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Abstract

Error-control codes provide a mechanism to increase the reliability of digital data being

processed, transmitted, or stored under noisy conditions. Cyclic codes constitute an

important class of error-control code, oUering powerful error detection and correction

capabilities. They can easily be generated and veriVed in hardware, which makes

them particularly well suited to the practical use as error detecting codes.

A cyclic code is based on a generator polynomial which determines its properties

including the speciVc error detection strength. The optimal choice of polynomial

depends on many factors that may be inWuenced by the underlying application. It is

therefore advantageous to employ programmable cyclic code hardware that allows a

Wexible choice of polynomial to be applied to diUerent requirements. A novel method

is presented in this thesis to realise programmable cyclic code circuits that are fast,

energy-eXcient and minimise implementation resources.

It can be shown that the correction of a single-bit error on the basis of a cyclic

code is equivalent to the solution of an instance of the discrete logarithm problem. A

new approach is proposed for computing discrete logarithms; this leads to a generic

deterministic algorithm for analysed group orders that equal Mersenne numbers with

an exponent of a power of two. The algorithm exhibits a worst-case runtime in the

order of the square root of the group order and constant space requirements.

This thesis establishes new relationships for Vnite Velds that are represented as

the polynomial ring over the binary Veld modulo a primitive polynomial. With a

subset of these properties, a novel approach is developed for the solution of the

discrete logarithm in the multiplicative groups of these Velds. This leads to a deter-

ministic algorithm for small group orders that has linear space and linearithmic time

requirements in the degree of deVning polynomial, enabling an eXcient correction of

single-bit errors based on the corresponding cyclic codes.
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Chapter 1

Introduction

The preservation of digital data integrity is of major concern for computer, commu-

nication, and storage systems. In all these applications digital data is susceptible to

unintentional modiVcation which may arise from electrical or magnetic disturbance,

component failure, or the result of system design error. Depending on the speciVc

application, data failures may result in severe consequences and thus their potential

occurrence needs to be considered carefully in the underlying design of the system.

Data reliability can be enhanced through the employment of error-control codes

[LC83; PW72; RF89], which provide mechanisms for the detection and correction of

errors. These codes enrich the data with redundancy by forming code words, which

initially can be used to detect inconsistencies in the received data. If the aUected

data can be retransmitted or recalculated, one simple error correction scheme is the

Automatic Repeat Query (ARQ), where the receiver simply requests a retransmission

once it detects data inconsistencies. However, where retransmission or recalculation

is not feasible, being too slow or uneconomic, Forward Error Correction (FEC) tech-

niques can correct errors on the basis of the corrupted received data and its inherent

redundancy.

Cyclic codes form an important class of error-control code oUering powerful error

detection and correction capabilities. At the same time, their algebraic properties

permit the use of simpliVed processing procedures when compared to non-cyclic

codes. For instance, the encoding of data into cyclic code words can easily be achieved

in hardware using a simple linear feedback shift register. Likewise, the same circuit

can be used to validate code words, and thus detect errors. For these reasons, cyclic

codes have been widely adopted as error-detecting codes and commonly deployed

in combination with ARQ schemes. This thesis concentrates on cyclic codes with

23



24 Chapter 1. Introduction

symbols from the binary Veld.

If error correction is desired, the most basic case concerns the localisation of a

single erroneous bit. It can be shown that for cyclic codes this problem is equivalent

to the computation of the discrete logarithm in Vnite cyclic groups, for which it is

widely believed that for the general case no eXcient classical algorithm is devisable.

This is one reason why the discrete logarithm forms the basis for many cryptographic

applications such as the DiXe-Hellman-Merkle key exchange [DH76]. However, it has

not been proven that the computation of the discrete logarithm is hard for all groups

of practical interest [Odl85; Odl00; McC90; MVO96; Mos96; Buc01; Sti02; Gal12].

Cyclic codes are characterised by an underlying generator polynomial. DiUerent

generator polynomials exhibit diUerent capabilities in regard to the detection and

correction of errors [TW11; Koo02; KC04]. Certain polynomials, for example, may

be particularly well suited to the practical realisation of the error correction process.

The selection of polynomial is also dependent on the length of the data that is to be

protected and the anticipated error patterns. In systems where diverse applications

may favour diUerent cyclic codes, and where the requirements may change over time

or be unknown at the design stage, it may be advantageous to provide full Wexibility in

regard to the usable cyclic code generator polynomials. EXcient cyclic code processing

relies on dedicated cyclic code hardware circuits, which may be programmable if the

underlying generator polynomial is adaptable. Such a programmable circuit has been

created for the SpiNNaker project [FB09; Fur12], a massively parallel spiking neural

network simulator.

1.1 Research Objectives

Cyclic codes comprise a powerful class of error-control code; they have gained

wide popularity in the Veld of error detection owing to their eXcient hardware

implementations and simultaneous eUective error detection. Programmable cyclic

code circuits have the beneVt of Wexible adaption of the underlying cyclic code to

meet the requirements of a speciVc application. One goal of this research is to provide

a method for the eXcient realisation of parallel programmable cyclic code circuits, in

hardware, to make them appealing for a wider range of applications.

The current predominating drawback of cyclic codes is the lack of eXcient error

correction techniques for them. To perform the correction of a single-bit error an

instance of the generalised discrete logarithm problem needs to be solved. It is an
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additional goal of this research to explore new methods in the quest for an eXcient

mechanism for computing discrete logarithms in relevant Vnite cyclic groups and,

therefore, facilitate the eXcient recovery from single-bit errors through cyclic codes.

1.2 Contribution

The contributions of this thesis are summarised as follows:

• A new scheme is proposed enabling the eXcient calculation of the state tran-

sition and control matrix for the parallel operation of a cyclic code circuit in

hardware. This circuit is used both for the data encoding step and the decoder

error detection phase. With the incorporation of a programmable transition and

control matrix, this adaptable circuit can be conVgured to use diUerent cyclic

codes. This added Wexibility is a valuable enhancement, as the error detection

and error correction performance of a particular cyclic code depends on param-

eters including the length of the data that is to be protected and the anticipated

error patterns of an application. A simulation of the novel programmable cyclic

code circuit produced shows signiVcant improvements in terms of speed, area

and energy eXciency when compared with previously published designs. The

design of the new circuit has been published [GF11].

• A new approach is proposed for the computation of discrete logarithms; this

leads to a generic deterministic algorithm for analysed group orders that equal

a Mersenne number where the exponent is a power of two. It is shown that, for

these groups, the worst-case running time is proportional to the square root

of the group order, while the space requirements are constant. The scheme is

further improved for particular cases where the discrete logarithm values occur

with diUerent probabilities, leading to reduced average and worst-case execution

times. Furthermore, properties are derived that apply to the sequences that are

used by the algorithm.

• A set of new relationships is developed for the Veld elements of the ring of

polynomials over the binary Veld modulo a primitive polynomial. Based on a

subset of these properties, a novel approach is proposed for the computation of

discrete logarithms in the cyclic multiplicative group of the Vnite Veld. For at

least all primitive polynomials up to degree 12 and the Vrst evaluated primitive

polynomials of degree 13 and 14, a deterministic algorithm with linear space

and linearithmic time requirements in the degree of the polynomial results.
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1.3 Thesis Organisation

The remainder of this thesis is structured as follows:

Part II: Background

Chapter 2

This chapter reviews the fundamental principles behind error-control codes and

establishes important related terminology. Particular focus is directed towards linear

block codes and their subclass of cyclic codes. The error detection and correction

capabilities of cyclic codes are described, and it is shown how simple but ineXcient

error correction mechanisms are realised. Established error correction techniques

such as the Meggitt decoder, error-trapping decoding, or the BCH code decoder are

brieWy reviewed, and their ineXciency concerning the correction of a single-bit error

is highlighted. Moreover, it is shown which factors inWuence the selection of the

optimal generator polynomial for a cyclic code.

Chapter 3

In this chapter, the discrete logarithm problem is deVned. Information concerning

the diXculty of the problem and properties of the underlying Vnite cyclic groups are

presented. Important cryptographic applications that base their operating principle

on the presumed diXculty of the discrete logarithm problem in certain groups are

speciVed. Today’s most important algorithms for computing discrete logarithms are

presented detailing their execution overheads.

Chapter 4

This chapter presents an overview of the SpiNNaker project which targets the large-

scale simulation of spiking neural networks. The SpiNNaker architecture facilitates a

massively-parallel supercomputer with a million processors, which supports these

neural simulations. The issue of anticipated memory faults in a SpiNNaker system of

this scale is highlighted, and the usage of cyclic codes as a layer of protection against

many of these errors is explained.
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Part III: Contributions

Chapter 5

In this chapter, the equations for a parallel realisation of a cyclic code circuit are

derived. It is then shown how a programmable version of such a circuit can be created

which can be conVgured to use diUerent generator polynomials. Furthermore, a new

scheme is presented that allows the eXcient computation of the state transition and

control matrix necessary for the circuit. With this scheme a novel programmable

parallel cyclic code circuit is proposed that is then compared to previous work. This

chapter is based on a journal publication [GF11].

Chapter 6

This chapter describes a new generic approach for the computation of the discrete

logarithm. Based on this approach an algorithm is presented for group sizes that equal

a Mersenne number with an exponent of a power of two. It is shown how the scheme

can be improved if the discrete logarithm values occur with unequal probabilities.

Properties are derived for the sequences that are used by the algorithm and Vnally,

the proposed scheme is compared with an established method for the evaluation of

discrete logarithms.

Chapter 7

In this chapter, a new set of properties is derived for the elements of a Vnite Veld with

binary characteristic, where the Veld is represented as a polynomial ring over the

binary Veld modulo a primitive polynomial. For the multiplicative group of the Vnite

Veld, a novel approach is presented to compute discrete logarithms based on a subset

of the newly established Veld properties. Performance results are reported for the

resulting algorithm for evaluated small group sizes.

Part IV: Conclusion

Chapter 8

This chapter draws conclusions and suggests future directions of research.
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Chapter 2

Error Control Coding

Digital data in computer, communication and storage systems is inevitably subjected

to noise and may thus undergo undesired alterations, which may cause entire systems

to fail. To lower the probability of such scenarios, it is possible to employ error-control

codes that can increase the reliability of data [LC83; PW72; RF89]. For this purpose, the

data is sent, in the Vrst place, through an encoding process that will add redundancy

to it, before it is processed, transported or stored later on, and thereby exposed to

noise. Once the encoded and possibly corrupted data is received by a consumer, the

decoding process will attempt to recover the original data. There are two diUerent,

but combinable approaches to the decoding process.

On the one hand, the decoder can perform a simple error detection and request a

retransmission of the data if inconsistencies are detected; this is known as Automatic

Repeat Query (ARQ). This is, however, infeasible if a feedback channel for a retrans-

mission request is not available, or if the data is retrieved from a memory, where it

is already stored erroneously. If an ARQ scheme is implementable, it may still be

ineXcient from a speed or energy point of view, and therefore impractical.

On the other hand, it is possible to employ Forward Error Correction (FEC)

techniques that can not only detect, but also correct, errors in the decoder, on the

basis of the corrupted data and redundancy only. Error correction proves to be

typically more complex in its realisation than pure error detection, but has the

signiVcant advantage of managing to recover from certain faults without the need for

retransmission.

The setup of an FEC system is shown in Figure 2.1. It is assumed that the source

outputs a data message u, which is, in the next step, translated by the encoder into

a code word ū, which carries the same information as u but in a redundant form

31
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Source Encoder

Processor,
channel or
memory

Decoder Sink
u ū v̄ v

Noise

e

Figure 2.1: Forward error correction in computer, transmission or storage systems.

according to the employed error correction code. The code word ū is then passed

on to a processor, channel or memory, where noise may cause undesired alterations,

modelled as e. In this scenario, the processor constitutes a special case as it is assumed

to produce an output possibly diUerent from ū as part of its functionality, which may

then, however, diUer from the expected output in consequence of the noise exposure.

However, the processor case is not further considered here. Instead, it is assumed

that ū is passed on to a communication channel or a storage medium. In both of

these cases, it is expected that after a successful transmission or retrieval of the data,

without any noise interference, the decoder will receive v̄, which will equal ū. If errors

occur, it follows that e , 0 and v̄ = ū + e. It is the task of the decoder to translate the

received and possibly corrupted code word v̄ into the most likely message v. In the

ideal case no decoding error is made and it follows v = u.

From an information theoretic point of view, the only aspect that can be inWuenced

in the described forward error correction system concerns the encoding and decoding

procedure. It was Shannon who published groundbreaking work in this Veld in

1948 [Sha48a; Sha48b]. He postulated that by choosing an appropriate encoding

and decoding strategy, it is possible to reduce the decoding error probability to an

arbitrarily small value, as long as the information rate, i.e. the ratio of non-redundant

bits to the total number of bits per code word, stays below a certain threshold—the

capacity—that is speciVc to each channel or memory.

The model that is assumed for the transmission or memory channel is called

the Binary Symmetric Channel (BSC) and is depicted in Figure 2.2. It has an error

probability parameter p ≤ 0.5, which indicates the probability of an erroneously

received symbol.

In what follows, the considered codes are assumed to have symbols from the

binary Veld GF (2), although generalisations to non-binary alphabets can be made.

The symbols are represented as 0 and 1, where the addition and multiplication is

performed in modulo-2 arithmetic. There are two diUerent types of codes: block and
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Figure 2.2: Binary symmetric channel with transition error probability p.

Message Redundancy
←−−−−−−−− k −−−−−−−−→←−−−−−−−−m −−−−−−−−→

Figure 2.3: Code word in systematic form.

convolutional codes; both encode k-bit input messages into n-bit code words. The

diUerence is that, for convolutional codes, the code word is not only made dependent

on the current input message, but also on previous messages, by employing memory

in the encoder. Subsequently, however, only block codes are considered.

A code in systematic form has the property that the message bits appear as one

section of the code word and the bits for the redundancy as a second section as

visualised in Figure 2.3. The number of redundancy bits is denoted by m such that

n = k +m.

2.1 Linear Block Codes

An (n, k) linear block code is a block code that transforms k-bit message vectors

into n-bit code word vectors with the additional property that all the 2k diUerent

code vectors form a k-dimensional subspace of the n-dimensional vector space of all

vectors of size n over the binary Veld. It follows from this deVnition that the linear

combination of code vectors results in a code vector of the same code. An example of

a (7, 4) linear block code in systematic form is shown in Table 2.1.

2.1.1 Generator Matrix

Due to the fact that an (n, k) linear block code forms a k-dimensional vector space, it

is possible to generate every code vector through a linear combination of k code basis
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Table 2.1: A (7, 4) systematic linear block code.

Message Code word

[0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1] [0, 0, 0, 1, 0, 1, 1]

[0, 0, 1, 0] [0, 0, 1, 0, 1, 1, 0]

[0, 0, 1, 1] [0, 0, 1, 1, 1, 0, 1]

[0, 1, 0, 0] [0, 1, 0, 0, 1, 1, 1]

[0, 1, 0, 1] [0, 1, 0, 1, 1, 0, 0]

[0, 1, 1, 0] [0, 1, 1, 0, 0, 0, 1]

[0, 1, 1, 1] [0, 1, 1, 1, 0, 1, 0]

[1, 0, 0, 0] [1, 0, 0, 0, 1, 0, 1]

[1, 0, 0, 1] [1, 0, 0, 1, 1, 1, 0]

[1, 0, 1, 0] [1, 0, 1, 0, 0, 1, 1]

[1, 0, 1, 1] [1, 0, 1, 1, 0, 0, 0]

[1, 1, 0, 0] [1, 1, 0, 0, 0, 1, 0]

[1, 1, 0, 1] [1, 1, 0, 1, 0, 0, 1]

[1, 1, 1, 0] [1, 1, 1, 0, 1, 0, 0]

[1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1]

vectors д0 to дk−1, which are aggregated as row vectors in the generator matrix G. A

k-bit message vector u = [uk−1, . . . ,u0] can now be encoded through multiplication

with G as

ū = uG = u


дk−1
...

д0

 .
For the (7, 4) linear block code in Table 2.1, the generator matrix constitutes

G =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1︸    ︷︷    ︸
identity matrix

1 0 1

1 1 1

1 1 0

0 1 1

 .

The identity matrix in the left part of the generator matrix indicates the systematic

encoding property of this particular code. A message u = [1, 0, 1, 0] can now be



2.1. Linear Block Codes 35

encoded as

ū = uG = [1, 0, 1, 0]


1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 = [1, 0, 1, 0︸   ︷︷   ︸
u

, 0, 1, 1︸︷︷︸
redundancy

].

2.1.2 Parity-check Matrix

For an (n, k) linear block code C with generator matrix G, it is possible to construct

the dual code C⊥. This code is an (n,n − k) linear block code and it is the null space

of G. The corresponding generator matrix H of C⊥ is the parity-check matrix of C . It

follows that

GHT = 0.

Furthermore, for every code vector ū of C ,

ūHT = 0. (2.1)

The parity-check matrix H is thus also a diUerent way of describing the code C . For

the (7, 4) linear block code in Table 2.1, the parity-check matrix takes thereby the

following shape

H =


1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

 .
It can easily be veriVed that ū = [1, 0, 1, 0, 0, 1, 1] is a code vector of C since

ūHT = [1, 0, 1, 0, 0, 1, 1]


1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1


T

= 0.

2.1.3 Error Syndrome

The parity-check matrix H of a linear block code not only provides a method to

validate code vectors, but also helps in the correction of errors that may have occurred.

It is assumed that the code vector ū gets corrupted with the error vector e such that

v̄ = ū + e (2.2)
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Table 2.2: Single-bit error syndromes.

Error pattern Error syndrome

[1, 0, 0, 0, 0, 0, 0] [1, 0, 1]

[0, 1, 0, 0, 0, 0, 0] [1, 1, 1]

[0, 0, 1, 0, 0, 0, 0] [0, 1, 1]

[0, 0, 0, 1, 0, 0, 0] [1, 1, 0]

[0, 0, 0, 0, 1, 0, 0] [0, 0, 1]

[0, 0, 0, 0, 0, 1, 0] [0, 1, 0]

[0, 0, 0, 0, 0, 0, 1] [1, 0, 0]

is received. The error syndrome of the vector v̄ is now deVned as

s = v̄HT .

With (2.1) and (2.2) it follows further that

s = v̄HT = (ū + e)HT = eHT .

The error syndrome s is thus entirely determined by the error vector e. If no error

has occurred, e = 0, and therefore also the error syndrome s = 0. In the case that the

error vector coincides with a code vector, the syndrome will also indicate no error.

However, in any other case, the syndrome will be diUerent from zero, indicating the

occurrence of one or several errors.

Once a nonzero syndrome has been computed, an error correction can be per-

formed if the syndrome can be associated with a most likely error pattern. This can

be achieved with a simple but ineXcient table-lookup mechanism. For the code in

Table 2.1, the error syndromes for all the diUerent single-bit error patterns are given

in Table 2.2. It can be seen that the syndromes are all diUerent, which means that

every single-bit error can be corrected. Error patterns with more than one bit error

are either falsely classiVed as single-bit errors or go undetected if they correspond to

code vectors. The considered code is thus only able to correct all possible single-bit

errors.
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ū0 ū1

Figure 2.4: Minimum code distance.

2.1.4 Hamming Distance

For a block code C and code vectors ū0, ū1 ∈ C , the Hamming distance of ū0 and ū1,

denoted by d(ū0, ū1), corresponds to the number of components in which ū0 and ū1

diUer. The Hamming weight of ū, indicated by w(ū), equals the Hamming distance

between ū and the zero code vector, such that w(ū) = d(ū, 0). Another important

measure is the minimum distance of C , which is deVned as the smallest Hamming

distance that is achievable between any two distinct code vectors ofC and it is denoted

by

dmin = min
ū0 ,ū1∈C

{d(ū0, ū1)|ū0 , ū1}.

A special case arises if C is a linear block code, since the minimum distance of C
can then be indicated as the minimum weight over all nonzero code vectors of the

code. This can be, for instance, attributed to the fact that for a linear block code the

linear combination of code vectors results again in a code vector.

2.1.5 Error Detection and Correction Capabilities

The minimum distance dmin of a block code gives an indication of its error detection

and correction properties as stated in the following theorem [RF89]:

Theorem 2.1. For a block code with minimum distance dmin, it is guaranteed that up to
t errors can be corrected, while at the same time up to d errors can be detected, as long as
t + d + 1 ≤ dmin and t ≤ d.

As an example, it is assumed that the minimum code distance accounts for dmin = 4,

such that the Hamming distance between any two distinct code vectors ū0 and ū1 is at

least dmin as illustrated in Figure 2.4. With Theorem 2.1, two diUerent decoder choices

can be made. Either a pure error detection is realised, which would be capable of
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detecting all error patterns with up to three errors, or a combination of a single error

correction with the detection of up to two errors can be targeted.

The error detection and correction capabilities of an (n, k) block code are in general

better than stated by Theorem 2.1 on the basis of the minimum distance. If pure error

detection is considered, then 2n−2k diUerent error patterns are detectable, which is the

number of error patterns of length n that do not correspond to any code vectors. For

the pure error correction case of a t-error correcting linear block code, the standard

array decoding mechanism allows the correction of 2n−k = 2m error patterns, which

include all combinations of t or fewer errors [LC83].

2.2 Hamming Codes

A special class of linear block code is formed by Hamming codes. These codes exhibit,

in basic form, a minimum distance of three, which qualiVes them to be used as

either single-error correcting or double-error detecting codes. For every number of

redundancy bits m with m ≥ 2, it is possible to construct a Hamming code with a

code word length of n = 2m − 1 and k = 2m −m − 1 information bits. An example of a

(7, 4) Hamming code is given in Table 2.1 as the minimal weight over all nonzero code

word accounts for three.

Hamming codes are considered as perfect codes as they reach the Hamming bound,

which means that for a t-error correcting (n, k) block code, the number of all error

patterns of t or fewer errors equals the ratio of all possible words to valid code words

such that

2m =
t∑

i=0

(
n
i

)
.

2.3 Cyclic Codes

An (n, k) linear block code C is considered to be cyclic if every cyclically shifted code

vector results again in a code vector of the same code C [Pra57; PB61; PW72; LC83].

In other words, for every ū ∈ C with ū = [ūn−1, ūn−2, . . . , ū0], it must follow that

[ū0, ūn−1, . . . , ū1] ∈ C . The (7, 4) linear block code in Table 2.1 serves as an example

of a cyclic code.

For the following considerations, it will be convenient to regard word vectors in

an equivalent polynomial representation in the indeterminate X in such a way that a
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X3 1

s2 s1 s0

X1

Input

Figure 2.5: LFSR for p(X ) = X 3 + X + 1.

vector v = [vn−1,vn−2, . . . ,v0] will correspond to the polynomial

v(X ) = vn−1Xn−1 + · · · + v1X + v0.

An (n, k) cyclic code C can be characterised through a generator polynomial p(X )

of degreem = n − k, which is a factor of Xn + 1 and takes the following shape

p(X ) = Xm + pm−1Xm−1 + · · · + p1X + 1. (2.3)

The code polynomials of C are comprised of all binary polynomials of degree less than

n that are divisible by the generator polynomial p(X ). For the cyclic code in Table 2.1,

the generator polynomial accounts for p(X ) = X 3 + X + 1.

2.3.1 Encoding

For an (n, k) cyclic code with generator polynomial p(X ), a message polynomial u(X )

of degree k − 1 can be translated into a code polynomial ū(X ), by simply multiplying

it with the generator polynomial, such that ū(X ) = u(X )p(X ). This guarantees that

the code polynomial is divisible by the generator polynomial. The drawback of this

method is, however, that the code is not in systematic form. A simple remedy can

be provided as follows. If the message polynomial u(X ) is premultiplied by Xm, and

subsequently divided by p(X ) to obtain the remainder r (X ), code polynomials in

systematic form are produced by adding r (X ) to Xmu(X ), such that

ū(X ) = Xmu(X ) + r (X ).

The described systematic encoding process can easily be translated into hardware

by employing a linear feedback shift register (LFSR) in Galois conVguration as shown

in Figure 2.5. It consists only of storage elements arranged into a circular shift register

and XOR gates, which are used to couple the feedback path with diUerent bits from the
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Figure 2.6: LFSR for p(X ) = X 3 + X + 1 with automatic premultiplication by X 3.

register according to the underlying generator polynomial. To compute the remainder,

the LFSR is reset to the zero state and the message is then fed in serially starting from

the most signiVcant bit uk−1. After all the message bits have entered the circuit, m
additional shifts are performed with the input set to zero to simulate the multiplication

by Xm. As a result, the state of the LFSR corresponds to the remainder, which can

then simply be appended to the message to form the code word.

The encoding process can be simpliVed by combining the input with the most

signiVcant register bit to form the feedback as shown in Figure 2.6. This modiVcation

allows the omission of the lastm register shifts with zero input.

A diUerent modiVcation concerns the length of the generated code words. Based

on an (n, k) cyclic code, it is possible to derive a shortened cyclic code with a length

reduced by l . This can be achieved by considering the most signiVcant message

bits uk−l to uk−1 to be always set to zero. The resulting code is, however, not cyclic

anymore, but is an (n − l , k − l) linear block code.

2.3.2 Decoding

The Vrst step in the decoding of a cyclic code comprises the detection of errors.

For this purpose the error syndrome is computed, which corresponds, in the case

of a cyclic code, to the remainder of the division of the received polynomial and

the generator polynomial. Since code polynomials are multiples of the generator

polynomial p(X ), a syndrome, and therefore remainder, of zero indicates the detection

of no errors. For all other syndrome cases, it is certain that errors have occurred.

The computation of the syndrome can easily be achieved by reusing the encoding

circuit shown in Figure 2.5. Once the state of the circuit is reset to zero, the entire

received polynomial is shifted into the circuit. The register will subsequently hold

the syndrome. Alternatively, the circuit shown in Figure 2.6 can be used, with the

diUerence that the obtained value will correspond to the syndrome after m further

register shifts with zero input, due to the automatic premultiplication by Xm. This
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does not present any complication as the modiVcation to the syndrome is easily

reversible if necessary. For the case that no error is detected, the modiVed syndrome

will also be zero. The eXcient generation and validation of cyclic codes, employing

the same circuit, contributed, to a great extent, to the popularity of cyclic codes in the

Veld of error detection. In this context, a cyclic code is often referred to as a Cyclic

Redundancy Checksum (CRC).

If error correction is considered, the situation is slightly diUerent. The most basic

case concerns the localisation and correction of a single-bit error and is considered in

what follows. Under the assumption of a single-bit error occurrence at bit position j,
where 0 ≤ j ≤ n − 1, a sent code polynomial ū(X ) is received as

v̄(X ) = ū(X ) + X j .

Since ū(X ) is divisible by p(X ), the syndrome s(X ) of v̄(X ) will equal the remainder of

the division of X j by p(X ), such that

X j ≡ s(X ) (mod p(X )). (2.4)

From (2.4) it is apparent that a maximum number of 2m − 1 single-bit errors for

a cyclic code are correctable, if the sequence of powers of X modulo the generator

polynomial p(X ) has a length of 2m − 1. This is, at the same time, the maximum length

that such a sequence can achieve with the available m bits. Zero cannot be part of the

sequence ifm > 1 as the least signiVcant coeXcient of the generator polynomial is one

according to (2.3). The sequence is referred to as a maximum-length sequence and the

generator polynomials that induce such sequences are called primitive polynomials.

Primitive polynomials of degreem can be used to generate (2m − 1, 2m −m − 1) cyclic

codes, as every irreducible polynomial of degree m is a factor of X 2m−1 + 1 [Gol82;

LN86]. These codes form a subclass of Hamming codes, which are characterised

through their cyclic property.

A single-bit-error-correction mechanism for a cyclic or shortened cyclic code

needs to deduce the bit error location j from s(X ) in (2.4) to correct the erroneous bit.

This computation is an instance of the generalised discrete logarithm problem, which

is discussed in more detail with state-of-the-art algorithms in Chapter 3. There exist

two very straightforward, but ineXcient, solutions to this problem which form the

basis of many error correction techniques. The Vrst approach employs a table-lookup

mechanism, which associates each single-bit error syndrome with the corresponding
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bit error location j. This method is very fast, once it is set up, but impractical with

regard to the memory requirements. At the other extreme, it is possible to search

through all the powers of X in (2.4); this requires a minimum amount of memory but

needs, in the worst case, n steps until completion. Predominantly qualiVed for this

task is the LFSR, which traverses the power sequence through its shift operations.

Established error correction mechanisms for cyclic codes are based on the Meggitt

decoder [Meg61]. It computes the error syndrome and uses it subsequently to decode

the message bits in a serial manner. An error-pattern detection circuit is required that

needs to sense all error syndromes that correspond to correctable error patterns that

have been shifted to the high order bit positions. The complexity of the decoder is

thus, on the one hand, determined by the number and characteristic of error patterns

that are to be corrected. On the other hand, if a single-bit error is to be corrected,

the Meggitt decoder requires, in the worst case, another n steps after the syndrome

has been calculated, as it can easily be veriVed that its operation is equivalent to the

exhaustive search method described earlier. It starts its search from the syndrome,

which is shifted inside an LFSR until a predeVned value in the sequence is reached—

signaled by the error detection circuit—, so that the error position can be deduced and

the error corrected.

An improvement to the Meggitt decoder is constituted by the error-trapping

decoder [RM64; Kas64; LC83], which drastically reduces the complexity of the error

detection circuit for some cases. Its operation is based on the fact that if the error bits

can be cyclically shifted into them least signiVcant bit positions of the received vector,

the corresponding syndrome will coincide with thosem bits of the error pattern. It

can be further shown that if the code is capable of correcting t errors, the weight of

the syndrome will be t or less only if the error bits are located in them least signiVcant

bits of the received vector. It follows that the error detection circuit can be simpliVed

since it needs to look out only for syndromes with a weight of t or less. The drawback

of the error-trapping method in comparison to the Meggitt decoder is, however, that

the error bits of the correctable error patterns need to be conVned tom consecutive

bit positions, including the case where the bits wrap from the most signiVcant to the

least signiVcant end of the error vector. Also, as is the case with the Meggitt decoder,

in the worst case n steps are required to locate and correct a single-bit error.
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2.3.3 Error Detection and Correction Capabilities

Since cyclic codes form a subclass of linear block codes, they inherit the error detection

and correction capabilities from their superclass. These capabilities are described

in Subsection 2.1.5. In addition, an (n, k) cyclic code generated by p(X ) with degree

m = n − k is capable of detecting any error pattern where the erroneous bits are

conVned to m or fewer consecutive bit positions, which includes the case of the

erroneous bits wrapping from the most to the least signiVcant bit position of the error

vector [LC83; PW72]. These error patterns are referred to as cyclic burst errors of

length m or less, which cover also the single-bit error case. The probability that a

cyclic burst error of lengthm + 1 goes undetected is 2−(m−1). For cyclic burst errors of

length l with l > m + 2, the probability of undetectability is 2−m.

If restrictions are put on the generator polynomial p(X ), further properties can

be derived. The code generated by a generator polynomial p(X ) that does not divide

xi + 1 for any integer i with 1 ≤ i ≤ l , detects all double bit errors that are not more

than l bit positions apart [TW11]. In particular, all double bit errors are detected for

l = n − 1. If (x + 1) is a factor of p(X ), all error patterns with an odd number of bit

errors are detected, at the expense of error patterns with an even number of bit errors

[TW11; Koo02].

Cyclic codes possess, in general, further error detection capabilities that go beyond

the ones stated above. These and their error correction capabilities need to be assessed

in detail for each generator polynomial individually, as there are great variations

among them [Koo02; KC04].

2.3.4 Generator Selection Considerations

There are many factors upon which the selection of a cyclic code generator polynomial

for an application depends. First of all, there may be constraints on the degree of the

generator polynomial, for instance, due to block length, information rate or system

design speciVcations.

Secondly, only certain generator polynomials may be qualiVed for use in some

cases, due to diUerences in the eXciency in which the corresponding encoder and

decoder can be implemented. This concerns, particularly, the diUerences in speed

or resource demand in hardware [CW94; Bra+96; Der01; CP06; KRM08; KRM09] or

software [Ngu09].
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Thirdly, diUerent generator polynomials exhibit diUerent error detection and cor-

rection capabilities as outlined in Subsection 2.1.5 and Subsection 2.3.3. In particular,

if a generator polynomial is to be used for diUerent sized codes, i.e. diUerent shortened

cyclic codes derived from a single cyclic code, it is important to analyse and weigh up

the properties of diUerent generator polynomials to select the most advantageous one

[Koo02; KC04]. The capabilities of the code need also to be considered in conjunction

with the error patterns that are anticipated. Errors that are very likely to occur should

be manageable by the selected code. The choice of polynomial can also be inWuenced

by the data that is to be protected, as it may exhibit redundancy that could assist in

the error detection and correction process.

Finally, there exist cyclic code classes for which simpliVed error correction proce-

dures have been devised as, for instance, is the case with BCH codes which are brieWy

outlined in Section 2.4, or codes that take advantage of the special factorisations of

the sequence length in (2.4) [CW94]. Where decoding eXciency is of interest, it may

be necessary to restrict the cyclic code search to such classes.

2.4 BCH Codes

An important class of cyclic code, the Bose-Chaudhuri-Hocquenghem (BCH) codes

[Hoc59; BRC60], oUer a simpliVed decoding mechanism for random bit errors. A

t-error-correcting binary primitive BCH code for a positive integer m, has a code

word length of n = 2m − 1 and a number of redundancy bits that does not exceedmt .
The generator polynomial p(X ) is deVned as the polynomial of lowest degree that

has 2t consecutive powers of a primitive element α of the Galois Veld GF (2m) as its

roots, such that д(αi) = 0 for 1 ≤ i ≤ 2t [LC83; PW72]. With ϕi(X ) being the minimal

polynomial of αi , the generator polynomial can be computed as the least common

multiple of the minimum polynomials of the roots α2j+1, where 0 ≤ j ≤ t − 1, so that

p(X ) = lcm(ϕ1(X ), ϕ3(X ), . . . , ϕ2t−1(X )).

The encoding of a BCH code with generator polynomial p(X ) can be accomplished in

the same way as for general cyclic codes described in Subsection 2.3.1.
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2.4.1 Decoding

The decoding process for BCH codes takes advantage of the roots of the generator

polynomial p(X ). It is assumed that a code polynomial ū(X ) is corrupted with an error

polynomial e(X ), such that v̄(X ) = ū(X ) + e(X ) is received. The errors are assumed to

be located at bit positions j0 to jν−1 with 0 ≤ j0 < j1 < · · · < jν−1 ≤ n − 1, so that

e(X ) = X jν−1 + X jν−2 + · · · + X j0 .

If v̄(X ) is evaluated at the roots αi of p(X ) for 1 ≤ i ≤ 2t , it is essentially the error

polynomial e(X ), which is evaluated, since the αi are also roots of code polynomials

passed down from the generator. Alternatively, the syndrome s(X ) of v̄(X ) can be

evaluated at the roots αi leading to the same result [CS09]. With Si = v̄(αi) = e(αi) =
s(αi), a set of 2t equations can be obtained:

S1 = (α jν−1)1 + (α jν−2)1 + · · · + (α j0)1

S2 = (α jν−1)2 + (α jν−2)2 + · · · + (α j0)2

S3 = (α jν−1)3 + (α jν−2)3 + · · · + (α j0)3

...

S2t = (α jν−1)2t + (α jν−2)2t + · · · + (α j0)2t .

Under the assumption that ν ≤ t , i.e. t or fewer errors occurred, a unique solution

for the error-location numbers βi = α ji with 0 ≤ i ≤ ν − 1, for the above set of

nonlinear equations is computable. From an error-location number βi , the actual bit

error location ji can be derived by computing its discrete logarithm, which is touched

on in Subsection 2.3.2, and for which more details are provided in Chapter 3.

In the standard decoding procedure for BCH codes, an error-location polynomial
σ (X ) is constructed, which is deVned as

σ (X ) = (βν−1X + 1)(βν−2X + 1) · · · (β0X + 1)

= σνX ν + σν−1X ν−1 + · · · + σ0X 0.

The polynomial coeXcients σi for 0 ≤ i ≤ ν can be computed from the values of S j ,
where 1 ≤ j ≤ 2t , with the help of the Berlekamp-Massey algorithm [Ber65; Mas69].

Once the error-location polynomial σ (X ) is determined, its roots will point to the

error-location numbers, since a root is just the inverse of an error-location number.
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An established procedure for determining the roots of σ (X ) is Chien’s search [Pet60;

Chi64]. Its operating principle consists in the successive evaluation of σ (X ) at all

potential error-location numbers α1 to αn . For a discovered root αi in step i with

1 ≤ i ≤ n, the error-location number corresponds to αn−i , and it follows that the

erroneous bit is located at bit position n − i.

If the correction of a single-bit error at bit position j on the basis of the described

decoding procedures for BCH codes is considered, the computationally expensive

step is performing Chien’s search. The error-location number for a single-bit error

is readily given by S1 = s(α ) = α j , from which the error-location polynomial σ (X )

can directly be assembled as σ (X ) = (α jX + 1). Chien’s search algorithm is then used

to determine j essentially by searching through all possible values, which is one of

the ineXcient methods of determining the discrete logarithm of α j as described in

Subsection 2.3.2. More details on the computation of discrete logarithms are given in

Chapter 3.

2.5 Conclusion

Error-control codes provide a means to enhance the reliability of digital data that is

exposed to noise during its processing, transmission, or storage. To employ a code,

before transmission the sender of the data enriches it with redundancy to form a code

word according to the code speciVcation. Once the possibly corrupted code word is

received by a consumer, it can use the redundancy to detect and possibly also correct

errors.

Cyclic codes from an important class of error-control code, since their algebraic

properties allow the use of simple LFSRs to generate and verify code words. Addi-

tionally, cyclic codes oUer powerful error detection and correction capabilities. The

speciVc capabilities depend not only on the cyclic code generator polynomial, but

also on the length of the data that is to be protected. To exploit the full potential of

cyclic codes, it may be necessary to provide the Wexibility of an adaptable generator

polynomial, as in the case of SpiNNaker which is described in more detail in Chapter 4.

A novel solution to the creation of eXcient programmable cyclic code circuits is

proposed in Chapter 5.

The most basic case of error correction concerns the localisation of a single-bit

error in the data. If cyclic codes serve as the basis for error control, the correction of a

single-bit error requires the computation of the discrete logarithm in relevant groups.
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This can be achieved with, for instance, a table-lookup mechanism or the exhaustive

search method. However, neither of these methods is eXcient. More details on the

discrete logarithm problem together with more eXcient state-of-the-art algorithms

are found in Chapter 3, and two new solutions to this problem for particular groups

are proposed in Chapter 6 and Chapter 7.
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Chapter 3

Discrete Logarithms

For a generator element α of a Vnite cyclic group (G , ·) of order q, and an element

β ∈ G , the discrete logarithm is deVned as the integer k with 0 ≤ k ≤ q − 1, such that

αk = β , (3.1)

and denoted by k = loga β . Finding the unique integer k in the above setting is

described by the generalised discrete logarithm problem [MVO96], and is referred to

as the discrete logarithm problem in what follows. For general Vnite cyclic groups

G, no eXcient classical method for solving the discrete logarithm problem has been

reported yet [Odl85; Odl00; McC90; MVO96; Mos96; Buc01; Sti02; Gal12].

It is, however, the case that groups exist for which the discrete logarithm is easily

obtainable. If the Vnite cyclic group (Zn , +) under addition modulo n is considered for

instance, exponentiation on the basis of the group operation as in (3.1) translates into

multiplication in Zn , such that for a generator α ∈ Zn , β ∈ Zn , and 0 ≤ k ≤ n − 1, the

problem takes the following shape

αk ≡ β (mod n).

Since α is a generator, it has a multiplicative inverse element α−1, and it follows

k ≡ α−1β (mod n).

The computation of the inverse element α−1 can easily be accomplished with the help

of the extended Euclidean algorithm, since the relation gcd(α ,n) = 1 holds for every

generator element α of the group Zn .

49
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As a matter of fact, cyclic groups of the same order are isomorphic to each other,

so that every Vnite cyclic group of order n can be transformed into Zn [Gal02; BM77].

This means that, if the isomorphism between a Vnite cyclic group G of order n and Zn
can be computed eXciently, the discrete logarithm can also be computed eXciently

for G . However, no method is known for determining this isomorphism eXciently for

arbitrary groups [Sti02].

The diXculty of the discrete logarithm problem is independent of the choice of

the generator element. For a cyclic group G, with generator elements α and ᾱ , it

is assumed that logarithms can easily be computed to the base ᾱ . In this case, the

logarithm of a β ∈ G to the base α can simply be obtained as

logα β = (logᾱ β )(logᾱ α )−1 (mod q),

where q denotes the order of G [MVO96].

A popular choice for a Vnite cyclic group in computer system applications is the

multiplicative group of a Vnite Veld of binary characteristic, as its arithmetic can

be implemented rather easily in hardware and software [Odl85]. The group can be

represented as the polynomial ring over GF (2) modulo an irreducible polynomial

f (X ) over GF (2), and indicated as Z2[X ]/〈f (X )〉. DiUerent irreducible polynomials

f (X ) of the same degree induce diUerent representations of one and the same group.

However, similarly to the choice of the primitive element, the choice of the irreducible

polynomial f (X ) does not have any eUect on the diXculty of the discrete logarithm

problem, as the group representation can be changed in polynomial time [Zie74;

Len91].

The inverse operation of the discrete logarithm, discrete exponentiation, is always

computable in polynomial time with the square-and-multiply algorithm [Knu97]. This

fact, and the wide belief that the computation of the discrete logarithm is impractical

for groups of certain representation and order, has led to a number of cryptographic

applications that base their operating principle on the discrete logarithm, such as the

DiXe-Hellman-Merkle key exchange [DH76], the ElGamal public-key cryptosystem

and signature scheme [Elg85], and its variant the Schnorr signature and identiVcation

scheme [Sch91].

Algorithms for computing discrete logarithms are subdivided into generic algo-

rithms that do not rely on any special representation of the group elements, and

special algorithms that work best only for certain group representations. Furthermore,

some algorithms are dependent on the factorisation of the group order q. It has been
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shown that the fastest constructable generic algorithm that assumes that each group

element has a unique encoding, cannot improve on the time complexity Ω(
√
p), where

p is the largest prime factor of the group order [Nec94; Sho97].

In what follows, the main ideas for the fastest algorithms for the discrete logarithm

that have been published are brieWy outlined. The algorithms are all of the generic

type apart from the index-calculus method.

3.1 Shanks’ Algorithm

This algorithm is also known as the baby-step giant-step algorithm [Sha71] and is

essentially a time-space trade-oU. A group (G , ·) of order q with generator element

α and an element β ∈ G is considered. The algorithm is based on the fact that a αk ,

0 ≤ k ≤ q − 1, can be expressed for anm, 1 ≤ m ≤ q , as

αk = αim+j

with 0 ≤ i ≤
⌈ q
m

⌉
− 1 and 0 ≤ j ≤ m − 1. The algorithm generates, initially, a list of

‘giant steps’ αim for 0 ≤ i ≤
⌈ q
m

⌉
−1, which are stored sorted in memory and associated

with their corresponding exponent factor i. If the logarithm of β to the base α is to be

computed, the baby steps βα− j are evaluated and searched for in the stored list, for

each j that satisVes 0 ≤ j ≤ m − 1. Once a match is found so that βα− j = αim, the

discrete logarithm can be computed as

logα β ≡ im + j (mod q).

The pseudocode for the initialisation of Shanks’ algorithm is shown in Algorithm 3.1,

whereas the pseudocode for the evaluation of a speciVc discrete logarithm can be

found in Algorithm 3.2.

Algorithm 3.1 Shanks’ precomputation.

1: procedure Shanks_Precomputation(α ,q ,m)
2: for i = 0 to

⌈ q
m

⌉
− 1 do

3: insert (αim , i) into the memory, sorting pairs by their Vrst component
4: end for
5: end procedure
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Algorithm 3.2 Shanks’ algorithm.

1: function Shanks(α , β ,q,m)
2: for j = 0 tom − 1 do
3: if (x , i) ∈ memory with x = βα− j then
4: return im + j (mod q)
5: end if
6: end for
7: end function

Considering that a search in the sorted list requires in the worst case dlog2
q
m e

steps, and that in the worst case a maximum number of m baby steps need to be

evaluated until a match is found, the worst-case running time can be indicated as

mdlog2
q
m e. In terms of memory requirements, d qm e list entries need to be stored. If m

is chosen to be set to m = 1, all possible powers of α are stored in memory, so that

essentially a table-lookup mechanism is realised. The other extreme is achieved ifm
is set to its upper bound q, which basically results in an exhaustive search algorithm

with minimal memory requirements. For the case that m = d
√
qe, the time complexity

accounts for O(
√
q log2

√
q), while the memory complexity accounts for O(

√
q).

3.2 Pollard’s Rho Algorithm

Pollard’s rho algorithm for discrete logarithms [Pol78] is considered for a group (G , ·)
of order q with generator element α . For an element β ∈ G, the discrete logarithm

to the base α is to be determined. The algorithm partitions G into three sets S0 to S2

of comparable size, and deVnes a recursive sequence of elements in G with starting

value x0 = 1 and

xi+1 =


xiα if xi ∈ S0

x2
i if xi ∈ S1

xiβ if xi ∈ S2.

It needs to be ensured that 1 < S1, as otherwise all sequence elements would equal 1.

To keep track of the manipulations that are applied to the starting value x0 during the

traversal of the sequence, it is possible to record the exponents of α and β in ai and bi ,
respectively, so that xi can be expressed as

xi = αai βbi .
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The ai and bi can be deVned recursively as a function of xi with a0 = 0 and b0 = 0 as

follows

ai+1 =


ai + 1 mod q if xi ∈ S0

2ai mod q if xi ∈ S1

ai if xi ∈ S2,

and

bi+1 =


bi if xi ∈ S0

2bi mod q if xi ∈ S1

bi + 1 mod q if xi ∈ S2.

The algorithm searches now the sequence for a collision of the form xi = x j , for

i , j, which is simpliVed for practical reasons to cases where

xi = x2i ,

for i > 0. Once such a collision is found, it follows that

αai βbi = αa2i βb2i ,

which can be rewritten as

βbi−b2i = αa2i−ai .

Taking the logarithm to the base α on both sides leads to

(bi − b2i) logα β ≡ a2i − ai (mod q).

If gcd(bi − b2i ,q) = 1, the logarithm can be solved as

logα β ≡ (bi − b2i)−1(a2i − ai) (mod q).

Otherwise, the linear congruence exhibits gcd(bi − b2i ,q) solutions. If the greatest

common divisor is not too large, all the diUerent solutions can be tested until the

unique solution is found that corresponds to the discrete logarithm. In the case that

the number of solution to the linear congruence is too large, Pollard’s rho algorithm

can be repeated with a diUerent starting value x0 = αa0βb0 with a0,b0 ∈ Zq [MVO96].

The pseudocode for the algorithm is shown in Algorithm 3.3.

Under the assumption that the sequence behaves like a random mapping on G,
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Algorithm 3.3 Pollard’s rho algorithm for discrete logarithms.

1: function Pollard(α , β ,q, S0, S1, S2)
2: globalise α , β ,q, S0, S1, S2

3: {x , a,b} = {1, 0, 0}
4: {x̄ , ā, b̄} = seq(x , a,b)
5: while x , x̄ do
6: {x , a,b} = seq(x , a,b)
7: {x̄ , ā, b̄} = seq(x̄ , ā, b̄)
8: {x̄ , ā, b̄} = seq(x̄ , ā, b̄)
9: end while

10: if gcd(b − b̄ ,q) is small then
11: determine k satisfying (b − b̄)k ≡ (ā − a) (mod q) and αk = β
12: return k
13: else
14: restart with diUerent starting values {x , a,b}
15: end if
16: end function
17:

18: function seq(x , a,b)
19: switch x ∈
20: case S0 : return { xα , a + 1 mod q ,b }
21: case S1 : return { x2, 2a mod q, 2b mod q }
22: case S2 : return { xβ , a,b + 1 mod q }
23: end switch
24: end function

it has been shown that the number of operations that the algorithm requires until a

collision is found, has an expectation value close to√
π 5q
288
≈ 1.0308

√
q.

Alternative sequences that improve on the described sequence above have been

suggested [Tes00].

3.3 Silver-Pohlig-Hellman Algorithm

The group (G , ·) of order q with generator element α is considered. For an element

β ∈ G, the discrete logarithm k = logα β is to be determined. The Silver-Pohlig-

Hellman algorithm [PH78] simpliVes the task by taking into account the factorisation

of the group order q. It is assumed that q decomposes into distinct primes pi , such
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that

q =
N∏
i=1

peii .

With this factorisation, the algorithm computes the discrete logarithm k modulo each

of the prime powers peii for 1 ≤ i ≤ N . All those values can then be easily combined

with the Chinese remainder theorem to the overall solution k.

To compute k modulo peii , the result is considered in the radix pi expansion as

k ≡
ei−1∑
j=0

k jp
j
i (mod peii ),

where 0 ≤ k j ≤ pi − 1. The values k j are determined one by one in increasing

signiVcance starting from k0. It is now assumed that k0 to k j−1 with j < ei , have

already been computed, so that k j will be determined in the next step. For this reason

β j is introduced as follows

β j = (βα−(k j−1p
j−1
i +k j−2p

j−2
i +···+k0))q/p

j+1
i

= (αkα−(k j−1p
j−1
i +k j−2p

j−2
i +···+k0))q/p

j+1
i

= (αcp
ei
i +kei −1p

ei −1
i +kei −2p

ei −2
i +···+k j p

j
i )q/p

j+1
i

= α c̄qα (q/pi )k j

= α (q/pi )k j

= αk j
j ,

where c and c̄ are integers. The coeXcient k j can thus be computed as k j = logα j β j ,
whereby it is apparent from the transformation that α j has an order of pi .

It follows that with the Silver-Pohlig-Hellman algorithm, Vnding the discrete

logarithm k in a group G of order q, is reduced to Vnding discrete logarithms in

subgroups of G, whose orders correspond to the diUerent prime factors pi of q. More

precisely, for every prime factor pi with multiplicity ei of the group order q, ei instances

of the discrete logarithm need to be solved in the subgroup of order pi . If the group

order q decomposes into diUerent prime powers peii , the Chinese remainder theorem

needs to be employed in a last step to combine the intermediate results to the overall

solution k.

The operation of the algorithm is summarised in the pseudocode given in Al-

gorithm 3.4. Obvious optimisations to the code have been omitted for enhanced
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Algorithm 3.4 Silver-Pohlig-Hellman algorithm.

1: function Silver-Pohlig-Hellman(α , β ,q =
∏N

i=1 p
ei
i )

2: for i = 1 to N do
3: for j = 0 to ei − 1 do
4: β j = (βα−(k j−1p

j−1
i +k j−2p

j−2
i +···+k0))q/p

j+1
i

5: α j = αq/pi
6: k j = logα j β j
7: end for
8: k̄i = kei−1p

ei−1
i + kei−2p

ei−2
i + · · · + k0

9: end for
10: compute k such that k ≡ k̄i (mod peii ) for 1 ≤ i ≤ N
11: return k
12: end function

readability. The runtime of the algorithm is on the one hand inWuenced by the time

Tpi that is necessary to evaluate the discrete logarithm in the subgroup of order pi ,
for which for instance, Shanks’ or Pollard’s rho algorithm can be used. On the other

hand it is necessary to dedicate time in the order of log2 q to compute β j . Certain

calculations for the Chinese remainder theorem can be precomputed for the factorisa-

tion of q, so that its execution time can be neglected. In summary, the overall time

complexity of the algorithm is given by O(
∑N

i=1 ei(log2 q +Tpi )).

The Silver-Pohlig-Hellman is particularly eXcient if the group order q is smooth,

that is to say its prime factors are all below a certain threshold, such that the discrete

logarithms can easily be evaluated in the corresponding subgroups. However, if the

group order q is prime, the method is without eUect.

3.4 Index-Calculus Algorithm

The index-calculus method [Odl85; Odl00; Sch+96; MVO96; Sti02; Sch08; Gal12] is

a special algorithm for solving discrete logarithms, as its eUectiveness depends on

properties of the underlying group representation. It is probabilistic and requires a

substantial amount of memory but it is, at the same time, the most powerful algorithm

that has been devised for computing discrete logarithms. Its main idea is sketched in

what follows.

A cyclic group G of order q with the primitive element α is considered. Further-

more, a factor base B = {b1,b2, . . . ,b |B|} is selected, which is a rather small subset

of elements in G, such that a large portion of elements in G factorise over B. If an
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element factorises over B, it is considered to be smooth with respect to B. During

the precomputation phase of the index-calculus method, which is discussed in more

detail below, the discrete logarithms to the base α of the elements in the factor base B

are determined.

Under the assumption that the precomputation phase has been completed, a

particular discrete logarithm to the base α for an element β ∈ G can be computed as

follows. An integer r is chosen at random with 0 ≤ r ≤ q − 1, until βαr is found to

factorise over B, such that

βαr =
|B|∏
i=1

beii .

If the logarithm to the base α is taken on both sides of the equation, it follows that

logα β ≡
|B|∑
i=1

ei logα bi − r (mod q).

Thus, logα β can be computed since the logarithms of the elements in the factor base

are known.

The precomputation phase is subdivided into a sieving and a linear algebra stage.

During the sieving stage, random integers r with 0 ≤ r ≤ q − 1 are chosen, and used

to test if αr can be composed of elements in B, such that

αr =
|B|∏
i=1

beii ,

which leads to the linear congruence

r ≡
|B|∑
i=1

ei logα bi (mod q).

Once enough of these linear relations modulo q have been collected such that the

resulting linear system has a unique solution, the linear algebra stage is initiated to

compute this solution and thus the logarithms of the elements in the factor base.

If the underlying group is the multiplicative group F∗q of a Vnite Veld Fq , a more

general variant of the index-calculus method is usually considered [Sch+96; Sch08].

Let α be a primitive element of F∗q . The logarithm to the base α for an element β ∈ F∗q
is to be determined. Two Dedekind domains R0 and R1 need to be selected with

corresponding surjective ring homomorphisms ϕ0 : R0 → F
∗
q and ϕ1 : R1 → F

∗
q .
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Furthermore, two factor bases A = {a1, a2, . . . , a |A|} and B = {b1, b2, . . . , b|B|} are

deVned that consist of prime ideals of R0 and R1, respectively. For α and β , the

preimages a ∈ R0 and b ∈ R1 under the corresponding ring homomorphisms need to

be obtained, such that ϕ0(a) = α , ϕ1(b) = β and the ideals generated by a and b are

smooth in respect to their corresponding factor bases A and B. It follows that the

ideals can be expressed as

(a) =
|A|∏
j=1

a j
v j and (b) =

|B|∏
j=1

bj
w j .

The algorithm searches now for pairs (ai ,bi) ∈ R0 × R1, such that

ϕ0(ai) = ϕ1(bi),

(ai) =
|A|∏
j=1

a j
vi , j and (bi) =

|B|∏
j=1

bj
wi , j .

With a suXciently large collection of N pairs (ai ,bi) and the corresponding factorisa-

tion of their ideals, the following linear system modulo q − 1 is constructed



v1 v1,1 v2,1 · · · vN ,1

v2 v1,2 v2,2 · · · vN ,2
...

...
...
. . .

...

v |A| v1, |A| v2, |A| · · · vN , |A|

0 w1,1 w2,1 · · · wN ,1

0 w1,2 w2,2 · · · wN ,2
...

...
...
. . .

...

0 w1, |B| w2, |B| · · · wN , |B|



X ≡ −



0

0
...

0

w1

w2
...

w |B|
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(mod q − 1).

With a solution X = [x0, x1, x2, . . . , xN ]T to the system of linear congruences, the

elements

ā = ax0

N∏
i=1

axii and b̄ = b
N∏
i=1

bxii

are deVned. Furthermore,

βϕ0(ā) = βαx0ϕ0(
∏N

i=1 a
xi
i ) = αx0βϕ1(

∏N
i=1 b

xi
i ) = αx0ϕ1(b̄). (3.2)
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If additionally, both ā and b̄ are assumed to be (q − 1)st powers, the corresponding

ring homomorphisms would map them to the multiplicative identity element in Fq ,

such that (3.2) would yield

αx0 = β ,

where x0 is the discrete logarithm that is being searched for.

Instead of using R0 and R1 for the preimages of α and β , respectively, it is possible

to modify the algorithm slightly to locate the preimages in only one of the two

Dedekind domains [Sch08]. Also, in contrast to the former described index-calculus

variant, the precomputation phase has been integrated with the main computation,

however, they can be split if more than one discrete logarithm needs to be computed

for the same setup [JL02; Sch05].

It will be convenient to introduce the following notation for the characterisation

of the time complexity of the index-calculus method

Lq(a, c) = exp ((c + o(1))(lnq)a(ln lnq)1−a),

which interpolates between polynomial and exponential behaviour as a varies from

zero to one. DiUerent variants of the index-calculus method have been devised to deal

with diUerent sizes of the multiplicative group of a Vnite Veld Fq with q = pm and p
being a prime number. The time complexity for some of the variants has been proven

rigorously, in other cases plausible assumptions are made that lead to algorithms with

only conjectured, but better, time complexities.

If rigorously proven algorithms are considered, form = 1 and p → ∞, an expected

subexponential running time of Lq(1/2,
√

2) is achievable [Pom87]. The same time

complexity can be achieved if p ≤ mo(m) for q → ∞ [LP98]. For the special case

of m = 2 and p → ∞, an index-calculus variant with expected running time of

Lq(1/2, 3/2) is constructable [Lov92].

If unproven assumptions are allowed for the runtime analysis, versions of the

index-calculus method have been devised that yield a better performance than in the

case of the rigorously proven ones. Adleman and DeMarrais have proposed for p > m
as q → ∞ an algorithm with conjectured expected running time of Lq(1/2, 2) [Adl79;

AD93; AD94]. Thus, if this result is combined with the rigorously proven algorithm

for m = 1 and p → ∞, a subexponential algorithm for all Vnite Velds with a time

complexity of the form Lq(1/2, c) for q → ∞ with
√

2 ≤ c ≤ 2 is obtained.

The most prominent variants of the index-calculus method, which lead to even
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better conjectured time complexities, are the number Veld sieve and the function Veld

sieve. Initially, the number Veld sieve was introduced for the factorisation of integers

[Len+93; Rie94], but has been adapted to deal with the discrete logarithm problem

by Gordon [Gor93]. It has been subsequently further studied and improved [Sch93;

Sch+96; JL03; Sch05; Jou+06; Sch08]. As long asm does not grow too fast, such that

m ≤ o(logq/ log logq)1/3, it has been shown that the following conjectured expected

time complexity is achievable

Lq(1/3, (64/9)1/3),

for q → ∞. For special cases of prime Velds, where p = 2n ± 1, a conjectured expected

time complexity of Lp(1/3, (32/9)1/3) is obtainable [Sch10].

The function Veld sieve has been proposed by Adleman [Adl94] and further

improved since then [AH99; Sch02; JL02; Gra+04; JL06; Sch08]. For the case that

p ≤ mo(
√
m) and q → ∞, it has been conjectured that the running time has an

expectancy value of

Lq(1/3, (32/9)1/3).

As a special case of the function Veld sieve the Coppersmith algorithm [Cop84; Odl85]

is considered. It has been devised for Vnite Velds with binary characteristic so that

p = 2. The conjectured expected value for the running time accounts for L2m (1/3, c),

where (32/9)1/3 ≤ c ≤ (4)1/3.

More recently, it has been shown that the gap that existed between the number

Veld sieve and the function Veld sieve in terms of Veld sizes, has been closed, so that it

is now possible to construct, for all Vnite Velds, an algorithm that runs in conjectured

expected running time of Lq(1/3,O(1)) for q → ∞ [JL06; Jou+06; Sch08].

The size of the factor base for all of the variants of the index calculus method,

is approximately in the order of the corresponding running times, and thus is an

important factor that cannot be neglected [Odl85; Sch08; Gal12].

3.5 Conclusion

The interest in the discrete logarithm is two-sided. On one hand, it is assumed that the

computation of the discrete logarithm is hard in certain groups and this is exploited

in many cryptographic applications. On the other hand, the eXcient correction of

single-bit errors based on cyclic codes, as described in Chapter 2, requires the discrete
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logarithm to be easily computable in relevant groups. These two applications have

conWicting interests and research progress in favour of either may have negative

implications for the other.

The discrete logarithm problem can eXciently be solved for the Vnite cyclic group

(Zn , +) under addition modulo n. However, it is currently unclear as to whether this

may also apply to certain other groups. It has been shown that if no special properties

of the group element encodings are assumed, the fastest constructable algorithm

requires Ω(
√
p) group operations to compute the discrete logarithm, where p is the

largest prime factor of the group order. However, this assumption may not hold for all

groups of practical interest, leaving open the possibility of algorithms that improve

on the lower bound.

Shank’s algorithm is a time-space trade-oU and thus is only practically applicable

to groups of small order. Pollard’s rho algorithm has constant space requirements and

an expected runtime in the order of the square root of the group order, if the simulated

walk in the underlying group is assumed to be random. The Silver-Pohlig-Hellman

algorithm reduces the initial discrete logarithm problem eUectively into subgroups,

whose orders correspond to the prime factors of the initial group order. However,

the most powerful algorithm for the computation of discrete logarithms is the index-

calculus method which can be applied to multiplicative groups of Vnite Velds. It is

a probabilistic algorithm with an expected subexponential running time and space

requirements in the same order.

Two new solutions are proposed to the discrete logarithm problem for certain

groups in Chapter 6 and Chapter 7.
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Chapter 4

SpiNNaker

The functioning of the human brain still remains a mystery and is under constant

investigation [FT07; Fur12]. Within the brain the main cell type that processes infor-

mation is believed to be the neuron and an average human brain consists of about

1011 of these neurons interconnected to form a large neural network [Kan+12; DA01].

Neurons receive input signals from other neurons in the form of electrical impulses;

these are often modelled as spike events in artiVcial neural networks. Within a neuron

received spikes may trigger the emission of a new outgoing spike, or a sequence of

spikes, which are transmitted to a set of downstream neurons to contribute to their

input. It is believed that the timing with which neurons emit spikes (Vre) is one of the

key principles that underpins how information is represented and processed in the

brain [TFM96; Mao+01].

A connection between two neurons is established through a synapse, permitting

the transmission of signals from one neuron to the other. Each synapse has char-

acteristics which determine how signals are relayed, including their speciVc timing.

The strength of a connection is a further important synaptic property, describing the

magnitude of a relayed signal on the receiving neuron, and is often modelled as a

single numerical value: the synaptic weight. It is estimated that about 1015 synapses

can be found in the human brain [Kan+12]; these are dynamic, strengthening or weak-

ening neural connections over time. This dynamism extends to synaptic connections

which may be completely removed, or new connections which may arise between

neuron pairs. This whole dynamic process that governs the neural network is known

as synaptic plasticity and it is believed that it is central to biological processes of a

higher level, such as learning or memory.

The understanding of the operating mechanisms of the brain is presently far from
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complete. For this reason, the SpiNNaker project [FT07; FB09; Fur12; Fur+12] has

been initiated to support the quest to understand how the brain works, and in the

hope of Vnding new and more eXcient ways of computing—inspired by biology. It

aims to deliver a research platform for the large-scale simulation of arbitrary spiking

neural networks and operate in biological real-time. SpiNNaker is a spiking neural

supercomputer architecture that is tailored to support the eXcient simulation of

real-time networks of a billion neurons; the scale and complexity of the simulation

depends on the neuron and synapse models used. In the billion neuron case each

neuron receives a biologically plausible average input from 1,000 other neurons with

a mean neuron Vring rate of 10 Hz. Although simulation of spiking neural networks

is a fairly speciVc task, SpiNNaker is not limited to this computational scope, as the

following architectural description will make clear.

4.1 Architecture

The SpiNNaker architecture has been devised to facilitate a massively-parallel comput-

ing platform consisting of a million processors, primarily for the real-time simulation

of large-scale spiking neural networks. With respect to the target machine, particular

emphasis has been laid upon a power-eXcient and fault-tolerant design. The central

element of the architecture is the SpiNNaker chip, which is a custom-designed Multi-

Processor System-on-Chip (MPSoC), fabricated on a 130 nm CMOS process [Fur+12].

A 128 MiB oU-die mobile Double Data Rate (DDR) Synchronous Dynamic Random

Access Memory (SDRAM) is stacked and connected on top of the MPSoC, forming a

System-in-Package (SiP), photographed in Figure 4.1. A SpiNNaker die is depicted in

Figure 4.2 and a schematic of the SpiNNaker MPSoC in Figure 4.3.

The MPSoC incorporates 18 processing subsystems that are built around low-

power ARM968 processing cores with tightly-coupled local memories of 32 KiB for

instructions, and 64 KiB for data storage as illustrated in Figure 4.4. Each processing

subsystem is also equipped with a Direct Memory Access (DMA) controller that

manages block transfers between the local subsystem data and the SDRAMs. In

addition to using the SDRAM as the source or target for the DMA data transfers, other

shared resources on the chip can transparently be selected such as the System RAM

or the System ROM. Each processing subsystem is complemented by an interrupt

controller, a communication interface, and two timers/counters.
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Figure 4.1: SpiNNaker MPSoC with stacked SDRAM on top. 3D packaging by UNISEM
(Europe) Ltd.

Figure 4.2: SpiNNaker Die.
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Figure 4.3: SpiNNaker chip schematic.

An important and innovative feature of the SpiNNaker chip is its custom com-

munication system. At its heart is the multicast packet router, which relays packets

between the processors on the chip, and to the routers of six neighbouring chips

through external links. The interconnect fabric that ties together both on-chip proces-

sors and external links to the router is a self-timed Network-on-Chip (NoC), referred

to as the Communications NoC. Similarly, the System NoC, a second, independent

self-timed interconnect fabric, is used to allow the processor subsystems access to

shared resources on the chip including the SDRAM. By employing asynchronous

interconnection systems, the SpiNNaker chip follows the Globally Asynchronous,

Locally Synchronous (GALS) design paradigm which eliminates the requirement to

distribute a global synchronous clock signal across all the cores in a system [BF02;

Pla+07; Pla+11]. BeneVts also arise within the design of chip, as the processor sub-

systems are decoupled from one other, and from the rest of the on-chip system. The

implementation process of the chip is therefore eased, as timing issues are limited to

smaller areas of the chip. A further communication interface integrated into the SpiN-

Naker chip is an optional Ethernet link. It is primarily intended for the connection of

a host system for conVguration and monitoring purposes, and is deployed to a limited
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number of nodes as depicted in Figure 4.5.

4.2 System

SpiNNaker chips will be used to compose large programmable computing systems, in

the Vrst instance for the simulation of spiking neural networks at biological real-time.

Since each chip can be interfaced to six others, it is possible to form a triangular grid

of chips as one conVguration. It is then intended to connect this grid into a toroid as

illustrated in Figure 4.5. The advantage of such a constellation is that packets can be

rerouted with only one additional hop around links that are congested or that have

been detected as broken. This fault-tolerance feature of the SpiNNaker architecture is

known as emergency routing.

It is intended to build a SpiNNaker system consisting of 57,600 chips that will

include more than a million processing cores [Fur12]. Depending on the neuron and

the synapse models selected, this should be suXcient to model approximately a billion

biologically plausible neurons. Neural simulations on a SpiNNaker system operate

with processing cores executing neuron simulations according to the required neuron
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Figure 4.5: SpiNNaker system.

model. A neuron may, if certain conditions are met, emit a spike which is represented

in the system as a short packet of 40 bits. 32 bits of the packet are reserved for the

identiVcation of the neuron emitting the spike, and 8 bits are used to carry further

routing control information. Such spike packets are released from the processing

cores into the routing fabric that handles the distribution and bifurcation to all target

neurons connected to the emitting neuron, according to information stored in the

routing tables of the routers. If a spike has been transmitted to a processing core

modelling a destination neuron, then a DMA transfer is initiated to retrieve the

corresponding synaptic parameters for that connection including its synaptic weight

and the associated connection delay. This data is transferred by DMA from SDRAM

to the local memory of the processing core. It is then possible to calculate the eUect of

the input spike on the target neuron via its synaptic connection completing the cycle

of a basic neural simulation.

4.3 Memory

The large SpiNNaker system in its envisaged conVguration of 57,600 nodes will

incorporate in the order of 7 TiB of SDRAM. With such an immense amount of

memory, the eUect of data bit errors is signiVcant during the operation of the machine.

Memory bit errors are subdivided into two diUerent classes: hard and soft errors
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[ZL79; Zie96; Zie+96]. A hard error is characterised by a permanent hardware fault

in a memory cell that will result in a consistent reliability issue. For instance, it may

be the case that a memory cell will always provide one particular bit value during

readout, no matter what value has been written to it. Soft errors are transient faults

that occur randomly and may, for example, be induced through cosmic rays or the

decay of radioactive atoms in the memory packaging materials. Also, a soft error may

arise either directly in the memory, or along the data path during the memory read or

write phase.

Recently, a large-scale study has been conducted to investigate statistics for error

rates in Dynamic Random Access Memory (DRAM) in production systems [SPW09].

It suggests that the average error rate ranges from 25,000 to 75,000 FIT (failures in

time per billion hours of operation) per Mibit, however a distinction between hard

and soft errors is not made. If these numbers are applied to the SpiNNaker system

of 57,600 nodes, 25 to 74 bit errors on average can be expected to occur within the

SDRAM per minute, roughly approximated as one bit error per second.

It may be the case that the number of expected bit errors in the SpiNNaker system

will not have a signiVcant impact on particular applications such as neural network

simulations. However, it is not known to what extent neural network simulations

can compensate for memory faults, and other potential applications may not tolerate

bit errors at all, so appropriate measures need to be taken to deal with them in

the SpiNNaker system. For this reason error-control codes are employed within

SpiNNaker to provide a layer of protection against memory faults.

4.4 CRC Unit

The DMA controller of each processing subsystem has been equipped with a CRC

unit that allows the generation and veriVcation of error-control codes. The circuit

primarily supports cyclic codes as they oUer powerful error detection and correction

capabilities and as they are, at the same time, easily implementable in hardware

[LC83]. If, for instance, a processor initiates a DMA transfer to copy a data block

from the local memory to the SDRAM, the CRC unit can be instructed to calculate

(transparently and in parallel) the redundancy part for a cyclic code and, automatically,

append this to the SDRAM data block. The CRC unit can be used to calculate the

error syndrome for a data block retrieved from memory and signal the corresponding

processing core if an integrity issue arose. The program that is executed on the
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processing core has to decide what action is to be taken in the event of a detected data

inconsistency. A simple retransmission of the data block could correct the error if it

occurred along the data path during the readout phase, however even this may not be

fast enough for the ‘real-time’ operation of a SpiNNaker neural simulation. Therefore

it is necessary to consider appropriate error correction procedures in software, to

recover from memory faults based on the obtained error syndrome, including when

they are uncorrectable. These can range from a simple disregard of the error, through

a localisation and correction of the error, to a shutdown of the relevant SpiNNaker

system components for replacement if hard errors are involved.

In the choice of employed cyclic code, many factors need to be taken into account

for the selection of the generator polynomial as outlined in Subsection 2.3.4. For

instance, certain undiscovered subclasses of cyclic codes may allow the realisation

of very eXcient error correction procedures in software, or data blocks of diUerent

lengths may be stored in the SDRAM so that a polynomial oUering best combined

error protection for all of the block lengths should be selected. To oUer maximal

Wexibility within SpiNNaker, a programmable CRC circuit has been incorporated that

permits switching the generator polynomial to any of degree 32 or lower whenever

required. A direct advantage is that the polynomial is adaptable to the length of the

data block that is to be protected, which means that the best choice of oUered error

protection can be made. Another feature of the CRC circuit is that several cyclic codes

of a smaller degree can be generated based on diUerent bits of the data stream. For

example, for each half-word of the data stream, a cyclic code based on a generator

polynomial of degree 16 can be computed.

The width of the data bus that traverses the DMA controller in SpiNNaker is 32

bits, and the CRC unit has been designed to process this number of bits in parallel to

avoid being a bottleneck to DMA data transfers. To conVgure the unit for the usage of

a cyclic code or any other supported error-control code, one Kibit of conVguration

data needs to be supplied by the corresponding processing core to the appropriate

registers inside the unit. Since the data bus is used to provide this conVguration data,

the transfer takes place as a series of 32 bit words. The registers are realised as latches

to reduce the hardware demand, as each SpiNNaker chip accommodates one CRC

unit for each of the 18 DMA controllers (one per processor subsystem). A detailed

description of the SpiNNaker CRC circuit together with its derivation and capabilities

can be found in the next chapter.
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4.5 Conclusion

The SpiNNaker architecture has been created to support large-scale simulations of

spiking neural networks in biological real-time. It has been dimensioned to scale up

to machines consisting of a million processors with SDRAM totalling about 7 TiB.

With such a vast amount of memory, it is estimated that, on average, about 1 bit error

per second will occur.

To improve the reliability of memory transfers, SpiNNaker employs cyclic codes

for error control due to the eXcient realisation of the code generation and veriVcation

circuit. Once inconsistencies are detected for a block of data, software procedures may

be triggered to attempt an error recovery. The correction of a single-bit error on the

basis of a cyclic code, essentially requires the computation of the discrete logarithm in

relevant groups as described in Chapter 2. However, no eXcient algorithm is known

for the computation of this type of discrete logarithm as discussed in Chapter 3. Two

new solutions for the computation of the discrete logarithm in certain groups are

proposed in Chapter 6 and Chapter 7.

The optimal choice of cyclic code to employ is inWuenced by many factors including

the length of the data that is to be protected and the desired error control capabilities.

Therefore, programmable cyclic code circuits are employed within SpiNNaker to

maximise Wexibility in the choice of cyclic code for diUerent scenarios. A novel

method for the generation of eXcient programmable cyclic code circuits is proposed

in Chapter 5.
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Chapter 5

Programmable CRC Hardware

Cyclic codes constitute a powerful class of error-control code as set out in Section 2.3.

They oUer eUective error detection and can easily be realised in hardware, which

makes them a popular choice for many applications that require the detection of errors,

including Ethernet [TW11]. In the context of pure error detection, a cyclic code is

often referred to as a Cyclic Redundancy Checksum (CRC) and the popularity of cyclic

codes has led to a number of diUerent software and hardware implementations [LC83;

RG88]. Speed requirements usually make software schemes impractical and dedicated

hardware is needed. The generic hardware approach uses an inexpensive Linear

Feedback Shift Register (LFSR), which assumes serial data input. In the presence

of wide data buses, the serial computation has been extended to parallel versions

that process whole data words based on derived equations [AS90; PZ92; CPR03;

Shi+01] and on cascading the LFSR [Spr01]. Various optimisation techniques have

been developed that target resource reduction [Bra+96] and speed increase [Der01;

CP06; KRM08; KRM09].

A wide range of factors inWuence the selection of an appropriate CRC generator

polynomial for a particular application as outlined in Subsection 2.3.4. This range in-

cludes the error detection and correction capabilities of a generator polynomial, which

depend on the length of the data that is to be protected. For instance, in scenarios

where data blocks of diUerent length are used, or where the Vnal requirements of the

generator polynomial are not known at the time of the hardware implementation, it is

beneVcial to employ programmable CRC circuits that can be conVgured to diUerent

generator polynomials.

This applies precisely to the SpiNNaker project, whose target is to provide a

research platform for the simulation of arbitrary spiking neural networks as described
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in Chapter 4. The planned large SpiNNaker system will incorporate a substantial

amount of SDRAM to hold relevant data for the neural network simulations; in this

context, CRCs are used to reduce the eUect of data errors arising in the memory. Since

the length of the data blocks may vary between diUerent neural network simulations,

for instance, it has been decided to incorporate programmable CRC circuits into the

SpiNNaker system to oUer maximal Wexibility.

With the design of a circuit, there is usually a tradeoU between speed and area.

In this particular scenario, there are two dimensions to the speed of a programmable

CRC circuit: the time necessary to process a data word, and the time required to

reconVgure to a new polynomial. This chapter directly extends the parallel CRC

circuit by Campobello et al. [CPR03] based on state space representation in several

ways. On the one hand, restrictions between the width of the data processed in

parallel and the order of the polynomial are lifted. On the other hand, a novel scheme

is presented allowing the inexpensive computation of the CRC transition and control

matrix in hardware. This leads to a programmable parallel CRC implementation that

oUers an improved balance between area and both dimensions of speed.

5.1 From Serial to Parallel

Where systems use wide data buses, it is advantageous for CRC circuits to operate on

data words and many approaches have been made to address this issue. Albertengo

and Sisto [AS90] derived equations, in 1990, for a parallel CRC circuit with automatic

premultiplication based on the Z-transform. A simpler method utilising state space

transformation leading to basically the same circuit was published two years later

by Pei and Zukowski [PZ92]. In 2003, Campobello et al. [CPR03] developed a similar

proof for the parallel CRC circuit without automatic premultiplication, under the

assumption that the order of the polynomial and the length of the message are both

multiples of the number of bits to be processed in parallel, and reported a recursive

formula for calculating powers of the state transition matrix.

In this section, the equations for the circuit with automatic premultiplication

are derived; the principle of the derivation is very similar to the variant without

premultiplication. Furthermore, the proof is extended in such a way that there will be

no restriction on the order m of the polynomial or the number of bits w that are to

be processed in parallel. The parameters are unrelated; it is only assumed that the

k-bit message that is to be encoded can be split into data words of w bits, which will
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usually be the case in computer systems.

The starting point for the derivation of the parallel CRC circuit for a generator

polynomial p(X ) is the LFSR with automatic premultiplication by Xm for a serial

data input as shown in Figure 2.6. The m least signiVcant coeXcients of p(X ) are

aggregated into the coeXcient vector p = [pm−1, . . . , p1, 1]T . Since the LFSR is a

discrete time-invariant linear system, it can be expressed as:

s[i + 1] = Ts[i] + pd̄[i] (5.1)

where

T =
[
p
∣∣∣∣∣ Im−1

0

]
=



pm−1 1 0 · · · 0

pm−2 0 1 · · · 0
...
...
...
. . .
...

p1 0 0 · · · 1

1 0 0 · · · 0


. (5.2)

Im−1 denotes the identity matrix of sizem − 1 and s[i] is the state of the system at time

step i, which is equivalent to the corresponding m-bit LFSR value. The scalar input

to the system is denoted by d̄[i]. In each time step i, one bit of the k-bit message u is

shifted into the system, starting from the most signiVcant bit, and thus d̄[0] = uk−1,

d̄[1] = uk−2 and so forth. It can be veriVed that the solution for system (5.1) takes the

following shape:

s[i] = T is[0] + [T i−1p , . . . ,Tp , p][d̄[0], . . . , d̄[i − 1]]T , (5.3)

with s[0] being the initial state of the LFSR.

A simpliVed way exists to obtain T i from T i−1:

T i = T i−1T

= T i−1
[
p
∣∣∣∣∣ Im−1

0

]
=

[
T i−1p

∣∣∣∣∣T i−1 Im−1

0

]
, (5.4)

where i starts from 2. Expanding T to the power of w with the help of (5.4) leads to:

Tw =


[
[Tw−1p , . . . ,Tp , p]

∣∣∣∣∣ Im−w
0

]
if w ≤ m[

Tw−1p , . . . ,Tw−mp
]

otherwise.
(5.5)
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The columns of Tw that drop out in the case where w exceedsm are combined in the

auxiliary rectangular matrix

Tw :=
[
Tw−m−1p , . . . ,Tp , p

]
.

In order to obtain the LFSR value after w bits have been processed, s[w] simply

needs to be evaluated. For this purpose the w-dimensional data input vector d[t] =
[uk−1−t , . . . ,uk−w−t]T is introduced. Then (5.3) becomes

s[w] = Tws[0] +
[
Tw−1p , . . . ,Tp , p

]
d[0]. (5.6)

Two basic cases can be diUerentiated:

Casew ≤ m:

s[w] = Tws[0] +
[
[Tw−1p , . . . ,Tp , p]

∣∣∣∣∣ Im−w0

] [
d[0]

0

]
= Tws[0] +Tw

[
d[0]

0

]
.

Considering additionally that the system is time-invariant, the behaviour of the circuit

can be described as:

s[i +w] = Tw
(
s[i] +

[
d[i]

0

])
. (5.7)

The special case of w =m leads to the compact form:

s[i +w] = Tw (s[i] + d[i]). (5.8)

Casew > m:

s[i +w] = Tws[i] + [Tw |Tw]d[i]. (5.9)

The result of (5.7) and (5.9) can be condensed into a single equation:

s[i +w] = [Tw |Tw]
([
s[i]
0

]
+

[
d[i]

0

])
. (5.10)

As an example, generator polynomial p(X ) = X 4 + X 3 + X + 1 is selected. It is
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dw-1
sm-1

dw-2
sm-2

d0
s0

...

si

ti,w-1

ti,w-2

ti,0

Figure 5.1: Programmable parallel CRC circuit with w = m for CRC bit si utilising control
latches.

intended to process four bits in parallel (w = 4). Consequently

T =


1 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0

 , T 4 =


0 0 1 1

0 0 1 0

1 0 0 1

0 1 1 1

 . (5.11)

According to (5.8), the necessary logic can be directly assembled with the help of

(5.11). The time step indices will be dropped in the following where not needed for

simpliVcation. Matrix entries of Tw are numbered fromm − 1 to 0, where the top left

most element is denoted by (m − 1,m − 1). Thus, an entry ti , j in matrix Tw indicates

that s j XOR d j is an input to the XOR forming the new value of si one clock cycle later.

5.2 From Static to Programmable

The parallel CRC architecture from the previous section can be transformed into a

programmable entity that is no longer bound to a speciVc CRC generator polynomial

p(X ). A polynomial directly aUects the transition and control matrix [Tw |Tw] of the

linear system (5.10). Programmability can be achieved by introducing an AND gate

with a controlling latch for each signal that may be a potential input to an XOR

function as illustrated in Figure 5.1. FlipWops can be utilised as well, but will have ‘in

general’ higher demands in terms of area, which may become crucial as m max(m,w)

bits need to be stored.

The derivation of the matrix necessary to set up all the latches can be performed
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in software. As the data bus width imposes a limitation on the transferable data, the

matrix may need to be communicated line by line, which requires m clock cycles.

Additionally, the software function itself relies on a processor. Many scenarios may

even imply a dedicated core for this task, if the polynomial needs to be changed

frequently and faster than the matrix can be communicated over the data bus.

In the case of the SpiNNaker architecture which is described in more detail in

Chapter 4, it has been decided to employ this variant of the programmable CRC circuit,

as it oUers wide Wexibility in terms of codes to which it can be conVgured. The number

of cyclic codes that this circuit supports accounts for 2m−1. This can easily be seen

from the fact that a cyclic code generator polynomial p(X ) needs to divide Xn + 1

for an integer n. Such an n exists, as long as p(0) , 0 [GG05], which is fulVlled for

every p(X ) due to its constant term, so that the degree of freedom for the conVgurable

cyclic codes equals (m − 1). However, the matrix that is supplied to the circuit exhibits

m max(m,w) degrees of freedom, which is clearly more than for the case of the cyclic

codes that the circuit supports.

To see how the redundancy part s[k] for a k-bit data message is calculated by the

circuit for an arbitrary binary matrix [Tw |Tw], the eUect of the Vrst w message bits is

considered at Vrst, so that s[w] can be computed according to (5.10) as

s[w] = [Tw |Tw]
([
s[0]

0

]
+

[
d[0]

0

])
= Tws[0] + [Tw |Tw]

[
d[0]

0

]
,

with s[0] being the initial state of the LFSR. If this process is continued with the

subsequent input data words, s[k] can be obtained as follows

s[k] = T ks[0] +
k/w−1∑
i=0

T k−(i+1)w[Tw |Tw]
[
d[iw]

0

]
.

For the case that w ≤ m, the formula can be simpliVed to

s[k] = T ks[0] +
k/w−1∑
i=0

T k−iw
[
d[iw]

0

]
.

One alternative sensible conVguration of the circuit is obtained if several cyclic

codes are calculated for independent bits of the data stream. For example, it is possible

to employ two cyclic codes, each with a generator polynomial of degreem/2 and each

designated for a half-word of the data input. If the general case is considered, the
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conVguration matrix [Tw |Tw] takes the following shape

[Tw |Tw] =



[T̄ w̄ |T̄w̄] 0 0 · · · 0

0 [T̃ w̃ |T̃w̃] 0 · · · 0

0 0 [T̆ w̆ |T̆w̆] · · · 0
...

...
...

. . .
...

0 0 0 · · · [T̂ ŵ |T̂ŵ]


.

The sum of the degrees of the individual cyclic codes cannot exceed m. Similarly, the

sum of the numbers of the bits that are to be processed in parallel for the cyclic codes

is bounded by w . Furthermore, it needs to be ensured that the top left element of each

small conVguration matrix is aligned with the diagonal of [Tw |Tw], as the relevant

state bits need to be fed back to the leftmost columns of the matrix.

5.2.1 Proposed Method

The chosen approach to construct eXcient programmable cyclic code circuits is to

outsource the matrix derivation into hardware if the circuit is supposed to be used

exclusively for cyclic codes. As there is no computational eUort involved to obtain the

identity matrix in (5.5) for the case w < m, it is assumed that w ≥ m, and thus

[Tw |Tw] =
[
Tw−1p , . . . ,Tp , p

]
.

A new recursive formula for a column T ip with i ≥ 1 is established as follows

T ip = TT i−1p

=

[
p
∣∣∣∣∣ Im−1

0

]
T i−1p

= peT1T
i−1p +

[
0
∣∣∣∣∣ Im−1

0

]
T i−1p , (5.12)

where e1 = [1, 0 . . . , 0]T is the unit vector. Hence, each column element (T ip)j can

easily be computed with the help of the previous column T i−1p and p:

(T ip)j =

p j(T
i−1p)m−1 + (T i−1p)j−1 if j , 0,

p j(T i−1p)m−1 otherwise.
(5.13)

For an implementation in hardware, an (m − 1)-bit register needs to be provided



82 Chapter 5. Programmable CRC Hardware

si
tm-1,k

sm-1
tm-1,k-1
pm-1

dj

sm-2
tm-1,k-2
pm-2

dj-1

tm-2,k-1

s0tm-1,k-m
p0

dj-m+1

si-1

t0,k-m+1
si-m+1

fm-3,k-2 ... ...

...

0

m-1

...

k

k-m+1w-1 0

...
...

Figure 5.2: Programmable parallel CRC circuit for the case w > m. Corresponding elements of
[Tw |Tw ] are indicated with black pixels in the rectangular representing the matrix.

to hold the coeXcients of the polynomial; this register already forms the rightmost

column of [Tw |Tw]. Each other column can then be obtained withm AND gates and

m − 1 XOR gates. The column element (T ip)0 of a column i can be obtained through

an AND gate that takes as inputs the polynomial coeXcient p0, and the column

element (T i−1p)m−1 of the previous column. For every other element (T ip)j of column

i, polynomial coeXcient p j and (T i−1p)m−1 need to be fed into an AND gate, before

combining its result with column element (T i−1p)j−1 in an XOR gate.

It is possible to reduce the area with equivalent logic as illustrated in Figure 5.2,

which additionally shows the attached CRC circuitry. Apart from the column storing

the polynomial, each other column requiresm − 1 NAND gates,m − 1 XNOR gates

and 1 AND gate. The controlling AND gates have been replaced with NAND gates

under the assumption that w is even. Inverting an even number of inputs to an XOR

function does not aUect the result of the function.

A circuit dimensioned for a certain polynomial degreem can be used to calculate

CRCs for a polynomial of smaller degree r . This can be achieved by providing the

polynomial premultiplied by Xm−r . Additional multiplexing circuitry is required to

switch between diUerent data input widths, as the most signiVcant bits of the data d
and the state of the system s need to be aligned, when being combined by the bitwise
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XOR function according to (5.10).

The proposed circuit allows a further improvement if only generator polynomials

p(X ) of degreem, for which the circuit is dimensioned, are used. In this case p0 = 1,

since every cyclic code generator polynomial exhibits a constant term. This implies

that the (w − 1) AND gates can be omitted in the circuit by setting the value for the

matrix element (T ip)0 to (T i−1p)m−1, for i > 0.

5.3 From Theory to Silicon

With the scheme from the previous section it is possible to replace each latch of

the programmable CRC circuit (except for the Vrst column that holds the generator

polynomial) with a NAND and XNOR gate, which can compute the necessary value

of the latch. The w − 1 latches corresponding to the least signiVcant LFSR bit can

each be replaced with only an AND gate. If the circuit is only intended for the use of

generator polynomials of degreem, not even the AND gates will be required. Several

130-nm standard cell libraries indicate a saving of about 6 − 7% in logic gate area for a

NAND plus XNOR gate in comparison to a latch. Further savings arise from the much

smaller AND gate area, if required at all, and irrelevant latch select logic.

To assess the performance of the new circuit in Figure 5.2, it is necessary to

consider two diUerent paths. Assuming that the generator polynomial p(X ) is already

set up, the logic gate delay for the data (from d to s) adds up to

TDS = (dlog2we + 1) TXOR +TNAND , (5.14)

where T is a logic gate or path delay. Changing the polynomial, on the other hand,

aUects a longer path. The diUerence between TP and TDS accounts for

4TP = TLATCH + (w − 1)(TXNOR +TNAND) −TXOR . (5.15)

Appending a CRC value to a message will typically require a data stream to stall

for at least one clock cycle. Hence, this clock cycle can be used to provide a new

generator polynomial for the subsequent message. This means that the polynomial

has two clock cycles to propagate through the entire circuit.

The same behaviour can be achieved on the message receiving side. Instead of

inputting the received CRC as the last data word into the circuit, and checking the

result for 0, the received and calculated CRC value can be compared directly. Again,
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Figure 5.3: Fully routed layout of the proposed programmable parallel CRC circuit.

this would free up an extra clock cycle that can be used to set up a new polynomial.

Without any further clock cycles, the frequency of the circuit would be limited

to fworst = 1/max(TDS , 4TP ). To achieve best case frequency fbest = 1/TDS , additional

d4TP fbeste − 1 clock cycles would be necessary between messages to propagate p(X ).

Alternatively, the number of clock cycles can be reduced by providing c columns of

matrix [Tw |Tw] instead of only one to split up 4TP . This requires more area as these

columns need to be stored in latches again. In the extreme case the individual paths

have a length of 4TPi = iTDS , for, i = 1, . . . , c.

The design has been simulated for m = w = 32 targeting 130-nm high-speed

standard cell technology using Synopsys, Inc., synthesis tools with the resulting fully

routed layout shown in Figure 5.3. The simulation results in Table 5.1 were obtained

assuming a typical-typical process corner and operating conditions of 1.2 V and 25 ◦C.

These are compared to a previous design [Toa+09], which will be discussed in the

following section. Better performance is anticipated with a full-custom design that

will further exploit the regular structure of the circuit and the omission of the AND

gates as described earlier.
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Table 5.1: Programmable CRC circuit implementation comparison

Cell Array [Toa+09] Novel Circuit Result

Clock Frequency 154 MHz 481 MHz

Data Throughput 4.92 Gbps 15.38 Gbps +212.70%

ReconVguration 33 clock cycles 4 clock cycles

214.29 ns 8.32 ns −96.12%

Core Area 0.150 mm2 0.033 mm2 −78.00%

Core Utilization Not speciVed 96.13%

Total Power 5.70 mW 6.37 mW

Internal Power 3.42 mW 3.69 mW

Switching Power 2.19 mW 2.67 mW

Leakage Power 0.0896 mW 0.0077 mW

Energya 63 pJ/word 14 pJ/word −77.78%
a Based on the setup of a polynomial with a subsequent CRC calcula-

tion for 47 data words.

5.4 Comparison

A programmable parallel CRC architecture was recently proposed [Toa+09], which is

referred to as the cell array architecture. It incorporates additional circuitry to switch

between two diUerent data input widths, which is considered in the following critical

path and area analysis.

The main component of the cell array is a conVgurable array ofm max(m,w) cells,

each consisting of an XOR, two multiplexers, and a conVguration register. A prelimi-

nary stage of XOR gates combines data with the current state of the system, which is

then fed into the array. Furthermore, a conVguration processor is integrated, which

performs matrix multiplications to obtain the state transition matrix for a provided

generator polynomial. The matrix is transferred row-wise into the conVguration

registers of the array.

For the basic CRC calculation, both architectures require the same number of

two-input XOR gates. The present work however, also allows the utilisation of wider

and proportionally smaller XOR gates that will assemblem trees each with w inputs.

Considering the logic that is necessary for programmability, each cell in the array

constitutes two multiplexers and one register. In the new design, this corresponds in

the general case to two NAND gates and one XNOR gate, in m cases to one NAND

gate and one latch, and depending on the implementation, in w − 1 cases to only one
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NAND gate and one AND gate or just one NAND gate. In all cases this is typically

less than for a cell in the cell array design. More area is saved as there is no need for a

processor.

The worst-case data path in the cell array can be speciVed as follows:

TDS2 = w(TXOR +TMUX ).

This linear growth is inferior to the logarithmic growth ofTDS (5.14), which has also a

reduced scaling factor by TMUX .

The reconVguration time of the new circuit accounts for 4TP (5.15). For the cell

array, a reconVguration time ofw+1 clock cycles is indicated. The operating frequency

of the circuit is limited to fbest2 = 1/TDS2. This means that

4TP2 ≈ w(w + 1)(TXOR +TMUX ).

Consequently
4TP2

4TP
∈ O(w).

This suggests that the new design reconVgures in the order of approximately w times

faster than the cell array with the conVguration processor.

Both designs have been implemented targeting 130-nm standard cell technology,

and are compared in Table 5.1. The new design can be operated at a frequency more

than three times higher than the cell array, and has a correspondingly increased data

throughput. It can reconVgure to a new generator polynomial 25 times faster than the

cell array, while occupying only 22% of its area. Similarly, the energy consumption

dropped by about 78%.

An alternative approach in realising, at least partial, programmability is to multi-

plex between several CRC modules dedicated to Vxed generator polynomials. This

method is beneVcial if only a few polynomials come into consideration, for which

each module can be speciVcally optimised in terms of speed. Beyond a certain num-

ber of diUerent polynomials however, which depends on the polynomials and their

realisation, the area requirements will exceed those for the proposed architecture.

Furthermore, the multiplexing overhead will oUset the speed advantage if too many

polynomials are involved.
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5.5 Conclusion

An existing proof [CPR03] for the derivation of parallel CRC circuits has been extended

to any generator polynomial size m and data width w . The proof has been conducted

for the LFSR realisation with automatic premultiplication, which avoids inserting a

Vnal zero data word.

A simple method has been presented to incorporate programmability into the

circuit through latches thus allowing the generator polynomial to be changed during

runtime.

Furthermore, a novel scheme has been proposed to compute the state transition

and control matrix of the CRC circuit easily in hardware. The scheme is based on a

new recursive formula and oUers a range of advantages over existing techniques.

Firstly, it is necessary to provide only the desired generator polynomial, instead of

a complete matrix for the CRC core; a preliminary matrix calculation in software is

no longer required. Secondly, the logic area requirements are lower than those for a

realisation that stores the matrix in latches. A recently proposed architecture [Toa+09]

has signiVcantly higher demands in terms of area as it incorporates a conVguration

processor, and more core logic in comparison to the latch variant. Thirdly, the data

path grows only logarithmically with w in contrast to the existing architecture where

it grows linearly with w with a higher scaling factor; this implies a faster CRC

calculation. Most importantly however, the new circuit reconVgures approximately w
times faster than the previous circuit.

Implementation Vgures support the theoretical results showing a signiVcant im-

provement in speed, area and energy eXciency.
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Chapter 6

Logarithms: A Generic Algorithm

The question as to whether it is possible to compute discrete logarithms eXciently

in certain cyclic groups is of major interest for many applications, notably in the

cryptographic Veld as outlined in Chapter 3.

For some cryptographic algorithms that are in wide use, the intractability of the

discrete logarithm problem in certain groups is a key requirement, as the presumed

security could otherwise be compromised easily. Other applications such as event

counters based on the LFSR [CW94] or the use of cyclic codes for error control would

beneVt greatly from a method that allows the evaluation of discrete logarithms in

polynomial time.

In the case of cyclic codes, an easy computation of discrete logarithms would

enable the eXcient correction of single-bit errors as presented in Chapter 2. This

would be extremely useful for the operation of SpiNNaker machines, as the hardware

provides support for cyclic codes to protect stored data in the SDRAM. The codes can

transparently be generated and veriVed in hardware, but in the event of a detected

error occurrence, software procedures will need to step in to attempt a data recovery

as described in Chapter 4.

This chapter presents a new approach for determining discrete logarithms. For

analysed groups where the order equals a Mersenne number with an exponent of

a power of two, a generic algorithm is obtained that can be used with any group

representation, requiring execution time in the order of the square root of the size of

the group and negligible space. The operating principle of the algorithm is based on

size diUerences of cyclotomic cosets which is explained below.

89
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6.1 Computing Discrete Logarithms

It is assumed that G is a Vnite cyclic group of order q with a primitive element α . The

discrete logarithm k of an element β ∈ G is to be determined. The sequence of the

form

(β )c
i
, (6.1)

for an integer c with 2 ≤ c ≤ q − 1 and index i starting from zero, is considered. Since

G is a Vnite group, the elements in the sequence will start recurring at some point

according to the pigeonhole principle, so that two indices i , j of smallest possible

value with 0 ≤ i < j can be identiVed, where

(β )c
i
= (β )c

j
,

holds. From the fact that β = αk , it follows that

kci ≡ kc j (mod q),

which is equivalent to q |k(c j − ci). It may very well be the case that q and k share

common factors, which leads to

q
gcd(q , k)

∣∣∣∣∣k(c j − ci)
gcd(q , k)

.

Since q/ gcd(q , k) is not a factor of k/ gcd(q, k), the following simpliVcation is obtained

ci ≡ c j (mod q/ gcd(q, k)). (6.2)

It can be seen that the indices i and j are inWuenced through k, and more precisely

through the greatest common divisor of k and q. Thus, if all possible values of k are

taken into account, the factorisation of the group order q has a vital impact on the

solutions of the congruences. The idea is now to draw interferences from the values

of i and j about k, which will be described in what follows.

Group orders q that equal a Mersenne number, where the exponent is restricted to

a power of two, are now considered. This type of number is denoted by

M2t = 22t − 1.

Another similar type of number that will be used hereafter is the Fermat number,
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which has the form

Ft = 22t + 1.

Attention is drawn to the special groups of order q = M2t as properties can be derived

that lead to a new algorithm for the solution of the discrete logarithm based on

the relations obtained from (6.2). A second reason for the focus on these groups is

that they are generated by primitive polynomials, where the degree is a power of

two, which is a typical setting in computer systems. They also include the largest

group that needs to be dealt with if the potential cyclic codes within SpiNNaker are

considered. Since SpiNNaker permits cyclic code generator polynomials up to degree

32, the largest group in which the discrete logarithm needs to be solved has an order

of M32. The following theorem gives useful information about the structure of the

considered M2t numbers.

Theorem 6.1. M2t can be factored into Fermat numbers F0 to Ft−1 for t > 0. Further-
more, Fi and F j are coprime for i , j.

Proof. The Vrst statement is true for t = 1, since M2 = 3 = F0. Now it is assumed that

the statement is true for t . It follows that M2t+1 = 22t+1
− 1 = (22t − 1)(22t + 1) = M2t Ft .

Therefore, by induction the statement is true for all t > 0. The second statement is

Goldbach’s theorem [KLS02; Ros93]. �

It is the case that two and M2t are coprime, so that two has Vnite multiplicative

order modulo M2t . With c = 2 in (6.1), it follows from (6.2) with i = 0 that

2i ≡ 20 ≡ 1 ≡ 2j (mod M2t / gcd(M2t , k)),

for a j > 0. This means that in the sequence given by (6.1), the starting value β will

reoccur after j steps. Before information is provided about the period of the sequence,

a few supporting theorems are introduced at Vrst.

Theorem 6.2. The smallest integer x > 0 that satisVes 2x ≡ 1 (mod Ft ) is x = 2t+1.

Proof. A solution for the congruence is provided by x̄ = 2t+1, for

2x̄ − 1
Ft

=
22t+1

− 1

22t + 1
= 22t − 1 = M2t .

Furthermore, x can be restricted to 2t < x ≤ 2t+1, as 2x . 1 (mod Ft ) for 1 < 2x < Ft .
It is assumed that x̃ is the smallest solution and diUerent from x̄ , such that 2t < x̃ < x̄ .
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Then

2x̄ ≡ 2x̃2x̄−x̃ ≡ 2x̄−x̃ ≡ 1 mod Ft ,

which implies that x̄ − x̃ ≥ x̃ , as x̃ is the smallest solution. This means that x̃ ≤
x̄/2 = 2t , which contradicts that 2t < x̃ , and therefore x̄ = 2t+1 must be the smallest

solution. �

The proof of the following theorem can be found in the literature [BS96].

Theorem 6.3. For every factor f of Ft , the smallest integer x > 0 that satisVes 2x ≡ 1

(mod f ) is x = 2t+1.

It is now possible to specify the period of the considered sequence as follows.

Theorem 6.4. The smallest positive integer j for which 2j ≡ 1 (mod M2t / gcd(M2t , k))

is satisVed, accounts for j = 2u+1 if Fu is the largest Fermat number that does not divide
k, where u < t. If such a Fermat number does not exist, j = 1.

Proof. With Theorem 6.1 and the premise Fu being the largest Fermat number of M2t

with gcd(Fu , k) , Fu , the congruence can be transformed into

2j ≡ 1 mod
(

F0

gcd (F0, k)
F1

gcd (F1, k)
· · ·

Fu
gcd (Fu , k)

)
.

According to Theorem 6.1, the congruence holds for j = 2u+1. Since at least one Fermat

factor of F0 to Fu remains in the modulus, Theorem 6.3 guarantees that j = 2u+1 is the

smallest positive solution fulVlling the congruence.

If k is divisible by all the Fermat numbers F0 to Fu , which means it is divisible by

M2t , it follows that k = 0. The congruence simpliVes to 2j ≡ 1 (mod 1), so that the

smallest positive j becomes j = 1. �

With the result of Theorem 6.4 it is clear that the period of the sequence is

inWuenced by the largest Fermat number F0 to Ft−1 that is not a factor of k. This

means in particular that if Fu is the largest Fermat number with u < t that is not a

factor of k , the period of the corresponding sequence can be indicated as j = 2u+1. The

period for the special case, where k = 0, accounts to j = 1. In other words, the period

length equals j = 2t , unless k is a multiple of Fermat numbers Fu+1 to Ft−1, but not of

Fu , in which case the period shrinks to 2u+1.

The group order q = M4 is considered as an example. For the sequence of group

elements β2 j = αk2 j with starting index of j = 0, the resulting sequence of exponents
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Table 6.1: Sequences of the form k2 j modulo (M4/ gcd(M4 , k)).

k
j

0 1 2 3

0 0

1 1 2 4 8

2 2 4 8 1

3 3 6 12 9

4 4 8 1 2

5 5 10

6 6 12 9 3

7 7 14 13 11

8 8 1 2 4

9 9 3 6 12

10 10 5

11 11 7 14 13

12 12 9 3 6

13 13 11 7 14

14 14 13 11 7

of the generator element, k2j modulo (M4/ gcd(M4, k)), is listed in Table 6.1 for an

entire period as a function of k. The group order factors into q = M4 = F0F1, which

explains why the period of the sequence is j = 2 if k is a multiple of F1, but not of F0.

If k is a multiple of both, F0 and F1, the period equals j = 1. In every other case, the

period exhibits a maximum length of j = 4.

A diUerent way of looking at the sequences is to consider cyclotomic cosets Ck

modulo q with respect to c, where c and q are coprime [GG05]. These are deVned as

Ck = {k , kc , . . . , kc j },

with j being the smallest positive integer so that k ≡ kc j (mod q). The coset leaders k
are chosen such that they are smallest nonnegative integers in their corresponding

sets Ck . For the example in Table 6.1, where q = 15 and c = 2, the cyclotomic cosets

are

C0 = {0},
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C1 = {1, 2, 4, 8},

C3 = {3, 6, 12, 9},

C5 = {5, 10},

C7 = {7, 14, 13, 11}.

It is possible to exploit the regular structure governing the diUerences in sequence

period lengths or size of cyclotomic cosets, to deduce the discrete logarithm k = logα β .

First of all, β can be examined to determine if it corresponds to a certain period j ≤ 2u .

Since all the periods are powers of two, smaller periods divide larger periods, and so a

simple veriVcation of β = β2u+1
would imply j ≤ 2u . Secondly, periods of the length

j ≤ 2u occur if k is a multiple of FuFu+1 · · · Ft−1, which implies that smaller periods j̄
with j̄ < j occur only if k is additionally a multiple of Fu−1.

Under the assumption that β belongs to a period of length j ≤ 2u , it is possible to

test for the tighter period length bound i ≤ 2u−1, and modify β through multiplication

with α Fu ···Ft −1 if the test fails. This process is repeated until the period length of β
adheres to the bound i, which will require a maximum number of Fu−1 tests. With the

new β , the bound i can now be reduced to half of its value and the search restarted.

The process stops once β corresponds to a period of length one, where it is known

that the corresponding k equals k = 0. If track has been kept of the modiVcations that

were applied to β , it is possible to work out the original value of k. The method is

summarised through the pseudocode shown in Algorithm 6.1.

Algorithm 6.1 Discrete logarithm computation based on cyclotomic cosets.

1: function log(α , β ,q = M2t )
2: k = 0
3: for i = t − 1 downto 0 do
4: β̄ = β2i+1

5: while β , β̄ do
6: β = βαM2t /M2i+1

7: β̄ = β̄αM2t /M2i+1

8: k = k − M2t /M2i+1 mod q
9: end while

10: end for
11: return k
12: end function
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The worst-case running time of the algorithm for q = M2t can be expressed as

O(t log2 q +
t−1∑
i=0

Fi),

where the Vrst term takes into account the time necessary to compute β̄ and αM2t /M2i+1 ,

and the second term to traverse the while loop. Since Ft−1 ≈
√
q, the time complexity

can be simpliVed to O(
√
q). The space requirements account for O(1).

6.2 Improvement

The running time of the algorithm can be improved if the probabilities of occurrence

of the discrete logarithm values k with 0 ≤ k ≤ q − 1 are unequal. This is, for instance,

the case if the discrete logarithm is restricted to lie in a certain interval.

Instead of multiplying both β and β̄ in Algorithm 6.1 by αM2t /M2i+1 for a speciVc

iteration i, it is possible to multiply with the inverse element likewise. This would

require a corresponding advancement of k by M2t /M2i+1 rather than by (−M2t /M2i+1).

If the Vrst iteration of the algorithm for i = t − 1 is considered, the following two sets

of discrete logarithms k can be deVned

S0 = {k |1 ≤ k + r Ft−1 ≤ (Ft−1 − 1)/2}

S1 = {k |(Ft−1 − 1)/2 + 1 ≤ k + r Ft−1 ≤ Ft−1},

where r is an integer. Let p(k) be the probability of occurrence for the discrete

logarithm k. If ∑
k∈S0

p(k) >
∑
k∈S1

p(k),

then the alternative method as suggested in this section could have an improved

average or even improved worst-case running time, as a sequence length of j ≤ 2t−1

could be reached on average and, possibly, also in the worst case faster than with the

standard method. The same principle can then be applied to each subsequent iteration

step with i ≤ t − 2, by determining the corresponding probabilities and deciding on

the appropriate method.
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6.3 Properties

An interesting property can be derived for the considered sequences, which is sum-

marised in the following theorem.

Theorem 6.5. Let G be a cyclic group of order q = M2t with primitive element α . If
k ≡ 1 (mod Ft−1), it follows that

αk = (αk+M2t −1 )Ft −1−1.

Proof. Starting from the left hand side of the equation, the logarithm to the base α is

taken and k is replaced by (r Ft−1 + 1), where r is an integer and which leads to the

corresponding logarithm of the right hand side as follows

k ≡ r Ft−1 + 1

≡ r Ft−1 + 1 + M2t (r + 1)

≡ r (Ft−1 + M2t ) + (M2t + 1)

≡ r Ft−1(Ft−1 − 1) + (M2t −1 + 1)(Ft−1 − 1)

≡ (r Ft−1 + 1 + M2t −1)(Ft−1 − 1)

≡ (k + M2t −1)(Ft−1 − 1) (mod M2t ).

�

Theorem 6.5 can be applied directly to the example sequences shown in Table 6.1,

which belong to the group order q = M2t with t = 2. It can be seen that for every

integer r , the sequence for k ≡ F1r +1 ≡ 5r +1 (mod 15) repeats at k̄ ≡ F1r +M2t −1 +1 ≡

5r + 4 (mod 15) shifted by t − 1 = 2 elements. The involved sequences for k and k̄
are just the sequences that are adjacent to sequences with a period length of j ≤ 2t−1,

since Ft−1 |k − 1 and Ft−1 |k̄ + 1.

For the Vnite Veld GF (2m), the trace function is deVned as

Tr (x ) =
m−1∑
i=0

x2i ,

where x ∈ GF (2m). Tr (x ) deVnes a mapping from GF (2m) to GF (2) [GG05]. This result

can be reVned for the considered sequences in the following theorem.
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Theorem 6.6. Let x be an element of the Vnite Veld GF (2m) and j the smallest positive
integer such that x = x2 j . It follows that

Tr (x ) =
j−1∑
i=0

x2i ∈ GF (2).

Proof. The same principle is applied as for the mentioned result of the trace function

[GG05]. Let β ∈ GF (2m) and j be the smallest positive integer such that β = β2 j .

Therefore,  j−1∑
i=0

β2i


2

=

j−1∑
i=0

β2i+1
=

j−1∑
i=0

β2i .

Since β = β2 is equivalent to β ∈ GF (2), it follows that

j−1∑
i=0

β2i ∈ GF (2).

�

The theorem can be applied to the considered sequences if the underlying cyclic

group is the multiplicative group of a Vnite Veld. To construct an example corre-

sponding to the one given in Table 6.1, the Vnite Veld GF (24) is considered, which will

be represented as the polynomial ring over GF (2) modulo the primitive polynomial

p(X ) = X 4 + X 3 + 1. Furthermore, α = X is a root of p(X ). The sequences of the form

(αk)2 j to which the trace function Tr (x ) and its variant Tr (x ) from Theorem 6.6 are

applied, are shown in Table 6.2.

For the Vnite VeldGF (M2t +1), where the order of the multiplicative group accounts

for q = M2t , it has been shown that for a group element β , the sequence β2i with

starting index i = 0 has a period length of a power of two. This means that the trace

function Tr (x ) can be synthesised from the trace function variant Tr (x ). If a group

element β has a period length j, it follows

Tr (β ) =
2t /j∑
i=1

Tr (β ).

Therefore, if the group element β has a period length j < 2t , it can be stated that

Tr (β ) = 0. In other words, whenever the period length of β is below the maximum

value of 2t , the trace function will result in zero. This applies to all β = αk , where α is
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Table 6.2: Sequences of the form (X k )2j modulo X 4 + X 3 + 1 are shown for an entire period.
The trace function Tr (x ) and its variant Tr (x ) are applied to the sequences. Furthermore, the
sum of the sequence elements X k and X 4k is speciVed. Sequence elements are indicated in
4-tuple and 1-tuple representation, where the leftmost bit is the most signiVcant bit.

k
j

Tr (X k) Tr (X k) X k + X 4k

0 1 2 3

0 0001 1 0 0000

1 0010 0100 1001 1110 0 1 1011

2 0100 1001 1110 0010 0 1 1010

3 1000 1111 0011 0101 1 1 1011

4 1001 1110 0010 0100 0 1 1011

5 1011 1010 1 0 0000

6 1111 0011 0101 1000 1 1 1010

7 0111 1100 0110 1101 1 0 0001

8 1110 0010 0100 1001 0 1 1010

9 0101 1000 1111 0011 1 1 1010

10 1010 1011 1 0 0000

11 1101 0111 1100 0110 1 0 0001

12 0011 0101 1000 1111 1 1 1011

13 0110 1101 0111 1100 1 0 0001

14 1100 0110 1101 0111 1 0 0001

a primitive element of the group and Ft−1 |k as can be observed in Table 6.2.

An irreducible polynomial p(X ) = Xm + pm−1Xm−1 + pm−2Xm−2 + · · · + p1X + p0

over GF (2) of degreem deVnes a linear recursive sequence over GF (2) with

sk+m =

m−1∑
i=0

pisk+i ,

where the index k starts from k = 0 and where s0 to sm−1 form the initial state [GG05].

It can be shown that if α is a root of p(X ), then an element β ∈ GF (2m) exists, such

that the linear recursive sequence can equivalently be described as

sk = Tr (βαk),

for k ≥ 0. The initial state is encoded through β in this case. Thus, the sequence that

is obtained through the trace function in the example in Table 6.2 corresponds to the



6.4. Comparison 99

linear recursive sequence deVned by p(X ).

An additional property that can be derived concerns the summation of Veld

elements of α ∈ GF (2m). If two sets of indices K and K̄ can be identiVed such that∑
k∈K

αk =
∑
k∈K̄

αk ,

then the equation will also hold if each index within K and K̄ is multiplied by a power

of two, since the characteristic of the Veld is two. The property can also be observed

in the example that is given in Table 6.2, where α = X is a primitive element of GF (24).

It can be seen that αk + α4k is equal for k ∈ {1, 3, 4, 12}. This implies that αk + α4k has

the same value for k ∈ {2, 6, 8, 9} as can be veriVed in the example.

6.4 Comparison

As long as the involved Fermat numbers F0 to Ft−1 are all prime, the proposed

algorithm competes with the Silver-Pohlig-Hellman algorithm, due to the similar

running time. Composite Fermat numbers are split by the Silver-Pohlig-Hellman

algorithm into its prime factors, and for the corresponding group sizes the discrete

logarithms are solved individually to be combined to the overall solution as outlined

in Section 3.3. Therefore, the Silver-Pohlig-Hellman algorithm has a time-complexity

advantage if composite Fermat numbers are present in the group order factorisation.

Currently, the only known Fermat primes range from F0 to F4 [CMP03; Kel]. The

subsequent Fermat numbers F5 to F32 have been proven to be composite. At present,

the status of F33 is unknown.

Another aspect concerns the combinability of the Silver-Pohlig-Hellman algorithm

with other methods. The algorithm breaks down the group order q into its prime

factors and computes the discrete logarithm in the corresponding subgroups for which

more eXcient methods can be used than the exhaustive search. It is currently not

obvious how this approach could be carried over to the proposed method.

6.5 Conclusion

A new approach for the computation of discrete logarithms has been proposed. For

analysed cyclic groups with orders of the form q = M2t , a novel deterministic generic

algorithm based on size diUerences of cyclotomic cosets has been obtained. The
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algorithm requires O(
√
q) time and O(1) space. It may very well be the case that a

similar or better running time can be achieved for other classes of group orders. There

is no speed advantage if the algorithm is applied to groups of prime order, since the

factorisation of the group order plays a key role in the operation of the algorithm.

It has been shown how the average and worst-case running time of the algorithm

can be improved if not all discrete logarithm values are equally likely to occur.

Furthermore, a set of properties has been derived that applies to the sequences

that form the basis of the algorithm. Some of these properties assume a Vnite Veld

within which the discrete logarithm is to be solved. These and possibly also other

properties may allow for an improvement of the algorithm.



Chapter 7

Logarithms: Reduce-Map Algorithm

This chapter considers Vnite Velds GF (2m), represented as the polynomial ring over

GF (2) modulo a primitive polynomial p(X ) of degree m over GF (2). For each of these

Velds, new properties are presented that establish relationships between its elements.

On the basis of some of these properties, a novel approach is proposed for comput-

ing discrete logarithms in the multiplicative groups of the Velds that can be used for

the correction of single-bit errors based on cyclic codes as described in Chapter 2. This

approach has been evaluated for all primitive polynomials up to degree 12 and the

Vrst primitive polynomials of degree 13 and 14, for which a deterministic algorithm

is obtained that is eXcient in time and space. The algorithm requires a number of

parameters, where currently the optimal set can only be determined in exponential

time in the degree of the deVning polynomial. This is the reason why only partial

results are provided for the time requirements of the algorithm for polynomials of

higher degree up to 32.

7.1 Preliminaries

The Vnite Veld GF (2m) is represented as the polynomial ring over GF (2) modulo a

primitive polynomial p(X ) = Xm + pm−1Xm−1 + · · · + p1X + p0 of degree m, whose

coeXcients belong to GF (2). The m least signiVcant coeXcients of p(X ) will be

combined in the coeXcient vector p = [pm−1, pm−2, . . . , p0]T .

It will be convenient to treat the Veld elements as the states of a Linear Feedback

Shift Register (LFSR) that is conVgured to the generator polynomial p(X ) as described

in Section 2.3. An example of such an LFSR is shown in Figure 2.5 for the primitive

polynomial p(X ) = X 3 +X +1. The register content is regarded as the state polynomial

101
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s(X ) = sm−1Xm−1 + sm−2Xm−2 + · · · + s0 with the corresponding vector notation

s = [sm−1, sm−2, . . . , s0]T . A single shift operation of the register corresponds to a

multiplication of s(X ) by X modulo the generator polynomial p(X ). If the LFSR is

initialised to a nonzero state s, it will traverse, by continuous shift operations, all

of its q = 2m − 1 possible nonzero states as illustrated in Table 7.1 for the primitive

polynomial p(X ) = X 5 + X 2 + 1. The sequence of states produced by such an LFSR is

referred to as a maximum-length sequence, for which new relationships are developed

in the next section.

In this context the following discrete logarithm problem is considered. The

polynomial X is a root of p(X ) and thus a primitive element. Then, for a nonzero s(X ),

the discrete logarithm k with 0 ≤ k ≤ q − 1 to the base X is to be determined, such

that

X k ≡ s(X ) (mod p(X )). (7.1)

From the perspective of the LFSR, the discrete logarithm k corresponds to the number

of shifts that the register, initialised to the state vector [0, . . . , 0, 1]T , needs to perform

to reach the corresponding coeXcient vector s of s(X ).

7.2 Shift Register Sequences

This section establishes new facts about maximum-length shift register sequences.

In what follows, all possible state vectors of the LFSR are aggregated into the set

S∗; the set S includes additionally the zero vector. The 2m elements of S form an

m-dimensional vector space over GF (2).

7.2.1 Sequence Numbering

The states of the maximum-length LFSR sequence will be numbered for convenience,

and without loss of generality, in a certain way. A state at the sequence position i
will be denoted by s[i]. The Vrst state s[0] is deVned to equal s[0] = [0, . . . , 0, 1]T .

Consequently, the polynomial vector p appearsm states later, such that s[m] = p, as

can be seen in the example in Table 7.1. With this deVnition, the position of a state in

the sequence is equivalent to the discrete logarithm of that state as described by (7.1).
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7.2.2 T Transformation

Within the sequence of LFSR states, it is possible to advance a state s[i] by any number

of j positions with a simple invertible linear transformation T , where s[i + j] = T js[i].
The transformationT , which simulates a single LFSR shift, takes, thereby, the following

shape

T =



pm−1 1 0 · · · 0

pm−2 0 1 · · · 0
...
...
...
. . .
...

p1 0 0 · · · 1

1 0 0 · · · 0


. (7.2)

With this information the transformation T j that advances a state by j steps, can be

expressed as

T j = T j−1T

= T j−1[s[m], s[m − 1], . . . , s[1]]

= [s[j +m − 1], s[j +m − 2], . . . , s[j]]. (7.3)

The transformationT j is thus composed of them consecutive state vectors s[j +m − 1]

to s[j].

7.2.3 Parity Vector Spaces

The elements of S can be grouped into diUerent parity sets Pl , j , which are characterised

by the parity level l , where 0 ≤ l ≤ m − 1, and the parity j ∈ {0, 1}. For a vector x ∈ S
and a parity level l , the following sub-parity function is introduced

bl ,i(x ) =
dm−i

l+1 e−1∑
j=0

xm−1−i− j(l+1),

where 0 ≤ i ≤ l . As an example, the calculation of the sub-parities b2,i , where

0 ≤ i ≤ 2, for a vector s of lengthm = 9 is shown in Figure 7.1. A parity set Pl , j is now

deVned as

Pl , j =
{
s |bl ,i(s) = j, 0 ≤ i ≤ l , s ∈ S

}
. (7.4)
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S8 S7 S6 S5 S4 S3 S2 S1 S0

b2,0 b2,1 b2,2

Figure 7.1: Calculation of all sub-parities b2,i , where 0 ≤ i ≤ 2, for parity level 2 for a vector s
of lengthm = 9.

Pl ,0 is considered to be of even parity, whereas Pl ,1 will be of odd parity for each parity

level l . It will be convenient to deVne Pl as

Pl = Pl ,0 ∪ Pl ,1.

A sample parity set categorisation is shown in the left part of Table 7.1.

In what follows a few properties are established that are inherent to the deVned

parity sets.

Theorem 7.1. For 0 ≤ l ≤ m − 1 and j ∈ {0, 1}, the number of elements in each parity
set Pl , j is

|Pl , j | = 2m−l−1.

Proof. The base set S from which the parity sets are constructed, consists of all

possible vectors of length m over GF (2). A single sub-parity bl ,i(s) computes a simple

parity over a set of bits of a vector s ∈ S . The elements of S are thus divided into two

equal sized sets of even and odd sub-parity bl ,i . The l + 1 diUerent sub-parities bl ,i
for a speciVc parity level l are computed from disjoint bit subsets of s, and are thus

independent of each other. For Pl , j requires all l + 1 sub-parities bl ,i to equal j, the

number of elements satisfying this condition equals |S |2−l−1 = 2m−l−1. �

Further information about the nature of the parity sets is given by the following

theorem.

Theorem 7.2. For every parity level l , where 0 ≤ l ≤ m − 1, Pl ,0 and Pl are subspaces
of S. The dimension of Pl ,0 and Pl is m − l − 1 andm − l , respectively.

Proof. The zero vector is, for every level l , of even parity and therefore an element

of every Pl ,0. Scalar multiplication is closed in S since cs ∈ S for all c ∈ {0, 1}, s ∈ S .

Let s ∈ Pl , j and s̄ ∈ Pl , j̄ where j, j̄ ∈ {0, 1}. The values of the l + 1 sub-parities bl ,i
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Table 7.1: Parity set decomposition for the nonzero elements of Z2[X ]/〈X 5 + X 2 + 1〉 in 5-tuple
representation. Parity sets on level l with 0 ≤ l ≤ 4 are indicated with Pl , where even and odd
parity is denoted with o and x, respectively. The parity set elements are aligned with lower
level parity set elements in the aligned version which is shown in the right-hand side of the
table.

Position State
Unaligned Aligned

P0P1P2P3P4 P0P1P2P3P4

0 00001 x x

1 00010 x x

2 00100 x x

3 01000 x x

4 10000 x x

5 00101 o o o o x

6 01010 o o o o x

7 10100 o o o o x

8 01101 x x

9 11010 x x

10 10001 o o o o o o o x

11 00111 x x x

12 01110 x x x

13 11100 x x x

14 11101 o x o x

15 11111 x x x

16 11011 o o o o o x

17 10011 x x

18 00011 o x o x

19 00110 o x o x

20 01100 o x o x

21 11000 o x o x

22 10101 x x x

23 01111 o o x o o o x

24 11110 o o x o o o x

25 11001 x x

26 10111 o x o x

27 01011 x x

28 10110 x x

29 01001 o x o o x

30 10010 o x o o x
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for 0 ≤ i ≤ l will be j for s, and j̄ for s̄. Therefore, for the sum of s and s̄, all the

sub-parities will account for j + j̄, and it follows s + s̄ ∈ Pl , j+ j̄ . If s and s̄ are drawn

from the same parity set, the sum will be of even parity, otherwise it will be odd. Pl ,0
and Pl are thus closed under addition and they both form a subspace of S .

Furthermore, Pl ,0 and Pl are both vector spaces over GF (2) and have according to

Theorem 7.1, 2m−l−1 and 2m−l elements, respectively. For this reason, the dimension

of Pl ,0 ism − l − 1 and the dimension of Pl ism − l . �

7.2.4 Blocks

The kernel of an element s ∈ S∗ is deVned in this work as the largest sub-vector of s,
which has a starting and ending coeXcient of 1. For example, the kernel of the vector

s = [0, 0, 1, 0, 1, 0]T is [1, 0, 1]T . If an LFSR is initialised to a state vector s with its

kernel of length c located in its least signiVcant part, a total number ofm−c shifts will

slide the kernel across the register to its most signiVcant end. Provided thatm > 1 and

that the generated sequence is of maximum length, the next LFSR shift will push the

most signiVcant kernel bit into the feedback path of the register, which will modify

the kernel. Should the kernel remain unaUected, the sequence would have a length

ofm − c + 1, which is impossible as the length would be smaller than the presumed

maximum sequence length of 2m − 1.

The consecutive LFSR states that are generated by pure LFSR shifts, and which

therefore share the same kernel of length c, are considered to form a block of size

b =m − c + 1. (7.5)

As an example, the Vrst Vve states in the sequence of Table 7.1 consolidate to a block

of size b = 5. The zero vector forms an exception to the other vectors. It is considered

to generate an even parity block of unspeciVed length that will be referred to as the

zero-block.

The next theorem provides a useful relationship between blocks and parities.

Theorem 7.3. Even or odd parity set membership is invariant within a block.

Proof. Let s ∈ S belong to a block of size b with b > 1, and let l denote a parity level

with 0 ≤ l ≤ m − 1. It is further assumed that s ∈ Pl , j where j ∈ {0, 1}. According

to (7.4), all the sub-parities of s for parity level l will have the same value j, such

that bl ,i(s) = j for 0 ≤ i ≤ l − 1. Without loss of generality, it will be assumed that a
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single kernel-conserving forward LFSR shift on s will lead to the successor s̄ in the

same block. The sub-parities of s̄ will then be the cyclic shifted sub-parities of s, i.e.

bl ,i(s̄) = bl ,((i+1) mod (l+1))(s), for 0 ≤ i ≤ l . This means that the sub-parities of s̄ are

identical to those of s, and therefore s̄ ∈ Pl , j . �

The states of a sequence can thus be classiVed into blocks of even and odd parity

for diUerent levels of parity. In the following theorem, information is provided on the

block structure for every level of parity.

Theorem 7.4. For a maximum-length sequence and parity level l , where 0 ≤ l ≤ m − 1,
the largest block is of odd parity and exhibits a size of m − l with kernel [1, . . . , 1]T of
length l + 1. The next smaller block is of even parity and has size m − l − 1 with kernel
[1, 0, . . . , 0, 1]T of length l + 2, where l < m − 1. For every smaller block size b, where
1 ≤ b ≤ m − l − 2, there are 2m−l−b−2 blocks of even and 2m−l−b−2 blocks of odd parity.
The total number of blocks on parity level l accounts for 2m−l−1, of which d2m−l−2e are of
odd parity and b2m−l−2c are of even parity.

Proof. A block of even or odd parity can be characterised by its speciVc kernel

according to Theorem 7.3. It is, therefore, suXcient to analyse the diUerent kernels

that occur in a maximum-length sequence. The longer a block is, the shorter is its

kernel. The shortest kernel that satisVes the odd parity criterion is of length c = l + 1

and consists entirely of ones [1, . . . , 1]T . This is the shortest kernel that can set all the

l + 1 sub-parities bl ,i to one; it determines the block of size b =m − l . With a kernel of

size c = l + 1 or shorter, every sub-parity is computed from at most a single kernel

bit. To achieve even parity, all kernel bits would have to be set to zero. As the zero

state is excluded from a maximum-length sequence, an even block of size b =m − l or

smaller does not exist.

There is only a single parity conVguration for a kernel of size c = l + 2, where

l < m − 1. The two outer bits of the kernel are ones and are the only two kernel bits

that belong to a single sub-parity. This sets that particular sub-parity to even parity.

The only overall parity class this kernel can qualify for is the even parity class. In

this case, each of the remaining kernel bits has to equal zero, leading to the kernel

[1, 0, . . . , 0, 1]T of length l + 2, which characterises the block of sizem − l − 1.

For larger kernel sizes c, where l + 3 ≤ c ≤ m, an outer kernel bit is always

combined with at least one inner kernel bit to form a certain sub-parity. The outer

kernel bits are Vxed to ones and can thus be left out of the consideration as they

do not contribute any degree of freedom to the parity, which can be controlled by
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the inner kernel bits. For c = l + 3, each inner kernel bit contributes to one of the

l + 1 sub-parities. There are two options, they all can be set to either zero or to one,

depending on which of the two parity classes is targeted. With each increase of the

kernel length, a new inner kernel bit contributes a degree of freedom to a sub-parity,

doubling the choices for even and odd parity conVgurations. Therefore, both even

and odd kernels number 2c−l−3. Substituting c with the help of (7.5) leads to 2m−l−b−2.

The summation of the block frequencies for all block sizes for parity level l with

0 ≤ l ≤ m − 3, leads to the total number of 2 + 2
∑m−l−2

b=1 2m−l−b−2 = 2 + 2(2m−l−2 − 1) =

2m−l−1, of which 2m−l−2 blocks are of even parity and 2m−l−2 blocks are of odd parity.

On parity level l =m − 2, there is only one block of even parity and one block of odd

parity. Parity level l =m − 1 has only one block of odd parity. �

7.2.5 M Transformation

There exists a useful relationship between the nonzero blocks of a certain parity level

l , which is described by the next theorem.

Theorem 7.5. Within the blocks of a parity level l of a maximum-length sequence,
where 0 ≤ l ≤ m − 1, the b − 1 bottom vectors of a block of size b with b > 1 of either
even or odd parity, can be transformed into an even parity block of size b − 1, with a
linear transformation M of the form M = T x that is speciVc to the deVning primitive
polynomial p(X ). The transformation takes thereby the following shape

M =



1 · · · 0 0 1

1 · · · 0 0 pm−1
...
. . .
...
...
...

0 · · · 1 0 p3

0 · · · 1 1 p2

0 · · · 0 1 p̄1


.

Proof. At Vrst, the existence of the linear transformation M is shown. The left-hand

side of M is composed of the block with the kernel [1, 1]T . Due to the fact that the

generator polynomial p(X ) is primitive, it is guaranteed that this block will appear

at some point in the sequence of the shift register states. The rightmost vector

of M is simply the state vector that precedes the block. Since M is composed of

consecutive state vectors, it describes a linear transformation of the formT x as shown

in Subsection 7.2.2.
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To show the eUect of the transformation M on the b − 1 bottom vectors of a block

of size b, an arbitrary bottom vector s = [sm−1, . . . , s0]T of the block is considered.

Since s is not a topmost block vector, it follows that s0 = 0. With this information, the

mapping of s can be expressed as

Ms = [sm−1 + s0, sm−2 + sm−1, . . . , s0 + s1]T .

Ms is thus the addition of s and its cyclically right-shifted version. The sub-parities

for parity level l can therefore be computed as

bl ,i(Ms) = bl ,i(s) + bl ,(i+1) mod (l+1)(s),

for 0 ≤ i ≤ l ≤ m − 1. Vector s belongs to either an even or odd parity block,

which means that all the bl ,i(s) have the same value and, therefore, bl ,i(Ms) = 0 for

0 ≤ i ≤ l ≤ m − 1. It follows that Ms ∈ Pl ,0. The kernel size of Ms increases by one

in comparison to s, for its kernel is composed of the kernel of s and its right-shifted

version. As a result, the bottommost b − 1 vectors of a block of size b are mapped by

M onto an even parity block of size b − 1 within the same parity level. �

A block, whose lower vectors are mapped by the transformation M onto the

vectors of another block, is considered to be linked to that block. Within a maximum-

length sequence, the blocks of even and odd parity of a speciVc parity level are all

linked up to chains by M . Each chain starts with a block of odd parity that links to

blocks of even parity. The size of the chain blocks decreases with every link by one

until a block of size one is reached. Odd parity blocks of size one do not link to any

further blocks and form thus chains of length one.

The chain property is explained in more detail in what follows. The number of

odd parity blocks of size b with b > 1 within parity level l , where 0 ≤ l ≤ m − 2,

accounts for d2m−l−3e as can be derived from Theorem 7.4. This number equals the

number of blocks of even parity with size one on the same parity level. Furthermore,

every block, whose size exceeds one, can be linked to a block of even parity and a

size decreased by one in the same parity level according to Theorem 7.5. In this way

all the even parity blocks become part of a chain. The only remaining blocks that

have not been included in any chain yet, are odd parity blocks of size one, which are

considered to form their own chain with only one element. This implies that all the

chains start with an odd parity block and end with a block of size one. Chain elements

other than the Vrst one are all of even parity.
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Figure 7.2: M transformation. It links up the blocks of every parity level to chains. A vector
of odd parity is indicated with an x, whereas an even parity vector is indicated with an o.
Subsequent block vectors can also be generated through the addition of consecutive block
vectors.

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 0 1

Figure 7.3: Pascal’s triangle modulo two.

The chain property is an important result that will play a central role in subsequent

sections. For the example sequence given in Table 7.1, M = T 17, since the state vector

[1, p4, p3, p2, p̄1]T is located at position 17 in the sequence. The bottommost vectors

of the linked chain blocks have, in this case, a displacement of 17 positions in their

occurrence in the sequence.

If the M transformation is applied to a non-topmost block vector s, the resulting

vector is the sum of s and its right-shifted version,

Ms = s +T −1s ,

as can directly be derived from the deVnition of M . This relationship is illustrated in

Figure 7.2, which shows a complete chain, starting form an odd parity block.

The eUect of M on a non-topmost vector s of a block of size b can be described by

Pascal’s triangle modulo two which is shown in Figure 7.3. A row in the triangle can

be obtained by the sum of the previous row with itself right shifted by one. This is the
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reason why row r in the triangle with r < b describes the eUect of Mr on s as

Mrs =
r∑
i=0

T −i
(
r
i

)
s.

If the longest chain on parity level zero is considered, the kernel of the starting block

consists of a single one, as is the case with the Vrst row of the triangle. The chain

block kernels of the longest chain correspond therefore directly to the rows of the

triangle.

Additionally, the following corollary can be established for the inverse transfor-

mation of M .

Corollary 7.6. Within a parity vector space of a maximum-length sequence, a block of
even parity of size b − 1 is transformed by M−1 into the bottom b − 1 vectors of a block
of size b, which will be either of even or odd parity.

Proof. According to Theorem 7.4, the number of even parity blocks of size b − 1 equals

the sum of the number of even and odd parity blocks of size b within the same parity

level. Theorem 7.5 shows that the bottom vectors of every even or odd parity block

of size b are mapped by M onto the vectors of an even parity block of size b − 1.

Therefore, the converse that the inverse transformation of M maps every even parity

block of size b − 1 to the bottom vectors of either an even or odd parity block of size b
must hold. �

An even nonzero vector s is thus mapped by M−1 onto a vector t of the previous

block. From the fact that the sum of t and its right-shifted version equals s, it is easily

possible to calculate t bitwise from s, starting from the most or least signiVcant bit, as

illustrated in Figure 7.4.

On the basis of the chain relations between blocks, it is possible to formulate a

reduction function that maps every vector to a speciVc vector of its chain on parity

level zero, by shift operations and applications of M . The designated chain vector

to which it is reduced could be, for instance, a vector of the starting block or the

terminating vector of the chain. Since every chain ends with a block of size one, the

number of size-one-blocks equals the number of chains. This means that by omitting

the zero vector, the set of elements in S can easily be reduced to a subset of a quarter

of its size.

A further useful property of the transformation M is given by the following

theorem.
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Figure 7.4: M−1 transformation. A nonzero even vector s is mapped by M−1 onto the corre-
sponding block vector t of the previous block. The calculation of t can easily be accomplished
in a serial way, starting from the most or least signiVcant bit.

Theorem 7.7. The transformation matrix M for a primitive polynomial of degree m
fulVls the following condition

M 2t [0, . . . , 0︸   ︷︷   ︸
r

, s2t −1, . . . , s0, 0, . . . , 0]T

=[0, . . . , 0︸   ︷︷   ︸
r

, s2t −1, . . . , s0, s2t −1, . . . , s0, 0, . . . , 0]T ,

where r + 2t+1 ≤ m.

Proof. Induction is used to prove the statement. Since the multiplication of M with a

non-topmost block vector s leads to the sum of s and its right-shifted version, the case

for t = 0 holds. It is now assumed that the statement is true for t , leading to

M 2t+1
[0, . . . , 0︸   ︷︷   ︸

r

, s2t+1−1, . . . , s0, 0, . . . , 0]T

=M 2tM 2t ([0, . . . , 0︸   ︷︷   ︸
r

, s2t+1−1, . . . , s2t , 0, . . . , 0]T + [0, . . . , 0︸   ︷︷   ︸
r+2t

, s2t −1, . . . , s0, 0, . . . , 0]T )

=M 2t ([0, . . . , 0︸   ︷︷   ︸
r

, s2t+1−1, . . . , s2t , 0, . . . , 0]T + [0, . . . , 0︸   ︷︷   ︸
r+2t

, s2t+1−1, . . . , s2t , 0, . . . , 0]T

+ [0, . . . , 0︸   ︷︷   ︸
r+2t

, s2t −1, . . . , s0, 0, . . . , 0]T + [0, . . . , 0︸   ︷︷   ︸
r+2t+1

, s2t −1, . . . , s0, 0, . . . , 0]T )

=([0, . . . , 0︸   ︷︷   ︸
r

, s2t+1−1, . . . , s2t , 0, . . . , 0︸   ︷︷   ︸
2t

, s2t+1−1, . . . , s2t , 0, . . . , 0]T
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+ [0, . . . , 0︸   ︷︷   ︸
r+2t

, s2t −1, . . . , s0, 0, . . . , 0︸   ︷︷   ︸
2t

, s2t −1, . . . , s0, 0, . . . , 0]T )

=[0, . . . , 0︸   ︷︷   ︸
r

, s2t+1−1, . . . , s0, s2t+1−1, . . . , s0, 0, . . . , 0]T .

�

A direct consequence of the theorem is the following corollary.

Corollary 7.8. For the transformation matrix M of degree m and 0 ≤ t ≤
⌊
log2m

⌋
it

follows

M 2t −1[1, 0, . . . , 0]T = [1, . . . , 1︸   ︷︷   ︸
2t

, 0, . . . , 0]T .

Proof. With Theorem 7.7 it follows

M 2t −1[1, 0, . . . , 0]T = M 2t −1
· · ·M 2M [1, 0, . . . , 0]T = [1, . . . , 1︸   ︷︷   ︸

2t

, 0, . . . , 0]T . (7.6)

�

7.2.6 Base Transformations

The parity subspaces Pl ,0 and Pl of the vector space S for 0 ≤ l ≤ m − 1, can each

be characterised by a distinct basis. Their dimensions coincide with the sizes of

their largest blocks according to Theorem 7.2 and Theorem 7.4. Each of these blocks

consists, furthermore, of a set of linearly independent vectors, for the vectors are

generated by a single kernel shifted from one vector end to the other. It follows that

the vectors of the unique even parity block of sizem − l − 1 form a basis for the vector

space Pl ,0. Similarly, the distinct basis for Pl is formed by the block of odd parity of

sizem − l . The distinct basis will be referred to as base blocks in what follows.

The blocks of a parity set have a Vxed location within the sequence of LFSR states.

It is possible to align the blocks of Pl ,0 or Pl on parity level l with blocks of a parity set

of a lower level by advancing the blocks of one parity set by a certain number of steps

forward or backward in their occurrence in the sequence; in other words, Pl ,0 or Pl can

be mapped onto Pl̄ ,0 or Pl̄ with a linear transformation T x , where 0 ≤ l̄ < l ≤ m − 1.

The vector space Pl will be of particular interest and is thus considered solely in what

follows; the principle can, however, be applied in the same way to Pl ,0. To compute the

transformation T x for an alignment of all the blocks of Pl with equally-sized blocks
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of Pl̄ , where 0 ≤ l̄ < l ≤ m − 1, it is only necessary to determine the displacement x
from the base block of Pl to an equally-sized block of Pl̄ as will be explained in what

follows.

The base block of Pl will be denoted by Bl . It is now assumed that the transforma-

tion T x transforms this block into an equally-sized block on parity level l̄ ; this new

block describes an isomorphic representation of Pl and will be denoted as the base

block Bl̄ . If the topmost vector of a base block is included in a linear combination

of the base vectors, then the resulting vector will be a topmost vector of a block, as

only a kernel in a rightmost position can set the rightmost bit to one. Similarly, the

bottommost base block vector needs to contribute to the linear combination to obtain

a vector that constitutes a lower block boundary. This is one explanation why the

aligned blocks will be equally-sized in each case.

Furthermore, there are two options for the base block Bl̄ . It can be either of even

or odd parity. If it is of even parity, then any linear combination of the base vectors

will result in an even parity vector. The blocks of even and odd parity of Pl would

thus be purely aligned with even parity blocks on parity level l̄ .

If the base block Bl̄ is of odd parity as is Bl , then each two aligned blocks will have

the same parity. This is due to the fact that the parity of a vector obtained through

a linear combination of odd vectors is odd if the number of vectors is odd, and even

otherwise. Since T x is an isomorphism, the number of base vectors involved in the

linear combination of aligned vectors is the same and, therefore, also their parities.

The base block Bl is of sizem − l . It can only be aligned with a single block of the

same size on the previous parity level l̄ = l − 1. This block is of even parity according

to Theorem 7.4. The vector spaces of smaller parity levels l̄ with 0 ≤ l̄ ≤ l − 2 contain

2l−l̄−2 even and 2l−l̄−2 odd parity blocks of sizem − l . Hence, the number of possible

alignments increases exponentially with the diUerence between the two parity levels

l and l̄ .

An interesting alignment is achieved if each vector space Pl for 1 ≤ l ≤ m − 1,

is aligned with its previous vector space Pl̄ , where l̄ = l − 1. Table 7.1 shows on

its right-hand side this kind of alignment of the parity vector spaces of the sample

sequence. The number of blocks in a parity vector space is halved with every step

into a higher parity level according to Theorem 7.4. Furthermore, two parity vector

spaces on adjacent parity levels can only be aligned in a single way, where the higher

level odd parity base block is aligned with the lower parity level even parity block of

the same size, as described earlier. The lower level even parity block, is at the same
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time, a base for Pl−1,0, which means that Pl−1,0 is aligned with Pl . In this constellation,

an even parity block is aligned, in half of the cases, with an even parity block of the

next higher level, and in the other cases with an odd parity block. Odd parity blocks,

in contrast, do not have any corresponding block on the higher parity level. They are

in this sense terminating blocks that lie on top of even parity blocks in the stack of

parity levels.

Further insights into the nature of the block alignments is given by the following

theorem.

Theorem 7.9. An odd parity block of size b with b > 1 on parity level l , links through
M to an odd parity block of size b − 1 on parity level l + 1, if the two parity vector spaces
are aligned.

Proof. Theorem 7.5 shows that an odd parity block of size b with b > 1 is linked to

an even parity block of size b − 1 within the same parity level l . This smaller block

can only be aligned with either an even or odd parity block of the next higher parity

level l + 1 as described in this section. It is Vrst assumed that the smaller block on

parity level l + 1 is of even parity. If this is the case, the block would link back to

a block of size b of either even or odd parity on the same level l + 1, according to

Corollary 7.6. This block would be aligned with the initial odd parity block of size b on

level l . Due to the fact that odd parity blocks are terminating blocks that do not align

with any further even or odd parity blocks on the next higher level, a contradiction is

established. This shows that the supposition is false, which means that the smaller

block on parity level l + 1 must be of odd parity. �

An additional result is given by the following theorem.

Theorem 7.10. If a complete alignment of all the parity vector spaces Pl for 0 ≤ l ≤
m−1 is considered, then all the parity vector spaces on level l = 2t−1 for 0 ≤ t ≤

⌊
log2m

⌋
are already intrinsically aligned with each other.

Proof. To align two adjacent parity vector spaces Pl̄ and Pl with 0 ≤ l̄ < l ≤ m − 1,

it is necessary to determine the displacement between the base block of Pl and the

biggest even parity block of Pl̄ . Within a single parity vector space, the base block

is linked to the biggest even parity block through the transformation M , as can be

derived from Theorem 7.4 and Theorem 7.5. This implies that in a complete alignment

of all vector spaces, the base blocks of vector spaces on adjacent parity levels are

also linked through M . In other words, the base block of every vector space needs
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to be aligned with the equally-sized block of the longest chain on parity level zero,

to achieve a complete alignment. The base block for parity level l can be identiVed

through the kernel [1, . . . , 1]T of size l + 1. For parity level zero, the base block is

equivalent to the starting block of the chain. The bottommost vector of this base block

equals [1, 0, . . . , 0]T . It follows, with the help of Corollary 7.8, that the base blocks for

parity levels l = 2t − 1 for 1 ≤ t ≤
⌊
log2m

⌋
appear at their corresponding positions

in the chain, which means that their vector spaces are intrinsically aligned with the

vector space on parity level zero. �

The sample sequence with its parity vector spaces in Table 7.1 serves as an

illustration for Theorem 7.10. It can be seen that vector spaces on level one and three

are already intrinsically aligned with the vector space on parity level zero.

The relations that have been developed in this section form the basis for Section 7.4

that will present the new approach for the computation of the discrete logarithm. The

next section advances some of the results established in this section.

7.3 Additional Properties

In this section further properties for a maximum-length shift register sequence,

generated by a primitive polynomial p(X ) of degree m, are derived complementing

the ones established in Section 7.2.

7.3.1 Blocks

The next theorem gives useful information on how smaller blocks on higher parity

levels can be generated from a block on parity level zero, where all the blocks share

the same parity.

Theorem 7.11. A block of size b on parity level zero is considered. If the bottom j
vectors of this block are added together, where j ≤ b, the bottommost vector of a block of
the same parity class on parity level j − 1 of size b − j + 1 is obtained.

Proof. Let s = [sm−1, sm−2, . . . , s0]T be the bottommost vector of the block on parity

level zero. Due to the fact that s0 to sb−2 are zero, it follows that the addition of the j
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bottommost vectors of the block can be expressed as the vector

s̄ =



sm−1 + s0 + · · · + s(j−2 mod (m))

sm−2 + sm−1 + · · · + s(j−3 mod (m))

sm−3 + sm−2 + · · · + s(j−4 mod (m))
...

s0 + s1 + · · · + s(j−1 mod (m))


.

It follows that the sub-parities b j−1,i(s̄) = b0,0(s) for 0 ≤ i ≤ j − 1. This means that the

parity class of s on level zero is equivalent to the one of s̄ on level j − 1. Since s is a

bottommost vector of a block of size b, it follows that sm−1 = sb−1 = 1; this implies

that s̄m−1 = s̄b− j = 1 and s̄b− j−1 to s̄0 are zero, so that s̄ is the bottommost vector of a

block of size b − j + 1. �

7.3.2 L Transformation

It has been shown in Subsection 7.2.5 that the elements of the maximum-length

sequence can be combined to blocks, which can be further connected to 2m−2 chains

on parity level zero. Thus, if every chain is reduced to one of its elements, for instance

the last block of size one, the 2m − 1 sequence elements are reduced to about a quarter

of their number. Each of the obtained elements can be characterised through the

length of the chain on parity level zero to which it belongs. If a complete alignment

of parity vector spaces is considered, as described in Subsection 7.2.6, the last block of

a chain of length h reaches up to parity level h − 1, where the odd parity terminating

block of size one can be found. Therefore, the 2m−2 elements will be regarded in what

follows either as the blocks of size one on parity level zero, characterised by the length

of the chain to which they belong, or equivalently as the odd parity blocks of size one

that are spread across the diUerent parity levels.

The following conjecture gives information on how the 2m−2 elements can be

transformed into each other.

Conjecture 7.12. For a deVning polynomial of degree m and parity level l with 1 ≤

l ≤ m − 3, there exist min(2l−1, 2m−3−l ) linear transformations of the form T x , such that
every odd parity block of size one on level l is mapped by one of the transformations onto
an element of an even parity block on the same level.

It is possible to transform all the 2m−2 odd parity blocks of size one into the single

block on the highest parity levelm − 1 with the help of this conjecture. Starting from



118 Chapter 7. Logarithms: Reduce-Map Algorithm

an arbitrary odd parity block of size one on a certain parity level, the idea is to apply

a transformation of the form T x that will result in an odd parity block of size one on

a higher parity level. This process will be repeated until the highest level has been

reached. In regard to the transformations, several cases need to be distinguished.

First of all, the considered odd parity block of size one may be located on parity

level zero. In this case, it is possible to transform the block to a block of the same

parity and size but on a higher parity level in a simple way. First of all, an element of

an even parity block is obtained by simply going one step forward or backward in

the sequence of states. Primitive polynomials exhibit an odd number of terms, such

that an addition of the polynomial to a vector changes its parity class on level zero.

Furthermore, since the corresponding state vector of a size one block has the least-

and most-signiVcant bit set, moving one step forward or backward in the sequence

implies an addition of the polynomial and, therefore, a change in parity class. The

obtained even parity block element is either the Vrst or the last vector of a block,

depending on the direction of the step. This vector can now be reduced to the last

element of the its chain, which will be an even parity block of size one. If the complete

parity vector space alignment is taken into account, there will be a parity level, where

the terminating block of size one is located. Since the last element of the considered

chain is of even parity, the terminating block is on parity level one or higher; a

transformation to this block completes the algorithm step, since the odd parity block

of size one of a higher parity level has been reached.

If the odd parity block of size one that is to be transformed to a higher level is

located on level l with 1 ≤ l ≤ dm−2
2 e − 1, a maximum number of 2l−1 transformations

would need to be tested until an even parity block on the same level has been obtained

according to Conjecture 7.12. This block can then be reduced to an odd parity block of

size one on a higher level in the same way as has been described in the previous case.

The last case concerns parity levels l , where dm−2
2 e ≤ l ≤ m − 3. Since the number

of odd parity blocks of size one accounts for 2m−l−3, which is less or equal to 2l−1, it

is possible to select 2m−l−3 transformations that each map a block directly onto the

block of the highest level. Therefore, a maximum number of 2m−l−3 transformations

would need to be tested, until the highest level has been reached.

Conjecture 7.12 can be further reVned for parity level two as follows.

Conjecture 7.13. For a deVning polynomial p(X ) of degree m, where m ≥ 6, there exist
two linear transformations of the formT x that map each, one half of the odd parity blocks
of size one on parity level two, onto elements of even parity blocks on the same parity
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level. The Vrst transformation has an invariant Vrst row of the form [0, 0, 1, . . . , 1, 1, 0]

for all primitive polynomials, so that the entire matrix can be speciVed as

L2a =



0 0 1 · · · 1 1 0

pm−1 + pm−2 0 pm−1 · · · pm−1 pm−1 1
...

...
...
. . .

...
...

...

1 p1 p1 · · · p1 pm−1 + p1 p2 + p1

0 1 1 · · · 1 0 pm−1 + p1


.

With the knowledge of this Vrst transformation, the second one can be obtained as
L2b = L2a + diag (1, . . . , 1).

The following theorem introduces the L transformation.

Theorem 7.14. The linear transformation

L =



pm−1 1 0 · · · 0 1

pm−2 1 1 · · · 0 pm−1

pm−3 1 1 · · · 0 pm−2

pm−4 0 1 · · · 0 pm−3
...
...
...
. . .
...
...

p2 0 0 · · · 1 p3

p1 0 0 · · · 1 p2

1 0 0 · · · 1 p1


maps odd parity blocks of size one on parity level one onto elements of even parity blocks
on the same parity level for primitive polynomials p(X ) of degree m ≥ 4.

Proof. Let s be a vector of length m that forms an odd parity block of size one on

parity level one, i.e. s ∈ P1,1 and s0 = sm−1 = 1. Since p(X ) is a primitive polynomial

of degreem, it exhibits an odd number of terms. Furthermore, ifm is assumed to be

even, it follows that

b1,0(Ls) =
m−1∑
i=0

pi +

m
2 −2∑
i=0

s2i+1 =

m−1∑
i=0

pi + b1,0(s) + sm−1 = 0 + 1 + 1 = 0 and

b1,1(Ls) =
m−1∑
i=0

pi +

m
2 −1∑
i=1

s2i =

m−1∑
i=0

pi + b1,1(s) + s0 = 0 + 1 + 1 = 0.
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Table 7.2: L transformation. It is indicated to how many diUerent chains on parity level zero
of a certain length, the blocks of odd parity on parity level one are mapped to by L according
to Conjecture 7.15 for the polynomial degreem with 5 ≤ m ≤ 12.

m
Chain Length

3 4 5 6 7 8 9 10 11 12

5 0 0 1 0 0 0 0 0 0 0

6 1 0 0 1 0 0 0 0 0 0

7 1 2 0 0 1 0 0 0 0 0

8 2 3 2 0 0 1 0 0 0 0

9 4 6 3 2 0 0 1 0 0 0

10 8 12 6 3 2 0 0 1 0 0

11 16 24 12 6 3 2 0 0 1 0

12 32 48 24 12 6 3 2 0 0 1

For the case thatm is odd, it can be shown that

b1,0(Ls) = p0 +
m−1∑
i=0

pi +

m−1
2 −1∑
i=1

s2i = p0 +
m−1∑
i=0

pi + b1,0(s) = 1 + 0 + 1 = 0 and

b1,1(Ls) =
m−1∑
i=1

pi +

m−1
2 −1∑
i=0

s2i+1 =

m−1∑
i=1

pi + b1,1(s) = 1 + 1 = 0.

If both cases form are considered together, it follows that Ls ∈ P1,0. �

A further important property of the L transformation is given by the following

conjecture.

Conjecture 7.15. The linear transformation L as deVned in Theorem 7.14, maps all
2m−4 odd parity blocks of size one on parity level one onto half the number of chains on
parity level zero, i.e. 2m−5 diUerent chains, for m ≥ 5. These 2m−5 chains include the
longest chain, b 1+2m−6

2 c chains of length 3 for m ≥ 6, and 2m−h−2 − b2m−h−4c chains of
length h, where 4 ≤ h ≤ m − 3, as illustrated by Table 7.2.

The sequence given in Table 7.1 is used as an example with m = 5 to illustrate

Theorem 7.14 and Conjecture 7.15. There are two blocks of size one on parity level

one of the sequence, which are located at positions 14 and 26. The L transformation

can be indicated for this example as L = T 10. It can be veriVed that an application

of L leads to the vectors at positions 24 and 5, which have even parity on level one.
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Furthermore, the vectors are part of one and the same chain on level zero as predicted

by Conjecture 7.15, which means that the number of starting vectors has been reduced

to half the number of chains.

The reduction of odd parity blocks of size one on level one that is obtained through

the L transformation as outlined in Conjecture 7.15, can be further increased if the

degree m of the determining polynomial is such that m ≥ 10 with the following

conjecture.

Conjecture 7.16. The elements that are obtained by mapping the odd parity blocks of
size one on level one through L for a primitive polynomial of degreem are considered. It is
assumed that the resulting elements are each reduced to an element of their corresponding
chain on level zero. The chain element to which the elements are reduced, is assumed
to be equal for chains of the same length. According to Conjecture 7.15, there are 2m−5

diUerent elements that are considered, grouped by the length of the chain to which they
belong.

For h with 7 ≤ h ≤ m − 3 and h̄ with 4 ≤ h̄ ≤ h − 3, there exist exactly d3 · 2h−h̄−4e

transformations of the form T x that map each the elements that belong to chains of
length h onto elements that belong to chains of length h̄.

At this point a small example using a primitive polynomial of degree m = 12

is provided in Table 7.3 to illustrate the element reductions that can be achieved

eXciently with the presented results. The starting point are the 2m−2 odd parity

blocks of size one to which all the nonzero Veld elements can easily be reduced using

the chain properties as described in Subsection 7.2.5. Each of those blocks corresponds

to a certain parity level and the number of blocks per level, according to Theorem 7.4,

is indicated in Table 7.3. Blocks on level zero can be transformed to blocks on higher

levels by going one step forward or backward in the sequence of states as described

earlier in the subsection, which can be modelled by T or T −1. For blocks on level two,

L2a and L2b as introduced in Conjecture 7.13 can be used to map the blocks to blocks

of higher levels. The odd parity blocks of a certain level l are contained in Pl ,1 as

introduced in Subsection 7.2.3. Furthermore, Pl can be aligned with Pl̄ , for l̄ ≤ l − 2, in

such a way that blocks of the same parity align as described in Subsection 7.2.6. This

means that for every level l , where 3 ≤ l ≤ m − 1, a transformation can be determined

that will map the blocks on level l onto the blocks on level one. The initial number of

2m − 1 nonzero Veld elements has thus been reduced to the 2m−4 odd parity blocks of

size one on level one that belong to P1,1. A further reduction to half of the number of

blocks is achieved if the L-transformation is applied as described in Conjecture 7.15.
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Table 7.3: Illustration of the achievable reduction of the nonzero elements of a Vnite Veld using
the example of a determining polynomial of degree 12. For every parity level, the number of
odd parity blocks of size one is indicated to which the 212 − 1 elements can be initially reduced
using the chain property. The blocks on level zero can be transformed to higher level blocks
with the help of T or alternatively T −1. In a next step, blocks on level two can be mapped to
higher level blocks with L2a and L2b . Blocks of level three or higher can then be mapped onto
the blocks of level one by considering the alignment of P1,1 with P3,1 to P11,1. The blocks on
level one can then be mapped by L onto half the number of blocks on higher levels. According
to Conjecture 7.16, the resulting blocks on level 5 to 11 can be mapped, for instance, to the
blocks on level two with a single transformation for each level.

Level 0 1 2 3 4 5 6 7 8 9 10 11

Blocks 512 256 128 64 32 16 8 4 2 1 0 1

T/T −1 0 256 128 64 32 16 8 4 2 1 0 1

L2a/L2b 0 256 0 64 32 16 8 4 2 1 0 1

P1,1 0 256 0 0 0 0 0 0 0 0 0 0

L 0 0 32 48 24 12 6 3 2 0 0 1

P2,1 0 0 32 48 24 12 0 0 0 0 0 0

The resulting blocks that are located on level two or higher, can be mapped to the

blocks on level two to Vve according to Conjecture 7.16. If the number of blocks

that are obtained through the L-transformation on levels two to Vve are summed

up, 29 · 2m−10 blocks are obtained for m ≥ 10. Thus, the number of nonzero Veld

elements has been reduced, with a linear number of transformations in the size of the

polynomial degree, from 2m − 1 to 29 · 2m−10 form ≥ 10.

7.3.3 Q Transformation

The alignments of parity vector spaces P0 and P2 are considered. For these two vector

spaces, there exist two alignments as described in Subsection 7.2.6. One alignment

maps blocks of the same parity onto each other as can be seen in the left-hand side

of the example given in Table 7.1, where the blocks of P0 and P2 that align have the

same parity. The second possible alignment maps all the blocks of P2 onto even parity

blocks of P0, which can be seen in the right-hand side of Table 7.1. The two alignments

are determined by the locations of the odd and even parity blocks of size m − 2 in

the sequence of states. The Q transformation is deVned as the transformation that

maps the odd parity block of sizem − 2 onto the even parity block of sizem − 2. Since

P2 has a quarter of the odd parity elements of P0, it follows that Q maps at least a
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quarter of the odd parity sequence elements onto even parity sequence elements. For

the example in Table 7.1, Q = T 25.

Further information regarding the Q transformation is established in what follows.

Theorem 7.17. For every parity level l , where 0 ≤ l ≤ m − 3, Q maps the only odd
parity block of sizem − l − 2 onto the only even parity block of the same size on the same
parity level.

Proof. Let s be the bottommost vector of the only odd parity block of size m − 2 on

parity level zero, and s̄ the corresponding vector of the even parity block. By deVnition

of Q , it follows that Qs = s̄. The bottommost vector of the only odd parity block of

sizem− 2− l on parity level l with 0 ≤ l ≤ m− 3, can be expressed using Theorem 7.11

as
∑l

i=0T
−is. If this vector is mapped by Q , it follows that

Q
l∑

i=0

T −is =
l∑

i=0

T −i s̄

which describes the bottommost vector of the only even parity block of size m − 2 − l
on parity level l . �

This result implies that the Q transformation allows to map a quarter of the odd

parity blocks of parity level l with 0 ≤ l ≤ m − 3 onto odd parity blocks of parity

level l + 2 as explained in Figure 7.5. A quarter of the odd parity blocks on level l is

mapped by Q onto equally-sized even parity blocks on the same level. These even

parity blocks have their terminating block two levels higher up, if a complete block

alignment is considered as outlined in Subsection 7.2.6. Thus, a quarter of the odd

parity blocks can easily be upgraded to equally-sized blocks two levels higher up.

The only odd parity blocks of size one on the diUerent parity levels, to which all

the other vectors can easily be reduced to, are considered. Furthermore, it is assumed

that all the vector spaces have been completely aligned. With the arguments provided

in Figure 7.5, it follows that up to levelm − 5, a quarter of the blocks are mapped by

Q onto blocks ∆ = 2 levels higher up. Furthermore, the only block on levelm − 3 is

mapped by Q onto the only block on level m − 1. In other words, for every level l ,
where l ≥ 2, Q−1 maps all the corresponding blocks onto blocks ∆ = 2 levels further

down as illustrated form = 10 in Table 7.4.

Similarly to the Q transformation, it is possible to specify transformations that

connect blocks that are further than ∆ = 2 levels apart. If a level diUerence of

∆ = 3 is considered, for instance, two transformations exist, E0 and E1, where the
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Pl Pl+2

m − l − 2


x x
x x
...

...
x x
Qy
o
o
...
o

⇒

Pl+2 Pl
x x

≤ m − l − 4
x x
...

...
x x

Qy
o
o
...
o

Figure 7.5: Q transformation. It maps the only odd parity block of size m − l − 2 on parity
level l , where 0 ≤ l ≤ m − 3, onto the only even parity block of the same size on the same
parity level. A vector of odd parity for a speciVc level is indicated with an x, whereas an even
parity vector is indicated with an o. If it is assumed that the base block of Pl+2 is aligned
with the only odd parity block of size m − l − 2 of Pl , it follows that every odd parity block
of Pl+2, is aligned with an equally-sized odd parity block of Pl . If all the blocks of Pl+2 are
advanced by Q , they will be in the appropriate alignment with the blocks of Pl if a complete
block alignment of all parity vector spaces is considered, since the base block of Pl+2 would
need to be aligned with the only even parity block of size m − l − 2 of Pl . This implies that
Q maps a quarter of the odd parity blocks of Pl onto even parity blocks, which have their
terminating block in a complete block alignment two levels further up in Pl+2.

Table 7.4: Q transformation. A deVning polynomial of degreem = 10 is considered. For every
parity level the number of odd parity blocks of size one is shown. Under the assumption that
the parity vector spaces are completely aligned, Q−1 maps the blocks of a parity level l , l ≥ 2,
onto blocks two levels further down.

Level 0 1 2 3 4 5 6 7 8 9

Blocks
128

Q−1

←−−− 32
Q−1

←−−− 8
Q−1

←−−− 2 0

64
Q−1

←−−− 16
Q−1

←−−− 4
Q−1

←−−− 1
Q−1

←−−− 1
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Table 7.5: E transformation. A deVning polynomial of degreem = 10 is considered. For every
parity level the number of odd parity blocks of size one is shown. Under the assumption that
the parity vector spaces are completely aligned, E−1 indicates how E−1

0 or E−1
1 map the blocks

of a parity level l , l ≥ 3, onto blocks three levels further down.

Level 0 1 2 3 4 5 6 7 8 9

Blocks
128

E−1

←−−−−−−− 16
E−1

←−−−−−−− 2
E−1

←−−−−−−− 1

64
E−1

←−−−−−−− 8
E−1

←−−−−−−− 1

32
E−1

←−−−−−−− 4 0

inverse transformations maps the odd parity blocks of size one of each level, onto

corresponding blocks three levels further down, as depicted in Table 7.5. In general,

the number of possible transformations increases exponentially with the diUerence in

levels ∆, since the number of corresponding alignments increases in the same way as

explained in Subsection 7.2.6.

If a transformation is applied which maps the blocks of each level l , l ≥ ∆, onto

blocks ∆ levels further down, a block clustering is obtained. The following theorem

speciVes the number of clusters that is obtained in this way.

Theorem 7.18. For a deVning primitive polynomial of degree m, a transformation is
considered that maps odd parity blocks of size one of each level l onto corresponding
blocks ∆ levels further down, where ∆ ≤ l ≤ m − 1 and 2 ≤ ∆ ≤ m − 1. The resulting
number of clusters equals

∆−3∑
i=0

b2m−i−3c + d2m−∆−1e + b2m−∆−2c . (7.7)

Proof. Higher parity blocks are mapped by the transformation onto blocks of lower

parity, which means that it is suXcient to determine the number of blocks on the

lowest levels. Since the diUerence in levels between mapped blocks accounts for ∆,

the sum of the number of the blocks on the lowest ∆ levels equals the number of

resulting clusters. From level 0 tom − 3, the number of odd parity blocks of size one

on level l equals 2m−l−3. There is no block of this type on levelm − 2, but one on level

m − 1. �

By using transformation Q to map higher parity blocks onto lower parity blocks,

the number of clusters that is obtained equals d2m−3e + b2m−4c, since ∆ = 2. As an

example the 192 clusters form = 10 are considered which are shown in Figure 7.6.
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9

7

6

5

4

3

2

1

0

x 6

x 24

x 96

x 2

x 3

x 12

x 48

x 1

Level

Figure 7.6: Clustering using the Q transformation form = 10. Each coloured box represents
an odd parity block of size one, where the colour signiVes the corresponding parity level. A
connection between two boxes indicates that the higher parity box can be transformed with Q
into the lower parity box. For each cluster prototype the number of instances is shown. The
total number of clusters is 192.

Table 7.6: Number of clusters obtained using the Q and E transformations for a deVning
polynomial of degree up tom = 10.

Degree Number of Clusters

1 1

2 1

3 1

4 1

5 4

6 10

7 19

8 37

9 73

10 147

11 297

If Q and the two E transformations are considered together, for instance, the

number of clusters reduces from 192 to 147, for the case of m = 10; the resulting

clustering is shown in Figure 7.7. The number of clusters obtained by considering all

three transformations for polynomial degrees up tom = 10 can be found in Table 7.6.
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x 9 x 36

x 74

9
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1

0

Level

x 18

x 1

Figure 7.7: Clustering using the Q and E transformations for m = 10. Each coloured box
represents an odd parity block of size one, where the colour signiVes the corresponding parity
level. A horizontal connection between two boxes indicates that the higher parity box can
be transformed with Q into the lower parity box. The other two connection types indicate
the relationship for the two E transformations. For each cluster prototype the number of
instances is shown. The total number of clusters is 147.
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7.3.4 Parity Subspaces

This subsection establishes additional relationships between the diUerent parity vector

spaces. The following theorem gives further information on the intrinsic alignment of

the vector spaces.

Theorem 7.19. A primitive polynomial of degree m is considered. The base block of
parity level l , 0 ≤ l ≤ m − 1 , is intrinsically aligned with a block on level l̄ , where
0 ≤ l̄ ≤ l , only if l+1

l̄+1
is an integer. If the integer is even, the parity of the block on level l̄

is even, otherwise it is odd.

Proof. Let s be the bottommost vector of the base block on level l , so that

s = [1, . . . , 1︸   ︷︷   ︸
l+1

, 0, . . . , 0]T .

Base blocks are of odd parity and for the sub-parities for level l it follows that bl ,i(s) = 1

for all i with 0 ≤ i ≤ l . Now it is assumed that 0 ≤ l̄ ≤ l and

l + 1

l̄ + 1
= r.

If r is an integer,

bl̄ ,i(s) =
r−1∑
j=0

bl ,i+(l̄+1)j(s) ≡ r (mod 2),

for all i with 0 ≤ i ≤ l̄ . Therefore, if r is additionally even, all sub-parities on level l̄
are also even and s ∈ Pl̄ ,0, otherwise all sub-parities are odd and s ∈ Pl̄ ,1.

For the case, where r is not an integer, the following two sub-parities for level l̄

bl̄ ,0(s) =
dre−1∑
j=0

sm−1− j(l̄+1) ≡ dre (mod 2) and

bl̄ ,l̄ (s) =
brc−1∑
j=0

sm−1− j(l̄+1)−l̄ ≡ brc (mod 2)

are diUerent, which implies that s < Pl̄ . �

This result implies, for instance, that the base block of a parity vector space Pl for

a primitive polynomial of degree m, where 0 ≤ l ≤ m − 1, is intrinsically aligned with
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an even parity block in P0 if l is odd. Otherwise, the base block is aligned with an odd

parity block in P0.

Before the next theorem is proven, the following lemma is introduced.

Lemma 7.20. A deVning primitive polynomial of degreem is considered. For 0 ≤ r ≤ m
2 ,

it follows
Mr [1, . . . , 1︸   ︷︷   ︸

r

, 0, . . . , 0]T = (T 0 +T −r )Mr−1[1, 0, . . . , 0]T .

Proof. The relationship follows from

Mr [1, . . . , 1︸   ︷︷   ︸
r

, 0, . . . , 0]T = Mr (T 0 +T −1 + · · · +T −(r−1))[1, 0, . . . , 0]T

= (T 0 +T −1 + · · · +T −(r−1))MMr−1[1, 0, . . . , 0]T

= (T 0 +T −1 + · · · +T −(r−1))(T 0 +T −1)Mr−1[1, 0, . . . , 0]T

= (T 0 +T −r )Mr−1[1, 0, . . . , 0]T .

�

Theorem 7.21. For a primitive polynomial of degree m, all parity vector spaces Pl for
0 ≤ l ≤ m − 1 are considered. Let r be the negative displacement between the base
block of P(2i−1)−1, 1 ≤ i ≤ bm−1

2 c + 1, and the block in P0 that would align with the base
block in a complete alignment. It follows that the displacement between the base block
of P(2i−1)2 j−1 and the corresponding block in P0 in a complete alignment equals r2j for
0 ≤ j ≤ blog2

m
2i−1c.

Proof. Induction is used to prove the statement. The bottommost vector of the base

block of parity vector space Pl is

[1, . . . , 1︸   ︷︷   ︸
l+1

, 0, . . . , 0]T .

In a complete alignment of the parity vector spaces, this vector of Pl needs to be aligned

with vector M l[1, 0, . . . , 0]T of P0 according to Subsection 7.2.5 and Subsection 7.2.6.

The following statement is therefore to be proven

T r2 jM (2i−1)2 j−1[1, 0, . . . , 0]T = [1, . . . , 1︸   ︷︷   ︸
(2i−1)2 j

, 0, . . . , 0]T
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The case for j = 0 is fulVlled, since according to the premise

T rM (2i−1)−1[1, 0, . . . , 0]T = [1, . . . , 1︸   ︷︷   ︸
2i−1

, 0, . . . , 0]T .

It is now assumed that the statement is true for j. With Lemma 7.20 it follows

T r2 j+1
M (2i−1)2 j+1−1[1, 0, . . . , 0]T

= T r2 jM (2i−1)2 jT r2 jM (2i−1)2 j−1[1, 0, . . . , 0]T

= T r2 jM (2i−1)2 j [1, . . . , 1︸   ︷︷   ︸
(2i−1)2 j

, 0, . . . , 0]T

= T r2 j (T 0 +T −(2i−1)2 j )M (2i−1)2 j−1[1, 0, . . . , 0]T

= (T 0 +T −(2i−1)2 j )T r2 jM (2i−1)2 j−1[1, 0, . . . , 0]T

= (T 0 +T −(2i−1)2 j )[1, . . . , 1︸   ︷︷   ︸
(2i−1)2 j

, 0, . . . , 0]T

= [1, . . . , 1︸   ︷︷   ︸
(2i−1)2 j+1

, 0, . . . , 0]T .

�

It is now possible to specify the transformations between the parity vector spaces

in a complete alignment for a deVning polynomial of degree m as follows. Let Rl
denote the transformation that establishes the alignment between the vectors of parity

level l and the corresponding vectors on parity level zero, i.e. Rl maps the block of

sizem − l of the longest chain on level zero onto the base block on level l ; and even

more precisely

RlM l[1, 0, . . . , 0]T = [1, . . . , 1︸   ︷︷   ︸
l+1

, 0, . . . , 0]T .

Due to the fact that every nonnegative integer l can be expressed as l = (2i + 1)2j − 1

with 1 ≤ i and 0 ≤ j, Theorem 7.21 permits every Rl with odd l from a particular Rl̄
with even l̄ to be derived:

R1 = R21

0 R3 = R22

0 · · · R1·2 j−1 = R2 j
0

R5 = R21

2 R11 = R22

2 · · · R3·2 j−1 = R2 j
2

R9 = R21

4 R19 = R22

4 · · · R5·2 j−1 = R2 j
4

R13 = R21

6 R27 = R22

6 · · · R7·2 j−1 = R2 j
6

...
...

. . .
...

R(2i−1)21−1 = R21

(2i−2) R(2i−1)22−1 = R22

(2i−2) · · · R(2i−1)2 j−1 = R2 j
(2i−2).
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Every parity vector space is trivially aligned with itself, so that R0 = T 0; this implies

that R2 j−1 = 0 for all j ≥ 0, and conVrms the result of Theorem 7.10. From the

deVnition of the Q transformation in Subsection 7.3.3 it follows that R2 = Q−1.

7.4 Computing Discrete Logarithms

In this section a new approach is presented to compute the discrete logarithm k of

a polynomial s(X ) to the base X , such that X k ≡ s(X ) (mod p(X )), where p(X ) is

a primitive polynomial of degree m as described in Section 7.1. This approach is

based on the newly established properties from Section 7.2. The discrete logarithm k
corresponds in this scenario to the position of the corresponding state vector s of s(X )

in the sequence of shift register states, since it has been deVned in Subsection 7.2.1

that the state at sequence position zero equals s[0] = [0, . . . , 0, 1]T .

The main operating principle of the proposed algorithm comprises in the ap-

plication of repeated linear transformations of the form T x on the initial vector s,
until a certain designated vector s̄ is reached. It is known by how many steps each

transformation in the algorithm advances a vector in the sequence of states. Moreover,

as the position of the designated vector s̄ in the sequence is also known, it is possible

to work out the starting position of s, once s has been transformed into s̄. In what

follows, s̄ is chosen to be s̄ = [0, . . . , 0, 1]T , which means that if k steps are necessary

to reach the vector from the starting position of s, the discrete logarithm will simply

correspond to the value (−k).

The transformations that are applied to s to reach s̄, revolve around two key

functions that are executed repeatedly: reduction and mapping. In the reduction step,

s is reduced to a predeVned element of its chain on parity level zero as described in

Subsection 7.2.5. This element is chosen to be the Vrst element of the chain in what

follows, which ensures that s̄ can be reached as it is the topmost vector of the biggest

odd parity block and, therefore, the Vrst element of the longest chain.

In the mapping step, a linear transformation T x is applied to the reduced vector.

The set of reduced vectors has been divided into partitions according to the length

of the chain to which they belong. Each partition features its own speciVc linear

transformation that is used for the mapping. To minimise the runtime of the algorithm,

it is necessary to Vnd an optimal set of linear transformations.

The algorithm has been split into an initialisation and a computation phase which

are explained in more detail below. Vectors all have a length of m if not speciVed
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otherwise. To determine the leading and trailing zeros of a vector, functions lz() and

tz() have been introduced.

7.4.1 Initialisation

During the initialisation phase, a set of algorithm parameters is computed that is

speciVc to the underlying deVning polynomial p(X ). The pseudocode for this phase is

shown in Algorithm 7.1.

Algorithm 7.1 Initialisation pseudocode.

1: procedure init(p ,m, f )
2: T = [p | Im−1

0 ]
3: for i = 0 tom − 1 do
4: pl[i] = 0
5: end for
6: k = 0
7: s = [1, 0, . . . , 0]T

8: repeat
9: s = Ts

10: k = k + 1
11: if (s = [0, . . . , 0, 1, 1]T ) pm = k − 1
12: if (s = [0, . . . , 0, 1, . . . , 1]T ) then
13: pl[m − 1 − lz(s)] = pl[m − 1 − lz(s)] + k
14: end if
15: if (s = [0, . . . , 0, 1, 0, . . . , 0, 1]T ) then
16: pl[m − 1 − lz(s)] = pl[m − 1 − lz(s)] − k
17: end if
18: until s = [1, 0, . . . , 0]T

19: globalise T ,m, f , pl , pm
20: end procedure

In a Vrst step, the matrix T is set up according to (7.2), to model the multiplication

of a polynomial by X or equivalently a single shift operation of the LFSR.

Subsequently, the sequence of LFSR states is traversed to locate the positions of

particular states within the sequence that will deVne corresponding transformations

on the basis of T . These include the matrix M as deVned by Theorem 7.5, which is

modelled as M = T pm. Furthermore, one variant of the reduction function of the main

code requires the set of base transformations that aligns all the adjacent parity vector

spaces. To translate a vector on parity level l into its corresponding counterpart on

the aligned parity level l + 1, the transformationT pl[l+1] is used. These transformations
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can be derived from the relative positioning of the base blocks of the two vector spaces

as described in Subsection 7.2.6. The base blocks are identiVed through their kernels

according to Theorem 7.4.

Parameter f that is supplied to the initialisation procedure is a vector of sizem − 2

with components ranging from 1 to 2m − 2 to describe the transformations that are

used for the mapping function.

7.4.2 Main Computation

The algorithm consists essentially of the reduction and mapping steps that are exe-

cuted in a loop as shown in the pseudocode in Algorithm 7.2 and explained in what

follows in more detail. The variable k keeps track of the number of shifts that are

Algorithm 7.2 Main function pseudocode.

1: function log(s)
2: k = 0
3: loop
4: {s , k} = reduce(s , k)
5: if (lz(s) =m − 1) return −k
6: {s , k} = map(s , k)
7: end loop
8: end function

applied to the starting vector s during the reduction and mapping steps. Once the

terminating vector s̄ has been reached, which is identiVed by a chain length ofm − 1,

the algorithm returns the discrete logarithm. Since the reduction function reduces

s to the Vrst vector of the Vrst block of its chain, the length of the chain is simply

determined by counting the number of leading zeros of the reduced vector and adding

one to the result. Alternatively, s can directly be compared to s̄, instead of checking

for the appropriate chain length.

Reduction

The reduction function is based on the chain property of maximum-length shift

register sequences as introduced in Subsection 7.2.5. In what follows it will by tailored

to reduce an input vector s ∈ S∗ to the Vrst vector of the starting block of the chain

on parity level zero to which s belongs. Two diUerent implementation variants are

presented for this purpose.
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The Vrst implementation relies on the fact that each chain element can be regarded

as the bottommost element of a stack, on top of which blocks from aligned parity

vector spaces of higher parity levels are located as derived in Subsection 7.2.6. It can

be further deduced from Theorem 7.9 that the stack grows with the distance from

the starting block of the chain. The Vrst block of a chain is always of odd parity and

therefore at the same time the terminating block for the Vrst stack. This means that

the Vrst stack ends already on parity level zero. If the chain has a second element,

for instance, its stack would reach up to parity level one. In this way, the height of a

stack is an indicator for the position within the chain. Therefore, a method to locate

the starting block of the chain, is to determine the height of the stack to which s
belongs by identifying the parity level of the terminating block of the stack. For this

purpose it is necessary to know the displacements of the diUerent parity vector spaces

against each other, to climb up the stack. Once the height of the stack is determined,

the oUset to the Vrst vector of the starting block can be computed and s transformed

accordingly as demonstrated with the pseudocode in Algorithm 7.3.

Algorithm 7.3 Reduction function variant 0 pseudocode.

1: function reduce_0(s , k)
2: l = 0
3: t = s
4: while t ∈ Pl ,0 do
5: l = l + 1
6: t = T pl[l]t
7: end while
8: k = k − l ∗ (pm + 1) − tz(s)
9: s = T −l∗(pm+1)T −tz(s)s

10: return {s , k}
11: end function

The second variant of the reduction function is based on the fact that only the

Vrst block of a chain is of odd parity. Through repeated applications of M−1 = T −pm,

it is possible to traverse the chain backwards and test each chain element for odd

parity until the starting block has been reached. In a last step, it is necessary to shift

the vector to the topmost position within the starting block. The pseudocode for this

approach is shown in Algorithm 7.4. This second approach is more eXcient than

the Vrst one, since it dispenses with the need for climbing up the stack of elements.

Furthermore, it only needs to check for even parity on parity level zero, instead of on

diUerent parity levels.
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Algorithm 7.4 Reduction function variant 1 pseudocode.

1: function reduce_1(s , k)
2: while s ∈ P0,0 do
3: s = T −pms
4: k = k − pm
5: end while
6: k = k − tz(s)
7: s = T −tz(s)s
8: return {s , k}
9: end function

In both variants of the reduction function, a linear search is performed. The Vrst

variant searches for the terminating block of the stack on successive parity levels,

whereas the second variant traverses the chain element by element until the starting

block is found. It is possible to speed up the process in both cases by performing a

binary search instead, for example.

For the Vrst reduction variant, it is possible to use the result of Theorem 7.10 for

further simpliVcation. Since all the vector spaces on levels l = 2t − 1 for 1 ≤ t ≤⌊
log2m

⌋
are intrinsically aligned with the vector space on level zero, the starting

vector s can be directly used to test the parity for those speciVc parity levels, without

the need of applying alignment transformations. This is particularly advantageous in

a hardware implementation, where the parity of s can be tested for diUerent levels in

parallel.

In comparison to the presented two reduction functions, a reduction to the last

vector of the chain, for instance, can easily be realised by determining the size of the

block and the position within the block to which s belongs. With this information

the oUset to the last element can directly be computed, since the block sizes within

the chain are always decreasing by one as outlined in Subsection 7.2.5. However,

this information alone would not permit a deduction of the total chain length, which

is required by the mapping function in the next step. For this purpose one of the

Vrst two functions would need to be employed in combination as they provide a

mechanism for determining the chain length.

It is, for the algorithm, essentially irrelevant to which vector of the chain is

reduced, since diUerent chain vectors can be transformed into each other through a

linear transformation of the form T x , which can be taken care of by the mapping step

without any extra cost. Therefore, the second reduction function variant seems to be,

at present, the most favourable.
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Mapping

The mapping function applies a simple linear transformation of the form T x to the

input vector. This transformation has been made dependent on the length of the

chain to which the vector belongs. In the presented mapping function, each input

vector is assumed to be reduced to the Vrst vector of its chain. It is therefore possible

to determine, easily, the length of the underlying chain, by counting the number of

leading zeros of the input vector and adding one to the result. The pseudocode for the

mapping function is shown in Algorithm 7.5, where f [i] denotes the number of shifts

that is applied to a vector that belongs to a chain of length i + 1.

Algorithm 7.5 Mapping function pseudocode.

1: function map(s , k)
2: l = lz(s)
3: s = T f [l]s
4: k = k + f [l]
5: return {s , k}
6: end function

In the shift register sequence, there exists exactly one chain of length h =m on

parity level zero which triggers the algorithm to terminate. It is therefore desirable

for the mapping function to map the reduced elements of every chain, in as few steps

as possible, onto the longest chain. Interestingly, a chain of length h =m − 1 does not

exist, for there is no odd parity block of sizem − 1. For every shorter chain length h
with 1 ≤ h ≤ m − 2, there are 2m−h−2 chain instances present, as this is the number of

odd parity blocks of size h according to Theorem 7.4. Since there is only one chain of

length h =m − 2, it is possible to map its reduced element, in a single step, directly

onto the longest chain, ideally onto its reduced element. This transformation can be

computed from the displacement of the two elements. For all other chain lengths,

there is more than one chain present, whose reduced elements cannot be mapped in

general in a single step onto the longest chain. The mappings depend on each other

and it is necessary to Vnd the best set of transformations that minimises the runtime

for a given optimisation goal, such as the worst-case runtime.

7.4.3 Implementation Details

In an implementation of the algorithm, two obvious and signiVcant improvements

can be made to the pseudocode presented in the previous subsections. Firstly, the
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transformationT −tz(s) is used to slide the kernel of s to the least signiVcant bit positions

of the vector. This operation can easily be realised as a shift operation in software or

hardware and does not require a matrix-vector multiplication.

Secondly, the transformation T is used with a Vnite number of other exponents in

the order of the polynomial degree. To be precise, if the second reduction function

variant is considered, m − 2 transformations of the form T f l[i] for 0 ≤ i ≤ m − 3,

together with the transformation T −pm, are required. These speciVc transformations

can be precomputed during the initialisation phase then to be used for the main

computation.

7.4.4 Example

To illustrate the operation of the algorithm with an example, the primitive polynomial

p(X ) = X 6 + X + 1 is considered as the deVning polynomial. The underlying reduction

function is assumed to reduce each nonzero state vector of the generated Veld to the

Vrst element of its corresponding chain. These chain elements are associated with

nodes as listed in Table 7.7, where they are divided according to their chain length.

The algorithm takes an arbitrary nonzero vector as input and aims to transform it

in as few steps as possible into the terminating vector, i.e. node 15, that corresponds

to the longest chain, to deduce the position of the initial state vector within the

maximum-length sequence of states. For this purpose the starting vector is reduced at

Vrst to one of the vectors listed in Table 7.7 with the help of the reduction function.

If the terminating vector has not been reached, the mapping function is used to

transform the reduced vector to another nonzero vector, which can then again be

reduced to one of the vectors in Table 7.7. The application of the mapping and

reduction function is repeated until the terminating vector is reached.

The mapping function deVnes essentially how the vectors in Table 7.7, and thus

the nodes, are mapped onto each other. It is desired to use a mapping function that

minimises the number of steps that need to be taken to reach the terminating node

from any starting node, if the worst-case runtime is considered for instance. An

analysis of all possible mapping function conVgurations has revealed that for the

underlying generator polynomial, a maximum number of two steps is required in

the best case to reach the terminating node from any other node. There are several

mapping function conVgurations that are optimal from this point of view. One such

conVguration is f = [2, 13, 16, 49], where each array element indicates by how many

steps a reduced vector, whose chain length corresponds to the element index increased
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Table 7.7: Reduced nonzero Veld elements of Z2[X ]/〈X 6 + X + 1〉 in 5-tuple representation
with their corresponding chain lengths. Each element is associated with a node.

Node State Chain Length

0 100011 1

1 111011 1

2 101001 1

3 100101 1

4 101111 1

5 110111 1

6 111101 1

7 110001 1

8 010011 2

9 011001 2

10 010101 2

11 011111 2

12 001011 3

13 001101 3

14 000111 4

15 000001 6

by one, needs to be advanced in the maximum-length sequence. The graph for this

speciVc conVguration is shown in Figure 7.8. It can be seen that every node reaches

the terminating node in no more than two steps.

In the considered sample conVguration, each node is mapped to a node corre-

sponding to either the same or a longer chain length. This is in general, however, not

always the case. Some nodes may be mapped onto nodes with lower chain length.

7.5 Evaluation

The question investigated in this section concerns the runtime behaviour of the

presented algorithm. DiUerent performance measures can be applied, such as the

worst-case or average-case execution time. The worst-case runtime is of particular

interest and becomes the focus of attention in what follows.

The algorithm has a number of degrees of freedom that have an impact on the per-

formance. Firstly, the determining primitive polynomial plays a role in the behaviour
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Figure 7.8: Sample mapping conVguration f = [2, 13, 16, 49] for p(X ) = X 6 + X + 1. The
terminal node is indicated through a dashed circle.

of the algorithm. DiUerent polynomials of the same degree achieve diUerent execution

times; it is therefore desirable to evaluate over all possible primitive polynomials of a

certain degree.

Secondly, the algorithm is greatly inWuenced by the conVguration of the mapping

function; it is necessary to take, for each polynomial, all the potential conVgurations

into account to determine the best worst-case runtime. For a polynomial of degree m,

the mapping function requiresm − 2 parameters. One of those parameters can easily

be derived, as it describes the mapping of the reduced vector that belongs to the single

chain of length h =m − 2, onto a vector that belongs to the longest chain. It suXces

therefore to set the parameter to the diUerence in sequence position between the

terminating vector and the reduced vector that belongs to the single chain of length

h = m − 2. The remaining parameters can take values in the range between 1 and

2m − 2. This leads to a maximum search space of (2m − 2)m−3 parameter combinations.

However, it is not necessary to evaluate every single combination to Vnd the

combination that minimises the worst-case runtime. A single mapping parameter is

responsible for the mapping of a certain partition of nodes. If a mapping value implies

a closed loop within that partition, it can be discarded, as otherwise not all nodes

will be able to reach the terminating node. The remaining mapping values will map

every source node onto a node outside the partition in a Vnite number of steps. In

the example in Figure 7.8, nodes [0 − 7], which constitute one partition, are mapped

in a Vnite number of steps by mapping value 2 onto the following nodes outside the
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Table 7.8: Best achievable worst-case number of mappings steps. For each polynomial degree
the number of primitive polynomials and the worst-case numbers of mapping steps are
indicated.

Degree Primitive Polynomials Mapping Steps

1 1 1*0

2 1 1*0

3 2 2*1

4 2 2*1

5 6 6*1

6 6 6*2

7 18 6*2, 12*3

8 16 16*3

9 48 48*4

10 60 60*5

11 176 176*6

12 144 144*8

13 630 1*10a

a Only the Vrst of the 630 primitive polynomials
of degree 13 has been fully evaluated, i.e. p(X ) =
X 13 + X 4 + X 3 + X + 1.

partition [15, 15, 15, 14, 12, 9, 15, 15]. Two mappings are considered to be equivalent,

if they map the same source nodes onto the same nodes outside the partition with the

same number of steps. It is thereby irrelevant if the intermediate nodes diUer in the

two mappings. Furthermore, a mapping is considered to be better than another, if it

requires fewer steps than the otherwise equivalent mapping. If a single parameter

is considered, then its range of 2m − 2 possible mapping values can be reduced, for

instance, by eliminating all those mappings that are already covered by an equivalent

or better mapping.

A search with a bounding technique over polynomials of the Vrst degrees has

been conducted. The results for fully evaluated polynomials are shown in Table 7.8.

More details and results on polynomials of higher degree can be found in Appendix A.

The best achievable worst-case running time has been recorded as the number of

mapping steps that the algorithm needs to undertake. For all primitive polynomials

up to degree 12 and the Vrst polynomials of degree 13 and 14, the number of mapping

steps for the worst case does not exceed the degreem of the underlying polynomial.
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Interestingly, for the considered polynomials, the number of steps seems to be in-

variant for polynomials of the same degree, except for the case ofm = 7, where two

diUerent numbers of mapping steps are obtained. If the reduction step is performed

with a binary search, its worst-case computation time equals dlog2me. The algorithm

starts and stops with a reduction step, so that the overall time complexity of the

algorithm for evaluated polynomials up to degree 14 is bound by (m + 1)dlog2me.

Primitive polynomials of higher degree could only been analysed to some extent

due to the exponential parameter search space. With the available computing power,

only a small fraction of the entire parameter space was searched with the help of

a genetic algorithm. Results on the best sets of parameters that were obtained for

polynomials up to degree 32 together with the corresponding number of mapping

steps are provided in Appendix A. However, it is highly likely that those values can

be improved on due to the small fraction of search space covered.

7.6 Conclusion

The Vnite Veld GF (2m), represented as the polynomial ring over GF (2) modulo a

primitive polynomial of degree m over GF (2) has been considered. A new set of

properties has been established for the elements of the Veld.

Based on some of these properties, a novel approach for the solution of the discrete

logarithm in the multiplicative group of the Vnite Veld has been proposed. This has

led to an algorithm with linearithmetic time requirements in the degree of the deVning

polynomial, for at least all primitive polynomials of degree up to 12 and the Vrst

primitive polynomials of degree 13 and 14. The algorithm requires a set of parameters

(mapping conVguration) in the order of the polynomial degree causing the space

requirements to be linear with respect to the polynomial degree. Due to the fact that

the parameter search space grows exponentially (O(2m
2
)), determining the optimal set

of parameters for a speciVc polynomial is currently impractical and the reason why

partial results are provided for considered single polynomials of degree 14 to 32.

A question that directly follows and remains to be answered is the asymptotic

runtime behaviour of the algorithm. It is also interesting to speculate whether it can

be proven that loop-free mapping conVgurations exist for all primitive polynomials of

degreem ≥ 13 as is the case form ≤ 12. Moreover, an eXcient method to determine

an optimal mapping conVguration that minimises the worst-case runtime for a given

generator polynomial, would also be desirable.
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The mapping function has been exclusively optimised against the worst-case

execution time. As an interesting alternative optimisation goal, the average-case

execution time could be targeted.

The algorithm can be modiVed and extended in many ways. For instance, it

might be possible to use a diUerent partitioning of the reduced set of elements for

the mapping function that leads to an improvement in execution time. It is also

conceivable that more than one terminating vector could be used to further reduce

the running time.
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Chapter 8

Conclusion

Cyclic codes have gained wide popularity as error-detecting codes due to their inherent

algebraic properties that permit easy implementation and eUective detection of errors.

This thesis supports the position of cyclic codes as a powerful class of error-control

code whose properties extend beyond simple error detection. The thesis demonstrates

contributions in the generation of eXcient, programmable, parallel cyclic code circuits,

and in the potential of cyclic codes for eXcient error correction. These contributions

are described in more detail, together with highlighting possible areas for future

exploration within this concluding chapter.

8.1 Programmable CRC

A cyclic code is characterised through its generator polynomial which inWuences

the speciVc error detection and correction capabilities of the code, depending on

the length of the data that is to be protected, as outlined in Chapter 2. In addition,

diUerent applications may run on the same system with completely diUerent cyclic

code requirements, as in the case of SpiNNaker which is described in Chapter 4. It

was shown how cyclic code circuits can overcome the limitations of a single generator

polynomial by allowing the circuit to be Wexibly programmed with any polynomial

within the design constraints. In Chapter 5 a new method for computing the transition

and control matrix of a parallel cyclic code circuit was presented. This method allows

the eXcient realisation of programmable parallel circuits that operate at high speeds,

reconVgure rapidly to new polynomials, require few implementation resources, and

are energy-eXcient when compared with alternative schemes.

145
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8.1.1 Future Work in Programmable CRC

With an eXcient programmable cyclic code circuit that can reconVgure rapidly to new

generator polynomials, it is feasible to change the polynomial after each processed

word of a data stream. The calculation of the next polynomial can be made dependent

on factors including the current input data word and the current state of the circuit, i.e.

the calculated redundancy and the polynomial. It would be interesting to investigate

if a polynomial adjustment algorithm can be devised that has advantages over Vxed

cyclic code generator polynomials, from both error detection and correction points of

view.

8.2 Error Correction

The correction of a single-bit error on the basis of a cyclic code requires the computa-

tion of the discrete logarithm in Vnite cyclic groups, represented as the polynomial

ring over the binary Veld modulo the cyclic code generator polynomial, as outlined in

Chapter 2. No eXcient algorithm is known for the evaluation of the discrete logarithm

in these groups and, moreover, it is also widely believed that no such algorithm can be

devised as described in Chapter 3. Nonetheless, this work focused on the exploration

of new algorithms in the quest for an eXcient calculation of discrete logarithms in

relevant groups.

A new approach was developed for calculating discrete logarithms in Chapter 6.

For groups that have an order equal to a Mersenne number with an exponent of a

power of two, a deterministic generic algorithm was devised based on size diUerences

of cyclotomic cosets. The algorithm requires only constant space and exhibits a worst-

case asymptotic running time of the square root of the group order. It was shown

that the average- and worst-case running times of the algorithm can be improved for

certain cases where the discrete logarithm values occur with unequal probabilities.

Furthermore, properties were developed or highlighted for relevant sequences that

are considered by the algorithm.

For Vnite Velds with binary characteristic, represented as the polynomial ring

over the binary Veld modulo a primitive polynomial, new properties were developed

in Chapter 7. On the basis of a subset of these properties, a novel approach was

proposed for computing discrete logarithms in the cyclic multiplicative groups of

these Velds. It resulted in a deterministic algorithm with linear space and linearithmic

time requirements in the degree of the deVning polynomial, for at least all polynomials
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up to degree 12 and the Vrst polynomials of degree 13 and 14. The algorithm requires

a set of parameters in the order of the polynomial degree, where the parameter search

space grows exponentially in the polynomial degree. For this reason partial results on

the running time for single polynomials of higher degrees up to 32 were provided.

8.2.1 Future Work in Error Correction

The research conducted on discrete logarithm algorithms generated a number of open

questions that present potential future research opportunities:

• Under the assumption of the existence of an eXcient algorithm for the compu-

tation of the discrete logarithm in Vnite cyclic groups represented in the ring of

polynomials modulo a polynomial, the eXcient correction of single-bit errors

based on cyclic code is feasible. It needs to be investigated further to determine

to what extent this assumption would also enable the eXcient correction of

multi-bit errors.

• For the proposed algorithm for discrete logarithms for group orders that equal

Mersenne numbers with an exponent of a power of two, it may be possible to

use the developed sequence properties to improve the algorithm. It may also

be the case that new properties can be found that will enable a speed-up of the

algorithm. In particular, it needs to be investigated if the proposed algorithm

reduces the initial discrete logarithm problem into smaller subgroups, similar to

the Silver-Pohlig-Hellman algorithm, as this permits alternative algorithms to

be employed in those subgroups.

• The proposed generic algorithm for discrete logarithms was tailored to group

orders of special Mersenne numbers. It remains an open question as to whether

the algorithm can be generalised to all group orders and what the resulting

execution overheads would be.

• An algorithm, eXcient in time and space, was proposed for the computation of

discrete logarithms in the multiplicative groups of small Vnite Velds represented

in the polynomial ring over the binary Veld modulo a primitive polynomial. It

was shown that the algorithm is applicable at least to all deVning polynomials

up to degree 12, and the Vrst polynomials of degree 13 and 14. For single

polynomials of degree 15 to 32, it is known that a mapping conVguration

exists that allows the algorithm to terminate under all conditions, however it

is unclear if one exists that also results in an eXcient worst-case execution

time. It would be interesting to investigate if, for all polynomials with a degree



148 Chapter 8. Conclusion

exceeding 12, loop-free mapping conVgurations exist, and also what would be

the best asymptotic worst-case runtime behaviour of the algorithm. A related

open question concerns the best achievable average asymptotic runtime of the

algorithm.

• The determination of the overall best mapping conVguration for a speciVc

polynomial and optimisation goal was achieved through a brute force attack

which is impractical for polynomials of higher degree due to the exponential

search space. It may be the case that an eXcient method can be devised that

allows the computation of the mapping conVguration for at least the best worst-

or average-case; such a method may also assist in the analysis of the asymptotic

runtime behaviours. Alternatively, it may be possible to develop good heuristics

to reduce the search space and employ evolutionary algorithms to Vnd a close

approximation for the optimal set of values.

• A number of conjectures were established that need analysis to determine if

they can be proven. Proofs for the conjectures concerning the L transformation

in particular could lead to further insights into the eXcient computation of

discrete logarithms in the relevant groups.

• The proposed algorithm to compute discrete logarithms in multiplicative groups

of small Vnite Velds, represented in the polynomial ring over the binary Veld

modulo a primitive polynomial, might also be easily applicable to deVning

polynomials that are not primitive, but irreducible. If the deVning polynomial is

reducible, then it induces only a cyclic group, for which the algorithm might

also be easily employed. Moreover, it should be investigated if the algorithm

can be adapted to Vnite Velds with a characteristic other than two.

• It was conjectured that, for a deVning primitive polynomial of degree m and

a parity level l with 1 ≤ l ≤ bm−2
2 c, 2l−1 linear transformations of the form

T x exist such that each odd parity block of size one on level l is mapped by

one of the transformations onto an even parity block element on the same

level. It would be interesting to investigate whether, for every level l , a set of

these 2l−1 transformations exists, such that the transformations can easily be

computed from each other. In particular, it is an open question if the displace-

ment r between the two transformations L2a and L2b for level two can easily be

determined, such that L2a = T rL2b .

• It is currently unknown if a simple correlation exists between the displacements

of equally-sized blocks on a certain parity level. If the displacements can easily
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be computed, alignments of diUerent parity vector spaces can simply be obtained

and therefore also transformations such as E0 and E1.

8.3 Summary

The work presented in this thesis provides successful solutions for the addressed

research objectives:

EXcient Programmable CRC Circuits

A novel method was proposed for the eXcient realisation of programmable parallel

cyclic code circuits. The resulting circuits can rapidly be conVgured with a generator

polynomial, exhibit fast operating speeds, have low resource requirements, and are

energy-eXcient at the same time when compared to alternative solutions.

Algorithms for Computing Discrete Logarithms

Two new approaches were developed for computing discrete logarithms to facilitate

the correction of single-bit errors based on cyclic codes.

The Vrst approach is generic in nature leading to a deterministic algorithm for

group orders that equal a Mersenne number with an exponent of a power of two;

this algorithm has constant space requirements and runs in the worst case in the

order of the square root of the group order. It was shown how the algorithm can be

improved if the discrete logarithm values occur with unequal probabilities and that

certain properties hold for the associated sequences.

The second approach for the computation of discrete logarithms is based on a

subset of newly developed properties for Vnite Velds of binary characteristic repre-

sented as the polynomial ring over the binary Veld modulo a primitive polynomial.

For evaluated small Velds, a deterministic eXcient algorithm with linear space and

linearithmic time requirements in the degree of the deVning polynomial was devised.
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Appendix A

Mapping ConVgurations

In what follows, the best mapping conVgurations that have been found for primitive

polynomials up to degree 32 for the proposed discrete logarithm algorithm in Chapter 7

are reported. Polynomials of degree 1 and 2 are not listed as they exhibit only one

chain and, therefore, require no mapping steps. All primitive polynomials from degree

3 to 12 and the Vrst polynomials of degree 13 and 14 are listed. For all higher degree

polynomials, up to degree 31, only the Vrst polynomial is reported in each case. The

Ethernet polynomial serves as a representative for polynomials of degree 32, due to

its signiVcance in the Ethernet technology.

Table entries are all in decimal notation, except for the mapping conVgurations,

whose values are indicated in hexadecimal notation. The Vrst value of a mapping

conVguration is always to be applied to chains of length one, the second, if it exists,

to chains of length two, and so forth. For the mapping, it is assumed that elements

have been reduced to the last element of their corresponding chain, however, the

conVgurations can easily be converted to other scenarios. There are, in general, several

conVgurations that lead to one and the same number of steps for each polynomial.

For the number of steps for all polynomials of degrees up to and including 13, the

conVguration with the lowest values is reported, where the Vrst of the values is

considered as the most-signiVcant one.

The steps value indicates the worst-case number of mapping steps that is necessary

to map a group element to the longest chain for the indicated conVguration. For all

polynomials up to degree 12 and the Vrst polynomial of degree 13, the best achievable

conVguration is reported. The steps for all other polynomials are the best ones that

have been obtained through an evolutionary search algorithm; they are indicated with

a less-than-or-equal sign to emphasise that better conVgurations may exist.
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Degree Polynomial Steps Configuration

3 3 1 001

3 5 1 006

4 3 1 002 00D

4 9 1 001 002

5 5 1 010 005 019

5 9 1 00F 007 006

5 15 1 00A 002 01C

5 23 1 019 003 00F

5 27 1 006 002 010

5 29 1 015 005 003

6 3 2 002 00C 010 031

6 27 2 001 013 011 01D

6 33 2 008 021 016 00E

6 39 2 001 03C 006 014

6 45 2 001 005 00B 022

6 51 2 006 00A 006 02B

7 3 3 001 015 044 006 055

7 9 3 001 005 00E 00C 056

7 15 3 001 005 004 013 04D

7 17 3 001 00B 008 00E 029

7 29 2 06F 02E 029 05E 03E

7 39 2 061 004 057 05E 07A

7 43 3 001 008 00D 008 021

7 57 2 008 037 04C 00D 041

7 63 3 001 00C 02E 004 02C

7 65 3 001 019 02D 04B 02A

7 75 2 032 013 010 021 008

7 83 2 01B 007 070 004 077

7 85 3 001 006 00B 004 05E

7 101 2 00F 008 035 005 005

7 111 3 001 00B 006 01B 04D

7 113 3 001 009 071 01A 032

7 119 3 001 002 02F 007 032

7 125 3 001 007 01D 005 053

8 29 3 00A 054 063 0F2 0B0 06B
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Degree Polynomial Steps Configuration

8 43 3 009 04E 047 0F7 06A 098

8 45 3 008 024 093 091 0A7 0AC

8 77 3 00A 024 0BF 00A 011 0DA

8 95 3 00C 009 039 05D 035 03F

8 99 3 00B 06B 05C 028 02C 01F

8 101 3 004 0F3 014 09C 077 025

8 105 3 006 09B 04C 036 048 053

8 113 3 00B 011 0DF 0A5 01D 094

8 135 3 00D 006 08C 060 01E 05C

8 141 3 005 01E 018 008 035 0E0

8 169 3 003 097 08F 008 03A 067

8 195 3 001 05B 00A 017 043 0A3

8 207 3 00E 055 04D 016 01A 078

8 231 3 01A 02F 092 04A 027 087

8 245 3 005 04E 0C6 0A2 0C3 0C0

9 17 4 004 00B 0A3 0C3 070 010 1E1

9 27 4 00C 039 126 0AB 019 006 10C

9 33 4 005 02B 019 13F 048 051 01E

9 45 4 005 044 02B 033 010 04B 158

9 51 4 004 045 013 056 095 051 0E8

9 89 4 005 03D 1DA 07B 039 004 04E

9 95 4 004 04C 013 0C9 02C 020 1B2

9 105 4 005 1DF 022 064 194 058 1B1

9 111 4 006 04B 108 16B 178 114 011

9 119 4 007 118 0A7 195 0B5 036 05E

9 125 4 001 0B8 0D2 03B 01D 098 037

9 135 4 001 040 09C 00D 093 024 1F8

9 149 4 004 075 065 181 18A 027 1DE

9 163 4 004 003 0D2 015 154 073 138

9 165 4 004 01B 173 02F 071 078 021

9 175 4 006 160 05E 0F5 178 029 0E5

9 183 4 00A 0AD 011 009 05B 023 0ED

9 189 4 001 11A 03B 040 0D3 104 0E4

9 207 4 001 11A 02F 070 083 005 0C0

9 209 4 004 148 0C1 0B9 0B5 07A 0A7

9 219 4 004 0BA 0AA 1AE 0FF 03A 130
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Degree Polynomial Steps Configuration

9 245 4 006 0B1 177 157 05C 03C 11B

9 249 4 001 036 168 01C 03A 050 1C8

9 275 4 004 1BE 19C 058 003 0BD 17F

9 277 4 001 1DE 0E5 00E 0BB 0F6 0C7

9 287 4 006 1EA 173 169 089 00F 048

9 291 4 004 09C 0EF 013 042 024 080

9 305 4 005 059 024 107 16A 093 117

9 315 4 00E 00B 0EF 0BC 0B0 031 130

9 335 4 005 029 0D2 07B 00C 006 05D

9 347 4 005 0A5 022 171 1A6 096 0D3

9 353 4 007 047 015 012 071 03C 0F3

9 363 4 003 055 0E1 1CA 161 06D 12C

9 365 4 003 12F 13D 0C7 068 16F 0CF

9 371 4 006 037 05C 11B 035 06A 0CF

9 383 4 001 1FD 0B8 10E 066 009 01F

9 389 4 001 13C 138 085 078 09C 007

9 399 4 001 087 0A8 043 0A4 04D 0BF

9 437 4 009 0EC 088 14A 00C 011 112

9 441 4 005 05D 1EC 0A0 106 00D 1A1

9 455 4 001 031 010 1BC 126 013 140

9 459 4 004 05C 18D 13D 060 00A 1A2

9 461 4 001 0BF 04A 00E 0C5 1F9 13F

9 469 4 001 0E4 12B 019 1D8 0AF 11A

9 473 4 006 010 13E 14B 053 01E 1EE

9 483 4 006 047 09D 08F 17D 0DE 1B7

9 489 4 004 149 0C2 05E 01E 015 04D

9 507 4 001 01E 064 095 005 062 1E0

10 9 5 001 35C 05D 082 2A5 0D3 015 0DD

10 27 5 006 02E 202 131 307 2F7 032 3AB

10 39 5 006 1C2 03B 0BE 327 280 2A1 33A

10 45 5 00B 07F 3A0 226 040 050 059 37F

10 101 5 005 243 027 171 1E0 07C 060 0F5

10 111 5 001 1ED 110 055 13E 15A 2BA 3D4

10 129 5 008 044 1E3 25B 25F 245 2B6 322

10 139 5 006 021 028 195 012 1CC 014 3DD

10 197 5 012 078 2EF 05E 09C 0AE 027 165
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Degree Polynomial Steps Configuration

10 215 5 004 05B 262 062 045 29B 017 307

10 231 5 006 1AF 0B8 026 007 0D1 02F 204

10 243 5 001 0DB 22A 0B1 0CF 17F 0E6 247

10 255 5 004 0F5 199 19E 0DA 221 015 0BF

10 269 5 004 0EB 007 09F 099 058 053 247

10 281 5 004 0BE 011 28F 1A6 143 11B 29A

10 291 5 001 1E2 06B 0A2 2C7 0D3 2B9 21C

10 305 5 006 0F4 0DA 178 0CE 1BD 032 30A

10 317 5 008 00D 3B0 021 14A 224 0B4 3F1

10 323 5 00F 176 121 012 0EC 2AB 03A 072

10 343 5 011 189 11F 019 0A5 2AD 047 04D

10 363 5 007 0C3 063 104 050 06C 0B2 180

10 389 5 006 246 05F 091 366 2B0 019 1B8

10 399 5 005 070 3AB 0E1 068 064 014 38E

10 407 5 004 02E 1C0 136 264 261 04C 2D4

10 417 5 006 216 092 196 076 085 015 080

10 455 5 008 16C 27D 0AF 011 140 333 254

10 485 5 005 2EE 0D1 1F0 130 2A5 0C6 00E

10 503 5 00C 06E 39C 031 047 267 011 1B5

10 507 5 005 0C8 103 0D8 35C 061 017 1D8

10 531 5 009 00C 012 1E6 0CE 10E 006 087

10 533 5 016 071 117 0CB 18E 07A 179 38D

10 549 5 001 065 0C0 367 365 013 146 1E3

10 567 5 008 18D 15A 39C 017 0FE 014 233

10 579 5 007 086 127 020 2D7 142 346 378

10 591 5 005 1F6 016 251 3F5 3C8 05D 313

10 603 5 007 0A8 16F 2C5 08A 157 131 25C

10 633 5 004 246 1D5 03E 05A 012 049 1B8

10 639 5 005 055 038 04B 04F 37A 197 150

10 649 5 00E 016 25E 10C 07F 0D7 0C9 022

10 693 5 009 258 0B1 058 0D1 184 34D 27F

10 705 5 00A 1BE 101 37F 3CD 10F 017 054

10 723 5 00E 25B 1C3 102 293 1AC 201 1A3

10 735 5 001 28E 19B 118 0DC 253 3CD 173

10 765 5 001 2D8 19C 0FB 0A0 02E 01F 227

10 791 5 011 0AE 383 104 068 00B 014 350
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Degree Polynomial Steps Configuration

10 797 5 008 253 332 137 25E 26E 0CC 1AB

10 801 5 00B 291 31A 022 031 1B9 109 0C5

10 825 5 008 02A 064 00D 19C 033 01C 1FB

10 839 5 007 095 0BF 06C 137 277 0B5 0AF

10 845 5 004 0DA 039 291 011 256 0AF 12B

10 853 5 019 04C 0B6 1BC 18A 01A 02C 3B2

10 857 5 001 306 320 20E 007 02A 038 0F8

10 867 5 007 232 246 34A 25D 06F 24B 1CC

10 893 5 00D 2C9 062 1BA 097 014 034 24A

10 909 5 006 045 081 021 24C 09F 0EC 071

10 915 5 00B 04B 179 0E6 073 02C 07E 0EC

10 945 5 008 195 1D8 13E 1C6 209 145 02B

10 987 5 008 049 265 182 06A 066 032 28C

10 1011 5 001 14B 315 0FA 067 0DC 077 2AF

10 1017 5 00A 2B3 09D 32A 21D 27A 078 340

11 5 6 406 5BF 367 2CF 6ED 051 554 066 232

11 23 6 0B3 1C4 386 19E 7E2 1F2 070 2C0 4D7

11 43 6 119 042 360 497 10C 6BA 0F3 022 4E7

11 45 6 066 1E4 330 505 563 00B 610 087 4DE

11 71 6 0D8 059 1D1 304 5FD 7DA 099 179 14E

11 99 6 148 1A8 09B 283 3EA 045 095 12C 06C

11 101 6 031 073 126 0E7 1C6 0B0 12F 131 78B

11 113 6 12C 1A0 0AE 43F 779 032 083 093 0EF

11 123 6 03D 04E 534 47F 267 347 049 28C 406

11 141 6 025 049 144 0A2 316 330 03F 228 0E1

11 149 6 280 142 0F3 3A2 22D 15D 0DC 0B2 3FC

11 159 6 043 11A 49E 594 5DB 3CA 35D 2AB 6B4

11 169 6 08B 248 1ED 491 442 3E6 2AA 03D 5B6

11 177 6 033 18D 13A 1D7 38A 166 3CF 402 3F6

11 207 6 105 349 6AC 0E8 1FD 310 16B 2E7 01B

11 209 6 046 3B0 20C 322 41C 006 059 3FD 409

11 225 6 158 0EE 182 119 753 1F3 1ED 092 710

11 231 6 382 1DF 1BC 725 2A1 08F 368 080 390

11 235 6 4A6 0E2 25F 074 0DB 3D2 3C9 05F 06E

11 245 6 082 14F 00D 397 18D 586 362 247 62E

11 269 6 123 0C6 125 713 319 0BC 31B 1AB 29B
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Degree Polynomial Steps Configuration

11 275 6 125 0C3 012 0C1 0AD 31E 043 4FB 644

11 293 6 15C 16A 10E 2D5 563 11A 31F 020 489

11 297 6 1D6 12E 725 3E4 361 408 06B 0B1 1E6

11 315 6 237 04F 50C 110 143 689 49D 07A 72F

11 317 6 1F2 11B 023 237 176 42F 4E2 171 6E3

11 325 6 2DF 3EB 2D2 221 4C3 140 6A9 020 63D

11 329 6 4E9 114 0D7 090 3D4 426 254 090 619

11 337 6 015 2C3 43B 07A 3BD 3CF 263 13B 249

11 347 6 081 037 4C1 35B 228 249 03F 581 4DB

11 371 6 2E1 345 043 29F 38A 566 7C9 158 104

11 373 6 1E6 687 258 064 229 2D8 2B9 268 070

11 383 6 093 060 08A 3F0 6B1 6A8 06D 024 79E

11 387 6 348 2CA 466 06C 11F 016 0D5 029 3C9

11 399 6 10E 0A4 04E 371 035 15E 2AF 25B 2D4

11 427 6 07C 26E 60A 5A9 248 218 69E 160 4C4

11 429 6 54E 55B 248 52D 149 1DE 195 080 449

11 441 6 02A 0A0 10A 272 2BD 459 0AD 0C8 238

11 455 6 16B 18A 112 073 513 71F 77F 138 674

11 473 6 1B6 237 2DF 177 12D 3A6 364 2D1 5C7

11 485 6 058 32D 04A 230 7C7 1E1 209 0D4 0A6

11 503 6 26F 262 027 48B 6DB 014 19D 009 27F

11 513 6 3D2 228 092 740 2D2 349 6C6 03E 5CD

11 519 6 033 008 16C 039 0B6 428 180 47C 7F6

11 531 6 085 0B1 156 770 059 08B 121 080 049

11 533 6 441 044 3AA 008 2A7 536 151 02B 03C

11 553 6 079 11D 0F3 77F 6C9 493 318 14F 1C2

11 585 6 1DC 0A1 542 675 579 2FD 123 0AD 376

11 609 6 030 62F 131 268 058 710 12F 0F7 074

11 621 6 06E 2B6 2D8 059 101 30B 003 0C6 198

11 633 6 028 0A5 0D3 30F 038 13D 044 19F 759

11 639 6 0BB 518 201 4B5 072 610 044 141 2E6

11 645 6 080 03B 46A 2D4 333 6B9 333 027 7C3

11 657 6 08F 17E 072 015 094 21B 0CE 0AE 403

11 669 6 32D 341 6C4 03B 64C 123 369 2D5 4BD

11 679 6 1C3 186 218 3FA 475 3BE 038 35D 37F

11 683 6 036 24F 37F 129 08A 1D6 26D 13E 7BD
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Degree Polynomial Steps Configuration

11 691 6 007 0D0 1DF 67A 1E2 036 170 02A 267

11 693 6 063 032 113 06C 38B 3F7 122 176 7CC

11 725 6 015 39C 2BC 642 329 38C 30E 1BF 033

11 735 6 05E 085 125 493 0CA 0A3 6FB 087 1B7

11 745 6 100 00F 126 09B 156 0A7 1C6 019 78F

11 751 6 112 022 332 0A7 31B 068 06F 3DF 30C

11 753 6 080 1EC 331 01B 24A 328 08A 347 1D1

11 763 6 10B 05A 0E6 455 48F 08C 27A 125 7A4

11 771 6 0E2 4F0 01D 040 038 620 7AC 452 069

11 777 6 1A1 0EA 0E2 1E1 04A 6F9 4EA 0CD 564

11 785 6 12A 0E0 228 724 3B6 4FD 07F 01A 71E

11 819 6 02B 290 0B2 1BA 58A 089 1CC 187 56E

11 831 6 062 33A 213 387 756 1FA 79E 1CE 206

11 833 6 09D 116 391 1BC 076 028 030 3CE 321

11 843 6 021 049 057 506 5B6 448 097 536 105

11 857 6 277 1AF 6FA 56C 013 216 206 218 3B6

11 863 6 031 3F9 2BA 6DA 101 217 0AE 1B6 405

11 869 6 0DF 34E 48A 1E2 0E9 1B1 281 659 667

11 879 6 026 5B3 55B 549 60E 5D9 509 220 1D9

11 893 6 06F 05C 179 4CA 076 3BD 3DB 5F3 734

11 903 6 120 143 173 4F5 20A 523 0A0 018 154

11 907 6 0B8 060 16F 69B 32B 627 1AC 284 320

11 915 6 06B 078 045 46B 4EF 1EE 44B 01F 213

11 917 6 0AB 063 465 65F 1D7 68B 6FF 01B 342

11 943 6 03D 082 147 258 102 540 089 08C 77C

11 951 6 218 0AB 261 147 2A6 304 145 096 243

11 957 6 04C 0E0 029 7F4 07B 462 3C1 2E4 71E

11 969 6 1D4 136 2B2 01A 469 123 3D3 1AE 11C

11 987 6 011 248 201 31B 172 213 037 2C3 280

11 989 6 0EB 36D 3C7 00B 22B 19D 155 0CA 0E1

11 999 6 00C 28D 128 4D9 76A 12C 592 02D 48C

11 1005 6 036 545 22B 545 41C 4B1 4CC 19C 0CB

11 1035 6 133 06C 5A1 36B 11B 68F 1D1 040 789

11 1037 6 1D1 068 0C4 1F5 680 2D9 685 0D9 796

11 1049 6 4B4 07F 09F 57C 103 0F8 2E2 0A8 436

11 1055 6 04E 2EF 157 128 100 0E2 0A8 14A 1C7
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Degree Polynomial Steps Configuration

11 1111 6 280 036 139 0EA 6EB 112 016 0A8 38A

11 1121 6 00C 06E 2BF 23C 349 311 005 077 793

11 1131 6 04B 116 1C7 6BD 1EB 05D 422 034 55F

11 1139 6 054 20D 128 348 613 63D 0E0 065 3B6

11 1157 6 1F5 048 4B3 08F 172 070 2F7 07A 7B6

11 1161 6 016 034 11D 544 258 38C 48C 013 1BB

11 1175 6 07C 0FE 02D 689 144 13D 57E 090 543

11 1179 6 492 021 178 03A 0C0 29C 099 032 027

11 1181 6 0D9 13A 543 126 4D1 7EF 1A2 0B3 5EC

11 1203 6 08E 027 0DD 5D4 0D7 0D0 19D 08F 115

11 1215 6 01A 0BA 0DF 15C 170 028 0B0 519 338

11 1223 6 4B8 32E 1F2 16B 69E 671 047 339 1CA

11 1229 6 054 099 0C6 546 14F 77B 553 0E2 291

11 1235 6 18B 028 00E 190 724 1E6 04C 05C 6EA

11 1237 6 149 0CF 157 196 13C 2AE 082 14A 598

11 1251 6 115 02E 58C 5D8 427 0AA 15A 036 449

11 1257 6 277 070 710 7EC 21E 5DD 2F9 134 6FB

11 1271 6 222 081 7CF 028 178 320 17B 1DD 3C6

11 1283 6 201 520 12B 334 0B5 2BE 437 084 076

11 1295 6 173 122 0D3 0ED 3D1 678 648 216 3F8

11 1309 6 026 31F 307 165 249 190 21A 0FB 4DF

11 1319 6 024 261 06C 20D 1BE 1B9 76A 03E 59D

11 1325 6 06E 104 7B3 446 7E7 4C4 1D9 02B 6FA

11 1345 6 104 176 32C 192 7EF 230 0EC 08C 318

11 1351 6 135 209 659 18F 7B6 4DF 17C 092 5F5

11 1365 6 034 3A1 417 284 19D 279 08B 270 042

11 1369 6 012 4C3 6F8 188 7F8 4A1 0EE 078 33B

11 1379 6 057 224 173 32A 728 12D 0CA 070 2A0

11 1391 6 188 2DF 0C1 13F 23C 0CA 1F7 09D 51F

11 1393 6 356 06D 4DA 036 6F3 411 43C 6AA 791

11 1427 6 115 026 1F2 65C 436 0CF 575 0E7 7D8

11 1439 6 147 06B 0B2 3C8 325 039 33A 0C5 793

11 1449 6 175 33C 2A1 0B8 77F 4FB 203 02D 324

11 1467 6 029 191 1BF 6A7 5A6 557 6F6 14C 46C

11 1469 6 067 03E 121 011 35F 0F5 03F 200 57F

11 1481 6 104 04B 0BB 585 64C 5E4 601 3A4 0D0
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Degree Polynomial Steps Configuration

11 1495 6 1D1 0A3 392 401 48F 322 3D2 036 316

11 1499 6 1F5 16D 314 13C 6E8 718 10A 1B1 393

11 1505 6 0AA 35C 0E1 6B8 18B 786 76A 018 3F9

11 1511 6 22E 25D 4DD 026 184 7E5 049 351 5A1

11 1525 6 07E 1AD 124 730 745 4ED 651 022 05B

11 1541 6 069 014 689 2F4 69A 40C 185 45D 009

11 1565 6 0CE 153 15C 010 21E 146 372 27E 6AB

11 1569 6 108 074 04B 0E1 7C8 18C 498 45D 6B1

11 1575 6 17A 21E 237 16F 78F 13A 08E 096 0AF

11 1579 6 229 1E7 053 0B7 41D 078 055 00D 20A

11 1587 6 174 056 153 1D9 161 012 5DD 1F3 635

11 1593 6 070 39B 059 7A9 012 33B 07D 033 18B

11 1607 6 13C 0AE 096 15D 33F 692 3F1 238 750

11 1611 6 03E 054 4DE 0A9 5FF 3ED 09B 20D 262

11 1621 6 0E0 223 423 48A 60F 2DF 327 307 480

11 1631 6 0FC 0E1 25E 107 06B 407 33E 123 3B9

11 1649 6 0DF 0B0 1CE 095 577 3D5 016 25F 46F

11 1659 6 106 11E 1D6 1AA 518 08F 1DF 1A6 25E

11 1661 6 360 1D4 264 0B1 047 25F 3EF 35F 373

11 1665 6 166 189 6B0 13C 30D 0A6 142 3E1 328

11 1683 6 0E9 222 1ED 0CB 1DB 06C 0C1 62B 2BC

11 1695 6 043 2DA 609 1DE 3B2 2B6 11F 462 106

11 1699 6 1E2 389 249 079 13C 727 183 074 475

11 1723 6 0CB 139 0B3 044 784 225 36F 119 4E9

11 1743 6 04A 13A 01B 275 0C7 0BB 096 07D 47E

11 1757 6 0FC 242 026 141 269 258 58D 187 5BC

11 1779 6 447 1A2 529 345 0E2 3AD 0B5 05D 439

11 1785 6 4E1 00E 0FA 36F 035 13D 50B 314 580

11 1803 6 5D9 10F 0A0 6B0 77F 5F6 1B2 0B1 407

11 1817 6 26B 2D3 459 315 0D7 175 254 678 52B

11 1841 6 150 01A 153 27C 664 058 7E4 07D 7E4

11 1847 6 067 10C 0F1 0FC 4E4 5B0 284 038 381

11 1885 6 126 327 262 5A8 467 618 0F6 19F 083

11 1899 6 16F 03A 1B0 23E 144 3AA 079 087 2E0

11 1901 6 038 1D8 230 2B3 17D 085 2F6 38B 626

11 1909 6 1D0 30B 223 5B4 2FE 482 435 420 4F3



161

Degree Polynomial Steps Configuration

11 1923 6 02D 059 2BA 495 138 7E1 107 024 638

11 1937 6 017 3E3 2AA 26C 6EF 65E 5BD 3D7 14B

11 1943 6 089 07D 64D 5A2 380 03F 210 0F4 6F9

11 1947 6 291 2C2 0F2 552 47B 62E 4BF 4A8 06C

11 1959 6 0A7 037 2D6 14C 611 72E 094 03B 446

11 1965 6 0D5 330 221 2F0 6FD 3D5 422 573 3FA

11 1973 6 07F 1B6 116 5A9 04F 150 678 543 648

11 1997 6 05F 205 032 204 0D7 1BD 229 12D 5F9

11 2003 6 1E7 0A6 314 0AC 00D 17C 361 2E6 4C7

11 2021 6 17B 3A5 434 041 591 59E 137 487 519

11 2025 6 256 1F3 7D9 116 4C1 489 1E7 03D 061

12 83 8 001 D04 65C 610 5DD FDF 291 212 2FF B36

12 105 8 001 63F 5D3 0B8 04C 81F 428 60F 104 7A3

12 123 8 00A 0EE 8BC 878 047 0D4 2E5 6EE 290 3C3

12 125 8 006 167 85A 2CF DC9 083 A04 011 FD4 351

12 153 8 004 146 BFF 715 3AB B70 564 CAB 1D0 E3A

12 209 8 005 2BA 6D4 0C5 7F9 7BD 15D 2B4 0B9 5BA

12 235 8 004 7EE 620 154 092 B29 12F 69D 526 A29

12 263 8 012 1E8 45A 588 FA1 2D7 C26 CF0 24A E16

12 287 8 007 10F 3F5 A4C 1DC 50C 0D3 0F8 266 C72

12 291 8 00E 526 1C0 868 5EC 83A EA9 C34 401 AD8

12 315 8 00E 4C5 0C3 097 5E5 93F B13 781 2CD 42E

12 335 8 004 1A3 564 347 78B 832 250 483 64D B63

12 343 8 001 395 6AA 047 B0A 729 3BA 995 14D 579

12 353 8 009 5B9 068 300 A4D 7CA 177 811 02E A45

12 363 8 001 3E9 3AF 1F8 1BE 6B1 739 01B 0E2 C15

12 389 8 001 25C 518 339 486 4F1 2EA 8E9 0C7 8AB

12 435 8 009 5CD 33F 6BB 2A4 228 2DF 68E 038 347

12 473 8 007 1AC 7F2 17D B5F 8F5 FF1 143 2CC 1D3

12 479 8 004 0F1 3D9 1A0 AF2 EA8 DCA CB8 906 2F6

12 525 8 00B 8EA 465 B1B A3D B4C 98D 2B3 01A 322

12 567 8 007 966 C05 E2E 4F2 312 ED8 28C C4C 698

12 573 8 00B 78E 032 F89 6E5 867 076 2CC 00D 870

12 615 8 015 12F 0D8 25F 379 B80 3A5 019 4EA 30A

12 627 8 024 3EF FA6 3D2 476 925 4F3 1AC 21B 616

12 639 8 001 405 1F6 39D 1AF 45C BA0 D5C 41D E30
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Degree Polynomial Steps Configuration

12 697 8 001 DC9 6A6 B94 471 328 772 423 738 235

12 705 8 001 7A2 80E 055 0C1 A53 BD7 9F0 005 85C

12 715 8 001 078 0A8 24F 78E 13D 650 20A 100 42D

12 783 8 006 6FC 075 422 9B7 67A DDC 34A 130 478

12 797 8 00D 4F3 3AC 490 826 B27 C80 45F 12F 543

12 801 8 001 E38 010 D33 DCA 6EC CD3 499 DAF 1C5

12 825 8 009 198 3AD 331 108 A29 F52 61E 487 24C

12 831 8 00A 1BC 289 498 E0B 14F 022 04B 0C0 AF8

12 845 8 013 187 56A 30F EE5 C5F 5C0 6F9 102 E77

12 881 8 00D DC1 075 102 401 116 F5E 878 7AB E2C

12 921 8 009 24B 3B9 2B2 CAE 210 C38 714 2D0 DB3

12 931 8 005 277 492 4EF 0A2 985 26C A8B 092 952

12 937 8 001 126 849 35B A7E 360 88D BDC 07B DCA

12 1031 8 001 449 25D 453 183 54E FCB 3D2 2A0 FF5

12 1073 8 006 327 06A 1E6 803 21E 377 1C1 3A8 754

12 1079 8 007 2F2 485 015 217 23E 335 278 0DB D0C

12 1103 8 004 1D1 07A DFC 865 40A 048 375 A70 E2D

12 1117 8 012 060 308 FE0 36A 914 64B BFB 1AA 425

12 1127 8 006 16B 02B 0B3 FDD 7E9 1A1 291 67E E93

12 1141 8 013 1C0 E42 381 7D5 864 181 420 48D 5BE

12 1191 8 007 766 DEB A59 0BE 74E B23 1F8 215 6B2

12 1197 8 00E 2B2 165 FA4 0A7 CA3 C26 149 13A D4C

12 1235 8 00A 76B 817 181 1B0 67C 799 2BA 21E 893

12 1295 8 001 17B 19B 64C 3FA 4C8 798 134 8C3 B2E

12 1309 8 008 25B 43E 31E 8FF 0BB 0A1 1AC 025 85E

12 1357 8 001 B1A 053 636 764 1D6 CCB BA3 FAB 4E4

12 1427 8 008 09C 8AA BE7 3F2 1DB 3A3 BAB FE9 68F

12 1477 8 011 6B0 087 0DB 645 13A 678 0D8 2F1 A41

12 1495 8 001 E0B 08F 452 671 368 925 27B 49D 045

12 1501 8 01D 354 54A 022 16B 2BF AFB 515 47C B0F

12 1515 8 006 1AA 06A 5FC 18A 2B4 4E7 715 55F A4F

12 1545 8 004 321 318 6DE 2B1 F52 AE9 B1B 070 CDD

12 1607 8 010 193 61A 32A A56 444 749 16F 018 E6B

12 1621 8 006 4B1 099 995 867 EEF E6A 456 054 B1B

12 1625 8 00D DF8 CA0 C70 6C0 86E FC2 11D 02D 188

12 1701 8 005 394 1D6 0E1 168 436 040 0AC 8E3 2B3
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Degree Polynomial Steps Configuration

12 1725 8 005 12E 269 25D 56B C6F 208 085 0B2 ED0

12 1813 8 006 2EA 0B4 583 936 047 CAD EE3 499 7A1

12 1817 8 01C 0D5 12F 04F 249 864 1A5 4D9 0FB ABC

12 1859 8 005 347 722 61C 5EC 82E BF8 013 134 4F1

12 1861 8 007 1E2 871 058 34B 1FC 0B4 1F8 135 BDA

12 1909 8 00B 3DD 1E7 55C B45 D4E 501 41C 549 4F0

12 1929 8 00A 739 E95 405 4EA 038 91F AFE 02C 78F

12 1965 8 005 1B5 07A 086 115 E29 C37 4BE 3F8 12F

12 1971 8 001 3D4 83B 1DB 371 8BE 8AC 5F4 01F F11

12 1983 8 008 B7C 9FA 7A4 8C9 43E 326 21F 042 3D8

12 1985 8 006 350 01C 1E9 4EF 9CC 378 2ED 137 CAE

12 2135 8 004 7DB 197 14D 5C1 5C0 7F2 194 297 823

12 2141 8 006 47F 0A4 1A9 32E 842 3FD BA0 5A6 B0E

12 2193 8 009 1B9 3DF 4C6 03F 98A 051 C8B 63F 527

12 2199 8 047 475 5BC 175 5C5 6D3 457 1D9 297 67A

12 2233 8 007 1BE 15A EAB D0D 58C 845 898 3A2 6AD

12 2287 8 006 237 2D7 0E3 50F 240 045 37A 27D 87A

12 2331 8 008 3F5 7B4 6E8 622 499 1D9 217 39A C09

12 2357 8 005 2F9 029 413 607 286 B66 F0E 01F 970

12 2369 8 001 78E 133 180 1B3 020 9AD 57D 114 4C9

12 2405 8 00B 4A8 9DD 4E9 044 C9A 9A3 323 023 76C

12 2427 8 012 25F 0D7 04B 55A 424 005 AF2 117 A00

12 2443 8 001 732 A4C 712 A38 D1C 166 506 028 859

12 2481 8 016 11D B63 547 155 06D E4F 287 0A7 CB8

12 2493 8 004 76E 020 680 4EA 3C2 753 670 23A 0EE

12 2505 8 012 113 533 227 183 3B0 00F 5BD 163 9E9

12 2511 8 00B 424 05F 1F6 40E D24 72F 4A8 261 704

12 2535 8 007 195 3FB 582 4E1 C7E CE6 3A7 497 E69

12 2587 8 006 20F 6E4 2A3 868 8CB 871 F31 0A9 721

12 2603 8 026 A2A 210 820 239 362 F12 630 06B 5D4

12 2611 8 009 093 06B C1D 63E 0D5 D89 3AF 0C1 7A6

12 2665 8 003 42C 65A 859 C3A D99 A8C 509 A93 BD2

12 2699 8 00A 3A3 934 497 CA1 9D7 0ED 066 0AD A2B

12 2769 8 004 1F1 22B 3E3 7EA 00D FF6 1D2 21B 3EA

12 2785 8 004 238 1D0 45A 5EE 6C3 025 153 5C8 5D6

12 2805 8 005 25B 12F 2FA 537 8C7 72C 0D9 294 5B0
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Degree Polynomial Steps Configuration

12 2827 8 018 720 161 D6C 8AE F28 7E8 299 102 8DE

12 2835 8 001 4B2 0F3 85C 1DA 450 0D9 195 038 3F6

12 2847 8 007 13A 94F 275 16A 062 111 479 0FA BBF

12 2903 8 009 5AB 0D0 089 C26 EB7 AAC 6A2 61C A53

12 2961 8 004 246 647 674 704 1D9 1B1 198 250 BD1

12 2983 8 00A 45E 5D7 4E5 AF6 932 FA6 B26 FCA 2D7

12 3007 8 00B 45A 1F7 236 2CB 27A 9EE 015 0C0 6E4

12 3009 8 011 16A 99C 5D0 DB8 85F 04F 206 00B C3C

12 3027 8 00B 6FB 031 AE7 1C8 1AE 960 4DE 259 5FF

12 3077 8 004 276 022 26C C76 22D 349 2BF 5DC 00A

12 3089 8 004 526 2B5 285 05E C1D 2CE EEE 0E2 1E9

12 3095 8 00A 1EB 331 B04 867 87C ACB 2F6 247 E13

12 3111 8 010 373 BDE 9D3 720 DE9 3E2 CA6 0B0 7E1

12 3149 8 032 B28 8B1 22D 71D BC5 6AA 070 184 194

12 3207 8 00F 7E0 0D7 129 317 849 AC0 8E5 150 81E

12 3231 8 00C 230 113 F2F 292 CAD 053 55B 06F DCE

12 3237 8 008 6B1 BDC D63 AE1 467 6F9 1C7 04B 94D

12 3259 8 00C 2D6 6EB CE5 AAE 55B 363 4CF 028 D28

12 3269 8 00A CB6 0DB EDB D92 BEF 2AE E4F 5AD 16C

12 3273 8 005 309 360 96E 3A5 08C 4EB B9A 1EA CF5

12 3279 8 005 A34 13C 46A 5EB 31E 5A3 3E4 C6F 5CA

12 3315 8 008 485 60E CD1 642 770 A6A 1B6 0C4 196

12 3335 8 00A 322 247 415 798 D9A DD0 00C 330 1EC

12 3363 8 022 102 4CC 1B2 F8F 422 C8A 348 271 985

12 3395 8 007 1F4 5B0 64E EE0 E71 577 66D 080 7DC

12 3409 8 001 E69 62D 14C 1CD A62 F6A 342 044 A86

12 3419 8 00A 142 61D C0E 1FE 20E 9DA 230 1F9 5AC

12 3445 8 004 044 49C 0D9 FC5 166 48C 259 08F FBA

12 3461 8 001 1B1 127 598 964 EF1 025 645 23D 2F3

12 3465 8 00A 619 37A 484 7DB 36D 3B4 D3C 1B0 967

12 3605 8 005 4D9 1BA 008 5AE 8DA 85A 77C 1F7 4D1

12 3609 8 004 2E1 1D0 751 1BC FF6 182 82B 10F B87

12 3631 8 009 060 3A3 534 405 591 1F0 434 5A8 6F2

12 3653 8 005 412 56A 240 71C DB8 AFF 12B 3CA 1D2

12 3665 8 005 155 1B0 6C6 335 EE0 0A7 883 145 49C

12 3687 8 00A 55D E55 321 1D3 0E3 23B 856 250 A35
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Degree Polynomial Steps Configuration

12 3699 8 024 703 20B 074 6F8 C12 628 028 A92 8FB

12 3727 8 009 59C 48B 58B 526 04A 7FD 1C9 0C3 90D

12 3811 8 004 316 276 9CF 054 203 FB7 16D 316 785

12 3857 8 005 5B1 1B1 A43 804 99A 7AF 21C 179 38D

12 3867 8 001 BBD 0A4 77D 30F B5A AE8 102 041 440

12 3879 8 00E 3EB 437 1BA 2EC F5F 040 8CA 22B 231

12 3953 8 00A 2F5 0D6 3C6 665 8E0 73C A2B 6F9 D09

12 3993 8 003 18E 12B 5F0 03D 9A4 317 281 211 507

12 4027 8 006 066 43D 289 1F4 107 453 DF3 20A 91B

12 4029 8 007 3D7 504 C84 FEE B48 0EB DDD 74A C27

12 4041 8 001 0C7 23A 3FE 282 BA3 45F 2A2 1F6 1CF

Degree Polynomial Steps Configuration

13 27 10 00000006 00001173 00001569 000002E8

0000086B 0000010E 000012B5 00001F0B

00000083 00000277 00000E8B

13 39 ≤10 00000016 0000068A 000019B4 00000381

00000354 00001DA2 00000A5F 000001EA

00000019 00000303 00001974

13 53 ≤10 00000014 0000012F 000008D5 000000E3

00000500 00000A8B 000006D1 00000D3B

00000153 00000998 00001766

13 83 ≤10 00000011 000001F6 000001D8 0000117A

000011D4 00000E0B 00001DB9 00000D9D

0000061A 00001761 00001E08

14 43 ≤13 00003DC0 00000129 0000034D 000006CD

00001BF5 0000054F 0000322A 00000638

00000046 00002BCE 000001C7 0000017E

14 57 ≤14 00000255 0000140B 00000173 00000F5D

000000B7 000002E7 000034D3 00000EBD

000016A9 00000854 00002725 00003850

15 3 ≤18 0000000D 000001C1 000000B5 00005165

0000732A 00005237 0000134B 000072D4

00001D91 00001667 00000C9E 0000374F

00007F2D
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Degree Polynomial Steps Configuration

16 45 ≤28 00001FAD 00007ECF 00006661 000051CC

0000697B 00000DB2 0000DBE0 00000041

0000F07F 0000F19A 0000C609 000003F3

00000221 0000B0C1

17 9 ≤61 0001036D 00007CDA 00011FE2 00002A5D

0001E6DE 00002043 00008A24 00003BD3

00012548 0000039B 0000A8FD 0001CB73

00011F81 0000361F 00006CEB

18 39 ≤81 0000843B 00021AD7 000344FF 00023FC1

00016B9A 00018474 000280BB 000390A5

00016DD2 0001556A 0001EE56 0002E38F

0003C840 000240D6 000304AA 00037AE1

19 39 ≤113 0005299B 000495D6 00052D38 000163AA

00002CD3 0003723A 0003070D 0001D428

0002BCBD 0003EE87 0007F799 0004436A

00066828 00057A57 00024D87 0001E6D4

0004E3C0

20 9 ≤166 000AE538 0008BBE4 000C8E91 00049F0B

000E72D3 0009578C 0000A351 000253CC

0004B6A2 0009A742 000285B3 00017391

000D7A0C 00092A1D 000698D7 00040102

0004CE8D 0009B470

21 5 ≤291 000576E7 00140E67 001062A4 0016D0F5

00098BCF 00145193 000E5B31 001B0C7E

001C7B95 0009118E 0005C7A6 001756B3

000B717D 000F0EE2 00044B20 0007831A

00054F8D 0015141D 001F896F

22 3 ≤400 00268980 0030ECE3 003681F6 00375861

0000F6B0 000A3D3C 00154596 00234095

0004C035 0024E5E7 002DB34D 0009D8C7

003EF417 0027B38A 003A70F7 0019BF85

000133B8 000C7603 00365798 003B73E8
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Degree Polynomial Steps Configuration

23 33 ≤569 000A6465 00486ADB 000E4806 0013B97D

000786C8 006CAB7E 000CA432 0023BE8D

007D686C 0037206A 00782F41 0076AC67

00612496 00369C23 00070158 007BDF35

0035DE3F 0048A4E4 004BBDED 0067D3EF

005658C1

24 27 ≤905 004774A4 001AC2CA 00F84F68 0091A8FB

000F814A 002F9BCF 00F81D2F 0060CC1F

006418DF 001DC95B 003A096B 0044D19C

003A04BD 00DEF33E 006FD6E3 00D442A4

0018ECD8 00B57C7D 008897F5 00F9E3FF

003D1195 00382D5D

25 9 ≤1387 00567FDE 018FE8DD 00033387 013319BC

01471F55 01436837 0055C83D 00F9A114

015F452D 01640357 00B9CC52 0167F429

00593170 016B82EE 00B3983B 0122C78C

0111CE0A 012DCDF9 01ADD7A7 0132B534

01918353 0087762F 003E79CB

26 71 ≤2013 006962A1 0289CA9F 01909C6F 01933ADC

00B7B022 02741D2C 024D9E38 034E8B2A

0303E017 005A6D76 007BEEE8 035E64F1

003CE575 01D6C37A 02E499D0 009DA383

028BB31D 0137A24D 0127BE35 030FAC8B

036BB17F 00F3500E 0193A155 018E1FDA

27 39 ≤5797 03C9F6CD 05468C8E 01617EB8 06DD3ACE

00306CBA 01D2881B 01C5C7B8 07742302

01925731 00F48EC1 061FDBFB 0472F9D2

05D8F3E4 07FE5676 01159A93 059A860C

00ABB609 04351335 03F6947D 041B1E64

07F1D344 07AFBCE9 01FEDFA3 0079F2F9

01732922
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Degree Polynomial Steps Configuration

28 9 ≤8056 03D1B1B6 0581C8A8 01C6B20F 0AB12C82

0190091A 01327485 080B80DA 04933FDD

0FAC6F2D 09928229 05A3CABF 0C9CD60C

0685578B 022D57D2 00A1C913 049A91BA

0B5EC368 0BA2C228 0F16BC50 0E8A8E35

0F095DE9 02F01D6E 004572A9 0DE3BB1F

04FA6941 04F03280

29 5 ≤9569 08735A86 0AADC14D 0ECAEA07 110A2F37

087B7A96 11F7FE1D 12B547A5 1AD81694

1CF20334 09A9CF23 062AA3A4 0C34124F

10C71018 0ABBB01F 0D9CF109 0E26ABF0

1464EB09 146D8DCA 1840FA7C 0CA804F4

1751221A 08A69531 1E4AB34C 0E1FD109

02F7B23E 130FAF35 00FB4F3A

30 83 ≤10563 3A60662A 2B31E568 293E5022 316F0BF8

084A9BD0 103089A5 163CB93D 340DCADA

0DA71080 35F52834 22A5ACDA 100B0F1E

32EBA53C 24E26D52 10791B3C 3049EF69

1D2B6168 096B107E 21231947 3C569F92

3DD1E40F 12DDBF91 3B5C3F4A 1092BFA9

0E9C70FC 06D9DE07 119571BF 000BC8D2

31 9 ≤21120 6CBBED58 4EEE9371 64511DEC 7362449A

4A04EFE4 0CE28EA9 141BF300 753A2E5F

3F3C890B 217E13D4 28EA7DC3 0B67A71B

01F1628D 335D676F 63109B3F 6D9054D7

15656497 29DF15BF 030A394F 2CE35F05

3CE70663 4F2420DA 5F213707 400B55B0

18773B43 67F6DBE2 68253F43 06A5CA14

000BFFDE
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Degree Polynomial Steps Configuration

32 79764919

(Ethernet)

≤28404 29F631DB 69B4AB1E 67B69DF4 263A31FE

4AFB7882 6E433C07 7F66BBF3 32AEBA18

7663EABE 4F3E5EA1 77AF3DA3 74274A6D

32C01345 621BA771 1C5CBB85 3278ACCE

3819536E 34FCCC0A 61C0187E 74976060

5BF7155F 7EB1D250 6B954F8D 1D891372

448D2221 70DF6506 716AA6D2 1DF650D1

4BA13234 D21F45B0
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