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Abstract 

Binary translation enables the execution of binary code from one processor 

architecture on a different architecture by translating the respective machine code. 

Pearcolator is a dynamic binary translator written in Java, which runs on top of the Jikes 

Research Virtual Machine. It has been developed by the Advanced Processor 

Technologies group, which explores architectures for Chip Multiprocessors (CMP) as 

well as appropriate operating system designs and compiler technologies. Pearcolator 

allows running legacy applications on the group’s Jamaica processor architecture. 

In this thesis, Pearcolator is enhanced with a backend to run programs for the 

ARMv4T architecture. Furthermore, it is reengineered to support interpretation, 

profiling, dynamic linking and a generic software component model. The interpreter 

support is leveraged to implement staged emulation, i.e. the dynamic switching between 

interpretation and translation, within Pearcolator. 

Using the new Pearcolator component model, the performance impact of different 

strategies for program execution, flag management, memory access, code inlining and 

profiling were investigated. It has been found that staged emulation yields a three times 

performance increase in the best case. Furthermore, it is shown that lazy flag evaluation 

is not always the best performing flag emulation strategy. The performance of these 

strategies is dependant on the instruction set. Choosing immediate flag evaluation for 

ARM code and lazy flag evaluation for Thumb code improves performance by up to 

10%. Similarly, the right choices for the memory model and inlining of code during 

binary translation deliver a significant speedup. Profiling further increases the 

translator’s speed by about 30%. 

The thesis produced the first open source ARM emulator written in Java. The final 

emulator performance proved to be five times faster than a commercial emulator, but 

still several orders of magnitude slower than native execution. 
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1 Introduction 

1.1 Client 

The Advanced Processor Technologies Group within the University of Manchester 

conducts research into the design of novel processing architectures. Its focus spans from 

software approaches, esp. compiler optimisations, to developing new hardware 

architectures. 

The Jamaica Project Group is part of the Advanced Processor Technologies Group. It 

explores architectures for Chip Multiprocessors (CMP), appropriate operating system 

designs and compiler technologies that leverage parallelism within applications. The 

group has developed a CMP architecture that is able to run a customized version of the 

Jikes Research Virtual Machine. 

This thesis has been written in the Jamaica Project Group under the supervision of 

Prof. Ian Watson and Dr. Ian Rogers. 

1.2 Subject 

The thesis focuses on the dynamic binary translator Pearcolator, which is a 

development of the Jamaica Project Group. Binary translation enables the execution of 

binary code from one processor architecture on a different architecture by translating the 

respective machine code. Pearcolator runs on top of the Jikes Research Virtual 

Machine, thus enabling the CMP architecture developed by the Jamaica Project Group 

to run legacy applications from different systems. This is an important strategic asset, as 

it increases the application base and therefore the acceptance of a novel architecture. 

Pearcolator supports multiple source architectures through different backends. A 

PowerPC and an X86 backend have been developed previously [Burcham2004] 

[Matley2005]. However, though both backends used similar techniques, they were 

essentially developed as separate applications and made no efforts to unify Pearcolator 

into a single system. 

1.3 Mission 

This thesis aims to improve the architecture of the dynamic binary translator 

Pearcolator, to enhance it with a new backend and to investigate possible performance 
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gains that have not been analyzed by the previous authors. More specifically, the 

following tasks will be accomplished. 

1. The Pearcolator architecture will be revised to unify the previous PowerPC 

and X86 backends. A template architecture, which promotes the reusability 

of components and facilitates the implementation of new backends, will be 

developed and implemented. 

2. Pearcolator will be enhanced with support for interpreters. This feature will 

be driven by a staged emulation framework, which dynamically switches 

between translation and interpretation to improve execution performance. 

3. A new backend for the ARM processor architecture will be implemented 

into Pearcolator. The backend shall support translation and interpretation of 

the ARM 32-bit and the Thumb 16-bit instruction set. 

4. The new architecture and the ARM backend will be used to evaluate the 

performance of Pearcolator. Especially the influence of dynamic switching 

between translation and interpretation and the benefits of lazy evaluation of 

condition codes will be explored. 

The thesis will first introduce the technologies that were used during its realization, 

continue by describing the new architecture as well as the ARM backend, which have 

been implemented into Pearcolator, and finally investigate the performance of the 

system. 
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2 Background 

2.1 Emulation and Dynamic Binary Translation 

Emulation is the process of implementing the interface and functionality of one 

system or subsystem on a system or subsystem having a different interface and 

functionality [Smith2005, p. 27]. The term was first used in 1962 in conjunction with 

IBM testing the compatibility of their new products with their predecessors. In 1965, 

IBM shipped the System/360– it contained the world’s first emulator, which ran 

programs that were originally written for the IBM 7070 machine. 

According to the above definition, emulation involves two systems1. Commonly, the 

system that is being emulated is called the emulation source while the system that the 

emulator is running on is called the emulation target. Some authors also use the terms 

guest to denote the source and host to denote the target system in conjunction with 

binary translation. Usually, source and target refer to two distinct computer 

architectures or instruction sets. However, some systems may apply the same techniques 

that are subsequently described in cases where source and target refer to the same entity. 

[Smith2005, p. 63] calls this same-ISA emulation. For instance, the dynamic binary 

optimizer Dynamo, developed by HP Labs, re-translates a binary for the HP PA-8000 or 

IA-32 processor while running on the same processor. Though not strictly an emulator, 

Dynamo applies optimisations known from emulation to the binary, thereby increasing 

execution speed by up to 20% [Bala1999, p.12]. 

Though various aspects of a system can be emulated, the following paragraphs focus 

on the emulation of conventional instruction sets2. Naturally, performance is one of the 

primary concerns during emulation. In emulation, execution performance is usually 

achieved by weighing off the amount of pre-processing applied to the program and 

                                                 

 
1 The term subsystem from the above definition is omitted in the remainder of this document and only the 

term system is used instead. 
2 Virtual instruction sets, such as Java Bytecode, may have special properties that can be exploited to 

apply more advanced emulation techniques [Smith2005, p. 28]. 
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runtime performance on the host. In that regard, one usually distinguishes interpretation 

and translation. 

2.1.1 Interpretation 

An interpreter is a computer program that analyzes and executes another computer 

program at runtime, without translating the interpreted program itself into machine 

language. Interpretation usually involves a cycle in which an instruction is retrieved 

from the source program, processed and executed before the next instruction is 

retrieved. Figure 1 shows an overview of a typical interpreter. The interpreter holds an 

image of the source program’s code and data in memory, as well as code to perform the 

interpretation and a source context block, which stores the state of the guest that is 

usually held in hardware registers. 

Code

Data

…

Stack

Code

Data

…

Stack

Program Counter

Condition Codes

Register 0

…

Register n

Program Counter

Condition Codes

Register 0

…

Register n

Interpreter CodeInterpreter Code

Source Memory State Source Context Block

 

Figure 1 – Overview of interpreter components 
Inspired by [Smith2005, p. 30] 

Appendix A gives a graphical representation of the most common interpreter types. 

A simple decode-and-dispatch interpreter operates by stepping through the source 

program, instruction by instruction, reading and modifying the source state according 

to the instruction [Smith2005, p. 30]. More specifically, the interpreter runs a dispatch 

loop, which uses a switch statement3 to distinguish between different instruction 

types. The loop invokes an individual interpreter routine for each instruction type, 

                                                 

 
3 Or an equivalent structure, depending on the language of implementation. 
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which retrieves further information from the instruction and performs the actual 

execution. Though such an interpreter is easy to understand and write, a number of 

advanced interpretation techniques have been developed, which lead to improved 

performance for certain applications. These techniques are described next. 

A common approach to building a high performance interpreter is to append the 

branch to the next interpreter routine directly to the end of the each single interpreter 

routine. This is equivalent to inlining parts of the dispatch loop into the interpreter 

routines. This technique, called threaded interpretation, disposes of the dispatch loop 

and thereby also a number of jumps related to it4. Because there are usually patterns in 

the instruction stream (e.g. a compare instruction is often followed by a conditional 

branch), threaded interpretation also leads to regular execution patterns, which are often 

more amenable to branch predictors. 

Nevertheless, threaded interpretation still requires some kind of dispatch code, which 

will associate a binary instruction with the address of the respective interpreter routine. 

Direct threaded interpretation replaces the instructions in the memory image of the 

source binary with the address of the respective interpreter routine. Though this requires 

some pre-processing, it minimizes the dispatch time upon repeated instruction 

execution. A similar, popular technique is predecoding, where pieces of information are 

extracted from the instruction and put into more accessible fields [Smith2005, p. 35]. 

Machine instructions are usually highly compressed and not necessarily memory-

aligned in the manner preferred by the host machine. Predecoding extracts the necessary 

information to execute an instruction from its machine representation and stores this 

information within memory-aligned, easy accessible structures. The predecoded 

information is saved for later reuse and allows skipping the decoding phase on repeated 

execution. 

2.1.2 Binary Translation 

Predecoding translates source instructions into an easily accessible format, but still 

uses central interpreter routines to execute the instruction. Binary translation takes the 

                                                 

 
4 More specifically, the return from the interpreter routine and the return to the top of the dispatch loop. 
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approach further. Instead of translating from source instructions to an intermediate 

representation, binary translation describes the process of converting the source binary 

program into a target binary program [Smith2005, p. 49]. In essence, binary translation 

will create custom target code for each occurrence of a source instruction. However, this 

translation is not trivial and poses a number of problems for the translator, the most 

common of which will be introduced in the following sections. 

A basic problem in binary translation is the code discovery problem. It describes a 

translator’s inability to discover which sections of a binary actually contain executable 

code and to distinguish this code from data. Even though many binary formats designate 

regions containing program code, it is not uncommon for compilers to include 

additional (read-only) information within these regions. For instance, the MIPSPro C 

compiler inserts a mask before each procedure that denotes, which registers the 

procedure saves onto the stack and at which offset from the stack pointer those registers 

are saved [Huffman1997, p. 106]. Other compilers may include constant values in literal 

pools at the beginning of a function or introduce padding bytes in order to align code 

with word or cache line boundaries. Especially when instruction sets have variable sized 

instructions, it may be impossible to distinguish data from code by just performing a 

static, syntactical analysis of the instruction stream. Similar problems arise in the 

presence of indirect jumps, whose targets may be hard to determine. 

Indirect jumps also give rise to a second problem, known as the code location 

problem. When translating a source binary to a target system, it is almost inevitable that 

the target code will reside at a different memory address than it would on the source 

system. Reasons for that include (but are not limited to) different memory architectures, 

operating system constraints, different instruction sets or simply optimisations 

performed by the binary translator that change the code structure. It is the translator’s 

task to make sure that target addresses for indirect jumps within the source executable 

are fixed up to comply with the memory layout on the target system. A related problem 

is self-referencing code [Smith2005, p. 62], where a program reads values from its text 

segment. A translator also has to make sure that these reads, which are often used to 

access constants, return the expected value. 

Depending on the amount of emulation desired, self-modifying code and precise 

traps may also cause a problem for binary translators [Smith2005, p. 62]. Self-

modifying code is concerned with programs that write to code regions, thereby altering 
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their behaviour. Precise traps try to simulate a system’s exact reaction to traps, such as 

memory faults and hardware or software interrupts. However, both problems are less 

prominent in environments where the source operating system shields the program from 

traps and prevents the use of self-modifying code. 

A common solution to these problems is to use dynamic translation. The idea behind 

this technique is to translate the binary while the program is operating on actual input 

data, i.e. dynamically and to [..] translate new sections of code incrementally, as the 

program reaches them. In contrast, static translation aims to translate a program in its 

entirety before beginning emulation [Smith2005, p. 52, 55]. The advantage of dynamic 

translation is that it not only allows to lazily discover and translate code as the program 

tries to execute it, but also that self-modifying code can usually be handled by triggering 

a recompilation once a code region gets modified. However, dynamic translation comes 

with a substantial runtime overhead, as the program has to be translated on the target 

machine. This also means that code to perform this translation and manage previously 

translated code has to be present on the target machine. 

2.1.3 Optimisations in Binary Translation 

In contrast to interpretation, binary translation opens the opportunity for applying a 

whole new set of optimisations to the target code. These optimisations can provide a 

vast speed-up, making binary translators a popular option for high-speed emulation. A 

few general techniques are presented in this section. Note that most techniques used in 

compiler backends and Just-In-Time compilers can also be applied to binary translation. 

In fact, Just-In-Time compilation is actually a special case of binary translation 

[Altman2000, p. 40f]. 

One of the most obvious code optimisations during binary translation is to map parts 

of the source context block (see section 2.1.1) to target machine registers, thus 

providing faster access to the context block and allowing some operations to be 

executed without any memory accesses at all. With this technique, the speed of 

execution of the translated code [..] starts becoming comparable to the original source 

code [Smith2005, p. 52]. Some registers on the target machine are typically reserved for 
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usage by the translator5. If the number of registers available on the source machine is 

higher than the number of available registers on the target machine, the mapping of 

source to target registers must be carefully performed as to maximize performance. 

Previous solutions for register allocation in compilers can be applied to this problem. 

Depending on the amount of register pressure6, graph colouring or linear scan register 

allocation algorithms are commonly used. 

During dynamic translation, instructions are commonly grouped into blocks that are 

translated and scheduled together. The number of instructions within a block is an 

important performance issue. When the translated blocks are too small, the overhead of 

scheduling these blocks increases. On the other hand, when the blocks are too large, the 

effort for translation and optimisation increases, while the resuse of translations might 

be limited. The natural unit of translation in dynamic binary translators is a dynamic 

basic block [Smith2005, p. 56]. A static basic block is a sequence of instructions that 

can be entered only at the first of them and exited only from the last of them 

[Muchnick1997, p. 173]. Dynamic basic blocks usually start after a branch and follow 

the line of execution until a branch is encountered. They do no stop at branch labels and 

therefore tend to be larger than static basic blocks. Translation chaining increases the 

size of the executed portions even further by chaining several dynamic basic blocks into 

a larger trace. A trace is usually not stopped by static but only by dynamic jumps, 

because their target address might be hard to determine until the jump is actually 

performed. The best size for a trace depends on the actual translator. 

Indirect jumps often cause a large evaluation overhead during the execution of 

programs that have been binary translated. This is particularly an issue for object 

oriented programs, which tend to make heavy use of indirect jumps to implement 

polymorphism. Indirect jump prediction or inline caching [Smith2005, p. 66] can 

mitigate this problem. This technique uses profiling to gather information about 

previously seen target addresses for each indirect jump. The most common jump targets 

                                                 

 
5 This thesis uses the term “translator” as a short form for “binary translator”. This is in accordance with 

contemporary writing on the subject, e.g. [Altman2000]. 
6 Register pressure describes the inverted ratio of free registers and variables that are to be allocated to 

these registers.  
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are included within a trace. At an indirect jump location, the translator inserts code that 

checks, if the dynamic jump target is included within the trace. In case it is, it can 

directly branch to that target. Otherwise, a default handler is invoked that will return 

control to the binary translator. 

Finally, another well known source of performance problems are condition codes or 

flags, which characterize the result of a previous instruction. Common condition codes 

indicate whether an operation produced a carry, the result is zero or if an overflow 

occurred. They are frequently tested during the execution of conditional instructions. 

There are different approaches to updating the condition codes: some architectures 

feature special compare instructions that will explicitly update the conditions codes7, 

other architectures implicitly update the condition codes after each arithmetic operation8 

and some architecture do not have a distinct set of condition codes at all9. In general, 

computing all the condition codes for a given source instruction takes many target 

instructions, often more than emulating the rest of the instruction, and it can slow 

emulation considerably [Smith2005, p. 71]. The problem is prominent on architectures 

that set condition codes implicitly with every instruction. A common solution is lazy 

evaluation of condition codes. In that scheme, instead of updating the condition codes at 

the same rate as the source architecture, only the operands and the operation that will 

produce the condition codes are saved. Instruction that need the condition codes can 

then produce them from the saved information. This technique is based upon the 

observation that many architectures update the condition codes more frequently than 

they are actually read. The usefulness of lazy evaluation depends on the condition code 

update/usage ratio of the source architecture as well as on how well the source and 

target ISA match in their handling of condition codes. In some situations, it might be 

beneficial to always evaluate the condition codes or to use a subset of the condition 

codes created by the target architecture [Smith2005, p. 74]. 

                                                 

 
7 For example, the PowerPC ISA provides a special set of arithmetic operations that will also update the 

condition codes [Frey2003, p. 26]. 
8 The Zilog Z80 (which is binary compatible to the Intel 8080) updates condition codes with every 

arithmetical operation [Zilog2001, p. 75ff] 
9 The MIPSPro architecture does not have a special condition code register, but instead uses compare 

instructions that write their results into a general purpose register [Huffman1997, p. 52ff]. 
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2.2 The Jikes Research Virtual Machine 

2.2.1 The Java Virtual Machine Architecture 

The Jikes Research Virtual Machine (JRVM) is a virtual machine targeted at 

executing programs for the Java Virtual Machine (JVM) Architecture. Therefore it is 

beneficial to introduce this architecture first. The Java virtual machine is the 

cornerstone of the Java and Java 2 platforms. [… It] is an abstract computing machine. 

Like a real computing machine, it has an instruction set and manipulates various 

memory areas at run time [Sun1999, ch. 1.2]. The instruction set of the JVM is called 

Java bytecode. The JVM must not be confused with the Java Compiler. The Java 

Compiler translates the Java Programming Language into Java bytecodes, while the 

JVM executes those bytecodes.  

Figure 2 illustrates the general structure of the Java Virtual Machine. The JVM may 

execute multiple threads, which share a common memory area but also have separate 

per-thread data areas. The JVM is a stack machine and subsequently Java bytecodes are 

a zero-operand ISA. This unusual definition10 of the JVM ensures that it does not favour 

a specific real architecture. 

Each thread consists of a program counter, a stack and a native stack. The program 

counter identifies the currently executed bytecode. The stack holds all operands that are 

managed by the JVM, while the native stack is available to non-Java code, which can be 

called from Java using the Java Native Interface (JNI).  

                                                 

 
10 The definition is unusual in the sense that most real-world target architectures for the JVM do not 

support stack operations, but rather contain a varying number of registers. However, this kind of 

definition can also be found in other virtual instruction sets, such as P-Code. 
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Naturally, the stack layout is a crucial part of a stack machine’s definition. The Java 

Virtual Machine Stack is organized into frames, one for each method in a program’s call 

stack. A frame contains all parameters and local variables of that method, an operand 

stack and a reference to the constant pool, which is part of the read-only method area 

and maps identifiers to constants [Sun1999, ch. 3.5.4]. Data on the stack is typed. The 

JVM distinguishes between primitive and reference types. Primitives types are the 

boolean type, numeric types (byte, char, short, int, float, long, 

double) and the returnAddress11 type. Reference types denote references to 

instances of classes, array types and interfaces on the heap as well as the null 

reference, which references no object. In contrast to languages such as C, the size of all 

types is well defined. The JVM’s stacks are split into slots of 32 bits, which can contain 

most data types12. The operand stack is controlled by the application and contains the 

operands for bytecode instructions. 

The JVM separates memory into a heap and a method area. The method area works 

similar to a UNIX process’ TEXT segment [Sun1999, ch. 3.5.4]. It stores the constant 

pool, field and method data and the Java bytecodes, which form the executable part of a 

Java program. The heap is a memory area, from which memory for all class instances 

                                                 

 
11 In contrast to all other JVM data types, the returnAddress type does not correspond to any Java 

programming language type [Sun1999, ch. 3.3.3]. 
12 Except for the long and double types, which occupy two slots. 
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and arrays is allocated [Sun1999, ch. 3.5.3]. The Java bytecode instruction set only 

features instructions that allocate objects, but none that deallocate them. Therefore, the 

heap is managed by an automatic storage management system (known as garbage 

collector) [Sun1999, ch. 3.5.3]. The garbage collector manages object allocation, 

movement, deallocation of unused objects and heap compaction. [Sun1999] 

intentionally does not specify implementation details about the garbage collector. That 

allows different garbage collectors to be used in different environments, while retaining 

compatibility to the JVM specification. 

Java bytecodes are a mixed stream of instruction bytes and operand data. The 

instruction byte identifies the operation that is to be executed. It implicitly defines the 

number of operands that are following in the bytecode stream and those that have to be 

retrieved from the operand stack. This specification makes for a very compact 

instruction set, with a maximum of 256 instructions. However, only slightly more than 

200 instruction codes are used and as bytecode instructions are typed, the actual number 

of different instruction classes is even lower. In contrast to other ISAs, the Java 

bytecode is directly targeted at running an object oriented Java program. Therefore, it is 

not surprising to find instructions that access object members, allocate objects, do type 

checking or perform synchronization within the instruction set. Finally, the Java 

bytecode ISA only allows type-checked memory access. This feature makes Java 

bytecodes immune to many of the security problems faced by traditional ISAs. 

Efforts to build hardware implementations of the JVM architecture include Sun 

Microsystem’s picoJava microprocessor, the ARM926EJ-S processor, which uses the 

Jazelle Direct Bytecode Execution engine and other implementations. However, the 

emphasis of the JVM Architecture is still on execution on a wide variety of systems 

whose ISA is not Java bytecode. Consequently, the JVM Architecture has to be 

emulated on these systems. 

2.2.2 The Jikes Research Virtual Machine 

The Jikes Research Virtual Machine is a Java bytecode Just-in-Time compiler. It 

originated in the Jalapeño research project, conducted in 1997 at IBM’s Thomas J. 

Watson Research Center. IBM recognized that existing JVMs were not built to cope 

with requirements of high-performance servers, such as SMP scalability, continuously 

running JVMs, [limited] GC pause times, thread limits and optimisations concerning the 



Background     

 

22

use of libraries [Alpern1999, p. 3]. The Jalapeño project was targeted specifically at 

server machines and meant to fulfil these requirements. After serving as a research 

environment at IBM for many years, the software was released as an open source 

project called the Jikes Research Virtual Machine in 2005. 

Compared to other virtual machines, the JRVM has two distinguishing features 

[Alpern1999, p. 1]: 

1. Written in Java 

The JRVM is mostly written in Java. Though there are previous references to JVMs 

being written in Java13, the JRVM is self-hosted and does not need another JVM to 

run. 

2. The widespread use of compilers and compiler technologies 

Instead of providing both an interpreter and a JIT compiler as in other JVMs, 

bytecodes are always translated to machine code before they are executed 

[Alpern1999, p. 1]. As servers are the main target of the JRVM, it was anticipated 

that programs are long-running [Alpern1999, p. 3], which made forgoing an 

interpreter acceptable. Furthermore, the JRVM features two different compilers and 

an Adaptive Optimization System (AOS), making it possible to adapt compilation 

effort to execution requirements. 

Writing a JVM in Java poses two additional challenges: Booting the VM and 

accessing the underlying hardware. The first problem is solved by building a bootstrap 

that can execute enough of the VM to enable it to compile itself. During the compilation 

process, a partially running version of the JRVM is created and an image of that process 

is stored into a file (Boot Image). On the target machine, the Boot Image Runner loads 

the Boot Image into a new process and branches into it to start execution of the JRVM. 

In order to enable low-level hardware access for the JRVM, code replacement is 

used. If certain function calls, contained within the VM_Magic class, are encountered 

during the compilation, they are replaced with fixed target machine code sequences. 

                                                 

 
13 For example, see the JavaInJava Project at http://research.sun.com/kanban/JavaInJava.html 



Background     

 

23

This pattern allows the JRVM to be written mostly in Java, only resorting to platform-

dependent code, where necessary. 

At the heart of the JRVM lie two compilers, the baseline and the optimizing 

compiler. As the overall optimization strategy is to compile only [Smith2005, p. 320], 

these compilers present different compilation-runtime speed tradeoffs. The baseline 

compiler does not use an intermediate language, but rather translates Java bytecodes 

directly into equivalent machine code. The resulting code will emulate the Java stack in 

memory, bypassing any opportunities for optimisation. This results in fast code 

production, but slow runtime performance. 

Alternatively, the sophisticated optimizing compiler puts much more emphasis on 

producing quality code, sacrificing compilation performance instead. Figure 3 gives an 

overview of the different optimisation stages within the optimizing compiler. Initially, 

Java bytecode is converted into HIR (High-level Intermediate Representation14), the 

first of three internal intermediate representations. Though the JVM architecture defines 

a stack machine, all intermediate representations are register-based. Not only do 

register-based intermediate representations allow a closer fit to the target instruction set, 

but they also facilitate code motion and transformation, leading to better code 

optimisations [Alpern2000, in ch. “A Dynamic Optimising Compiler”]. HIR groups 

instructions into extended basic blocks. In contrast to regular basic blocks, Jikes’ 

extended basic blocks are not terminated by method calls or instructions that possibly 

throw exceptions. Upon them, simple optimization algorithms with modest compile-time 

overheads are performed [Brewer2003, slide 44], including dead-code elimination, 

common sub-expression elimination and copy propagation. 

                                                 

 
14 The expression “high level” refers to the representation having instructions and semantics that are close 

to Java bytecode. 
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Figure 3 – JRVM Optimising Compiler Overview 

Next, HIR is converted to a low-level intermediate representation (LIR). Though 

similar in principle, LIR is much more specific regarding JRVM internals. Most HIR 

instructions expand into several LIR instructions. For instance, the invokevirtual 

HIR instruction, which calls a virtual method, is translated into three LIR instructions: 

the first instruction retrieves the class’ Type Information Block (TIB)15 pointer, the 

second one locates the address of the appropriate method and the third instruction 

performs the actual branch. 

It is obvious that the same code is much larger in LIR than it was in HIR. In fact, LIR 

can be two to three times larger than corresponding HIR [Alpern2000, in section “Low-

level optimization”]. Due to its compactness and target-platform independency, HIR is 

the main optimisation target within the JRVM. However, the breakdown of HIR 

instructions into several LIR instructions offers new optimisation opportunities. 

Therefore, selected optimisations, such as common sub-expression elimination, are 

performed on LIR. 

As a final step, the code in LIR is translated into machine intermediate representation 

(MIR). MIR is specific to the target machine’s instruction set. For that conversion, a 

                                                 

 
15 The Type Information Block manages all type information that does not vary with regard to individual 

instances. This includes the object’s memory layout, its virtual method table and interface information. 
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dependency tree is created for each basic block, modelling the relationships between the 

instructions within the basic block. This dependency tree is passed to a Bottom-Up-

Rewriting-System (BURS) to select the most appropriate machine instruction for a set 

of LIR instructions. BURS is based on term rewrite systems, to which costs are added 

[Nymeyer1997, p. 1]. An external grammar specification, which details the capabilities 

of the target machine’s instruction set, maps sets of LIR to MIR instructions. Similar to 

other parser generators, a tool is used that builds a BURS parser from that grammar. 

After running the parser on the input LIR, it outputs equivalent MIR for the target 

machine. 

Finally, live variable analysis is applied to determine the lifetime of registers. This 

information is used to drive a simple linear-scan register allocator. The optimizing 

compiler adds prologue and epilogues to function calls and, as a last step, outputs 

machine instructions for the target machine. 

The described process can be performed using three different optimisation levels. 

Higher levels use additional optimisations to generate more efficient code, but are also 

costly in terms of compilation time. Therefore, it is necessary to determine which 

optimisation level to apply to which section of code. The Adaptive Optimisation System 

(AOS) within the JRVM performs this task. 

Hot Method
Organizer

Method
Samples

Executing Code

AOS Database
(Profile Data)

Controller

Compilation
Thread

Optimizing
Compiler

Runtime
Measurement
System

Collected sample New code

Recompilation
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Compilation Plan

Event Queue Compilation Queue  

Figure 4 – The Jikes Adaptive Optimization system 
Inspired by [Smith2005, p. 321] 
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Figure 4 given an overview of the Jikes Adaptive Optimization system. Naturally, 

the central part of the system is a database of profiling data, which is continuously being 

updated during the execution of a program. As Jikes has a non-preemptive scheduling 

model that relies on yield points, it is easy for the AOS to add profiling code at these 

yield points. The profiling information is available to the AOS as well as to the 

optimizing compiler. 

The AOS can increase a method’s performance by recompiling it at a higher 

optimisation level. It is the task of the Runtime Measurement Subsystem to organize 

and analyze the samples retrieved from the profiling activities. Using that data, it can 

evaluate how much a method might benefit from recompilation. 

The Controller steers the JRVM optimizations. It instructs the measurement 

subsystem to initiate, continue or change profiling activities [Smith2005, p. 322]. 

Furthermore, it chooses the methods which are to be recompiled and also determines the 

required optimization level. Those methods are finally forwarded to the Recompilation 

Subsystem, which controls the activity of the Optimizing Compiler. After the chosen 

methods are recompiled, On-Stack-Replacement16 is used to switch to the optimized 

version. 

2.3 Process Virtual Machines 

Most computer systems are designed to only run programs that have been compiled 

for a specific ISA and operating system. One use of emulation in conjunction with 

virtual machines is to overcome this restriction. A process virtual machine architecture 

is tailored for solving this problem. By using a process VM, a guest program developed 

for a computer other than the user’s host system can be installed and used in the same 

way as all other programs on the host system [Smith2005, p. 83]. A process virtual 

machine runs as a process on top of an operating system and encapsulates a guest 

process with a runtime layer, which controls the guest process’ execution and manages 

the communication with the host operating system. 

                                                 

 
16 On-Stack-Replacement is a compiler technique that allows code of a running method to be exchanged 

by a newly compiled version. 
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Pearcolator uses the features of the JRVM to build a process virtual machine with 

extrinsic compatibility. This means that application compatibility partially relies on 

properties of the guest software. More specifically, Pearcolator only provides limited 

Operating System emulation, which restricts its support for guest software. 

Initialization

Loader

Emulation Engine

Code Cache
Manager

Exception
EmulationOS Call Emulator

Guest Memory Image

Code Cache

Host Operating System

Profile Data

Initialize
Signals Translator

Interpreter

 

Figure 5 – Components of a process virtual machine 
Inspired by [Smith2005, p. 86] 

Figure 5 shows the typical components of a process virtual machine: 

1. Initialization 

The initialization routine sets up the different components of the process virtual 

machine and establishes communication with the host operating system. It parses 

user arguments and invokes the loader. 

2. Loader 

It is the loader’s task to read the guest executable and initialize a memory area 

containing the guest program’s code and data. This may involve loading and 

linking other modules, as required by the guest executable. Note that the guest 

executable’s code is not loaded as an executable memory segment, but that it is 

rather considered as “input” data for the emulation engine. 

3. Emulation Engine 

The emulation engine is what drives the guest program’s execution. As the process 

virtual machine’s central component, it arranges the collaboration of all other 
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components. It uses binary translation or interpretation to execute the instructions 

contained within the guest memory image. 

4. Profile data 

A process virtual machine may use profile data to optimize the runtime behaviour 

of the guest program. Most commonly, profile data is used to switch between 

translation and interpretation. During binary translation, it may also be used to 

support various optimizations. 

5. OS Call Emulator 

As the guest program executes an operating system call, the OS call emulator has to 

emulate the expected operating system behaviour. Depending on the emulated and 

the host operating system, this may involve translating the guest OS call into a host 

OS call and marshalling data between both environments. After the call has been 

executed, the call’s result has to be translated into the format expected by the guest. 

6. Code Cache and Code Cache Manager 

Especially when using binary translation, it is necessary to store translated blocks 

of code and retrieve them for later reuse. The code cache stores the appropriate 

target code while the code cache manager decides which code portions to replace in 

case the cache grows too large. 

7. Exception emulation 

This component manages the emulation of exception conditions. Depending on the 

host operating system, this may involve intercepting signals or interrupts from the 

host and translating them into the format expected by the guest. Exception 

emulation may be tightly coupled to the emulation engine, which must emulate the 

precise guest state (including program counter, register values and trap conditions) 

when an exception occurs [Smith2005, p. 87]. 

2.4 The ARM Architecture 

The ARM Architecture is based upon a microprocessor developed by Acorn 

Computers Limited between 1983 and 1985. This microprocessor, called the ARMv2, 

was the world’s first commercial Reduced Instruction Set Computer (RISC). To market 

the new processor architecture, ARM Ltd. was formed in 1990 as a joint venture with 

Apple Computer and VLSI Technology. Since then, ARM Ltd. has become the 
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industry's leading provider of 32-bit embedded RISC microprocessors with almost 75% 

of the market [Allison2002]. 

RISC is a microprocessor design philosophy that favours a simpler instruction set. 

While Complex Instruction Set Computer (CISC) architectures aim to provide powerful 

and varied instructions, RISC architectures focus on executing a small set of 

instructions. This makes them easier to implement and more amenable to optimization. 

RISC architectures often achieve competitive performance through higher clock rates, 

lower Clocks per Instruction (CPI) ratios and other advanced features. 

RISC designs usually share three common features that are visible from a 

programmer’s point of view [Furber2000, p. 24f]: 

1. Load-store architecture 

Only load and store instructions access memory, while all other instructions work 

on register operands. This reduces the complexity of the instruction set. 

2. Fixed instruction sizes 

In machine code, all instructions are represented by the same number of bits. Fixed 

instruction sizes allow a whole instruction to be retrieved by a single memory fetch, 

increasing the efficiency of the instruction decoder. 

3. Large amount of registers 

The original RISC design featured 32 general purpose processor registers, far more 

than even modern CISC microprocessors, such as the Intel P4 Architecture, offer. 

The vast number of registers reduces the performance penalty that comes with 

separate instructions for memory operand fetches. 

By constraining the architecture in the described way, RISC designs can be 

implemented on smaller die sizes and in shorter time, while still maintaining high 

performance due to the ability to hardwire the instruction decoder and pipeline the 

instruction execution [Furber2000, p. 25ff]. 

The ARM architecture is a RISC microprocessor design. It features a load-store 

architecture with fixed-length 32-bit instructions and a 3-address instruction format. 

However, it is not a pure RISC design. Some popular RISC features have not been 

implemented into the ARM architecture: delayed branches, register windows and the 

execution of instructions in a single-cycle. Instead, CISC instructions have been 
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included for a small number of commonly used operations, namely multi-register data 

transfers and compare-and-swap instructions. 
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Figure 6 - ARM Register Layout 
Inspired by [ARM2000, p. A2-4] 

As illustrated in Figure 6, the ARM processor has 16 general purpose user-mode 

registers, each 32-bit in size. An additional register, the Current Program Status Register 

(CPSR) maintains a number of flags: 

1. Four arithmetical flags 

The negative, zero, carry and overflow flag can be set by arithmetic operations. 

Many processors update the flags after each arithmetical operation. On ARM, most 

instructions come in two versions, which either do or do not update the arithmetical 

flags. 

2. Two Interrupt flags 

The ARM architecture supports two types of hardware interrupts: normal interrupts 

(IRQs) and fast interrupts (FIQ), with the latter taking precedence over the former. 

Two bits within the CPSR can be used to mask both types of interrupts. 

3. One Thumb flag 

Some ARM processors support two instruction sets: the “regular” ARM instruction 

set with 32-bit instructions and the Thumb instruction set, which provides 

compressed 16-bit instructions. The Thumb instruction set has been developed to 

provide better code density. Section 2.4.1 discusses it in more detail. This flag 

denotes which instruction set is currently executed. 
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4. Five operating mode flags 

The processor’s operating mode determines the layout of the register map, 

availability of certain instructions and can influence memory access privileges, if 

the system is equipped with a Memory Management Unit (MMU). The ARM 

processor distinguishes seven operating modes, all of which are listed in Figure 6. 

The undefined instruction and memory abort modes are used when trapping 

undefined instructions or illegal memory accesses (prefetch or data aborts). The 

undefined instruction trap is also invoked when an instruction for a missing 

coprocessor is encountered. Therefore it is commonly used to perform software 

emulation in systems where no floating point coprocessor is installed. The interrupt 

and fast interrupt modes are entered to handle the respective hardware interrupts, 

while software interrupts or system calls are handled in supervisor mode. Interrupts 

are only raised between executions of two instructions [ARM2000, p. A1-4], while 

aborts can occur during instruction execution, as long as enough state is preserved 

to restart the current instruction. System mode is equivalent to supervisor mode, but 

permits access to all user mode registers. Finally, user mode offers the least 

privileges and is the mode that user processes are usually running in. When an 

exception is processed, the processor changes its operating mode accordingly and 

executes a branch instruction from the exception vector17 to reach the exception 

handler. The exception type serves as an offset into the exception vector. In 

addition to the 16 general purpose registers, the ARM processor also contains 15 

shadow registers for system-level programming and exception handling. Depending 

on the processor’s operating mode, the shadow registers overlay some of the 

general-purpose registers. During normal operation, they are not visible to the 

programmer. Using shadow registers, the ARM processor saves enough state before 

processing an exception to allow execution to be resumed later as if the exception 

did not occur. In order to support context switching, ARM also provides special 

instructions that allow accessing the user mode registers from privileged modes 

[Furber2000, p. 310]. 

                                                 

 
17 The exception vector is commonly stored at the beginning of the memory map. It is expected to contain 

branch instructions, though it may, strictly speaking, contain any ARM instruction. 
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The ARM architecture features a three stage instruction pipeline18, which improves 

processor performance by overlapping the execution of adjacent instructions. The ARM 

pipeline is split into a fetch, decode and execute stage, omitting the operand fetch and 

operand store stages from the classical RISC pipeline [Clements1991, p. 279]. At each 

pipeline stage, an instruction uses either the memory, the data path or the processor’s 

decode logic, as shown in Figure 7. Note that the before-mentioned CISC instructions 

may stall the pipeline, as they can occupy the decode and execute stages for more than 

one cycle. The ARM pipeline is partially visible to the programmer. An instruction 

reading the program counter (PC) register during the execute stage will actually retrieve 

the address of the next but one instruction. 
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Figure 7 – The ARM 3-stage pipeline 

2.4.1 Programmer’s Model 

Most ARM processors support two instruction sets: the regular 32-bit ARM and the 

optional 16-bit Thumb instruction set. This section describes the features of the regular 

ARM instruction set, unless stated otherwise. 

The ARM instruction set is a fixed-length instruction set, with each instruction being 

32-bits long. The ARM instruction set can be divided into six broad instruction classes: 

• Branch instructions 

• Data-processing instructions 

                                                 

 
18 The ARM9 processor family improves upon the performance of previous ARM processors by using a 

five-stage pipeline and simulating a Harvard architecture (using a separate data and instruction cache). 

Nevertheless, for backwards compatibility the ARM9 still simulates the “program-visible” parts of the 

three-stage pipeline as described here. 
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• Status register transfer instructions 

• Load and store instructions 

• Coprocessor instructions and 

• Exception-generating instructions [ARM2000, p. A1-5]. 

Almost19 all ARM instructions can be executed conditionally, depending on the 

values of the arithmetical flags. The condition is determined by a 4-bit condition field 

within the binary instruction encoding and allows 

• tests for equality and non-equality 

• tests for <, <=, > and >= inequalities, in signed and unsigned arithmetic 

• each condition code flag to be tested individually [ARM2000, p. A1-5]. 

Branches are expensive, because they flush the instruction pipeline. The ARM 

instruction set also offers conditional execution of instructions, which does not suffer 

from this drawback and is therefore commonly used as a alternative for conditional 

branches and to unroll loops. Code 1 illustrates this by comparing two assembly 

functions for copying memory regions. The left one relies on conditional branches, 

while the right one uses conditional execution to unroll the copy loop. Not only does the 

unrolled version execute 25% less instructions than the normal version, its longer 

instruction sequence also makes much better use of the ARM pipeline, leading to a 

better CPI ratio. 
MemMove_Normal 
LDR        r4, [r1], #1 
STR        r4, [r2], #1 
ADDS       r3, r3,   #-1 
BGT        MemMove_Normal 

MemMove_Unrolled 
CMP        r3, #2 
LDR        r4, [r1], #1 
STR        r4, [r2], #1 
LDRGE      r4, [r1], #1 
STRGE      r4, [r2], #1 
LDRGT      r4, [r1], #1 
STRGT      r4, [r2], #1 
ADDS       r3, r3,   #-3 
BGT        MemMove_Unrolled 

Code 1 - Normal and unrolled ARM Assembly code for a Memory Copy operation20. The usage 
of conditional execution is highlighted. 

                                                 

 
19 Architecture versions up to ARMv5 supported conditional execution for all instructions [ARM2000, p. 

A3-5]. Enhancements to the ISA have since then occupied the encodings of some conditional instructions. 
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Although the ARM architecture is built upon RISC principles, it provides a high 

number of addressing modes, for arithmetic as well as load and store instructions. Table 

1 gives an overview of the available addressing modes. Most of this flexibility is 

provided by the barrel shifter, which sits on the processor’s B-bus and can perform shift 

operations on one of the two ALU operands. Additionally, the barrel shifter can also 

provide a carry flag for logical operations that do not usually create a carry (e.g. AND, 

OR, etc.). 

Instruction Class Addressing Modes 
Data Processing Immediate 

Register 
Logical shift left by register / immediate 
Logical shift right by register / immediate 
Arithmetic shift right by register / immediate 
Rotate right by register / immediate 
Rotate right with extend 

Load / Store Immediate offset / pre-indexed / post-indexed 
Register offset / pre-indexed / post-indexed 
Scaled register offset / pre-indexed / post-indexed 

Load / Store 
Multiple 

Increment address before / after transfer (optional write back) 
Decrement address before / after transfer (optional write back) 

Load / Store 
Coprocessor 

Immediate offset / pre-index / post-indexed 
Consecutive memory reads 

Table 1 – ARM Addressing Modes 

Adhering to the RISC principles, ARM instructions commonly take three 32-bit 

operands. Additionally ARM can access other operand types using powerful load-and-

store instructions. For instance, the single-register load-and-store instructions also 

accept other data types, such as signed and unsigned half-words (16 bits) and bytes. 

Other data transfer instructions can transfer an arbitrary number of registers (including 

the CPSR) in a single instruction. 

The exceptional characteristic of ARM coprocessor instructions is that their exact 

meaning is not defined by the instruction set, but rather by the coprocessor itself. In the 

ARM architecture, coprocessors are supported using a flexible “plug-in” system. Each 

coprocessor within a system is assigned a unique id. Coprocessors listen to the 

instructions executed by the processor, ignoring all ARM instructions and instructions 

                                                                                                                                               

 
20 Both code snippets assume that at least one word is to be copied. The ARM processor also provides 

multi-word data transfer operations. For the purpose of this example, these were omitted. 
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for other coprocessors. Once they encounter an instruction that they are supposed (and 

able) to execute, they will signal this to the CPU, stalling the instruction pipeline until 

the coprocessor instruction has been processed. The ARM ISA provides instructions 

that allow the processor to initiate a coprocessor data processing operation, ARM 

registers to be transferred to and from coprocessor registers and addresses [to be 

generated] for coprocessor load and store instructions [ARM2000, p. A3-25]. 

Most instructions accept any of the 16 general purpose registers as a target or 

operand. Though the registers can be used in such a versatile manner, there are two 

hardware restrictions and a couple of software conventions that apply to register usage. 

The hardware restrictions are: 

1. Register 15 serves as the program counter 

Though register 15 (r15) contains the program counter, it can still be used as an 

operand, as long as the ARM pipeline behaviour is taken into account. When 

reading from r15, the address of the next instruction but one is returned21, while 

writing to r15 flushes the pipeline and branches to the written address. Furthermore, 

the Branch-And-Exchange instructions (BX and BLX) may also use the first bit of 

the new program counter value to determine the target instruction set. 

2. Register 14 serves as the link register 

Like most instruction set architectures, the ARM architecture provides support for 

function calls with an instruction that will branch to a destination address and put 

the address of the instruction following the branching instruction into the link 

register. The ARM architecture features three different Branch-And-Link 

instructions22, all of which use register 14 as the link register. Nevertheless, the 

register may be used as a general purpose target and source operand register with 

all other instructions. 

                                                 

 
21 For instructions that occupy any of the pipeline stages for longer than one cycle, the result of reading 

from the program counter is implementation defined. 
22 Architecture version 5 provides the BL and BLX instruction, the latter of which is available in two 

addressing modes. 
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Additionally to these restrictions, there are a number of software conventions, which 

are commonly followed. They are captured within the ARM Procedure Call Standard23 

(APCS). The APCS defines register usage conventions, procedure call conventions and 

the stack layout [STD1998, p. 6-4ff]. 

The APCS register layout defines the first four registers as “scratch registers”, i.e. 

registers that do not need to be preserved by functions. The following six registers (r4-

r9) serve as variable registers. They need to persist across function calls. The remaining 

six registers have special uses, though they can be treated as variable registers, if their 

special functionality is not required by the program. The stack limit register (r10) 

contains the maximum address that the stack can grow to. It can be used to perform 

software stack overflow checking. The frame pointer (r11) contains a pointer to the 

stack frame (or activation record) of the active function. The stack frame stores a 

function’s local variables, return address and parameters passed into the function. 

Register 12 contains the Intra-Procedure-call scratch register. The linker is often 

required to insert a veneer between a calling and a called function. In dynamic linking, 

the veneer may be part of the Procedure Linkage Table (PLT); in static linking it may 

be a piece of code that compensates for the ARM BL instruction being unable to address 

the whole 32-bit address space [ARM2000, p. A4-10]. The Intra-Procedure-call register 

can be used as a scratch register by the linker. Furthermore, it can also be used within a 

routine to hold intermediate values between subroutine calls [Earnshaw2006, p. 14]. 

Finally, the stack pointer (r13) holds the address of the top of the stack. By default, the 

APCS uses a full descending stack. 

Code density is a measure for the amount of space that an executable program takes 

up in memory [Computer Desktop Encyclopedia: Code Density]. In embedded systems, 

code density is important to enable low power consumption. Higher code density not 

only results in less memory being needed for a particular piece of software, but also 

allows significant power savings by reducing cache activity, which can amount to about 

22% of the total energy expended by a system [Gupta2002]. RISC systems traditionally 

                                                 

 
23 See [Earnshaw2006] for a complete definition of the APCS. 
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suffer from lower code density than CISC systems [Dandamudi2005]. The Thumb 

instruction set addresses this disadvantage on the ARM architecture. 

Many ARM processors incorporate a second instruction set, the Thumb instruction 

set. Thumb offers a restricted functional subset of the ARM instruction set with each 

Thumb instruction being only 16 bits long. The goal is to provide higher code density, 

by limiting instructions to those that are frequently used by compilers. 

The Thumb instruction set is not a complete ISA and relies on recourse to the full 

ARM instruction set where necessary [Furber2000, p.188]. Apart from certain 

subtleties, all Thumb instructions can be translated into equivalent ARM instructions 

[ARM2000, p. A6-2]. In contrast to the ARM instruction set, Thumb mostly contains 2-

address instructions that are executed unconditionally. Thumb also hard codes the 

APCS assumption of register 13 being the stack pointer into the instruction set. 

Furthermore, the accessible register set is restricted to the eight registers for most 

instructions. While ARM instructions set the condition codes optionally, Thumb 

instruction always set the condition codes when exeucting data processing instructions. 

Despite these restrictions, Thumb has an impressive track record. A typical Thumb 

program requires 70% of the space of ARM code, while needing 40% more instructions. 

Nevertheless, when being run from 16-bit memory Thumb code is about 45% faster 

than ARM code. Finally, using Thumb code needs about 30% less energy than 

equivalent ARM code [Furber2000, p. 203]. 

2.4.2 IO and Memory Model 

The ARM architecture uses a linear address space of 232 bytes. The word size is 32 

bits with the endianess being configurable by a processor input pin. ARM usually 

expects word addresses to be aligned at 4-byte boundaries. Some architecture versions 

are also able to access 16-bit half-words aligned at 2-byte boundaries. Accesses that are 

not aligned according to these rules are called unaligned accesses. The behaviour of an 

ARM processor for an unaligned access differs on the specific system and the 

instruction used. Generally, the results are either unpredictable or cause an alignment 
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exception24. However, some instructions specifically ignore the bottom address bits or 

use them to control a rotation of the loaded data25. 

Similar to other RISC processors, ARM does not provide special instructions to 

communicate with I/O devices. Instead, it uses memory-mapped I/O, where regions of 

memory are overlapped with I/O device registers. To avoid the related caching issues, 

the ARM System Control Coprocessor supports marking regions of memory as 

uncacheable and unbufferable. 

2.4.3 Architecture Versions 

Having been developed from 1985, the ARM architecture underwent several 

architectural revisions. The very first version (ARMv1) mostly served as an evaluation 

architecture for Acorn. It was only used as a second processor to the BBC 

microcomputer and manufactured in very small numbers [Furber2000, p. 147]. 

Nevertheless, it is today known as the first commercially exploited RISC architecture 

[Furber2000, p. 147]. The ARMv2 architecture was used in the Acorn Archimedes 

computer. As the ARMv1, it only had a 26-bit address bus, but did already feature a 

multiplication instruction. The ARM3 chip introduced the ARMv2a architecture 

version. It enhanced the previous design with two atomic compare-and-swap 

instructions and established a standard for the System Control Coprocessor, now widely 

integrated as coprocessor 15 in most ARM systems. Furthermore, it was the first ARM 

processor to include a 4kb cache. The following architecture version, ARMv3 was the 

first version to use a 32-bit address space. It also introduced new aborts (undefined 

instruction and memory aborts) as well as 64-bit multiplication for certain architecture 

revisions. The ARMv4 is the oldest version of the architecture supported today [ARM 

Website]. Its main innovation was the introduction of the Thumb instruction set in the 

ARMv4T architecture revision. As it was the first architecture version that was built 

upon a formal specification, certain instruction combinations were deprecated 

(specifically reading the program counter in instructions that spend more than one cycle 

in the execute pipeline phase). With the release of the ARMv5T architecture, new 

                                                 

 
24 This only applies to systems containing a MMU capable of checking access alignments. 
25 This behaviour is exhibited by the LDR and SWP instructions. 
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instructions were added to the instruction set that were greatly improving compiler 

capabilities and the ability to mix and match ARM versus Thumb routines [ARM 

Website]. The most recent architecture versions, ARMv6 and ARMv7 are specifically 

targeted at advanced applications. They provide Single Instruction Multiple Data 

instructions for multimedia applications, the TrustZone security extensions and support 

for dynamic compilers. 
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3 Pearcolator Architecture 

In the previous two years, a PowerPC and an X86 version of Pearcolator have been 

produced by other MSc projects. However, these two versions were developed in 

separate branches and made no attempt to unify Pearcolator into a single code base. The 

new Pearcolator, described in this thesis, implements a common structure and unifies 

the PowerPC, X86 and ARM versions. This chapter explains the general structure of the 

newest Pearcolator version, how Pearcolator integrates with the JRVM and describes 

those new features that are not exclusively related to the ARM backend implementation. 

3.1 Integration into the Jikes Research Virtual Machine 

Pearcolator is a dynamic binary translator that is built on top of the Jikes Research 

Virtual machine. It uses the optimizing compiler within the JRVM to perform the binary 

translation, while simultaneously being a Java program that is executed by the JRVM. 

Figure 8 illustrates the relationship between Pearcolator and the Jikes Research Virtual 

machine. 

Source Code

Binary Translator

Target Code

Pearcolator

HIR

create

Java

Java Bytecode

javac

Opt. Compiler Java JIT

Jikes RVM

uses

compile run

 

Figure 8 – Relation of Pearcolator to the Jikes Research Virtual Machine 

Pearcolator’s target architecture is the High-Level Intermediate Representation 

(HIR), which is used as an input for the JRVM optimizing compiler. For this reason, 

Pearcolator can translate programs to any target architecture that is supported as a 
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platform for the JRVM26. At the same time, the translated binary can take advantage of 

the advanced optimisation features offered by the JRVM optimizing compiler. Not only 

does this increase translation quality, but it also reduces maintenance efforts, as any 

advances made in the JRVM are automatically applied to the Pearcolator binary 

translator. However, though Pearcolator is a Java program, the high dependency on the 

JRVM prevents the binary translator from being run on other virtual machines at the 

moment. 

Therefore, Pearcolator is not distributed as a standalone Java program. Instead, it 

integrates into the JRVM build process and is compiled as part of the boot image. The 

boot image is automatically compiled at the highest optimisation level. This allows 

Pearcolator to circumvent the startup costs, which Java programs usually have when 

first executing on a Just-In-Time compiler. 

In order to use the optimizing compiler for non-Java code, Pearcolator will register 

“fake”, non-existent Java methods within the JRVM. Each method represents a trace27 

and may include one or more source instructions. The method’s name, which needs to 

be unique, is derived from the memory address at which the trace’s first instruction 

resides. As its only parameter the method receives an object handle, which allows the 

trace to access the source state. The source state consists of the source context block as 

well as the source memory image. By convention, the method shall return the program 

counter value after executing the trace. When the JRVM tries to compile any of these 

non-existent methods, i.e. when it tries to compile a trace, Pearcolator intercepts this 

request and forwards it to a component that translates the source instructions into 

equivalent HIR. This component, which is highly dependent on the source platform, is 

called the Pearcolator backend. The translated HIR is further processed by the 

optimizing compiler as described in section 2.2.2, finally leading to target machine 

code. 

                                                 

 
26 The JRVM currently supports execution on the IA-32 Linux, PowerPC 32 and 64 AIX/Linux/OS X 

platforms. Work on building a port for IA-32 Microsoft Windows is in progress. 
27 A chain of basic blocks, see section 2.1.3. 
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Within a trace, the binary translator reads parts of the source state into local registers, 

performs calculations and writes values from the local registers back into the source 

state. All of these operations are performed in the HIR ISA, which provides a set of 

high-level primitives to express loads, stores, arithmetical operations and control flow 

instructions. Additionally, Pearcolator offers a set of helper routines that create HIR 

code for commonly needed functionalities. 

Integrating Pearcolator at the HIR-level into the JRVM optimizing compiler has two 

important side effects. Firstly, it means that translated code is always compiled at least 

at the minimum optimization level. The JRVM baseline compiler, which tries to execute 

Java bytecode at the minimum translation cost, is not available to Pearcolator. This 

shortcoming will be addressed in later chapters by implementing an interpreter into 

Pearcolator. Secondly, the Adaptive Optimisation System can monitor the execution of 

translated code, thereby being able to dynamically recompile long-running traces at 

higher optimisation levels. 

3.2 Pearcolator Class Architecture 

The new Pearcolator architecture adapts the generic process virtual machine 

architecture described in section 2.3 and shown in Figure 5 (see p. 27). However, as 

Pearcolator is a framework for binary translation research and supports multiple source 

ISAs, it does not implement the template architecture as classes, but rather as packages 

with most packages providing multiple implementations of the expected functionality. 

Consequently, the packages communicate using well-defined interfaces. The overall 

Pearcolator architecture is shown as a UML Package Diagram in Figure 9. 
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Figure 9 – Pearcolator Overview as a UML Package Diagram28

The general package functions have been discussed in section 2.3. The following 

sections introduce the Pearcolator-specific implementations. 

3.3 Initialization 

The Main class provides an entry point into Pearcolator, which initializes all parts of 

the Binary translator. First, DBT_Options uses a parser built upon the state pattern29 to 

analyze the command line options that have been provided to Pearcolator. Available 

command options set various configuration settings, including: 

- The executable file and arguments to the executable, 

- Debug levels for different Pearcolator components and 

- Execution and profiling strategy. 

                                                 

 
28 The package diagram only gives an overview about the most prominent components. Package names 

have been adapted slightly to be more readable, the original package names naturally follow the Java 

package naming convention. See [http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html] 

for more details on the Java package naming conventions. 
29 The state pattern allows an object to alter its behaviour when its internal state changes [Gamma1994, 

p. 305ff]. It is commonly used to process input in environments while making sure that all possible cases 

are handled appropriately. 
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DBT_Options will parse that information into static, typed variables thereby 

validating the user’s input. Then control will be passed to the Loader, which reads the 

executable into the memory image.  

3.4 Loader 

UNIX and UNIX-like systems, including Linux, store executable files in the 

Executable and Linkable format (ELF) [Levine2000, p. 206]. The ELF file format was 

introduced with UNIX System V Release 4 and quickly became popular among UNIX 

systems. Today, ELF is the standard binary format on most Unix-based operating 

systems, such as Solaris and Linux [Haungs1998]. 

Among other features, ELF supports multiple platforms30 and relocation. Relocation 

describes the process of adjusting program address to account for nonzero [..] origins 

and resolving references to external symbols [Levine2000, p. 149]. It is necessary when 

an executable is loaded to a memory address other than zero or when the executable 

uses shared libraries. Shared libraries contain code that is not included within an 

executable, but is loaded by the operating system once the program executes. Common 

libraries, such as the C standard library, are usually provided as shared libraries that can 

be used by multiple programs. Relocations that are performed when a program is loaded 

are called dynamic linking or runtime linking [Levine2000, p. 205]. In contrast, 

executables that do not require dynamic linking are called statically linked. 

Though Pearcolator provides facilities to support different binary formats, previous 

versions only offered support for loading statically linked ELF executables. However, 

most Linux executables are dynamically linked. Therefore, the Pearcolator Loader has 

been rewritten to support dynamic linking. To understand the new loader, an overview 

of the ELF format is necessary. 

The layout of an ELF file is shown in Figure 14. The file starts with a header that 

contains a magic number and identifies necessities for reading the file, such as byte 

order, architecture and the location of index structures that allow descending further into 

                                                 

 
30 The ELF format can be read and interpreted on different platforms without having to know the platform 

that a specific ELF was originally compiled for. However, this does not imply binary compatibility. 
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the file’s structures. ELF files have a [..] dual nature [Levine2000, p. 62ff]. A loader 

may treat an ELF file as a sequence of segments that are indexed by the program header 

table, while linkers treat the file as a set of sections that are described by the section 

header table. 
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Figure 10 – Perspectives on an ELF file 

When loading an ELF file, the loader iterates over the entries in the ELF program 

header table and maps all loadable segments into memory. Each entry in the program 

header table describes a single segment with its type, its position in the file, information 

on where the segment expects to be loaded into memory and access descriptor bits, that 

describe whether the segment shall be readable, writeable or executable within memory. 

The loader reads the data on a segment from the file and writes it to the appropriate 

memory location. Some segments may also reserve additional free space at their end. 

For instance, this is useful for expressing .bss31 sections without actually wasting 

space in the executable. 

Sections allow a more fine-grained view of an ELF file. Similar to the program 

header table, the section header table describes the location, length, content and other 

attributes for the sections in an ELF file. However, sections are usually smaller than 

                                                 

 
31 The .bss memory section stores uninitialized program data. Therefore, memory needs to be reserved for 

it in the executable image, however no initial values for the .bss section needs to be stored within the 

image. 
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segments. A single segment may contain several sections, as long as they share the 

same access rights and are meant to be mapped into memory serially32. Table 2 gives an 

overview of sections that appear frequently in executables. Most executables also 

contain more than one section of any given type. For instance, a program that requires 

initializers to be run on start up defines at least one PROGBITS section with regular code 

and one that has to be executed by the loader after mapping the ELF file into memory. 

Section type Meaning 
PROGBITS Program data or code. 
NOBITS No space is allocated for the section in the file itself; however 

space for that section shall be allocated in memory when the file is 
loaded.  

SYMTAB / 
DYNSYM 

Sections of these types contain symbol tables. The symbol table 
for the dynamic linker (DYNSYM) is contained within a separate 
section. 

STRTAB Contains a string table, which associates names with symbols. 
REL / RELA Contains relocation information. 
DYNAMIC Holds information for the dynamic linker. 
HASH Holds a runtime symbol hash table, which helps in finding a 

symbol within the symbol table, given only its name. 
Table 2 – Commonly found ELF section types 

For shared libraries to work properly, two problems have to be solved: movement of 

code and access to functions and variables from another shared library. 

Because there are an unlimited number of libraries but only a limited amount of 

memory addresses, libraries cannot rely on being loaded at a fixed memory address. 

Rather, they are positioned dynamically by the loader, possibly at different addresses 

each time they are loaded. Consequently, libraries rely on position independent code 

(PIC)33. However, using only PIC may introduce severe restrictions for some 

architectures or may even be impossible for others. ELF relocation handles this problem 

by allowing non-PIC code to be written as if the library was loaded at address zero and 

relying on the runtime linker to correct these addresses if the library is loaded at another 

                                                 

 
32 This is usually the case as linkers arrange the sections accordingly. 
33 Position Independent Code does not use absolute addresses. Instead, addressing is usually performed 

relative to the program counter. Therefore, it can be loaded anywhere into the address space [HP1997, p. 

260ff]. 



Pearcolator Architecture     

 

47

address. The tables in the REL and RELA section contain information about which 

addresses have to be corrected. 

To access addresses (i.e. data and functions) across libaries and executables, ELF 

introduces the notion of symbols. An ELF symbol associates a name with a numeric 

value, usually an address. Each library can define symbols and access symbols defined 

by other libraries. Using special REL and RELA table entries, a library can use the value 

of a symbol defined by a different library to change an address within its own memory 

image. To avoid name clashes, libraries may define symbols with different visibilities. 

Most ELF executables use a Global Offset Table (GOT) in which they store all 

addresses that are imported from other libraries. Because the GOT is stored at a fixed 

offset from the beginning of the library that contains it, the library can often access the 

GOT using PIC. Of course, the GOT needs to be populated by the dynamic linker at 

load time34. 

The Pearcolator runtime linker starts by determining all required libraries for a given 

program. Libraries can also depend on other libraries, leading to a dependency graph35 

as shown in Figure 11. Pearcolator traverses the dependency graph in a depth-first 

manner, mapping libraries into memory as it encounters them. As a library is loaded, 

Pearcolator also parses its Dynamic Section, Symbol Table, String Table, REL, RELA 

and Hash Table into Java representations. 

                                                 

 
34 The GOT also stores function addresses. However, on some systems these are not resolved at load time, 

but rather resolved dynamically when the program first calls the respective function. To achieve this, each 

GOT entry is initialized with the address of code that will resolve the address of the actual function when 

it is first called. After resolving the correct address, the address in the GOT will be replaced. The area of 

code containing these initialization functions is called the Procedure Linkage Table (PLT). Using the PLT 

may provide better runtime behaviour for functions that are only rarely called, but need to be linked 

nevertheless. 
35 The dependencies do not form a tree, because there may also be circular dependencies between shared 

objects. 
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Figure 11 – Dependencies between ELF Shared Objects 

In a second stage, relocations are performed for each library. A library’s REL and 

RELA tables contain a list of all relocations that are to be performed for that library. 

Each entry in the REL and RELA tables contains a relocation type, which defines what 

kind of relocation shall be performed, where it is to be performed and which symbols 

needs to be resolved to find the relocated address. During relocation, unresolved 

symbols from one library may be resolved by finding an appropriate global symbol in 

another library.  

The meaning of relocation types are platform specific – therefore, each Pearcolator 

backend must provide an implementation of relocation types that are only found on the 

respective platforms. Pearcolator uses the template method pattern36 to implement this 

requirement efficiently. A general dynamic linker implementation, which performs the 

loading, mapping of memory, parsing of the above-mentioned structures and controls 

the workflow is provided. Each platform can derive from this implementation to provide 

the platform-specific relocation behaviour. 

Some executables require that data within read-only segments, which are loaded into 

read-only memory pages, is relocated. For that reason, Pearcolator removes such 

protections during the relocation process and restores them after all relocations have 

been performed. 

                                                 

 
36 The template method pattern provides a generic implementation of an algorithm, but leaves the 

individual implementation of certain phases to subclasses [Gamma1994, p- 325ff]. In the given context, it 

is the translation algorithm that is provided as a template, while some of the architecture specific phases 

have to be implemented by individual backends. 
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Finally, libraries may specify initialisation functions, which are to be called before 

the library can be used properly. These functions are supplied as a function pointer in 

the DT_INIT section or as a list of function pointers in the DT_INIT_ARRAY section. 

Before the initialisation function of a library is called, the initialisation functions of all 

libraries that it depends on must have been called. However, no order is defined for 

circular dependencies [SCO2003, ch. 5]. Again using the template method pattern, the 

Pearcolator dynamic linker passes the addresses of the initialisation functions in a 

suitable order to the platform-dependant linker part for execution. 

3.5 Execution Controller 

Execution Controllers are vaguely similar to the Emulation Engine shown as part of 

the generic process virtual machine architecture in chapter 2.3. Execution controllers 

implement different strategies to drive the components in the Decoder package (see 

section 3.6). Pearcolator separates control of the decoders from the actual decoding and 

execution functions to allow easy implementation and testing of new execution 

strategies. Execution controllers choose whether to use interpretation or translation and 

generally also determine the pace of the execution. That makes them suitable for 

implementing different caching strategies or switching between interpretation and 

translation. 

The new Pearcolator version implements the decoders shown in Table 3. An 

evaluation of their performance may be found in chapter 5.2.1. 

Execution Controller Implemented Strategy 
Interpreter Performs simple interpretation. 
Profiling Interpreter Performs runtime profiling during interpretation. 
Predecoding Interpreter Performs threaded, predecoded interpretation. 
Profiling Predecoding Interpreter Adds runtime profiling to the threaded, 

predecoding interpreter. 
Dynamic Translation Performs binary translation. 
Staged Emulation Optimizes execution time by switching between 

binary translation and interpretation. 
GNU Debugger Waits for an instance of the GNU Debugger to 

connect to Pearcolator and lets the debugger 
determine the execution speed. 

Table 3 – Execution Controllers implemented in Pearcolator 

The interpreter controller interprets every instruction in the source binary separately. 

It does not perform any caching, but rather decodes each instruction every time it is 
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encountered. Depending on a configuration option, branch profiling may be performed 

during interpretation using the profiling interpreter. 

This predecoding interpreter controller implements a Java version of a threaded, 

predecoding interpreter (see section 2.1.1). As Java does not support arbitrary control 

transfers (GOTO etc.), this implementation creates dynamic basic blocks of interpreted 

instructions that are delimited by conditional branches. Any dynamic basic block 

containing a minimum number of instructions is cached. If the dynamic basic block is to 

be executed again (i.e. its first instruction is to be executed), it is retrieved from the 

cache. This saves decoding time and can speed up interpretation considerably. An 

additional variant of this execution structure exploits the fact that dynamic basic blocks 

are delimited by conditional branches to perform runtime profiling. 

The dynamic translation controller only uses binary translation and collects 

translated instructions into traces. The size of a trace depends on a number of 

configuration options. It can vary from single instruction traces, with a separate trace for 

each instruction, to traces that incorporate a whole program. The backend, which does 

the actual translation, may use the branch profiling information collected by Pearcolator 

to optimise the trace structure. Naturally, the dynamic translation controller will use a 

code cache to store previously translated traces and retrieve them, when appropriate.  

The staged emulation controller tries to optimize execution times. It generally uses 

the predecoding interpreter controller, but switches to binary translation if it assumes 

that a dynamic basic block might benefit from that. In taking this decision, the 

controller takes the size of the block as well as its execution frequency into account. 

The GNU debugger controller is a controller that does not strive to achieve high 

execution speeds. Instead, it opens a TCP/IP port and waits for an instance of the GNU 

debugger37 to connect to Pearcolator, as if it was a remote system. Gdb uses the gdb 

Remote Serial Protocol38 to communicate with remote stubs, remote gdb instances 

commonly used to debug embedded systems. This execution controller can read the 

                                                 

 
37 The GNU debugger is a popular debugging tool that is maintained as part of the GNU project. 
38 See the gdb user manual, appendix D for a comprehensive definition of the Remote Serial Protocol. 

The manual is available at http://sourceware.org/gdb/documentation. Last checked 30th July 2007. 
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Remote Serial Protocol and steer the execution of the source program accordingly, 

allowing the user to debug it in gdb as if it was running on a real, remote target 

machine. 

3.6 Decoder 

The decoder package hosts templates for three components: a disassembler, an 

interpreter and a translator. It also provides definitions, helper classes and interfaces 

that allow these components to interact with other parts of the Pearcolator architecture. 

All three components are optional, though any working Pearcolator backend shall at 

least implement one interpreter or translator39. The execution of these components is 

controlled by an ExecutionController instance. 

A disassembler is a software that converts machine language back into assembly 

language [Computer Desktop Encyclopedia: Disassembler]. For Pearcolator, it is an 

optional feature that may be implemented by a backend to facilitate debugging guest 

code. The Disassembler interface can be used to disassemble a stream of instructions, 

while the Disassembler.Instruction interfaces defines an object representation 

for a single disassembled instructions. Some parts of the 

Disassembler.Instruction interface deliberately share the same signature with 

functions in Interpreter.Instruction – this allows an easy implementation of a 

combined interpreter and disassembler. 

Similar to the disassembler, the interpreter and its interfaces Interpreter and 

Interpreter.Instruction define the necessary methods for implementing an 

interpreter in Pearcolator. The interface definition has two important properties: It 

defines an object representation of a single instruction and it allows querying whether 

an instruction always has a fixed successor instruction (i.e. whether it is not a 

conditional or indirect jump). Though none of these features is strictly necessary to 

create an interpreter, they do leverage Pearcolator’s functionality as a research platform. 

Defining an object representation for an instruction allows separating the decoding from 

                                                 

 
39 At the moment, all Pearcolator backends implement a translator and a disassembler, while only the 

ARM backend also features a working interpreter. 
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the execution of instructions. Instruction caching and asynchronous decoding are two 

possible uses for this property. The second property, querying for a fixed successor 

instruction, allows interpreter instructions to be combined into dynamic basic blocks, 

within which all instructions have to be executed once a block’s first instruction is 

executed. Figure 12 illustrates the opportunities that this opens for the interpreter: 

instead of dealing with single instructions, predecoding interpreters can work on blocks 

of instructions, with only the top address being stored for each block. Furthermore, this 

scheme allows conditional branches to be easily and efficiently profiled without 

requiring specific support by the backend. The profiling predecoding interpreter 

controller (see chapter 3.5) implements this functionality.  

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 5

Instr. 6

Instr. 7

Instr. 8Instr. 8

Block 1
(0x0 – 0x0c)

Block 2
(0x10 – 0x18)

Block 3
(0xd4 – 0xd4)

 

Figure 12 – Building dynamic basic blocks of interpreted instructions 

The translator is the most complex part of Pearcolator. Though the translator is 

heavily dependent on the specific backend, the decoder package provides a 

comprehensive framework which provides not only methods for commonly used 

functionality, but rather a translation scheme with template methods that support the 

implementation of that scheme. The following paragraphs describe the translation 

scheme. Of course, the package’s interfaces also allow the implementation of other 

translation schemes. 

Pearcolator defines a template for the translation process using the template method 

pattern. In order to build a trace, the backend needs to implement a small set of 

functions that are called by the class CodeTranslator, which controls the translation 

process and also includes a large number of methods that help in translating common 

instructions. 

The most important function that the backend has to implement translates a single 

given instruction into the trace. CodeTranslator calls this function to construct the 
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trace incrementally. Figure 13 shows the basic structure of a trace. Every box on the 

right side of Figure 13 corresponds to a HIR basic block. The trace starts with a 

prefill section, in which trace-wide initialisations are performed and code is created 

that fills symbolic registers from the source context block. Each instruction in the 

instruction sequence is translated into its own HIR basic block. More complex 

instructions (e.g. instruction 3 in Figure 13) may also be translated into more than one 

basic block. In order to end a trace, the address of the instruction following the most 

recently executed one is put into a symbolic register, which will be returned from the 

trace. A finish block finally writes the values of the symbolic register back into the 

source context block and ends the trace’s execution. When the trace is ended, registers 

that have been filled in the prefill phase but not been used will be removed from 

both, the prefill as well as the finish block. 

2: Complex Instr. (2)

2: Complex Instr. (1)

Prefill

1: Instruction

Finish

Return address of 4

Instruction Sequence Translated Trace

3: Instruction

2: Complex Instruction

1: Instruction

4: Instruction

3: Instruction

 

Figure 13 – Translation of a simple instruction sequence into a trace 

Branches are a vital part of most ISAs and therefore need to be supported 

accordingly. A trace can include static40 as well as dynamic41 branches and calls42. In 

                                                 

 
40 Static branches are branches whose target address can be deducted at statically at translation time, i.e. 

the target address does not depend on the contents of a register or memory location. Note that conditional 

branches do qualify as static branches, as long as the target address of the conditional jump is known at 

translation time. 
41 Dynamic branches are all branches that are not static branches. 
42 In this context, a branch is a change of control flow to a different address, while a call is a branch that 

writes the address of the instruction following the branch into a link register. 
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order to insert a branch into the trace, the translator calls one of the appendBranch 

functions offered by CodeTranslator. However, the framework will not insert code 

to perform the branch immediately. Instead, after translating all instructions into the 

trace, the framework will examine which branch target addresses have been compiled 

into the trace so far. For branches whose targets are already part of the trace, a trace-

internal branch, which is directly expressed in HIR, is inserted. If a branch target is not 

part of the trace, the branch target can either be translated into the trace or a code stub 

can be inserted instead of the branch, which will end the trace and return the address of 

the branch target instead. An overridable function is invoked to determine whether a 

specific branch target should be included within the trace. By default, any branch target 

address will be included into the trace, except when 

• the target address is the start address of another trace that is contained within 

the code cache, 

• the branch is a call or return instruction or 

• including the branch target might inflate the current trace to an undesired 

size. 

Including the target of a dynamic branch into the trace is more difficult, because the 

target address is generally not known at translation time. However, dynamic branches 

are commonly found in modern programs43, which is why it is desirable to be able to 

include them. Pearcolator achieves this aim by using Software Indirect Jump Prediction 

[Smith2005, p. 66f]. This scheme queries the running program’s profile for all locations 

that the program previously branched to from a dynamic branch. This enables 

Pearcolator to build an HIR switch statement, similar to the one seen in Code 2. Notice 

how the statement’s default branch handles unknown branch target addresses. 

                                                 

 
43 For instance, C++ compilers may use dynamic branches to implement calls to virtual member 

functions. 
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switch (branch_target) { 
 case 0x0004: goto LABEL_0x0004 
 case 0x0012: goto LABEL_0x0012 
 default: 
  <Add missing branch target to program profile> 
  <End Trace and return address branch_target> 
} 

Code 2 – Including a dynamic branch target into HIR 

Not all Pearcolator functionality has to be expressed directly using HIR. System 

calls, interactions with the profiling systems or complex mathematics may be performed 

using calls to Java libraries. The previous Pearcolator design only allowed calls to 

specific, preselected functions. The new Pearcolator framework allows calls to arbitrary 

functions to be planted within a trace. This allows calling any Java library to execute 

complex instructions. The framework can even insert code that will call the interpreter 

to execute a particularly complex instruction instead of translating the instruction into 

HIR. System calls, which are described in chapter 3.7, are also handled by calling into 

regular Java code. 

Some backends use different forms of laziness to increase the performance of 

translated code. Laziness refers to not performing a particular operation unless its result 

is actually needed. For instance, in the X86 architecture any of the four registers EAX, 

EBX, ECX and EDX contain a number of sub-registers that can be referenced as if they 

were unique registers [Burcham2005, p. 15]. However, changing a sub-register also 

alters the parent register and vice versa. Therefore, the X86 backend aims to lazily 

propagate changes between the parent- and sub-registers only if necessary. Pearcolator 

provides architectural support for lazy evaluation, though the specifics of resolving one 

lazy state into another have to be implemented by the backend. 

Finally, the decoder package also implements a cache for translated traces and a 

Utility class that helps performing commonly needed translation functions, such as 

extracting bits and bit sequences from integral data types or calculating overflow and 

carry for subtraction and addition. 

3.7 OS Emulation 

Pearcolator performs complete OS emulation [Altman2000 p. 44]. Therefore, it first 

captures all calls into the operating system and then emulates the expected OS 

functionality. Most ISAs provide special instructions to perform calls to the operating 
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system (system calls). Pearcolator intercepts system calls and emulates them using Java 

code. As of now, Pearcolator primarily emulates Linux system calls, though the ARM 

backend also includes support for emulating the proprietary Angel Debug Monitor, 

which serves as a monitor on ARM embedded systems. 

The communication between a program and the operating system is defined as part 

of an Application Binary Interface (ABI). The ABI defines how the operating system is 

entered by a user-mode program, as well as how and in which order parameters and 

return values are exchanged. An ABI is platform specific. In order to use the same code 

to handle Linux system calls across multiple architectures, it is necessary to abstract the 

details provided by the ABI. Pearcolator defines the LinuxSystemCallGenerator 

interface to transfers this information. By implementing it, any architecture can use the 

system calls already provided by Pearcolator. 

Linux often uses specific structures to communicate with user programs. Instead of 

marshalling a structure member-by-member to a user program, Linux only returns the 

address at which the structure has been put into memory and expects the structure’s 

layout to be defined implicitly by the architecture that the operating system is running 

on. Different architectures have different data alignments and different data type sizes. 

While previous Pearcolator versions did not tackle this problem, the new version 

introduces a generic, architecture-independent way of defining Linux system structures 

and transferring them to memory. Code 3 shows how a mixture of native Java types and 

Java annotations is used to express the layout of a Linux structure44 in Java. In order to 

transfer the defined structure from and to the source memory image, the base class 

Structure uses reflection and the interface StructureAdapter to marshal single 

fields between the structure and the memory. StructureAdapter defines storage 

details, such as data type sizes and alignments. Different architectures must implement 

their own instances of StructureAdapter to be able to use the structures predefined 

in Pearcolator. Furthermore, the annotation system could be enhanced to express that a 

structure’s member is only defined on certain architectures, thus enabling an even more 

                                                 

 
44 As Linux is written in C, its structures are defined in C as well.  
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general use of the predefined structures. An abstract factory pattern45 is used to create 

actual instances of the structures. 
struct stat64 { 
  unsigned short st_dev; 
  unsigned long __st_ino; 
  unsigned long long st_ino; 
} 

class stat64 extends Structure { 
  @_unsigned short st_dev; 
  @_unsigned long __st_ino; 
  @_unsigned @_long long st_ino; 
} 
 

Code 3 – Example for the definition of a Linux structure (left) in Java (right) 

In Linux, everything is a file. Therefore, Pearcolator needs a filesystem model that 

can cope with that complexity, while still being easy to implement. The new Pearcolator 

offers interfaces that try to fulfil this requirement: FileProviders allows querying 

files by path and Files are object representations of a single file. 

TempFileSystem

ReadonlyFileSystem

HostFileSystem

NullFileSystem

Access to /tmp

Fail access

Read host files

Fail access

Accessing /tmp?

Write Access?

File present on host?

All other accesses
 

Figure 14 – Default Pearcolator Filesystem configuration 

A Pearcolator filesystem is represented by a number of FileProviders, which are 

created by a Factory Method46. The FileProviders use the chain of responsibility47 

pattern to forward the request to open a file until a FileProviders either opens the 

file and returns its object representation or rejects opening the file (and stops forwarding 

                                                 

 
45 An abstract factory pattern is a creational pattern that abstracts the instantiation of objects 

[Gamma1994, p. 87ff].  
46 A factory method is similar to an abstract factory in that it hides the instantiation of objects. However, a 

factory method is specifically targeted at letting subclasses provide an implementation of an interface 

[Gamma1994, p. 107ff]. 
47 In the Chain of Responsibility pattern, a request is passed along a chain of objects, until an object is 

found that handles the request [Gamma1994, p. 223ff]. In the given case, it allows sophisticated file 

system structures to be composed from simple primitives. 
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the request). The chain of FileProviders is delimited by a Null Object48. Table 4 

gives an overview of the FileProviders currently supported by Pearcolator and 

Figure 14 shows an example configuration of a file system, which uses the described 

components to allow write access to the temporary files and read access to any file on 

the host. 

File Provider Usage 
HostFileSystem Tries to open a file from the host’s file system. 
ProcFileSystem Simulates the Linux /proc file system. 
ReadonlyFileSystem Denies all write requests to a filesystem. 
RemappingFileSystem Maps all access to a path A on the guest to a different path 

B on the host. 
TempFileSystem Allows write access only to the host’s temporary storage 

location. 
NullFileSystem Null object that allows no file to be opened. 

Table 4 – File Providers supported by Pearcolator 

Similarly, the uniform File interface hides the differences between regular files, 

sockets, standard input/output and other files (such as those provided by the Linux 

/proc filesystem). 

3.8 Profiling 

Pearcolator provides general facilities to perform branch profiling. Using the 

interpreter interfaces described in chapter 3.6, Pearcolator can automatically profile the 

dynamic behaviour of a program during interpretation. Furthermore, backends can 

notify the profiler about the location of procedure call and return instructions that are 

encountered either during interpretation or translation. This additional information 

enables the profiler to anticipate the original structure of the program. 

The profiling information is primarily used by the translator during the construction 

of traces. It allows better estimation of method boundaries and software indirect jump 

prediction to be performed. Furthermore, the translator tries to mirror a program’s 

structure when building traces. This leads to traces whose structure is close to high-level 

language methods and can therefore reduce duplication of code segments into several 

                                                 

 
48 The Null Object pattern is a popular alternative to using specific values for non-present objects (like 

null in Java) [Woolf1996]. Instead, an empty interface implementation is provided. 
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traces. The profiling information is also used to guide the translator’s inlining decisions. 

Finally, having some information on the structure of a program can be used to 

asynchronously pre-translate parts of the program, which might be beneficial in a 

multiprocessor environment. 

Profiling information can either be collected at run time or loaded from an XML file 

when Pearcolator starts. Figure 15 shows the data model used by the XML file. 

 

Figure 15 – Entity Relationship Diagram of the Pearcolator Profiling Data Model 

3.9 Memory 

The Pearcolator memory model is defined by the Memory interface. Signed and 

unsigned 8-bit, 16-bit and 32-bit quantities can be read and written using this interface. 

The interface further provides methods that will insert an HIR representation of a 

memory access into a trace, either by directly inlining the appropriate HIR instructions 

or by planting a call to the memory interface. This shall allow efficient memory 

accesses within traces. The interface also assumes that memory is divided into pages, 

with each page having any combination of the permissions read, write and execute. 

Current implementations of the Memory interface are shown in Table 5. 

ByteAddressedMemory and IntAddressedMemory both implement pages as 

arrays of primitive data types and only create a page if it is actually mapped by the 

running application. Therefore, Pearcolator can simulate big memory spaces by 

allocating memory pages lazily. The size of a memory page and the endianess of the 



Pearcolator Architecture     

 

60

memory can be configured for each memory implementation. When a page is mapped 

from a file, both implementations support using the java.nio package functions, with 

which Java enables a technique for mapping files into memory equivalent to the Linux 

mmap system call. 

By providing further decorators, like AutoMappingMemory, the Pearcolator 

memory model can easily be enhanced to support memory-mapped IO devices or 

programmable Memory Management Units (MMU). An evaluation of the different 

integer- and byte-based memory implementation can be found in chapter 5.2.3. 

Implementation Usage 
CallBasedMemory An abstract base class for new memory implementations, 

which performs memory accesses during the execution of 
traces by using calls to the Java functions in the Memory 
interface. 

ByteAddressedMemory Organizes memory pages as arrays of bytes. Two 
implementations, for little and big endian, are available. 

IntAddressedMemory Organizes memory pages as arrays of integers. Two 
implementations, for little and big endian, are available. 

AutoMappingMemory A decorator49 that will prevent faults on accesses to 
memory pages that were not previously mapped. Instead, 
an empty page is mapped into memory and the access is 
repeated. 

Table 5 – Implementations of the Memory interface 

3.10 Faults 

As Pearcolator is written in Java, it seems natural to use Java exceptions as a means 

of fault handling. To enforce uniform interfaces, Pearcolator provides a package with 

exception classes for the most common faults. Backends can either use these classes 

directly or inherit from them, if more detailed fault information is required. Currently, 

faults for invalid memory accesses (Segmentation Fault) or Instructions (Bad 

Instruction Fault) are available. 

                                                 

 
49 The Decorator Pattern is a structural software design pattern. It attaches responsibilities to an object 

dynamically, thus providing a flexible alternative to subclassing [Gamma1994, p. 139ff]. It is used here, 

because it easily allows modifying the behaviour of any memory implementation to map unmapped pages 

lazily when they are first accessed. 
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3.11 Process Space 

The final component within the Pearcolator architectural model is the Process Space. 

This class works as a communication hub, combining the previously described 

components. Furthermore, it manages the source context block, i.e. the registers, flags 

and other state information particular to the source architecture. Pearcolator can emulate 

several processes at the same time by instantiating different Process Spaces for each of 

them.  

During the initialisation process, it is the Process Space that decides which 

Pearcolator components to use in order to execute a program. This includes deciding on 

an appropriate memory model, selecting an operating system emulation and initializing 

the source context block. The Process Space can use information provided about the 

executable by the loader during this stage. 
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4 The ARM Emulator 

4.1 General Architecture 

The ARM backend for Pearcolator emulates the ARMv4T architecture. This chapter 

describes its implementation.  

The X86 and PowerPC backends perform instruction decoding, disassembling, 

translation and interpretation50 in a single class hierarchy. This approach has several 

disadvantages, most noticeably that the architecture is hard to maintain and that the 

whole backend heavily depends on the JRVM, thus making it unsuitable for execution 

in another Java Virtual Machine. The ARM backend seeks to mitigate this problem by 

taking an architecture-driven approach to designing the backend, putting an emphasis 

on portability and loose coupling of the backend’s components. 

ARM
Disassembler

ARM
Disassembler

ARM
Interpreter

ARM
Interpreter

ARM
Translator

ARM
Translator

Instruction RepresentationsInstruction Representations

Visitor Pattern

DecoderDecoder

ARM Thumb

DecoderDecoder

ARM Thumb

Abstract Factory

 

Figure 16 - Architecture of the Pearcolator ARM backend 

Figure 16 shows a high-level abstraction of the ARM backend architecture. It 

consists of five major components, each with individual requirements: 

1. Decoder 

The instruction decoder maps a binary instruction representation to a logical object 

representation. Because the ARM architecture defines two instruction sets, the 32-

bit ARM instruction set and the compressed Thumb instruction set, the decoder 

                                                 

 
50 Fully working interpretation is not available for the PowerPC Pearcolator backend. 
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must be capable of decoding both instruction sets. Furthermore, as it is frequently 

invoked, an efficient decoding algorithm has to be implemented. 

2. Instruction Representation 

An instruction representation is an object representation of a decoded instruction. It 

shall hide the details of the binary instruction format and allow typesafe access to 

the options included in an instruction. Instruction representations are the output of 

the decoder. Instructions that belong to the same instruction class share a common 

instruction representation. ARMv4T processors contain a special decoder which 

transforms a Thumb instruction into an equivalent ARM instruction. Following this 

approach, the ARM backend will use the same instruction representation for both, 

Thumb and ARM instructions. This greatly simplifies the development and testing 

effort required in the translator, interpreter and disassembler. 

3. ARM Translator 

This component translates the ARM instruction representations into HIR for the 

JRVM optimizing compiler. As such, it is the only component that is not 

compatible with other Java Virtual Machines. Naturally, a major concern for this 

component is the generation of correct and efficient HIR code. 

4. ARM Interpreter 

The ARM interpreter is responsible for interpreting instruction representations. In 

contrast to the translator, it works independently of the Java Virtual Machine that it 

is running on. Nevertheless, it also seeks to provide efficient and correct emulation 

of ARM instructions. 

5. ARM Disassembler 

The disassembler is responsible for converting an instruction representation, as 

created by the decoder, into a human-readable string. It is possible to invoke the 

disassembler from the interpreter or translator (for a currently processed 

instruction), without invoking the decoder again. 
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The backend components use two patterns as their means of communication: An 

abstract factory pattern and the visitor pattern51. As illustrated in Figure 17, a 

component that wants to process an ARM instruction first calls into the decoder. Next, 

the decoder calls into a, possibly custom, abstract factory to create an instruction 

representation, which is then returned to the caller. Finally, the visitor pattern can be 

used to access the instruction representation after it has been returned. 

Decoder

Visitor

Abstract
Factory

ADD

…

LDR

ADD

…

LDR

InstructionInstruction

visit_add()
visit_ldr()

4: visit(this)4: visit(this)

1: decode1: decode

2: create instr.2: create instr.

3: return3: return

5: visitor.visit_ldr(this)5: visitor.visit_ldr(this)
 

Figure 17 – Communication between ARM backend components. 

The following section will give details about the implementation of the described 

components. 

4.2 The ARM- and Thumb-Decoder 

As the ARM instruction set has developed over time, its binary instruction encodings 

are not as regular as those in other processor architectures. Therefore, building an 

instruction decoder manually is error-prone and might possibly yield an inefficient 

implementation. To avoid these problems, emulator-builders can resort to software that 

                                                 

 
51 The Visitor pattern decouples the implementation of a data structure from operations that are performed 

upon that data structure. It allows defining a new operation without changing the classes of the elements, 

on which it operates [Gamma1994, p. 331ff]. 
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automatically builds a decoder from an instruction set specification52. However, these 

tools are often specific to a target environment53. 

The ARM backend generalizes upon the idea of building a decoder from an 

instruction set specification by using data mining instead of a specialised application to 

build the decoder. Data mining is a problem solving methodology that finds a logical or 

mathematical description […] of patterns and regularities in a set of data 

[Decker1995]. In contrast to other decoder-builders, the output of a data mining 

application is not an implementation of a decoder, but rather its implementation-

independent description. 

More specifically, classification will be used to derive rules that identify the 

appropriate instruction class from a binary instruction. When the instruction class is 

known, its fields can be extracted and an appropriate instruction representation can 

easily be created. 

Building a decoder using data mining applications has two advantages. First, the 

decoder is proven to be correct and second, data mining applications strive to generate 

models of minimal complexity, leading to an efficient decoder description. 

Figure 18 shows a data flow diagram of the decoder construction process. The 

process is split into three phases: instruction set specification, data mining and decoder 

implementation. 

                                                 

 
52 For example, the UQBT Binary Translation Framework uses the New Jersey Machine Code Toolkit to 

build a decoder from a syntactic architecture specification. [UQBT: Adaptable Binary Translation at Low 

Cost, p. 62]. 
53 For instance, the New Jersey Machine Code Toolkit can build decoders in C and Modula-3. [New 

Jersey Machine Code Toolkit, Reference Manual, p. 2] 
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Figure 18 – Data flow diagram of the decoder construction process 

During the instruction set specification phase, each instruction’s encoding (as 

specified in [ARM2000, p. A3-2ff]) is mapped to an instruction representation. An 

instruction representation provides an object-oriented way of accessing the fields and 

options of an instruction. 

In the Data Mining phase, a data mining application’s classifier is used to maps an 

instruction’s binary encoding to its instruction representation. The Weka Data Mining 

Application54 is well respected in the scientific data mining community and provides 

various implementations of classification algorithms. Therefore it has been selected for 

this task. A classifier can output its result in different formats. For this application, a 

decision tree seems the most appropriate format, because it can easily be implemented 

in Java code. Furthermore, in contrast to decision rules, the decision tree avoids 

expressions being evaluated multiple times. These two factors contribute to an efficient 

implementation. 

Weka requires an input file in the Attribute-Relation File Format55 (ARFF). The 

instruction set map is converted into the ARFF format using a custom tool. Before its 

conversion, the instruction set map used wildcards for bits that are irrelevant in 

                                                 

 
54 See http://www.cs.waikato.ac.nz/ml/weka. Last checked on 26th July 2007. 
55 See http://www.cs.waikato.ac.nz/~ml/weka/arff.html for a formal specification. Last checked on 26th 

July 2007. 

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/~ml/weka/arff.html
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determining the appropriate instruction representation. During the conversion, these 

wildcards are expanded to create the set of all possible instruction encoding that share 

the same instruction representation. In cases where two definitions are clashing, the 

converter gives precedence to the more specific definition, which contains less 

wildcards. For example, given the set of definitions in Figure 19, the second definition 

would take precedence of the first one. 

# Instruction Class Bit 27 26 25 24 23 22 … 
1 Data Processing 0 1 x x x x … 
2 Undefined Instruction 0 1 1 0 x 0 … 

Figure 19 – Sample Instruction Definitions 

Though decision trees are generally well suited for these kinds of problems, they 

cannot exploit special features of the target language. For example, in Java it is possible 

to transform a comparison of multiple bits into a, possibly more efficient, switch 

statement. For the data mining application, each bit would be considered a separate 

attribute and therefore, would be evaluated individually. To allow the data mining tool 

to join adjacent bits, all combinations of three to four adjacent bits were duplicated into 

individual attributes during the conversion process. The data mining application can 

then consider these bits as a single attribute when creating the decision tree. 

Finally, the decision tree output by the data mining application can trivially be 

transferred into a Java program. The said process is repeated for both, the ARM and 

Thumb instruction sets, creating an individual decoder for each. Both decoders are 

encapsulated within the ARM Decoder component. The images in Appendix B and 

Appendix C show the implemented decision trees. 

4.3 Instruction Representation 

The ARM backend relies on intermediate instruction representations for the 

communication between the decoder and the other components. An instruction 

representation is a class whose properties publish a binary instruction’s type, options 

and operands, therefore hiding the details of the binary encoding. Furthermore, as most 

Thumb instructions have equivalent ARM instructions, instruction representations also 

make the difference between Thumb and ARM instructions transparent to the interpreter 

and translator. Finally, Pearcolator’s Interpreter.Instruction interface assumes 

that a decoded instruction can be cached in memory (see section 3.6). Having instances 

of instruction representations easily allows doing that. 
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Table 6 shows the different instruction representations. They have been chosen to 

mirror similar operand numbers, options and semantics. Differences in addressing 

modes are hidden by the OperandWrapper class, which can represent immediate 

values, register values with optional offsets as well as the results of shifting a register by 

another register or an immediate operand. 

Data Processing 64bit Multiplication Move to CPSR/SPSR 
Single Data Transfer Atomic Swap Coprocessor Data Transfer 
Block Data Transfer Branch Coprocessor Data Process. 
Software Interrupt Branch and Exchange  Coprocessor Reg. Transfer 
32bit Multiplication Move from CPSR Undefined Instruction 

Table 6 – Instruction representations within the Pearcolator backend 

4.4 ARM Translator 

4.4.1 Scheme Selection 

The ARM translator converts an instruction representation into HIR, which is then 

passed to the JRVM optimizing compiler. This process is controlled by the Pearcolator 

framework, as described in section 3.6. The ARM translator mostly needs to implement 

functions that access the source context block and features that translate a single 

instruction, given its address. 

The traditional approach to writing a translator component, taken by all previous 

Pearcolator backends, is to extract the different fields from a binary instruction and 

write functions that create equivalent HIR code. For the ARM backend, the binary 

instruction would be exchanged for an instruction representation obtained from the 

ARM decoder. However, the unique situation that a binary translator is using the same 

facilities to perform binary translation and to execute its own code allows another 

translation approach, which had not previously been explored. 

As Figure 20 illustrates, there is an equivalence between the way Pearcolator and the 

guest program are compiled by the JRVM. In the previously described translation 

scheme, the translator class itself would first be converted from Java bytecode into HIR, 

which is then compiled and executed. When the translator code is executed, it again 

generates HIR from the source program, which will be processed in the same way by 

the JRVM. 
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Figure 21 – Inlining an interpreter during 
translation 

However, instead of going through the compilation process twice, it would be 

possible to make the translate method from Figure 20 behave like an interpreter. 

Consequently, the call to the translate method itself could be inlined into the trace, 

effectively replacing the translator with an interpreter, whose code is inlined and 

optimized. Figure 21 visualizes that scheme. 

In order to investigate the feasibility and performance of this new approach, a 

vertical prototype56 was developed. The prototype implements a subset of the ARM 32-

bit instruction set, which allows it to run a loop with multiple data processing 

instructions within the loop. Several assembly programs that exercised the loop were 

created, each varying the number of instructions within the loop body or the number of 

iterations over the loop. 

Figure 22 compares the execution times for running the said loop in different 

configurations. The loop has been benchmarked using both the traditional and the new 

translation scheme. It is apparent that the new scheme performs worse in all scenarios. 

This can be attributed to the lack of specialised optimisations applied to it – especially 

reads and writes from registers are highly optimised during the traditional translation, 

but less so in the newer scheme. However, more importantly it can be observed that, 

within the new scheme, increasing the number of loop iterations by 100 leads to a 

performance loss of about 40%, while only doubling the number of instructions incurs a 

performance penalty of 150%. It can be deduced that the compilation time required in 

the new scheme is far higher than in the traditional one. This was partially expected, 

                                                 

 
56 A vertical prototype is a program in which a specific subset of features is fully implement, thus 

allowing their feasibility or to investigate design alternatives. 
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because the new scheme heavily relies on the optimising compiler to remove the 

inefficiencies of the interpreter code. Manual investigation of the created HIR confirms 

that the amount of generated HIR per instruction is much higher with the newer scheme. 

Though it is expected that the runtime performance of the new scheme could still be 

improved, the required compilation time would still remain an issue. As performance is 

one of the primary goals of binary translation, it has been decided to implement the 

ARM translator backend using the traditional scheme. However, it would still be 

possible to implement the new translation scheme as a separate execution controller 

within the new Pearcolator architecture. 
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Figure 22 – Comparison of execution time for different binary translation schemes 

4.4.2 Implementation 

The general Pearcolator translation process has been outlined in chapter 3.6. Detailed 

descriptions of the translation process for two specific backend have been published 

previously [Matley2004, ch. 3 & 4], [Burcham2005, ch. 62]. Therefore, this report 

focuses on the differing specifics in the ARM translator. 

The PowerPC and X86 backend translate instructions from their binary 

representation. The ARM backend provides a looser coupling of its components by 

separating the decoder from the translator, changing its input to instruction 

representations instead of binary instructions. Additionally, only one translator had to be 

implemented for ARM and Thumb code. 

The ARM architecture allows using the program counter as a source or target register 

in many instructions. However, the ARM translator does not treat the program counter 

as a distinct register. Instead, it handles accesses to it depending on the access type. 
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Instructions that write into the program counter register are treated as indirect branches, 

allowing the branch optimisations illustrated in Code 2 (see p. 55) to be applied. 

[ARM2000, p. A9-4 & A9-10] propose two instructions that are to be used to return 

from a procedure call57. Though both are writing into the program counter register, the 

translator actually treats them as procedure returns instead of indirect branches. 

Similarly, most instructions may use the program counter as a source operand. 

Reading the program counter exposes parts of the ARM pipeline, which is in the 

execute stage when registers are read. Therefore, the program counter always points at 

the next but one instruction (8 bytes from the current instruction in ARM mode, 4 bytes 

from it in Thumb mode). Also, a few instructions mask the first bits of the program 

counter, when it is accessed. The translator converts reads from the program counter to 

HIR constants, resolving the complexities of reading the program counter at compile 

time. This enables faster program execution and removes the need of managing a 

program counter register during execution. Furthermore, the optimising compiler has 

been enhanced with a new optimization phase, which performs constant-folding58 and 

propagation59 on HIR expressions involving constants60. It allows calculations involving 

the program counter –which are often used to read from the text segment– to be 

evaluated at compile time. 

4.4.3 Conditional Instructions 

ARM instructions can be executed conditionally. However, most instructions are 

actually executed unconditionally. Therefore, the translator has been designed so that 

every instruction is first translated as if it was unconditional. For conditional 

instructions, the translator inserts a prologue before the instruction, which conditionally 

                                                 

 
57 The MOV pc, lr instruction and a block data transfer that contains the program counter in its 

registers list. 
58 Constant folding refers to the evaluation at compile time of expressions whose operands are known to 

be constant [Muchnick1997, p. 329]. 
59 Constant propagation is a transformation that, given an assignment x ← c for a variable x and a 

constant c, replaces later uses of x with uses of c as long as intervening assignments have not changed the 

value of x [Muchnick1997, p. 362]. 
60 This work has mostly been implemented by Dr. Ian Rogers. 
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skips the instruction code. Due to this technique, the single translation functions do not 

need to implement conditional execution features. 

1: Check condition 0x0

5: Instruction 0x45: Instruction 0x4

2: Branch 0x02: Branch 0x0

3: Instruction 0x163: Instruction 0x16

4: Instruction 0x204: Instruction 0x206: Instruction 0x86: Instruction 0x8

1: Check condition 0x0

3: Instruction 0x43: Instruction 0x4

2: Instruction 0x02: Instruction 0x0

4: Instruction 0x84: Instruction 0x8

Conditional Instruction
with a single successor

Conditional Branch
with multiple successors  

Figure 23 – Translation of a conditional instructions 

Figure 23 compares two different translations for a conditional instruction. The left 

graphic shows a simple conditional instruction (block 1 and block 2), which does not 

change the program flow. Here, the successor of the conditional instruction (block 3) 

will be executed independently of whether the conditional instruction will be executed.  

The right picture in Figure 23 shows a conditional branch instruction. Depending on 

whether the branch is executed or not, the conditional instruction has a different 

successor (either block 3 or block 5 in the graphic). In this situation, the translator has 

the option to include either both or only one of the successors within the translated 

trace. The ARM translator uses runtime profiling information to take that decision. The 

successor that is more likely to be executed is translated first and the basic blocks within 

the trace are ordered to speed up the execution of that successor. If the trace has not 

grown over a threshold when one successor has been translated, then the less likely 

successor instruction is inserted into the trace as well. If no runtime profiling 

information is present, the translator assumes that an instruction is likely to be skipped. 

4.4.4 Condition code handling 

Emulation of processor flags is one of the most expensive operations during binary 

translation [Smith2005, p. 71]. Therefore, the ARM backend supports a pluggable 

condition code handling architecture, which allows the easy implementation and 

evaluation of different algorithms. Two different algorithms have been implemented: 

lazy evaluation and immediate evaluation of condition codes. 

Lazy evaluation of condition codes only calculates the value of a flag, when it is 

actually read. For each instruction that modifies the flags, code is created which copies 
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the instruction’s operands into special laziness registers. The flags themselves are not 

evaluated. When a flag is read, the translator inserts code that reads the stored operands 

and creates the requested flag value from them. With each translated instruction, the 

translator stores a lazy state, which describes which flags are valid or invalid and which 

kind of operation stored its operands within the laziness registers. The lazy state is used 

to insert the correct code when required to resolve the flag values from the laziness 

registers. 

Flag laziness lowers the runtime overhead, when many flags have to be updated with 

each instruction. This is convenient for architectures like the X86, which has six flags 

that are updated by nearly every instruction with each update requiring various masks 

of the EFLAGS register [Burcham2005, p. 41]. However, lazy evaluation also leads to 

multiple translations of the same source code with different lazy states. If a conditional 

instruction changes the lazy state, its successor instruction has to be translated twice – 

once for the situation in which the conditional had been skipped, and once if it had been 

executed. This leads to a similar situation as depicted on the right side of Figure 23, 

where blocks 3 and 5 would be separate translations of the same source instruction with 

different lazy states. 

The ARM architecture defines four arithmetical flags, which are only updated if an 

instruction specifically requests so. Therefore, another approach to flag management is 

to evaluate flags immediately, thus saving the work of translation code pieces multiple 

times. 

Instead of reserving three HIR registers for flag laziness61, immediate evaluation uses 

four Boolean registers, with each register containing the state of one flag. Each flag is 

updated immediately when an instruction changes it. At first glance, this solution might 

seem more inefficient than using flag laziness. However, it provides several advantages: 

                                                 

 
61 Because some ARM instructions do not set all condition codes, up to three lazy registers are required to 

hold all operands that are necessary to resolve all flag values. 
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1. Use of dead code elimination 

As each flag is stored within a separate register, the JRVM optimizing compiler can 

perform dead code elimination on a single-flag basis. This means that only flags 

that are actually going to be read will be evaluated. 

2. Use of fewer registers 

Lazy evaluation requires three lazy registers and up to four Boolean registers to 

hold flags that have already been evaluated. In contrast, immediate evaluation only 

needs four registers to hold the actual flag values. Even when the evaluated flags 

are stored within a bit mask, lazy evaluation would still need four registers (three 

lazy registers and one for the bitmask), while immediate evaluation would need 

only one register. 

3. Fast condition code production 

It takes up to three HIR instructions to fill the laziness registers with the operands. 

Additionally, further instructions are necessary to resolve the lazy state, once a flag 

needs to be read. Immediate flag evaluation can evaluate most flags using a single 

HIR instruction, while saving the three instructions that fill the laziness registers. 

4. Avoidance of multiple translations 

With flag laziness, it is very common to have multiple translations of code sections. 

In particular, loops usually have to be translated twice, leading to a larger 

translation overhead. The flag handling in the ARM backend makes multiple 

translation of a single piece of code for different lazy states unnecessary. 

From the previous reasons, it is not obvious which condition code handling algorithm 

leads to better runtime performance. Therefore, both systems have been implemented in 

the ARM backend. An analysis of their performance can be found in chapter 5.2.2. 

4.5 The ARM Interpreter 

Pearcolator provides general interfaces, Interpreter and 

Interpreter.Instruction, for the implementation of an interpreter. These 

interfaces and their cooperation with different Execution Controllers are described in 

chapter 3.6. The ARM interpreter is implemented in the spirit of these interfaces and 

following the aims for the general backend model, which are described in chapter 4.1. 
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As with the translator, the interpreter uses the ARM decoder to transfer a binary 

instruction into an instruction representation. It supplies a custom abstract factory to the 

decoder, which creates special instruction representations that implement the 

Interpreter.Instruction interface. The interpreter then performs its emulation 

based upon those instruction representations. As within the translator, this allows a 

single interpreter to be used for ARM and Thumb instructions. Furthermore, the 

interpreter works independently of the ARM translator, making it the one of the first 

Java-based, open-source ARM emulators62. 

The Pearcolator Interpreter.instruction interfaces assume that a predecoded 

representation of an instruction can be obtained from the interpreter, possibly to save 

the instruction for future reuse. The ARM interpreter leverages that concept by pre-

calculating fixed values and offsets, where possible, when the pre-decoded 

representation is created. For example, the ARM architecture contains several types of 

block data transfer instructions, which can all be expressed as a single block transfer 

instruction by using different offsets from the start and end address. The ARM 

interpreter pre-calculates these offsets when a pre-decoded representation is created, 

thereby avoiding that calculation when the same instruction is executed again. 

4.6 The ARM Disassembler 

The ARM disassembler converts an ARM instruction into a human-readable string 

representation. Using a visitor pattern, the ARM disassembler can be applied to any 

instruction representation created by the ARM decoder. If a binary instruction is to be 

decoded, the disassembler invokes the decoder first to create an appropriate instruction 

representation and then transfers this representation into a string. The disassembler is a 

debugging component, which is used within the ARM interpreter and translator, as well 

as indirectly by the generic Pearcolator components. 

                                                 

 
62 At the time of writing, no other open source ARM emulator written in Java could be discovered. 
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4.7 Operating System Emulation 

The ARM backend supports the generic Linux emulation provided by Pearcolator 

and can emulate the platform specific ARM Debug Monitor “Angel”, which is supplied 

with ARM Development Boards and therefore commonly used. 

4.7.1 Linux Operating System Support 

Pearcolator provides generic support for emulating a Linux 2.6 environment. 

However, different Application Binary Interfaces (ABI) are defined for different 

platform-ports of the same Linux version. In order to hide a platform’s ABI details, the 

backend has to implement the LinuxSystemCallGenerator interface. The interface 

provides generic ways of accessing system call numbers, arguments and return values. 

A complete documentation of the ARM ABI can be found in [LeeSmith2005]. It 

defines many important issues for compilers, such as structure layouts and data type 

sizes. There are two fundamentally different ABI definitions for the ARM architecture: 

the newer Embedded ABI (EABI) and the previous legacy ABI. The Pearcolator 

backend provides support for both ABIs. 

In order to implement the LinuxSystemCallGenerator interface, details about a 

platform’s system call conventions are most important. Table 7 exemplifies the 

differences in the system call conventions between the two ARM ABIs. While the 

legacy ABI used to put the system call number into the SWI (Software Interrupt) 

instruction, the new EABI puts it into register r7. This yields better performance, as the 

OS is not forced to re-read a SWI instruction to extract the system call number. 

Furthermore, 64-bit parameters, which do not fit into a single register, were just split up 

into the next available register pair in the legacy ABI. The EABI further demands that 

such a register pair starts with an even register number, possibly leaving registers 

unused. Both ABIs return values in register r0. 

 Embedded ABI location Legacy ABI location 
System call instruction SWI #0 SWI #SYSCALL_NO 
System call number Register r7 Part of SWI command 
Parameter #1 Register r0 Register r0 
Parameter #2 Registers r1-r2 Registers r2-r3 
Return value Registers r0 Registers r0 

Table 7 – Differences between the embedded and legacy ABI for a system call of the form: 
int func(int, long) 
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The ARM backend provides two adapters63, which implement the two ABIs. 

Information in the ELF binary is used to distinguish between both formats and 

instantiate the correct adapter. 

4.7.2 Angel Debug Monitor Support 

Angel is an ARM debug monitor, which is supplied with ARM Development Boards. 

Using this debug monitor, a program can be transparently executed on an emulator, a 

development board with a serial connection to a debug host or independently on the 

target platform. Using a technique called Semihosting, Angel allows functions that are 

not available on the specific ARM platform to be executed on the host. Commonly, this 

includes features such as user input and output or access to files on the host. 

Angel Debug Monitor 1.2 provides system calls that perform file and console I/O, 

provide access to timers and to the execution environment64. The Angel Debug ABI has 

a few simple conventions: 

• The software interrupts SWI 0x123456 (from ARM code) or SWI 0xab 

(from Thumb code) trigger a system call. 

• The system call number is provided in register r0. 

• A single parameter can be provided in register r1. Depending on the system 

call, this is either an argument value or the address of a memory structure, 

which contains all required arguments. 

• The system call’s return value is put into register r0. 

Using these conventions, all Angel system calls as documented in [STD1998, p. 13-

77ff] have been implemented. 

                                                 

 
63 The Adapter Pattern is a structural software design pattern. It converts the interface of a class into 

another interface, [which] clients expect [Gamma1994, p. 139ff].  
64 This includes accessing the program’s command line, heap size and exiting the program. 
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5 Evaluation of the ARM backend 

The ARM backend was evaluated for functionality as well as performance. The 

functionality evaluation tests the compliance of the implementation with the ARM 

architecture specification, while the performance evaluation analyzes the speed of the 

backend. 

5.1 Functionality Evaluation 

The functionality of the ARM backend was constantly evaluated during the 

development. This was done using a set of regressions tests, which were extended 

whenever emulation for new ARM instructions was implemented. Constantly testing a 

growing set of functionality lead to a fast development cycle and ensured the quality of 

the final implementation. Table 8 provides an overview of the different programs that 

were used as regressions tests and of the areas that they tested. 

Platform Program Tested Area 
Linux Linux Logo • Linux system calls 

• /proc file system access 
• libc support 

Linux Hello World 
(dynamically linked) 

• Linux system calls 
• libc support 
• Dynamic linking 

Semihosting Dhrystone Benchmark 
(ARM & Thumb version) 

• Performance testing 
• ARM & Thumb ISA 

Semihosting nbench Benchmark 
(ARM & Thumb version) 

• Performance testing 
• ARM & Thumb ISA 
• File access 
• Floating point math 

Semihosting ARM Monitor Program • Context switching 
Semihosting Custom Test Program • Rarely used instructions 

Table 8 – Regressions Tests during the development of the ARM backend 

5.2 Performance Evaluation 

This section evaluates the performance of the new Pearcolator components and the 

ARM backend. The evaluations are performed using the following configuration: 

• Intel Pentium 4 HT processor, clocked at 3 GHz with 1 MB Level 2 Cache 

• 512 MB RAM 

• SUSE Linux 10, Kernel version 2.6.18.2-34 (for Pearcolator) 
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• Windows XP, Service Pack 2, Build 2600.xpsp_sp2_qfe.070227-2300 (for 

the ARM RealView Developer Suite) 

Unless stated otherwise, the Dhrystone benchmark is used in the following 

benchmarks. It has been compiled to an ARM program from version 2.1 of the C 

benchmark sources using the compiler included in the ARM RealView Developer Suite 

v. 2.2 at optimisation level 3 with inlining disabled. Performance in the Dhrystone 

benchmark is measured in Dhrystones/s with higher numbers meaning a better 

performance. 

It is well understood that the Dhrystone benchmark is affected heavily by compiler 

quality [York2002]. Nevertheless, it is suitable for benchmarking Pearcolator, because it 

is only compiled once to a binary and is not used to compare different architectures. 

Furthermore, the Dhrystone benchmark has also been used to evaluate the X86 and 

Pearcolator backends [Burcham2005] [Matley2004]. Therefore, it seems appropriate to 

use the same benchmark to enable comparability. For any presented value, the 

benchmark has been run three times and the results were averaged.  

5.2.1 Execution Controllers 
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Figure 24 – Execution time of Dhrystone for different Execution Controllers and different 
number of Dhrystone loops (ARM 32-bit code) 

Chapter 3.5 described how the new Pearcolator architecture supports execution 

controllers to perform different emulation strategies. Figure 24 gives an overview of the 

execution time that different execution controllers need to run a varying number of 

Dhrystone iterations. 
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The naïve interpreter is almost always the slowest execution strategy. For large 

number of Dhrystone iterations, it is about fourteen times slower than the translator. 

Only at less than ten thousand Dhrystone iterations does its speed become comparable 

to that of the translator. At 5,000 Dhrystone iterations it is about twice as fast as the 

translator. 

Using the predecoding interpreter strategy improves upon the previous interpreter 

results. It executes the Dhrystone benchmark more than twice as fast as the naïve 

interpreter for most measured Dhrystone iterations. Compared to the translator, it is 

three times faster at its best performances and only six times slower at its worst. 

The translator provides satisfactory performance when a piece of code is executed 

multiple times. Therefore, its performance quickly increases with the number of 

Dhrystone iterations. Though it starts as the worst-performing execution strategy at five 

thousand Dhrystone iterations, it outperforms the naïve interpreter at ten thousand 

Dhrystone iterations and the predecoding interpreter at twenty thousand iterations. In 

the long run, it provides the best steady-state performance of all execution controllers. 

The Staged Emulation execution controller bridges the performance gap between the 

predecoding interpreter and the translator. It starts off by executing instructions using 

the predecoding interpreter. However, it keeps track of how often a dynamic basic block 

is invoked. Once a block has executed more than ten thousand instructions, the block is 

compiled using the translator. Future invocations of that block then execute the binary 

translated version. Staged emulation leads to a smooth transition between predecoding 

interpretation and translation. This makes it the fastest execution controller in all test 

cases, setting a new Performance mark for Pearcolator. 

The threshold of ten thousand instructions has been validated experimentally. Figure 

25 visualizes the performance implications of running the Dhrystone benchmark using 

Staged Emulation with different thresholds and for different numbers of Dhrystone 

iterations. 
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Figure 25 – Execution time for different number of Dhrystone iterations and various Staged 
Emulation thresholds. 

5.2.2 Condition Code Evaluation 

Though the X86 and PowerPC Pearcolator backends were both developed to use flag 

laziness, neither of the authors tested its effectiveness separately. [Matley2004 p. 67f] 

only documents performance increases in his second Pearcolator implementation that he 

also attributes to flag laziness – however, that version also included many other 

improvements, such as the introduction of traces. The ARM backend is the only 

Pearcolator backend that supports both, lazy evaluation and immediate evaluation of 

condition codes. Therefore, it is in a good position to analyze the differences between 

both implementations. 

Figure 26 compares the performance implications of using lazy evaluation and 

immediate evaluation of condition codes. The diagram shows the relative speed of 

immediate evaluation compared to the performance of lazy evaluation in ARM 32-bit 

and Thumb code. As stated in chapter 2.4.1, ARM 32-bit code does not set the condition 

codes with each data processing instruction, but only when their evaluation is actually 

required. In contrast, Thumb code always sets the condition code with every data 

processing operation. 

Surprisingly, the ARM 32-bit code using immediate evaluation of condition codes is 

mostly faster than its lazy evaluation equivalent. The reason is that the C compiler 

already decided whether the resulting condition codes of an instruction are actually 

needed and generated appropriate code. Therefore, lazy evaluation only adds 
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compilation overhead in Pearcolator, without offering a benefit. For less Dhrystone 

iterations, the overhead of compiling the same piece of code with different lazy states 

dominates the relative speed. In this situation, immediate evaluation is about 10% faster 

than lazy evaluation. This advantage fades as the number of Dhrystone iterations 

increases, because code regions can be reused and do not have to be compiled again. 

After about 500,000 Dhrystone iterations a steady state is reached, in which immediate 

evaluation and lazy evaluation perform similarly. 

In contrast, Thumb code seems to have a greater benefit from lazy evaluation. It 

overcomes the initial overhead for compiling code with different lazy states at the same 

number of Dhrystone iterations as the ARM 32-bit code, but performs about 5% faster 

than immediate evaluation afterwards. 

As a result of this investigation, Thumb code will always use lazy evaluation while 

ARM 32-bit code will default to immediate evaluation, which delivers superior 

performance for short-running programs. 
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Figure 26 – Relative execution speed of lazy and immediate evaluation of condition codes for 
different numbers of Dhrystone iterations 

5.2.3 Memory Model 

Chapter 3.9 introduced the various exchangeable memory models supported by 

Pearcolator. The Dhrystone benchmark was run with one million iterations to 

benchmark their performance, measuring both the performance including compilation 

time and the steady state performance, excluding compilation time. The latter was 
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measured by configuring the benchmark to run five times, discarding the best and worst 

result and averaging over the remaining three runs. 

Figure 27 compares the performance of the integer and byte-based memory. For each 

memory model, the access was implemented using either a function call to the Memory 

interface or inlining that call into every place were a memory access took place. 

Overall, the integer based memory model performs about 50% to 60% better than the 

byte based memory. This is not surprising, since ARM has a 32-bit word length and 

therefore usually reads 32-bit at a time. With the byte based memory, this operation 

translates into four individual reads. 

However, inlining memory access incurs a major performance hit. Especially the 

compilation time increases dramatically, as inlined memory accesses create 

significantly more HIR code than just a single call. In some cases, this even forced the 

test machine to start swapping during the compilation. The steady state performance for 

inlined memory accesses approaches the speed of non-inlined accesses. The remaining 

slight variation could not be attributed clearly. It might result from slightly worse usage 

of the instruction cache due to the increased size of the translated code. 
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Figure 27 – Translator performance for different memory models 
(Dhrystone Benchmark, one million iterations, ARM 32-bit code) 

5.2.4 Inlining Options 

The new Pearcolator model provides an easy way of defining different strategies to 

decide whether a branch should be inlined into a Pearcolator trace or compiled into a 
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separate trace. This flexibility allows a general evaluation of the cost-performance 

benefit of using inlining during binary translation with Pearcolator. Obviously, the 

benefit of inlining is highly program specific. To achieve optimal performance, a 

custom inlining strategy may have to be implemented for each running program. 

Figure 28 shows the effect of inlining different types of branches during the 

execution of the Dhrystone benchmark using ARM 32-bit code. The graph shows that 

the inlining of function calls and forward branches seems to have the greatest benefit for 

the benchmark. Generally, inlining as much code as possible into a single trace seems to 

yield the best performance. This is obviously influenced by the nature of the Dhrystone 

benchmark, which iterates frequently over a rather small piece of code. It can also be 

observed that all inlining methods have a similar compilation overhead / speedup ratio. 
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Figure 28 – Influence of inlining different types of branches into a Pearcolator trace 
(Dhrystone Benchmark, one million Iterations, ARM 32-bit code, Int-based memory) 

5.2.5 Profiling and Indirect Jump Prediction 

Inlining function calls yields a significant speedup in Pearcolator. Figure 29 shows 

the benefit of enabling different inlining techniques for Thumb code. When comparing 

this figure with the ARM 32-bit performance in Figure 28, it becomes obvious that, 

while the ARM code receives a major speedup for inlining of function calls, the Thumb 

code does not benefit from this optimisation at all. Looking at the Thumb Assembly 

code, the reason for this problem becomes apparent: Thumb performs all function calls 

as indirect branches. Because the respective branch target has to be known at compile 

time, simple function inlining cannot be performed in Thumb code. 
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Figure 29 – Effect of profiling for different inlining techniques 
(Thumb code, Dhrystone Benchmark, one million Iterations) 

The Pearcolator profiling system can remedy this disadvantage using indirect jump 

prediction. Any execution controller that performs interpretation (i.e. the interpreter 

controller, the predecoding interpreter and the staged emulation controller) also builds a 

profile of branches and their likelihood within the running application. The translator 

can resort to this information to perform indirect branch prediction and to optimize 

branches in HIR in general. As shown in Figure 29, profiling results in a performance 

increase of up to 85% for Thumb code. 

ARM code also benefits from profiling, though to a lesser extend than Thumb. 

Figure 30 highlights that up to 33% of Dhrystone performance are gained by profiling. 
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Figure 30 - Effect of profiling for different inlining techniques 
(ARM 32-bit code, Dhrystone Benchmark, one million iterations) 
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5.2.6 Overall Emulator Performance 

Figure 31 compares Pearcolator’s performance with that of the emulator included in 

the RealView developer suite and with the speed of native execution on an Intel XScale 

IOP80321 processor clocked at 600 MHz. The RealView developer suite can capture 

exhaustive performance data on an ARM processor as well as simulate a memory 

management unit. For the fairness of comparison, these features have been deactivated 

as Pearcolator does not perform full system emulation yet.  

The graphic shows that Pearcolator is up to five times faster than the RealView 

developer suite. In the emulator as well as in Pearcolator, ARM code performs faster 

than Thumb code. However, the performance difference between both instruction sets is 

slightly less in Pearcolator than on the RealView emulator. Nevertheless, Pearcolator is 

still ten times slower than native execution on the XScale processor. Although it is 

difficult to compare different architectures, this hints at the fact that optimal emulation 

performance on Pearcolator is still to be obtained. Although the staged emulation 

system is a step into that direction, it does not yield any performance gains in a steady 

state situation, where Pearcolator’s peak performance is measured. 

1 10 100 1.000 10.000 100.000 1.000.000

Intel Xscale 600Mhz

Pearcolator, ARM Code

Pearcolator, Thumb
Code

RealView, ARM Code

RealView, Thumb Code

Dhrystones / s (log.)

 

Figure 31 – Comparision of Pearcolator performance with a commercial emulator and native 
execution 
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6 Conclusion 

6.1 Conclusion 

In the course of this thesis, the dynamic binary translator Pearcolator was 

reengineered, significantly enhanced and equipped with an ARM backend. Regarding 

the goals that were stated in chapter 1.3, the following observations could be made: 

Regarding goal 1: Pearcolator was redesigned with a modular component 

architecture, which is based upon the generic architecture of a process virtual machine. 

The new design promotes more software reuse within the binary translator, while 

making it easy to enhance it or exchange single components. The diversity of the 

implementations for execution controllers, memory, loaders and operating system 

emulator clearly shows the flexibility of the architecture. Furthermore, Pearcolator was 

enhanced with helpful features, such as support for dynamic linking. 

Regarding goal 2: Generic support for interpreters was added to Pearcolator. 

Building upon the interpreter support, components for naïve interpretation, predecoding 

interpretation and staged emulation were developed and evaluated. Each of these 

components can perform program profiling, without the backend having to offer 

dedicated support for it. During the evaluation, staged emulation was shown to 

significantly enhance Pearcolator’s performance. 

Regarding goal 3: Pearcolator was enhanced with an ARM backend. The backend, 

consisting of a decoder, an interpreter, a disassembler and a translator, has been 

developed with a carefully chosen architecture, which even allows its components to be 

used independently of the Jikes Research Virtual Machine. The resulting software is the 

first open source ARM emulator implemented in Java. It supports both, the ARM and 

Thumb instruction sets, executes ARM Linux as well as semihosted Angel programs 

and has a performance that compares favourably with a commercial ARM emulator. 

Regarding goal 4: The combination of all new components was used to evaluate open 

questions regarding Pearcolator’s performance. By taking advantage of the modular 

architecture, the speedup delivered by different components could be quantified. 

Especially the benefit of using lazy evaluation could be analyzed, thus allowing a more 

intelligent decision of when to use lazy or immediate evaluation in the ARM backend. 
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In summary, the thesis satisfied the originally stated goals and provided valuable 

insights into the design of a dynamic binary translator. Furthermore, it put Pearcolator 

into a good position for future research. 

6.2 Future Work 

Though Pearcolator’s performance has improved, it is still far from the performance 

of the emulated hardware. Therefore, Pearcolator’s performance should be improved 

even further to extend its practical usability. 

Because Pearcolator is based on the Jikes Research Virtual Machine, it would 

obviously benefit from any performance improvements to the latter. Especially the 

simulation of machines with many registers on architectures with less registers is not 

optimally served by the JRVM’s linear scan register allocator. The implementation and 

evaluation of a graph coloring register allocator is a worthwhile goal, which would 

benefit both the JRVM as well as Pearcolator. 

It was further shown that lazy evaluation does not provide a significant speedup in 

Pearcolator. To improve upon that, alternative approaches should be explored. As 

suggested in chapter 2.1.3, using flags that are already set by the host processor instead 

of calculating all flags explicitly, might potentially yield better performance. 

The evaluation also discovered that Pearcolator’s memory implementation has a 

significant impact on the overall program performance. Therefore, implementing 

tailored memory models seems like a promising performance source. Using low-level 

accesses, as done in the JRVM with VM_Magic, might lead to a significant speed up 

for memory interactions. 

On the functionality side, performing full system emulation is a new goal that might 

be pursued. This includes the emulation of additional hardware and interrupts. Though 

the current ARM backend can interpret simple context-switching code, no such 

simulation is performed yet. Furthermore, the implementation of a more complete 

operating system emulation and the addition of different backends offer opportunities to 

enhance Pearcolator’s functionality. 
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8 Appendix 

8.1 Appendix A 
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Predecoded, Threaded Interpretation Binary Translation 

 Control flow  Emulator Code 
 Read Access  Dispatcher Code 
 Write Access  Data  

Table 9 – Overview of different emulator types 
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8.2 Appendix B 

 

Figure 32 – ARM Decoder Decision Tree 
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8.3 Appendix C 

 

Figure 33 – Thumb Decoder decision tree 
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