
University of Manchester – School of Computer Science

Emulating the ARM Architecture

Using a Java Dynamic Binary Translator

A dissertation submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

Author: Michael Baer

Submitted in: 2007

Contents

2

Contents

LIST OF ABBREVIATIONS...4

LIST OF FIGURES...5

ABSTRACT ...7

DECLARATION...8

COPYRIGHT STATEMENT ..9

1 INTRODUCTION..10

1.1 CLIENT..10
1.2 SUBJECT..10
1.3 MISSION..10

2 BACKGROUND ..12

2.1 EMULATION AND DYNAMIC BINARY TRANSLATION ...12
2.1.1 Interpretation ..13
2.1.2 Binary Translation..14
2.1.3 Optimisations in Binary Translation ..16
2.2 THE JIKES RESEARCH VIRTUAL MACHINE ..19
2.2.1 The Java Virtual Machine Architecture ...19
2.2.2 The Jikes Research Virtual Machine..21
2.3 PROCESS VIRTUAL MACHINES ..26
2.4 THE ARM ARCHITECTURE..28
2.4.1 Programmer’s Model ...32
2.4.2 IO and Memory Model ..37
2.4.3 Architecture Versions...38

3 PEARCOLATOR ARCHITECTURE...40

3.1 INTEGRATION INTO THE JIKES RESEARCH VIRTUAL MACHINE..........................40
3.2 PEARCOLATOR CLASS ARCHITECTURE ...42
3.3 INITIALIZATION ...43
3.4 LOADER ..44
3.5 EXECUTION CONTROLLER...49
3.6 DECODER ..51
3.7 OS EMULATION ..55
3.8 PROFILING...58
3.9 MEMORY...59

Contents

3

3.10 FAULTS ...60
3.11 PROCESS SPACE ..61

4 THE ARM EMULATOR ..62

4.1 GENERAL ARCHITECTURE...62
4.2 THE ARM- AND THUMB-DECODER...64
4.3 INSTRUCTION REPRESENTATION ...67
4.4 ARM TRANSLATOR ..68
4.4.1 Scheme Selection ...68
4.4.2 Implementation ..70
4.4.3 Conditional Instructions ...71
4.4.4 Condition code handling ..72
4.5 THE ARM INTERPRETER ...74
4.6 THE ARM DISASSEMBLER ..75
4.7 OPERATING SYSTEM EMULATION ...76
4.7.1 Linux Operating System Support...76
4.7.2 Angel Debug Monitor Support ..77

5 EVALUATION OF THE ARM BACKEND ...78

5.1 FUNCTIONALITY EVALUATION..78
5.2 PERFORMANCE EVALUATION ..78
5.2.1 Execution Controllers...79
5.2.2 Condition Code Evaluation ..81
5.2.3 Memory Model ..82
5.2.4 Inlining Options ...83
5.2.5 Profiling and Indirect Jump Prediction ..84
5.2.6 Overall Emulator Performance ..86

6 CONCLUSION...87

6.1 CONCLUSION...87
6.2 FUTURE WORK..88

7 REFERENCES...89

8 APPENDIX ...94

8.1 APPENDIX A..94
8.2 APPENDIX B ..95
8.3 APPENDIX C ..96

Word Count: 24875

List of TAbbreviationsT

4

List of Abbreviations
Abbreviation Long Form
ABI Application Binary Interface
ARFF Attribute Relation File Format
APCS ARM Procedure Call Standard
BURS Bottom Up Rewriting System
CISC Complex Instruction Set Computer
CMP Chip Multiprocessor
CPI Clocks per Instruction
CPSR Current Program Status Register
EABI Embedded Application Binary Interface
ELF Executable and Linkable Format
GC Garbage Collector
gdb GNU Debugger
GOT Global Offset Table
HIR High-Level Intermediate Representation
ISA Instruction Set Architecture
JNI Java Native Interface
JRVM Jikes Research Virtual Machine
JVM Java Virtual Machine
LIR Low-Level Intermediate Representation
MIR Machine Intermediate Representation
MMU Memory Management Unit
OS Operating System
PIC Position Independent Code
PLT Procedure Linkage Table
RISC Reduced Instruction Set Computer
SMP Symmetric Multiprocessing
SPSR Saved Program Status Register
SWI Software Interrupt
TIB Type Information Block
UML Unified Modelling Language
XML Extended Markup Language
VM Virtual Machine

List of Figures

5

List of Figures
FIGURE 1 – OVERVIEW OF INTERPRETER COMPONENTS ...13

FIGURE 2 - JAVA VIRTUAL MACHINE RUNTIME DATA AREAS ..20

FIGURE 3 – JRVM OPTIMISING COMPILER OVERVIEW ...24

FIGURE 4 – THE JIKES ADAPTIVE OPTIMIZATION SYSTEM...25

FIGURE 5 – COMPONENTS OF A PROCESS VIRTUAL MACHINE...27

FIGURE 6 - ARM REGISTER LAYOUT ..30

FIGURE 7 – THE ARM 3-STAGE PIPELINE ..32

FIGURE 8 – RELATION OF PEARCOLATOR TO THE JIKES RESEARCH VIRTUAL MACHINE40

FIGURE 9 – PEARCOLATOR OVERVIEW AS A UML PACKAGE DIAGRAM43

FIGURE 10 – PERSPECTIVES ON AN ELF FILE...45

FIGURE 11 – DEPENDENCIES BETWEEN ELF SHARED OBJECTS...48

FIGURE 12 – BUILDING DYNAMIC BASIC BLOCKS OF INTERPRETED INSTRUCTIONS................52

FIGURE 13 – TRANSLATION OF A SIMPLE INSTRUCTION SEQUENCE INTO A TRACE53

FIGURE 14 – DEFAULT PEARCOLATOR FILESYSTEM CONFIGURATION...................................57

FIGURE 15 – ENTITY RELATIONSHIP DIAGRAM OF THE PEARCOLATOR PROFILING DATA

MODEL..59

FIGURE 16 - ARCHITECTURE OF THE PEARCOLATOR ARM BACKEND62

FIGURE 17 – COMMUNICATION BETWEEN ARM BACKEND COMPONENTS.64

FIGURE 18 – DATA FLOW DIAGRAM OF THE DECODER CONSTRUCTION PROCESS66

FIGURE 19 – SAMPLE INSTRUCTION DEFINITIONS ...67

FIGURE 20 - CONFLUENCE BETWEEN GUEST AND HOST TRANSLATION FOR THE PEARCOLATOR

BINARY TRANSLATOR...69

FIGURE 21 – INLINING AN INTERPRETER DURING TRANSLATION..69

FIGURE 22 – COMPARISON OF EXECUTION TIME FOR DIFFERENT BINARY TRANSLATION

SCHEMES ...70

FIGURE 23 – TRANSLATION OF A CONDITIONAL INSTRUCTIONS...72

FIGURE 24 – EXECUTION TIME OF DHRYSTONE FOR DIFFERENT EXECUTION CONTROLLERS

AND DIFFERENT NUMBER OF DHRYSTONE LOOPS (ARM 32-BIT CODE)79

FIGURE 25 – EXECUTION TIME FOR DIFFERENT NUMBER OF DHRYSTONE ITERATIONS AND

VARIOUS STAGED EMULATION THRESHOLDS. ...81

List of Figures

6

FIGURE 26 – RELATIVE EXECUTION SPEED OF LAZY AND IMMEDIATE EVALUATION OF

CONDITION CODES FOR DIFFERENT NUMBERS OF DHRYSTONE ITERATIONS82

FIGURE 27 – TRANSLATOR PERFORMANCE FOR DIFFERENT MEMORY MODELS83

FIGURE 28 – INFLUENCE OF INLINING DIFFERENT TYPES OF BRANCHES INTO A PEARCOLATOR

TRACE ...84

FIGURE 29 – EFFECT OF PROFILING FOR DIFFERENT INLINING TECHNIQUES...........................85

FIGURE 30 - EFFECT OF PROFILING FOR DIFFERENT INLINING TECHNIQUES85

FIGURE 31 – COMPARISION OF PEARCOLATOR PERFORMANCE WITH A COMMERCIAL

EMULATOR AND NATIVE EXECUTION ...86

FIGURE 32 – ARM DECODER DECISION TREE...95

FIGURE 33 – THUMB DECODER DECISION TREE...96

Abstract

7

Abstract

Binary translation enables the execution of binary code from one processor

architecture on a different architecture by translating the respective machine code.

Pearcolator is a dynamic binary translator written in Java, which runs on top of the Jikes

Research Virtual Machine. It has been developed by the Advanced Processor

Technologies group, which explores architectures for Chip Multiprocessors (CMP) as

well as appropriate operating system designs and compiler technologies. Pearcolator

allows running legacy applications on the group’s Jamaica processor architecture.

In this thesis, Pearcolator is enhanced with a backend to run programs for the

ARMv4T architecture. Furthermore, it is reengineered to support interpretation,

profiling, dynamic linking and a generic software component model. The interpreter

support is leveraged to implement staged emulation, i.e. the dynamic switching between

interpretation and translation, within Pearcolator.

Using the new Pearcolator component model, the performance impact of different

strategies for program execution, flag management, memory access, code inlining and

profiling were investigated. It has been found that staged emulation yields a three times

performance increase in the best case. Furthermore, it is shown that lazy flag evaluation

is not always the best performing flag emulation strategy. The performance of these

strategies is dependant on the instruction set. Choosing immediate flag evaluation for

ARM code and lazy flag evaluation for Thumb code improves performance by up to

10%. Similarly, the right choices for the memory model and inlining of code during

binary translation deliver a significant speedup. Profiling further increases the

translator’s speed by about 30%.

The thesis produced the first open source ARM emulator written in Java. The final

emulator performance proved to be five times faster than a commercial emulator, but

still several orders of magnitude slower than native execution.

Declaration

8

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

Copyright Statement

9

Copyright Statement

i. Copyright in text of this dissertation rests with the author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author. Details may be obtained from the appropriate

Graduate Office. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions

may not be made without the permission (in writing) of the author.

ii. The ownership of any intellectual property rights which may be described in this

dissertation is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe the

terms and conditions of any such agreement.

iii. Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of the School of Computer Science.

Introduction

10

1 Introduction

1.1 Client

The Advanced Processor Technologies Group within the University of Manchester

conducts research into the design of novel processing architectures. Its focus spans from

software approaches, esp. compiler optimisations, to developing new hardware

architectures.

The Jamaica Project Group is part of the Advanced Processor Technologies Group. It

explores architectures for Chip Multiprocessors (CMP), appropriate operating system

designs and compiler technologies that leverage parallelism within applications. The

group has developed a CMP architecture that is able to run a customized version of the

Jikes Research Virtual Machine.

This thesis has been written in the Jamaica Project Group under the supervision of

Prof. Ian Watson and Dr. Ian Rogers.

1.2 Subject

The thesis focuses on the dynamic binary translator Pearcolator, which is a

development of the Jamaica Project Group. Binary translation enables the execution of

binary code from one processor architecture on a different architecture by translating the

respective machine code. Pearcolator runs on top of the Jikes Research Virtual

Machine, thus enabling the CMP architecture developed by the Jamaica Project Group

to run legacy applications from different systems. This is an important strategic asset, as

it increases the application base and therefore the acceptance of a novel architecture.

Pearcolator supports multiple source architectures through different backends. A

PowerPC and an X86 backend have been developed previously [Burcham2004]

[Matley2005]. However, though both backends used similar techniques, they were

essentially developed as separate applications and made no efforts to unify Pearcolator

into a single system.

1.3 Mission

This thesis aims to improve the architecture of the dynamic binary translator

Pearcolator, to enhance it with a new backend and to investigate possible performance

Introduction

11

gains that have not been analyzed by the previous authors. More specifically, the

following tasks will be accomplished.

1. The Pearcolator architecture will be revised to unify the previous PowerPC

and X86 backends. A template architecture, which promotes the reusability

of components and facilitates the implementation of new backends, will be

developed and implemented.

2. Pearcolator will be enhanced with support for interpreters. This feature will

be driven by a staged emulation framework, which dynamically switches

between translation and interpretation to improve execution performance.

3. A new backend for the ARM processor architecture will be implemented

into Pearcolator. The backend shall support translation and interpretation of

the ARM 32-bit and the Thumb 16-bit instruction set.

4. The new architecture and the ARM backend will be used to evaluate the

performance of Pearcolator. Especially the influence of dynamic switching

between translation and interpretation and the benefits of lazy evaluation of

condition codes will be explored.

The thesis will first introduce the technologies that were used during its realization,

continue by describing the new architecture as well as the ARM backend, which have

been implemented into Pearcolator, and finally investigate the performance of the

system.

Background

12

2 Background

2.1 Emulation and Dynamic Binary Translation

Emulation is the process of implementing the interface and functionality of one

system or subsystem on a system or subsystem having a different interface and

functionality [Smith2005, p. 27]. The term was first used in 1962 in conjunction with

IBM testing the compatibility of their new products with their predecessors. In 1965,

IBM shipped the System/360– it contained the world’s first emulator, which ran

programs that were originally written for the IBM 7070 machine.

According to the above definition, emulation involves two systems1. Commonly, the

system that is being emulated is called the emulation source while the system that the

emulator is running on is called the emulation target. Some authors also use the terms

guest to denote the source and host to denote the target system in conjunction with

binary translation. Usually, source and target refer to two distinct computer

architectures or instruction sets. However, some systems may apply the same techniques

that are subsequently described in cases where source and target refer to the same entity.

[Smith2005, p. 63] calls this same-ISA emulation. For instance, the dynamic binary

optimizer Dynamo, developed by HP Labs, re-translates a binary for the HP PA-8000 or

IA-32 processor while running on the same processor. Though not strictly an emulator,

Dynamo applies optimisations known from emulation to the binary, thereby increasing

execution speed by up to 20% [Bala1999, p.12].

Though various aspects of a system can be emulated, the following paragraphs focus

on the emulation of conventional instruction sets2. Naturally, performance is one of the

primary concerns during emulation. In emulation, execution performance is usually

achieved by weighing off the amount of pre-processing applied to the program and

1 The term subsystem from the above definition is omitted in the remainder of this document and only the

term system is used instead.
2 Virtual instruction sets, such as Java Bytecode, may have special properties that can be exploited to

apply more advanced emulation techniques [Smith2005, p. 28].

Background

13

runtime performance on the host. In that regard, one usually distinguishes interpretation

and translation.

2.1.1 Interpretation

An interpreter is a computer program that analyzes and executes another computer

program at runtime, without translating the interpreted program itself into machine

language. Interpretation usually involves a cycle in which an instruction is retrieved

from the source program, processed and executed before the next instruction is

retrieved. Figure 1 shows an overview of a typical interpreter. The interpreter holds an

image of the source program’s code and data in memory, as well as code to perform the

interpretation and a source context block, which stores the state of the guest that is

usually held in hardware registers.

Code

Data

…

Stack

Code

Data

…

Stack

Program Counter

Condition Codes

Register 0

…

Register n

Program Counter

Condition Codes

Register 0

…

Register n

Interpreter CodeInterpreter Code

Source Memory State Source Context Block

Figure 1 – Overview of interpreter components
Inspired by [Smith2005, p. 30]

Appendix A gives a graphical representation of the most common interpreter types.

A simple decode-and-dispatch interpreter operates by stepping through the source

program, instruction by instruction, reading and modifying the source state according

to the instruction [Smith2005, p. 30]. More specifically, the interpreter runs a dispatch

loop, which uses a switch statement3 to distinguish between different instruction

types. The loop invokes an individual interpreter routine for each instruction type,

3 Or an equivalent structure, depending on the language of implementation.

Background

14

which retrieves further information from the instruction and performs the actual

execution. Though such an interpreter is easy to understand and write, a number of

advanced interpretation techniques have been developed, which lead to improved

performance for certain applications. These techniques are described next.

A common approach to building a high performance interpreter is to append the

branch to the next interpreter routine directly to the end of the each single interpreter

routine. This is equivalent to inlining parts of the dispatch loop into the interpreter

routines. This technique, called threaded interpretation, disposes of the dispatch loop

and thereby also a number of jumps related to it4. Because there are usually patterns in

the instruction stream (e.g. a compare instruction is often followed by a conditional

branch), threaded interpretation also leads to regular execution patterns, which are often

more amenable to branch predictors.

Nevertheless, threaded interpretation still requires some kind of dispatch code, which

will associate a binary instruction with the address of the respective interpreter routine.

Direct threaded interpretation replaces the instructions in the memory image of the

source binary with the address of the respective interpreter routine. Though this requires

some pre-processing, it minimizes the dispatch time upon repeated instruction

execution. A similar, popular technique is predecoding, where pieces of information are

extracted from the instruction and put into more accessible fields [Smith2005, p. 35].

Machine instructions are usually highly compressed and not necessarily memory-

aligned in the manner preferred by the host machine. Predecoding extracts the necessary

information to execute an instruction from its machine representation and stores this

information within memory-aligned, easy accessible structures. The predecoded

information is saved for later reuse and allows skipping the decoding phase on repeated

execution.

2.1.2 Binary Translation

Predecoding translates source instructions into an easily accessible format, but still

uses central interpreter routines to execute the instruction. Binary translation takes the

4 More specifically, the return from the interpreter routine and the return to the top of the dispatch loop.

Background

15

approach further. Instead of translating from source instructions to an intermediate

representation, binary translation describes the process of converting the source binary

program into a target binary program [Smith2005, p. 49]. In essence, binary translation

will create custom target code for each occurrence of a source instruction. However, this

translation is not trivial and poses a number of problems for the translator, the most

common of which will be introduced in the following sections.

A basic problem in binary translation is the code discovery problem. It describes a

translator’s inability to discover which sections of a binary actually contain executable

code and to distinguish this code from data. Even though many binary formats designate

regions containing program code, it is not uncommon for compilers to include

additional (read-only) information within these regions. For instance, the MIPSPro C

compiler inserts a mask before each procedure that denotes, which registers the

procedure saves onto the stack and at which offset from the stack pointer those registers

are saved [Huffman1997, p. 106]. Other compilers may include constant values in literal

pools at the beginning of a function or introduce padding bytes in order to align code

with word or cache line boundaries. Especially when instruction sets have variable sized

instructions, it may be impossible to distinguish data from code by just performing a

static, syntactical analysis of the instruction stream. Similar problems arise in the

presence of indirect jumps, whose targets may be hard to determine.

Indirect jumps also give rise to a second problem, known as the code location

problem. When translating a source binary to a target system, it is almost inevitable that

the target code will reside at a different memory address than it would on the source

system. Reasons for that include (but are not limited to) different memory architectures,

operating system constraints, different instruction sets or simply optimisations

performed by the binary translator that change the code structure. It is the translator’s

task to make sure that target addresses for indirect jumps within the source executable

are fixed up to comply with the memory layout on the target system. A related problem

is self-referencing code [Smith2005, p. 62], where a program reads values from its text

segment. A translator also has to make sure that these reads, which are often used to

access constants, return the expected value.

Depending on the amount of emulation desired, self-modifying code and precise

traps may also cause a problem for binary translators [Smith2005, p. 62]. Self-

modifying code is concerned with programs that write to code regions, thereby altering

Background

16

their behaviour. Precise traps try to simulate a system’s exact reaction to traps, such as

memory faults and hardware or software interrupts. However, both problems are less

prominent in environments where the source operating system shields the program from

traps and prevents the use of self-modifying code.

A common solution to these problems is to use dynamic translation. The idea behind

this technique is to translate the binary while the program is operating on actual input

data, i.e. dynamically and to [..] translate new sections of code incrementally, as the

program reaches them. In contrast, static translation aims to translate a program in its

entirety before beginning emulation [Smith2005, p. 52, 55]. The advantage of dynamic

translation is that it not only allows to lazily discover and translate code as the program

tries to execute it, but also that self-modifying code can usually be handled by triggering

a recompilation once a code region gets modified. However, dynamic translation comes

with a substantial runtime overhead, as the program has to be translated on the target

machine. This also means that code to perform this translation and manage previously

translated code has to be present on the target machine.

2.1.3 Optimisations in Binary Translation

In contrast to interpretation, binary translation opens the opportunity for applying a

whole new set of optimisations to the target code. These optimisations can provide a

vast speed-up, making binary translators a popular option for high-speed emulation. A

few general techniques are presented in this section. Note that most techniques used in

compiler backends and Just-In-Time compilers can also be applied to binary translation.

In fact, Just-In-Time compilation is actually a special case of binary translation

[Altman2000, p. 40f].

One of the most obvious code optimisations during binary translation is to map parts

of the source context block (see section 2.1.1) to target machine registers, thus

providing faster access to the context block and allowing some operations to be

executed without any memory accesses at all. With this technique, the speed of

execution of the translated code [..] starts becoming comparable to the original source

code [Smith2005, p. 52]. Some registers on the target machine are typically reserved for

Background

17

usage by the translator5. If the number of registers available on the source machine is

higher than the number of available registers on the target machine, the mapping of

source to target registers must be carefully performed as to maximize performance.

Previous solutions for register allocation in compilers can be applied to this problem.

Depending on the amount of register pressure6, graph colouring or linear scan register

allocation algorithms are commonly used.

During dynamic translation, instructions are commonly grouped into blocks that are

translated and scheduled together. The number of instructions within a block is an

important performance issue. When the translated blocks are too small, the overhead of

scheduling these blocks increases. On the other hand, when the blocks are too large, the

effort for translation and optimisation increases, while the resuse of translations might

be limited. The natural unit of translation in dynamic binary translators is a dynamic

basic block [Smith2005, p. 56]. A static basic block is a sequence of instructions that

can be entered only at the first of them and exited only from the last of them

[Muchnick1997, p. 173]. Dynamic basic blocks usually start after a branch and follow

the line of execution until a branch is encountered. They do no stop at branch labels and

therefore tend to be larger than static basic blocks. Translation chaining increases the

size of the executed portions even further by chaining several dynamic basic blocks into

a larger trace. A trace is usually not stopped by static but only by dynamic jumps,

because their target address might be hard to determine until the jump is actually

performed. The best size for a trace depends on the actual translator.

Indirect jumps often cause a large evaluation overhead during the execution of

programs that have been binary translated. This is particularly an issue for object

oriented programs, which tend to make heavy use of indirect jumps to implement

polymorphism. Indirect jump prediction or inline caching [Smith2005, p. 66] can

mitigate this problem. This technique uses profiling to gather information about

previously seen target addresses for each indirect jump. The most common jump targets

5 This thesis uses the term “translator” as a short form for “binary translator”. This is in accordance with

contemporary writing on the subject, e.g. [Altman2000].
6 Register pressure describes the inverted ratio of free registers and variables that are to be allocated to

these registers.

Background

18

are included within a trace. At an indirect jump location, the translator inserts code that

checks, if the dynamic jump target is included within the trace. In case it is, it can

directly branch to that target. Otherwise, a default handler is invoked that will return

control to the binary translator.

Finally, another well known source of performance problems are condition codes or

flags, which characterize the result of a previous instruction. Common condition codes

indicate whether an operation produced a carry, the result is zero or if an overflow

occurred. They are frequently tested during the execution of conditional instructions.

There are different approaches to updating the condition codes: some architectures

feature special compare instructions that will explicitly update the conditions codes7,

other architectures implicitly update the condition codes after each arithmetic operation8

and some architecture do not have a distinct set of condition codes at all9. In general,

computing all the condition codes for a given source instruction takes many target

instructions, often more than emulating the rest of the instruction, and it can slow

emulation considerably [Smith2005, p. 71]. The problem is prominent on architectures

that set condition codes implicitly with every instruction. A common solution is lazy

evaluation of condition codes. In that scheme, instead of updating the condition codes at

the same rate as the source architecture, only the operands and the operation that will

produce the condition codes are saved. Instruction that need the condition codes can

then produce them from the saved information. This technique is based upon the

observation that many architectures update the condition codes more frequently than

they are actually read. The usefulness of lazy evaluation depends on the condition code

update/usage ratio of the source architecture as well as on how well the source and

target ISA match in their handling of condition codes. In some situations, it might be

beneficial to always evaluate the condition codes or to use a subset of the condition

codes created by the target architecture [Smith2005, p. 74].

7 For example, the PowerPC ISA provides a special set of arithmetic operations that will also update the

condition codes [Frey2003, p. 26].
8 The Zilog Z80 (which is binary compatible to the Intel 8080) updates condition codes with every

arithmetical operation [Zilog2001, p. 75ff]
9 The MIPSPro architecture does not have a special condition code register, but instead uses compare

instructions that write their results into a general purpose register [Huffman1997, p. 52ff].

Background

19

2.2 The Jikes Research Virtual Machine

2.2.1 The Java Virtual Machine Architecture

The Jikes Research Virtual Machine (JRVM) is a virtual machine targeted at

executing programs for the Java Virtual Machine (JVM) Architecture. Therefore it is

beneficial to introduce this architecture first. The Java virtual machine is the

cornerstone of the Java and Java 2 platforms. [… It] is an abstract computing machine.

Like a real computing machine, it has an instruction set and manipulates various

memory areas at run time [Sun1999, ch. 1.2]. The instruction set of the JVM is called

Java bytecode. The JVM must not be confused with the Java Compiler. The Java

Compiler translates the Java Programming Language into Java bytecodes, while the

JVM executes those bytecodes.

Figure 2 illustrates the general structure of the Java Virtual Machine. The JVM may

execute multiple threads, which share a common memory area but also have separate

per-thread data areas. The JVM is a stack machine and subsequently Java bytecodes are

a zero-operand ISA. This unusual definition10 of the JVM ensures that it does not favour

a specific real architecture.

Each thread consists of a program counter, a stack and a native stack. The program

counter identifies the currently executed bytecode. The stack holds all operands that are

managed by the JVM, while the native stack is available to non-Java code, which can be

called from Java using the Java Native Interface (JNI).

10 The definition is unusual in the sense that most real-world target architectures for the JVM do not

support stack operations, but rather contain a varying number of registers. However, this kind of

definition can also be found in other virtual instruction sets, such as P-Code.

Background

20

HeapHeap

Method AreaMethod Area

Program Counter

Stack Native
Stack

Thread 1
Program Counter

Stack Native
Stack

Thread n

…

Runtime Data

Figure 2 - Java Virtual Machine Runtime Data Areas

Naturally, the stack layout is a crucial part of a stack machine’s definition. The Java

Virtual Machine Stack is organized into frames, one for each method in a program’s call

stack. A frame contains all parameters and local variables of that method, an operand

stack and a reference to the constant pool, which is part of the read-only method area

and maps identifiers to constants [Sun1999, ch. 3.5.4]. Data on the stack is typed. The

JVM distinguishes between primitive and reference types. Primitives types are the

boolean type, numeric types (byte, char, short, int, float, long,

double) and the returnAddress11 type. Reference types denote references to

instances of classes, array types and interfaces on the heap as well as the null

reference, which references no object. In contrast to languages such as C, the size of all

types is well defined. The JVM’s stacks are split into slots of 32 bits, which can contain

most data types12. The operand stack is controlled by the application and contains the

operands for bytecode instructions.

The JVM separates memory into a heap and a method area. The method area works

similar to a UNIX process’ TEXT segment [Sun1999, ch. 3.5.4]. It stores the constant

pool, field and method data and the Java bytecodes, which form the executable part of a

Java program. The heap is a memory area, from which memory for all class instances

11 In contrast to all other JVM data types, the returnAddress type does not correspond to any Java

programming language type [Sun1999, ch. 3.3.3].
12 Except for the long and double types, which occupy two slots.

Background

21

and arrays is allocated [Sun1999, ch. 3.5.3]. The Java bytecode instruction set only

features instructions that allocate objects, but none that deallocate them. Therefore, the

heap is managed by an automatic storage management system (known as garbage

collector) [Sun1999, ch. 3.5.3]. The garbage collector manages object allocation,

movement, deallocation of unused objects and heap compaction. [Sun1999]

intentionally does not specify implementation details about the garbage collector. That

allows different garbage collectors to be used in different environments, while retaining

compatibility to the JVM specification.

Java bytecodes are a mixed stream of instruction bytes and operand data. The

instruction byte identifies the operation that is to be executed. It implicitly defines the

number of operands that are following in the bytecode stream and those that have to be

retrieved from the operand stack. This specification makes for a very compact

instruction set, with a maximum of 256 instructions. However, only slightly more than

200 instruction codes are used and as bytecode instructions are typed, the actual number

of different instruction classes is even lower. In contrast to other ISAs, the Java

bytecode is directly targeted at running an object oriented Java program. Therefore, it is

not surprising to find instructions that access object members, allocate objects, do type

checking or perform synchronization within the instruction set. Finally, the Java

bytecode ISA only allows type-checked memory access. This feature makes Java

bytecodes immune to many of the security problems faced by traditional ISAs.

Efforts to build hardware implementations of the JVM architecture include Sun

Microsystem’s picoJava microprocessor, the ARM926EJ-S processor, which uses the

Jazelle Direct Bytecode Execution engine and other implementations. However, the

emphasis of the JVM Architecture is still on execution on a wide variety of systems

whose ISA is not Java bytecode. Consequently, the JVM Architecture has to be

emulated on these systems.

2.2.2 The Jikes Research Virtual Machine

The Jikes Research Virtual Machine is a Java bytecode Just-in-Time compiler. It

originated in the Jalapeño research project, conducted in 1997 at IBM’s Thomas J.

Watson Research Center. IBM recognized that existing JVMs were not built to cope

with requirements of high-performance servers, such as SMP scalability, continuously

running JVMs, [limited] GC pause times, thread limits and optimisations concerning the

Background

22

use of libraries [Alpern1999, p. 3]. The Jalapeño project was targeted specifically at

server machines and meant to fulfil these requirements. After serving as a research

environment at IBM for many years, the software was released as an open source

project called the Jikes Research Virtual Machine in 2005.

Compared to other virtual machines, the JRVM has two distinguishing features

[Alpern1999, p. 1]:

1. Written in Java

The JRVM is mostly written in Java. Though there are previous references to JVMs

being written in Java13, the JRVM is self-hosted and does not need another JVM to

run.

2. The widespread use of compilers and compiler technologies

Instead of providing both an interpreter and a JIT compiler as in other JVMs,

bytecodes are always translated to machine code before they are executed

[Alpern1999, p. 1]. As servers are the main target of the JRVM, it was anticipated

that programs are long-running [Alpern1999, p. 3], which made forgoing an

interpreter acceptable. Furthermore, the JRVM features two different compilers and

an Adaptive Optimization System (AOS), making it possible to adapt compilation

effort to execution requirements.

Writing a JVM in Java poses two additional challenges: Booting the VM and

accessing the underlying hardware. The first problem is solved by building a bootstrap

that can execute enough of the VM to enable it to compile itself. During the compilation

process, a partially running version of the JRVM is created and an image of that process

is stored into a file (Boot Image). On the target machine, the Boot Image Runner loads

the Boot Image into a new process and branches into it to start execution of the JRVM.

In order to enable low-level hardware access for the JRVM, code replacement is

used. If certain function calls, contained within the VM_Magic class, are encountered

during the compilation, they are replaced with fixed target machine code sequences.

13 For example, see the JavaInJava Project at http://research.sun.com/kanban/JavaInJava.html

Background

23

This pattern allows the JRVM to be written mostly in Java, only resorting to platform-

dependent code, where necessary.

At the heart of the JRVM lie two compilers, the baseline and the optimizing

compiler. As the overall optimization strategy is to compile only [Smith2005, p. 320],

these compilers present different compilation-runtime speed tradeoffs. The baseline

compiler does not use an intermediate language, but rather translates Java bytecodes

directly into equivalent machine code. The resulting code will emulate the Java stack in

memory, bypassing any opportunities for optimisation. This results in fast code

production, but slow runtime performance.

Alternatively, the sophisticated optimizing compiler puts much more emphasis on

producing quality code, sacrificing compilation performance instead. Figure 3 gives an

overview of the different optimisation stages within the optimizing compiler. Initially,

Java bytecode is converted into HIR (High-level Intermediate Representation14), the

first of three internal intermediate representations. Though the JVM architecture defines

a stack machine, all intermediate representations are register-based. Not only do

register-based intermediate representations allow a closer fit to the target instruction set,

but they also facilitate code motion and transformation, leading to better code

optimisations [Alpern2000, in ch. “A Dynamic Optimising Compiler”]. HIR groups

instructions into extended basic blocks. In contrast to regular basic blocks, Jikes’

extended basic blocks are not terminated by method calls or instructions that possibly

throw exceptions. Upon them, simple optimization algorithms with modest compile-time

overheads are performed [Brewer2003, slide 44], including dead-code elimination,

common sub-expression elimination and copy propagation.

14 The expression “high level” refers to the representation having instructions and semantics that are close

to Java bytecode.

Background

24

Bytecode to HIR

Optimization of HIR

HIR to LIR

Optimization of LIR

LIR to MIR

Optimization of MIR

Final Assembly

Profile Information

Frontend

Backend

Specific to target

Java Bytecode

Machine Code

Figure 3 – JRVM Optimising Compiler Overview

Next, HIR is converted to a low-level intermediate representation (LIR). Though

similar in principle, LIR is much more specific regarding JRVM internals. Most HIR

instructions expand into several LIR instructions. For instance, the invokevirtual

HIR instruction, which calls a virtual method, is translated into three LIR instructions:

the first instruction retrieves the class’ Type Information Block (TIB)15 pointer, the

second one locates the address of the appropriate method and the third instruction

performs the actual branch.

It is obvious that the same code is much larger in LIR than it was in HIR. In fact, LIR

can be two to three times larger than corresponding HIR [Alpern2000, in section “Low-

level optimization”]. Due to its compactness and target-platform independency, HIR is

the main optimisation target within the JRVM. However, the breakdown of HIR

instructions into several LIR instructions offers new optimisation opportunities.

Therefore, selected optimisations, such as common sub-expression elimination, are

performed on LIR.

As a final step, the code in LIR is translated into machine intermediate representation

(MIR). MIR is specific to the target machine’s instruction set. For that conversion, a

15 The Type Information Block manages all type information that does not vary with regard to individual

instances. This includes the object’s memory layout, its virtual method table and interface information.

Background

25

dependency tree is created for each basic block, modelling the relationships between the

instructions within the basic block. This dependency tree is passed to a Bottom-Up-

Rewriting-System (BURS) to select the most appropriate machine instruction for a set

of LIR instructions. BURS is based on term rewrite systems, to which costs are added

[Nymeyer1997, p. 1]. An external grammar specification, which details the capabilities

of the target machine’s instruction set, maps sets of LIR to MIR instructions. Similar to

other parser generators, a tool is used that builds a BURS parser from that grammar.

After running the parser on the input LIR, it outputs equivalent MIR for the target

machine.

Finally, live variable analysis is applied to determine the lifetime of registers. This

information is used to drive a simple linear-scan register allocator. The optimizing

compiler adds prologue and epilogues to function calls and, as a last step, outputs

machine instructions for the target machine.

The described process can be performed using three different optimisation levels.

Higher levels use additional optimisations to generate more efficient code, but are also

costly in terms of compilation time. Therefore, it is necessary to determine which

optimisation level to apply to which section of code. The Adaptive Optimisation System

(AOS) within the JRVM performs this task.

Hot Method
Organizer

Method
Samples

Executing Code

AOS Database
(Profile Data)

Controller

Compilation
Thread

Optimizing
Compiler

Runtime
Measurement
System

Collected sample New code

Recompilation
Subsystem

Instrumented/
Optimized Code

Instrumentation/
Compilation Plan

Event Queue Compilation Queue

Figure 4 – The Jikes Adaptive Optimization system
Inspired by [Smith2005, p. 321]

Background

26

Figure 4 given an overview of the Jikes Adaptive Optimization system. Naturally,

the central part of the system is a database of profiling data, which is continuously being

updated during the execution of a program. As Jikes has a non-preemptive scheduling

model that relies on yield points, it is easy for the AOS to add profiling code at these

yield points. The profiling information is available to the AOS as well as to the

optimizing compiler.

The AOS can increase a method’s performance by recompiling it at a higher

optimisation level. It is the task of the Runtime Measurement Subsystem to organize

and analyze the samples retrieved from the profiling activities. Using that data, it can

evaluate how much a method might benefit from recompilation.

The Controller steers the JRVM optimizations. It instructs the measurement

subsystem to initiate, continue or change profiling activities [Smith2005, p. 322].

Furthermore, it chooses the methods which are to be recompiled and also determines the

required optimization level. Those methods are finally forwarded to the Recompilation

Subsystem, which controls the activity of the Optimizing Compiler. After the chosen

methods are recompiled, On-Stack-Replacement16 is used to switch to the optimized

version.

2.3 Process Virtual Machines

Most computer systems are designed to only run programs that have been compiled

for a specific ISA and operating system. One use of emulation in conjunction with

virtual machines is to overcome this restriction. A process virtual machine architecture

is tailored for solving this problem. By using a process VM, a guest program developed

for a computer other than the user’s host system can be installed and used in the same

way as all other programs on the host system [Smith2005, p. 83]. A process virtual

machine runs as a process on top of an operating system and encapsulates a guest

process with a runtime layer, which controls the guest process’ execution and manages

the communication with the host operating system.

16 On-Stack-Replacement is a compiler technique that allows code of a running method to be exchanged

by a newly compiled version.

Background

27

Pearcolator uses the features of the JRVM to build a process virtual machine with

extrinsic compatibility. This means that application compatibility partially relies on

properties of the guest software. More specifically, Pearcolator only provides limited

Operating System emulation, which restricts its support for guest software.

Initialization

Loader

Emulation Engine

Code Cache
Manager

Exception
EmulationOS Call Emulator

Guest Memory Image

Code Cache

Host Operating System

Profile Data

Initialize
Signals Translator

Interpreter

Figure 5 – Components of a process virtual machine
Inspired by [Smith2005, p. 86]

Figure 5 shows the typical components of a process virtual machine:

1. Initialization

The initialization routine sets up the different components of the process virtual

machine and establishes communication with the host operating system. It parses

user arguments and invokes the loader.

2. Loader

It is the loader’s task to read the guest executable and initialize a memory area

containing the guest program’s code and data. This may involve loading and

linking other modules, as required by the guest executable. Note that the guest

executable’s code is not loaded as an executable memory segment, but that it is

rather considered as “input” data for the emulation engine.

3. Emulation Engine

The emulation engine is what drives the guest program’s execution. As the process

virtual machine’s central component, it arranges the collaboration of all other

Background

28

components. It uses binary translation or interpretation to execute the instructions

contained within the guest memory image.

4. Profile data

A process virtual machine may use profile data to optimize the runtime behaviour

of the guest program. Most commonly, profile data is used to switch between

translation and interpretation. During binary translation, it may also be used to

support various optimizations.

5. OS Call Emulator

As the guest program executes an operating system call, the OS call emulator has to

emulate the expected operating system behaviour. Depending on the emulated and

the host operating system, this may involve translating the guest OS call into a host

OS call and marshalling data between both environments. After the call has been

executed, the call’s result has to be translated into the format expected by the guest.

6. Code Cache and Code Cache Manager

Especially when using binary translation, it is necessary to store translated blocks

of code and retrieve them for later reuse. The code cache stores the appropriate

target code while the code cache manager decides which code portions to replace in

case the cache grows too large.

7. Exception emulation

This component manages the emulation of exception conditions. Depending on the

host operating system, this may involve intercepting signals or interrupts from the

host and translating them into the format expected by the guest. Exception

emulation may be tightly coupled to the emulation engine, which must emulate the

precise guest state (including program counter, register values and trap conditions)

when an exception occurs [Smith2005, p. 87].

2.4 The ARM Architecture

The ARM Architecture is based upon a microprocessor developed by Acorn

Computers Limited between 1983 and 1985. This microprocessor, called the ARMv2,

was the world’s first commercial Reduced Instruction Set Computer (RISC). To market

the new processor architecture, ARM Ltd. was formed in 1990 as a joint venture with

Apple Computer and VLSI Technology. Since then, ARM Ltd. has become the

Background

29

industry's leading provider of 32-bit embedded RISC microprocessors with almost 75%

of the market [Allison2002].

RISC is a microprocessor design philosophy that favours a simpler instruction set.

While Complex Instruction Set Computer (CISC) architectures aim to provide powerful

and varied instructions, RISC architectures focus on executing a small set of

instructions. This makes them easier to implement and more amenable to optimization.

RISC architectures often achieve competitive performance through higher clock rates,

lower Clocks per Instruction (CPI) ratios and other advanced features.

RISC designs usually share three common features that are visible from a

programmer’s point of view [Furber2000, p. 24f]:

1. Load-store architecture

Only load and store instructions access memory, while all other instructions work

on register operands. This reduces the complexity of the instruction set.

2. Fixed instruction sizes

In machine code, all instructions are represented by the same number of bits. Fixed

instruction sizes allow a whole instruction to be retrieved by a single memory fetch,

increasing the efficiency of the instruction decoder.

3. Large amount of registers

The original RISC design featured 32 general purpose processor registers, far more

than even modern CISC microprocessors, such as the Intel P4 Architecture, offer.

The vast number of registers reduces the performance penalty that comes with

separate instructions for memory operand fetches.

By constraining the architecture in the described way, RISC designs can be

implemented on smaller die sizes and in shorter time, while still maintaining high

performance due to the ability to hardwire the instruction decoder and pipeline the

instruction execution [Furber2000, p. 25ff].

The ARM architecture is a RISC microprocessor design. It features a load-store

architecture with fixed-length 32-bit instructions and a 3-address instruction format.

However, it is not a pure RISC design. Some popular RISC features have not been

implemented into the ARM architecture: delayed branches, register windows and the

execution of instructions in a single-cycle. Instead, CISC instructions have been

Background

30

included for a small number of commonly used operations, namely multi-register data

transfers and compare-and-swap instructions.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

CPSR

User
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

CPSR

User
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

CPSR

System
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

CPSR

System
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

PC

CPSR

SPSR

Supervisor
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

PC

CPSR

SPSR

Supervisor
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

PC

CPSR

SPSR

Abort
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

PC

CPSR

SPSR

Abort
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

PC

CPSR

SPSR

Undefined
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

PC

CPSR

SPSR

Undefined
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

PC

CPSR

SPSR

Interrupt
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

PC

CPSR

SPSR

Interrupt
R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

PC

CPSR

SPSR

Fast IRQ
R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

PC

CPSR

SPSR

Fast IRQ

Exception Modes

Privileged Modes

Figure 6 - ARM Register Layout
Inspired by [ARM2000, p. A2-4]

As illustrated in Figure 6, the ARM processor has 16 general purpose user-mode

registers, each 32-bit in size. An additional register, the Current Program Status Register

(CPSR) maintains a number of flags:

1. Four arithmetical flags

The negative, zero, carry and overflow flag can be set by arithmetic operations.

Many processors update the flags after each arithmetical operation. On ARM, most

instructions come in two versions, which either do or do not update the arithmetical

flags.

2. Two Interrupt flags

The ARM architecture supports two types of hardware interrupts: normal interrupts

(IRQs) and fast interrupts (FIQ), with the latter taking precedence over the former.

Two bits within the CPSR can be used to mask both types of interrupts.

3. One Thumb flag

Some ARM processors support two instruction sets: the “regular” ARM instruction

set with 32-bit instructions and the Thumb instruction set, which provides

compressed 16-bit instructions. The Thumb instruction set has been developed to

provide better code density. Section 2.4.1 discusses it in more detail. This flag

denotes which instruction set is currently executed.

Background

31

4. Five operating mode flags

The processor’s operating mode determines the layout of the register map,

availability of certain instructions and can influence memory access privileges, if

the system is equipped with a Memory Management Unit (MMU). The ARM

processor distinguishes seven operating modes, all of which are listed in Figure 6.

The undefined instruction and memory abort modes are used when trapping

undefined instructions or illegal memory accesses (prefetch or data aborts). The

undefined instruction trap is also invoked when an instruction for a missing

coprocessor is encountered. Therefore it is commonly used to perform software

emulation in systems where no floating point coprocessor is installed. The interrupt

and fast interrupt modes are entered to handle the respective hardware interrupts,

while software interrupts or system calls are handled in supervisor mode. Interrupts

are only raised between executions of two instructions [ARM2000, p. A1-4], while

aborts can occur during instruction execution, as long as enough state is preserved

to restart the current instruction. System mode is equivalent to supervisor mode, but

permits access to all user mode registers. Finally, user mode offers the least

privileges and is the mode that user processes are usually running in. When an

exception is processed, the processor changes its operating mode accordingly and

executes a branch instruction from the exception vector17 to reach the exception

handler. The exception type serves as an offset into the exception vector. In

addition to the 16 general purpose registers, the ARM processor also contains 15

shadow registers for system-level programming and exception handling. Depending

on the processor’s operating mode, the shadow registers overlay some of the

general-purpose registers. During normal operation, they are not visible to the

programmer. Using shadow registers, the ARM processor saves enough state before

processing an exception to allow execution to be resumed later as if the exception

did not occur. In order to support context switching, ARM also provides special

instructions that allow accessing the user mode registers from privileged modes

[Furber2000, p. 310].

17 The exception vector is commonly stored at the beginning of the memory map. It is expected to contain

branch instructions, though it may, strictly speaking, contain any ARM instruction.

Background

32

The ARM architecture features a three stage instruction pipeline18, which improves

processor performance by overlapping the execution of adjacent instructions. The ARM

pipeline is split into a fetch, decode and execute stage, omitting the operand fetch and

operand store stages from the classical RISC pipeline [Clements1991, p. 279]. At each

pipeline stage, an instruction uses either the memory, the data path or the processor’s

decode logic, as shown in Figure 7. Note that the before-mentioned CISC instructions

may stall the pipeline, as they can occupy the decode and execute stages for more than

one cycle. The ARM pipeline is partially visible to the programmer. An instruction

reading the program counter (PC) register during the execute stage will actually retrieve

the address of the next but one instruction.

Fetch

time

in
st

ru
ct

io
ns Decode Execute

Fetch Decode Execute
Fetch Decode Execute

Figure 7 – The ARM 3-stage pipeline

2.4.1 Programmer’s Model

Most ARM processors support two instruction sets: the regular 32-bit ARM and the

optional 16-bit Thumb instruction set. This section describes the features of the regular

ARM instruction set, unless stated otherwise.

The ARM instruction set is a fixed-length instruction set, with each instruction being

32-bits long. The ARM instruction set can be divided into six broad instruction classes:

• Branch instructions

• Data-processing instructions

18 The ARM9 processor family improves upon the performance of previous ARM processors by using a

five-stage pipeline and simulating a Harvard architecture (using a separate data and instruction cache).

Nevertheless, for backwards compatibility the ARM9 still simulates the “program-visible” parts of the

three-stage pipeline as described here.

Background

33

• Status register transfer instructions

• Load and store instructions

• Coprocessor instructions and

• Exception-generating instructions [ARM2000, p. A1-5].

Almost19 all ARM instructions can be executed conditionally, depending on the

values of the arithmetical flags. The condition is determined by a 4-bit condition field

within the binary instruction encoding and allows

• tests for equality and non-equality

• tests for <, <=, > and >= inequalities, in signed and unsigned arithmetic

• each condition code flag to be tested individually [ARM2000, p. A1-5].

Branches are expensive, because they flush the instruction pipeline. The ARM

instruction set also offers conditional execution of instructions, which does not suffer

from this drawback and is therefore commonly used as a alternative for conditional

branches and to unroll loops. Code 1 illustrates this by comparing two assembly

functions for copying memory regions. The left one relies on conditional branches,

while the right one uses conditional execution to unroll the copy loop. Not only does the

unrolled version execute 25% less instructions than the normal version, its longer

instruction sequence also makes much better use of the ARM pipeline, leading to a

better CPI ratio.
MemMove_Normal
LDR r4, [r1], #1
STR r4, [r2], #1
ADDS r3, r3, #-1
BGT MemMove_Normal

MemMove_Unrolled
CMP r3, #2
LDR r4, [r1], #1
STR r4, [r2], #1
LDRGE r4, [r1], #1
STRGE r4, [r2], #1
LDRGT r4, [r1], #1
STRGT r4, [r2], #1
ADDS r3, r3, #-3
BGT MemMove_Unrolled

Code 1 - Normal and unrolled ARM Assembly code for a Memory Copy operation20. The usage
of conditional execution is highlighted.

19 Architecture versions up to ARMv5 supported conditional execution for all instructions [ARM2000, p.

A3-5]. Enhancements to the ISA have since then occupied the encodings of some conditional instructions.

Background

34

Although the ARM architecture is built upon RISC principles, it provides a high

number of addressing modes, for arithmetic as well as load and store instructions. Table

1 gives an overview of the available addressing modes. Most of this flexibility is

provided by the barrel shifter, which sits on the processor’s B-bus and can perform shift

operations on one of the two ALU operands. Additionally, the barrel shifter can also

provide a carry flag for logical operations that do not usually create a carry (e.g. AND,

OR, etc.).

Instruction Class Addressing Modes
Data Processing Immediate

Register
Logical shift left by register / immediate
Logical shift right by register / immediate
Arithmetic shift right by register / immediate
Rotate right by register / immediate
Rotate right with extend

Load / Store Immediate offset / pre-indexed / post-indexed
Register offset / pre-indexed / post-indexed
Scaled register offset / pre-indexed / post-indexed

Load / Store
Multiple

Increment address before / after transfer (optional write back)
Decrement address before / after transfer (optional write back)

Load / Store
Coprocessor

Immediate offset / pre-index / post-indexed
Consecutive memory reads

Table 1 – ARM Addressing Modes

Adhering to the RISC principles, ARM instructions commonly take three 32-bit

operands. Additionally ARM can access other operand types using powerful load-and-

store instructions. For instance, the single-register load-and-store instructions also

accept other data types, such as signed and unsigned half-words (16 bits) and bytes.

Other data transfer instructions can transfer an arbitrary number of registers (including

the CPSR) in a single instruction.

The exceptional characteristic of ARM coprocessor instructions is that their exact

meaning is not defined by the instruction set, but rather by the coprocessor itself. In the

ARM architecture, coprocessors are supported using a flexible “plug-in” system. Each

coprocessor within a system is assigned a unique id. Coprocessors listen to the

instructions executed by the processor, ignoring all ARM instructions and instructions

20 Both code snippets assume that at least one word is to be copied. The ARM processor also provides

multi-word data transfer operations. For the purpose of this example, these were omitted.

Background

35

for other coprocessors. Once they encounter an instruction that they are supposed (and

able) to execute, they will signal this to the CPU, stalling the instruction pipeline until

the coprocessor instruction has been processed. The ARM ISA provides instructions

that allow the processor to initiate a coprocessor data processing operation, ARM

registers to be transferred to and from coprocessor registers and addresses [to be

generated] for coprocessor load and store instructions [ARM2000, p. A3-25].

Most instructions accept any of the 16 general purpose registers as a target or

operand. Though the registers can be used in such a versatile manner, there are two

hardware restrictions and a couple of software conventions that apply to register usage.

The hardware restrictions are:

1. Register 15 serves as the program counter

Though register 15 (r15) contains the program counter, it can still be used as an

operand, as long as the ARM pipeline behaviour is taken into account. When

reading from r15, the address of the next instruction but one is returned21, while

writing to r15 flushes the pipeline and branches to the written address. Furthermore,

the Branch-And-Exchange instructions (BX and BLX) may also use the first bit of

the new program counter value to determine the target instruction set.

2. Register 14 serves as the link register

Like most instruction set architectures, the ARM architecture provides support for

function calls with an instruction that will branch to a destination address and put

the address of the instruction following the branching instruction into the link

register. The ARM architecture features three different Branch-And-Link

instructions22, all of which use register 14 as the link register. Nevertheless, the

register may be used as a general purpose target and source operand register with

all other instructions.

21 For instructions that occupy any of the pipeline stages for longer than one cycle, the result of reading

from the program counter is implementation defined.
22 Architecture version 5 provides the BL and BLX instruction, the latter of which is available in two

addressing modes.

Background

36

Additionally to these restrictions, there are a number of software conventions, which

are commonly followed. They are captured within the ARM Procedure Call Standard23

(APCS). The APCS defines register usage conventions, procedure call conventions and

the stack layout [STD1998, p. 6-4ff].

The APCS register layout defines the first four registers as “scratch registers”, i.e.

registers that do not need to be preserved by functions. The following six registers (r4-

r9) serve as variable registers. They need to persist across function calls. The remaining

six registers have special uses, though they can be treated as variable registers, if their

special functionality is not required by the program. The stack limit register (r10)

contains the maximum address that the stack can grow to. It can be used to perform

software stack overflow checking. The frame pointer (r11) contains a pointer to the

stack frame (or activation record) of the active function. The stack frame stores a

function’s local variables, return address and parameters passed into the function.

Register 12 contains the Intra-Procedure-call scratch register. The linker is often

required to insert a veneer between a calling and a called function. In dynamic linking,

the veneer may be part of the Procedure Linkage Table (PLT); in static linking it may

be a piece of code that compensates for the ARM BL instruction being unable to address

the whole 32-bit address space [ARM2000, p. A4-10]. The Intra-Procedure-call register

can be used as a scratch register by the linker. Furthermore, it can also be used within a

routine to hold intermediate values between subroutine calls [Earnshaw2006, p. 14].

Finally, the stack pointer (r13) holds the address of the top of the stack. By default, the

APCS uses a full descending stack.

Code density is a measure for the amount of space that an executable program takes

up in memory [Computer Desktop Encyclopedia: Code Density]. In embedded systems,

code density is important to enable low power consumption. Higher code density not

only results in less memory being needed for a particular piece of software, but also

allows significant power savings by reducing cache activity, which can amount to about

22% of the total energy expended by a system [Gupta2002]. RISC systems traditionally

23 See [Earnshaw2006] for a complete definition of the APCS.

Background

37

suffer from lower code density than CISC systems [Dandamudi2005]. The Thumb

instruction set addresses this disadvantage on the ARM architecture.

Many ARM processors incorporate a second instruction set, the Thumb instruction

set. Thumb offers a restricted functional subset of the ARM instruction set with each

Thumb instruction being only 16 bits long. The goal is to provide higher code density,

by limiting instructions to those that are frequently used by compilers.

The Thumb instruction set is not a complete ISA and relies on recourse to the full

ARM instruction set where necessary [Furber2000, p.188]. Apart from certain

subtleties, all Thumb instructions can be translated into equivalent ARM instructions

[ARM2000, p. A6-2]. In contrast to the ARM instruction set, Thumb mostly contains 2-

address instructions that are executed unconditionally. Thumb also hard codes the

APCS assumption of register 13 being the stack pointer into the instruction set.

Furthermore, the accessible register set is restricted to the eight registers for most

instructions. While ARM instructions set the condition codes optionally, Thumb

instruction always set the condition codes when exeucting data processing instructions.

Despite these restrictions, Thumb has an impressive track record. A typical Thumb

program requires 70% of the space of ARM code, while needing 40% more instructions.

Nevertheless, when being run from 16-bit memory Thumb code is about 45% faster

than ARM code. Finally, using Thumb code needs about 30% less energy than

equivalent ARM code [Furber2000, p. 203].

2.4.2 IO and Memory Model

The ARM architecture uses a linear address space of 232 bytes. The word size is 32

bits with the endianess being configurable by a processor input pin. ARM usually

expects word addresses to be aligned at 4-byte boundaries. Some architecture versions

are also able to access 16-bit half-words aligned at 2-byte boundaries. Accesses that are

not aligned according to these rules are called unaligned accesses. The behaviour of an

ARM processor for an unaligned access differs on the specific system and the

instruction used. Generally, the results are either unpredictable or cause an alignment

Background

38

exception24. However, some instructions specifically ignore the bottom address bits or

use them to control a rotation of the loaded data25.

Similar to other RISC processors, ARM does not provide special instructions to

communicate with I/O devices. Instead, it uses memory-mapped I/O, where regions of

memory are overlapped with I/O device registers. To avoid the related caching issues,

the ARM System Control Coprocessor supports marking regions of memory as

uncacheable and unbufferable.

2.4.3 Architecture Versions

Having been developed from 1985, the ARM architecture underwent several

architectural revisions. The very first version (ARMv1) mostly served as an evaluation

architecture for Acorn. It was only used as a second processor to the BBC

microcomputer and manufactured in very small numbers [Furber2000, p. 147].

Nevertheless, it is today known as the first commercially exploited RISC architecture

[Furber2000, p. 147]. The ARMv2 architecture was used in the Acorn Archimedes

computer. As the ARMv1, it only had a 26-bit address bus, but did already feature a

multiplication instruction. The ARM3 chip introduced the ARMv2a architecture

version. It enhanced the previous design with two atomic compare-and-swap

instructions and established a standard for the System Control Coprocessor, now widely

integrated as coprocessor 15 in most ARM systems. Furthermore, it was the first ARM

processor to include a 4kb cache. The following architecture version, ARMv3 was the

first version to use a 32-bit address space. It also introduced new aborts (undefined

instruction and memory aborts) as well as 64-bit multiplication for certain architecture

revisions. The ARMv4 is the oldest version of the architecture supported today [ARM

Website]. Its main innovation was the introduction of the Thumb instruction set in the

ARMv4T architecture revision. As it was the first architecture version that was built

upon a formal specification, certain instruction combinations were deprecated

(specifically reading the program counter in instructions that spend more than one cycle

in the execute pipeline phase). With the release of the ARMv5T architecture, new

24 This only applies to systems containing a MMU capable of checking access alignments.
25 This behaviour is exhibited by the LDR and SWP instructions.

Background

39

instructions were added to the instruction set that were greatly improving compiler

capabilities and the ability to mix and match ARM versus Thumb routines [ARM

Website]. The most recent architecture versions, ARMv6 and ARMv7 are specifically

targeted at advanced applications. They provide Single Instruction Multiple Data

instructions for multimedia applications, the TrustZone security extensions and support

for dynamic compilers.

Pearcolator Architecture

40

3 Pearcolator Architecture

In the previous two years, a PowerPC and an X86 version of Pearcolator have been

produced by other MSc projects. However, these two versions were developed in

separate branches and made no attempt to unify Pearcolator into a single code base. The

new Pearcolator, described in this thesis, implements a common structure and unifies

the PowerPC, X86 and ARM versions. This chapter explains the general structure of the

newest Pearcolator version, how Pearcolator integrates with the JRVM and describes

those new features that are not exclusively related to the ARM backend implementation.

3.1 Integration into the Jikes Research Virtual Machine

Pearcolator is a dynamic binary translator that is built on top of the Jikes Research

Virtual machine. It uses the optimizing compiler within the JRVM to perform the binary

translation, while simultaneously being a Java program that is executed by the JRVM.

Figure 8 illustrates the relationship between Pearcolator and the Jikes Research Virtual

machine.

Source Code

Binary Translator

Target Code

Pearcolator

HIR

create

Java

Java Bytecode

javac

Opt. Compiler Java JIT

Jikes RVM

uses

compile run

Figure 8 – Relation of Pearcolator to the Jikes Research Virtual Machine

Pearcolator’s target architecture is the High-Level Intermediate Representation

(HIR), which is used as an input for the JRVM optimizing compiler. For this reason,

Pearcolator can translate programs to any target architecture that is supported as a

Pearcolator Architecture

41

platform for the JRVM26. At the same time, the translated binary can take advantage of

the advanced optimisation features offered by the JRVM optimizing compiler. Not only

does this increase translation quality, but it also reduces maintenance efforts, as any

advances made in the JRVM are automatically applied to the Pearcolator binary

translator. However, though Pearcolator is a Java program, the high dependency on the

JRVM prevents the binary translator from being run on other virtual machines at the

moment.

Therefore, Pearcolator is not distributed as a standalone Java program. Instead, it

integrates into the JRVM build process and is compiled as part of the boot image. The

boot image is automatically compiled at the highest optimisation level. This allows

Pearcolator to circumvent the startup costs, which Java programs usually have when

first executing on a Just-In-Time compiler.

In order to use the optimizing compiler for non-Java code, Pearcolator will register

“fake”, non-existent Java methods within the JRVM. Each method represents a trace27

and may include one or more source instructions. The method’s name, which needs to

be unique, is derived from the memory address at which the trace’s first instruction

resides. As its only parameter the method receives an object handle, which allows the

trace to access the source state. The source state consists of the source context block as

well as the source memory image. By convention, the method shall return the program

counter value after executing the trace. When the JRVM tries to compile any of these

non-existent methods, i.e. when it tries to compile a trace, Pearcolator intercepts this

request and forwards it to a component that translates the source instructions into

equivalent HIR. This component, which is highly dependent on the source platform, is

called the Pearcolator backend. The translated HIR is further processed by the

optimizing compiler as described in section 2.2.2, finally leading to target machine

code.

26 The JRVM currently supports execution on the IA-32 Linux, PowerPC 32 and 64 AIX/Linux/OS X

platforms. Work on building a port for IA-32 Microsoft Windows is in progress.
27 A chain of basic blocks, see section 2.1.3.

Pearcolator Architecture

42

Within a trace, the binary translator reads parts of the source state into local registers,

performs calculations and writes values from the local registers back into the source

state. All of these operations are performed in the HIR ISA, which provides a set of

high-level primitives to express loads, stores, arithmetical operations and control flow

instructions. Additionally, Pearcolator offers a set of helper routines that create HIR

code for commonly needed functionalities.

Integrating Pearcolator at the HIR-level into the JRVM optimizing compiler has two

important side effects. Firstly, it means that translated code is always compiled at least

at the minimum optimization level. The JRVM baseline compiler, which tries to execute

Java bytecode at the minimum translation cost, is not available to Pearcolator. This

shortcoming will be addressed in later chapters by implementing an interpreter into

Pearcolator. Secondly, the Adaptive Optimisation System can monitor the execution of

translated code, thereby being able to dynamically recompile long-running traces at

higher optimisation levels.

3.2 Pearcolator Class Architecture

The new Pearcolator architecture adapts the generic process virtual machine

architecture described in section 2.3 and shown in Figure 5 (see p. 27). However, as

Pearcolator is a framework for binary translation research and supports multiple source

ISAs, it does not implement the template architecture as classes, but rather as packages

with most packages providing multiple implementations of the expected functionality.

Consequently, the packages communicate using well-defined interfaces. The overall

Pearcolator architecture is shown as a UML Package Diagram in Figure 9.

Pearcolator Architecture

43

pkg Pearcolator Architecture

Initialization

+ DBT_Options
+ Main

Loader

+ ELF_Loader
+ RuntimeLinker

Memory

+ AutoMappingMemory
+ ByteAddressedMemory
+ CallBasedMemory
+ IntAddressedMemory

Execution Controller

+ GnuDebugger
+ Interpreter
+ MixedInterpreterTranslator
+ PredecodingInterpreter
+ Translator

Fault

+ BadInstructionException
+ SegmentationFault

OS Emulation

+ LinuxStackInitial izer
+ LinuxStructureFactory
+ LinuxSystemCalls
+ Filesystem

Decoder

+ CodeCache
+ Disassembler
+ Interpreter
+ Translator

Profiling

+ BranchProfile
+ CallAndReturnAddress
+ ProcedureInformation

ProcessSpace

- environment
- registers

Figure 9 – Pearcolator Overview as a UML Package Diagram28

The general package functions have been discussed in section 2.3. The following

sections introduce the Pearcolator-specific implementations.

3.3 Initialization

The Main class provides an entry point into Pearcolator, which initializes all parts of

the Binary translator. First, DBT_Options uses a parser built upon the state pattern29 to

analyze the command line options that have been provided to Pearcolator. Available

command options set various configuration settings, including:

- The executable file and arguments to the executable,

- Debug levels for different Pearcolator components and

- Execution and profiling strategy.

28 The package diagram only gives an overview about the most prominent components. Package names

have been adapted slightly to be more readable, the original package names naturally follow the Java

package naming convention. See [http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html]

for more details on the Java package naming conventions.
29 The state pattern allows an object to alter its behaviour when its internal state changes [Gamma1994,

p. 305ff]. It is commonly used to process input in environments while making sure that all possible cases

are handled appropriately.

Pearcolator Architecture

44

DBT_Options will parse that information into static, typed variables thereby

validating the user’s input. Then control will be passed to the Loader, which reads the

executable into the memory image.

3.4 Loader

UNIX and UNIX-like systems, including Linux, store executable files in the

Executable and Linkable format (ELF) [Levine2000, p. 206]. The ELF file format was

introduced with UNIX System V Release 4 and quickly became popular among UNIX

systems. Today, ELF is the standard binary format on most Unix-based operating

systems, such as Solaris and Linux [Haungs1998].

Among other features, ELF supports multiple platforms30 and relocation. Relocation

describes the process of adjusting program address to account for nonzero [..] origins

and resolving references to external symbols [Levine2000, p. 149]. It is necessary when

an executable is loaded to a memory address other than zero or when the executable

uses shared libraries. Shared libraries contain code that is not included within an

executable, but is loaded by the operating system once the program executes. Common

libraries, such as the C standard library, are usually provided as shared libraries that can

be used by multiple programs. Relocations that are performed when a program is loaded

are called dynamic linking or runtime linking [Levine2000, p. 205]. In contrast,

executables that do not require dynamic linking are called statically linked.

Though Pearcolator provides facilities to support different binary formats, previous

versions only offered support for loading statically linked ELF executables. However,

most Linux executables are dynamically linked. Therefore, the Pearcolator Loader has

been rewritten to support dynamic linking. To understand the new loader, an overview

of the ELF format is necessary.

The layout of an ELF file is shown in Figure 14. The file starts with a header that

contains a magic number and identifies necessities for reading the file, such as byte

order, architecture and the location of index structures that allow descending further into

30 The ELF format can be read and interpreted on different platforms without having to know the platform

that a specific ELF was originally compiled for. However, this does not imply binary compatibility.

Pearcolator Architecture

45

the file’s structures. ELF files have a [..] dual nature [Levine2000, p. 62ff]. A loader

may treat an ELF file as a sequence of segments that are indexed by the program header

table, while linkers treat the file as a set of sections that are described by the section

header table.

Header

Program Header
Table

Segment #1

Segment #2

Header

Section #1

Section #3

Section #2

Section Header
Table

Section Header
Table

Program Header
Table

Loader View Linker View

Figure 10 – Perspectives on an ELF file

When loading an ELF file, the loader iterates over the entries in the ELF program

header table and maps all loadable segments into memory. Each entry in the program

header table describes a single segment with its type, its position in the file, information

on where the segment expects to be loaded into memory and access descriptor bits, that

describe whether the segment shall be readable, writeable or executable within memory.

The loader reads the data on a segment from the file and writes it to the appropriate

memory location. Some segments may also reserve additional free space at their end.

For instance, this is useful for expressing .bss31 sections without actually wasting

space in the executable.

Sections allow a more fine-grained view of an ELF file. Similar to the program

header table, the section header table describes the location, length, content and other

attributes for the sections in an ELF file. However, sections are usually smaller than

31 The .bss memory section stores uninitialized program data. Therefore, memory needs to be reserved for

it in the executable image, however no initial values for the .bss section needs to be stored within the

image.

Pearcolator Architecture

46

segments. A single segment may contain several sections, as long as they share the

same access rights and are meant to be mapped into memory serially32. Table 2 gives an

overview of sections that appear frequently in executables. Most executables also

contain more than one section of any given type. For instance, a program that requires

initializers to be run on start up defines at least one PROGBITS section with regular code

and one that has to be executed by the loader after mapping the ELF file into memory.

Section type Meaning
PROGBITS Program data or code.
NOBITS No space is allocated for the section in the file itself; however

space for that section shall be allocated in memory when the file is
loaded.

SYMTAB /
DYNSYM

Sections of these types contain symbol tables. The symbol table
for the dynamic linker (DYNSYM) is contained within a separate
section.

STRTAB Contains a string table, which associates names with symbols.
REL / RELA Contains relocation information.
DYNAMIC Holds information for the dynamic linker.
HASH Holds a runtime symbol hash table, which helps in finding a

symbol within the symbol table, given only its name.
Table 2 – Commonly found ELF section types

For shared libraries to work properly, two problems have to be solved: movement of

code and access to functions and variables from another shared library.

Because there are an unlimited number of libraries but only a limited amount of

memory addresses, libraries cannot rely on being loaded at a fixed memory address.

Rather, they are positioned dynamically by the loader, possibly at different addresses

each time they are loaded. Consequently, libraries rely on position independent code

(PIC)33. However, using only PIC may introduce severe restrictions for some

architectures or may even be impossible for others. ELF relocation handles this problem

by allowing non-PIC code to be written as if the library was loaded at address zero and

relying on the runtime linker to correct these addresses if the library is loaded at another

32 This is usually the case as linkers arrange the sections accordingly.
33 Position Independent Code does not use absolute addresses. Instead, addressing is usually performed

relative to the program counter. Therefore, it can be loaded anywhere into the address space [HP1997, p.

260ff].

Pearcolator Architecture

47

address. The tables in the REL and RELA section contain information about which

addresses have to be corrected.

To access addresses (i.e. data and functions) across libaries and executables, ELF

introduces the notion of symbols. An ELF symbol associates a name with a numeric

value, usually an address. Each library can define symbols and access symbols defined

by other libraries. Using special REL and RELA table entries, a library can use the value

of a symbol defined by a different library to change an address within its own memory

image. To avoid name clashes, libraries may define symbols with different visibilities.

Most ELF executables use a Global Offset Table (GOT) in which they store all

addresses that are imported from other libraries. Because the GOT is stored at a fixed

offset from the beginning of the library that contains it, the library can often access the

GOT using PIC. Of course, the GOT needs to be populated by the dynamic linker at

load time34.

The Pearcolator runtime linker starts by determining all required libraries for a given

program. Libraries can also depend on other libraries, leading to a dependency graph35

as shown in Figure 11. Pearcolator traverses the dependency graph in a depth-first

manner, mapping libraries into memory as it encounters them. As a library is loaded,

Pearcolator also parses its Dynamic Section, Symbol Table, String Table, REL, RELA

and Hash Table into Java representations.

34 The GOT also stores function addresses. However, on some systems these are not resolved at load time,

but rather resolved dynamically when the program first calls the respective function. To achieve this, each

GOT entry is initialized with the address of code that will resolve the address of the actual function when

it is first called. After resolving the correct address, the address in the GOT will be replaced. The area of

code containing these initialization functions is called the Procedure Linkage Table (PLT). Using the PLT

may provide better runtime behaviour for functions that are only rarely called, but need to be linked

nevertheless.
35 The dependencies do not form a tree, because there may also be circular dependencies between shared

objects.

Pearcolator Architecture

48

Executable

ld-linux.so libc.so

system.so

Library Dependencies

Executable: ld-linux.so, libc.so

ld-linux.so: libc.so

libc.so: system.so

1. system.so 2. libc.so 3. ld-linux.so 4. Executable

Initialization Order:

Figure 11 – Dependencies between ELF Shared Objects

In a second stage, relocations are performed for each library. A library’s REL and

RELA tables contain a list of all relocations that are to be performed for that library.

Each entry in the REL and RELA tables contains a relocation type, which defines what

kind of relocation shall be performed, where it is to be performed and which symbols

needs to be resolved to find the relocated address. During relocation, unresolved

symbols from one library may be resolved by finding an appropriate global symbol in

another library.

The meaning of relocation types are platform specific – therefore, each Pearcolator

backend must provide an implementation of relocation types that are only found on the

respective platforms. Pearcolator uses the template method pattern36 to implement this

requirement efficiently. A general dynamic linker implementation, which performs the

loading, mapping of memory, parsing of the above-mentioned structures and controls

the workflow is provided. Each platform can derive from this implementation to provide

the platform-specific relocation behaviour.

Some executables require that data within read-only segments, which are loaded into

read-only memory pages, is relocated. For that reason, Pearcolator removes such

protections during the relocation process and restores them after all relocations have

been performed.

36 The template method pattern provides a generic implementation of an algorithm, but leaves the

individual implementation of certain phases to subclasses [Gamma1994, p- 325ff]. In the given context, it

is the translation algorithm that is provided as a template, while some of the architecture specific phases

have to be implemented by individual backends.

Pearcolator Architecture

49

Finally, libraries may specify initialisation functions, which are to be called before

the library can be used properly. These functions are supplied as a function pointer in

the DT_INIT section or as a list of function pointers in the DT_INIT_ARRAY section.

Before the initialisation function of a library is called, the initialisation functions of all

libraries that it depends on must have been called. However, no order is defined for

circular dependencies [SCO2003, ch. 5]. Again using the template method pattern, the

Pearcolator dynamic linker passes the addresses of the initialisation functions in a

suitable order to the platform-dependant linker part for execution.

3.5 Execution Controller

Execution Controllers are vaguely similar to the Emulation Engine shown as part of

the generic process virtual machine architecture in chapter 2.3. Execution controllers

implement different strategies to drive the components in the Decoder package (see

section 3.6). Pearcolator separates control of the decoders from the actual decoding and

execution functions to allow easy implementation and testing of new execution

strategies. Execution controllers choose whether to use interpretation or translation and

generally also determine the pace of the execution. That makes them suitable for

implementing different caching strategies or switching between interpretation and

translation.

The new Pearcolator version implements the decoders shown in Table 3. An

evaluation of their performance may be found in chapter 5.2.1.

Execution Controller Implemented Strategy
Interpreter Performs simple interpretation.
Profiling Interpreter Performs runtime profiling during interpretation.
Predecoding Interpreter Performs threaded, predecoded interpretation.
Profiling Predecoding Interpreter Adds runtime profiling to the threaded,

predecoding interpreter.
Dynamic Translation Performs binary translation.
Staged Emulation Optimizes execution time by switching between

binary translation and interpretation.
GNU Debugger Waits for an instance of the GNU Debugger to

connect to Pearcolator and lets the debugger
determine the execution speed.

Table 3 – Execution Controllers implemented in Pearcolator

The interpreter controller interprets every instruction in the source binary separately.

It does not perform any caching, but rather decodes each instruction every time it is

Pearcolator Architecture

50

encountered. Depending on a configuration option, branch profiling may be performed

during interpretation using the profiling interpreter.

This predecoding interpreter controller implements a Java version of a threaded,

predecoding interpreter (see section 2.1.1). As Java does not support arbitrary control

transfers (GOTO etc.), this implementation creates dynamic basic blocks of interpreted

instructions that are delimited by conditional branches. Any dynamic basic block

containing a minimum number of instructions is cached. If the dynamic basic block is to

be executed again (i.e. its first instruction is to be executed), it is retrieved from the

cache. This saves decoding time and can speed up interpretation considerably. An

additional variant of this execution structure exploits the fact that dynamic basic blocks

are delimited by conditional branches to perform runtime profiling.

The dynamic translation controller only uses binary translation and collects

translated instructions into traces. The size of a trace depends on a number of

configuration options. It can vary from single instruction traces, with a separate trace for

each instruction, to traces that incorporate a whole program. The backend, which does

the actual translation, may use the branch profiling information collected by Pearcolator

to optimise the trace structure. Naturally, the dynamic translation controller will use a

code cache to store previously translated traces and retrieve them, when appropriate.

The staged emulation controller tries to optimize execution times. It generally uses

the predecoding interpreter controller, but switches to binary translation if it assumes

that a dynamic basic block might benefit from that. In taking this decision, the

controller takes the size of the block as well as its execution frequency into account.

The GNU debugger controller is a controller that does not strive to achieve high

execution speeds. Instead, it opens a TCP/IP port and waits for an instance of the GNU

debugger37 to connect to Pearcolator, as if it was a remote system. Gdb uses the gdb

Remote Serial Protocol38 to communicate with remote stubs, remote gdb instances

commonly used to debug embedded systems. This execution controller can read the

37 The GNU debugger is a popular debugging tool that is maintained as part of the GNU project.
38 See the gdb user manual, appendix D for a comprehensive definition of the Remote Serial Protocol.

The manual is available at http://sourceware.org/gdb/documentation. Last checked 30th July 2007.

Pearcolator Architecture

51

Remote Serial Protocol and steer the execution of the source program accordingly,

allowing the user to debug it in gdb as if it was running on a real, remote target

machine.

3.6 Decoder

The decoder package hosts templates for three components: a disassembler, an

interpreter and a translator. It also provides definitions, helper classes and interfaces

that allow these components to interact with other parts of the Pearcolator architecture.

All three components are optional, though any working Pearcolator backend shall at

least implement one interpreter or translator39. The execution of these components is

controlled by an ExecutionController instance.

A disassembler is a software that converts machine language back into assembly

language [Computer Desktop Encyclopedia: Disassembler]. For Pearcolator, it is an

optional feature that may be implemented by a backend to facilitate debugging guest

code. The Disassembler interface can be used to disassemble a stream of instructions,

while the Disassembler.Instruction interfaces defines an object representation

for a single disassembled instructions. Some parts of the

Disassembler.Instruction interface deliberately share the same signature with

functions in Interpreter.Instruction – this allows an easy implementation of a

combined interpreter and disassembler.

Similar to the disassembler, the interpreter and its interfaces Interpreter and

Interpreter.Instruction define the necessary methods for implementing an

interpreter in Pearcolator. The interface definition has two important properties: It

defines an object representation of a single instruction and it allows querying whether

an instruction always has a fixed successor instruction (i.e. whether it is not a

conditional or indirect jump). Though none of these features is strictly necessary to

create an interpreter, they do leverage Pearcolator’s functionality as a research platform.

Defining an object representation for an instruction allows separating the decoding from

39 At the moment, all Pearcolator backends implement a translator and a disassembler, while only the

ARM backend also features a working interpreter.

Pearcolator Architecture

52

the execution of instructions. Instruction caching and asynchronous decoding are two

possible uses for this property. The second property, querying for a fixed successor

instruction, allows interpreter instructions to be combined into dynamic basic blocks,

within which all instructions have to be executed once a block’s first instruction is

executed. Figure 12 illustrates the opportunities that this opens for the interpreter:

instead of dealing with single instructions, predecoding interpreters can work on blocks

of instructions, with only the top address being stored for each block. Furthermore, this

scheme allows conditional branches to be easily and efficiently profiled without

requiring specific support by the backend. The profiling predecoding interpreter

controller (see chapter 3.5) implements this functionality.

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 5

Instr. 6

Instr. 7

Instr. 8Instr. 8

Block 1
(0x0 – 0x0c)

Block 2
(0x10 – 0x18)

Block 3
(0xd4 – 0xd4)

Figure 12 – Building dynamic basic blocks of interpreted instructions

The translator is the most complex part of Pearcolator. Though the translator is

heavily dependent on the specific backend, the decoder package provides a

comprehensive framework which provides not only methods for commonly used

functionality, but rather a translation scheme with template methods that support the

implementation of that scheme. The following paragraphs describe the translation

scheme. Of course, the package’s interfaces also allow the implementation of other

translation schemes.

Pearcolator defines a template for the translation process using the template method

pattern. In order to build a trace, the backend needs to implement a small set of

functions that are called by the class CodeTranslator, which controls the translation

process and also includes a large number of methods that help in translating common

instructions.

The most important function that the backend has to implement translates a single

given instruction into the trace. CodeTranslator calls this function to construct the

Pearcolator Architecture

53

trace incrementally. Figure 13 shows the basic structure of a trace. Every box on the

right side of Figure 13 corresponds to a HIR basic block. The trace starts with a

prefill section, in which trace-wide initialisations are performed and code is created

that fills symbolic registers from the source context block. Each instruction in the

instruction sequence is translated into its own HIR basic block. More complex

instructions (e.g. instruction 3 in Figure 13) may also be translated into more than one

basic block. In order to end a trace, the address of the instruction following the most

recently executed one is put into a symbolic register, which will be returned from the

trace. A finish block finally writes the values of the symbolic register back into the

source context block and ends the trace’s execution. When the trace is ended, registers

that have been filled in the prefill phase but not been used will be removed from

both, the prefill as well as the finish block.

2: Complex Instr. (2)

2: Complex Instr. (1)

Prefill

1: Instruction

Finish

Return address of 4

Instruction Sequence Translated Trace

3: Instruction

2: Complex Instruction

1: Instruction

4: Instruction

3: Instruction

Figure 13 – Translation of a simple instruction sequence into a trace

Branches are a vital part of most ISAs and therefore need to be supported

accordingly. A trace can include static40 as well as dynamic41 branches and calls42. In

40 Static branches are branches whose target address can be deducted at statically at translation time, i.e.

the target address does not depend on the contents of a register or memory location. Note that conditional

branches do qualify as static branches, as long as the target address of the conditional jump is known at

translation time.
41 Dynamic branches are all branches that are not static branches.
42 In this context, a branch is a change of control flow to a different address, while a call is a branch that

writes the address of the instruction following the branch into a link register.

Pearcolator Architecture

54

order to insert a branch into the trace, the translator calls one of the appendBranch

functions offered by CodeTranslator. However, the framework will not insert code

to perform the branch immediately. Instead, after translating all instructions into the

trace, the framework will examine which branch target addresses have been compiled

into the trace so far. For branches whose targets are already part of the trace, a trace-

internal branch, which is directly expressed in HIR, is inserted. If a branch target is not

part of the trace, the branch target can either be translated into the trace or a code stub

can be inserted instead of the branch, which will end the trace and return the address of

the branch target instead. An overridable function is invoked to determine whether a

specific branch target should be included within the trace. By default, any branch target

address will be included into the trace, except when

• the target address is the start address of another trace that is contained within

the code cache,

• the branch is a call or return instruction or

• including the branch target might inflate the current trace to an undesired

size.

Including the target of a dynamic branch into the trace is more difficult, because the

target address is generally not known at translation time. However, dynamic branches

are commonly found in modern programs43, which is why it is desirable to be able to

include them. Pearcolator achieves this aim by using Software Indirect Jump Prediction

[Smith2005, p. 66f]. This scheme queries the running program’s profile for all locations

that the program previously branched to from a dynamic branch. This enables

Pearcolator to build an HIR switch statement, similar to the one seen in Code 2. Notice

how the statement’s default branch handles unknown branch target addresses.

43 For instance, C++ compilers may use dynamic branches to implement calls to virtual member

functions.

Pearcolator Architecture

55

switch (branch_target) {
 case 0x0004: goto LABEL_0x0004
 case 0x0012: goto LABEL_0x0012
 default:
 <Add missing branch target to program profile>
 <End Trace and return address branch_target>
}

Code 2 – Including a dynamic branch target into HIR

Not all Pearcolator functionality has to be expressed directly using HIR. System

calls, interactions with the profiling systems or complex mathematics may be performed

using calls to Java libraries. The previous Pearcolator design only allowed calls to

specific, preselected functions. The new Pearcolator framework allows calls to arbitrary

functions to be planted within a trace. This allows calling any Java library to execute

complex instructions. The framework can even insert code that will call the interpreter

to execute a particularly complex instruction instead of translating the instruction into

HIR. System calls, which are described in chapter 3.7, are also handled by calling into

regular Java code.

Some backends use different forms of laziness to increase the performance of

translated code. Laziness refers to not performing a particular operation unless its result

is actually needed. For instance, in the X86 architecture any of the four registers EAX,

EBX, ECX and EDX contain a number of sub-registers that can be referenced as if they

were unique registers [Burcham2005, p. 15]. However, changing a sub-register also

alters the parent register and vice versa. Therefore, the X86 backend aims to lazily

propagate changes between the parent- and sub-registers only if necessary. Pearcolator

provides architectural support for lazy evaluation, though the specifics of resolving one

lazy state into another have to be implemented by the backend.

Finally, the decoder package also implements a cache for translated traces and a

Utility class that helps performing commonly needed translation functions, such as

extracting bits and bit sequences from integral data types or calculating overflow and

carry for subtraction and addition.

3.7 OS Emulation

Pearcolator performs complete OS emulation [Altman2000 p. 44]. Therefore, it first

captures all calls into the operating system and then emulates the expected OS

functionality. Most ISAs provide special instructions to perform calls to the operating

Pearcolator Architecture

56

system (system calls). Pearcolator intercepts system calls and emulates them using Java

code. As of now, Pearcolator primarily emulates Linux system calls, though the ARM

backend also includes support for emulating the proprietary Angel Debug Monitor,

which serves as a monitor on ARM embedded systems.

The communication between a program and the operating system is defined as part

of an Application Binary Interface (ABI). The ABI defines how the operating system is

entered by a user-mode program, as well as how and in which order parameters and

return values are exchanged. An ABI is platform specific. In order to use the same code

to handle Linux system calls across multiple architectures, it is necessary to abstract the

details provided by the ABI. Pearcolator defines the LinuxSystemCallGenerator

interface to transfers this information. By implementing it, any architecture can use the

system calls already provided by Pearcolator.

Linux often uses specific structures to communicate with user programs. Instead of

marshalling a structure member-by-member to a user program, Linux only returns the

address at which the structure has been put into memory and expects the structure’s

layout to be defined implicitly by the architecture that the operating system is running

on. Different architectures have different data alignments and different data type sizes.

While previous Pearcolator versions did not tackle this problem, the new version

introduces a generic, architecture-independent way of defining Linux system structures

and transferring them to memory. Code 3 shows how a mixture of native Java types and

Java annotations is used to express the layout of a Linux structure44 in Java. In order to

transfer the defined structure from and to the source memory image, the base class

Structure uses reflection and the interface StructureAdapter to marshal single

fields between the structure and the memory. StructureAdapter defines storage

details, such as data type sizes and alignments. Different architectures must implement

their own instances of StructureAdapter to be able to use the structures predefined

in Pearcolator. Furthermore, the annotation system could be enhanced to express that a

structure’s member is only defined on certain architectures, thus enabling an even more

44 As Linux is written in C, its structures are defined in C as well.

Pearcolator Architecture

57

general use of the predefined structures. An abstract factory pattern45 is used to create

actual instances of the structures.
struct stat64 {
 unsigned short st_dev;
 unsigned long __st_ino;
 unsigned long long st_ino;
}

class stat64 extends Structure {
 @_unsigned short st_dev;
 @_unsigned long __st_ino;
 @_unsigned @_long long st_ino;
}

Code 3 – Example for the definition of a Linux structure (left) in Java (right)

In Linux, everything is a file. Therefore, Pearcolator needs a filesystem model that

can cope with that complexity, while still being easy to implement. The new Pearcolator

offers interfaces that try to fulfil this requirement: FileProviders allows querying

files by path and Files are object representations of a single file.

TempFileSystem

ReadonlyFileSystem

HostFileSystem

NullFileSystem

Access to /tmp

Fail access

Read host files

Fail access

Accessing /tmp?

Write Access?

File present on host?

All other accesses

Figure 14 – Default Pearcolator Filesystem configuration

A Pearcolator filesystem is represented by a number of FileProviders, which are

created by a Factory Method46. The FileProviders use the chain of responsibility47

pattern to forward the request to open a file until a FileProviders either opens the

file and returns its object representation or rejects opening the file (and stops forwarding

45 An abstract factory pattern is a creational pattern that abstracts the instantiation of objects

[Gamma1994, p. 87ff].
46 A factory method is similar to an abstract factory in that it hides the instantiation of objects. However, a

factory method is specifically targeted at letting subclasses provide an implementation of an interface

[Gamma1994, p. 107ff].
47 In the Chain of Responsibility pattern, a request is passed along a chain of objects, until an object is

found that handles the request [Gamma1994, p. 223ff]. In the given case, it allows sophisticated file

system structures to be composed from simple primitives.

Pearcolator Architecture

58

the request). The chain of FileProviders is delimited by a Null Object48. Table 4

gives an overview of the FileProviders currently supported by Pearcolator and

Figure 14 shows an example configuration of a file system, which uses the described

components to allow write access to the temporary files and read access to any file on

the host.

File Provider Usage
HostFileSystem Tries to open a file from the host’s file system.
ProcFileSystem Simulates the Linux /proc file system.
ReadonlyFileSystem Denies all write requests to a filesystem.
RemappingFileSystem Maps all access to a path A on the guest to a different path

B on the host.
TempFileSystem Allows write access only to the host’s temporary storage

location.
NullFileSystem Null object that allows no file to be opened.

Table 4 – File Providers supported by Pearcolator

Similarly, the uniform File interface hides the differences between regular files,

sockets, standard input/output and other files (such as those provided by the Linux

/proc filesystem).

3.8 Profiling

Pearcolator provides general facilities to perform branch profiling. Using the

interpreter interfaces described in chapter 3.6, Pearcolator can automatically profile the

dynamic behaviour of a program during interpretation. Furthermore, backends can

notify the profiler about the location of procedure call and return instructions that are

encountered either during interpretation or translation. This additional information

enables the profiler to anticipate the original structure of the program.

The profiling information is primarily used by the translator during the construction

of traces. It allows better estimation of method boundaries and software indirect jump

prediction to be performed. Furthermore, the translator tries to mirror a program’s

structure when building traces. This leads to traces whose structure is close to high-level

language methods and can therefore reduce duplication of code segments into several

48 The Null Object pattern is a popular alternative to using specific values for non-present objects (like

null in Java) [Woolf1996]. Instead, an empty interface implementation is provided.

Pearcolator Architecture

59

traces. The profiling information is also used to guide the translator’s inlining decisions.

Finally, having some information on the structure of a program can be used to

asynchronously pre-translate parts of the program, which might be beneficial in a

multiprocessor environment.

Profiling information can either be collected at run time or loaded from an XML file

when Pearcolator starts. Figure 15 shows the data model used by the XML file.

Figure 15 – Entity Relationship Diagram of the Pearcolator Profiling Data Model

3.9 Memory

The Pearcolator memory model is defined by the Memory interface. Signed and

unsigned 8-bit, 16-bit and 32-bit quantities can be read and written using this interface.

The interface further provides methods that will insert an HIR representation of a

memory access into a trace, either by directly inlining the appropriate HIR instructions

or by planting a call to the memory interface. This shall allow efficient memory

accesses within traces. The interface also assumes that memory is divided into pages,

with each page having any combination of the permissions read, write and execute.

Current implementations of the Memory interface are shown in Table 5.

ByteAddressedMemory and IntAddressedMemory both implement pages as

arrays of primitive data types and only create a page if it is actually mapped by the

running application. Therefore, Pearcolator can simulate big memory spaces by

allocating memory pages lazily. The size of a memory page and the endianess of the

Pearcolator Architecture

60

memory can be configured for each memory implementation. When a page is mapped

from a file, both implementations support using the java.nio package functions, with

which Java enables a technique for mapping files into memory equivalent to the Linux

mmap system call.

By providing further decorators, like AutoMappingMemory, the Pearcolator

memory model can easily be enhanced to support memory-mapped IO devices or

programmable Memory Management Units (MMU). An evaluation of the different

integer- and byte-based memory implementation can be found in chapter 5.2.3.

Implementation Usage
CallBasedMemory An abstract base class for new memory implementations,

which performs memory accesses during the execution of
traces by using calls to the Java functions in the Memory
interface.

ByteAddressedMemory Organizes memory pages as arrays of bytes. Two
implementations, for little and big endian, are available.

IntAddressedMemory Organizes memory pages as arrays of integers. Two
implementations, for little and big endian, are available.

AutoMappingMemory A decorator49 that will prevent faults on accesses to
memory pages that were not previously mapped. Instead,
an empty page is mapped into memory and the access is
repeated.

Table 5 – Implementations of the Memory interface

3.10 Faults

As Pearcolator is written in Java, it seems natural to use Java exceptions as a means

of fault handling. To enforce uniform interfaces, Pearcolator provides a package with

exception classes for the most common faults. Backends can either use these classes

directly or inherit from them, if more detailed fault information is required. Currently,

faults for invalid memory accesses (Segmentation Fault) or Instructions (Bad

Instruction Fault) are available.

49 The Decorator Pattern is a structural software design pattern. It attaches responsibilities to an object

dynamically, thus providing a flexible alternative to subclassing [Gamma1994, p. 139ff]. It is used here,

because it easily allows modifying the behaviour of any memory implementation to map unmapped pages

lazily when they are first accessed.

Pearcolator Architecture

61

3.11 Process Space

The final component within the Pearcolator architectural model is the Process Space.

This class works as a communication hub, combining the previously described

components. Furthermore, it manages the source context block, i.e. the registers, flags

and other state information particular to the source architecture. Pearcolator can emulate

several processes at the same time by instantiating different Process Spaces for each of

them.

During the initialisation process, it is the Process Space that decides which

Pearcolator components to use in order to execute a program. This includes deciding on

an appropriate memory model, selecting an operating system emulation and initializing

the source context block. The Process Space can use information provided about the

executable by the loader during this stage.

The ARM Emulator

62

4 The ARM Emulator

4.1 General Architecture

The ARM backend for Pearcolator emulates the ARMv4T architecture. This chapter

describes its implementation.

The X86 and PowerPC backends perform instruction decoding, disassembling,

translation and interpretation50 in a single class hierarchy. This approach has several

disadvantages, most noticeably that the architecture is hard to maintain and that the

whole backend heavily depends on the JRVM, thus making it unsuitable for execution

in another Java Virtual Machine. The ARM backend seeks to mitigate this problem by

taking an architecture-driven approach to designing the backend, putting an emphasis

on portability and loose coupling of the backend’s components.

ARM
Disassembler

ARM
Disassembler

ARM
Interpreter

ARM
Interpreter

ARM
Translator

ARM
Translator

Instruction RepresentationsInstruction Representations

Visitor Pattern

DecoderDecoder

ARM Thumb

DecoderDecoder

ARM Thumb

Abstract Factory

Figure 16 - Architecture of the Pearcolator ARM backend

Figure 16 shows a high-level abstraction of the ARM backend architecture. It

consists of five major components, each with individual requirements:

1. Decoder

The instruction decoder maps a binary instruction representation to a logical object

representation. Because the ARM architecture defines two instruction sets, the 32-

bit ARM instruction set and the compressed Thumb instruction set, the decoder

50 Fully working interpretation is not available for the PowerPC Pearcolator backend.

The ARM Emulator

63

must be capable of decoding both instruction sets. Furthermore, as it is frequently

invoked, an efficient decoding algorithm has to be implemented.

2. Instruction Representation

An instruction representation is an object representation of a decoded instruction. It

shall hide the details of the binary instruction format and allow typesafe access to

the options included in an instruction. Instruction representations are the output of

the decoder. Instructions that belong to the same instruction class share a common

instruction representation. ARMv4T processors contain a special decoder which

transforms a Thumb instruction into an equivalent ARM instruction. Following this

approach, the ARM backend will use the same instruction representation for both,

Thumb and ARM instructions. This greatly simplifies the development and testing

effort required in the translator, interpreter and disassembler.

3. ARM Translator

This component translates the ARM instruction representations into HIR for the

JRVM optimizing compiler. As such, it is the only component that is not

compatible with other Java Virtual Machines. Naturally, a major concern for this

component is the generation of correct and efficient HIR code.

4. ARM Interpreter

The ARM interpreter is responsible for interpreting instruction representations. In

contrast to the translator, it works independently of the Java Virtual Machine that it

is running on. Nevertheless, it also seeks to provide efficient and correct emulation

of ARM instructions.

5. ARM Disassembler

The disassembler is responsible for converting an instruction representation, as

created by the decoder, into a human-readable string. It is possible to invoke the

disassembler from the interpreter or translator (for a currently processed

instruction), without invoking the decoder again.

The ARM Emulator

64

The backend components use two patterns as their means of communication: An

abstract factory pattern and the visitor pattern51. As illustrated in Figure 17, a

component that wants to process an ARM instruction first calls into the decoder. Next,

the decoder calls into a, possibly custom, abstract factory to create an instruction

representation, which is then returned to the caller. Finally, the visitor pattern can be

used to access the instruction representation after it has been returned.

Decoder

Visitor

Abstract
Factory

ADD

…

LDR

ADD

…

LDR

InstructionInstruction

visit_add()
visit_ldr()

4: visit(this)4: visit(this)

1: decode1: decode

2: create instr.2: create instr.

3: return3: return

5: visitor.visit_ldr(this)5: visitor.visit_ldr(this)

Figure 17 – Communication between ARM backend components.

The following section will give details about the implementation of the described

components.

4.2 The ARM- and Thumb-Decoder

As the ARM instruction set has developed over time, its binary instruction encodings

are not as regular as those in other processor architectures. Therefore, building an

instruction decoder manually is error-prone and might possibly yield an inefficient

implementation. To avoid these problems, emulator-builders can resort to software that

51 The Visitor pattern decouples the implementation of a data structure from operations that are performed

upon that data structure. It allows defining a new operation without changing the classes of the elements,

on which it operates [Gamma1994, p. 331ff].

The ARM Emulator

65

automatically builds a decoder from an instruction set specification52. However, these

tools are often specific to a target environment53.

The ARM backend generalizes upon the idea of building a decoder from an

instruction set specification by using data mining instead of a specialised application to

build the decoder. Data mining is a problem solving methodology that finds a logical or

mathematical description […] of patterns and regularities in a set of data

[Decker1995]. In contrast to other decoder-builders, the output of a data mining

application is not an implementation of a decoder, but rather its implementation-

independent description.

More specifically, classification will be used to derive rules that identify the

appropriate instruction class from a binary instruction. When the instruction class is

known, its fields can be extracted and an appropriate instruction representation can

easily be created.

Building a decoder using data mining applications has two advantages. First, the

decoder is proven to be correct and second, data mining applications strive to generate

models of minimal complexity, leading to an efficient decoder description.

Figure 18 shows a data flow diagram of the decoder construction process. The

process is split into three phases: instruction set specification, data mining and decoder

implementation.

52 For example, the UQBT Binary Translation Framework uses the New Jersey Machine Code Toolkit to

build a decoder from a syntactic architecture specification. [UQBT: Adaptable Binary Translation at Low

Cost, p. 62].
53 For instance, the New Jersey Machine Code Toolkit can build decoders in C and Modula-3. [New

Jersey Machine Code Toolkit, Reference Manual, p. 2]

The ARM Emulator

66

Figure 18 – Data flow diagram of the decoder construction process

During the instruction set specification phase, each instruction’s encoding (as

specified in [ARM2000, p. A3-2ff]) is mapped to an instruction representation. An

instruction representation provides an object-oriented way of accessing the fields and

options of an instruction.

In the Data Mining phase, a data mining application’s classifier is used to maps an

instruction’s binary encoding to its instruction representation. The Weka Data Mining

Application54 is well respected in the scientific data mining community and provides

various implementations of classification algorithms. Therefore it has been selected for

this task. A classifier can output its result in different formats. For this application, a

decision tree seems the most appropriate format, because it can easily be implemented

in Java code. Furthermore, in contrast to decision rules, the decision tree avoids

expressions being evaluated multiple times. These two factors contribute to an efficient

implementation.

Weka requires an input file in the Attribute-Relation File Format55 (ARFF). The

instruction set map is converted into the ARFF format using a custom tool. Before its

conversion, the instruction set map used wildcards for bits that are irrelevant in

54 See http://www.cs.waikato.ac.nz/ml/weka. Last checked on 26th July 2007.
55 See http://www.cs.waikato.ac.nz/~ml/weka/arff.html for a formal specification. Last checked on 26th

July 2007.

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/~ml/weka/arff.html

The ARM Emulator

67

determining the appropriate instruction representation. During the conversion, these

wildcards are expanded to create the set of all possible instruction encoding that share

the same instruction representation. In cases where two definitions are clashing, the

converter gives precedence to the more specific definition, which contains less

wildcards. For example, given the set of definitions in Figure 19, the second definition

would take precedence of the first one.

Instruction Class Bit 27 26 25 24 23 22 …
1 Data Processing 0 1 x x x x …
2 Undefined Instruction 0 1 1 0 x 0 …

Figure 19 – Sample Instruction Definitions

Though decision trees are generally well suited for these kinds of problems, they

cannot exploit special features of the target language. For example, in Java it is possible

to transform a comparison of multiple bits into a, possibly more efficient, switch

statement. For the data mining application, each bit would be considered a separate

attribute and therefore, would be evaluated individually. To allow the data mining tool

to join adjacent bits, all combinations of three to four adjacent bits were duplicated into

individual attributes during the conversion process. The data mining application can

then consider these bits as a single attribute when creating the decision tree.

Finally, the decision tree output by the data mining application can trivially be

transferred into a Java program. The said process is repeated for both, the ARM and

Thumb instruction sets, creating an individual decoder for each. Both decoders are

encapsulated within the ARM Decoder component. The images in Appendix B and

Appendix C show the implemented decision trees.

4.3 Instruction Representation

The ARM backend relies on intermediate instruction representations for the

communication between the decoder and the other components. An instruction

representation is a class whose properties publish a binary instruction’s type, options

and operands, therefore hiding the details of the binary encoding. Furthermore, as most

Thumb instructions have equivalent ARM instructions, instruction representations also

make the difference between Thumb and ARM instructions transparent to the interpreter

and translator. Finally, Pearcolator’s Interpreter.Instruction interface assumes

that a decoded instruction can be cached in memory (see section 3.6). Having instances

of instruction representations easily allows doing that.

The ARM Emulator

68

Table 6 shows the different instruction representations. They have been chosen to

mirror similar operand numbers, options and semantics. Differences in addressing

modes are hidden by the OperandWrapper class, which can represent immediate

values, register values with optional offsets as well as the results of shifting a register by

another register or an immediate operand.

Data Processing 64bit Multiplication Move to CPSR/SPSR
Single Data Transfer Atomic Swap Coprocessor Data Transfer
Block Data Transfer Branch Coprocessor Data Process.
Software Interrupt Branch and Exchange Coprocessor Reg. Transfer
32bit Multiplication Move from CPSR Undefined Instruction

Table 6 – Instruction representations within the Pearcolator backend

4.4 ARM Translator

4.4.1 Scheme Selection

The ARM translator converts an instruction representation into HIR, which is then

passed to the JRVM optimizing compiler. This process is controlled by the Pearcolator

framework, as described in section 3.6. The ARM translator mostly needs to implement

functions that access the source context block and features that translate a single

instruction, given its address.

The traditional approach to writing a translator component, taken by all previous

Pearcolator backends, is to extract the different fields from a binary instruction and

write functions that create equivalent HIR code. For the ARM backend, the binary

instruction would be exchanged for an instruction representation obtained from the

ARM decoder. However, the unique situation that a binary translator is using the same

facilities to perform binary translation and to execute its own code allows another

translation approach, which had not previously been explored.

As Figure 20 illustrates, there is an equivalence between the way Pearcolator and the

guest program are compiled by the JRVM. In the previously described translation

scheme, the translator class itself would first be converted from Java bytecode into HIR,

which is then compiled and executed. When the translator code is executed, it again

generates HIR from the source program, which will be processed in the same way by

the JRVM.

The ARM Emulator

69

ADDS r1, r2, #3
Translator

translate()

HIRHIR

AssemblyAssembly

Bytecode

HIR

Assembly

Jikes RVM
Opt. Compiler

Bytecode

HIR

Assembly

Bytecode

HIR

Assembly

Jikes RVM
Opt. Compiler

Figure 20 - Confluence between guest and
host translation for the Pearcolator Binary

Translator

Translator

translate()

HIR

HIR

HIR

HIR

HIR

HIR

HIR

HIR

Opt. Compiler

Interpreter

execute()

execute()

execute()

execute()

execute()

execute()

execute()

execute()

execute()

Inlining

Figure 21 – Inlining an interpreter during
translation

However, instead of going through the compilation process twice, it would be

possible to make the translate method from Figure 20 behave like an interpreter.

Consequently, the call to the translate method itself could be inlined into the trace,

effectively replacing the translator with an interpreter, whose code is inlined and

optimized. Figure 21 visualizes that scheme.

In order to investigate the feasibility and performance of this new approach, a

vertical prototype56 was developed. The prototype implements a subset of the ARM 32-

bit instruction set, which allows it to run a loop with multiple data processing

instructions within the loop. Several assembly programs that exercised the loop were

created, each varying the number of instructions within the loop body or the number of

iterations over the loop.

Figure 22 compares the execution times for running the said loop in different

configurations. The loop has been benchmarked using both the traditional and the new

translation scheme. It is apparent that the new scheme performs worse in all scenarios.

This can be attributed to the lack of specialised optimisations applied to it – especially

reads and writes from registers are highly optimised during the traditional translation,

but less so in the newer scheme. However, more importantly it can be observed that,

within the new scheme, increasing the number of loop iterations by 100 leads to a

performance loss of about 40%, while only doubling the number of instructions incurs a

performance penalty of 150%. It can be deduced that the compilation time required in

the new scheme is far higher than in the traditional one. This was partially expected,

56 A vertical prototype is a program in which a specific subset of features is fully implement, thus

allowing their feasibility or to investigate design alternatives.

The ARM Emulator

70

because the new scheme heavily relies on the optimising compiler to remove the

inefficiencies of the interpreter code. Manual investigation of the created HIR confirms

that the amount of generated HIR per instruction is much higher with the newer scheme.

Though it is expected that the runtime performance of the new scheme could still be

improved, the required compilation time would still remain an issue. As performance is

one of the primary goals of binary translation, it has been decided to implement the

ARM translator backend using the traditional scheme. However, it would still be

possible to implement the new translation scheme as a separate execution controller

within the new Pearcolator architecture.

Overall execution time for different example traces

0,00

5,00

10,00

15,00

20,00

25,00

30,00

5.000 50.000 500.000

Loop iterations

Ex
ec

ut
io

n
tim

e
(s

) Current Structure,
128 instr./loop
New Structure,
128 instr./loop

Current Structure,
256 instr./loop
New Structure,
256 instr./loop

40%40%

150%150%

128 256 128 256 128 256

Figure 22 – Comparison of execution time for different binary translation schemes

4.4.2 Implementation

The general Pearcolator translation process has been outlined in chapter 3.6. Detailed

descriptions of the translation process for two specific backend have been published

previously [Matley2004, ch. 3 & 4], [Burcham2005, ch. 62]. Therefore, this report

focuses on the differing specifics in the ARM translator.

The PowerPC and X86 backend translate instructions from their binary

representation. The ARM backend provides a looser coupling of its components by

separating the decoder from the translator, changing its input to instruction

representations instead of binary instructions. Additionally, only one translator had to be

implemented for ARM and Thumb code.

The ARM architecture allows using the program counter as a source or target register

in many instructions. However, the ARM translator does not treat the program counter

as a distinct register. Instead, it handles accesses to it depending on the access type.

The ARM Emulator

71

Instructions that write into the program counter register are treated as indirect branches,

allowing the branch optimisations illustrated in Code 2 (see p. 55) to be applied.

[ARM2000, p. A9-4 & A9-10] propose two instructions that are to be used to return

from a procedure call57. Though both are writing into the program counter register, the

translator actually treats them as procedure returns instead of indirect branches.

Similarly, most instructions may use the program counter as a source operand.

Reading the program counter exposes parts of the ARM pipeline, which is in the

execute stage when registers are read. Therefore, the program counter always points at

the next but one instruction (8 bytes from the current instruction in ARM mode, 4 bytes

from it in Thumb mode). Also, a few instructions mask the first bits of the program

counter, when it is accessed. The translator converts reads from the program counter to

HIR constants, resolving the complexities of reading the program counter at compile

time. This enables faster program execution and removes the need of managing a

program counter register during execution. Furthermore, the optimising compiler has

been enhanced with a new optimization phase, which performs constant-folding58 and

propagation59 on HIR expressions involving constants60. It allows calculations involving

the program counter –which are often used to read from the text segment– to be

evaluated at compile time.

4.4.3 Conditional Instructions

ARM instructions can be executed conditionally. However, most instructions are

actually executed unconditionally. Therefore, the translator has been designed so that

every instruction is first translated as if it was unconditional. For conditional

instructions, the translator inserts a prologue before the instruction, which conditionally

57 The MOV pc, lr instruction and a block data transfer that contains the program counter in its

registers list.
58 Constant folding refers to the evaluation at compile time of expressions whose operands are known to

be constant [Muchnick1997, p. 329].
59 Constant propagation is a transformation that, given an assignment x ← c for a variable x and a

constant c, replaces later uses of x with uses of c as long as intervening assignments have not changed the

value of x [Muchnick1997, p. 362].
60 This work has mostly been implemented by Dr. Ian Rogers.

The ARM Emulator

72

skips the instruction code. Due to this technique, the single translation functions do not

need to implement conditional execution features.

1: Check condition 0x0

5: Instruction 0x45: Instruction 0x4

2: Branch 0x02: Branch 0x0

3: Instruction 0x163: Instruction 0x16

4: Instruction 0x204: Instruction 0x206: Instruction 0x86: Instruction 0x8

1: Check condition 0x0

3: Instruction 0x43: Instruction 0x4

2: Instruction 0x02: Instruction 0x0

4: Instruction 0x84: Instruction 0x8

Conditional Instruction
with a single successor

Conditional Branch
with multiple successors

Figure 23 – Translation of a conditional instructions

Figure 23 compares two different translations for a conditional instruction. The left

graphic shows a simple conditional instruction (block 1 and block 2), which does not

change the program flow. Here, the successor of the conditional instruction (block 3)

will be executed independently of whether the conditional instruction will be executed.

The right picture in Figure 23 shows a conditional branch instruction. Depending on

whether the branch is executed or not, the conditional instruction has a different

successor (either block 3 or block 5 in the graphic). In this situation, the translator has

the option to include either both or only one of the successors within the translated

trace. The ARM translator uses runtime profiling information to take that decision. The

successor that is more likely to be executed is translated first and the basic blocks within

the trace are ordered to speed up the execution of that successor. If the trace has not

grown over a threshold when one successor has been translated, then the less likely

successor instruction is inserted into the trace as well. If no runtime profiling

information is present, the translator assumes that an instruction is likely to be skipped.

4.4.4 Condition code handling

Emulation of processor flags is one of the most expensive operations during binary

translation [Smith2005, p. 71]. Therefore, the ARM backend supports a pluggable

condition code handling architecture, which allows the easy implementation and

evaluation of different algorithms. Two different algorithms have been implemented:

lazy evaluation and immediate evaluation of condition codes.

Lazy evaluation of condition codes only calculates the value of a flag, when it is

actually read. For each instruction that modifies the flags, code is created which copies

The ARM Emulator

73

the instruction’s operands into special laziness registers. The flags themselves are not

evaluated. When a flag is read, the translator inserts code that reads the stored operands

and creates the requested flag value from them. With each translated instruction, the

translator stores a lazy state, which describes which flags are valid or invalid and which

kind of operation stored its operands within the laziness registers. The lazy state is used

to insert the correct code when required to resolve the flag values from the laziness

registers.

Flag laziness lowers the runtime overhead, when many flags have to be updated with

each instruction. This is convenient for architectures like the X86, which has six flags

that are updated by nearly every instruction with each update requiring various masks

of the EFLAGS register [Burcham2005, p. 41]. However, lazy evaluation also leads to

multiple translations of the same source code with different lazy states. If a conditional

instruction changes the lazy state, its successor instruction has to be translated twice –

once for the situation in which the conditional had been skipped, and once if it had been

executed. This leads to a similar situation as depicted on the right side of Figure 23,

where blocks 3 and 5 would be separate translations of the same source instruction with

different lazy states.

The ARM architecture defines four arithmetical flags, which are only updated if an

instruction specifically requests so. Therefore, another approach to flag management is

to evaluate flags immediately, thus saving the work of translation code pieces multiple

times.

Instead of reserving three HIR registers for flag laziness61, immediate evaluation uses

four Boolean registers, with each register containing the state of one flag. Each flag is

updated immediately when an instruction changes it. At first glance, this solution might

seem more inefficient than using flag laziness. However, it provides several advantages:

61 Because some ARM instructions do not set all condition codes, up to three lazy registers are required to

hold all operands that are necessary to resolve all flag values.

The ARM Emulator

74

1. Use of dead code elimination

As each flag is stored within a separate register, the JRVM optimizing compiler can

perform dead code elimination on a single-flag basis. This means that only flags

that are actually going to be read will be evaluated.

2. Use of fewer registers

Lazy evaluation requires three lazy registers and up to four Boolean registers to

hold flags that have already been evaluated. In contrast, immediate evaluation only

needs four registers to hold the actual flag values. Even when the evaluated flags

are stored within a bit mask, lazy evaluation would still need four registers (three

lazy registers and one for the bitmask), while immediate evaluation would need

only one register.

3. Fast condition code production

It takes up to three HIR instructions to fill the laziness registers with the operands.

Additionally, further instructions are necessary to resolve the lazy state, once a flag

needs to be read. Immediate flag evaluation can evaluate most flags using a single

HIR instruction, while saving the three instructions that fill the laziness registers.

4. Avoidance of multiple translations

With flag laziness, it is very common to have multiple translations of code sections.

In particular, loops usually have to be translated twice, leading to a larger

translation overhead. The flag handling in the ARM backend makes multiple

translation of a single piece of code for different lazy states unnecessary.

From the previous reasons, it is not obvious which condition code handling algorithm

leads to better runtime performance. Therefore, both systems have been implemented in

the ARM backend. An analysis of their performance can be found in chapter 5.2.2.

4.5 The ARM Interpreter

Pearcolator provides general interfaces, Interpreter and

Interpreter.Instruction, for the implementation of an interpreter. These

interfaces and their cooperation with different Execution Controllers are described in

chapter 3.6. The ARM interpreter is implemented in the spirit of these interfaces and

following the aims for the general backend model, which are described in chapter 4.1.

The ARM Emulator

75

As with the translator, the interpreter uses the ARM decoder to transfer a binary

instruction into an instruction representation. It supplies a custom abstract factory to the

decoder, which creates special instruction representations that implement the

Interpreter.Instruction interface. The interpreter then performs its emulation

based upon those instruction representations. As within the translator, this allows a

single interpreter to be used for ARM and Thumb instructions. Furthermore, the

interpreter works independently of the ARM translator, making it the one of the first

Java-based, open-source ARM emulators62.

The Pearcolator Interpreter.instruction interfaces assume that a predecoded

representation of an instruction can be obtained from the interpreter, possibly to save

the instruction for future reuse. The ARM interpreter leverages that concept by pre-

calculating fixed values and offsets, where possible, when the pre-decoded

representation is created. For example, the ARM architecture contains several types of

block data transfer instructions, which can all be expressed as a single block transfer

instruction by using different offsets from the start and end address. The ARM

interpreter pre-calculates these offsets when a pre-decoded representation is created,

thereby avoiding that calculation when the same instruction is executed again.

4.6 The ARM Disassembler

The ARM disassembler converts an ARM instruction into a human-readable string

representation. Using a visitor pattern, the ARM disassembler can be applied to any

instruction representation created by the ARM decoder. If a binary instruction is to be

decoded, the disassembler invokes the decoder first to create an appropriate instruction

representation and then transfers this representation into a string. The disassembler is a

debugging component, which is used within the ARM interpreter and translator, as well

as indirectly by the generic Pearcolator components.

62 At the time of writing, no other open source ARM emulator written in Java could be discovered.

The ARM Emulator

76

4.7 Operating System Emulation

The ARM backend supports the generic Linux emulation provided by Pearcolator

and can emulate the platform specific ARM Debug Monitor “Angel”, which is supplied

with ARM Development Boards and therefore commonly used.

4.7.1 Linux Operating System Support

Pearcolator provides generic support for emulating a Linux 2.6 environment.

However, different Application Binary Interfaces (ABI) are defined for different

platform-ports of the same Linux version. In order to hide a platform’s ABI details, the

backend has to implement the LinuxSystemCallGenerator interface. The interface

provides generic ways of accessing system call numbers, arguments and return values.

A complete documentation of the ARM ABI can be found in [LeeSmith2005]. It

defines many important issues for compilers, such as structure layouts and data type

sizes. There are two fundamentally different ABI definitions for the ARM architecture:

the newer Embedded ABI (EABI) and the previous legacy ABI. The Pearcolator

backend provides support for both ABIs.

In order to implement the LinuxSystemCallGenerator interface, details about a

platform’s system call conventions are most important. Table 7 exemplifies the

differences in the system call conventions between the two ARM ABIs. While the

legacy ABI used to put the system call number into the SWI (Software Interrupt)

instruction, the new EABI puts it into register r7. This yields better performance, as the

OS is not forced to re-read a SWI instruction to extract the system call number.

Furthermore, 64-bit parameters, which do not fit into a single register, were just split up

into the next available register pair in the legacy ABI. The EABI further demands that

such a register pair starts with an even register number, possibly leaving registers

unused. Both ABIs return values in register r0.

 Embedded ABI location Legacy ABI location
System call instruction SWI #0 SWI #SYSCALL_NO
System call number Register r7 Part of SWI command
Parameter #1 Register r0 Register r0
Parameter #2 Registers r1-r2 Registers r2-r3
Return value Registers r0 Registers r0

Table 7 – Differences between the embedded and legacy ABI for a system call of the form:
int func(int, long)

The ARM Emulator

77

The ARM backend provides two adapters63, which implement the two ABIs.

Information in the ELF binary is used to distinguish between both formats and

instantiate the correct adapter.

4.7.2 Angel Debug Monitor Support

Angel is an ARM debug monitor, which is supplied with ARM Development Boards.

Using this debug monitor, a program can be transparently executed on an emulator, a

development board with a serial connection to a debug host or independently on the

target platform. Using a technique called Semihosting, Angel allows functions that are

not available on the specific ARM platform to be executed on the host. Commonly, this

includes features such as user input and output or access to files on the host.

Angel Debug Monitor 1.2 provides system calls that perform file and console I/O,

provide access to timers and to the execution environment64. The Angel Debug ABI has

a few simple conventions:

• The software interrupts SWI 0x123456 (from ARM code) or SWI 0xab

(from Thumb code) trigger a system call.

• The system call number is provided in register r0.

• A single parameter can be provided in register r1. Depending on the system

call, this is either an argument value or the address of a memory structure,

which contains all required arguments.

• The system call’s return value is put into register r0.

Using these conventions, all Angel system calls as documented in [STD1998, p. 13-

77ff] have been implemented.

63 The Adapter Pattern is a structural software design pattern. It converts the interface of a class into

another interface, [which] clients expect [Gamma1994, p. 139ff].
64 This includes accessing the program’s command line, heap size and exiting the program.

Evaluation of the ARM backend

78

5 Evaluation of the ARM backend

The ARM backend was evaluated for functionality as well as performance. The

functionality evaluation tests the compliance of the implementation with the ARM

architecture specification, while the performance evaluation analyzes the speed of the

backend.

5.1 Functionality Evaluation

The functionality of the ARM backend was constantly evaluated during the

development. This was done using a set of regressions tests, which were extended

whenever emulation for new ARM instructions was implemented. Constantly testing a

growing set of functionality lead to a fast development cycle and ensured the quality of

the final implementation. Table 8 provides an overview of the different programs that

were used as regressions tests and of the areas that they tested.

Platform Program Tested Area
Linux Linux Logo • Linux system calls

• /proc file system access
• libc support

Linux Hello World
(dynamically linked)

• Linux system calls
• libc support
• Dynamic linking

Semihosting Dhrystone Benchmark
(ARM & Thumb version)

• Performance testing
• ARM & Thumb ISA

Semihosting nbench Benchmark
(ARM & Thumb version)

• Performance testing
• ARM & Thumb ISA
• File access
• Floating point math

Semihosting ARM Monitor Program • Context switching
Semihosting Custom Test Program • Rarely used instructions

Table 8 – Regressions Tests during the development of the ARM backend

5.2 Performance Evaluation

This section evaluates the performance of the new Pearcolator components and the

ARM backend. The evaluations are performed using the following configuration:

• Intel Pentium 4 HT processor, clocked at 3 GHz with 1 MB Level 2 Cache

• 512 MB RAM

• SUSE Linux 10, Kernel version 2.6.18.2-34 (for Pearcolator)

Evaluation of the ARM backend

79

• Windows XP, Service Pack 2, Build 2600.xpsp_sp2_qfe.070227-2300 (for

the ARM RealView Developer Suite)

Unless stated otherwise, the Dhrystone benchmark is used in the following

benchmarks. It has been compiled to an ARM program from version 2.1 of the C

benchmark sources using the compiler included in the ARM RealView Developer Suite

v. 2.2 at optimisation level 3 with inlining disabled. Performance in the Dhrystone

benchmark is measured in Dhrystones/s with higher numbers meaning a better

performance.

It is well understood that the Dhrystone benchmark is affected heavily by compiler

quality [York2002]. Nevertheless, it is suitable for benchmarking Pearcolator, because it

is only compiled once to a binary and is not used to compare different architectures.

Furthermore, the Dhrystone benchmark has also been used to evaluate the X86 and

Pearcolator backends [Burcham2005] [Matley2004]. Therefore, it seems appropriate to

use the same benchmark to enable comparability. For any presented value, the

benchmark has been run three times and the results were averaged.

5.2.1 Execution Controllers

0.1

1

10

100

1000

5000 10000 20000 40000 80000 160000 320000 640000 1000000

Dhrystone Iterations

E
xe

cu
tio

n
tim

e
(s

, l
og

ar
ith

m
ic

)

Interpreter Predecoding Interpreter Translator Staged Emulation

Figure 24 – Execution time of Dhrystone for different Execution Controllers and different
number of Dhrystone loops (ARM 32-bit code)

Chapter 3.5 described how the new Pearcolator architecture supports execution

controllers to perform different emulation strategies. Figure 24 gives an overview of the

execution time that different execution controllers need to run a varying number of

Dhrystone iterations.

Evaluation of the ARM backend

80

The naïve interpreter is almost always the slowest execution strategy. For large

number of Dhrystone iterations, it is about fourteen times slower than the translator.

Only at less than ten thousand Dhrystone iterations does its speed become comparable

to that of the translator. At 5,000 Dhrystone iterations it is about twice as fast as the

translator.

Using the predecoding interpreter strategy improves upon the previous interpreter

results. It executes the Dhrystone benchmark more than twice as fast as the naïve

interpreter for most measured Dhrystone iterations. Compared to the translator, it is

three times faster at its best performances and only six times slower at its worst.

The translator provides satisfactory performance when a piece of code is executed

multiple times. Therefore, its performance quickly increases with the number of

Dhrystone iterations. Though it starts as the worst-performing execution strategy at five

thousand Dhrystone iterations, it outperforms the naïve interpreter at ten thousand

Dhrystone iterations and the predecoding interpreter at twenty thousand iterations. In

the long run, it provides the best steady-state performance of all execution controllers.

The Staged Emulation execution controller bridges the performance gap between the

predecoding interpreter and the translator. It starts off by executing instructions using

the predecoding interpreter. However, it keeps track of how often a dynamic basic block

is invoked. Once a block has executed more than ten thousand instructions, the block is

compiled using the translator. Future invocations of that block then execute the binary

translated version. Staged emulation leads to a smooth transition between predecoding

interpretation and translation. This makes it the fastest execution controller in all test

cases, setting a new Performance mark for Pearcolator.

The threshold of ten thousand instructions has been validated experimentally. Figure

25 visualizes the performance implications of running the Dhrystone benchmark using

Staged Emulation with different thresholds and for different numbers of Dhrystone

iterations.

Evaluation of the ARM backend

81

0.00

5.00

10.00

15.00

20.00

25.00

5 10 20 40 80 16
0

32
0

64
0

12
80

25
60

52
10

10
00

0
20

00
0

40
00

0
80

00
0

16
00

00

Staged Emulation threshold for switching to translation

E
xe

cu
tio

n
tim

e
(s

)

10000 Iterations 100000 Iterations 500000 Iterations 1000000 Iterations

Figure 25 – Execution time for different number of Dhrystone iterations and various Staged
Emulation thresholds.

5.2.2 Condition Code Evaluation

Though the X86 and PowerPC Pearcolator backends were both developed to use flag

laziness, neither of the authors tested its effectiveness separately. [Matley2004 p. 67f]

only documents performance increases in his second Pearcolator implementation that he

also attributes to flag laziness – however, that version also included many other

improvements, such as the introduction of traces. The ARM backend is the only

Pearcolator backend that supports both, lazy evaluation and immediate evaluation of

condition codes. Therefore, it is in a good position to analyze the differences between

both implementations.

Figure 26 compares the performance implications of using lazy evaluation and

immediate evaluation of condition codes. The diagram shows the relative speed of

immediate evaluation compared to the performance of lazy evaluation in ARM 32-bit

and Thumb code. As stated in chapter 2.4.1, ARM 32-bit code does not set the condition

codes with each data processing instruction, but only when their evaluation is actually

required. In contrast, Thumb code always sets the condition code with every data

processing operation.

Surprisingly, the ARM 32-bit code using immediate evaluation of condition codes is

mostly faster than its lazy evaluation equivalent. The reason is that the C compiler

already decided whether the resulting condition codes of an instruction are actually

needed and generated appropriate code. Therefore, lazy evaluation only adds

Evaluation of the ARM backend

82

compilation overhead in Pearcolator, without offering a benefit. For less Dhrystone

iterations, the overhead of compiling the same piece of code with different lazy states

dominates the relative speed. In this situation, immediate evaluation is about 10% faster

than lazy evaluation. This advantage fades as the number of Dhrystone iterations

increases, because code regions can be reused and do not have to be compiled again.

After about 500,000 Dhrystone iterations a steady state is reached, in which immediate

evaluation and lazy evaluation perform similarly.

In contrast, Thumb code seems to have a greater benefit from lazy evaluation. It

overcomes the initial overhead for compiling code with different lazy states at the same

number of Dhrystone iterations as the ARM 32-bit code, but performs about 5% faster

than immediate evaluation afterwards.

As a result of this investigation, Thumb code will always use lazy evaluation while

ARM 32-bit code will default to immediate evaluation, which delivers superior

performance for short-running programs.

0.85

0.90

0.95

1.00

1.05

1.10

1.15

50
00

10
00

0
20

00
0

40
00

0
80

00
0

16
00

00

32
00

00

64
00

00

10
00

00
00

20
00

00
00

40
00

00
00

80
00

00
00

Dhrystone Iterations

R
el

at
iv

e
Sp

ee
d

Immediate (ARM Code) Lazy (Reference) Immediate (Thumb Code)

Figure 26 – Relative execution speed of lazy and immediate evaluation of condition codes for
different numbers of Dhrystone iterations

5.2.3 Memory Model

Chapter 3.9 introduced the various exchangeable memory models supported by

Pearcolator. The Dhrystone benchmark was run with one million iterations to

benchmark their performance, measuring both the performance including compilation

time and the steady state performance, excluding compilation time. The latter was

Evaluation of the ARM backend

83

measured by configuring the benchmark to run five times, discarding the best and worst

result and averaging over the remaining three runs.

Figure 27 compares the performance of the integer and byte-based memory. For each

memory model, the access was implemented using either a function call to the Memory

interface or inlining that call into every place were a memory access took place.

Overall, the integer based memory model performs about 50% to 60% better than the

byte based memory. This is not surprising, since ARM has a 32-bit word length and

therefore usually reads 32-bit at a time. With the byte based memory, this operation

translates into four individual reads.

However, inlining memory access incurs a major performance hit. Especially the

compilation time increases dramatically, as inlined memory accesses create

significantly more HIR code than just a single call. In some cases, this even forced the

test machine to start swapping during the compilation. The steady state performance for

inlined memory accesses approaches the speed of non-inlined accesses. The remaining

slight variation could not be attributed clearly. It might result from slightly worse usage

of the instruction cache due to the increased size of the translated code.

0 10000 20000 30000 40000 50000 60000 70000 80000

Inlined ByteAddressed

Inlined IntAddressed

ByteAddressed

IntAddressed

Dhrystones / s

Excluding Compilation Overhead Including Compilation Overhead

Figure 27 – Translator performance for different memory models
(Dhrystone Benchmark, one million iterations, ARM 32-bit code)

5.2.4 Inlining Options

The new Pearcolator model provides an easy way of defining different strategies to

decide whether a branch should be inlined into a Pearcolator trace or compiled into a

Evaluation of the ARM backend

84

separate trace. This flexibility allows a general evaluation of the cost-performance

benefit of using inlining during binary translation with Pearcolator. Obviously, the

benefit of inlining is highly program specific. To achieve optimal performance, a

custom inlining strategy may have to be implemented for each running program.

Figure 28 shows the effect of inlining different types of branches during the

execution of the Dhrystone benchmark using ARM 32-bit code. The graph shows that

the inlining of function calls and forward branches seems to have the greatest benefit for

the benchmark. Generally, inlining as much code as possible into a single trace seems to

yield the best performance. This is obviously influenced by the nature of the Dhrystone

benchmark, which iterates frequently over a rather small piece of code. It can also be

observed that all inlining methods have a similar compilation overhead / speedup ratio.

0 10000 20000 30000 40000 50000 60000 70000 80000

None

Indirect Branches

Forward Branches

Function Calls

All

Dhrystones / s

Excluding Compilation Overhead Including Compilation Overhead

Figure 28 – Influence of inlining different types of branches into a Pearcolator trace
(Dhrystone Benchmark, one million Iterations, ARM 32-bit code, Int-based memory)

5.2.5 Profiling and Indirect Jump Prediction

Inlining function calls yields a significant speedup in Pearcolator. Figure 29 shows

the benefit of enabling different inlining techniques for Thumb code. When comparing

this figure with the ARM 32-bit performance in Figure 28, it becomes obvious that,

while the ARM code receives a major speedup for inlining of function calls, the Thumb

code does not benefit from this optimisation at all. Looking at the Thumb Assembly

code, the reason for this problem becomes apparent: Thumb performs all function calls

as indirect branches. Because the respective branch target has to be known at compile

time, simple function inlining cannot be performed in Thumb code.

Evaluation of the ARM backend

85

0 10000 20000 30000 40000 50000 60000 70000

None

Indirect Branches

Forward Branches

Function Calls

All

Dhrystones / s

Thumb Code Thumb with Profiling

Figure 29 – Effect of profiling for different inlining techniques
(Thumb code, Dhrystone Benchmark, one million Iterations)

The Pearcolator profiling system can remedy this disadvantage using indirect jump

prediction. Any execution controller that performs interpretation (i.e. the interpreter

controller, the predecoding interpreter and the staged emulation controller) also builds a

profile of branches and their likelihood within the running application. The translator

can resort to this information to perform indirect branch prediction and to optimize

branches in HIR in general. As shown in Figure 29, profiling results in a performance

increase of up to 85% for Thumb code.

ARM code also benefits from profiling, though to a lesser extend than Thumb.

Figure 30 highlights that up to 33% of Dhrystone performance are gained by profiling.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000
0

None

Indirect Branches

Forward Branches

Function Calls

All

Dhrystones / s

ARM Code ARM with Profiling

Figure 30 - Effect of profiling for different inlining techniques
(ARM 32-bit code, Dhrystone Benchmark, one million iterations)

Evaluation of the ARM backend

86

5.2.6 Overall Emulator Performance

Figure 31 compares Pearcolator’s performance with that of the emulator included in

the RealView developer suite and with the speed of native execution on an Intel XScale

IOP80321 processor clocked at 600 MHz. The RealView developer suite can capture

exhaustive performance data on an ARM processor as well as simulate a memory

management unit. For the fairness of comparison, these features have been deactivated

as Pearcolator does not perform full system emulation yet.

The graphic shows that Pearcolator is up to five times faster than the RealView

developer suite. In the emulator as well as in Pearcolator, ARM code performs faster

than Thumb code. However, the performance difference between both instruction sets is

slightly less in Pearcolator than on the RealView emulator. Nevertheless, Pearcolator is

still ten times slower than native execution on the XScale processor. Although it is

difficult to compare different architectures, this hints at the fact that optimal emulation

performance on Pearcolator is still to be obtained. Although the staged emulation

system is a step into that direction, it does not yield any performance gains in a steady

state situation, where Pearcolator’s peak performance is measured.

1 10 100 1.000 10.000 100.000 1.000.000

Intel Xscale 600Mhz

Pearcolator, ARM Code

Pearcolator, Thumb
Code

RealView, ARM Code

RealView, Thumb Code

Dhrystones / s (log.)

Figure 31 – Comparision of Pearcolator performance with a commercial emulator and native
execution

Conclusion

87

6 Conclusion

6.1 Conclusion

In the course of this thesis, the dynamic binary translator Pearcolator was

reengineered, significantly enhanced and equipped with an ARM backend. Regarding

the goals that were stated in chapter 1.3, the following observations could be made:

Regarding goal 1: Pearcolator was redesigned with a modular component

architecture, which is based upon the generic architecture of a process virtual machine.

The new design promotes more software reuse within the binary translator, while

making it easy to enhance it or exchange single components. The diversity of the

implementations for execution controllers, memory, loaders and operating system

emulator clearly shows the flexibility of the architecture. Furthermore, Pearcolator was

enhanced with helpful features, such as support for dynamic linking.

Regarding goal 2: Generic support for interpreters was added to Pearcolator.

Building upon the interpreter support, components for naïve interpretation, predecoding

interpretation and staged emulation were developed and evaluated. Each of these

components can perform program profiling, without the backend having to offer

dedicated support for it. During the evaluation, staged emulation was shown to

significantly enhance Pearcolator’s performance.

Regarding goal 3: Pearcolator was enhanced with an ARM backend. The backend,

consisting of a decoder, an interpreter, a disassembler and a translator, has been

developed with a carefully chosen architecture, which even allows its components to be

used independently of the Jikes Research Virtual Machine. The resulting software is the

first open source ARM emulator implemented in Java. It supports both, the ARM and

Thumb instruction sets, executes ARM Linux as well as semihosted Angel programs

and has a performance that compares favourably with a commercial ARM emulator.

Regarding goal 4: The combination of all new components was used to evaluate open

questions regarding Pearcolator’s performance. By taking advantage of the modular

architecture, the speedup delivered by different components could be quantified.

Especially the benefit of using lazy evaluation could be analyzed, thus allowing a more

intelligent decision of when to use lazy or immediate evaluation in the ARM backend.

Conclusion

88

In summary, the thesis satisfied the originally stated goals and provided valuable

insights into the design of a dynamic binary translator. Furthermore, it put Pearcolator

into a good position for future research.

6.2 Future Work

Though Pearcolator’s performance has improved, it is still far from the performance

of the emulated hardware. Therefore, Pearcolator’s performance should be improved

even further to extend its practical usability.

Because Pearcolator is based on the Jikes Research Virtual Machine, it would

obviously benefit from any performance improvements to the latter. Especially the

simulation of machines with many registers on architectures with less registers is not

optimally served by the JRVM’s linear scan register allocator. The implementation and

evaluation of a graph coloring register allocator is a worthwhile goal, which would

benefit both the JRVM as well as Pearcolator.

It was further shown that lazy evaluation does not provide a significant speedup in

Pearcolator. To improve upon that, alternative approaches should be explored. As

suggested in chapter 2.1.3, using flags that are already set by the host processor instead

of calculating all flags explicitly, might potentially yield better performance.

The evaluation also discovered that Pearcolator’s memory implementation has a

significant impact on the overall program performance. Therefore, implementing

tailored memory models seems like a promising performance source. Using low-level

accesses, as done in the JRVM with VM_Magic, might lead to a significant speed up

for memory interactions.

On the functionality side, performing full system emulation is a new goal that might

be pursued. This includes the emulation of additional hardware and interrupts. Though

the current ARM backend can interpret simple context-switching code, no such

simulation is performed yet. Furthermore, the implementation of a more complete

operating system emulation and the addition of different backends offer opportunities to

enhance Pearcolator’s functionality.

References

89

7 References
[Allison2002]

Andrew Allison (2002)
Merchant Market RISC Shipments in 2001
http://www.aallison.com/RISC2001.pdf
Downloaded on 23rd July 2007

[Alpern1999]
Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen, Vivek Sarkar (1999)
Jalapeño - A Compiler-Supported Java Virtual Machine for Servers
Workshop on Compiler Support for Software System (WCSSS 99)
Atlanta, GA, May 1999, held in conjunction with PLDI 99
Also available online at http://citeseer.ist.psu.edu/alpern99jalapentildeo.html
Checked on 23rd July 2007

[Alpern2000]
Bowen Alpern et. al. (2000)
The Jikes Research Virtual Machine / The Jalapeno Virtual Machine
IBM Systems Journal, Vol. 39, No. 1, p. 211ff
Order No. G321-0137
Also available online at http://www.research.ibm.com/journal/sj/391/alpern.html
Checked on 23rd July 2007

[Altman2000]
Erik R. Altman, David Kaeli, Yaron Sheffer (2000)
Welcome to the Opportunities of Binary Translation
Computer, Volume 33, Issue 3, pages 40-45
ISSN: 0018-9162
Also available online at http://citeseer.ist.psu.edu/altman00welcome.html
Checked on 23rd July 2007

[ARM2000]
ARM Limited (2000)
ARM Architecture, Reference Manual
Document Number: ARM DDI 0100E
http://www.arm.com/community/university/eulaarmarm.html
Downloaded on 30th July 2007

[ARM Website]
ARM Limited
The ARM Instruction Set Architecture
http://www.arm.com/products/CPUs/architecture.html
Downloaded on 23rd July 2007

References

90

[Bala1999]
Vasanth Bala, Evelyn Duesterwald; Sanjeev Banerjia (1999)
Transparent Dynamic Optimization
HP Labs Technical Report (June 1999), HP Laboratories Cambridge
HPL-1999-77
http://www.hpl.hp.com/techreports/1999/HPL-1999-77.html
Downloaded on 23rd July 2007

[Brewer2003]
Shane A. Brewer (2003)
Jikes Intermediate Code Representation
Presentation at the University of Alberta in the course ‘Advanced Topics in
Compilers: Dynamic Re-Compilation’ (CMPUT 605-JIT) in Winter 2003
http://www.cs.ualberta.ca/~amaral/courses/605-jit/jikesIR.ppt
Downloaded on 23rd July 2007

[Burcham2005]
Jonathan Kenneth William Burcham (2005)
An X86 emulator written using Java
MSc Thesis
University of Manchester, Faculty of Engineering and Physical Sciences

[Clements1991]
Alan Clements (1991)
The Principles of Computer Hardware, 2nd Edition
Oxford University Press, Oxford
ISBN 0-19-853765-4

[Computer Desktop Encyclopedia: Code Density]
Computer Language Company Inc. (2007)
Part of the Computer Desktop Encyclopedia
http://computing-dictionary.thefreedictionary.com/code+density
Downloaded on 23rd July 2007

[Computer Desktop Encyclopedia: Disassembler]
Computer Language Company Inc. (2007)
Part of the Computer Desktop Encyclopedia
http://computing-dictionary.thefreedictionary.com/disassembler
Downloaded on 23rd July 2007

[Dandamudi2005]
Sivarama Dandamudi (2005)
Guide to RISC Processors: For Programmers and Engineers
Springer, Berlin
ISBN 978-0-387-21017-9

References

91

[Decker1995]
Karsten M. Decker et al. (1995)
Technology Overview: A Report on Data Mining
Technical Report 95-02
Swiss Scientific Computing Centre, CSCS-ETH
Also Available Online http://citeseer.ist.psu.edu/73088.html
Last Checked on 22nd September 2007

[Earnshaw2006]
Richard Earnshaw (2006)
Procedure Call Standard for the ARM Architecture
ARM Limited
Document Number: GENC-003534
http://www.arm.com/pdfs/aapcs.pdf
Downloaded on 30th July 2007

[Frey2003]
Brad Frey, Ed Silha, Cathy May, Joe Wetzel (2003)
PowerPC User Instruction Set Architecture, Book 1, Version 2.01
IBM Corporation
http://www.ibm.com/developerworks/eserver/articles/archguide.html
Downloaded on 30th July 2007

[Furber2000]
Steve Furber (2000)
ARM System-on-Chip Architecture, 2nd edition
Addison-Wesley Longman, Amsterdam
ISBN 0-201-67519-6

[Gamma1994]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994)
Design Patterns: Elements of Reusable Object-Oriented Software
Addison Wesley Longman, Inc.
ISBN 0-201-63361-2

[Gupta2002]
Rajiv Gupta, Arvind Krishnaswamy (2002)
Profile Guided Selection of ARM and Thumb Instructions
Proceedings of the joint conference on Languages, compilers and tools for
embedded systems: software and compilers for embedded systems, pages 56 - 64
ISSN 0362-1340

[Haungs1998]
Michael L. Haungs (1998)
The Executable and Linkable Format (ELF)
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
Last Updated on 21st September 1998
Last Checked on 22nd September 2007

References

92

[Huffman1997]
Larry Huffman, Wendy Ferguson (1997)
MIPSPro™ Assembly Language Programmer’s Guide
Silicon Graphics, Inc.
Document Number: 007-2418-003
http://techpubs.sgi.com/library/manuals/2000/007-2418-003/pdf/007-2418-003.pdf
Downloaded on 23rd July 2007

[HP1997]
Hewlett Packard (1997)
HP-UX Linker and Libraries User’s Guide (Technical Documentation)
Document Number: B2355-90655
http://www.docs.hp.com/en/B2355-90655/B2355-90655.pdf
Downloaded on 30th July 2007

[LeeSmith2005]
Lee Smith (2005)
Base Platform ABI for the ARM Architecture
ARM Limited
Document Number: GENC-005700 v2.0
http://www.arm.com/pdfs/bpabi.pdf
Downloaded on 30th July 2007

[Levine2000]
John R. Levine (2000)
Linkers and Loaders
Morgan Kaufmann, San Francisco
ISBN 1-55860-496-0

[Matley2004]
Richard George Matley (2004)
Native Code Execution Within a JVM
MSc Thesis
University of Manchester, Faculty of Science and Engineering

[Muchnick1997]
Steven S. Muchick (1997)
Advanced Compiler Design Implementation
Morgan Kaufmann, San Francisco
ISBN 1-55860-320-4

[Nymeyer1997]
A. Nymeyer, J.-P. Katoen (1997)
Code ceneration based on formal BURS theory and heuristic search
Acta Informatica, Volume 34, No. 8, p. 597 - 635
Also available online at http://citeseer.ist.psu.edu/206090.html
Checked on 23rd July 2007

References

93

[SCO2003]
The Santa Cruz Operation, Inc. (SCO)
System V Application Binary Interface, 17th December 2003
http://www.sco.com/developers/gabi/latest/contents.html
Downloaded on 23rd July 2007

[Smith2005]
Jim Smith, Ravi Nair (2005)
Virtual Machines, Versatile Platforms for Systems and Processes
Morgan Kaufmann, San Francisco
ISBN 1-558-60910-5

[STD1998]
ARM Limited (1998)
ARM Software Development Toolkit, Version 2.5
Document Number: ARM DUI 0040D
http://www.arm.com/pdfs/sdt250usrman.pdf
Downloaded on 30th July 2007

[Sun1999]
Tim Lindholm, Frank Yellin (1999)
Sun Microsystems, Inc.
The Java™ Virtual Machine Specification (2nd Edition)
Addison-Wesley Longman, Amsterdam
ISBN 0-201-43294-3
Also available online at http://java.sun.com/docs/books/jvms
Checked on 23rd July 2007

[Woolf1996]
Bobby Woolf (1996)
The Null Object Pattern
PLoP '96, University of Illinois
http://citeseer.ist.psu.edu/160174.html
Downloaded on 30th July 2007

[York2002]
Richard York (2002)
Benchmarking in context: Dhrystone
ARM Limited
http://www.arm.com/pdfs/Dhrystone.pdf
Downloaded on 16th August 2007

[Zilog2001]
ZiLOG Inc. (2001)
Z80 Family, CPU User Manual
Document Number: UM008001-1000
http://www.zilog.com/docs/z80/z80cpu_um.pdf
Downloaded on 30th July 2007

Appendix

94

8 Appendix

8.1 Appendix A

D
is

pa
tc

h

S
ou

rc
e

bi
na

ry

In
te

rp
r.

In
te

rp
r.

In
te

rp
r.

S
ou

rc
e

bi
na

ry

In
te

rp
r.

In
te

rp
r.

In
te

rp
r.

Decode-And-Dispatch Interpretation Threaded Interpretation

S
ou

rc
e

bi
na

ry

In
te

rp
r.

In
te

rp
r.

In
te

rp
r.

Decoder

S
ou

rc
e

bi
na

ry

Ta
rg

et
bi

na
ry

Binary
Translator

Predecoded, Threaded Interpretation Binary Translation

 Control flow Emulator Code
 Read Access Dispatcher Code
 Write Access Data

Table 9 – Overview of different emulator types

Appendix

95

8.2 Appendix B

Figure 32 – ARM Decoder Decision Tree

Appendix

96

8.3 Appendix C

Figure 33 – Thumb Decoder decision tree

	List of Abbreviations
	List of Figures
	Abstract
	Declaration
	Copyright Statement
	Introduction
	Client
	Subject
	Mission

	Background
	Emulation and Dynamic Binary Translation
	Interpretation
	Binary Translation
	Optimisations in Binary Translation

	The Jikes Research Virtual Machine
	The Java Virtual Machine Architecture
	The Jikes Research Virtual Machine

	Process Virtual Machines
	The ARM Architecture
	Programmer’s Model
	IO and Memory Model
	Architecture Versions

	Pearcolator Architecture
	Integration into the Jikes Research Virtual Machine
	Pearcolator Class Architecture
	Initialization
	Loader
	Execution Controller
	Decoder
	OS Emulation
	Profiling
	Memory
	Faults
	Process Space

	The ARM Emulator
	General Architecture
	The ARM- and Thumb-Decoder
	Instruction Representation
	ARM Translator
	Scheme Selection
	Implementation
	Conditional Instructions
	Condition code handling

	The ARM Interpreter
	The ARM Disassembler
	Operating System Emulation
	Linux Operating System Support
	Angel Debug Monitor Support

	Evaluation of the ARM backend
	Functionality Evaluation
	Performance Evaluation
	Execution Controllers
	Condition Code Evaluation
	Memory Model
	Inlining Options
	Profiling and Indirect Jump Prediction
	Overall Emulator Performance

	Conclusion
	Conclusion
	Future Work

	References
	Appendix
	Appendix A
	Appendix B
	Appendix C

