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Abstract

Parrot is a virtual machine designed for dynamically typed languages. Orig-

inally concieved as the runtime system for Perl 6, Parrot has taken inspiration

from a multitude of languages, such as Python, Ruby and Scheme. This thesis

presents an extension to the Jikes Research Virtual Machine to make it run Par-

rot bytecode. Targeting the Jikes RVM optimizing compiler, good performance

is expected once the program matures.

In addition to the JVM extension, the native class library available to Parrot

programs is also ported to pure Java. This should make for an improvement on

the C-implemented version in Parrot, clearing up some of the muddled inheritance

hierarchy.
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CHAPTER 1. INTRODUCTION 13

JVMs are often extensible and capable beyond being just JVMs. This

project will extend a JVM to make it a Parrot VM. By reusing the

optimizing compiler of the JVM, good performance should follow.

The initial project offering.

1.1 Objectives and Motivation

As stated in the quote above, the tangible objective of the project is an extension

of a Java virtual machine to run Parrot [Par] bytecode. Initially, as reflected in

the title given in the list of project offerings, ”Java Perl”, the hope was to be

able to run Perl 6 code on top of this extended JVM. As time passed, this part

of the objectives fell away more and more, mainly due to the incompleteness of

Perl 6 itself at this point.

The JVM extended by the project is the Jikes RVM [AAB00, RVM]. This is

partially because it is the development JVM preferred by the Jamaica project

[JAM], but also for other reasons described in more detail in a later chapter.

Some of the more important objectives for the project, then, are as follows:

• provide an as complete as possible implementation of Parrot on top of the

Jikes RVM,

• utilise the JVMs optimizing compiler to obtain good performance (hopefully

surpassing even Parrot itself),

• and, perhaps, contribute somewhat to making the Jikes RVM a little less

Java-centric.

1.2 Related Work

This section will present a few projects that are in some way or another related

to this one.
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1.2.1 Parrot

First and foremost, of course, is Parrot itself. Described in detail in chapter 2,

the Parrot virtual machine is what this project will be duplicating. As will

be seen, Parrot consists of multiple parts, some of which are more relevant to

this project than others – mainly the virtual machine and the class library are

considered interesting at this point, though once these parts of the project mature,

effort will likely be put into others.

Parrot grew out of the Perl 6 project, as the intended target platform for

the Perl 6 compiler. However, at the time Parrot was started, the language

specification was far from complete, so while Parrot was concieved for Perl 6,

it has been influenced by many other languages, and is currently seen more as

a general virtual machine designed, though designed mostly with dynamically

typed languages in mind.

1.2.2 Pugs

Pugs [PUG] is probably the most complete Perl 6 implementation at the time

of writing. Starting as an academic exercise of implementing a subset of the Perl

6 language in Haskell, it rapidly grew beyond all expectations. It now tracks the

progress of the Perl 6 specifications closely.

Pugs is designed to enable the use of multiple back-ends. It can use Parrot

itself for the actual execution of code, or even generate and output several of

Parrots assembly language formats. It does tend to create a huge amount of code

for the simplest programs though, and so has not been as useful as might have

been hoped in testing Parakeet so far. Hopefully, as Parakeet matures, that will

change, making Pugs very useful indeed for the furthering of the project.

1.2.3 PearColator

While PearColator [Mat04], a dynamic binary translator, is not directly related

to Parakeet or the Parrot virtual machine, it bears mentioning here because it

(ab)uses the Jikes RVM in much the same fashion as Parakeet does.
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PearColator extends the Jikes RVM to run, in place of Java bytecode, PowerPC

binaries. Being able to study how PearColator works as an extension of the RVM

has been a great help, especially at the beginning of the project.

1.3 Organisation of the Thesis

Chapter 2 describes the Parrot project. The chapter starts by detailing the

history of Parrot, from its conception in the Perl 6 internals project, to

where it stands today. It then goes on on discussing the various parts of

the project and the design of the software.

Chapter 3 gets down and technical with Parrots bytecode format. Most all

aspects are described in detail. This bytecode is what Parakeet (the software

created for this project) is designed to run.

Chapter 4 is about the project itself. Mainly how the software is designed, the

various pieces that make it up and how they fit together. There is also

a brief discourse on how the project has been conducted and some of the

problems that have been run into underways.

Chapter 5 describes performance benchmarking performed on Parakeet. The

results from the benchmarks are displayed, and some explanation is at-

tempted.

Chapter 6 wraps up the thesis. It summarises the project and discusses some

possible (and necessary, if Parakeet is to amount to anything beyond this

thesis) future developments.
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”Parrot is a virtual machine designed to efficiently compile and exe-

cute bytecode for interpreted languages. Parrot will be the target for

the final Perl 6 compiler, and is already usable as a backend for Pugs,

as well as variety of other languages.

Parrot is not about parrots.”

Definition from http://parrotcode.org/

2.1 Perl 6

This chapter will introduce and describe the Parrot project in some detail. Such

a discourse should start with the historical roots; Parrot was first concieved as

the target virtual machine for the Perl 6 language. This section, then, deals with

how Perl 6 came into being, its design process and the progression to its current

state.

2.1.1 Design

Perl 6 is a complete redefinition of the Perl 5 language. It keeps many features

from Perl 5, but also removes some and introduces new ones in an incompatible

way. The whole process on the new revision started in earnest mid-2000, first

announced by Larry Wall in his State of the Onion 2000 [Wal00]. In his speech

on the same subject at the fourth annual Perl conference, he is quoted as saying

”Perl 5 was my rewrite of Perl. I want Perl 6 to be the community’s rewrite of

Perl and of the community.”

So the design process was started. Members of the community submitted for-

mal suggestions in the form of request for comments (RFC). More than 350 such

RFCs were proposed in this initial phase. These were then reviewed and dis-

cussed, resulting, over the span of the next few years, in three sets of documents:

• The Apocalypses, authored by Larry Wall, represent his thoughts on the

individual RFCs and act as a starting point for the design of the new lan-

guage.

• The Exegeses, written by Damian Conway, another prominent Perl hacker,

comment on the Apocalypses and expand and explain through examples

how the various changes will affect the language.
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• Finally, the Synopses, which are mostly summaries of the Apocalypses and

Exegeses, condensing these into more formal design documents.

2.1.2 Perl 6 Internals

The second part of the Perl 6 project is the Perl 6 internals. This deals with

actually implementing the design. Around mid-2001, this resulted in the Parrot

subproject being started. The goal was to provide a language-neutral runtime

environment. As a short aside, the name ”Parrot” comes from an April Fools’

joke by Simon Cozens [Coz01], presented as an interview with Larry Wall and

Guido van Rossum (the creator of the Python language), detailing plans to merge

Perl and Python into a new language called Parrot.

All features of dynamic languages would be catered to, it was decided, and

threading and Unicode support would be built in from the start. The two latter

had been some of the most problematic features to add to Perl 5, and everyone

wanted to avoid such problems this time around. At this point, of course, the

design for Perl 6 was far from finalised, and this separation of implementation

from the actual syntax of the language was benificial – Parrot development could

begin even though Perl 6 was still very much a moving target.

Originally a side-effect, though later recognised as a huge benifit, was the fact

that since Parrot was not tied to Perl 6, and in fact incorporated features from

other languages such as Ruby, Python and Scheme, Parrot could act as a target

runtime environment for many other languages, even to the point where libraries

written in one language could easily be called from a program written in another.

Parrot allows for picking and choosing languages, each for its best fit, and as

languages are usually better suited to some task than others, this can be a huge

boon. This is not unlike the .NET Common Language Runtime [MG00], though

the .NET VM did not exist when the Parrot project was started, or, as stated in

the Parrot FAQ, at least we didn’t know about it when we were working on the

design
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2.1.3 Pugs

Pugs, the Perl6 User’s Golfing System [PUG], is an implementation of Perl

6, as described in the Synopses. Pugs was started as an academic exercise by

Autrijus Tang in February 2005, to implement a purely functional, reduced set

of Perl 6 in Haskell. As stated in a March 2005 interview [chr05], the ”academic

exercise” part went out the window after about two days, the ”purely functional,

reduced set” following the next day.

Pugs is, at the time of writing, the most complete implementation of Perl

6. This is mostly because the Pugs developers religiously track changes to the

Synopses, and any change to a Synopse that causes Pugs to be incompatible is

considered a bug (in Pugs). The project provides valuable feedback to the Perl

6 design, both as a working implementation that can be tinkered with and as a

sanity check for design changes (as in many cases it can be notoriously difficult

to understand what a change would really do before it is actually implemented).

It is also the intention of the Pugs developers that Pugs will help with boot-

strapping the final Perl 6 compiler. The goal is to have a self-hosting Perl 6,

with the compiler itself being written in Perl 6. Obviously this is a chicken and

egg problem, the compiler being unable to compile itself until it has been com-

piled. Pugs, as a working Perl 6 implementation, can help by providing that first

compiler.

2.1.4 Parrot Perl 6 Compiler

The Parrot project ships with a compiler for Perl 6. This compiler generates

Parrot Intermediate Representation (PIR) code from Perl 6 programs. PIR is dis-

cussed further in section 2.2.5. Unfortunately, this compiler is rather incomplete

at the time of writing.

This compiler uses the Parrot Grammar Engine (PGE). A conglomeration of

regular expressions, Perl 6 rules, a grammar engine and a parser, PGE supports

many of the advanced Perl 6 regular expression and parsing features, mixed in

with some appropriated from Perl 5. It also includes a grammar compiler, to

convert entire grammar specifications into PIR. Both the Perl 6 compiler and

PGE are themselved implemented entirely as PIR code.
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2.2 Virtual Machine

Now that some of the history behind the Parrot project has been discussed, the

time has come to move on to the more technical details of the virtual machine

itself. As mentioned already, Parrot was designed from the beginning with dy-

namically typed languages in mind, to run programs written in such programs

more efficiently than virtual machines designed for statically typed languages (like

the JVM or .NET) would be capable of.

2.2.1 Design

Three main principles drive the design of Parrot – speed, abstraction and sta-

bility [RST04, chapter 8]. Stated briefly, these are more or less the following:

• First, speed, is of the utmost importance. If Parrot is slow, any program,

no matter how well designed, will not be able to get good performance.

Parrots efficiency sets the upper bound on how well programs written for

it can run. This principle, though, is not only about execution time. Re-

source usage also comes into play. If Parrot requires too much memory

for instance, it might overflow into disk-backed memory and the system

could start thrashing, or the virtual machine might get killed by the oper-

ating system for running the machine out of memory. Good performance

would clearly not ensue. Obviously, some balance is required between raw

execution speed and resource usage.

• On to abstraction. This point is important because Parrot is a large system,

and it would be nigh impossible for anyone to know everything about all

parts, in detail. Good abstraction allows one to know some parts only on

a general level, so long as there is trust that the underlying details will not

break the abstraction.

• Last, but not least, stability. Parrot will provide a backend for many lan-

guages. To enable this, and be able to execute programs, even after sub-

stantial amounts of time has passed, Parrots interfaces must remain stable.

Also, Parrot is meant to be embeddable into other programs, so a stable

interface on the binary level, for linking, is required as well.
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The actual design is a balance between these. Speed is often seen as the most

inportant of the three, and this does at times lead to compromises being made,

with the other two suffering to some degree.

2.2.2 Architecture

Parrot is divided, more or less, into four distinct main parts. These are the

parser, the compiler, the optimizer and the interpreter.

Source

Parser

Interpreter

Bytecode

Optimizer

Compiler

Figure 2.1: The flow through Parrots main parts

Between these parts, control flows as shown in figure 2.1. Programs can enter

the system in two ways, either as source code or as previously generated bytecode.

• Source code is parsed into an Abstract Syntax Tree (AST). This AST is

passed to the compiler, which turns it into bytecode that can be executed

by the interpreter. This code, along with the AST, is then handed over to

the optimizer. Based on the parameters given, the bytecode is optimized

either lightly or heavily (in some cases heavy optimization is a waste of time,

for instance if the optimization phase would take longer than the runtime

of the unoptimized program) and finally sent on to the interpreter which
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executes it. Depending on the program, the interpreter may call back into

the parser, and the whole process starts over again.

• With bytecode, the first two phases are skipped, going straight to the op-

timization, or indeed, again based in parameters given, directly to inter-

pretation – if the bytecode was previously heavily optimized, there is little

sense in going through the motions again when there is nothing to gain.

2.2.3 Registers

The core design of Parrot is akin to that of a register-rich CISC CPU, though it

also bears some resemblance to modern RISC CPUs; for instance, all operations

are performed on data in registers. Using such a design, the Parrot team can

draw on decades of research into compilers, as most such research the last 30+

years has been on register systems of one sort of another. Parrot has four types of

registers: integers, numbers (floating point), strings and PMCs (see section 2.3).

There are 32 registers of each type available.

This register-based architecture goes somewhat against the grain of current

trends in virtual machines, which are nowadays most often stack-based. Though

studies like the 2005 one by Shi, et al. [SGBE05] have shown that a register-based

virtual machine can reduce runtime on the order of 30% for standard benchmarks,

the Parrot team appears not to have had such lofty goals, as the following quote

from the Parrot FAQ shows:

”What’s with the whole register thing machine?

Not much, why do you ask?

Don’t you know that stack machines are the way to go in

software?

No, in fact, I don’t.

But look at all the successful stack-based VMs!

Like what? There’s just the JVM.

What about all the others?

What others? That’s it, unless you count Perl, Python, or Ruby.

Yeah them!
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Yeah, right. You never thought of them as VMs, admit it. :^)

Seriously, we’re already running with a faster opcode dispatch than

any of them are, and having registers just decreases the amount of

stack thrash we get.

Right, smarty. Then name a successful register-based VM!

The 68K emulator Apple ships with all its PPC-enabled versions of

Mac OS.

Really?

Really.”

[RST04, pp. 106] also chimes in on the subject with: It’s also just more pleasant

for us assembly old-timers to write code for. Other examples of successful register-

based virtual machines are the Jikes RVM, and of course, by now, Parrot itself.

2.2.4 Instruction Set

Parrot has a multitude of different instructions, ranging from core ones like

branch or end through bitwise operations, string operations, operations for I/O

and for manipulating objects to obscure trigonometric operations. In addition to

this large number of instructions, each one can have one or more opcodes defined,

varying with the various parameters the opcode takes.

A good example is the substr instruction. There are 27 possible permutations

(with 27 corresponding opcodes) for this instructions, depending on whether a

length is provided, whether the start or length parameters are integer literals

or come from registers, and even if an optional replacement for the substring is

specified. Obviously such a system results in a huge number of opcodes, counting

in at more than 1200 in the 0.4.5 release of Parrot.

In addition to all these opcodes released with the virtual machine itself, opcode

libraries can be loaded dynamically within Parrot. This allows for high-level

language compilers to use their own opcodes, which can in some cases be more

efficient than expanding the Parrot standard library (see section 2.3 for more

about the standard library).
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2.2.5 Parrot Assembly Language and Intermediate Rep-

resentation

Parrot Assembly (PASM) is an assembly language created for the Parrot virtual

CPU. It is mostly just a set of mnemonics for the various instructions, plus

some common assembly language features like labels for branch and jump targets.

Owning to the dynamic language support in Parrot, many rather un-assembly-like

features are supported, like objects, garbage collection and more. See figure 2.2

for an example of PASM code.

Parrot Intermediate Representation (PIR) provides an (albeit shallow) abstrac-

tion on top of PASM. It allows for code to be organized into subroutines, with

easily defined parameters and return values. PIR also adds macros, both tempo-

rary and named registers, and a whole host of syntactical sugar. In all, it provides

a much nicer environment for the programmer, and is now also considered the

prime target for compilers targeting Parrot. See figure 2.3 for an example of PIR

code (this is the same program as in the PASM example).

Both code examples are taken from the Parrot distribution.

2.3 Parrot Magic Cookies

Parrot Magic Cookies (PMCs) are Parrots way of supporting complex types. Any-

thing beyond that provided directly by registers (integers, floating point numbers

and strings) must be implemented as a PMC. These are separate from the virtual

machine, though the VM does use some core PMCs internally. PMCs can be

implemented either in C or in PIR / PASM.

2.3.1 Core PMCs

Parrot comes with a core set of PMCs. These are automatically loaded on

startup, and are available to all code written for Parrot. Mostly, the core PMCs

are fairly mundane constructs, like classes for integers, strings, arrays and so on.

These are all written in C for efficiency reasons.
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# I0 = l a s t
# I1 i s the counter f o r the loop
# N2 i s the argument f o r gen random
# N3 i s the re turn from gen random
main :

get params ”(0 )” , P0
elements I0 , P0
eq I0 , 2 , hasargs
s e t I1 , 900000
branch argsdone

hasargs :
s e t S0 , P0 [ 1 ]
s e t I1 , S0

argsdone :
s e t I0 , 42
un l e s s I1 , ex
s e t N2 , 100 .0

wh i l e 1 :
bsr gen random
dec I1
i f I1 , wh i l e 1
new P0 , . FixedFloatArray
s e t P0 , 1
s e t P0 [ 0 ] , N3
s p r i n t f S0 , ”%.9 f \n” , P0
pr in t S0

ex :
end

. constant IM 139968

. constant IA 3877

. constant IC 29573

gen random :
mul I0 , . IA
add I0 , . IC
mod I0 , . IM
se t N1 , I0
mul N3 , N2 , N1
div N3 , . IM
r e t

Figure 2.2: Example PASM Code
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. sub main : main
. param pmc argv
$S0 = argv [ 1 ]
$I0 = $S0

wh i l e 1 :
gen random (100 . 0 )
dec $I0
i f $I0 > 1 goto wh i l e 1
$N0 = gen random (100 . 0 )
$P0 = new . FixedFloatArray
$P0 = 1
$P0 [ 0 ] = $N0
$S0 = s p r i n t f ”%.9 f \n” , $P0
pr in t $S0
. re turn (0 )

. end

. const f l o a t IM = 139968.0

. const f l o a t IA = 3877.0

. const f l o a t IC = 29573.0

. sub gen random
. param f l o a t max
. l o c a l f l o a t l a s t
l a s t = 42 .0

loop :
$N0 = l a s t
$N0 ∗= IA
$N0 += IC
$N0 %= IM
$N1 = max
$N1 ∗= $N0
$N1 /= IM
l a s t = $N0
. y i e l d ($N1)
get params ”(0 )” , max
goto loop

. end

Figure 2.3: Example PIR Code
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The core PMCs form the stem and first few branches of the PMC inheritance

tree. PMCs all inherit from the default PMC, which specifies a host of methods

that can be overridden. The PMC system also allows for mix-in style inheritance,

where the developer can specify things like: ”use Array.get_string() as this

PMCs get_string() method”.

2.3.2 Other PMCs

Magic cookies not shipped with Parrot can be dynamically loaded or even

created at runtime, and there is a whole set of instructions specifically to create

and modify classes (these also work on core PMCs – the developer is free to

replace the get_integer() method in the Integer class if she so chooses, though

doing so would likely provide for much confusion and head-scratching some time

down the line when something has gone wrong and needs to be debugged!).

High-level language support modules can also supply their own versions of core

classes. For instance, the Perl 6 infrastructure provides PerlArray, PerlString and

so on to support all the features Perl 6 requires from those classes.

2.4 Compiler suite

Finally, the last section of this chapter will look briefly at compilers shipped with

Parrot. Compilers for a multitude of languages are provided, and there is also a

more generic compiler framework that compiler writers can use to simplify the

construction of new compilers.

2.4.1 Perl 6

The Perl 6 compiler has been discussed already in section 2.1.4.

2.4.2 Other languages

Parrot ships with compilers for a host of languages, in varying state of com-

pleteness. Unsurprisingly, most of these are for dynamically typed languages, like

Python, Ruby, Scheme or Lua. There are also compilers for more esoteric lan-

guages, like Ook or Befunge, probably because these languages are, while usually
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turing complete, very small and simple (from the compiler standpoint that is –

some of them are notoriously write-only form a programmer point of view).

2.5 Summary

• Parrot was born from the Perl 6 project, meant to be the final target for

the Perl 6 compiler. It is meant to be the virtual machine for dynamically

typed languages.

• A Perl 6 compiler is shipped with Parrot, but it is rather rudimentary at

this stage. The most complete Perl 6 implementation at the moment is

Pugs.

• Parrot is designed for speed. Also, abstraction in the code and stability of

interfaces are important points in its design.

• There is a flow of control between the four main parts of Parrot. These

parts are the parser, the compiler, the optimizer and the interpreter. The

flow is from left to right as they are written here, though the interpreter can

call back into the parser, at which point the process starts all over again.

• Parrot is register based rather than stack based. This may go against

”common wisdom”, but there are good reasons, both technological and

otherwise, for taking this path.

• The number of opcodes in Parrot is large, mainly because each instruction

can map to many opcodes depending on the various parameters the instruc-

tion can take, but also because there is a trend to make instructions out of

common (and at times, not so common) operations.

• There are two main languages for writing programs for Parrot, PASM and

PIR. PIR provides some higher-level constructs, and is generally much nicer

to work with.

• Parrot comes with a library of classes for anything that requires complex

types. These classes can be loaded at run-time, and the library is user-

expandable.
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• Finally, Parrot also comes with a compiler suite, geared towards generating

PIR from specific language source code.
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This chapter will present the Parrot bytecode format in some detail. Parrot

stores its bytecode on disk in a format called PackFile, which consists of a header

describing how to decode the remaining contents of the file, followed by a number

of segments containing the actual data. Some of the contents of this chapter will,

by necessity, bear some resemblance to the documentation of the bytecode format

that comes with Parrot [PBC], though what is presented here is in many cases

more in-depth – the Parrot documentation is often quite sparse.

3.1 Header

The PackFile header contains the parameters that went into creating the file

when the bytecode was stored, in addition to identification markers so that the

program loading the bytecode can verify that the file is indeed a Parrot PackFile,

and that it has not been corrupted.

Major VersionByte OrderWord Size

0 1 2

Minor Version

3

Figure 3.1: Bytecode Header, Bytes 0 - 3

Figure 3.1 shows the first four bytes in a PackFile. The first byte describes the

word size used when dumping the bytecode to this file, in the unit of number of

bytes in a word. At the time of writing, Parrot supports 32-bit and 64-bit word

sizes, making values of 4 and 8 permitted for this field. The second byte tells

the bytecode loader the endian type to use for word loading (the header is byte-

orientated to escape endianness-issues). Permitted values are 0 for little-endian

and 1 for big-endian. Bytes three and four contain the major and minor version

of Parrot used for generating the PackFile (this is necessary, as there are usually

incompatible changes between versions).

The next two bytes (five and six), as seen in figure 3.2, contain the size of

inline integer constants and the floating point type. The integer size will be 4 or

8 bytes, usually matching the specified word size. The floating point type can

either be 0, meaning IEEE 754 8 byte double, or 1, which is i386 little endian

12 byte double. In both these cases, and also for word size and byte order,
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Fingerprint continued

Fingerprint continued

10 Byte FingerprintFloat TypeInteger Size

4 5 6

Figure 3.2: Bytecode Header, Bytes 4 - 15

the bytecode loader is expected to convert the various types to the appropriate

platform native construct. The following ten bytes is a fingerprint of the core

instructions supported by the version of Parrot used to create this PackFile.

16

Parrot Magic Number (0x13155a1)

Figure 3.3: Bytecode Header, Parrot Magic Number

Bytes 16 to 19 (shown in figure 3.3) contain the Parrot magic number (0x13155a1).

If the bytecode loader comes across anything else in this slot, the file should be

rejected as an invalid PackFile. The number must (if necessary) be converted to

the native endianness of the platform before checking.

20

Opcode Type (0x5045524c - ASCII for ’PERL’)

Figure 3.4: Bytecode Header, Opcode Type

The PackFile header ends with a word (with the size and byte order as specified

above) detailing the opcode type. It is envisioned that in the future, Parrot might

support multiple opcode formats, but at the time of writing, only one opcode type

is understood. Parrot opcodes are signified by this field containing the number

0x5045424c, ASCII for ”PERL”. This is shown in figure 3.4.
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3.2 Bytecode Format 1

The remainder of this chapter will deal with PBC Format 1 (which replaced

format 0 some years ago). Figure 3.5 shows the Format 1 header. Note that

the byte count now depends on the word size. From here on, whenever byte

numbers are used in figures, it is assumed that the bytecode was created on a

32-bit machine.

24 (assuming 32-bit word size)

Directory Format (1)

28

Padding (0)

Figure 3.5: Format 1 Header

The padding shown in figure 3.5 is there to ensure the next segment starts on

a 16-byte boundary. All Format 1 segments are so aligned.

N + 4

Internal Type

N (N % 16 == 0)

Total Size In Opcodes

N + 8

Internal Id

N + 12

Size Of Data In Opcodes

Figure 3.6: Format 1 Segment Header

All segments have a common header, as can be seen in figure 3.6. This header

contains both the total size of the segment (in opcodes – that is, words) and the

size of the payload following the header (which may be 0). There are two reasons

for having both of these sizes. First, segments are 16-byte aligned, so there must
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Type Description
0 Directory Segment
1 Unknown Segment
2 Fixup Segment
3 Constant Table Segment
4 Bytecode Segment
5 Debug Segment

Table 3.1: PackFile Segment Types

be at least four words in the header (in case there is no payload). Of course, the

last word could have been just padding, so the second reason is extra safety checks.

The bytecode loader should ensure that totalsize == payloadsize + headersize.

The type and id fields are used internally by Parrot, and are both zeroed in the

PackFile.

After this header comes the optional payload, depending on the type of seg-

ment. Table 3.1 lists the available types. Each of these will now be discussed in

more detail.

3.2.1 Directory Segment

Directory segments, unsurprisingly, act as a directory of segments. That is to

say, it contains a list of what other segments are in the PackFile, what kind of

segment each is, and how to find them.

N (N % 16 == 0)

Number Of Directory Entries

Figure 3.7: Directory Segment, Number Of Entries

Since the directory segment is a simple list, the first word of the payload (fig-

ure 3.7) contains the number of entries. Following this are the entries themselves

(figure 3.8). These consist of four pieces of information:

• the segment type. Again, see table 3.1 for the various types,

• the name of the segment. This is a nul-terminated string (”C string”),

zero-padded to the nearest word size alignment,
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Type Description
’n’ Number Constant
’s’ String Constant
’k’ Key Constant
’p’ PMC Constant

Table 3.2: PackFile Constant Types

• the offset in bytes where this segment can be found in the PackFile,

• and finally, the size of the segment (this is used for integrity checks – it

must match the value given in that segments Format 1 header).

End Of Segment Name + Padding

Segment Name

Segment Type

Segment Offset

Segment Size

...

Figure 3.8: Directory Segment, Directory Entry

3.2.2 Constant Table Segment

Parrot bytecode deals with five types of constant. Of these, integer constants

are placed inline in the bytecode stream, while the others go in the constant table

segment. These four types are listed in table 3.2.

As with directory segments, a constant segment starts by stating the number

of constants (see figure 3.9), and goes on to list the constants themselves, as in

figure 3.10.
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Constant Data

Constant Type

End Of Constant Data (+ Padding)

...

Figure 3.9: Constant Segment, Number Of Constants

Constant Data

Constant Type

End Of Constant Data (+ Padding)

...

Figure 3.10: Constant Segment, Constant

Each constant entry containes some amount of data, depending on the type of

constant. Number constants are the simplest ones, containing either an IEEE 754

8-byte double, or a 12-byte i386 little-endian double, depending on the platform

the bytecode was generated on (see section 3.1). This is shown in figure 3.11.

Number Constant

End Of Number Constant

... 0 or more words

Figure 3.11: Constant Segment, Number Constant

String constants are somewhat more complex. Figure 3.12 shows how a string

constant is laid out in the PackFile. The Parrot string structure contains infor-

mation on the character set of the string, any special flags, and of course the

string data itself. Note that Parrot constant strings are not nul-terminated, and

can therefore contain the nul character.
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String Length

End Of String Data (+ Padding)

String Data ([Size] Number Of Bytes)

...

String Type

Encoding

Flags

Figure 3.12: Constant Segment, String Constant

Key constants are used in many PIR instructions, in places where a PMC is

accessed as an array, hash or similar. See figure 3.13 for an example of how key

constants look like in PIR.

P0 = new . Hash
P0 [ ” foo ” ] = ”bar”

Figure 3.13: Key Constant Example

P0 [ ” foo ” ;” bar ” ] = ”baz”

Figure 3.14: Multi-component Key Constant Example

In the bytecode, key constants appear as in figure 3.15. A key can be com-

posed of several components (the example given coul dfor instance be changed

as in figure 3.14 – though this would be an invalid index for the Hash PMC).

The possible component types are listed in table 3.3 (integer constants are, as

mentioned above, inline in the bytecode stream, and uses a special ”integer key

constant” type rather than being listed in the constant table).
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Component Value

Component Type

Number Of Components

...

Figure 3.15: Constant Segment, Key Constant

Type
Integer Register
Number Register
Number Constant
String Register
String Constant
PMC Register

Table 3.3: Key Constant Component Types

The value part of the key component is either a register number or a pointer

into the constant table.

Finally, PMC constants contain frozen (serialised in Java-lingo) PMCs. There

is a poorly-documented common header, but as parts of it remains a mystery,

even after long sessions of digging around in the Parrot source code, it is not

included here. Most of the work that needs to be done to read a PMC constant

is done by the various PMCs themselves in their thaw() method.

3.2.3 Bytecode Segment

Bytecode segments carry only actual executable bytecode as their payload. The

possible pieces found in the bytecode segment are shown in figure 3.16. Subroutine

PMC constants index into the bytecode segment, telling the interpreter where to

start executing.

3.2.4 Debug Segment

A debug segment contains mappings from source code line numbers to offsets into

the bytecode. There are two types of mapping: 0, which means there is no source
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Other Constant Operands (Index Into Constant Table)

Integer Constant Operand

Register Operand

Opcode

Figure 3.16: Bytecode Segment Constituents

available for the bytecode at the given offset, and 1, which means that the source

code is available in a file. For the latter case, an index into the constant table

is provided to locate the filename containing the source code. Figure 3.17 shows

the PackFile layout for the debug segment.

Number Of Mappings

Bytecode Offset

Mapping Type

Optional Constant Table Index

...

Figure 3.17: Debug Segment

3.2.5 Fixup Segment

Finally, there is the fixup segment. The main use for this segment is to list the

subroutines present in the bytecode and map subroutine name to constant table

index for these. This is fixup type 1 in figure 3.18. Fixup type 0 is used for labels

that index directly to bytecode offsets.
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End Of Label Name + Padding

Label Name

Label Offset
...

Fixup Type

Number Of Fixup Entries

Figure 3.18: Fixup Segment

3.3 Summary

• Parrot bytecode files (called PackFiles) start with a header that contains

things necessary for loading the remainder of the bytecode. Examples of

these are word size, floating point format, endianness and so on.

• The PackFile is divided into segments, such as a directory segment, a con-

stant table, the bytecode segment itself, etc.

• There are five types of constant: integers (written inline in the bytecode),

numbers (floating point), strings, keys and PMCs.

• The bytecode segment contains the directly interpretable bytecode stream.
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”Customer: ’E’s not pinin’! ’E’s passed on! This parrot is no more!

He has ceased to be! ’E’s expired and gone to meet ’is maker!

’E’s a stiff! Bereft of life, ’e rests in peace! If you hadn’t nailed ’im

to the perch ’e’d be pushing up the daisies!

’Is metabolic processes are now ’istory! ’E’s off the twig!

’E’s kicked the bucket, ’e’s shuffled off ’is mortal coil, run down the

curtain and joined the bleedin’ choir invisibile!!

THIS IS AN EX-PARROT!!

(pause)

Owner: Well, I’d better replace it, then.”

Monty Python, the ”Dead Parrot” sketch.

4.1 Overview

Of course, where this project is concerned, Parrot certainly is not dead, nor is it

being replaced exactly (and hopefully, any comparison with the owners suggested

replacement – a slug – can be avoided).

As stated in the introduction, the goal of the project is to extend a Java virtual

machine to run Parrot bytecode. Specifically, the Jikes RVM has been targeted,

for several reasons – some of which are:

• it is the preferred development JVM for the Jamaica project, the group

offering the project,

• it is written in Java, and

• it has been extended in a similar fashion earlier, so lessions learned, and

even some code, can be reused.

Having a second implementation of the Parrot virtual machine will hopefully

prove benificial to the Parrot community. Once Parakeet gets up to speed (both

featurewise and in actual raw performance) with Parrot, the competing projects
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can egg eachother on, furthering both in ways that would not have happened

with just a single implementation.1

The project should also, again, hopefully, prove to be of some value to the Jikes

RVM. For instance, Parakeet provides a new user of various bits of the internal

API, and will exercise those parts differently than their normal use. This may

(though it has not yet) help discover bugs that would otherwise be harder to

find. Also, Parakeet goes some way towards making the Jikes RVM a little less

Java-centric – it is a research virtual machine after all, not just a Java virtual

machine.

4.2 Jikes RVM

When the project was first started, the choice between generating Java bytecode

or producing Jikes RVM HIR directly had to be made. Two things made this

choice easier:

• first, the register-based architecture of Parrot maps fairly well onto Jikes

RVM HIR, whereas it would be more of a pain if stack-based Java bytecode

had to be generated. In fact, many parts of Parrot bytecode might seem to

match the Jikes RVM internals better than Java bytecode even, and

• second, the Jikes RVM has a substantial API for generating HIR. If, in

stead, Parakeet was to translate Parrot bytecode into the Java equivalent,

most everything would probably have to be done by hand.

Sadly, not all features of Parrot are as well fitted for the Jikes RVM. Instructions

like setting the value of registers indirectly – by register number, or branching to a

bytecode offset stored in a register, are features necessary for dynamic languages

like Perl 6 or Python. Many such (and similar) features are not catered for at all

in Java, and hence require a bit of extra work to fit them in.

1That is the authors pipe dream anyways...
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4.3 PearColator

It should be noted here that quite a bit of the underlying code that does the tie-

in with the Jikes RVM is reused or adapted from the dynamic binary translator

PearColator [Mat04]. This includes the ”fake method” technique for compilation

as well as the various patches required for hijacking and replacing internal bits of

the JVM.

Having access to the PearColator source was also very helpful in the first days

of the project, as it provides examples of how various parts of HIR are generated.

This in a more contained setting than the bytecode to HIR converter in the Jikes

RVM source tree.

4.4 Parakeet Architecture

A very brief overview of the architecture used in Parakeet is shown in figure 4.1.

This section will now go on to describe some of these in more detail.

Bytecode

Bytecode Loader

Subroutine

HIR Generator

Code Runner

PMC

Parakeet

Executing Program

C
om

p
il
e

B
y
te

co
d
e

Machine Code
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Optimizing Compiler

Interact
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dynamicBridgeTo()

Interact

Compile HIR

Return Machine Code

Figure 4.1: Parakeet Architecture Overview
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4.4.1 The Bytecode Loader

The first part of the architecture invoked when Parakeet is run is the bytecode

loader. This parses the PackFile format, as specified in chapter 3, and performs

various sanity-checks.

When necessary, the bytecode loader interacts with a multitude of different

Parrot Magic Cookies, and with Parakeet itself. Global constants are registered,

namespaces are setup and subroutines within those namespaces are discovered

and stored in such a way as to be easily reachable later.

Much of the work of the bytecode loader is delegated to the SegmentData class,

which in turn is a thin wrapper around Javas ByteBuffer. Once the SegmentData

structure is properly setup, it is easy to read complex types like Parrot strings

from the PackFile. SegmentData is also responsible for handling endianness is-

sues, word sizes and the floating point types used, converting, when necessary, to

Java types.

4.4.2 Subroutines

Once the bytecode has been loaded, Parakeet will scan through all the found

subroutines looking for the one with the :main flag set. If none of the subroutines

have that flag, the one listed first in the bytecode will be assumed to be the main

subroutine. Then that subroutine is invoked.

When a subroutine is invoked, it instantiates a subclass of VM NormalMethod

(this subclass is, confusingly perhaps, also called Subroutine) designed to hijack

a method in a dummy class. The Subroutine class supplies its own HIR generator

in stead of the default Java bytecode one. The Subroutine is then compiled, and

the resulting code is handed over to the code runner.

4.4.3 HIR Generator

The HIR generator is really the core of Parakeet. This is where the action is

at. The HIR generator is what actually reads the bytecode stream and uses the

Jikes RVM API to create code that can be compiled and run.
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Aiding in this task are a set of opcode decoders. HIR generation is run in a

loop which calls out to the decoders until there is nothing left of the bytecode to

process. The opcode decoders in turn call back into the HIR generator to actu-

ally perform the work. The decoders are designed to be capable of dynamically

loading, at runtime, mimicing Parrots loadable opcode libraries.

4.4.4 The Code Runner

The code runner is little beyond a method with the correct return type and pa-

rameters required by Parrot subroutines. This method simply calls VM Magic.dynamicBridgeTo(),

which changes the JVMs frame of execution into that of the code supplied by the

HIR generation / compilation phase.

4.4.5 Parrot Magic Cookies

PMCs are used several places in Parakeet. Not only are they available for

programs to use, they are used heavily internally. Arguments to subroutines and

return values are both PMCs, constants in the bytecode that tell how to interpret

those arguments and return values are PMCs, even subroutines themselves are

PMCs.

The magic cookies are used both at HIR generation time and at runtime.

Everything from namespaces to global variables, lexical structures to stacks are

represented or emulated by different types of PMC. In Parrot, even the interpreter

is a PMC, though this is not used by Parakeet. PMCs are, like the opcode

decoders, dynamically loadable.

4.5 Type and Method Resolving

The Jikes RVM uses the original bytecode array from the dummy method (that

gets hijacked by the compilation phase) for resolving purposes. Anything that is

not in the boot image of the JVM may potentially have to be resolved at runtime,

and the Jikes RVM uses the bytecode to discover the correct types to load.

This leads to quite a bit of ”cruft” in this dummy method. Every method

call that can be generated by the HIR generator must have a corresponding
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bytecode index, in case it needs to be dynamically resolved. The ResolveHelper

class contains mappings from method signatures to bytecode indices. This class

is automatically generated by a script that inspects the dummy method, adding

an extra compilation step whenever methods that need to be resolved are added.

In the future, Parakeet should probably provide a better way of doing such

resolving, changing the Jikes RVM not to use the Java bytecode associated with

the method that is being compiled. Of course, once foot is set on that path,

there are probably many things that should be done for better integration. See

chapter 6 for more on future work.

4.6 Progress

At the time of writing, Parakeet is not yet a suitable replacement for Parrot.

Indeed, there is quite a way yet to tread. There are several reasons for this, some

of which are:

• the scope of the Parrot project was not entirely understood when setting

out, and proved to be quite a bit larger than first believed,

• that scope has been changing quite a bit underways, and

• even the parts that have remained stable tend to have very variable amounts

of documentation, and much of the documentation itself is out of date,

making for a lot of tedious reading of the Parrot source.

More than half of Parrots 1200-odd opcodes have been implemented so far,

starting with the basic, core ones require to get even the most minuscule test

programs running, and expanding outwards whereever seemed prudent (or most

interesting, it must be admitted) at the time. In addition, about a fifth of the

Parrot core PMCs are (to varying degrees) implemented in Parakeet. Most of

these were implemented because they are used internally by Parrot (frozen in the

bytecode for instance) at some point or other.
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4.6.1 Playing catch up with Parrot

One of the more frustrating aspects about the project has been the ever-

changing scope of Parrot. Each new release has brought new, different, incompat-

ibilities with older versions (and thus with Parakeet). Whenever a new release

would come out, everything else would have to be put aside for some time to

make Parakeet handle things the same way as Parrot.

In fact, the Parrot developers have gone as far as saying they care nothing

for backward compability at all on the bytecode level. Compability is kept at

PIR code level, which, with PIR being what compilers that target Parrot should

generate, admittedly does make some sense. This way, the Parrot team can fix

problems in the lower levels without affecting developers that do not care about

Parrot internals (which probably would be most of them). A recent change of

leadership in the project has also done its share to turn things upside down.

As an example of changes made, the 0.4.5 release of Parrot added about 50

opcodes, interleaving the new opcode numbers in-between old ones to make it

utterly incompatible. This release also changed what types of PMCs were used

for various things frozen in the bytecode. Incidentally, this is the version of Parrot

that Parakeet is currently targeting – 0.4.6 (the first release after the above-

mentioned leadership change) has been out for some time now, but there has not

been time to incorporate the massive changes to core features, like namespaces,

into Parakeet yet.

4.7 Testing

Testing of the project has been performed through the use of a home-grown unit

testing system. As of writing, more than 280 tests exist in the source tree, all of

which currently pass.

The tests written so far are not very extensive though. Mostly, they test only

whether a feature works at all or fails utterly, and will often fail to exercise the

many corner cases. Also, although each test is only a tiny PIR program, the way

they are run is quite inefficient – a separate instance of the virtual machine is

run for each test, which makes for a bit of a wait when running the test suite.
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Improving on the test suite and tools will be important for the future well-being

of the project.

It is hoped that, when the Parakeet implementation has matured somewhat,

something like the xUnit framework can be implemented in pure PIR. This will

make testing much easier than it is today, while at the same time running more

efficiently. Hopefully, this will result in more tests being written, thus exposing

more bugs and increasing trust in the code base.

4.8 Obtaining Parakeet

A SourceForge project has been set up for Parakeet. It can be found at

http://sourceforge.net/projects/parakeet/. Currently, the Subversion repos-

itory at SourceForge is the only way of accessing the Parakeet source code. It

should be warned that, at the time of writing, Parakeet should be considered

alpha quality at best.

4.9 Summary

• Parakeet is the object of this project, an extension to the Jikes RVM to run

Parrot bytecode.

• The project should hopefully prove to be of some benefit to all involved

parties.

• A lot of Parrot maps well onto the Jikes RVM, though some of the more

dynamic features has required more work to implement.

• Much of the Jikes RVM tie-in code was adapted from the PearColator dy-

namic binary translator.

• The Parakeet architecture attempts to span everything that is currently pos-

sible in Parrot, including dynamically loadable opcode libraries and magic

cookies.

• Dynamic resolution has proven tedious, and work should probably be done

in this area at some point.
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• Parrot has been, and continues to be, a moving target.

• Parakeet is tested using a home made unit testing framework. Currently

there are more than 280 tests in the source tree.
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”Why your own virtual machine? Why not compile to

JVM/.NET?

Those VMs are designed for statically typed languages. That’s fine,

since Java, C#, and lots of other languages are statically typed. Perl

isn’t. For a variety of reasons, it means that Perl would run more

slowly there than on an interpreter geared towards dynamic languages.”

Question from the Parrot FAQ.

5.1 Overview

As mentioned in the introduction, one of the goals for this project is to achieve

good performance by reusing the optimizing compiler of a Java virtual machine.

This chapter describes some attempts to benchmark Parakeet, compares its per-

formance against Parrot and tries, to some extend, to explain the results.

The benchmarks used come from the Parrot distribution. Quite a few more

benchmarks are shipped in the examples/benchmarks/ directory of the Parrot

source tree, but many of these depend on features not yet implemented in Para-

keet (that is, unimplemented opcodes in most cases). Of course, even if all the

benchmarking programs shipped with Parrot could have been run, they do not

form a comprehensive benchmarking suite like e.g. Dhrystone. Regrettably, this

means that a very limited set of features will be performance tested herein, so

while the tests do give some pointers as to how Parakeet performs compared to

Parrot, the conclusions drawn from the data should be taken with the proverbial

pinch of salt.

Finally, it should be mentioned that Parakeet development so far has been

a great deal more geared towards actually getting Parrot features implemented

than worrying about how well those features actually perform. Shortcuts that

might lead to loss of performance have been taken where they could save time on

actually getting something working (under the principle of ”Make it work, make

it right, make it fast”).
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5.2 Benchmarking Environment

All data collected is from an IBM T42 laptop with an Intel Pentium M 1.7GHz

CPU and 1GiB of memory. The tests were run on Linux 2.6.17 with a (constant)

minimal set of other applications loaded at the same time.

All benchmarks were run at least 20 times for each input value, often more,

and the results were then averaged. This to ensure that the program (and virtual

machine) were hot in cache, and to even out jitter caused by other processes

running at the same time.

5.3 Fibonacci Benchmark

This benchmark calculates the Nth Fibonacci number. Because a recursive algo-

rithm is used, method call (or subroutine call for Parrot) overhead is likely the

most prominent factor for performance.

Figure 5.1: Parrot Fibonacci Number Performance

Figures 5.1 and 5.2 show the runtime for the Fibonacci program generating the

15th to 30th Fibonacci number, running on Parrot and Parakeet respectively. As
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can be seen, both plots more or less have the same shape (owning to the O(N2)

algorithm used in the program). This leads to the point that there is apparently

no algorithmic difference in how Parrot and Parakeet execute this program. When

Parakeet proves less efficient, it is because each (or at least one) step runs slower.

Figure 5.2: Parakeet Fibonacci Number Performance

Figure 5.3 illustrates how much slower Parakeet runs the Fibonacci program.

For the first 15-20 Fibonacci numbers, the load time of the virtual machine plays

a significant part (and Parrot obviously has the shorter startup time). After this

though, the difference in performance is more or less evened out, with Parakeet

using about 45 times longer to execute the same program.

Quite a bit of this rather large gap in performace can likely be attributed to the

fact that subroutine calls in Parakeet have much greater overhead than Parrot.

Obviously, there are great gains to be had from work in this area.

5.4 Prime Number Calculation

The next benchmark run was one that checks all the numbers up to a set limit

for primeness. The program uses Integer PMCs, so a great deal of the runtime
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Figure 5.3: Relationship between Parrot and Parakeet Fibonacci Performance

will be spent on mathematical PMC operations (boiling down to method calls

and integer arithmetic in Parakeet).

As can be seen from figures 5.4 and 5.5, Parrot again beats Parakeet hands

down. Like the Fibonacci benchmark, an O(N2) algorithm is involved, and again

the plots are quite similar. Parakeet simply uses more time to execute each step.

Figure 5.6 shows that Parakeet takes on the order of about 20 times as long

to run the primeness checks. Unlike the Fibonacci benchmark though, this time

there are no subroutine calls. The main culprit is likely to be the PMC methods

– the particular set of operations used by the program causes several method

calls, object instantiation and integer arithmetic for every iteration. Especially

the object instantiations appear to make performance take a big hit.

Like mentioned before, the easiest path to get features going has been chosen

a number of times during development. Mathematical PMC operations could

certainly be implemented differently, and should apparently be reimplemented

for efficiency reasons some time in the future.
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Figure 5.4: Parrot Prime Number Calculation Performance

Figure 5.5: Parakeet Prime Number Calculation Performance
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Figure 5.6: Relationship between Parrot and Parakeet Prime Number Perfor-
mance

5.5 Variable Argument Subroutines

The variable argument subroutines benchmark is quite simple. It consists of a

subroutine that is called N times from a loop. The subroutine arithmetically

adds all its input parameters and returns the result. The parameters passed in

are PMCs of types Integer, Float and String.

Again Parakeet loses out to Parrot, as can be seen in figure 5.7. Also, again, the

factor of how much slower Parakeet is, is constant when the number of iterations

is high enough to ignore startup time. Like with the prime number calculation,

that factor is about 20. This is shown in figure 5.8.

5.6 MOPS

Finally, when all seems lost on the performance front for Parakeet, enter the

simplest benchmark of them all: set a variable to some large number, then decre-

ment and iterate until it reaches zero. This makes for a crude measure of MOPS

(Million Operations Per Second). There are two versions of this in the Parrot

distribution, one using integer registers and one using Integer PMCs. As will be



CHAPTER 5. PERFORMANCE TESTING 58

Figure 5.7: Variable Argument Subroutines Performance

Figure 5.8: Relationship between Parrot and Parakeet Vararg Subroutines Per-
formance
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seen, the results vary wildly.

Figure 5.9: PMC MOPS Performance

Look first at the PMC performance in figure 5.9. Finally, a glimmer of hope

for Parakeet! Unfortunatly, it does not hold for the integer register version of the

benchmark. See figures 5.10 and 5.11 – note the difference in scale on the Y axis!

For the PMC version, Parakeet outperforms Parrot by a factor of three. With

integer registers, it is more than turned the other way around, with Parakeet

taking as much as 95 times as long for the same task (see figure 5.12). The

PMC-based program takes advantage of opcodes that permutate the PMC value

in stead of replacing it, which, it seems, is taken advantage of in a huge way in

some optimization phase in the Jikes RVM.

Finally, in figure 5.13, the MOPS for both tests, with both virtual machines,

are compared.

5.7 Summary

• The benchmarks used come from the Parrot distribution. More benchmarks

than those presented here are available, but unfortunately, most of them
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Figure 5.10: Parrot Integer MOPS Performance

Figure 5.11: Parakeet Integer MOPS Performance
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Figure 5.12: Relationship between Parrot and Parakeet Integer MOPS Perfor-
mance

Figure 5.13: MOPS Performance Comparison
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depend on features not implemented in Parakeet.

• Because of the limited number of programs available, only a limited feature-

set is performance tested.

• Parakeet has not yet been optimized. Development so far has been geared

towards making features work, not dwelling long enough on each to make

them actually perform well.

• Every benchmark run except one has shown Parrot beating Parakeet utterly,

the latter being between 20 and 100 times slower in most cases.

• The one performance test where Parakeet did beat Parrot, while gratifying,

constitutes only shaky proof that Parakeet can actually compete in any way

at this stage.
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6.1 Overview

The Parakeet implementation of Parrot is coming along well so far, though there

are many, many things left to be done for a Parakeet that can do everything

Parrot can. Almost half of the opcodes remain unimplemented, and by far the

majority of PMCs are untouched.

Also, the performance benchmarking done, although not very comprehensive,

has shown that there is a long path ahead indeed if Parakeet is going to beat

Parrot at its own game (remember, one of Parrots intentions is to outperform

virtual machines designed for statically typed languages when running programs

written in more dynamic languages). There are also areas of Parrot that have

gone entirely unexplored so far, like for instance the various compilers, or native

library interactions.

6.2 Completing the Opcode Library

A coverage of only slightly above 50% of the available opcodes might not seem

very impressive. It should however be noted that many of the unimplemented

instructions are either specific to certain languages (for instance, both Python

and .NET have their own blocks of opcodes), specific to the internals of Parrot

(several opcodes should actually never occur in a bytecode stream, but are only

for internal use) or esoteric mathematical instructions.

There are, however, areas where work is sorely needed. Especially I/O in-

structions are heavily under-represented in the set of implemented opcodes. The

upside is that many of these opcodes should prove easy to implement – only a

lack of time has kept them back so far.

6.3 Parrot Magic Cookies

The PMCs also are in need of attention. The situation is, however, like with the

opcodes, not quite as dark as it might seem. Many of the unimplemented PMCs

are merely variants of those that are, like fixed (unresizable) arrays, or arrays that

deal only with integers, and so on, and will, when implemented, inherit much from

the existing PMCs, with only a minimal set of their own unique features.
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Something else that needs to be dealth with when it comes to PMCs, though, is

the inheritance hierarchy. At the moment, the situation is muddled, and requires

some house cleaning. Preferably sooner rather than later, as the more PMCs are

implemented, the more of a mess it will be to clean up later. Once that task is

accomplished, much code duplication within the PMCs should vanish.

6.4 Performance

As was shown in chapter 5, in nearly all cases, Parakeets performance is quite

dire. Really, for there to be much value (for end users at least), performance

needs to be put in the front seat. As has been explained earlier, up to this point

in development, it has been mainly a race to get features working, undoubtably

leading to some corners being cut and damaging performance.

Indeed, this race is likely to go on for some time yet, until enough of Parrot has

been implemented to make it worthwhile to concentrate on performance. This

saying has been mentioned earlier, but bears repeating: Make it work, make it

right, make it fast!

6.5 Parrots Compiler Suite

As was mentioned in the introduction, the early goal of the project was to run

Perl 6 programs. This was thwarted by the fact that Perl 6 really is not a finished

language, and the Parrot compiler is not even up to speed with the specification

as it stands at the moment.

Nevertheless, and there are other compilers shipped with Parrot as well, it

would be very useful to have the compiler suite running on Parakeet. This would

help separate the project from its now heavy dependencies on Parrot. It would

also finally enable end users to actually use Parakeet for something useful.
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It is common for projects related to Parrot to take names from other birds. For

instance, the Ruby compiler targeting Parrot is named Cardinal, after a ruby-red

bird found in north and south America.

The project should be named after a bird then, but preferably a bird that could

somehow be related to Java. Enter ”Parakeet”. Parakeets are a sub-species

of Parrots. Some Parakeets, like the Green Parakeet and the Orange-Fronted

Parakeet, live in trees that shade coffee plantations. With Java being a kind of

coffee, the link was made!

There is a downside to the name: so-called ”coffee birds” are in danger of

extinction, as increased demands for coffee has made farmers remove the shading

trees to get more space for coffee bushes. With the habitat rapidly disappearing,

the birds are not able to adapt fast enough and die out. It is to be hoped that

such misfortune has not rubbed off on this project!


