
AN ANALYSIS OF CACHE
PARTITIONING TECHNIQUES FOR
CHIP MULTIPROCESSOR SYSTEMS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2008

By
Konstantinos Nikas

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14

1.1 Chip Multiprocessor Architectures 15
1.1.1 Wire Delays . 15
1.1.2 Limited Parallelism . 15
1.1.3 Design Complexity . 16

1.2 Memory Hierarchy Design Challenges 17
1.3 Research Aims . 19
1.4 Terminology . 19
1.5 Thesis Overview . 20

2 Cache Systems 22

2.1 Cache Design . 22
2.1.1 Single Processor Systems 23
2.1.2 Chip Multithreaded Systems 27

2.2 Bloom Filters . 33
2.2.1 Description . 33
2.2.2 Applications of Bloom filters 34

2.3 Summary . 35

3 Jamaica and Simulation Framework 36

3.1 The Jamaica Architecture . 36

2

3.2 Simulation Environment . 38
3.3 Software Environment . 39
3.4 Benchmark Descriptions . 39

3.4.1 Java Grande Benchmarks 40
3.4.2 NAS Parallel Benchmarks 41
3.4.3 Benchmark Configuration 42

3.5 Summary . 43

4 Cache Replacement Policy 44

4.1 Evaluation of LRU . 44
4.1.1 Single Core Systems . 44
4.1.2 Dual Core System . 50
4.1.3 Quad Core System . 56
4.1.4 Conclusion . 57

4.2 Static Cache Partitioning . 57
4.3 Conclusions . 61

5 Dynamic Cache Partitioning 62

5.1 LRU Variation . 63
5.1.1 Overview . 63
5.1.2 Evaluation . 63

5.2 Monitoring Schemes . 66
5.2.1 Overview . 66
5.2.2 Cache-Partitioning Aware Replacement Policy 68
5.2.3 Utility-Based Cache Partitioning 71

5.3 Partitioning ‘on the fly’ . 74
5.3.1 Description . 74
5.3.2 Evaluation . 75
5.3.3 Conclusions . 78

5.4 Summary . 79

6 A New Cache Partitioning Scheme 81

6.1 Adaptive Bloom Filter Cache Partitioning 82
6.1.1 Motivation . 82
6.1.2 Description . 83
6.1.3 Partitioning the Cache . 86

3

6.1.4 Simulation Results . 87
6.2 Implementation Considerations 92

6.2.1 Bloom Filter Arrays . 92
6.2.2 Monitoring Period . 94

6.3 Cost Analysis . 95
6.3.1 Partitioning Algorithm . 95
6.3.2 Hardware Overhead . 103

6.4 Comparison with Other Schemes 106
6.5 Summary . 109

7 Conclusions 110

7.1 Cache Partitioning . 111
7.1.1 Adaptive Bloom Filter Cache Partitioning 111
7.1.2 Cache Partitioning Evaluation 112

7.2 Future Work . 113
7.2.1 Many-core Architectures 113
7.2.2 Multithreaded Workloads 114
7.2.3 Power Consumption . 114
7.2.4 Exposure to Higher System Levels 114

7.3 Final Remarks . 115

Bibliography 116

4

List of Tables

1.1 Memory hierarchy of developed CMPs 18

3.1 Benchmarks’ configuration . 42

4.1 System’s configuration . 45
4.2 Benchmarks’ cache space requirements 50
4.3 Average number of ways occupied by heap and co-runners . . . 54
4.4 Results of quad core system simulations 56

6.1 Number of possible partitions . 96
6.2 Storage overhead per processor 104

7.1 Comparison of LRU and cache partitioning 112

5

List of Figures

1.1 Example of a 6-way set associative cache 20

2.1 L2 Cache Designs . 29
2.2 A two-rail thread associative cache [65] 32
2.3 Example of a Bloom filter . 33

3.1 The Jamaica architecture . 37

4.1 Low utility applications . 46
4.2 High utility applications . 48
4.3 Saturating utility applications 49
4.4 Dual core system . 51
4.5 Performance of saturating utility benchmarks 51
4.6 Performance of low and saturating utility benchmarks 52
4.7 Average L2 cache ways occupancy 53
4.8 Performance of heap and co-runners 54
4.9 L2 cache ways occupancy for heap and co-runners 55
4.10Performance gains/losses for heap and sor for different partitions 58
4.11Performance gains/losses for ft and heap for different partitions 59
4.12Performance gains/losses for heap and lu for different partitions 60
4.13Example of non optimal static partitioning 61

5.1 Throughput over LRU for different time weights 64
5.2 Average number of cache ways occupied by heap and sparse . . 64
5.3 Performance over LRU for static cache partitioning scheme . . . 65
5.4 Average number of cache ways occupied by series and sparse . . 66
5.5 Distribution of an application’s hits 67
5.6 Cache partitioning aware replacement performance over LRU for

a dual core system . 70

6

5.7 Cache-partitioning aware replacement performance over LRU for
a quad core system . 70

5.8 Utility-based partitioning scheme’s performance over LRU for a
dual core system . 72

5.9 Utility-based partitioning scheme’s performance over LRU for a
quad core system . 73

5.10Ideal scheme’s performance over LRU for a quad core system . . 74
5.11Performance over LRU when repartitioning every near miss . . . 76
5.12L2 cache ways occupancy for heap and sparse 76
5.13L2 cache ways occupancy for series and sparse 77
5.14Example of 2 applications’ profiles that share a L2 cache 79

6.1 Monitoring components of the adaptive Bloom filter cache parti-
tioning scheme . 84

6.2 Performance over LRU for a dual core system 88
6.3 L2 cache ways occupancy for heap and sparse 88
6.4 L2 cache ways occupancy for series and sparse 89
6.5 Performance over LRU for a quad core system 90
6.6 Evaluation on weighted speedup and fairness metrics 91
6.7 Effect of different Bloom filter arrays’ sizes for a dual core system 93
6.8 Effect of using 32-bit instead of 32-Kbit Bloom filter arrays for a

quad core system . 94
6.9 Effects of different monitoring periods for a dual core system . . 95
6.10Four examples of the partitioning algorithm for a quad core system 98
6.11Comparison of new and old partitioning algorithm for a dual core

system . 100
6.12Effects of the new partitioning algorithm for a quad core system . 101
6.13Comparison of new and old partitioning algorithm for a system

with 8 cores . 102
6.14Performance using 8-bit counters over a system that uses 32-bit

counters . 103
6.15Performance of a 4MB, 32-way associative L2 cache using cache

partitioning against bigger caches employing the LRU policy . . . 105
6.16Comparison of the utility-based and adaptive Bloom filter cache

partitioning schemes for a dual-core system 106

7

6.17Comparison of the utility-based and adaptive Bloom filter cache
partitioning schemes for a quad-core system 107

6.18Comparison of the utility-based and adaptive Bloom filter cache
partitioning schemes for an eight-core system 108

7.1 Performance normalised with number of cores for LRU and cache
partitioning . 113

8

List of Algorithms

1 Partitioning Algorithm . 97

9

Abstract

Currently, there is a trend to increase the number of processors on a single
chip leading to the development of chip multiprocessor (CMP), and eventu-
ally manycore, architectures. Cache design has been extensively studied in
the context of uniprocessor systems and computer architects have transfered
existing policies and cache design techniques from uniprocessors to the new
architectures. A typical example of such a migration is the employment of
the Least Recently Used (LRU) replacement policy, which is widely accepted
as the best line replacement policy for uniprocessor caches. However the pa-
rameters are different in CMP systems, as the sharing of the cache hierarchy
amongst several concurrent threads imposes new constraints and creates new
challenges. It is important, therefore, to reevaluate the effectiveness of these
policies in CMP architectures.

This thesis investigates the interference between threads that run simulta-
neously on CMPs sharing different levels of the cache hierarchy and evaluates
cache partitioning as a means of alleviating its consequences. Several schemes
are studied and their advantages and drawbacks are used as a guide for the
development of a novel, low-cost cache partitioning scheme that achieves better
performance than LRU and shows increasing promise over alternative schemes
as the number of on-chip processors increases.

10

Declaration

No portion of the work referred to in this thesis has
been submitted in support of an application for another
degree or qualification of this or any other university or
other institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns any copyright in it (the ‘‘Copyright’’) and s/he has given
The University of Manchester the right to use such Copyright for any
administrative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in
accordance with the regulations of the John Rylands University Library
of Manchester. Details of these regulations may be obtained from the
Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all
other intellectual property rights except for the Copyright (the ‘‘Intellec-
tual Property Rights’’) and any reproductions of copyright works, for ex-
ample graphs and tables (‘‘Reproductions’’), which may be described in
this thesis, may not be owned by the author and may be owned by third
parties. Such Intellectual Property Rights and Reproductions cannot and
must not be made available for use without the prior written permission
of the owner(s) of the relevant Intellectual Property Rights and/or Repro-
ductions.

iv. Further information on the conditions under which disclosure, publica-
tion and exploitation of this thesis, the Copyright and any Intellectual
Property Rights and/or Reproductions described in it may take place is
available from the Head of School of School of Computer Science (or the
Vice-President).

12

Acknowledgements

This research was completed under the supervision of Dr. Jim Garside to whom
I am obliged. I would like to thank him for all the help, encouragement, support
and constructive feedback he has given me over the last four years. I would
also like to thank all the members of the APT group. Special thanks go to Dr.
Jeremy Singer for efficiently proofreading this thesis in record time.

I would also like to thank all my friends, new and old ones. Especially Teta,
Dimitris and Nikos for making life here more enjoyable and Aris, Antreas and
Ioanna in Greece for their 24/7 phone support.

Finally, and certainly not least, I would like to thank my parents for encourag-
ing me to keep on chasing my dreams, for their continued help and support all
these years. I have come this far because of you.

13

Chapter 1

Introduction

As is well known, the feature size of silicon fabrication technology is continu-
ously shrinking. In fact, in the last decade only, it has been scaled down from
350nm to 45nm [26]. This has enabled the improvement of system perfor-
mance in two ways. Firstly, designers have been increasing system operating
frequency at a rapid rate by exploiting the smaller and faster transistors and by
building deeper pipelines, thus reducing the number of levels of logic per cycle.
Secondly, the increasing transistor budgets have been utilised by several mi-
croarchitectural techniques, like superscalar issue, out-of-order issue, on-chip
caching and deep pipelines supported by sophisticated branch predictors [57].

Unfortunately, as has been recently noted [19, 7], the future effectiveness of
these approaches is limited due to the emergence of two main constraints.
Firstly, the increase in the number of transistors and their switching frequency
leads to an overall growth in power consumption and energy. Additionally, it
is becoming extremely difficult to remove the dissipated heat from the chip.
Secondly, as the feature size is decreased, wire delays do not scale efficiently
and have become a major design limitation for large integrated circuits.

These problems have caused a change in the design paradigm of the micropro-
cessor industry. Nowadays Chip Multi-Processors (CMPs) are being developed
by all the main vendors such as AMD [3], IBM [29], Intel [40] and Sun [36].
However, the sharing of the on-chip resources amongst the cores imposes new
constraints and creates new challenges for designers.

Chapter 1: Introduction 14

1.1 Chip Multiprocessor Architectures

This thesis focuses on the sharing of cache between concurrently running ap-
plications and evaluates cache partitioning schemes as a mean of optimising
the overall system performance. The remainder of this chapter presents the
case for CMP architectures, outlines the cache hierarchies of some of the de-
veloped systems and concludes with an overview of the rest of the thesis.

1.1 Chip Multiprocessor Architectures

As mentioned previously, CMP architectures have been developed to provide so-
lutions to the problems facing microprocessor designers. This section presents
a short overview of some of these solutions.

1.1.1 Wire Delays

The signal delay for a wire increases in proportion to the product of its re-
sistance and capacitance. As feature size decreases, the wires’ section gets
smaller and the resistance and capacitance per unit length increase. In the
past few years increasingly larger fractions of the clock cycles have been con-
sumed by the propagation delay of signals on wires, reducing the number of
logic gates reachable within a cycle.

On the other hand, CMPs incorporate multiple processors on the same chip,
with each core occupying a relatively small area. Therefore, the critical paths
within each processor circuit are minimised and the effects of wire delays re-
duced. In these systems only the wires of the communication network between
processors and caches need to be long. These are less frequently used com-
pared to wires inside the cores and, therefore, less latency critical.

1.1.2 Limited Parallelism

Many processors are designed to exploit Instruction-Level Parallelism (ILP).
More specifically, independent instructions found within an instruction stream
are sent to multiple functional units to be executed concurrently. By allowing
more than one instruction to be executed per clock cycle, the performance of
the system is improved. However, this approach is limited by instruction de-
pendencies and long-latency operations [62].

Chapter 1: Introduction 15

1.1 Chip Multiprocessor Architectures

Thread-Level Parallelism (TLP) offers an attractive alternative to ILP. A thread
is defined as a separate process with its own instructions and data. It could
either represent an independent program or a process that is part of a parallel
program consisting of multiple processes. In contrast to ILP, which exploits
parallel operations within a code segment, TLP extracts parallelism by execut-
ing multiple threads which are inherently parallel.

Single processor systems have two options to exploit TLP. In ‘‘fine-grained
multithreading’’ the execution of multiple threads is interleaved by switching
between threads on each instruction. The second option, ‘‘coarse-grained mul-
tithreading’’, switches threads on costly stalls, for example L2 cache misses, or
at specific time quantums.

CMPs are specifically designed to exploit TLP. In fact, by providing many pro-
cessors, they can achieve even finer-grained parallelism than single processor
systems that exploit TLP, as multiple threads can execute simultaneously.

1.1.3 Design Complexity

Recently Intel presented the Montecito processor [39]. Its 1.7 billion-transistors
have signalled the start of the era of billion transistor architectures. However,
as the number of transistor rises, the design complexity increases as well. The
International Technology Roadmap for the Semiconductor Industry (ITRS) 2005
[1] has recognised that in order to maintain design quality, design implemen-
tation productivity must be improved to the same degree as design complexity
is scaled.

Design replication offers an attractive solution to the complexity problem and
is exploited in CMP designs. For example, Sun’s Niagara architecture [36]
employs eight identical SPARC processors. The modular nature of these sys-
tems allows the designers to reuse components, thus cutting down design and
verification time.

Chapter 1: Introduction 16

1.2 Memory Hierarchy Design Challenges

1.2 Memory Hierarchy Design Challenges

CMPs have recently emerged as an attractive alternative to uniprocessor sys-
tems. However this shift in the design paradigm has created new challenges.
One of these is the design of the memory hierarchy. The high number of
threads running simultaneously increases the demand on the memory band-
width. Cacheing helps to alleviate this, but the problems of cache design for
CMPs are not yet fully understood.

Firstly, these are shared memory systems and all the processors are assumed
to see the same memory space. In practice this is not directly feasible as differ-
ent levels of the cache hierarchy could be shared amongst different numbers
of processors. CMPs could exploit their multiple cores to schedule parallel
threads that execute the same instruction stream but on independent data
sets, as is the case in parallel programs such as raytracer [56] and several
server applications. In a different scenario, the working sets of the parallel
threads could overlap, as is the case for databases. Sharing the cache hier-
archy is a straightforward solution; however shared caches exhibit a higher
access time and the bandwidth requirements of the system are increased. On
the other hand, private caches have lower hit latencies but the effective cache
capacity of the system is reduced as cache entries are often replicated in mul-
tiple private caches.

Clearly there is a trade-off and the designers need to consider each system’s
requirements and specifications to make wise decisions. The majority of the
proposed CMPs today keep the L1 caches private for each processor to avoid
increasing their access time and share the next levels of the cache hierarchy.
Table 1.1 outlines the memory hierarchies of Niagara [36], Power 5 [29] and
Montecito [39] and reveals the different decisions made by the designers re-
garding cache sizes and associativity and the sharing or not of specific levels of
the cache hierarchy.

Another important challenge that the designers of CMPs face is the selection of
an efficient cache replacement algorithm. The architectures described in Table
1.1 employ the random, the Least Recently Used (LRU) and the Not Recently
Used (NRU) policies. These policies have migrated from the single processor

Chapter 1: Introduction 17

1.2 Memory Hierarchy Design Challenges

Sun Niagara IBM Power 5 Intel Montecito
Processors/chip 8 2 2
Threads/processor 4 2 2
Instruction Cache 16KB 64KB 16KB
per processor 4-way 2-way 4-way
Data Cache 8KB 32KB 16KB
per processor 4-way 4-way 4-way

Write Policy
write-through

write-through
write-through

no allocation no allocation
on writes on writes

L1 replacement Random LRU LRUpolicy

On-chip L2 Cache
shared shared private
3MB 1.875MB I$ 1MB D$ 256KB

8-way 8-way12-way 10-way
Write Policy write-back write-back write-back
L2 replacement Random LRU NRUpolicy

L3 Cache -
off-chip on-chip (private)
36MB 12MB
10-way 6-way

Table 1.1: Memory hierarchy of developed CMPs

design domain and they are ‘‘thread-blind’’, as they select which cache entry
should be rejected regardless of which thread brought it into the cache or which
thread suffered the cache miss. This, however, can cause problems in a CMP
architecture and have a significant impact on the performance of the system.

More specifically, when each core is used to execute a different application,
multiple working sets compete for the cache space. The employment of a
thread-blind replacement policy allows interference, as data belonging to one
thread may be evicted by data blocks belonging to other threads. A typical ex-
ample is the execution of streaming applications. These applications exhibit a
small amount of temporal locality and pollute the caches with data that will not
be accessed again in the near future. A thread-blind replacement policy is not
able to identify and deal with these pathological cases and severe performance
problems such as cache thrashing and thread starvation could be caused.

Designers have tried to deal with this problem by increasing the cache’s size

Chapter 1: Introduction 18

1.3 Research Aims

and associativity. However, the effectiveness of this approach is limited due to
area and power constraints and other alternatives are needed, highlighting the
importance of research in this field.

1.3 Research Aims

In the previous section it became apparent that different factors need to be
taken into consideration in order to propose a cache hierarchy that will sat-
isfy all the requirements. As it seems likely that the number of processors
integrated on a silicon chip will continue to increase in the near future, poli-
cies should scale to accommodate an increasing number of competing threads
whilst maximising overall instruction throughput.

This work studies the interference between threads that run simultaneously
on CMPs sharing different levels of the cache hierarchy and evaluates cache
partitioning as a mean of alleviating its consequences. Different schemes are
studied and the results of the analysis are used as a guide to develop a novel
scheme that can optimise the overall performance of the system at a low cost
in terms of hardware overhead and complexity.

1.4 Terminology

In general this work adopts the terminology that Smith used in his detailed
survey of cache design [55]. The following list of definitions clarify some of
the terms used throughout this thesis. For convenience, Figure 1.1 shows an
example of a 6-way set associative cache illustrating the usage of these terms.

• Entry/Block : An entry is a set of words with a common tag, distin-
guished only by the least significant bits of the memory address. There
are typically 4 or 8 words long.

• Line/Set : A line or set is a collection of entries, the tags for which are
checked in parallel during a cache access.

• Way : The number of ways is defined by the ‘‘degree of associativity’’ of
the cache and is equal to the number of entries contained in a line.

Chapter 1: Introduction 19

1.5 Thesis Overview

Figure 1.1: Example of a 6-way set associative cache

1.5 Thesis Overview

This chapter has highlighted the advantages of CMP architectures and the
problems that this research attempts to investigate. The remainder of the the-
sis is arranged as follows.

Chapter 2 reviews several schemes that attempt to improve the efficiency of
cache hierarchies both in the single processor and the CMP domain.

Chapter 3 provides a short overview of the Jamaica CMP that provided the
test bench for the evaluation of the different cache partitioning schemes. It
also presents the simulation platform and the benchmarks used during these
studies.

Chapter 4 evaluates the employment of the LRU replacement policy in CMPs
and presents evidence that a cache partitioning scheme can improve the per-
formance of the system.

Chapter 5 introduces cache partitioning schemes that have been proposed by
other researchers. They are evaluated together with other schemes that were

Chapter 1: Introduction 20

1.5 Thesis Overview

developed during this work but failed to improve the overall performance of the
system. The advantages and drawbacks of each scheme are identified and then
used to guide the development of a novel partitioning scheme.

Chapter 6 describes this novel scheme, evaluates its performance and anal-
yses its complexity and hardware overhead.

Finally, Chapter 7 concludes this thesis by summarising the contributions
made in addition to suggesting future expectations and possibilities.

Chapter 1: Introduction 21

Chapter 2

Cache Systems

Designers are responsible for selecting the appropriate cache according to the
requirements of the system. The cache design space is big, as there are many
variables that can affect the system’s behaviour and performance. These in-
clude the total size of the cache, its associativity, the size of each cache line, the
policy according to which lines are placed or replaced inside the cache array
and the actual placement of the cache in the architecture and its distance from
the processing cores. The increasing number of transistors per chip widens
this range of options, as it is now possible to bring bigger caches closer to the
processor or introduce multi-level cache hierarchies on chip.

This chapter presents several proposals aimed at improving the performance
of the cache hierarchy for both single processor and CMP systems.

2.1 Cache Design

A straightforward solution to increase the cache’s effectiveness and thus im-
prove the overall performance, would be to increase the cache’s size and as-
sociativity. Consequently, the cache would be able to hold more data blocks
and reduce conflicts between data lines that map on the same cache line. This
approach is primarily limited by the available area on the chip. Additionally, it
makes the cache slower and more power hungry, which could ultimately have
a negative effect on the system. Clearly, the effectiveness of this solution is
limited and designers have been searching for other alternatives.

Chapter 2: Cache Systems 22

2.1 Cache Design

2.1.1 Single Processor Systems

Cache design has been extensively studied in the context of traditional unipro-
cessor systems. The schemes that are presented here attempt to adapt dynam-
ically to the characteristics of the running programs and improve the perfor-
mance of single processor systems.

Selective Caching

One group of these schemes has been looking at what needs to be put into the
cache. Tyson et al. tried to reduce the average data access time by dynamically
deciding whether to cache a particular data item based on the address of the
instruction generating the request [63]. Their experiments showed that less
than 5% of the total load instructions are responsible for causing over 99% of
all cache misses. Based on that, they built ‘‘miss prediction tables’’, associating
a 2-bit counter with each load instruction. The counter is incremented each
time a load causes a miss and decremented in case of a hit. While the counter
is at its highest value, the line is not stored in the cache.

González et al. proposed the ‘‘Dual Data Cache’’ which consists of two inde-
pendent subcaches [20]. One is called ‘‘temporal cache’’ and is designed to
exploit just temporal locality, while the other, named ‘‘spatial cache’’, is target-
ted on spatial locality as well. When the processor issues a memory request,
both subcaches are looked up in parallel but, in case of a miss, the data that
is brought from the next level of the memory hierarchy may be placed in one
of the two subcaches or nowhere. The decision is based on a prediction of the
type of the locality the memory reference exhibits. To make the prediction, the
system uses a ‘‘Locality Prediction Table’’ which associates a memory reference
with the instruction that issued the memory request and its past behaviour.

Johnson suggested the use of hardware monitors to track run-time memory
access patterns [28]. More specifically, she used counters to monitor the ac-
cess frequency of regions of memory. These were then used to guide caching
decisions, such as cache bypassing, spatial locality optimisations and cache
remapping.

Chapter 2: Cache Systems 23

2.1 Cache Design

A history table was also used by Collins et al. [13]. In their scheme one entry
per cache set is used to store the last evicted tag. On a miss, the tag of the re-
quested line is compared to the stored tag of the most recently evicted line from
that set. If they are the same, a conflict miss has been identified, otherwise it is
a capacity miss. This classification of misses is used as a prediction of future
miss classification and incorporated into various decisions, like victim cache
design, cache prefetching or cache exclusion mechanisms. For example, only
lines that were brought into or forced out of the cache due to a conflict miss
are stored into the victim cache.

Hashing Functions

Another approach to reducing the cache miss ratio is the employment of differ-
ent hashing functions. Bodin et al. proposed ‘‘skewed associativity’’ to improve
the system’s performance [6]. In an X-way associative cache, similarly to other
traditional cache structures, the memory address is hashed with the number
of lines to deduce which line to access. An X-way skewed associative cache,
however, employs different mapping functions for each way. On a cache access,
these functions are used in parallel causing the system to access a different
line in each way. Thus, the possibility of aliasing is reduced.

González et al. evaluated XOR-based mapping functions and concluded that
they constitute a powerful technique for reducing conflict misses [21]. Later,
Kharbutli proposed ‘‘prime displacement’’ [31]. This hashing function obtains
the cache index by adding an offset, equal to a prime number multiplied by the
tag bits, to the index bits of the memory address.

Cache Replacement Policy

Other studies target the cache replacement policy. Peir et al. developed a de-
sign called ‘‘adaptive group-associative’’ cache [47]. This scheme extends a
direct-mapped cache by using a history table to track the lines that have been
referenced recently. When a miss occurs, the line being replaced is checked
against the entries of the table. If it has been referenced recently, it is placed
into another location in the cache that has not been accessed in the recent past
instead of being evicted. A small directory is used to keep track of the lines
that have been so displaced.

Chapter 2: Cache Systems 24

2.1 Cache Design

Wong et al. suggested that implementing effective replacement algorithms might
become more important than reducing conflict misses [66]. They modified the
LRU policy for the L2 cache, so that lines which exhibit temporal locality are
not replaced in preference to lines that have a low probability of being reused
in the near future.

Kampe et al. proposed a ‘‘self-correcting’’ LRU replacement policy [30]. They
identified three types of mistakes made by LRU. The first is created by blocks
that are accessed only once, at the time of the miss. These blocks should have
bypassed the cache. The second mistake is caused by blocks that exhibit some
spatial locality or short term temporal locality. These are referenced more than
once while being in the MRU position and are not accessed again before they
are evicted. An ideal policy would remove them as soon as they leave the MRU
position. The third mistake occurs when a block, which was evicted because it
was in the LRU position, is accessed immediately after it was replaced. These
blocks should be kept for a longer period. Detected mistakes are recorded into a
‘‘Mistake History Table’’, which is then used to refine the replacement decisions.

Kharbutli et al. suggested also that one of the main drawbacks of the LRU
policy is that a line which is no longer needed occupies useful space for a long
time until it becomes the LRU and is evicted from the cache [32]. This dead
time is increased with larger degrees of associativity. To deal with this problem
they proposed a counter-based cache replacement scheme, where each block
is associated with a counter that records the number of accesses to that block.
When the value of this counter reaches a threshold, the line becomes eligible
for eviction.

Qureshi et al. detected a drawback of the set-associative cache in that it can-
not adapt its associativity, as lines in the data array are statically mapped to
entries in the tag array [48]. This means that when a miss occurs, a victim
has to be identified within the target set, which prevents the cache from ex-
ploiting underutilised sets. To solve this problem, the tag array is expanded to
hold more tags than the associativity dictates. Pointers are then used to map
a valid tag entry to a location in the data array. When a miss occurs and an

Chapter 2: Cache Systems 25

2.1 Cache Design

invalid entry exists in the accessed line of the tag array, the replacement victim
is supplied by the data array, which implements a global replacement policy.
Thus, each line could contain a different number of valid tags, implementing a
‘‘demand-based’’ associativity that dynamically adapts to the access patterns
of the running program.

Data Placement

A different set of schemes try to deal with the increasingly significant wire de-
lays. Rises in on-chip communication delays affect the latency of large on-chip
caches, making their hit time a function of a line’s physical position within
the cache. Therefore, Kim et al. suggested that traditional, monolithic cache
designs with a single, uniform access time will be ineffective in future designs
and proposed breaking the cache into banks that can be accessed at different
latencies [34]. When a hit occurs to a cache line, it is swapped with a line in
the bank that is the next closer to the cache controller. Thus, heavily used
lines will migrate towards banks that are quickly accessed, while infrequently
accessed lines will be demoted into farther banks with higher access time.

Chishti et al. exploited sequential tag-data access to decouple data from tag
placement and define ‘‘Distance Associativity’’ [11], where a data block is placed
at a certain distance from the core and thus suffers a certain latency. The data
array is broken into different groups, each one with a different latency. The tag-
data decoupling enables data blocks from the same cache set to be stored either
in the same group or in a different one. Initially all cache blocks are placed in a
fast group and then the rarely accessed blocks are demoted to slower groups.
Thus, the majority of accesses happen to the fastest group, while the swaps
between different groups are minimised, in contrast to the proposal by Kim
et al. [34]. Thus this system results in higher performance and lower energy
consumption.

Cache partitioning

Another set of studies target the sharing of the cache between different access
streams. Stone et al. studied the optimal allocation of cache memory among
multiple access streams [58]. They showed that LRU typically comes close to

Chapter 2: Cache Systems 26

2.1 Cache Design

achieving optimal performance and they focused on partitioning a cache be-
tween the instruction and data access streams of a single workload.

Chiou et al. were motivated by the presence of an increasing amount of stream-
ing data and the development of multi-threaded parallel processing applica-
tions [10]. They recognised that these result in memory access pattern that
exhibit less temporal locality and pollute the caches with data that will not
be accessed again in the near future. They proposed a novel scheme, where
a set-associative cache is partitioned at the granularity of a way and specific
data is restricted to be only placed into a particular subset of the cache’s ways.
The difference from older static partitioning schemes is that the partitioning
is dynamic, as the restrictions can be modified or even be completely removed
changing the partitioned cache to a normal one.

Suh et al. developed an analytical cache model that depends on offline profil-
ing of applications [59]. Using these offline miss rates the model can estimate
the overall miss rate. This estimation is then used by a partitioning unit to
determine an optimal partition of the caches that minimises the miss rates.

Summary

A ‘simple’ cache hierarchy is not always adequate and a number of more elabo-
rate schemes for improving the performance of the system have been proposed.
These range from selective caching depending on whether a memory reference
exhibits temporal or spatial locality to modified versions of the LRU replace-
ment policy and cache partitioning. All these proposals have been evaluated in
uniprocessors but it is likely that the parameters are different in CMPs.

2.1.2 Chip Multithreaded Systems

Most previous studies of caches have been related to uniprocessors. There is
now a trend to increase the number of processors on a single chip and, in the
CMP model, these often share the memory hierarchy. However this sharing
imposes new constraints and affects the cache utilisation. Therefore, it is nec-
essary to reevaluate cache design for CMPs.

Chapter 2: Cache Systems 27

2.1 Cache Design

One of the major challenges is that the sharing of any level of the cache hi-
erarchy allows interference, as data belonging to one thread may be evicted by
operations by other threads. This interference impacts the running processes
non-uniformly and could cause performance problems, like cache thrashing
and thread starvation. Therefore different proposals have been made to im-
prove the sharing of the cache and thus the overall performance of the system.

Thread scheduling

A group of proposals tries to tackle the cache contention problem by making ap-
propriate scheduling decisions. Kihm et al. provided a set of counters for each
thread, each of which is associated with a group of cache sets and records
the accesses to these cache lines [33]. This monitoring was used to predict
future access patterns for each thread, which were then exposed to the oper-
ating system scheduler. The scheduler then attempted to select threads that
exploit different regions of the cache and thus can operate efficiently in parallel.

Chandra et al. studied the impact of the inter-thread cache contention on CMP
architectures and proposed an analytical model to predict the impact of cache
sharing on parallel running threads [8]. The input of the model is the isolated
L2 cache access profile for each thread and the output is the number of extra
L2 cache misses for each thread that shares the cache. Thus this model can
be used by the scheduler to make the appropriate decisions.

A similar approach was employed by Fedorova [16]. An analytical model was
proposed to estimate the L2 cache miss rate that a thread would have if the
cache were shared equally among all the threads. The output was then used
by the scheduler to adjusts the thread’s share of CPU cycles in proportion to
its deviation from its fair miss rate. Thus performance variability due to cache
sharing was reduced.

Non-Uniform Caches

A different set of proposals tries to explore the range of sharing policies of
large banked caches, mainly L2, between different on chip processors. More
precisely, the L2 banks can be managed in two basic ways, as shown in Figure
2.1. They either form a ‘single’, large cache shared by all the processors or each

Chapter 2: Cache Systems 28

2.1 Cache Design

one is treated as a private L2 cache. The private scheme has low hit latency,
providing good performance when the working set fits into the cache; however
the effective cache capacity is reduced as each processor is allowed to use only
its private L2 slice. Therefore, it is possible for a core to exhibit a high miss
rate due to its working set not fitting into its slice while there is empty space
in the other banks.

Figure 2.1: L2 Cache Designs

On the other hand, the shared scheme reduces the off-chip miss rates by in-
creasing the effective cache capacity, as a core could potentially use all the
available L2 cache space. However each bank could have a different access la-
tency, depending on the interconnection network and the distance of the bank
from the accessing core. The higher latency of a hit in a remote L2 slice com-
bined with the increased bandwidth requirements and the coherence overhead
can harm the performance of the system.

Huh et al. tried to bridge this gap by modifying the shared scheme [25]. In-
stead of mapping a data block statically to a specific L2 bank, they proposed
dynamic mapping by allowing a block to be stored in one of multiple banks.
Using proper placement and migration policies their scheme enables the cache
to place frequently accessed blocks in the banks closest to requesting CPU.

Chapter 2: Cache Systems 29

2.1 Cache Design

Zhang et al. created a hybrid of the private and the shared scheme [68]. In
their system the L2 cache is shared, but when a line is evicted from the L1
cache, they attempt to keep a copy of the victim line in the local L2 slice. Thus,
a subsequent miss can be serviced by the local L2 using this replica instead of
bringing the original line from the remote L2 slice.

The same problem was tackled by Chishti et al. [12]. They expanded their pre-
vious work on distance associativity [11] to CMP architectures and proposed
three different mechanisms. The first one, called ‘‘controlled replication’’, places
copies of data lines close to the requesters while trying not to reduce the effec-
tive on-chip capacity too much. The second mechanism provides fast access to
read-write shared data without making copies or incurring coherence misses.
The third suggestion, called ‘‘capacity stealing’’, enables a core to migrate its
less frequently accessed data to a cache slice with less capacity demand.

The above proposals start out with a banked shared cache and attempt to
incorporate some of the advantages of using private L2 caches by using data mi-
gration and replication. Recently, Chang et al. proposed ‘‘Cooperative caching’’
[9], which employs private L2 caches and uses a collection of mechanisms
to create a globally managed, aggregate on-chip cache via the cooperation of
the different on-chip caches. These mechanisms include a replication-aware
replacement policy and global replacement for inactive data.

Cache Partitioning

Suh et al. extended their previous work [59] by using a set of hardware coun-
ters to gather information about the running processes [60]. This information
was then used to determine the cache partitioning. The novelty of this scheme
is that the optimal partition of the cache is calculated dynamically to capture
the time changing characteristics of each thread; then every thread is assigned
a space allocation limit. In the event of a cache miss, an extra cache block will
be allocated to the thread if and only if its current allocation is below this limit.

Kim et al. noted that an operating system enforces thread priorities assuming

Chapter 2: Cache Systems 30

2.1 Cache Design

that the progress of each thread is uniformly affected by the sharing of the re-
sources [35]. When this assumption of fair hardware is not met, then problems
like thread starvation or priority inversion arise. Therefore they introduced
different metrics to evaluate cache fairness and proposed the substitution of
the ‘thread-blind’ LRU replacement policy by static and dynamic partitioning
algorithms that lead to a partition which optimises fairness.

Following a similar approach, Iyer proposed a framework for enabling Quality
of Service (QoS) in CMP systems [27]. This scheme tries to improve the shared
cache efficiency by providing prioritised service to different threads. The prior-
ity can be enforced by three different mechanisms: set partitioning, selective
cache allocation and heterogeneous cache regions. The first mechanism allows
threads with a higher priority to occupy more ways in a line than lower priority
threads. The second one associates a cache space allocation limit with each
priority level. The number of lines occupied by each thread is monitored and
used to determine whether the allocation of a new line is allowed or not. The fi-
nal mechanism maps heterogeneous cache structures, such as set-associative
caches, stream buffers and victim caches, that implement different replace-
ment policies to different memory access streams based on their priority levels.

Settle et al. proposed using global cache reuse behaviour to control the cache
space available to each thread [54]. In one of their schemes, when the thread
ID of the cache request differs from that of the normal LRU candidate, the
cache controller checks the line’s reuse counter to determine the impact this
eviction could have on the system performance. If the reuse counter is higher
than a threshold value, the line is not suitable for eviction. Instead the next
least recently used line is evaluated and the process is repeated until a suitable
candidate is found. If none is found, the normal LRU candidate is used.

Wang et al. developed a scheme called ‘‘thread-associative memory’’ [65], where
thread-specific information is explicitly incorporated into the on-chip cache.
More specifically, it employs a set-associative cache, where each way within
a set is grouped into N ‘‘rails’’, where N is the number of concurrent threads
sharing the cache. An example of a two-rail thread associative cache is shown
in Figure 2.2. The cache address is extended to include the thread ID, which is

Chapter 2: Cache Systems 31

2.1 Cache Design

then used to determine which rail to access. By not allowing a thread to access
a rail owned by another thread, cache replacements for concurrent threads are
decoupled, thereby avoiding inter-thread conflicts. The system also uses an
‘‘enable’’ bit, so that if the performance degrades or only one thread is using
the cache, the thread-associative mapping is disabled and the whole cache is
used.

Figure 2.2: A two-rail thread associative cache [65]

Qureshi et al. developed a low hardware overhead monitoring circuit to estimate
the utility of the cache resources for each running application [49]. Based
on the observation that a reduction in misses correlates with a reduction in
CPI, these estimations are used by an algorithm to divide the cache amongst
the competing applications in an optimal way that will reduce the number
of misses. A similar scheme was developed by Dybdahl et al. [15]. The two
proposals differ on the amount of information gathered about each application
and the way the partition sizes are modified each time the partitioning algorithm
is executed.

Summary

The aforementioned studies have shown that a ‘simple’ cache hierarchy does
not perform efficiently under the extra strain imposed by the sharing of on-chip
resources amongst the concurrently running threads of a CMP architecture. A
group of these advocate the partitioning of the cache to improve the overall

Chapter 2: Cache Systems 32

2.2 Bloom Filters

performance of the system.

The work presented in this thesis was primarily influenced by these cache
partitioning schemes and focused mainly on the last two proposed by Qureshi
et al. [49] and Dybdahl et al. [15]. The two systems were evaluated and their
advantages and drawbacks were identified and used as a guide for the develop-
ment of a different cache partitioning scheme that aims to improve the system’s
performance at a low cost.

2.2 Bloom Filters

In the process of developing a new cache partitioning scheme different ways of
monitoring the cache contents were examined. One of these is the Bloom filter
[5], which is briefly introduced here.

2.2.1 Description

A Bloom filter is a probabilistic algorithm to quickly test membership in a large
set using multiple hash functions into an array of bits [5]. It consists of an
array A of m bits and k hash functions {h1, h2, ..., hk}. In an empty filter, all
bits in A are zero. To add item s to the filter, h1(s) is computed and the value
is used to index into A, where A[h1(s)] is set to one. This process is repeated
for all the hash functions, as shown in Figure 2.3.

Figure 2.3: Example of a Bloom filter

Chapter 2: Cache Systems 33

2.2 Bloom Filters

To test for the presence of s′, the bits A[h1(s′)], A[h2(s′)], ..., A[hk(s′)] are looked
up. If all these bits are one, the set membership test returns true, but if any
are zero the test returns false. For these membership tests, false negatives
are impossible. False positives, however, are possible, as any or all of the bits
indexed by applying the hashing functions to s′ could have been set due to
the insertion of other elements into the filter. This problem is also known as
‘‘aliasing’’. The probability of such filter errors depends on the number n of
items inserted into the set, the number k of hash functions, their effectiveness
and the size m of array A. Assuming ‘‘good’’ hash functions, this possibility is
given approximately by :

prob =
(
1 − e−kn/m

)k
(2.1)

2.2.2 Applications of Bloom filters

Bloom filters have been successfully applied to a variety of fields. They have
been used for text analysis [4] and the development of spell checking programs
[42, 45], in databases to estimate the size of joins [43, 44] and access the files
that cache the modifications of the database’s records [22, 50] and in network
applications [17, 53, 64].

Recently, Bloom filters have also been introduced into the computer archi-
tecture domain. Peir et al. used them to implement a hit/miss predictor that
identifies cache misses early in the pipeline [46]. This early identification of
cache misses is used by the processor to schedule instructions that are depen-
dent on loads more accurately and to prefetch data into the cache.

Ricci et al. applied them on a CMP system where the L2 cache was split into
several banks, with each bank having a different access latency depending on
its proximity to the core [51]. In their system, each processor maintains as
many Bloom filters as the number of the L2 cache banks and each filter stores
information about the contents of one of the banks. On a L1 cache miss,
the processor checks the filters and for those that return a hit, their associ-
ated L2 cache bank is looked up. Therefore the number of banks that need
to be searched for a line is reduced. Moore et al. described a ‘‘Thread-Level
Transactional Memory’’ system, where Bloom filters are used to detect poten-
tial conflicts between different coherence transactions [41].

Chapter 2: Cache Systems 34

2.3 Summary

In summary, Bloom filters provide a cost effective way to store information.
Therefore, they have been added to systems to track the contents of caches or
to identify conflicts of coherence transactions. The work presented in this the-
sis exploited them in a similar way to monitor cache misses, as it is described
in Chapter 6.

2.3 Summary

Cache design has been extensively studied for uniprocessor systems. However,
nowadays, CMP architectures have emerged, where the available on-chip cache
is shared between several threads. This sharing imposes new constraints and
creates new challenges that need to be tackled in order to ensure that the per-
formance of the system is improved.

This chapter presented a variety of previous proposals, like the use of non-
uniform caches, efficient thread scheduling and cache partitioning. The work
presented in the next chapters belongs to the last category. Several partitioning
systems were evaluated and the results of the analysis were used to develop a
novel scheme that aims to improve the overall system’s performance at a low
cost.

The next chapter outlines the Jamaica CMP architecture and the jamsim sim-
ulation platform that was used to evaluate the different cache partitioning
schemes. Finally, the software environment used to run applications on the
Jamaica architecture is described.

Chapter 2: Cache Systems 35

Chapter 3

Jamaica and Simulation

Framework

The work presented in this thesis is intended to be as generic as possible and,
therefore, applicable to different CMP systems. Nevertheless, it was based on
the Jamaica architecture, which provided a test bench for the evaluation of the
different cache partitioning schemes that were studied.

This chapter provides a short overview of the Jamaica architecture as well
as a description of the simulator and the benchmarks that were used.

3.1 The Jamaica Architecture

Jamaica (JAva Machine And Integrated Circuit Architecture) is a simulated
CMP proposed by Wright [67]. As shown in Figure 3.1, the architecture origi-
nally consisted of N cores sharing a L2 cache. The system was later extended
by Horsnell [24] to include multi-level cache hierarchies. However, this work
will focus on the part of the system illustrated in Figure 3.1.

Each processor has its own private instruction and data L1 caches, which are
connected through a shared bus to an on chip L2 cache. The L2 cache is uni-
fied and inclusive, i.e. it includes all the lines contained in the L1 caches. The
requests that miss in the second level of the memory hierarchy are forwarded
to the next level, which for this work is considered to be the main memory. To

Chapter 3: Jamaica and Simulation Framework 36

3.1 The Jamaica Architecture

Figure 3.1: The Jamaica architecture

limit the amount of traffic on the interconnect, the caches implement a write-
back policy.

Additionally, a lazy allocation policy is implemented within the multi-level hier-
archy. On a cache miss, a request is generated and propagated into the network
without allocating a line to hold the response. This occurs at each successive
level in the hierarchy and no line is allocated until a response transaction is
received. When the response is received by the cache, the LRU policy is used
to determine which block should be rejected to create the necessary space for
the new entry.

The system maintains sequential consistency to allow for standard shared
memory programming. To be coherent, the caches snoop the L1 bus and
implement the PIMMS coherence protocol [24]. PIMMS is an extension of the
MOESI protocol [61] with additional states to support multi-level cache hierar-
chies.

Chapter 3: Jamaica and Simulation Framework 37

3.2 Simulation Environment

In general, Jamaica is an architecture similar to other proposed CMP sys-
tems. Niagara [36], developed by Sun, has 8 cores and each one has its own
private L1 instruction and data caches while they all share an on-chip L2
cache through a crossbar. Power 5 [29], developed by IBM, has 2 cores. Each
processor has private instruction and data caches and they share an on-chip
L2 cache through a bus. Intel developed Core Duo CMP [40], where 2 cores
share a L2 cache through a bus. Therefore, it is justified to assume that the
novel cache partitioning scheme developed in this work and evaluated on the
Jamaica architecture will be applicable to other CMP systems.

3.2 Simulation Environment

A Java simulation platform, called jamsim [23], has been developed to execute
binaries created for the Jamaica ISA. Jamsim supports different models of sim-
ulation, namely functional and cycle-level simulations. The former are fast as
they employ an abstract model of the architecture and can be used for system
software development. The latter use components implemented in sufficient
detail to account for pipeline stalls, interconnection bus and queue contention,
cache access contention and memory channel queueing1. Therefore, cycle-level
simulations are slow but essential for quantitative evaluation of the system.

Additionally, the simulator provides the option of using components at dif-
ferent levels of modelling. As this work was focused on the caches, this option
was exploited. More specifically, functional models of the processors were used
to generate memory access traces that were used to exercise the memory hier-
archy, which was modelled in full detail.

Jamsim is a structural simulation platform, where each hardware component
is mapped to a different simulator component implemented by a Java class. Ex-
ploiting object oriented programming techniques, the cache models were easily
extended to include the different cache partitioning schemes that constitute
the target of this work.

1Jamsim does not simulate TLBs, as software execution is performed by a virtual machine,
presented in Section 3.3, which is responsible for the handling of the address space between
the running processes.

Chapter 3: Jamaica and Simulation Framework 38

3.3 Software Environment

Finally, the simulation platform is parameterisable, as the user can select the
number of cores, the size and associativity of the caches, the speed of the bus
as well as which cache partitioning scheme to use.

3.3 Software Environment

The Jamaica instruction set is different from other common sets. Therefore, it
is supported by a number of tools that enable the compilation and execution of
applications. Software execution is performed by the Jamaica Virtual Machine
(JaVM) [14], which is a port of the Jikes Research Virtual Machine (RVM) [2]
to the Jamaica architecture. The JaVM compiles and optimises Java bytecode
to native machine code allowing the execution of unmodified Java applications
on top of the Jamaica architecture.

The Jikes RVM, and thus the JaVM, is an M : N thread model, scheduling
execution of an arbitrarily large number (M) of Java threads over a finite num-
ber (N) of virtual processors. To serve the purposes of this work, the virtual
machine was configured to create one virtual processor for each simulated core.
Then, to ensure that each application of the simulated workload would execute
on the same processor for the duration of the simulation, the virtual machine
was modified to allow the user to force a Java thread to execute on a specific
core.

Therefore, to evaluate the performance of the studied cache partitioning schemes,
a set of Java applications was developed. Each one creates as many Java
threads as the simulated processors, assigns a different benchmark to each
thread and ships it to a specific core to be executed. The benchmarks used to
create these workloads are presented in Section 3.4.

3.4 Benchmark Descriptions

To evaluate the different cache partitioning schemes, a set of applications was
selected from the ‘‘Java Grande Forum’’ benchmark suite [56] and the ‘‘NAS
Parallel Benchmarks’’ [18]. This section provides an overview of each applica-
tion.

Chapter 3: Jamaica and Simulation Framework 39

3.4 Benchmark Descriptions

3.4.1 Java Grande Benchmarks

The Java Grande Forum suite includes both sequential and multithreaded
benchmarks. As the major scope of this work was to study how the cache is
shared amongst different competing applications, the workloads were created
by mixing different sequential applications. The sequential suite consists of
three types of applications; low-level operations, kernels and large scale appli-
cations. From these benchmarks, six kernels were selected.

Crypt

The crypt benchmark performs IDEA (International Data Encryption Algorithm)
encryption and decryption of an array of N bytes. It creates 3 byte arrays which
hold the initial, the encrypted and the decrypted data.

HeapSort

The HeapSort benchmark sorts an array of N integers using a heap sort algo-
rithm. It is a memory and integer intensive application. From this point it will
be referred to as heap.

LUFact

The LUFact benchmark solves an N × N linear system using LU factorisation
followed by a triangular solve. This is a Java version of the well known Linpack
benchmark. It is memory and floating point intensive, as the algorithm creates
several sub-matrices and then calculates the LU decomposition inside each
matrix. Hereafter, it will be referred to as lu.

Series

The series benchmark computes the first N Fourier coefficients of the function

f (x) = (x + 1)x (3.1)

over the interval [0,2]. This benchmark heavily exercises transcendental and
trigonometric functions. It creates a two dimensional array of doubles, which
holds the computed Fourier coefficients.

Chapter 3: Jamaica and Simulation Framework 40

3.4 Benchmark Descriptions

SOR

The sor benchmark performs 100 iterations of successive over-relaxation on a
N × N grid. The benchmark contains three loops, the outer iteration loop and
two inner loops over the row elements to process the relaxation.

Sparse

The sparse benchmark performs a sparse matrix multiplication. It uses an
unstructured sparse matrix stored in compressed-row format with a prescribed
sparsity structure. This kernel exercises indirect addressing and non-regular
memory references. A N × N sparse matrix is used for 200 iterations.

3.4.2 NAS Parallel Benchmarks

The NAS Parallel benchmarks were developed by NASA to help evaluate the per-
formance of supercomputers and are recognised as a standard indicator of com-
puter performance. They are derived from computational fluid dynamics (CFD)
applications and they consist of five kernels and three pseudo-applications.
Their implementations include both serial and parallel versions. From this
suite three applications were selected.

CG

The cg benchmark estimates the largest eigenvalue of a symmetric positive
definite sparse matrix by the inverse power method. The core of cg is a solution
of a sparse system of linear equations by iterations of the conjugate gradient
method. This kernel tests unstructured computations and communications.

FT

The ft benchmark contains the computational kernel of a 3-D Fast Fourier
Transform (FFT). Each ft iteration performs three sets of one-dimensional FFTs,
one set for each dimension. The benchmark creates 8 double arrays, which are
used to to hold the computed values.

Chapter 3: Jamaica and Simulation Framework 41

3.4 Benchmark Descriptions

MG

The mg benchmark uses a V-cycle Multi Grid method to compute the solution
of the 3-D scalar Poisson equation. The algorithm works iteratively on a set
of grids that are made between the coarsest and the finest grids. It tests both
short and long data movement.

3.4.3 Benchmark Configuration

The benchmarks described in Section 3.4 were selected in an attempt to create
a representative mix of applications with different cache space demands. As
presented in Chapter 4, some benefit as the cache size increases, some have a
small working set and others suffer a large number of compulsory misses.

The selected benchmarks are required to exercise the cache hierarchy of the
system. At the same time, as the simulations are a lot slower compared to real
system execution, it is essential that their execution time is limited. Therefore
they were appropriately configured and the parameters that were used are pre-
sented in Table 3.1.

Benchmark Parameters
crypt 500000 bytes

cg configuration 0
ft configuration 0

heap 2000000 integers
lu matrix = 500× 500
mg configuration 2

series 800 Fourier coefficients
sor grid = 600× 600

sparse matrix = 30000× 30000, iterations = 250

Table 3.1: Benchmarks’ configuration

The benchmarks were executed without any garbage collection. However, this
should not have any effects on the validity of the simulation results, as these
benchmarks create a small amount of objects. For example, as it was described
in Section 3.4.1, heapsort creates only one array of N integers and performs
N × logN comparisons between its elements.

Chapter 3: Jamaica and Simulation Framework 42

3.5 Summary

3.5 Summary

This chapter outlined the Jamaica CMP architecture. Each processor has its
own private L1 instruction and data caches, while they all are connected to an
on-chip, unified L2 cache through a shared bus. The caches are kept coher-
ent by snooping the bus and implementing an appropriate coherence protocol.
This system provided the test bench for the evaluation of the various cache
partitioning schemes that were the scope of this work.

Jamsim, the simulation platform, was extended to implement all these par-
titioning techniques and used to run several workloads. Finally, this chapter
presented the different benchmarks that were mixed to create these workloads
as well as their configuration.

Chapter 3: Jamaica and Simulation Framework 43

Chapter 4

Cache Replacement Policy

In case of a miss, an entry of the accessed line needs to be rejected from the
cache to create space for the new entry that has been requested by the running
application. System designers typically employ the LRU policy to identify the
replacement victim, as it is considered to be the best available replacement pol-
icy. The CMP domain has inherited this policy from uniprocessors, by default.

However, several people [60, 35, 27, 33, 49] have recently questioned the va-
lidity of that decision. More specifically, evidence has been presented that
LRU could degrade the performance of a system by not allocating the cache
resources optimally amongst the competing processes.

To study the efficiency and applicability of the LRU policy in CMP systems,
several combinations of benchmarks were executed. This chapter presents the
results of these simulations and identifies the drawbacks of LRU and their
impact on the overall performance of the system.

4.1 Evaluation of LRU

4.1.1 Single Core Systems

First, the simulator was used to run the selected benchmarks on a single pro-
cessor system to create a profile for each application. This profile provides
information about the benchmark’s working set size, shows the maximum per-
formance each process can achieve and can be used to estimate roughly the

Chapter 4: Cache Replacement Policy 44

4.1 Evaluation of LRU

Processor Core Functional Model

L1 Caches
ICache and DCache : 32KB, 32B line-size

4-way, LRU
L1-L2 Bus Speed 1/2 of processor speed

L2 Cache 4MB, 32B line-size, 32-way, LRU, 16 cycles hit latency
Memory 100 cycles access latency

Table 4.1: System’s configuration

relative performance of the system when the cache is shared by these applica-
tions.

Table 4.1 shows the parameters of the baseline configuration. The simulator
uses a functional model of the processor, which has L1 instruction and data
caches, each 32 KB and 4-way associative. The on-chip L2 cache is 4096 KB,
32-way associative and uses the LRU replacement policy. A L1 cache miss that
hits in the L2 cache takes 16 cycles to be satisfied; however, if a miss occurs in
the L2 cache as well, an additional delay of 100 cycles is suffered. To vary the
available cache space, the processor is restricted to using a different number
of ways each time. At the end of each run the Instructions Per Cycle (IPC) was
recorded, together with the total number of misses in the L2 cache as Misses
Per Thousand Instructions (MPKI) executed.

Following the classification of Qureshi et al. [49], and based on the simula-
tion results, the benchmarks can be organised in the following categories.

1. Low Utility : Applications that do not benefit significantly as the available
cache space is gradually increased. The reason for that could be a very
big working set, larger than any available cache, or that the application
suffers a large number of compulsory misses. This category contains sor

and sparse, which are examples of the former, and series, an example of
the latter.

In Figure 4.1(a) sor ’s performance improves going from 1 to 2 ways and
then remains stable while the cache is increased up to 21 ways, which
corresponds to a cache of 2688 KB. However, when the cache is increased
to 22 ways (or 2816 KB), the number of misses drops almost to zero and

Chapter 4: Cache Replacement Policy 45

4.1 Evaluation of LRU

(a) sor IPC - Misses

(b) sparse IPC - Misses

(c) series IPC - Misses

Figure 4.1: Low utility applications

Chapter 4: Cache Replacement Policy 46

4.1 Evaluation of LRU

the performance is increased significantly. A similar behaviour can be
observed for sparse in Figure 4.1(b). On the other hand, Figure 4.1(c)
shows that series’s performance reaches a maximum for 2 ways and re-
mains stable thereafter. At the same time, its misses remain stable as
well, indicating that this benchmark suffers a number of compulsory
misses, a behaviour demonstrated by streaming applications.

2. High Utility : Applications that continue to benefit as the L2 cache size
is increased. These include ft [Figure 4.2(a)], heap [Figure 4.2(b)] and mg

[Figure 4.2(c)]. For example heap’s IPC increases from 0.4 to about 0.7 as
the cache is increased from 1 way to 32. At the same time, its L2 cache
MPKI drops from about 6 to below 1.

3. Saturating Utility : Applications that initially benefit significantly from
increasing the available cache space, as more of their data set can fit
into the cache. Then a point is reached, where the whole data set can
be stored into the cache, after which, using a bigger cache has no effect
on the performance of the application. This category includes cg [Figure
4.3(a)], crypt [Figure 4.3(b)] and lu [Figure 4.3(c)].

For example, lu’s IPC starts from 0.5 for 1 way and increases to almost
0.9 for 16 ways. At that point, L2 cache misses drop to zero, an indication
that its data set fits into the L2 cache. From this point on, providing more
cache space to the application makes no difference and its performance
remains stable.

Another conclusion that can be drawn from all these profiles is that the per-
formance correlates strongly with the number of L2 cache misses that each
application suffers. These misses are expensive, as they need to be satisfied by
the next level of the memory hierarchy, which is off chip. This means that a
L1 cache miss that hits in the L2 cache will only take 16 cycles, according to
Table 4.1, whereas if it also misses on the L2 cache, it will need 100 processor
cycles more to be satisfied. So, by reducing the number of L2 cache misses,
the performance of the application is expected to improve.

Chapter 4: Cache Replacement Policy 47

4.1 Evaluation of LRU

(a) ft IPC - Misses

(b) heap IPC - Misses

(c) mg IPC - Misses

Figure 4.2: High utility applications

Chapter 4: Cache Replacement Policy 48

4.1 Evaluation of LRU

(a) cg IPC - Misses

(b) crypt IPC - Misses

(c) lu IPC - Misses

Figure 4.3: Saturating utility applications

Chapter 4: Cache Replacement Policy 49

4.1 Evaluation of LRU

Category Benchmark Cache Ways

1 Low Utility
sor 22

sparse 22
series 2-3

2 High Utility
ft 32+

heap 32+
mg 32+

3 Saturating Utility
cg 9-10

crypt 1
lu 15-16

Table 4.2: Benchmarks’ cache space requirements

Each application has different cache space requirements. Based on the results
of the previous simulations, Table 4.2 holds the space, expressed in cache ways,
that each benchmark needs in order to achieve maximum performance. As
these results are obtained on a system where the application is running alone,
they tend to overestimate the size of the working set. Thus they can only be
used as a rough estimate of the upper limit of each benchmark’s requirements.

4.1.2 Dual Core System

A major objective of this research is to determine an efficient way of using the
memory hierarchy of a CMP system. The next step was therefore to study
the performance of a dual core system. More specifically, the system shown
in Figure 4.4 was simulated running two of the selected benchmarks in parallel.

Each processor has its own private L1 instruction and data caches, 32 KB and
4-way associative each. Both cores share a 4096 KB, 32-way associative L2
cache, which employs the LRU replacement policy. The simulation is stopped
when one of the benchmarks finishes. At first, saturating utility applications
were selected.

Figure 4.5 shows the IPC achieved for each benchmark in every scheduled pair.
The comparison with the profiles in Figure 4.3 reveals that each benchmark
achieves maximum performance, which is defined as the performance when the
application is running alone using all the available system resources. This is
an indication that the L2 cache can support both applications at the same time.

Chapter 4: Cache Replacement Policy 50

4.1 Evaluation of LRU

Figure 4.4: Dual core system

Indeed, according to Table 4.2, none of these benchmarks should require more
than 16 ways, which means that the 32 ways of the L2 cache can accommodate
the working sets of both applications for all the pairs and that interference
between applications is minimal.

Figure 4.5: Performance of saturating utility benchmarks

Next, pairs created from benchmarks either of low or saturating utility were
used and their performance is shown in Figure 4.6. Applications of saturating
utility, namely crypt, cg and lu, achieve the same performance as when running
alone, regardless of their co-runner. The same is not true though for the low
utility applications. For example, sparse achieves an IPC of 0.57 when paired
with series and only 0.36 when running together with sor, as it is shown in the
last two columns of Figure 4.6. Low utility applications appear to be sensitive

Chapter 4: Cache Replacement Policy 51

4.1 Evaluation of LRU

to which benchmark they are scheduled with. This can be attributed to the
different amount of cache space available to each process for every pair. To
better illustrate this, the average cache occupancy in terms of cache ways is
calculated for each case.

Figure 4.6: Performance of low and saturating utility benchmarks

Every 10 million cycles the L2 cache is examined to find out how many ways
each context is occupying in each line. This information is used to calculate
the average number of cache ways that have been assigned to a context at a
time point t using the following formula :

wayscontext,t =

∑CacheWays
w=1 w × linesw∑CacheWays

w=1 linesw

(4.1)

where linesw is the number of lines in which the context occupies w ways.
This number is then used to calculate the average number of ways the context
occupies over T total points of the simulation.

wayscontext =

∑T
t=1 wayscontext,t × entriescontext,t∑T

t=1 entriescontext,t

(4.2)

where entriescontext,t are the cache entries of the context at time point t. By
using Equations 4.1 and 4.2 the average number of ways for each context is
calculated and presented in Figure 4.7.

Chapter 4: Cache Replacement Policy 52

4.1 Evaluation of LRU

Figure 4.7: Average L2 cache ways occupancy

The number of cache ways that cg, crypt and lu occupy is equal to or greater
than the estimates that were deduced from the single processor system simu-
lations and included in Table 4.2. The only exception is when lu is paired with
a low utility application. In these cases, lu gets around 11 ways on average and
still achieves almost maximum performance which, according to Figure 4.3(c),
would require around 15 ways. However, as it has been noted before, these
are rough estimates and they tend to overestimate the space requirements of
the application. On the other hand, when sor is executed together with lu or
sparse, it occupies fewer than 20 ways. In every other case it gets around 22
ways, which is equal to the estimate in Table 4.2. This explains the differences
in the performance of sor that were previously observed in Figure 4.6.

Similar observations can be made when a high utility application is sched-
uled together with another application. Heap is executed together with every
other benchmark and the results are presented in Figure 4.8. Again, it is ob-
vious that heap’s performance is sensitive to the application selected as its
co-runner. Its IPC ranges from 0.59 to 0.68, while the maximum according to
its profile in Figure 4.2(b) is 0.71.

To explain the difference in the achieved performance, the amount of cache
space available to heap in each case needs to be examined. Using Equation

Chapter 4: Cache Replacement Policy 53

4.1 Evaluation of LRU

Figure 4.8: Performance of heap and co-runners

4.2 again, the average number of ways occupied by each of the two parallel
contexts is calculated, presented in Table 4.3 and plotted in Figure 4.9.

Pair
Average Ways

Heap Benchmark 2

heap-crypt 30 3
heap-cg 24 9
heap-ft 22 12
heap-lu 22 11
heap-mg 18 16

heap-series 22 13
heap-sor 18 15

heap-sparse 15 17

Table 4.3: Average number of ways occupied by heap and co-runners

The results reveal that when heap is scheduled together with series, it occupies
around 22 ways out of the available 32, while its co-runner takes around 131.
However, according to its profile in Figure 4.1(c), series should not need more
than 2 or 3 cache ways to achieve the same performance as when running

1In some cases the sum of the ways estimated to be occupied by the 2 contexts can be
different from the actual number of L2 cache ways. This can be attributed firstly to the accuracy
employed for the necessary divisions during the calculation of the average and secondly to the
fact that this is an average over a period of time, during which the application can go through
different phases characterised by different space requirements.

Chapter 4: Cache Replacement Policy 54

4.1 Evaluation of LRU

Figure 4.9: L2 cache ways occupancy for heap and co-runners

alone. This overbooking of resources by series is tolerable if the cache is still
able to accommodate the working set of the other application. Otherwise it can
be costly, as shown in this case, where heap could have used the extra cache
space to improve its performance and thus the overall system performance.
Similar observations can be made when heap is executed together with crypt.

At the same time, sor occupies only 15 cache ways instead of the desired 22.
Thus it does not achieve maximum performance, managing an IPC of around
0.72. According to its profile in Figure 4.1(a) though, the same level of perfor-
mance could be achieved by using no more than 3 or 4 ways. So, if sor was
forced to occupy only 4 ways, then heap would be able to exploit 28 instead of
18 ways, causing its performance, and thus the total throughput of the system,
to increase.

LRU treats all the requests equally, regardless of which process is issuing
them. Fortunately, in some cases the cache is big enough to accommodate the
working set of both applications and the system’s performance is not degraded.
However, as the previous observations illustrate, there are cases where that re-
placement policy results in suboptimal sharing of the L2 cache between the
parallel running contexts, hurting the overall performance of the system.

Chapter 4: Cache Replacement Policy 55

4.1 Evaluation of LRU

4.1.3 Quad Core System

In the previous subsection, evidence was presented that it is possible for the
LRU policy to result in suboptimal sharing of the cache in a dual core sys-
tem. This possibility becomes more significant when the number of processors
increases. As the cache needs to satisfy the requirements of more applica-
tions, cache space becomes a valuable commodity and its allocation between
the competing processes has an increasingly significant impact on the system
performance. To illustrate this better, a selection of cases was simulated in a
quad core system.

Case App.
Performance Cache Ways

IPC Single IPC Occupied Preferred

1

crypt 0.995 0.997 2 1
heap 0.58 0.71 16 32+

lu 0.85 0.89 11 15
series 0.87 0.87 7 2-3

2

crypt 0.995 0.997 2 1
heap 0.55 0.71 13 32+
series 0.87 0.87 5 2-3
sparse 0.37 0.59 15 22

3

heap 0.54 0.71 10 32+
lu 0.67 0.89 8 15

series 0.87 0.87 4 2-3
sparse 0.37 0.59 13 22

Table 4.4: Results of quad core system simulations

The parallel running applications are sharing a 4MB, 32-way L2 cache. Table
4.4 presents the achieved IPC and the average number of cache ways occu-
pied by each benchmark. It also contains the performance of each application
when it executes in isolation, which is derived from the appropriate profiles in
Figures 4.1, 4.2 and 4.3, as well as its estimated cache space requirements,
which were presented in Table 4.2.

In the first case, crypt and series achieve the same performance as if they
were running alone. However, they appear to occupy more ways than actually
needed. For example, crypt exhibits such a frequency of accesses to the L2
cache, that it manages to occupy 2 ways in average, while it really needs 1.

Chapter 4: Cache Replacement Policy 56

4.2 Static Cache Partitioning

The extra ways that crypt and series occupy could have been used to improve
the performance of heap and lu. The same problem occurs in the second case.
Moreover, sparse’s profile in Figure 4.1(b) reveals that it would have accom-
plished the same level of performance by using only 7 or 8 ways. Again, these
extra ways could have been exploited by heap to boost its performance and
thus the overall performance of the system. Similar observations can also be
made for the third case, where series and sparse grab more ways than they
need, hurting the performance of heap and lu.

4.1.4 Conclusion

Running different combinations of benchmarks on a dual and a quad core sys-
tem showed that the LRU policy does not guarantee optimal sharing of the
cache. In several cases, a process was allowed to occupy more cache space
than it needed, causing the performance of the other processes to degrade.
This can be attributed to the fact that LRU is a ‘thread blind’ policy that treats
all the requests equally, irrespective of which application is issuing them.

Another scheme is needed, that will be able to identify the space requirements
of each application and partition the cache in such a way, that will increase
the overall performance of the system.

4.2 Static Cache Partitioning

In Section 4.1 it was suggested that the LRU replacement policy could fail to
provide optimal sharing of the L2 cache between parallel running contexts. In-
stead it was proposed that the total throughput of the system, defined as the
sum of instructions executed by all the competing applications per cycle, could
be improved by enforcing limits on the amount of cache space each process
is allowed to use. To further illustrate this proposal, a few examples will be
provided.

The same dual core system shown in Figure 4.4 is used to run heap paired
with a set of other benchmarks. The cores are still sharing a 4MB, 32-way
associative L2 cache but the replacement policy is changed to implement way
partitioning [60]. One bit is added to the tag of each cache entry to identify

Chapter 4: Cache Replacement Policy 57

4.2 Static Cache Partitioning

which of the 2 processors brought it into the cache. Each core is also assigned
a maximum number of ways. When a cache miss occurs, the entries that be-
long to the application in the accessed cache line are counted. If they are fewer
than the number of ways allocated to the application, then the LRU entry that
does not belong to the application is selected for replacement. Otherwise, the
LRU entry of the application that caused the miss is evicted.

Figure 4.10: Performance gains/losses for heap and sor for different partitions

First heap is executed together with sor and in Figure 4.10 the achieved per-
formance is compared to the performance of a system where the LRU policy is
used. IPCSum is the overall system performance given by :

IPCSum =
N∑

i=1

IPCi (4.3)

where IPCi is the IPC of the ith process and N the number of processors. If
heap is allowed to use only up to 9 ways, then its performance drops by around
10%. However, sor ’s performance is increased by almost 28%, causing the total
throughput of the system to increase by 10%. If heap is given more than 11
ways, its performance starts to improve. At the same time though, sor ’s per-
formance degrades, causing the total performance of the system to be worse
than when using the LRU policy. When heap is given 23 or more ways, the

Chapter 4: Cache Replacement Policy 58

4.2 Static Cache Partitioning

improvement of its performance is greater than the losses suffered by sor, re-
sulting in increased total throughput. Finally, when sor is limited to only 1
way, its losses are so great, that the total performance of the system is worse.
In this case, sharing the cache roughly equally between the processes is the
worst strategy.

Similar observations can be made when heap is scheduled together with an-
other high utility application, as shown in Figure 4.11. Unfortunately though,
for some pairs it is not possible to perform better than when using the LRU pol-
icy. This is the case when heap is executed with an application of saturating
utility and it is illustrated in Figure 4.12, where the results of running heap

and lu are presented.

Figure 4.11: Performance gains/losses for ft and heap for different partitions

It has been shown that by enforcing appropriate partitions, it is sometimes
possible to improve the total throughput of the system compared to using the
traditional LRU replacement policy. However static partition schemes have sev-
eral drawbacks. First of all, they rely on prior knowledge of the characteristics
of the applications that are going to be executed. Unfortunately this knowledge
can only be acquired by profiling the applications offline. Moreover, it is not

Chapter 4: Cache Replacement Policy 59

4.2 Static Cache Partitioning

Figure 4.12: Performance gains/losses for heap and lu for different partitions

trivial to deduce the optimal partition from these profiles and as the number
of processors and competing applications increases, the process of discovering
the best allocation becomes more and more complex.

Secondly, the partition is enforced from the start until the end of the exe-
cution. A program though could go through different phases and each one may
well have different cache space requirements. At the same time, if the wrong
partition has been selected, there is no way of discovering and amending that
mistake.

Another drawback is that the same partition is enforced for all the lines of the
cache, a decision based on the assumption that each application places the
same load on every line. However, this may not be true, as an application
could have a small working set that fits in a subset of the cache lines. By en-
forcing in this case the same partition for every line, the application is allocated
space that it does not need and could have been exploited by another process.
An example is illustrated in Figure 4.13, where Application A has been allo-
cated 5 out of the available 8 ways, even though it does not use the last 3 lines.

In summary, the results from this static cache partitioning scheme illustrate

Chapter 4: Cache Replacement Policy 60

4.3 Conclusions

Figure 4.13: Example of non optimal static partitioning

that it is possible to achieve a better performance compared to using the LRU
policy. Unfortunately, there are several drawbacks that if any gains are to be
made, there needs to be some form of dynamic adaptability.

4.3 Conclusions

This chapter presented several results from simulations of single, dual and
quad core systems, in an attempt to evaluate the usage of the LRU replace-
ment policy in CMPs. These show that the allocation of cache space between
the competing applications performed by the LRU is not always optimal. This
suboptimal sharing results in degradation of the overall system’s performance.

Based on these observations, a static cache partitioning scheme was imple-
mented and simulated. The presented results suggest that enforcing restric-
tions on the space that each application occupies in the cache could improve
the performance. However, this scheme has several drawbacks.

To solve these, another scheme needs to be developed, that is capable of iden-
tifying, on the fly, the characteristics of the running applications. These will
be used to partition the cache dynamically, adapting to the different execution
phases of the processes. Of course the complexity and hardware overhead over
the LRU policy must also be taken into consideration.

Chapter 4: Cache Replacement Policy 61

Chapter 5

Dynamic Cache Partitioning

LRU is a ‘thread blind’, demand driven, replacement policy. When a cache
miss occurs, the replacement mechanism selects a victim by looking only at
the order in which the entries in the accessed line have been used. There is
no information about the ‘ownership’ of each entry or the relative occupancy
of the cache by each application. Therefore, applications with a high demand,
i.e. many accesses to different entries, are allocated more cache space than
applications that have a low demand.

However, there is no guarantee that the new entries, brought into the cache
because of a miss, will be reused. So by replacing entries owned by other
processes, an application could be acquiring space that it does not need, re-
sulting in suboptimal sharing of the cache. Consequently the performance of
the system degrades. A representative example of such cases is when one of
the competing processes is a streaming application.

Chapter 4 presented evidence of problems caused by LRU and proposed cache
partitioning as a solution. This chapter evaluates different schemes that at-
tempt to partition the cache dynamically.

Chapter 5: Dynamic Cache Partitioning 62

5.1 LRU Variation

5.1 LRU Variation

5.1.1 Overview

To avoid suboptimal sharing of the cache a variation of LRU was investigated.
On a cache miss, the LRU entry in the accessed line is looked up. If it belongs
to the application that caused the miss, then it is selected for replacement.
Otherwise, the LRU entry of the miss-causing application is looked up and its
age, i.e. the amount of time since it was last used, is multiplied by a weight
and then compared with the age of the global LRU entry. The older of the two
is rejected from the cache.

The reasoning behind this scheme was to make it harder for an application
that has high demand to reject the least recently used entries owned by the
other processes. Thus, it will be more difficult for such applications to claim
the majority of cache resources. At the same time, the implementation of such
a scheme should be reasonably simple.

5.1.2 Evaluation

This LRU variation was tested on a dual core system. To implement it, the
simulator records which processor brings each entry into the cache. To model
age, the cycle at which each entry is accessed is recorded as well. On a cache
miss, the stored cycle values are subtracted from the current cycle count.

The two processors share a 4MB, 32-way associative L2 cache. Every bench-
mark pair was simulated using a set of different values for the weight used to
scale the age of a cache entry. The total throughput over the case where the
traditional LRU policy is employed is shown in Figure 5.1.

It is obvious that this scheme fails to improve the performance of the system
for the majority of the simulated cases. Moreover, many times it seems to
partition the cache worse than the traditional LRU policy, causing the system’s
performance to degrade. To understand the reasons for that failure, a few cases
will be studied in more detail.

Chapter 5: Dynamic Cache Partitioning 63

5.1 LRU Variation

Figure 5.1: Throughput over LRU for different time weights

One of the few combinations where the performance is improved is ‘‘heap-

sparse’’. The average number of cache ways allocated to each application is
shown in Figure 5.2. This LRU variation favours heap and allocates it more
cache resources than the normal LRU. To evaluate the success of this decision,
an estimate of potential gains that can be achieved by partitioning the cache is
needed. This is provided by the simulations performed for the static partition
scheme described in Section 4.2 and presented in Figure 5.3. It appears, that,
although the total throughput of the system has been improved, the sharing

Figure 5.2: Average number of cache ways occupied by heap and sparse

Chapter 5: Dynamic Cache Partitioning 64

5.1 LRU Variation

of the cache is still suboptimal. In fact, if more space had been allocated to
sparse instead of heap, the improvement of system’s throughput would have
been much greater.

Figure 5.3: Performance over LRU for static cache partitioning scheme

On the other hand, this scheme performs worse for the ‘‘series-sparse’’ com-
bination. The average number of ways assigned to each process is plotted in
Figure 5.4 for LRU and the different weights. The replacement policy allocates
more resources to series as the weight increases. However, as it was described
in Section 4.1.1 and presented in Table 4.2, series can achieve the same perfor-
mance as when running alone by using only 2-3 cache ways. Consequently, in
order to maximise the performance, sparse, and not series, should have been
the recipient of the majority of cache space.

Summarising, scaling the age of the cache entries when looking for a replace-
ment victim does not appear to solve the problem of allocating more space to
the applications with high demand. Even when the performance of the system
is improved, the sharing of the cache is still not optimal. In total, this LRU
variation fails to identify the characteristics of each application. Therefore, it
cannot make the decision that will result in optimal sharing of the cache and
will maximise the performance of the system.

Chapter 5: Dynamic Cache Partitioning 65

5.2 Monitoring Schemes

Figure 5.4: Average number of cache ways occupied by series and sparse

5.2 Monitoring Schemes

5.2.1 Overview

A major drawback of the LRU policy and its variation presented in Section 5.1
is that there is no feedback on how the cache space allocation is affecting the
running applications. Based on that observation, different schemes have been
proposed that monitor the processes and then use this information to deter-
mine the optimal sharing of the cache. This work focuses on two of the latest
schemes developed for cache partitioning. The first one is the ‘‘cache parti-

tioning aware replacement policy’’ implemented by Dybdahl et al. [15] and the
second is the ‘‘utility-based cache partitioning’’ proposed by Qureshi et al. [49].

The LRU policy exhibits what is known as the stack property [38]. More specif-
ically, an access that hits in a N-way associative cache using this replacement
policy is guaranteed to hit also if the cache had more than N ways, provided
that the number of lines remains the same.

Figure 5.5 presents an example of how the hits of an application using a N-way
associative cache may be distributed. According to the stack property, the ac-
cesses that hit on the MRU entries will still be hits even if the application was
using a direct mapped cache. Furthermore, if the cache ways were reduced

Chapter 5: Dynamic Cache Partitioning 66

5.2 Monitoring Schemes

from N to 4, then the application’s hits would be equal to the sum of the first
4 bars. At the same time, the number of misses would increase by the sum of
bars 5 to N.

Figure 5.5: Distribution of an application’s hits

This property was first exploited for cache partitioning in the scheme proposed
by Suh et al. [60], on which the two previously mentioned proposals are based.
Suh et al. suggested keeping a set of N counters for each running process shar-
ing a N-way associative L2 cache. On a cache hit, the appropriate counter of the
hit-causing application is increased. If the hit is on the LRU entry of the line,
then counterN−1 is updated. If the hit is on the MRU entry, counter0 is increased.

Exploiting the stack property and assuming that the past behaviour is an
accurate estimate of the future, the counters are used to estimate marginal
gains and losses. If an application occupies m out of the N ways of the cache,
then the marginal gain of obtaining one more way can be approximated by the
number of hits on the (m + 1)-th most recently used block, which is the value
of counterm. Respectively, the marginal loss of losing one way, is approximated
by the value of counterm−1.

Every T cycles the cache is repartitioned. The algorithm first allocates the
cache ways randomly to the competing applications. Then, using the appropri-
ate counters, ways are taken from processes that will lose the least by giving

Chapter 5: Dynamic Cache Partitioning 67

5.2 Monitoring Schemes

up one way, i.e. processes with the smaller marginal losses, and they are given
to the applications that will benefit most by having one more way, i.e. applica-
tions with the greater marginal gains.

Eventually, a partition estimated to maximise the total hits of the system, and
thus the overall performance, is determined and normal execution is resumed.
However, if a process has a non-convex hits distibution curve, then a local
maximum could have been identified instead of a global maximum. The ability
to discover the global maximum depends on how wide the local maxima are.

Two options are suggested for implementing the deduced partition. The first
one is on a per way basis and is implemented by column caching [10]. Each
process is restricted to replacing a set of ways as the partition dictates.

The second option is to modify the LRU policy. The partitioning algorithm
still estimates the number of ways each process is allowed to occupy. That
number is then multiplied by the number of cache lines to produce the allowed
total number of entries per application. During execution, the number of each
processor’s entries in the whole cache is monitored. On a cache miss, if that
number is smaller than the limit imposed by the partition, the LRU entry of
an over-allocated application is selected for replacement. Otherwise, the LRU
entry of the miss-causing process is rejected.

5.2.2 Cache-Partitioning Aware Replacement Policy

Dybdahl et al. proposed a cache-partitioning aware replacement policy [15].
Their scheme differs from the proposal by Suh et al. described in Section 5.2.1
mainly on two points. First of all, they suggested adding an extra register,
called ‘‘shadow tag’’, in every cache line for each processor. When an entry is
rejected, its tag is stored in the appropriate shadow tag register, depending on
which processor had brought it into the cache.

In addition, two counters per processor are used for each cache line. If a
processor’s access hits on the LRU entry owned by it, then the first counter,
‘‘LRU hits’’, is increased. If the access is resolved as a miss, the requested tag
is compared to the contents of the processor’s shadow tag register. In case of

Chapter 5: Dynamic Cache Partitioning 68

5.2 Monitoring Schemes

a tag match the second counter, ‘‘shadow tag hits’’, is increased.

According to the stack property of the LRU policy, the LRU hits counter mon-
itors the hits that would become misses if the application was using one less
way. On the contrary, the shadow tag hits counter records the portion of the
application’s misses that would have been hits, if the application had been al-
located one more way.

The second main difference is that this scheme partitions the cache on a cache
line granularity. Every 2000 cache misses the repartitioning algorithm is exe-
cuted. For every line, the shadow tag hits counter with the highest value, i.e.
the process with the highest gain when allocated more cache space, is com-
pared to the LRU hits counter with the lowest value, i.e. the process with the
lowest loss when deprived of a cache way. If the gain is higher than the loss,
then a way is removed from the latter process and allocated to the former.

The scheme proposed by Dybdahl et al. was implemented and a dual core
system sharing a 4MB 32-way associative cache was simulated. The perfor-
mance over a system using the normal LRU policy is presented in Figure 5.6.
The simulated policy was able to improve the overall performance of the system
only for one out of the 36 benchmark combinations. In fact, for almost half of
the combinations the system’s performance was degraded by an average of 5%
while the maximum degradation was almost 15%.

Dybdahl et al. reported an average improvement of around 7% [15] for a quad
core system. In an attempt to reproduce these results, a system with four
cores sharing a 4MB L2 cache was simulated. However, as Figure 5.7 shows,
it was not possible. Again for the majority of the 126 simulated benchmark
combinations the overall system’s performance was degraded.

Dybdahl et al. reported their results for a system where 4 processors shared
a 4MB L3 cache and each one had its own private L2 cache, while in these
experiments the 4 cores share a 4MB L2 cache. However, this cannot account
for the difference observed in the results, as the system used by Dybdahl is the
equivalent of the simulated system, but with a bigger L1 cache.

Chapter 5: Dynamic Cache Partitioning 69

5.2 Monitoring Schemes

Figure 5.6: Cache partitioning aware replacement performance over LRU for a
dual core system

Figure 5.7: Cache-partitioning aware replacement performance over LRU for a
quad core system

On the other hand, the discrepancies could be attributed to the usage of differ-
ent benchmarks. Even so, the results presented in Figures 5.6 and 5.7 raise
considerable doubts about the efficiency of the proposed scheme.

Chapter 5: Dynamic Cache Partitioning 70

5.2 Monitoring Schemes

5.2.3 Utility-Based Cache Partitioning

Utility-based cache partitioning was developed by Qureshi et al. [49]. They
suggested assigning a ‘‘utility monitoring’’ (UMON) circuit to each processor in
order to identify the characteristics of the applications executing on them. A
UMON circuit has its own tag array that has the same associativity as the tag
array of the shared L2 cache and uses the LRU replacement policy. By tracking
the assigned processor’s accesses to the L2 cache, the UMON circuit effectively
emulates a L2 cache that is private to that core.

Similarly to the previously described schemes, in order to exploit the stack
property of the LRU policy a set of N counters is included in each UMON cir-
cuit, where N is the associativity of the shared cache. These counters record
the hit counts for each of the N recency positions ranging from MRU to LRU.
As it was described in Section 5.2.1, Suh et al. record similar information by
attaching counters to the shared cache. However, as Qureshi argues, this has
some drawbacks.

First, the number of entries in each line that the counters can monitor for
a given application depends on the other applications. Secondly, when a pro-
cess gets a hit in the shared cache, the recency position of the accessed entry
has also been affected by accesses from the competing applications. On the
other hand, a processor’s UMON circuit emulates the state of the cache, had it
been used only by that specific processor. Therefore the information deduced
in this case is not polluted by the concurrently executing applications and can
be used with greater confidence to determine the cache partitioning.

Every five million cycles the partitioning algorithm is executed. As the par-
titioning is done on a way-based granularity, the algorithm evaluates all the
possible allocations of the cache ways amongst the competing applications by
reading the hit counters from all the UMON circuits and calculating the total
number of hits for each case. The partition that maximises the total hits of the
system is selected.

To implement the partition, the LRU policy is modified. On a cache miss, the
entries belonging to the miss-causing application are counted. If that number

Chapter 5: Dynamic Cache Partitioning 71

5.2 Monitoring Schemes

is less than the limit imposed by the partition, then the LRU entry that does
not belong to the application is evicted. Otherwise, the LRU entry owned by
that application is selected for replacement.

Finally, in an attempt to implement a scheme with low hardware overhead,
Qureshi et al. proposed Dynamic Set Sampling. They showed that the similar
improvements of the overall system’s performance can be achieved when each
UMON circuit monitors only 32 out of the 1024 cache lines.

The utility-based cache partitioning scheme was implemented and evaluated by
simulating a dual core system sharing a 4MB 32-way associative L2 cache. The
results, presented in Figure 5.8, show that this scheme manages, for a subset
of the simulated combinations, to improve the performance of the system com-
pared to a system using the traditional LRU policy. In addition, degradation of
the performance is only observed for a few cases and is relatively small.

Figure 5.8: Utility-based partitioning scheme’s performance over LRU for a
dual core system

However, for many benchmark combinations the simulated scheme does not
provide any improvements. This could be attributed though to the cache being
large enough, allowing the LRU policy to achieve optimal performance. To test

Chapter 5: Dynamic Cache Partitioning 72

5.2 Monitoring Schemes

this assumption, the scheme was evaluated in a quad core system and the
results are presented in Figure 5.9.

Figure 5.9: Utility-based partitioning scheme’s performance over LRU for a
quad core system

In this case, where more applications are competing for the cache space and
its allocation has a more significant impact on the overall performance, the
utility-based cache partitioning scheme performs better than the LRU for the
majority of the simulated combinations. Still, there are a few cases where the
achieved performance is worse than when LRU is used.

To investigate these, the utility-based cache partitioning scheme was reim-
plemented and the compromises made to reduce the hardware overhead were
removed. More specifically, the UMON circuits were built to monitor all the
cache lines and the partitioning was performed on a line instead of a way gran-
ularity, allowing each line to have a different partition. This ‘‘ideal’’ scheme
was evaluated again for a quad core system and the performance over LRU is
shown in Figure 5.10.

Comparison with Figure 5.9 reveals that the previously mentioned cases, where
degradation of performance was observed, have now disappeared. In fact, the

Chapter 5: Dynamic Cache Partitioning 73

5.3 Partitioning ‘on the fly’

Figure 5.10: Ideal scheme’s performance over LRU for a quad core system

achieved performance gains for the ideal scheme are greater for the majority of
the simulated benchmark combinations. Therefore, the assumption that the
afore observed performance degradations are due to the compromises made to
lower the hardware overhead, is correct. However, as the scheme still manages
to achieve better results than the LRU for the majority of combinations, the
required sacrifices, which render its practical implementation worthwhile, may
be considered justifiable.

5.3 Partitioning ‘on the fly’

5.3.1 Description

A common property of all the cache partitioning schemes described in Section
5.2 is the monitoring of the parallel executing applications for a specific period
of cycles. The ‘optimal’ partition is then decided based on information gath-
ered in that period. The length of this monitoring period needs to be carefully
selected to be able to track the dynamic changes in the behaviour of the appli-
cations.

A different approach would be to determine the appropriate partition on the

Chapter 5: Dynamic Cache Partitioning 74

5.3 Partitioning ‘on the fly’

fly, every time an application misses. This could make it easier for the sys-
tem to adapt to the characteristics of the running processes. However it is not
practically possible to determine if every miss would have been a hit, had the
application been allocated more space. Therefore, the decision was made to
limit the scope of such a scheme to ‘‘near misses’’, i.e. misses that would have
been hits if the process had been allocated one more cache way.

To implement this approach, the scheme proposed by Dybdahl et al. and de-
scribed in Section 5.2.2 was modified. The ‘‘shadow tag’’ registers and the ‘‘LRU
hits’’ counters were retained. However, as there is no monitoring period, the
‘‘shadow tag hits’’ counters were discarded, thus lowering the hardware over-
head.

On a cache miss, the requested tag is compared to the contents of the pro-
cessor’s shadow tag register. If there is no match, the LRU entry amongst
the application’s entries is selected for replacement. A tag match detects a
near miss and signals the application’s desire for one more cache way. This
is obtained from the process with the lowest estimated performance loss when
deprived of a way. The repartitioning is implemented by rejecting the LRU entry
that belongs to the process with the minimum LRU hits counter value. After
every repartition, the LRU hits counters associated with the accessed line are
reset to zero.

5.3.2 Evaluation

The proposed scheme was evaluated for a dual core system sharing a 4MB, 32-
way associative L2 cache. Figure 5.11 presents the performance over a system
using the normal LRU policy. For half of the simulated cases there was no
difference between this scheme and LRU. For a few cases the performance was
slightly improved, with the maximum improvement of 4% observed for heap-

sparse. However, for all the other cases the overall performance was degraded
by an average of 9% while the maximum degradation was almost 21%.

To gain a better insight into the behaviour of the scheme, the average number
of ways each application is allocated was examined. Every 10 million cycles the
average cache occupancy for each benchmark of the heap-sparse combination

Chapter 5: Dynamic Cache Partitioning 75

5.3 Partitioning ‘on the fly’

Figure 5.11: Performance over LRU when repartitioning every near miss

was calculated and the results are shown in Figure 5.12 for two systems, one
using the normal LRU replacement policy and one using the developed cache
partitioning scheme. By allocating more cache space to heap the performance
of the system is improved. However, as it was shown in Figure 5.3, the im-
provement would have been much greater, if sparse had been the recipient of
the majority of cache space.

heap-sparse

heap
sparse
heap
sparse

Figure 5.12: L2 cache ways occupancy for heap and sparse

Chapter 5: Dynamic Cache Partitioning 76

5.3 Partitioning ‘on the fly’

The same analysis was performed for series-sparse, where the partitioning
scheme degrades the system’s performance, and the results are presented in
Figure 5.13. In this case, series receives almost two times the cache space
it is allocated when LRU is used. However, as it was described in Section
4.1.1 and presented in Table 4.2, series can achieve the same performance as
when running alone by using only 2-3 cache ways. Consequently, in order to
maximise the overall system’s performance, series should have received fewer
cache ways than when LRU is employed.

series - sparse

series
sparse
series
sparse

Figure 5.13: L2 cache ways occupancy for series and sparse

It appears that this cache partitioning scheme is unable to detect the require-
ments of the applications. At first it was assumed that this was due to the
resetting of the LRU hits counters every time a line was repartitioned, as this
does not guarantee that if an application is allocated one more cache way, it
will be able to retain the extra space long enough to exploit it. Therefore the
following strategies were considered :

1. ZERO: Reset the counters on a near miss.

2. DIV2: Divide the counters by 2 on a near miss.

3. TIME: Reset the counters every T cycles.

Chapter 5: Dynamic Cache Partitioning 77

5.3 Partitioning ‘on the fly’

4. AVG: After a repartition, the average value of the counters associated
with the two affected processes is calculated. The two counters are set to
that average while the others remain unaffected.

These variations were implemented and evaluated for a dual core system. How-
ever there was no improvement and the results were almost identical to the
results presented in Figure 5.11.

5.3.3 Conclusions

The proposed scheme appears not to improve the overall system’s performance,
as it is not able to identify the characteristics and requirements of the applica-
tions. To speculate on the reasons of that failure, the scheme is compared to
the ‘‘utility-based cache partitioning’’ scheme that was developed by Qureshi et

al. and presented in Section 5.2.3.

Qureshi et al. emulate for each application the state of the cache, had it been
used only by that specific process. Thus their scheme obtains an accurate
profile of the application’s access distribution across the N recency positions,
where N is the associativity of the cache. This allows the system to modify
the space allocated to the process by x ways, where x is a number between 0
and N − 1. On the other hand, the scheme described in this section monitors
only near misses and hits to the LRU position. This limits it to adjusting the
partition only by 1 way. At the same time, it fails to recognise cases where
an application’s allocation should be increased by more than 1 way in order to
improve the overall performance.

To illustrate this better, an example is shown in Figure 5.14. Assume that
the applications are sharing the cache equally, each one occupying 4 out of the
8 cache ways. At this point the total sum of hits is 75+60 = 135. By obtaining
the profiles of these applications, the utility-based cache partitioning scheme
is able to detect that if application 2 is allocated 6 ways, then the total hits
will be increased to 55 + 85 = 145 and the performance of the system will be
improved. However, the proposed scheme monitors only the hits in the LRU
positions, obtaining only the information inside the dashed box. If application 2

suffers a near miss, the LRU hit counters are looked up and since the counter’s

Chapter 5: Dynamic Cache Partitioning 78

5.4 Summary

Figure 5.14: Example of 2 applications’ profiles that share a L2 cache

value for application 1 is higher than that associated with application 2, the
latter will not be allocated an extra cache way. Consequently, optimal sharing
cannot be achieved.

Another major difference is that the ‘‘utility-based cache partitioning’’ scheme
determines the optimal partition based on information gathered in a specific
monitoring period. The simulations’ results presented in Sections 5.2.3 and
5.3.2 reveal that this approach is superior to repartitioning on the fly, i.e. on
every ‘‘near miss’’. It appears that in order to be able to predict the future
accurately based on past behaviour, a sufficient amount of history needs to be
gathered.

5.4 Summary

This chapter presented several cache partitioning techniques. First, a variation
of the LRU replacement policy was evaluated. This scheme failed to improve
the overall performance of the system. Analysis of the results identified as
a major drawback the lack of feedback on how the cache space allocation is
affecting the running applications.

Therefore, schemes that monitor the processes and then use this information

Chapter 5: Dynamic Cache Partitioning 79

5.4 Summary

to determine the optimal partition were introduced. More specifically, two of
the latest proposals, namely ‘‘cache-partitioning aware replacement policy’’ and
‘‘utility-based cache partitioning’’, were evaluated. The former failed to improve
the system’s performance, while the latter performed better than the normal
LRU policy for both a dual and a quad core system.

Inspired by these, another approach that repartitioned the cache on every ‘‘near
miss’’ was proposed. The reasoning behind this scheme was to enable a quicker
adaptation of the cache space allocation to the dynamic changes in the pro-
grams’ behaviour while lowering the hardware overhead. Unfortunately, that
scheme failed to achieve optimal sharing of the cache and in many cases caused
a significant degradation of the system’s performance. Further analysis of the
results, showed that a monitoring period is essential in order to estimate the
future behaviour of the applications based on their history. At the same time,
if any gains are to be made, the cache partitioning mechanism needs to be able
to increase or decrease the allocation of a process by more than one cache way
each time.

Chapter 5: Dynamic Cache Partitioning 80

Chapter 6

A New Cache Partitioning Scheme

Several schemes that attempt to partition the cache dynamically were pre-
sented in Chapter 5. All these were evaluated and some were found to be
effective while others not. The evaluation process highlighted a set of proper-
ties that a successful cache partitioning scheme must possess.

More specifically, it was suggested that the partitioning module could esti-
mate the appropriate cache space allocation based on the past behaviour of
the running processes. However, for that estimation to be accurate, history
needs to be recorded for a sufficient amount of time. Additionally, this moni-
toring period should not be too long, as the repartitioning needs to be frequent
enough to ensure a better adaptation of the system to the changing character-
istics of the applications.

The performed simulations also indicated that the partitioning mechanism
should be able to modify the allocation of a process by more than one cache
way each time. It was shown that pathological cases exist, where limiting
the allocation’s changes to only one cache way could prevent the system from
achieving optimal sharing of the cache.

Based on these observations, another cache partitioning scheme was designed.
Its goal was to improve the overall performance of the system at a minimal cost.
This chapter provides the description and evaluation of this scheme as well as
a cost analysis of its implementation.

Chapter 6: A New Cache Partitioning Scheme 81

6.1 Adaptive Bloom Filter Cache Partitioning

6.1 Adaptive Bloom Filter Cache Partitioning

6.1.1 Motivation

Dybdahl et al. [15] proposed a scheme that records only the ‘‘near-misses’’ of
each application, i.e. the misses that would have been hits, had the application
occupied one more cache way. On the contrary, Quershi et al. [49] developed
a system that monitors each running process separately and records the dis-
tribution of each application’s hits across the recency positions ranging from
the MRU to LRU. Both schemes were described in detail in Sections 5.2.2 and
5.2.3 respectively.

The performed simulations showed that the second approach is superior, as
the first scheme fails to identify the requirements of each process correctly.
However, the cost of the scheme proposed by Qureshi et al. is significantly
higher. For each monitored cache line, a private tag array that has the same
associativity as the shared cache is added to every processor. On the contrary,
Dybdahl et al. employ only a register for each processor.

Therefore another approach was sought that could provide the same accu-
racy as the scheme developed by Qureshi et al. but without having to track all
the tags of the cache, thus, decreasing the hardware overhead. A solution was
found using Bloom filters.

As it was described in Section 2.2 and illustrated in Figure 2.3, a ‘‘Bloom

Filter’’ (BF) is a probabilistic algorithm employed to test membership in a large
set using multiple hash functions into an array of bits [5]. Its main advantage
is the ability to identify quickly non-members without having to query the en-
tire set.

Peir et al. developed the ‘‘Partial-Address Bloom Filter’’ [46]. The system used
a BF array of 2k bits to predict whether a load would hit in the L1 cache. This
prediction was then used by the processor’s pipeline to schedule the dependent
instructions accordingly. To index the array, the k least significant bits of the
load address were used. A similar technique was employed in the proposed
cache partitioning scheme.

Chapter 6: A New Cache Partitioning Scheme 82

6.1 Adaptive Bloom Filter Cache Partitioning

6.1.2 Description

First, the partitioning module needs to track the actual cache occupancy of
each application. Therefore, a processor ID field is added to each tag. When-
ever a processor brings a new entry into the cache, its ID is stored in the
appropriate field. The length of each field is log2P, where P is the number of
processors.

Next, a record is needed of the misses by each application that could have
been hits had the process been allowed to use more cache ways. The misses
can be divided into two main categories :

• Near-misses : Misses that would have been hits, had the process been
allocated one more cache way.

• Far-misses : Further misses that may have been hits, had the process
been allocated more than one extra cache way.

To monitor the first kind of misses, an extra tag register, called ‘near-miss reg-

ister ’, is added to each line for every processor. When an entry is rejected from
the cache its tag is stored into the appropriate near-miss register, based on the
processor ID that brought it into the cache in the first place. On a cache miss,
the requested tag is compared to the tag stored into the near-miss register of
the accessed line associated with the processor running the miss-causing ap-
plication. A tag match signals a near-miss.

An example is illustrated in Figure 6.1. The application is only allowed to
occupy 3 cache ways and has accessed the entries with tags a, b and c. When
the entry with tag d is requested, a will be rejected from the cache and stored
into the near-miss register. If the next miss occurs for a, then a near-miss will
be identified.

To track far-misses, a BF array with 2k bits is added to each line for each pro-
cessor. When a tag is rejected from the near-miss register, its k least significant
bits are used to index a bit of the BF array that is set to true. On a cache miss
that is not identified as a near-miss, the appropriate entry of the BF array is
looked up using the k least significant bits of the requested tag. If the array bit
is set, then a far-miss has been detected.

Chapter 6: A New Cache Partitioning Scheme 83

6.1 Adaptive Bloom Filter Cache Partitioning

Figure 6.1: Monitoring components of the adaptive Bloom filter cache parti-
tioning scheme

In the example shown in Figure 6.1, an access for tag e is resolved as a
miss. Comparison with the near-miss register reveals that it is not a near-
miss. Therefore, the BF array is accessed using the k least significant bits of
e. If tag e was previously stored into the cache, then the array entry will be set
and a far-miss will be identified.

When the BF array entry is found to be false, it is certain that the requested
tag was not stored in the cache in the past. On the contrary, if the entry is
found to be true there is a possibility of a false positive, due to the problem
known as ‘‘aliasing’’. As only k bits of the tag are used to index the BF array,
it is possible for more than one tag to map to the same array bit. This means,
that the system may detect a far-miss for an address that was never brought
into the cache before.

Moreover, in the system described in Figure 6.1, the order in which the BF
array bits are set is not recorded. So, there is no information on the order
in which lines were rejected from the cache. At the same time, the number

Chapter 6: A New Cache Partitioning Scheme 84

6.1 Adaptive Bloom Filter Cache Partitioning

of true entries in the BF array could be higher than the associativity of the
cache. Therefore, when a far-miss is detected, it is not possible to deduce how
many more ways the applications should have been allocated, for that miss to
become a hit.

That information could have been acquired, if the Bloom filter was extended
with a set of counters and registers. However, as these extensions would in-
crease the hardware overhead and the complexity of the system, they were
rejected. Due to the possibility of filter errors though, far-misses are defined
as misses that may have become hits, had the application been allocated more
than one extra cache way in general.

In summary, by monitoring the far and near-misses of each application, the
partitioning module acquires an estimate of each process’ need for more cache
space. However, as the cache is limited, this extra space has to be created by
reducing the allocation of other processes. To identify these processes, an esti-
mate of potential losses is required. According to the stack property of the LRU
policy, the hits to the x last recency positions, i.e. the positions ranging from
LRU − x to LRU , will become misses if the process’ allocation is decreased by x

cache ways. Therefore, this number of hits can provide the required estimate
of losses.

The cache partitioning mechanism tracks the hits to the LRU and LRU − 1
recency positions. In total, a set of four counters per processor is used for each
cache line. The counters are the following :

1. C NearMiss : Incremented every time a near-miss is detected.

2. C FarMiss : Incremented when the BF array identifies a far-miss.

3. C LRU : Incremented when a cache access hits on the LRU entry owned by
the application.

4. C LRU-1 : Incremented when a cache access hits on the LRU − 1 entry
owned by the application.

Chapter 6: A New Cache Partitioning Scheme 85

6.1 Adaptive Bloom Filter Cache Partitioning

6.1.3 Partitioning the Cache

The cache partitioning mechanism can modify the space allocation of a process
by two cache ways at most. As the total number of cache ways does not change,
the possible partitions can be deduced from the following formula:

P∑
i=1

∆xi = 0, ∆xi = {−2,−1, 0, 1, 2} (6.1)

where ∆xi is the change in the allocation of process i and P is the number of
processors. Depending on the number of ways n given to or taken from an
application, its performance gain or loss g(n) is estimated using the hit and
miss counters described in Section 6.1.2.

g(n) =

− (CLRU−1 + CLRU) , n = −2
−CLRU , n = −1
0 , n = 0
CNearMiss , n = 1
CNearMiss + a × CFarMiss , n = 2

(6.2)

As it was explained in Section 6.1.2, the counter CFarMiss records the misses
that may have been hits, had the application been allowed to occupy more
than one extra cache way. There is no information though on how many ways
are actually required. In the partitioning algorithm, the value of this counter
is used to estimate the gain when the application is allocated two more cache
ways. Therefore, it needs to be scaled down and for that a is used :

a = 1 −
waysi

wayscache
(6.3)

where waysi is the number of ways that application i was allowed to occupy
before the repartitioning and wayscache is the associativity of the shared cache.

Using Equation 6.2, the total gain of each possible partition deduced from
Equation 6.1 can be calculated :

Gain =
P∑

i=1

g (∆xi) (6.4)

Chapter 6: A New Cache Partitioning Scheme 86

6.1 Adaptive Bloom Filter Cache Partitioning

where ∆xi is the change in the allocation of process i and P is the number of
processors.

Initially the cache is divided equally amongst the running applications. Every
T cycles the partitioning algorithm reevaluates the partition sizes per processor
for each cache line, allocating at least one cache way to each process. The total
gain of each possible partition is calculated using the hit and miss counters of
each processor. The partition with the maximum gain is selected and all the
counters and filters are reset.

To enforce the selected partition, the LRU replacement policy is modified to
take into account the number of each application’s entries in a cache line. On
a miss, the LRU entry of the application is chosen for replacement if its actual
allocation is larger or equal to the limit imposed by the partition. Otherwise,
the LRU entry of an over-allocated process is rejected.

6.1.4 Simulation Results

First, the proposed scheme was evaluated for a dual core system sharing a 4MB,
32-way associative L2 cache. The monitoring period T , at the end of which the
partitioning algorithm is executed, was selected to be 1 million cycles. Also, to
eliminate the Bloom filter’s aliasing, all the tag bits were used to index the BF
array. Figure 6.2 presents the performance compared to a system using the
traditional LRU policy.

On average the proposed scheme improved the performance by 3% over the
LRU policy, increasing the geometric mean of the throughput from 1.58 to 1.61.
More specifically, for 11 out of the 36 simulated combinations the overall per-
formance was improved, where the maximum achieved improvement was 21%.
In Section 5.3.2, where a failed cache partitioning scheme was presented, the
heap-sparse and series-sparse combinations were examined closely to identify
the drawbacks of the employed scheme. These drawbacks were used as a guide
to design the system evaluated in this section. Therefore, these two combina-
tions were examined in more detail to confirm that the partitioning module
behaves as intented.

Chapter 6: A New Cache Partitioning Scheme 87

6.1 Adaptive Bloom Filter Cache Partitioning

Figure 6.2: Performance over LRU for a dual core system

Figure 6.3 presents the average number of ways each application is allocated
during the execution of the heap-sparse combination in two systems, one using
the normal LRU policy and one using the proposed cache partitioning scheme.
As it was shown in Figure 5.12, the rejected scheme was allocating more space

heap - sparse

heap
sparse
heap
sparse

Figure 6.3: L2 cache ways occupancy for heap and sparse

Chapter 6: A New Cache Partitioning Scheme 88

6.1 Adaptive Bloom Filter Cache Partitioning

series - sparse

series
sparse
series
sparse

Figure 6.4: L2 cache ways occupancy for series and sparse

to heap than the LRU policy and was improving the overall system’s perfor-
mance by almost 5%. In this system however, sparse is the recipient of the
majority of the cache space and the overall performance is improved by 16%.

The results for the series-sparse combination are presented in Figure 6.4. Fig-
ure 5.13 revealed that the rejected scheme was allocating the majority of cache
space to series, which resulted in the overall performance degrading by 15%.
On the contrary, the proposed system manages to allocate almost the same
space to the running processes as when the normal LRU policy is used. There-
fore, although it fails to improve compared to a system employing the LRU
policy, the degradation of the performance is only 1%, as it is shown in Figure
6.2.

For almost half of the cases presented in Figure 6.2 the achieved performance
was similar to that achieved when LRU is used. As it was explained in Section
5.2.3 this can be attributed to the cache being large enough to accommodate
the working sets of the competing applications, thus allowing the LRU policy to
achieve optimal sharing of the cache. Therefore, the scheme was reevaluated
for a quad core system and the results are presented in Figure 6.5.

Chapter 6: A New Cache Partitioning Scheme 89

6.1 Adaptive Bloom Filter Cache Partitioning

Figure 6.5: Performance over LRU for a quad core system

In this case, where more applications are competing for the cache space and its
allocation has a more significant impact on the overall performance, the pro-
posed cache partitioning scheme performs better than the LRU for the majority
of the simulated combinations. There are a few cases where the achieved per-
formance is worse than when LRU is used. While the maximum degradation is
almost 6%, the performance degrades by more than 1% only for four cases.

Up to this point, the different schemes have been evaluated using the total
throughput of the system. However IPCSum could be unfair to a low IPC appli-
cation. Therefore, more metrics to quantify the performance of a system have
been proposed in the literature [37]. Two of them are the Weighted Speedup

and the harmonic mean of normalised IPCs. If IPCi is the the IPC of the ith
application and SingleIPCi is the IPC of the same application when it executes
in isolation, then for a system where N processes execute concurrently, the two
metrics are given by the following formulas :

Weighted Speedup =
N∑

i=1

IPCi

SingleIPCi
(6.5)

IPCnorm_hmean =
N∑N

i=1
SingleIPCi

IPCi

(6.6)

Chapter 6: A New Cache Partitioning Scheme 90

6.1 Adaptive Bloom Filter Cache Partitioning

The Weighted Speedup metric indicates reduction in execution time, while the
IPCnorm_hmean metric balances both fairness and performance.

(a) Weighted Speedup over LRU for a quad core system

(b) Fairness over LRU for a quad core system

Figure 6.6: Evaluation on weighted speedup and fairness metrics

Figure 6.6 shows the results of the comparison between the developed cache
partitioning scheme and a system using the LRU policy for the afore mentioned
metrics. For the majority of the 126 simulated cases the weighted speedup
was increased, which means that the execution time was reduced. On average
the performance was improved by almost 4%, as the geometric mean weighted

Chapter 6: A New Cache Partitioning Scheme 91

6.2 Implementation Considerations

speedup was increased from 3.48 to 3.61. Similarly, the fairness metric reveals
that the proposed scheme performs better than the LRU for most of the simu-
lated benchmark combinations. The average improvement was almost 5% as
the geometric mean was increased from 0.85 to 0.89.

These two metrics reveal, similarly to IPCSum, that the developed cache par-
titioning scheme benefits the system. For the remainder of the thesis though,
only the IPCSum metric will be used.

6.2 Implementation Considerations

The proposed scheme could probably be implemented as a small processor
which monitors the running processes, keeps the appropriate information and
then runs the partitioning algorithm. However there are several problems that
need to be addressed. These are presented in this section.

6.2.1 Bloom Filter Arrays

The proposed scheme employs a Bloom filter array per processor for each cache
line. In the evaluation presented in Section 6.1.4, ‘ideal’ filters were assumed
in order to minimise the possibility of filter errors. For that reason, each BF
array was as big as possible and all the bits of the tag were used to index it.

For a 4MB, 32-way associative cache that holds 8 words per entry, the length
of the tag is 15 bits assuming a 32-bit physical address space. Therefore the
size of each array was 215 = 32Kb. This means that for the whole cache, the
hardware overhead for using the bloom filters was :

4096 lines × 32 Kb/(lines × processor) = 16MB/processor (6.7)

Of course this overhead renders the implementation of the scheme impossible.
By making the BF arrays smaller though, the possibility of filter errors is in-
creased as more than one address maps to the same array bit. However, as it
was explained in Section 6.1.2, due to their simplicity, the filters’ information
on far-misses is not expected to be strictly accurate and a factor a is used to
scale down the value of the CFarMiss counters. Therefore, the system should be

Chapter 6: A New Cache Partitioning Scheme 92

6.2 Implementation Considerations

able to tolerate a few extra filter errors.

The sensitivity of the scheme to the size of the BF arrays was evaluated for
a dual core system. Figure 6.7 compares the performance when 3, 5, 7 and 10
bits are used to index the BF arrays to the case where ‘ideal’ filters are used.

Figure 6.7: Effect of different Bloom filter arrays’ sizes for a dual core system

Reducing the length of the index from 15 to 10 or 7 bits had no effect on the
performance of the system, while a 3-bit index seems to be too small, for a
few combinations at least. Based on the simulations’ results the 5-bit index
was selected. This choice only caused degradation in 5 out of the 36 bench-
mark combinations and only ‘noticeable’, i.e. greater than 1%, degradation
in one case. The size of each BF array was therefore reduced to 25 = 32bits.
Consequently, the hardware overhead for the whole cache can be reduced to :

4096 lines × 32 b/(lines × processor) = 16KB/processor (6.8)

This decision was evaluated for a quad core system as well. The comparison
between using 32-bit and 32Kb BF arrays is presented in Figure 6.8. The
geometric mean is 0.995, which means that the performance was degraded on
average by less than 1%. At the same time, according to formulas (6.7) and

Chapter 6: A New Cache Partitioning Scheme 93

6.2 Implementation Considerations

(6.8) the hardware overhead was reduced from 64MB to 64KB.

Figure 6.8: Effect of using 32-bit instead of 32-Kbit Bloom filter arrays for a
quad core system

6.2.2 Monitoring Period

Until this point, all the simulations have been performed setting the monitoring
period T to one million cycles. In this subsection, this decision is evaluated.
Figure 6.9 compares the overall performance of a dual core system for four
different monitoring periods to the case where T = 1, 000, 000 cycles. The
partitioning modules use 5-bit indexes for the BF arrays and the two cores
share a 4MB, 32-way associative L2 cache.

For almost half of the simulated cases, the fifty million cycles period is slightly
worse. This can be attributed to the monitoring period being too long, not al-
lowing the cache partition to adapt to the dynamic changes in the applications’
behaviour quickly enough.

On the other hand, the short monitoring periods were expected to hurt the
performance as well, as they were thought to be too short for the sufficient

Chapter 6: A New Cache Partitioning Scheme 94

6.3 Cost Analysis

Figure 6.9: Effects of different monitoring periods for a dual core system

amount of history to be gathered. However, the results indicate that for these
benchmark combinations, a period between 100, 000 and 10, 000, 000 cycles
achieves the same performance. At the same time though, in a real system
there will be an overhead for computing the new partitions at the end of each
monitoring period. Therefore, short periods should be avoided and setting T to
one million cycles appears to be a reasonable decision.

6.3 Cost Analysis

6.3.1 Partitioning Algorithm

As was described in Section 6.1.3, the cache partitioning algorithm evaluates
all the possible partitions and selects the one that is estimated to maximise the
total number of hits. These partitions are deduced from formula (6.1), which
is equivalent to :

N∑
i=1

∆xi = 2 × N, 0 5 ∆xi 5 4 (6.9)

where ∆xi is the change in the allocation of process i and N is the number of
processors. The number of integer solutions of equations is a known problem

Chapter 6: A New Cache Partitioning Scheme 95

6.3 Cost Analysis

[52]. The number of solutions for Equation 6.9 is given by :3 × N − 1
N − 1

 + N∑
r=1

(−1)r
×

Nr
 × 3 × N − 5 × r − 1

N − 1

 (6.10)

Table 6.1 shows the number of possible partitions for different number of cores.
It is obvious that the algorithm does not scale efficiently with the number of
cores, as for 16 processors the partitioning module needs to evaluate over 1010

different partitions. Even for 8 cores, the comparison of 38165 partitions is
going to be too expensive, as it needs to be done for every cache line. Therefore,
a different way of evaluating the possible partitions and selecting the best one
or a good approximation thereof needs to be developed.

Processor Cores Possible Partitions
2 5
4 85
8 38165
16 1.065 × 1010

Table 6.1: Number of possible partitions

The pseudo code for the new algorithm is shown in Algorithm 1 in page 97,
where min2 is the value next to min and max2 is the value next to max. The
algorithm begins by reading the four counters of each processor and inserting
them into four lists that are ordered from minimum to maximum. The first
and second lists show how strongly the processes want another 2 and 1 ways,
respectively. The third and fourth lists show how much harm is suffered by
losing 2 and 1 ways, respectively. There are four possibilities that need to be
examined.

1. process i wins 2 ways and process j loses 2 ways.

2. process i wins 2 ways and processes j and k lose 1 way.

3. processes i and j win 1 way and process k loses 2 ways.

4. process i wins 1 way and process j loses 1 way.

First, the algorithm determines if a processor should be assigned 2 extra ways
(case 1) by comparing the maximum number of the first list against the mini-
mum number of the third list. If it is greater, the allocation of the two processors

Chapter 6: A New Cache Partitioning Scheme 96

6.3 Cost Analysis

Algorithm 1 Partitioning Algorithm
processes = N
for application i = 0 to N do

C2[i] = CNearMisses + a × CFarMisses, C1[i] = CNearMisses

C−2[i] = CLRU + CLRU−1, C−1[i] = CLRU

end for
order C2, C1, C−1, C−2 from min to max
while max C2 > min C−2 do

increase allocation[i] by 2
decrease allocation[j] by 2
remove i and j from C2, C1, C−1, C−2

processes -= 2
if processes ≤ 1 then

return allocation;
end if

end while
while max C2 > (min C−1 + min2 C−1) do

increase allocation[i] by 2
decrease allocation[j] and allocation[k] by 1
remove i, j and k from C2, C1, C−1, C−2

processes -= 3
if processes ≤ 1 then

return allocation;
end if

end while
while (max C1 + max2 C1) > min C−2 do

increase allocation[i] and allocation[j] by 1
decrease allocation[k] by 2
remove i, j and k from C2, C1, C−1, C−2

processes -= 3
if processes ≤ 1 then

return allocation;
end if

end while
while max C1 > min C−1 do

increase allocation[i] by 1
decrease allocation[j] by 1
remove i and j from C2, C1, C−1, C−2

processes -= 2
if processes ≤ 1 then

return allocation;
end if

end while
return allocation;

Chapter 6: A New Cache Partitioning Scheme 97

6.3 Cost Analysis

is modified, the processors are deleted from the lists as they need no longer
to be considered and the process is repeated. When the comparison reveals
that the gain is less than the loss, the algorithm moves to the next case. The
algorithm finishes either when there are no processors left to be considered or
all the four possibilities have been examined.

An example of how the algorithm works is presented in Figure 6.10. Each
table shows the gain and loss estimates for four processors. More specifically,
C2 = CNearMisses + a × CFarMisses estimates the gain for obtaining 2 more ways,
C1 = CNearMisses the gain for obtaining 1 more way, C−2 = CLRU + CLRU−1 the loss
for losing 2 ways and C−1 = CLRU the loss for losing 1 way. The algorithm first
looks for processes that strongly desire two more cache ways. Therefore, the
maximum C2 is compared to the minimum C−2 and, if it is found to be greater,
the process is allocated 2 more ways. This is shown in case A, where applica-
tions 1 and 3 are given 2 more ways, which are taken from processes 2 and 0
respectively. As each process’ allocation can be altered only once, there is no
need for more comparisons and modifications. According to Equation 6.4, the
total gain of the deduced partition is −10 + 60 − 6 + 50 = 94. The algorithm
that evaluates all the possible partitions would have increased the allocations
of applications 1 and 3 by 2 and 1 ways respectively, as the estimated gain for
this selection is −6 + 60 − 6 + 50 = 98.

Figure 6.10: Four examples of the partitioning algorithm for a quad core system

Chapter 6: A New Cache Partitioning Scheme 98

6.3 Cost Analysis

If max C2 ≤ min C−2, the algorithm checks if it is possible to allocate a process
2 more ways that will be taken from 2 different processes. This is illustrated in
case B of Figure 6.10, where the allocation of applications 1 and 3 are reduced
by 1 way and application 2 receives 2 extra ways. Again, the algorithm that
evaluates all the possible partitions would have made a different decision. More
specifically, it would have selected to increase the allocation of applications 0
and 2 by 1 way.

The next step is to try and increase the allocation of 2 processes by 1 way
each at the expense of a single victim. This is shown in case C. The algorithm
compares the sum of the 2 greatest C1 values to the minimum value of C−2. In
that example the sum is greater, so 2 ways are taken from process 2 and are
allocated to processes 1 and 3. Finally, the algorithm checks the possibility of
modifying the partition sizes by only one way. This is done by comparing C1

to C−1. As shown in case D, applications 0 and 2 receive one more way each,
which are taken from applications 3 and 1 respectively.

To evaluate the complexity of the new algorithm, assume that N is the number
of running processes and x, y, z and w the number of comparisons executed
in each of the four steps, i.e. the four while loops of Algorithm 1. Then the
following is true:

1 ≤ x ≤
N

2

0 ≤ y ≤
N − 2 × (x − 1)

3

0 ≤ z ≤
N − 2 × (x − 1) − 3 × (y − 1)

3
, y ≥ 1

0 ≤ w ≤
N − 2 × (x − 1) − 3 × (y − 1) − 3 × (z − 1)

2
y, z ≥ 1

Therefore, for the total number of possible comparisons the following is true:

ComparisonsTotal <
5 × N

3
< 2 × N (6.11)

which means that the new algorithm’s complexity is O(N) and is linear in regard
to the number of running process.

Chapter 6: A New Cache Partitioning Scheme 99

6.3 Cost Analysis

In the previously presented example, the old algorithm that evaluates all the
possible partitions would have made the same decisions for the last two cases.
However, there are cases where the decisions would be different. The chance of
the two algorithms reaching different decisions becomes higher as the number
of processes sharing the cache is increased. Therefore, the system’s perfor-
mance is expected to be worse compared to when using the ‘ideal’, theoretical
algorithm. It is, though, a justified sacrifice that renders the practical imple-
mentation of the scheme possible.

The effects of the new algorithm on the performance of the cache partitioning
mechanism was initially evaluated for a dual core system sharing a 4MB, 32-
way L2 cache. The size of each BF array was 32 bits and the monitoring period
was set to 1M cycles. The results are presented in Figure 6.11. Only for one
case the new algorithm degrades the performance of the partitioning scheme.
For the other 35 simulated cases the two algorithms achieve similar results.

Next the proposed scheme was evaluated for a quad core system. Figure 6.12(a)
reveals that for the majority of the simulated cases the new algorithm improves
the performance of the system. Figure 6.12(b) presents the performance over

Figure 6.11: Comparison of new and old partitioning algorithm for a dual core
system

Chapter 6: A New Cache Partitioning Scheme 100

6.3 Cost Analysis

the normal LRU policy. A comparison with Figure 6.5, where the partitioning
module was using the ‘ideal’ algorithm and the ‘ideal’, large BF arrays, reveals
that this scheme provides gains for cases where the overall system’s perfor-
mance was previously degraded.

(a) Comparison of new and old partitioning algorithm for a quad core system

(b) Performance over LRU for a quad core system using the new partitioning
algorithm

Figure 6.12: Effects of the new partitioning algorithm for a quad core system

Chapter 6: A New Cache Partitioning Scheme 101

6.3 Cost Analysis

As it was previously noted, the new algorithm was expected to perform slightly
worse than the old ‘ideal’ algorithm, as it is not guaranteed to select the par-
tition that will maximise the gain of the system. However, the simulations’
results for the quad core system appear to refute that. To investigate this fur-
ther, the proposed scheme was also evaluated for a system where 8 processors
share a 4MB, 32-way L2 cache. The performance over a system where the
normal LRU policy is used are shown in Figure 6.13.

Figure 6.13: Comparison of new and old partitioning algorithm for a system
with 8 cores

Again the results indicate that the proposed algorithm performs significantly
better than the old ‘ideal’ one. In fact, while the ‘ideal’ algorithm achieves on
average the same performance as the normal LRU policy, the proposed scheme
improves the performance on average by 6% over LRU.

The difference between the two partitioning algorithms is that the ‘ideal’ one
evaluates all the possible partitions and selects the one that will maximise the
total gain of the system, while treating all the processes equally. On the other
hand, the new linear algorithm, in its attempt to limit its complexity, is not fair
and prioritises the applications that demand two extra cache ways. The results
indicate that this approach provides, at least for the employed benchmarks, a
cache space allocation closer to the actual system requirements improving the
overall performance of the system.

Chapter 6: A New Cache Partitioning Scheme 102

6.3 Cost Analysis

6.3.2 Hardware Overhead

Each processor uses one BF array, one NearMiss register and four counters for
each cache line. Until this point the counters were assumed to be 32 bits long.
However, as they are reset every one million cycles, their length can be reduced
to 20 bits. In practice, it can be reduced further to 8 bits. Figure 6.14(a) shows
the performance of the system using 8-bit counters compared to using 32-bit
counters.

(a) Comparison of 8 and 32-bit counters in a quad-core system

(b) Comparison of 8 and 32-bit counters in an 8-core system

Figure 6.14: Performance using 8-bit counters over a system that uses 32-bit
counters

Chapter 6: A New Cache Partitioning Scheme 103

6.3 Cost Analysis

The geometric mean is equal to 1.0002, which means that the reduction of
the counters’ length has no significant effect on the performance of the cache
partitioning module. Similar conclusions can be drawn for an 8-core system,
as shown in Figure 6.14(b).

In Section 6.2.1 the hardware overhead of each Bloom filter array was analysed
and reduced from 32KB to 32bits. The storage overhead per processor for a
4MB, 32-way associative cache, assuming a 32-bit physical address space, is
presented in Table 6.2. The storage overhead per processor could be further
reduced by using partial tags for the NearMiss registers.

BF arrays (4096 lines * 32bits) 16KB
NearMiss registers (4096 lines * 15 bits) 7.5KB

Counters (4096 lines * 4 counters * 8 bits) 16KB
Total overhead 39.5 KB

Area of L2 cache (240KB tags + 4MB data) 4336KB
% increase in area 0.9%

Table 6.2: Storage overhead per processor

At the same time, the proposed scheme requires a processor ID for each cache
entry. The length of each ID is log2N bits, where N is the number of processors.
For an eight-core system sharing the 4MB, 32-way associative cache, the over-
head of the IDs will be 4096 × 32 × 3b = 48KB, an increase of 1.1%. Therefore,
the total storage overhead for an eight-core system is 8 × 39.5 + 48 = 364KB,
an increase of 8.3% over the L2 cache area.

In addition to the storage bits, adders are needed to increase the counters
of each processor and the partitioning algorithm requires a comparator circuit.
So the true overhead will be slightly greater than indicated here. However this
is still proportionately small.

To evaluate the effectiveness of cache partitioning as a solution to increas-
ing the overall performance of the system, it needs to be compared against
increasing the cache size, which is the usual approach taken by system de-
signers. Therefore, an eight-core system sharing a 4MB, 32-way associative L2

Chapter 6: A New Cache Partitioning Scheme 104

6.3 Cost Analysis

cache and using the proposed cache partitioning module was compared against
other 8-core systems sharing bigger L2 caches employing the LRU replacement
policy. The results are presented in Figure 6.15.

Figure 6.15: Performance of a 4MB, 32-way associative L2 cache using cache
partitioning against bigger caches employing the LRU policy

The L2 cache was increased by adding extra ways. Each way adds 128KB

of data and 7.5KB of tags, an overhead of 135.5KB. The storage overhead
of the cache partitioning module was previously calculated for an eight-core
system and found to be 364KB, slightly less than adding three ways to the
baseline cache. Figure 6.15 shows that a 4480KB, 35-way associative cache
using LRU performs worse than the baseline 4MB, 32-way associative cache
combined with cache partitioning. The geometric mean for that case is 0.96,
which means that the smaller cache with cache partitioning performs better on
average by 4%.

Moreover, Figure 6.15 reveals that for LRU to perform better than cache parti-
tioning for the majority of the simulated benchmark combinations, the baseline
cache’s size needs to be increased to 6MB, an increase of 50%. And even in
that case, the average improvement of LRU over cache partitioning is only 0.7%.
Therefore, it appears that the proposed cache partitioning module offers a cost
effective solution to improving the overall performance of a CMP system.

Chapter 6: A New Cache Partitioning Scheme 105

6.4 Comparison with Other Schemes

6.4 Comparison with Other Schemes

Several cache partitioning schemes [15, 35, 49, 54, 60] have been proposed for
CMP systems. The most effective of these, the utility-based cache partitioning

scheme proposed by Qureshi et al. [49], was presented and evaluated in Section
5.2.3. In this subsection it is compared against the adaptive Bloom filter cache

partitioning scheme presented in this chapter.

Figures 6.16, 6.17 and 6.18 compare the two cache partitioning schemes for a
dual, a quad and an eight-core system respectively. For the dual-core system
the utility-based scheme performs better than the adaptive Bloom filter scheme
for 2 out of the 36 simulated benchmark combinations. For all the other cases
the two schemes achieve almost the same performance. Comparison with Fig-
ure 6.11 reveals also a discrepancy, as for the lu-sparse combination ABCP
degrades the performance by around 6%, while in Figure 6.11 the degradation
was around 4%. This difference is due to ABCP employing here 8-bit adders,
while before it was using 32-bit adders.

Figure 6.16: Comparison of the utility-based and adaptive Bloom filter cache
partitioning schemes for a dual-core system

However, as shown in Figure 6.17, the adaptive Bloom filter partitioning scheme
is more effective for a quad-core system, as it outperforms the utility-based
partitioning scheme for 76 out of the 126 simulated cases. Additionally, its

Chapter 6: A New Cache Partitioning Scheme 106

6.4 Comparison with Other Schemes

Figure 6.17: Comparison of the utility-based and adaptive Bloom filter cache
partitioning schemes for a quad-core system

Chapter 6: A New Cache Partitioning Scheme 107

6.4 Comparison with Other Schemes

performance is always greater or at least equal to a system employing the LRU
replacement policy. On the other hand, there are a few cases where the utility-
based scheme performs worse than the LRU, so it appears that the proposed
scheme may be more robust.

Similar conclusions can be drawn for an eight-core system. As shown in Figure
6.18, the adaptive Bloom filter scheme outperforms the utility-based scheme
for every simulated case, while always achieving higher overall system perfor-
mance compared to LRU.

Figure 6.18: Comparison of the utility-based and adaptive Bloom filter cache
partitioning schemes for an eight-core system

The scheme developed by Qureshi et al. has a small hardware overhead. As
described in Section 5.2.3, each processor uses a monitoring circuit to acquire
the information needed by the partitioning algorithm. For an eight-core system
sharing a 4MB, 32-way associative L2 cache each monitoring circuit requires
only 2.75KB. At the same time, 3 bits are required for each cache entry to iden-
tify which processor brought it into the cache. Therefore the total overhead is
70KB, an increase of 1.6% over the L2 cache area. For a similar system, the
adaptive Bloom filter cache partitioning scheme requires 364KB, an increase
of 8.3% over the L2, as it was calculated in Section 6.3.2.

Chapter 6: A New Cache Partitioning Scheme 108

6.5 Summary

To achieve such a low hardware overhead, the utility-based cache partition-
ing scheme monitors only 32 out of the 4096 lines of the cache. However, as
only a subset of the lines is monitored, the partitioning module has to enforce
the same partition for all the cache lines. To be able to partition on a line-
basis, each monitoring circuit would have required 11MB, which is practically
impossible. On the other hand, the adaptive Bloom filter cache partitioning
scheme is able to deduce a different partition for each line at a low cost. As
the previously presented results indicate, this finer-grained partitioning allows
the adaptive Bloom filter scheme to be more robust and outperform Qureshi’s
scheme. Since its overhead is still small compared to the area of the L2 cache,
the decision of partitioning on a cache line basis is justifiable.

6.5 Summary

This chapter presented a new cache partitioning scheme. This mechanism
uses a register to track the near-misses of each application and Bloom filters
to record misses that could have been hits if the application had been allocated
more than one extra cache way. At the same time, the system counts the hits
to the last two recency positions, i.e. LRU − 1 and LRU .

All these are monitored over a period of T cycles and then they are used to
predict the future behaviour of the system. Based on this prediction, the al-
gorithm reevaluates the partition sizes per line for each process. The scheme
was evaluated for a dual, a quad and an eight-core system and was shown to
achieve better performance than a system using the familiar LRU policy.

Several design issues were addressed. More specifically, the size of the Bloom
filters, the length of the monitoring period and the complexity of the parti-
tioning algorithm were studied. Finally, the hardware overhead was analysed
and an eight-core system was used to demonstrate that the proposed scheme
constitutes a cost effective solution to the challenge of improving the overall
performance of CMP systems.

Chapter 6: A New Cache Partitioning Scheme 109

Chapter 7

Conclusions

The continuously increasing number of transistors integrated into a chip has
given rise to chip multiprocessor (CMP) architectures. These are shared mem-
ory systems, where the available cores typically share some levels of the on-chip
memory hierarchy. In the majority of the currently developed systems, each
processor has private L1 instruction and data caches while they all share the
L2 cache.

Cache design has been extensively studied in the context of traditional single
processor systems and many design choices have migrated to the CMP design
domain. The parameters may be different for these systems though, raising
doubts over the effectiveness of this migration. A typical example of such a
design choice is the employment of LRU, which is widely accepted as the best
available replacement policy for uniprocessor systems.

In CMPs the processing cores are used to execute different applications or sev-
eral threads of the same application in parallel. This introduces a new variable
in the cache design process. However, ‘pure’ LRU is a ‘‘thread-blind’’ policy as it
selects the cache entry to be rejected regardless of which thread brought it into
the cache or which thread suffered the cache miss. This policy, combined with
the sharing of the cache, allows interference, as multiple working sets compete
for the cache space and data belonging to one thread may be evicted by data
blocks belonging to other threads. Therefore, new alternatives are needed that
will tackle the challenges that have arisen and improve the overall performance
of the system.

Chapter 7: Conclusions 110

7.1 Cache Partitioning

7.1 Cache Partitioning

The work presented in this thesis evaluated cache partitioning as a solution
to achieving optimal sharing of the cache amongst the concurrently executing
applications and improving the overall system’s performance. Initially the ef-
fects of LRU on the performance of multiprogrammed workloads were studied;
in Chapter 4 the results indicated that this replacement policy can result in
suboptimal sharing of the L2 cache. In contrast to LRU, statically partitioned
caches were found to improve the overall performance of the system. However,
these are not practical as they rely on prior knowledge of the characteristics of
the applications that are executed.

Therefore several dynamic cache partitioning schemes which attempt to adapt
the cache space allocation to the dynamically changing characteristics of the
applications were analysed in Chapter 5. This analysis was necessary as the
identified advantages and drawbacks were then used to guide the development
of an improved cache partitioning scheme.

7.1.1 Adaptive Bloom Filter Cache Partitioning

Adaptive Bloom filter Cache Partitioning (ABCP) is a new scheme that was
described and evaluated in Chapter 6. Its distinguishing feature is the employ-
ment of Bloom filters to create a low-cost mechanism which tracks misses that
may have been hits had each process been allocated more cache ways. A linear
algorithm is executed every one million cycles which deduces the partition sizes
for each processor in each cache line.

The scheme was evaluated for a dual, a quad and an eight-core system and
was shown to achieve better overall performance than the LRU policy. For an
eight-core system sharing the L2 cache it was found that, for LRU to achieve
similar results to cache partitioning, the cache size had to be increased from
4MB to 6MB, an area increase of 50%. At the same time, the storage overhead
of the partitioning mechanism was 364KB, an increase of only 8.3% over the
L2 cache area.

Chapter 7: Conclusions 111

7.1 Cache Partitioning

The scheme was also compared with Utility-based Cache Partitioning (UCP) -
probably the best pre-existing scheme - and was shown to produce similar, but
slightly better, overall performance at a somewhat increased hardware cost.
Significantly, ABCP appears more effective than UCP as the number of cores
increases. More specifically, whilst it is comparable for 2 cores, it is better for
4 and the trend increases at 8 cores. Thus the relatively small extra hardware
overhead can be justified as the number of cores increases.

7.1.2 Cache Partitioning Evaluation

LRU and ABCP were evaluated for a different number of processors sharing a
4MB, 32-way associative L2 cache. Table 7.1 presents the geometric mean of
the overall performance for each case and shows that the gains of cache parti-
tioning over LRU increase with the number of processors. This is also evident
in Figure 7.1, where the overall performance normalised with the number of
processing cores is shown for LRU and ABCP.

Processor
ABCP IPC LRU IPC

% Performance
Cores Improvement

1 0.8276 0.8276 0%
2 1.6044 1.5815 1.45%
3 2.3280 2.2737 2.39%
4 3.0449 2.9467 3.33%
5 3.7365 3.6081 3.56%
6 4.4014 4.2409 3.79%
7 5.0203 4.8166 4.23%
8 5.6756 5.3436 6.21%
9 6.3061 5.9310 6.32%

Table 7.1: Comparison of LRU and cache partitioning

The effectiveness of cache utilisation degrades as the number of cores, and
therefore the demands on the cache, increases. This is true of all the schemes
that were examined in this work. However, the cache partition scheme is
able to allocate cache space to competing processes efficiently by monitoring
each running process and adapting dynamically to the characteristics of the
muiltiprogrammed workload. Therefore, the utilisation of an appropriately par-
titioned cache can be seen to degrade more slowly than one using the pure,

Chapter 7: Conclusions 112

7.2 Future Work

Figure 7.1: Performance normalised with number of cores for LRU and cache
partitioning

thread-blind LRU replacement policy. This is important as the current trend
is to increase the number of cores integrated on chip, so improving the cache
utilisation is essential.

7.2 Future Work

The research presented in this thesis evaluated cache partitioning as a method
for improving the overall performance of CMP architectures. This work can be
expanded further. This section outlines possible directions for future research.

7.2.1 Many-core Architectures

As the feature size of fabrication technology continues to increase, computer
systems are moving towards many-core architectures, where tens of proces-
sors will be integrated on the same silicon chip. The benefits of the proposed
cache partitioning scheme over LRU were found to increase with the number of

Chapter 7: Conclusions 113

7.2 Future Work

processors. However, the evaluation was performed for a maximum of 9 cores
sharing the L2 cache. It is hoped that this trend continues as the number of
cores rises higher, however this needs to be confirmed by future study. More
importantly, as the hardware overhead of the partitioning module scales with
the number of cores, it needs to be evaluated whether cache partitioning can
improve the utilisation of the cache on economic cost.

7.2.2 Multithreaded Workloads

In this work, cache partitioning was evaluated for multiprogrammed workloads.
Each core executed a different application that had its own private working set.
However, CMPs can be used to execute parallel applications, where several
threads could share either instructions or portions of the data set. Therefore,
it is important to evaluate the proposed cache partitioning scheme for multi-
threaded workloads as well. The scheme could be extended to identify cache
entries that are shared amongst concurrent threads and partition the cache in
such a way that entries which exhibit a high degree of sharing are not rejected
from the cache.

7.2.3 Power Consumption

The hardware overhead of the proposed cache partitioning scheme was anal-
ysed and found to be relatively small compared to the area of the cache. Addi-
tionally, a linear partitioning algorithm was presented in an attempt to reduce
the complexity of deducing the partition sizes for each cache line.

However, power is nowadays becoming an increasingly significant constraint in
computer design. Therefore, it is necessary to evaluate the effect of the cache
partitioning mechanism on the power consumption of the system.

7.2.4 Exposure to Higher System Levels

This work proposed a new cache partitioning scheme in an attempt to improve
the overall performance of the system. The partitioning module was designed
as an extension to the existing hardware infrastructure of CMPs to remain in-
visible from higher levels of the system. However it could be modified in order

Chapter 7: Conclusions 114

7.3 Final Remarks

to be exposed to the operating system or the compiler.

More specifically, the partitioning mechanism acquires an estimate of the cache
usage for each running process. This information could be used by the oper-
ating system to determine which processes should be scheduled together in
order to minimise the impact of inter-thread cache contention and improve the
overall performance as it was proposed by Fedorova [16] and Chandra et al. [8].

In a different scenario, the partitioning scheme could be exploited to provide
Quality of Service (QoS), similarly to the framework proposed by Iyer [27]. The
operating system could assign different priorities to the running processes. The
partitioning algorithm could then be extended to take into account the priority
level of each process and regulate their cache space allocation accordingly in
order to guarantee the desired performance.

7.3 Final Remarks

Chip multi- and many-core architectures are posing new challenges for system
designers. This work has shown that it is possible to increase cache efficiency
and alleviate some of the new problems by partitioning the cache appropriately.
It is hoped that the results of this research will illustrate the importance of
reevaluating ‘accepted wisdom’ in cache design.

Chapter 7: Conclusions 115

Bibliography

[1] The International Technology Roadmap for Semiconductors 2005 Edition:
Executive Summary, 2005.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, and V. Sarkar. The Jikes research virtual machine project:
building an open-source research community. IBM Systems Journal,
44(2):399–417, 2005.

[3] AMD. Multi-core processors: The next evolution in computing. AMD White

Paper, 2005.

[4] M. Bernstein, J. D. Bolter, M. Joyce, and E. Mylonas. Architecture for
volatile hypertext. In Hypertext ’91 Proceedings, pages 243–260, December
1991.

[5] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[6] F. Bodin and A. Seznec. Skewed associativity improves program per-
formance and enhances predictability. IEEE Transactions on Computers,
46(5):530 – 544, May 1997.

[7] D. Burger and J. R. Goodman. Billion-transistor architectures: there and
back again. Computer, 37(3):22–28, March 2004.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache
contention on a chip multiprocessor architecture. In Proceedings of the

11th International Symposium on High Performance Computer Architecture,
pages 340–351, 2005.

BIBLIOGRAPHY 116

[9] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In
Proceedings of the 33rd International Symposium on Computer Architecture,
pages 264 – 276, 2006.

[10] D. Chiou, L. Rudolph, and S. Devadas. Dynamic cache partitioning via
columnization. In Proceedings of Design Automation Conference, June
2000.

[11] Z. Chishti, M. D. Powell, and T. N. Vĳayjumar. Distance associativity
for high performance energy efficient non-uniform cache architectures.
In Proceedings of the 36th International Symposium on Microarchitecture,
pages 55–66, 2003.

[12] Z. Chishti, M. D. Powell, and T. N. Vĳaykumar. Optimizing replication,
communication and capacity allocation in CMPs. In Proceedings of the

32nd International Symposium on Computer Architecture, pages 357 – 368,
2005.

[13] J. D. Collins and D. M. Tullsen. Hardware identification of cache conflict
misses. In Proceedings of International Symposium on Microarchitecture,
pages 126–135, 1999.

[14] A. Dinn, I. Watson, C. Kirkham, and A. El-Mahdy. The Jamaica virtual
machine: A chip multiprocessor parallel execution environment. Technical
report, University of Manchester, August 2005.

[15] H. Dybdahl, P. Stenström, and L. Natvig. A cache-partitioning aware re-
placement policy for chip multiprocessors. In Proceedings of the 13th

International Conference on High Performance Computing, pages 22–34,
2006.

[16] A. Fedorova. Operating system scheduling for chip multiprocessor architec-

tures. PhD thesis, Harvard University, 2006.

[17] W. C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. Stochastic Fair Blue:
A queue management algorithm for enforcing fairness. In Twentieth An-

nual Joint Conference of the IEEE Computer and Communications Societies,
volume 3, pages 1520–1529, 2001.

BIBLIOGRAPHY 117

[18] M. A. Frumkin, M. Schultz, H. Jin, and J. Yan. Implementation of the
NAS Parallel Benchmarks in Java. Technical report, NASA Advanced Su-
percomputing Division, 2002.

[19] P. P. Gelsinger. Microprocessors for the new millennium: Challenges,
opportunities and new frontiers. In Proceedings of the IEEE International

Solid-State Circuits Conference, pages 22–25, 2001.

[20] A. González, C. Aliagas, and M. Valero. A data cache with multiple caching
strategies tuned to different types of locality. In Proceedings of ACM Inter-

national Conference on Supercomputing, pages 338–347, 1995.

[21] A. González, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating cache
conflict misses through XOR-based placement functions. In Proceedings

of the 11th International Conference on Supercomputing, pages 76 – 83,
1997.

[22] L. L. Gremilion. Designing a Bloom filter for differential file access. Com-

munications of the ACM, 25(9):600–604, September 1982.

[23] M. J. Horsnell. Cycle-accurate, distributed chip multiprocessor simula-
tion. In Proceedings of the EPSRC Postgraduate Research in Engineering

and Physical Sciences (PREP), 2004.

[24] M. J. Horsnell. A chip multi-cluster architecture with locality aware task

distribution. PhD thesis, School of Computer Science, The University of
Manchester, 2007.

[25] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A
NUCA substrate for flexible CMP cache sharing. In Proceedings of the 19th

International Conference on Supercomputing, pages 31–40, June 2005.

[26] Intel. Introducing the 45nm Next-Generation Intel® CoreTM Microarchitec-
ture. Intel White Paper, 2007.

[27] R. Iyer. CQoS: A framework for enabling QoS in shared caches of cmp plat-
forms. In Proceedings of 18th International Conference on Supercomputing,
pages 257–266, June. 2004.

BIBLIOGRAPHY 118

[28] T. L. Johnson. Run-time adaptive cache management. PhD thesis, Univer-
sity of Illinois, 1998.

[29] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power 5 chip: A dual-core
multithreaded processor. IEEE Micro, pages 40–47, Mar 2004.

[30] M. Kampe, P. Stenström, and M. Dubois. Self-correcting LRU replacement
policies. In Proceedings of the 1st Conference on Computing Frontiers, pages
181–191, 2004.

[31] M. Kharbutli, K. Irvin, Y. Solihin, and J. Lee. Using prime numbers for
cache indexing to eliminate conflict misses. In Proceedings of the Inter-

national Symposium on High Performance Computer Architecture, pages
288–299, Feb. 2004.

[32] M. Kharbutli and Y. Solihin. Counter-based cache replacement algo-
rithms. In Proceedings of the International Conference on Computer Design,
pages 61 – 68, Oct. 2005.

[33] J. Kihm, A. Settle, A. Janiszewski, and D. Connors. Understanding the im-
pact of inter-thread cache interference on ILP in modern SMT processors.
Journal of Instruction Level Parallelism, 7, 2005.

[34] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In Proceedings of In-

ternational conference on Architectural Support for Programming Languages

and Operating Systems, pages 211–222, 2002.

[35] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-
ing in a chip multiprocessor architecture. In Proceedings of 13th Inter-

national Conference on Parallel Architecture and Compilation Techniques,
pages 111–122, Sept. 2004.

[36] P. Kongerita, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-
threaded Sparc processor. IEEE Micro, 25(2):21–29, Mar/Apr 2005.

[37] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fair-
ness in SMT processors. In Proceedings of International Symposium on

Performance Analysis of Systems and Software, pages 164–171, 2001.

BIBLIOGRAPHY 119

[38] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation tech-
niques for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[39] C. McNairy and R. Bhatia. Montecito: a dual-core, dual-thread Itanium
processor. IEEE Micro, 25(2):10–20, March-April 2005.

[40] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer, R. Chabukswar,
E. Niemeyer, and A. Kumar. CMP Implementation in Systems based on
the Intel® CoreTM Duo Processor. Intel® Technology Journal, 10(2), May
2006.

[41] K. E. Moore, M. D. Hill, and D. A. Wood. Thread-level transactional mem-
ory. Technical report, Computer Science Dept., UW-Madison, March 2005.

[42] J. K. Mullin. A second look at Bloom filters. Communications of the ACM,
26(8):570–571, August 1983.

[43] J. K Mullin. Optimal semĳoins for distributed database systems. IEEE

Transactions on Software Engineering, 16(5):558–560, May 1990.

[44] J. K. Mullin. Estimating the size of a relational join. Information Systems,
18(3):189–196, 1993.

[45] J. K. Mullin and D. J. Margoliash. A tale of three spelling checkers. Soft-

ware – Practice and Experience, 20(6):625–630, June 1990.

[46] J. K. Peir, S. C Lai, S. L. Lu, J. Stark, and K. Lai. Bloom filtering cache
misses for accurate data speculation and prefetching. In Proceedings of

International Conference on Supercomputing, pages 189–198, 2002.

[47] J. K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory reference
behavior with adaptive cache topology. In International Conference on

Architectural Support for Programming Languages and Operating Systems,
pages 240–250, 10 1998.

[48] M. Qureshi, D. Thompson, and Y. N. Patt. The v-way cache: Demand-
based associativity via global replacement. In Proceedings of the 32nd

International Symposium on Computer Architecture, pages 544 – 555, 2005.

BIBLIOGRAPHY 120

[49] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high performance runtime mechanism to partition shared
caches. In Proceedings of the 39th International Symposium on Microarchi-

tecture, pages 423–432, 2006.

[50] M. V. Ramakrishna. Practical performance of Bloom filters and parallel
free-text searching. Communications of the ACM, 32(10):1237–1239, Oc-
tober 1989.

[51] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian. Leveraging
bloom filters for smart search within NUCA caches. In Proceedings of

Workshop on Complexity-Effective Design, June 2006.

[52] S. Ross. A first course in probability. Pearson Prentice Hall, seventh edition,
2006.

[53] A. Rousskov and D. Wessels. Cache digests. Computer Networks and ISDN

Systems, 30(22-23):2155–2168, April 1998.

[54] A. Settle, D. Connors, E. Gilbert, and A. González. A dynamically re-
configurable cache for multithreaded processors. Journal of Embedded

Computing, pages 221–233, Dec. 2005.

[55] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,
September 1982.

[56] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande bench-
mark suite. In Proceedings of the 2001 ACM/IEEE conference on Super-

computing, 2001.

[57] L. Spracklen and S. G. Abraham. Chip multiprocessing: Opportunities
and challenges. In Proceedings of International Symposium on High Perfor-

mance Computer Architecture, pages 248 – 252, 2005.

[58] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache mem-
ory. IEEE Transactions on Computers, 41(9):1054–1068, Sept. 1992.

[59] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with ap-
plications to cache partitioning. In Proceedings of International Conference

on Supercomputing, pages 1–12, 2001.

BIBLIOGRAPHY 121

[60] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. The Journal of Supercomputing, 28:7–26, 2004.

[61] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the IEEE futurebus. In Proceedings of the

13th International Symposium on Computer Architecture, pages 414–423,
1986.

[62] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In Proceedings of the 22nd International

Symposium on Computer Architecture, pages 392–403, 1995.

[63] G. Tyson, M. Farrens, J. Mathews, and A. R. Pleszkun. A modified ap-
proach to data cache management. In Proceedings of International Sym-

posium on Microarchitecture, pages 93–103, 1995.

[64] J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM

Computer Communication Review, 29(5):36–39, October 1999.

[65] S. Wang and L. Wang. Thread-associative memory for multicore and mul-
tithreaded computing. In Proceedings of the International Symposium on

Low Power Electronics and Design, Oct. 2006.

[66] W. A. Wong and J. Baer. Modified LRU policies for improving second-
level cache behavior. In Proceedings of International Symposium on High

Performance Computer Architecture, pages 49–60, 2000.

[67] G. Wright. A single-chip multiprocessor architecture with hardware thread

support. PhD thesis, Department of Computer Science, The University of
Manchester, 2001.

[68] M. Zhang and K. Asanović. Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors. In Proceedings of the 32nd

International Symposium on Computer Architecture, 2005.

BIBLIOGRAPHY 122

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Chip Multiprocessor Architectures
	Wire Delays
	Limited Parallelism
	Design Complexity

	Memory Hierarchy Design Challenges
	Research Aims
	Terminology
	Thesis Overview

	Cache Systems
	Cache Design
	Single Processor Systems
	Chip Multithreaded Systems

	Bloom Filters
	Description
	Applications of Bloom filters

	Summary

	Jamaica and Simulation Framework
	The Jamaica Architecture
	Simulation Environment
	Software Environment
	Benchmark Descriptions
	Java Grande Benchmarks
	NAS Parallel Benchmarks
	Benchmark Configuration

	Summary

	Cache Replacement Policy
	Evaluation of LRU
	Single Core Systems
	Dual Core System
	Quad Core System
	Conclusion

	Static Cache Partitioning
	Conclusions

	Dynamic Cache Partitioning
	LRU Variation
	Overview
	Evaluation

	Monitoring Schemes
	Overview
	Cache-Partitioning Aware Replacement Policy
	Utility-Based Cache Partitioning

	Partitioning `on the fly'
	Description
	Evaluation
	Conclusions

	Summary

	A New Cache Partitioning Scheme
	Adaptive Bloom Filter Cache Partitioning
	Motivation
	Description
	Partitioning the Cache
	Simulation Results

	Implementation Considerations
	Bloom Filter Arrays
	Monitoring Period

	Cost Analysis
	Partitioning Algorithm
	Hardware Overhead

	Comparison with Other Schemes
	Summary

	Conclusions
	Cache Partitioning
	Adaptive Bloom Filter Cache Partitioning
	Cache Partitioning Evaluation

	Future Work
	Many-core Architectures
	Multithreaded Workloads
	Power Consumption
	Exposure to Higher System Levels

	Final Remarks

	Bibliography

