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Abstract

Virtual machines, in particular the Java Virtual Machine (JVM), offer the ability

for applications to be developed in a platform-independent manner and gain ever

increasing popularity. The Jikes Research Virtual Machine (RVM) is a JVM that

written in Java. This thesis presents a port of the Jikes RVM to the important

embedded architecture, ARM.

Substantial work has been done porting the initial baseline compiler of the

Jikes RVM. The work is presented, along with considerations for the optimising

and adaptive compilation systems.

Not only is ARM an important embedded architecture, but also it is starting to

extend a function as a Chip-Multi-Processor (CMP) architecture. This work also

presents consideration of the Jikes RVM running in a ARM MPCore environment.
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Chapter 1

Introduction

The Jikes Research Virtual Machine (RVM) is a research oriented Java Virtual

Machine (section 2.1.1) developed by the IBM T.J.Watson Research Centre. The

flexible architecture design makes it suitable for Java Virtual Machine research.

In the JAMAICA research group, the Jikes RVM platform is being leveraged to

research into dynamic compilation techniques for parallel architectures. Most of

the Jikes RVM is machine independent. There are two challenges in this project:

one is to identify the machine dependent design; the other is to debug the ported

system.

1.1 Purpose

This thesis describes the design and implementation of an ARM port of the Jikes

RVM. The ARM backend of the Jikes RVM, built by this project, can be used in

the following two potential research areas, which will be discussed as the further

research work in section 6.2.2.

• Low-power oriented dynamic compiling optimisation for the ARM architec-

ture.

• Compiling support of parallel computing for the ARM MPCore chip-multi-processor.

1.2 Scope

Considering the time limitation, this project has focused on a prototype imple-

mentation. This prototype system is based on the baseline compiler subsystem

12



CHAPTER 1. INTRODUCTION 13

and is developed it to a level where small Java programs such as ‘HelloWorld’

can be run.

1.3 Overview

There are six core chapters in this thesis as follows:

• Chapter 2, Background

Chapter 2 will give an overview of the technical background of this project.

Firstly, it will briefly introduce the architecture of the Jikes RVM, followed

by a brief overview of the Java and Java Virtual Machine. After the analysis

of the Jikes RVM, it will examine the architecture independent features of

the main components of the Jikes RVM. Secondly, it will discuss the working

mechanism of the baseline compiler subsystem. Finally, it will introduce the

target hardware and operating system.

• Chapter 3, Design and Implementation

Chapter 3 will explain the critical decisions made on this project. There

are ten subtopics in this chapter.

1. Methodology

– Port from the PowerPC implementation

– A Minimal Approach

It introduces the methodologies and philosophies applied to this project.

2. VM Convention

It shows the special virtual machine convention for the ARM processor.

3. Register Map

Because the ARM processor has just fifteen general purpose registers,

it is necessary to reallocate the registers to match the requirement of

the Jikes RVM.

4. Register Zero

The register zero has special meaning in the PowerPC’s instruction.

In the ARM, it is necessary to deal with register zero differently.
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5. Synchronisation

The ARM has a different synchronisation mechanism for locking than

the PowerPC.

6. Application Binary Interface

7. Endian and Word Order

8. Limited length of offset and immediate operand

In the ARM, the length of offset of the instructions is smaller than

PowerPC’s. There are some design decisions related to it.

9. System Trap

It will present the different implementations of system trap in ARM,

Intel and PowerPC, and then it shows the solution chosen on this

prototype implementation.

10. Floating Point

It will examine the floating point implementation of this ARM port.

• Chapter 4, Result Analysis

This chapter evaluates this prototype ARM port of the Jikes RVM.

1. Achievements of this porting project

2. Limitation of implementation

3. Validation and testing

– Testing the Assembler

– Testing the Compiler

• Chapter 5, Engineering Experiences

This chapter discuss the engineering challenges and solutions in this project.

– Milestones of this porting project

– Exception Driven Modification

– Debugging the Jikes RVM

This concerns guidelines about how to use gdb to debug Jikes RVM.

– Cross Compiling
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• Chapter 6, Conclusions and Further work

1. Conclusion

This will introduce the current progress of this project and add con-

clusion for this stage.

2. Further work

There are some suggestions for further work on this project.



Chapter 2

Background

Java is one of the most popular high-level programming languages of this net-

working age. Its platform independence, security and mobility features make it

suitable for network-oriented computing.

Java’s executable code, byte code, which is an intermediate code, can not

be directly executed by the processor. It must be executed by a Java Virtual

Machine (JVM). Compared with native executable code, executing byte code by

a running JVM requires additional overhead, such as ‘Just-in-Time’ compilation

, which may affect the performance, however, Java’s features, like strong typing

and dynamic execution, make it possible to increase its performance with compiler

optimisation. A JVM can use run-time profile data to optimise the Java program

dynamically. For some benchmarks, running on some JVM implementations,

Java can achieve a similar performance and better than C.

Currently with the development of chip multi-processor architectures, JVMs

might provide benefits from dynamic optimisation for parallel computing.

In this chapter, we will introduce the relationship between the Java Virtual

Machine and the Jikes RVM, the architecture and machine dependent features of

the Jikes RVM, as well as the development environment of this project.

2.1 JVM and Jikes RVM

The Jikes RVM is one of the state-of-the-art Java Virtual Machines.

16



CHAPTER 2. BACKGROUND 17

2.1.1 Java and the Java Virtual Machine (JVM)

The Java Virtual Machine is the key component of the Java architecture. It is the

heart of the Java network oriented features[Ven97]. The JVM provides a runtime

environment to support these features.

The JAVA Programming language

Java’s suitability for networked environments is inherent in its architecture, which

enables secure, robust, platform-independent programs to be delivered across net-

works and run on a great variety of computers and devices. Platform indepen-

dence, security, and network-mobility–these three facets of Java’s architecture

work together to make Java suitable for the emerging networked computing en-

vironment [Ven97].

JAVA Architecture

Java’s architecture arises out of four distinct but interrelated technologies:

• The Java programming language

• The Java class file format

• The Java Application Programming Interface

• The Java Virtual Machine

The writing and running of a Java program starts from Java source code written

in the Java programming language. Then the source code is compiled to the Java

class file format, which contains Java Bytecode. If needed, operating system

resources can be accessed by the Java Programming Interface at the source code

level. Finally, the Java class file would be executed on the Java Virtual Machine.

Java Virtual Machine Architecture

A JVM’s responsibility is to execute Java Bytecodes on the target hardware

platform. In general, a Java Virtual Machine is platform dependent. There are

different JVM implementation for different operating system and CPU architec-

ture.
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2.1.2 Jikes RVM

The Jikes RVM is a new generation Java Virtual Machine, developed by IBM

J.Watson Research Centre[IBM04]. The Jikes RVM’s well-designed architecture

makes it flexible with the different memory management modules and different

optimising algorithms, which makes it an ideal research platform for compiling

technology. It is also written in Java.

2.1.3 Structure of the Jikes RVM

The Jikes RVM has four key components: core runtime, compilers, memory man-

agers and an adaptive optimisation system [IBM04].

• Core runtime is responsible for managing all the underlying data structures

required to execute applications and interfacing with libraries. An example

of runtime objects are those responsible for threading.

• Compilers are responsible for generating executable code from byte codes.

The executable code is held as Java arrays. Special VM Maigc calls enable

the Jikes RVM to incorporate with this code into its running image.

• Memory managers are responsible for the allocation and collection of objects

during the execution of an application.

• Adaptive optimisation system is responsible for profiling an executing an

application and judiciously using the optimising compiler to improve its

performance.

2.1.4 Platform Independent Features of the Jikes RVM

In the four major components of the Jikes RVM, only the compiler subsystems

are platform dependent. The other three components are platform independent.

2.2 Boot Image

As a Java Virtual Machine written in Java, Jikes RVM uses a boot image, which

is a snap-shot of a working Jikes RVM, to boot itself. There is a short C bootstrap

program, called the boot image runner, that reads the boot image from a file,
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loads it into memory, and starts its running. Another important program is the

boot image writer. This is a Java program that runs on an existing JVM (in this

project, we use the Java HotSpot1 Virtual Machine 1.4.2). In the boot image file,

a minimal set of java classes are compiled into machine codes. The Jikes RVM

compiler itself would be compiled into the boot image as well.

VM.boot()

VM.boot() is the first java method executed in the boot image file. It is a suitable

place to add some bytecode test code, as discribed later in the testing section 4.3.

2.3 Compiler Subsystem

The function of the compiler subsystems of the Jikes RVM is to generate machine

code from Java bytecode. In the compiler subsystem, there are two kinds of

compiler: the baseline compiler and the optimising compiler. The difference

between them is in the compilation time and the quality of the generated code.

The mechanisms of the baseline compiler are simple and straightforward. It

directly translates bytecode into machine code. Therefore, the baseline compiler

can generate machine code very quickly, but the performance of the machine code

generated by it is relatively poor.

The optimising compiler has complex optimisation routines that create high

performance machine code, however this comes at a higher cost of a longer compile

time.

The Jikes RVM has an adaptive optimisation system to trade off the compiling

time with the performance gain, based on a runtime profile. The basic idea is to

use the optimising compiler to compile a small set of performance critical Java

methods, and use the baseline compiler to compile all the other performance

non-critical Java methods, which is referred to the 90/10 rule(90% of execution

time occurs in 10% of the code[HP96]),

This project focuses on the implementation of the baseline compiler.

1According to Sun Microsystems, the HotSpot virtual machine, Sun’s Java virtual ma-
chine (JVM), promises to make Java ”as fast as C++.” Specifically, Sun says that a
platform-independent Java program delivered as bytecode in class files will run on HotSpot
at speeds on par with an equivalent C++ program compiled to a native executable [Ven98].
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2.3.1 Baseline compiler working mechanism

Most of the baseline compiler is machine-independent. The main class is VM Base-

lineCompiler. Figure 2.1 shows the function of the VM BaselineCompiler is to

invoke VM Compiler to emit the machine code for each bytecode. The body

VM_RuntimeCompiler VM_BaselineCompiler

compile()

VM_Compiler VM_Assembler

popInt()

popInt()

emitADD()

pushInt()

VM_CompiledMethod

baselineCompile() genCode()

emit_iadd()

emit_"byte code"

emit"ASSEMBLY CODE 1"

emit"ASSEMBLY CODE 2"

Figure 2.1: Call path of Baseline Compiler

of the compile method in the baseline compiler is a big switch table. For each

bytecode, it invokes different emit ‘bytecode’() in the VM Compiler. For the
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VM BaselineCompiler, there is no difference among the different processors, be-

cause the bytecode is the same. Therefore the VM BaselineCompiler is machine-independent.

Further as shown in Figure 2.2, the VM Compiler and VM Assembler are

machine dependent. For the same bytecode, the VM BaselineCompiler should

be the same, whilst the VM Compiler will generate a different assembly code

sequence according to different processors. Obviously the VM Assembler should

be machine dependent, because its function is to generate binary machine code

for each of the different processors.

ARM

PowerPC

JAVA Class
File

VM_BaselineComiler

…return
invokesp

ecial
aload_0

VM_Compiler
(PowerPC)

VM_Assembler
(PowerPC)

...STWLWZ

0x9001
0024

0x83c1
0018

VM_Compiler
(ARM)

VM_Assembler
(ARM)

...STRLDR

0xe5890
0874

0xe59b
0020     ...

    ...

Figure 2.2: Baseline Compiler Work Mechanism

Baseline compilation consists of two main steps: GC map computation 2 and

code generation. Code generation is straightforward, consisting of a single pass

through the byte codes of the method being compiled.

2The baseline compiler computes GC maps by abstractly interpreting the byte codes to
determine which expression stack slots and local variables contain reference at the start of each
bytecode[IBM04].
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2.4 Target Hardware Environment

2.4.1 ARM, MPCore and Intel Xscale

ARM stands for Advanced RISC Machine. The ARM architecture incorporates a

number of features from the Berkeley RISC design, but a number of other features

were rejected [Fur00]. Those that were used are:

• A load-store architecture

• Fixed-length 32-bit instructions

• 3-address instruction formats

The significant features of the ARM processors, such as high performance, low

power consumption and low system cost, have made it the most popular processor

in the embedded system market.

The ARM MPCore is an ARM multi-chip-processor, which has four proces-

sors on-chip. To support low power optimisation research in a parallel computing

environment, the JAMAICA research group decided to build a Jikes RVM back-

end on the ARM MPCore. Because currently there is not an operating system

on the ARM MPCore, the porting has been started from an ARM single chip

system.

The Intel Xscale core is an ARM V5TE compliant microprocessor. The Intel

Xscale core implements the integer instruction set architecture of ARM V5, but

does not provide hardware support for floating-point instructions. It also provides

the Thumb3 instruction set[Int04].

2.4.2 ARM Workstation

This project uses an IYONIX PC ARM workstation, which uses the Xscale pro-

cessor/600M. The model of workstation is IYONIX PC X200

3 The Thumb instruction set consists of 16-bit instructions that act as a compact short-
hand for a subset of the 32-bit instructions of the standard ARM. Every Thumb instruction
could instead be executed via the equivalent 32-bit ARM instruction. However, not all ARM
instructions are available in the Thumb subset; for example, there is no way to access sta-
tus or coprocessor registers. Also, some functions that can be accomplished in a single ARM
instruction can only be simulated with a sequence of Thumb instructions[ARM00].
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2.4.3 Linux

Linux is the most popular free open source operating system. In this project,

Debian Linux has been used. The Linux kernel used in this project is version

2.4.22.

2.5 Summary

• Java Virtual Machines in general are platform dependent.

• The design of Jikes RVM makes it mostly platform independent.

• The VM Compiler and VM Assembler are the key components to be ported

in this project.



Chapter 3

Design and Implementation

This chapter describes some critical design decisions made when porting the Jikes

RVM to the ARM processors. Section 3.1 focuses on the engineering principles

and philosophies applied to this project, and the other eight sections discuss

special technical problems faced and the solutions adopted.

3.1 Methodology

There are two important decisions made in terms of the methodologies applied

to this project: firstly, to port the Jikes RVM from the PowerPC implementation

rather than the Intel IA32 one; secondly, two special methodologies have been

applied, such as ‘exception driven modification’ and module testing.

3.1.1 Port from the PowerPC implementation

There are two existing implementations of the Jikes RVM: Intel IA32 and Pow-

erPC.

As discussed in section 2.1.4, the porting of the Jikes RVM is focused on the

baseline compiler. The core components of the baseline compiler are VM Compiler

and VM Assembler. VM Compiler emits assembly code from the Java bytecode;

then VM Assembler is responsible for emitting binary machine code from the as-

sembly code. Whether porting from the PowerPC or the Intel IA32, there is no

difference for the VM Assembler, which must be totally re-designed, but it would

make a difference for porting the VM Compiler.

The Intel IA32 is a CISC architecture, whilst both PowerPC and ARM have

24



CHAPTER 3. DESIGN AND IMPLEMENTATION 25

some common RISC features, such as load and store architecture, fixed-length

32-bit instructions and 3-address instruction formats. For this reason, most of the

design of the VM Compiler for the PowerPC can be reused by an ARM version,

while porting from the Intel IA32 would require major changes.

In a load-and-store architecture, only registers can be operands of data pro-

cessing instructions. It is necessary to load data from memory first, and then

process the data, finally store the result back to memory. In a CISC architecture,

like the Intel IA32, there is no such restrictions. It can use memory addresses as

operands directly. In the Intel IA32, just one instruction can replace three in-

structions on the ARM and PowerPC. For example, in order to generate machine

code for bytecode iinc (Increment a local variable by a constant), there are three

steps in the PowerPC and ARM:

1. Load the value from memory to register.

2. Increase the value in register by constant.

3. Store the value from register to memory.

However, for the Intel IA32, one step is enough. It can directly use a memory

address as a operand, thus just one add instruction is sufficient.

Therefore, in this project, the port is based on the PowerPC implementation

of the baseline compiler, whilst the Intel IA32 implementation can provide a

reference in some cases. In this way, we can reuse the existing design for the

RISC architecture in the Jikes RVM.

3.1.2 A Minimal Approach

The Jikes RVM is a complex system. There are 12,993 lines of code (567 methods)

in the Jikes RVM/PowerPC’s baseline compiler.

The Jikes RVM is mostly written in Java. It cannot initially run on itself, so it

uses another Java Virtual Machine to execute its Java bytecode, which generates

a binary boot image file. Then it uses a small bootstrap program written in C, to

load the boot image file into memory and execute it. This process generates all

of its symbols internally and does not create a symbol table for a debugger, such

as gdb, so it is impossible to trace the machine code compiled from each method.

For this reason, it is difficult to use gdb to debug the binary machine code in the

boot image.
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Considering these two issues, it is easy to introduce bugs in such a complex

system and hard to find them with limited debugging tools.

As a result, the philosophy of this project is to change as little as possible to

decrease the possibility of generating bugs. Therefore the project plan is to make

‘HelloWorld’ work with minimum modifications at first, then focus on optimising

it later. Chapter 5 has some further discussion about the details of applying these

two methodologies in practice.

3.2 VM Convention

In this section, the register, stack, and calling conventions, which apply to the

Jikes RVM on the ARM processor, will be described.

The stack frame layout of the ARM is the same as the PowerPC, but the

calling conventions are modified slightly to fit with the difference in registers of

the ARM.

3.2.1 Register Categories

In the PowerPC implementation, the general registers can be roughly categorised

into four types[IBM04]:

• Scratch: Needed for the prologue1/ epilogue2 of a method. They can be

used by the compiler between method calls. As in the PowerPC, there are

two scratch registers in the ARM.

• Dedicated: Reserved registers with known contents, such as JTOC (Jikes

RVM Table of Contents), FP (Frame Pointer), PR (Processor Register).

• Volatile (caller save, or parameter): These can be used by compilers as

temporaries but they are not preserved across calls. They are different

from scratch registers in the way that they can be used to pass parameters

and result(s) to and from methods.

1The responsibilities of method prologue are: 1. Execute a stack overflow check, and grow
the thread stack if necessary;2. Save the caller’s next instruction pointer; 3. Save any nonvolatile
floating-point registers used by callee; 4. Save any nonvolatile general-purpose registers used
by callee; 5. Store and update the frame pointer FP; 6. Store callee’s compiled method ID; 7.
Check to see if the Java thread must yield the VM Processor.

2The responsibilities of method epilogue are: 1. Restore FP to point to caller’s stack frame;
2. Restore any nonvolatile general-purpose registers used by callee; 3. Restore any nonvolatile
floating-point registers used by callee.; 4. Branch to the return address in caller.
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• Non-volatile (Callee save, or preserved): They may be used but must be

saved on method entry and restored at method exit.

3.2.2 Stack Conventions

Stacks grow from high memory to low memory in the PowerPC. The layout of

the stack frame is not changed for the ARM.

3.3 Register Map

On the ARM, there are just 15 general-purpose registers available, less than one

half of the number in the PowerPC, which has 69 registers, 32 of them are General

Purpose Registers (GPRs). It is necessary to examine how to allocate the limited

number of registers to make the RVM work with minimum changes.

First of all, in order to be compatible with the register layout of a Linux system

call, it is necessary to conform to the Procedure Call Standard for the ARM

Architecture (AAPCS) [Ear03]. See Figure 3.2, the parameters are passed in the

registers (r0-r3) and on the stack, so r0-r3 are used as OS Parameter Volatile

registers and r4-r13 are used as OS Nonvolatile registers.

On this PowerPC, shown in Figure 3.1, scratch registers are a part of OS Nonv-

olatile registers. The Jikes RVM needs two scratch registers. If we allocate the

scratch registers in the same way, there are just two volatile registers available

to pass the parameters, which is not enough for the Jikes RVM. Some byte-

code operations, such as resolved newarray, are so complex that they need seven

registers. On the ARM, there are 15 registers available. In these 15 registers,

there are 4 registers (link register, stack pointer register, procedure-call scratch

register and frame pointer) defined on the AAPCS, which are necessary for the

operating system and virtual machine. At the same time, there are three reg-

ister reserved by the virtual machine, which are JTOC, Processor Register and

KLUDGE TI REG. So there are just eight registers left for the volatile, scratch

and nonvolatile registers. On this ARM port, these three need to share the re-

maining eight registers. So there is no choice but to make the scratch register

sector overlap the non-volatile register sector. This means that some scratch reg-

isters need to be stored in or loaded from the stack when entering and exiting a

method. Figure 3.2 shows the whole register map of the ARM port.
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0 r0
1 r1
2 r2
3 r3
4 r4
5 r5
6 r6
7 r7
8 r8
9 r9
10 r10
11 r11
12 r12
13 r13 Processor Register
14 r14 JTOC
15 r15 KLUDGE_TI_REG
16 r16
17 r17
18 r18
19 r19
20 r20
21 r21
22 r22
23 r23
24 r24
25 r25
26 r26
27 r27
28 r28
29 r29
30 r30
31 r31

Nonvolatile

Reserved
Nonvolatile

Nonvolatile

Scratch

Registers VMOS

Volatile

Register 0
Frame Pointer

Parameter
_Volatile

Volatile

Figure 3.1: Register Map of the PowerPC Implementation
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OS
0 r0
1 r1
2 r2
3 r3
4 r4
5 r5
6 r6
7 r7
8 r8 KLUDGE_TI_REG
9 r9 JTOC
10 r10 Processor Register
11 Frame Pointer

12

Procedure-call
scratch
register

13 Stack Pointer
14

15 Program Counter

Nonvolatile

Link Register

Register

Reserved
Nonvolatile

VM

VolatileParameter_
Volatile

Scratch
Nonvolatile

Figure 3.2: Register Map of the ARM port

3.4 Synchronisation

In the Jikes RVM, there are six different mechanisms to handle synchronisation

issues. For normal library code and most VM code, monitorenter and monitorexit

are sufficient. The other four lower-level primitives provide building blocks for

implementing monitorenter and monitorexit. Some VM systems, such as thread

scheduling and GC, resort to lower-level primitives for situations where normal

Java object locking is inconvenient or illegal.

There are four different lower-lever synchronisation mechanisms in the Jikes

RVM. All of the others are based on VM Magic.prepare and VM Magic.attempt.

Therefore VM Magic.prepare and VM Magic.attempt are the lowest level syn-

chronisation mechanisms of the Jikes RVM. They are platform dependent. As

a result, in this project most of the attempts are put into the following two

operations:

1. Magic prepare and attempt calls

2. Protect VM Processor.vpStatus.



CHAPTER 3. DESIGN AND IMPLEMENTATION 30

3.4.1 Magic prepare and attempt calls

Generally the prepare call fetches the contents of a memory location and

begins a conditional critical section. The attempt call ends the conditional

critical section. This attempt call will return true if and only if there were

no intervening writes to the guarded memory location.

• PowerPC

On the PowerPC, the compilers implement prepare and attempt using

the lwarx and stwcx instructions.

Lwarx and stwcx are used as a pair. Lwarx is used at the start of the

code which needs synchronisation protection. It loads the value from

memory like a normal load instruction and also creates a RESERVE

for use by a store word conditional indexed (stwcx ) instruction in the

cache. When the RESERVE has been set, the processor enables hard-

ware snooping for the block of memory addressed by the RESERVE

address. If the processor detects that another processor writes to the

block of memory it has reserved, it will clear the RESERVE bit. At

the end of the protected code, the stwcx instruction will check whether

the RESERVE is still available. If nothing touched the block of mem-

ory, while protected code is executing, it will store the changed value

back to the reserved memory address [Mot01]. As discussed above, the

combination of lwarx and stwcx fits the ‘magic prepare’ and ‘magic at-

tempt’ mechanism. In the ‘magic prepare’ lwarx loads the value from

the memory and reserves the memory. Stwcx will check and store back

the changed value on the ‘magic attempt’.

• IA-32

On the Intel IA-32, there are no such instructions as lwarx and stwcx .

It uses a more complex approach. In the ‘magic prepare’ part, it uses

the normal load to load the value from an address. In the ‘magic

attempt’, it uses CMPXCHG, which can compare and exchange atom-

ically. It exchanges the value if the compare is successful. So it can

be used to check whether the lock is available. If no other processor

(program) tried to change the protected memory, it will update the

memory with new value. Otherwise it will leave it unchanged and

return fail.
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• ARM

On the ARM, there is a SWP instruction. It does a simple atomic swap

operation without compare. Comparing with the other architectures,

IA32 and PowerPC, the solution of ARM is similar to IA32. The

solution is to use normal load on the ‘magic prepare’, then use the

SWP instruction to implement a lock on the ‘magic attempt’. Because

the SWPs function is so simple, it does not provide a compare and

conditional write facility, which must be done explicitly.

3.4.2 Protect VM Processor.vpStatus

In the Jikes RVM, VM Processor is created on a operating system pthread.

The vpStatus is the field of VM Processor which stores the status of the

thread. There are three options: IN JAVA, IN NATIVE and BLOCKED IN

NATIVE. Most of time the status should be IN JAVA. This shows that the

thread is executing Java code. When it is going to invoke a C function or

a system call, the status should be changed to IN NATIVE; when the code

exits from C code, the status should be changed back to IN JAVA. Some-

times a C function or system call cannot return immediately as they are

waiting for a hardware response. At that time, the status of VM Processor

should be BLOCKED IN NATIVE. In the JVM, there are several Java

threads which share one VM Processor. The transition from IN NATIVE

to BLOCKED IN NATIVE is not done by the pthread which is running

the native code. Indeed another glue thread writes the field whilst the ex-

ecuting pthread is blocked on an I/O call. These two threads are possibly

going to change the status at the same time. Therefore the change of the

status of VM Processor should be atomic.

There are two places where the status of VM Processor is changed in the

Jikes RVM. Both are used to call a C function from Java. One is in

VM OutOfLineMachineCode, in which, it implements certain Magic calls;

the other place is in the VM JNICompiler, where it is used to plant code

to invoke a JNI function.

On the ARM, there is only one instruction for the synchronisation. It

is SWP. Its function is simple. It can atomically swap the value from
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the memory and registers. If a semaphore function is needed, the ARM

architecture suggests the following algorithm:

Do

Mark the value of the address as ‘I am looking’ by SWAP.

If someone else is looking at that address,

then atomic update fails.

Else if someone is using the address,

then atomic update fails, restore the original value to the

address.

Else no one else is looking at or using at the address,

then mark the address as ‘I am Using’ by SWAP.

Now it is safe to do some operations on the value get from the

address.

Update the address as ‘Free to use’, atomic update is

successful.

End if

While atomic update fails;

[ARM00]

Following this idea, this porting used the additional ‘I am looking’ status to

guarantee the comparison operation itself to be atomic.

3.5 Application Binary Interface

On the PowerPC, long parameters are stored in the two general purpose registers

and should be stored starting from an odd numbered register [ppc96]. But in the

ARM, there is no such requirement.

This effects the program to generate the prologue for each call.

3.6 Endian and Word Order

The PowerPC and ARM(Xscale) both can be configured to either Big-endian or

Little-endian byte ordering. The PowerPC default is Big-endian whilst ARM’s is

Little-endian.

There are two important features to be considered in this porting project.
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1. Byte ordering

Shown in Figure 3.3, the ARM and PowerPC have different byte ordering.

Therefore the load and store programs must be changed, especially to load

and store the short data types, whose length is smaller than 32 bits. On

the PowerPC the load starts from the highest bits of the memory. On the

ARM, it starts from the lowest bits.
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Figure 3.3: Comparison of the Byte Ordering between the PowerPC and ARM

2. Word ordering

In most cases, word ordering is the same as byte ordering. But in ARM

Linux, the word ordering of Long and Double are different. Long follows the

Little Endian (Figure 3.4) order while Double is Big Endian (Figure 3.5).

For this reason, some parts of the Jikes RVM have been changed to be platform

independent, such as bootImageWriter. Load and store long and double should

use different code.

3.7 Register Zero

On the PowerPC, if register 0 is used as an operand, it means the value 0 instead

of the value of the memory, addressed by register 0. According to the Application
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Long Value: 0x0123456789abcdef
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erPC and ARM
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Double Value (1.1): 0x3ff199999999999a
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Binary Interface of the PowerPC, register 0 is not used to transfer parameters

between methods. Register 0 is only used in the prologue program.

On the ARM, register 0 has been used as a parameter register. The first

argument of a method is stored on it. Since register 0 is used by the prologue

program on the PowerPC, the register 0 has been replaced by ‘scratch register 0’

(S0).

3.8 Limited length of offset and immediate operand

Most of the data processing instructions in the PowerPC can have an 16-bit

immediate operand. But on the ARM, most instructions can have only an 8-bit

immediate value. There is a similar difference between data transfer instructions,

ARM has a 12-bit offset, while the PowerPC has 16-bit offsets. As a result,

when the immediate or offset are too long for one instruction, it is necessary to

use several instructions to implement a similar function to the one instruction of

PowerPC. Basically the solution is that when the length of the offset or immediate

is longer than the limitation of an instruction, the value is loaded to the scratch

register (S0 and S1), then used as the operand to complete the operation. The

most common example is to load a constant to a register. A 32-bit constant needs

four move and shift instructions to implement.

3.9 System Trap

In the Jikes RVM, the system trap mechanism is used to tell the operating system

that a fatal run-time error has happened in the Jikes RVM. For example, dividing

by zero, or trying to write a value to a negative address.

In the PowerPC, the trap would generate a software interrupt and then handle

it using a SIGTRAP signal handler. Linux will catch this signal and execute the

necessary signal handler program. This mechanism is similar to event listeners.

At boot time a series of signal handlers are setup in advance. If a signal is

generated, the relative pre-set handler would be invoked by the operating system.

There are three potential design solution for the System Trap an ARM as

follows:

Solution 1, to use a similar SIGTRAP mechanism to PowerPC and IA32. This

is difficult.
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Solution 2, to use the Java call directly. Compared with solution 1, this solu-

tion is simple and straightforward, so it consumes less system performance. But

it cannot handle a system error. To make this port more robust, it is necessary

to install some system error handlers to process some system level errors.

Solution 3, cause a memory fault deliberately when it is necessary to stop the

Jikes RVM, such as store a value into a negative address on purpose.

Currently, solution 3 has been used. Later solution 2 will be considered at the

system optimisation stage.

3.10 Floating Point

A minimal port of ARM’s Jikes RVM still needs floating point support. For

example, the memory management unit uses floating point to manage the heap.

There are two kinds of floating point solutions:

1. Hardware Floating Point

The compiler emits opcodes designed to be used with a hardware floating

point coprocessor (FPU). The FPU usually has a set of extra arguments

for its use, and the compiler may pass floating point arguments to func-

tions through those registers. This should gain higher performance than a

software floating point solution by using the computing power of the FPU.

2. Software Floating Point

In this case, there is no hardware support of floating point. The compiler

convert floating point operations into function calls and a special library is

used to provide all functions performing the required operations. In this

case, standard registers are used instead of the floating point registers. All

the floating point arguments have to be passed through standard registers.

The Xscale processor, used on this project, has no hardware floating point

support. If using the software floating point solution, it should gain better per-

formance, but refer to the traditional compiler implementation of ARM Linux,

and considering the compatibility issues. In this port, hardware floating point

has been used. Later it could be optimised to use soft floating point.

How does hardware floating point work without FPU hardware? The CPU

will raise an invalid instruction exception each time a FPU opcode is encountered.
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Then the Linux kernel will trap this exception, look at the given FPU instruction

and emulate it in software. Relatively, it has worse performance than a software

implementation. But it can reuse the existing floating point trap and process

mechanism in the ARM Linux kernel, whilst it can improve the compatibility

between the different ARM Linux platforms of this Jikes RVM port.

On the ARM, compared with the floating point instruction set of the Pow-

erPC, the ARM has some special features.

Firstly, The ARM cannot use a register as an offset operand in the floating

point instruction sets, it only can use an immediate value as offset operand, which

means that it is impossible to use the same approach as the fixed point instruction

sets which can load the offset to a register, then use the register as offset operand,

when the practical offset is bigger than the limitation of an immediate offset

operand. The solution is to add the base register to the offset, save the result to

a scratch register, then use the scratch register as baseline register and zero as

immediate offset operand.

Secondly, in the floating point data operation sets, there is an instruction to

round a floating value to an integer. On the PowerPC, the destination register is

a floating point register whist on ARM, it is a general purpose register. This has

been considered in this porting project.

3.11 Summary

This chapter has introduced nine major problems and solutions on this porting

project. All of them arise from the different features of the PowerPC and ARM

processors. Most of the problem presented in this chapter were discovered by

debugging. In the following chapters, we discuss the testing (section 4.3) and

debugging (section 5.3) issues.



Chapter 4

Result Analysis

This chapter will examine the achievements of this project and the methodology

to validate the quality of this port.

4.1 Achievement

This porting project has finished most of the programming work, however it still

can not make ‘HelloWorld’ run yet. The project passed the third milestone (see

figure 5.1) and is still ongoing. The latest progress can be tracked on the project

web site1.

From the figure 4.2, all the PowerPC instructions, which have been used by

the baseline compiler subsystem, have been ported to ARM instructions. 202 emit

methods have been replaced the ARM implementation and all of them passed the

test, which will be described in section 4.3.1.

See Table A.1, 91.55% of bytecode emit methods have passed the test. The

debugging is still ongoing, to complete the remaining 12 bytecode tests.

4.2 Limitations of implementation

The objective of this project is to implement a port of Jikes RVM to the ARM.

A prototype system has been developed, but there are a lot of potential improve-

ments which could be made.

1In the project, we use an online discussion group -
http://groups.yahoo.com/group/jikesRVM2ARM/, to support the project progress man-
agement.
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Bytecode Coverage Test

0
5

10
15
20
25
30
35
40

VM
_T
es
tA
ri
th
me
ti
c

VM
_T
es
tA
rr
ay
Ac
ce
ss

VM
_T
es
tC
om
pa
re

VM
_T
es
tC
on
st
an
ts

VM
_T
es
tC
on
ve
rs
io
ns

VM
_T
es
tF
in
al
ly

VM
_T
es
tI
ns
ta
nc
eO
f

VM
_T
es
tM
on
it
or
Un
wi
nd

VM
_T
es
tR
et
ur
n

VM
_T
es
tS
pe
ci
al
Ca
ll

VM
_T
es
tS
ta
ck
Ac
ce
ss

VM
_T
es
tS
ta
ti
cC
al
l

VM
_T
es
tS
wi
tc
h

VM
_T
es
tV
ir
tu
al
Ca
ll

Ot
he
rs

Test Class Name

C
o
u
n
t
 
o
f
 
B
y
t
e
c
o
d
e
s

Failed

Passed

Figure 4.1: Bytecode Coverage Test A.1
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Figure 4.2: Process in Instruction Conversion A.3
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Firstly, not all the system has been tested. Only some functional unit tests

have been completed. The aim of this project was to make the ‘HelloWorld’

program run with minimum modification. It is very hard to find out the bugs

without complete module and system tests.

Secondly performance has not been addressed. Both the VM Assembler and

VM Compiler porting reused the logic of the PowerPC’s implementation focusing

on the correctness of the logic. A source code review may be helpful to modify

the design to simplify the logic to fit the ARM architecture.

Thirdly, the assembler only generates ARM code. A complete solution for the

ARM architecture should also have an assembler for Thumb code.

Fourthly, the baseline subsystem has no implementation of the VM Disassembler,

which is used to disassemble the binary machine code to assembly code.

In section 6.2, the above limitations will be discussed further.

4.3 Validation and testing

Testing is critical to discover the bugs in this project. As mentioned, in Chapter 3,

debugging is very hard on the Jikes RVM. Discovering the bugs in the early stages

of the porting would save a lot effort compared to finding them out among tens

of thousands of machine code instructions. There are two important classes in

the baseline compiler subsystem: VM Assembler and VM Compiler, which are

the key test targets in this project.

4.3.1 Testing the VM Assembler

The function of VM Assembler is to produce binary machine code from the as-

sembly code. In order to verify the correctness of the binary machine code the

gcc assembler on the ARM/Linux was used as the benchmark.

The PowerPC’s VM Assembler can disassemble the binary machine code by

using a disassembler. This means that it is necessary to implement a disassembler

to make it work. Therefore, a disassembler is essential for this purpose, while it

would be much more complex to port the disassembler at the same time. First, it

is necessary to implement a complex and large dissembler class, which will increase

the work load significantly. Secondly, if there are any mistakes found in the binary

machine code generation, there will be at least two possible points where some

bugs could be hidden. Either the assembler produced the wrong binary machine
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code, or the disassembler generated the wrong assembly code based on the correct

binary machine code. Sometime there are some bugs in both the assembler and

disassembler. This would increase the difficulty of identifying the location of the

bug.

Currently the solution is that the system implements some simple methods in

the VM Assembler to print out the assembly code for each emitXXX() method.

The binary machine code and assembly code are generated in the same short

method, which makes it easier to keep consistency between binary machine code

and assembly code compared with the disassembler solution.

The Further work section will discuss the implementation of the disassembler

further.

4.3.2 Testing the VM Compiler

Testing the VM Compiler is more complex than the VM Assembler. It is hard to

find a suitable test tool to verify the assembly code generated by VM Compiler

for each bytecode. The project used a run time execution result to test the

VM Compiler. The basic idea is to make VM Compiler and VM Assembler com-

pile the test class to machine code, and then put the machine code in the boot

image file. When the boot image is executed, the result is checked to see whether

it is the same as predicted. This project reuses the bytecode test source codes in

the Jikes RVM source code package.

In order to perform the test, first of all, it is necessary to make the VM.sysWrite()

work. VM.sysWrite() is a magic call, which invokes the print() in the C library

on ARM/ Linux. Without a fully working-well VM Assembler, it is necessary to

make the stack and call invoking mechanism work.

Secondly, there is a need to change the names of the test codes. They must

be prefixed with ‘VM ’, so that, the boot image writer knows that the machine

code of this class should be written in the boot image file.

Finally, after the bytecode test for the primitive data type is passed, it can do

some object relative bytecode test. The test code should be executed after the

memory management subsystem is initiated.
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4.4 Summary

• All the emit methods in the VM Assembler of PowerPC have been analysed

and sorted. All the assembly code of PowerPC, which are necessary for the

baseline compiler subsystem, has been replaced by the same function of the

ARM’s assembly code. The VM Assembler has been successfully ported.

• 130 bytecodes passed the test, however 12 bytecodes can not yet pass the

test. Most of VM Compiler has been ported.



Chapter 5

Engineering Experience

This porting project is largely an engineering project rather than a pure research

one. Most of the time and energy have been spent on hunting bugs. The most

significant engineering challenge on this project is how to avoid generating bugs

by minimising the changes. To speed up the progress of this project, we tried to

make some improvement in the following three aspects:

• Exception Driven Porting

• Effective Debugging

• Cross Compiling

5.1 Milestones of this porting project

To make this project easy to be managed, six milestones have been set.

1. Build up the development environment.

There are some preparations, which should be done before the formal port-

ing starts.

(a) Create a series of environment values and directories for the ARM.

(b) Copy the machine dependent code from the PowerPC to the ARM.

The code includes the code under the src/arch/PowerPC directories

and the Jikes RVM preprocessor directives on the PowerPC.

44
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(c) Insert the exception ”Please implement [the name of method]” in the

beginning of each method, which has been copied from the PowerPC

implementation in the previous step.

(d) Make the cross compiling work, including cross compiling GNU CLASS-

PATH and Jikes RVM.

2. Make the jbuild successfully generate the boot image.

The target of this stage is to generate a bootable boot image file. At this

stage, exception driven modification (see section 5.2) is used to identify the

machine code, which needs to written into the boot image file.

The conclusion of this stage is that the boot image file has been built

without any exceptions. All the machine code, written into boot image file,

has been verified by GCC assembler (see section 4.3.1). In the other words,

VM Assembler has been mostly correctly ported.

3. Insert the Bytecode test into the VM.boot()

This step verifies the correctness of the assembly code sequences generated

by VM Compiler (see section 4.3.2). To make the test work, there are

several preparations need to be done.

(a) Make the bootstrap program work.

Some assembly code, on the src/tools/bootImageRunner/bootThread.C,

need to be modified.

(b) Make the VM sysWrite work.

In this project, most of the tests are dependent on the output. It

is necessary to make the Jikes RVM print out something which is

necessary for the further porting.

This simple method uses the Magic call mechanism. It invokes the

print() in the C++ library. This means that it is necessary to make the

whole method Prologue/Epilogue and invocation of the C++ library

method mechanism work.

Then the bytecode test can be run in the VM.boot(). This uses the byte-

code test code to test whether correct machine code has been generated

at run-time. This tests the logic of the VM Compiler. At the end of this



CHAPTER 5. ENGINEERING EXPERIENCE 46

milestone, all the bytecode test programs should be passed without any

errors.

4. Make the Jikes RVM launch correctly.

The objective of this milestone is to execute the boot image without any

errors. In this stage, the whole Java Virtual Machine runtime system should

be loaded into the memory.

5. Run ‘HellowWorld’.

To run ‘HelloWorld’ in the Jikes RVM successfully, all the subsystems must

work correctly. It is necessary to run most of the bytecode for ‘HelloWorld’.

6. Run Dhrystone [Oka02] and Spec JVM’98 [SPE98].

Dhrystone and Spec JVM’98 are going to be used as the benchmark to test

the performance of Jikes RVM.

5.2 Exception Driven Modification

The porting of the VM Assembler is driven by the exceptions. The process is a

loop.

1. Run the build image program (jbuild).

2. If an unimplemented exception is thrown.

This exception will identify which machine dependent method is been in-

voked by the build image program.

3. Check the PowerPC and ARM instruction manual, and then replace the

method which emits the PowerPC machine code with the one which can

generate ARM machine code. Sometimes the name of the emit method

must be changed to follow the naming convention of the ARM. In this case,

VM Compiler should be changed to use the new method name.

4. Run the build image program again, and use GCC to verify whether the

machine code has been correctly planted.

5. After this machine code has been corrected ported, go to the first step, to

port another machine code.
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5.3 Debugging the Jikes RVM

As a Java Virtual Machine written in Java, Jikes RVM is started by a C program

that launch the boot image, created by running the Java compiler programs to

compile themselves. Currently the boot image does not include a symbol table,

which can be used by some debug tools, such as gdb. Use of gdb to debug the

boot image file of Jikes RVM just shows a list of assembly machine code, without

any information about which Java methods and bytecodes have generated the

machine code sequence.

To debug the Jikes RVM with gdb, it is necessary to refer to several in-

formation sources to identify the Jikes RVM run-time status. The most useful

information is in the file named RVM.map. It is a map file for the JTOC (Jikes

RVM Table of Contents) of Jikes RVM. The whole Jikes RVM method call mech-

anism is based on the JTOC table. The JTOC table is big table; it stores all

the pointers to the static methods and fields. There are some skills which proved

useful during this project.

Firstly how to find the start of a method in a sequence of machine code. A

NOP instruction is plugged in between each method, to make it easy to identify

the start of the method.

Secondly, for an address in the Jikes RVM, how to identify to which method

this address belongs. A python script was obtained from Mr. Chris Hoff-

mann [Hof04]. The logic of this script is to find out a method name on the

RVM.map with the closet start address to a particular address.

Thirdly, we need to find out which line of Java code is related to a particular

address. There is not a straight forward way, but there are two useful clues.

• One is to find a sequence of codes which get a static value from the JTOC

table. The JTOC not only stores the offset of the start of the methods;

but also the offset of the static values. In the ARM port of Jikes RVM,

the base of JTOC is stored in register 9. A location in the program can

be identified by finding the closet instruction which loads a value using

register 9 as the base register, and then identifying which value it wants to

load from JTOC by the offset. After knowing which constant the machine

code is going to access, one can scan the Java source code of the method,

identified by the second skill. In most case, this decreases the scope of the

Java source to further identify from which line of Java code the machine
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code was compiled.

• The other helpful clue is the log file generated by the VM Assembler and

VM Compiler. In this log file, there are details of each bytecode and the

machine code emitted for it. At this stage, it is necessary to carefully match

the nearby machine code to identify from bytecode the particular machine

code came. Then the bytecode can be related to the Java source code.

5.4 Cross Compiling

Cross compiling 1 is a technology used in this porting project. Using exception

driven modification, whenever a piece of code has been modified, it is necessary to

rebuild and link the boot image file. However the performance of Xscale/Linux

is very poor, it takes more than eight hours to build and link. To work more

effectively, we use cross-compiling: to build the boot image on a high performance

machine (Intel IA32 with 2 Xeon processors) and then link the image file on

Xscale/Linux. Because the whole boot image writing subsystem is implemented

in Java, it is platform independent. As a result, it takes only one hour to finish

the rebuilding of Jikes RVM. There are three special technical issues, which would

be invoked in cross compiling.

1. Cross compile GNU CLASSPATH

First of all is to cross compile the GNU CLASSPATH. The GNU CLASS-

PATH library is used both to build the boot image and by the run-time

Jikes RVM. Most of the GNU CLASSPATH is written in Java; the rest is

C++ code. Because there are some bugs in the Jikes compiler on Xscale/

Linux, it failed to compile Java code in the GNU CLASSPATH. We com-

piled the Java code on the IA32 machine, and just compiled the C++ code

locally. On the local Xscale/Linux, we use the -enable-Java=no, to skip the

compiling of Java code. Then we copy the class file from the GNU CLASS-

PATH, which is created on the IA32/Linux, to the GNU CLASSPATH for

the Xscale/Linux directory.

1Cross compiling is the procedure for building a program for a platform different from the
one on which the cross compiler runs. ”Platform” does not only mean the hardware architecture
but also software platforms, e.g. the process for building the GNU/Hurd operating system from
sources on a running Linux for the same hardware architecture is also a cross compiling[ND03].
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2. Cross generate the RVM.image

The programs to generate the boot image are written in Java. This program

is platform independent. We use a high performance PC server to generate

the boot image.

3. Local linking the Jikes RVM.

To link the boot image and boot strap code, it is necessary to use GCC on

the local Xscale/Linux machine.

4. Ignore recompiling GNU CLASSPATH

To further speed up the rebuilding process, the shell scripts have been

changed to skip recompiling the GNU CLASSPATH. As an result, it save

more than 60 minutes to rebuild the Jikes RVM each time.

5.5 Summary

This chapter has introduced the technical skills applied on this porting project.

It is difficult to debug the Jikes RVM in such a porting project. It would be

helpful to make the Jikes RVM generate a symbol table, which could be used by

some debugging tools, such as gdb in this kind of porting project.
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Conclusions and future work

6.1 Conclusions

This thesis has described the design and implementation of a port of the Jikes

RVM to the ARM architecture. This port starts from the PowerPC implementa-

tion. The PowerPC and ARM processors share some RISC architecture features,

differences between them have been considered in this project.

According to time and resource limitation, this project applied the methodol-

ogy of ‘change, only when necessary’ and used testing and debugging to discover

the problems and find out the solutions. However, without effective tools, the

project progress was relatively slow.

By now, most of the programming work has been done. From the bytecode

coverage test (see table A.1), only 8.45% of bytecodes cannot pass the tests. Some

debugging work still needs to be done.

6.2 Future work

This project managed to implement a minimum implementation of the Jikes RVM

for the ARM processor. There are two areas of further work which are necessary.

• Further improve the ARM port

• Research on the Jikes RVM with the ARM series processors.

50
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6.2.1 Engineering

Robust Jikes RVM

As a simple port of the Jikes RVM, we have ignored the Garbage Collector and

Performance Management Unit Support mechanism.

Firstly, the effort can be put into implementing a complete Jikes RVM.

Secondly, some optimisation on the Magic calls can be considered. To save

time, in this porting project, we overused the Magic calls to implement some

complex byte codes. The Magic calls invoke the C library. If this can be replaced

by a sequence of assembly code, it would improve the performance.

Thirdly, the other potential point to improve the performance is to examine

the pipeline and cache issues to optimise the assembly machine code emitted for

each byte code.

Baseline compiler for Thumb code

On the ARM processor, there are two kinds of instruction sets: the ARM code

and the Thumb code. The ARM code is 32-bit instructions with relative higher

performance; Thumb code is 16-bit high-density code, which may be viewed as a

compressed form of a subset of the ARM instruction set. Normally thumb code

requires 70% of the space of ARM code. Thumb code has higher code density,

and can save energy on the fetch operations. In an energy critical situation, a

mix of ARM and Thumb code could be one of the best solutions: to use the ARM

code for performance critical methods and Thumb code for the other codes.

Optimise compiler design

The optimise compiler subsystem is the core of the Jikes RVM. Most of the

research on the Jikes RVM is using the optimising compiler system. To port

the existing parallel optimisation algorithm to the ARM port would be a very

interesting topic for the JAMAICA research group.

6.2.2 Research Future Work

Dynamically generate the Thumb code and ARM code

As mentioned, in the background section 2.4.1, the ARM processor is famous for

its low power oriented design. One of the most important techniques for power
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saving is the Thumb code. On the C compiler, programmers would decide which

part of source code should be compiled into the ARM code or the Thumb code.

The best practice is to compile the performance critical program into the ARM

code and the rest to the Thumb code. Normally it requires a lot of performance

test and analysis to trade off between them.

On the virtual machine, the real-time profile information makes it possible to

dynamically compile the source to ARM code or Thumb code. For large systems

written in Java it should be possible to use a dynamic measure of performance to

choose the appropriate machine code. In this way, it can give us more opportunity

to gain the best trade off between the performance and power consumption at

the system level. It is very important for some power critical systems, such as

mobile equipments.

Dynamically switch off the spare processors or parallel execute

As with other series of microprocessors, the ARM processor family has devel-

oped the chip-multi-processor – MPCore, as discussed in section 2.4.1. The

multi-chip processor should improve the performance by parallelling computing,

but would consume more energy than a single core processor. Currently many

chip-multi-processor parallel computing algorithms are based on a speculative

prediction mechanism. If the prediction is correct, it uses parallel computing

to improve the performance, otherwise it will achieve similar performance to a

single core processor. A failed prediction will cost little or nothing from some

view points. But in a power critical situation, the failure will waste energy. Cur-

rently the ARM chip multiprocessor supports a turn-off function, which means

that it can choose the number of active processors at run time. In some cases,

it is worth using parallel computing to improve the performance, when the ratio

of successful prediction is high enough; otherwise it is more sensible to switch

off some processors and just use one processor to save power. This requires the

run-time system to be smart enough. If the trade off can be considered based on

the run-time execution profile, it would give the system more chance to gain the

optimum trade-off.



Appendix A

Appendix results

A.1 Table of the Bytecode Coverage Test

Test Class Number Passed Failed
VM TestArithmetic 37 37 0
VM TestArrayAccess 18 16 2
VM TestCompare 21 21 0
VM TestConstants 10 10 0
VM TestConversions 15 15 0
VM TestFinally 1 0 1
VM TestInstanceOf 4 0 4
VM TestMonitorUnwind 2 0 2
VM TestReturn 6 6 0
VM TestSpecialCall 1 0 1
VM TestStackAccess 19 19 0
VM TestStaticCall 4 3 1
VM TestSwitch 2 2 0
VM TestVirtualCall 2 1 1
SUM 142 130 12
Percentage 91.55% 8.45%

Table A.1: Bytecode Coverage Test
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Table A.2: Bytecode Coverage Test Detail

Bytecode Test Class Name Status

aaload VM TestArrayAccess Passed

aastore VM TestArrayAccess Passed

aconst null VM TestConstants Passed

aload VM TestStackAccess Passed

areturn VM TestReturn Passed

arraylength

astore VM TestStackAccess Passed

athrow

baload VM TestArrayAccess Passed

bastore VM TestArrayAccess Passed

caload VM TestArrayAccess Passed

castore VM TestArrayAccess Passed

checkcast

checkcast final

checkcast resolvedClass

d2f VM TestConversions Passed

d2i VM TestConversions Passed

d2l VM TestConversions Passed

dadd VM TestArithmetic Passed

daload VM TestArrayAccess Passed

dastore VM TestArrayAccess Passed

dcmpg VM TestCompare Passed

dcmpl VM TestCompare Passed

dconst 0 VM TestConstants Passed

dconst 1 VM TestConstants Passed

ddiv VM TestArithmetic Passed

deferred prologue

dload VM TestStackAccess Passed

dmul VM TestArithmetic Passed

dneg VM TestArithmetic Passed

Continued on next page
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Bytecode Test Class Name Status

drem VM TestArithmetic Passed

dreturn VM TestReturn Passed

dstore VM TestStackAccess Passed

dsub VM TestArithmetic Passed

dup VM TestStackAccess Passed

dup x1 VM TestStackAccess Passed

dup x2 VM TestStackAccess Passed

dup2 VM TestStackAccess Passed

dup2 x1 VM TestStackAccess Passed

dup2 x2 VM TestStackAccess Passed

f2d VM TestConversions Passed

f2i VM TestConversions Passed

f2l VM TestConversions Passed

fadd VM TestArithmetic Passed

faload VM TestArrayAccess Passed

fastore VM TestArrayAccess Passed

fcmpg VM TestCompare Passed

fcmpl VM TestCompare Passed

fconst 0 VM TestConstants Passed

fconst 1 VM TestConstants Passed

fconst 2 VM TestConstants Passed

fdiv VM TestArithmetic Passed

fload VM TestStackAccess Passed

fmul VM TestArithmetic Passed

fneg VM TestArithmetic Passed

frem VM TestArithmetic Passed

freturn VM TestReturn Passed

fstore VM TestStackAccess Passed

fsub VM TestArithmetic Passed

goto Failed

i2b VM TestConversions Passed

i2c VM TestConversions Passed

Continued on next page



APPENDIX A. APPENDIX RESULTS 56

Bytecode Test Class Name Status

i2d VM TestConversions Passed

i2f VM TestConversions Passed

i2l VM TestConversions Passed

i2s VM TestConversions Passed

iadd VM TestArithmetic Passed

iaload VM TestArrayAccess Passed

iand VM TestArithmetic Passed

iastore VM TestArrayAccess Passed

iconst VM TestConstants Passed

idiv VM TestArithmetic Passed

if acmpeq VM TestCompare Passed

if acmpne VM TestCompare Passed

if icmpeq VM TestCompare Passed

if icmpge VM TestCompare Passed

if icmpgt VM TestCompare Passed

if icmple VM TestCompare Passed

if icmplt VM TestCompare Passed

if icmpne VM TestCompare Passed

ifeq VM TestCompare Passed

ifge VM TestCompare Passed

ifgt VM TestCompare Passed

ifle VM TestCompare Passed

iflt VM TestCompare Passed

ifne VM TestCompare Passed

ifnonnull VM TestCompare Passed

ifnull VM TestCompare Passed

iinc VM TestArithmetic Passed

iload VM TestStackAccess Passed

imul VM TestArithmetic Passed

ineg VM TestArithmetic Passed

instanceof VM TestInstanceOf Failed

instanceof final VM TestInstanceOf Failed

Continued on next page
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Bytecode Test Class Name Status

instanceof resolvedClass VM TestInstanceOf Failed

invoke compiledmethod

invokeinterface

ior VM TestArithmetic Passed

irem VM TestArithmetic Passed

ireturn VM TestReturn Passed

ishl VM TestArithmetic Passed

ishr VM TestArithmetic Passed

istore VM TestStackAccess Passed

isub VM TestArithmetic Passed

iushr VM TestArithmetic Passed

ixor VM TestArithmetic Passed

jsr VM TestFinally Failed

l2d VM TestConversions Passed

l2f VM TestConversions Passed

l2i VM TestConversions Passed

ladd VM TestArithmetic Passed

laload VM TestArrayAccess Passed

land VM TestArithmetic Passed

lastore VM TestArrayAccess Passed

lcmp VM TestCompare Passed

lconst VM TestConstants Passed

ldc VM TestConstants Passed

ldc2 VM TestConstants Passed

ldiv VM TestArithmetic Passed

lload VM TestStackAccess Passed

lmul VM TestArithmetic Passed

lneg VM TestArithmetic Passed

loadaddrconst

lookupswitch VM TestSwitch Passed

lor VM TestArithmetic Passed

lrem VM TestArithmetic Passed

Continued on next page
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Bytecode Test Class Name Status

lreturn VM TestReturn Passed

lshl VM TestArithmetic Passed

lshr VM TestArithmetic Passed

lstore VM TestStackAccess Passed

lsub VM TestArithmetic Passed

lushr VM TestArithmetic Passed

lxor VM TestArithmetic Passed

Magic

monitorenter VM TestMonitorUnwind Failed

monitorexit VM TestMonitorUnwind Failed

multianewarray VM TestArrayAccess Failed

pop VM TestStackAccess Passed

pop2 VM TestStackAccess Passed

prologue

resolved getfield VM TestFieldAccess Passed

resolved getstatic VM TestStaticCall

resolved invokespecial VM TestSpecialCall Failed

resolved invokestatic VM TestStaticCall Passed

resolved invokevirtual VM TestVirtualCall

resolved new

resolved newarray VM TestArrayAccess Failed

resolved putfield

resolved putstatic

ret

return VM TestReturn Passed

saload VM TestArrayAccess Passed

sastore VM TestArrayAccess Passed

swap VM TestStackAccess Passed

tableswitch VM TestSwitch Passed

threadSwitch

threadSwitchTest

unresolved getfield VM TestFieldAccess Passed

Continued on next page
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Bytecode Test Class Name Status

unresolved getstatic VM TestStaticCall Passed

unresolved invokestatic VM TestStaticCall Passed

unresolved invokevirtual VM TestVirtualCall Passed

unresolved new

unresolved newarray

unresolved putfield VM TestFieldAccess Passed

unresolved putstatic

Others VM TestFloatingRem Failed

Others VM TestInterfaceCall Passed

Others VM TestClone Failed

Others VM TestInstanceOf Failed

Others VM TestGC Failed

Others VM TestClassInitializer Failed

A.2 Table of the Process in Instruction Cover-

sion

Table A.3: Progress in Instruction Conversion

The PowerPC Instructions Status Comment

BC Replaced by the ARM

BL Replaced by the ARM

ADC Replaced by the ARM

ADD Replaced by the ARM

ADD Replaced by the ARM

ADDCrLSL Replaced by the ARM

ADDI Replaced by the ARM

ADDI Replaced by the ARM

ADDICr Replaced by the ARM

ADDIS Replaced by the ARM

Continued on next page
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The PowerPC Instructions Status Comment

ADDIS12 Replaced by the ARM

ADDItoc Replaced by the ARM

ADDs Replaced by the ARM

ADDsLSL Replaced by the ARM

ADFD Replaced by the ARM

ADFS Replaced by the ARM

AND Replaced by the ARM

ANDI Replaced by the ARM

B Replaced by the ARM

B Replaced by the ARM

BC Replaced by the ARM

BC Replaced by the ARM

BCCTR Replaced by the ARM

BCCTRL Replaced by the ARM

BCLR Replaced by the ARM

BCLRL Replaced by the ARM

BICLSL Replaced by the ARM

BLA Unused by Jikes RVM

BLA Replaced by the ARM

CMF Replaced by the ARM

CMP Unused by Jikes RVM

CMP Replaced by the ARM

CMP Replaced by the ARM

CMPAddrI Replaced by the ARM

CMPD Unused by Jikes RVM

CMPD Replaced by the ARM

CMPDI Replaced by the ARM

CMPI Unused by Jikes RVM 3 arguments 1

CMPI Replaced by the ARM

CMPI Replaced by the ARM

Continued on next page

1It is a three arguments instruction. On the ARM, the CMPI just have two arguments.
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The PowerPC Instructions Status Comment

CMPL Unused by Jikes RVM 3 arguments 2

CMPLD Unused in 32-bit It is a 64 bit instruction.

CMPLD Replaced by the ARM

CRAND Unused by Jikes RVM

CRAND Replaced by the ARM

CRANDC Unused by Jikes RVM

CRANDC Replaced by the ARM

CROR Unused by Jikes RVM

CROR Replaced by the ARM

CRORC Unused by Jikes RVM

CRORC Replaced by the ARM

DCBF Unused by Jikes RVM

DCBF Replaced by the ARM

DCBST Replaced by the ARM

DIVD Unused in 32-bit It is a 64 bit-instruction.

DIVD Replaced by the ARM

DIVW Replaced by the ARM

DVFD Replaced by the ARM

DVFS Replaced by the ARM

EXTSB Replaced by the ARM

EXTSW Unused by Jikes RVM

EXTSW Replaced by the ARM

FABS Unused by Jikes RVM

FABS Replaced by the ARM

FCFID Unused in 32-bit It is a 64 bit-instruction.

FCFID Replaced by the ARM

FCTIDZ Unused by Jikes RVM

FCTIDZ Replaced by the ARM

FIXZ Replaced by the ARM

FMADD Unused by Jikes RVM

FMADD Replaced by the ARM

Continued on next page

2It is a three arguments instruction. On the ARM, CMPL just have two arguments.
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The PowerPC Instructions Status Comment

FNMSUB Unused by Jikes RVM

FNMSUB Replaced by the ARM

ForwardBC Replaced by the ARM

FSEL Unused by Jikes RVM

FSEL Replaced by the ARM

ICBI Replaced by the ARM

ISYNC Replaced by the ARM

LAddr Replaced by the ARM

LAddrToc Replaced by the ARM

LAddrX Replaced by the ARM

LBZ Unused by Jikes RVM

LBZ Replaced by the ARM

LBZX Replaced by the ARM

LD Unused in 32-bit It is a 64 bit-instruction.

LD Replaced by the ARM

LDARX Unused in 32-bit It is a 64 bit-instruction.

LDARX Replaced by the ARM

LDFD Replaced by the ARM

LDFS Replaced by the ARM

LDRSB Replaced by the ARM

LDRSBX Replaced by the ARM

LDRSH Replaced by the ARM

LDRSHX Replaced by the ARM

LDtoc Unused in 32-bit It is a 64 bit-instruction.

LDtoc Replaced by the ARM

LDU Unused in 32-bit It is a 64 bit-instruction.

LDU Replaced by the ARM

LDUX Unused in 32-bit It is a 64 bit-instruction.

LDUX Replaced by the ARM

LDX Unused in 32-bit It is a 64 bit-instruction.

LDX Replaced by the ARM

LFDtoc Replaced by the ARM

Continued on next page
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The PowerPC Instructions Status Comment

LFDU Unused by Jikes RVM

LFDU Replaced by the ARM

LFDX Replaced by the ARM

LFStoc Replaced by the ARM

LFSX Unused by Jikes RVM

LFSX Unused by Jikes RVM

LHZ Replaced by the ARM

LHZX Replaced by the ARM

LI Replaced by the ARM

LVAL Replaced by the ARM

LVALAddr Unused by Jikes RVM

LVALAddr Replaced by the ARM

LWA Unused by Jikes RVM

LWA Replaced by the ARM

LWARX Replaced by the ARM

LWARX Replaced by the ARM

LWAtoc Unused by Jikes RVM

LWAtoc Replaced by the ARM

LWAX Unused in 32-bit It is a 64 bit-instruction.

LWAX Replaced by the ARM

LWZ Replaced by the ARM

LWZtoc Replaced by the ARM

LWZU Replaced by the ARM

LWZUX Replaced by the ARM

LWZX Replaced by the ARM

MFLR Replaced by the ARM

MFTB Unused in the baseline Used for performance measure.

MFTB Replaced by the ARM

MFTBU Unused in the baseline Used for performance measure.

MFTBU Replaced by the ARM

MLA Replaced by the ARM

MNFS Replaced by the ARM

Continued on next page
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The PowerPC Instructions Status Comment

MOVX Replaced by the ARM

MOVX Replaced by the ARM

MOVXS Replaced by the ARM

MTIP Replaced by the ARM

MTLR Replaced by the ARM

MUFD Replaced by the ARM

MUFS Replaced by the ARM

MUL Replaced by the ARM

MULHDU Unused by Jikes RVM

MULHDU Replaced by the ARM

MULHWU Unused by Jikes RVM

MULHWU Replaced by the ARM

MULLD Unused in 32-bit It is a 64 bit-instruction.

MULLD Replaced by the ARM

NEG Replaced by the ARM

NOP Replaced by the ARM

OR Replaced by the ARM

ORI Replaced by the ARM

ORIS Replaced by the ARM

patchConditionalBranch Replaced by the ARM

patchConditionalBranch Replaced by the ARM

patchLoadAddrConst Unused by Jikes RVM

patchShortBranch Replaced by the ARM

patchUnconditionalBranch Replaced by the ARM

ResetReg Replaced by the ARM

RLDINM Unused by Jikes RVM

RLDINM Replaced by the ARM

RLWINM Unused by Jikes RVM

RLWINM Replaced by the ARM

ShortBC Replaced by the ARM

SLAddr Replaced by the ARM

SLAddrI Unused by Jikes RVM

Continued on next page
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The PowerPC Instructions Status Comment

SLD Unused by Jikes RVM

SLD Replaced by the ARM

SLDI Unused by Jikes RVM

SLDI Replaced by the ARM

SLW Replaced by the ARM

SLWI Replaced by the ARM

SRA Addr Replaced by the ARM

SRA AddrI Unused by Jikes RVM

SRAD Unused in 32-bit It is a 64 bit-instruction.

SRAD Replaced by the ARM

SRADI Unused in 32-bit It is a 64 bit-instruction.

SRADI Replaced by the ARM

SRADIr Unused by Jikes RVM

SRADIr Replaced by the ARM

SRAW Replaced by the ARM

SRAWI Replaced by the ARM

SRAWIr Unused by Jikes RVM

SRAWIr Replaced by the ARM

SRD Unused in 32-bit It is a 64 bit-instruction.

SRD Replaced by the ARM

SRW Replaced by the ARM

SRWI Replaced by the ARM

STB Unused by Jikes RVM

STB Replaced by the ARM

STBX Replaced by the ARM

STD Unused in 32-bit It is a 64 bit-instruction.

STD Replaced by the ARM

STDCXr Unused in 32-bit It is a 64 bit-instruction.

STDCXr Replaced by the ARM

STDtoc Replaced by the ARM

STDU Unused in 32-bit It is a 64 bit-instruction.

STDU Replaced by the ARM

Continued on next page
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The PowerPC Instructions Status Comment

STDUX Unused in 32-bit It is a 64 bit-instruction.

STDUX Replaced by the ARM

STDX Unused in 32-bit It is a 64 bit-instruction.

STDX Replaced by the ARM

STFD Replaced by the ARM

STFDtoc Replaced by the ARM

STFDU Unused by Jikes RVM

STFDU Replaced by the ARM

STFDX Replaced by the ARM

STFS Replaced by the ARM

STFStoc Unused by Jikes RVM

STFStoc Replaced by the ARM

STFSU Unused by Jikes RVM

STFSU Replaced by the ARM

STHX Replaced by the ARM

STW Replaced by the ARM

STWCXr Replaced by the ARM

STWCXr Replaced by the ARM

STWtoc Replaced by the ARM

STWU Replaced by the ARM

STWUX Unused by Jikes RVM

STWUX Replaced by the ARM

STWX Replaced by the ARM

SUB Replaced by the ARM

SUB Replaced by the ARM

SUBFC Replaced by the ARM

SUBFCr Replaced by the ARM

SUBFE Replaced by the ARM

SUBFEr Replaced by the ARM

SUBFIC Replaced by the ARM

SUBFZE Replaced by the ARM

SUBI Replaced by the ARM

Continued on next page
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SUBICr Replaced by the ARM

SUFD Replaced by the ARM

SUFS Replaced by the ARM

SWP Replaced by the ARM

SYNC Replaced by the ARM

TAddrEQ0 Replaced by the ARM

TAddrI Replaced by the ARM

TAddrLE Replaced by the ARM

TAddrLLE Replaced by the ARM

TAddrLT Replaced by the ARM

TAddrWI Replaced by the ARM

TDEQ0 Unused in 32-bit It is a 64 bit-instruction.

TDEQ0 Replaced by the ARM

TDI Unused in 32-bit It is a 64 bit-instruction.

TDI Replaced by the ARM

TDLE Unused in 32-bit It is a 64 bit-instruction.

TDLE Replaced by the ARM

TDLLE Unused in 32-bit It is a 64 bit-instruction.

TDLLE Replaced by the ARM

TDLT Unused in 32-bit It is a 64 bit-instruction.

TDLT Replaced by the ARM

TDWI Unused in 32-bit It is a 64 bit-instruction.

TDWI Replaced by the ARM

Trap Replaced by the ARM

TWEQ0 Replaced by the ARM

TWI Replaced by the ARM

TWI Replaced by the ARM

TWLE Replaced by the ARM

TWLLE Replaced by the ARM

TWLT Replaced by the ARM

TWNE Replaced by the ARM

UMLAL Replaced by the ARM

Continued on next page
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UMULL Replaced by the ARM

XOR Replaced by the ARM

XORI Unused by Jikes RVM

XORI Replaced by the ARM
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