of activation stream to a hot-row), a time window is defined, e.g. Hot
Time Window (HTW), in which a row must be activated at least once to be identified
as a potential hot-row within RI (Figure 6.3).

HTW =
RI

ACT th
=

64ms
139K

≈ 460 ns (6.3)

As equation (6.3) shows, the RI is divided to 139K different time slots (of 460 ns
each) which means that to have at least one hot-row within an RI, there should be
at least one activation to a specific row in each time slot, otherwise the target row is
not going to reach the ACTth. Therefore, if there are no repeated activations to the
target row within HTW it is not going to be a hot-row within the RI. However, if there
are repeated activations to the target row within HTW then the target row might be a
potential hot-row, depending on the activation stream behaviour in future time slots. In
this way a simple structure can be developed to filter potential hot-rows at run time.

So far a uniform distribution of the activation stream is assumed for the sake of
simplicity to explain the basic principle behind ARMOR; this is not always a valid

6.4. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR 125

1 2 3 139K

64 ms

460 ns 460 ns 460 ns 460 ns

Refresh Interval

Figure 6.3: Hot time windows.

assumption. The activation stream depends on the application behaviour and memory
access pattern. Considering multithread and multicore systems the application access
pattern – and as a result the activation stream – is most likely ‘random’. The next
section explains how to use similar principles to detect hot-rows at run time for uniform
and non-uniform distributions in the activation stream using a simple counter (i.e. a
credit counter).

6.4.2 ARMOR - Overview of Architecture

In this section, the concepts presented so far are used to propose a novel and low-cost
architecture to identify the hot-rows in DRAMs. Figure 6.4 presents an overview of
the key components of ARMOR’s structure. At a high level of abstraction there are
two main phases to detect a hot row using ARMOR. In the first phase the potential hot-
rows will be filtered using a Time-based Shift Register Filter (TSRF) and in the second
phase a Dynamic Counter Allocator (DCA) will allocate one counter to each potential
hot-row to keep track of the number of activations to these rows. Moreover, DCA will
deallocate counters and evict the potential hot rows when they lose their eligibility to
be a hot row at run time.

Time-based Shift-Register Filter (TSRF)

The first phase in identifying hot-rows is to detect a potential row that might reach the
ACTth or, in other words, filtering non-potential hot-rows to reduce the number of rows
that need to be tracked.

To implement such a filter, a simple time-based shift register structure is proposed
which is presented in figure 6.5. As its name implies, the contents of this shift register
will be shifted to the left every specific time interval. This time interval is chosen to
be equal to MINAI to capture activation stream behaviour in fine-grain time windows.
Every MINAI the TSRF checks if an activation command has been issued in that period;

126 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

Clock
Generator

ACT EMPTY ACT ACT ACT EMPTY ACTTSR
Filter

Activation Stream

Hot Row
Table

Counter Allocator

Potential
Hot Rows

DCA

Eviction Unit

Figure 6.4: ARMOR overview.

if it has, the address of activated row will be stored in the last location of shift register
and, if there is no activation command in that time period, the last location will be
marked as empty and the contents of shift register will be shifted to the left by one
location.

The shift register length is chosen in such a way that it accommodates the maximum
number of possible hot-pages within RI (or MAXaggressor) plus one (equation (6.4)).
The extra register is to overlap the two consecutive HTWs. Thus, if an activation
happens in an exact HTW time interval it will be captured by the TSRF. Moreover,
since the registers of TSRF are updated every MINAI, this queue length is guaranteed
to capture all the possible hot-rows if they happen in the same HTW (≈ 460 ns). The
TRFS’ registers’ size is made big enough to hold the required address-bits representing
the activated row.

T SRF Size = MAXaggressor +1 = 10+1 = 11 (6.4)

Having this structure, the physical address of the activated row will be kept in the
queue for the maximum time of HTW. Every MINAI, before discarding the TSRF’s
last register, it will be compared to all the items in the queue to see if there is another
activation to the same address, if there is, then it will be marked as a potential hot-row
and sent to the next stage; otherwise it will be discarded. The output of the filter is
therefore a stream of addresses which have been activated more than once within the
sample window. This must be satisfied at least once in a refresh interval if a row is

6.4. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR 127

TRC

Time

TSRF Size

TRC TRC TRCTRC TRC TRC

ACT EMPTY EMPTY ACT ACT EMPTY ACT
C

O
M

P

Potential
Hot Row

Figure 6.5: Time-based Shift Register.

to be ‘hot’. Although, in this way, an initial filtering is carried out on the activation
stream, some identified potential hot-rows might not remain hot-rows at the end of the
RI.

Further Filtering Improvements: The experimental results show that the current
structure of the TSRF delivers satisfactory results. However, the performance of this
filter can be improved further considering a dynamic threshold to detect the hot-rows.
It has been discussed that having a minimum of two activations to the same row within
the HTW would be a minimum threshold to consider a row as a potential hot-row.
However, this threshold is calculated based on the overall RI of 64 ms. It means that,
as time progresses, the condition for a row to be a potential hot row will change as well.
For instance if 32 ms of the RI has passed then, considering our uniform distribution
assumption, the minimum number of row activations within the remaining HTW must
be more than two (e.g. four) if the target row is to reach the ACTth and be a hot row.

Dynamic Counter Allocator (DCA)

The DCA is in charge of allocation and deallocation of counters to detected potential
hot-rows. It comprises a simple allocator and eviction unit plus a potential hot row
table. An overview of the DCA structure is presented in Figure 6.6.

As soon as a potential hot-row is identified by the TSRF, its physical address will
be sent to the DCA unit. The DCA consists of simple counters, timers and registers

128 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

Counter
Allocator

Eviction
Unit

N
 E

n
tr

ie
s

Hot Row Table

Full
Update
Flage

Update
Timeout

Credit
Counter

Expiry
Counter

ACT
Counter

Hot-Row
Address

1 1 10 20,000 0 123,003 0xEF098F

1 0 4 0 5,400 5,400 0xAC098F

0 0 0 0 0 0 Empty

Figure 6.6: Dynamic Counter Allocator.

which are explained as follows.
Full Flag: is a 1-bit flag to specify if the current entry of the hot-row table is in use

or free.
Hot-Row Address: is the address of the potential hot row.
ACT Counter: is a counter allocated to a potential hot-row to keep track of the

number of activations of that row.
Update Flag: is 1-bit flag to show if the corresponding potential hot-row has been

activated in the last MINAI or not.
Update Timeout: is a timer that keeps track of the HTW period. If there is no

activation to a potential hot-row within the HTW then the potential hot-row becomes
a candidate to be evicted from the hot-row table. This timer will be reset to its initial
value after every activation to the corresponding potential hot-row.

Credit Counter: The presented architecture so far can only detect hot-rows with a
uniformly distributed activation stream. The Credit Counter is a simple, intelligent way
to extend the design to be able to detect a hot-row with a non-uniformly distributed ac-
tivation stream. It has been discussed that one necessary requirement (but not the only
one) for a specific row in DRAM to be a hot-row is to have at least two activations per
HTW (i.e. every 460 ns) otherwise the potential row becomes a candidate for eviction
from the hot-row table. However, depending on the activation stream distribution, there
might be a case that there are several activations to the target row within one HTW but
no activations for the next few HTWs (a non-uniform distribution). In this situation,
the target row still has a potential to reach the ACTth and become a hot row. In this

6.5. ARMOR APPLICATIONS 129

case, the Credit Counter comes into play. This counter keeps track of all the extra acti-
vations (i.e. more that two activations) within the HTW. This extra credit specifies the
number of future HTWs that the target row can still remain a potential hot-row even
if there is no activation to that row. This can be implemented simply by decrementing
the credit counter every time that that there is no activation to the potential hot rows
within a HTW (i.e. U pdate Timeout = 0).

Expiry Counter: is a counter that prioritises the order of eviction from the hot
row table if there are several potential hot-rows which are flagged as candidates to
be evicted. In this way, a candidate row with a higher number of activations will be
evicted later than one with a lower number. It provides extra time credit to the row with
higher number of activations to remain a potential hot-row if there are more activation
commands to this row.

Finally, if a potential ‘hot-row’ in the table reaches the ACTth it will be flagged
as a hot-row and the corresponding signal will be sent to the memory controller for
further actions which are described in the next section. Also, the detected hot-row will
be evicted from the hot row table.

Hot-Row Table Size: considering the possibility of having the maximum number
of hot rows within RI (e.g. MAXaggressors ≈ 10) the maximum required hot row table
size to accommodate all the possible hot rows is equal to MAXaggressors per each bank.
Thus, a maximum of 80 entries in the hot row table (820 Bytes) is required to support
a 4 GB DRAM system populated in 8 banks. However, this number is calculated for
the worst case scenario and the experimental results show that the possibility of having
MAXaggressors per RI per bank is negligible. Therefore, a much smaller hot-row table
would be enough to detect all hot rows in most situations.

The experimental results presented in section 6.7 show that ARMOR can identify
all the possible hot-rows (based on a desired ACTth) in the system with a high level of
count accuracy of number of activation (i.e. 99.99%).

6.5 ARMOR Applications

In the previous section, ARMOR is proposed to detect hot-rows in DRAMs. In gen-
eral, having a knowledge of which are the hot-rows in a memory system provides an
opportunity to improve different aspects of functionality of these architectures. This
section discusses how ARMOR can be used to improve the reliability and performance
of DRAMs.

130 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

6.5.1 Target Row Refresh

It has been suggested that the most intuitive way to solve the row hammer issue is to
detect the hot rows and refresh their neighbouring rows. Since ARMOR provides the
solution to detect hot-rows in DRAMs, then the remaining component is to refresh
the victim rows. This requires that the DRAM manufacturers disclose the mapping
scheme of logical to physical rows to the memory controller. This enables the mem-
ory controller to issue the refresh command, or a simple activation command, to the
physically adjacent rows. Alternatively, a new DRAM command can be issued which
simply refreshes the neighbour rows of specific address. Such a capability has been
added to the latest Micron DDR4 devices called ‘Target Row Refresh (TRR)’ Mode
[Micd]. ARMOR is a perfect complement of a DRAM system equipped with TRR.
The performance overhead imposed by ARMOR using TRR is discussed below.

Performance overhead: one of the main advantages of this work compared with
the solution presented by Kim et al. [KDK+14] is that, since ARMOR detects the exact
row-aggressors, it only refreshes the necessary victim rows. This means that, in the
worst case, for each detected row-aggressor two adjacent rows need refreshing. Thus,
this imposes a maximum cost of two extra page-misses (i.e. ≈ 2×T RC) to the memory
system. While, in the solution presented in [KDK+14] the refreshed rows might or
might not be row victims. This imposes an unnecessary overhead to performance and
power of the memory system. This extra overhead will be evaluated in section 6.7.

In the following a new approach is presented to overcome the Row-Hammer phe-
nomenon using the unique capabilities provided by ARMOR.

6.5.2 ARMOR Cache Solution

The experimental results and mathematical analysis show that for most workloads,
only a few specific rows are repeatedly flagged as hot-rows in consecutive time inter-
vals. In this situation, other possible solutions to mitigate row hammer error include:

• Sharing the information about the hot rows with Last Level Cache (LLC) to
avoid evicting cache-lines that are located in hot-rows.

• Using a simple buffer (Cache) in the memory controller to cache hot-rows. Thus,
further activations to hot rows are serviced outside the DRAM module which, as
a result, prevents the accessed row from being hammered. This also provides an
opportunity to improve the performance of memory systems (since the cached

6.6. EVALUATION METHODOLOGY 131

row can be accessed more quickly). Moreover, since these hot-rows only need
to be cached for a short period of time (Refresh Interval - e.g. 64 ms) a small
buffer would be sufficient to implement this solution.

In either case the memory request to the hot-rows, and as a result the possibility
row-hammer occurrence, will be decreased. Additionally, memory latency will be
reduced significantly since the highly accessed cache lines now either are cached in
the memory controller or kept in the LLC. To evaluate the first (probably more elegant)
solution an integrated, detailed memory controller with a full architecture simulator is
required which is postponed to future work. However, to get an insight about the
possible performance improvement that can be achieved using ARMOR the second
solution has been investigated using a simple buffer in the memory controller.

The experimental and analytical results show that the number of hot rows is limited,
to few, within specific time intervals (RI). This suggests that a small buffer with the
right eviction algorithm would be enough to accommodate all the hot-rows during time
intervals. To have an insight into the required size of such a buffer the basic principles
described so far will be recapped here. The key point is that in the worst case scenario
there are only a few rows that can reach a certain threshold (ACTth) within the refresh
interval (RI). Therefore, the maximum buffer size is defined by the maximum number
of possible row-aggressors per RI times the size of row (to buffer the entire row).
Moreover, reducing the size of this buffer to less than the maximum required size does
not affect the accuracy of the ARMOR and it is just a trade off between area overhead
and the performance improvement.

6.6 Evaluation Methodology

To investigate the performance of ARMOR, it is compared against the ground truth as
well as the solution proposed by Kim et al. [KDK+14] (i.e. ‘PARA’). The ground truth
is calculated by having one counter per DRAM row to keep track of the exact number
of activations within RI. All the counters are monitored and checked against the thresh-
old which may corrupt data, ACTth. When one counter reaches ACTth (i.e. hammered
rows are detected) ARMOR’s hot-rows table is checked to see if the detected row is in
the table and if so what is the predicted number of activations.

PARA also is evaluated using a similar methodology. This means that every time
that a hot-row is detected using the embedded counters, for each row PARA is checked
to see if it has issued any refreshes for the detected hot rows. If it does, it is assumed

132 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

that PARA has issued the correct refresh to the victim rows (due to its nature, it actually
has only a 50% chance of issuing a refresh to the possible row victim).

The ACTth value used by Kim et al. [KDK+14] is used in the experiments (RI =

64ms and ACTth of 139K).
Simulator: USIMM, as introduced in Chapter 3, is used as the main simulation

platform in the experiments. Table 6.2 contains the parameters used to configure
USIMM. ARMOR and PARA were implemented in USIMM to support direct com-
parison.

Model Description Value

Processor
Clock Speed 3.2 GHz

Pipeline depth 10
ROB size 128

Memory System

Bus Speed 800 MHz
Number of Channels 1
Ranks per channel 1

Bank per rank 8
Row per bank 65,536

Cache lines per row 128
Cache line size 64 Byte

Table 6.2: USIMM configuration parameters used in the experiments.

Workloads: To have an extensive evaluation several workloads are used from dif-
ferent benchmark suites as presented in Table 6.3:

• Standard Benchmarks: As described in Chapter 3, the standard benchmarks
include a wide range of memory intensive applications (i.e. 48 workloads) from
different benchmark suites (PARSEC [BKSL08], SPEC [Dix91], BIOBENCH
[AJW+05], HPC and COMMERCIAL) and representative regions of interest for
each application. To recap, Table 6.3 lists the workloads and their corresponding
benchmark suites. An identifier is added to each application to facilitate the
naming of multithread workloads constructed from these applications later.

• Google’s Project Zero code/attack: To evaluate ARMOR’s reliability against
attacks similar to the one investigated by Google’s Project Zero engineers the
memory access pattern produced by this team’s c-code is also analysed as well.
Two different architectural simulators (Zsim [SK13] and GEM5 [BBB+11])

6.6. EVALUATION METHODOLOGY 133

Benchmark Suites
SPEC PARSEC COMMERCIAL

(a) GemsFDTD r (k) astar B (u) canneal (D1) comm1
(b) bzip2 l (l) bzip2 t (v) streamcluster (D2) comm2

(c) cactusADM b (m) gcc 1 (w) blackschols (D3) comm3
(d) gcc 2 (n) gcc c (x) facesim (D4) comm4
(e) gcc cp (o) gcc g (y) ferret (D5) comm5
(f) gcc sc (p) mcf r (z) fluidanimate BIOBENCH
(g) milc s (q) omnetpp o (A) freqmine (E) mummer

(h) soplex r (r) sphinx3 a (B) swaption (F) tigr
(i) xalancbmk r (s) zeusmp z HPC
(j) libquantum (t) leslie (C) hpc1 - hpc13

Table 6.3: Evaluated workloads and benchmark suites.

were used to run this program and capture the memory access traces. The ex-
perimental results show that this code produces an intensive activation stream to
random rows within a bank with a uniform distribution. This is used as a mo-
tivation to produce more synthetic kernels with similar types of memory access
behaviour to model malicious codes with different access distribution described
in the following.

• Synthetic Kernels: Since the Row Hammer phenomenon is a security issue
in DRAMs, a more intense evaluation was carried out considering hand-crafted
malicious codes. Around 500M instructions of different memory-intensive syn-
thetic kernels (malicious code) were simulated and the corresponding memory
traces were captured. Table 6.4 presents the configuration parameters of the syn-
thetic kernel generator, described in Chapter 3, used to produce the synthetic
kernels presented in this chapter. Using these kernels provides full control on
modelling row-hammer faults (e.g. by producing hot rows) on a specific num-
ber of rows with specific access patterns. In each kernel, a specific number of
rows (e.g. up to 20 rows) are targeted and repeatedly activated during execution
time, more than other rows in the system. Three different random distributions
are used, Uniform, Gaussian and Poisson, to access to these targeted (hot) rows.
The main goal of such access patterns is to produce row hammer episodes with
different memory access behaviours. The uniform distribution represents a vari-
ation of Google’s Project Zero attack. Table 6.5 depicts the 36 synthetic kernels
with different access distribution.

134 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

Synthetic Kernel Generator Parameters
Parameters Value

DRAM Configuration 1 Channel-1 Rank - 8 Banks - 65K Rows
Memory Trace Size 10 Million Accesses

Maximum Access Interval 1000 Clock Cycles
Memory Intensity High (10% of Maximum Access Interval)

Read/Write Intensity 100% Read
Access Pattern Hybrid (switch between sequential and random)

Application Phase Period MIN=100 & MAX=1000 clock cycles
Number of Targeted Rows Up to 20 rows
Distribution Access Pattern Uniform, Gaussian and Poisson

Table 6.4: Synthetic kernel generator configuration parameters used to produce the
synthetic kernels.

Benchmark Suites
Distribution Access Pattern Synthetic Kernels

Uniform Distribution 12 kernels – (UD1 - UD12)
Gaussian Distribution 12 kernels – (GD1 - GD12)
Poisson Distribution 12 kernels – (PD1 - PD12)

Table 6.5: Synthetic workloads.

• Multithread Kernels: To increase the randomness of memory access patterns
20 multithread workloads were investigated and the USIMM simulator was mod-
ified to map all the workloads to the same memory space. This increases the
randomness of memory behaviour and it might also increase the vulnerability of
system to the row hammer phenomenon if multiple workloads try to access to
different rows within the same bank. To make it even more challenging, mali-
cious kernels were also integrated into multithread workloads. Table 6.6 presents
the multithread workloads sequence.

6.7 Results and Discussions

In this section, initially ARMOR is evaluated using standard benchmarks to investigate
its performance in average case scenarios. However, since Row Hammer is a security
issue, it is also evaluated against some hand-crafted malicious kernels.

6.7. RESULTS AND DISCUSSIONS 135

Multithread Workloads
MIX1: (y-PD10-r-UD11) MIX11: (GD8-C9-C6-y-PD10-h-r-UD11)
MIX2: (GD8-C9-C6-h) MIX12: (D2-PD3-D2-c-UD11-UD1-UD5-UD6)
MIX3: (D2-PD3-UD1-UD5) MIX13: (E-D4-C10-x-y-PD1-m-d)
MIX4: (D2-c-UD11-UD6) MIX14: (GD3-GD4-GD5-GD8-w-z-A-UD9)
MIX5: (E-C10-y-PD1) MIX15: (GD4-C7-x-PD10-PD6-t-UD12-UD2)
MIX6: (D4-x-m-d) MIX16: (E-GD2-C13-PD5-g-h-UD10-UD9)
MIX7: (GD3-GD4-w-A) MIX17: (GD6-y-GD6-k-t-j-q-UD12)
MIX8: (GD5-GD8-z-UD9) MIX18: (D2-D5-C3-C5-A-B-g-j)
MIX9: (GD4-x-PD10-PD6) MIX19: (GD1-x-y-PD8-l-a-g-UD7)
MIX10: (C7-t-UD12-UD2) MIX20: (C2-C4-PD6-n-g-UD10-UD3-UD4)

Table 6.6: Randomly generated Multithread workloads.

6.7.1 Benchmark Profiling

Standard Benchmark Profiling

Considering the definition of row hammer, it has a strong correlation with the acti-
vation interval in DRAMs. This means that lowering the activation interval increases
the possibility of row hammer occurrence. Therefore, the benchmarks are profiled to
investigate the activation patterns for different workloads. Figure 6.7 to Figure 6.11
present the Average Activation Intervals (AAI) for individual banks in the system. The
Y-axis of all the graphs in these figures shows the AAI in nanoseconds (ns) and X-axis
presents the bank IDs. These results show that there is a significant variation in AAI
across different workloads (from around 100 ns for ’hpc6’ to 2000 ns for ‘stream’).
These figures also depict that the memory accesses are distributed uniformly across
different banks.

Synthetic Kernel Profiling

In this section, the 36 synthetic kernels, as discussed in Section 6.6 (12 kernels with
Uniform distribution, 12 kernels with Gaussian distribution and 12 kernels with Pois-
son distribution), are profiled. Figure 6.12 presents the number of unique row-aggressors
(some of rows might be flagged as row-aggressors several times within a RI) when in-
creasing the number of targeted rows. This figure shows that, for a uniform access
pattern, as the number of targeted rows increases the induced row-aggressors also in-
crease linearly. However, when reaching a certain point (in this example, 10 targeted
rows and assuming ACT th = 139K) having a uniform access pattern causes none of

136 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

B1 B3 B5 B7
0

500

1000

1500

2000

(a) mummer
B1 B3 B5 B7

0

500

1000

1500

2000

(b) tigr

Figure 6.7: Average activation intervals to each bank for BIOBENCH benchmark
suite.

B1 B3 B5 B7
0

500

1000

1500

2000

(a) Comm1
B1 B3 B5 B7

0

500

1000

1500

2000

(b) Comm2
B1 B3 B5 B7

0

500

1000

1500

2000

(c) Comm3
B1 B3 B5 B7

0

500

1000

1500

2000

(d) Comm4

B1 B3 B5 B7
0

500

1000

1500

2000

(e) Comm5

Figure 6.8: Average activation intervals to each bank for COMMERCIAL benchmark
suite.

the targeted rows to reach the ACTth. On the other hand, since Gaussian and Pois-
son distributions favour some targeted rows more than others there are still induced
row-aggressors in the system even as the number of targeted rows increases.

Note that each row-aggressor can reach ACTth multiple times within one RI period
and, as a result, produce multiple row-hammer problems. Figure 6.13 presents the
total row-hammer occurrences during the entire simulation time (i.e. two consecutive
RI) using different random distributions.

Multithread Kernels Profiling

Figure 6.14 presents the average activation intervals to individual banks in the system
when considering the multithread applications. This figure shows that the activation
interval is significantly reduced in comparison with the single-thread workloads (pre-
sented in Figure 6.7 to Figure 6.11).

6.7. RESULTS AND DISCUSSIONS 137

B1 B3 B5 B7
0

500

1000

1500

2000

(a) hpc1
B1 B3 B5 B7

0

500

1000

1500

2000

(b) hpc2
B1 B3 B5 B7

0

500

1000

1500

2000

(c) hpc3
B1 B3 B5 B7

0

500

1000

1500

2000

(d) hpc4

B1 B3 B5 B7
0

500

1000

1500

2000

(e) hpc5
B1 B3 B5 B7

0

500

1000

1500

2000

(f) hpc6
B1 B3 B5 B7

0

500

1000

1500

2000

(g) hpc7
B1 B3 B5 B7

0

500

1000

1500

2000

(h) hpc8

B1 B3 B5 B7
0

500

1000

1500

2000

(i) hpc9
B1 B3 B5 B7

0

500

1000

1500

2000

(j) hpc10
B1 B3 B5 B7

0

500

1000

1500

2000

(k) hpc11
B1 B3 B5 B7

0

500

1000

1500

2000

(l) hpc12

B1 B3 B5 B7
0

500

1000

1500

2000

(m) hpc13

Figure 6.9: Average activation intervals to each bank for HPC benchmarks.

B1 B3 B5 B7
0

500

1000

1500

2000

(a) black
B1 B3 B5 B7

0

500

1000

1500

2000

(b) caneal
B1 B3 B5 B7

0

500

1000

1500

2000

(c) face
B1 B3 B5 B7

0

500

1000

1500

2000

(d) ferret

B1 B3 B5 B7
0

500

1000

1500

2000

(e) fluid
B1 B3 B5 B7

0

500

1000

1500

2000

(f) freq
B1 B3 B5 B7

0

500

1000

1500

2000

(g) stream
B1 B3 B5 B7

0

500

1000

1500

2000

(h) swapt

Figure 6.10: Average activation intervals to each bank for PARSEC benchmark suite.

138 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

B1 B3 B5 B7
0

500

1000

1500

2000

(a) astar-B
B1 B3 B5 B7

0

500

1000

1500

2000

(b) bzip2-l
B1 B3 B5 B7

0

500

1000

1500

2000

(c) bzip2-t
B1 B3 B5 B7

0

500

1000

1500

2000

(d) cactusADM-b

B1 B3 B5 B7
0

500

1000

1500

2000

(e) gcc-1
B1 B3 B5 B7

0

500

1000

1500

2000

(f) gcc-2
B1 B3 B5 B7

0

500

1000

1500

2000

(g) gcc-c
B1 B3 B5 B7

0

500

1000

1500

2000

(h) gcc-cp

B1 B3 B5 B7
0

500

1000

1500

2000

(i) gcc-g
B1 B3 B5 B7

0

500

1000

1500

2000

(j) gcc-sc
B1 B3 B5 B7

0

500

1000

1500

2000

(k) GemsFDTD-r
B1 B3 B5 B7

0

500

1000

1500

2000

(l) leslie3d-l

B1 B3 B5 B7
0

500

1000

1500

2000

(m) libquantum
B1 B3 B5 B7

0

500

1000

1500

2000

(n) mcf-r
B1 B3 B5 B7

0

500

1000

1500

2000

(o) milc-s
B1 B3 B5 B7

0

500

1000

1500

2000

(p) omnetpp-o

B1 B3 B5 B7
0

500

1000

1500

2000

(q) soplex-r
B1 B3 B5 B7

0

500

1000

1500

2000

(r) sphinx3-a
B1 B3 B5 B7

0

500

1000

1500

2000

(s) xalancbmk-r
B1 B3 B5 B7

0

500

1000

1500

2000

(t) zeusmp-z

Figure 6.11: Average activation intervals to each bank for SPEC benchmark suite.

As discussed, reducing the AAI will increase the possibility of row hammer occur-
rence, albeit it does not guarantee that it will happen. The reason is that the AAI is the
average interval value and it does not necessarily imply that a burst of activations has
been issued to a specific row. The experimental results show that 8 mixes out of 20
multithread mixes evaluated (MIX2, MIX3, MIX5, MIX7, MIX10, MIX13, MIX16
and MIX19) manifest a row hammer error during execution time.

6.7. RESULTS AND DISCUSSIONS 139

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 15" 20"

N
um

be
r"o

f"R
ow

"A
gg
re
ss
or
s"

Number"of"Targe;ed"Rows"

Uniform(Gaussian(Poisson(

Figure 6.12: Induced unique number of row-aggressors.

0"

5"

10"

15"

20"

25"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 15" 20"

To
ta
l"R

ow
3a
gg
re
ss
or
s"

Number"of"Targe=ed"Rows"

Uniform" Gaussian" Poisson"

Figure 6.13: Total row aggressors during execution time.

6.7.2 Performance Analysis

Performance Analysis - Single-thread Standard Workloads

Figure 6.15 depicts the performance overhead of ARMOR and PARA, with probabil-
ity values of 0.001 and 0.005 as proposed in [KDK+14], for standard benchmarks.
However, experimental results have shown that PARA cannot protect DRAM from
malicious attacks, this is demonstrated in the following section, using the probabil-
ity value suggested by [KDK+14]. Therefore, the performance of PARA with higher
probability values also was investigated and the result is presented in Figure 6.16.

Figure 6.15 and Figure 6.16 show that ARMOR has no performance overhead for
standard benchmarks (since there is no row hammer error). On the other hand, al-
though performance degradation of PARA is negligible (maximum around 1%-2%)
when using small probability values it can degrade the performance up to 35% if using

140 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

B1 B3 B5 B7
0

100

200

300

400

(a) MIX1
B1 B3 B5 B7

0

100

200

300

400

(b) MIX2
B1 B3 B5 B7

0

100

200

300

400

(c) MIX3
B1 B3 B5 B7

0

100

200

300

400

(d) MIX4

B1 B3 B5 B7
0

100

200

300

400

(e) MIX5
B1 B3 B5 B7

0

100

200

300

400

(f) MIX6
B1 B3 B5 B7

0

100

200

300

400

(g) MIX7
B1 B3 B5 B7

0

100

200

300

400

(h) MIX8

B1 B3 B5 B7
0

100

200

300

400

(i) MIX9
B1 B3 B5 B7

0

100

200

300

400

(j) MIX10
B1 B3 B5 B7

0

100

200

300

400

(k) MIX11
B1 B3 B5 B7

0

100

200

300

400

(l) MIX12

B1 B3 B5 B7
0

100

200

300

400

(m) MIX13
B1 B3 B5 B7

0

100

200

300

400

(n) MIX14
B1 B3 B5 B7

0

100

200

300

400

(o) MIX15
B1 B3 B5 B7

0

100

200

300

400

(p) MIX16

B1 B3 B5 B7
0

100

200

300

400

(q) MIX17
B1 B3 B5 B7

0

100

200

300

400

(r) MIX18
B1 B3 B5 B7

0

100

200

300

400

(s) MIX19
B1 B3 B5 B7

0

100

200

300

400

(t) MIX20

Figure 6.14: Average activation intervals to each bank for HPC benchmarks.

probability values that can protect the DRAM against malicious code (i.e. P=0.2).

Performance Analysis - Single-thread Malicious Code

Although PARA delivers an acceptable performance overhead, due to its probabilis-
tic nature it cannot guarantee preventing row hammer. On the other hand, ARMOR

6.7. RESULTS AND DISCUSSIONS 141

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

sp
ec
_g
cc
_s
c"

sp
ec
_z
eu

sm
p_

z"
hp

c6
"

sp
ec
_g
cc
_g
"

sp
ec
_s
ph

in
x3
_a
"

co
m
m
5"

hp
c1
4"

sp
ec
_g
cc
_2
"

sp
ec
_b

zi
p2

_t
"

hp
c2
1"

sp
ec
_g
cc
_c
"

co
m
m
4"

hp
c1
3"

hp
c2
2"

hp
c1
5"

hp
c1
7"

hp
c1
8"

sp
ec
_g
cc
_1
"

hp
c4
"

sp
ec
_x
al
an

cb
m
k_
r"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_f
re
q"

sp
ec
_l
ib
qu

an
tu
m
"

pa
rs
ec
_f
ac
e"

sp
ec
_g
cc
_c
p"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_s
w
ap

t"
sp
ec
_s
op

le
x_
r"

co
m
m
3"

pa
rs
ec
_c
an

ne
al
"

sp
ec
_m

ilc
_s
"

hp
c7
"

co
m
m
1"

hp
c5
"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_m

cf
_r
"

sp
ec
_o

m
ne

tp
p_

o"
sp
ec
_c
ac
tu
sA
D
M
_b

"
pa

rs
ec
_f
er
re
t"

hp
c2
"

sp
ec
_a
st
ar
_B

"
sp
ec
_b

zi
p2

_l
"

co
m
m
2"

sp
ec
_G

em
sF
D
TD

_r
"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_L

gr
"

hp
c8
"

Pe
rf
or
m
an

ce
"O
ve
rh
ea
d"
(%

)"
ARMOR" PARA_0.001" PARA_0.005"

Figure 6.15: Performance overhead of ARMOR and PARA (with the suggested
probability values by [KDK+14]) for standard workloads.

0"

5"

10"

15"

20"

25"

30"

35"

40"

pa
rs
ec
_s
tr
ea
m
cl
us
te
r"

sp
ec
_g
cc
_s
c"

sp
ec
_z
eu

sm
p_

z"
hp

c6
"

sp
ec
_g
cc
_g
"

sp
ec
_s
ph

in
x3
_a
"

co
m
m
5"

hp
c1
4"

sp
ec
_g
cc
_2
"

sp
ec
_b

zi
p2

_t
"

hp
c2
1"

sp
ec
_g
cc
_c
"

co
m
m
4"

hp
c1
3"

hp
c2
2"

hp
c1
5"

hp
c1
7"

hp
c1
8"

sp
ec
_g
cc
_1
"

hp
c4
"

sp
ec
_x
al
an

cb
m
k_
r"

pa
rs
ec
_b

la
ck
"

pa
rs
ec
_f
re
q"

sp
ec
_l
ib
qu

an
tu
m
"

pa
rs
ec
_f
ac
e"

sp
ec
_g
cc
_c
p"

pa
rs
ec
_fl

ui
d"

pa
rs
ec
_s
w
ap

t"
sp
ec
_s
op

le
x_
r"

co
m
m
3"

pa
rs
ec
_c
an

ne
al
"

sp
ec
_m

ilc
_s
"

hp
c7
"

co
m
m
1"

hp
c5
"

sp
ec
_l
es
lie
3d

_l
"

sp
ec
_m

cf
_r
"

sp
ec
_o

m
ne

tp
p_

o"
sp
ec
_c
ac
tu
sA
DM

_b
"

pa
rs
ec
_f
er
re
t"

hp
c2
"

sp
ec
_a
st
ar
_B

"
sp
ec
_b

zi
p2

_l
"

co
m
m
2"

sp
ec
_G

em
sF
DT

D_
r"

bi
ob

en
ch
_m

um
m
er
"

bi
ob

en
ch
_K

gr
"

hp
c8
"

Pe
rf
or
m
an

ce
"O
ve
rh
ea
d"
(%

)"

ARMOR" PARA_0.1" PARA_0.2"

Figure 6.16: Performance overhead of ARMOR and PARA (with the higher
Probability Values) for standard workloads.

offers a more robust solution to prevent this phenomenon, with a much lower perfor-
mance overhead; it also imposes a small area overhead on the system. To investigate
this more closely ARMOR and PARA both have been evaluated against the synthetic
kernels. Figure 6.17 shows the performance overhead of ARMOR when it detects all
possible row-aggressors in the system and refreshes both their adjacent rows. On av-
erage ARMOR imposes 0.0030% performance overhead across all the 36 synthetic
kernels. According to this figure ARMOR has a higher performance overhead for
workloads with a Poisson distribution when the number of targeted rows is equal to 2
or 5. The reason is that the performance overhead of ARMOR depends on the existing

142 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

number of row-hammer problems in the system and, according to figure 6.13, kernels
with Poisson distribution induces more row hammer problems than the other situation
(20 row hammer errors) when the number of targeted rows is 2 or 5.

0"

0.002"

0.004"

0.006"

0.008"

0.01"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 15" 20"

Pe
rf
or
m
an

ce
"O
ve
rh
ea
d"
(%

)"

Number"of"TargeBed"Rows"

Uniform" Gaussian" Poisson"

Figure 6.17: ARMOR overhead for synthetic kernels with various access distribution.

Similar experiments were run to evaluate PARA’s performance for the synthetic
kernels. The recommended probability values [KDK+14] (i.e. P=0.001 and P=0.005)
are used in the experiment and these values were increased until PARA detected (re-
fresh by probability) all the possible row-aggressors in the system. Figure 6.18 presents
the performance overhead of PARA for different probability value. For P equal to 0.2
PARA has a miss-rate of 3.2%, 0.6% and 0.6% for synthetic kernels with Uniform,
Gaussian and Poisson distributions respectively. Figure 6.19 depicts the PARA’s miss-
rate for different probability values for synthetic kernels.

Performance Analysis - Multi-thread Mixture of Standard Workloads and Mali-
cious code

Figure 6.20 depicts the performance overhead of ARMOR and PARA while running
multithread workload mixes. The total execution time of these multithread workloads
covers up to 34 refresh cycle providing a long enough time period to induce row ham-
mer error. According to this experiment ARMOR could successfully detect all the hot
rows in the system and refresh the possible row victims with the average performance
overhead of 2.02×10−5 % (up to 9×10−5 %) across all the 20 multithread workload
mixes. On the other hand, whilst PARA could also randomly detect the row-aggressors,

6.7. RESULTS AND DISCUSSIONS 143

0.0#

4.0#

8.0#

12.0#

16.0#

20.0#

P=0.001# P=0.005# P=0.01# P=0.1# P=0.2#

Pe
ro
rm

an
ce
#O
ve
rh
ea
d#
(%

)#

Different#Probability#Values#

Figure 6.18: PARA overhead for synthetic kernels.

0.0#

20.0#

40.0#

60.0#

80.0#

100.0#

120.0#

Uniform# Gaussian# Poisson#

PA
RA

#M
is
s#R

at
e#
(%

)#

Different#Access#DistribuAons#

P=0.001# P=0.005# P=0.01# P=0.1# P=0.2#

Figure 6.19: PARA miss-rate for synthetic kernels.

by increasing the probability value of PARA to 0.2, this gives an average performance
overhead of 10 % (up to 15%).

6.7.3 Hot-Row Table Size vs Accuracy

In section 6.4 it was discussed that, theoretically, the maximum number of hot row
table entries should be equal to the maximum possible hot rows that can exist within
RI to guarantee that ARMOR detects all the row-aggressors. However, in practice,
there is a very low probability that the maximum possible hot rows will occur within
RI.

144 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

0"

2"

4"

6"

8"

10"

12"

14"

16"

M
IX
"1
4"

M
IX
"1
3"

M
IX
"1
8"

M
IX
"1
2"

M
IX
"1
7"

M
IX
"6
"

M
IX
"2
0"

M
IX
"1
5"

M
IX
"1
6"

M
IX
"1
1"

M
IX
"1
9"

M
IX
"8
"

M
IX
"7
"

M
IX
"9
"

M
IX
"3
"

M
IX
"1
"

M
IX
"4
"

M
IX
"2
"

M
IX
"5
"

M
IX
"1
0"Pe

rf
or
m
an

ce
"O
ve
rh
ea
d"
(%

)" ARMoR" PARA_0.2"

Figure 6.20: Performance overhead of ARMOR and PARA
for multithreaded workload mixes.

To investigate this an experiment was carried out for the 36 synthetic kernels and
the results show that overall 81% of kernels require fewer than 5 entries, 14% of kernels
require 5 to 7 entries and 5% of kernels require 8 to 9 hot row table entries per bank
for ARMOR to detect all the possible row-hammer errors in the system (Figure 6.21).

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"

10"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 15" 20"N
um

be
r"o

f"R
eq

ui
re
d"
Ta
bl
e"
En

tr
ie
s"

Number"of"Targeted"Rows"

Uniform" Gaussian" Poisson"

Figure 6.21: The required number of table entries to detect the possible row-hammer
errors.

6.7. RESULTS AND DISCUSSIONS 145

6.7.4 Scalability

To investigate the scalability of ARMOR the maximum imposed storage overhead of
the proposal was profiled against various memory organisation populated with different
memory sizes. To this end, the standard memory capacities and configuration from
Micron’s standard DDR3 memory modules [Micb, Micc] are used in this evaluation.
Figure 6.22 presents the maximum required storage overhead for ARMOR to detect
the maximum hot rows, considering the evaluated ACTth of 139K, 155K and 284K
[KDK+14], for a wide range of memory capacities. However, as discussed, this is the
maximum theoretical requirement and, the experiment in the last section suggests, five
entries per bank would be enough to cover possible row-hammer errors in the system.
The corresponding storage overhead for Module A in Figure 6.22 can be considered to
model the ARMOR implementation overhead with only five entries per bank.

0"

5,000"

10,000"

15,000"

20,000"

25,000"

30,000"

35,000"

40,000"

45,000"

4"GB" 8"GB" 16"GB" 32"GB" 64"GB" 128"GB" 256"GB"

St
or
ag
e"
O
ve
rh
ea
d"
(K
B)
"

Different"Memory"CapaciEes"

ModuleA(=284K((ModuleB(=155K((ModuleC(=139K((

Figure 6.22: Storage overhead for different memory capacities.

6.7.5 ARMOR Cache Performance

To investigate the possible performance improvement that ARMOR can offer using a
simple buffer structure, two different scenarios are considered at a high level of ab-
straction. In the first scenario, it is assumed that as soon as a row is flagged as ‘hot’ the
entire row will be moved to an embedded buffer in the memory controller. There will
be a performance overhead to copy the row but this scenario can still present an insight
about the upper-bound improvement that can be achieved using this buffer. Figure 6.23
presents the improvement in execution time for all the synthetic kernels.

146 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

0.0#
10.0#
20.0#
30.0#
40.0#
50.0#
60.0#
70.0#
80.0#
90.0#

100.0#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 15# 20#Ex
ec
u2

on
#T
im

e#
Im

pr
ov
em

en
ts
#(%

)#

Number#of#Targeted#Rows#

Uniform# Gaussian# Poisson#

Figure 6.23: Execution time improvements considering buffering entire row.

In the second scenario, it is assumed that as soon as a row is flagged as ‘hot’ then
only the cache-lines holding parts of this hot-row will be moved to an embedded buffer
in the memory controller after they have been accessed. Figure 6.24 depicts the gained
improvement in execution time for the synthetic kernels.

In both scenarios, the performance improvement that can be achieved has a strong
correlation with the number of memory requests that can be serviced using ARMOR’s
buffer. The evaluated kernels are simulated for only two consecutive refresh intervals
which means that only a few hot rows which are flagged in the first refresh interval are
effective for improving the execution time.

0.0#

1.0#

2.0#

3.0#

4.0#

5.0#

6.0#

7.0#

8.0#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 15# 20#Ex
ec
u2

on
#T
im

e#
Im

pr
ov
em

en
ts
#(%

)#

Number#of#Targeted#Rows#

Uniform# Gaussian# Poisson#

Figure 6.24: Execution time improvements considering buffering cache lines.

6.8. RELATED WORK 147

6.8 Related Work

In general, the DRAM fault and reliability problem has been studied [CMBR05,
GCP+09, KCA+11, SL12]. However, more specifically, the row hammer problem
has not been widely acknowledged in literature except by two recent works.

The Row-Hammer phenomenon was initially highlighted by a test equipment man-
ufacturer, Teledyne LeCroy [Mik], at MemCon 2013 [Mica], specifically in the context
of DDR4 DRAMs. They designed and developed a monitoring platform that could pro-
file the internal operation of DRAMs (e.g. such as the number of activations per RI) at
run time. This equipment can investigate the existence of the row-hammer issue based
on programmable parameters (e.g. ACTth).

At the time of writing, the most comprehensive academic work that investigated the
existence of row-hammer issue in commodity DRAM devices is the paper by Kim et

al. [KDK+14]. In this work, 129 DRAM modules from three different major DRAM
manufacturers have been intensively evaluated for the row-hammer phenomenon using
eight FPGA platforms. They showed that 110 out of 129 DRAM modules suffer from
disturbance error (i.e. Row Hammer). Several possible solutions have been investi-
gated in this work and they proposed PARA (Probabilistic Adjacent Row Activation)
to overcome row hammer. The key idea behind PARA is that every time a row is
opened and closed one of its adjacent rows is refreshed (e.g. opened) with some low
probability. Thus, if a particular row is opened and closed repeatedly then, statistically,
the adjacent rows will be refreshed.

The main advantages of ARMOR over PARA are as follows:

• First, PARA cannot guarantee detecting all possible row victims, since it is based
on probabilistic estimation. Instead it significantly reduces the probability of
row-hammer. However, since ARMOR can detect the exact row-aggressor the
final result is much more accurate.

• Although, PARA has a very low overhead it still imposes some extra penalty
by unnecessarily refreshing rows. Again, since ARMOR predicts the exact row-
aggressor only the possible row-victims will be refreshed.

• ARMOR only refreshes adjacent rows when needed, thus reducing energy.

• Finally, having knowledge of exact row-aggressors’ IDs offered by ARMOR
provide an opportunity to improve the DRAM’s performance as well as improve
the reliability by overcoming the row-hammer phenomenon.

148 CHAPTER 6. ARMOR: A RUN-TIME MEMORY HOT-ROW DETECTOR

Outside the scientific publications, Intel has two patents [GBS+14, BH14] with an
approach close to ARMOR. Note that ARMOR was developed independently without
checking or searching the patent literature. The patents are based on the observation
that there is a maximum number of rows, which is much smaller than the total number
DRAM rows, that can reach the activation threshold. Intel proposed a single table with
the number of entries fixed to accommodate the maximum possible row aggressors
within a refresh interval. Then, for every activation command if the activated address
is in the table then a counter to monitor the number of activations to that row will
be incremented. If the activated address is not in the table, then the row ID will be
inserted into the table. Thus the table is kept updated with each activation and only
counts for row IDs stored. In addition, the table is kept sorted (e.g. high to low) ac-
cording to the number of activations. When the table is full and a row not stored in the
table is activated, the least activated entry in the table will be replaced with the newly
activated address. However, the new row ID will still keep the corresponding number
of activations for the replaced row ID, instead of resetting it. This attempts to retain
the number of activations for the replaced row ID, if in the future the same address is
activated again. On the other hand, this can over estimate the number of activations for
rows leading to unnecessary refreshes. Albeit the patents can alleviate the row ham-
mer problem there are key differences when compared with ARMOR. The patents do
not propose the initial filtering phase offered by ARMOR (TSRF). Hence, instead of
monitoring only the potential hot-rows, the patents monitor all the activation streams
and remember only a subset of rows in a table. As there is not enough space in the
table, rows (with smallest number of activations) are replaced from time to time. This
introduces an error in the activation count that can cause a significant number of false
alarms, and as a result imposes unnecessary refreshes to the system.

6.9 Summary

This chapter proposed a novel hardware technique called ARMOR which is capable
of preventing data corruption in DRAMs due to the row hammer effect. Uniquely
ARMOR is able to guarantee that the row-hammer effect cannot modify the contents
of DRAM whilst having only modest hardware requirements. Given the datasheet
parameters of DDR3 and DDR4 together with the minimum number of activations
within a refresh interval required to trigger a row hammer effect, it has been shown how
to derive mathematically the maximum number of rows that could be affected. This

6.9. SUMMARY 149

number is small, no more than 10 per bank. ARMOR detects hammered-rows (rows
with aggressive activation) at run time and either refreshes their adjacent rows or moves
the hot rows to a local buffer in the memory controller to improve the performance of
memory system.

ARMOR has been evaluated and compared directly against PARA [KDK+14] over
48 standard workloads, 36 synthetic memory intensive kernels (some of them repre-
senting the Google’s Project Zero attack) with three different random access distribu-
tions (i.e. Uniform, Gaussian and Poisson) and 20 multithread workload mixes. Out
of the 48 standard workloads, none exhibit an access pattern that would lead to row
hammer data corruption. In this case, ARMOR delivers no execution time overhead
while PARA would degrade the performance up to 35%. Using the synthetic kernels,
it has been shown that PARA could miss row hammer episodes (up to 90%) while
ARMOR detects all the row hammer errors with only 0.0030% performance overhead.
The miss-rate of PARA is reduced to 0.6% by increasing its probability value to 0.2.
In this case PARA imposes an average performance degradation of 16%. Considering
the multithread mixes ARMOR prevents all the row hammer episodes with an average
performance overhead of 2.02× 10−5 % (up to 9× 10−5 %) across all the 20 mixes.
On the other hand, whilst PARA could also detect the row-aggressors, by increasing
its probability value to 0.2, this added an average performance overhead of 10 % (up
to 15%).

Overall, the experimental results show that ARMOR does not affect the execution
time of the workloads while detecting all the possible row hammer errors in the mem-
ory system. Moreover, it has been shown that by using a small buffer in the memory
controller, ARMOR provides an opportunity to improve the overall execution time of
synthetic kernels by up to 7%.

Chapter 7

A Workload Adaptive Memory
Controller

7.1 Introduction

So far, this thesis has presented three different techniques (i.e HAPPY, DReAM and
ARMOR) to improve the performance of the three main components of the state-of-
the-art memory controllers. To summarise, Chapter 4 (i.e. HAPPY) discussed how
to reduce the implementation cost of dynamic page closure policy predictors, and
improve their scalability, while maintaining the prediction accuracy. Chapter 5 (i.e.
DReAM) presented how a workload-specific address mapping scheme can be detected
and employed at run time that outperforms the baseline address-mapping schemes and
improves the performance of the memory system. Finally, Chapter 6 (i.e. ARMOR)
proposed a hardware solution to detect and prevent the row hammer phenomenon in
DRAMs, improving the reliability of the memory system. However, each of these
techniques was evaluated individually in the absence of the other techniques. In this
chapter, the performance of an adaptive memory controller utilising all three of the
proposed techniques is investigated. Moreover, this chapter analyses the overall im-
plementation cost of a state-of-the-art memory controller employing these three tech-
niques.

150

7.2. EVALUATION METHODOLOGY 151

7.2 Evaluation Methodology

This section describes a methodology to investigate how a memory controller can take
advantage of HAPPY, DReAM and ARMOR in a unified system.

7.2.1 Baseline vs. Adaptive Memory Controller

The final evaluation of this research considers two different memory controllers. A
standard memory controller equipped with HAPPY, DReAM and ARMOR, hereafter
called the ‘adaptive’ memory controller and a state-of-the-art memory controller con-
figured to use the previous best page closure policy, best address mapping scheme and
best existing row hammer protection technique evaluated in this PhD thesis, hereafter
called the ‘baseline’ memory controller. Figure 7.1 depicts an overview of the adap-
tive and baseline memory controllers and Table 7.1 presents different configurations
for them.

Scheduler (FR-FCFS)

HAPPY
Hybrid Address-base Page policy

DReAM
Dynamic Re-arrangement of Address Mapping

A
R

M
O

R
A

 R
u
n

-t
im

e
 M

e
m

o
ry

 h
o

t-
ro

w
 d

e
te

c
tO

R

B
an

k
0

B
an

k
7

Adaptive Memory Controller

Scheduler (FR-FCFS)

Page Closure Policy
Intel-adaptive Open Page

Address Mapping
Permutation-based Page Interleaving

R
o

w
 H

am
m

e
r

P
ro

te
ct

io
n

P
A

R
AB

an
k

0

B
an

k
7

Baseline Memory Controller

Figure 7.1: An overview of the adaptive and baseline memory controllers.

DReAM is configured to limit the total number of migrations to 5% of the rows (as
discussed in Section 5.5.4). Also, the migration threshold of DReAM is set be 7%, as
before.

To recap and justify the configuration presented in Table 7.1, Chapter 4 determined
that Intel-adaptive delivers the best execution time compared with other page closure
policies. Chapter 5 showed that the Permutation address-mapping scheme outperforms
other address-mapping schemes. Finally Chapter 6 presented that PARA is the only
publicly available solution (at the time of writing) to mitigate row hammer in DRAMs
and, based on the experimental results in this thesis, it can detect the row hammer errors

152 CHAPTER 7. A WORKLOAD ADAPTIVE MEMORY CONTROLLER

with a probability value equal to 0.2. For this reason the baseline memory controller is
configured with these parameters.

Memory Controller Baseline Adaptive
Scheduler FR-FCFS FR-FCFS
Page Closure Policy Intel-adaptive Intel-adaptive-HAPPY
Address Mapping Permutation DReAM (Offline - Online)
Row Hammer Protection PARA (p=0.2) ARMOR

Table 7.1: Implementation options for standard and adaptive memory controller.

7.3 Results and Discussions

The focus of this section is to analyse the performance and implementation cost of the
proposed adaptive memory controller in comparison with an optimised state-of-the-art
memory controller, as a baseline.

7.3.1 Performance Analysis

Figure 7.2 presents the performance comparison between the baseline and the adaptive
memory controller. The results depicted in this figure are normalised to the execution
time of the baseline memory controller. These results show that the adaptive memory
controller outperforms the baseline, in all the cases, by 18% (on average) and up to
35% for some workloads.

0.6$

0.7$

0.8$

0.9$

1$

bi
ob

en
ch
_m

um
m
er
$

bi
ob

en
ch
_4

gr
$

co
m
m
1$

co
m
m
2$

co
m
m
3$

co
m
m
4$

co
m
m
5$

hp
c1
$

hp
c2
$

hp
c3
$

hp
c4
$

hp
c5
$

hp
c6
$

hp
c7
$

hp
c8
$

hp
c9
$

hp
c1
0$

hp
c1
1$

hp
c1
2$

hp
c1
3$

pa
rs
ec
_b

la
ck
$

pa
rs
ec
_c
an

ne
al
$

pa
rs
ec
_f
ac
e$

pa
rs
ec
_f
er
re
t$

pa
rs
ec
_fl

ui
d$

pa
rs
ec
_f
re
q$

pa
rs
ec
_s
tr
ea
m
cl
us
te
r$

pa
rs
ec
_s
w
ap

t$
sp
ec
_G

em
sF
DT

D_
r$

sp
ec
_a
st
ar
_B

$
sp
ec
_b

zi
p2

_l
$

sp
ec
_b

zi
p2

_t
$

sp
ec
_c
ac
tu
sA
DM

_b
$

sp
ec
_g
cc
_1
$

sp
ec
_g
cc
_2
$

sp
ec
_g
cc
_c
$

sp
ec
_g
cc
_c
p$

sp
ec
_g
cc
_g
$

sp
ec
_g
cc
_s
c$

sp
ec
_l
es
lie
3d

_l
$

sp
ec
_l
ib
qu

an
tu
m
$

sp
ec
_m

cf
_r
$

sp
ec
_m

ilc
_s
$

sp
ec
_o

m
ne

tp
p_

o$
sp
ec
_s
op

le
x_
r$

sp
ec
_s
ph

in
x3
_a
$

sp
ec
_x
al
an

cb
m
k_
r$

sp
ec
_z
eu

sm
p_

z$
G
M
EA

N
$

N
or
m
al
is
ed

$E
xe
cu
4o

n$
Ti
m
e$ Adap4ve$Memory$Controller$ Baseline$Memory$Contorller$

Figure 7.2: Execution time comparison between the adaptive and the baseline
memory controller (normalised to the baseline execution time).

A more detailed analysis was carried out to investigate the performance of the
baseline and the adaptive memory controller. To this aim, the execution time was
profiled based on three main contributors to performance:

7.3. RESULTS AND DISCUSSIONS 153

• Normal Execution Time: This is the time required to execute each workload ig-
noring the data relocation cost and the imposed penalty by refreshing the victim
rows to prevent row hammer effect.

• Row Hammer Protection Overhead: This is the extra penalty imposed by
refreshing the victim rows to prevent row hammer errors.

• Data Migration Overhead: This is the time required to relocate data inside
DRAMs imposed by the online data migration.

Figure 7.3 and Figure 7.4 depict the performance results profiled based on these
three main factors contributing to the execution time for the baseline and the adaptive
memory controller respectively.

As Figure 7.3 presents, since the baseline memory controller employs a fixed ad-
dress mapping scheme (i.e. Permutation-based page interleaving) then there is no data
migration penalty associated with it. On the other hand, as this memory controller
takes advantage of PARA (with the probability value of 0.2), to avoid the row hammer
errors, then there is in average 13% (up to 36%) performance penalty due to refreshing
random rows.

0.4$

0.6$

0.8$

1$

bi
ob

en
ch
_m

um
m
er
$

bi
ob

en
ch
_3

gr
$

co
m
m
1$

co
m
m
2$

co
m
m
3$

co
m
m
4$

co
m
m
5$

hp
c1
$

hp
c2
$

hp
c3
$

hp
c4
$

hp
c5
$

hp
c6
$

hp
c7
$

hp
c8
$

hp
c9
$

hp
c1
0$

hp
c1
1$

hp
c1
2$

hp
c1
3$

pa
rs
ec
_b

la
ck
$

pa
rs
ec
_c
an

ne
al
$

pa
rs
ec
_f
ac
e$

pa
rs
ec
_f
er
re
t$

pa
rs
ec
_fl

ui
d$

pa
rs
ec
_f
re
q$

pa
rs
ec
_s
tr
ea
m
cl
us
te
r$

pa
rs
ec
_s
w
ap

t$
sp
ec
_G

em
sF
DT

D_
r$

sp
ec
_a
st
ar
_B

$
sp
ec
_b

zi
p2

_l
$

sp
ec
_b

zi
p2

_t
$

sp
ec
_c
ac
tu
sA
DM

_b
$

sp
ec
_g
cc
_1
$

sp
ec
_g
cc
_2
$

sp
ec
_g
cc
_c
$

sp
ec
_g
cc
_c
p$

sp
ec
_g
cc
_g
$

sp
ec
_g
cc
_s
c$

sp
ec
_l
es
lie
3d

_l
$

sp
ec
_l
ib
qu

an
tu
m
$

sp
ec
_m

cf
_r
$

sp
ec
_m

ilc
_s
$

sp
ec
_o

m
ne

tp
p_

o$
sp
ec
_s
op

le
x_
r$

sp
ec
_s
ph

in
x3
_a
$

sp
ec
_x
al
an

cb
m
k_
r$

sp
ec
_z
eu

sm
p_

z$
G
M
EA

N
$

Re
la
3v

e$
Ex
ec
u3

on
$T
im

e$

Normal$Execu3on$Time$ Row$Hammer$Protec3on$Overhead$ Data$Migra3on$Overhead$

Figure 7.3: The profiled execution time for the baseline memory controller.

Similarly, Figure 7.4 presents the profiled execution time of the adaptive memory
controller. In this case, since the adaptive memory controller employs ARMOR to
prevent row hammer then there is no performance penalty associated with it. Note, that
ARMOR would impose a negligible performance penalty (as discussed in Chapter 6)
if there was a row aggressor in the system; Thus, since there are no aggressors detected
for the benchmarks evaluated in this chapter then ARMOR imposes no performance
penalty. On the other hand, since the adaptive memory controller uses DReAM to
detect a workload specific address-mapping scheme at run time, there is an extra cost

154 CHAPTER 7. A WORKLOAD ADAPTIVE MEMORY CONTROLLER

associate with the online data migration. However, as discussed in Chapter 5, DReAM
employs the predicted address mapping scheme only if it can improve the bit-change
rate over a predefined threshold (i.e. 7% in this experiment). This is why only a few
applications are paying a penalty for online data migration according to this Figure.

0.4$

0.6$

0.8$

1$

bi
ob

en
ch
_m

um
m
er
$

bi
ob

en
ch
_3

gr
$

co
m
m
1$

co
m
m
2$

co
m
m
3$

co
m
m
4$

co
m
m
5$

hp
c1
$

hp
c2
$

hp
c3
$

hp
c4
$

hp
c5
$

hp
c6
$

hp
c7
$

hp
c8
$

hp
c9
$

hp
c1
0$

hp
c1
1$

hp
c1
2$

hp
c1
3$

pa
rs
ec
_b

la
ck
$

pa
rs
ec
_c
an

ne
al
$

pa
rs
ec
_f
ac
e$

pa
rs
ec
_f
er
re
t$

pa
rs
ec
_fl

ui
d$

pa
rs
ec
_f
re
q$

pa
rs
ec
_s
tr
ea
m
cl
us
te
r$

pa
rs
ec
_s
w
ap

t$
sp
ec
_G

em
sF
DT

D_
r$

sp
ec
_a
st
ar
_B

$
sp
ec
_b

zi
p2

_l
$

sp
ec
_b

zi
p2

_t
$

sp
ec
_c
ac
tu
sA
DM

_b
$

sp
ec
_g
cc
_1
$

sp
ec
_g
cc
_2
$

sp
ec
_g
cc
_c
$

sp
ec
_g
cc
_c
p$

sp
ec
_g
cc
_g
$

sp
ec
_g
cc
_s
c$

sp
ec
_l
es
lie
3d

_l
$

sp
ec
_l
ib
qu

an
tu
m
$

sp
ec
_m

cf
_r
$

sp
ec
_m

ilc
_s
$

sp
ec
_o

m
ne

tp
p_

o$
sp
ec
_s
op

le
x_
r$

sp
ec
_s
ph

in
x3
_a
$

sp
ec
_x
al
an

cb
m
k_
r$

sp
ec
_z
eu

sm
p_

z$
G
M
EA

N
$

Re
la
3v

e$
Ex
ec
u3

on
$T
im

e$

Normal$Execu3on$Time$ Row$Hammer$Protec3on$Overhead$ Data$Migra3on$Overhead$

Figure 7.4: The profiled execution time for the adaptive memory controller.

The performance of the page closure policies, Intel-adaptive for the baseline mem-
ory controller and Intel-adaptive-HAPPY for the adaptive memory controller, are tightly
integrated and manifest themselves in the normal execution time of each workload.

Since one might be interested in integrating the offline version of DReAM (as dis-
cussed in Chapter 5) into the adaptive memory controller an experiment was carried
out comparing the performance of the baseline memory controller against two versions
of the adaptive memory controller: ‘Adaptive-Offline’, which employs the offline ver-
sion of DReAM, and ‘Adaptive-Online’ which employs the online version of DReAM.
Figure 7.5 to Figure 7.8 present the results associated with this experiment for all the
workloads categorised based on their corresponding benchmark suite.

0.6$

0.7$

0.8$

0.9$

1$

mummer$ -gr$ comm1$ comm2$ comm3$ comm4$ comm5$ GMEAN$

N
or
m
al
is
ed

$E
xe
cu
-o

n$
Ti
m
e$

Baseline$ Adap-veEOffline$ Adap-veEOnline$

Figure 7.5: Final performance improvement achieved for BIOBENCH and
COMMERCIAL benchmark suites.

7.3. RESULTS AND DISCUSSIONS 155

0.6$

0.7$

0.8$

0.9$

1$

hpc1$ hpc2$ hpc3$ hpc4$ hpc5$ hpc6$ hpc7$ hpc8$ hpc9$ hpc10$ hpc11$ hpc12$ hpc13$ GMEAN$

N
or
m
al
is
ed

$E
xe
cu
@o

n$
Ti
m
e$

Baseline$ Adap@veEOffline$ Adap@veEOnline$

Figure 7.6: Final performance improvement achieved for HPC benchmarks.

0.7$

0.75$

0.8$

0.85$

0.9$

0.95$

1$

black$ canneal$ face$ ferret$ fluid$ freq$ stream$ swapt$ GMEAN$

N
or
m
al
is
ed

$E
xe
cu
Co

n$
Ti
m
e$

Baseline$ AdapCveGOffline$ AdapCveGOnline$

Figure 7.7: Final performance improvement achieved for PARSEC benchmark suite.

0.5$
0.6$
0.7$
0.8$
0.9$
1$

Ge
ms
FD
TD
_r$

ast
ar_
B$

bz
ip2
_l$

bz
ip2
_t$

ca
ctu
sA
DM

_b
$

gcc
_1
$

gcc
_2
$
gcc
_c
$

gcc
_c
p$

gcc
_g
$

gcc
_sc
$

les
lie
3d
_l$

lib
qu
an
tum

$

mc
f_r
$

mi
lc_
s$

om
ne
tpp
_o
$

so
ple
x_
r$

sp
hin
x3
_a
$

xa
lan
cb
mk
_r$

zeu
sm
p_
z$

GM
EA
N$

N
or
m
al
is
ed

$E
xe
cu
Lo

n$
Ti
m
e$ Baseline$ AdapLveNOffline$ AdapLveNOnline$

Figure 7.8: Final performance improvement achieved for SPEC benchmark suite.

7.3.2 Implementation Cost Analysis

This section investigates the implementation cost of the adaptive memory controller in
comparison with the baseline. The focus of this section is to analyse the differences
in the storage overhead imposed by each memory controller implementing the page
closure policy, address mapping and row hammer protection units.

Figure 7.9 depicts the storage overhead imposed by the baseline and the adaptive
memory controller. Since, DReAM imposes a significantly higher storage overhead
than the other two proposals (i.e. HAPPY and ARMOR), the figure also presents
two versions of the adaptive memory controller, one version considering the storage

156 CHAPTER 7. A WORKLOAD ADAPTIVE MEMORY CONTROLLER

overhead imposed by DReAM and one version ignoring it. This figure also shows the
scalability of each memory controller against the different memory capacities.

To recap, the baseline memory controller employs a fixed address mapping scheme
and PARA as a protection scheme against the row hammer effect. Therefore, there
is no storage overhead above a standard memory controller to implement these two
units (as discussed in the corresponding chapters). Thus, the storage overhead for the
baseline memory controller in Figure 7.9 is mainly related to the Intel-adaptive page
closure policy.

On the other hand, the adaptive memory controller requires additional storage over-
heads to implement HAPPY, DReAM and ARMOR. The implementation costs of these
three proposals were investigated in detail in their corresponding chapters. Figure
7.9 presents the overall storage overhead from these three techniques for the adaptive
memory controller. Overall, these results show that a 6 KB to 900 KB storage overhead
is required to design an adaptive memory controller to support a wide range of mem-
ory capacities (up to 512 GB). However, excluding DReAM (the most expensive part)
from the implementation can reduce the storage overhead to around 1 KB to 100 KB.

1"

10"

100"

1,000"

10,000"

100,000"

1,000,000"

10,000,000"

4"GB" 8"GB" 16"GB" 32"GB" 64"GB" 128"GB" 256"GB" 512"GB"

St
or
ag
e"
O
ve
rh
ea
d"
(B
yt
es
)"

Memory"CapaciBes"

Baseline" AdapBve"with"DReAM" AdapBve"without"DReAM"

Figure 7.9: Implementation cost comparison between the baseline and the adaptive
memory controller.

For a more detailed analysis of the adaptive memory controller’s implementation
cost Figure 7.10 depicts the profiled storage overhead based on the three proposed
techniques. This result shows that HAPPY requires the minimum storage cost of the
three proposed techniques with less than 100 bytes across all the memory capacities.
DReAM imposes the maximum storage overhead with up to 800 KB for the 512 GB
memory. ARMOR imposes a modest storage overhead of 1 KB for the 4 GB and up to
100 KB for the 512 GB memory.

7.4. SUMMARY 157

1"

10"

100"

1,000"

10,000"

100,000"

1,000,000"

10,000,000"

4"GB" 8"GB" 16"GB" 32"GB" 64"GB" 128"GB" 256"GB" 512"GB""S
to
ra
ge
"O
ve
rh
ea
d"
(B
yt
e)
"

Different"Memory"CapaciDes"

HAPPY"Overhead" ARMOR"Overhead" DReAM"Overhead"

Figure 7.10: The implementation cost of the adaptive memory controller profiled base
on the cost of HAPPY, DReAM and ARMOR.

7.4 Summary

This chapter summarised the overall improvement that a memory controller can achieve
employing the techniques proposed in this PhD thesis (i.e. HAPPY, DReAM and AR-
MOR). To this aim the proposed techniques were integrated in a standard memory
controller, called the adaptive memory controller, and its performance and implemen-
tation cost were compared with an optimised state-of-the-art memory controller, as a
baseline.

Overall the experimental results show that the adaptive memory controller outper-
forms the baseline memory controller, on average, by 18% and up to 35% for some
workloads. Moreover, the execution times were profiled based on the three main con-
tributors to the performance. The results show that the baseline memory controller
spends around 13% of its time refreshing random rows to avoid the row hammer er-
ror. However, since the adaptive memory controller employs ARMOR, it does not
pay such a penalty to protect against this phenomenon. Moreover, since the adaptive
memory controller includes DReAM it can also gain an extra performance boost for
some workloads by taking advantage of a workload-specific address-mapping scheme
predicted at run time. However, for the same reason, the adaptive memory controller
also pays a penalty to perform the online data migration.

Investigating the implementation cost, the adaptive memory controller imposes
more storage overhead to the system than the baseline. Overall, the experimental re-
sults show that the adaptive memory controller requires around 6 KB-900 KB more
storage than the baseline memory controller to support a wide range of memory sizes.
A detailed profiling of the implementation cost showed that DReAM is the most ex-
pensive part of the adaptive memory controller with up to 800 KB storage overhead.
Therefore, as an implementation option, if a designer decides to exclude DReAM the

158 CHAPTER 7. A WORKLOAD ADAPTIVE MEMORY CONTROLLER

overall storage cost of the adaptive memory controller will be around 1 KB-100 KB.
Moreover, it has been shown that HAPPY with the 100 Bytes of storage overhead is the
cheapest technique amongst the three proposed here. Also, it has been discussed that
ARMOR delivers a modest storage overhead of 1 KB-100KB for 4 GB and 512 GB
memories respectively.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this PhD research different approaches have been investigated to improve the crucial
performance aspects of DRAM controllers such as Performance, Reliability and Scal-
ability. To this end, three key components in a DRAM controller have been recognised
and three different techniques have been proposed to improve their performance. In
particular this PhD thesis made the following contributions.

DRAM performance depends on the memory access pattern and, more specifically,
the number of page-hit and page-conflicts that occur at run time. Modern DRAM con-
trollers employ advanced page closure policy predictors to improve performance trying
to transform page-conflicts into page-empty (e.g. by closing the last accessed row at
the “right time”), and page-empty cases into page-hits (e.g. by keeping open the last
accessed row for longer time). However the main challenge is to balance the prediction
accuracy of these predictors with manageable hardware overheads (scalability) as the
size of DRAM is increased. HAPPY – a compact and efficient binary-encoding tech-
nique – was proposed to alleviate the scalability problem of DRAM page closure pre-
dictors. The main intuition behind HAPPY is based on the observation that addresses
that are spatially close together tend to have a similar page-closure policy preference.
Thus, the physical address bits carry the information that a memory controller requires
to predict the page-hit or page-conflict for a particular access. HAPPY is devised to ex-
ploit such information by fine-grain monitoring of physical address bits’ access pattern.
Considering this, the required performance counters and monitoring units needed by
the page closure prediction algorithms can be encoded from the physical address bits.
Doubling the size of DRAM only implies one extra physical address bit. This means

159

160 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

that with HAPPY only two extra monitoring units are required to predict the DRAM
page closure policy when the size of memory is doubled. In other words, HAPPY of-
fers a scalable hardware solution to implement dynamic DRAM page closure predictor
algorithms. HAPPY was evaluated by applying it to a traditional Hybrid page closure
policy, as well as the state-of-the-art Intel-adaptive open page policy included in In-
tel Xeon X5650. The experimental results show that the HAPPY implementation of
Intel-adaptive page policy can reduce the cost of implementation by 5× for the evalu-
ated 64 GB memory size (up to 40× for a memory size of 512 GB) while maintaining
the prediction accuracy. The other case study shows 182,000× reduction in cost of
implementation for the evaluated 64 GB memory size (up to 1.2M× for memory size
of 512 GB). The experiments have also reported the accuracy of the predictors and
have studied the sensitivity towards the memory address-mapping. In both scenarios,
HAPPY maintains its key advantage of offering no degradation of prediction accuracy
while reducing significantly the hardware overhead.

One of the main contributors to the performance of the memory system is the
address-mapping scheme employed to map the physical address bits from processors to
the internal structure of the DRAM chip. Thus, the address-mapping scheme controls
the data location in the memory system. Due to the 3D structure of DRAMs, access-
ing different locations of the memory system implies different access latencies. The
performance of DRAMs depends on the bit mapping and the memory access pattern
of each workload. Usually, memory controllers use a predefined and fixed address-
mapping scheme; if the memory access pattern of an application does not fully exploit
this the performance of the memory system will be degraded. To mitigate this issue,
this thesis introduces DReAM (Dynamic Re-arrangement of Address Mapping) which
is a novel hardware technique based on approximating the entropy of each memory
address bit for a set of memory requests. DReAM identifies which bits are changing
the most (higher entropy) and which ones change the least (lower entropy) and maps
the lowest entropy bits such that they occur within a row, hence minimising page con-
flicts. DReAM presents three main contributions: first, a low-cost pattern recognition
technique was developed to extract the memory access pattern at run time. Then, a
methodology was proposed to estimate an optimised address-mapping scheme based
on the detected access pattern. Finally, a technique is proposed for on-the-fly migration
of data within DRAMs, to reduce page conflicts. An extensive performance evaluation
was carried out with 48 different workloads from 5 benchmark suites. By keeping the

8.1. CONCLUSIONS 161

memory size constant while increasing the number of cores the ‘randomness’ of the be-
haviour of the memory access pattern is increased significantly, which might impose a
high rate of page conflicts to the memory system. It was shown that, in such a situation
DReAM is still able to detect the application access pattern and estimate an optimised
address-mapping scheme that improves the performance of the memory systems in
comparison with the best evaluated baseline mapping. Overall, DReAM-Offline out-
performs the permutation-based address-mapping scheme (the best evaluated baseline)
by 5%, on average, and up to 28% across all the workloads. In the case of DReAM-
Online, 12 workloads satisfy the DReAM’s threshold at run-time (i.e. improve the bit
change rate by more than 7%) and for these workloads DReAM-online outperforms
the baseline by 4.5%, on average, and up to 23%. DReAM is the first mechanism ca-
pable of generating workload specific address-mappings on-the-fly without requiring
to stop the running applications.

Reliability of DRAMs is another important factor that has been studied in this PhD
thesis. Due to the volatile nature of DRAM technologies, memory controllers need to
issue refresh commands at strict time intervals to avoid corruption of stored data. A
less well known means of corrupting stored data within a refresh interval is to have a
sequence of memory requests causing a DRAM row to be repeatedly activated above
certain thresholds; the row hammer effect. This PhD thesis proposed a novel hardware
technique called ARMOR which is capable of preventing data corruption in DRAMs
due to the row hammer effect. It has been shown how to derive, mathematically, the
maximum number of rows that could be affected. This number is small; no more
than 10 per bank. ARMOR accurately detects hammered-rows (rows with aggressive
activation) at run-time which is important when addressing security problems. AR-
MOR has been evaluated and compared directly against PARA [KDK+14] over 48
standard workloads, 36 synthetic memory intensive kernels (some of them represent-
ing Google’s Project Zero attack) with three different random access distributions (i.e.
Uniform, Gaussian and Poisson) and 20 multithread workload mixes. Out of the 48
standard workloads, none exhibits access patterns that would lead to row hammer data
corruption. In this case, ARMOR has no execution time overhead while PARA would
degrade the performance by up to 35%. Using the synthetic kernels, it has been shown
how PARA could miss row hammer episodes (up to 90%) while ARMOR detects all
the row hammer errors, with only 0.0030% performance overhead. Considering the
multithread mixes ARMOR prevent all the row hammer episodes with an average per-
formance overhead of 2.02× 10−5 % (up to 9× 10−5 %) across all the 20 mixes.

162 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Overall, the experimental results showed that ARMOR does not affect the execution
time of the workloads while detecting all the possible row hammer issues in the mem-
ory system. Moreover, it has been shown that by using a small buffer in the memory
controller, ARMOR provides an opportunity to improve the overall execution time of
synthetic kernels by up to 7%. The ARMOR technique is now the basis of a patent
application.

As a final evaluation of this PhD thesis, an adaptive memory controller was devel-
oped integrating HAPPY, DReAM and ARMOR into a standard memory controller.
The performance and the implementation cost of such an adaptive memory controller
were compared against a state-of-the-art memory controller, as a baseline. Overall the
experimental results show that the adaptive memory controller outperforms the base-
line, on average, by 18% and up to 35% for some workloads while requiring around 6
KB-900 KB more storage than the baseline to support memory sizes in the range from
4 GB to 512 GB. A detailed profiling of the implementation cost shows that DReAM
is the most expensive part of the adaptive memory controller, with up to 800 KB stor-
age overhead, ARMOR has a modest storage overhead of 1 KB-100 KB for 4 GB and
512 GB memories respectively whilst HAPPY, with 100 bytes of storage overhead, is
the cheapest of the three techniques proposed in this thesis.

To conclude, this thesis presented how the performance, scalability and reliability
of memory controllers can be improved by employing various workload adaptive tech-
niques in different parts of a standard memory controller. It has been shown that the
physical address bits carry useful information, that can be extracted to improve differ-
ent algorithms employed by a DRAM controller. HAPPY used such information to
improve the page closure policy and DReAM took advantage of similar data to predict
a workload-specific address mapping scheme. The main advantage of such algorithms
that are devised based on the information extracted from the physical address bits is
their scalability. This is due to nature of the physical address bits that are scale with
log2 the memory size (i.e. there is only one extra bit required to address a doubled size
of memory). Moreover, this PhD thesis addressed how to identify frequently accessed
items in an stream of data (ARMOR) which is an important challenge in different areas
of research .

8.2. FUTURE WORK 163

8.2 Future Work

Although, this PhD thesis presented some novel hardware architectures to improve the
performance of a DRAM controller, this has also opened up a window to what can be
done to improve the performance of these memory systems even further. Future work
that might build upon the work presented in this thesis include:

• The evaluation methodology employed in this thesis can be improved further-
more by integrating the proposed techniques in a full system simulator to the
investigate the effect of process stalls on memory systems.

• Investigating the potential power saving to be gained from the proposed tech-
niques. This requires a reasonable power modelling of the proposed architec-
tures which is postponed for future work.

• Investigating the effect of technique proposed in this thesis on the future memory
technologies such as DDR4 and HMC.

• Although the techniques proposed by this PhD thesis target specific parts of a
DRAM controller, the methodology that is used in any of three proposals can
be used in different area of memory system design as well. Pre-fetchers for
DRAMs are one example of such an area that might employ pattern recognition
techniques similar to those proposed for HAPPY or DReAM to predict the next
memory request in advance. The methodology proposed by ARMOR to detect
hot-rows in DRAMs might be used to improve the evictions algorithms, and
hence the performance, of caches.

Chapter 9

Publications, Patent and
Commercialisation

Publications - Under Review

• M. Ghasempour, J. Garside, A. Jaleel and M. Luján.“DReAM: Dynamic Re-
arrangement of Address Mapping in DRAMs” in International Symposium on
Microarchitecture (MICRO),Waikiki, HI, USA, 2015.

• M. Ghasempour, J. Garside and M. Luján.“ARMOR: A Run-time Memory
hot-row detectOR to prevent Row-Hammer data corruption in DRAMs” in In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), San Francisco, CA, USA, 2015.

• M. Ghasempour, A. Jaleel, J. Garside and M. Luján.“HAPPY: Hybrid Address-
based Page PolicY in DRAMs” in International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), San Francisco, CA, USA, 2015.

Publications - Accepted

• M. Ghasempour, Jonathan Heathcote, Javier Navaridas, Luis A. Plana, J. Gar-
side and M. Luján.“Accelerating the Analysis of Interconnection Networks us-
ing Reconfigurable Hardware - SpiNNaker as a Case Study” to appear in In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM), Vancouver, British Columbia, Canada, 2015.

• O. Arcas, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, W. Song, J.
Mawer, J. Navaridas, O. Unsal, M. Luján, A. Cristal.“An Empirical Evaluation

164

165

of Hardware Design Languages and Tools for Database Acceleration” in Interna-
tional Symposium on Field-Programmable Logic and Applications (FPL), Mu-
nich, Germany, 2014.

• M. Ghasempour, M. Luján, J. Garside.“SoC Simulator on FPGA using Blue-
spec System Verilog” in UK Electronics Forum (UKEF), Newcastle, UK, 2012.

Patent (Filed)
A patent application has been filed to protect ARMOR on behalf of The University of
Manchester by The University of Manchester Intellectual Property (UMIP).

• Title: MONITORING DEVICE

• Inventors: Mohsen Ghasempour, Mikel Luján and Jim Garside

• GB Application No: 1500446.8

Commercialisation
ARMOR is under process of commercial exploitation with help from UMIP (Figure 9.1
shows ARMOR’s logo). More information can be found at ARMOR official website
[GLG].

Figure 9.1: ARMOR logo.

Bibliography

[AJW+05] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce
Jacob, C-W Tseng, and Donald Yeung. BioBench: A benchmark suite
of bioinformatics applications. In IEEE International Symposium on

Performance Analysis of Systems and Software, 2005. ISPASS 2005.,
pages 2–9. IEEE, 2005.

[ANBD11] Manu Awasthi, David W Nellans, Rajeev Balasubramonian, and
Al Davis. Prediction based dram row-buffer management in the many-
core era. In International Conference on Parallel Architectures and

Compilation Techniques (PACT), 2011., pages 183–184. IEEE, 2011.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen5, Korey Sewell8, Muhammad
Shoaib, Nilay Vaish, Mark Hill5, and David Wood. The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[BH14] K.S. Bains and J.B. Halbert. Row hammer monitoring based on stored
row hammer threshold value. https://www.google.com/patents/

US20140156923, June 5 2014. US Patent App. 13/690,523.

[BI12] Mahdi Nazm Bojnordi and Engin Ipek. PARDIS: A programmable
memory controller for the DDRx interfacing standards. In 39th An-

nual International Symposium on Computer Architecture (ISCA), 2012,
pages 13–24. IEEE, 2012.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: characterization and architectural implica-
tions. In Proceedings of the 17th international conference on Parallel

Architectures and Compilation Techniques, pages 72–81. ACM, 2008.

166

BIBLIOGRAPHY 167

[Bla13] Matthew Blackmore. A Quantitative Analysis of Memory Controller
Page Policies. 2013.

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[CBS+12] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor,
S Pugsley, A Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Ze-
shan Chishti. USIMM: the utah simulated memory module. University

of Utah, Tech. Rep, 2012.

[Chr] Chrome. Welcome to Native Client. https://

developer.chrome.com/native-client. [Accessed: 28-April-
2015].

[CLC+14] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R
Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu. Improv-
ing DRAM Performance by Parallelizing Refreshes with Accesses. In
30th Annual International Symposium on High Performance Computer

Architecture (HPCA), 2014.

[CM03] Saar Cohen and Yossi Matias. Spectral Bloom filters. In Proceedings

of the 2003 ACM SIGMOD International Conference on Management

of Data, pages 241–252. ACM, 2003.

[CMBR05] Qikai Chen, Hamid Mahmoodi, Swarup Bhunia, and Kaushik Roy.
Modeling and testing of SRAM for new failure mechanisms due to pro-
cess variations in nanoscale CMOS. In Proceedings 23rd IEEE VLSI

Test Symposium., pages 292–297. IEEE, 2005.

[Diaa] Diablo Technologies. MemoryChannel Storage. http://www.diablo-
technologies.com/memory-channel-storage. [Accessed: 28-
April-2015].

[Diab] Diablo Technologies. NanoCommit Technology. http://www.diablo-
technologies.com/nanocommit-technology. [Accessed: 28-April-
2015].

[Dix91] Kaivalya M Dixit. The SPEC benchmarks. Parallel computing,
17(10):1195–1209, 1991.

168 BIBLIOGRAPHY

[Dod06] J.M. Dodd. Adaptive page management. http://www.google.com/

patents/US7076617, July 11 2006. US Patent 7,076,617.

[EMF+11] Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee,
José A Joao, Onur Mutlu, and Yale N Patt. Parallel application memory
scheduling. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 362–373. ACM, 2011.

[eTe14] eTeknix. Price of 2GB DDR3 modules hit all time low.
http://www.eteknix.com/price-of-2gb-ddr3-modules-hits-

all-time-low, 2014. [Accessed: 28-April-2015].

[FK91] John A Fifield and Howard L Kalter. Crosstalk-shielded-bit-line
DRAM, April 23 1991. US Patent 5,010,524.

[GBS+14] Z. Greenfield, K.S. Bains, T.Z. Schoenborn, C.P. Mozak, and J.B. Hal-
bert. Row hammer condition monitoring. http://www.google.com/

patents/US20140006704, January 2 2014. US Patent App.
13/539,417.

[GCP+09] Zheng Guo, Andrew Carlson, Liang-Teck Pang, Kenneth T Duong, Tsu-
Jae King Liu, and Borivoje Nikolic. Large-scale SRAM variability char-
acterization in 45 nm CMOS. IEEE Journal of Solid-State Circuits,
44(11):3174–3192, 2009.

[GLG] Mohsen Ghasempour, Mikel Luján, and Jim Garside. AR-
MOR: A Hardware Solution to Prevent Row Hammer Error
in DRAMs. http://apt.cs.manchester.ac.uk/projects/ARMOR/

RowHammer/index.html. [Accessed: 28-April-2015].

[Goo] Google. Chrome v8. https://developers.google.com/v8/. [Ac-
cessed: 28-April-2015].

[HLHL06] Dandan Huan, Zusong Li, Weiwu Hu, and Zhiyong Liu. Processor di-
rected dynamic page policy. In Advances in Computer Systems Archi-

tecture, pages 109–122. Springer, 2006.

[HS93] W-C Hsu and James E Smith. Performance of cached DRAM organiza-
tions in vector supercomputers. ACM SIGARCH Computer Architecture

News, 21(2):327–336, 1993.

BIBLIOGRAPHY 169

[IBM14] IBM. Phase Change Memory. http://www.research.ibm.com/labs/
zurich/sto/pcm/, 2014. [Accessed: 28-April-2015].

[IFSK12] Takakazu Ikeda, Naoki Fujieda, Shimpei Sato, and Kenji Kise. Request
Density Aware Fair Memory Scheduling. In 3rd JILP Workshop on

Computer Architecture Competitions (JWAC-3): Memory Scheduling

Championship (MSC), 2012.

[IMMC08] Engin Ipek, Onur Mutlu, José F Martı́nez, and Rich Caruana. Self-
optimizing memory controllers: A reinforcement learning approach.
In 35th International Symposium on Computer Architecture, 2008.

ISCA’08., pages 39–50. IEEE, 2008.

[Int] Intel. Intel xeon processor x5650. http://ark.intel.com/products/
47922/Intel-Xeon-Processor-X5650-12M-Cache-2 66-GHz. [Ac-
cessed: 28-April-2015].

[Ito01] Kiyoo Itoh. VLSI memory chip design, volume 5. Springer New York,
2001.

[JD04] B.G. Johnson and C.H. Dennison. Phase change memory, September 14
2004. US Patent 6,791,102.

[JHG13] Yoon H Jung, Hunter C Hillery, and Tressler A Gary. Flash and DRAM
Si Scaling Challenges, Emerging Non-Volatile Memory Technology
Enablement. In Flash Memory Summit, 2013.

[JNW10] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann, 2010.

[Joh] John Ousterhout. RAMCloud. https://ramcloud.stanford.edu/

wiki/display/ramcloud/RAMCloud. [Accessed: 28-April-2015].

[KCA+11] Daeyeon Kim, Vikas Chandra, Robert Aitken, David Blaauw, and Den-
nis Sylvester. Variation-aware static and dynamic writability analy-
sis for voltage-scaled bit-interleaved 8-T SRAMs. In Proceedings of

the 17th IEEE/ACM international symposium on Low-power electron-

ics and design, pages 145–150. IEEE Press, 2011.

170 BIBLIOGRAPHY

[KDD10] Karthik Kumar, Martin Dimitrov, and Kshitij Doshi. Energy efficient
DRAM row buffer management for enterprise workloads. In Interna-

tional Conference on Energy Aware Computing (ICEAC), pages 1–4.
IEEE, 2010.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In 41st International Symposium on Com-

puter Architecture (ISCA), pages 361–372. ACM/IEEE, 2014.

[Kee08] Brent Keeth. DRAM circuit design: fundamental and high-speed topics,
volume 13. John Wiley & Sons, 2008.

[KHMHB10] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. AT-
LAS: A scalable and high-performance scheduling algorithm for mul-
tiple memory controllers. In 16th International Symposium on High

Performance Computer Architecture (HPCA), pages 1–12. IEEE, 2010.

[KPMHB11] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter. Thread cluster memory scheduling. Micro, IEEE, 31(1):78–89,
2011.

[KSJ11] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. Minimalist
open-page: A DRAM page-mode scheduling policy for the many-core
era. In Proceedings of the 44th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 24–35. ACM, 2011.

[KSL+12] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur
Mutlu. A case for exploiting subarray-level parallelism (SALP) in
DRAM. In 39th Annual International Symposium on Computer Archi-

tecture (ISCA), pages 368–379. IEEE, 2012.

[KSP03] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A sim-
ple algorithm for finding frequent elements in streams and bags. ACM

Transactions on Database Systems (TODS), 28(1):51–55, 2003.

[LCC+07] Ki-Won Lee, Joo-Hwan Cho, Byoung-Jin Choi, Geun-Il Lee, Ho-Don
Jung, Woo-Young Lee, Ki-Chon Park, Yong-Suk Joo, Jae-Hoon Cha,

BIBLIOGRAPHY 171

Young-Jung Choi, et al. A 1.5-V 3.2 Gb/s/pin Graphic DDR4 SDRAM
with dual-clock system, four-phase input strobing, and low-jitter fully
analog DLL. Journal of Solid-State Circuits, 42(11):2369–2377, 2007.

[LWWX12] Chongmin Li, Dongsheng Wang, Haixia Wang, and Yibo Xue. Pri-
ority Based Fair Scheduling: A Memory Scheduler Design for Chip-
Multiprocessor Systems. Tsinghua National Laboratory for Informa-

tion Science and Technology, 2012.

[Mara] Mark Seaborn - Google Project Zero. Exploiting the
DRAM rowhammer bug to gain kernel privileges. http:

//googleprojectzero.blogspot.co.uk/2015/03/exploiting-

dram-rowhammer-bug-to-gain.html. [Accessed: 28-April-2015].

[Marb] Mark Seaborn - Google Project Zero. Program for testing for the DRAM
”rowhammer” problem. https://github.com/google/rowhammer-

test. [Accessed: 28-April-2015].

[MAW01] Seiji Miura, Kazushige Ayukawa, and Takao Watanabe. A dynamic-
SDRAM-mode-control scheme for low-power systems with a 32-bit
RISC CPU. In Proceedings of the International Symposium on Low

power Electronics and Design, pages 358–363. ACM, 2001.

[MC07] Chiyuan Ma and Shuming Chen. A DRAM Precharge Policy Based
on Address Analysis. In 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools., pages 244–248. IEEE, 2007.

[MDB+02] Jack A Mandelman, Robert H Dennard, Gary B Bronner, John K De-
Brosse, Rama Divakaruni, Yujun Li, and Carl J Radens. Challenges
and future directions for the scaling of dynamic random-access mem-
ory (DRAM). IBM Journal of Research and Development, 46(2.3):187–
212, 2002.

[Mica] Mike Micheletti. Tuning DDR4 for Power and Performance.
http://cdn.teledynelecroy.com/files/whitepapers/

tuningddr4 for power performance.pdf. [Accessed: 28-April-
2015].

[Micb] Micron Technology Inc. RDIMM. http://www.micron.com/

products/dram-modules/rdimm. [Accessed: 28-April-2015].

172 BIBLIOGRAPHY

[Micc] Micron Technology Inc. RDIMM: Registered Memory Modules.
http://www.micron.com/-/media/documents/products/data/

20sheet/modules/parity rdimm/jszs72c2g 4gx72pz.pdf. [Ac-
cessed: 28-April-2015].

[Micd] Micron Technology Inc. Target Row Refresh Mode. http:

//www.micron.com/products/datasheets/3d323c4d-6bc7-

4193-908d-e99ad746aa4e?page=13. [Accessed: 28-April-2015].

[Mic14a] Micron Technology Inc. DDR3 to DDR4, 2014.

[Mic14b] Micron Technology Inc. DDR4 SDRAM. http://www.micron.com/

products/dram/ddr4-sdram, 2014. [Accessed: 28-April-2015].

[Mic14c] Micron Technology Inc. DDR4 SDRAM - MT40A1G4HX-083E.
http://www.micron.com/parts/dram/ddr4-sdram/mt40a1g4hx-

083e, 2014. [Accessed: 28-April-2015].

[Mic14d] Micron Technology Inc. Hybrid Memory Cube. http://

www.micron.com/products/hybrid-memory-cube, 2014. [Accessed:
28-April-2015].

[Mic14e] Micron Technology Inc. Hybrid Memory Cube Consortium. http:

//www.hybridmemorycube.org, 2014.

[Mic14f] Micron Technology Inc. Phase Change Memory Innovations. http:

//www.micron.com/about/innovations/pcm, 2014. [Accessed: 28-
April-2015].

[Mik] Mike Micheletti. Teledyne LeCroy Upgraded DDR Protocol An-
alyzer adds Row Hammer Reporting and System Memory Map-
ping. http://cdn.teledynelecroy.com/files/pressreleases/

09042013.pdf. [Accessed: 28-April-2015].

[MKK+12] Young-Suk Moon, Yongkee Kwon, Hong-Sik Kim, Dong-gun Kim,
Hyungdong Hayden Lee, and Kunwoo Park. The Compact Memory
Scheduling Maximizing Row Buffer Locality. In 3rd JILP Workshop

on Computer Architecture Competitions (JWAC-3): Memory Schedul-

ing Championship (MSC), 2012.

BIBLIOGRAPHY 173

[MM07] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 146–
160. IEEE Computer Society, 2007.

[MM08] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared DRAM sys-
tems. In ACM SIGARCH Computer Architecture News, volume 36,
pages 63–74. IEEE Computer Society, 2008.

[Mor78] Robert Morris. Counting large numbers of events in small registers.
Communications of the ACM, 21(10):840–842, 1978.

[MSY+90] Dong-Sun Min, Dong-Il Seo, Jehwan You, Sooin Cho, Daeje Chin, et al.
Wordline coupling noise reduction techniques for scaled DRAMs. In
Symposium on VLSI Circuits, Digest of Technical Papers., pages 81–82,
1990.

[NALS06] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith. Fair
queuing memory systems. In 39th Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO-39., pages 208–222. IEEE,
2006.

[OAE+10] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen Rumble, Eric Stratmann,
and Ryan Stutsman. The case for RAMClouds: scalable high-
performance storage entirely in DRAM. ACM SIGOPS Operating Sys-

tems Review, 43(4):92–105, 2010.

[ORS+11] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. Fast crash recovery in RAMCloud. In Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, pages 29–41. ACM, 2011.

[Paw11] J Thomas Pawlowski. Hybrid Memory Cube (HMC). In Hotchips,
volume 23, pages 1–24, 2011.

174 BIBLIOGRAPHY

[PP03] Seong-Il Park and In-Cheol Park. History-based memory mode predic-
tion for improving memory performance. In Proceedings of the Interna-

tional Symposium on Circuits and Systems. ISCAS’03., volume 5, pages
V–185. IEEE, 2003.

[Raj] Rajinder Gill. Everything you always wanted to know about SDRAM
memory but were afraid to ask. http://www.anandtech.com/show/

3851/everything-you-always-wanted-to-know-about-sdram-

memory-but-were-afraid-to-ask/6. [Accessed: 28-April-2015].

[RMMM03] Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand.
Leakage current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits. Proceedings of the IEEE, 91(2):305–
327, 2003.

[Sch97] Reinhard C Schumann. Design of the 21174 memory controller for
DIGITAL personal workstations. Digital Technical Journal, 9:57–70,
1997.

[SCN+10] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Ra-
jeev Balasubramonian, and Al Davis. Micro-pages: increasing DRAM
efficiency with locality-aware data placement. ACM Sigplan Notices,
45(3):219–230, 2010.

[SHU+00] K Saino, S Horiba, S Uchiyama, Y Takaishi, M Takenaka, T Uchida,
Y Takada, K Koyama, H Miyake, and C Hu. Impact of gate-induced
drain leakage current on the tail distribution of DRAM data retention
time. In Electron Devices Meeting, 2000. IEDM’00. Technical Digest.

International, pages 837–840. IEEE, 2000.

[SK13] Daniel Sanchez and Christos Kozyrakis. ZSIM: fast and accurate
microarchitectural simulation of thousand-core systems. In ACM

SIGARCH Computer Architecture News, volume 41, pages 475–486.
ACM, 2013.

[SK14] Vasily A Sartakov and Rudiger Kapitza. NV-Hypervisor: Hypervisor-
based Persistence for Virtual Machines. In 44th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN),
pages 654–659. IEEE, 2014.

BIBLIOGRAPHY 175

[SKF+13] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. Rowclone:
Fast and energy-efficient in-DRAM bulk data copy and initialization. In
Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 185–197. ACM, 2013.

[SL12] Vilas Sridharan and Dean Liberty. A study of DRAM failures in the
field. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), pages 1–11. IEEE, 2012.

[SM04] Vladimir V Stanković and Nebojša Milenković. Access latency reduc-
tion in contemporary dram memories. Facta universitatis-series: Elec-

tronics and Energetics, 17(1):81–97, 2004.

[SM05a] Vladimir V Stanković and Nebojsa Z Milenkovic. DRAM Controller
with a Close-Page Predictor. In Computer as a Tool, 2005. EURO-

CON 2005. The International Conference on, volume 1, pages 693–696.
IEEE, 2005.

[SM05b] Vladimir V Stanković and NZ Milenkovic. DRAM controller with a
complete predictor: Preliminary results. In 7th International Confer-

ence on Telecommunications in Modern Satellite, Cable and Broadcast-

ing Services., volume 2, pages 593–596. IEEE, 2005.

[SNS+13] Kyomin Sohn, Taesik Na, Indal Song, Yong Shim, Wonil Bae, Sanghee
Kang, Dongsu Lee, Hangyun Jung, Seokhun Hyun, Hanki Jeoung, Ki-
Won Lee, Jun-Seok Park, Jongeun Lee, Byunghyun Lee, Inwoo Jun,
Juseop Park, Junghwan Park, Hundai Choi, Sanghee Kim, Haeyoung
Chung, Young Choi, Dae-Hee Jung, Byungchul Kim, Jung-Hwan Choi,
Seong-Jin Jang, Chi-Wook Kim, Jung-Bae Lee, and Joo Sun Choi. A 1.2
V 30 nm 3.2 Gb/s/pin 4 Gb DDR4 SDRAM with dual-error detection
and PVT-tolerant data-fetch scheme. Journal of Solid-State Circuits,
48(1):168–177, 2013.

[SPE09] SPECIFICATION, DDR3 SDRAM. JEDEC STANDARD. 2009.

[SW11] Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learn-

ing. Springer Science & Business Media, 2011.

176 BIBLIOGRAPHY

[TTK+92] Akira Tanabe, Toshio Takeshima, Hiroki Koike, Yoshiharu Aimoto,
Masahide Takada, Toshiyuki Ishijima, Naoki Kasai, Hiromitsu Hada,
Kentaro Shibahara, Tahemitsu Kunio, et al. A 30-ns 64-mb dram with
built-in self-test and self-repair function. Solid-State Circuits, IEEE

Journal of, 27(11):1525–1533, 1992.

[Vika] Viking Technology. ArxCis-NM: Non-Volatile Memory Technology.
http://www.vikingtechnology.com/arxcis-nv. [Accessed: 28-
April-2015].

[Vikb] Viking Technology. NV-DIMM: Fastest Tier in Your Stor-
age Strategy. http://www.vikingtechnology.com/uploads/

nvdimm tiered storage.pdf. [Accessed: 28-April-2015].

[Vikc] Viking Technology. NVDIMM vs SSD: A Performance and
ROI Comparison. http://www.vikingtechnology.com/uploads/

NVDIMM Technical Comparison.pdf. [Accessed: 28-April-2015].

[weba] Diablo Technologies. http://www.diablo-technologies.com. [Ac-
cessed: 28-April-2015].

[webb] Viking technology. http://www.vikingtechnology.com. [Accessed:
28-April-2015].

[WM95] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications
of the obvious. ACM SIGARCH computer architecture news, 23(1):20–
24, 1995.

[WRK+10] H-SP Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifen-
berg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. Phase
Change Memory. Proceedings of the IEEE, 98(12):2201–2227, 2010.

[XAD09] Ying Xu, Aabhas S Agarwal, and Brian T Davis. Prediction in dynamic
SDRAM controller policies. In Embedded Computer Systems: Archi-

tectures, Modeling, and Simulation, pages 128–138. Springer, 2009.

[ZZZ00] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts and exploit data
locality. In Proceedings of the 33rd annual International Symposium on

Microarchitecture, pages 32–41. ACM, 2000.

