
Real time Spaun on SpiNNaker
Functional brain simulation on a

massively-parallel computer architecture

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2016

Andrew Mundy
School of Computer Science

2

Contents

Abstract 13

1 Introduction 21

2 Neurons, synapses and representation 27

2.1 Modelling the nervous system . 27

Leaky Integrate-and-Fire model . 28

Neural networks and synapses . 29

2.2 The Neural Engineering Framework . 30

Representation . 32

Transformation . 40

Dynamics . 43

2.3 The Semantic Pointer Architecture . 45

Representing and operating on symbols . 45

2.4 Cognitive architectures and Spaun . 50

Action selection and execution . 50

Spaun: The Semantic Pointer Architecture Unified Network model 53

2.5 Summary . 53

3 Modelling and simulation 57

3.1 Nengo: modelling with the Neural Engineering Framework 57

The Nengo object model . 58

Nengo simulators . 58

3.2 Simulating neural networks . 59

General Purpose Graphics Processing Units (GP-GPUs) 60

Neuromorphic hardware . 61

Field-Programmable Gate Arrays (FPGAs) 62

3.3 SpiNNaker . 63

Hardware . 63

Neural simulation . 65

Placement and routing . 68

3

4 The Neural Engineering Framework and SpiNNaker 71

4.1 Mapping the Neural Engineering Framework to SpiNNaker 71

4.2 Communicating with values, not spikes . 74

Simulating neurons . 77

Simulating synapses . 77

4.3 Using shared-memory parallelism to reduce network traffic 80

Overview of the solution . 81

Parallel simulation of neurons . 83

Analysis . 83

4.4 Performance . 85

Single-core processor utilisation . 85

Multiple-core processor utilisation . 89

Packet processing cost . 89

Network loading . 90

4.5 Correctness . 90

Neural tuning curves . 92

Representation . 92

Transformation . 92

Dynamics . 94

4.6 Summary . 94

5 The Semantic Pointer Architecture and SpiNNaker 97

5.1 Representing high-dimensional values . 97

Large or small ensembles? . 100

Techniques for improving reliability . 101

5.2 Interposer design . 102

Row partitioning . 104

Block partitioning . 105

Interposer costs . 107

Scheduling and timing . 108

Summary . 110

5.3 Circular convolution . 111

Interposer parameter selection . 113

Comparison to spiking implementation . 118

5.4 Results . 119

5.5 Summary . 123

6 Routing table minimisation 125

6.1 Introduction . 125

6.2 Benchmarks . 126

4

6.3 Routing table compaction . 128

“Order-exploiting” minimisation . 129

On-chip logic minimisation . 130

6.4 Ordered-Covering . 131

Resolving the up-check . 133

Resolving the down-check . 134

6.5 Results . 136

Compression . 136

Memory usage . 136

Execution time . 138

6.6 Summary . 139

7 Conclusion – Spaun and SpiNNaker 141

7.1 SpiNNaker . 143

7.2 Spaun . 146

7.3 Future work . 146

7.4 Summary . 147

References 149

This thesis contains 29 904 words.

5

6

List of Figures

1.1 Representation of the Spaun model . 22

2.1 Simulation of a LIF neuron . 29

2.2 Varying parameters of a LIF neuron . 31

2.3 Postsynaptic currents from three weighted and shaped spikes 31

2.4 Sample weight matrix between two populations of neurons 31

2.5 Response of a pair of LIF neurons to a time-varying input signal 33

2.6 Response of a population of LIF neurons to a time-varying input signal . . 34

2.7 Decoding the output of a population of neurons 35

2.8 Multiplying the tuning curves of a population by the decoders 35

2.9 Representing a 2D value with four neurons 37

2.10 Decoding x2 from a pair of neurons . 41

2.11 Decoding the square of the value represented by an ensemble 41

2.12 Applying a linear transform to the decoding of an ensemble 42

2.13 Using a recurrent connection to implement a dynamic system 44

2.14 Simulation of a neurally implemented integrator 44

2.15 High-level view of a symbol unbinding neural network 48

2.16 Simulation of a neural implementation of symbol unbinding 49

2.17 Block diagram of Spaun . 52

2.18 A neurally implemented state machine . 52

2.19 Spaun performing a fluid reasoning task . 54

3.1 Simple serial neural simulator . 59

3.2 SpiNNaker chip and network . 64

3.3 Multicasting packets across the SpiNNaker architecture 65

3.4 Sample neural network mapped to a SpiNNaker machine 66

3.5 Simulation of neural nets on SpiNNaker . 67

3.6 Neural network represented as a data flow graph 69

3.7 Partitioning a population of neurons . 69

3.8 Partitioning, place and routing a neural network 70

4.1 Synaptic events in an n-dimensional communication channel 73

7

4.2 Comparison between non-factored and factored weight matrices 74

4.3 Multiple fan-in for non-factored and factored weight matrices 75

4.4 Sample traffic rates for a simple neural network 76

4.5 “Value”-based method of simulating neural nets on SpiNNaker 78

4.6 Example of routing packets to synapse models 79

4.7 Column-wise division of the decoding operation 81

4.8 Row-wise division of the decoding operation 82

4.9 Shared memory simulation of a population of ensembles 84

4.10 Single-core performance of the ensemble implementation 86

4.11 Modelled and recorded ensemble performance 88

4.12 Measuring the packet processing cost . 91

4.13 Packets transmitted for a 16-D decoding of an 800-neuron ensemble 91

4.14 Tuning curve of LIF implementation . 93

4.15 Representing values with neurons on SpiNNaker 93

4.16 Transforming values with neurons on SpiNNaker 95

4.17 Sample output of a neural integrator implemented with the NEF 95

5.1 Splitting large ensembles to reduce decoder compute time 98

5.2 Splitting large ensembles increases communication 100

5.3 Use of an interposer to decrease fan-out, fan-in and overall traffic 103

5.4 Implementation of an interposer core . 104

5.5 Row-based decomposition of the interposer matrix 104

5.6 Block-based decomposition of the interposer matrix 105

5.7 Column-partitions affect the number of packets received downstream . . 107

5.8 Interposer and partition costs . 108

5.9 Interposer timing . 109

5.10 Neural network implementation of circular convolution 112

5.11 Circular convolution network with interposers 113

5.12 SpiNNaker link loads for the circular convolution network 114

5.13 Circular convolution link usage with and without interposers 115

5.14 Section of the place-and-route solution for circular convolution 117

5.15 Sample of 512-D circular convolution simulation results 120

5.16 Comparison of 512-D circular convolution simulation results 120

5.17 Distributions over the dot products of convolved vectors 121

5.18 Distribution over the dot products of convolved 16-D vectors 122

6.1 Benchmark network connectivity . 127

6.2 Benchmark routing tables after removing default routes, and using Espresso128

6.3 Benchmark performance of order-exploiting Espresso and m-Trie 130

6.4 Examples of invalid merges as defined by the Ordered-Covering rules . . 132

8

6.5 Benchmark performance of Ordered-Covering 137

7.1 SpiNNaker machines . 144

9

10

List of Tables

2.1 Similarity between compound symbols and their constituents 47

2.2 Similarity of unbound symbols to vectors in the original vocabulary . . . 47

5.1 Network utilisation of circular convolution 112

5.2 Interposer partitions and the circular convolution network 114

5.3 Cores required in SpiNNaker instantiation of circular convolution 115

5.4 Interposers reduce the number of packets transmitted 115

5.5 Costs of spike-transmission for the circular convolution network 118

5.6 Comparison of simulation methods for Circular Convolution network . . 123

6.1 SpiNNaker performance of Ordered-Covering 138

6.2 Desktop performance of order-exploiting Espresso 138

7.1 Comparison of simulation methods for a core Spaun component 143

11

12

Abstract

Real time Spaun on SpiNNaker
Functional brain simulation on a massively-parallel computer architecture

Andrew Mundy

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY, 2016

Model building is a fundamental scientific tool. Increasingly there is interest in
building neurally-implemented models of cognitive processes with the intention
of modelling brains. However, simulation of such models can be prohibitively ex-
pensive in both the time and energy required. For example, Spaun – “the world’s
first functional brain model”, comprising 2.5 million neurons – required 2.5 hours
of computation for every second of simulation on a large compute cluster.

SpiNNaker is a massively parallel, low power architecture specifically de-
signed for the simulation of large neural models in biological real time. Ideally,
SpiNNaker could be used to facilitate rapid simulation of models such as Spaun.
However the Neural Engineering Framework (NEF), with which Spaun is built,
maps poorly to the architecture – to the extent that models such as Spaun would
consume vast portions of SpiNNaker machines and still not run as fast as biology.
This thesis investigates whether real time simulation of Spaun on SpiNNaker is
at all possible.

Three techniques which facilitate such a simulation are presented. The first
reduces the memory, compute and network loads consumed by the NEF. Conse-
quently, it is demonstrated that only a twentieth of the cores are required to sim-
ulate a core component of the Spaun network than would otherwise have been
needed. The second technique uses a small number of additional cores to signif-
icantly reduce the network traffic required to simulated this core component. As
a result simulation in real time is shown to be feasible. The final technique is a
novel logic minimisation algorithm which reduces the size of the routing tables
which are used to direct information around the SpiNNaker machine. This last
technique is necessary to allow the routing of models of the scale and complexity
of Spaun. Together these provide the ability to simulate the Spaun model in bio-
logical real time – representing a speed-up of 9000 times over previously reported
results – with room for much larger models on full-scale SpiNNaker machines.

13

14

Declaration

No portion of the work referred to in this thesis has been submitted in sup-
port of an application for another degree or qualification of this or any other
university or other institute of learning.

15

16

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.
This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellec-
tual property (the “Intellectual Property”) and any reproductions of copyright works
in the thesis, for example graphs and tables (“Reproductions”), which may be de-
scribed in this thesis, may not be owned by the author and may be owned by third
parties. Such Intellectual Property and Reproductions cannot and must not be made
available for use without the prior written permission of the owner(s) of the relevant
Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy, in
any relevant Thesis restriction declarations deposited in the University Library, The
University Library’s regulations and in The University’s policy on presentation of
Theses.

17

18

Acknowledgements

I’m immensely grateful to all the friends, family and colleagues who have supported me
over the past, very enjoyable, four years and, in particular, the last nine months while
I’ve been located away from Manchester. I would have been utterly lost without the very
generous open door policies, enthusiasm, guidance and oft needed criticism of my super-
visors – Jim Garside, Simon Davidson and Steve Furber – and I owe much to the members
of the APT group for their time and help – Steve Temple and Luis Plana especially.

Much of the work in this thesis is possible as a result of collaboration. Jonathan Heath-
cote and Jamie Knight have been great friends, and wonderful collaborators, who I will
miss sharing an office with. Terry Stewart, Chris Eliasmith and others at the University
of Waterloo have been immensely kind and I look forward to joining them in due course.
It’s been a pleasure to work with Jörg Conradt and others.

This work would not have been possible if not for the Engineering and Physical Sci-
ences Research Council, the School of Computer Science and various other bodies who
funded my studies and travel.

Finally, I’d like to thank my parents for their proof-reading, support and love, and my
wonderful wife Beccy for sharing the first four years of our marriage with this thesis.

19

20

Chapter 1

Introduction

Building and simulating models of the brain is a promising way to investigate the prin-

ciples which underlie human cognition. Although this is not a recent observation (Tur-

ing 1950) developments in computing technology have made simulation of larger and

more detailed models increasingly tractable. These technological advances have catal-

ysed computational neuroscience and resulted in the formation of both the European Hu-

man Brain Project (Markram et al. 2011) and the US BRAIN Initiative (The White House

2013) – two ‘mega projects’ dedicated to significantly improving understanding of the

brain through simulation of computer models. These models can be broadly classified as

those which build “up” from a description of neural form (e.g., Izhikevich and Edelman

2008) and those which focus on function and build “down” to tie behaviour to a neurally-

inspired implementation (e.g., Verschure and Voegtlin 1998; Sandamirskaya 2013).

The leading model in this latter field is, arguably, Spaun (Eliasmith, Stewart, et al.

2012; Eliasmith 2013), which, unlike many cognitive models, draws together ideas from

classical Artificial Intelligence (e.g., Fodor and Pylyshyn 1988; Anderson et al. 2004), Ar-

tificial and Spiking Neural Networks (e.g., McCulloch and Pitts 1943; Rosenblatt 1958;

Hopfield 1982; Maass 1997) and dynamic systems theory (Gelder 1998). Consisting of 2.5

million neurons and a virtual ‘eye’ and ‘arm’, Spaun is capable of performing eight tasks,

in which it is apparent that it reproduces some characteristics of human performance. For

example, humans have been shown to be more likely to forget the middle, rather than the

beginning or the end, of lists they have remembered (Dosher 1999). Spaun shows a simi-

lar tendency, implying that it captures something about how the human brain memorises

lists. To truly assess this requires many more trials than have been performed.

21

22

Alongside these developments in the fields of computing and cognitive modelling

has been a growing recognition that behaviour is inextricably tied to environment (Braiten-

berg 1986; Brooks 1990; Webb 2001; Kaplan 2008). While the environments in which these

neural models are embodied could be entirely virtual, the growing range of biologically-

inspired (biomimetic and neuromorphic) sensors (e.g., Chan, Liu, and Schaik 2007; Licht-

steiner, Posch, and Delbruck 2008) suggests that the environment could be our environ-

ment and the neural models used to control robotic agents. For example, the virtual eye

and arm to which Spaun is connected (Figure 1.1) could be replaced with a biomimetic

retina and a robotic arm. For this to be realistic simulations of neural models that run as

fast as biology will be required.

Figure 1.1 – The Spaun model, reproduced from Eliasmith, Stewart, et al. (2012).

Unfortunately, complex neural networks are rarely simulated in biological real time,

meaning that the time taken to perform the computation associated with the simulation

is often significantly greater than the ‘time’ that has passed in the model. For example,

the Spaun model required 2.5 hours of compute for every 1 s of the simulation (in 2012, as

reported by Stewart and Eliasmith 2014) – i.e., 9000 times slower than biology. Improve-

ments are possible, indeed an improvement of an order of magnitude has been informally

reported, but the technologies involved suffer from severe drawbacks. Supercomputers

and General Purpose Graphics Processing Units (GPGPUs) consume much power and

have limited scalability. In contrast, hardware implementations of neurons (Choudhary

et al. 2012; Merolla et al. 2014; Meier 2015) consume little power but are too inflexible

Chapter 1. Introduction 23

to allow new types of neural model to be investigated. Since Spaun is less than 1 % of

the size of the human brain, the abilities of simulation technologies to scale and adapt is

crucial if ever-larger and more complex models are to be constructed and simulated.

SpiNNaker (Furber, Galluppi, et al. 2014) – a low power, massively parallel computer

designed for the real time simulation of large scale spiking neural networks – may prove

to be a solution. A SpiNNaker machine consists of up to a million highly constrained

processing cores connected to a customised network. This network is optimised, using a

‘multicast’ architecture, for the efficient simulation of the high degree of neural intercon-

nectivity found in brains. While SpiNNaker has proven to be suitable for the simulation

of a wide range of neural networks (Sharp, Petersen, and Furber 2014; Stromatias et al.

2015; Knight, Tully, et al. 2016) the architecture is not well suited to the simulation of

networks like Spaun (Section 4.1).

Construction of Spaun was guided by two theories: the Neural Engineering Frame-

work (Eliasmith and Anderson 2004) and the Semantic Pointer Architecture (Eliasmith

2013). The Neural Engineering Framework is a series of principles which describe how

a functional description of a system may be implemented in a network of spiking neu-

rons (Section 2.2) and the Semantic Pointer Architecture describes how high dimensional

vectors can be used to represent and manipulate symbol-like values (Section 2.3). Unfor-

tunately, networks constructed using these principles act to stress the SpiNNaker archi-

tecture. In particular, the dense neural interconnectivity and high firing rates they re-

quire consume much more memory, network bandwidth and compute time than would

be needed for the types of neural networks for which SpiNNaker was designed (Sec-

tions 3.3 and 4.1). To manage these loads a choice must be made between simulating the

network slower than biology, acquiring a larger SpiNNaker machine, limiting the scale of

the neural models which can be investigated or ignoring neurons altogether and simulat-

ing merely the “computational” elements of Spaun. Unfortunately, each of these choices

presents drawbacks: simulating the network slower than biology precludes interaction

with biomimetic sensors and actuators; acquiring (or building) a larger computing sys-

tem may be prohibitively expensive; limiting the scale of the neural network limits the

scale and complexity of system which may be examined; replacing simulation of neu-

rons with simulation of “computational” elements alone can change the behaviour of the

system and reduce the explanatory strength of the model and results (Eliasmith, Stewart,

et al. 2012, p. 219; Stewart 2012).

24

This thesis presents techniques which reduce the memory, compute and network

loads required to simulate neural networks built with the Neural Engineering Frame-

work and Semantic Pointer Architecture. Specifically, it demonstrates that a core compo-

nent of the Spaun network can be simulated in biological real time (meaning that 1 s of sim-

ulation requires 1 s of computation) using one twentieth of the resources that would have

been required had SpiNNaker been used as intended. As a consequence, SpiNNaker is

shown to be an ideal platform for future research on Spaun and its successor models. In

particular, since the scale of machine expected to be necessary to simulate Spaun is small

enough, and consumes sufficiently little power, it may be situated in the same room as a

robot, allowing Spaun (or similar) models to interact with an environment through a tight

control loop. Alternatively, many instances of the Spaun model could be run in parallel,

allowing more data to be gathered about its performance and enabling more meaningful

comparisons with results from biology and psychology. Finally, there is scope to increase

the scale or complexity of Spaun allowing it to perform more tasks and again increasing

potential comparisons with the empirical sciences.

These reductions in the memory, compute and networks loads consumed by neu-

ral simulation are made by exploiting a characteristic of the Neural Engineering Frame-

work to change the way in which simulation data is transferred amongst processing

cores (Chapter 4). As a result, the architectural target of 1000 neurons per core is more

than doubled and the memory required to represent a neural network significantly re-

duced (Mundy, Knight, et al. 2015). This increases how densely neural models may be

packed into a SpiNNaker machine, allowing larger models to be simulated using fewer

processors.

Unfortunately, the improvements made by changing the way in which processors

communicate are still not enough to allow real time simulation of neural models like

Spaun (Chapter 5). This is because the dense interconnectivity of models built with the

Semantic Pointer Architecture requires much more network bandwidth and processing

than are available. Managing these loads requires that the simulation run slower than

biology. However, by replacing the dense network connectivity with an ‘interposer’ the

traffic and compute loads can be reduced sufficiently to allow simulation in biological

real time. The interposer proposed in this thesis exploits the changed values which are

communicated by processors and the multicast capability of the SpiNNaker network to

distribute simulation state over a wide area. This reduces both the overall traffic and the

Chapter 1. Introduction 25

fan-out and fan-in of individual processors, which in turn reduces local traffic and the

processing required.

Despite these improvements, the interposer still requires some degree of traffic fan-

out and fan-in and this results in the routing tables which are used to direct traffic around

the SpiNNaker network becoming too large to store on the chip (Chapter 6). Although

logic minimisation can be used to reduce the size of these routing tables (Liu 2002) ex-

isting techniques result in insufficient minimisation of benchmark SpiNNaker routing

tables. This thesis introduces a new technique which, by exploiting the ordered nature

of the tables, achieves a greater degree of minimisation (Section 6.3). As serial applica-

tion of this technique to all the tables in a million core machine would be prohibitively

expensive, the massive parallelism of SpiNNaker can be exploited to perform this task.

As the limited memory available to a SpiNNaker core precludes the use of any of the

existing minimisers this thesis introduces a new algorithm. Parallel use of this algorithm

on SpiNNaker is shown to minimise one of the benchmark sets of routing tables 64 times

faster than a desktop PC (Mundy, Heathcote, and Garside 2016).

The work presented in this thesis builds towards biological real time simulation of

“the world’s first functional brain model” (Stewart and Eliasmith 2014), Spaun (Elia-

smith, Stewart, et al. 2012), on SpiNNaker. This is a major milestone, not only for the

SpiNNaker project, but also, since it paves the way for simulation of models larger and

more complex than Spaun, in our quest to understand cognition.

Contributions

Mundy, Andrew, James Knight, Terrence C. Stewart, and Steve Furber (2015). “An efficient

SpiNNaker implementation of the Neural Engineering Framework”. In: Neural Networks

(IJCNN), 2015 International Joint Conference on. DOI: 10.1109/IJCNN.2015.7280390. – Nomi-

nated for Best Paper Award

Mundy, Andrew, Jonathan Heathcote, and Jim D. Garside (2016). “On-Chip Order-Exploiting

Routing Table Minimization for a Multicast Supercomputer Network”. In: High Performance

Switching and Routing (HPSR), 17th International Conference on. – Best Paper Award

Stewart, Terrence C., Ashley Kleinhans, Andrew Mundy, and Jorg Conradt (2016). “Serendipi-

tous Offline Learning in a Neuromorphic Robot”. In: Frontiers in Neurorobotics 10 (1). ISSN:

1662-5218. DOI: 10.3389/fnbot.2016.00001.

http://dx.doi.org/10.1109/IJCNN.2015.7280390
http://dx.doi.org/10.3389/fnbot.2016.00001

26

Knight, James, Aaron R. Voelker, Andrew Mundy, and Chris Eliasmith (2016). “Efficient SpiN-

Naker simulation of a heteroassociative memory using the Neural Engineering Frame-

work”. In: Neural Networks (IJCNN), 2016 International Joint Conference on.

Further publications based on the contents of this thesis are planned.

In addition:

• An implementation of the algorithm presented in Chapter 6 has already been used

by other researchers in Manchester to minimise the routing tables arising from a

detailed model of a part of the human brain (Potjans and Diesmann 2012).

• Various insights arising from this work are being fed into design of the next genera-

tion of the SpiNNaker hardware and support software built – in collaboration with

others – for this project is used by others in the group (Knight and Furber 2016).

• The implementation of the Neural Engineering Framework described in Chapters 4

and 5 is in active use by a number of researchers across the globe.

Chapter 2

Neurons, synapses and

representation

2.1 Modelling the nervous system

The human brain is thought to contain of the order of 85 billion neurons (Herculano-

Houzel 2009). Each neuron is a complex electrochemical system capable of altering the

ratio of ions and hence the electric potential across its cellular membrane. From the main

cell body of a neuron grows a tree-like structure of inputs, named dendrites, in addition

to which each neuron possesses a single (often long) output structure, the axon. Varying

electric potentials on the dendrites will modify the potential of the cell itself, eventually

causing a spike or series of spikes of potential to be generated and pass down the axon,

affecting further neurons via synapses – the connections between neurons.

In computational modelling of the nervous system it is common to use a system of

coupled differential equations to describe a single neuron. One of the earliest models

was proposed by Hodgkin and Huxley (1952). However, this model is computationally

expensive and while simplifications exist there are wide variations in the types and char-

acteristics of neurons found within different regions of the brain and accounting for this

range of variation within a single model is challenging. Moreover, there is debate as to ex-

actly which features of neurons are relevant for computational models (Izhikevich 2004).

Since there is controversy about which features of the neural behaviour are relevant the

flexibility resulting from software simulation of the nervous system may well outweigh

the speed and power benefits of dedicated hardware – see Chapter 3.

27

28 2.1. Modelling the nervous system

Leaky Integrate-and-Fire model

The Leaky Integrate-and-Fire (LIF) model of the neuron (Lapicque 1907; Abbott 1999) is a

simple neuron model which captures some of the key features of the behaviour of biolog-

ical neurons and is a good illustration of how a typical neuron works. LIF neurons will

be used in all models in this thesis since it was the only model used in Spaun (Eliasmith,

Stewart, et al. 2012). The techniques described in this thesis are, however, amenable for

use with other neural models. Likewise, it is possible to construct Spaun from alternative

neuron models (Eliasmith, Gosmann, and Choo 2016).

The LIF neuron can be thought of as the combination of a first-order low-pass filter

and a ‘spike generator’. Input to the neuron is filtered using the low-pass filter. Should

the output of the filter pass a given threshold value the neuron emits a spike and the out-

put of the filter is reset to a lower value and held there for a time. We will focus on a

normalised LIF model in which the output of the filter, representing the cell membrane

voltage, is allowed to vary between zero and one. As a consequence of this the ‘currents’

and ‘voltages’ discussed below are analogues of the real quantities of the LIF neuron and

are unitless.

Figure 2.1 shows a simulation of a LIF neuron fed by a constant current, rather than

by the spikes of other neurons. As can be seen, the input value (uppermost panel) is

filtered to form the membrane ‘voltage’ (middle panel) and once the ‘voltage’ passes the

threshold a spike is emitted (lowest panel) and the voltage is reset to zero for a period.

The time constant of the low-pass filter is τrc and the duration for which the voltage is

held at zero after a spike is called the refractory period, τref.

While the neuron is neither firing nor in the refractory period the ‘membrane voltage’

(in this case a dimensionless quantity) is described by the equation:

v̇ =
iinput − v

τrc
(2.1)

where iinput is the input to the neuron (and is a dimensionless quantity analogous to

the ‘current’ in the non-normalised LIF model). This input is a combination of a bias,

ibias, and the spiking-output of other neurons. However, for our purposes it is useful to

express this as iinput = gx + ibias where g is called the gain of the neuron and x is a value

over which we have control.

Chapter 2. Neurons, synapses and representation 29

0

2

4

In
pu

t

0

1

Vo
lt

ag
e

0 20 40 60 80 100 120

Time / ms

Spikes

Figure 2.1 – Simulation of a Leaky Integrate and Fire (LIF) neuron. The top panel shows

the input to the neuron which, for illustrative purposes, is a piecewise function rather than

the accumulated spikes of other neurons. The middle panel shows the membrane ‘voltage’

– formed as a ‘leaky’ integral of the input with time constant τrc. Once the voltage passes a

threshold a spike is emitted (bottom panel) and the membrane voltage held low for a period

of time called the refractory period, τref. (For this illustration τref = 5 ms and τrc = 20 ms).

Tuning curves

One of the characteristics of the LIF model is that when fed a constant input it produces

spikes at a constant rate (see the final 30 ms of Figure 2.1). This allows us to draw a graph

describing the relationship between constant input on the x-axis and firing rate (in Hz)

on the y-axis. The line represented on this graph is called the tuning curve of the neuron.

Figure 2.2 shows a number of tuning curves which illustrate the effect that varying

ibias and g has on the characteristic response of the neuron. Through modification of

the bias current, ibias, the value of x for which the neuron starts to fire can be selected

(Figure 2.2(a)). By modifying the gain of the neuron, g, the slope of the tuning curve can

be made steeper or shallower (Figure 2.2(b)). By varying both the gain and the bias a

range of neural responses can be generated.

It is important to note that while the neuron response is characterised in terms of

spike rates this is merely an analytic convenience and all simulations in this thesis are

run using spiking models of neurons rather than “rate” neuron models.

Neural networks and synapses

When a biological neuron fires the pulse that is generated travels along the axon of the

neuron. To make contact with the dendrites of other neurons the axon is branched, with

each branch leading to junctions with other neurons. Each junction between the axon of

30 2.2. The Neural Engineering Framework

the presynaptic neuron and the dendrites of the postsynaptic neuron is called a synapse. At

a synapse the spike generated by the neuron is chemically transmitted across a short gap

and the transmission method is capable of varying both the strength and the shape of the

impulse that is received by the postsynaptic neuron.

Instead of modelling synapses directly it is common to specify them in two ways:

The change in strength of the impulse caused by a synapse is called the synaptic weight;

the pulse-shaping is often referred to as synaptic filtering and can be modelled as a linear

transfer function. Note that the transfer function used to model synaptic shaping is dis-

tinct from the transfer function used to model the changes in the membrane voltage of the

LIF neuron. If multiple spikes travel across synapses to the same neuron (the postsynaptic

neuron) their contributions to the input of the neuron are summed. Figure 2.3 shows the

shaping, weighting and summing applied to three spikes arriving at the same postsy-

naptic neuron. In this example the synaptic shaping was performed with a second-order

filter; the Spaun model, however, uses first-order filters and these are used throughout

the remainder of this thesis.

Neurons rarely occur in isolation; it is common to think of them forming groups, or

populations, which work together to fulfil some function. The synaptic weights between

two populations of neurons can be described by a synaptic weight matrix, one of which is

illustrated in Figure 2.4 in which a black dot indicates a synaptic connection between two

neurons.

2.2 The Neural Engineering Framework

The base components of the nervous system are, of course, only part of the story about

behaviour and cognition. There is a wealth of studies which indicate the utility of even

small nervous systems in behavioural responses (e.g., Kandel 1976), but tying more com-

plex behaviours to their neural implementation has proven much more complex. The

Neural Engineering Framework (NEF) (Eliasmith and Anderson 2004; Stewart and Elia-

smith 2014) is one attempt.

The Neural Engineering Framework provides a toolkit that allows the conversion of

a functional description of a system into a neural implementation or model. Such a model

consists of populations of neurons (or ensembles) which act to represent the variables of the

system. These ensembles produce spikes which are transmitted to other ensembles by

Chapter 2. Neurons, synapses and representation 31

0.0 0.2 0.4 0.6 0.8 1.0

x

0

10

20

30

40

50

60

70
Sp

ik
e

R
at

e
/

H
z

ibias

1.0
0.6
0.2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x

0

50

100

150

200

250

Sp
ik

e
R

at
e

/
H

z

Gain
8
4
1

(b)

0.0 0.2 0.4 0.6 0.8 1.0

x

0

20

40

60

80

100

120

140

160

Sp
ik

e
R

at
e

/
H

z

(c)

Figure 2.2 – Varying parameters of a LIF neuron with τref = 2 ms and τrc = 20 ms. In (a)

the gain is held at 1 and the bias current, ibias, is varied. In (b) the bias is held at 1 and the

gain is varied. Finally, (c) illustrates how a range of tuning curves can be achieved through

varying both the bias current and the gain.

0 10 20 30 40 50 60

Time / ms

0.0

0.5

1.0

Po
st

sy
na

pt
ic

cu
rr

en
t

Figure 2.3 – Postsynaptic currents from three weighted and shaped spikes. Spikes occurred

at times t =1 ms, 30 ms and 40 ms and had weights of 10, 5 and 2 units respectively.

Pr
es

yn
ap

ti
c

ne
ur

on
s

Postsynaptic neurons

Figure 2.4 – Sample weight matrix between two populations of neurons

32 2.2. The Neural Engineering Framework

synaptic connections whose weights are selected to compute functions of the values rep-

resented by the transmitting neurons and whose synaptic shaping is leveraged to both

smooth the spikes and implement system dynamics. By constraining the number and

types of neurons and synapses in the model it is possible to compare the neural imple-

mentation of a particular functional description with the brain region thought to fulfil

the same functional role. Consequently, hypotheses regarding the nature of some neural

system (e.g., the role of basal ganglia in action-selection (Gurney, Prescott, and Redgrave

2001; Stewart, Choo, and Eliasmith 2010)) can be tested by implementing a model of

the system and comparing aspects of the implementation (e.g., timing response, failure

modes, etc.) with known biological values.

At the heart of the NEF are three principles:

Representation Populations of neurons act to represent values of the kind that we would

use to typify the behaviour of a system (e.g., velocity).

Transformation Connections between ensembles can be used to compute functions of the

values represented by the neurons (e.g., speed).

Dynamics Synaptic filtering of the spikes transmitted between ensembles may be used to

implement dynamical systems (e.g., a recurrent connection can be used to construct

an integrator which may be used to compute displacement).

Representation

The NEF characterises neural representation using two processes. Encoding converts the

value of interest (e.g., a displacement, temperature, or other physical characteristic) into

a spike-train. Decoding the spike-train returns an estimation of the original value. Alter-

natively expressed, the encoding process takes a low-dimensional value and transforms it

into a high-dimensional space and the decoding process is able to recreate an estimation

of the original value given the value in the higher-dimensional space.

Eliasmith and Anderson (2004) use a analogue-to-digital converter (ADC) to explain

the processes of encoding and decoding. At its input the ADC receives, from a trans-

ducer, an analogue signal which represents some physical quantity. The ADC converts

this input signal, which is continuous in both time and value, into a series of digital sam-

ples. These digital samples – constructed by a highly non-linear encoding – represent,

Chapter 2. Neurons, synapses and representation 33

with some quantisation noise, the original value of interest but in the ‘language’ that is

used to communicate between components of a digital rather than an analogue circuit.

We can recover a representation of the original value by multiplying the ith bit of the

output of the ADC by 2i and summing, i.e.,
n−1
∑

i=0
2iy[i] where y is the output of the ADC.

This representation is a decoding of the value that is represented by the output and is an

approximation of the input.

The same principles of encoding and decoding may be applied to a population of

neurons. Each neuron acts as an encoder which converts its input into a series of spikes –

the ‘language’ that is used to communicate between neurons. The timing characteristics

of these spikes depends on the dynamics of the neuron and the selectivity of the neuron

to the space it represents. This selectivity is achieved by adding an encoder term, ei, to the

expression for the input of a neuron:

iinput = geix + ibias (2.2)

where g is the gain of the neuron and x is an input over which we have control (see p. 29).

When representing scalar values the encoder may be either +1 or −1 resulting in

positive and negative sloping tuning curves respectively. For example, Figure 2.5 shows

the tuning curves of two LIF neurons configured to act as an on/off pair. Their response

to a time-varying input signal and the decoding of their spiking output are also shown.

As can be seen, as the input signal (a 1 Hz sine wave) becomes increasingly positive the

“on” neuron fires increasingly frequently; as the signal becomes increasingly negative the

−1.0 −0.5 0.0 0.5 1.0

Input value

0

20

40

60

80

100

Fr
eq

ue
nc

y
/

H
z

Tuning Curves

Off

On

Input, spikes and decoding

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0
−0.5

0.0
0.5
1.0

Input
Decoding (τ = 2 ms)

Figure 2.5 – Response of a pair of LIF neurons to a time-varying input signal. The tuning

curves of the neurons, their spiking response to the input and the low-pass filtered linear

decoding of the spiking output are shown.

34 2.2. The Neural Engineering Framework

−1.0 −0.5 0.0 0.5 1.0

Input value

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y
/

H
z

Tuning Curves

N
eu

ro
ns

Input, spikes and decoding

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0

−0.5

0.0

0.5

1.0

Input
Decoding (τ = 2 ms)

Figure 2.6 – Response of a population of 15 LIF neurons to a time-varying input signal.

Note that the decoded representation of the ensemble is cleaner than that of Figure 2.5.

“off” neuron fires more strongly. By using more neurons we can increase the accuracy of

the representation and decrease the noise present in the decoding. Figure 2.6 shows the

response of a population or ensemble of 15 neurons to the same input signal, as each spike

has a proportionally less effect the decoding is a ‘cleaner’ recreation of the input.

To decode the spike train emanating from a neural population we use a technique

similar to that used to decode the output of the ADC. Each neuron is associated with a

decoder di, and the decoding of the entire population is simply the sum of the spikes

of the population multiplied by the decoders. This can be thought of as a matrix-vector

multiply, as shown in Figure 2.7. The decoding is usually filtered to emulate the effects

of synaptic transmission. Consequently, in the two neuron case (Figure 2.5) we see that

as the “on” neuron fires more strongly the decoded output increases in value and as the

“off” neuron fires more strongly the decoded value decreases.

Correct choice of decoder values is important; Stewart and Eliasmith (2014) describe a

method to select such values automatically but a simple approach is outlined below. The

tuning curves for the example ‘on’ and ‘off’ neurons can be approximated by the linear

piece-wise functions, shown in left-hand pane of Figure 2.8:

aOn(x) =

67x + 8 −0.12 < x

0 x ≤ −0.12
aOff(x) =

0 0.2 ≤ x

−83x + 17 x < 0.2

Chapter 2. Neurons, synapses and representation 35

Time

Neurons

D

×

Figure 2.7 – Decoding the output of a population of neurons. For each discrete simulation

time step a vector can be constructed whose elements indicate whether each neuron fired

or not (these are shown as the stacked row vectors on the left of the figure). Multiplying

this vector by a decoder matrix (D) results in a single value which is an estimate of the

value represented by the population of neurons.

−1.0 −0.5 0.0 0.5 1.0

Input value

0

20

40

60

80

100

120

Fr
eq

ue
nc

y
/

H
z

Tuning curves

−1.0 −0.5 0.0 0.5 1.0

Input value

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
tr

ep
re

se
nt

at
io

n

Weighted tuning curves

−1.0 −0.5 0.0 0.5 1.0

Input value

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
tr

ep
re

se
nt

at
io

n

Decoding

Decoded
Approx.

Figure 2.8 – Multiplying the tuning curves of a population by the decoders. The tuning

curves and decoders are those from Figure 2.5. Piece-wise approximations of the tuning

curves and the decoding formed from these approximations are shown as dashed lines.

36 2.2. The Neural Engineering Framework

We now want to find the decoders dOn and dOff such that x̂ = dOnaOn(x)+ dOffaOff(x) ≈
x. One way to do this is to pick values of dOn and dOff such that x̂ = x for x = 1 and

x = −1. For x = 1 we have x̂ = dOn (67 + 8) = 1, therefore dOn = 1
75 . At x = −1 we have

x̂ = dOff (83 + 17) = −1, therefore dOff = − 1
100 .

Using these decoders gives:

dOnaOn(x) =

0.9x + 0.1 −0.12 < x

0 x ≤ −0.12
dOffaOff(x) =

0 0.2 ≤ x

0.8x− 0.2 x < 0.2

Resulting in the decoding:

dOnaOn + dOffaOff =

0.9x + 0.1 0.2 ≤ x

1.7x− 0.1 −0.12 < x < 0.2

0.8x− 0.2 x ≤ −0.12

Note that this decoding curve does not exactly match the desired function f (x) = x but

approximates it closely aside from a ‘bump’ in the range −0.12 < x < 0.2. This decoding

and a similar ‘bump’ in the decoding formed from the tuning curves, rather than from the

linear approximations, are shown in Figure 2.8. As will be seen in Section 2.2 decoders

can be chosen such that the decoding is a transformation of the input value.

If the encoders, ei, and decoders are selected to be vectors rather than scalars a popula-

tion may be used to represent a multi-dimensional value, the vector x. The input current

to a neuron is now derived as iinput = gei · x + ibias, such that neurons fire more strongly

the more similar the represented value is to their encoding vector. An example of this

is shown in Figure 2.9 where four neurons are used to represent a 2-dimensional value.

Each neuron in the ensemble is receptive to a portion of the representational space.

Figure 2.9(a) shows how the firing rate of a neuron with the encoder e =
(
− 1√

2
,+ 1√

2

)
varies with the input representation. Described on the tuning surface of this neuron is a

circle, with a radius of one, centred at the origin. In Figure 2.9(b) the firing rates on the

perimeter of this circle are redrawn against their angular position, along with the tun-

ing curves of a further three neurons. Finally, Figure 2.9(c) shows how, together, these

four neurons can be used to represent a two dimensional value. As before, greater accu-

racy could be achieved through using more neurons both because each spike will have

Chapter 2. Neurons, synapses and representation 37

x
−1.0 −0.5 0.0 0.5 1.0

y
−1.0
−0.5

0.0
0.5

1.0

Fr
eq

ue
nc

y
/

H
z

0

50

100

150

200

Fr
eq

ue
nc

y
/

H
z

0

50

100

150

200

(a)

−π − 1
2 π 0 1

2 π π

θ

0

50

100

150

Fr
eq

ue
nc

y
/

H
z

(b)

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

N
eu

ro
ns

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0

−0.5

0.0

0.5

1.0 Input
Output

(c)

Figure 2.9 – Representing a 2D value with four neurons. The tuning surface of a single

neuron in shown in (a) – described on this surface is a circle of radius one centred at the

origin. In (b) the firing rates on the perimeter of this circle are plotted against their angular

position and the responses of a further three neurons are shown. This population can be

used to represent a 2D value, as shown in (c) – note that since at time t = 0 the neurons are

not firing there is a transient in the output.

proportionally less effect but also because the encoders will better ‘cover’ the space. All

that is required to represent higher dimensional spaces, such as those used in Spaun, are

higher dimensional encoders.

Thus far we have seen how to use a population of neurons to convert a scalar or

vector value into a number of spike trains and how a linear decoding of these spikes can

be used to form an approximation of the original scalar or vector. However, biological

neural networks contain many interconnected populations of neurons, between which

connections are described by synaptic weight matrices. Using the NEF we can construct

a weight matrix, ω, as the product between the encoders of the post-synaptic population,

38 2.2. The Neural Engineering Framework

E, and the decoders of the pre-synaptic population, D.

ω = ED (2.3)

Imagine we were to connect our two neuron population from before (Figure 2.5 and

Figure 2.8) with the decoders D =
(

dOn dOff

)
=
(

1
75 − 1

100

)
to another pair of neurons.

We let this other population consist of another pair of ‘on’ and ‘off’ neurons with the

encoders:

E =

+1

−1

To compute the synaptic weight matrix of the connection between these populations

we multiply the encoders of the post-synaptic matrix, E, by the decoders of the pre-

synaptic matrix, D.

ω =

+1

−1

(1
75 − 1

100

)
=

 1
75 − 1

100

− 1
75

1
100

The matrix ω is constructed such that the first column describes connections from the

presynaptic-‘on’ neuron and the second describes connections from the presynaptic-‘off’

neuron. Additionally, the first and second rows describe connections to the postsynap-

tic-‘on’ and -off neurons respectively. Consequently we note that there are excitatory con-

nections between the ‘on’ neurons and between the ‘off’ neurons: ωOn,On and ωOff,Off

are positive. In addition to which there are inhibitory connections from the presynaptic-

‘on’ to the postsynaptic-‘off’ neuron and from the presynaptic-‘off’ neuron to the postsy-

naptic-‘on’ neuron: ωOn,Off and ωOff,On are negative. As a result, when the presynaptic

population represents a positive value (causing the presynaptic-‘on’ neuron to become

active) the postsynaptic-‘on’ will be excited and the postsynaptic-‘off’ neuron will be in-

hibited. Likewise, when the presynaptic population represents a negative value (causing

the presynaptic-‘off’ neuron to become active) the postsynaptic-‘off’ neuron will be ex-

cited and the postsynaptic-‘on’ neuron inhibited.

An example with vector (rather than scalar) encoders and decoders gives a better

intuition of the meaning of the synaptic weight matrix. Consider an example consisting

of two ensembles, consisting of three and four neurons respectively, representing a two

Chapter 2. Neurons, synapses and representation 39

dimensional space. The encoders of the postsynaptic population, ei, and the decoders of

the presynaptic population, dj, are:

e1 =
(
−0.6 0.8

)
e2 =

(
−0.9 −0.4

)
e3 =

(
−0.9 −0.2

)
e4 =

(
0.3 0.9

)

d1 =
(
−0.2 0.45

)>
d2 =

(
−2.3 −0.6

)>
d3 =

(
2.1 0.9

)>

We intend to select the synaptic weight matrix such that the firing rate of a neuron in

the second population is proportional to the value being represented by the output of the

first population. A simple way to achieve this is to set the synaptic weight between every

pair of pre- and postsynaptic neurons according to the similarity between their respective

decoders and encoders. For example, the synaptic weight between the second neuron of

the first population and the third neuron of the second will be given by:

ω3,2 = e3d2 = (−0.9 · −2.3) + (−0.2 · −0.6) = 2.19

Forming the encoders and decoders into matrices (E and D, respectively) and multi-

plying them together forms the complete weight matrix:

ω = ED =

e1

e2

e3

e4

(

d1 d2 d3

)
=

e1d1 e1d2 e1d3

e2d1 e2d2 e2d3

e3d1 e3d2 e3d3

e4d1 e4d2 e4d3

 =

0.48 0.90 −0.54

0 2.31 −2.25

0.09 2.19 −2.07

0.35 −1.23 1.44

This procedure works for any pair of neural populations whose encoders and de-

coders can be formed into a matrices of shape Npost × D and D × Npre and will always

result in a synaptic weight matrix of form Npost × Npre.

It should be noted that, since a pair of neurons will only not be connected if their

encoders and decoders are orthogonal (for example, ω2,1 above), the synaptic weight

matrices produced this way will be dense. This has important ramifications for the sim-

40 2.2. The Neural Engineering Framework

ulation of these networks. In addition, the weight matrices often violate the observation

that, in biology, neurons only ever form either excitatory or inhibitory outgoing connec-

tions (Dale’s Principle, see Strata and Harvey 1999). Eliasmith and Anderson (2004) and

Tripp and Eliasmith (2016) describe methods to build networks such that they obey this

principle.

Transformation

In the previous section we saw that the decoders for a population of neurons could be

chosen to allow us to estimate the value represented by the ensemble. However, it is also

possible to choose decoders to estimate a function of the value represented by a population

of neurons. For example, we might select decoders such that we could estimate the square

of the value represented by an ensemble.

We can approximate this process for the two neurons configured as an on/off pair.

Using the same tuning curve approximations as before we know that we would like to

find d f
On and d f

Off such that d f
OnaOn + d f

OffaOff ≈ f (x), where f (x) = x2. Keeping d f
On = 1

75

as before, but negating d f
Off to be + 1

100 results in the decoding:

d f
OnaOn + d f

OffaOff =

0.9x + 0.1 0.2 ≤ x

0.1x + 0.3 −0.12 < x < 0.2

−0.8x + 0.2 x ≤ −0.12

which approximates the form of x2. Figure 2.10 shows how the use of these decoders can

compute a different function from the same spiking output that was shown in Figure 2.5.

Once again, with more neurons a ‘cleaner’ decoding may be achieved (as in Figure 2.11).

These new decoders D f =
(

1
75

1
100

)
, may be used to form the synaptic weight ma-

trix specifying the connection to another pair of ‘on’ and ‘off’ neurons. Using the same

encoders as previously, E =
(
+1 −1

)>
, results in the synaptic weight matrix:

ω f =

+1

−1

(1
75

1
100

)
=

 1
75

1
100

− 1
75 − 1

100

The weight matrix is such that regardless of the value represented by the presynaptic

population – i.e., whichever of the presynaptic-‘on’ or the presynaptic-‘off’ neuron is

Chapter 2. Neurons, synapses and representation 41

−1.0 −0.5 0.0 0.5 1.0

Input value

0

20

40

60

80

100

Fr
eq

ue
nc

y
/

H
z

Tuning Curves

Off

On

Input, spikes and decoding

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0
−0.5

0.0
0.5
1.0

Input (x)

Expected (x2)
Decoding (τ = 2 ms)

Figure 2.10 – Decoding x2 from a pair of neurons. The left panel shows the tuning curves

of the two neurons. The input to the neurons, the resulting spikes and a decoding of the

spikes which reproduces an estimate of the square of the input are shown in the right panel.

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0

−0.5

0.0

0.5

1.0

Input (x)

Expected (x2)
Decoding (τ = 2 ms)

Figure 2.11 – Decoding the square of the value represented by an ensemble of 100 neurons.

The input to the ensemble, the expected output (the square of the input) and the measured

output are shown. Note that the output from the ensemble is both less noisy and a closer

approximation of the value x2 than that produced by the smaller ensemble in Figure 2.10.

42 2.2. The Neural Engineering Framework

firing – the postynaptic-‘on’ neuron will be excited and the presynaptic-‘off’ neuron will

be inhibited. Since the decoders of the presynaptic population were selected to compute

the square of the value represented by the ensemble, the result of which is never negative,

it is not surprising that the weights in the synaptic matrix act to excite the postsynaptic-

‘on’ neuron and inhibit the postsynaptic-‘off’ neuron.

Instead of computing a function of the value represented by an ensemble we may

wish to transform it with a linear operator, L. For example, we might wish to rotate the

2-dimensional value represented by an ensemble by the angle θ. This may be achieved

by premultiplying the decoders by the desired transform:

Ldi =

cos θ − sin θ

sin θ cos θ

 di (2.4)

Figure 2.12 shows how a linear operator can ‘rotate’ the value decoded from an ensemble.

We may combine this technique with the previous example. Suppose that instead of

decoding x2 from an ensemble we wished to decode− 1
2 x2 we could modify our previous

decoders D f =
(

1
75

1
100

)
by premultiplying them by − 1

2 to result in Dg =
(
− 1

150 − 1
200

)
.

As before, multiplying by the encoders allows us to create a synaptic weight matrix be-

tween two pairs of neurons which results in the value − 1
2 x2 being applied to the postsy-

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0

−0.5

0.0

0.5

1.0 Input
Decoding (τ = 2 ms)

Figure 2.12 – Applying a linear transform to the decoding of an ensemble. Premultiplying

the decoders of an ensemble by a linear transform applies that transform to the decoding

of the ensemble – in this case a 1
4 π rotation has been applied.

Chapter 2. Neurons, synapses and representation 43

naptic population:

ωg =

+1

−1

(− 1
150 − 1

200

)
=

− 1
150 − 1

200

1
150

1
200

Unlike the weight matrix, w f , derived using decoders for x2, this weight matrix causes

the postsynaptic-‘off‘ neuron to be excited and the postsynaptic-‘on’ neuron to be inhib-

ited regardless of the value represented by the presynaptic pair. Since − 1
2 x2 is never

positive this pattern of connectivity is to be expected.

Dynamics

Synaptic connections between neurons are characterised not only by the weighting but

also by the shaping they impart to the spikes which they carry. This shaping can be mod-

elled as a linear transfer function. By exploiting the presence of this transfer function

a number of dynamic systems may be implemented neurally (Eliasmith 2005; Eliasmith

and Anderson 2004).

Figure 2.13(a) shows a simple neural network consisting of a single, recurrently con-

nected, ensemble fed by the value u(t) and representing the value x(t). Assuming that

the synaptic filter model h(t) is used for both the connection into the ensemble and the

recurrent connection, and that the linear transform L is applied by the recurrent con-

nection then this neural system may be approximated by the block diagram shown in

Figure 2.13(b). Evaluating the block diagram results in x(t) = h(t) ∗ u(t) + h(t) ∗ Lx(t).

Or, in the Laplace domain:

X(s) = H(s)U(s) + H(s)LX(s)

= H(s) (U(s) + LX(s))

Letting H(s) = 1
τs+1 , the transfer function for a first-order low-pass filter with time

constant τ, results in:

X(s) =
U(s) + LX(s)

τs + 1

τsX(s) + X(s) = U(s) + LX(s)

sX(s) =
U(s) + LX(s)− X(s)

τ

44 2.2. The Neural Engineering Framework

u(t)

x(t)

(a)

u(t) h(t)
x(t)

L

h(t)

+ +

(b)

Figure 2.13 – Using a recurrent connection to implement a dynamic system. A recurrently

connected ensemble representing x(t) is shown in (a), alongside the recurrent connection

the ensemble is being fed the value u(t). If the synaptic filter model applied on both con-

nections in (a) is h(t) then an approximate block diagram for the system is as shown in (b).

The use of a small number of clustered dots to represent a neural ensemble is common to

the field and will be reused throughout this thesis.

Which, after applying the inverse Laplace transform, is:

ẋ =
u(t) + (L− I) x(t)

τ
(2.5)

Consequently, through choice of L we can determine the dynamics of x. For example,

to create an integrator with dynamics ẋ(t) = v(t) (where v and x are scalars) we could

let L = 1 and u(t) = τv(t):

ẋ =
u(t) + (L− 1) x(t)

τ
=

τv(t) + (1− 1)x(t)
τ

= v(t)

A simulation of this network, with τ = 100 ms, is shown in Figure 2.14. Attractor

networks like this can be used to build memories to store vectors, which, as shown in the

next section, can be used to represent token-like values.

0 1 2 3 4 5 6

Time / s

−1.0

−0.5

0.0

0.5

1.0

Input u(t)

Output x̂(t)

Figure 2.14 – Simulation of a neurally implemented integrator. The neural network simu-

lated here is as presented in Figure 2.13.

Chapter 2. Neurons, synapses and representation 45

2.3 The Semantic Pointer Architecture

Using the Neural Engineering Framework it is possible to construct neural implemen-

tations of control-theory like structures. However, not all cognitive processes are best

described by dynamic systems. For example, language consists of tokens (words) which

are combined together to form more structured tokens (phrases and sentences). Since

symbolic, computational-like, processing seems to be so important in human cognition it

has long been argued it must be accounted for in any theory of cognition. Unfortunately,

mapping structured symbolic representations to neural networks is non-trivial (Smolen-

sky 1990) and has been hotly debated (Fodor and Pylyshyn 1988; Smolensky 1988).

In the Semantic Pointer Architecture (SPA) (Eliasmith 2013; Eliasmith, Stewart, et

al. 2012) each symbol, such as the word ‘cheese’, is represented by a vector in a high-

dimensional space. By combining different vectors together with different operators

new, structured, symbols may be formed and computations performed. Since the Neural

Engineering Framework describes how vectors could be represented and transformed

by neural networks the combination of the SPA and NEF presents a method by which

symbol-like processing can be implemented in neural form.

Representing and operating on symbols

Vectors are a natural way to represent symbols since they support inference of semantic

relationships: symbols which are semantically similar (e.g., horse and donkey) may be as-

signed vectors which are close within the high dimensional space. By using a sufficiently

high dimensional space, spurious relationships between vectors can be avoided since the

likelihood of any two vectors being similar is vanishingly small. Relatedness between a

pair of vectors-representing-symbols can be measured by computing their dot product.

Vector addition is one method by which symbols in a vector symbolic architecture

may be combined. Since addition preserves relatedness it is ideal for producing new sym-

bols. For example, the vector representing pet fish, PET + FISH, could be expected to

have similarities with the vector representing pet mice, PET + MICE. However, addi-

tion is not good at constructing syntactic representations of the form mice eat cheese. This

symbol could be expressed as MICE + EAT + CHEESE but this vector could not be dif-

ferentiated from that which would be used to represent the symbol cheese eat mice. What

is needed, in addition to the addition operator, is a way to bind symbols together to pro-

46 2.3. The Semantic Pointer Architecture

duce new, distinct, symbols. In the Semantic Pointer Architecture this is achieved by use

of circular convolution (Plate 1995).

Circular convolution of two vectors, a ~ b, results in a vector, of the same dimen-

sionality, which is highly dissimilar from either of the original vectors, a or b, but which

contains sufficient information that either of the originals may be retrieved given some

information about the other. Specifically, the circular convolution of two n-dimensional

vectors, a and b is defined as:

(a ~ b)i =
n−1

∑
j=0

ajbi−j mod n (2.6)

which, due to the convolution theorem, may also be expressed as:

a ~ b = F−1 (Fa�Fb) (2.7)

where, F is the discrete Fourier transform, F−1 its inverse and � the element-wise mul-

tiplication operator.

Using circular convolution to bind placeholder tokens (e.g., SUBJ for subject, OBJ for

object and VRB for verb) to the constituents of a sentence is one way to construct syntactic

representations. Doing this allows us to express mice eat cheese as

S = MICE ~ SUBJ + EAT ~ VRB + CHEESE ~ OBJ

which is clearly distinct from the expression which would represent cheese eat mice.

For the following example the symbols MICE, EAT, CHEESE, SUBJ, OBJ and VRB

were all represented by randomly selected, 128 dimension, vectors of length 1. The com-

pound expression S contains pairs of these symbols bound together using the circular

convolution operation defined above. Each of these bound pairs is strongly dissimilar

from the original symbols from which it was formed. Table 2.1 shows the dot product

similarity between the compound symbols composing S and each of the original sym-

bols from the vocabulary. Since S was formed as the summation of the bound pairs it is

similar to each of them.

Symbols can be unbound from a compound symbol to retrieve information from a

complex representation. To unbind a symbol we construct a pseudo-inverse of the sym-

Chapter 2. Neurons, synapses and representation 47

MICE EAT CHEESE SUBJ OBJ VRB S

MICE ~ SUBJ −0.03 0.05 0.03 0.00 0.10 0.01 0.60
EAT ~ VRB 0.07 −0.19 0.08 −0.14 −0.03 0.09 0.61

CHEESE ~ OBJ 0.10 −0.02 −0.18 −0.08 0.12 −0.03 0.58
S 0.08 −0.09 −0.04 −0.12 0.11 0.04 1.00

Table 2.1 – Similarity between compound symbols and their constituents. Each compound

symbol, A ~ B, is also represented by a 128-dimensional vector which has little similarity

(as measured by dot product) to either of its constituent symbols.

bol and bind it with the compound symbol using the circular convolution operator. For

example, to unbind SUBJ from MICE ~ SUBJ we would construct the inverse symbol

SUBJ∗ and bind it with the compound symbol, MICE ~ SUBJ ~ SUBJ∗. The pseudo-

inverse (with respect to circular convolution) of an n-dimensional vector a can be con-

structed as a∗ = (a0, an−1, an−2, . . . , a1). However, since this is only an pseudo-inverse

the result of (MICE ~ SUBJ)~ SUBJ∗ is not exactly MICE. Plate (1995, §II.E) provides

a demonstration of why the pseudo-inverse has this shape.

This same technique can be used to unbind terms from compound expressions that

were constructed through the addition of bound symbols. For example, to determine the

subject of the expression S, mice eat cheese, we would compute:

S ~ SUBJ∗ ≈ MICE

(MICE ~ SUBJ + EAT ~ VRB + CHEESE ~ OBJ)~ SUBJ∗ ≈ MICE

Table 2.2 shows the similarity between the result of unbinding different symbols from

S and the original symbols from the vocabulary. It is clear that each of the unbound

symbols, S ~ x∗, is most similar to the symbol that was originally bound with x – for

example, S ~ SUBJ∗ is most similar to MICE.

Implementations of this form of vector-based representation often replace the output

of an unbinding operation with a canonical symbol from the vocabulary to reduce the

MICE EAT CHEESE SUBJ OBJ VRB S

S ~ SUBJ∗ 0.51 0.02 −0.03 −0.16 0.05 0.03 −0.26
S ~ VRB∗ −0.10 0.52 −0.14 0.04 −0.05 0.12 0.06
S ~ OBJ∗ 0.01 −0.07 0.50 0.05 −0.18 −0.04 −0.20

S ~ MICE∗ −0.27 0.04 0.03 0.49 0.01 −0.10 0.07

Table 2.2 – Similarity of unbound symbols to vectors in the original vocabulary.

48 2.3. The Semantic Pointer Architecture

noise presented to later stages of computation. For example, since the result of unbinding

SUBJ from S is most similar to MICE (the dot product was 0.51, see the first row of

Table 2.2) the vector MICE will be presented to further stages of computation rather than

the value of S ~ SUBJ∗. In the Semantic Pointer Architecture this form of ‘cleanup’ is

achieved with an autoassociative memory (Stewart, Tang, and Eliasmith 2011).

The ‘question answering’ example used above that extracted the subject, object and

verb from the expression S can be implemented as a neural network using the principles

of the Neural Engineering Framework. Figure 2.15 shows the top-level view of such a

network. One input to the network is used to store the expression S in a memory and the

other provides a series of cues. Each cue is inverted and fed to a neural network which

implements circular convolution. Output from the memory is also fed to the circular

convolution network to produce the ‘answer’ to the ‘question’ provided by the cue.

Figure 2.16 shows the results of a simulation of this network. The top panel of the

figure shows the dot product between the input cue and each of the symbols SUBJ, VRB

and OBJ. No cues were provided for the first 0.2 s of the simulation, during which the

expression S was stored in the memory. Subsequently, each of the cues was presented

for a period of 0.2 s. The lower panel shows the dot products between the output of the

network and each of the symbols MICE, EAT and CHEESE. As expected, the output of

the network was most similar to MICE when given the cue SUBJ, to EAT when given

the cue VRB and to CHEESE when given the cue OBJ.

Cue

Memory

S

CUE

~
Output

S ~ CUE∗

Invert

Figure 2.15 – High-level view of a symbol unbinding neural network. The structure of the

circular convolution network (marked ‘~’) is described later in the thesis.

Chapter 2. Neurons, synapses and representation 49

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

In
pu

t SUBJ
VERB
OBJ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time / s

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

O
ut

pu
t MICE

EAT
CHEESE

Figure 2.16 – Simulation of a neural implementation of symbol unbinding. The upper

panel shows the input cues being applied to the neural network and the lower panel shows

the effect of unbinding each cue against an expression, S, stored in a memory. Each line

represents the time-varying similarity between a symbol in the vocabulary and the input

or output value of interest.

Symbols and compressed representations

In the previous example we used a number of randomly selected vectors to represent

base symbols (SUBJ for subject and so on). These base vectors were combined using ad-

dition and circular convolution to construct new vectors of the same size to represent new

symbols. Necessarily these new vectors are somewhat compressed relative to their original

constituents, evidence of which can be seen in the levels of dissimilarity found when un-

binding base symbols from a compound symbol. However, new vectors may be formed

not only through the combination and compression of existing vectors of the same di-

mensionality but also through the compression of vectors of higher dimensionality. Tang

and Eliasmith (2010) extend the work of Hinton and Salakhutdinov (2006) to show that

Deep Belief Networks (DBNs) can be used to construct compressed representations of

inputs such as sensory stimuli. Consequently, some symbols in the Semantic Pointer Ar-

chitecture may be represented by vectors which are derived from the characteristics of

the referent of the symbol in some external modality such as vision or sound. Since SPA

uses the dot product of vectors to determine their similarity, using external stimuli to

form the vectors that are the input of a neural system is a reasonable way to ensure that

similar input stimuli are translated into functionally similar vectors.

50 2.4. Cognitive architectures and Spaun

2.4 Cognitive architectures and Spaun

Section 2.1 described, and provided simple models of, the basic components of the ner-

vous system. In Section 2.2, these components were combined into larger units which

could represent and transform multi-dimensional values. Finally, methods for using

multi-dimensional values to represent symbol-like values and for using these symbols

in computation-like processes were introduced in Section 2.3. Each of these sections rep-

resented a different level of scale and complexity – from basic components through to

complex representations. A similar story would take us from transistors to logic gates to

combinatorial and sequential logic, and finally to processors.

Just as a processor includes different components which, combined, allow it to ex-

ecute programs, cognitive architectures are constructed from the kinds of components

that are expected to be required by a cognitive system: working and long term memory,

attentional control, symbol manipulation etc. Each of these components or modules is

proposed to represent the function of a certain brain region or regions and the role of the

entire architecture is to explain how these components interact to produce behaviour. The

main components of the Spaun cognitive architecture (Eliasmith, Stewart, et al. 2012) and

their interconnection are pictured in Figure 2.17.

Action selection and execution

The combination of modules to produce behaviour can be illustrated by constructing a

simple neural machine (illustrated in Figure 2.18) whose behaviour can be interpreted as

repeated transitions among the states A, B and C. In practice, the current state of the

system will be represented by a population of neurons representing the vector x, which

can take any value. We will consider the system to be in the state A when x is most like a

vector we have selected to represent A, that is, when a · x > b · x and a · x > c · x (likewise

for the other states). The system will be configured such that when it is ‘in’ state A the

input of the population of neurons representing x will be changed to make x more like

b (so state A transitions to state B). Likewise, when x is most like b it will be changed

to be more like c and so on such that the machine can be interpreted to transition in the

sequence ABCABCABC. . .

To translate this system into a SPA implementation both the actions that the system

may take and their utilities must be defined. In SPA an action represents the transfer

Chapter 2. Neurons, synapses and representation 51

of information from one module to another and, as in many other cognitive architec-

tures (notably Anderson et al. 2004), each action is associated with a utility, a scalar value

indicating how beneficial it would be to perform the given action. In our machine there

are three actions: “transition to state B” (i.e., “assign b to x” or x ← b), “transition to

state C” (i.e., x ← c) and “transition to state A”. The utility of each of these actions

is determined by the current state of the system. For example, the utility of the action

“transition to state B” is a function of how similar the current state of the system is to the

state A. This similarity can be measured by computing the dot product between the cur-

rent state and the vector representing A, that is u(x← b) ≡ a · x. The use of these utilities

will be discussed in a few paragraphs but, for now, it is worth noting that the result of

undertaking the action x ← a will be to make a · x > b · x and a · x > c · x – maximising

the utility of x ← b. Figure 2.18 illustrates the components that make up this machine

and shows the results of a short simulation of the resulting neural implementation.

A ‘bus’ is one way of thinking about how modules may be combined to form larger,

more complex, architectures. For example, many of the modules shown in Figure 2.17

are connected to a bus. By controlling which modules ‘write’ to and ‘read’ from the bus

different actions can be performed. For example, allowing the module labelled ‘Visual

Input’ to write to the bus at the same time that ‘Motor Output’ is reading will cause Spaun

to attempt to ‘draw’ what it ‘sees’. Spaun will be discussed in more detail below.

In the Semantic Pointer Architecture, this ‘bus’ is implemented as a model of the tha-

lamus, a region of the brain which is implicated in controlling the flow of information to

the cortex (Sherman 2006). As modelled here, the flow of information through the thala-

mus is controlled by a model of another brain region, the basal ganglia, which is thought

to be crucial in making choices between different actions (Redgrave, Prescott, and Gurney

1999; Gurney, Prescott, and Redgrave 2001). An action represents, as before, the transfer

of information from one module to another: in this case the combination of a ‘write’ and

a ‘read’ on the ‘bus’. The utilities of the various actions are presented to the model of the

basal ganglia which selects the action with the greatest utility, causing information to be

routed around the architecture. Since the utilities of the actions change as the state of the

model evolves, sequences of actions can be performed and the entire system can respond

to changes in the external environment (Stewart, Choo, and Eliasmith 2010).

52 2.4. Cognitive architectures and Spaun

Figure 2.17 – Block diagram of Spaun showing the different modules and their intercon-

nection (Reproduced from Eliasmith 2013). Similar block diagrams could be produced

for other cognitive architectures (e.g., Laird, Newell, and Rosenbloom 1987; Anderson et

al. 2004). The thick black line represents a bus which can be used to transfer values be-

tween different modules. Each possible transfer of values across this bus (from ‘Working

Memory‘ to ‘Motor Output‘, say) is called an action and is associated with a utility which

indicates how beneficial it would be to perform that action. By repeatedly selecting and

performing the action with the greatest utility the overall state of the system can progress.

a

b

c

x

State

•c
Utilities

•a

•b

(a)

0 50 100 150 200 250 300 350 400

Time / ms

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

a · x
b · x
c · x

(b)

Figure 2.18 – A neural machine. A block diagram of the components is shown in (a). The

state of the machine, x, is stored in the block labelled “State”. The output of this block,

also x, is compared to each of the three state vectors compute the utilities which are used

to select (using the multiplexer [trapezium] in the lower left) the next value of x. The

time-varying similarity between the state and each of the state vectors is shown in (b). For

example, for 0 < t ≤∼ 60 ms x was most similar to a, so the machine can be interpreted

as being in state A for this period. Likewise for ∼ 60 < t ≤∼ 120 ms x was most similar to

b so for this period the machine can be interpreted as being in state B. The neural model

contained 2450 neurons and the state was represented with a 16-d vector.

Chapter 2. Neurons, synapses and representation 53

Spaun: The Semantic Pointer Architecture Unified Network model

The Semantic Pointer Architecture Unified Network, Spaun (Eliasmith, Stewart, et al.

2012; Eliasmith 2013), is a neurally-implemented cognitive architecture which ties to-

gether the action selection and complex representations of the Semantic Pointer Archi-

tecture with the neural representation, transformation and dynamics of the Neural Engi-

neering Framework. Spaun consists of a virtual ‘eye’, which is fed images representing

numbers and letters, a spiking neural implementation of the cognitive architecture that

was pictured above and a simulated ‘arm’ which allows it to ‘write’ its responses to the

inputs that it was given. The model is capable of performing eight cognitive and non-

cognitive tasks ranging from reproducing the form of the characters it has been presented

to solving problems such as the Towers of Hanoi (Stewart and Eliasmith 2011).

Figure 2.19 shows a sample of Spaun performing a task. In this task Spaun is pre-

sented with a series of numbers which form a sequence and must respond with the final

element of the sequence. The ‘stimulus’ line in the figure shows that (after being ‘told’

which task to perform – A7) Spaun is presented with the sequences: ‘1, 11, 111‘, ‘4, 4, 444‘

and ‘5, 55, ?’. The correct response, as shown in the ‘arm’ line of the figure, is ‘555’.

2.5 Summary

This chapter has briefly reviewed the basic components from which the human brain

is built: neurons and synapses (see Dayan and Abbott 2001, among others, for a thor-

ough review) and two theories which have been used to construct functional models

of the brain: the Neural Engineering Framework (Eliasmith and Anderson 2004) and

the Semantic Pointer Architecture (Eliasmith 2013). These theories were combined in

Spaun (Eliasmith, Stewart, et al. 2012), the “the world’s first functional brain model” (Stew-

art and Eliasmith 2014).

Eliasmith (2013) argues strongly that not only does Spaun represent a significant step

toward the goal of tying cognitive behaviour to a neural implementation but also that

it reproduces human performance (timing and accuracy) on a series of tasks, including

the one shown above. However, given that 1 s of simulation of Spaun required 2.5 h of

compute time on a large compute cluster (Stewart and Eliasmith 2014) running sufficient

experiments to validate these results is both costly and time consuming. Moreover, since

54 2.5. Summary

Figure 2.19 – Spaun performing a fluid reasoning task, reproduced from (Eliasmith, Stew-

art, et al. 2012). The participant of this task is expected to infer the pattern that was used

to generate a series of sequences and then to use this rule to complete a sequence. In this

case the sequences are ‘1, 11, 111’ and ‘4, 44, 444’ and the pattern is that the character in the

sequence is repeated once more every time, such that the response to ‘5, 55, ?’ should be

‘555’. The ‘stimulus’ line in the figure shows this input being presented to Spaun and the

‘arm’ line shows the response.

Chapter 2. Neurons, synapses and representation 55

Spaun is only a fraction of the size of the human brain significant scaling will be required

to truly test the hypotheses embodied in the Neural Engineering Framework, Seman-

tic Pointer Architecture and Spaun itself. Consequently, improving the scalability and

performance of neural simulators stands to significantly benefit the cognitive sciences.

The following chapter reviews the current state of neural simulation, but before this

it is worth considering why neural simulation is required at all. For example, the neu-

ral machine that was described above is an instantiation of a computational system: its

behaviour, in the sense of repeated transitions between states, could equally well be de-

scribed by a finite state machine. However, this fails to capture features of the neural

system which may be of interest – for example, how long it takes to transition between

states (Stewart and Eliasmith 2009) or how performance degrades if neurons begin to die

or a lesion is introduced (Rasmussen and Eliasmith 2014). Consequently, neural models

are better placed to investigate the relationship between behaviour and biological im-

plementation than models which, for example, just manipulate semantic pointers. This

is highlighted by Eliasmith (2013, p. 219) who shows that the performance of the Spaun

model of working memory is at least partially a result of its neural implementation. More

generally, a neural model is more descriptive and more easily disproved – features of

a good scientific model (see, among others, Popper 1979) – than one which uses SPA

alone. Consequently, neural models and simulations fulfil a crucial role in expanding

our knowledge of the brain. See Stewart (2012) for more reasoning behind the desire to

simulate neurally-implemented cognitive systems.

56 2.5. Summary

Chapter 3

Modelling and simulation

The Neural Engineering Framework (NEF) (Eliasmith and Anderson 2004) can be used

to construct models which, like Spaun (Eliasmith, Stewart, et al. 2012), tie functional be-

haviour to a neurally-inspired implementation. By constraining such models by biology,

for example by limiting the neurons in a specific component, the hypothesis embodied

may be tested through simulation and the measurements compared to those from psy-

chology or biology. However, there are limits to the time and energy available for simu-

lation and this limits the scale and complexity of the models that may be investigated. A

number of approaches have been proposed to overcome these constraints.

This chapter first gives an overview of how neural models can be specified using

Nengo (Bekolay et al. 2014), a tool for constructing neural systems using the principles

of the NEF. In later sections various approaches to large-scale simulations are discussed.

Finally, the SpiNNaker architecture, on which this thesis focusses, is introduced.

3.1 Nengo: modelling with the Neural Engineering Framework

Nengo (Neural engineering objects, Bekolay et al. 2014) is a Python package which al-

lows modellers to specify neural networks using the concepts provided by the Neural

Engineering Framework. While Nengo includes a reference simulator implementation,

it, like other frameworks such as PyNN (Davison et al. 2008) and Topographica (Bednar

2009), explicitly supports the use of alternative simulators (be they GPUs, supercomput-

ers or neuromorphic hardware). However, unlike either PyNN or Topographica, Nengo

is targeted at the construction of neural nets using the principles of the NEF.

57

58 3.1. Nengo: modelling with the Neural Engineering Framework

The Nengo object model

To model a neural system modellers first construct, using the Nengo data types, a struc-

ture which represents the populations of neurons and synaptic connections they wish to

investigate (see Sharma, Aubin, and Eliasmith 2016). This structure resembles a graph in

which vertices represent populations of neurons (ensembles) and edges the connections

between populations. Each ensemble is annotated with information about the parame-

ters and encoders associated with the individual neurons. Meanwhile, the connections

between ensembles may either specify a full synaptic weight matrix or a function to be

computed by the connection (for example, computing the square of the value represented

by the presynaptic population – see Section 2.2). A connection may be labelled with a fil-

ter to use to model the filtering which occurs at synapses.

As well as ensembles, Nengo objects exist which allow the recording of simulation

data (Probes) and allow for the inclusion of stimuli or non-neural phenomena in the model

(Nodes). A Node contains a user-specified function which may receive input from, and

transmit output to, the neural network. For example, a Node might be used to simulate

a complex component of the network for which no biological model has been proposed,

or it may be used to represent data from a sensor, or the values transmitted to an actua-

tor. Probes also receive data – such as decoded values, spikes, neuron voltages – from a

simulation but, unlike Nodes, they record these data for later inspection.

Nengo simulators

Once the model has been constructed – usually in a manner which is agnostic of the simu-

lation platform – it is passed to a simulator. This is responsible for translating the descrip-

tion of the neural network into a form suitable for simulation, running the simulation

for a time and returning any results. For example, a simulator targeting a neuromorphic

chip might convert the neuron parameters into a form suitable for the device and trans-

late the connections into weight matrices ready to flush into the silicon synapses of the

chip. Since the model itself is agnostic of the simulator upon which it will be simulated

– save for instances where specific optimisations may be made by the modeller – it may

be simulated on any of the backends capable of running Nengo models. Currently, such

backends include an OpenCL implementation of the NEF and a SpiNNaker backend de-

veloped for and partly described within this thesis.

Chapter 3. Modelling and simulation 59

3.2 Simulating neural networks

However a neural model has been specified (whether using, for example, Nengo, PyNN,

Topographica or another method) it must be simulated in some form of computational

environment. While the differential equation(s) governing the behaviour of a single neu-

ron may be relatively simple, the modelling of many communicating neurons is computa-

tionally costly. A number of different techniques and architectures have been proposed

for efficient simulation of neural nets – some of which eschew the simulation of individ-

ual neurons and instead simulate grosser properties of populations of neurons.

The pseudo-code for a simple, clock driven, neural simulator is shown in Figure 3.1.

This simulator progresses by computing successive samples of the neuron and synapse

states and each ‘tick’ of the clock drives simulation of the next state of the model. With

minor variations this algorithm is the basis of most major neural simulators (e.g., Brian –

Goodman and Brette 2009; NEURON – Carnevale and Hines 2006; NEST – Gewaltig and

Diesmann 2007).

1 t = 0
2 while t < duration
3 for spike in spikes
4 PROCESSSPIKE(spike)// Include spike in inputs of postsynaptic neurons
5 EMPTYQUEUE(spikes)
6 for n in neurons
7 ADVANCENEURON(n)
8 if n.spiked
9 QUEUESPIKE(spikes, n)// Add spike to queue of spikes to process

10 t = t + dt

Figure 3.1 – Simple serial neural simulator (adapted from Brette et al. (2007))

The compute time required to simulate the network can be split into that required to

simulate the neurons (spent in ADVANCENEURON) and that taken to simulate the spike

transmission (spent in PROCESSSPIKE) during which a spike will be distributed to a set

of target neurons. Consequently, the total simulation time is a function of not only the

size of the network but also the density of the inter-neural connectivity and the firing

rates of the neurons. The scale of network which may be simulated this way is limited

by how much memory is available to store the network description and state. However,

60 3.2. Simulating neural networks

the simulation of networks which fit within the memory constraint may be exorbitantly

expensive in terms of the processing time required.

One way to reduce the wall-clock time required to simulate a large neural model is to

use multiple processors and to allocate to each processor a portion of the neurons to be

simulated. While the neurons may be simulated entirely in parallel some synchronisation

is required to transmit spikes between processors, a message-passing technique for which

is described by Morrison et al. (2005). Markram (2006), Izhikevich and Edelman (2008)

and Ananthanarayanan et al. (2009) report the use of various supercomputer platforms to

perform large scale neural simulations using similar techniques. However, while these

authors report significant improvements in the scale and speed of neural simulations

which could be performed there remain significant practical limitations.

Overwhelmingly these limitations are related to the costs incurred in synchronising

the many processors. For example, Ananthanarayanan et al. (2009) found that of the

173 s compute time required to simulate 1 s of their model 66 s was consumed during

synchronisation. The vast majority of this was the result of waiting for all processors to

finish work, as some processors had more work to perform than others. Once this was

accounted for it was determined that for every 1 s of simulation time 4 s was required

to distribute simulation data across the machine. This strongly suggests that real time

simulation of neural networks like Spaun on supercomputers is not feasible due to the

overheads incurred in synchronisation and communication.

General Purpose Graphics Processing Units (GP-GPUs)

Simulating neurons requires the repeated execution of a small number of operations on

a large amount of data. Graphics Processing Units (GPUs) are highly optimised for this

form of computation since they consist of many thousands of processors which can apply

the same instruction simultaneously to a wide vector of data. Consequently, they can

be exploited to perform parallel simulation of neurons. Nageswaran et al. (2009) and

Fidjeland and Shanahan (2010), among others, report on large-scale neural simulations

using GPUs and highly customised code. However, since making effective use of a GPU

requires knowledge of the particular architecture there has been interest in automatically

generating code from a high level specification (e.g., Yavuz, Turner, and Nowotny 2016).

While GPUs are undoubtedly useful platforms for the rapid simulation of smaller

Chapter 3. Modelling and simulation 61

neural models there are two keys limits to their scalability. Firstly, GPUs consume signif-

icant power (Kindratenko et al. 2009). Secondly, since much of the performance benefit of

GPUs derives from the tight coupling of high-performance memory and parallel compute

units, accessing data stored in system memory or transferring data between two GPUs

or between GPU and CPU causes the performance to drop rapidly (Keckler et al. 2011).

For example, Yavuz, Turner, and Nowotny (2016) found that the speed up achieved by a

GPU simulation of a neural network, as compared to a CPU, was strongly linked to how

much of the ‘work’ was computational rather than related to memory accesses. In par-

ticular, they noted that a ten times greater speed up could be achieved when simulating

a model constructed with the mathematically intensive Hodgkin-Huxley neural model

than for a model consisting of the considerably less intensive Izhikevich model (see also

Pallipuram, Bhuiyan, and Smith 2012). Since larger, or more densely connected, neural

networks entail more frequent accesses to memory, both to store and retrieve neural state

and to transmit spikes between populations of neurons, the costs of such accesses will

likely come to dominate any performance benefits deriving from more parallel compu-

tation – as predicted by Amdahl (1967). Consequently, it is fair to state that use of GPUs

for neural simulation may be limited by poor scalability.

While near-future GPU and GPU-interconnect architectures are positioned to im-

prove upon this state of affairs by reducing the cost of accessing system memory or

transferring data amonst GPUs (Dongarra et al. 2016) they will be subject to the same

power constraints as current GPUs. Consequently, GPUs are not well suited to real time

simulation of neural models of the scale of Spaun.

Neuromorphic hardware

An alternative approach to parallelising the simulation of neurons is to translate the dif-

ferential equations that model the neurons into hardware implementations. An extreme

instance of this is the use of low power analogue circuits to simulate neurons (Mead 1989;

Indiveri et al. 2011); since silicon implementations of neurons are inherently inflexible –

once fabricated they cannot be modified – some attempts have been made to construct

light weight programmable neurons (Merolla et al. 2014). Although both analogue and

digital neuromorphic approaches result in rapid, low power, neural simulation they are

subject to some severe limitations.

62 3.2. Simulating neural networks

While simulating neurons can be computationally costly (particularly for models such

as Hodgkin-Huxley) it is the communication between the neurons which dominates the

overall cost of the simulation. Therefore, although the massive parallelism that can be

achieved with low-level neural model implementations does reduce the time and power

consumed it does not eradicate the problems associated with transmitting spikes or sim-

ulating synapses. Since a combinatorial “explosion” would occur if synapses were con-

structed between every pair of neurons most large scale neuromorphic systems instead

use a digital network to transmit spikes and provide each neuron with a fixed number of

incoming synapses (Schemmel et al. 2010; Choudhary et al. 2012; Merolla et al. 2014). This

limits the number of connections that can be made to a neuron. While a neuron can often

‘borrow’ synapses from another this comes at the cost of reducing the number of connec-

tions that can be made to the other neuron. Consequently, neural networks, like those

constructed with the Neural Engineering Framework, which feature dense inter-neural

connectivity can be expected to make very poor use of current neuromorphic platforms.

Field-Programmable Gate Arrays (FPGAs)

Since a significant disadvantage of many neuromorphic platforms was their inflexibility

Field Programmable Gate Arrays (FPGAs) have been suggested as an alternative (Cox

and Blanz 1992). An FPGA, which contains a number of programmable logic blocks and

memory elements which may be connected together to build new computational ele-

ments, can be used to allow relatively cost effective and rapid development of custom

hardware. For example, Berzish, Eliasmith, and Tripp (2016) demonstrate a population-

based implementation of the Neural Engineering Framework, capable of simulating net-

works of around one million neurons using a single chip. In this particular instance, a

surrogate model of the populations (Tripp 2015) was used to allow simulation with a

longer time step and reduce the number of parameters associated with each population

of neurons, subsequently reducing the comparatively expensive memory accesses. Cas-

sidy, Andreou, and Georgiou (2011) and Moore et al. (2012), among others, report on

more general neural simulation using FPGAs.

Chapter 3. Modelling and simulation 63

3.3 SpiNNaker

Previous approaches to neural simulation, aside from the neuromorphic systems, have

been composed of relatively few large and expensive compute elements. Since compo-

nents were costly, increasing the scale of simulations required increasing the time re-

quired for their execution rather than increasing the number of compute elements that

were used. In contrast, the SpiNNaker architecture (Furber, Galluppi, et al. 2014; Furber

and Temple 2007) – designed specifically for the simulation of spiking neural networks

– is constructed of many low-power and cheap compute elements, making for a highly

scalable architecture. Furthermore, since one of the largest costs in supercomputer sim-

ulation of neural networks was synchronisation (Ananthanarayanan et al. 2009) SpiN-

Naker runs asynchronously.

Hardware

A SpiNNaker machine is constructed from a number of SpiNNaker chips. Each chip con-

tains 18 low-power processing cores, each with 32 KiB of instruction memory (ITCM) and

64 KiB data memory (DTCM). In addition to these small amounts of private memory is

a 128 MiB SDRAM which is shared amongst all the processing cores on a chip. Since

reads and writes to this shared memory are subject to significant latency cores may issue

asynchronous Direct Memory Access (DMA) requests, allowing programs to continue to

perform useful work while memory access is performed.

SpiNNaker cores execute small kernels which communicate amongst themselves by

passing short messages across a communications network-on-chip (NoC). To allow mes-

sages to be sent between the kernels being executed by cores on different chips the com-

munications NoC is connected to an inter-chip network. This network links each chip

with six neighbours and the entire fabric may be wrapped into a torus to maximise the

aggregate bandwidth of the machine. The links connecting a node to its neighbours are

commonly labelled with compass points. Packets are directed around this network by

routers contained within each SpiNNaker chip. The components of a SpiNNaker chip

and the arrangement of chips to form a mesh network are shown in Figure 3.2.

The messages passed amongst processing cores consist of an 8 bit header, a 32 bit key

and an optional 32 bit payload. Once transmitted by a processing core these packets

travel through the network by traversing the inter-chip links. At each chip the packet is

64 3.3. SpiNNaker

inspected by a router which may duplicate and forward the packet to any combination

of the 18 processing cores located on the chip and six inter-chip links. Routers determine

how a packet should be routed by comparing its key against a 1024 entry routing table, im-

plemented as a Ternary Content Addressable Memory (TCAM). Figure 3.3 illustrates the

tree of routes that might be taken by a single packet when it is multicast across the SpiN-

Naker network. Routers and routing tables are described in more detail in Section 6.1.

Core 0 Core 1 Core 2 . . . Core 17

SDRAM (128 MiB)

Router

DTCM DTCM DTCM DTCM

E NE N W SW S

To other chips

(a)

East

North East
North

West

South West
South

(b)

Figure 3.2 – The components of a SpiNNaker chip are illustrated in (a). Many chips can be

combined to form a mesh network as shown in (b).

Chapter 3. Modelling and simulation 65

Figure 3.3 – Multicasting packets across the SpiNNaker architecture. Each hexagon rep-

resents a SpiNNaker chip and each circle a SpiNNaker core. The tree drawn across the

SpiNNaker machine shows the route that might be taken by a packet transmitted by the

red core and destined for delivery to the blue cores; at the fork the packet is duplicated.

There are a number of limitations to the SpiNNaker architecture. To save energy

and area no floating point hardware is provided and, because software implementa-

tions of such operations are not performant, fixed point representations are used instead.

Hopkins and Furber (2015) discuss the implications this has for neural simulation and

Section 4.5 demonstrates some of these effects with respect to the Neural Engineering

Framework (NEF).

Additionally, it is not guaranteed that all SpiNNaker packets will be delivered to

their intended recipients: packets can be dropped to reduce congestion if the network is

overloaded. For the spiking neural networks for which the architecture was designed it

was assumed that, since neurons are inherently noisy and unreliable, occasional dropped

packets would not have a significant effect upon simulation results.

Neural simulation

When simulating a spiking neural network on SpiNNaker each core is assigned a number

(typically of the order of a few hundred) of neurons to simulate. Figure 3.4 illustrates how

the populations of a neural network might be mapped to a SpiNNaker machine.

SpiNNaker cores are programmed in an event driven manner and are triggered by

events such as the ticking of a timer, the receipt of a multicast packet and the completion

of a read or write to the shared SDRAM present on each chip. The serial neural net-

work simulator of Figure 3.1 may be mapped to this event driven system. First, a timer

66 3.3. SpiNNaker

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

1

2

Figure 3.4 – Sample neural network mapped to a SpiNNaker machine. The neural network

consists of two populations, with one population mapped to a core on the lower-left chip

and the other mapped to a core on the upper-right chip.

is configured to ‘tick’ at a regular interval; usually with a period chosen to be the same

as the time step of the simulation such that the simulation progresses in real time. The

timer ‘tick’ triggers the update of the synapse filters and neuron models assigned to the

processing core. If, during this update, a neuron fires then a multicast packet is transmit-

ted. The key of this ‘spike-packet’ is assigned a value which uniquely identifies the firing

neuron (see Boahen et al. 2000, for more on Address Event Representation (AER)). Once

the state of all neurons has been updated the core idles until triggered by the next event.

Meanwhile, the spike packets traverse the SpiNNaker network and are multicast to

all the processing cores which simulate neurons connected to the source neuron. The

receipt of a packet causes a core to read the row of the synaptic weight matrix associated

with the firing neuron. The synaptic weights contained in this row are then added to

the inputs for all of the postsynaptic neurons and these inputs will be used to update the

neural states upon the next tick of the timer. The entire process is illustrated by Figure 3.5.

There are limits on the number of neurons which may be simulated by a core. Firstly,

there must be sufficient memory available to store the neural parameters and state. Sec-

ondly, it must be possible to store the synaptic weight matrices in SDRAM. Since the

weight matrices are assumed to be sparse they are stored in a compressed form to save

memory. Unfortunately, the weight matrices of neural networks constructed using the

Neural Engineering Framework are not sparse (Section 2.2) and this has ramifications for

how they are simulated (Section 4.1).

C
hapter

3.
M

odelling
and

sim
ulation

67

Synaptic
Weight Matrix

H[z]

H[z]

H[z]

H[z]

Synaptic
Weight Matrix

H[z]

H[z]

H[z]

H[z]

H[z]

Neurons are simulated. Spikes are queued
for transmission over the network.

“Spike” packets are received. Synaptic weights are
retrieved and filtered to form input currents.

Packets indicate
which neurons
have spiked.

Figure 3.5 – Simulation of neural nets on SpiNNaker

68 3.3. SpiNNaker

Since each processing core must have completed all the tasks associated with a step of

the simulation before the next tick of the timer there is also a computational constraint on

the number of neurons which can be allocated to a single core. The computational load on

a single core is a combination of the time taken to simulate the neurons and that required

to process the synaptic rows. Sharp and Furber (2013) found that the time required to

process incoming spikes was one of the biggest factors in SpiNNaker performance. Every

received spike results in the retrieval of a row of the synaptic weight matrix from SDRAM

and every value in the retrieved row must be included in the input for a neuron. Each of

these values constitutes a synaptic event. Sharp and Furber (2013) found that a processing

core could only process 5000 synaptic events per millisecond before missing its real time

deadlines.

The constraints on processor utilisation and memory usage may be satisfied by al-

locating fewer neurons to each processor core. This reduces the time that will be spent

updating neural states, the amount of DTCM required to store the neural parameters and

state, and the length of the rows of the synaptic weight matrices. Reducing the length of

the rows reduces the number of synaptic events which will need to be processed – which,

in turn, reduces the computational load – and the memory required to store the matrices.

However, shorter rows mean that the fixed costs associated with receiving spikes and

retrieving synaptic rows from memory can be amortised over fewer synaptic events –

essentially increasing the cost of each event (Knight and Furber 2016).

Placement and routing

The previous section described the steps taken by kernels running on SpiNNaker cores

during the simulation of a neural net. However, before this stage of the simulation can be-

gin there are several steps necessary to convert the abstract representation of the network

produced by Nengo, PyNN or similar into a form which can be simulated on SpiNNaker

and to load applications and data structures to the machine. These pre-processing steps

can be divided into partitioning, placing and allocation, routing and loading.

The description of neural networks produced by Nengo can be thought of as a graph

whose vertices are representative of computational work (e.g., ensembles to simulate or

values to record) and whose edges represent communication between these computa-

tional elements. Figure 3.6 shows this correspondence between a neural network and a

Chapter 3. Modelling and simulation 69

less detailed graph-like view. In this example there is a connection between two popu-

lations of neurons, since the graph merely represents that there is some communication

between the ensembles it does not need to show the exact weight matrix used.

(a) (b)

Figure 3.6 – Neural networks can be abstracted as data flow graphs for the purpose of

preparing them for simulation on the SpiNNaker platform. The neural network as a graph-

like structure is shown in (a) and the data flow graph is shown in (b).

Some of the units of computational work in this graph might be larger than can be

accommodated on a single SpiNNaker core and these must be partitioned. For example,

a population of neurons which requires the processing of too many synaptic events must

be split to bring the load of each of the resulting partitions below the constraints imposed

by a single core. Figure 3.7 shows how this would proceed. The population is split into

as many partitions as required to meet the compute and memory constraints and the

connections to and from the ensemble are duplicated to show the new connectivity of the

network. After partitioning, the vertices of the graph represent units of computational

work that will be assigned to SpiNNaker cores and the edges correspond to the flows of

packets between processing cores required to simulate the neural network.

(a) (b)

Figure 3.7 – Partitioning a population of neurons to meet compute and memory con-

straints. The neural network is shown as a graph-like structure in (a) and the ensemble

to be partitioned is highlighted. The data flow graph, with the ensemble partitioned, is

shown in (b).

70 3.3. SpiNNaker

One could proceed to assign each of these units of computational work (vertices in the

data flow graph) to a randomly selected core in the machine and generate the routing ta-

bles to ensure that multicast packets were routed as required, as illustrated in Figure 3.8.

However, each of the inter-chip network links has a limited bandwidth and this suggests

that the placement of vertices should be performed in such a way that densely connected

vertices are placed more closely than loosely connected vertices and that multicast pack-

ets be routed to minimise network congestion. A number of schemes for achieving this

are described by Heathcote (2016).

A B

N
eu

ra
l

m
od

el
In

st
an

ti
at

io
n

on
Sp

iN
N

ak
er

Neuron
Connection
Map neuron(s) to processing core
Multicast packets

Figure 3.8 – Partitioning, place and routing a neural network.

The result of the placing and routing the network is that each ensemble, Node and

Probe in the original Nengo network is mapped to a SpiNNaker core and that routing

tables exist which ensure that the streams of multicast packets used to simulate connec-

tions between network objects are routed correctly. Finally, before simulation can begin,

simulation data, routing tables and application executables are loaded to the SpiNNaker

machine. Ensuring that placing, routing and loading occur as fast as possible is a key aim

of the SpiNNaker project, not only to reduce the wall-clock time required to simulate a

neural network but also because Diamond, Nowotny, and Schmuker (2015) found that

the majority of energy consumed when using SpiNNaker was consumed during these

stages when the SpiNNaker machine was largely idle.

Chapter 4

The Neural Engineering Framework

and SpiNNaker

Section 4.1 analyses how the Neural Engineering Framework (NEF) might be mapped

onto the SpiNNaker architecture and highlights the problems that would occur if the

neural simulation technique that was described in Section 3.3 were used. Following this

analysis, Section 4.2 proposes a novel implementation of the NEF which transmits neu-

ronal activities between processors as values rather than as the spikes detailed in previous

sections – this reduces the memory, compute and network resources required to simulate

neural networks built with the NEF. These two sections (4.1 and 4.2) reproduce work first

presented in “An efficient SpiNNaker implementation of the Neural Engineering Frame-

work” (Mundy, Knight, et al. 2015). Section 4.3 extends this novel implementation of

the NEF to reduce the network traffic required to simulate neural models. Finally, Sec-

tions 4.4 and 4.5 present results pertaining to both the performance and correctness of the

novel NEF implementation for SpiNNaker.

4.1 Mapping the Neural Engineering Framework to SpiNNaker

Under the “spike-transmission” scheme for simulating neural networks (Section 3.3) there

are two major constraints on how many neurons may be allocated to each core:

1. The synaptic weight matrix must fit within the memory available to the processor.

Nominally an 8 MiB share of the 128 MiB SDRAM per-chip is allocated to each core.

2. As the majority of the processing time is spent in the synaptic processing pipeline

71

72 4.1. Mapping the Neural Engineering Framework to SpiNNaker

(Sharp and Furber 2013), there must be sufficient time for the core to receive all

“spike” packets and retrieve and process the synaptic rows during one simulation

time step. The processing time required is a function of both the number of incom-

ing spikes per time step and the density of the synaptic weight matrix. Sharp and

Furber (2013) indicate that there may be at most 5000 synaptic events per time step,

where a single synaptic event indicates a single spike being passed through one

synapse to one neuron on the receiving core.

These constraints may be satisfied by either allocating fewer neurons to each process-

ing core (reducing the size of the weight matrix and thus the number of synaptic events),

or by allowing more compute time per simulation time step (increasing the number of

synaptic events that may be handled). However, allocating fewer neurons to a process-

ing core increases the number of cores necessary to perform a particular simulation and

may mean that a given simulation becomes infeasible given the hardware available. The

alternative, running SpiNNaker slower than biological real time, is undesirable for a real

time simulator and may not be possible if the simulation is intended to interface with a

neuromorphic sensor or actuator.

Neural networks constructed using the principles of the NEF have two characteristics

which pose significant challenges to the SpiNNaker architecture:

1. Weight matrices under the NEF tend, unlike those commonly found in SpiNNaker

simulations, to be dense. Consequently more memory is required for their storage;

and, as each row contains many values, many more synaptic events are associated

with each incoming spike.

2. Neurons in NEF simulations tend to have significantly greater firing rates than the

SpiNNaker platform was designed for. This increases not only the network traffic,

but also the number of synaptic events processed by each active core.

Example

Consider two connected 50-neuron ensembles, each representing a scalar. Assuming

dense matrices and using 16 bit values for the synaptic weights, the postsynaptic core

must store 50 × 50 × 2 B = 5000 B. Since this is less than 8 MiB it can be stored with

no problem. With a row-length of 50, as many as 100 incoming spikes per millisecond

Chapter 4. The Neural Engineering Framework and SpiNNaker 73

can be received before reaching the limit of 5000 synaptic events per time step. As this

is double what could be produced by the 50-neuron presynaptic ensemble the computa-

tion constraint is satisfied. Consequently, this trivial NEF network can be simulated on

SpiNNaker without splitting either population across cores.

Now consider two connected ensembles representing a d-dimensional space. For an

ensemble to represent a multidimensional value accurately it must contain sufficient neu-

rons – between 50d and 70d (Eliasmith 2013). The weight matrix between two such en-

sembles consumes 502d2 × 2 B = 5000d2 B and will outstrip the available memory as d

scales. The computational load also grows with d. Figure 4.1 shows how the number of

synaptic events grows with the increasing number of neurons in the ensembles; beyond

200 neurons the mean compute load is beyond that found by Sharp and Furber (2013)

to be sustainable. For an 800 neuron ensemble, a common size in Spaun, a maximum

of 57 neurons may be allocated to a processing core before the compute load associated

with processing synaptic events becomes untenable – an order of magnitude below the

architectural target of a thousand neurons per core (Furber and Temple 2007).

100 200 300 400 500 600 700 800

Number of Neurons

0

10

20

30

40

50

60

70

Th
ou

sa
nd

sy
na

pt
ic

ev
en

ts
/

m
s−

1

Figure 4.1 – Number of synaptic events occurring in the postsynaptic ensemble of a pair of

n-dimensional ensembles.

74 4.2. Communicating with values, not spikes

4.2 Communicating with values, not spikes

Section 4.1 highlighted that the dense weight matrices and high firing rates of the Neural

Engineering Framework would result in poor use of the architecture if mapped directly

to SpiNNaker. In this section an alternative simulation scheme is described, which leads

to much improved use of the platform.

In Section 2.2 we saw that, under the NEF, the synaptic weight matrix between two

populations could be computed through multiplication of the encoders of the postsynap-

tic population with a decoder of the presynaptic population: ω = ED. If the output of

the presynaptic neurons is thought of as a vector whose elements are either 0 or 1, to

indicate “not spiked” or “spiked” respectively, then the input to the postsynaptic neu-

rons is formed by premultiplying the spike vector by the weight matrix. In the standard,

spike-based, SpiNNaker simulation technique this matrix-vector multiplication occurs

implicitly: each received spike triggers the retrieval of a row of ω and adds the non-zero

elements of that row to the inputs for the postsynaptic neurons. However, as discussed

above, storing dense-ω for networks built with the NEF is expensive and, as firing rates

can be expected to be high, transmitting the spike-vector across the network is also costly.

Since the matrix ω = ED is known to be exactly factorisable an alternative implemen-

tation of the NEF for SpiNNaker is suggested, wherein we perform two smaller matrix-

vector multiplications explicitly. The standard SpiNNaker simulation essentially com-

putes J = ωa, where J is the input to the postsynaptic neurons and a is the spike-vector

from the presynaptic neurons. Since ω = ED, and EDa ≡ E (Da) we may perform the

operation x = Da on the core simulating the presynaptic neurons and the operation Ex

on the core simulating the postsynaptic neurons. Figure 4.2 illustrates the changes to

data-flow and data-storage required to make this change.

Pre

ω

Post~a

(a) Non-factored weight matrix

D

Pre

E

Post
D~a

(b) Factored weight matrix

Figure 4.2 – Comparison between non-factored and factored weight matrices for a single

connection. Note that the factored weight matrices are split between the pre- and postsy-

naptic cores and that the product Da rather than the vector a is transmitted between the

cores.

Chapter 4. The Neural Engineering Framework and SpiNNaker 75

There are several benefits to this scheme. Firstly, whereas the matrix ED was of the

shape Npost × Npre, the factored matrices are considerably smaller and may be stored

locally within each core. Consequently, where the postsynaptic core previously needed

to store ED it now need only store E, which is of shape Npost × d, however where the

presynaptic core did not need to store anything with regard to the connection it must now

store D of shape d× Npre. As d � Npre and Npost an overall memory saving is achieved.

Furthermore, as Ej is a factor of all the connection weights arriving at population j it

need not be duplicated for multiple incoming connections (see Figure 4.3), consequently

multiple incoming connections require no more memory from the postsynaptic core than

is required for one connection.

Pre

Pre

ωa

ωb

Post~aa

~ab

(a) Non-factored weight matrices

D

Pre

D

Pre

E

PostDa~aa

Db~ab

(b) Factored weight matrices

Figure 4.3 – Comparison between non-factored and factored weight matrices for a fan-in of

two connections. Since E is a factor of both ωa and ωb it need not be duplicated; reducing

both the amount of computation required and the memory necessary.

However, where it was previously necessary to transmit the vector a between pro-

cessing cores the new scheme requires transmission of x (= Da). In the spike-based

simulation scheme, the vector a, elements of which indicate the presence or absence of

a spike, was transmitted between cores by sending (or not sending) a multicast packet

for each element. This technique is not appropriate for transmission of x, the elements

of which are numbers, not boolean values. An appropriate coding is to transmit a single

multicast packet for each of the d elements of x with the key indicating the index of the

element (1 . . . d) and the payload containing the value ((Da)1...d). As a result, the presy-

naptic core can be expected to transmit exactly d packets per time step whereas under

the spike-based scheme a packet would have been sent for each firing neuron. Since d,

the number of dimensions represented by an ensemble, is typically much less than n, the

76 4.2. Communicating with values, not spikes

number of neurons in the ensemble, the result is a significant reduction in the number of

network packets required to model communication between neural populations.

Example

The value-based simulation scheme will be described in greater detail later. For now,

let us return to the example of two connected ensembles, each representing an d-dimen-

sional space and containing 50d neurons.

Under the spike-based scheme we identified that (50d)2 × 2 B = 5000d2 B was re-

quired to represent the synaptic weight matrix resulting from the connection between

the two ensembles. When using the value-based scheme we store the weight matrix as

two factors: E and D. Each of these factors is of size 50d× d; using 4 B per element results

in 200d2 B being stored by both the pre- and postynaptic processing cores. For d = 16, a

common size in Spaun, the full synaptic weight matrix would require 1250 KiB whereas

the factored weight matrices consume only 100 KiB – a saving of 92 %.

However, it is not only in memory usage that savings are made through use of fac-

tored weight matrices. For d = 1, the value-based scheme will result in the transmission

of one long (with payload) multicast packet per simulation time step – or a throughput of

72 kbit s−1. In contrast, we can expect the presynaptic core to transmit between zero and

fifty short (without a payload) multicast packets per simulation time step – depending

on the firing rates of the neurons, and assuming we follow the 50d-neurons heuristic – a

throughput of up to 2000 kbit s−1. Figure 4.4 illustrates how the throughput between the

cores varies with the value represented by the presynaptic core. In this example we see

that the communication bandwidth varies from 100 kbit s−1 to 400 kbit s−1 for the spike-

based scheme but is a constant 72 kbit s−1 for the value-based scheme.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Represented Value

0

100

200

300

400

Tr
af

fic
/

kb
it

s−
1 Spike-based (mean)

Value-based

Figure 4.4 – Sample traffic rates between two 50-neuron ensembles each representing a

1-dimensional value.

Chapter 4. The Neural Engineering Framework and SpiNNaker 77

Simulating neurons

Under the value-based method of simulating neural nets on SpiNNaker each core is, as

before, allocated a number of point neurons to simulate. Each simulation step is split into

three phases: input filtering, neuron update and output; which correspond to simulating

synaptic filters, neurons and spikes respectively. The stages are illustrated in Figure 4.5,

beginning with the neuron update.

During the neuron update phase each neuron is simulated, with the input to the neuron

formed from the dot product of the encoder for the neuron (a row in E) and the input

vector resulting from the input filtering step. Should a neuron fire then the row of the

decoder matrix (D) associated with it is added to vector representing the output of the

neurons for this time step. Once all neurons have been simulated the output phase begins,

during which multicast packets are used to transmit the vector formed during the neuron

update stage. Since each packet can carry at most a single 32 bit payload, multiple packets

are required to transmit a vector composed of 32 bit elements. To allow reconstruction

of the vector at the receiver the packet key is used to indicate the index of the vector

element as well as to route the packet across the network fabric to receiving processing

cores. This use of the key exploits the SpiNNaker network model, which allows bits of

the key to be masked off for routing purposes while allowing the remainder to carry

information unrelated to routing.

Simulating synapses

Once a packet has been received by a processing core it must be included in the input for

a synaptic filter. Since an ensemble may receive multiple inputs which must be filtered

with different synapse models, each received packet is routed to a filter by comparing it

against a lookup table.

A neural net and lookup table are shown in Figure 4.6. This net contains two con-

nections which terminate at ensemble B: one connection, labelled with the filter G(s), is

recurrent and the other connection, labelled H(s), originates at A. Packets from A and B

form two vectors, a and b, which must be filtered separately to produce the input for B,

H(s)a + G(s)b. The synaptic filters, G(s) and H(s), are instantiated on the core simulat-

ing B as G[z] and H[z] respectively and a lookup table is used to include the payloads of

the packets with the correct filter.

78
4.2.

C
om

m
unicating

w
ith

values,notspikes

H[z]

E D

H[z]

E D

Neurons are simulated. Any spikes are im-
mediately decoded to form a vector repre-

sentation of the activity of the neurons.

“Value” packets are received, these are reconstructed into
a vector which is filtered using the synaptic filter model.

The filtered value is encoded to form input currents.

Packets each
contain one

element of the
decoded vector.

Figure 4.5 – “Value”-based method of simulating neural nets on SpiNNaker

Chapter 4. The Neural Engineering Framework and SpiNNaker 79

A B
H(s)

G(s)

(a) Neural model

Key Mask Dimension Mask Filter

0x00000000 0xffffff00 0x00000003 0
0x00000100 0xffffff00 0x00000003 1

H[z]

G[z]

+
From

network
fabric

0

1

To
neuron
update

(b) Packet to filter routing on SpiNNaker

Figure 4.6 – An example of how different synapse models can be instantiated on SpiN-

Naker, (a) shows a simple neural model with two neural connections terminating at pop-

ulation B. The structures necessary to route packets, once received, to their appropriate

synapse models are illustrated in (b).

A sample lookup table is shown in Figure 4.6(b). In this example, the processing cores

simulating A transmit multicast packets with keys which begin 0x000000XX and those

simulating B transmit packets with keys beginning 0x000001XX. Therefore, a packet arriv-

ing from A with the key 0x00000021 would match against the first entry (since 0x00000021

& 0xffffff00 = 0x00000000 – the packet key, when masked, is equal to the key in the en-

try) and would be included in the input vector for filter H[z]. To determine with which el-

ement of the input vector for H[z] the payload should be included the key is masked with

the ‘Dimension Mask’ included in the entry. In our example, as 0x00000021 & 0x00000003

= 0x1 the payload would be added to the second element of the input vector for H[z]. A

similar process would occur for packets arriving from cores simulating B except that

these packets would match the second entry in the table.

The compute cost of comparing a packet against the lookup table is a function of the

number of entries overall and the number of entries which match the packet. Reducing

the compute cost may be necessary to ensure that packets are removed from the network

fabric fast enough, or to avoid buffers overflowing, and this may be achieved by using

logic minimisation to represent the table more compactly. Chapter 6 investigates various

techniques for minimising both network routing tables and these synapse routing tables.

In the input filtering step the synaptic filters are updated using the input vectors

formed from packets received during the previous time step. Once updated, the out-

puts of the filters are combined to produce a single input for the ensemble and this vector

is used to form inputs for the next set of neurons in the neuron update phase.

80 4.3. Using shared-memory parallelism to reduce network traffic

4.3 Using shared-memory parallelism to reduce network traffic

The previous section described the value-based simulation scheme as originally pre-

sented by the author (Mundy, Knight, et al. 2015). This simulation scheme was found

to support up to 2400 neurons per core when 1-D representations were used, more than

twice the SpiNNaker architectural target and, as described, resulted in significantly lower

memory usage than the spike-based scheme. However, memory consumption and com-

pute requirements may still entail the splitting of populations of neurons across cores,

leading to a significant drawback of the scheme.

Consider two connected 800-neuron ensembles, each representing a 16-D space. The

encoders for each population consume 800× 16× 4 B = 50 KiB, or most of the DTCM

available to a core. To ensure sufficient room is left for other data structures (decoders,

neural parameters, states etc.) each population is spread across three processors. Every

time step the three presynaptic cores each simulate around 260 neurons and construct a

16-D decoding of their output, to be transmitted as 16 multicast packets. Since there are

three presynaptic cores, each transmitting 16 packets, the postsynaptic cores receive 48

packets per time step. Under this value-based simulation scheme partitioning an ensem-

ble p-ways leads to a factor p increase in the number of packets received by each sub-

sequent processing core – an undesirable trend. In comparison, under the spike-based

scheme, partitioning populations of neurons across multiple cores does not lead to an in-

crease in the overall network traffic and may, in certain circumstances, have the desirable

effect of spreading the traffic more thinly across more of the network.

The value-based simulation scheme can, as well as increasing the total network traf-

fic when partitioning populations, suffer from heavy traffic bursts. In the scheme as

described above, neurons are immediately decoded during the neuron update phase to

contribute to a vector transmitted during the output phase. As transmitting an element

of the output vector is relatively fast not much time separates the multicast packets as

they flow through the network and this significantly increases the likelihood of packets

being dropped. In the value-based simulation scheme described in our paper (Mundy,

Knight, et al. 2015) a fixed delay was inserted between each packet; this, however, wastes

processor cycles and still results in bursty network traffic. In the spike-based scheme,

by comparison, packets are separated by at least the time taken for one neuron to be

simulated – meaning that cycles need not be wasted to ensure packet separation.

Chapter 4. The Neural Engineering Framework and SpiNNaker 81

This section extends the value-based simulation scheme to reduce the overall network

traffic and to decrease the burstiness of said traffic without inserting arbitrary delays

between the transmission of multicast packets.

Overview of the solution

Thus far SpiNNaker has been used solely as a message-passing parallel computer. How-

ever, the shared SDRAM could be used to transfer data amongst cores located on the

same chip. There are two places in the value-based scheme where performance can be

improved through use of this shared memory: decoding and synaptic filtering.

The decoding of an ensemble, when partitioned across two cores, is illustrated in

Figure 4.7(a). Since the spike vector, a of size n is split into two parts, aa and ab, of

size n
2 the decoding matrix, D of size d × n must be split column-wise into two parts,

Da and Db, of size d × n
2 . The resulting matrix-vector products, Daaa and Dbab, are of

size d and must be added to give the result Da – the decoding of the entire population.

Figure 4.7(b) shows how the partial products – Daaa and Dbab – may be computed on

different processing cores, transmitted across the network and summed by the receiver

to form the product Da. Again we note that a partitioning of the problem has doubled

the network traffic, since each transmitting core transmits d packets despite having only

simulated one half of the neurons (constructed one half of a). Moreover, the vector must

be summed at every receiving processing core rather than being summed at the source.

D ~a

= + +=

(a)

×

×

+

(b)

Figure 4.7 – Column-wise division of the decoding operation: (a) shows the series of op-

erations in abstract and (b) shows how the operands are stored and intermediate values

transmitted.

82 4.3. Using shared-memory parallelism to reduce network traffic

If instead of partitioning a we were to store it in shared memory, such that many cores

could read and write the entire vector, column-wise partitioning of D could be replaced

by a row-wise partitioning. Figure 4.8 illustrates the revised series of operations and

how the data and computation can be mapped onto the SpiNNaker architecture. Row-

wise partitioning of D yields the same memory and compute savings as column-wise

partitioning, save for the negligible memory required to store a, but does not result in an

increase in network traffic.

This technique is possible as long as an ensemble can be partitioned and placed on a

single chip. To this end, a two-stage partitioning scheme is employed which first breaks

an ensemble into chip-sized pieces and then partitions each sub-ensemble to fit the mem-

ory and compute constraints of a single processing core. Each chip-sized portion of the

ensemble is placed on the same SpiNNaker chip and uses SDRAM to share intermediate

values and reduce network traffic. As far as possible the memory and compute load of

an ensemble are evenly balanced across the smallest number of chips and cores necessary

to simulate it – a typical ensemble in Spaun, consisting of 800 neurons and representing

a 16-dimensional space, requires three SpiNNaker cores.

D ~a

=

(a)

×

×

(b)

Figure 4.8 – Row-wise division of the decoding operation: (a) shows the series of oper-

ations in abstract and (b) shows how the operands are stored and intermediate values

transmitted. The mechanism by which a is shared between the transmitting cores is not

shown.

Chapter 4. The Neural Engineering Framework and SpiNNaker 83

Parallel simulation of neurons

As before, neural simulation is split into three stages: input filtering, neuron update and

output; however, some tasks are moved between stages and, unlike previously, synchro-

nisation barriers are inserted between stages. Figure 4.9 illustrates this new, parallel,

value-based simulation scheme. In the figure, two processing cores work in parallel to

simulate a 6-neuron ensemble representing a 2-D space (the encoder matrix is 6× 2), the

output of which is projected into a 4-D space (the decoder matrix is 4× 6). Each process-

ing core is allocated half of the input space to filter, half of the neurons to simulate and

half of the output.

Every time step begins with the input filtering phase; each core updates its portion of

the synaptic filters (in this case the top core filters the first dimension and the lower core

the second dimension) and then launches a DMA transfer to copy its portion of the input

vector into SDRAM. On completion of the DMA a core waits until all other cores have

copied their contribution to the input vector into SDRAM. The neuron update stage begins

once this synchronisation barrier is passed – each core copies the entire input vector back

from SDRAM and simulates its portions of neurons as before. However, instead of im-

mediately decoding firing neurons, a bit-vector is constructed which records the spiking

state of each neuron (no spike/spike). Once all neurons have been simulated, the spike

vector is transferred into SDRAM to form a complete vector for the entire ensemble and

the core again waits for its siblings to reach the synchronisation barrier. Finally, each core

copies the complete spike vector from SDRAM and decodes the spikes to produce values

of the output vector which are transmitted as multicast packets.

Analysis

In the motivating example we considered the case of two 800-neuron ensembles each

representing a 16-D space. Due to memory constraints each ensemble was partitioned

across three processing cores with the result that the cores simulating the postsynaptic

neurons received 48 packets per time step rather than the 16 which would be necessary

had the presynaptic ensemble not been partitioned. We identified that partitioning an

ensemble into p parts resulted in a factor p increase in the number of packets required to

represent the complete output of that ensemble. We also noted that rapid transmission

of the decoded output vector resulted in bursty network traffic.

84
4.3.

U
sing

shared-m
em

ory
parallelism

to
reduce

netw
ork

traffic

E

H[z]
D

E

H[z]
D

“Value packets” are received and recon-
structed into a partial input vector which is
filtered using the synaptic filter model.

Neurons are simulated. Spikes are
stored ready to be copied to SDRAM.

Filtered input vectors
are copied into SDRAM.

Local spike vectors are
copied into SDRAM.

The complete input vec-
tor is copied back from
SDRAM.

The complete spike vec-
tor is copied back from
SDRAM.

The whole spike vector is pre-multiplied
by each core’s portion of D to yield part
of the output vector.

Packets each contain one element of the
decoded vector; combining packets from
both cores allows reconstruction of the
whole of the decoded vector.

Synchronisation
Barrier

Synchronisation
Barrier

Figure 4.9 – Shared memory simulation of a population of ensembles. The input- and spike-vectors are shared amongst cores on the same chip

to reduce the number of multicast packets which must be transmitted to represent the output of the ensemble.

Chapter 4. The Neural Engineering Framework and SpiNNaker 85

When using memory-sharing, value-based simulation, each of the 800-neuron ensem-

bles would still be partitioned across three processing cores. However, rather than each

core transmitting 16 multicast packets per time step, 16 packets are transmitted by the

cluster of three cores – with SDRAM being used to share intermediate values (the input

and spike vectors) amongst the cores. Additionally, the output stage of the simulation

step consists of the simultaneous decoding of a spike vector and the transmission of mul-

ticast packets, unlike previously where the output phase merely transmitted values from a

precomputed vector. This new output phase ensures that between transmissions of mul-

ticast packets some meaningful computational work is performed, obviating the need to

insert a delay to keep multicast packets separated in time.

These gains, however, are offset by the overheads involved in transferring data to and

from the shared SDRAM, and in waiting to pass synchronisation barriers. The overheads

will be quantified in the subsequent section.

4.4 Performance

Previous sections described the problems which would result from mapping neural net-

works built using the Neural Engineering Framework to the standard, spike-based, SpiN-

Naker simulation scheme. To better exploit the SpiNNaker architecture a new, value-

based, simulation technique was described and analysed. In this section we shall see that

the value-based simulation scheme leads to significant reductions in memory, network

and compute load, compared to the spike-based scheme, and is – in some cases – capa-

ble of supporting more than 2000 neurons per processing core, double the SpiNNaker

architectural target.

Single-core processor utilisation

To evaluate the performance of the ensemble implementation a simple network was sim-

ulated while the number of processor cycles spent in each of the simulating stages (input

filtering, neuron update and output) was profiled. The network consisted of a single n-

neuron ensemble, representing a d-dimensional space, stimulated such that firing rates,

and thus computational load, were similar to those that could be expected in an ensem-

86 4.4. Performance

ble in Spaun1. Input to the ensemble was filtered by a first-order low-pass filter with

τ = 5 ms. Figure 4.10 shows the distribution of compute costs amongst the three phases

of simulation for a range of ensemble scales and representational spaces. The time spent

in each phase was computed by multiplying the number of cycles spent in the stage by

the time taken per cycle (5 ns for a processor clocked at 200 MHz).

1 2 4 8 16 32

Number of dimensions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
oc

es
so

r
ti

m
e

/
m

s

100 neurons

Output
Neuron update
Input filtering

10 20 50 100 200

Number of neurons

0.00

0.05

0.10

0.15

0.20

0.25

0.30
16-D representations

Figure 4.10 – Single-core performance of the ensemble implementation when scaling the

number of neurons and the number of represented dimensions. Note that in both cases the

horizontal axes are non-linear, see Figure 4.11 for an alternative presentation of these data.

A simple performance model may be fitted to each phase of the simulation. For this

model, the compute cost of the input filtering stage is a function of the number of dimen-

sions, d, represented by the ensemble. By fitting the parameters of the model to the data

we find that the number of cycles used by the input filtering stage is:

cif = 39d + 135 cycles (4.1)

The cost of the neuron update phase is a combination of the cost of encoding the input

to the neurons (a function of n and d) and the cost of simulating the neurons. As the

cost of simulating a neuron depends on whether it is in its refractory period or not the

mean across a range of neurons is a useful measure of the work done in simulating an

ensemble. Given the input described above, a random walk around the surface of the

1Input to the ensemble was a random walk across the surface of the unit d-sphere: this is representative
of sampling the firing rate for representing a semantic pointer.

Chapter 4. The Neural Engineering Framework and SpiNNaker 87

representational sphere, the mean cost of the neuron update phase was found to be:

cnu = 9nd + 61n + 174 cycles (4.2)

The cost of the output phase is likewise a function of the number of firing neurons

and the number of dimensions in the decoding. Using the same techniques as before, the

mean cost of this phase was found to be:

cout = 2nd + 143d + 173 cycles (4.3)

Hence, the total compute cost for this configuration of the ensemble can be expressed as:

ctotal = 11nd + 61n + 182d + 482 cycles (4.4)

When simulation steps are 1 ms long, and the processor is clocked at 200 MHz, a total

of 2× 105 cycles are available per time step. Consequently, with d = 1, up to 2700 neurons

may be allocated to each processing core – more than twice as many as the architectural

target of 1000 neurons per core (Furber and Temple 2007). Figure 4.11 illustrates how the

models derived above fit the recorded profiling data.

By substituting d = n
50 to reflect the common-case in Nengo simulations we can fur-

ther simplify the total cost to:

ctotal = 0.22n2 + 64.64n + 482 cycles (4.5)

Using the cost estimates for synaptic processing and neuron update of Sharp and

Furber (2013), we expect the spike-based scheme to have the cost:

cspikes = 3n2 + 128n cycles (4.6)

These models show that value-based simulation can, in this configuration, allow for

simulation of up to 815 neurons per core, more than three times as many as the 237 neu-

rons per core possible with the spike-based scheme in the same configuration.

88 4.4. Performance

0.000

0.005

0.010

0.015

0.020

0.025

In
pu

tfi
lt

er
in

g
c i

f
Pr

oc
es

so
r

ti
m

e
/

m
s

100 neurons 16-D representations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
eu

ro
n

up
da

te
c n

u
Pr

oc
es

so
r

ti
m

e
/

m
s

1 2 4 8 16 32

Number of dimensions

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

O
ut

pu
tc

ou
t

Pr
oc

es
so

r
ti

m
e

/
m

s

1020 50 100 200

Number of neurons

Figure 4.11 – Modelled and recorded ensemble performance. Each plot shows a sample of

the measured ensemble performance plotted against the models that were fitted above. For

each data point (for example, 16-D at 200 neurons) 100 of the 10 000 recorded samples are

plotted. It is worth noting that as the time spent in the neuron update and output phases is

a function of the number of neurons which spiked in the preceding time step the variance

of the cost of these phases increases with the number of neurons.

Chapter 4. The Neural Engineering Framework and SpiNNaker 89

Multiple-core processor utilisation

The above results related only to a single processor and so did not include the over-

heads of writing and reading shared data to SDRAM and synchronisation incurred by the

shared-memory simulation scheme. To find these overheads a similar experiment to that

in the previous section was performed, but with the ensembles scaled to require multiple

cores. It was found that the transition from the neuron update phase of processing to the

output phase – a transition which includes writing spike values to SDRAM, synchronising

and reading from SDRAM – was less than 0.1 ms when using 8 processors in parallel to

simulate 200, 400 or 800 neurons. The overheads resulting from shared memory neural

simulation are therefore small relative to the time required to simulate the neurons.

Packet processing cost

The computational work of a processor is a combination of the various simulation phases

and the tasks performed to process received packets – see Section 4.2 (p. 77). To ensure

that SpiNNaker cores are not overloaded the partitioning of ensembles over processors

must be informed both by the performance models of Section 4.4 and a model of the

work involved in receiving packets. To build this model these latter costs were profiled

by simulating a network and measuring the time taken by one core to handle the packets

it received. Additional entries were inserted into the filter routing table (see Figure 4.6,

page 79) to allow time taken to compare a packet against an entry and that taken to

include the contribution of a matching packet in the input to a filter to be measured. Fig-

ure 4.12 illustrates a modified filter routing table and shows the results of the experiment.

These measurements were used to create a model of the processor cycles taken to

process a packet:

cmc = 12(m + n) + 16m + 49 cycles (4.7)

Where m is the number of entries which match against the packet and n is the number of

entries which do not. In Chapter 5 this expression is used to determine how many cores

are required to simulate large neural models.

Although this expression could have been derived by inspecting the assembly code

use of profiling data captures more information about on-chip performance, for exam-

90 4.5. Correctness

ple the cost of taking different branches during execution. For these measurements the

largest observed standard deviation occurred for m = 1, n = 0 and was less than 2 cy-

cles, other data points had standard deviations of the order of 10−8 cycles, suggesting

very occasional differences in performance.

Network loading

Section 4.3 used the example of the network traffic resulting from a 16-D decoding of

an 800-neuron ensemble to motivate the use of SDRAM to share intermediate values

amongst processors. In the example it was noted that the use of shared memory would

reduce the number of packets transmitted per time step from 48 to 16, despite the same

number of cores being required to simulate the ensemble. Figure 4.13 shows the results

of an experiment to demonstrate this effect. Measurements of the router packet counters

were made at 5 µs intervals for a period of 10 ms. For the ten time steps shown, 48 packets

were transmitted in each burst of activity when not using shared memory compared to

16 when intermediate results were shared.

An additional motivation for the use of shared-memory was to decrease the bursti-

ness of the traffic. The mean burst duration when not using shared memory was found

to be approximately 30 µs, resulting in a burst bandwidth of 115 bit µs−1. When shared-

memory parallelism was used the mean burst duration increased to around 55 µs, lower-

ing the burst bandwidth to 21 bit µs−1. Use of shared-memory parallelism thus leads to

around a factor five reduction in the network load associated with this simple model.

4.5 Correctness

To validate the correctness of the SpiNNaker the implementation of the Neural Engineer-

ing Framework a series of experiments is presented below. These begin by testing the

implementation of the leaky-integrate and fire neuron model at a range of frequencies be-

fore assessing the correctness of the implementation with respect to the three principles of

the NEF: representation, transformation and dynamics. The intent of these experiments

is not to guarantee that SpiNNaker behaviour will always match that of Nengo but to

demonstrate that the simulation techniques described in this chapter produce reasonable

neural behaviour.

Chapter 4. The Neural Engineering Framework and SpiNNaker 91

Key Mask . . . Filter

0x00000000 0xffffff00 0
0x00000000 0x00000000 0
0x00000000 0x00000000 0
0xffffffff 0x00000000 –

(a)

1 5 10 15 20

Total number of entries (m + n)

0

50

100

150

200

250

300

350

400

450

Pa
ck

et
pr

oc
es

si
ng

co
st

/
cy

cl
es

Matching entries (m)
1
2
3

4
5
6

7
8

9
10

(b)

Figure 4.12 – The packet processing cost was measured by inserting additional entries into

the filter routing table (see Figure 4.6), (a) shows a table in which the first entry matches a

specific set of packets, the next two entries are “match-all” entries and the final entry is a

“match-nothing” entry (m = 3, n = 1). The processor cycles spent in the packet handler for

various m and n is shown in (b), each point is the mean of 1000 samples, c.f. equation (4.7).

The ordering of the entries does not affect the time required to process incoming packets.

Time
0

5

10

15

20

Tr
an

sm
it

te
d

pa
ck

et
s

1 ms

without shared memory
with shared memory

Figure 4.13 – Packets transmitted for a 16-D decoding of an 800-neuron ensemble. Router

packet counters were sampled at 5 µs intervals during simulation of ensembles using both

the original value-based technique (Section 4.2) and the shared memory technique (Sec-

tion 4.3). When using the shared memory technique fewer packets were transmitted over-

all and these were spread over more time – leading to a reduction in network load.

92 4.5. Correctness

Neural tuning curves

The tuning curve of a neuron indicates the frequency of the firing response of a neuron

to a given input. Figure 4.14 shows both the ‘ideal’ tuning curve (as derived analytically

by Eliasmith and Anderson 2004, p.37) and the SpiNNaker equivalent for a LIF neuron

with τref = 2 ms and τrc = 20 ms. The lower part of the same plot shows the percent-

age error between the Nengo reference implementation, the SpiNNaker implementation

and the ideal. Both the reference implementation and SpiNNaker tend to fire slower

than the ideal model, with the SpiNNaker implementation firing slightly slower than the

reference. The effect of this will be to slightly reduce the representational accuracy of

ensembles built using the neurons; this will be quantified by subsequent experiments.

Representation

To test the processes of encoding and decoding values, a single ensemble of 100 LIF neu-

rons was configured to represent a scalar value. Over the course of 50 tests an input value

between ±1 was applied to the ensemble for the duration of 10 s and the decoded out-

put of the ensemble was filtered by a first-order low-pass filter with a 5 ms time constant

and recorded. The output of one such test, for both the reference implementation and

SpiNNaker, is shown in Figure 4.15(a). For each test the Root Mean Square Error (RMSE)

between both the reference and SpiNNaker instantiations of the model and the ideal out-

put was computed and the results are shown in Figure 4.15(b). For these samples, the

SpiNNaker instantiation suffers from a similar level of error to the reference implemen-

tation, indicating that the encoding and decoding schemes allow SpiNNaker to simulate

simple networks accurately.

Transformation

By modifying the decoders of an ensemble we can compute functions of the value repre-

sented by an ensemble. This transformation principle of the NEF can be demonstrated on

SpiNNaker with a slight change to the neural model, in this case such that the decoders

act to compute the square of the represented value. Figure 4.16(a) shows sample input

and output to such a network. As before, a number of experiments were run to determine

the error between the output of the simulated ensemble (running on both SpiNNaker and

the reference simulator) and the ideal output. Figure 4.16(b) shows the results of these

Chapter 4. The Neural Engineering Framework and SpiNNaker 93

0 10 20 30 40 50 60 70

0

100

200

300

400
Fr

eq
ue

nc
y

/
H

z

Ideal
SpiNNaker

0 10 20 30 40 50 60 70

Input

−6

−4

−2

0

Er
ro

r
/

%

Nengo
SpiNNaker

Figure 4.14 – Tuning curve of a LIF neuron as implemented on SpiNNaker. The relative

error between the ideal curve and the reference and SpiNNaker implementations is shown

in the lower plot.

0.00 0.05 0.10 0.15 0.20 0.25

Time / s

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
ep

re
se

nt
ed

va
lu

e

Nengo
SpiNNaker

(a)

−1.0 −0.5 0.0 0.5 1.0

Input value (x)

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
tv

al
ue

Expected (x)
SpiNNaker

−1.0 −0.5 0.0 0.5 1.0

Input value (x)

0.00

0.05

R
M

SE

SpiNNaker
Nengo

(b)

Figure 4.15 – Representing values with neurons on SpiNNaker. (a) shows the output of

a population of 100 neurons representing a constant value. This ensemble was simulated

with both Nengo and SpiNNaker. (b) shows how the error between the expected value and

that decoded from the neurons varies for both Nengo and SpiNNaker. The left hand plot

shows the outputs produced by SpiNNaker as compared to the expected, the right hand

plot shows the Root Mean Square Error (RMSE) for both platforms.

94 4.6. Summary

experiments. Again, SpiNNaker is shown to perform as well as the reference implemen-

tation of the NEF despite the need to use fixed point representations.

Dynamics

Finally, the Neural Engineering Framework may be used to construct dynamic systems (Sec-

tion 2.2). Figure 4.17 shows the behaviour of a neurally-implemented integrator when

simulated both on SpiNNaker and with the reference simulator. While the output of the

SpiNNaker instantiation is similar to the output of the reference simulator it should be

noted that the SpiNNaker implementation of the integrator tends to “leak” slightly (note

the decreasing value from 1 s to 2 s). This is probably due to insufficient precision being

available to represent the coefficients of the synaptic filter on the recurrent connection.

4.6 Summary

The dense synaptic weight matrices and high firing rates characteristic of neural net-

works built using the Neural Engineering Framework (NEF) lead to inefficient use of the

SpiNNaker architecture when using the standard algorithms for simulating neural nets.

In particular storing the synaptic matrices of these networks requires large amounts of

memory and the high firing rates and dense neural connectivity exceed the computa-

tional resources available to a SpiNNaker core running in biological real time. To over-

come these challenges to the use of the Neural Engineering Framework on SpiNNaker

a value-based simulation scheme was developed, extending the work of Bekolay et al.

(2014). This value-based scheme has been shown to result in around a 90 % reduction in

the memory usage associated with a range of simulation scales, and makes considerably

better use of the computation and communication resources of the SpiNNaker chip – to

the extent that in some cases twice as many neurons may be simulated on a core than was

the architectural target.

This chapter resolved some of the problems associated with SpiNNaker simulation of

neural networks built with the NEF, in particular the computation and memory require-

ments. Challenges still remain, however, with the communication required to simulate

large neural models and this will be addressed in the next chapter.

Chapter 4. The Neural Engineering Framework and SpiNNaker 95

0.0 0.2 0.4 0.6 0.8 1.0

Time / s

−1.0

−0.5

0.0

0.5

1.0

V
al

ue Input
Nengo
SpiNNaker

(a)

−1.0 −0.5 0.0 0.5 1.0

Input value (x)

0.0
0.2
0.4
0.6
0.8
1.0

O
ut

pu
tv

al
ue Expected (x2)

SpiNNaker

−1.0 −0.5 0.0 0.5 1.0

Input value (x)

0.00

0.05

R
M

SE

Nengo
SpiNNaker

(b)

Figure 4.16 – Transforming values with neurons on SpiNNaker. (a) shows the input to and

output of a population of 100 neurons representing a changing value. The decoders of the

ensemble have been selected such that the output represents an estimation of the square

of the input. (b) shows how the error between the expected and decoded values varies for

both Nengo and SpiNNaker when computing the square of an input representation. The

left hand plot shows the outputs produced by SpiNNaker as compared to the expected,

the right hand plot shows the Root Mean Square Error (RMSE) for both platforms.

0 1 2 3 4 5 6

Time / s

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0

V
al

ue Input
Nengo
SpiNNaker

Figure 4.17 – Sample output of a neural integrator implemented with the NEF

96 4.6. Summary

Notes

The value-based scheme presented in this chapter was extended by Knight, Voelker, et

al. (2016) to support both supervised and unsupervised learning rules. Additionally, the

SpiNNaker simulator developed in this chapter was used by Stewart, Kleinhans, et al.

(2016) to investigate learning in a neuromorphic robot.

Chapter 5

The Semantic Pointer Architecture

and SpiNNaker

The previous chapter investigated the problem of simulating neural networks built using

the Neural Engineering Framework on the SpiNNaker architecture. While the solution to

the problems identified significantly improved the use of the platform made by this class

of neural nets, the challenge for SpiNNaker is to facilitate accurate simulation of neural

models of significant scale in biological real time. The previous chapter demonstrated

correct simulation of small neural networks; the few benchmarks used also ran success-

fully on an earlier implementation of the NEF for SpiNNaker (Galluppi et al. 2012). This

chapter investigates the techniques necessary to allow simulation of large neural models,

approaching the scale of Spaun.

5.1 Representing high-dimensional values

In Section 2.3 we saw that we could represent token-like symbols as high dimensional

vectors and that addition and circular convolution could be used to construct new vec-

tors to represent compound combinations of symbols. The Neural Engineering Frame-

work (Section 2.2) describes a way in which populations of neurons and the connections

between them can represent and manipulate these vectors. To decrease the likelihood

of confusing two vectors they are drawn from a high dimensional space. Symbols in

Spaun, for example, are represented by vectors in a 512-dimensional space and Craw-

ford, Gingerich, and Eliasmith (2013) argue that this is sufficient to represent a human-

97

98 5.1. Representing high-dimensional values

scale lexicon. For an ensemble to represent a high dimensional space accurately it must

contain a large number of neurons – between 50d and 70d neurons for an d-dimensional

space (Eliasmith 2013). However, as the number of neurons in an ensemble increases the

computational cost of finding appropriate decoders also increases. To avoid costly de-

coder selection, models containing ensembles which need to represent high dimensional

spaces often break the space into smaller chunks which can be represented by smaller

ensembles (Gosmann and Eliasmith 2016).

For example, Figure 5.1(a) shows a simple network containing two ensembles each

representing a two-dimensional value. The first ensemble represents x and the second y

and they are connected such that y = x. Since x and y are both 2-dimensional vectors

the identity matrix, I, is applied by the connection between them. In Figure 5.1(b) the

ensembles are each replaced by two smaller ensembles. These smaller ensembles each

represent one dimension of the values represented by the larger ensembles, i.e., x1, x2,

y1 and y2. Since y = Ix we have y1 = 1× x1 + 0× x2 and y2 = 0× x1 + 1× x2, and

no connections are required between the ensembles representing x1 and y2 or x2 and

y1. In the same way, the 512-dimensional spaces in Spaun are not represented by single

ensembles of 25 600 neurons but are instead represented by groups of thirty-two 800-

neuron ensembles each representing a 16-dimensional subspace1.

x y

I

(a)

x1

x2

y1

y2

(b)

Figure 5.1 – Splitting large ensembles to reduce decoder compute time. In (a) two en-

sembles, each representing a 2-dimensional space, are shown connected together. These

ensembles may each be replaced by two smaller ensembles, each representing one of the

two dimensions represented by the original ensembles, as shown in (b).

Not only does breaking larger ensembles apart significantly reduce the time required

to choose decoders but this pragmatism in model construction also benefits SpiNNaker

1This is the default as selected by Nengo (https://github.com/nengo/nengo/blob/master/nengo/spa/
state.py – accessed January 9, 2017)

https://github.com/nengo/nengo/blob/master/nengo/spa/state.py
https://github.com/nengo/nengo/blob/master/nengo/spa/state.py

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 99

simulation of the network. To represent a 512-dimensional space using the heuristic given

above would require a 25 600-neuron ensemble. The encoders and decoders of such an

ensemble would consume 2 × 25 600 × 512 × 4 B = 100 MiB. Since, in the simulation

schemes described above, the encoders and decoders are stored in the DTCMs of pro-

cessing cores an ensemble of this size would need to be partitioned over d 100 MiB
64 KiB e =

1600 cores, more than 90 SpiNNaker chips. In Spaun, however, a 512-dimensional space

is instead represented by thirty-two 800-neuron ensembles each representing a 16-dimen-

sional space. Only 100 KiB is required to store the combined encoders and decoders for

one of these smaller ensembles. While one of these ensembles could be simulated using

two SpiNNaker cores, in practice they are partitioned over three cores each to ensure

adequate space remains for other data structures. Thus, while simulating the ‘large’ en-

semble would require the use of more than 90 chips, thirty-two of the ‘smaller’ ensembles

need only 96 cores (less than 6 chips). In this case using smaller ensembles achieves a 94 %

saving in the number of cores required.

However, the example shown in Figure 5.1 is not the general case. In Figure 5.2(a)

the connection between the two larger ensembles has been modified to apply a linear

transform such that y = Lx (see Section 2.2). The transform, L, might, for example,

represent a rotation around the origin by the angle θ (an example we saw earlier):

L =

cos θ − sin θ

sin θ cos θ

When the ensembles representing x and y are split more connections are required

between the resulting, smaller, ensembles. Since y1 = x1 cos θ − x2 sin θ the ensemble

representing y1 must receive input from both the ensembles representing x1 and x2. Like-

wise, since y2 = x1 sin θ + x2 cos θ it too must receive input from both the presynaptic

ensembles. The resultant, denser, connectivity is shown in Figure 5.2(b).

Since the cores simulating y1 and y2 both receive input from x1, the latter will trans-

mit two packets per time step representing the values x1 cos θ and x1 sin θ to cores y1

and y2 respectively. Likewise, the processing core simulating x2 will transmit two pack-

ets per time step representing −x2 sin θ and x2 cos θ. Consequently, the processing cores

simulating ensembles y1 and y2 each receive two packets per time step. Since the pack-

ets transmitted by the cores simulating x represent different values (x1 cos θ, x1 sin θ etc)

100 5.1. Representing high-dimensional values

they cannot be multicast by the SpiNNaker network. Hence the total amount of traffic is

increased; as the ensembles are split further more traffic results.

Consequently, while the splitting of large ensembles is beneficial in reducing the num-

ber of processing cores needed to simulate a given network it implies that, in the general

case, the SpiNNaker network will be more heavily used. The likelihood of the network

becoming congested and dropping packets, reducing the accuracy of the simulation, is

directly linked to the traffic. In addition, since in the general case each smaller ensemble

receives input from a greater number of other ensembles the processing core simulat-

ing such an ensemble will receive a greater number of multicast packets, increasing its

computational load and the likelihood that a real time deadline will be missed. Since

any dropped packets or missed deadlines will reduce the accuracy of a simulation, elim-

inating such events is crucial if SpiNNaker is to be used for the simulation of large scale

neural models.

Large or small ensembles?

Although, as seen before, fewer processing cores are required to simulate networks con-

sisting of smaller ensembles than those consisting of larger ones this seems to come at the

cost of greater network connectivity. Hence it is worth assessing whether the technique

of splitting larger ensembles into groups of smaller ensembles should be abandoned.

To be simulated on SpiNNaker, a 25 600-neuron ensemble, representing a 512-dimen-

sional space, would be partitioned across more than ninety chips to satisfy memory con-

x y

L

(a)

x1

x2

y1

y2

(b)

Figure 5.2 – Replacing larger ensembles with groups of smaller ones can increase the con-

nectivity between groups of ensembles. In (a) two ensembles are connected such that

the second represents a transformation of the value from the first. Since this transforma-

tion spreads information between subspaces greater network connectivity is required, as

shown in (b). This is the general case of Figure 5.1.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 101

straints. Under the shared memory simulation scheme presented in Section 4.3 each chip

would transmit 512 packets every simulation time step. Consequently, any core receiv-

ing input from this large ensemble would receive more than 90× 512 = 46 000 packets

per time step. Given that receiving and processing a packet costs at least 77 cycles (see

Eq. 4.7 (p. 89), for m = 1 and n = 0) receipt of 46 000 packets would require more than 3.5

million cycles. Since this is 17 times more cycles than are available to a processing core

when simulating 1 ms time steps in real time and clocked at 200 MHz, simulation would

need to proceed at least 17 times slower than biology.

Figure 5.2 shows what happens to network connectivity when ensembles are split.

In the case that x and y represented 512-dimensional spaces they would be split, as de-

scribed before, into groups of thirty-two 800-neuron ensembles representing 16-dimen-

sional subspaces. Since each ensemble in y would represent 16-dimensions it would

receive 16 packets every time step from each of the 32 ensembles in x. Again assuming

that 77 cycles are required to receive and process each packet, a total of 77× 16× 32 =

39 424 cycles would be consumed. Since this is less than 20 % of the 200 000 cycles avail-

able to a core simulating a 1 ms time step the simulation can proceed in biological time.

Since the technique of breaking larger ensembles into smaller ones can be seen not

only to reduce the number of processing cores required but also to allow for simulation

in biological real time it should not be abandoned. However, the network traffic and,

particularly, the computational cost associated with receiving packets are high and will

become worse when larger and more densely connected networks are considered. This

is problematic since the traffic and compute requirements are likely to lead to missed

deadlines and network congestion, resulting in poor simulation accuracy.

Techniques for improving reliability

There is a number of ways in which the problems arising from the need to transmit and

receive high dimensional values might be addressed. The simplest would be to increase

the time allowed to perform each step of the simulation while keeping the same time step.

This would give each core more time to process the packets it receives, to simulate the

neurons it has been allocated and to spread out the packets it transmits, simultaneously

reducing network congestion and the likelihood of missing a deadline at no cost to the

fidelity of the simulation. However, this would mean that the simulation was running

102 5.2. Interposer design

slower than biology. Since this would rule out a large range SpiNNaker applications it

shall be disregarded for now but it does remain an option for applications where slower

than real time simulation is acceptable.

Alternatively, coarser simulation time steps could be used while continuing to sim-

ulate at biological real time. This would increase the compute time allowed for each

time step, resulting in the same benefits as before, but would come at the cost of accu-

racy. Moreover, reducing the granularity of the time step would limit the range of neural

models which could be simulated.

Finally, if dense connectivity of the form described can be identified while preparing

the model for simulation then an interposer could be added to the SpiNNaker instantia-

tion of the model. Figure 5.3 illustrates this technique. This additional component, which

has no direct biological counterpart, exists solely in the SpiNNaker instantiation and acts

to reduce the fan-out and fan-in of the processing cores with which it communicates.

5.2 Interposer design

Dense network connectivity between groups of ensembles representing high dimensional

spaces occurs when a transform is applied to the value decoded from one of the groups

of ensembles. We have some choice about where this transform is applied; in Figure 5.2(b)

(p. 100) the transform was applied by the processing cores simulating the ensembles rep-

resenting x (specifically, during preparation of the network the decoders of the ensembles

were premultiplied by the transform, as described in Section 2.2). Since the application of

a transform in this way increases the network connectivity we will instead introduce an

interposer to apply the transform. This new component must perform an efficient matrix-

vector multiplication. There are several ways this might be implemented (e.g., Kung and

Leiserson 1980) but we will investigate performing decompositions of the matrix in a

manner similar to Strassen’s algorithm (Cormen 2009).

Figure 5.3(a) shows a neural network made up of two groups of four ensembles.

These groups of ensembles work together to represent two 8-dimensional values, x and

y, and the groups are connected together such that y = Lx where L is an 8× 8 matrix.

The ensembles in a group each represent a 2-dimensional subspace of the space repre-

sented by the group. For example, the ensemble marked x3,4 represents the third and

fourth dimensions of the vector x. With no interposer, assuming each ensemble can be

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 103

x1,2

x3,4

x5,6

x7,8

y1,2

y3,4

y5,6

y7,8

(a)

x1,2

x3,4

x5,6

x7,8

y1,2

y3,4

y5,6

y7,8

(b)

Figure 5.3 – Use of an interposer to decrease fan-out, fan-in and overall traffic. A neural

network consisting of two groups of ensembles is shown in (a). For simulation purposes,

the dense connectivity between the two groups of ensembles is replaced by a non-neural

interposer in (b) which decreases the fan-out of the ensembles to the left and the fan-in of

the ensembles to the right.

simulated by a single processing core, two (non-multicast) packets per simulation time

step are used to transmit the values represented by each connection. For example, the

connection between the ensembles marked x1,2 and y1,2 carries the values L11x1 + L12x2

and L21x1 + L22x2. Consequently, each processing core simulating an ensemble marked

x transmits eight different packets per step of the simulation and eight are received by

each ensemble marked y.

When an interposer is added to the SpiNNaker network the number of packets trans-

mitted and received by each processing core is reduced. Figure 5.3(b) illustrates this case,

where the processing cores simulating ensembles marked x each transmit two packets

per simulation time step and processing cores simulating the ensembles marked y each

receive two packets. For example, the core simulating the ensemble x1,2 would trans-

mit packets containing the values x1 and x2. These packets would be combined in the

interposer to form a vector, x, which would then be premultiplied by the matrix L and

a further series of packets sent to transmit the resulting, transformed, vector. This, of

course, simply moves the problem of performing the matrix-vector multiply and trans-

mitting the result into the interposer ‘box’ but this can provide significant benefits, as

seen below.

For a small example, such as this, the interposer could be implemented with a single

processing core, as illustrated in Figure 5.4. However, this does not scale well and – in a

similar way to the ensembles – it is expedient to partition the matrix-vector multiply.

104 5.2. Interposer design

x L

Value packets are received and
reconstructed into a vector.

The vector is premultiplied by the transform
matrix and the resulting values are transmit-
ted as multicast packets.

Figure 5.4 – Implementation of an interposer core. Received multicast packets are formed

into a vector which is premultiplied by the matrix L to form an output vector which is

transmitted with further packets.

Row partitioning

Figure 5.5 illustrates the division of the 8× 8 matrix L into four partitions. Each of these

2× 8 partitions is allocated to a single processing core (implemented as shown in Fig-

ure 5.4) and the network connectivity is modified to ensure that the necessary values are

delivered to the correct processing cores.

Since the processing cores ‘A’, ‘B’, ‘C’ and ‘D’ receive the same values (represent-

ing x) the packets representing these values may be multicast, making effective use of the

SpiNNaker network. Consequently, where each processing core simulating an ensem-

ble labelled x needed to transmit eight packets per simulation step when an interposer

Received packets

Tr
an

sm
it

te
d

pa
ck

et
s

A

B

C

D

(a)

x1,2

x3,4

x5,6

x7,8

A

B

C

D

y1,2

y3,4

y5,6

y7,8

(b)

Figure 5.5 – Row-based decomposition of the interposer matrix. The matrix L can be parti-

tioned into four smaller matrices (a). In (b) these sub-matrices are mapped to the process-

ing cores which apply them to the vector x.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 105

was not used they need now only transmit two multicast packets per time step. Likewise,

since processor ‘A’ computes and transmits the values
8
∑

i=1
L1ixi = y1 and

8
∑

i=1
L2ixi = y2 the

processing core simulating the ensemble marked y1,2 will only receive two packets per

simulation time step (similarly, processing cores simulating other ensembles marked y

will receive only two packets per time step). This use of multicast is an effective exploita-

tion of a fundamental SpiNNaker feature – the extra arrows in Figure 5.5 are “free”.

Row based decomposition of the matrix, therefore, has ideal traffic characteristics –

minimal packets are transmitted and received by the cores connected to the interposer.

Unfortunately, while this decomposition works well as long as the matrix has short rows,

the size of the matrix which can be allocated to an interposer core is limited by the mem-

ory available, the number of packets that can be received and the size of matrix-vector

multiplication that can be performed in the time available. Hence as length of the rows

increases the number which may be allocated to a processor decreases. Beyond a certain

row length the computational cost may outstrip the number of cycles available.

Block partitioning

To prevent the rows of a matrix in a partition from becoming too long, the matrix L in

Figure 5.6 is partitioned into four blocks of size 4 × 4. Each partition is allocated to a

single processing core. These cores can be considered as forming two groups based upon

the values they receive: ‘A’ and ‘C’, and ‘B’ and ‘D’. Since each group receives the same

values the SpiNNaker network can be exploited to multicast the packets transmitted to a

group, reducing packet traffic.

Received packets

Tr
an

sm
it

te
d

pa
ck

et
s

A B

C D

(a)

x1,2

x3,4

x5,6

x7,8

A

B

C

D

y1,2

y3,4

y5,6

y7,8

(b)

Figure 5.6 – Block-based decomposition of the interposer matrix. By shortening the rows

of a decomposed matrix the number of multicast packets received by each processing core

in the interposed can be reduced. However, this increases the number of packets received

by processing cores connected to the interposer.

106 5.2. Interposer design

The processor marked ‘A’ computes four product terms, including
4
∑

i=1
L1ixi. Since it

only receives the first four elements of x and contains only the first four elements of the

rows of L it has been allocated, the terms it produces must be added to those produced

by the core marked ‘B’ to form the inputs to the cores simulating the ensembles marked

y. Among the product terms computed by ‘B’ is
8
∑

i=5
L1ixi. Combining these terms results

in the first value that must be received by the core simulating the ensemble marked y1,2.

4

∑
i=1

L1ixi +
8

∑
i=5

L1ixi =
8

∑
i=1

L1ixi = y1

This addition could be performed in the interposer network – perhaps by using an-

other core – but this would increase interposer latency and consume more processors.

Instead the addition can be performed cheaply by the receiving cores, y. Consequently,

in the network shown in Figure 5.6 each of the ensembles marked x transmits two pack-

ets (one per dimension) each time step. These packets are multicast to groups of cores

in the interposer. Each core in the interposer network receives four of these packets per

time step, performs a matrix vector multiply and transmits a further four packets which

are routed to the processors simulating the ensemble y where they are combined to form

the inputs for the neurons. These last cores will each receive four packets per time step.

This ‘block’ form partitioning of the transform L retains some of the benefits of the

‘row’ form partitioning described above. Since multiple processing cores receive the

same values, the packets containing these values can be multicast using the SpiNNaker

network. Not only does this reduce the number of packets which the transmitting cores

must send, reducing their computational load, but appropriate physical placement of

the interposer cores and routing of the multicast packets can act to reduce the aggregate

traffic. This will be illustrated in a later example.

However, since each ‘block’ corresponds to only some of the columns of the matrix

it can produce only a portion of the matrix-vector product. Consequently, processors

‘downstream’ of the interposer must combine the payloads of multiple packets to form

their input vector. A greater number of column partitions means a greater number of

packets received ‘downstream’ of the interposer – see Figure 5.7. Since the number of

rows and columns contained within each block can be chosen, there is a trade off between

traffic and the computation and memory required for long partitions of the rows.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 107

A B

(a)

x1

x2

x3

x4

A

B

y1

y2

(b)

A B C D

(c)

x1

x2

x3

x4

A

B

C

D

y1

y2

(d)

Figure 5.7 – Column-partitions affect the number of packets received downstream. In (a)

and (b) the matrix contained with an interposer is partitioned into two groups. This matrix

is further divided in (c) and (d) leading to an increase in the number of packets received

by y1 and y2.

Interposer costs

The costs incurred by an interposer core can be categorised as compute, memory, packet

receipt and packet transmission loads as shown in Figure 5.8. While any partitioning of

the matrix will reduce the individual memory and compute loads, represented by the

area of a partition, only column partitioning can control the number of packets received

by each interposer core. However, as seen in Figure 5.7, increasing the number of column

partitions increases the load downstream of the interposer. Consequently there is a ten-

sion between reducing the number of packets received by each interposer core – achieved

through reducing the number of columns allocated to each core – and decreasing the load

placed on other cores – achieved by increasing the number of columns in each interposer

core. A compromise is required to balance the number of packets received by cores in the

interposer with the number of packets which must be received by the downstream cores.

Section 5.3 investigates this balance with respect to a neural network implementation of

the circular convolution operator.

108 5.2. Interposer design

Received packets

Transmitted
packets

Number of column partitions

Memory & Compute

Figure 5.8 – Interposer and partition costs. The columns represent the length of vector

that will be received by a partition while the rows represent the length of vector that will

be transmitted. Each partition (area) of the matrix must be sufficiently small to meet con-

straints on memory, compute and received and transmitted packets. However, the num-

ber of column partitions must be minimised (to reduce the downstream packet processing

costs) as should the total number of partitions (number of processors).

Scheduling and timing

While adding an interposer to a network reduces traffic and the computational load of

connected cores it adds an extra stage of processing to simulating a model. Since this

processing depends on input from ensembles and produces output for further ensembles

it forms part of a pipeline. Determining when interposer processing should start is nec-

essary to ensure that each interposer receives all the values it requires before beginning

work and that those it produces are received in time by further processing stages.

Each interposer is ‘surrounded’ by ensembles whose simulation is clock driven, this

being a real time constraint. A core simulating an ensemble uses a timer to trigger the

neural processing and decoding stages described in Section 4.2. To ensure neural simu-

lation occurs in step, these timers are synchronised across the SpiNNaker machine. Con-

sequently, simulation of a neural model consists of periods of computation interspersed

with periods of network activity. Interposer processing, which can only occur once all

incoming values have been received and needs to be completed fast enough to allow out-

going values to be delivered before the next tick, must be included in these interleaved

periods of computation and communication. There are a few ways this may be achieved.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 109

Firstly, each interposer could wait until it received its full input set before starting its

processing. Unfortunately, as the SpiNNaker network does not guarantee packet deliv-

ery interposers could become ‘stuck’ waiting. As the cores surrounding an interposer

are clock driven they would continue processing irrespective of the fault and since they

would receive no packets from the interposer the ensembles they simulate would receive

no input. Consequently, the loss, or delay, of even one packet, leading to a ‘stuck’ inter-

poser, could seriously affect the accuracy of the simulation.

Since asynchronous interposers could lead to simulation inaccuracy a clock should be

used to ensure that interposer processing is triggered even in the presence of network

faults. This clock could be used in one of two ways: interposers could be entirely syn-

chronous or they could wait until either their complete input set arrives or the clock ticks

(whichever is sooner). Regardless of the method chosen this second clock must have the

same period as that which drives ensemble processing, but lag in phase. This phase dif-

ference should be chosen to allow enough time for the inputs to the interposers to become

available and could be different for each interposer. Figure 5.9 illustrates these two clocks

and the phase difference required.

A C

I

B D

(a)

A

B

Interposer

C

D

Neuron ticks

Interposer ticksPhase

(b)

Figure 5.9 – Interposer timing. A neural network is shown in (a). In (b) the clock driven

computation and communication used to simulate the network are illustrated.

There are now two constraints upon the period of the simulation clock: the ensem-

ble simulation time and the interposer processing time. Specifically, the compute time

allowed for a step of the simulation must be at least as long as the time required by the

slowest pairing of ensemble and interposer. As this may be longer than the time required

by the slowest ensemble alone it may not be possible to run as fast as biology, offset-

ting some of the gains of the interposers. Fortunately, since SpiNNaker is a “processor

110 5.2. Interposer design

rich” environment, these times can be reduced by partitioning ensembles and interposers

across more parallel processors. For example, using more cores to simulate an ensemble

reduces the number of neurons which must be simulated by each core and thus reduces

the time required to simulate the ensemble. Likewise, using more interposer cores, and

allocating fewer rows to each core, reduces the time required by the interposer. How

these times compare to the 1 ms time step allowed for biological real time simulation of a

core component of Spaun will be seen in Section 5.3.

It should be noted that the tasks of simulating ensembles and performing interposer

processing are unlikely to overlap. This implies that the same cores could be used to

perform both tasks. Since this would place even more demand on the limited amount of

memory available to a processor this idea has not been pursued further. As SpiNNaker

has many processors profligacy is no handicap and, as Sections 5.3 and 5.3 demonstrate,

interposer costs are small relative to their gains.

Summary

The high dimensional spaces required to ensure that the vectors (symbols) in the Seman-

tic Pointer Architecture remain distinct necessitate the use of ensembles containing many

neurons. Since choosing decoders for ensembles of this nature is prohibitively expen-

sive the high dimensional spaces are instead spread over a number of smaller ensembles.

Connecting these groups of ensembles such that the values they transmit are transformed

increases the density of network connectivity and the number of packets that must be re-

ceived by processing cores.

To overcome the problems associated with dense network connectivity and the re-

quirement that large numbers of packets be received by processing cores a non-neural

‘interposer’ was introduced. By moving the application of a matrix-vector multiplica-

tion from the processing cores simulating ensembles to processing cores dedicated to the

task, both the density of network traffic and the number of packets received by other

processing cores can be decreased. In addition, fewer packets must be transmitted by

cores ‘upstream’ of the interposer and those that are can, unlike before, be multicast –

exploiting a feature of the SpiNNaker network to reduce a number of costs.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 111

5.3 Circular convolution

Section 5.2 introduced an interposer to reduce the network congestion and compute load

resulting from densely interconnected neural networks. Similarly dense connectivity is

found, albeit in a much larger scale, in the neurally-inspired implementation of the cir-

cular convolution operator (Section 2.3) used in Spaun. In this section the principles

explored in Section 5.2 are put into practice to reduce the loads placed on a SpiNNaker

machine when simulating this core part of the Spaun model.

The Circular Convolution of two vectors, a~b, yields a new vector which is similar to

neither of the original vectors but contains sufficient information about them that either

may be recovered given the other (see Section 2.3). Circular convolution can be expressed

as a ~ b = F−1 (Fa�Fb) where F is the Discrete Fourier Transform and � is element-

wise multiplication x� y =
(

x1y1 x2y2 · · · xn−1yn−1 xnyn

)
(Plate 1995).

Figure 5.10 illustrates the neural network which implements circular convolution in

Spaun. The vectors a, b and c are 512-dimensional. To reduce the time required to choose

decoders for the ensembles representing these values a number of smaller ensembles are

used, as described before. Consequently, the groups of ensembles labelled a, b and c each

consist of thirty-two 800-neuron ensembles each representing 16-dimensions.

To compute the circular convolution of a and b they must be transformed into the Dis-

crete Fourier Domain. Therefore, the connections from a and b to the groups of ensembles

in the ‘Product’ network apply the F matrix to their input values. Since the element-wise

multiplication of Fa and Fb is required some additional factors are added to the connec-

tions (Gosmann 2015) such that ‘sq1’ receives 1√
2
Fa and 1√

2
Fb as input whereas ‘sq2’ re-

ceives 1√
2
Fa and − 1√

2
Fb. The groups of ensembles labelled ‘sq1’ and ‘sq2’ each contain

one thousand and twenty eight scalar-representing 100-neuron ensembles. The decoders

of these ensembles are chosen to compute the square of the values they represent (see

Section 2.2, p. 40). These decoded values are transformed by the inverse Discrete Fourier

Transform, F−1, and additional factors which complete the element-wise multiplication:
1
2 in the case of ‘sq1’ and − 1

2 for ‘sq2’. Consequently the ensembles in c receive the value:

c =
1
2
F−1sq12 − 1

2
F−1sq22

=
1
2
F−1

(
1√
2
Fa +

1√
2
Fb
)2

− 1
2
F−1

(
1√
2
Fa− 1√

2
Fb
)2

= F−1 (Fa�Fb)

112 5.3. Circular convolution

...

a

...

b

...

sq1

...

sq2

Product

...

c

Figure 5.10 – Neural network implementation of circular convolution. Each of the 512-di-

mensional values a, b and c are represented by a group of thirty-two 800-neuron ensem-

bles, each representing a 16-dimensional value.

As is apparent in Figure 5.10 the network connectivity is exceptionally dense. Ta-

ble 5.1 details the number of packets that processors simulating ensembles in different

portions of the network would need to transmit or receive every time step. In the worst

case a core simulating an ensemble in the part of the network labelled c would need to

dedicate 80 % of its cycles to the task of processing received packets. Consequently, to

meet compute requirements (see Section 4.4), six cores would be required to simulate

each of the thirty-two ensembles in c – a total of 192 cores.

Packets per time step per ensemble
Portion of network Transmit Receive

a 1028
b 2056

sq1 or sq2 512 64
c 2056

Table 5.1 – Network utilisation of circular convolution. Rows describe the number of pack-

ets received and transmitted by a cores simulating one of the ensembles in a region of the

network. Packets transmitted by processing cores simulating ensembles in a, but not those

in b, can be multicast to those simulating ensembles in ‘sq1’ and ‘sq2’.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 113

Interposer parameter selection

Figure 5.11 shows the addition of interposers to the circular convolution network. Since

the matrices contained within each interposer are large, decomposition of the interposers,

as described above, is required.

...

a

...

b

A

B

...

sq1

...

sq2

Product

C ...

c

Figure 5.11 – Circular convolution network with interposers. Interposer A contains a

1028× 512 matrix, B includes a 2056× 512 matrix and C a 512× 1028 matrix.

To assess the effect of different decompositions of the interposers upon usage of the

SpiNNaker network an experiment was performed. A number of maximum partition

sizes which met the memory, compute and traffic constraints described in Section 5.2

(p. 107) were chosen. For each partition size a model of the circular convolution network

was constructed. Each of these models was placed and routed onto a representation of

a physical 288-chip SpiNNaker machine and the number of packets that would traverse

each link every simulation time step was computed. The networks were placed using a

simulated annealing strategy (Heathcote 2016, Chapter 6) and routed using Neighbour-

hood Exploring Routing (Navaridas et al. 2015).

Figure 5.12 shows the distribution of the network loads on active links in the SpiN-

Naker machine for these decompositions of the network. It should be noted that none

of the interposer partitioning schemes result in traffic greater than 20 % of the maximum

bandwidth of a SpiNNaker link (1 Gibit s−1). Consequently real time SpiNNaker simula-

114 5.3. Circular convolution

32 64 128 256 32 64 128 32 64 32Max. rows

0

20

40

60

80

100

120

140

160

180
Li

nk
us

ag
e

/
M

ib
s−

1

32 64 128 256Max. columns

Figure 5.12 – Distribution of loads on SpiNNaker links for various decompositions of the

circular convolution network. Each ‘violin’ is a vertical histogram showing the proportion

of active links carrying a given load for different maximum block sizes.

tion of the circular convolution network is feasible when interposers are used, subject to

packets being sufficiently dispersed in time.

Table 5.2 shows the number of packets per time step arriving at processing cores sim-

ulating ensembles in ‘sq1’, ‘sq2’ or c. Firstly, it is apparent that any interposer partitioning

leads to a reduction in the number of packets arriving at processing cores in c. It is de-

sirable that the load placed on the interposer be balanced with the load presented down-

stream of the interposer. This would suggest that partitions should contain a maximum

of 128 columns.

Received packets per
time step per ensemble

Maximum column size sq1 or sq2 c

32 32 528
64 16 272

128 8 144
256 4 80

No interposer 64 2056

Table 5.2 – The number of packets received every time step by ensembles in different areas

of the network can be reduced by inclusion of an interposer.

Two of the schemes presented in Figure 5.12 are suitable and, since the loads they

place on the SpiNNaker network are similar, selecting the one uses the fewer cores is

reasonable. This would suggest that 64× 128 is the maximum interposer partition size

for the circular convolution network. Given this, the number of processing cores required

in the SpiNNaker instantiation of this network is as shown in Table 5.3.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 115

Cores required
Portion of network No interposer 64× 128 interposer

a 96 96
A 68
b 96 96
B 136

‘sq1’ and ‘sq2’ 2056 2056
C 72
c 192 96

Total 2440 2620

Table 5.3 – Cores required in SpiNNaker instantiation of circular convolution

Inclusion of the interposer increases the number of processing cores required to simu-

late the circular convolution network. However, this is more than offset by the reduction

in the number of packets received (Table 5.2) and transmitted (Table 5.4) by processing

cores in the network.

Packets transmitted per time step per ensemble
Portion of network Without interposer With interposer

a 1028 16
b 2056 16

sq1 or sq2 512 1

Table 5.4 – The number of packets transmitted each time step by ensembles in different

areas of the network is reduced if an interposer is included.

Additionally, since the packets transmitted upstream of an interposer can be multicast

the resulting reduction in aggregate traffic is significant. This is shown in Figure 5.13

which compares the expected link traffic of the circular convolution network with no

interposer with that which results when interposers consisting of 64 × 128 blocks are

included.

0 1 2 3 4 5

Link usage / Gibs−1

64× 128 interposer

No interposer

Figure 5.13 – Circular convolution link usage with and without interposers.

116 5.3. Circular convolution

When interposers are not included in the circular convolution network the link band-

width of 1 Gibit s−1 is exceeded. To avoid innaccuracy resulting from network congestion

the simulation would need to proceed around five times slower than biological real time.

In contrast, the reduction in traffic resulting from the use of interposers means that real

time simulation is possible.

This reduction in traffic is a consequence both of fewer packets being transmitted

but also the exploitation of the multicast capability of the SpiNNaker network: allowing

packets to be duplicated as late as possible. Figure 5.14, which shows a portion of the

place and route solution for the circular convolution network with interposers of size

64× 128, illustrates this principle. The single net shown connects one ensemble in a to

the interposer. Despite the net connecting to 17 processors spread across eight chips there

are few parallel connections between chips. Instead, since the interposer cores have been

placed together, there are only seven places where the net forks and, of these, only two

forks cause packets to be transmitted across multiple links.

Timing

One of the consequences of including an interposer in a network is that stages of neural

and interposer processing must be interleaved (Section 5.2). Since this can increase the

time required to simulate a step of the network it is worth investigating whether real time

simulation of the circular convolution net with an interposer is possible.

The interposer scheme suggested in Figure 5.11 introduces interposers between the

ensembles a, b and ‘sq1’ and ‘sq2’, and between ‘sq1’, ‘sq2’ and c. Simulation in biolog-

ical time requires that no more than 1 ms is taken to simulate these ensembles and per-

form the interposer processing. The number of cycles needed to simulate an ensemble is

given by Eq. 4.4 (p. 87). Each ensemble in a and b contains 800 neurons and represents

16 dimensions but, to meet memory constraints, was partitioned over three cores. Con-

sequently, each step of these ensembles consumes 330 µs. Ensembles in ‘sq1’ and ‘sq2’

each use 100 neurons to represent a scalar, hence simulation of each step requires 40 µs;

since this is less than that required by a and b it can be disregarded. The processing of a

64× 128 interposer block was found to require around 250 µs. As 330 µs+ 250 µs < 1 ms,

simulation in biological real time can be achieved – even allowing a reasonable margin

of error for delays in packet delivery.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 117

(a)

...
...

...
...

×17

A

...

a

32×

(b)

Figure 5.14 – Section of the place-and-route solution for circular convolution using a max-

imum block size of 64× 128. The place-and-route solution is shown in (a). Each hexagon

represents a SpiNNaker chip and each circle represents a core which is in use. The red cores

at the left of the image are being used to simulate an 800-neuron ensemble in a. The other

coloured cores represent the cores simulating interposer A, equivalently coloured cores

contain different rows of the same columns of the interposer. One net connecting the en-

sembles (red) to the inputs of one column division of A (green) is shown. The highlighted

components and single net are illustrated in (b).

118 5.3. Circular convolution

Summary

The interposer technique presented in this chapter enables real time simulation of a com-

ponent of Spaun which could not otherwise be simulated in real time using the simula-

tion scheme introduced in the previous chapter. However, since the main costs associ-

ated with the circular convolution net are due to the high degrees of network fan-out and

the SpiNNaker network is optimised to multicast spiking traffic with high fan-out, it is

worth considering whether spike-, rather than value-based transmission, would lead to

more efficient use of the architecture for this network.

Comparison to spiking implementation

The previous chapter identified that the two main constraints on spike-based simulation

of neural networks constructed using the Neural Engineering Framework (NEF) were

the needs to store large, dense synaptic weight matrices and to handle the many synaptic

events that resulted from high-firing rates and dense weight matrices.

To aid in determining whether spike-transmission would result in more efficient sim-

ulation of the circular convolution network an experiment was performed to measure the

rate at which spikes arrived at different parts of the network. These afferent spike rates

are summarised in Table 5.5 along with the number of synaptic events and the memory

consumed by the weight matrices for each ensemble.

Sharp and Furber (2013) found that a processing core could support a maximum of

5000 synaptic events per millisecond time step when running in biological real time. This

suggests that an ensemble in c would need to be partitioned over 14×109

5×106 = 2800 cores.

Since such an ensemble contains only 800 neurons this is not possible, but simulation

could occur at one quarter of biological real time if 800 cores, simulating one neuron each,

were used. At this rate of simulation each of the 2056 ensembles in ‘sq1’ and ‘sq2’ would

need to be partitioned across 20 processing cores. Consequently, a total of 66 720 cores

would be required to simulate the ensembles in ‘sq1’, ‘sq2’ and c. If the simulation were

Per ensemble
Portion of network Afferent spikes / 106 s−1 Synaptic events / 109 s−1 Weight matrices / MiB

‘sq1’ and ‘sq2’ 4.3 0.4 9.8
c 17.5 14.0 313.7

Table 5.5 – Costs of spike-transmission for the circular convolution network

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 119

to be run yet slower fewer cores would be required.

Since the above analysis has disregarded the traffic and the number of cores required

to simulate ensembles in a and b, a greater number of cores than stated would be required

and the maximum rate of simulation may be slower. Even allowing for these inaccura-

cies, the value-based simulation with interposers requires 96 % fewer cores to simulate

the circular convolution network at 4× the speed of the spike-based method. While there

are optimisations that could be used to reduce the number of cores, or increase the sim-

ulation rate, of the spike-based transmission they are unlikely to achieve gains similar to

those of the value-based technique introduced in this thesis.

5.4 Results

To assess the accuracy of the circular convolution implementation on SpiNNaker a num-

ber of experiments were run. Fifty instances of the circular convolution model were sim-

ulated on SpiNNaker (using the interposer technique described in this chapter) and on a

standard PC using Nengo. The instances were seeded equivalently so that accuracy could

be compared across the simulators. Two measures were used to assess performance: the

magnitude of the convolved vector produced by the simulation and the dot product be-

tween the simulated and expected convolved vectors. Figure 5.15 illustrates how these

measures changed over time for a single 500 ms simulation and Figure 5.16 shows the

correlation between the Nengo and SpiNNaker results for all fifty simulations.

It is apparent that, although the results are strongly correlated across the platforms,

the vectors decoded from the SpiNNaker simulations are both shorter (of lower magni-

tude) and less like the expected vectors than those decoded from the Nengo simulations

(the dot product between the simulated and expected vectors are smaller). These discrep-

ancies likely result from inaccuracies caused by the use of fixed point representations on

SpiNNaker. The extent to which these differences affect the correctness of simulations is

highly context dependent.

For example, in Spaun the dot products between the neural representation of a vector

and a vocabulary of other vectors are used to determine which actions should be taken.

An instance of this was shown in Section 2.4. Consequently, one measure of whether

the errors introduced through SpiNNaker simulation would affect the behavioural perfor-

mance of model is to investigate the likelihood that the neurally computed convolution

120 5.4. Results

0.0
0.2
0.4
0.6
0.8
1.0

M
ag

ni
tu

de
of

si
m

ul
at

ed
ve

ct
or

0.0 0.1 0.2 0.3 0.4 0.5

Time / s

0.0
0.2
0.4
0.6
0.8
1.0

D
ot

pr
od

uc
to

f
si

m
ul

at
ed

an
d

ex
pe

ct
ed

ve
ct

or
s

seed = 45
Nengo
SpiNNaker

Figure 5.15 – Sample of 512-D circular convolution simulation results. The upper plot

demonstrates how the magnitude of the vector output by an instantiation of the circular

convolution network (with seed = 45) varies over time when simulated both on SpiN-

Naker and with Nengo. The lower plot shows the dot product between the expected and

simulated vector for the same network instance, the closer to 1 the more similar the vectors

and the more correct the output of the network.

0.80 0.85 0.90 0.95

Nengo

0.80

0.85

0.90

0.95

Sp
iN

N
ak

er

Pearson’s r = 0.999

Magnitude of simulated vector

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

Nengo

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Sp
iN

N
ak

er

Pearson’s r = 1.000

Dot product of
simulated and expected vectors

Figure 5.16 – Comparison of SpiNNaker and Nengo 512-D circular convolution simulation

results. Each of the fifty points represents one instance of the circular convolution network

(with seeds 0 to 49). The left panel shows how the steady state mean of the magnitude of

the output vector (as measured from 0.1 s to 0.5 s – see Figure 5.15) corresponds between

Nengo and SpiNNaker. The right panel shows how the steady state mean of the dot prod-

uct of the output and correct vectors correspond across the two platforms. Error bars show

the standard deviation of the values.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 121

of a pair of vectors, â ~ b, is more similar to the convolution of another pair of vectors,

c ~ d, than to the canonical version of itself, a ~ b:

p
(

â ~ b · c ~ d− â ~ b · a ~ b ≥ 0
)

(5.1)

In Figure 5.17 the two terms of Equation 5.1 are shown separately before being combined.

It is clear that although the inaccuracies present in SpiNNaker are sufficient to slightly

shift the mean of the final distribution (shown on the left) closer to the origin there re-

mains a vanishingly small likelihood that one convolved vector could be mistaken for

another. This is not unexpected given the incredibly low likelihood of randomly selecting

two similar vectors from the surface of a 512-D hypersphere. Consequently, we should

expect that any neural system requiring this form of vector comparison should behave

similarly regardless of whether it is simulated on Nengo or SpiNNaker. Necessarily,

N
en

go

â~ b · c~ d − â~ b · a~ b â~ b · c~ d â~ b · a~ b

−1.0 −0.5 0.0 0.5 1.0

Sp
iN

N
ak

er

Figure 5.17 – Distributions over the dot products of convolved vectors produced by neural

simulations on Nengo and SpiNNaker. Each axis shows three distributions. On the right is

the distribution over the similarity between a convolved vector produced by a neural sim-

ulation and the correct version of that convolved vector (50 samples). The centre distribu-

tion represents the similarity between a convolved vector produced by a neural simulation

and a randomly selected unit-length 512-D vector (50× (50− 1) = 2450 samples). Finally,

the distribution on the left can be used to derive the likelihood that a randomly selected

unit-length vector is more similar to a neurally produced convolved vector than the neu-

rally produced convolved vector is to the correct version of itself (2450 samples). Note that

while the means of the two outer distributions are shifted closer to 0 for SpiNNaker when

compared to Nengo it remains vanishingly unlikely that a value drawn from the leftmost

distribution will be greater than or equal to zero and hence that a convolved vector could

be mistaken for another.

122 5.4. Results
N

en
go

−2.0 −1.5 −1.0 −0.5 0.0

â~ b · c~ d − â~ b · a~ b

Sp
iN

N
ak

er

Figure 5.18 – Distribution over the dot products of convolved 16-D vectors (2450 samples).

The distributions pictured should be compared to the leftmost distributions of Figure 5.17.

When using lower dimensional vectors, as shown here, the spread of the distribution pic-

tured is considerably greater than when higher dimensional vectors are used. A result of

this is that, although it remains unlikely that a convolved vector could be confused for an-

other convolved vector (p
(

â ~ b · c ~ d− â ~ b · a ~ b ≥ 0
)

is small) it is more likely than

when higher dimensional vectors were used.

this analysis depends on the vectors being selected at random from a high dimensional

space. For example, if a lower dimensional space were used (e.g., 16 dimensions as in

Figure 5.18) then the likelihood of vectors being mistaken increases. Likewise, if vectors

were not selected randomly but were instead clustered such that related concepts were

positioned more closely within the space (e.g., the dot products between vectors repre-

senting colours were consistently greater than between those representing, say, red and

calculus) then it may be more likely that vectors are confused within a category (e.g., the

vector representing red being confused with the vector representing rose).

Figures 5.16 and 5.17 suggest that while the vectors resulting from SpiNNaker simula-

tion of the circular convolution network are not equivalent to those resulting from Nengo

they are sufficiently similar that the two systems will produce equivalent behaviour.

However, it is suggested that further experiments are performed to determine cases in

which differing behaviour occurs. In particular, one might expect the performance of a

SpiNNaker simulation of a model performing repeated convolution of the same vectors

to become dominated by noise faster than would be expected of Nengo simulation of the

same network. SpiNNaker performance might be improved by varying the fixed point

representation used to store encoders and decoders or by including hardware support

for floating point numbers in any future chip.

Chapter 5. The Semantic Pointer Architecture and SpiNNaker 123

5.5 Summary

The high dimensional spaces required by the Semantic Pointer Architecture place heavy

demands on SpiNNaker. Specifically, the dense connectivity between ensembles this en-

tails requires much network traffic, increasing the load upon both the network and the

receiving cores and thus the likelihood of packets being dropped or real time deadlines

missed. These problems, which would reduce the accuracy of the simulation, could be

mitigated by decreasing either the simulation rate or granularity. However, a third op-

tion was proposed: an ‘interposer’ was introduced which, by exploiting the multicast

capability of the network and nature of the communication, reduced the traffic.

The utility of this interposer was studied with respect to the neural network which

implements the circular convolution operator in Spaun. Table 5.6 summarises the time

and SpiNNaker resources required to simulate this network using the methods discussed

in this thesis.

Method Cores required Percentage of real time / %

Spike-based (estimated) 66 720 25

Value-based without interposers 2440 20
with interposers 2620 100

Table 5.6 – Comparison of simulation methods for Circular Convolution network. Figures

shown are for the fastest possible simulation or biological real time.

Packets transmitted across the SpiNNaker network are routed according to the entries

contained in routing tables. High degrees of fan-in and fan-out tend to result in these

tables becoming too large to store in hardware; of the 213 routing tables generated by

one placement of the circular convolution network, eight were too big. The following

chapter presents methods for reducing the size of these tables.

124 5.5. Summary

Chapter 6

Routing table minimisation

Previous chapters discussed the problems facing the simulation of large neural nets on

the SpiNNaker architecture. Chapter 4 provided solutions that allowed efficient simu-

lation of the Neural Engineering Framework on the platform, despite the limited mem-

ory and compute resource afforded to each node. Chapter 5 investigated the challenges

posed by features of the Semantic Pointer Architecture to the compute resources of pro-

cessing cores and to the network fabric. As networks simulated on SpiNNaker grow in

both scale and complexity they are likely to begin to impinge on yet another resource

in the system: the routing table. This chapter focusses on making better use of routing

table entries through logic minimisation techniques. It largely reproduces a publication

by the author (Mundy, Heathcote, and Garside 2016). While the circular convolution net-

work, and similar networks, can sometimes result in routing tables which are too large

this chapter uses example networks inspired by the intended use of SpiNNaker.

6.1 Introduction

SpiNNaker cores communicate by transmitting short packets consisting of an 8 bit header,

a 32 bit key and an optional 32 bit payload. These packets traverse the links in the SpiN-

Naker network between routers where they are forwarded, and possibly duplicated, to

further links and processing cores.

At each router packets are recognised using a Ternary Content Addressable Mem-

ory (TCAM) which bit-masks the packet keys before looking for particular matches, this

means that each key bit can be matched with binary 0, 1, or X (‘don’t care’). The TCAM

125

126 6.2. Benchmarks

is prioritised such that only the first-found match will be returned, allowing ‘catch all’

entries to be inserted near the bottom of the table. If a key is not found in the table, the

associated packet is ‘default-routed’: continuing in the direction it arrived.

For example, given a simplified routing table with 4-bit keys:

Key-Mask Route

0000 NE N
X111 S
1XXX 3 4

packets with the key 0000 would match only the first entry and would be routed out of

both the North East and North links. Any packets with the keys 0111 or 1111 would

match the second entry in the table and be routed out of the South link. Other packets

beginning with a 1 would match the last entry and be routed to the indicated processing

cores on the same chip as the router. All other packets would be unrecognised and be

default-routed in a straight line, e.g., a packet arriving on the South West link with the

key 0011 would be routed out of the North East link.

The TCAM was chosen with an arbitrary size of 1024 entries, believed large enough

for most applications although making entries quite precious. Indeed, it is not always

possible to avoid exceeding this limit on routing table size – particularly for neural net-

works which feature large fan-in or fan-out routes, such as the circular convolution net-

work illustrated in the previous chapter. There are several ways to reduce the size of the

routing tables. Firstly, the place and route strategies, which allocate applications to the

processors in the SpiNNaker network and determine the paths taken by packets, can be

constructed to reduce the number of entries required. For example, the Neighbourhood

Exploring Routing algorithm (Navaridas et al. 2015) and the simulated annealing place-

ment used in the previous chapter (Heathcote 2016) both result in fewer routing table

entries than other place and route techniques. However, if tables are still too large then

they can be minimised using logic minimisation.

6.2 Benchmarks

Two benchmark networks were constructed to indicate the importance of routing table

minimisation on SpiNNaker. In the first of these, each processing core in a 12× 12, 144-

chip (2592-core) system was connected, with a probability determined by the distance,

Chapter 6. Routing table minimisation 127

to every other core in the system. This models networks in which processing cores are

strongly connected to their neighbours but are weakly connected to distant chips: similar

forms of distance-dependent connectivity are found in some brain regions (e.g., Hellwig

2000; Bassett et al. 2010).

The second benchmark extends the first by adding a number of longer distance con-

nections to the network and is based on the ‘centroid’ model of Navaridas et al. (2015). In

this model a small number of cores transmit packets to additional groups of cores located

at some distance across the machine. Figure 6.1 illustrates these two benchmarks and

shows the probability of a single core being connected to other cores within the network.

Locally-connected Centroid

Figure 6.1 – Map of the probability of a single core being connected to cores on surrounding

chips for the two benchmarks. Darker means higher probability. In the above centroid

model the core is connected to two clusters of cores (toward the South West and North

West).

Routing keys were assigned such that packets originating on the pth core of the chip

at (x, y) in the skewed mesh used the two most significant bytes in the 32-bit key to

represent the x and y co-ordinates and the following five bits to indicate the core ID, p.

The remaining 11 bits of the key were left blank, i.e., X in the routing tables. This ‘XYP’

key assignment scheme is common in SpiNNaker applications (Davies et al. 2012).

Once the connectivity of the benchmarks was determined, the Neighbour Exploring

Routing (NER) algorithm (Navaridas et al. 2015) was used to generate the routes taken

by packets across the network. While this algorithm has been shown to exploit ‘default

routing’ to reduce the size of routing tables, the routing tables of both benchmarks were

too large to fit in the number of entries available, even when entries which could be

replaced by default routing were removed. Figure 6.2 shows both the original size of the

routing tables and the sizes once default routes were removed.

128 6.3. Routing table compaction

6.3 Routing table compaction

Liu (2002) presented a method for using Espresso-II (Brayton 1984) to minimise routing

tables for IP routers. In this method a routing table is partitioned in subtables containing

entries with equivalent destinations and prefix length. Each subtable is minimised using

Espresso to produce a functionally equivalent but smaller set of entries. Figure 6.2 shows

the result of applying this technique to the routing tables from our benchmarks, once

entries which could be replaced by default routing were removed. In the case of the

‘locally-connected’ benchmark a combination of default routing and logic minimisation is

able to reduce the majority, but not all, of the 144 routing tables to fewer than 1024 entries.

In the more challenging centroid model this technique is unable to reduce any tables to

fit within the TCAM constraint.

In contrast to the unicast IP routing tables, at which minimisation is normally tar-

geted, SpiNNaker routing tables are multicast. Consequently, there are two factors which

may explain the poor compression ratios achieved by the above technique when applied

to SpiNNaker routing tables. Firstly, while the IP routing tables discussed by Liu (2002)

have relatively few output routes (e.g., tens), each SpiNNaker router has the equivalent

of up to 224 unique routes (any combination of six inter-chip links and 18 processors) –

consequently the number of entries with equivalent routes can be expected to be much

smaller. Secondly, whereas IP addresses are assigned such that coarse routing decisions

may be made from few bits, multicasting potentially reduces the amount of mutual in-

formation between keys which describe similar routes since keys are typically related to

route origins, not destinations.

Original With default
routing

Espresso
965

1024

1196
Locally-connected

Original With default
routing

Espresso

Centroid

Figure 6.2 – Benchmark routing tables after removing default routes and using Espresso

minimisation. Each “violin” represents a vertical histogram of routing table sizes.

Chapter 6. Routing table minimisation 129

“Order-exploiting” minimisation

Unlike IP routing tables, those in SpiNNaker are largely static. As such, minimisation

which does not preserve exact equivalence, but instead matches a superset of the routing

keys in use, can be used to generate routing tables with far fewer entries. For example,

0001 and 0010 may be combined into a new entry (00XX) which matches a superset of the

two keys originally matched. In IP routing tables, which are considerably larger than

those in SpiNNaker and highly dynamic, this minimisation would be avoided as it (a)

requires the minimiser to inspect the entire table during minimisation to avoid breaking

the functionality of the table, and (b) slows the updating of the table to modify routes.

However, in the case of SpiNNaker – and other systems with static routing tables and

tight constraints on entries – this technique allows for significant reductions in table size.

The technique of Liu (2002) was extended to investigate the effect of non-exact min-

imisation on the benchmark networks. First, each routing table was split into subtables of

entries with the same outgoing route. Next the subtables were sorted such that subtables

with fewer entries were moved to the top of the routing table and subtables with more to-

ward the bottom. Finally, the minimisation procedure from Espresso was applied to each

subtable in turn. However, unlike the technique proposed by Liu (2002), Espresso was al-

lowed to generate entries which matched a superset of keys matched by the original entry

provided that they did not ‘catch’ keys expected to match entries in lower subtables. The

minimised table depends on the ordering of the TCAM to ensure that it is functionally

equivalent to the original. This use of table ordering to achieve greater compression of

entries could be called “order-exploiting” minimisation. Figure 6.3 shows that this new

technique for reducing routing table size is sufficient to minimise all the routing tables in

the locally-connected benchmark and all but two of the tables in the centroid benchmark

to fit within the 1024-entry size required by SpiNNaker.

Default routing cannot generally be used with order-exploiting minimisation, as order-

exploiting minimisation could generate entries which match keys which would other-

wise be default routed. To avoid this we only minimise tables which contain entries

representing every key expected to arrive at the router, including those which would or-

dinarily be default-routed. As shown in Figure 6.3, benchmark routing tables minimised

with order-exploiting minimisation (which do not rely on default routing) are smaller

than the original tables with default-routes removed and then minimised as before.

130 6.3. Routing table compaction

On-chip logic minimisation

Espresso is capable of minimising routing tables of the scale shown in our benchmarks;

a mean-time of 6.23 s was spent in Espresso when minimising a table from the locally-

connected benchmark on a lightly-loaded Intel Pentium G850. However, as projected

SpiNNaker machines are expected to consist of nearly sixty-thousand chips, and the

same number of routing tables, the compute time required to minimise all tables is likely

to be significant – more than four days if the locally-connected benchmark were scaled

to the size of a full SpiNNaker machine. Fortunately, minimisation on this scale is an

‘embarrassingly’-parallel problem, and the wall-clock time required to perform this task

for SpiNNaker may be significantly reduced by performing the minimisation directly on

the chip’s own routing tables.

Processing cores in SpiNNaker have access to 64 KiB of Data Tightly-Coupled Mem-

ory (DTCM) and 32 KiB of Instruction Tightly-Coupled Memory (ITCM). This places se-

vere limits on the programs which they may execute. While we have seen that Espresso

may be used to perform order-exploiting minimisation for use with SpiNNaker, its mem-

ory usage and code size preclude its use on embedded systems (Lysecky and Vahid 2003).

In contrast, m-Trie minimisation (Ahmad and Mahapatra 2007) has been shown to be ca-

pable of effectively compressing IP routing tables while consuming little memory (as low

as 16 KiB) but is not suitable for use when order-exploiting minimisation is required (see

Figure 6.3) as it will not generate entries which match a superset of the original keys.

Original Espresso Order-
exploiting
Espresso

m-Trie
844

1024

1196
Locally-connected

Original Espresso Order-
exploiting
Espresso

m-Trie

Centroid

Figure 6.3 – Benchmark performance of order-exploiting Espresso and m-Trie

Chapter 6. Routing table minimisation 131

6.4 Ordered-Covering

This section presents a novel algorithm called “Ordered-Covering” which is capable of

performing order-exploiting routing table minimisation within the small memory and

code-space available on SpiNNaker. The algorithm proceeds by sequentially merging sets

of routing table entries with the same output routes while ensuring these merged entries

do not cover existing entries. A set of routing entries is merged by replacing them with

one new entry containing only the bits common to all the original entries and Xs for all

other bits (e.g., 1010 and 0110 would be merged to produce XX10). A routing entry covers

another when the set of keys matched by one entry intersects with those of another below

it in the table.

We now extend the table by annotating each entry in the table with the set of keys

that it is expected to match, the aliases of the entry. For example, merging the first two

entries in the following table would generate a new entry with the original keys listed as

aliases:

Key-Mask Route Aliases

1011 NE S 1011
0100 NE S 0100
1101 SW 2 1101
1110 SW 2 1110

1101 SW 2 1101
1110 SW 2 1110
XXXX NE S 1011 0100

When merging routing table entries, the following Ordered-Covering rules are used to

ensure the behaviour of the table remains consistent:

Up-check rule: No entry in the merge may become covered by an entry higher up the

table. A merge that would be disallowed by this rule is shown in Figure 6.4(a).

Down-check rule: No aliased entry below the merge may become covered, see Figure 6.4(b).

As an additional heuristic, the table entries are kept sorted in increasing order of

generality, i.e., the number Xs contained in their keys and masks. For example, an entry

with the key-mask of 00XX (generality of 2) must be placed below any entries with fewer Xs

132 6.4. Ordered-Covering

0011 E S 0011
1100 E S 1100
00XX N . . . 00XX N . . .

XXXX E S 0011 1100

(a) A merge which does not obey the up-check rule. Before the merge a packet with key 0011
would have been routed to E S; after the merge the same packet would be routed to N instead.

This is because the merge has resulted in the correct entry being moved below an entry which

covers it.

1101 SW 2 1101
1110 SW 2 1110
XXXX NE S 1100 . . .

11XX SW 2 . . .
XXXX NE S 1100 . . .

(b) A merge which does not obey the down-check rule. Before the merge a packet with key 1100
would have been routed to NE S; after the merge the same packet would be routed to SW 2 in-

stead. This is because the merge has resulted in the insertion of a new entry which covers an

existing entry.

Figure 6.4 – Examples of invalid merges as defined by the Ordered-Covering rules

in their key-masks, e.g., below 0000 and 00X1 (generalities of 0 and 1 respectively). Since

this is only a partial ordering of the table, we require that new entries of generality g be

inserted above existing entries of generality g. For example, if XX00 were already present

in the table the new entry 0XX1 must be inserted above it.

Ordered-Covering uses a simple, greedy, algorithm, to minimise a routing table ac-

cording to these rules:

MINIMIZE(table, target)

1 while table. length > target

2 merge = GET-LARGEST-MERGE(table)

3 if merge. isEmpty

4 break

5 table = APPLY-MERGE(table, merge)

6 return table

Where:

• table is a routing table that is sorted according to generality heuristics and contains

entries for all packets expected to arrive at the router, including those which could be

handled by default routing

Chapter 6. Routing table minimisation 133

• GET-LARGEST-MERGE is a function which returns a (possibly empty) set of routing

table entries which may be merged without breaking the up- or down-check rules

• APPLY-MERGE merges the set of routing entries and uses the table-ordering heuris-

tics to determine where the new entry should be inserted into the table

The algorithm terminates early if table. length ≤ target which can save much time in

comparison to fully minimising the table. Commonly, target will be set to the number of

entries available in the TCAM (e.g., 1024).

The GET-LARGEST-MERGE function is where the algorithm spends most of its time

and a possible implementation is presented in the remainder of this section. This imple-

mentation considers merging all groups of entries in the table which share the same set

of output ports. In practice, merging these groups will often violate either the up-check

or down-check rules. Rather than immediately rejecting these merge candidates, a pair

of simple greedy approaches is used to remove entries from merge candidates iteratively

until both rules are obeyed. The approach is split into two phases, the first refines merge

candidates until they obey the up-check rule and the second does the same for the down-

check rule.

Resolving the up-check

The up-check rule ensures that an entry, e, cannot – through being merged with other

entries – become covered by being moved below another entry which matches a subset

of the keys matched by e.

For each merge candidate every entry in the merge is inspected to ensure that it does

not break the up-check rule. When inspecting an entry, e, in the merge candidate we

scan through the entries between e and the position where the merged entry would be

inserted. If any entry is found which would cover e, e is removed from the merge candi-

date and we proceed to check the next entry in the candidate merge.

For example, consider the table:

0000 N NE 0000
1000 N NE 1000
1110 N NE 1110
00XX S . . . 00XX S . . .

XXX0 N NE . . .

134 6.4. Ordered-Covering

Initially we could consider merging the first three entries. Doing so would mean that

0000 would be combined into the new entry XXX0, positioned below 00XX, causing 0000 to

become covered. As the entry matching 0000 is moved below 00XX by including it in the

merge, 0000 must be removed from the merge to avoid covering it. After removing 0000

the, refined, merge is:

0000 N NE 0000
1000 N NE 1000
1110 N NE 1110
00XX S . . .

0000 N NE 0000

1XX0 N NE 1000 1110
00XX S . . .

Since the remaining entries in the merge candidate (1000 and 1110) are not covered by

00XX (the only entry between their current positions and the location where the merge is

inserted), the refined merge obeys the up-check rule.

Note that, in this case, removing an entry from the merge caused the entry resulting

from the merge to be moved upward in the table in accordance with the ordering de-

scribed above. In cases such as this less work may be required to complete the up-check

since the entries which remain in the merge will be nearer their original positions.

Resolving the down-check

The down-check rule ensures that the entry resulting from a merge would not match a

subset of the packets expected to match entries below the point where the entry resulting

from the merge would be located.

For example, consider the table:

0000 N 0000
0011 N 0011
011X N 011X
XXXX 4 0101 1000 1001 . . .

0XXX N 0000 0011 011X
XXXX 4 0101 1000 1001 . . .

Our initial merge candidate, the first three entries, would result in the insertion of the

entry 0XXX immediately above the bottom entry. However, 0XXX matches 0101: one of the

aliases of XXXX. Consequently, merging the first three entries as indicated is not allowed

as it violates the down-check rule, changing the behaviour of the routing table.

Chapter 6. Routing table minimisation 135

Once we have identified that the entry resulting from a merge, em (e.g., 0XXX), covers

an entry lower in the table, ec (e.g., 0101), we attempt to modify the merge to avoid the

covering. This may be achieved by converting one of the Xs in em so that it is the opposite

of the bit in the same position in ec. In our example we look to remove entries from the

merge such that the new entry resulting from the merge, e′m, is 00XX, 0X1X or 0XX0 – none

of which would cover ec (0101).

An X in the entry resulting from a merge may be converted to another value, v, by

removing from the merge any entries which have either X or v in the given bit position.

In our example, to convert 0XXX to 0XX0 we remove from the merge any entries with X

or 1 in the rightmost bit position, in this instance we would remove 0011 and 011X from

the merge. Alternatively, to convert 0XXX to 0X1X we remove from the merge any entries

with X or 0 in the indicated position, here we would need to remove only 0000. Finally,

to convert 0XXX to 00XX we would need to remove 011X from the merge. As a result of

removing entries we have three new merge candidates:

{0000, ���0011, ���011X} → 0000

{���0000, 0011, 011X} → 0X1X

{0000, 0011, ���011X} → 00XX

We immediately reject the merge candidate with the fewest entries, leaving us with

two candidates containing two entries each. As a heuristic, we select the merge candidate

which converted the most significant X bit, in this case resulting in the merge:

0000 N 0000
0011 N 0011
011X N 011X
XXXX 4 0101 1000 1001 . . .

011X N 011X
00XX N 0000 0011
XXXX 4 0101 1000 1001 . . .

The above process is repeated until either no entries are covered (em does not cover

any ec) and a valid merge is produced; or modifying the merge to avoid covering a lower

136 6.5. Results

entry is not possible and the merge must be abandoned. In our example, the new merge

candidate results in the insertion of the new entry 00XX between the two remaining en-

tries. As this new entry does not cover any other entries the algorithm terminates.

Note that removing an entry from the merge to satisfy the down-check might cause

the entry resulting from the merge to move upward in the table (in accordance with the

table ordering). If this occurs then the down-check must be performed again since addi-

tional entries may have become covered. In general the down-check should be repeated

until the position of the entry resulting from the merge has stabilised.

In our example there were three bits in em, 0XXX, which could be converted to avoid

covering ec. Precisely which bits may be converted depends upon the nature of the cov-

ered entry, for example, if 0XXX were covering 010X then only two bits (0XXX) may be

converted. We prioritize the uncovering of entries for which fewer bits may be converted

as a heuristic intended to reduce the number of entries likely to be removed from the

merge in the merge candidates considered.

6.5 Results

Compression

Figure 6.5 shows the performance of Ordered-Covering (OC), running on SpiNNaker,

when used to minimise the benchmark routing tables. OC reduces all of the tables in

the locally-connected benchmark to fit in the router TCAM. While this is not true of the

centroid benchmark, OC is able to reduce 66 % of the tables to fewer than 1024 entries.

This more than halves the number of tables which would otherwise need to be minimised

off-chip. For each minimisation technique the correctness of the minimised routing tables

was checked by ensuring that every packet which would be matched by the original table

was routed in the same direction by the minimised table.

Memory usage

On-chip routing table minimisation is required to work with small amounts of working

memory. In order-exploiting minimisation this small amount of memory must be used

to store the whole routing table – e.g., 24 KiB for a 2048-entry table – and any additional

structures. Consequently, those additional structures must be memory efficient. After the

Chapter 6. Routing table minimisation 137

Original Order-
exploiting
Espresso

Ordered
Covering

844

1024

1196
Locally-connected

Original Order-
exploiting
Espresso

Ordered
Covering

Centroid

Figure 6.5 – Performance of Ordered-Covering when used to minimise benchmark tables.

Ordered-Covering minimises all of the tables in the locally-connected benchmark, and 66 %

of the tables in the centroid benchmark, to ≤ 1024 entries.

routing table, the aliases table (which annotates routing table entries with the keys they

are expected to match) is the most expensive structure in Ordered-Covering. Other struc-

tures, such as sets of entries being considered as merge candidates can be implemented

using bit-vectors and consume little memory.

Each merge of n entries performed by Ordered-Covering reduces the size of the rout-

ing table by n− 1 entries (reducing the memory required by 3(n− 1) words) and adds a

new entry into the aliases table. In this implementation of the aliases table, which uses

AA-trees (Andersson 1993) and linked-lists of fixed-size blocks, a merge of n entries will

increase the memory required by the aliases table by 2(n + 1) + 4 words. Consequently,

the total memory cost of a merge of n entries is 2(n + 1) + 4− 3(n− 1) = 9− n words.

If the space saved by minimising the routing table were reclaimed then any merge of ten

or more entries would reduce the memory required by the routing and aliases tables.

The demonstrated implementation of Ordered-Covering does not reclaim the mem-

ory saved by reducing the size of a routing table, thus the routing table remains a constant

size while the aliases table grows with every merge. The peak heap usage of this min-

imiser when running on SpiNNaker was 18.4 KiB for the locally-connected benchmark

(of which 13.3 KiB was used to represent the routing table) and 18.8 KiB for the centroid

model (14.0 KiB for the routing table). Ordered-Covering is able to achieve good levels of

table compression using little more memory than that required to store the routing table.

138 6.5. Results

Execution time

Table 6.1 shows the time required to load and minimise the benchmark routing tables

using Ordered-Covering on SpiNNaker with routing tables minimised in parallel across

the machine. Exploiting the parallelism of SpiNNaker ensures that while increasing the

size of the target machine would increase the time taken to load the tables it would not

increase the time taken to minimise them (for some patterns of network connectivity). In

contrast, Table 6.2 shows the time taken to minimise the same benchmarks serially on an

Intel Pentium G850 using order-exploiting Espresso.

Exec. time / s
Model Load time / s Sufficient Fully

Locally-connected 3.8 13.9 25.6
Centroid 3.6 25.6

Table 6.1 – Time to load and minimise 144 benchmark tables using Ordered-Covering on

SpiNNaker (N.B.: Not all tables were sufficiently minimised in the centroid model)

Mean time
Model Cumulative time / s per table / s

Locally-connected 897.2 6.2
Centroid 1146.8 8.0

Table 6.2 – Time to minimise 144 benchmark tables using order-exploiting Espresso on an

Intel Pentium G850

Since Ordered-Covering was able to minimise all tables in the locally-connected bench-

mark to fit within TCAM no tables would need to be minimised off-chip. Consequently,

on-chip OC represents a 64.5× speed-up compared to using order-exploiting Espresso.

Ordered-Covering was only able to minimise 66 % of routing tables in the centroid

benchmark to fit in TCAM. All but two of the remainder of these tables could then be

minimised using order-exploiting Espresso, and the total time taken to minimise tables

using this joint approach would be around 413 s. In this instance combined use of OC and

Espresso represents a 2.8× speed-up compared to just using order-exploiting Espresso.

As routing tables may be minimised in parallel, the time required by order-exploiting

Espresso could be reduced by using more processing cores. However, significantly reduc-

ing the time taken to minimise routing tables of the largest SpiNNaker machine (57 600

tables) will prove challenging without making use of the machine itself.

Chapter 6. Routing table minimisation 139

6.6 Summary

This chapter has demonstrated that routing table minimisation for SpiNNaker is a chal-

lenging problem. In particular, it was shown that neither ‘default routing’ nor existing

minimisation techniques were able to reduce tables from two benchmark models to fit

within the limited number of TCAM entries in a router. This could be overcome by ex-

tending the minimisation technique of Liu (2002) to use Espresso to generate functionally

equivalent, compressed, routing tables which matched a superset of the packets matched

by the original tables and fit within the available number of entries. However, due to

the limited code-space and memory available to each SpiNNaker core, this technique

was not suitable for direct implementation on-chip: a desirable feature as routing table

minimisation is ‘embarassingly’-parallel and the largest SpiNNaker system will contain

nearly sixty-thousand routing tables.

To overcome these issues “Ordered-Covering” was introduced, a novel algorithm for

routing table minimisation capable of running within the small amount of memory avail-

able to a SpiNNaker processor. Using Ordered-Covering, in parallel on SpiNNaker, it

was possible to minimise all the tables in one of the benchmarks in 17.7 s – a speed-up of

64.5× compared to off-chip minimisation using Espresso. In the other benchmark, com-

bined use of on- and off-chip minimisation using Ordered-Covering and Espresso was

able to achieve a speed-up of 2.8× of the time taken by off-chip minimisation alone.

The high degrees of fan-in and fan-out characteristic of the circular convolution net-

work described in Section 5.3 were only partially reduced through the introduction of

interposers. Representing the fan-in or fan-out of many packets with differing keys re-

quires large routing tables and since these tables are not always sufficiently small to store

in hardware they must be compressed. This chapter introduced techniques which im-

proved the compression of these tables, making simulation of networks like circular con-

volution possible. Furthermore, performing the minimisation on SpiNNaker reduces the

energy consumed and the time required – further reducing the cost of simulating neural

models such as Spaun.

140 6.6. Summary

Chapter 7

Conclusion – Spaun and SpiNNaker

Simulating models of the brain is of increasing importance to neuroscience and the cog-

nitive sciences (Markram et al. 2011; The White House 2013). The scale and complexity

of models which can be simulated is limited by the time, computational resource and en-

ergy available. In addition, although it is desirable that neural simulations be interfaced

with the growing range of biologically-inspired sensors and actuators to enable more in-

vestigation of the role of environment in cognition, this requires simulations which run

in biological real time and has only been possible for small models.

Spaun (Eliasmith, Stewart, et al. 2012) is, arguably, the current leading functional brain

model. Built using the Neural Engineering Framework (NEF) (Eliasmith and Anderson

2004) and the Semantic Pointer Architecture (Eliasmith 2013), Spaun illustrates how a

number of cognitive and non-cognitive tasks can be performed by a neurally-inspired

implementation of a cognitive architecture. Unfortunately, 1 s of its simulation required

2.5 h on a large compute cluster (Stewart and Eliasmith 2014). While it has been infor-

mally reported that this time has been reduced by around an order of magnitude, sim-

ulation of the model remains significantly slower than biology. Consequently, there is

limited scope to construct and simulate models larger or more complex than Spaun; it

is expensive to run sufficient experiments to increase confidence in the claims made for

Spaun, and, finally, Spaun runs too slowly to interact with the real world.

SpiNNaker is a massively parallel, low power, computer specifically designed for

the simulation of spiking neural networks. Unfortunately, neural models built using the

NEF apparently mapped poorly to the SpiNNaker architecture, limiting its capability to

accelerate large scale models such as Spaun.

141

142

The purpose of this thesis was to investigate whether the Spaun model of cognition

could be simulated in real time on the SpiNNaker architecture. Three techniques which

facilitate this have been presented:

1. Characteristics of networks built using the Neural Engineering Framework (NEF)

act to stress the SpiNNaker architecture. Specifically, storing the large, dense synap-

tic weight matrices that result from the NEF consumes much more memory than is

available to a SpiNNaker core and high neural firing rates result in heavy network

traffic and significant compute loads. This resulted in poor use of the architecture.

In Chapter 4 it was demonstrated how these costs could be reduced by exploit-

ing the fact that the synaptic weight matrices can be factored. Not only does this

reduce the data stored by each core but it allows the transformation of the high di-

mensional spikes into a lower dimensional space. This transformation reduces the

network and compute resources required to simulate these neural networks.

2. While the technique presented in Chapter 4 significantly reduces the compute re-

source consumed by a core component of the Spaun model (Table 7.1) the network

traffic required is still greater than could be supported for real time simulation. In

Chapter 5 it was demonstrated that further significant reductions in traffic and com-

pute load could be achieved by using an ‘interposer’, rather than the transmitting

core, to transform the lower dimensional values transmitted between processors.

These reductions were sufficient that real time simulation of this core component

is possible, albeit at the cost of around two hundred more processors. This balance

between compute and communication resource will be revisited later.

3. Chapters 4 and 5 dealt with the computation, memory and communication loads

posed by the Neural Engineering Framework and the Semantic Pointer Architec-

ture to SpiNNaker. However, communicating simulation state across the machine

requires that the routing information be represented in tables of limited size and a

core component of Spaun results in routing tables which are too large. Chapter 6

proposed ways that the size of these tables could be reduced using logic minimi-

sation. A new algorithm was introduced which exploits the massive parallelism

of SpiNNaker to reduce the time required to minimise routing tables. These tech-

niques are also applicable to reduce the size of the tables which route values to

synaptic filters (Section 4.2).

Chapter 7. Conclusion – Spaun and SpiNNaker 143

Together, these techniques address the memory, compute, network and routing costs

resulting from distributing spikes across a SpiNNaker machine, and facilitate real time

simulation of Spaun. This is an estimated four times faster than if SpiNNaker had been

used as intended (extrapolating from Table 7.1) and 9000 times faster than the original

experiments (Stewart and Eliasmith 2014). From figures presented in Table 7.1 it is clear

that use of SpiNNaker without the techniques presented in this thesis would still allow

for a significant acceleration of the Spaun model. This is not surprising given the massive

parallelism and cheap communication of the SpiNNaker architecture. However, such a

simulation would require nearly 50 % of the largest possible SpiNNaker machine – sig-

nificantly reducing the capacity to increase the scale and complexity of Spaun. Moreover,

the simulation could run at only a quarter of biological real time – limiting the extent to

which Spaun could interact with the real world using neuromorphic sensors and actua-

tors. The techniques presented in this thesis overcome these obstacles to deliver simula-

tion in biological real time using far fewer resources.

Method Cores required Percentage of real time / %

SpiNNaker as intended (estimated) 66 720 25
After Chapter 4† 2440 20
After Chapter 5† 2620 100

†Only possible as a result of the routing table minimisation of Chapter 6.

Table 7.1 – Comparison of simulation methods for a core Spaun component (circular con-

volution). Figures are for the fastest possible simulation or biological real time. Repro-

duced from Table 5.6.

Since the techniques presented in this thesis require only one twentieth of the SpiN-

Naker resources that would otherwise be needed to simulate a core component of Spaun,

it is estimated that Spaun can be simulated on the ‘desktop-sized’ SpiNNaker machine

shown in Figure 7.1(a) rather than the ‘room-sized’ machine of Figure 7.1(b).

7.1 SpiNNaker

Much of this thesis has been concerned with mapping a challenging problem to the SpiN-

Naker platform. SpiNNaker was intended specifically for the simulation of spiking neu-

ral networks and this is reflected in many of the design choices. For example, the SpiN-

Naker network is optimised for the transmission of short (usually 40 bit, in this thesis

144 7.1. SpiNNaker

(a) (b)

Figure 7.1 – SpiNNaker machines. A 1152-chip, twenty thousand core, SpiNNaker ‘frame’

is shown in (a). In (b) 25 of these frames have been combined to construct a half-million

core SpiNNaker machine which is being expanded to over a million processors.

72 bit), multicast, packets. Since avoiding deadlock by re-routing stuck packets is hard,

packets are instead discarded if the network becomes blocked – consequently, packet de-

livery is not guaranteed. These choices echo the nature of the brain, in which the spikes of

inherently noisy and unreliable neurons are distributed to many connected peers. Like-

wise, the lack of hardware support for floating point calculation was justified on the

grounds that, as brains must be error correcting and noise tolerant, fixed point represen-

tations of neuron and synapse state would be sufficient (Furber and Temple 2007).

Although the Neural Engineering Framework results in networks which have been

shown to map poorly to the architecture as it was intended to be used it has been possible

to recast the problem in a way which works well. In particular, Chapter 4 exploited

the payloads of SpiNNaker packets to deliver decodings of neural activity and Chapter 5

effectively used the multicast capability of the SpiNNaker network to significantly reduce

network traffic. However, the techniques demonstrated in these chapters are pragmatic

compromises. For example, the loss of a packet containing decoded neural activity is

worse than the loss of a single spike packet since it necessarily carries more information.

Moreover, factoring the synaptic weight matrices and communicating with decodings of

neural activity requires that more fixed point multiplications are performed than would

be required if the full synaptic weight matrices were used. The interposer technique

exacerbates this problem by introducing another stage of multiplication. While issues

related to fixed point representations could be avoided by changes to future SpiNNaker

Chapter 7. Conclusion – Spaun and SpiNNaker 145

hardware it is unclear that a trivial fix for the problem of dropped packets exists.

The use of the payloads of packets to transmit decodings of neural activity has been

shown to reduce network traffic, however, it also increases the effect of any dropped

packet since payloads contain the contributions of many spikes. Any loss is mitigated, to

some degree, by the presence of synaptic filters which will ‘smooth out’ a few missing

packets and, in the Semantic Pointer Architecture, the high dimensional vectors used to

represent symbols ensure that there is some redundancy. Thus, while infrequent packet

loss should not be expected to change the behaviour of the neural model, any repeated or

widespread loss of packets will significantly reduce the accuracy of a simulation. Conse-

quently, it has been important to ensure that as few packets as possible are transmitted

(Chapters 4 and 5), that packet transmission is not bursty (Chapter 4) and that the band-

width of SpiNNaker links is not exceeded (Chapter 5). Although software support for

reinserting dropped packets is under development, this will only improve the reliabil-

ity of bursty traffic and cannot overcome the fundamental bandwidth limits of physi-

cal links. Therefore, careful application design (e.g., this thesis; Knight 2016) should be

paired with effective place-and-route (Heathcote 2016).

The lack of floating point hardware in SpiNNaker forces, for performance reasons,

the use of fixed point arithmetic with the resultant loss of precision. This use of fixed

point arithmetic does appear to reduce, slightly, the accuracy of simulations presented in

this thesis (Chapter 4) and other larger models which have not been presented. Despite

this, it was shown in Chapter 5 that the likelihood of confusing two high-dimensional

vectors remained vanishingly small and thus the higher-level behaviour of Spaun should

be expected to be unaffected by the limited precision arithmetic available on SpiNNaker.

Unfortunately, the magnitude of the decoders of an ensemble is inversely proportional

to the size of the ensemble (the more neurons an ensemble includes the smaller to con-

tribution of each neuron to the decoding) hence, as the size of ensembles grows the error

due to fixed point rounding will increase. On current generation SpiNNaker hardware

this could be mitigated by rescaling decoders to increase their precision and downscal-

ing the resulted decoded values prior to transmission. However, as there remains a trade

off between precision and range in any fixed point representation the author believes

that floating point support would be of significant benefit in any future version of the

SpiNNaker hardware.

Finally, the short packets used on SpiNNaker result in inefficient transmission of vec-

146 7.2. Spaun

tors over the network. Each element of the vector necessitates the transmission of an 8 bit

header and a 32 bit key in addition to the 32 bit payload. Consequently, for a 16-D vec-

tor, 144 B are required to transmit a 64 B value. Allowing larger payloads would, at some

cost in network complexity, significantly reduce the bandwidth required to transmit these

high dimensional values.

Despite the potential pitfalls outlined above, the author contends that SpiNNaker is

an excellent platform for the simulation of neural models like Spaun.

7.2 Spaun

The Neural Engineering Framework (NEF) and Semantic Pointer Architecture (SPA) are

two hypotheses about how the brain might represent and manipulate vectors and sym-

bols. Their union, in Spaun (Eliasmith, Stewart, et al. 2012), has previously demonstrated

that cognitive architectures can be implemented a neurally-inspired medium, tying to-

gether what were previously disparate threads of the cognitive sciences.

Unfortunately, the two characteristics that result in the initially poor mapping of NEF

to the SpiNNaker architecture, namely high firing rates and dense synaptic weight ma-

trices, also call into question the biological plausibility of the framework. A full analysis

of this claim is beyond the scope of this thesis, however, the ability to perform large scale

simulations of complex NEF models in biological real time which has been facilitated

by this thesis makes it considerably easier to generate data to assess claims both for and

against the NEF, SPA and Spaun.

7.3 Future work

A few small engineering problems remain before Spaun can be simulated on SpiNNaker

using the Nengo (Bekolay et al. 2014) backend1 that was developed for this thesis but it is

expected that simulation of the full model will occur within the year. Further benchmark-

ing of the performance of the techniques presented in this thesis will also be required.

Longer term, the work performed for this thesis identifies areas in which improve-

ments can be made to subsequent versions of the SpiNNaker hardware. These observa-

tions are being included in the design of the next SpiNNaker chip.

1https://github.com/project-rig/nengo_spinnaker

https://github.com/project-rig/nengo_spinnaker

Chapter 7. Conclusion – Spaun and SpiNNaker 147

The author intends to join the research group which developed Spaun, where efforts

are underway to build more complex and more comprehensive functional brain mod-

els. These models will exploit the large scale, real time simulation made possible by this

thesis.

7.4 Summary

This thesis investigated, and has presented three techniques which facilitate, the real time

simulation of Spaun on SpiNNaker. This represents a major milestone for both projects

since it demonstrates the capability of SpiNNaker to support neural models of truly sig-

nificant scale and provides a way for more complex and detailed NEF models to be sim-

ulated.

148 7.4. Summary

References

Abbott, L. F. (1999). “Lapicque’s introduction of the integrate-and-fire model neuron

(1907)”. In: Brain Research Bulletin 50 (5-6), pp. 303–304. ISSN: 0361-9230. DOI: 10.1016/

S0361-9230(99)00161-6.

Ahmad, S. and R.N. Mahapatra (2007). “An Efficient Approach to On-Chip Logic Mini-

mization”. In: Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 15 (9),

pp. 1040–1050. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2007.902202.

Amdahl, Gene M. (1967). “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, pp. 483–

485. DOI: 10.1145/1465482.1465560.

Ananthanarayanan, Rajagopal, Steven K Esser, Horst D Simon, and Dharmendra S

Modha (2009). “The cat is out of the bag: cortical simulations with 109 neurons, 1013

synapses”. In: Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis. IEEE, pp. 1–12.

Anderson, John R et al. (2004). “An integrated theory of the mind.” In: Psychological review

111 (4), pp. 1036–1060. ISSN: 0033-295X. DOI: 10.1037/0033-295X.111.4.1036.

Andersson, Arne (1993). “Balanced search trees made simple”. In: Algorithms and Data

Structures. Ed. by Frank Dehne, Jörg-Rüdige Sack, Nicola Santoro, and Sue White-

sides. Springer, pp. 60–71. DOI: 10.1007/3-540-57155-8.

Bassett, Danielle S. et al. (2010). “Efficient Physical Embedding of Topologically Com-

plex Information Processing Networks in Brains and Computer Circuits”. In: PLOS

Computational Biology 6 (4), pp. 1–14. DOI: 10.1371/journal.pcbi.1000748.

149

http://dx.doi.org/10.1016/S0361-9230(99)00161-6
http://dx.doi.org/10.1016/S0361-9230(99)00161-6
http://dx.doi.org/10.1109/TVLSI.2007.902202
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1037/0033-295X.111.4.1036
http://dx.doi.org/10.1007/3-540-57155-8
http://dx.doi.org/10.1371/journal.pcbi.1000748

150 References

Bednar, James A (2009). “Topographica: building and analyzing map-level simulations

from Python, C/C++, MATLAB, NEST, or NEURON components”. In: Frontiers in

Neuroinformatics 3. ISSN: 1662-5196. DOI: 10.3389/neuro.11.008.2009.

Bekolay, Trevor et al. (2014). “Nengo: A Python tool for building large-scale functional

brain models”. In: Frontiers in Neuroinformatics 7 (48). ISSN: 1662-5196. DOI: 10.3389/

fninf.2013.00048.

Berzish, Murphy, Chris Eliasmith, and Bryan Tripp (2016). “Real-Time FPGA Simulation

of Surrogate Models of Large Spiking Networks”. In: Artificial Neural Networks and

Machine Learning – ICANN 2016: 25th International Conference on Artificial Neural Net-

works, Barcelona, Spain, September 6-9, 2016, Proceedings, Part I. Ed. by Alessandro E.P.

Villa, Paolo Masulli, and Antonio Javier Pons Rivero. Cham: Springer International

Publishing, pp. 349–356. ISBN: 978-3-319-44778-0. DOI: 10.1007/978-3-319-44778-0_41.

Boahen, Kwabena et al. (2000). “Point-to-point connectivity between neuromorphic chips

using address events”. In: Circuits and Systems II: Analog and Digital Signal Processing,

IEEE Transactions on 47 (5), pp. 416–434.

Braitenberg, Valentino (1986). Vehicles: Experiments in synthetic psychology. Cambridge,

MA: MIT. ISBN: 978-0-26252-112-3.

Brayton, Robert K (1984). Logic minimization algorithms for VLSI synthesis. Vol. 2. The

Springer International Series in Engineering and Computer Science. Springer Science

& Business Media. ISBN: 978-0-89838-164-1. DOI: 10.1007/978-1-4613-2821-6.

Brette, Romain et al. (2007). “Simulation of networks of spiking neurons: a review of tools

and strategies”. In: Journal of computational neuroscience 23 (3), pp. 349–398.

Brooks, Rodney A. (1990). “Elephants don’t play chess”. In: Robotics and Autonomous Sys-

tems 6 (1), pp. 3–15. ISSN: 0921-8890. DOI: 10.1016/S0921-8890(05)80025-9.

Carnevale, Nicholas T and Michael L Hines (2006). The NEURON book. Cambridge, Eng-

land: Cambridge University Press. ISBN: 978-0-51154-161-2.

Cassidy, Andrew, Andreas G Andreou, and Julius Georgiou (2011). “Design of a one

million neuron single FPGA neuromorphic system for real-time multimodal scene

analysis”. In: Information Sciences and Systems (CISS), 2011 45th Annual Conference on.

IEEE, pp. 1–6.

http://dx.doi.org/10.3389/neuro.11.008.2009
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.1007/978-3-319-44778-0_41
http://dx.doi.org/10.1007/978-1-4613-2821-6
http://dx.doi.org/10.1016/S0921-8890(05)80025-9

References 151

Chan, V., Shih-Chii Liu, and A. van Schaik (2007). “AER EAR: A Matched Silicon Cochlea

Pair With Address Event Representation Interface”. In: Circuits and Systems I: Regular

Papers, IEEE Transactions on 54 (1), pp. 48–59. ISSN: 1549-8328. DOI: 10 .1109/TCSI .

2006.887979.

Choudhary, Swadesh et al. (2012). “Silicon neurons that compute”. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Vol. 7552 LNCS. PART 1, pp. 121–128.

Cormen, Thomas H (2009). Introduction to algorithms. 3rd ed. Cambridge, MA: MIT press.

ISBN: 978-0-26253-305-8.

Cox, Charles E and W Ekkehard Blanz (1992). “GANGLION-a fast field-programmable

gate array implementation of a connectionist classifier”. In: IEEE Journal of Solid-State

Circuits 27 (3), pp. 288–299.

Crawford, Eric, Matthew Gingerich, and Chris Eliasmith (2013). “Biologically Plausible,

Human-scale Knowledge Representation”. In: 35th Annual Conference of the Cognitive

Science Society, pp. 412–417.

Davies, Sergio, Javier Navaridas, Francesco Galluppi, and Steve Furber (2012). “Population-

based routing in the SpiNNaker neuromorphic architecture”. In: Neural Networks

(IJCNN), The 2012 International Joint Conference on. IEEE, pp. 1–8.

Davison, Andrew P et al. (2008). “PyNN: a common interface for neuronal network sim-

ulators”. In: Frontiers in Neuroinformatics 2. ISSN: 1662-5196. DOI: 10.3389/neuro.11.

011.2008.

Dayan, Peter and Laurence F Abbott (2001). Theoretical neuroscience. Cambridge, MA: MIT

press. ISBN: 978-0-26254-185-5.

Diamond, Alan, Thomas Nowotny, and Michael Schmuker (2015). “Comparing Neuro-

morphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark

Classification Task on Three Parallel-Computing Platforms”. In: Frontiers in neuro-

science 9.

Dongarra, Jack et al. (2016). “Parallel Programming Models for Dense Linear Algebra on

Heterogeneous Systems”. In: Supercomputing frontiers and innovations 2 (4), pp. 67–86.

http://dx.doi.org/10.1109/TCSI.2006.887979
http://dx.doi.org/10.1109/TCSI.2006.887979
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/neuro.11.011.2008

152 References

Dosher, Barbara Anne (1999). “Item interference and time delays in working memory:

Immediate serial recall”. In: International Journal of Psychology 34 (5-6), pp. 276–284.

Eliasmith, Chris (2005). “A unified approach to building and controlling spiking attractor

networks.” In: Neural computation 17 (6), pp. 1276–1314. ISSN: 0899-7667. DOI: 10.1162/

0899766053630332.

— (2013). How to build a brain: A neural architecture for biological cognition. Oxford, UK:

Oxford University Press. ISBN: 978-0-19979-469-0.

Eliasmith, Chris and Charles H Anderson (2004). Neural Engineering. Cambridge, MA:

MIT Press. ISBN: 978-026255-060-4.

Eliasmith, Chris, Jan Gosmann, and Xuan Choo (2016). “BioSpaun: A large-scale behav-

ing brain model with complex neurons”. In: arXiv preprint arXiv:1602.05220.

Eliasmith, Chris, Terrence C Stewart, et al. (2012). “A large-scale model of the functioning

brain”. In: Science 338 (6111), pp. 1202–1205.

Fidjeland, Andreas K and Murray P Shanahan (2010). “Accelerated simulation of spik-

ing neural networks using GPUs”. In: The 2010 International Joint Conference on Neural

Networks (IJCNN). IEEE, pp. 1–8.

Fodor, Jerry A and Zenon W Pylyshyn (1988). “Connectionism and cognitive architecture:

A critical analysis. Special Issue: Connectionism and symbol systems”. In: Cognition

28 (1-2), pp. 3–71.

Furber, S., F. Galluppi, S. Temple, and L.A. Plana (2014). “The SpiNNaker Project”. In:

Proceedings of the IEEE 102 (5), pp. 652–665. ISSN: 0018-9219. DOI: 10 .1109/JPROC.

2014.2304638.

Furber, S. and S. Temple (2007). “Neural systems engineering”. In: Journal of The Royal

Society Interface 4 (13), pp. 193–206. ISSN: 1742-5689. DOI: 10.1098/rsif.2006.0177.

Galluppi, F., S. Davies, S. Furber, T. Stewart, and C. Eliasmith (2012). “Real time on-chip

implementation of dynamical systems with spiking neurons”. In: Neural Networks

(IJCNN), The 2012 International Joint Conference on, pp. 1–8. DOI: 10.1109/IJCNN.2012.

6252706.

http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.1098/rsif.2006.0177
http://dx.doi.org/10.1109/IJCNN.2012.6252706
http://dx.doi.org/10.1109/IJCNN.2012.6252706

References 153

Gelder, Tim van (1998). “The dynamical hypothesis in cognitive science.” In: The Be-

havioral and brain sciences 21 (5), 615–628, discussion 629–665. ISSN: 0140-525X. DOI:

10.1017/S0140525X98001733.

Gewaltig, Marc-Oliver and Markus Diesmann (2007). “NEST (NEural Simulation Tool)”.

In: Scholarpedia 2 (4), p. 1430.

Goodman, Dan F M and Romain Brette (2009). “The Brian simulator”. In: Frontiers in

Neuroscience 3 (26). ISSN: 1662-453X. DOI: 10.3389/neuro.01.026.2009.

Gosmann, Jan (2015). Precise multiplications with the NEF. URL: https://github.com/ctn-

archive / technical - reports / blob / master / Precise - multiplications - with - the - NEF.

ipynb.

Gosmann, Jan and Chris Eliasmith (2016). “Optimizing Semantic Pointer Representations

for Symbol-Like Processing in Spiking Neural Networks”. In: PLOS ONE 11 (2), pp. 1–

18. DOI: 10.1371/journal.pone.0149928.

Gurney, Kevin, Tony J Prescott, and Peter Redgrave (2001). “A computational model of

action selection in the basal ganglia. I. A new functional anatomy”. In: Biological cy-

bernetics 84 (6), pp. 401–410.

Heathcote, Jonathan (2016). “Building and operating large-scale SpiNNaker machines”.

PhD thesis. Manchester, UK: School of Computer Science, University of Manchester.

Hellwig, Bernhard (2000). “A quantitative analysis of the local connectivity between

pyramidal neurons in layers 2/3 of the rat visual cortex”. In: Biological Cybernetics

82 (2), pp. 111–121. ISSN: 1432-0770. DOI: 10.1007/PL00007964.

Herculano-Houzel, Suzana (2009). “The human brain in numbers: a linearly scaled-up

primate brain.” English. In: Frontiers in human neuroscience 3, p. 31. ISSN: 1662-5161.

DOI: 10.3389/neuro.09.031.2009.

Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the dimensionality of

data with neural networks”. In: Science 313 (5786), pp. 504–507.

Hodgkin, Alan L and Andrew F Huxley (1952). “A quantitative description of membrane

current and its application to conduction and excitation in nerve”. In: The Journal of

physiology 117 (4), p. 500.

http://dx.doi.org/10.1017/S0140525X98001733
http://dx.doi.org/10.3389/neuro.01.026.2009
https://github.com/ctn-archive/technical-reports/blob/master/Precise-multiplications-with-the-NEF.ipynb
https://github.com/ctn-archive/technical-reports/blob/master/Precise-multiplications-with-the-NEF.ipynb
https://github.com/ctn-archive/technical-reports/blob/master/Precise-multiplications-with-the-NEF.ipynb
http://dx.doi.org/10.1371/journal.pone.0149928
http://dx.doi.org/10.1007/PL00007964
http://dx.doi.org/10.3389/neuro.09.031.2009

154 References

Hopfield, J J (1982). “Neural networks and physical systems with emergent collective

computational abilities”. In: Proceedings of the National Academy of Sciences 79 (8),

pp. 2554–2558. eprint: http://www.pnas.org/content/79/8/2554.full.pdf.

Hopkins, Michael and Steve Furber (2015). “Accuracy and efficiency in fixed-point neural

ODE solvers”. In: Neural computation 27, pp. 2148–2182.

Indiveri, Giacomo et al. (2011). “Neuromorphic silicon neuron circuits”. In: Frontiers in

neuroscience 5, p. 73.

Izhikevich, Eugene M (2004). “Which model to use for cortical spiking neurons?” In: IEEE

transactions on neural networks 15 (5), pp. 1063–70. ISSN: 1045-9227. DOI: 10.1109/TNN.

2004.832719.

Izhikevich, Eugene M and Gerald M Edelman (2008). “Large-scale model of mammalian

thalamocortical systems.” In: Proceedings of the National Academy of Sciences of the

United States of America 105 (9), pp. 3593–3598.

Kandel, Eric R. (1976). Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology.

W H Freeman Limited, p. 727. ISBN: 0716705222.

Kaplan, Frederic (2008). “Neurorobotics: an experimental science of embodiment”. In:

Frontiers in neuroscience 2 (1), p. 22.

Keckler, Stephen W, William J Dally, Brucek Khailany, Michael Garland, and David

Glasco (2011). “GPUs and the future of parallel computing”. In: IEEE Micro 31 (5),

pp. 7–17.

Kindratenko, Volodymyr V et al. (2009). “GPU clusters for high-performance comput-

ing”. In: 2009 IEEE International Conference on Cluster Computing and Workshops. IEEE,

pp. 1–8.

Knight, James (2016). “Plasticity in large-scale neuromorphic models of the neocortex”.

PhD thesis. Manchester, UK: School of Computer Science, University of Manchester.

Knight, James C. and Steve B. Furber (2016). “Synapse-Centric Mapping of Cortical Mod-

els to the SpiNNaker Neuromorphic Architecture”. In: Frontiers in Neuroscience 10,

p. 420. ISSN: 1662-453X. DOI: 10.3389/fnins.2016.00420.

http://www.pnas.org/content/79/8/2554.full.pdf
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.3389/fnins.2016.00420

References 155

Knight, James C, Philip J Tully, Bernhard A Kaplan, Anders Lansner, and Steve B Furber

(2016). “Large-scale simulations of plastic neural networks on neuromorphic hard-

ware”. In: Frontiers in neuroanatomy 10.

Knight, James, Aaron R. Voelker, Andrew Mundy, and Chris Eliasmith (2016). “Efficient

SpiNNaker simulation of a heteroassociative memory using the Neural Engineer-

ing Framework”. In: Neural Networks (IJCNN), 2016 International Joint Conference on.

Kung, Hsiang Tsung and Charles E Leiserson (1980). “Algorithms for VLSI processor

arrays”. In: Introduction to VLSI systems, pp. 271–292.

Laird, John E, Allen Newell, and Paul S Rosenbloom (1987). “Soar: An architecture for

general intelligence”. In: Artificial intelligence 33 (1), pp. 1–64.

Lapicque, Louis (1907). “Recherches quantitatives sur l’excitation électrique des nerfs

traitée comme une polarisation”. In: J. Physiol. Pathol. Gen 9, pp. 620–635.

Lichtsteiner, P., C. Posch, and T. Delbruck (2008). “A 128 × 128 120 dB 15 µs Latency

Asynchronous Temporal Contrast Vision Sensor”. In: Solid-State Circuits, IEEE Journal

of 43 (2), pp. 566–576. ISSN: 0018-9200. DOI: 10.1109/JSSC.2007.914337.

Liu, Huan (2002). “Routing table compaction in ternary CAM”. In: Micro, IEEE 22 (1),

pp. 58–64. ISSN: 0272-1732. DOI: 10.1109/40.988690.

Lysecky, R. and F. Vahid (2003). “On-chip logic minimization”. In: Design Automation Con-

ference, 2003. Proceedings, pp. 334–337. DOI: 10.1109/DAC.2003.1219019.

Maass, Wolfgang (1997). “Networks of spiking neurons: the third generation of neural

network models”. In: Neural networks 10 (9), pp. 1659–1671.

Markram, Henry (2006). “The blue brain project”. In: Nature Reviews Neuroscience 7 (2),

pp. 153–160.

Markram, Henry et al. (2011). “Introducing the Human Brain Project”. In: Procedia Com-

puter Science. Vol. 7, pp. 39–42.

McCulloch, W S and W Pitts (1943). “A logical calculus of the ideas immanent in nervous

activity”. In: Bulletin of Mathematical Biophysics 5 (4), pp. 115–133. ISSN: 00928240. DOI:

10.1007/BF02478259.

http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/40.988690
http://dx.doi.org/10.1109/DAC.2003.1219019
http://dx.doi.org/10.1007/BF02478259

156 References

Mead, Carver (1989). Analog VLSI and neural systems. Addison-Wesley, p. 371. ISBN:

0201059924.

Meier, Karlheinz (2015). “A mixed-signal universal neuromorphic computing system”.

In: 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, pp. 4–6.

Merolla, Paul A. et al. (2014). “A million spiking-neuron integrated circuit with a scalable

communication network and interface”. In: Science 345 (6197), pp. 668–673. DOI: 10.

1126/science.1254642.

Moore, Simon W, Paul J Fox, Steven JT Marsh, A Theodore Markettos, and Alan Mujum-

dar (2012). “Bluehive-a field-programable custom computing machine for extreme-

scale real-time neural network simulation”. In: Field-Programmable Custom Computing

Machines (FCCM), 2012 IEEE 20th Annual International Symposium on. IEEE, pp. 133–

140.

Morrison, Abigail, Carsten Mehring, Theo Geisel, AD Aertsen, and Markus Diesmann

(2005). “Advancing the boundaries of high-connectivity network simulation with dis-

tributed computing”. In: Neural computation 17 (8), pp. 1776–1801.

Mundy, Andrew, Jonathan Heathcote, and Jim D. Garside (2016). “On-Chip Order-

Exploiting Routing Table Minimization for a Multicast Supercomputer Network”.

In: High Performance Switching and Routing (HPSR), 17th International Conference on.

Mundy, Andrew, James Knight, Terrence C. Stewart, and Steve Furber (2015). “An effi-

cient SpiNNaker implementation of the Neural Engineering Framework”. In: Neural

Networks (IJCNN), 2015 International Joint Conference on. DOI: 10.1109/IJCNN.2015.

7280390.

Nageswaran, Jayram Moorkanikara, Nikil Dutt, Jeffrey L Krichmar, Alex Nicolau, and

Alexander V Veidenbaum (2009). “A configurable simulation environment for the ef-

ficient simulation of large-scale spiking neural networks on graphics processors”. In:

Neural networks 22 (5), pp. 791–800.

Navaridas, Javier, Mikel Luján, Luis A. Plana, Steve Temple, and Steve B. Furber (2015).

“SpiNNaker: Enhanced multicast routing”. In: Parallel Computing 45. Computing

Frontiers 2014: Best Papers, pp. 49–66. ISSN: 0167-8191. DOI: http://dx.doi.org/10.

1016/j.parco.2015.01.002.

http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/IJCNN.2015.7280390
http://dx.doi.org/10.1109/IJCNN.2015.7280390
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2015.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2015.01.002

References 157

Pallipuram, Vivek K, Mohammad Bhuiyan, and Melissa C Smith (2012). “A comparative

study of GPU programming models and architectures using neural networks”. In: The

Journal of Supercomputing 61 (3), pp. 673–718.

Plate, Tony A. (1995). “Holographic reduced representations.” In: IEEE transactions on

neural networks / a publication of the IEEE Neural Networks Council 6 (3), pp. 623–41.

ISSN: 1045-9227. DOI: 10.1109/72.377968.

Popper, K.R. (1979). Objective Knowledge: An Evolutionary Approach. Clarendon Press. ISBN:

9780198750246.

Potjans, Tobias C and Markus Diesmann (2012). “The Cell-Type Specific Cortical Micro-

circuit: Relating Structure and Activity in a Full-Scale Spiking Network Model.” In:

Cerebral cortex (New York, N.Y. : 1991). ISSN: 1460-2199. DOI: 10.1093/cercor/bhs358.

Rasmussen, Daniel and Chris Eliasmith (2014). “A spiking neural model applied to the

study of human performance and cognitive decline on Raven’s Advanced Progressive

Matrices”. In: Intelligence 42 (1), pp. 53–82.

Redgrave, Peter, Tony J Prescott, and Kevin Gurney (1999). “The basal ganglia: a verte-

brate solution to the selection problem?” In: Neuroscience 89 (4), pp. 1009–1023.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information storage

and organization in the brain”. In: Psychological review 65 (6), p. 386.

Sandamirskaya, Yulia (2013). “Dynamic neural fields as a step toward cognitive neuro-

morphic architectures.” English. In: Frontiers in neuroscience 7, p. 276. ISSN: 1662-4548.

DOI: 10.3389/fnins.2013.00276.

Schemmel, Johannes et al. (2010). “A wafer-scale neuromorphic hardware system for

large-scale neural modeling”. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE

International Symposium on. IEEE, pp. 1947–1950.

Sharma, Sugandha, Sean Aubin, and Chris Eliasmith (2016). “Large-scale cognitive

model design using the Nengo neural simulator”. In: Biologically Inspired Cognitive

Architectures 17, pp. 86–100.

Sharp, T. and S. Furber (2013). “Correctness and performance of the SpiNNaker architec-

ture”. In: Neural Networks (IJCNN), The 2013 International Joint Conference on, pp. 1–8.

DOI: 10.1109/IJCNN.2013.6706988.

http://dx.doi.org/10.1109/72.377968
http://dx.doi.org/10.1093/cercor/bhs358
http://dx.doi.org/10.3389/fnins.2013.00276
http://dx.doi.org/10.1109/IJCNN.2013.6706988

158 References

Sharp, Thomas, Rasmus Petersen, and Steve Furber (2014). “Real-time million-synapse

simulation of rat barrel cortex.” In: Frontiers in neuroscience 8, p. 131. DOI: 10.3389/

fnins.2014.00131.

Sherman, S. Murray (2006). “Thalamus”. In: Scholarpedia 1 (9), p. 1583.

Smolensky, Paul (1988). “On the proper treatment of connectionism”. In: Behavioral and

brain sciences 11 (01), pp. 1–23.

— (1990). “Tensor product variable binding and the representation of symbolic struc-

tures in connectionist systems”. In: Artificial intelligence 46 (1-2), pp. 159–216.

Stewart, T.C. and C. Eliasmith (2014). “Large-Scale Synthesis of Functional Spiking Neu-

ral Circuits”. In: Proceedings of the IEEE 102 (5), pp. 881–898. ISSN: 0018-9219. DOI:

10.1109/JPROC.2014.2306061.

Stewart, Terrence C. (2012). A Technical Overview of the Neural Engineering Framework. Tech.

rep. Centre for Theoretical Neuroscience, University of Waterloo.

Stewart, Terrence C., Xuan Choo, and Chris Eliasmith (2010). “Dynamic Behaviour of a

Spiking Model of Action Selection in the Basal Ganglia”. In: 10th International Confer-

ence on Cognitive Modeling.

Stewart, Terrence C. and Chris Eliasmith (2009). “Spiking neurons and central executive

control: The origin of the 50-millisecond cognitive cycle”. In: 9th International Confer-

ence on Cognitive Modelling.

Stewart, Terrence C and Chris Eliasmith (2011). “Neural cognitive modelling: A biolog-

ically constrained spiking neuron model of the Tower of Hanoi task”. In: the 33rd

Annual Conference of the Cognitive Science Society. Ed. by L. Carlson, C. Hlscher, and

TF Shipley.

Stewart, Terrence C., Ashley Kleinhans, Andrew Mundy, and Jorg Conradt (2016).

“Serendipitous Offline Learning in a Neuromorphic Robot”. In: Frontiers in Neuro-

robotics 10 (1). ISSN: 1662-5218. DOI: 10.3389/fnbot.2016.00001.

Stewart, Terrence C., Yichuan Tang, and Chris Eliasmith (2011). “A biologically realistic

cleanup memory: Autoassociation in spiking neurons”. In: Cognitive Systems Research

12 (2), pp. 84–92. ISSN: 13890417. DOI: 10.1016/j.cogsys.2010.06.006.

http://dx.doi.org/10.3389/fnins.2014.00131
http://dx.doi.org/10.3389/fnins.2014.00131
http://dx.doi.org/10.1109/JPROC.2014.2306061
http://dx.doi.org/10.3389/fnbot.2016.00001
http://dx.doi.org/10.1016/j.cogsys.2010.06.006

References 159

Strata, Piergiorgio and Robin Harvey (1999). “Dale’s principle”. In: Brain research bulletin

50 (5), pp. 349–350.

Stromatias, Evangelos et al. (2015). “Scalable energy-efficient, low-latency implementa-

tions of trained spiking deep belief networks on SpiNNaker”. In: 2015 International

Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Tang, Yichuan and Chris Eliasmith (2010). “Deep networks for robust visual recogni-

tion”. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10),

pp. 1055–1062.

The White House (2013). Brain Initiative.

Tripp, Bryan P (2015). “Surrogate population models for large-scale neural simulations”.

In: Neural computation 27 (6), pp. 1186–1222.

Tripp, Bryan and Chris Eliasmith (2016). “Function approximation in inhibitory net-

works”. In: Neural Networks 77, pp. 95–106.

Turing, A M (1950). “Computing machinery and intelligence”. In: Mind LIX (236),

pp. 433–460. DOI: 10.1093/mind/LIX.236.433.

Verschure, Paul F.M.J. and Thomas Voegtlin (1998). “A bottom-up approach towards the

acquisition, retention, and expression of sequential representations: Distributed adap-

tive control III”. In: Neural Networks 11, pp. 1531–1549.

Webb, B (2001). “Can robots make good models of biological behaviour?” In: The Behav-

ioral and brain sciences 24 (6), 1033–1050, discussion 1050–1094. ISSN: 0140-525X. DOI:

10.1017/S0140525X01000127.

Yavuz, Esin, James Turner, and Thomas Nowotny (2016). “GeNN: a code generation

framework for accelerated brain simulations”. In: Scientific reports 6.

http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1017/S0140525X01000127

	Abstract
	Introduction
	Neurons, synapses and representation
	Modelling the nervous system
	Leaky Integrate-and-Fire model
	Neural networks and synapses

	The Neural Engineering Framework
	Representation
	Transformation
	Dynamics

	The Semantic Pointer Architecture
	Representing and operating on symbols

	Cognitive architectures and Spaun
	Action selection and execution
	Spaun: The Semantic Pointer Architecture Unified Network model

	Summary

	Modelling and simulation
	Nengo: modelling with the Neural Engineering Framework
	The Nengo object model
	Nengo simulators

	Simulating neural networks
	General Purpose Graphics Processing Units (GP-GPUs)
	Neuromorphic hardware
	Field-Programmable Gate Arrays (FPGAs)

	SpiNNaker
	Hardware
	Neural simulation
	Placement and routing

	The Neural Engineering Framework and SpiNNaker
	Mapping the Neural Engineering Framework to SpiNNaker
	Communicating with values, not spikes
	Simulating neurons
	Simulating synapses

	Using shared-memory parallelism to reduce network traffic
	Overview of the solution
	Parallel simulation of neurons
	Analysis

	Performance
	Single-core processor utilisation
	Multiple-core processor utilisation
	Packet processing cost
	Network loading

	Correctness
	Neural tuning curves
	Representation
	Transformation
	Dynamics

	Summary

	The Semantic Pointer Architecture and SpiNNaker
	Representing high-dimensional values
	Large or small ensembles?
	Techniques for improving reliability

	Interposer design
	Row partitioning
	Block partitioning
	Interposer costs
	Scheduling and timing
	Summary

	Circular convolution
	Interposer parameter selection
	Comparison to spiking implementation

	Results
	Summary

	Routing table minimisation
	Introduction
	Benchmarks
	Routing table compaction
	``Order-exploiting'' minimisation
	On-chip logic minimisation

	Ordered-Covering
	Resolving the up-check
	Resolving the down-check

	Results
	Compression
	Memory usage
	Execution time

	Summary

	Conclusion – Spaun and SpiNNaker
	SpiNNaker
	Spaun
	Future work
	Summary

	References

