
INVESTIGATING THE SCALABILITY

OF TILED

CHIP MULTIPROCESSORS USING

MULTIPLE NETWORKS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2009

By

Preethi Sam

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14

1.1 Motivation . 14

1.2 Why CMPs? . 18

1.3 Design Challenges in CMPs . 20

1.4 Research Aim . 20

1.5 Contributions . 21

1.6 Thesis Layout . 21

1.7 Publications . 22

2 Background 23

2.1 On Chip Networks . 23

2.1.1 Network Topologies . 24

2.1.1.1 Direct Networks 25

2.1.1.2 Indirect Networks 26

2.1.1.3 Shared Medium Interconnects 27

2.1.1.4 Commonly Used OCNs 27

2.1.2 Routing Protocols . 28

2.1.2.1 Deterministic Routing 29

2.1.2.2 Adaptive Routing 30

2.1.2.3 Topology Agnostic Routing 31

2

2.1.3 Flow Control . 31

2.1.4 Switching Technique . 32

2.1.5 Deadlock Avoidance . 32

2.2 Cache Coherency Protocols . 33

2.2.1 Snoop Based Cache Coherency Protocol 36

2.2.2 Directory Based Cache Coherency Protocols 39

2.2.2.1 Directory Design Alternatives 40

2.3 Alternative to Snoop and Directory Protocols 43

2.3.1 Token Coherence . 43

2.3.2 Multicast Snooping . 45

2.3.3 Bandwidth Adaptive Snooping 46

2.4 Tile Based CMPs . 46

2.4.1 Tilera . 47

2.4.2 TRIPS . 50

2.4.3 OS Based Coherence . 50

2.4.4 Priority Based Cache Coherent NoC 52

2.4.5 DiCo: Efficient Cache Coherency for Tiled CMPs 53

2.4.6 Virtual Hierarchies . 54

2.4.7 Network Based Coherence 55

2.4.8 Proximity Aware Directory 55

2.4.9 Alternative Home Node in Directory Based Tiled CMPs . 56

2.4.10 Tera Scale . 57

2.5 Summary . 57

3 Jamaica 59

3.1 Processor Architecture . 59

3.2 Token Ring . 61

3.3 Locking Mechanism . 62

3.4 Interrupt Mechanism . 63

3.5 Bus Transactions . 64

3.6 Simulation Details . 65

3.7 Summary . 67

4 A Tiled Bus CMP 68

4.1 Motivation . 68

4.2 System Architecture . 69

3

4.3 Processor Tile . 70

4.4 Router Architecture . 71

4.5 L2 Tile . 73

4.6 Central Arbiter . 75

4.7 Cache Coherency Protocol . 75

4.8 Lock Unit Description . 83

4.8.1 Synchronization Primitives 83

4.8.2 Hardware Queue Based Locking in Tiled Bus CMP 85

4.8.3 Modification to Jikes RVM 85

4.8.4 Operation using the lock unit 87

4.8.5 Problem with stale LOCKGNT 90

4.9 Simulation Details . 92

4.10 Summary . 94

4.11 Summary of Request and Response Messages 95

5 A Dual Mesh CMP 97

5.1 System Architecture . 97

5.2 Deadlock Avoidance . 98

5.3 Cache Coherency Protocol . 99

5.3.1 Read Miss . 100

5.3.2 Write Miss . 102

5.3.3 Writebacks and Evictions 106

5.3.4 Stale UP Problem . 107

5.3.5 Sink Deadlock . 108

5.4 Locking Protocol . 109

5.5 Simulation Details . 113

5.6 Summary . 114

5.7 Summary of Request and Response Messages 115

6 Results 117

6.1 Benchmarks . 117

6.2 Simulator Configuration . 118

6.3 Speedup . 121

6.4 Summary . 134

4

7 Conclusion and Future Work 135

7.1 Future Work . 136

Bibliography 139

5

List of Tables

2.1 Cache Line State Description . 36

4.1 Cache Line State Description . 77

4.2 Type field: L1 and L2 Requests 78

4.3 Type field: L1 and L2 Responses 78

4.4 Control fields within the packet header 79

4.5 L1 Request vs. L2 Response . 95

4.6 L2 Request vs. L1 Response . 96

5.1 L1 Request vs. L2 Response for Dual Mesh 115

5.2 L2 Request vs. L1 Response for Dual Mesh 116

6.1 Processor and L2 Combinations 120

6.2 Multi Threaded Processor Configuration 120

6

List of Figures

1.1 Moore’s Law [Bha05] . 15

1.2 Active and Leakage Power increases as process technology improves

over the years [Bha05] . 16

1.3 Relative Performance of DRAMs w.r.t. Processor [HP03] 16

1.4 Reachability of the signal with shrinking process technologies [Mat97] 17

1.5 Productivity vs. Increasing transistor count [Bha05] 19

1.6 Different types of parallelism: 1.Single-Issue 2.ILP 3.TLP [Wri01] 19

2.1 Wire Delays Projections On Chip for different metal layers [itr05] 24

2.2 Classification of Network Topologies [DYL03] 25

2.3 Various Types of OCNs [ODH+07] [DYL03] 26

2.4 Concentrated Mesh [BD06] . 28

2.5 Mesh Network Using DOR . 29

2.6 Dimension Order Routing Algorithm 30

2.7 Classic Example of Deadlock . 33

2.8 The MOESI state diagram [Sun03] 35

2.9 Snoop based Symmetric Shared Memory Multiprocessor [HP07] . 39

2.10 Simple Directory Based Scheme [CSG99] 40

2.11 Tilera Architecture [WGHea07] 49

2.12 TRIPS Tile Architecture [GCM+06] 51

3.1 Jamaica Architecture[Wri01] . 60

3.2 Jamaica Processor Core[Hor07] 61

3.3 Processor interface to the Token Ring Network[Hor07] 62

3.4 Jamaica Bus Transaction[Wri01] 66

4.1 Bus Clock Speed vs. Scalability of Processors [Hor07] 69

4.2 Tiled-Bus Based CMP . 70

4.3 Structure of Processor Tile . 72

7

4.4 Crossbar Logic within Processor Tile 72

4.5 Message Format . 72

4.6 L2 Tile Structure . 74

4.7 L2 Cache Line Structure . 74

4.8 Central Arbiter . 76

4.9 Timing Diagram of the JAMAICA bus 76

4.10 L1 Cache State Transitions . 77

4.11 L2 Cache State Transitions . 79

4.12 Lock Unit . 86

4.13 Original and Modified Locking Code in JaVM 87

4.14 Queuing Lock Protocol . 89

4.15 Stale STL C case . 93

5.1 Dual Mesh CMP . 98

5.2 Tile with Sink channels . 99

5.3 RAW and WAR operation . 102

5.4 RD EX to S(SO) line evicted from L1 104

5.5 RD EX to M or S(SO) line in L2 106

5.6 Stale UP . 107

5.7 Deadlock Avoidance within the sink channels 109

5.8 Lock Unit at L2 . 110

5.9 A state table describing the combinations for LOCKFREE to succeed112

5.10 Stale LockFree Detection at L2 114

6.1 Performance Improvement using Dual Context Processor Cores vs.

Single Context . 119

6.2 Relative Speedup Obtained by Using Dual Mesh over Mesh and

Bus for 16 Processors . 122

6.3 Relative Speedup Obtained by Using Perfect Memory over Dual

Mesh for 32 Processors . 122

6.4 Arbitration Cycles as % of the Total Execution Time: Mesh and

Bus . 122

6.5 %Increase in Average Read and Write Delays in Mesh and Bus

over Dual Mesh . 123

6.6 Increase in instruction count in Mesh and Bus over Dual Mesh . . 124

6.7 % of Invalidated RD and UPs in Dual Mesh 125

8

6.8 Increase in Read and Write Indirections in Dual Mesh over Mesh

and Bus . 125

6.9 Average Number of ACKS that are generated per Broadcast In-

validation on a 16 Processor Dual Mesh Configuration 125

6.10 Speedup Crypt . 126

6.11 Read and Write Latencies with Varying Processor and DataSet

Configurations for Crypt: Dual Mesh 127

6.12 Maximum Delay on the Mesh Network with Varying Number of

Processor Nodes without Contention 128

6.13 Computation to Communication Ratio For Crypt Varying Number

of Processor Nodes and DataSet Size 128

6.14 Speedup LUFact . 129

6.15 Speedup SOR . 130

6.16 Speedup SOR for 1000X1000 with Perfect Memory 131

6.17 Speedup Series . 131

6.18 % of Indirections, MM acccess and Hits within the L2 for 16 pro-

cessors: Dual Mesh and Mesh and Bus 132

6.19 Speedup Sparse . 133

6.20 Relative Speedup: Using Single Bus over Dual Mesh for 16 Processors134

7.1 Link Activity on Vertical Links on L2 Tiles on a Dual Mesh . . . 137

7.2 Link Activity on Vertical Links on Tiles Adjacent to L2 on a Dual

Mesh . 138

9

Abstract

The era of billion and more transistors on a single silicon chip has already begun

and this has changed the direction of future computing towards building chip

multiprocessors (CMP) systems. Nevertheless the challenges of maintaining cache

coherency as well as providing scalability on CMPs is still in its initial stages of

development. This thesis therefore investigates the scalability of cache coherent

CMP systems.

Previous studies have shown that single bus based cache coherent CMPs do

not scale. Directory based CMPs systems provide better scalability, but have

overhead in terms of the space for a full map directory as well as latency in

providing for broadcasting of writes to widely shared data.

In this thesis the idea of using two separate (multiple) networks is explored

for providing a combination of snoop and directory based protocols on a CMP.

The cache coherency traffic is split over two separate interconnects. A limited

directory based scheme with low space overhead is used over one network for

handling all requests and non-broadcast based cache coherency responses. The

second network is specifically used for supporting broadcast based invalidations to

widely shared data. The cache coherency protocol is optimized by removing the

need to generate acknowledgement messages during writes to widely shared data,

as required by directory protocols. A combination of homogeneous and heteroge-

neous networks is implemented giving rise to two architecturally different CMP

systems. The performance of both these CMP architectures is evaluated using

multithreaded benchmarks. Results do confirm that the homogeneous networks

based scheme is a promising design for small and medium sized CMP systems.

10

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

12

Acknowledgements

I would like to thank Dr. Ian Watson for giving me an opportunity to pursue

a PhD and for all the help and support during the study. I would also like to

thank members of the APT group. Special thanks to members of the JAMAICA

group for all the motivation and help, especially Matt for all the guidance and

inputs with regards to designing the cache coherency protocol and debugging the

simulator.

Many Thanks to all my friends in Manchester (as well as in India and US) for

making my stay enjoyable inspite of the numerous pressures associated with the

PhD. Special thanks to Uncle Partha and Aunt Winifred for being like a family

to me in Manchester, Hande for being such a great roomate and Varsha for being

a true and lasting friend.

Last but not the least, I thank GOD for giving me loving parents and family

members. Without their prayers and constant encouragement this PhD would

not be possible.

13

Chapter 1

Introduction

1.1 Motivation

In the past, parallel machines were relegated to research based and high per-

formance scientific applications. These applications are used to model physical

phenomena that are costly, and in some instances impossible to observe with-

out their occurance [CSG99]. Examples include, simulation of weather forecast,

interaction between astronomical bodies (N-body simulations), crash analysis in

automobiles and studying molecular dynamics as required by chemical and phar-

maceutical industries [CSG99]. In contrast, uniprocessor (single processor chip)

systems dominated the desktop computing market. With the explosion of the

internet, databases and server computing based applications started to encroach

the realm of parallel applications. While on the desktop side, gaming, multimedia

and mobile computing started fuelling the need for higher performance.

Since its inception around 1970’s, and upto the mid 80’s [HP07], performance

enhancement in uniprocessors was sustained by technological improvements in

process generation, resulting in doubling of transistors on a single chip as pre-

dicted by Moore’s Law (Figure 1.1 [Bha05]) and increase in processor clock fre-

quency. From mid 80’s until about 2002, increased on-chip transistor budgets

gave rise to several microarchitecture enhancements such as wider pipelines, out

of order processing for increased throughput in terms of more number of instruc-

tions per cycle, better branch prediction mechanisms and larger on-chip cache

memory [HP07]. However, after 2002, the returns from these architectural en-

hancements and increase in clock frequency started to diminish mainly due to

the following factors:

14

CHAPTER 1. INTRODUCTION 15

Figure 1.1: Moore’s Law [Bha05]

• Power Consumption

Power consumption within a processor can be classified as static and

dynamic power. Static power is equivalent to the power consumed

by a circuit when it is in its quiescent state, primarily due to leakage

currents (current that flows through transistors when they are in the

off state). While dynamic power is the power consumed when transis-

tors switch within a circuit [BKJN99]. The formula for static [HP07]

and dynamic power [Bha05] is given by equation 1.1 and equation 1.2

[KM08] respectively:

P = Istatic ∗ V (1.1)

P = C ∗ V 2
∗ f (1.2)

Where P = power consumed Istatic = leakage current C = load capac-

itance V = voltage of operation f = frequency of operation

Frequency ∝ Voltage. Therefore, P ∝ frequency3. It is estimated

that almost 40% of the chip’s power consumption is due to superscalar

uniprocessor core on-chip [Bha05]. Reducing the power consumed us-

ing techniques such as voltage scaling or local clock gating [EB00] leads

to lower performance in uniprocessor (superscalar processors) systems

[Bha05] and does not account for power consumed when wires are

driven through idling processor cores [KFJ+03]. Therefore, there is a

non-linear increase in power as frequency increases. Figure 1.2 shows

how power due to leakage current is catching up with active power.

CHAPTER 1. INTRODUCTION 16

Figure 1.2: Active and Leakage Power increases as process technology improves
over the years [Bha05]

• Memory Wall

In the past twenty years, DRAM1 sizes have increased by about 40%

per year [HP07] and their access latencies have decreased by 76%.

However, these enhancements in off-chip memory latencies is unpar-

alleled to the increase in processor clock frequencies (120 times) as

compared to 15 times for the clock frequency for the DRAM. Figure

1.3 shows the relative improvement in performance for DRAMs and

processors. Therefore, in order to avoid the long wait times to access

memory, processor cores normally contain a hierarchy of caches. Apart

from using caches, multithreaded and speculative processor cores, and

software [GGV90] and hardware prefetching [BC91] is used to reduce

the effect of the penalty associated with memory access.

Figure 1.3: Relative Performance of DRAMs w.r.t. Processor [HP03]

1Dynamic Random Access Memory

CHAPTER 1. INTRODUCTION 17

• Wire Delay

With shrinking feature sizes (minimum size of a transistor or wire

in the X or Y dimension on chip) [HP07], wires become thinner and

transistor size and CMOS switching times decrease. The resistance

of a wire of length l is calculated using the formula as given below

[BKJN99][Ye03]:

R =
ρ × l

A
(1.3)

where ρ is a constant; l = length of the wire and A = cross-section

area of the wire. As the wires becomer thinner, A decreases and hence

R increases. The delay for propagating a signal through a wire is given

by the equation [HP07]:

τ = R × C (1.4)

We see that the delay is proportional to R and C. In order to reduce R

and thereby the delay, according to equation 1.3, l needs to decrease.

Therefore, the wire gets shorter in length. If the wire length decreases,

the distance travelled by the signal on the wire also decreases, which

means that in a single clock cycle only a certain number of gates are

traversed. Figure 1.4 shows the percentage of a processor die that is

reached with reducing feature sizes.

Figure 1.4: Reachability of the signal with shrinking process technologies [Mat97]

CHAPTER 1. INTRODUCTION 18

• Saturating Instruction-Level Parallelism (ILP)

The main objective of any newly developed processor system is to

enhance system performance. On uniprocessors executing sequential

applications, this aim is achieved by issuing independent instructions

simultaneously within the processor pipeline and provide for multi-

ple execution units to process these instructions. Such processors are

known as out-of-order (OOO) processors. If the Decode stage within

the processor pipeline, resolves instruction dependencies then it is

known as a superscalar processor. If the compiler identifies a window

of instructions that could be executed in parallel then such processors

are known as Very Large Instruction Word (VLIW). OOO processors

became popular around the mid 90’s with Intel’s P6 microarchitecture

[Int98]. However the number of comparisons to be made in order to de-

termine independent instructions increases as the square of the window

size [HP07], assuming all instructions were register based. In reality,

the storage space required for a window, branch prediction mechanism,

limited number of functional units(integer and floating point Execute

units) and registers cause the actual number of instructions that are

issued in parallel to be less than the window size [HP07]. One of the

most powerful OOO processor is the Dual Core IBM Power 5 that has

an issue width of 8 instructions from a single thread [SKT+05]. How-

ever, studies in the past have shown that the average parallelism in

terms of number of instructions that can be executed simultaneously

is 7 [Wal90].

In addition to the above mentioned issues, design productivity is of great

concern to the IC2 industry. Figure 1.5 shows the gap between productivity and

complexity as number of transistors increase.

1.2 Why CMPs?

The main goal of a CMP system is to use multiple simple scalar or moderately

complex superscalar cores that work in tandem to improve or better the through-

put of a complex superscalar uniprocessor core. It addresses the power con-

sumption problem, by using relatively lower frequency based processor cores in

2Integrated Circuit

CHAPTER 1. INTRODUCTION 19

Figure 1.5: Productivity vs. Increasing transistor count [Bha05]

FETCH DECODE EXECUTE

FETCH

FETCH

FETCH

DECODE

DECODE

DECODE

EXECUTE

EXECUTE

EXECUTE

EXECUTE

1.

2.

3.

Figure 1.6: Different types of parallelism: 1.Single-Issue 2.ILP 3.TLP [Wri01]

constrast to a single high speed uniprocessor core. It alleviates the chip area

reachability problem by partioning its architecture, thereby using smaller length

wires to interconnect logic within and between cores and curtailing the wire delay.

Given that the cores on a CMP are simple, they do not occupy large area on chip

giving more room for incorporating a larger portion of the memory hierarchy on

chip. Most CMPs offer L2 and L3 caches on chip thereby hiding memory latency

as the bandwidth offered on chip is higher than off-chip. The saturating limits

within ILP and the design complexity associated in hardware has led applica-

tion and system developers to develop different means of extracting parallelism.

One such instance of parallelism is Thread Level Parallelism (TLP), as shown

in Figure 1.6. CMP systems can use TLP to their benefit simply because there

are several processors that are potentially available to execute these threads in

parallel.

CHAPTER 1. INTRODUCTION 20

1.3 Design Challenges in CMPs

The transition from uniprocessor to CMP systems has already been made for

both high end server as well as desktop machines, as seen in Sun’s Niagara, and

Intel and AMD’s quad and dual core systems. However, there are some key design

challenges for CMPs, mainly, the cache coherency issue and architecture scala-

bility. A major difference between uniprocessor and multiprocessor systems is

that uniprocessors do not need to address the issue of cache coherency. However,

CMP systems are in essence, architecturally, a smaller version of cache coherent

multiprocessor systems. Since CMPs are targeted towards applications that will

most likely use the shared memory programming paradigm (a detailed explana-

tion of cache coherency in shared memory systems is given in Chapter 2, Section

2.2), there is a need for a cache coherency protocol to be implemented over such

systems. Apart from handling cache coherency, CMP systems should be scal-

able (in terms of number of processor cores on a single chip) in order to achieve

faster execution speeds for parallel applications. It is a known fact that bus based

CMP systems do not scale [Wri01][Hor07]. Therefore, alternative switch based

interconnect topologies (again, a detailed explanation of on-chip switched net-

works is given in Chapter 2, Section 2.1), are becoming popular with many CMP

systems. One of the most popular switched interconnect is the mesh topology

that is being used to integrate multiple processor cores (tiles) on a single chip

[DT01][WGHea07]. However, the bigger challenge is to maintain cache coherency

on such unordered networks and at the same time achieve application scalabilty.

1.4 Research Aim

The previous sections have listed some of the core problems with increasing chip

densities that are addressed by CMP systems. They also highlight the design

challenges, namely, the scalability of cache coherent CMPs. Therefore, this thesis

explores the scalability of cache coherent tile (interconnection of processor and

memory tiles) based CMP systems (tiled CMPs) using multiple networks. It uses

an extended version of a formerly developed cycle accurate simulator [Hor07] to

model multiple networks and a combination of snoop and directory based cache

coherency.

CHAPTER 1. INTRODUCTION 21

1.5 Contributions

The contributions of the thesis are as follows:

• It uses a novel combination of homogeneous and heterogenous networks

to evaluate the scalability of a cache coherent tiled CMP system.

• It adapts the bus based snoop protocol and the limited directory based

protocol to perform on multiple networks.

• It optimizes the limited directory based cache coherency protocol for

write invalidates to widely shared data by eliminating the need for

acknowledgement messages.

1.6 Thesis Layout

The structure of the thesis is as follows:

Chapter 2 provides an overview of the basic components of tiled CMPs,

namely on-chip interconnection networks and cache coherency protocol. It also

includes a review of related work for Tiled CMPs in the literature.

Chapter 3 presents the JAMAICA bus based CMP. It provides details of the

processor architecture, the bus interface, the token ring network and the MOESI

cache coherency protocol used. It also gives details of the simulator modelling

the architecture.

Chapter 4 provides a detailed description of the heterogenenous tiled archi-

tecture - mesh and bus. It includes details of the architecture of the tile and the

mesh network. It explains the cache coherency protocol, the design of the dedi-

cated hardware based queuing lock unit and the changes made to the JAMAICA

simulator in order to implement this design.

Chapter 5 provides a detailed description of the homogenous tiled architecture

- dual mesh. The main architectural differences between the dual mesh and mesh

and bus schemes are discussed. The modifications made to the cache coherency

protocol, network deadlock problems encountered during simulations and the

solutions provided for it, are presented.

Chapter 6 evaluate the performance of the mesh and bus and dual mesh archi-

tectures using multithreaded benchmarks. It compares the relative performance

of the dual mesh over the mesh and bus and single bus based architectures.

CHAPTER 1. INTRODUCTION 22

Chapter 7 concludes the thesis based on the performance analysis of the two

architectures and suggests future enhancements to the dual mesh scheme in order

to improve its performance.

1.7 Publications

• HiPEAC Workshop on Interconnection Network Architectures: On-Chip,

Multi-Chip January 2007, Ghent, Belgium: Presented an abstract on the

design of a Tiled-Bus based CMP.

• ACACES 2006 2nd International Summer School, Italy, July 2006 Pre-

sented a poster A Lock Unit for the JAMAICA CMP

• Accepted paper in the Second Workshop on Programmability Issues for

Multi-Core Computers (MULTIPROG’09): A Dual Mesh Tiled CMP

Chapter 2

Background

This chapter provides an insight into network based cache coherent chip multi-

processor (CMP) systems. It explains the basic components for on-chip networks

(OCNs) - topology, routing, flow control, switching; followed by a general dis-

cussion on cache coherency protocols as well as alternatives to it. It reviews the

design of some Tiled CMPs cited in both industry and academia.

2.1 On Chip Networks

With the onset of embedded systems, wherein multiple intellectual property (IP)

blocks on chip have to be connected in a manner which reduces the latency and

power consumption - factors that are critical for the performance of the real-

time system, the design of OCNs has generated great interest within the research

community as well as industry. Motivation for networks on chip for homogeneous

CMP systems stems from the fact that, as process technology shrinks, latency

and power become important deciding factors in the performance of systems.

With shrinking feature sizes and the associated wire delay problem (shorter wire

lengths for signal reachability - (Chapter 1), long interconnects, such as buses

and others that rely on global wiring, will be required to clock at a much smaller

frequency compared to the processor, in order to maintain signal reachability

throughout the chip and ensure the in order property of the network. This means

that signal propagation delays on global wires grows logarithmically as opposed

to that on local wires [itr05], as shown in Figure 2.1. Also, network topologies

that rely on global wiring will dissipate more power than their local counter-

parts , because of repeaters added to the long wires to maintain signal integrity

23

CHAPTER 2. BACKGROUND 24

[DT01]. OCNs on the other hand have several advantages over global intercon-

nects. Firstly, depending on the topology, they require smaller length wires to

interconnect components on chip, thereby reducing the power dissipation. They

allow for structuring wiring resources, which simplifies layout on chip, increasing

and sharing the bandwidth among components and hence enhancing scalability

[DT01]. They can use local clocks, thereby reducing the area, power and clock

skew problems associated with global clock trees [OS02]. Given these advantages,

OCNs have been favoured over traditional bus based interconnects in many CMP

systems.

Figure 2.1: Wire Delays Projections On Chip for different metal layers [itr05]

2.1.1 Network Topologies

Network topologies define the various paths that exist between a communicating

source and its destination. Multiprocessor and multicomputer systems use a

variety of network topologies, such as hierarchical buses, trees, ring, meshes,

hypercubes, crossbar [DYL03] [Sta97] [CSG99]. A broad classification of various

types of networks is shown in Figure 2.2. All these topologies can be used both

CHAPTER 2. BACKGROUND 25

on and off-chip. Off-chip networks are constrained by the pin bandwidth. In

this discussion we concentrate on OCNs. OCNs normally divide a message into

packets and transmit them as information carriers between communicating nodes.

This mode of transportation is known as packet switching, wherein a packet enters

a network and traverses through it without knowing the path that it is going to

take to reach its destination. Another mode of transportation is circuit switching,

that which is used by traditional land line phone networks. In circuit switching a

route from source to destination is reserved in advance before sending the packet.

Although, this scheme guarantees packet delivery within a certain period of time,

it cannot compete with packet switching in terms of adaptability, in an ever

changing network traffic scenario. Also, the idea of reserving a network resource

(buffers or channel/links) way ahead in time can lead to inefficient utilization

of that resource. Some of the commonly used OCN topologies are shown in

Figure 2.3.

Figure 2.2: Classification of Network Topologies [DYL03]

2.1.1.1 Direct Networks

Direct networks, as their name implies, connect to neighbouring devices directly,

while remote devices are accessed using several hops. Each node within a direct

network uses a router to interconnect with other neighbouring nodes. The routers

per node perform switching and arbitration. They are also known as orthogonal

networks, i.e. there is at least one link in each dimension of the network, for

every node [DYL03]. This also makes the routing protocol easier to implement.

CHAPTER 2. BACKGROUND 26

Figure 2.3: Various Types of OCNs [ODH+07] [DYL03]

Direct networks are the preferred topology given the on-chip area constraints and

wiring availability [DT01][GK08]. Examples include meshes, tori, hypercubes,

etc. Equation 2.1 shows the average latency that a packet encounters when trav-

elling through a direct network from source s to destination d [BD06][KBD07]:

L(s, d) = Th + Ts + Tw (2.1)

where, Th = Htr, is the header delay given by H (the hop count) and tr the router

traversal delay; Ts = L/W is the serialization delay, with L = the packet length

and W = the channel width (the number of wires that connects two adjacent

communicating nodes; Tw is the time taken to send the packet over the wires.

2.1.1.2 Indirect Networks

Indirect networks use multiple switches connected in a manner so as to form a

centralized switch for interconnecting multiple communicating nodes [DYL03].

CHAPTER 2. BACKGROUND 27

The centralized switch is responsible for packet routing and arbitration. Exam-

ples include crossbars and multistage interconnection networks (MIN) (such as

butterfly, omega, clos, fat tree). The number of switches required for crossbars is

N2, and that for MINs is (N/k)(logkN), where N is the number of communicat-

ing input and output ports and k is the number of input/output ports per switch

(switch degree). In order to reduce the number of switches, MINs use bristling,

a technique wherein multiple ports are connected to a single switch. This is used

in fat tree networks [HP07].

2.1.1.3 Shared Medium Interconnects

Shared medium interconnects, such as arrays, buses and rings are characterized

by a single link that is shared by all components. Buses, for example also provide

for total order. Although they are simpler to implement, these networks are not

scalable and require arbitration in order to access the network [DYL03].

2.1.1.4 Commonly Used OCNs

Mesh networks are by far the most popular [WGHea07] [GKS+07], mainly be-

cause of the short channel distances between neighbouring nodes resulting in one

cycle hop delay and thereby addressing the wire delay problem for deep submi-

cron technologies. However, as the number of nodes increases, the router radix

(connectivity of the router) is increased to reduce the hop latency. Equation 2.2

gives the power dissipated in sending a flit (basic flow control unit, normally the

minimum amount of information that can be transmitted over the physical link

[DYL03]) per hop [DT01]:

Phop = Piocontrl + Pwire (2.2)

where, Piocontrl is the power dissipated in the input and output controller of the

transmitting node and total power dissipated because of this factor is dependent

on the number of hops; Pwire is the power dissipated as the flit traverses the wire

and the total power dissipated because of this factor is dependent on the length

of the wire.

In topologies such as torus, the power dissipation increases mainly because of

the varying wire lengths to interconnect different nodes [BD06] [DT01]. There-

fore, nowadays a more popular topology is the concentrated mesh. Concentrated

CHAPTER 2. BACKGROUND 28

meshes increase the radix of a router using the concept of bristling, wherein each

router node services four processing nodes. The router itself is then connected

to four such routers using the mesh network links and express links as shown

in Figure 2.4. Express links connect a router situated on the edge of the mesh

network to other alternating edge routers. This layout improves area efficiency,

the hop latency (more connectivity compared to a torus) and does not require

complex wiring layout (no large varying wire lengths), thereby reducing power

dissipation. However, the disadvantage of this scheme is that there is an increase

in design complexity of the router resulting in larger router delay. Recent papers

have proposed high radix router based concentrated mesh, also known as the

flattened butterfly topology, to reduce the routing latency and power dissipation

[KBD07]. Each router within a row of the 2-D mesh network connects to all other

routers in that row as well as all routers within the same column. This type of

network incorporates the high radix feature of indirect networks on a symmetric

direct network. Although this scheme uses varying wire lengths similar to the

torus network, it reduces the hop count (lower than the concentrated mesh) and

therefore reduces the total power dissipated in the input and output controllers,

which compensates for the increase in power due to wiring complexity.

Figure 2.4: Concentrated Mesh [BD06]

2.1.2 Routing Protocols

A routing algorithm determines the path between source and destination and

gives an indication of how effectively the bandwidth on this path is utilized

[Pin06] [DYL03]. The routing algorithm also determines how the load is dis-

tributed within the network [HP07]. The main purpose of a routing algorithm is

to guarantee packet delivery to its destination. It does this by restricting certain

CHAPTER 2. BACKGROUND 29

paths within the network. Depending on the number of paths restricted routing

algorithms are classified as deterministic or adaptive. Subcategories within each

class of routing determine whether the route for the packet to be sent is com-

puted in advance and set within the header of the packet (source routing), or if

the route is computed on the fly, given the information about the source and des-

tination (distributed routing) [DYL03]. Source routing is simpler to implement,

but requires prior knowledge of traffic conditions before the route is computed

and is almost obsolete in OCN [GLD06]. Distributed routing is harder to im-

plement requires fixed hardware tables (not scalable) or finite state machines for

determining the link on which the packet needs to be sent [DYL03]. The reason

distributed routing is preferred over source routing is because it is more adaptive

to changing network conditions.

2.1.2.1 Deterministic Routing

In this routing scheme, the path from source to destination is always fixed. The

most popular routing algorithm in this category is the Dimension Order Routing

Protocol (DOR) [SB77], which is used for direct networks, such as meshes, tori

and hypercubes. In this routing protocol, the packet changes its dimension only

when the link or channel needed to the send the packet is not on the same

dimension [HP07]. Figure 2.6 shows the DOR algorithm and Figure 2.5 shows a

mesh network using the DOR algorithm to route packets [DYL03]. DOR is also

known as a minimal routing algorithm because it selects the shortest path from

source to destination and always ensures that the packet is progressing towards

the destination.

Figure 2.5: Mesh Network Using DOR
[DYL03]

CHAPTER 2. BACKGROUND 30

Figure 2.6: Dimension Order Routing Algorithm
[DYL03]

2.1.2.2 Adaptive Routing

In this routing scheme, multiple paths exist between a source and destination.

The path can change depending on the traffic level within the network [DYL03].

This type of routing algorithm provides better load balancing and is also fault

tolerant [CSG99]. It is also know as non-minimal routing because the packet

may get routed in a direction away from the destination in order to avoid or

reduce traffic congestion [DYL03]. The hardware required to make these routing

decisions is complex and hence could potentially increase the route calculation

time. Depending on the number of channels that are available for routing, fully

and partially adaptive routing algorithms exist [DYL03].

CHAPTER 2. BACKGROUND 31

2.1.2.3 Topology Agnostic Routing

Routing algorithms that are topology dependent are not fault tolerant because

failure of a single link within the network could lead to stalling the system

[CSG99]. Therefore, protocols that do not make any assumptions about the un-

derlying network, also known as topology agnostic algorithms, are proposed. One

such algorithm is the Up∗ − Down∗ routing algorithm [SBB+91]. In this routing

algorithm, it is necessary for the node that is generating a packet to determine the

topology of the network and create a tree based on the location of the source and

destination. Further on, it assumes that nodes within a tree are interconnected

using bi-directional links. Similar to tree routing, packets move up the tree to-

wards the root and then down towards the destination. Restrictions to the routing

protocol requires that a packet cannot re-traverse in a direction(up/down), once

taken. Another algorithm in this category, also known as segment based routing

[MFD+06], proposes to divide the network into segments and places route turn

restrictions within each segment, allowing non-minimal routing within a segment.

2.1.3 Flow Control

Flow control is technique that is used to prevent a sender from sending packets

at a rate that is faster than that the receiver can process [HP07]. It helps in

controlling the traffic congestion level in the network [DYL03]. There are different

flow control schemes, the simplest one involving performing a handshake protocol

between the sender and receiver (request and ack scheme). Another scheme, Stop

and Go, notifies a sender that the receiver’s buffers are nearly full and the sender

should stop sending packets. Credit based flow control allows a sender to keep

track of the number of available buffers at the receiver end. The sender maintains

a count (credit) of the number of buffers at the receiver and decrements a counter

every time it sends a packet. The receiver on accepting the packet and freeing

the buffer, sends a credit increment message to the sender [Pin06]. A more recent

flow control technique known as Adaptive Bubble flow control [PIB+01] relies on

ensuring at least two packet buffers free at the receiver before the packet is sent

out of the sender.

CHAPTER 2. BACKGROUND 32

2.1.4 Switching Technique

Switching techniques allow a packet to get forwarded through the network based

on the buffer requirements. There are three main switching techniques used,

Store and Forward (S&F), Virtual Cut-Through (VCT) and Wormhole [DYL03].

S&F switching technique buffers the complete packet before sending to the next

node in the route direction. VCT allows for packet pipelining once the header

packet is received at a node, i.e. the header is forwarded to the next node be-

fore the trailing packets arrive from the sending node. If the header packet is

blocked due to congestion, then the complete message is buffered, similar to S&F

[DYL03]. Wormhole applies switching to flits, in order to save buffer space. The

packet is split into flits and they are transmitted through the network similar to

that in VCT, except that packet does not buffer at flit blockage [DYL03]. The

greater chance of message blockage in wormhole scheme requires the network to

be associated with extra buffers per physical channel (virtual channels) and flow

control techniques [DS87].

2.1.5 Deadlock Avoidance

For packet progression through a network, network resources (buffers, channel-

s/links) must be available. Non-availability of a link or buffer that is blocked

results in a packet waiting for the resource to be freed and hence leads to dead-

lock of the system. During deadlock, there is no progression of packets through

the network. All networks are prone to deadlock because they do not contain

infinite buffer resources [HP07] [HGR07]. A simple deadlock scheme is illustrated

in Figure 2.7, where in all packets are destined for alternating nodes, with each

node unable to send its packet because the successive node buffers are full. The

cause of a deadlock is due to the formation of a cycle by the turns contained in

a packet’s route [DYL03]. This deadlock can be broken by adding extra buffers

per physical channel. These buffers are also known as Virtual Channels [DS87].

Virtual channels are one of the most popular ways to avoid deadlock, especially

for adaptive routing based networks. However they consume extra space and

power on chip [HGR07].

While the routing algorithm is responsible for controlling packet flow through

the network, one of the easiest ways to avoid deadlock is through using a deadlock

free routing algorithm, e.g. DOR. DOR ensures that path taken by a packet from

CHAPTER 2. BACKGROUND 33

source to destination never forms cycles. It does this by allowing the packet to

perform only a single change in dimension (direction) when moving from source to

destination. DOR is restrictive in the number of paths that a packet can take and

therefore the turn model [GN92] was proposed to provide a minimal combination

of turns that a packet can make without creating cycles in its route. The turn

model does not require addition of VCs. The Up∗−Down∗ routing algorithm is a

instance of the turn model and is a partially adaptive routing algorithm [DYL03].

Another proposal for avoiding deadlock is to use flow control. Credit based

flow control is shown to be most effective in avoiding deadlock, by controlling

the amount of traffic that enters the network [HGR07]. If deadlock is detected

then packets are dropped to ensure forward progress in the network [DYL03].

Apart from deadlocks, networks are also prone to livelock. Livelock occurs when

a packet travels through the network towards the destination but gets rerouted in

a different direction every time because of blocked buffers [DYL03]. This situation

normally occurs in routing protocols that allow non-minimal routing. Livelock

occurrence probability is reduced by limiting the number of non-minimal routes

taken.

Figure 2.7: Classic Example of Deadlock
[DS87]

2.2 Cache Coherency Protocols

Studies in the past have shown that computation intensive applications, such as

scientific workloads, databases and internet applications support inherent par-

allelism and can perform better if this parallelism feature is exploited by the

underlying hardware [HP07] [CSG99]. The quest for higher speed in application

executions as well as the growth in microprocessors fuelled by the enhancement

CHAPTER 2. BACKGROUND 34

in VLSI technology, gave rise to multiprocessor systems [CSG99]. Multiproces-

sor systems, utilise multiple microprocessors to speed up the execution time of

a single parallel application or can run several applications to produce increased

performance. Unlike their uniprocessor counterpart, multiprocessor systems re-

quire an enhanced communication based programming model and this gives rise

to two types of parallel programming paradigms, namely shared memory and

message passing. Message passing models require explicit programmer defined

messages to be exchanged among communicating processors [PTM96]. Also data

distribution plays a key role in the performance of such systems. Programming

such systems is non-trivial as each processor uses a separate address space, un-

like uniprocessors that use a single address space. On the other hand, the shared

memory programming model is simpler to program as it achieves communica-

tion through a shared single address space and allows for easy porting of parallel

applications [PTM96]. Parallel programs that run on shared memory multipro-

cessors always need to ensure that the value of data being read is the last written
1 [HP07]. However, having multiple copies of the same data in different caches

in multiprocessor systems poses problems in maintaining this constraint. Cache

coherency protocols use hardware or software techniques in order to ensure this

condition [HP07]. Of the hardware based cache coherency protocols, the simplest

one is the snoop based protocol, wherein all caches snoop a bus or any ordered

network to maintain the correct state of the cache line. Snoop based multiproces-

sor systems are also known as symmetric shared memory multiprocessor systems

because the access time to the shared memory is uniform irrespective of the lo-

cation of the processor. One of the popular cache coherency protocols is the

non-inclusive based, MOESI. It is a combination of the Dragon (MOESI with

write invalidate feature to Shared cache lines) and CRAC (with the Owned state

transfer feature between L1 caches) cache coherency protocols [AB86]. The state

diagram for the MOESI protocol is shown in Figure 2.8 and Table 2.1 explains

the various cache states.

While cache coherency protocols provides data consistency for a single location

by deciding on what value of shared data is read [HP03]. Memory consistency

models on the other hand handles the data consistency for multiple locations

[Ste05]. It decides when the value of the data can be read [HP03]. In short,

memory consistency is a formal specification of how ordering of reads and writes

1Sequentially consistent memory model

CHAPTER 2. BACKGROUND 35

INVALID

SHARED EXCLUSIVE

MODIFIED

OWNED

Load miss
on bus

Load miss
satisfied by another cache

Store miss on bus

Store miss on bus

Store miss on bus

Store hit in cache

Store miss on bus

Store hit in cache
Invalidate other caches

Store hit in cache
Invalidate other caches

Store miss − Write miss;
Store hit − Write hit;
Load miss − Read hit;

Invalidate other caches − Invalidate
transaction on bus;

In cache − Hit transaction in the cache;
On bus − Miss transaction on bus;

Store hit in cache
Invalidate other caches

Load miss satisfied by memory

Figure 2.8: The MOESI state diagram [Sun03]

should take place within a program [Dig95]. All memory consistency models re-

quire programmers to devise mechanisms to ensure correctness of program execu-

tion [Dig95]. Memory consistency models for multiprocessor systems are classified

broadly as either sequential or relaxed consistent. Sequentially consistency mod-

els require that program order is maintaind within a processor and that writes

to a single location are seen in the same order by all processors (write serializa-

tion) [Lam79]. Although memory operations from different processors may be

interleaved, they should commit in the same order as if the program was being

executed sequentially on a single processor, i.e. a memory operation is atomic

and completes in the same order that it was issued [Dig95].

Relaxed consistency models optimize on the commit ordering of reads and

writes to different addresses within a processor as well as on different processors.

Relaxed models are normally classified depending on the read and write ordering

they relax, i.e. either read-after-write (RAW) or write-after-write (WAW) or read-

after-read (RAR) and write-after-read (WAR) [Dig95]. All relaxed consistency

models maintain the write serialization property [Dig95]. However, they require

programmers to use special instructions known as fence instructions to overide

program order and introduce synchronizing operations for accessing shared mem-

ory [Dig95]. Use of relaxed memory models allows for implementation of hardware

and software optimizations on the application.

CHAPTER 2. BACKGROUND 36

Cache State State Description
M Modified-Line is dirty and the latest copy of

the data exists in only one L1 cache which is
responsible for writeback to main memory.

O Owned-Line is dirty and shared between mul-
tiple L1 caches. L2 is not inclusive. The L1
cache that contains the O cache line is re-
sponsible for a writeback to memory.

E Exclusive-Line is clean and a copy of the data
exists in only one L1 and L2 cache.

S Shared-Line is clean and exists in one or more
L1 caches and the L2.

I Invalid-Cache line contains invalid data in
L1.

Table 2.1: Cache Line State Description

2.2.1 Snoop Based Cache Coherency Protocol

In snoop based cache coherency protocols, broadcast is used as a means to main-

tain the state of a cache line. All caches snoop a bus or any ordered interconnect

to determine the current state of the cache line. Bus based snoop cache coherency

protocols have been used extensively in the past on most multiprocessor systems

but suffer from lack of scalability, because a single interconnect (lower bandwidth)

is used for broadcast traffic. Another disadvantage of snoop based system is the

interference caused by processor and bus interfaces trying to access or snoop the

cache tags at the same time instant, resulting in the reduced performance of the

system [ASHH88]. A solution to this problem is to use duplicate tags [ARM06]

[ASHH88]. But this increases the power and space overhead within the system.

Duplicate tag based snoop systems also have the requirement of ensuring that

any updates to duplicate tags and original cache tags is atomic in nature. In

order to increase the snoop bandwidth, systems such as Sun’s FirePlane servers

use separate address and data networks, the former being ordered and the lat-

ter is unordered [Cha02]. Alternatively, in order to reduce the broadcast snoop

traffic and power dissipation associated with snooping the cache tags, schemes

such as course-grained coherence tracking and JETTY filters have been proposed

and their working is described below [CSL+06] [BDH+99] [MMFC01]. Figure 2.9

shows a snoop based multiprocessor system.

CHAPTER 2. BACKGROUND 37

• Course Grained Coherence [CSL+06]

Course grained coherence relies on tracking snoop requests for large

regions of memory within each processor node. Each snoop request is

mapped to a memory region. Two different schemes are used in order

to store the region information.

In the first scheme, cache lines from multiple regions are hashed to the

same entry. To implement this, two tables are used, the first one is a

hash table into the line count of the cache lines from multiple regions

- indicating a line from a region may be present in the cache, and the

second a non-shared table that tracks regions (using the address) that

are not shared. If a processor generates a request it takes the following

actions:

– It first checks its non-shared table to see if the request’s region

is not shared. If no information is available, then the request

is broadcast, else the line is fetched from memory.

– On a broadcast, other processors check their hash region table

and if the line count is > 0 for the memory region correspond-

ing to the broadcast address, then the non-shared table is

checked.

– If an entry is present in the non-shared table it is invalidated.

Along with the hash and non-shared tables, the data and in-

struction caches are also checked and their state is updated on

a cache hit. Data and state information is then provided to

the requesting processor.

– The requesting processor, on receiving data and state, will

increment its own hash table and update its cache states. It

sets an entry in the non-shared table, if the data was provided

by memory.

Although this method is space efficient and does not require evict-

ing entries from the hash table, it does not provide high accuracy in

predicting the existence of a line from a region.

The second scheme, has higher space overhead and maintains a single

table (region coherence array - RCA) whose entries provide for a one-

to-one mapping between the cache line and the memory region. An

CHAPTER 2. BACKGROUND 38

RCA entry also contains the number of lines from a region that are

cached by the processor and the state of the region, i.e. if the region

is shared or modified. RCA’s are checked by both local cache requests

and by snoop broadcasts. If an RCA entry matches a broadcast re-

quest, it updates its own state to shared as well as takes the necessary

cache action. The limitation of this scheme is that on eviction of

an RCA entry, the corresponding cache lines have to be invalidated

or written back to main memory. The effect of this disadvantage is

reduced by using a policy that requires evicting regions with small

number of cached lines. The space overhead for an RCA configuration

of 512B with same number of lines as the L1 cache is about 5.9% of a 1

MB L2 cache area. The scheme has been shown to reduce broadcasts

by 55-97% on some of the benchmarks that were evaluated and an

overall decrease in runtime execution by about 8.8% on average.

• JETTY Filters [MMFC01]

JETTY filters (per processor) are used to snoop requests over the bus

in order to determine if it is worthwhile accessing the L1 or L2 cache

for the same request. It derives its inspiration from the fact that most

snoop requests miss in L1 or L2 caches and hence cause wastage of

power when accessing their tags. For efficient working of the JETTY

filter it is imperative that the structure of the filter is small enough

so as to not waste space as well as energy in searching the filter itself.

Also, the filter should never mis-predict, i.e. a request for a cached line

should always be allowed to snoop the L1 and L2 tags. Three types

of JETTY filters are described. The first one keeps track of cache

requests that were snooped and missed within the L1 and L2 of the

processor. The second one keeps track of all cached lines and finally

the third one is a hybrid version that is a combination of the first two

methods. On average, around 41% power reduction was observed from

the hybrid version compared to accessing the cache tags during every

snoop request. Of all the three types of JETTY filters the hybrid

version gave the best performance for power reduction. These filters

act as duplicate cache tag arrays and help in reducing the latencies

caused when both processor and snoop interfaces try to access the

cache tags simultaneously.

CHAPTER 2. BACKGROUND 39

Figure 2.9: Snoop based Symmetric Shared Memory Multiprocessor [HP07]

2.2.2 Directory Based Cache Coherency Protocols

For highly scalable systems, the shared memory is physically distributed across

various nodes and a switched network is used to interconnect them. These types

of multiprocessors are known as distributed shared memory system and they

use directory based cache coherency protocols [HP07]. Directories are separate

memory modules that maintain the state of every cached line along with a vector

that indicates the list of sharers for that cache line. They can be either centralized

or distributed among nodes to keep track of the state of the shared data within the

local memory in the node. Schemes with both static and dynamic directory entry

placement have been described in the literature [PTM96]. A simple directory

protocol is shown in figure 2.10 [HP07]. Nodes within this protocol scheme are

classified as either local (where the request originates), home (where the directory

for the requested memory word resides) or remote (other nodes that contain the

same memory block in their caches). For a read miss, the request from the local

node is forwarded to the home node, which in turn either supplies the data if it

is in memory or forwards the request to the remote node where the actual data

resides. The local node gets the data and if the remote node supplied the data, it

updates its own cache and also the state of the directory entry in the home node

to indicate the list of sharers for this address. For a write request, the local node

sends invalidation messages or update messages to all the sharers and waits for

an acknowledgement from each of them thus guaranteeing that the write was seen

by all sharers. The list of sharers is fetched from the home node. The local node

now has exclusive access to the cache line and the directory in the home node is

updated with the new owner information. Ordering is ensured during read and

write access by the directory that waits for an acknowledgement message from

CHAPTER 2. BACKGROUND 40

LOCAL NODE

REMOTE
NODE

D
I
R
E
C
T
O
R
Y

D
I
R
E
C
T
O
R
Y

LOCAL NODE

REMOTE
NODE

REMOTE

NODE

1

2

3 4

1. Send request to Home node.

Read Miss
Write Hit/Write Miss

2. Get Remote node id.

4. Send data to Home Node

1

2

3 34 4

1. Send request to Home node.
2. Get Remote node(s) id(s).

3. Send request to Remote Node

3. Send request to Remote Node
4. Invalidate Remote node and/or send data to Home node.

Figure 2.10: Simple Directory Based Scheme [CSG99]

the requestor and does not allow any new request for the same address to proceed

until the original request for that address has completed.

2.2.2.1 Directory Design Alternatives

The design of the directory has significant impact on the latency introduced due

to indirection during coherence transactions among processor nodes [PTM96].

The full map directory is not very efficient in terms of space complexity (O(N2))

and because cache lines are normally shared by a small number of processors,

several alternatives schemes have been proposed to reduce this overhead. Note

that all schemes provide reduced performance compared to the full map directory

as a trade off over smaller space overhead.

• SCI - Scalable Coherent Interface [PTM96][NS92]

In this scheme caches are used as distributed directories and cache

lines are logically joined together in the form of doubly linked lists.

The home node directory maintains a pointer to the head of this list.

Every read request is satisfied either by the home node or the head

of the list. A requestor always add itself to the head of the list. On

write requests, invalidation messages propagate down the list. In order

to reduce the write latency on invalidations (O(N)), the list structure

is replaced with a tree. This reduces the write latency to O(log2 N).

Although SCI reduces the space complexity at the directory in the

home node, it increases the size of L1 caches.

CHAPTER 2. BACKGROUND 41

• 2 bit Directory Scheme [AB84]

In order to reduce the space overhead associated with each entry in the

directory, only 2 bits are used per directory entry to encode the cache

states - Absent, Present in one cache, Present in multiple caches and

Modified in a cache. No owner information is stored and therefore on

a read miss to modified data or write miss to shared or modified data,

broadcast is used. This scheme increases the number of broadcasts

and also the latency for read and write misses to lines present only in

one processor node. This scheme is suitable for applications that have

a small sharing set.

• Limited Pointer Schemes [ASHH88]

These schemes store x pointers per directory entry where, x ≤ N , and

N = number of nodes in the system. Each of these pointers further

contains log2 N bits. They handle overflow by broadcasting or software

intervention to store the additional sharer information in the memory

associated with the directory’s node. The penalty paid for reducing the

space overhead is increased latency in the case of overflow of directory

pointers. Limited directory schemes are classified depending on the

number of pointers as well as the invalidation scheme used, i.e. broad-

cast or non-broadcast. These schemes can be generalized as DiriX,

where i is the number of indices per directory to store the cache line

sharers and X depends on whether broadcast (B) or non-broadcast

(NB) is being used. They range from storing 0 pointers (broadcast

scheme) to x pointers with broadcast as well as non-broadcast facility.

A scheme with x pointers and non-broadcast implies that the number

of sharers cannot exceed x. The directory size grows as O(N log2 N)

[SH91].

• Compressed Directory Entries [ASHH88] [MH94]

Here the directory entries use compressed sharing codes to reduce the

width of the sharers. In a coarse vector based directory, each entry

uses x bits, wherein each one of the x bits represents a k processor

group [GWM90]. This scheme allows for multicast based invalidations,

instead of broadcasts. Alternatively, codes such as, tristate [ASHH88]

or gray-tristate [MH94] are used to reduce the number of bits per

CHAPTER 2. BACKGROUND 42

directory entry, by using 2∗ (log2 N) bits, where N is the total number

of nodes. If each 2 bit pair is either coded as both zeros or ones

then they represent a single sharer. If any one 2 bit pair is coded

with both zero and one, then the directory entry represents a superset

of cache sharers for that particular pair of bits. If all 2 bit pairs

are coded with both zeros and ones, i.e. 0 and 1 per 2 bit, then it

means that all caches are sharers. This scheme could result in several

unnecessary invalidations because of the superset case and is proved to

be marginally better than the limited pointer based broadcast scheme

[GWM90].

• Segment Based Directories [CP99]

Segment directories use both full-map as well as a limited pointer

scheme to reduce both the space and number of overflow instances

from the limited pointer scheme. Here, each directory entry termed

as SDKk, consists of a segment of k bits, and a segment pointer of

log2(N/K) bits to determine the position of the k bit segment within a

N bit full map directory entry. In effect, the k-bit segment acts as a full

map directory for k processors within a system of N nodes, instead of

acting as a pointer to a single node as in the limited directory scheme.

Thus the segment directory can encode many more processors using

a few more bits, compared to the limited directory scheme. Results

have shown that this scheme reduces the directory overflow by up to

85% on some benchmarks.

• Interconnect Based Directories [RL97]

In this scheme, the topology of the mesh network as well as the prop-

erty of the wormhole routing algorithm allows all nodes within a path

from source to destination to inspect a packet. The snooping of packet

reduces the number of invalidation messages that need to be generated

during broadcasts. Broadcast messages are generated only when the

limited pointer based directory entry overflows. The limited directory

entry pointers are then utilized to generate snoop paths over which the

broadcast packets are sent out. The space overhead is O(N3/2∗log2 N),

which is greater than the limited pointer scheme, but lesser than a full-

map directory.

CHAPTER 2. BACKGROUND 43

• Two Level Directory Scheme [AGGD05]

Here two levels of directories - a small uncompressed directory (full-

map) and a larger compressed directory that covers all lines that are

cached, are maintained. The larger directory entries contain com-

pressed sharing codes (some with O(log2 log2 N) as space overhead)

based on the fact that nodes are arranged as a logical binary tree.

The entries in the smaller uncompressed directory are cache lines that

exhibit high temporal locality. This scheme provides lower space over-

head compared to a full-map, course vector and tristate based directory

schemes. Its provides better runtime performance than using Dir0B

and Dir1B based limited directory used as the compression scheme

within the larger directory, for most of the evaluated benchmarks.

However, it does not outperform other compression schemes in terms

of runtime execution, such as gray-tristate [MH94] and course vector

[GWM90].

All the limited directory schemes discussed here reduce the area overhead in

comparison with that of a full directory. They range from storing no pointers

(2bit directory - smallest area overhead) to a hybrid version of using limited

and full directory. In order to reduce the number of broadcasts and hence store

more sharer information, limited directory schemes with compression, utilising the

network topology (more area overhead) and dividing the network into segments,

is discussed. It is seen that smaller the directory entry gets, the larger the write

invalidation latency overhead (broadcast) it suffers from. This in turn affects the

run-time performance of the application. In this thesis, we have used a Dir1B

limited directory scheme, however the broadcast invalidation overhead is reduced

by using a separate ordered network and thereby avoiding the need to generate

acknowledgement messages.

2.3 Alternative to Snoop and Directory Proto-

cols

2.3.1 Token Coherence

While snoop based and directory cache coherency protocols dominate shared

memory systems, another protocol known as Token coherence has been proposed

CHAPTER 2. BACKGROUND 44

to work on unordered interconnects, without incurring the space overhead of di-

rectory protocols or the indirection latency that occurs due to sending all requests

to the directory [MHW03]. The coherency scheme uses an optimized performance

protocol in the absence of races, such as using prediction of cache line owners.

The protocol assumes a correctness substrate that enforces the following rules:

• Each memory block is associated with N tokens, where N is equal to

the number of processors in the system. One of the N tokens is an

owner token.

• When performing a write to shared data, the writing processor requests

all the tokens associated with that shared memory location from all the

sharer processors. If a processor has just one token and if it supplies

that token on a token request, it invalidates the line in its cache. Only

after receiving all the tokens associated with a shared memory location

can the processor write to the location or cache line. The idea behind

getting all tokens is to ensure that no other processor is attempting

an operation (read or write) on the same cache line.

• On a read miss, a processor needs just one token and gets it by broad-

casting a request to all the processors for a token and valid data. A

processor with the owner token should supply the data along with a

token.

Write to a cache line not present in the cache, i.e a write miss, works in a

similar way to reading the data in a Shared(S) mode and then writing to it. In

this system, a cache line need not store the cache states, however a cache line with

0≤t≤N tokens, represents the S state. If a cache line contains all the N tokens,

it is in the Modified (M) or Exclusive (E) state. A processor with no tokens is in

the Invalid(I) state. When a processor detects starvation of its request, it issues

a persistent request that is handled with priority by all other processors.

This protocol uses broadcast to issue transient and persistent requests and this

increases the traffic within the network. Simulation results have also shown that

token coherence does not perform better than a snoop based protocol on ordered

networks, because of the overhead of gathering tokens to perform a transaction,

but can outperform directory based protocols. It also adds overhead to L1 caches

by storing token count. Recent papers have utilised token coherence for designing

CHAPTER 2. BACKGROUND 45

fault tolerant cache coherency protocols as well as using priority instead of per-

sistent requests in the case of starvation [CRD07][FPGAD07]. Token coherence

has also been used as an inter-chip cache coherency protocol [MBH+05].

2.3.2 Multicast Snooping

This scheme uses a combination of snoop and directory protocols [BDH+99].

By multicasting (prediction based) it allows a selected group of processors to

snoop a request. For this purpose, it requires a multicast address network as

well as a multicast group predictor. It switches to broadcast, if no multicast

prediction is made or the multicast mask is wrong even after a few retries. The

multicast address network has to be ordered and hence eliminates the need for

acknowledgement (ack) messages during invalidation to shared data. All requests

that are multicast are also sent to a directory to ensure correct prediction of the

multicast mask. Any request, read or write that does not contain the previous

owner in its multicast mask receives a negative acknowledgement (nack) from the

directory. Lines within the cache can assume shared, owned (dirty shared) and

modified state. A distributed directory scheme is assumed, with each processor

associated with some physical portion of the main memory. For a write, if the

multicast mask contains the previous owner as well as the list of all sharers

then the write is successful and the line is fetched in modified state. If the

mask includes the previous owner but not all the sharers (or has a partial list

of sharers), the line is fetched in the owned state with newer mask information

from the directory. Also, all requests that arrive at a processor for a pending

block, i.e. the processor has itself requested for the same block, will be negatively

acknowledged (nacked). The advantage of this scheme is that it reduces the

number of broadcasts (if prediction is correct or partially correct - achieved about

73 - 95% accuracy) on the address network by performing multicasts to 2–6

destinations. and does not incur the indirection delay (directory forwarding the

request) that is associated with directory protocols especially when a request is

made to modified lines and the prediction mask is correct. This scheme requires

a logically ordered address network as well as a directory that maintains the

complete list of all sharers. Requests have to wait for an ack or nack from the

directory before they can retry or accept the data. Therefore the overall system

performance might not surpass a directory protocol scheme.

CHAPTER 2. BACKGROUND 46

2.3.3 Bandwidth Adaptive Snooping

This CMP system also uses a combination of snoop and directory protocols

[MSHW02]. It is primarily motivated by the idea that if a large bandwidth

is available, then snooping protocols perform better, while in constrained band-

width situations, directory protocols are preferable. It uses a saturating counter

to determine if the link utilization is above or below a particular threshold. A

policy counter is used to average the link utilization and determine the fraction of

requests that need to be broadcast or sent to the directory controller. The cache

coherence protocol used in this scheme is MOSI. The snoop protocol assumes an

ordered address network and an unordered data network. Both these networks are

implemented as separate virtual channels. A multicast snoop based full-directory

protocol [BDH+99] is implemented on the two virtual networks. All requests that

are generated are sent from the directory controller back to the requestor. This

is to ensure that the requestor can determine where its request is positioned in

the total order. The ordered address network prevents the need for explicit ac-

knowledgement messages. Results indicate that for small bandwidth networks,

the directory protocol performs better that snooping or the bandwidth adaptive

protocol. As the bandwidth increases the bandwidth adaptive protocol outper-

forms both snoop and directories. For large bandwidth networks, the bandwidth

adaptive protocol imitates the snoop protocol behaviour and hence outperforms

directories. While this approach seems promising for varying workload charac-

teristics, it is a complicated protocol to design and verify, given the increased

number of cache state transition in order to maintain cache coherency and the

constant monitoring of the utilization of the network. The approach taken in

this thesis is also similar to that described in this system, with the distinguish-

ing features such as, no attempt to determine network utilization (assuming that

the bandwidth available on the on-chip network is large), use of area conserving

limited directories and no requirement for an ordered address network.

2.4 Tile Based CMPs

Nowadays, the abundant on-chip wire and transistor resources [DT01] have re-

sulted in CMP systems that implement processing logic in a tile fashion and

interconnect them using some symmetric network for simplification of the layout

on chip. Tile based CMPs, as they are popularly known, can be broadly classified

CHAPTER 2. BACKGROUND 47

based on the programming paradigm adopted within the system - control flow and

data flow model. In control flow based systems instructions that are executed in

some order control the flow of data. In dataflow systems, the availability of data

drives the execution of the program. Most tile based CMPs use a distributed di-

rectory protocol for cache coherence, which means that each tile is designated as a

home node for a certain range of physical addresses. In traditional multiprocessor

systems the main memory is physically distributed across multiple nodes and has

a directory associated with it. However, due to space constraints for on-chip tiled

CMPs, the main memory is off-chip and the directory is implemented as either

separate directory caches [BKT07] within each processing node (for private L2

caches at the node), or is a part of the tag array within a shared L2 cache node

[BGC+07]. This section reviews some of the popular cache coherent control flow

and dataflow driven tile based CMP architectures, studied in academia as well as

developed by industry.

2.4.1 Tilera

Tilera (Figure 2.11) is a 64 tile architecture that contains 5 mesh networks

(iMesh), utilizing the abundant on-chip wires for enhanced communication in

embedded applications [WGHea07]. It is an extension of the RAW tiled architec-

ture [TKMea02]. It provides shared memory communication as well as dataflow

based computation using an API2, iLib, which allows for customized data place-

ment and routing on the underlying network without the intervention of the

operating system. Each tile contains a 3-way VLIW3 pipelined processor and

with private L1 and L2 caches, a DMA4 engine and support for interrupts, pro-

tection and virtual memory. Every tile is capable of booting an OS and running

C or C++ programs, using an in-house compiler [Til]. Each network within the

system has a channel width of 32 bits. Out of the five mesh networks, four are

dynamic networks - User Dynamic Network (UDN), Memory Dynamic Network

(MDN), I/O dynamic network (IDN) and Tile Dynamic Network (TDN); and one

static network (STN). Communication over dynamic networks is through packets

that use a wormhole based dimension order routing protocol to provide order-

ing between any two communicating nodes. The functionality of each dynamic

2Application Programming Interface
3Very Large Instruction Word
4Direct Memory Access

CHAPTER 2. BACKGROUND 48

network is specified below:

• UDN

This network is configured using the iLib API and performs low latency

scalar operations between executing threads on different tiles. Flow

control is ensured using software generated acknowledgment messages.

Nodes communicate with each other using registers that are network

mapped. The iLib API allows for both channel and message passing

based communication. Channel based communication can be further

classified as raw or buffered, depending on the buffer requirements

at the receiver. In order to support these different communications,

each tile is provided with a fast hardware demultiplexing logic to route

packets into several hardware queues that are configurable to accept

certain types of messages. The UDN network uses 5 hardware demux

queues.

• IDN

This network is used for communication between tiles and off-chip

IO devices. Flow control is implemented using pre–allocated buffers

before sending data on the network. The IDN contains 3 hardware

demux queues.

• MDN

Used when a shared memory communication mode is implemented

within the application. It is used for fetching data into tile caches

from off-chip DRAM5. The cache coherency protocol allows for caching

of read-only data. If a memory address is marked by software as

local, the data is fetched from the tile’s local cache or DRAM. A

Write-through policy is used for writes. Locks and synchronization are

implemented in software. Applications that access the same data using

different networks require a fence instruction inserted in software to

synchronize the network traffic. The DRAM controller contains a pre-

allocated buffer for each node, thereby ensuring that it never congests

or deadlocks the MDN.

5Dynamic Random Access Memory

CHAPTER 2. BACKGROUND 49

• TDN

Requests for memory addresses that are marked as remote are sent

on the TDN network. Remote data is not cached in any other tile,

except the home node tile. The forward progress of the packets sent

on it depend on the messages sent over the MDN, which is guaranteed

not to deadlock. Therefore, it only implements flow control between

adjacent communicating nodes and not end to end flow control.

Static networks on the contrary, do not use packets, but allow users to configure

them so that they behave as a circuit switched network and send and receive

data streams on the set-up routes. A memory protection scheme known as Mul-

ticore Hardwall, is used to block links on UDN, IDN and STN networks that

are user configurable and hence support multiple networks or different execution

environments on a single chip.

Tilera requires extensive programmer intervention - the programmer should

be aware of the underlying architecture to achieve significant speed ups for par-

allel applications. This constraint is in contrast with the simple programming

model that other shared memory systems require. Speed ups are achieved up to

96% improvement in execution time (for 64 tiles) compared to a shared memory

communication based version of certain micro benchmarks, such as dot product

and 2D frequency transform.

Figure 2.11: Tilera Architecture [WGHea07]

CHAPTER 2. BACKGROUND 50

2.4.2 TRIPS

The Tera-Ops, Reliable, Intelligently adaptive Processing System (TRIPS) archi-

tecture consists of two processor cores and two networks - On-Chip Network for

memory (OCN) and OPerand Network (OPN) [GKS+07]. The OCN is a 4X10

wormhole routed, credit based flow control mesh network that connects proces-

sors to 16 L2 cache tiles as well as IO (SDRAM, DMA, chip-to-chip and external

bus controller) and network interface tiles. The channel width of each link within

the OCN is 138 bits. The network interface tiles contain a network address trans-

lation table that maps memory addresses to destination network addresses. This

gives flexibility in placing data in any L2 memory tile. Each tile in the OCN

contains a router and employs virtual channels in order to avoid deadlock. The

banked L2 tiles can be configured as either shared static Non-Uniform Cache Ac-

cess (NUCA) [GCM+06] L2, or private NUCA L2 for each processor or used as

a scratch pad memory. Each processor tile contains instruction and data cache

tiles, register tiles, global tiles and execution tiles, all interconnected using the

OPN. Similar to Tilera, it supports Instruction Level Parallelism (ILP) by using

multiple execution units to support the individual instructions within a block,

Thread Level Parallelism (TLP) by supporting execution of multiple hyperblocks

and Data Level Parallelism (DLP) using the OPN. The compiler creates basic

blocks of code that have no loops, have a single entry point and possibly multiple

exit points. These blocks of code are then combined to produce an hyper block

[MLC+92], which is then scheduled on the execution units. The instructions

communicate with other instructions using the OPN rather than a register file.

The instruction format contains the target instruction to whom the data needs

to be passed. The global tile acts like a control unit that monitors the fetching,

execution and committing of instructions. In total the number of tiles on the chip

equals 109. Results show that the architecture performs within 28% compared to

a system that has no network contention. It uses a data flow based computation

model in contrast to a control flow based system and hence requires extensive

compiler support.

2.4.3 OS Based Coherence

This scheme uses OS intervention instead of a hardware based cache coherence

protocol for shared memory applications on tiled CMPs [FC08]. It proposes a

CHAPTER 2. BACKGROUND 51

Figure 2.12: TRIPS Tile Architecture [GCM+06]

single logical cache and requires the OS to map memory pages to physical tiles.

The default mapping is based on a first touch policy. Each tile on the CMP uses

a hardware based structure similar to the TLB6, also known as MAP, that caches

the virtual address to physical tile mapping. The virtual to physical address

translation is performed at the home tile. To allow for pages to migrate between

tiles (owner migration), the MAPs are invalidated in all tiles. Before allowing

migration of pages, it is necessary to ensure that all modified data is written

back to main memory. No caching of shared data (shared cache line) is performed,

however sharing of a page is permissable. On the first write within a page, the

OS marks the page as Modified and tracks the writer tile. It ensures that any

subsequent first time reads to the same page contain a MAP entry that points

to the owner tile. All subsequent writes to the same page after the first write

will require writing to the cache line in the owner tile. Tiles that had performed

a read previous to the Ist write continue to use the local mapping and continue

reading from the Ist touch tile. However, before a lock access to shared data,

all MAP entries for shared pages are invalidated, a cache flush is performed and

the owner tile writes the modified data to main memory. Results do show that

this scheme performs within 16% on average compared to a full map directory

scheme.

6Translation Look Aside Buffer

CHAPTER 2. BACKGROUND 52

2.4.4 Priority Based Cache Coherent NoC

This tiled CMP architecture relies on multiple optimizations to the network router

architecture, packet switching technique to reduce the delays (queuing and net-

work traversal) for request and responses messages [BGC+07][BCGK04]. This

architecture presents a NUCA based cache coherent system that uses 8 proces-

sors and a 64 bank, 16MB shared L2 cache. L2 cache banks are connected using

a mesh network that uses credit based flow control for a wormhole based static

routing protocol to preserve ordering of messages. Processor tiles are connected

to the edges of the mesh network. The cache coherency protocol used is the

MESI based directory protocol. It optimizes on the delays encountered in trans-

mitting cache coherence messages, by giving priority to short request or control

(ack) messages. It does this by employing several service lanes per physical link

for each input/output port and a multiple-flit based buffer for each service lane.

When different types of messages are assigned different priorities, there is a loss

of ordering of request and response messages between any two communicating

nodes. Therefore, additional state preservation serialization measures are em-

ployed within the processor node, to check for violations before performing any

cache state transition. An example being, receiving an invalidation for a cache

line that is being requested, before the response arrives. In this case, the re-

sponse on arrival should be invalidated. Other optimizations to the NoC include

reducing the delays encountered for invalidations sent out by the directory at

the L2 during writes to shared data. Instead of sending out unicast messages

during invalidations, the invalidation packet is replicated in the routers in the

X direction of the mesh network and each of these routers in turn forward the

packet on the Y direction. In order to implement the new broadcast scheme the

wormhole based router is extended to ensure that the output port schedules a

packet for transmission only when all the following nodes that receive the packet

contain enough space for the complete packet, i.e. store and forward based packet

flow control is implemented at no buffer space increment for short control mes-

sages. While ack messages traverse the same path as broadcast messages, a single

node is designated as the gatherer for all the ack messages generated and this

accumulated ack message is passed to the invalidator node. This further reduces

the request-response delay. An alternative to the store and forward broadcast

scheme, a virtual ring based invalidation scheme, that connects all processors in

a ring, is also proposed. Simulation results do show delay reductions up to 33%

CHAPTER 2. BACKGROUND 53

in read and write request-response transactions and speed up in execution time

for up to 9.5% on some benchmarks compared to a run on a NoC without the

above mentioned optimizations.

2.4.5 DiCo: Efficient Cache Coherency for Tiled CMPs

The Direct Coherence or ‘DiCo’ CMP proposes a novel directory scheme that

aims at reducing the indirection latency incurred when sending all requests to a

fixed directory controller, consequently decreasing the network traffic [RAG08].

Instead of having the directory at the L2 storing all the sharer information, this

task is given to a separate L1 coherence cache per processor core. It assumes a

unified shared L2, that is physically distributed among multiple cores. On a miss

in the L1 cache, the request is sent to the L1 coherence cache. If the coherence

cache produces a miss, i.e. no owner information is stored, the request is sent

to the L2 cache (depending on the miss address it may or may not be on the

same tile). The L2 cache checks its L2 coherence cache to see if there is a hit

or miss. On a miss, the line is fetched from main memory and the L2 coherence

cache updates itself to indicate the requestor as the owner cache. The data is not

stored within the L2 cache. If a hit occurs, the L2 forwards the request to the

owner cache. The owner L1 cache supplies the data and updates its L1 coherence

cache to reflect the requestor as the new sharer. The requestor also updates its

L1 coherence cache to point to the owner L1 so that all future requests could be

sent to the owner L1. On a write, the owner L1 sends invalidation to all sharers

and requests the new owner to collect all the acks. The owner L1 also sends the

requestor processor id as the new owner to the L2. The L2 updates its coherence

cache and sends an ack to the new owner. Until the new owner receives all the

acks, it does not commit its request, thereby maintaining total ordering. When

an owner L1 cache evicts a line, the L2 coherence cache is updated with sharer

information and the L2 becomes the new owner. If the L2 coherence cache evicts

an entry, it sends an invalidation or writeback message to the owner L1. In order

to further reduce the indirection to L2 on a miss within the L1 cache and L1

coherence cache, two hints schemes are employed. The first policy (DiCo–base),

on an invalidation, the previous L1 owner stores the id of the requestor as the

potential owner of the cache line within the L1 coherence cache. The second

policy (DiCo–hints), when a change of owner occurs, during write to a cache line,

the new owner gets a list of all sharers and the previous sharers invalidate their L1

CHAPTER 2. BACKGROUND 54

caches, but update their coherence cache to indicate the new owner. This policy

increases the network traffic compared to a normal directory protocol. A request

that mispredicts or relies on indirection for the correct owner might experience

starvation if the owner changes rapidly. In order to avoid this situation, a counter

is maintained for each request. If the counter expires, the L2 delays the ack

that it sends to the new owner until the starved request is satisfied. Simulation

results do show up to an average 8% reduction in network traffic when comparing

the DiCo–base protocol to a baseline directory protocol. However, the average

execution time is almost the same for baseline directory and DiCo–base protocol

for all benchmarks that were evaluated. The DiCo–hints protocols provides up

to 8% average speed up in execution time compared to the baseline directory

protocol. The following increase in network traffic is comparable to a baseline

directory protocol. The cache coherency protocol is fairly complex. It requires

correct prediction of the owner cache in order to improve performance, however

the higher accuracy prediction scheme increases network traffic.

2.4.6 Virtual Hierarchies

In this tiled architecture a homogeneous tiled CMP is used in a heterogeneous

manner. It contains 64 tiles interconnected using a mesh network [MH08]. It

groups communicating tiles operating under a virtual machine (VM) and provides

global shared memory for inter group communication. Each tile contains its own

L1 instruction and data cache as well as a private L2 cache. A virtual cache

hierarchy is formed by tiles that are grouped to run a workload under a single

VM. This involves, caches searching for data in the group before trying to fetch

data from the main memory. The advantage of grouping tiles under a VM implies

that they can be reconfigured or reassigned to different VMs during runtime.

For inter group communication, two cache coherency protocols are used; one a

logical directory at main memory that consists of two levels (V HA); the other a

directory space conserving approach by using a broadcast based token coherence

protocol (V HB). In V HA a full map directory containing the tile id of each home

node within a VM is maintained at the main memory and a smaller directory

is maintained at the home node within the VM. V HB uses a single bit instead

of a full map directory at the main memory. If the bit is set, it means that the

line is shared by all tiles. The directory also stores a count of tokens for each

cache address, thereby allowing for tiles not caching a line to not respond on a

CHAPTER 2. BACKGROUND 55

broadcast request. Simulation results show that V HA and V HB protocols out

perform the following directory schemes - a baseline directory that contains a

single centralized directory at the main memory; a distributed directory scheme;

and a duplicate tag based directory scheme that stores the directory information

at the centre of the chip, by 22 - 42%.

2.4.7 Network Based Coherence

The features within the network itself, i.e. either the topology, routing algorithm

or on chip wiring are used in order to reduce the effects of cache coherency

[EPS06][CMR+06]. It implements a directory within each router in the network

which allows for in transit optimizations of cache coherency messages. The node

that gets a cache line from off–chip memory (via the home node) is designated

as the root node. When the reply from off–chip memory traverses the network,

it creates virtual links that point towards the root node. Each router node on

the way to the root node caches the memory address as well as sets certain bits

(NEWS) to designate its connectivity with other nodes in the path. 2 bits are

used to indicate if the router node links to the root node, and if so through which

link. A valid bit indicates that the node that the router is attached to contains

data. A busy bit is applicable to the home node only and if set means that the

virtual tree path is being changed. A request bit suggests that the node has

sent a request for the same address and is yet to receive a response. The root

node always points to the home node. It uses a complex protocol to maintain

sequential consistency and ensure that the virtual tree is up to date. The main

aim is to reduce the read and write latency due to the indirection overhead of

directories.

Another work advocates the use of different types of on–chip wires to transmit

coherency messages depending on whether they are critical or non–critical. The

wires on this chip are characterized based on their latency, bandwidth and power

consumption. Coherency messages are mapped on to these wires based on their

latency and bandwidth requirements.

2.4.8 Proximity Aware Directory

Explores the idea of having private L2 caches and a distributed directory scheme

implemented using a separate directory controller and directory cache per tile

CHAPTER 2. BACKGROUND 56

[BKT07]. The actual directory and main memory is off-chip. The directory cache

is used to store the state of some of the directory entries associated with the range

of memory assigned to that tile. This architecture is compared to a traditional

directory protocol scheme wherein the memory and its associated directory is

distributed across multiple chips. While in traditional multiprocessors, node to

node communication is the dominant factor, in CMPs it is off-chip memory access.

In a traditional directory based protocol, the directory controller at the home

node would have to fetch requested data from the physical memory attached to

it. However, in a CMP, the memory is off-chip and access to it is costly. It

does not require the home L2 tile to have the data in its cache, instead if the

data is present in another tile, nearer the requestor, the request is forwarded to

the remote tile. This protocol implements a full-map directory cache. Again, as

before, the aim is to reduce the read and write latencies of coherence messages.

Three different policies are used in choosing the nearest sharer. The Ist one

depends on the manhattan distance between the remote tile and the requestor,

the second one depends on the sum of distance between the home tile and remote

tile and remote tile and requestor. The final policy randomly selects the remote

tile. The average reduction in latency for serving a request that misses in the

L2 of the requestor tile is about 26% compared to a baseline directory protocol.

Average speed up observed was about 16%.

2.4.9 Alternative Home Node in Directory Based Tiled

CMPs

This scheme relies on load-balancing the number of directory entries, by using

two home nodes per cache block, thereby reducing the number of home-node

directory misses [HSXP08]. Directory overflow also is reduced due to the addition

of another directory to store the cache blocked information. Similar to Proximity

Aware Directory Coherence protocol, nodes are associated with their own private

L2 caches and a distributed (banked) directory. The main idea is to associate

each cache block with either one of the two home nodes, so that the distribution of

directory entries is fairly even. The first home node is determined using a direct-

mapped scheme (using the least significant log2 N bits of the cache line address,

where N is the total number of nodes). The second home node is determined

using a random function or flipping the most significant bit of the direct mapped

CHAPTER 2. BACKGROUND 57

scheme. On a cache miss, the request is sent to both home nodes, and if both do

not contain the directory information, the primary or first home node fetches the

block from main memory. This block can now be stored in either the primary

home node or secondary home node, depending on space availability. If the

block is present in the secondary node, proper directory based cache coherency

action is initiated and the primary node is informed about the existence of the

block. Results show reduced number of invalidation messages generated due to

insufficient space in the directory. Also, the number of L2 misses per instruction

reduces up to 50% because of the increased probability of finding the block on-

chip rather than going to main memory. However, this scheme would certainly

increase the traffic in the network and this might cause reduced performance from

the system.

2.4.10 Tera Scale

Intel’s Tera Scale [ACJea07] architecture uses 80 tiles interconnected using a mesh

network. Tiles can be general purpose processor cores with their own private L1

and L2 caches. It also has the provision for a group of processors to share a L2

cache. Tiles can also be a special-purpose computing logic, such as graphic co-

processors, network accelerators or security engines. The use of both private and

shared L2 caches per tile is motivated by the mixture of workloads that can be

run on this architecture. Private L2 caches can be used efficiently for non-sharing

multiprogrammed workloads as well as highly parallel applications. Shared L2

caches among multiple tiles can be used for moderately parallel workloads with

an optimization to allow placement of shared cache lines nearer to cores that

frequently need to access them [CS06]. A MESI based directory protocol is used.

On-chip memory consists of 3D stacked SRAM and efforts are in progress to

incorporate on-chip stacked DRAM.

2.5 Summary

This chapter provides an overview of the two main components within a cache

coherent tiled based CMP, the OCN and the cache coherency protocol. It starts

with the different OCN topologies used, concentrating mainly on mesh based net-

works that are most popular with tiled CMPs. This is mainly due to the ability

of the mesh network to overcome the wire delay problem that requires shorter

CHAPTER 2. BACKGROUND 58

wires with decreasing feature sizes. The performance of mesh based networks is

dependent on the routing, switching, flow control and deadlock avoidance tech-

niques, that is discussed further on. Cache coherency is introduced with a review

of some of the multiprocessor and CMP systems that implement either snoop or

directory protocols. More emphasis is laid on limited directory protocols, which

is implemented in this thesis. It concludes with a review of several current tiled

CMP systems that are proposed in academia as well as implemented and in use

by industry. This aim of this chapter is to familirize the reader with various

concepts and terminologies that are neccessary for the design of cache coherent

tiled CMPs, which forms the crux of this thesis.

The next chapter introduces the JAMAICA processor, system archictecture

and the simulator platform that is used as a base for the design of the tiled CMP.

Chapter 3

Jamaica

The JAva MAchine and Integrated Chip Architecture (JAMAICA) chip mul-

tiprocessor (CMP) is a symmetric shared memory multiprocessor system on a

single chip [Wri01]. Figure 3.1 shows the architecture of the JAMAICA CMP.

It consists of several block multithreaded processor cores [URS02], each with its

own private level1 (L1) instruction and data cache. The cores are connected to

a shared level2 (L2) cache using a bus interconnect. The L2 cache connects to

an on-chip memory controller to access the off-chip main memory. The cache co-

herency protocol used is MOESI [AB86]. Cores are also connected to a token ring

network using a Thread Interface Unit (TIU) for light weight thread distribution

[Wri01]. This chapter discusses the JAMAICA architecture, mainly concentrat-

ing on the processor design, memory hierarchy, interconnect design(bus and token

ring) and the simulation details.

3.1 Processor Architecture

The JAMAICA processor architecture contains a simple in-order, 5-stage RISC

pipeline core, along with private L1 data and instruction caches. The proces-

sor core supports block multithreading thereby allowing thread level parallelism

(TLP) to be implemented [Wri01]. Support for up to four hardware contexts is

provided to allow for context switching which can be used to compensate for the

high latency stalls during cache misses. A hardware context can be viewed as a

virtual processor, allowing for interleaved execution of multiple threads, thereby

improving performance [URS02]. Context switching also occurs on a quantum

timer policy that allows a new context to be run every 1000 cycles. This ensures

59

CHAPTER 3. JAMAICA 60

that events such as spin locks, that hold processor resources, do not adversely

affect the performance. Every time a thread misses in the L1 cache a request

is created. The request consists of the type of L1 miss (read or write) and the

missed cache line address. Each L1 cache within the processor core is provided

with its own outstanding request table with a maximum of four entries (one entry

per context). The request table is used to store a request generated by a thread

during a cache miss. Along with the request table, a writeback buffer is provided

to store dirty and evicted cache lines that are no longer required by the processor,

before being written back to the L2 cache or main memory. The writeback buffer

also serves as a victim cache, allowing for lines to be pulled back into the L1 on

a cache miss. A Least Recently Used (LRU) cache line eviction policy is used

within the L1. The pipeline uses a 2 bit up/down saturating branch prediction

table and a hardware based register window scheme on a single register file that

is shared by all contexts. Previous studies have shown that a windowed register

file is more efficient as opposed to a stack based approach in order to support the

frequent method calling feature that exists in object oriented languages [QDT88].

Figure 3.2, shows the architectural details of the JAMAICA processor core with

the 5 stage pipeline, branch prediction unit (BPU), L1 I and D caches with their

respective bus interfaces.

Figure 3.1: Jamaica Architecture[Wri01]

CHAPTER 3. JAMAICA 61

Figure 3.2: Jamaica Processor Core[Hor07]

3.2 Token Ring

[Wri01] JAMAICA uses a seperate token ring network that is used by processors

to detect idle contexts on processor cores (contexts that are not executing any

thread and are not stalled [Wri01]) and perform load balancing by sending threads

to such processors. The JAMAICA instruction set architecture (ISA) provides

two special instructions, namely THJ and TRQ, to send threads to idling contexts

and to detect idle contexts, respectively. When a thread on a context exits from

the last window in its execution stack, the context becomes idle and generates a

token that is sent out on the token ring network as shown in Figure 3.3. If a thread

on another processor’s context needs to create a new thread in order to distribute

the work load, it executes the TRQ instruction. The TRQ instruction stalls the

pipeline for an average of N/2 cycles(where N is the number of processor cores)

in order to detect the presence of an idle token on the ring network. If a token is

found within N cycles, the current thread executes the THJ instruction that sends

the newly created thread’s setup information, such as the program counter and

stack pointer of the parent thread’s software stack to the idle context, over the bus

[Wri01]. If no token is found, the newly created thread is executed locally. This

light weight thread distribution mechanism is a novel feature of the JAMAICA

architecture and provides better performance over a shared memory queue based

CHAPTER 3. JAMAICA 62

Figure 3.3: Processor interface to the Token Ring Network[Hor07]

thread distribution mechanism [DWKEM05].

3.3 Locking Mechanism

As in Alpha, MIPS and PowerPC processors , JAMAICA uses a pair of non-

blocking atomic instructions, LDL L (load linked) and STL C(store conditional),

to provide locking and synchronization primitives. The JAMAICA processor core

provides a local lock table, with the number of entries equal to the number of

contexts on the core. Each entry within the local lock table, contains the lock

address along with a flag to indicate that the lock word has been loaded [Wri01].

A thread that executes the LDL L instruction records the lock address within

the local lock table and sets the flag associated with the lock entry. The same

thread then tries to acquire a lock, by executing the STL C instruction, which

commits provided no other intervening write has invalidated the flag or the lock

word cache line. The success or failure of the STL C determines if the lock is

acquired or not. If the STL C succeeds at the local lock table and acquires the

bus, it broadcasts the write, invalidating any other L1 cache lines and flag bits

(if set) within other processors local lock tables. The code for a simple lock using

LDL L/STL C instructions is as follows [Wri01]:

lock: LDL_L, reg,locklocn; /*set a flag*/

BNZ L1;

ADD reg,1;

STL_C reg,locklocn;

/*check the value of the flag, if flag=1,

CHAPTER 3. JAMAICA 63

return 1; set flag to zero; broadcast STL

to lock variable, else return 0(STL_C fails)*/

BNE lock;

//enter CS;

.....

STL 0,locklocn; //release lock;

L1: WAIT;

BNZ lock;

JAMAICA uses the WAIT instruction to avoid spin locking when a thread

does not succeed on a LDL L. The WAIT instruction stalls the context on which

the locking thread is executing, until another thread writes to the same cache line

[Wri01]. The broadcast write causes the waiting context to wake up the stalled

thread and retry the LDL L instruction. However, use of the WAIT instruction

can cause deadlocks in scenarios wherein the number of threads exceeds the total

number of contexts. In this case if all threads are in WAIT state, then the non-

waiting thread may never get a chance to run.

3.4 Interrupt Mechanism

JAMAICA provides both hardware and software interrupts for handling hard-

ware exception and providing support to the JaVM for implementing thread

scheduling, respectively [Hor07][Wri01]. An explicit vectored software interrupt

instruction (SIRQ) is used by the JaVM thread to wake up all other contexts dur-

ing the boot process, by broadcasting an interrupt message (SIRQ) on the bus.

The SIRQ broadcast message contains the identifier(id) of the thread that needs

to be woken up as well as a 32 bit interrupt mask. The interrupt mask serves as

a program counter for the woken up thread in order to access the interrupt code

located in main memory. During the boot process, this interrupt code is used to

set up the software stack for the woken up context. A hardware trap interrupt is

used for handling invalid memory accesses from the processor core [Hor07].

CHAPTER 3. JAMAICA 64

3.5 Bus Transactions

JAMAICA implements a snoop based cache coherency protocol over a bus inter-

connect. All L1 caches and the L2 cache interface the bus using a master and

slave bus interface component. The master handler is responsible for sending

requests over the bus, while the slave handler snoops the bus-either to satisfy a

request or service another request. All requests for either satisfying a cache miss

or upgrading the state of a cache line are broadcast on the bus. A bus arbiter is

provided and uses the LRU bus requestor policy for choosing a single requestor

from the multiple masters arbitrating for the bus. Figure 3.4 shows the control

and data components of the bus along with the timing diagram for a sample

request. Each transaction on the bus takes eight bus cycles to complete. Cycle

by cycle operation of the bus is explained below:

• Bus cycle1-Bus Request

Bus Master sets a bus request - MReq.

• Bus cycle2-Bus Grant

Bus arbiter issues a grant - MGnt.

• Bus cycle3 - Information

The granted master sets the following lines:

– Cache Address - for which the request had been generated,

– Id - unique number associated with each context and assigned

during the boot up process.

– Type

1. RD SH - generated due to a read miss in a cache.

2. RD EX - generated due to a write miss in a cache.

3. UPGRADE - generated due to a write hit in a cache.

4. WB - writeback to L2 or main memory.

5. MEM SH, MEM EX, MEM UP - all memory originated trans-

actions for requests not satisfied by other caches.

6. THJ - generated when a processor needs to ship a task to

another processor for load distribution purpose.

CHAPTER 3. JAMAICA 65

• Bus cycle4 - Wait(check)

All other processors check their caches, request tables and writeback

buffers to see if they can satisfy the request or if they have the same

pending request in their request tables.

• Bus cycle5 - Status

If the request was found in the cache or writeback buffer, the FOUND

(F) line is set. In addition the state of the found data - SHARED

(S), EXCLUSIVE (E) and OWNED (O) is also set on the S,E,O lines

respectively. These lines are wired-OR and only one processor can set

them at a time. On a WB of an O line, if a slave has the line in its

cache in the S state or if it has a pending miss for the same address in

its request table, then a slave request (SReq) is sent to the bus arbiter.

• Bus cycle6 - Memory check

If the FOUND line is not set, the L2/main memory responds back

with a memory accept(MAccept) signal.

• Bus cycle7 - Data1

The 1st 16 bytes of the cache line is put on the data lines. If SReq had

been asserted previously, then a SGnt for a slave implies that that a

line in a cache in S state can be upgraded to O state. If the SReq was

for a pending miss, then data can be accepted into the L1 in the O

state. All other slaves that asserted their SReq lines, but did not get

an SGnt, can accept the data into their L1 on a pending miss in the S

state.

• Bus cycle8 - Data2

The 2nd 16B of the cache line is put on the data lines.

The requestor commits the request, by writing the data value into the registers,

cache and setting the cache line state.

3.6 Simulation Details

The JAMAICA architecture is simulated using an in-house Java based cycle ac-

curate simulator-JAMSIM [Hor07]. The simulator itself runs on a Java Virtual

CHAPTER 3. JAMAICA 66

1 2 3 4 5 6 7 8

All cycles are of equal time period.

MReq

MGnt

Address
+ Id +
Type

F S E O MAccept

SReq

SGnt

Data2Data1

Figure 3.4: Jamaica Bus Transaction[Wri01]

Machine (JVM) [Inc] that executes on a host machine. It is capable of running

applications that are compiled for the JAMAICA instruction set architecture

(ISA). The simulator models hardware components as software objects, allowing

for instantiation of multiple hardware components. It models pipeline stalls, bus

interconnect transfers, bus arbitration contention, L1 cache access contention,

on-chip memory controller queuing delays to access off-chip main memory and

token circulation on the token ring [Hor07]. L1 cache access delay is modelled as

1 processor cycle, while main memory access delay is assumed to be 200 proces-

sor cycles without contention from other requests for the same bank of memory.

Command line parameters are provided by the simulator to allow the user to

control the number of processors as well as the number of contexts per proces-

sor. Two types of debugger - TTY and GUI allow for cycle by cycle viewing

of the internal state of each component within the architecture. The use of ob-

ject oriented principles in designing the simulator allows for easy modification of

existing components, such as changing the cache sizes of L1 and L2, as well as al-

lowing for addition of newer components, such as mesh or crossbar interconnects

or increasing the memory hierarchy [Hor07].

Both functional and cycle accurate models are simulated using Java and a

CHAPTER 3. JAMAICA 67

JAMAICA ported version of the Jikes RVM (JaVM) [Aea00] [DWKEM05][Din06]

provides a Java run-time environment. The JaVM allows execution of Java byte

codes that are compiled to a JAMAICA executable, using the simulator. The

simulator does not support any IO devices and so any calls to them within the

application code result in a JAMAICA subroutine call instruction generated by

the JaVM, jumping to a negative address in memory. These instructions are

detected in the simulator and are handled as calls to the underlying OS running

on the host machine [Hor07].

3.7 Summary

This chapter highlighted the architectural design of the JAMAICA CMP with a

brief overview of the processor architecture, the memory system design, the cache

coherency protocol, the task distribution token ring network and the simulator

platform used to implement this architecture. It serves as a precursor for the fol-

lowing chapters that involve modification of the existing JAMAICA architecture

to implement a tiled CMP.

Chapter 4

A Tiled Bus CMP

4.1 Motivation

It is widely believed bus based cache coherent CMPs do not scale to large number

of the processors as seen in switched network based CMPs [GKS+07]

[WGHea07]. This is mainly because of the limited bus bandwidth [KZT05]

[VAG05]. Bus bandwidth is constrained by the speed at which the bus is clocked

[Wri01]. Figure 4.1 shows the theoretical peak bandwidth utilisation of the Ja-

maica bus [Hor07]. The Level1 (L1) instruction and data caches assume a hit

rate of 99% and 98% respectively and the L2 has a perfect hit rate. The running

application is a RISC code that contains an instruction mix of 22% loads and

12% stores [HP07]. As shown in Figure 4.1, it would be ideal to clock the bus

at processsor clock speeds [Hor07]. However, the wire delay problem in current

submicron technologies limits the clock speed of the bus, resulting in bus sat-

uration at low processor counts. An alternative to bus interconnects are high

bandwidth switched networks. Although switch based CMP systems are highly

scalable compared to their bus based counterparts, they suffer from indirection

latency, invalidation latency for writes to widely shared data (cache line shared

by many processors) and induce storage overheads for widely shared data in or-

der to maintain cache coherency using directory protocols [RL97] [ZHWH07].

An ideal cache coherent CMP system would perform with the (low) latency of

a snoop based cache coherent protocol and provide the scalability of a directory

based protocol [BDH+99]. In a step towards realizing this ideal cache coherency

protocol that utilizes the benefits of both snooping and directories, a dual net-

work CMP architecture - Mesh and Bus, is investigated. The cache coherency

68

CHAPTER 4. A TILED BUS CMP 69

protocol uses a broadcast mechanism for writes to widely shared data, while a

directory that records the current cache line owner is used for reads and writes to

private and shared data. The bus network is used for the broadcast mechanism

and the limited directory protocol is implemented over the mesh network. As

with sequential consistency, the bus provides global ordering (write serialization)

for writes and each processor core is in-ordered and follows program order. In

this chapter we detail the architecture and cache coherency of this dual network

based CMP system. The main aim is to investigate the scalability of this system,

without incurring the low bandwidth problem of bus based CMPs and space and

invalidation latency overhead of directory based cache coherency protocols.

Figure 4.1: Bus Clock Speed vs. Scalability of Processors [Hor07]

4.2 System Architecture

As seen from Figure 4.2, the architecture consists of processors and memory tiles

that are interconnected using a mesh network and a snoop bus. All tiles connect

to an arbiter that is provided for each network. The arbiter is used to ensure

that only non-conflicting requests enter the network. It should be noted that

CHAPTER 4. A TILED BUS CMP 70

the placement of processor and memory tiles can be interleaved in any order

and need not adhere to the specific configuration as shown within Figure 4.2.

Architectural details of each component within the system and the description of

the cache coherency protocol forms the subsequent sections of this chapter.

0

4

8

12

1

5

9

13

L2

L2

L2

L2

2

6

10

14

3

7

11

15

Central

Arbiter

Main
Memory

Figure 4.2: Tiled-Bus Based CMP

4.3 Processor Tile

Every processor tile consists of a JAMAICA multithreaded core containing L1 in-

struction and data caches, as shown in Figure 4.3. A request table and writeback

buffer are provided for each cache. The tile uses a bus interface that contains a

master and slave handler to send and receive data respectively, on the bus. The

bus master handler is used for sending SIRQ and THJ transactions, while the

slave snoops THJ, SIRQ and all invalidations sent on the bus.

The tile interfaces to the mesh network using four Input and Output (IO) ports

- North, East, West and South (NEWS) [HP07]. Each port consists of a master

and slave handler, referred to as port master and port slave, respectively. Port

slaves receive and process packets while masters transmit packets. The processor

core interfaces with the IO ports using a local port. All port masters and slaves

are interconnected using a crossbar switch as shown in Figure 4.4. The routing

unit uses a dimension order routing protocol or XY routing for determining the

next tile that receives the packet enroute to its destination [DYL03]. The packet

switching scheme at each port is store and forward, i.e. the complete packet is

buffered before it is sent out of the port master [DYL03]. Each port slave is

CHAPTER 4. A TILED BUS CMP 71

equipped with its own finite state machine (FSM) based control logic to fetch,

decode and forward the packet. The FSM at the port master is used for buffering

and transmitting the packet. In order to buffer the packet, each port master and

port slave contain a single separate packet buffer. The buffer width at each of

the masters and slaves is equal to one cache line width (256 bits) plus the header

packet size (64 bits). The message format used is shown in Figure 4.5. The

header packet consists of the following five fields:

• Source identifier(id) of the tile that generates the packet.

• Destination id of the tile that is to receive the packet.

• Type of packet - if the packet is a read or write request, or if it is a

response packet.

• Control indicates the state of the cache line that is being request-

ed/sent.

• Address of the cache line that is being requested.

The mesh network uses 32 bits for control (first four fields of the header

packet) and a 128 bit wide data path for transmitting request and data packets

across adjacent tiles. The port controller component oversees the scheduling of

port slaves for receiving a packet and processing it. It ensures that only one port

slave is accessing the caches, request table and writeback buffer at any instant

in time, thereby causing the contention experienced at slave ports during packet

processing. Also, if multiple slaves access the same master, only one slave is

granted access, again simulating intra tile contention between slaves. A bus slave

gets higher priority over port slaves for accessing the caches, request table and

writeback buffers. The flow control technique between adjacent tiles is a request-

grant scheme [DYL03], with the master sending a request to the slave, and the

slave responding with a grant if it is ready to process the packet.

4.4 Router Architecture

The router within a tile contains the port master and slaves, the routing logic

unit, the switch allocator unit and the crossbar switch as shown in Figure 4.4.

The functionality of port master and slaves has been explained in Section 4.3.

The routing logic uses the DOR routing protocol and is accessed by the port slave

CHAPTER 4. A TILED BUS CMP 72

Figure 4.3: Structure of Processor Tile

Figure 4.4: Crossbar Logic within Processor Tile

Figure 4.5: Message Format

during the decode phase to determine the port master that the packet needs to be

sent to. The port master that a packet needs be sent out on is selected depending

on the location of the destination id of the node. The switch allocation unit (part

of the port controller) is accessed by the port slave during the forwarding phase

CHAPTER 4. A TILED BUS CMP 73

of the FSM in order gain access to the port master. During this phase if the port

slave wins the arbitration to the port master, it sends the packet through the

crossbar switch to the port master.

4.5 L2 Tile

The memory hierarchy in this system consists of on-chip L1 and L2 caches with

off-chip main memory modules. The L2 is a Non-Uniform Cache Access archi-

tecture (NUCA) [KBK02] based memory that is split into banks, with each bank

represented as a separate tile. Each L2 tile uses a memory controller to interface

with the off-chip DRAM or main memory. All read and write requests generated

with the processor tile are sent to the appropriate L2 tile, based on equation

4.1. The L2 tile contains the cache data and tag array, cache controller, port

controller, request table and bus interface. The port structure is similar to the

processor tile, except that there are eight masters and slaves per port. The port

controller ensures that at a given port, only a single port master, out of the eight

masters, is engaged in packet transmission and only a single port slave at a given

port is receiving a packet, at a given instant of time. At the same time other ports

could be decoding or processing a packet. Only one port slave can access the L2

cache data and tag array, and request table at any instant in time. The request

table is provided to track any pending requests (writebacks issued by L2), or any

invalidations that need to be sent out on the bus. The bus interface is responsible

for broadcasting any invalidation requests from the request table onto the bus.

The L2 tile is solely responsible for the invalidation broadcasts and hence does

not need a slave handler within the bus interface, for snooping the bus. Figure

4.6 shows the structure of the L2 tile and Figure 4.7 shows the L2 cache line. The

L2 cache stores the following information for each cache line along with the data:

1. The owner of each cache line, the processor id that has the cache line

in Modified state within its L1 or if it accessed it first.

2. A flag (F) to indicate if a line is shared by multiple caches or if it is

present in a single cache. It uses this flag to decide if a broadcast needs

to occur on a write to this line.

3. A lock bit (L) to indicate if a lock access has been performed on that

line.

CHAPTER 4. A TILED BUS CMP 74

4. The state of the cache line, Exclusive (E), Shared (S), Modified (M)

or Pending (P).

The L2 tile to which a request needs to be sent is determined using the fol-

lowing equation:

bankid = (address >>> 5)&(2log
2
(numberofL2tiles)

− 1) (4.1)

Where, & represents bit-wise AND and >>> represents bit wise right shift op-

eration.

Table

Masters

Slaves

Masters Slaves

Masters

Slaves

Crossbar

Interface
Bus

SlavesMasters

Request

L2 Cache
and

L2Cache
Controller

Lock
Unit

Port

Controller

Figure 4.6: L2 Tile Structure

Figure 4.7: L2 Cache Line Structure

The L2 uses a different line eviction policy from its cache compared to the

Least Recently Used (LRU) cache eviction policy in the L1. For evicting a line,

the L2 checks the state of the line and the lock bit status. Lines with lock bit

set are not evicted. Among the different cache states, lines with states such as

E (first choice) or S are preferred for eviction compared to M lines. The LRU

policy is used when there are multiple lines with E or S states. In the outer case

that all lines within a set are locked and it is imperative to evict a locked line,

CHAPTER 4. A TILED BUS CMP 75

then certain coherence messages need to be generated and will be explained in

Section 4.8.4.

4.6 Central Arbiter

The central arbiter component consists of two arbiters - one for the mesh network,

the other for the bus interconnect, as shown in Figure 4.8. All processor and L2

tiles access the arbiter for access to the mesh or bus. Only requests need access

via the arbiter; response messages do not need arbitration. On every arbitration

cycle only one mesh and bus request is granted. Processors and L2 tiles that get

access to the mesh need to inform the mesh arbiter on completion of a request.

This also guarantees that no two requests for the same address can exist at the

same time within the mesh network, providing for serialization of requests to the

same address. An exception to this rule is when a processor does a write back

of data to the L2. In this case, the processor releases the arbiter as soon as the

writeback message leaves its master port. There is no acknowledge message from

the L2 to indicate that the writeback has reached its destination.

Bus arbitration relies on request completion within a fixed number of cycles;

8 in the case of the JAMAICA bus [Wri01]. A separate snoop signal is provided

for each component on the JAMAICA bus. This snoop signal prevents these

components from snooping the bus on every bus cycle. The reason for providing

this snoop signal was mainly due to the fact that the number of transactions on

the bus is reduced significantly as compared to that of a bus-only CMP. Therefore,

disallowing snooping the bus when not in use would reduce power consumption.

All bus components check this signal every bus cycle to determine if a bus snoop

is required in the following cycle. Figure 4.9 shows the 8 cycle JAMAICA bus.

4.7 Cache Coherency Protocol

The cache coherency uses a combination of both snoop and directory based pro-

tocols. The main idea is to use a directory based protocol without the overhead

of storage space for tracking the list of sharers and reducing the latency during

broadcasts to widely shared data. For writes to widely shared data, the snoop

based protocol is used and the directory protocol for all other reads and writes.

The cache coherency protocol aims to decrease the write latency to widely shared

CHAPTER 4. A TILED BUS CMP 76

Figure 4.8: Central Arbiter

Figure 4.9: Timing Diagram of the JAMAICA bus

data and at the same time reduce the space overhead (M ∗ ln N bits, where M

is the total number of L2 cache lines and N is the number of processors) associ-

ated with full map directories protocols. The cache states used in the L1 caches

are Modified-M, Owned-O, Shared-S and Invalid-I, while those used at the L2

are Modified, Exclusive-E, Shared, Invalid and Pending-P. The S state in L2 can

be further categorized as either Shared Single Owner S(SO) or Shared Multiple

Owner S(MO). The S(SO) state implies that the line exists in the S state within a

single L1 cache. On the contrary, the S(MO) state implies that the line is shared

by multiple L1 caches. Table 4.1 describes the various cache states in both L1

and L2. The cache coherency protocol is best explained with the cache state

transition diagrams shown in Figures 4.10 & 4.11, for both L1 and L2 caches

respectively.

The various requests that are generated by the L1/L2 caches can be classified

in general as Read Misses, Write Misses, Writebacks and Evictions. Tables 4.2,

CHAPTER 4. A TILED BUS CMP 77

Cache State State Description
M Modified-Line is dirty and the latest copy of

the data exists in the L1cache.
O Owned-Line is dirty and shared between I

and D L1 cache on the same processor core.
This is because of the self-modifying code
feature within the JIKES RVM

E Exclusive-Line is clean and a single copy of
the data exists in the L2 cache.

S Shared-Line is clean and exists in one or more
L1 caches.

I Invalid-Cache line contains invalid data in
both L1 and L2 cache.

P Pending-Cache line is in a flux state at the
L2 waiting for an acknowledgement or data
from the L1

Table 4.1: Cache Line State Description

Figure 4.10: L1 Cache State Transitions

4.3 and 4.4 shows the different request, response type fields and control fields

used within the packet header, respectively. Different requests and responses are

identified by a combination of type and control fields from the packet header.

Henceforth, all requests and responses will be designated as a tuple, with the

first entry in the tuple designating the type field from the packet header and the

second entry representing the control field from the packet header. Each of these

requests and the corresponding responses they generate are described in detail in

the following paragraphs. Note that for any request to be sent on either the bus

or mesh, the requestor (either L1 or L2) needs access from the central arbiter.

CHAPTER 4. A TILED BUS CMP 78

Requests Description
RD SH Read miss from the L1
RD EX Write miss from the L1
UP Write hit to a S line in L1
WB eviction of M lines from L1
LOCKREQ L1 trying to access the lock at L2
LOCKFREE L1 frees the lock at L2
RD SH L2FWD Generated on a read request to M line in the L2
RD EX L2FWD Generated on a write request to M line in the L2
LOCKGNT L2FWD Generated on LOCKREQ message to a M line in the L2
WB PENDING On evicting a M line from L2
INVALIDATE On evicting a S(SO) line from L2
B INV On evicting a S(MO) line from L2

Table 4.2: Type field: L1 and L2 Requests

Responses Description
RD SH RESP Generated by the L2 on a RD SH, or generated by a L1

on a RD SH L2FWD to a M line in cache
RD EX RESP Generated by the L2 on a RD EX or generated by L1

on a RD EX L2FWD to a M line in cache
UP RESP Generated by the L2 on a UP
WB Generated by the L1 on a WB PENDING from L2 or

on evicting a line
LOCKGNT Generated by L2 on a successful LOCKREQ or gener-

ated by L1 on a LOCKGNT L2FWD to a M line in
cache

LOCKQUEUE Generated by L2 on a unsuccessful LOCKREQ
OWNERDATAUP Generated by L1 on a RD SH L2FWD to a M line in

cache
OWNERUP Generated by L1 on a RD SH L2FWD to a M line that

is being evicted from the cache or is present within the
other cache of the requestor, i.e. request from data
cache, line present in instruction cache

LOCKGNT L2FWD Generated on LOCKREQ message to a M line in the L2
WB Generated by L1 on receving a WB PENDING from L2

Table 4.3: Type field: L1 and L2 Responses

CHAPTER 4. A TILED BUS CMP 79

Figure 4.11: L2 Cache State Transitions

Control Field Description
FWD State of the cache line in the response message is

unknown
ACK M State of the cache line in the response message is

M
ACK S State of the cache line in the response message is

S
ACK M INVPENDING State of the cache line in response message is M,

wait for B INV to complete

Table 4.4: Control fields within the packet header

• Read Miss

A read miss is generated when the cache line is in the I state or not present

within the L1. The read miss is sent out as a (RD SH,FWD) packet to the L2,

FWD within the control field indicates that the state of the cache line is unknown.

If the line is in E or S(SO) or S(MO) state at the L2, a read response packet

(RD SH RESP, ACK S) is generated by the L2 and sent back to the requestor.

The ACK S control field indicates that the requestor should set the state of the

line in the L1 to the S state. The L2 takes the following actions depending on

the state of the line in its cache:

1. If the line was in S(SO) state before the read, the L2 resets the single

owner flag within the cache line to indicate that the line is shared

between multiple caches, i.e. the L2 is now in S(MO) state.

CHAPTER 4. A TILED BUS CMP 80

2. If the line was in E state, the L2 sets the single owner flag and records

the requestor’s processor id.

In both cases, the L2 transits to the S state. On receipt of the (RD SH RESP,

ACK S), the L1 transits to the S state.

3. If the line is in the M state at the L2, the request gets forwarded to

the to owner L1 (RD SH L2FWD, FWD) and the L2 transits to P

state. Owner L1 responds with data to both L2 (OWNERDATAUP,

ACK S) and requestor (RD SH RESP, ACK S), and changes its L1

cache state to S. On receipt of the OWNERDATAUP packet, the L2

updates its state to S(MO) and resets the single owner flag. Requestor

L1, on receipt of RD SH RESP transits to S state.

There are instances when the owner L1 does a write back (WB) of the

M line from its cache and at the same time the RD SH L2FWD packet

is in flight in the network. In this case, the owner L1 will redirect the

packet as a RD SH packet back to the L2. As long as static routing

(DOR) is employed over the mesh network, it is guaranteed that the

redirected RD SH packet will always arrive after the WB at the L2.

It should be noted that while the L2 is in P state, it does not process

any packet for the same address. This is done so as to guarantee

completion of service of a request once it has been accepted at the L2.

There is also the possibility that the RD SH packet arrives from the

L1 instruction cache of the requestor, while the data is present in

M state within the L1 data cache of the requestor. This happens

only when JIKES is generating new code during run-time, resulting

in code being written to the data cache. In this case, the owner L1

will generate a non-state change packet (OWNERUP, ACK M)(owner

is the requestor) to the L2 and changes the L1 instruction cache to O

state. Alternatively, the owner L1 might be in the process of evicting

the line from its L1 and the request from L2 arrives. In this case,

the owner L1, generates a (OWNERUP, ACK M) packet to L2 and a

(RD SH RESP, ACK M) packet to the requesting L1. L2 on receipt

of OWNERUP packet will switch back to the M state from the P state

and update the owner id field to reflect the requestor’s id. Requestor

L1 on receiving the RD SH RESP packet transits to M state within

its L1.

CHAPTER 4. A TILED BUS CMP 81

4. If the line is in I state, L2 fetches the line from main memory in E

state and processes the request as a read miss to an E state line.

• Write Miss

A write to the L1 cache line results in either a write miss (RD EX, FWD) to

an I state or non existing cache line, or write hit to a S line (UP, FWD) request.

Writes to M lines do not generate a request. The L2 takes the following actions

on receiving a RD EX/UP request:

1. On an UP request, the L2 will either respond with a upgrade grant

message (UP RESP, ACK M) on a S(SO) line, or broadcasts an in-

validate message on the bus (B INV) if the line is S(MO) state. L2

changes state to M state, records the requestor (writer) processor id as

the owner of the cache line and sets the single owner flag. Requestor

L1 on receiving the UP RESP or B INV will transit to the M state.

2. On a RD EX request, the L2 takes the following actions:

(a) If the line in L2 is in E state - it grants the line in M state

(RD EX RESP, ACK M) to the requesting L1, sets the owner id

field to the requestor’s processor id and switches to M state.

(b) If the line in L2 is S(MO) state - it sends a (RD EX RESP,

ACK M INVPENDING) message to the requesting L1, a B INV

message on the bus, sets the owner id field to the requestor‘s pro-

cessor id and switches to M state. The L1 requestor on receiving

the RD EX RESP packet and B INV will transit to M state.

(c) If the line in L2 is in M or S(SO) state, it forwards the request

to the owner processor (RD EX L2FWD, FWD), sets the owner

id field to the requestor’s processor id and switches to M state.

The owner processor will send a (RD EX RESP, ACK M) packet

to the requestor and invalidate itself. If the line has already been

written back (WB) from the owner L1, then the owner processor

will redirect the RD EX write request back to L2. This redirected

RD EX request is similar to a write to an E line in the L2. The

requestor L1 on receiving the RD EX RESP message will switch

to the M state.

CHAPTER 4. A TILED BUS CMP 82

(d) If the line in L2 is in I state - it fetches the line from main memory

in E state and processes the RD EX as a write to an E state line.

• Writeback

Space constraints within the L1 and L2 cache often require cache lines to be

evicted. The L1 cache uses the Least Recently Used (LRU) cache eviction policy.

The processor core is provided with an additional writeback buffer for each cache

to store these cast out lines which acts as a victim cache. If the writeback buffer

is full, the lines in M state need to be written back to L2. In the case of L2

caches, an eviction of a M line requires notifying the owner of the cache line for a

writeback to main memory. The L2 uses a cache line eviction policy based on the

LRU count as well as the state of the cache line. Before evicting a line, the L2

checks the state of the line and the lock bit status. Lines with lock bit set are not

evicted, this is also true for lines within the L1. Among the different L2 cache

states, lines with states such as E (first choice) or S are preferred for eviction

compared to M lines. The LRU count is used to determine the final candidate in

the case when multiple cache lines based on the cache state policy are chosen for

eviction. The following messages are generated when M lines are evicted from

the processor writeback buffer or L2 cache:

1. On evicting M lines from the L1, a writeback (WB) message is sent to

L2. L2 sets the cache line state to E, clears the owner field and resets

the single owner flag.

2. On evicting M lines from L2, a write back request (WB PENDING,

FWD) message is sent by the L2 to the owner L1 and transits to the

P state. The owner L1 responds with a WB message. L2 writes the

line to main memory on receiving such WB messages and invalidates

the line from the cache. It is possible for a WB PENDING as well as

a WB message to be in flight within the network at the same time.

In such a case, because of the static routing protocol used, the WB

message is guaranteed to reach the L2 before there is any following

response from the L1 and the line is written back to MM. The owner L1

sends a (WB PENDING FAIL,FWD) message to the L2, to indicate

that the line has already been written. Deterministic packet routing

guarantees that the WB PENDING FAIL reaches the L2 later than

CHAPTER 4. A TILED BUS CMP 83

the WB packet from the L1. The L2 discards the WB PENDING FAIL

message after checking that the request table no longer contains a WB

message for the same packet. Although, there is no actual need for the

L1 to generate a WB PENDING FAIL message, it serves as a debug

feature within the simulator to check if the routing protocol ensures

in order packet delivery.

• Eviction

Evicting a S(SO) line from L2 results in either an invalidation message (IN-

VALIDATE) or a B INV message on the bus for S(MO) lines. Shared lines from

L1 are discarded on eviction and do not generate any network traffic.

4.8 Lock Unit Description

All shared memory multiprocessor systems require mechanisms to protect mul-

tiple threads from accessing and modifying shared data at the same time. Syn-

chronization is a technique used in multiprocessor systems to allow for exclusive

access to shared data. Synchronization is either used to implement mutual exclu-

sion, i.e. allowing only one thread to gain access to the shared data at any point

in time; or provide for conditional execution, i.e. threads can continue executing

only after a certain condition is satisfied [GVA+08]. Locks, semaphores and mu-

texes are used to implement mutual exclusion, and conditional synchronization is

implemented using flags or barriers. Mutual exclusion can be further classified as

course grained or fine grained. Course grained synchronization typically requires

locking a complete shared data structure (large region of memory) that is acces-

sible by several threads. Fine grained synchronization techniques concentrate on

locking smaller regions of memory, typically a memory word or a cache line. The

traditional lock based scheme, also known as blocking synchronization, is prone

to deadlocks and therefore, non-blocking or lock-free synchronization algorithms

that do not require accessing a lock to update a shared memory location are used

in certain synchronization scenarios.

4.8.1 Synchronization Primitives

In multithreaded applications, the user defines the synchronization algorithm

in software (using in-built library functions) and the compiler implements the

CHAPTER 4. A TILED BUS CMP 84

algorithm using specialized hardware instructions or a sequence of hardware in-

structions [CSG99][HP07], known as synchronization primitives, that perform

hardware atomic read-modify-write (RMW) operations on a memory location,

i.e. the lock word. There are several primitives, such as exchange, test and set,

fetch and increment, compare and swap [HP07]. They all differ in the manner

in which they access and update the lock. Atomically performing a RMW on

a memory location can be a challenge to implement in hardware, especially in

bus interconnect based multiprocessor systems, as it requires locking the bus un-

til the lock operation completes [CSG99]. Synchronization primitives, such as

compare and swap, require the address of a memory location and two registers

within a single instruction, making it hard to implement in RISC1 based architec-

tures, that use at most a single register and one memory location within an load

or store instruction [CSG99]. Therefore, modern systems, such as Alpha, IBM

PowerPC and JAMAICA, use a pair of non-atomic instructions, Load Linked

(LDL L) and Store Conditional (STL C), in order to implement the RMW oper-

ations [Dig92][CSG99][Wri01]. During a LDL L operation, the lock value is read

and if it is determined to be free (normally if the lock memory word represents a

mutex, value 0 represents a free lock and 1 vice versa), the STL C instruction is

attempted. The thread that succeeds in doing the STL C is the eventual owner

of the lock. In a cache coherent system, the STL C succeeds only if the lock

cache line is valid in the cache and the thread that is executing the instruction

accesses the bus or directory (in the case of a switched network) and sends out

an invalidation to all other threads. The advantage of this approach is that it

does not rely on locking the bus during a synchronization operation and can use a

RISC based instruction set. During the lock access phase, it requires loading the

cache line in order to test the lock value and does not perform any invalidations

on unsuccessful access of the lock, such as in compare and swap. However, if the

lock is heavily contended, threads that cannot gain access to the lock normally

spin on the lock variable (especially if the critical section is small [CSG99]). This

consumes processor cycles, and is wasteful in the case of multithreaded cores that

have the provision for another thread to run and perform useful work.

1Reduced Instruction Set Computer

CHAPTER 4. A TILED BUS CMP 85

4.8.2 Hardware Queue Based Locking in Tiled Bus CMP

In order to improve on the original bus based locking protocol a queue based lock-

ing scheme [MPS06] was implemented in the tiled and bus CMP. In this locking

scheme, a queue based hardware synchronization unit (lock unit) is used to han-

dle the grant and release of locks, in hardware. The lock unit receives multiple

requests (LDL L) for a lock (memory word), but grants access to only one thread

and queues all other threads by storing the processor id associated with requestor

thread. The thread that gets the lock access eventually executes the STL C and

releases the lock. The subsequent queued thread then gets access to the lock.

When a thread is queued, the context is stalled on the processor, similar to a

cache miss, allowing the JAMAICA processor core to run another thread. The

process of granting the lock in hardware essentially controls the lock acquire or

release in software. This is so because the thread that gets the grant in hardware

is permitted to perform the STL C operation, which could signal either a lock

acquire or release operation in software depending on the synchronization algo-

rithm that is being implemented. The semantics of the hardware based lock unit

is similar to compare and swap and is implemented using the LDL L and STL C

instructions in order to maintain compatibility with the JAMAICA instruction

set.

Queue based locks have proved to be efficient in software and hardware imple-

mentations [And90][GW88]. In the current architecture, each L2 bank is associ-

ated with a dedicated lock unit. As shown in Figure 4.12, the minimum number

of entries within the lock unit is equal to number of processors multiplied by num-

ber of contexts per processor. Each entry has separate fields to store the address

of the lock (cache line address) and a pointer to a queue that is associated with

the lock entry. The queue contains a list of current and pending owners for the

lock. The current and pending owners for a lock are represented by the ids of the

processors on which the threads are executing. The lock unit entry is updated

on a STL C or normal STL to the same cache line as the lock word.

4.8.3 Modification to Jikes RVM

The locking code generated by the original JaVM does not guarantee to perform

a STL C after a LDL L, as seen in Section 3.3. However, in this locking scheme,

it is imperative for a thread that succeeds at the lock unit at the LDL L stage to

CHAPTER 4. A TILED BUS CMP 86

Figure 4.12: Lock Unit

perform a STL C in order not to deadlock. As shown in Figure 4.13, the original

locking code in JaVM (a) was modified (b), such that a thread that succeeds at

the LDL L stage performs the STL C and writes either the same value that it read

during the LDL L stage if the compare operation fails, or writes the new value,

if the compare operation succeeds. Therefore, the queue based locking scheme

supports compare and swap using LDL L and STL C instructions. Although

the lock unit provides hardware atomic operations to access locks, it is up to

the software to ensure that the appropriate value is written to the lock word in

order to guarantee the property of mutual exclusion when accessing the critical

section code. In the modified Jikes implementation, if the LDL L/STL C pair is

used to implement a lock operation, as in mutexes or semaphores, and a normal

STL is used for the unlock operation, then the queue based compare and swap

scheme performs worse than the original JAMAICA LDL L/STL C scheme. This

is because when the next in line waiting thread (assuming a heavily contended

lock) gets a lock access from the lock unit, it reads the cache line to determine if

the lock has been freed by the previous lock holder, if not then the new lock owner

will perform a STL C in order to release the hardware lock unit and this results

in unnecessary invalidations on the bus. However, in the current architecture,

the two networks provide more bandwidth compared to a bus only JAMAICA

system and therefore the unnecessary invalidation messages that could possibly

be generated in the case of blocking synchronization scenario would not hinder

other requests that would be sent over the mesh network. If the LDL L/STL C

pair is used to implement non-blocking synchronization, then the STL C would

signal the release of the lock in hardware and software and the subsequent queued

thread will access a freed lock, thereby providing serialization to lock access and

better utilization of processor cycles by not performing spinning.

CHAPTER 4. A TILED BUS CMP 87

Figure 4.13: Original and Modified Locking Code in JaVM

4.8.4 Operation using the lock unit

The queue based lock unit, requires explicit lock access and release messages to be

sent to it for the locking protocol to be implemented over the mesh network. This

section details the network messages that are generated when a thread executes

the LDL L and STL C instructions and the actions that the lock unit takes on

receiving the messages from the lock requestor thread.

1. As shown in Figure 4.14, the LDL L instruction causes a thread exe-

cuting on Processor1 (P1) to generate a (LOCKREQ,

ACK S/ACK M/FWD) message to the lock unit.

2. The lock unit checks if the lock is free within the lock table.

3. The lock unit responds with either a lock grant (LOCKGNT, ACK S/ACK M/)

or lock non-grant (LOCKQUEUE,FWD) message depending whether

the lock queue (next owner queue) associated with the lock address is

empty or non-empty, respectively. The LOCKGNT message implies

that the lock is not being held by any other thread and the requestor

thread has access to the lock. The LOCKQUEUE message (P0 is

holding the lock) implies that the thread should stall until it gets an

explicit LOCKGNT message from the lock unit.

4. On a LOCKGNT, the lock unit stores the id of the processor that

CHAPTER 4. A TILED BUS CMP 88

sent the LOCKREQ message, as the current lock owner. On a LOCK-

QUEUE the lock unit stores the processor id in the lock queue associ-

ated with the lock address.

5. The LOCKREQ message is generated on a LDL L instruction irrespec-

tive of whether line is in L1 cache or not. On receiving a LOCKGNT

at the processor, the thread sets an entry within the lock table local to

the processor, to indicate that a LOCKREQ operation has completed

and the state of the L1 cache line is either S or M. On a LOCK-

QUEUE message, the context on which the thread is executing stalls.

Because the LOCKREQ is similar to cache miss, another thread can

be scheduled to start executing on the same processor core as soon as

the LOCKREQ is generated, if multithreading is supported.

6. On a STL C, the thread (assuming P0 is the lock owner and P1 re-

ceived a LOCKQUEUE) first checks if a corresponding entry exists

within the local lock table and the cache. Entries from the local lock

table and the cache are invalidated on a write miss operation (UP or

RD EX) to the same cache line as the lock word. The lock unit in

L2 on seeing the UP or RD EX will clear the id of the present lock

owner from its lock queue. If any one of the conditions fail, the STL C

operation is aborted and the LDL L instruction is retried. On suc-

cess of both conditions, i.e. entry present within the local lock table

and line present in the cache (either in S or M state), a lock release

(LOCKFREE,FWD) message is sent to the lock unit and the L1 cache

transits to M state. The lock unit removes the current lock owner from

the lock queue associated with the lock address, and generates a new

LOCKGNT message to the next waiting processor. If the queue is

empty no message is generated by the lock unit and the L bit in the

cache line at the L2 is reset.

CHAPTER 4. A TILED BUS CMP 89

Figure 4.14: Queuing Lock Protocol

• Advantages

1. Provides for serialised access to locks and reduces the traffic over the

network for non-blocking synchronization cases.

2. Serialization of locks prevents lock spinning thereby saving processor

cycles and allows a multithreaded core to run another task while wait-

ing for a lock.

• Disadvantages

1. Pausing a hardware context on a LOCKQUEUE message for a long

period of time may cause the OS to schedule a stalled lock queued soft-

ware thread to wake up on some other hardware context. This means

that on a LOCKFREE, the lock unit will send the LOCKGNT message

CHAPTER 4. A TILED BUS CMP 90

to the processor id that the lock queued thread was previously sched-

uled on, resulting in the LOCKGNT message not reaching the correct

new owner. A solution to this problem would require the processor

that receives the LOCKGNT message to resend a new message back

to the lock unit indicating that it was a stale or incorrect LOCKGNT

message. Also, the lockqueued thread that is rescheduled on another

processor should retry the LDL L instruction, i.e regenerate a new

LOCKREQ message. In the current JaVM, this thread rescheduling

does not happen on stalled threads and hence this problem does not

arise in this system.

2. During blocking synchronization, unnecessary invalidations are gener-

ated by the locking protocol for heavily contented locks. This increases

the overall traffic in the network because of multiple reads and writes

to the locked cache line.

3. Delays involved in accessing and releasing the lock is greater than a

snoop based LDL L/STL C scheme.

4. Extra storage space and hardware complexity associated with the lock

unit

5. Requires that locked lines within L2 are not evicted until the L bit is

reset. However, in case that all lines within a single set, within a set

associative L2 are locked, i.e. the L bit is set, then one of the locked

lines has to be evicted. The following solution is proposed in such a

scenario: The L2 generates a LOCKCANCEL message that, clears the

lock table entry and resets the L bit in its cache. The LOCKCANCEL

message is broadcast over the bus. All processors that are lockqueued,

will invalidate their caches if in S state in their L1, and regenerate a

LOCKREQ message. If the line is in M state within the L1, the line

is written back(WB) to L2.

4.8.5 Problem with stale LOCKGNT

The traversal of messages on different networks can cause race conditions in

handling the acquire of a lock after it has been released. One such case is the

stale STL C problem, that arises when a thread receives a LOCKGNT message

CHAPTER 4. A TILED BUS CMP 91

and commits in the S state, when in reality the lock unit has granted the lock

to next in line waiting thread. This is illustrated in figure 4.15. The following

operations take place when a processor sends a LOCKFREE message to the lock

unit and the line is in S(MO) state at the L2:

1. Consider the case, wherein processor1 (P1) gets access to the central

arbiter and sends a LOCKFREE to the lock unit at the L2, for a line

that is S in P1’s L1 and S(MO) state at the L2. P1 transits to M state

after sending the LOCKFREE.

2. The lock unit checks for a pending lock requestor (P2) and generates a

(LOCKGNT L2FWD, FWD) to P1. The LOCKGNT L2FWD implies

that the new lock owner P2 requires the M line from P1. The L2 sets

the Pending(P) bit within the cache line and transitions to the P state,

waiting for either an OWNERDATAUP or OWNERUP from P1. The

L2 also sends a B INV on the bus to indicate P1’s write to a S(MO)

line.

3. P1 releases the central arbiter on seeing the B INV message on the

bus. On receiving the LOCKGNT L2FWD, P1 sends a LOCKGNT

packet to P2, an OWNERDATAUP packet to the L2 and transits to S

state. It is possible for the OWNERDATA UP packet to reach the L2

before the LOCKGNT reaches the new lock owner. In this case, the

L2 goes in S(MO) state and clears the Pending bit within the cache

line.

4. If P1 now sends an UP request to the L2. It gets access to the network

as it had already released the central arbiter in step 3. On seeing an UP

to the locked line, the L2 will perform the same action as described

in step 2 . This results in a new LOCKGNT L2FWD and an old

LOCKGNT message in flight within the network at the same time

and causes a cache coherency problem (stale LOCKGNT problem). If

the LOCKGNT at P2 commits after the B INV because of the UP

from P1, it sets the cache line in L1 in P2 to S state, while at P1 the

state of the cache line is in M state, causing inconsistent cache states.

5. To overcome this problem, the L2 always sends the processor id of the

new lock owner (in this case, P2) as well as the id of the processor that

CHAPTER 4. A TILED BUS CMP 92

did the WR/LOCKFREE (P1), during the B INV in step 2. This is

done so that P2 now knows that it is expecting a LOCKGNT from P1.

6. P2 on seeing another processor id during the B INV in step 4, will

realise that its incoming LOCKGNT packet is stale and will discard it

when the packet arrives at one of its port slaves.

Note: This solution assumes that the B INV in step 2 reaches all the proces-

sors before the LOCKGNT reaches the new lock owner. This condition always

holds true because P1 does not release the central arbiter nor services the LOCK-

GNT L2FWD packet until it sees the B INV on the bus.

On a RD EX/UP/LOCKFREE to M or S(SO) lines, L2 does not generate a

B INV. LOCKFREE to S(SO) lines in L2 results in an UP RESP and the routing

protocol guarantees that the LOCKGNT L2FWD will piggyback the UP RESP

packet. However, if steps 4 and 5 occur, then P2 sees a different processor id in

step 6 as opposed to its own id. This indicates that the LOCKGNT packet it

receives is stale and should be discarded.

Suppose, P2 received the LOCKGNT packet before the B INV (due to the

UP from P1) from step 6 reaches it, then the LOCKGNT packet is accepted.

However, when it attempts the STL C it would fail because the cache line would

have been invalidated in its L1 by this time due to the B INV in step 6.

It is possible for P2 to accept the LOCKGNT and attempt a LOCKFREE

before it sees the B INV in step 6. In this case, the central arbiter does not grant

access to P2’s LOCKFREE because P1 will not release the central arbiter until

it sees the B INV generated by L2 in step 6. The processor trying to do the

LOCKFREE (P2) will eventually detect that its LOCKFREE has failed and will

retry the LOCKREQ instead.

4.9 Simulation Details

A cycle accurate version of JAMSIM [Hor07] was modified to include a mesh

network along with the existing bus. Changes to the simulator involved the

following:

• Creating ports and their associated logic for processor and L2 tiles,

router logic in each tile.

• Incorporating the new cache coherency protocol.

CHAPTER 4. A TILED BUS CMP 93

P2

1. LOCKFREE

3.
 L

O
C

K
G

N
T

2. B_INV

2. LOCKGNT_L2FWD

3. OWNERDATA_UP
P1 L2

4. UP

Figure 4.15: Stale STL C case

• Incorporating a locking unit at the L2.

• Modification to the existing L2 cache controller in the bus based Jam-

sim, to allow for interfacing between the master and slave ports and

the locking unit.

The processor components, such as pipeline, cache structure, request and

writeback buffers were retained with the same functionality as that in Jamsim.

All ports within a tile are clocked every cycle. State machine based port slaves and

masters simulate the delays in accessing, processing and forwarding a packet at

all tiles. Intra port delays are modelled by blocking one of the many simultaneous

requests that arrive for a single master port. Inter port delays are modelled by

having separate request and ack control signals between adjacent tiles. All port

slaves within a tile contend for a lock in order to access the cache (L1 or L2) or

request table or writeback buffer at any point in time. This lock implements the

functionality of a single ported cache, request table and writeback buffer. Packets

are sent on the network to model or simulate congestion in the network.

The following delay assumptions are made:

1. Request packets are assumed to take one clock cycle, while data pack-

ets take 2 clock cycles per hop transmission. Transmission of data

packets on the mesh network is simulated by padding the data part of

the packet with 0’s.

2. One clock cycle for router within the processor core to compute the

output port for the received packet. One clock cycle to transfer a

CHAPTER 4. A TILED BUS CMP 94

packet from slave input port to master output port within a tile, across

the crossbar, i.e routing latency is 1 clock cycle.

4.10 Summary

A heterogeneous (mesh and bus) network tiled based CMP architecture, is dis-

cussed, highlighting on the design of a tile (processor or memory) and its interface

to the OCN, issues associated with handling cache coherency protocol on two

networks and finally a description of the simulation infrastructure. A dedicated

hardware based lock unit is introduced within this architecture to handle acquire

and release of locks without the use of a snoop based bus, as required in the bus

based JAMAICA CMP. The design continues to use a central arbiter similar to

that within the bus based JAMAICA CMP, to restrict requests for the same ad-

dress from entering the network, thereby simplying the cache coherency protocol

(removal of acknowledment messages) in comparison to directory protocol.

It is noted that the use of a central arbiter within the design restricts the

bandwidth usage of the mesh network. Although the bus network is used far more

sparingly in comparison to a bus-only CMP, on-chip wire delay issues continue to

be an impeding factor, with the length of the bus increasing with more processors.

Given the difficulties in maintaining a dedicated lock unit and the inefficiencies

introduced by the central arbiter and the bus network, the next chapter looks at

dual mesh tiled architecture. This new architecture does not use a central arbiter

or a dedicated lock unit, and substitutes the bus network described herein with

another high bandwidth based mesh network.

CHAPTER 4. A TILED BUS CMP 95

4.11 Summary of Request and Response Mes-

sages

Request from L1 Response from L2
RD SH (RD miss) Line in S (SO) or S(MO)/E at L2 - RD SH RESP (with

data)
Line in M at L2 - RD SH L2FWD (request forward)

RD EX (WR miss) Line in E at L2 - RD EX RESP (with data)
Line in M or S(SO) at L2 - RD EX L2FWD (request
forward)
Line in S(MO) at L2 - RD EX RESP and B INV (broad-
cast invalidate on bus)

UP (WR hit) Line in S(SO) at L2 - UP RESP (acknowledgement from
L2)
Line in S(MO) at L2 - B INV

WB - eviction of M
lines from L1

None

LOCKREQ Lock available and line in S(SO) or S(MO) at L2 -
LOCKGNT(with data optional as the line may be in
S(SO) or S(MO) at L2)
Lock not available - LOCKQUEUE
Lock available and line in M state at L2 - LOCK-
GNT L2FWD (request forward)

LOCKFREE Line in S(SO) at L2 - UP RESP and LOCK-
GNT L2FWD, if lock pending
Line in S(MO) at L2 - B INV (new lock owner informa-
tion appended) and LOCKGNT L2FWD, if lock pend-
ing)
no response on M line

Table 4.5: L1 Request vs. L2 Response

CHAPTER 4. A TILED BUS CMP 96

Request from L2 Response from L1
WB PENDING - M line evicted
from L2

WB

INVALIDATE - S(SO) line
evicted from L2

None

B INV - S(MO) line evicted from
L2

None

RD SH L2FWD or LOCK-
GNT L2FWD

OWNERDATA UP (with data)
or OWNER UP (without data in
case the request originates from
the same owner in case of shar-
ing between I and D cache) to
L2. RD SH RESP to original re-
questor

RD EX L2FWD RD EX RESP to original re-
questor, no response to L2

Table 4.6: L2 Request vs. L1 Response

Chapter 5

A Dual Mesh CMP

All scalable cache coherent multiprocessor systems use directory protocols with-

out a central arbiter over high bandwidth networks. While the Tiled Bus based

CMP has more network bandwidth in comparison with a snoop only bus CMP,

the central arbiter becomes a bottleneck in accessing the large pool of bandwidth.

The need for an efficient use of the network bandwidth as well as non-reliance over

a snoop bus, motivated the design of a dual mesh based CMP architecture without

a central arbiter. This chapter provides a detailed insight into the architecture,

cache coherency protocol and deadlock avoidance mechanism implemented in the

dual mesh tile based CMP system.

5.1 System Architecture

In this chapter we describe a CMP architecture which uses two mesh networks

instead of a bus and a mesh as described in Chapter 4. One of the mesh networks

serves as an unordered invalidation interconnect. Invalidation on this network

is supported using a broadcast tree with the memory tile designated as the root

node. A mesh based invalidation network provides higher bandwidth and sup-

ports more processors as compared to a single bus based network [DYL03]. Also,

it does not suffer from the wire delay problems that are associated with a single

bus [KZT05]. The other mesh network, processor and memory tiles retain the

same functionality as described in Chapter 4. A distinguishing feature of this

architecture compared to the mesh and bus based system is that it does not use

a central arbiter. This feature eliminates the arbitration delays and better uti-

lizes the mesh network bandwidth. This architecture does not use a lock unit as

97

CHAPTER 5. A DUAL MESH CMP 98

explained in chapter 4. Instead, the lock unit is replaced by a simple lock ta-

ble that is used to detect stale LOCKFREE messages and reduces the hardware

complexity that is associated with the lock unit described in Section 4.8. A more

detailed description of this locking protocol is described in Section 5.4. The main

aim of simulating this architecture was to compare its performance with that of

the mesh and bus scheme. Figure 5.1 shows the architecture of this CMP for a

16 processor configuration.

Figure 5.1: Dual Mesh CMP

5.2 Deadlock Avoidance

While removal of the central arbiter unit allows better utilization of the mesh

network bandwidth, it also generates more traffic that might eventually lead

to deadlock because of buffer space constraint at the L2 and processor tiles

[HGR07][HP07]. One option to avoid deadlocking is to provide separate chan-

nels or paths for requests and responses. In this system, responses that cause

the L2 to transit from the PENDING(P) state to any other state are considered

critical. This is because the L2 waits on such responses, stalling requests for

the same address until the response arrives. Apart from these critical messages,

all responses generated by L2 are also considered critical. This is because re-

quests that piggyback response messages also cause the L2 to transit to P state.

Therefore, all critical messages are sent on a separate channel, the sink channel,

that is provided for each port handler, i.e. every port master and slave, on a

tile. The sink channel is a non-blocking buffer that accepts critical responses

CHAPTER 5. A DUAL MESH CMP 99

and guarantees consumption of these messages. Both sink and non-sink channels

share the physical link that is attached to the port handler. Figure 5.2 shows a

tile having both sink and non-sink channels. Irrespective of whether the tile is a

processor or L2, there is only one sink buffer per port handler. L2 tiles ensure

strict First-in-First-Out (FIFO) ordering on output sink channels, i.e. messages

are sent out in the same order that they are generated. The master sink chan-

nel has a different buffer structure compared to the master non-sink channel. It

contains two header buffers and a single data buffer. This is because, there are

instances within the cache coherency protocol that may cause a slave sink channel

to generate two response packets from a single request, that need to be sent out

of the same master sink channel. If the master sink channel has space for only a

single response message, then the second response message that is generated by

the slave sink channel will block until the master sink channel releases the first

response message. This scenario of blocking the slave sink channel can potentially

cause deadlock and will be explained in more detail in Section 5.3.5.

NS S

NS S

NS

SS

NS

NSS

S

NS

NS NS

SS

Tile
Logic

Master

Slave

Master Slave
Master

Slave

Master Slave

NS: Non Sink
S: Sink

Figure 5.2: Tile with Sink channels

5.3 Cache Coherency Protocol

As described in Chapter 4, the cache coherency protocol uses directories at the L2

for read and write requests to non-widely shared data, while the snoop protocol is

CHAPTER 5. A DUAL MESH CMP 100

used solely for broadcast purposes. In the mesh and bus based CMP, a requestor

signals the completion of its request by releasing the central arbiter. In this

CMP design, the lack of a central arbiter means that acknowledgement messages

are required to ensure completion of reads and writes. This is an overhead to

the existing cache coherency described in Chapter 4. Almost all read and write

requests have retained the same naming convention, with request and response

messages being designated as a combination of the type and control field from the

packet header, as described in Chapter 4. All requests are sent on the non-sink

channels, while most responses are sent on the sink channels. All messages that

are sent on the sink channel are explicitly stated, otherwise it is assummed that

they are sent on the non-sink channel. Cache lines retain the same states in both

L1 and L2 as described in Chapter 4. Subsequent sections describe the actions

taken to ensure cache coherency for read and write requests.

5.3.1 Read Miss

On a Read Miss, the processor (requestor) sets a READ request within the request

table and sends a RD SH message to the L2. The L2 takes the following actions

depending on the state of the line in its cache:

• Line in E or S state

The L2 sends (RD SH RESP, ACK S) packet on the sink channel, indicating that

the READ request at the processor should commit the request in S state in the

L1 cache.

• Line in M state

The L2 forwards the request (RD SH L2FWD, FWD) on the sink channel to

the processor that holds the line in M state within its L1 (owner cache) and

transits to the P state, waiting for an acknowledgement from the owner and

the requestor. The owner cache responds with a (OWNERDATAUP,ACK S)

or (OWNERUP, ACK M) packet, sent on the sink channel to the L2, and a

(RD SH RESP RAW, ACK S) packet sent on the sink channel, to the requestor

L1. The RD SH RESP RAW packet indicates that the read response packet is

the result of an indirection operation, i.e. the read is a part of a ‘Read-After-

Write’(RAW) operation and had to be forwarded to the owner processor in order

CHAPTER 5. A DUAL MESH CMP 101

to fetch the read data. The primary difference between a RD SH RESP RAW

packet and the RD SH RESP is that the requestor processor needs to gener-

ate a acknowledgement packet (ACK - sent on the sink channel) back to the

L2 in order to indicate that the read operation has completed. The requestor

commits the read request in the S state within its L1 cache on receiving the

RD SH RESP RAW packet. The L2 on receiving both the OWNERDATAUP

and the ACK packets, transits to the S(MO) state. The need for an ACK mes-

sage on a READ request to a M line in L2 is illustrated in figure 5.3. There

is no certainty on whether the read from P1 is a part of a RAW or a ‘Write-

After-Read’(WAR) operation. If the read was part of the RAW, as indicated by

the type - RH SH RESP RAW field within the packet, then the cache line in P1

is not invalidated. If the read was part of a WAR, as indicated by the type -

RD SH RESP field, then the cache line in P1 will be invalidated. The ACK sent

by P1 after it receives the RD SH RESP RAW packet serves as a serializability

measure ensuring that the RD SH RESP RAW packet always commits in the S

state within the cache. If no ACK packet was generated by P1, then P1 has no

means of guaranteeing that there was no intervening write before it received the

RD SH RESP RAW packet and hence cannot ascertain that it can commit the

cache line in S state. Therefore the RD SH RESP RAW along with the ACK

packet solves the problem of unnecessary invalidations on reads to modified data.

Note, that an OWNERUP packet indicates that the requestor and the owner

processor are identical and that the request was generated by either the D or I

cache and the data resides in either the I or D cache. On receipt of an OWNERUP

packet the L2 transits to the M state and changes the owner id field within the

cache line to reflect the new owner processor, in this case, the same id as the

original owner processor.

On some instances, the owner processor might evict the data from its write-

back buffer in order to respond to the RD SH L2FWD. In this case, the owner

processor generates an (OWNERUP, ACK M) packet with the control field set

to ACK M indicating that the L2 should set the cache line state as M and

(RD SH RESP RAW, ACK M) packet with its control field set to ACK M in-

dicating that the requestor L1 should also set the cache line state as M. The

requestor on receiving the RD SH RESP RAW packet commits the read request

in M state within the L1. The L2 on receipt of the OWNERUP packet sets the

cache line state to M, and updates the processor id field with that of the requestor

CHAPTER 5. A DUAL MESH CMP 102

id. There is no need for the requestor to generate an ACK because, even if the

OWNERUP packet reaches the L2 much before the RD SH RESP RAW packet

reaches the destination, and the L2 generates another forwarding request to the

present owner of the line, the dimension order routing protocol and the in order

sink channels guarantee that the RD SH RESP RAW will never be blocked.

If the owner processor has already written back the line before the RD SH L2FWD

packet arrived, then the owner discards the RD SH L2FWD. L2 on receiving the

WB packet will generate a RD SH RESP back to the requestor.

Figure 5.3: RAW and WAR operation

5.3.2 Write Miss

On a write miss in the L1 cache, the requestor creates a write request within the

request table and sends out either an UP or RD EX packet to the L2. The L2

takes the following actions depending on the state of the line in its cache:

CHAPTER 5. A DUAL MESH CMP 103

• Line in E state

The L2 generates a (RD EX RESP, ACK M NORESP) packet to the requestor,

on the sink channel, indicating that response should commit in M state and no

ACK packet is required. The owner id field within the L2 cache line is set to

the processor id of the requestor and the L2 transits to M state. Note, an UP

for an E line in cache is treated as a RD EX request by the L2. The requestor

on receiving the RD EX RESP checks the control field and commits the write

request in the M state within its L1 cache.

• Line in S(SO) state

On a RD EX, the L2 generates a (RD EX L2FWD,FWD) packet that is sent on

the sink channel to the owner processor, and transits to the P state. The owner

processor on receiving the RD EX L2FWD packet takes the following actions:

• If the line is in the L1 or WB buffer, the owner processor sends a

(RD EX RESP, ACK M) packet with the control field set to ACK M

to the requestor and invalidates its L1 or clears the WB buffer. ACK M

indicates that the requestor should generate an acknowledgement to

the L2. The requestor processor on receiving the RD EX RESP packet

generates an ACK packet to the L2, signalling the completion of the

write. On receipt of the ACK packet, the L2 changes the owner id

field within the cache line to reflect the processor id of the reqeustor

and transits to M state.

• If the line has been evicted because of space constraints within the L1,

the owner processor resends a (RD EX L2FWD FAIL, FWD) packet

back to L2, on the sink channel. On receipt of this message the L2 gen-

erates a (RD EX RESP,ACK M NORESP) packet for the requestor,

changes the owner id field and transits to M state (Figure 5.4).

On an UP, the L2 generates an (UP RESP, ACK M NORESP) packet to the

requestor on the sink channel and transits to M state. The requestor on receiving

the UP RESP packet commits the request in M state in the L1.

CHAPTER 5. A DUAL MESH CMP 104

Figure 5.4: RD EX to S(SO) line evicted from L1

• Line in S(MO) state

On a RD EX, the L2 broadcasts an invalidation packet (B INV) on the invali-

dation network and generates a (RD EX RESP,ACK M INVPENDING) packet

for the requestor, changes the owner id field and transits to M state. On an UP,

L2 broadcasts an invalidation packet on the invalidation network, changes the

owner id field and transits to M state. The ACK M INVPENDING control field

indicates that the L1 requestor should not commit the request in the M state

until it receives the B INV.

An invalidation message contains the id of the processor responsible for the

invalidation, the type of request that generates the invalidation, i.e., RD EX, UP

or LOCKFREE, the thread id-if the invalidation is due to a SIRQ request and the

address of the cache line that needs to be invalidated. All processors on receiving

an invalidation message at the invalidation port take the following actions:

1. If there is a request for the same line address within the request table,

the processor checks the type of request and takes the following actions:

(a) If the request is a RD SH, then an invalidation flag is set within the

request table entry indicating that the line should be invalidated

within the L1 on the arrival of the response for the RD SH request.

Depending on the type of response for the RD SH request the

following actions take place:

• If the response for the RD SH is a RD SH RESP RAW packet,

the flag is discarded and the line is committed in the state as

dictated by the control field of the packet.

• If the response is a RD SH RESP, then the cache line is in-

validated, but the request is committed with the read value

CHAPTER 5. A DUAL MESH CMP 105

written to the registers. The WAR case in Figure 5.3 shows

why there is a need to invalidate the cache line on receipt of a

RD SH RESP packet when the flag is set within the request

table entry. However, it is also possible that the response for

the read might have been a part of a RAW, e.g. W-R-R case,

in which case the L2 will generate a RD SH RESP response

packet for the second READ request. But, this RD SH RESP

causes the cache line to be invalidated because of the invali-

date flag that was set by the second READ on seeing the orig-

inal write. Therefore, in the case wherein the RD SH RESP

packet finds the invalidate flag set, unnecessary invalidations

might occur. Note, that a full directory protocol that supports

ACK messages to be generated during invalidations prevents

this scenario, because the processor generating the read never

receives an invalidation message.

(b) If the request is a RD EX and the id on the invalidation network

matches the processor id, a flag is set within the request table

entry to indicate that the invalidation for the RD EX request is

complete. The processor on receiving a RD EX RESP packet with

the control field set to ACK M INVPENDING, checks this flag

and then commits the request in M state.

(c) If the request is an UP and the id on the invalidation network

matches the processor id, the UP request commits in M state. If

there is no match between the ids, the line is invalidated from the

L1 cache, the UP request is changed to RD EX and a the flag is

set within the request table entry to indicate this change.

2. If there is no pending request present for the invalidation address, the

L1 and WB buffers are checked and the cache line is invalidated or

cleared, if present.

• Line in M state

On a RD EX, the L2 forwards the request as a RD EX L2FWD packet to the

owner processor and transits to P state. The owner processor on receiving the

RD EX L2FWD packet, sends a RD EX RESP packet with the control field set

CHAPTER 5. A DUAL MESH CMP 106

to ACK M to the requestor and invalidates the line from the L1 cache or write-

back buffer. The requestor on receiving the RD EX RESP packet sends an ACK

message to the L2 indicating that write operation has completed and commits the

request in M state. The L2 on receiving the ACK packet, updates the owner id

field with the processor id associated with the requestor and transits to M state

(Figure 5.5).

If the line is not in the cache or writeback buffer, the owner processor assumes

that a writeback operation has taken place and discards the RD EX packet. The

L2 on receiving the WB packet will service the RD EX request as a write to an

E line in L2.

On an UP, the L2 assumes that the UP is a RD EX and services it as described

above.

Figure 5.5: RD EX to M or S(SO) line in L2

5.3.3 Writebacks and Evictions

Modified lines that are evicted by the L1 caches are written back to the L2 in

the form of a writeback (WB) packet that is sent on the sink channel. The L2

on receiving the WB packet commits in the E state, if there is space in the L2

cache, or writes the line back to MM.

The L2 sends a WB PENDING packet on the sink channel to the owner

processor on evicting a M line from the cache, forcing a WB response packet

from the processor.

CHAPTER 5. A DUAL MESH CMP 107

5.3.4 Stale UP Problem

The limited directory scheme and the subsequent broadcast that is required on

directory pointer index overflow causes problems in detecting UP requests that

are no longer valid when they arrive at the directory. Consider the following

scenario as shown in Figure 5.6. Processors, P1 and P2 send UP messages and

P3 sends a RD SH message to the L2. Suppose the L2 services P2’s UP before

P1, it sends a B INV message and commits in M state. P1 on seeing the B INV,

sets a flag within its request table indicating that the request has changed from

an UP to a RD EX. L2 then services P3’s request and transists to S(MO) state.

L2 now services P1’s UP request, and sends a B INV packet on the invalidation

network with the type field in the packet set to UP, indicating that the B INV

was in response to an UP request. This is a stale UP case and the L2 never

detected P1’s request change from an UP to a RD EX.

In such a situation, P1 detects that the L2 has serviced a stale UP packet and

sends a RD EX packet to the L2 with the control field set to UP INV, on the

sink channel. On receipt of this RD EX packet, L2 transits to E state, clears the

owner id field and sends a RD EX FAIL packet on the sink channel back to P1

acknowledging that it has detected the stale UP. P1 now sends a RD EX packet

to the L2, instead of an UP.

Figure 5.6: Stale UP

CHAPTER 5. A DUAL MESH CMP 108

5.3.5 Sink Deadlock

As mentioned in Section 5.2, deadlock can also occur on the sink channel in the

following scenario as shown in Figure 5.7(a):

1. P1 receives a RD SH L2FWD from L2, say for address A. P1 sends an

RD EX packet with control field set to UP INV packet to L2, say for

address B.

2. P1 generates a RD SH RESP RAW for A and inserts the packet into

the sink master. The OWNERDATAUP packet is still pending in

P1’s sink slave (green dashed line). L2 in the mean while, generates a

RD EX L2FWD for address C for P1 and inserts the packet into its

sink master.

3. L2 sink slave generates a RD EX FAIL packet (blue dashed line) in

response to the UP INV packet from P1 and requires the same sink

master as that of the newly generated RD EX L2FWD packet.

4. P1 cannot insert the OWNERDATAUP packet into the sink mas-

ter, because the sink master is blocked with the RD SH RESP RAW

packet. P1’s sink master cannot send the RD SH RESP RAW packet

out because the L2’s sink slave is blocked with the RD EX FAIL

packet. L2 sink slave cannot send the RD EX FAIL packet out be-

cause the L2’s sink master is blocked with the RD EX L2FWD packet.

L2 sink master cannot send the RD EX L2FWD packet out because

P1’s sink slave is blocked with the OWNERDATAUP packet. This

leads to a formation of a cycle and causes deadlock.

In order to break this cycle, all sink masters are provided with two header

buffers and a single data buffer, as shown in Figure 5.7(b). When P1 gener-

ates the OWNERDATAUP packet, it inserts it into the second header buffer

of the sink master. The data buffer contents remain unchanged because both

RD SH RESP RAW and OWNERDATAUP use the same data. P1 then serves

the RD EX L2FWD packet and L2’s sink master accepts the RD EX FAIL packet.

CHAPTER 5. A DUAL MESH CMP 109

Figure 5.7: Deadlock Avoidance within the sink channels

5.4 Locking Protocol

In Chapter 4, locks were accessed and released using a dedicated hardware locking

unit. However, the disadvantages of the scheme mentioned in section 4.8.4,

motivated the need for a locking scheme that allows for accessing and releasing

locks on a non-ordered network. The new locking scheme continues to use a

lock table at the L2, to track potential would be lock owners and detects any

stale lock access requests. Unlike the previous locking scheme, there is no queue

maintained to track the list of lock requestors (processor ids) and therefore the

hardware complexity associated with each lock entry is reduced. In this scheme,

lock requestors need to retry for the lock on receipt of a failed lock response.

CHAPTER 5. A DUAL MESH CMP 110

The lock table structure is shown in figure 5.8. Each entry consists of a lock

address and a bit vector whose length is equal to the number of processors. Each

cache line within the L2 contains two bits to detect lock operations, an L bit to

indicate that the line is locked and a W bit to indicate a write operation has

been performed on a locked cache line. The lock table along with the L and W

bits on the L2 cache line are used to determine the success or failure of a lock

operation at the L2. As with the L2, the L1 also contains a L bit on each cache

line indicating that the line is locked. The L1 also contains a local lock table to

keep track of lines that are potentially marked for lock ownership. The working

of the locking protocol is as follows:

Figure 5.8: Lock Unit at L2

• On a LDL L instruction and a L1 cache miss, the processor generates

a normal read request to the L2. If the read request is to a cache line

that has either the L or W bit set, the L2 checks the lock table and

takes the following action:

1. If the lock entry is present in the lock table, a flag is set within

the bit vector to indicate the processor id that requested the lock.

2. If there is no lock entry present in the lock table, a new entry

is created and the bit vector associated with that entry is set to

indicate the processor id that requested the lock.

• The L2 responds to the read (LDL L) request as it would do for any

normal read. On receipt of the read response from the L2 or a cache

hit, the processor sets an entry within its local lock table and attempts

to perform a STL C.

Note, a read to a line in L2 where both L and W bits are not set

is treated as a normal read, even though this read might have been

generated due a LDL L instruction.

CHAPTER 5. A DUAL MESH CMP 111

• On a STL C instruction, the processor checks it’s L1 cache if it in the

S state and a correponding enry exists within the local lock table. If

both conditions are satisfied, it sends a LOCKFREE message to the

L2. No LOCKFREE message is generated on a M line in L1. STL C

on a line invalidated in cache implies that the lock operation has failed

and that the processor should retry the LDL L instruction in order to

access the lock.

• On receipt of a LOCKFREE message, the L2 checks the lock table and

takes the following actions:

1. If a lock entry is present and the processor id in the LOCKFREE

message has a corresponding flag set in the bit vector associated

with the lock entry or if there is a match with the owner id field

on the L2 cache line, then the LOCKFREE is assummed to be a

success. The L2 clears the lock table entry and sets the L and W

bits on the cache line; transits to M state; and sets the owner id

field to the processor id that generated the LOCKFREE message.

The LOCKFREE processor on receiving either a RD EX RESP

or UP RESP or seeing a B INV on the invalidation network, will

clear its local lock table and commit the STL C instruction.

2. If a lock entry is present and the processor id does not match

with the flag set in the bit vector, the LOCKFREE is assumed

to be a failure and a LOCKFREE FAIL message is sent to the

processor id that generated the LOCKFREE message. On receipt

of a LOCKFREE FAIL message, the receiving processor clears the

lock table and invalidates the cache line, if present in the L1, so

that the STL C instruction on retry will fail within in the L1.

3. If no lock entry is present and the W or L bit is set the the LOCK-

FREE is assumed to be a failure.

4. If a lock entry from the L2 lock table is evicted because of space

constraints, then the L and W bits on the L2 cache line is reset.

Now, if a LOCKFREE arrives for the same cache line and the

state of the cache line at L2 is S(MO), then L2 will accept the

LOCKFREE. On receiving the B INV in response to the LOCK-

FREE, the processor will check the state of the cache line in its

CHAPTER 5. A DUAL MESH CMP 112

L1. If the line is in S state within the L1, the LOCKFREE suc-

ceeds, otherwise it is considered a failure. On detecting a failure,

the processor will send a LOCKFREE FAIL message back to the

L2. On receipt of the LOCKFREE FAIL message, the will reset

the lock table entry and clear the L and W bit flags on its cache

line.

Figure 5.9 shows the various combinations of lock entry, W and L bits, required

for the success of a LOCKFREE or a LOCKFREE FAIL. 1 indicates LOCKFREE

succeeds, 0 indicates LOCKFREE FAIL is generated. It also shows the next

state transitions associated with other types of requests, such as reads, writes

and writebacks. Certain states are invalid, these states are indicated by having

no next state (NS) entry.

Figure 5.9: A state table describing the combinations for LOCKFREE to succeed

The reason for having an additional bit, i.e the W bit, along with the L bit

at the L2, is to detect stale LOCKFREE messages. This is illustrated by the

following example as shown in Figure 5.10.

1. Assume Processor1 (P1) and P2 both have the line in S state in L1.

Both attempt the LOCKFREE at the same time. Because P1 is closer

to the L2 tile, its LOCKFREE message reaches first and succeeds.

CHAPTER 5. A DUAL MESH CMP 113

2. L2 sends a B INV message because the line was in S(MO) state and

sets both W and L bits, sets the the owner id field to P1 and transits

to M state. P1’s L1 has the line in M state on seeing the B INV.

3. If P1 does a writeback, L2 will transit from M to E state and clears

the L bit, but not the W bit.

4. P3 and P4 generate RD SH messages for the same line

5. The L2 sets an entry in the lock table because the W bit was set

and responds with a RD SH RESP messages to both P3 and P4 and

transits to S(MO) state.

6. If, now say, P2’s LOCKFREE finally arrives at the L2, it is detected

as a stale LOCKFREE because, the lock table entry does not contain

a flag set that is associated with P2 nor does the owner id field on the

L2 cache line match with P2.

One possible case wherein a stale LOCKFREE can’t be detected is, say if L2

requires to writeback a M line with L or W bit and generates a WB PENDING

request to P1. On receiving the WB packet from P1, L2 puts the line(data) into

the write queue associated with the memory controller, invalidates the cache line

and clears both L and W bits. If now, one or more processors request the same

line, the L2 checks the write queue and brings the data into the cache in the

E state. Because of the multiple read requests for the same line, L2 eventually

transits from E to S(MO) state. Now, if a stale LOCKFREE arrives from P2,

L2 assumes that the LOCKFREE has succeeded. A possible solution for this

case is for P2 to detects that its LOCKFREE failed when it sees the B INV due

to P1’s LOCKFREE. If P2 receives any other response from the L2 apart from

LOCKFREE FAIL, it should generate a message back to the L2 indicating that

the it is a stale LOCKFREE and the L2 should transit back to E state.

5.5 Simulation Details

The simulator model used for the Mesh and Bus architecture was extended to

include the following new features:

• Buffering and packet processing within the sink channels

CHAPTER 5. A DUAL MESH CMP 114

Figure 5.10: Stale LockFree Detection at L2

• Contention for intra tile sink and non-sink masters from both sink and

non-sink slaves, by providing a round-robin scheme that schedules only

one slave to access the master, while the other slaves are blocked.

• Port controller logic that multiplexes between sink and non-sink slaves

and masters for accessing the physical channel attached to a port.

Apart from these changes all delays and assumptions that were made in the

mesh and bus based simulator were retained.

5.6 Summary

This chapter overviews the architecture of the dual mesh tiled CMP, concen-

trating on the interconnect topology and the cache coherence protocol used. It

highlights the cache coherency problems that are associated without the use of

a central arbiter (generation of ack messages for RAW and WAR scenarios and

detecting stale UPs), network deadlocking scenarios that were encoutered when

simulating this architecture and the corresponding measures taken to overcome

these problems. Instead of using a dedicated queue lock unit, a simple lock table

along with an additional bit added to the L2 tag was used to handle acquire and

release of locks. This locking scheme avoids some of the disadvantages and is sim-

pler in design and complexity in comparison to the one described in Chapter 4.

This architecture better utilises the bandwidth available on the mesh network

and mitigates the wire delay issue.

The next chapter provides a quantitative evaluation of the dual mesh, and

mesh and bus architectures w.r.t a single bus based JAMAICA CMP.

CHAPTER 5. A DUAL MESH CMP 115

5.7 Summary of Request and Response Mes-

sages

Tables 5.1 and 5.2 summarize the request and response messages that are gen-

erated by the dual mesh cache coherency protocol and the channels (sink or

non-sink) that they are sent on.

L1 Request L2 Response
RD SH (non-sink) Line in S (SO) or S(MO)/E at L2 -

RD SH RESP (with data on sink)
Line in M at L2 - RD SH L2FWD (request
forward on sink)

RD EX (non-sink) Line in E at L2 - RD EX RESP (with data
on sink)
Line in M or S(SO) at L2 - RD EX L2FWD
(request forward on sink)
Line in S(MO) at L2 - RD EX RESP and
B INV (broadcast invalidate on mesh)

UP (non-sink) Line in S(SO) at L2 - UP RESP (acknowl-
edgement from L2 on sink)
Line in S(MO) at L2 - B INV

WB (sink) None
LOCKFREE (non-
sink)

Line in S(SO) at L2 - UP RESP

Line in S(MO) at L2 - B INV
no response on M line - Error

RD EX with UP INV
(sink)

RD EX FAIL (sink)

Table 5.1: L1 Request vs. L2 Response for Dual Mesh

CHAPTER 5. A DUAL MESH CMP 116

Request from L2 Response from L1
WB PENDING (sink) WB (sink)
INVALIDATE (sink) None
B INV (invalidate
mesh)

None

RD SH L2FWD
(sink)

OWNERDATA UP (with data on sink)
or OWNER UP (without data on sink).
RD SH RESP RAW to requestor (sink). Re-
questor responds with ACK (sink).

RD EX L2FWD
(sink)

RD EX RESP (sink) to original requestor.
Requestor responds with ACK (sink)

Table 5.2: L2 Request vs. L1 Response for Dual Mesh

Chapter 6

Results

This chapter presents the performance of the dual mesh and mesh and bus ar-

chitectures, using kernel based multithreaded benchmarks from the Java Grande

Benchmark suite. It studies the absolute scalability and the relative performance

improvement by comparing the execution times of the benchmarks running on

both the architectures.

6.1 Benchmarks

This section describes the evaluation of the system using some of the kernel

based Java Grande benchmarks [BSW+99][SBO01]. Kernel benchmarks are used

to determine the performance related properties of a real application [CSG99].

The description of the five multithreaded kernel benchmarks used are as follows:

• LUFact

LUFact is used to solve a linear system of equations that are repre-

sented in an 500X500 matrix format. It relies on dividing the matrix

into two triangular matrices, upper and lower, and in turn factor-

izing each of them into sub-matrices, until the matrix is no longer

factorisable and the computation is performed sequentially. Only the

factorization part is done in parallel.

• Series

The Series benchmark computes 1000 Fourier coefficients of the func-

tion given by the equation f(x) = (x+1)x over the interval [0, 2]. The

117

CHAPTER 6. RESULTS 118

iterations of a loop that calculates the Fourier coefficients are indepen-

dent and are distributed as threads over the available processors.

• SOR

The SOR benchmark, Successive Over Relaxation algorithm, is used

in grid computing to calculate the solution to a partial differential

equation [Fen01] and performs 200 iterations over a 500X500 grid.

For parallelization purposes, the grid is arranged as alternating red

and black squares. Three loops are used, the first one performs the

iterations, the second and third inner loops iterate over the red and

black squares respectively, updating the value of a red square using

the values from four adjacent black squares and vice versa. Each of

the inner loops is partitioned into threads to ensure that only the red

or black elements are being updated at any point in time [Hor07]. All

threads synchronize before the next update can start and ensure that

during an update the previous value of the adjacent square is being

read.

• Crypt

The crypt benchmark performs encryption and decryption using the

IDEA (International Data Encryption Algorithm) over a 50000 byte

array. The algorithm contains two loops whose iterations are indepen-

dent and can be divided among threads.

• Sparse

The Sparse benchmark performs sparse matrix multiply using a 10000X10000

unstructured sparse matrix grid that is stored in compressed row for-

mat.

6.2 Simulator Configuration

In order to evaluate the performance of the mesh and bus and dual mesh ar-

chitectures each of the five benchmarks were run on cycle accurate simulators

that model four architectures namely, mesh and bus; dual mesh,; single bus and

perfect memory; with a varying number of processors. The mesh and bus and

dual mesh architectures were simulated using a modified version of the JAMSIM

CHAPTER 6. RESULTS 119

simulator as mentioned in Chapters 4 and 5. The single bus and perfect mem-

ory architectures were simulated using the JAMSIM simulator as described in

Chapter 3 [Hor07]. The benchmarks were statically compiled into an optimized

version of the Jikes RVM boot image in order not to simulate the dynamic class

loading feature which is unnecessary for performance measurements.

Firstly, it was necessary to decide if the processors needed to be configured in

single or dual context mode. Figure 6.1 shows the decrease in execution time for

all benchmarks run on a 16 processor set up for both dual-mesh and mesh-bus

configurations of the simulator, respectively. Apart from SOR, that has better

performance with single context, all other benchmarks perform better on using

dual context as compared to a single context JAMAICA core. Therefore, the

simulations were performed using dual context JAMAICA processor cores.

DualMesh
MeshandBus

 −10

 0

 10

 20

 30

 40

 50

Crypt Sparse SOR LUFact Series

 %
D

ec
re

as
e

in
 E

xe
cu

tio
n

T
im

e

Benchmarks

Decrease in Execution Time using Two Contexts per Processor Core

Figure 6.1: Performance Improvement using Dual Context Processor Cores vs.
Single Context

Table 6.1 shows the various processor and L2 tile combinations.

Table 6.2 shows the access times (in processor clock cycles) for different cache

sizes and the main memory delay assumed [MB07].

Simulation configurations for the four architectures that were modelled are

described as follows: For all simulation configurations, dual context JAMAICA

cores were assumed.

CHAPTER 6. RESULTS 120

Table 6.1: Processor and L2 Combinations
Number of Processors Number of L2 Tiles

1 2
2, 4 , 8 2

16 4
32 8
64 16

Table 6.2: Multi Threaded Processor Configuration
Component Access Time

L1 Data Cache 64KB, 1 cycle
L1 Instruction Cache 64KB, 1 cycle

1 L2 tile 4MB, 26 cycles
2 L2 tiles 2MB, 17 cycles

4/8/16 L2 tiles 1MB, 9 cycles
Main Memory 200 Cycles

• Mesh and Bus

The architecture is simulated for 1, 2, 4, 8 and 16 processors. There-

fore, a 16 processor configuration would run with 32 threads. The bus

is clocked at half the frequency as that of the processor core. The ar-

chitecture is not tested for more than 16 processors, primarily because

studies [KZT05] in the past have shown that practically, a chip with

16 processors on a single bus has considerable area and power over-

head, and requires the single bus to be split into two separate buses.

Also, with increased processor count a single bus suffers from network

saturation (up to 60% on average and 90% peak) and hence reduced

speedup. A detailed analysis of this network saturation and speedup

is presented by Horsnell [Hor07].

• Dual Mesh

The architecture is simulated for 1, 2, 4, 8, 16, 32 and 64 processors.

For 64 processors, only 3 out of the 5 benchmarks (crypt, series and

sparse) were tested, mainly due to the large simulation time overhead,

as well as dimninishing scalability from the remaining benchmarks as

shown in Figures 6.14 and 6.15.

CHAPTER 6. RESULTS 121

• Single Bus

The simulator used for this architecture can simulate up to 128 pro-

cessors with multiple cache hierarchies [Hor07]. However, for the same

reasons as cited in Mesh and Bus this architecture is simulated up to

16 processors only. The configuration tested assumes a single cluster

based L1 bus that interconnects all processors to the L2. The bus is

run at 1/4 the processor frequency, ensuring that the time taken to

access the L2 (2 cycles for a 1:1 bus to processor core frequency ratio)

is 16 cycles.

• Perfect Memory

In order to determine the scalability of the benchmark, a perfect mem-

ory (perf mem) simulator [Hor07] is used. The perfect memory simula-

tor assumes no memory hierarchy, i.e. no caches and cache coherency,

and hence all requests are satisfied instantaneously without experienc-

ing any contention . Simulator configurations of 1, 2, 4, 8, 16, 32 and

64 processors were used for all benchmarks.

6.3 Speedup

This section describes the speedup obtained by running the multithreaded bench-

marks over different architectures with varying processor configurations. All re-

sults reported are with respect to using two contexts per JAMAICA core and

from the parallel execution phase of the benchmarks.

The speedup of a benchmark is calculated using the formula:

SpeedUp =
ExecutionT ime(1Processor)

ExecutionT ime(Nprocessors)
(6.1)

Figures 6.2 and 6.3 shows the relative speedup obtained by comparing the

actual execution time of the benchmark running on different architectures for a 16

processor configuration. It must be noted that the absolute speedup is measured

w.r.t the performance of the benchmark using a single processor for the same

architecture. It is the relative speedup that actually measures the effectiveness

of the architecture. For all benchmarks, the perfect memory case outperforms

the dual mesh scheme (Figure 6.3), because there is no contention for memory

accesses.

CHAPTER 6. RESULTS 122

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

Crypt Sparse SOR LUFact Series

 S
pe

ed
U

p

Benchmarks

 Relative Speed Up: Dual Mesh over Mesh and Bus for 16 Processors

Figure 6.2: Relative Speedup Obtained by Using Dual Mesh over Mesh and Bus
for 16 Processors

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

Crypt Sparse SOR LUFact Series

 R
el

at
iv

e
S

pe
ed

U
p

Benchmarks

 Relative Speed Up: Perf Mem over Dual Mesh for 32 Processors

Figure 6.3: Relative Speedup Obtained by Using Perfect Memory over Dual Mesh
for 32 Processors

 0

 2

 4

 6

 8

 10

 12

 14

Crypt Sparse SOR LUFact Series

 %
A

rb
itr

at
io

n
C

yc
le

s

Benchmarks

Arbitration Cycles as a % of Total Execution Time in Mesh and Bus for 16 Processors

Figure 6.4: Arbitration Cycles as % of the Total Execution Time: Mesh and Bus

CHAPTER 6. RESULTS 123

Figure 6.4 shows the time spent in arbitration as a % of the total execution

time in the mesh and bus architecture. Figure 6.5 shows the effect the arbiter

in the mesh and bus architecture has on the average read and write delays in

comparison to the dual mesh scheme that does not implement an arbiter. Figure

6.6 shows the increase in total memory loads (MEML), memory stores (MEMS)

and total number of instructions executed (TOTINSTRS) in the mesh and bus

architecture over the dual mesh scheme. The reason for this increase being, the

mesh and bus use a Jikes build with the new locking code as mentioned in Chapter

4, Section 4.8. Whereas, the dual mesh, single bus and perfect memory schemes

use the Jikes build without the locking code changes, as mentioned in Chapter 3,

Section 3.6.

%RD Delay Increase
 %WR Delay Increase

 −10%

 0%

 10%

 20%

 30%

 40%

 50%

Series LUFact SOR Sparse Crypt

 %
In

cr
ea

se
 in

 R
D

 a
nd

 W
R

 d
el

ay
s

Benchmarks

 % Increase in Average RDs and WR delays due to the Central Arbiter in Mesh and Bus for 16 Processors

Figure 6.5: %Increase in Average Read and Write Delays in Mesh and Bus over
Dual Mesh

Figure 6.7 shows the effect of stale UP, and unnecessary invalidations of cache

lines on receiving a read response packet (both mentioned in Chapter 5 and in

Sections 5.3.4 and 5.3.2, respectively) that might occur in the dual mesh scheme

because of not having an ACK message during writes to widely shared data. This

leads to increased indirection messages in the dual mesh scheme compared to the

mesh and bus, as shown in Figure 6.8. Figure 6.9 shows the average number

of ack messages that are generated per broadcast invalidation on a 16 processor

dual mesh configuration. Benchmarks such as, LUFact and Sparse that show

more than one processor on an average sharing characteristics should potentially

CHAPTER 6. RESULTS 124

MEML
MEMS
TOTINSTRS

 0%

 2%

 4%

 6%

 8%

 10%

 12%

Crypt Sparse SOR LUFact Series

 %
In

cr
ea

se
 in

 M
em

 L
D

Ls
/S

T
Ls

/In
st

ru
ct

io
ns

 in
 M

es
h

an
d

B
us

Benchmarks

%Increase in Mem LDLs/Mem STLs and Total Instructions in Mesh and Bus over Dual Mesh for 16 Processors

Figure 6.6: Increase in instruction count in Mesh and Bus over Dual Mesh

benefit in reduced write completion latency by avoiding the ack messages.

The absolute and relative speedup for each of the benchmarks is discussed

below:

• Crypt

The perfect memory simulator (Figure 6.10) shows that Crypt has near

linear speedup up to 64 processors. This holds true for the other archi-

tectures, including the dual mesh scheme, but only up to 16 processors.

However, starting from 32 processors, the rate of speedup reduces in

the dual mesh scheme and drops down further for 64 processors.

Figure 6.12 shows the worst case delays (assuming no contention) for

16, 32 and 64 processor mesh network. These delays assume two cycles

per node processing time, 1 cycle hop delay, for request (when a packet

travels between adjacent nodes) and 2 cycle hop delay for a data mes-

sage. Figure 6.11 shows the average read and write latencies (average

delay to satisfy a read miss and a write miss, respectively) for the crypt

benchmark for 16 to 64 processors, with the 64 processor configura-

tion run for different data sets (50000 and 500000) on the dual mesh

scheme. It can be seen that as the number of processors increases the

average read and write latencies also increase. Increasing the data set

CHAPTER 6. RESULTS 125

%RD Invalidated
 %UP Invalidated

 0%

 0.5%

 1%

 1.5%

 2%

Crypt Sparse SOR LUFact Series

 %
In

va
lid

at
ed

 R
D

s
an

 U
P

s

Benchmarks

 % of RDs and UPs Invalidated in Dual Mesh for 16 Processors

Figure 6.7: % of Invalidated RD and UPs in Dual Mesh

%RD Indirection
 %WR Indirection

 −20%

 −10%

 0%

 10%

 20%

 30%

 40%

 50%

 60%

Crypt Sparse SOR LUFact Series

 %
 In

cr
ea

se
 in

 N
o.

 o
f R

D
 a

nd
 W

R
 In

di
re

ct
io

ns
 in

 D
ua

l M
es

h

Benchmarks

 % Increase in RD and WR Indirections in Dual Mesh Compared to Mesh and Bus Scheme for 16 Processors

Figure 6.8: Increase in Read and Write Indirections in Dual Mesh over Mesh and
Bus

 0.5

 1

 1.5

 2

 2.5

 3

Crypt Sparse SOR LUFact Series

 A
ve

ra
ge

 N
um

be
r

of
 A

C
K

S

Benchmarks

Average of ACKS generated per broadcast invalidation

Figure 6.9: Average Number of ACKS that are generated per Broadcast Invali-
dation on a 16 Processor Dual Mesh Configuration

CHAPTER 6. RESULTS 126

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

P64C2P32C2P16C2P8C2P4C2P2C2P1C2

S
pe

ed
U

p

Number of Processors x Number of Contexts

Crypt SpeedUp

Dual Mesh
Mesh and Bus

Single Bus
Perfect Memory

Figure 6.10: Speedup Crypt

size (thereby increasing the number of requests to L2) has no effect

on the read and write latencies. This proves that the read and write

latencies are dependent on the network architecture rather than the

contention induced by the benchmark. However increasing the data

set size (from 50000 to 500000) does increase the speedup from 40 to

60. This is because of the increase in computation to communication

ratio, as shown in Figure 6.13. This increase in computation to com-

munication ratio and hence the speedup is explained by Gustafson’s

law [Gus88] which states that the parallel component within an ap-

plication scales with the data set size. Bigger data sets require more

processors and therefore the speedup of an application is proportional

to the number of processors. Equation 6.2 gives the speedup according

to Gustafson’s Law:

S = N + (N − 1)Fs (6.2)

Where, S = Speedup; N = Number of Processors; Fs = fraction of

time spent in the non-parallel section of the code.

From the relative speedup graph (Figure 6.2), there is nothing to be

gained from running this benchmark on either the dual mesh or mesh

CHAPTER 6. RESULTS 127

and bus (1.0x speedup. The dual mesh scheme does not benefit from

any savings from the arbitration cycles lost in the mesh and bus scheme

(Figure 6.4). Although the mesh and bus scheme suffers from higher

average read latencies compared to the dual mesh scheme (Figure 6.5).

In the case of crypt, this is offset by the increased indirection message

generated in the dual mesh scheme (Figure 6.8). Both increase in the

number of indirection messages and increase in the average read and

write latencies leads to higher execution time. For 64 processors, the

dual mesh scheme performs within 33% of the ideal speed.

 30

 40

 50

 60

 70

 80

 90

 100

 110

P16 P32 P64 P64(500000)

A
ve

ra
ge

 R
D

 a
nd

 W
R

 D
el

ay
s

Number of Processors

Average Read and Write Latency for Crypt with Increasing Processor Numbers

RD Delays
WR Delays

Figure 6.11: Read and Write Latencies with Varying Processor and DataSet
Configurations for Crypt: Dual Mesh

• LUFact

The perfect memory speedup graph for LUFact(Figure 6.14) shows

that inherently the benchmark does not scale linearly after 16 pro-

cessors. The relative speedup graph (Figure 6.2) up to 16 processors

shows that the dual mesh scheme performs almost comparably to the

mesh and bus (1.01x speedup, Figure 6.2). Although the dual mesh

scheme gains (7.8% of the execution time in mesh and bus) by not hav-

ing a central arbiter (Figure 6.4), there is an increase in the number of

read and write indirection messages in the dual mesh scheme (Figure

6.8) thereby increasing the overall execution time. For 32 processors,

the dual mesh scheme performs within 20% of the theoretical ideal

CHAPTER 6. RESULTS 128

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

16 32 64

D
el

ay
 in

 P
ro

ce
ss

or
 C

yc
le

s

Number of Processors

Worst Case Delay for different Processor Numbers

Figure 6.12: Maximum Delay on the Mesh Network with Varying Number of
Processor Nodes without Contention

 0

 1

 2

 3

 4

 5

 6

 7

 8

P16 P32 P64 P64(500,000)

 C
om

pu
ta

tio
n

to
 C

om
m

un
ic

at
io

n
R

at
io

Number of Processors

 Computation to Communication Ratio for Crypt with Varying Processor Number and Data Set Size

Figure 6.13: Computation to Communication Ratio For Crypt Varying Number
of Processor Nodes and DataSet Size

CHAPTER 6. RESULTS 129

speedup of 32. This benchmark was not exercised on the 64 proces-

sor configuration for dual mesh, primarily because of the low inherent

scalability of the benchmark and the large simulation time overhead.

 0

 5

 10

 15

 20

 25

 30

 35

P64C2P32C2P16C2P8C2P4C2P2C2P1C2

S
pe

ed
U

p

Number of Processors x Number of Contexts

LUFact SpeedUp

Dual Mesh
Mesh and Bus

Single Bus
Perfect Memory

Figure 6.14: Speedup LUFact

• SOR

The perfect memory speedup graph for SOR (Figure 6.15) indicates

that the benchmark drops in performance after 16 processors. In terms

of relative speedup, the dual mesh scheme performs better than the

mesh and bus architecture (1.14x speedup) as shown in Figure 6.2.

SOR has lower read and write latencies on the mesh and bus in com-

parison to the dual mesh scheme (Figure 6.5). But the decrease in

the number of indirection messages in the dual mesh scheme (Figure

6.8), due to reduced number of instructions being executed Figure 6.6)

along with the savings in arbitration cycles (Figure 6.4) overcompen-

sate for the higher read and write latencies. This overcompensation

leads to reduced execution time for the SOR benchmark on the dual

mesh architecture in comparison to the mesh and bus scheme.

Figure 6.16 shows the performance of the SOR benchmark run on

the perfect memory architecture with simulator configurations of 1,

CHAPTER 6. RESULTS 130

32 and 64 processors with a 1000X1000 grid. In comparison to the

results obtained on a 500X500 grid, the speedup improves by 3x for

32 processors and 4x for 64 processors. However, the sharp drop in

speedup after 32 processors, indicates that the benchmark does not

scale linearly.

 0

 2

 4

 6

 8

 10

 12

 14

P64C2P32C2P16C2P8C2P4C2P2C2P1C2

S
pe

ed
U

p

Number of Processors x Number of Contexts

SOR SpeedUp

Dual Mesh
Mesh and Bus

Single Bus
Perfect Memory

Figure 6.15: Speedup SOR

• Series

The benchmark shows linear scalability, implying that it is inherently

scalable as shown by the perfect memory graph in Figure 6.17. How-

ever, in terms of relative speedup (Figure 6.2), this benchmark per-

forms similarly on both dual mesh and mesh and bus architectures

(1.0x speedup) for 16 processors. The benchmark is dominated by

reads and writes to main memory and has very little sharing among

threads (Figure 6.18). Therefore, its performance is dominated by

main memory delay (200 cycles, the same for both dual mesh and

mesh and bus).

CHAPTER 6. RESULTS 131

 0

 5

 10

 15

 20

 25

P1 P32 P64

S
pe

ed
 U

p

Number of Processors

Speed for SOR with Bigger Data Set (1000X1000) Grid

Perf Mem

Figure 6.16: Speedup SOR for 1000X1000 with Perfect Memory

 0

 10

 20

 30

 40

 50

 60

 70

P64C2P32C2P16C2P8C2P4C2P2C2P1C2

S
pe

ed
U

p

Number of Processors x Number of Contexts

Series SpeedUp

Dual Mesh
Mesh and Bus

Single Bus
Perfect Memory

Figure 6.17: Speedup Series

• Sparse

Similar to Series, the benchmark is inherently scalable as shown by

CHAPTER 6. RESULTS 132

HIT
MM
INDIRECTION

 0

 20

 40

 60

 80

 100

S
er

ie
s

LU
F

ac
t

S
O

R

S
pa

rs
e

C
ry

pt

S
er

ie
s

LU
F

ac
t

S
O

R

S
pa

rs
e

C
ry

pt

L2
 R

es
po

ns
e

S
pr

ea
d

Benchmark

 L2 Response Spread for Mesh and Bus and Dual Mesh for 16 Processors

Mesh and Bus Dual Mesh

Figure 6.18: % of Indirections, MM acccess and Hits within the L2 for 16 pro-
cessors: Dual Mesh and Mesh and Bus

the perfect memory graph in Figure 6.19. In terms of the relative

performance (Figure 6.2), the mesh and bus based scheme performs

better than the dual mesh scheme (1.03x or 0.98x - dividing the exe-

cution time from mesh and bus by the execution time from dual mesh)

as shown in Figure 6.2. The dual mesh scheme gains from the mesh

and bus scheme in terms of arbitration cycles (12%), But, this gain is

offset by the increase in number of read and write indirections in the

dual mesh scheme, which in turn increases the overall execution time

(Figure 6.8).

Although the dual mesh scheme (for 16 processors) was supposed to gain

(in terms of the execution time) by not having a central arbiter, it loses out

by generating an increased number of indirection messages. On the dual mesh,

three out of the five benchmarks-LUFact, Sparse and Crypt, suffer from increased

indirection messages, so result in higher execution time and compensate for the

savings in arbitration cycles (mesh and bus and single bus). The performance of

Series is dominated by main memory access and its execution time on the dual

mesh is unaffected by the gain in arbitration cycles (<2% in the mesh and bus

scheme), or the increased indirection messages(8%) being generated in the dual

CHAPTER 6. RESULTS 133

 0

 10

 20

 30

 40

 50

 60

 70

P64C2P32C2P16C2P8C2P4C2P2C2P1C2

S
pe

ed
U

p

Number of Processors x Number of Contexts

Sparse SpeedUp

Dual Mesh
Mesh and Bus

Single Bus
Perfect Memory

Figure 6.19: Speedup Sparse

mesh scheme. SOR benefits from cycles lost in arbitration within the mesh and

bus as well as the lower indirection messages count generated on the dual mesh.

However, the benchmark is inherently non-scalable and hence has low returns

from running on a multithreaded CMP architecture.

Up to 16 processors, a single bus and a crossbar based CMP [Hor07] performs

better than the dual mesh scheme (Figure 6.20), in terms of the relative execution

time. In spite of having an arbiter on the single bus, the average read and write

delays are bound to fixed number of cycles, in this case 16 cycles. However on

the dual mesh scheme or mesh and bus scheme, the average read write delays

vary depending on the contention and the hop count for message traversal re-

sulting in an increase in the overall execution time. However, for more that 16

processors, when a single bus becomes unacceptable as an interconnect, mainly

due to power, area and clock speed constraints on-chip, the dual mesh scheme

is a more appropriate architecture. Its worst case performance is within 33%

(Crypt for 64 processors) of the ideal speedup for benchmarks such as, Crypt and

LUFact which are affected by the increase in execution time due to the effects of

the cache coherency protocol (increased number of indirection messages) and the

delays induced by the network.

CHAPTER 6. RESULTS 134

single bus
 crossbar

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

Crypt Sparse SOR LUFact Series

 R
el

at
iv

e
S

pe
ed

U
p

Benchmarks

 Relative Speed Up: Single Bus and Crossbar w.r.t. Dual Mesh for 16 Processors

Figure 6.20: Relative Speedup: Using Single Bus over Dual Mesh for 16 Proces-
sors

6.4 Summary

This chapter evaluates the performance of the two CMP architectures discussed in

this thesis, namely dual mesh and mesh and bus. The absolute performance (ab-

solute speedup) obtained by executing five different kernel benchmarks on these

two architectures as well as on a single bus is presented for up to 16 processors.

The relative performance (relative speedup) of these architectures is presented

by comparing the execution times of the benchmarks for up to 16 processors.

The dual mesh scheme is evaluated for greater than 16 and up to 64 processors.

Results show that the absolute performance of the dual mesh scheme is dictated

by the parallelism inherent in the benchmark (SOR, LUFact - low parallelism;

Crypt, Sparse, Series - highly parallel) and the relative performance is dependent

on the the delays induced by the network topology and cache coherency protocol

(Crypt, LUFact, Sparse).

Chapter 7

Conclusion and Future Work

It is well known that CMPs have already appeared, and will continue to dom-

inate the design of future computing systems. The best possible use of CMP

systems comes from extracting high degrees of parallelism from existing applica-

tions. Currently, most applications use the shared memory parallel programming

paradigm. Sustaining such applications on a CMP system requires implementing

cache coherency. Therefore one of the main challenges current and future CMPs

face, until the introduction of newer non-shared memory programming models for

mainstream applications, is the efficient implementation of cache coherency on

CMPs. This thesis addresses this issue by taking advantage of the high density

of transistors and wires on current generation silicon chips and explores a com-

pletely hardware based architectural solution using two separate interconnection

networks on chip.

The design of two CMP architectures, one containing heterogeneous networks

(mesh and bus) and the other containing homogeneous networks (dual mesh) was

explored in this thesis. The main aim was to investigate the scalabilility of the

CMPs using a combination of snoop and limited directory based protocols. The

use of two mesh networks was motivated by the increased number of transistor

and wire density on-chip as well as the use of shorter wire length interconnects

to mitigate the wire delay problem. The snoop protocol was used in order to

reduce the write latency encountered in traditional directory based protocols

during write invalidates to widely shared data. Cycle accurate simulation of the

architectures (mesh and bus and dual mesh) did reveal some of the corner cases,

especially w.r.t. the network deadlock issues and synchronization protocol. The

CMP architectures were evaluated using kernel based multithreaded benchmarks

135

CHAPTER 7. CONCLUSION AND FUTURE WORK 136

from the Java Grande Benchmark suite. Results show that scalability of the

architecture is dictated by several factors such as, the inherent parallelism within

the application, the size of the data set and the effects of the cache coherency

protocol.

Given the results obtained, we conclude that the dual mesh scheme is a promis-

ing approach for small and medium sized (up to 64 or even 128 cores) CMP sys-

tems. However, very large scale CMP systems (256 or more cores) would require

a shift from the shared memory programming model and hence independence

from cache coherency protocols to achieve high scalability.

7.1 Future Work

Providing high scalability and lower power dissipation is of prime importance in

any CMP design. This section lists some enhancements that could potentially

improve on these two aspects of the dual mesh CMP scheme.

1. Adaptive Routing Protocol

The dual mesh scheme uses a dimension order routing protocol in or-

der to implement read and write message ordering as required by the

cache coherency protocol. Figure 7.1 shows the % utilization of ver-

tical links attached to the L2 tiles within a 16 processor dual mesh

configuration (Chapter 4, Figure 4.2), every 10 million cycles of the

benchmark run. Figure 7.2 shows the % of vertical link utilization

for tiles adjacent to the L2. The link utilization is a very small frac-

tion of the total offered bandwidth, implying that the network does

not saturate. Comparing Figure 7.1 and Figure 7.2, it is seen that

distribution of traffic is uneven within the network, with the L2 tiles

subjected to almost 5 times more traffic than that on the adjacent

tile links. In the cache coherency protocol implemented, ordering is

provided on a single cache line address by using the static dimension

order routing protocol. However, the routing protocol is too conserva-

tive for request messages that need not be ordered. Therefore, using

adaptive routing protocols for request messages and static dimension

routing protocol for response messages should provide for potential

performance improvement on the dual mesh system. An alternative

CHAPTER 7. CONCLUSION AND FUTURE WORK 137

and possibly a simpler approach would be to use separate request and

response network as used in Tilera [WGHea07].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

%
 L

in
k

U
til

iz
at

io
n

Time Interval

Vertical Link Utilization of L2 Tiles in Dual Mesh: 16 Processors

L2Id0N
L2Id1N
L2Id2N
L2Id3N
L2Id0S
L2Id1S
L2Id2S
L2Id3S

Figure 7.1: Link Activity on Vertical Links on L2 Tiles on a Dual Mesh

2. Formal Analysis of Cache Coherency Protocol

Formal analysis is commonly used in both hardware and software sys-

tem verification in order to detect subtle errors, that arise due to the

scale and complexity of modern designs. Random benchmark simula-

tion testing is not a solution to complete verification and determining

all the bugs (corner cases) present within the design. Most hardware

based cache coherent system designed within academia and industry

are verified using formal verification tools that exhaustively search the

state space of the design [PD97]. In this thesis a random benchmarking

approach was taken, however, using formal method analysis for prov-

ing the data consistency feature of the cache coherency protocol as

well as validating the locking protocol could be another potential area

of research in using multiple network based cache coherency scheme.

3. Optimizations to the Cache Coherency Protocol

The limited directory protocol used in the mesh and bus and dual

CHAPTER 7. CONCLUSION AND FUTURE WORK 138

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

%
 L

in
k

U
til

iz
at

io
n

Time Interval

Vertical Link Utilization of Tiled Adjacent to L2 in Dual Mesh: 16 Processors

P5N
P6N
P9N

P10N
P13N
P14N

P1S
P2S
P5S
P6S
P9S

P10S

Figure 7.2: Link Activity on Vertical Links on Tiles Adjacent to L2 on a Dual
Mesh

mesh scheme, requires the L2 tiles to store the id of a single pro-

cessor that is either a sharer or owner of the cache line. This stor-

age requires log2N bits, where N is the total number of processors

within the system. However, previous work on limited directories

[ASHH88][MH94][CP99][AGGD05], propose several ways of encoding

data within a fixed number of bits in order to accommodate more than

one cache line sharer information. Transmitting the sharer information

on the broadcast network would help in preventing unncessary inval-

idations in the dual mesh scheme as mentioned in Chapter 5 Section

5.3.2.

Bibliography

[AB84] J. Archibald and J.L Baer. An economical solution to the

cache coherence problem. SIGARCH Computer Architecture News,

12(3):355–362, 1984.

[AB86] J. Archibald and J.L. Baer. Cache coherence protocols: evaluation

using a multiprocessor simulation model. ACM Trans. Comput.

Syst., 4(4):273–298, 1986.

[ACJea07] M. Azimi, N. Cherukuri, D.N. Jayasimha, and et.

al. Reevaluating amdahl’s law. Integration Challenges

and Tradeoffs for Tera-scale Architectures, 11(3), 2007.

http://www.intel.com/technology/itj/2007/v11i3/1-integration/1-

abstract.htm: Last Accessed September 2008.

[Aea00] B. Alpern and et. al. The jalepeno virtual machine. IBM Systems

Journal, 39(1):211–238, 2000.

[AGGD05] M.E. Acacio, J. Gonzalez, J.M. Garcia, and J. Duato. A two-level

directory architecture for highly scalable cc-numa multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 16(1):67–

79, 2005.

[And90] T.E. Anderson. The performance of spin lock alternatives for

shared-moneymultiprocessors. IEEE Transactions on Parallel and

Distributed Systems, 1(1):6–16, 1990.

[ARM06] ARM. ARM11 MPCore Processor Technical Reference Manual,

2006. http://www.arm.com.

[ASHH88] A. Agarwal, R. Simoni, J.L. Hennessy, and M. Horowitz. An eval-

uation of directory schemes for cache coherence. In Proceedings of

139

BIBLIOGRAPHY 140

the 15th Annual International Symposium on Computer Architec-

ture, pages 280–289, 1988.

[BC91] J.L. Baer and T.F. Chen. An effective on-chip preloading scheme

to reduce data access penalty. In Supercomputing ’91: Proceedings

of the 1991 ACM/IEEE conference on Supercomputing, pages 176–

186, 1991.

[BCGK04] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Qnoc: Qos

architecture and design process for network on chip. Journal of

Systems Architecture, 50(2-3):105–128, 2004.

[BD06] J. Balfour and W. J. Dally. Design tradeoffs for tiled cmp on-chip

networks. In ICS ’06: Proceedings of the 20th annual international

conference on Supercomputing, pages 187–198, 2006.

[BDH+99] E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, and D. J. Sorin. Multi-

cast snooping: a new coherence method using a multicast address

network. In Proceedings of the 26th annual International Sympo-

sium on Computer Architecture, pages 294–304, May 1999.

[BGC+07] E. Bolotin, Z. Guz, I. Cidon, R. Ginsoar, and A. Kolodny. The

power of priority: Noc based distributed cache coherency. In

Proceedings of the First International Symposium on Network-on-

Chips (NOCS ’07), pages 117–126, May 2007.

[Bha05] D. Bhandarkar. Multi multi-core microprocessor

chips: Core microprocessor chips: Motivation chal-

lenges. Intel 10th EMEA Academic Forum, May 2005.

http://www.intel.com/education/highered/research/academicforum.htm.

[BKJN99] V. Berkel, C.H. Kees, M.B. Josephs, and S.M. Nowick. Scanning

the technology: applications of asynchronous circuits. Proceedings

of the IEEE, 87(2):223–233, 1999.

[BKT07] J.A. Brown, R. Kumar, and D. Tullsen. Proximity-aware directory-

based coherence for multi-core processor architectures. In SPAA

’07: Proceedings of the nineteenth annual ACM symposium on Par-

allel algorithms and architectures, pages 126–134, 2007.

BIBLIOGRAPHY 141

[BSW+99] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A.

Davey. A benchmark suite for high performance java. In Proceed-

ings of ACM 1999 Java Grande Conference, pages 81–88, 1999.

[Cha02] A. Charlesworth. The sun fireplane interconnect. IEEE Micro,

22(1):36–45, 2002.

[CMR+06] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian,

and J.B. Carter. Interconnect-aware coherence protocols for chip

multiprocessors. In Proceedings of the 33rd annual International

Symposium on Computer Architecture, pages 339–351, 2006.

[CP99] J.H. Choi and K.H. Park. Segment directory enhancing the lim-

ited directory cache coherence schemes. In IPPS ’99/SPDP ’99:

Proceedings of the 13th International Symposium on Parallel Pro-

cessing and the 10th Symposium on Parallel and Distributed Pro-

cessing, pages 258–267, 1999.

[CRD07] B. Cuesta, A. Robles, and J. Duato. An effective starvation avoid-

ance mechanism to enhance the token coherence protocol. In 15th

Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP’07), pages 47–54, 2007.

[CS06] J. Chang and G. S. Sohi. Cooperative caching for chip multiproces-

sors. In ISCA 2006: Proceedings of the 33rd annual international

symposium on Computer Architecture, pages 264–276, 2006.

[CSG99] D.E. Culler, J.P. Singh, and A. Gupta. Parallel computer archi-

tecture: a hardware and software approach. Morgan Kaufmann

Publishers, SanFrancisco, California, 1st edition, 1999.

[CSL+06] J.F. Cantin, J.E. Smith, M.H. Lipasti, A. Moshovos, and B. Falsafi.

Coarse-grain coherence tracking: Regionscout and region coherence

arrays. IEEE Micro, 26(1):70–79, 2006.

[Dig92] Digital Equipment Corp. Alpha Architecture Handbook, 1992.

[Dig95] Digital(now Compaq/HP). Shared memory con-

sistency models: a tutorial, September 1995.

http://research.compaq.com/wrl/techreports/abstracts/95.7.html.

BIBLIOGRAPHY 142

[Din06] A. Dinn. JaVM user guide, August 2006.

http://intranet.cs.man.ac.uk/apt/intranet/csonly/jamaica/Documents/

TechnicalNotes/JaVMUserGuide/JaVMUserGuide.html/ Last Ac-

cessed June 2008.

[DS87] W.J. Dally and C.L. Seitz. Deadlock-free message routing in mul-

tiprocessor interconnection networks. IEEE Transactions on Com-

puters, C-36(5):547–553, 1987.

[DT01] W.J. Dally and B. Towles. Route packets, not wires: on-chip inter-

connection networks. In DAC: Proceedings of Design Automation

Conference, pages 684–689, 2001.

[DWKEM05] A. Dinn, I. Watson, C. Kirkham, and A. El-Mahdy. The jamaica

virtual machine: A chip multiprocessor parallel execution environ-

ment. Technical report, University of Manchester, 2005.

[DYL03] J. Duato, S. Yalamanchilli, and L. Li. Interconnection Networks:

An Engineering Approach. Morgan Kaufmann Publishers, San-

Francisco, California, 2003.

[EB00] F. Emnett and M. Biegel. Power reduction through rtl

clock gating. Technical report, SNUG 2000: Synopsys User

Group, San Jose, 2000. www.eng.auburn.edu/ vagrawal/-

COURSE/E6270 Fall07/PROJECT/LUO/snug2000.pdf.

[EPS06] N. Eisley, L.S. Peh, and L. Shang. In-network cache coherence. In

Proceedings of the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 321–332, 2006.

[FC08] C. Fensch and M. Cintra. An os-based alternative to full hardware

coherence on tiled cmps. In HPCA 2008: The 14th International

Symposium on High-Performance Computer Architecture, 2008.

[Fen01] K. Fenwick. A performance analysis of java distributed shared

memory implementations. Master’s thesis, Adelaide University,

2001.

BIBLIOGRAPHY 143

[FPGAD07] R. Fernandez-Pascual, J.M. Garcia, M.E. Acacio, and J. Duato.

A low overhead fault tolerant coherence protocol for cmp architec-

tures. In HPCA ’07: Proceedings of the 2007 IEEE 13th Inter-

national Symposium on High Performance Computer Architecture,

pages 157–168, 2007.

[GCM+06] P. Gratz, K. Changkyu, R. McDonald, S.W. Keckler, and

D. Burger. Implementation and evaluation of on-chip network ar-

chitectures. In ICCD 2006. International Conference onComputer

Design, 2006., pages 477–484, 2006.

[GGV90] E. H. Gornish, E. D. Granston, and A. V. Veidenbaum. Compiler-

directed data prefetching in multiprocessors with memory hierar-

chies. In International Conference on Supercomputing, pages 354–

368, 1990.

[GK08] B. Grot, , and S.W. Keckler. Scalable on-chip interconnect topolo-

gies. In CMP-MSI: 2nd Workshop on Chip Multiprocessor Mem-

ory Systems and Interconnects, In conjunction with the (ISCA-35),

35th International Symposium on Computer Architecture, 2008.

http://www.cs.utah.edu/cmpmsi08/.

[GKS+07] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar,

S.W. Keckler, and D. Burger. On-chip interconnection networks of

the trips chip. IEEE Micro, 27(5):41–50, 2007.

[GLD06] M. E. Gómez, P. López, and J. Duato. Fir: an efficient routing

strategy for tori and meshes. Journal of Parallel Distributed Com-

puting, 66(7):907–921, 2006.

[GN92] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In

ISCA: In Proceedings of the 19th Annual International Symposium

on Computer Architecture, pages 278–287, 1992.

[Gus88] J. L. Gustafson. Reevaluating amdahl’s law. Communications of

the ACM, 31(5):532–533, 1988.

[GVA+08] Y. Guo, V. Vlassov, R. Ashok, R. Weiss, and C.A. Moritz. Synchro-

nization coherence: A transparent hardware mechanism for cache

BIBLIOGRAPHY 144

coherence and fine-grained synchronization. Journal of Parallel

Distributed Computing, 68(2):165–181, 2008.

[GW88] J. R. Goodman and P. J. Woest. The wisconsin multicube: a new

large-scale cache-coherent multiprocessor. SIGARCH: Comput. Ar-

chitecture News, 16(2):422–431, 1988.

[GWM90] A. Gupta, W. Weber, and T. Mowry. Reducing memory and traffic

requirements for scalable directory-based cache coherence schemes.

In International Conference on Parallel Processing, pages 312–321,

1990.

[HGR07] A. Hansson, K. Goossens, and A. Radulescu. Avoiding message-

dependent deadlock in network-based systems on chip. VLSI De-

sign, February 2007.

[Hor07] M. J. Horsnell. A Chip Multi-Cluster architecture with locality

aware task distribution. PhD thesis, University of Manchester,

2007.

[HP03] J. L. Hennessy and D. A. Patterson. Computer architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, 3rd edition

edition, 2003.

[HP07] J. L. Hennessy and D. A. Patterson. Computer architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, 4th edition

edition, 2007.

[HSXP08] Z. Huang, X. Shi, Y. Xia, and J. Peir. Alternative home:

Balancing distributed cmp coherence directory. In CMP-

MSI: 2nd Workshop on Chip Multiprocessor Memory Sys-

tems and Interconnects, In conjunction with the (ISCA-35),

35th International Symposium on Computer Architecture, 2008.

http://www.cs.utah.edu/cmpmsi08/.

[Inc] Sun MicroSystems Inc. Sun java. http://java.sun.com/. Last Ac-

cessed June 2008.

BIBLIOGRAPHY 145

[Int98] Intel Corp. P6 Family of Proces-

sors - Hardware Developer’s Manual, 1998.

http://www.intel.com/design/pentiumii/manuals/244001.htm.

[itr05] International technology roadmap for semiconductors - intercon-

nects. Technical report, International Technology Roadmap for

Semiconductors, 2005.

[KBD07] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology for

on-chip networks. In MICRO ’07: Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, pages

172–182, 2007.

[KBK02] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform

cache structure for wire-delay dominated on-chip caches. In Pro-

ceedings of the 10th annual conference on Architectural Support for

Programming Languages and Operating Systems, pages 211–222,

2002.

[KFJ+03] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and

D.M. Tullsen. A multi-core approach to addressing the energy-

complexity problem in microprocessors. In WCED 2003:

Workshop on Complexity-Effective Design, 2003. http://www-

cse.ucsd.edu/users/tullsen/wced03.pdf.

[KM08] S. Kaxiras and M. Martonosi. Computer Architecture Techniques

for Power-Efficiency. Morgan and Claypool Publishers, ist edition

edition, 2008.

[KZT05] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in

multi-core architectures: Understanding mechanisms, overheads

and scaling. In Proceedings of the 32nd International Symposium

on Computer Architecture, June 2005, pages 408–419, June 2005.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that cor-

rectly executed multiprocess programs. In IEEE Transactions on

Computers, volume C-28, pages 690–691, September 1979.

[Mat97] D. Matzke. Will physical scalability sabotage performance gains?

IEEE Computer, 30(9):37–39, 1997.

BIBLIOGRAPHY 146

[MB07] N. Muralimanohar and R. Balasubramonian. Interconnect design

considerations for large nuca caches. In ISCA ’07: Proceedings of

the 34th annual international symposium on Computer architec-

ture, pages 369–380, 2007.

[MBH+05] M.R. Marty, J.D. Bingham, M.D. Hill, A. J. Hu, M.M.K. Martin,

and D.A. Wood. Improving multiple-cmp systems using token co-

herence. In HPCA ’05: Proceedings of the 11th International Sym-

posium on High-Performance Computer Architecture, pages 328–

339, 2005.

[MFD+06] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie. Segment-

based routing: an efficient fault-tolerant routing algorithm for

meshes and tori. In IPDPS: Proceedings 20th IEEE International

Parallel amp; Distributed Processing Symposium, page 84, 2006.

[MH94] S. S. Mukherjee and M. D. Hill. An evaluation of directory protocols

for medium-scale shared-memory multiprocessors. In Proceedings

of the 8th ACM-SIGARCH Int’l Conf. on Supercomputing, pages

64–74, 1994.

[MH08] M.R. Marty and M.D. Hill. Virtual hierarchies. IEEE Micro,

28(1):99–109, 2008.

[MHW03] M.M.K. Martin, M. D. Hill, and D. A. Wood. Token coherence: De-

coupling performance and correctness. In Proceedings of 30th Inter-

national Symposium on Computer Architecture (ISCA-30), pages

182–193, May 2003.

[MLC+92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-

mann. Effective compiler support for predicated execution using

the hyperblock. In Proceedings of the 25th International Sympo-

sium on Microarchitecture, pages 45–54, 1992.

[MMFC01] A. Moshovos, G. Memik, B. Falsafi, and A.N. Choudhary. JETTY:

Filtering snoops for reduced energy consumption in SMP servers.

In Proceedings of the 7th International Symposium on High- Per-

formance Computer Architecture,, pages 85–96, 2001.

BIBLIOGRAPHY 147

[MPS06] M. Monchiero, G. Palermo, and C. O. Silvano. An efficient synchro-

nization for multiprocessor system on-chip. In Proceedings of the

2005 workshop on MEmory performance: DEaling with Applica-

tions, systems and architecture: MEDEA, pages 33–40, September

2006.

[MSHW02] M.M.K. Martin, D.J. Sorin, M.D. Hill, and D.A. Wood. Bandwidth

adaptive snooping. In Proceedings of the Eighth IEEE Symposium

on High-Performance Computer Architecture, pages 251–262, 2002.

[NS92] H. Nilsson and P. Stenström. The scalable tree protocol - a cache

coherence approach for large-scale multiprocessors. In Proceedings

of the Fourth IEEE Symposium on Parallel and Distributed Pro-

cessing, pages 498–506. IEEE Computer Society Press, 1992.

[ODH+07] J. D. Owens, W. J. Dally, R. Ho, D.N. Jayasimha, S.W. Keck-

ler, and L. Peh. Research challenges for on-chip interconnection

networks. IEEE Micro, 27(5):96–108, 2007.

[OS02] V. G. Oklobdzija and J. Sparsø. Future directions in clocking multi-

ghz systems. In ISLPED ’02: Proceedings of the 2002 international

symposium on Low power electronics and design, pages 219–219,

2002.

[PD97] F. Pong and M. Dubois. Verification techniques for cache coherence

protocols. ACM Computing Surveys, 29(1), 1997.

[PIB+01] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo, and J.M.

Prellezo. The adaptive bubble router. Journal of Parallel and

Distributed Computing, 61(9):1180–1208, 2001.

[Pin06] T. Pinkston. Multicore and multiprocessor interconnection net-

works, July 2006. Tutorial at ACACES 2006, Second In-

ternational Summer School on Advanced Computer Architec-

ture and Compilation for Embedded System ,L’Aquila, Italy:

http://ceng.usc.edu/smart/slides/appendixE.html.

[PTM96] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared

memory: concepts and systems. Parallel Distibuted Technolocy:

Systems Applications, 4(2):63–71, 1996.

BIBLIOGRAPHY 148

[QDT88] D. Quammen, D.K. DuBose, and D. Tabak. A risc architecture for

multitasking. In Proceedings of the 21st Annual Hawaii Interna-

tional Conference on System Sciences, pages 230–237, 1988.

[RAG08] A. Ros, M.E. Acacio, and J.M. Garcia. Dico-cmp: Efficient cache

coherency in tiled cmp architectures. In IEEE International Sym-

posium on Parallel and Distributed Processing, 2008. IPDPS 2008,

pages 1–11, 2008.

[RL97] Y. Rhee and J. Lee. A scalable cache coherent architecture for large-

scale mesh connected multiprocessors. In Proceedings of the 1997

International Symposium on Parallel Architectures, Algorithms and

Networks (ISPAN ’97), page 64, 1997.

[SB77] H. Sullivan and T.R. Bashkow. A large scale, homogeneous, fully

distributed parallel machine, i. SIGARCH Computer Architecture

News, 5(7):105–117, 1977.

[SBB+91] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, and et.al.

Autonet: a high-speed, self-configuring local area network using

point-to-point links. IEEE Journal on Selected Areas in Commu-

nications, 9(8):1318–1335, 1991.

[SBO01] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel java grande

benchmark suite. In Supercomputing 01: Proceedings of the 2001

ACM/IEEE conference on Supercomputing, page 6, 2001.

[SH91] R. Simoni and M. Horowitz. Modeling the performance of limited

pointers directories for cache coherence. In Proceedings of the 18th

annual international symposium on Computer architecture (ISCA

’91), pages 309–319, 1991.

[SKT+05] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,

and J. B. Joyner. Power5 system microarchitecture. IBM

Journal of Research and Development, 49(4):505–521, 2005.

http://www.research.ibm.com/journal/rd/494/tocpdf.html.

[Sta97] W. Stallings. Data and Computer Communications. Prentice-Hall

Inc, New Jersey, USA, 1997.

BIBLIOGRAPHY 149

[Ste05] P. Stenstrom. Chip multiprocessors, July 2005. Tutorial at

ACACES 2005, First International Summer School on Advanced

Computer Architecture and Compilation for Embedded System

,L’Aquila, Italy.

[Sun03] Sun Microsystems, 4150 Network Circle,Santa Clara, CA 95054,

USA. JBus architecture overview, version1.0 edition, April 2003.

http://www.sun.com/processors/whitepapers/JBus External.pdf.

[Til] Tilera Corporation. Tile Processor Architecture

Technology Brief. last accessed - August 2008

http://www.tilera.com/pdf/ProductBrief TileArchitecture Web v4.pdf.

[TKMea02] M.B. Taylor, J. Kim, J. Miller, and et. al. The raw microprocessor:

A computational fabric for software circuits and general-purpose

programs. IEEE Micro, 22(2):25–35, 2002.

[URS02] T. Ungerer, B. Robic, and J. Silc. Multithreaded processors. The

Computer Journal, BCS, 3, 2002.

[VAG05] F. J. Villa, M. E. Acacio, and J. M. Garcia. Memory subsys-

tem characterization in a 16-core snoop-based chip-multiprocessor

architecture. In First International Conference on High Perfor-

mance Computing and Communications (HPCC 2005), volume

3726/2005, pages 213–222, September 2005.

[Wal90] D. W. Wall. Limits of instruction-level parallelism. Techni-

cal report, Digital Equipment Corp. - Western Research Lab-

oratory, 1990. ftp://ftp.digital.com/pub/Digital/WRL/research-

reports/WRL-TN-15.ps.gz.

[WGHea07] D. W., P. Griffin, H. Hoffmann, and et. al. On-chip interconnection

architecture of the tile processor. IEEE Micro, 27(5):15–31, 2007.

[Wri01] G. M. Wright. A single-chip multiprocessor architecture with hard-

ware thread support. PhD thesis, University of Manchester, January

2001.

[Ye03] T.T. Ye. On-chip multiprocessor communication network design

and analysis. PhD thesis, Stanford University, December 2003.

BIBLIOGRAPHY 150

[ZHWH07] H. Zeng, K. Huang, M. Wu, and W. Hu. Concerning with on-chip

network features to improve cache coherence protocols for cmps.

In Asia-Pacific Computer Systems Architecture Conference, pages

304–314, 2007.

