
HIGH PERFORMANCE
OPTIMIZATIONS IN RUNTIME

SPECULATIVE PARALLELIZATION
FOR MULTICORE ARCHITECTURES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2013

By
Paraskevas Yiapanis

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgments 13

1 Introduction 15
1.1 There is Something about Parallelism 16

1.2 The Rise of Multi-core Architectures 17

1.3 Challenges in Parallel Programming 18

1.3.1 Discovering Available Parallelism 19

1.3.2 Reasoning about Shared Mutable Data 19

1.3.3 Optimizing for Performance 20

1.4 Automatic Parallelization . 21

1.4.1 Manual and Automatic Parallelization 21

1.4.2 Runtime Automatic Parallelization 22

1.5 Speculative Parallelization . 23

1.5.1 Phases of Speculative Parallelization 23

1.5.2 Performance Potentials of Speculative Parallelization 24

1.6 Motivation . 26

1.7 Contributions . 27

1.8 Publications . 28

1.9 Thesis Structure . 29

2 Fundamentals of Runtime Parallelization 31
2.1 Introduction . 31

2

2.2 Inspector/Executor: An Overview 32

2.2.1 Inspector/Executor . 32

2.2.2 Inspector/Executor for Fully Parallel Loop Identification . . . 32

2.2.3 Earlier Work on Inspector/Executor 34

2.2.4 Weakness . 34

2.3 Speculative Parallelization . 34

2.3.1 Brief Description . 34

2.3.2 Design Specification . 35

2.3.3 Other Implementation Details 42

2.3.4 General Considerations . 43

2.4 Transactional Execution . 44

2.4.1 What is a Transaction? . 44

2.4.2 Database Transactions . 45

2.4.3 Transactional Memory . 45

2.5 Summary . 46

3 Advanced Topics in Runtime Parallelization 47
3.1 Introduction . 47

3.2 Execution Model . 48

3.2.1 Inspector/Executor . 48

3.2.2 Speculative Parallelization 49

3.2.3 Speculative Parallelization with Inspection Support 50

3.2.4 Decoupled Software Pipelining with Speculation Support . . . 51

3.3 Metadata and Version Management 53

3.3.1 Speculation with Decoupled Shadow Data 53

3.3.2 Speculation with Shared Shadow Data 56

3.3.3 Speculation using a Centralized Manager Thread 59

3.4 Conflict Detection, Rollback, and Commit 62

3.4.1 Lazy Conflict Detection . 63

3.4.2 Eager Conflict Detection . 66

3.5 Work Scheduling . 70

3.6 Summary . 71

4 MINITLS: In-Place Speculative Parallelization with Parallel Rollback 73
4.1 Introduction . 73

4.2 MINITLS: System Description . 74

3

4.2.1 General Concept . 74

4.2.2 Metadata . 74

4.2.3 Speculative Operations . 77

4.2.4 Conflict Detection . 78

4.2.5 Scheduling Policy and Ordering 79

4.2.6 Rollback and Recovery . 80

4.2.7 Speculative Thread Lifecycle 81

4.3 Summary . 82

5 Accelerating Speculative Runtime Parallelization using Inspector Threads 84
5.1 Introduction . 84

5.2 LECTOR: System Description . 85

5.2.1 General Concept . 85

5.2.2 Metadata . 85

5.2.3 Speculative Operations . 86

5.2.4 Speculative Thread Lifecycle 89

5.2.5 Inspector Threads . 90

5.3 Summary . 92

6 Evaluation and Results 94
6.1 Introduction . 94

6.2 Evaluation Methodology . 94

6.2.1 Hardware Platform . 94

6.2.2 Benchmark Applications . 95

6.2.3 Java Virtual Machine Implications 96

6.3 MINITLS - Experiments . 99

6.3.1 Baseline for Experiments: SPLIP 99

6.3.2 Performance Results . 99

6.3.3 Speculative Overhead Comparison 103

6.3.4 Data Structures Space Comparison 105

6.4 LECTOR - Experiments . 109

6.4.1 Baseline TLS system: TL2TLS 109

6.4.2 Performance Results . 109

6.4.3 Speculative Overhead Comparison 113

6.5 MINITLS vs. LECTOR - Experiments 116

6.6 Summary . 118

4

7 Conclusions and Future Work 120
7.1 Summary and Conclusions . 120
7.2 Future Directions . 122

7.2.1 Scheduling Partially Parallel Loops 122
7.2.2 Method-Level Speculation 122
7.2.3 Adaptive Selection of TLS System 123
7.2.4 Hardware Support . 124

Bibliography 125

A Baseline Systems Description 135
A.1 Introduction . 135
A.2 Baseline used for MINITLS: SPLIP 135

A.2.1 Metadata . 135
A.2.2 Algorithm Outline . 136

A.3 Baseline used for LECTOR: TL2 . 138
A.3.1 Algorithm Outline . 139

B Implementation Details for TLS Limit Study 141

Word Count: 29934

5

List of Tables

1.1 Thesis structure. 30

3.1 Advances in the literature of speculative parallelization. 49
3.2 Design choices for main work in the literature of speculative paral-

lelization. 72

6

List of Figures

1.1 Speculative parallelization phases. 24

1.2 Speculative parallelization of various applications from four important
benchmark suites. The graph shows the improvement percentage from
speculative parallelization over sequential application runtime. 25

1.3 Speculative parallelization speedup over sequential for Sparse bench-
mark (SPECjvm2008). 26

2.1 a) A loop to be parallelized. b) Stripped-down version of the loop to
be executed by the inspector threads. c) Auxiliary data to facilitate
inspection. 33

2.2 a) Code fragment of loop to be parallelized. b) Sequential execution.
c) Sample parallel execution. 36

2.3 a) Speculative loop execution without dependencies. b) Speculative
loop execution with dependency. c) Re-execution of offending threads. 37

2.4 a) Metadata or shadow data associated with user data structure. b)
Metadata associated with every speculative thread. 38

2.5 Sliding window scheduling. 42

3.1 The various design points that make up a speculative parallelization
system. 48

3.2 a) Linked-list traversal. b) DOACROSS scheduling. b) DSWP schedul-
ing. This example appears in [ORSA05a] 52

3.3 DOALL test [RP94a] basic data structures. 55

3.4 The data structures used by Cintra and Llanos [CL03, CL05]. “AT”
stands for Access Type,“IA” stands for Indirection Array, and “GlEx-
pLd” stands for Global Exposed Load. The values inside the “GlEx-
pLd” can be either true (T) or false (F). 58

3.5 Metadata used for CorD [TFNG08]. 60

7

4.1 Shadow data structure in MiniTLS. 76

4.2 Speculative load in MiniTLS. 78

4.3 Speculative store in MiniTLS. 79

4.4 Four-thread sliding window scheduling policy for 16 iterations. 80

4.5 Speculative thread lifecycle in MiniTLS. 82

5.1 Shadow data structure of Lector. 86

5.2 Speculative store in Lector. 87

5.3 Speculative load in Lector. 88

5.4 Speculative thread lifecycle in Lector. 90

5.5 Inspector threads are created by replicating the memory accesses from
speculative threads. “IT” stands for Inspector Thread. 92

5.6 Phase 1: Lightweight inspector threads (IT) execute concurrently with
TLS threads. Phase 2: ITs complete execution earlier than TLS threads
and test if the loop is DOALL. Phase 3: Depending on the outcome
of phase 2, either speculation continues as normal, or speculation is
turned off (i.e. non-speculative parallel execution). 93

6.1 Speedup results for MiniTLS. Sequential execution is denoted by 1 in
the y axis. 100

6.2 Time spent on speculation for Sparse. The y axis is intersected at the
sequential time. 101

6.3 Speedup comparison of MiniTLS and SpLIP. 102

6.4 Shows the amount of overhead reduction of MiniTLS against SpLIP.
The graph is normalized (baseline SpLIP). The first part shows reduc-
tion of speculative read/write marking. The second part reduction of
rollback time. 104

6.5 Space required for 8 speculative threads using a) SpLIP and b) MiniTLS
. 105

6.6 Normalized (baseline SpLIP) space overhead comparison between MiniTLS
and SpLIP . 106

6.7 Memory overhead of MiniTLS and SpLIP compared to the sequential
version. 107

6.8 Speedup results for Lector against the sequential execution. Sequen-
tial execution is denoted by 1 in the y axis. 111

6.9 Speedup comparison between LazyTLS, Lector, and TL2TLS. 112

8

6.10 Normalized speculative overhead reduction with baseline the TL2TLS

system. 114
6.11 Speedup results for Lector vs. MiniTLS against the sequential execu-

tion. Sequential execution is denoted by 1 in the y axis. 117
6.12 Memory overhead of MiniTLS and Lector compared to the sequential

version of the Sparse benchmark. 118
6.13 Speedup comparison between speculative and manual parallel execu-

tion for the Sparse benchmark (with the sequential version of Sparse
used as baseline denoted by speedup == 1). 118

A.1 Metadata organization for SpLIP [OMH09]. 136
A.2 Metadata organization for TL2 [DSS06]. 139

9

Abstract

HIGH PERFORMANCE OPTIMIZATIONS IN RUNTIME SPECULATIVE

PARALLELIZATION FOR MULTICORE ARCHITECTURES

Paraskevas Yiapanis
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, March 2013

Thread-Level Speculation (TLS) overcomes limitations intrinsic with conservative
compile-time auto-parallelizing tools by extracting parallel threads optimistically and
only ensuring absence of data dependence violations at runtime.

A significant barrier for adopting TLS (implemented in software) is the overheads
associated with maintaining speculative state. Previous TLS limit studies observe that
on future multi-core systems it is likely to have more cores idle than those which
traditional TLS would be able to harness.

This thesis describes a novel compact version management data structure optimized
for space overhead when using a small number of TLS threads. Furthermore, two novel
software runtime parallelization systems were developed that utilize this compact data
structure. The first one, MiniTLS, is optimized for fast recovery in the case of mis-
speculations by parallelizing the recovery procedure. The second one, Lector, is op-
timized for performance by using lightweight helper threads, along with TLS threads,
to establish whether speculation can be withdrawn avoiding that way any speculative
overheads.

Facilitated by the novel compact representation, MiniTLS reduces the space over-
head over state-of-the-art software TLS systems between 96% on 2 threads and 40%
on 32 threads.

MiniTLS and Lector were applied to seven Java benchmarks performing on av-
erage 7x and 8.2x faster, respectively, against the sequential versions and on average
1.7x faster than the current state-of-the-art in software TLS for 32 threads.

10

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

12

Acknowledgements

First of all, I would like to express my sincere gratitude to my principal supervisor
Mikel Luján. With his immense knowledge and interesting research ideas he guided
me on choosing a very interesting path to follow and to writing this thesis. He has
been very patient with me and extremely supportive. Always trying to fit me into his
busy schedule, especially when I was appearing out of the blue in his door without
appointment.

I would also like to thank my co-supervisor Gavin Brown. Especially the first year
of my PhD when my direction was still not clear, both Gavin and Mikel have been
very supportive providing me with the right tools in order to pursue research. Without
them, this thesis would not have been possible.

I would like to express my very great appreciation to John Keane for introducing
me to the world of research and parallel computing, and for encouraging me to pursue
a PhD.

During my PhD I was lucky to work with two great guys, Isuru Herath and Demian
Rosas. We started the PhD at the same time and we spent endless hours the last 4 years
“solving” the world’s problems (except from computing problems). If it was not for
them some of the world’s problems would have been unresolved. They are very good
friends as well as research partners. I feel happy the way their career continued but sad
we will not be working together (at least in the near future).

Also, I would like to thank the people from the iTLS project (both Manchester and
Edinburgh teams) for sharing their knowledge in their area of expertise, especially the
Manchester team: Jeremy Singer and Adam Pocock.

I would like to thank Rose Date for being such a good friend. It is amazing how
much energy she has and how pleasant and happy personality she always carries. I am
sad she is not brewing coffee in the computer science school any more.

This thesis is dedicated to my parents for their unconditional love and moral sup-
port all those years. My brother, friends from Cyprus, and friends I met in Manchester

13

also deserve to be acknowledged for their moral support.
Lastly, I wish to thank Laura. She was the one closest to me during the time of this

PhD, doing everything possible to support me and being very understanding, especially
during the most stressful periods.

14

Chapter 1

Introduction

The world of computer architecture has undergone major changes over the last years.
Multi-core computers have dominated the market as quad-core availability can be
found from personal computers [Inc12] to mobile devices [Sam12]. Although this
imposes major challenges in terms of software development, researchers in software
that now live the multi-core revolution are faced with the chance to exploit intriguing
ideas to adapt to those changes. A sequential software application alone will not re-
alize any performance improvements unless changes are introduced to the code, new
language constructs are build (or new languages), or novel underlying mechanisms
that automatically transform the code into something more meaningful to the current
architectures.

This chapter answers the following questions:

Why parallelism is important?

Why computer architectures have gone multi-core?

Can automatic parallelization be a solution to parallel programming?

What solutions this thesis provides?

Certain sections of this chapter include a paragraph in italic type (such as this

one). While various concepts become more clear, such paragraphs explain where the

discussion is headed.

15

16 CHAPTER 1. INTRODUCTION

1.1 There is Something about Parallelism

Even though the last few years terms such as “dual-core” and “quad-core” have become
very popular, parallelism per se was always important for computer architects.

Evidence of parallelism can be traced back to the early 1960s when computer ar-
chitects James Thornton and Seymour Cray designed one of the first supercomputer
known as Control Data Corporation (CDC) 6600 [Tho70]. A typical machine of that
period would use a single Central Processing Unit (CPU), to operate the entire sys-
tem. The CDC 6600 designers took a different approach from that. They designed
simpler and faster CPUs that could only perform specific tasks instead of driving the
entire system. For example, some CPUs would handle arithmetic and logic operation,
others would handle memory or Input/Output (I/O) operations. Such a design allowed
the machine to run faster not only because of the simpler and faster processors but
also because operations from different CPUs could run in parallel with each other.
Subsequently Cray Research, a supercomputer manufacturer found by Seymour Cray,
popularized a special type of processor architecture known as the Vector processor
by introducing a series of supercomputers starting with the CRAY-1 in 1976 [Rus78].
Vector processors contain special instructions that can operate on a set of data elements
(as opposed to the traditional instructions that operate on a single data element). For
instance, obtaining the sum of two vectors could be accomplished using only one such
vector instruction.

Vector instructions were very efficient for vector or array operations but they also
had several drawbacks such as significant processor state requirements and compli-
cated instruction sets which resulted in higher costs. In the early 1990s advances in
CMOS technology, the common technology used for integrated circuits, allowed more
transistors to fit in a single die. Furthermore, the die could be clocked faster as feature
size shrank. Rapid changes in CMOS technology allowed higher price-to-performance
ratio, displacing slowly the widespread use of vector architectures that mainly contin-
ued to use Bipolar technology1.

Another form of parallelism in processor designs can also be observed since 1985;
nearly all of them since then are using pipelining to overlap the execution of instruc-
tions and improve performance [HP11]. In pipelining each instruction is divided into
different stages and a set of instructions are in various stages at any given time. This

1A processor could be implemented on a single chip in CMOS. The same processor would require
multiple chips in old vector machines.

1.2. THE RISE OF MULTI-CORE ARCHITECTURES 17

concept allows instructions to be overlapped in a simultaneous fashion forming an ex-
ample of Instruction-Level Parallelism (ILP). ILP is a fundamental idea used by pro-
cessors in order to take advantage of available parallelism in a sequential application.

There are a number of hardware techniques that extend the basic concept for pipelin-
ing such as dynamic multiple-issue (superscalar) execution, out-of-order execution,
register renaming, speculative execution and branch prediction. In superscalar exe-
cution, the hardware components are replicated allowing multiple instructions to be
launched in one clock cycle. Out-of-order execution allows instructions to be executed
out of order as soon as their operands are available. Possible hazards can be avoided
by register renaming. Speculative execution overcomes control dependencies by spec-
ulating on the outcome of branches and proceeds execution as if the guesses were
correct. Underlying mechanisms are necessary in order to support incorrect specula-
tions. Branch prediction allows the processor to fetch and execute instructions without
waiting for the resolution of a branch condition.

The fact that transistors preserved Moore’s trend (known as Moore’s Law [Moo65]),
that is, getting smaller and more numerous, enabled architects to add more memory,
deeper pipelines, and promote in general techniques such as the ones explained above.
Consequently single-thread performance was continuously improving.

1.2 The Rise of Multi-core Architectures

While more transistors enabled the evolution of more complex processor designs and
higher clock rates, another factor was waiting its turn to put an end to this pattern:
power consumption. The main source of power dissipation in CMOS technology is
dynamic power. Power is calculated using the following formula [PH08]:

P =CV 2 f

where P is power dissipation, C is Capacitive Load, V is voltage, and f is the fre-
quency the transistors switch. Frequency is a function of the clock rate and higher
frequencies imply more power consumption. One obvious way to minimize power is
to lower voltage. However, lowering voltage sufficiently for today’s demands appears
to cause static power dissipation due to leakage current that flows even when a transis-
tor is off. A way to remedy this problem was to increase cooling or turn off parts of
the chip not currently in use. Consequently, due to the high cost of power and cooling

18 CHAPTER 1. INTRODUCTION

mechanisms, computer designers decided to explore different avenues in microproces-
sor performance. In order to effectively utilize the increasing number of transistors
computer manufacturers were forced to turn to Chip Multiprocessors (CMPs), where
multiple cores2 exist on the same chip. With the main reason being the Power Wall

along with diminishing returns from complex superscalar designs the hunt for paral-
lelism has shifted from instruction level into thread level (Thread-level Parallelism -
TLP). Software developers cannot rely any more on the latest processor with higher
clock speeds to improve their application performance. The parallelism token has now
passed to the developers themselves. Applications must be structured in a specific way
in order to take advantage of the multiple cores. Programmers must break down the
application into independent parts in order to keep the hardware as busy as possible.

There are different ways parallelism can be expressed. Predominantly there are two
models namely shared-memory and message passing. Message passing may be imple-
mented by combining the power of multiple machines together forming a cluster and
programming the application in a way so that data are communicated between differ-
ent machines using messages. Famous libraries for programming that model include
the Message Passing Interface (MPI) [For93]. Shared memory model usually refers
to the multi-core machines where every core is sharing the same address space (apart
from any local caches) and shared data must be protected by some locking primitive.
Notable libraries for shared memory programming include Java

TM
threads and POSIX

threads.

The rest of the discussion will be focused on shared-memory models. Threads will

be treated as the main execution unit. Parallel programs are divided into parts that

are in turn mapped to threads in order to execute in parallel on the available cores.

The terms ‘processor’ and ‘core’ will be treated equally and used interchangeably

throughout the discussion.

1.3 Challenges in Parallel Programming

Since the computer industry is turning its attention towards multi-core architectures
and clock speeds have reached an upper bound, parallel programming is gaining more
momentum as it is the most prevalent way of speeding up an application. However,

2Core is used more commonly nowadays to refer to a processor on the chip.

1.3. CHALLENGES IN PARALLEL PROGRAMMING 19

writing parallel applications, also known as concurrent programming, is a very chal-
lenging task compared to the sequential paradigm [OB96, MG99]. The following sec-
tions review some of the major challenges in concurrent programming.

1.3.1 Discovering Available Parallelism

It is not always possible to express an application in parallel and even when it is the
speedups are not guaranteed to grow linearly with the number of cores. A well known
computer scientist noted that the maximum expected improvement depends on the
fraction of the application that can be parallelized. For a program to enjoy linear
speedups, the parallel fraction should comprise nearly 100% of the total application.
If only 30% of the total application can be parallelized, then only that portion can
observe speedups. The remaining 70% will still execute sequentially. This observation
is commonly known as Amdahl’s law [Amd67] and is expressed using the following
formula:

speedup = 1
(1−P)+ P

N

where P is the fraction of the job that can be executed in parallel and N the number
of cores. Assuming that 1 is the time for a single core to complete the job, the parallel
part takes P/N and the sequential part takes (1−P). Therefore speedup is obtained as
the ratio between the sequential (single core) time and parallel time.

1.3.2 Reasoning about Shared Mutable Data

Even when the parallel fraction is relatively large, the lunch is usually not given for
free. In many cases programs rely on processing elements from a data structure such
as an array, a list, or a tree. When the program is expressed as a parallel imple-
mentation, it is likely that a given data structure can be accessed by multiple threads
simultaneously. Thus, the programmer must reason and decide how shared data are
going to be accessed in a predictable way to maintain correctness of the results at all
times. Usually this is accomplished by the use of locks, which are language synchro-
nization primitives used to provide mutual exclusion of a critical section accessed by
multiple threads.

20 CHAPTER 1. INTRODUCTION

1.3.3 Optimizing for Performance

Even when a programmer is able to reason how to write the parallel code to execute
correctly, there is still the performance issue. Below are some considerations that need
to be taken into account if one wishes to optimize for performance.

Lock Granularity

The granularity of which locks are used can play a vital role on that. Coarse-grained

locking granularity is simpler to use but offers limited concurrency whereas fine-grained

locking offers better performance but sometimes at the cost of higher complexity
[HS08]. Imagine for example a program where multiple threads access a shared list to
add or remove elements from it. Under coarse-grain locking a thread might lock the
entire list using a global lock (a lock that is responsible to lock the list and also it is
shared among all threads) before modifying it. This is an extreme scenario and clearly
it removes all concurrency. In fine-grain locking usually more than one lock is associ-
ated with different portions of the code (the list in this example) so threads must ensure
that the correct locks are acquired and released to avoid deadlocks3 or livelocks4.

Task Granularity and Load Balancing

The minimum execution time of the parallel portion of the algorithm is the length of the
longest running parallel task (assuming n tasks running on n processors) [YHM+08].
While this implies formulating tasks as small as possible, they should be broken down
to a minimum size that at least amortizes the cost of creating and managing them.
When an application is broken down into multiple parts, an efficient scheduling mech-
anism is required that prevents situations where some cores are busy while others are
idle. Such a situation can lead to performance losses due to inefficient utilization of
the architecture. In this context, this phenomenon is known as load imbalance.

Architectural Considerations

To complicate even further the life of the programmer, cases where response time is
critical or cases where all possible performance must be exploited, require the data
structures to be designed in a way that takes into account the processor’s cache. If a
processor operates on a given memory location, it is also likely to access the nearby

3In a deadlock, threads are waiting for each other to release a lock so neither can progress.
4Livelock is similar to deadlock but threads involved might change in regard to one another.

1.4. AUTOMATIC PARALLELIZATION 21

location(s) as well. This is known as spatial locality. In order to take advantage of the
spatial locality observation processors operate at larger portions of the cache (a group
of neighboring words than just a single word) called cache lines. On the one hand
spatial locality is desirable since the cache may hold a significant portion of the data
accessed by a processor minimizing the accesses to main memory (which are slower
than cache accesses). On the other hand placing data that might be accessed by mul-
tiple processors/threads nearby increases the possibility of false sharing. This occurs
when processors access distinct data but still triggering a conflict because the data hap-
pens to lie in the same cache line. Furthermore, the size of the data objects accessed
by a thread at a regular basis could be designed to reflect the size of the cache lines
or local cache in general. This may prevent any performance losses due to misaligned

accesses. Data objects could be aligned by a technique known as padding which adds
some meaningless bytes between data objects so that they can fit at a memory offset
equal to some multiple of the cache line. Moreover, since cache size changes from
architecture to architecture, portability is lost (performance-wise due to optimization
mismatch).

1.4 Automatic Parallelization

The challenges explained above emphasize the difficulties in understanding and devel-
oping parallel programs, let alone debugging them since their runtime behavior might
be non-deterministic.

1.4.1 Manual and Automatic Parallelization

Despite the difficulties, this is the prevalent way to program in order to take advan-
tage of what current architectures have to offer. Apart from having a programmer
with parallel programming knowledge to perform the transformation from sequential
to parallel manually, there is also the possibility of using a tool that can transform a
sequential program into a parallel one automatically. Such tool is referred to as a par-

allelizing compiler. Although the easy way sounds appealing both methods, manual
and automatic, have their advantages and disadvantages.

Manual Parallelization is usually superior than using an automatic tool [OB96].
The programmer not only can apply domain knowledge to the problem but also can

22 CHAPTER 1. INTRODUCTION

benefit from using profiling to guide the optimization. Profiling can help to find places
that optimizing is more beneficial, or explain why some optimization might not work
as efficient as expected. The obvious downside of manual parallelization is the time
and effort required. The programmer may spend hours, days, or even months trying to
parallelize the code and get the most out of it [OB96].

Automatic parallelization aims to automate the process of transforming a sequen-
tial application into a semantically equivalent parallel one. Automatic parallelization
is still difficult but the burden moves from the developer to the parallelizing compiler
engineer. One of the problems that arise from using a parallelizing compiler is that the
output of the code might be almost unrecognizable from the sequential code and diffi-
cult to read [OB96]. That makes it difficult for the programmer to influence compiler
decisions. Nevertheless, there has been work where machine learning was applied in
order to replace traditional target-specific and inflexible heuristics for task scheduling
with more sophisticated and adaptive decisions [TWFO09].

1.4.2 Runtime Automatic Parallelization

Traditionally automatic parallelization is performed offline (at compile time). This
entails some form of data dependence analysis to decide whether the portions wished
to be parallelized are independent, in terms of data accesses, from each other. Some
notable parallelizing compilers include Polaris [BEF+95], SUIF [WFW+94], and
Intel R© C++ compiler.

Offline automatic parallelization is very effective with counted loops that manip-
ulate array accesses with affine indices, where memory dependence analysis can be
precisely performed. Although promising and inexpensive, in terms of application
performance, offline automatic parallelization is sometimes limited mainly due to in-
sufficient runtime information or the inability of the parallelizing compiler to perform
the transformation due to complex inter-procedural relationships. For example, it is
difficult to perform static dependence analysis on code that makes extensive use of
pointers, which is typical for modern languages such as C++ or Java. More sophis-
ticated memory dependence analysis (such as points-to analysis [NKH04]) can help,
but parallelization often fails due to unresolved memory accesses. Also when sub-
scripted subscripts are used to access array elements, the actual memory locations may
not be available until runtime. Furthermore, loops with unknown number of iterations
make it hard to parallelize since there is no information on how to schedule the loop

1.5. SPECULATIVE PARALLELIZATION 23

(e.g. the loop might terminate abruptly due to a runtime condition). For these reasons
Speculative Parallelization also known as Thread-Level Speculation (TLS), a runtime
technique for automatic parallelization has gained attention over the last few years.
Speculative parallelization is designed to overcome the offline parallelization short-
comings at the expense of introducing additional runtime overheads. There is more
detail regarding those overheads in the next section.

Both manual and automatic parallelization have their advantages and disadvan-

tages as explained earlier. The focus of the discussion will be on automatic runtime

parallelization and specifically using speculation.

1.5 Speculative Parallelization

1.5.1 Phases of Speculative Parallelization

There are two main phases in speculative parallelization, as illustrated in Figure 1.1.
The first phase takes place offline and the sequential program is optimistically (with-
out knowing if the program will actually be parallelizable) transformed into a parallel
one, assuming that the parallel execution will maintain the sequential semantics of the
original program; i.e. no data dependencies.

Also, some extra code is inserted mainly to maintain meta-data that will facilitate in
runtime tests that provide correctness. The second phase takes place at runtime. While
the application executes, each parallel running thread collects and maintains informa-
tion regarding all of its memory accesses. For example, any updates (stores) from a
given thread are kept locally to that thread, instead of written immediately back to
memory, until proven to be correct. Since those threads have not proven to be success-
ful while still executing, they are called speculative threads. During, or at the end of
speculative execution, an inspection phase takes place to ensure that there were no vio-
lations of the sequential semantics of the application (referred to as test in Figure 1.1).
If a thread did not conflict with another, then it is safe to propagate its modifications
back to memory, an action which is called commit in this context. Otherwise the of-
fending thread has to squash, that is, discard any temporary (local) modifications and
re-execute its code. When threads squash, a procedure initiates to ensure that those
threads will undo their modifications properly and leave the memory state as it was
before the squash occurred. This procedure is called rollback.

The focus of this discussion is on the runtime phase of Speculative Parallelization

24 CHAPTER 1. INTRODUCTION

Parallelize	
 loop	
 	

Op,mis,cally	

Compile	
 Time	
 (Offline)	

Execute	
 loop	

Specula,vely	

Transform	
 code	
 	

to	
 support	

Specula,on	
 	

Run	
 Time	

Test?	

No	

Yes	

Mark	
 Memory	
 	

Accesses	

Commit	

Rollback	
 	
 Squash	
 	

Figure 1.1: Speculative parallelization phases.

and specifically on looking how to reduce the main overheads arising from such a

system. The main overheads lie in the phases depicted with darker boxes in Figure 1.1.

That is, marking memory accesses, testing for correctness, committing, squashing, and

rollbacking.

1.5.2 Performance Potentials of Speculative Parallelization

The performance potentials of speculative parallelization were assessed in a recent
study [ISK+10] conducted in collaboration between the University of Edinburgh and
the University of Manchester, work in which the author of this thesis was involved. The
study evaluated a mixture of different design aspects of speculative parallelization in a
simulation environment in order to establish an upper bound on performance. The goal
was to offer an architecture-agnostic characterization of the potentials of speculative
parallelization. Applications were tested from a variety of application domains (e.g.

1.5. SPECULATIVE PARALLELIZATION 25

scientific and business domains) and programming styles (e.g. procedural and object-
oriented styles). Implementation details regarding this study can be found in Appendix
B.

Findings

Figure 1.2 shows results from speculative loop parallelization (i.e. loop iterations are
mapped into threads and execute speculatively) extracted from the limit study [ISK+10].
The x axis shows applications from four important benchmark suits. The y axis shows
the average improvement percentage of speculative runtime parallelization over se-
quential runtime. That is, how much an application may improve when speculative
parallelization is applied.

0	

20	

40	

60	

80	

100	

120	

140	

SpecCPU2006	
 MediaBench	
 II	
 SPECjvm98	
 DaCapo	

%
	
 Im

pr
ov
em

en
t	

Benchmarks	

2	
 Threads	
 4	
 Threads	
 8	
 Threads	
 16	
 Threads	

Figure 1.2: Speculative parallelization of various applications from four important
benchmark suites. The graph shows the improvement percentage from speculative
parallelization over sequential application runtime.

What is notable in the graph of Figure 1.2, is that the improvement does not seem
to grow linearly with the number of threads. For instance, MediaBench II shows 50%
improvement with 2 threads but only 130% improvement with 16 threads. Therefore,
instead of showing about 8x more improvement for 8 threads, it is nearly 3x. A similar

26 CHAPTER 1. INTRODUCTION

pattern is observed with the other benchmarks as well. The key conclusion drawn from
these experiments is that most of the speculative parallelism can be exploited with a

small number of threads.

The topic of discussion is implementing software speculative parallelization sys-

tems optimized to reduce the overheads associated with this paradigm for a small

number of threads.

1.6 Motivation

Previous work on Speculative Parallelization (Thread-Level Speculation - TLS) looked
at hardware implementations [HWO98, OHL99, CMT00, MG02, CO03, SCZM05,
PO05, JEV07, LPH+09, MLC+09, KRL+10] as well as in software [DYR02, CL05,
OMH09, MHHM09, TFNG08, TFG10, RKM+10, KJL+12], just to name a few. How-
ever, no widely available architecture or compiler has incorporated Speculative Paral-
lelization. Nonetheless, the published limit studies suggest that it could be profitable
to use Speculative Parallelization [PZH+09, ISK+10], although research should focus
on optimizing for a small number of threads. Motivated by this potential, experiments
were conducted to verify whether this applies in a real machine, besides limit studies.
Figure 1.3 shows the speedup results, up to 32 threads, of one of the new software TLS
proposed in this thesis (MiniTLS; described in Chapter 4) for the Sparse Matrix Multi-
plication benchmark part of the SPECjvm2008 suite on a UltraSPARC T2 machine.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Sparse	
 (SPECjvm2008)	

Figure 1.3: Speculative parallelization speedup over sequential for Sparse benchmark
(SPECjvm2008).

1.7. CONTRIBUTIONS 27

Further details of the experiments appear in Chapter 6.
To this end, this thesis proposes two software speculative parallelization systems

optimized to reduce the overheads associated with the TLS paradigm for a small num-
ber of threads. The next section elaborates further on the contributions of the thesis.

1.7 Contributions

At a high level, there are two main design approaches that have been followed by the
software speculative parallelization literature, in terms of how a system maintains its
speculative state. These two approaches are known as lazy and eager version manage-
ment. Chapter 2 explains both in detail. Two novel speculative parallelization systems
are presented, one for each of these design directions. The contributions (Chapters 4,
5, and 6) are the following:

• A compact data structure to represent the dependency tracking for a specula-
tive parallelization system (Chapter 4). The experiments show space overhead
reduction of 5x on average compared to state-of-art approaches (Chapter 6).

• MiniTLS, a software speculative parallelization system for Java applications, that
relies on eager memory data management, is presented (Chapter 4). Speculative
threads modify directly data which needs rollback when misspeculation occurs.
This eager treatment provides faster execution in the absence of data dependen-
cies. Speculatively parallelized applications are able to run more than 4x faster
on average than their sequential versions (Chapter 6).

• MiniTLS outperforms state-of-the-art software speculative parallelization sys-
tems by being nearly 2x faster and it is the first to parallelize the rollback process
under Eager Version Management (Chapter 6).

• A second novel software speculative parallelization system, Lector, using lazy
version management (Chapter 5). Compared with a state-of-the-art lazy specu-
lative parallelization, Lector shows performance improvements on average of
1.7x faster (Chapter 6).

• A novel algorithm for accelerating TLS systems applicable to any type of imple-
mentation (Chapter 5). The results show that applying this technique, improves
speedup on average 1.7x for 2 threads increasing close to 8.2x speedups with 32
threads (Chapter 6).

28 CHAPTER 1. INTRODUCTION

1.8 Publications

The material of this thesis from Chapters 4, 5, and 6 appears in the following
Journal publication:

• OPTIMIZING SOFTWARE RUNTIME SYSTEMS FOR SPECULATIVE PARALLELIZA-
TION. Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, Mikel Luján.
In ACM Transactions on Architecture and Code Optimization (TACO), 9 (4), 39,
January 2013.

Other Related Publications

• ARCHITECTURAL SUPPORT FOR EXPLOITING FINE GRAIN PARALLELISM.
Demian Rosas-Ham, Isuru Herath, Paraskevas Yiapanis, Mikel Luján, Ian Wat-
son. In Proceedings of the 14th IEEE International Conference on High Perfor-

mance Computing and Communications, June 2012.

• TOWARD A MORE ACCURATE UNDERSTANDING OF THE LIMITS OF THE

TLS EXECUTION PARADIGM. Nikolas Ioannou, Jeremy Singer, Salman Khan,
Polychronis Xekalakis, Paraskevas Yiapanis, Adam Pocock, Gavin Brown,
Mikel Luján, Ian Watson, Marcelo Cintra. In Proceedings of the International

Symposium on Workload Characterization (IISWC), December 2010.

• ONLINE NONSTATIONARY BOOSTING. Adam Pocock, Paraskevas Yiapanis,
Jeremy Singer, Mikel Luján and and Gavin Brown. In Proceedings of the In-

ternational Workshop on Multiple Classifier Systems (MCS), LNCS 5997, pp
205-214, 2010.

• STATIC JAVA PROGRAM FEATURES FOR INTELLIGENT SQUASH PREDICTION.
Jeremy Singer, Paraskevas Yiapanis, Adam Pocock, Mikel Luján, Gavin Brown,
Nikolas Ioannou, Marcelo Cintra. In Proceedings of the 4th Workshop on Statisti-

cal and Machine Learning Approaches to Architecture and Compilation (SMART),
January 2010.

• MINING STATIC FEATURES FOR SQUASH PREDICTION IN THREAD-LEVEL

SPECULATION. Paraskevas Yiapanis, Jeremy Singer, Adam Pocock, Mikel
Luján, Gavin Brown. In the 5th International Summer School on Advanced

Computer Architecture and Compilation for Embedded Systems (ACACES), July
2009.

1.9. THESIS STRUCTURE 29

• FUNDAMENTAL NANO-PATTERNS TO CHARACTERIZE AND CLASSIFY JAVA

METHODS. Jeremy Singer, Gavin Brown, Mikel Luján, Adam Pocock, Paraskevas
Yiapanis. In Proceedings of the Workshop on Language Descriptions, Tools and

Applications (LDTA), March 2009.

1.9 Thesis Structure

The rest of the thesis is organized as follows: Chapter 2 provides an introduction to
runtime and speculative parallelization. The main design options when implementing
such systems in software are also discussed. Chapter 3 elaborates, through related
work, on advanced techniques for runtime parallelization with focus on speculative
parallelization. Chapter 4 describes the first system, MiniTLS, as well as the novel
parallel rollback algorithm. It is illustrated how advantage is taken of the information
provided by speculative parallelization limit studies to optimize MiniTLS. Oancea et

al. [OMH09] introduced a top performing software speculative parallelization work
using eager memory management. Their contribution was how to eliminate any as-
sociated synchronization when accessing the data structures holding the dependency
information. Oancea et al. [OMH09] traded-off increasing the size of the eager mem-
ory management data structures to remove synchronization and optimize performance.
Hereafter, it is referred to the speculative parallelization software developed by Oancea
et al. [OMH09] as SpLIP (SpLIP is described in detail in Appendix A). In the exper-
iments the performance delivered by MiniTLS vs. SpLIP is compared directly (the
experiments appear in Chapter 6). Chapter 5 describes the second system, Lector as
well as the novel idea of using inspector threads in the role of helper threads. Lector
is compared against TL2 [DSS06] in the performance results. Chapter 6 reports the
speedup results as well as speculative operations and memory overhead comparisons
using seven Java benchmarks, with three belonging to SPECjvm2008. Note that two
of the seven benchmarks do include data-dependencies. Finally, Chapter 7 summa-
rizes the thesis and presents potential future directions. The thesis includes also two
appendices. Appendix A provides implementation details of the two baseline systems
used in the experiments presented in Chapter 6: SpLIP [OMH09] and TL2 [DSS06].
Appendix B provides implementation details for the limit study on speculative par-
allelization mentioned in Chapter 1 (current chapter) from Ioannou et al. [ISK+10]
conducted in collaboration between the University of Edinburgh and the University of
Manchester.

30 CHAPTER 1. INTRODUCTION

Table 1.1 shows concisely the structure of this thesis.

CHAPTER 1 Introduction, Motivation, Contributions, Publications

CHAPTER 2 Fundamentals of Runtime Parallelization

CHAPTER 3 Advances in Runtime Parallelization (including related work)

CHAPTER 4 MiniTLS: In-place Speculative Parallelization with Parallel Rollback

CHAPTER 5 Lector: Reducing Speculative Overhead via Inspector Threads

CHAPTER 6 Experimental Results from MiniTLS and Lector

CHAPTER 7 Conclusions, Future Work

APPENDIX A Baseline Implementation Details (SpLIP [OMH09] and TL2 [DSS06])

APPENDIX B TLS Limit Study [ISK+10] Implementation Details

Table 1.1: Thesis structure.

Chapter 2

Fundamentals of Runtime
Parallelization

2.1 Introduction

In recent years multicore chips became the standard configuration in commercial com-
puting. In order to harness the power they have to offer, applications need to be struc-
tured in such a way that will yield efficient utilization of the available resources. Par-
allel programming accomplishes that by dividing the computation across the available
processors (or threads), yet this process involves experienced software engineers in
this type of programming model. A promising idea is to have the compiler automat-
ically restructure a sequential program into a parallel version. Sometimes this is not
possible due to insufficient information during offline compilation. A solution is to
proceed with parallel execution speculatively until sufficient information is collected,
providing mechanisms to maintain sequential program correctness. Such a solution is
known under the names of Speculative Parallelization, Thread-Level Speculation, or
TLS in short. All three terms will be used interchangeably throughout the rest of the
chapter as well as the rest of the thesis.

This chapter explains speculative parallelization and its mechanics as well as the
major design requirements for such an execution model. However, before examining
speculative parallelization, the chapter begins with an overview of an earlier model for
runtime parallelization. This model is identified as Inspector/Executor. A brief discus-
sion to areas of similar interest as TLS, such as Transactional Memory and Database

Systems Transactions, is also provided.

31

32 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

2.2 Inspector/Executor: An Overview

2.2.1 Inspector/Executor

Early work on Runtime Parallelization involved a technique known in the literature as
Inspector/Executor [ZY87, SMC89, SM91, SMC91, CTY94, RP94b]. As the name
implies this method involves the generation of two versions of the loop to be paral-
lelized during compilation. The first version, called Inspector, would simply execute
a stripped version of the original loop that contains only accesses to shared mutable
data, investigating whether the loop contains any data dependencies that prevent it
from being parallelized. Figure 2.1a shows a candidate loop for parallelization. The
assumption is that the memory accesses from variables x and y to locations of array
A cannot be verified until runtime. Furthermore, the code surrounding the memory
accesses to A (represented with dots in Figure 2.1a) does not perform any updates to
locations shared across different iterations (it could be just because of the nature of the
code or after some compiler transformation). The Inspector is not required to replicate
all of the computation done by the original program (only memory accesses), and thus
could be executed quicker. Figure 2.1b shows the stripped version of the code from
Figure 2.1a that is required by the inspector. The stripped version of the loop will
be replicated across multiple inspector threads and each thread will inspect a different
portion of the iteration space (the set of loop iterations L, in this example 0 < L < 100
and i is used to traverse the iteration space, where 0 < i < L).

2.2.2 Inspector/Executor for Fully Parallel Loop Identification

One of the most notable Inspector/Executor models in the runtime parallelization lit-
erature was proposed by Rauchwerger and Padua [RP94b]. Their approach used the
inspector to simply detect whether or not a loop is fully parallel. Such loops, are known
as DOALL loops. In [RP94b] each inspector thread would be allocated its own portion
(chunk of iterations) of the stripped version of the original loop (from j to P in Figure
2.1b, where from j to P is a chunk of iterations allocated to a specific thread). Each
thread will also make use of some thread-local auxiliary data reflecting each memory
location of A that can be accessed during parallelization (see Figure 2.1c). In this sim-
plified version, each inspector thread will mark any loads or stores performed during
the execution of its portion of iterations. A location in the thread-local auxiliary arrays
Load[] or Store[] is marked to indicate the corresponding action by a particular thread.

2.2. INSPECTOR/EXECUTOR: AN OVERVIEW 33

At the end of the inspection phase, all inspector threads will check each others findings
to ensure that the same memory location was not accessed by different threads in a way
that violates the sequential semantics of the loop. For instance, if two threads perform
a store at the same memory location but in the wrong order the resulting value would
be unpredictable. The only valid way multiple threads can access the same memory
location is if they just read from that location. Since reading from a memory location
does not affect its value then threads are safe to read in any order they wish from there.
The second version, called Executor, will execute the loop in parallel across multi-
ple threads, given that the inspector version indicated so. Otherwise the loop will be
executed sequentially.

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

Load	
 Store	
 A[
]	

a)	

for(i=0;i<100;i++){	

	
 	
 	
 ……………	

	
 	
 	
 ……………	

	
 	
 	
 A[x]	
 =	
 …	

	
 	
 	
 ……………	

	
 	
 	
 ……………	

	
 	
 	
 …	
 =	
 A[y]	

	
 	
 	
 ……………	

	
 	
 	
 ……………	

}	

for(i=j;j<P;j++){	

	
 	

A[x]	
 =	
 …	

…	
 =	
 A[y]	

}	

	

b)	

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

T1	

T2	

c)	

Figure 2.1: a) A loop to be parallelized. b) Stripped-down version of the loop to be
executed by the inspector threads. c) Auxiliary data to facilitate inspection.

34 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

2.2.3 Earlier Work on Inspector/Executor

The focus of earlier attempts of the Inspector/Executor, such as the one proposed by
Zhu and Yew [ZY87], was mainly on partially parallel loops and they were using
the inspector phase to order the iterations in groups that contained parallel iterations.
Within those groups, iterations could execute in parallel between them, but the groups
themselves have to be separated using synchronization. Their scheme was divided in
multiple stages with each stage including both an inspector and an executor. Every
stage would gather information (inspection phase) of which iterations are allowed to
execute in parallel without any conflicts and record this information into an auxiliary
data structure. Then, the executor would execute those iterations in parallel with the aid
of the auxiliary data structure. The next stage would do the same and the process would
continue in a repetitive fashion until all iterations of the loop finish. Later work, such
as Saltz et al. [SMC91], provide more optimized versions of the Inspector/Executor

technique by statically partitioning the iterations of the loop among processors and
then reordering the iterations within each partition at runtime.

2.2.4 Weakness

Clearly there are certain conditions that have to be met in order for this technique to
work efficiently. The main drawback of this technique is that an adequate stripped ver-
sion of the original loop is not always possible to be extracted. If the memory accesses
to be analyzed during inspection constitute the majority of the loop’s computation, the
Inspector eventually executes nearly the same amount of computation as the Execu-

tor version [Rau98]. This was the main reason that led research towards speculative
runtime parallelization.

2.3 Speculative Parallelization

2.3.1 Brief Description

Assume, for the sake of the argument, that one wishes to parallelize the loop shown
in Figure 2.2a. Similarly, assume that the array indexes cannot be resolved until run-
time. That is, there is no feasible means of performing any static analysis (manual or
automatic) to prove correct parallel executions by eliminating the possibility of data
dependencies across threads. This can be the case for example, where i or j are the

2.3. SPECULATIVE PARALLELIZATION 35

result of accessing an indirection array. Therefore, standard parallelizing compilers
must conservatively produce sequential code for the loop in order to guarantee correct
execution. Consider now the instance of sequential execution shown in Figure 2.2b.
Clearly the values populated for the array indexes did not yield any data dependencies
amongst them, and thus, the compiler could have generated a parallel code such as the
one in 2.2c and allow the application to run in parallel.

Speculative Parallelization (Thread-level Speculation - TLS), circumvents this con-
servatism by executing the threads (which are formed by loop iterations in this case) in
parallel assuming that the run-time values of i and j will not trigger any cross-thread
conflicts. For instance, in this case TLS would execute the loop iterations in paral-
lel, while at the same time underlying mechanisms would monitor every speculative
access to ensure that the parallel execution will produce the same results as if the pro-
gram was executed sequentially. In addition, any memory updates are stored locally to
the thread rather than written-back to main memory. Figure 2.3a shows the case where
all speculative threads executed successfully and thus are allowed to retire or commit

by propagating the buffered updates back to main memory. Sometimes we have the
case of a memory dependency like the one shown in Figure 2.3b. In this case, a thread
(or iteration) has loaded a value that was not produced by the correct store. This action
causes a Read-After-Write (RAW) data dependence violation. As a result, the offend-
ing threads need to squash by initiating the rollback procedure (in this case discard any
buffered updates) and re-execute in the correct order (see Figure 2.3c).

2.3.2 Design Specification

Implementing the underlying mechanisms that will guarantee correct execution in TLS
requires certain design decisions. From the brief description given above in Section
2.3.1 the main requirements for supporting speculative parallelization can be catego-
rized as follows (also identified by Cintra and Llanos [CL03, CL05]):

Metadata management. A way to know which memory locations are accessed and
by which threads. This will facilitate to identify whether or not any threads have
accessed memory locations in a way that is not desirable.

Version management. A way to manage speculative data. When threads execute
speculatively, different versions of the data are produced. A mechanism is re-
quired to manage temporary (speculative) data and maintain consistency among
operations.

36 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

while	
 (index	
 <	
 array.length){	

	
 	
 	
 	
 …	

	
 	
 	
 	
 array[i]	
 =	
 ...;	

	
 	
 	
 	
 …	
 =	
 array[j];	

	
 	
 	
 	
 …	

}	

array[3]	
 =	
 …;	

…	
 =	
 array[6];	

array[4]	
 =	
 …;	

…	
 =	
 array[2];	

array[1]	
 =	
 …;	

…	
 =	
 array[0];	

array[7]	
 =	
 …;	

…	
 =	
 array[8];	

Time	

a)	

c)	

array[3]	
 =	
 …;	

…	
 =	
 array[6];	

array[4]	
 =	
 …;	

…	
 =	
 array[2];	

array[1]	
 =	
 …;	

…	
 =	
 array[0];	

array[7]	
 =	
 …;	

…	
 =	
 array[8];	

Fme	
 saved	

b)	

Figure 2.2: a) Code fragment of loop to be parallelized. b) Sequential execution. c)
Sample parallel execution.

Detect data dependence violations. A way to identify potential data dependence vi-
olations.

Commit and rollback operations. A way to maintain main memory at a correct state.
That is, to be able to commit the correct values and rollback execution to a
correct state when necessary.

Scheduling speculative threads. An efficient way to schedule speculative work and
threads.

2.3. SPECULATIVE PARALLELIZATION 37

array[3]	
 =	
 …;	

…	
 =	
 array[6];	

array[4]	
 =	
 …;	

…	
 =	
 array[2];	

array[1]	
 =	
 …;	

…	
 =	
 array[0];	

array[7]	
 =	
 …;	

…	
 =	
 array[8];	

array[3]	
 =	
 …;	

…	
 =	
 array[6];	

array[4]	
 =	
 …;	

…	
 =	
 array[2];	

array[8]	
 =	
 …;	

…	
 =	
 array[0];	

array[7]	
 =	
 …;	

…	
 =	
 array[8];	

Array[8]	
 =	
 …;	

…	
 =	
 array[0];	

array[7]	
 =	
 …;	

…	
 =	
 array[8];	

RAW	

COMMIT	

SQUASH	

&	

RESTART	

TIME	

1

2

3

n

a)	
 b)	
 c)	

Figure 2.3: a) Speculative loop execution without dependencies. b) Speculative loop
execution with dependency. c) Re-execution of offending threads.

The following sections provide an overview of each requirement and discuss the
main implementation options available.

Metadata

Section 2.3.1 quoted that while speculation takes place, underlying mechanisms mon-
itor speculative accesses. This action is what was also addressed as “marking memory
accesses” in Figure 1.1 from Chapter 1. To enable a TLS system to monitor memory
accesses, some auxiliary data (referred to in this work as metadata) are required to
be associated with the user data structures as well as the speculative threads. Figure
2.4 shows one way in which speculative memory access information can be kept in
the system. The various ways metadata can be exploited are explored later under the
“Version Management” sub-section.

Metadata to Reflect User Data Structures. Figure 2.4a illustrates how metadata
are arranged to reflect the user data that can potentially be accessed in a speculative
way. Every user datum that can be potentially accessed speculatively (i.e. a datum that

38 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

Lock	
 	

Tid	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

Load	
 Store	

User	
 	

Data	

Shared	
 Metadata	

Write	
 Loca6ons	

Read	
 Loca6ons	

Thread-­‐Local	
 Metadata	

a)	
 b)	

Figure 2.4: a) Metadata or shadow data associated with user data structure. b) Metadata
associated with every speculative thread.

is shared among speculative threads) is associated with a sequence of memory loca-
tions. These locations represent actions on user data by a given speculative thread.
For instance, a general TLS system could maintain information about which particu-
lar thread is operating, reading, or writing at a given moment in time on a given user
memory location. The thread actions are denoted with the labels “Lock Tid”, “Load”,
or “Store” in Figure 2.4a. “Lock Tid” is used by a thread in order to acquire exclusive

ownership of a particular memory location. That is, by using a locking primitive a
thread stores a unique thread identifier (Tid) in the “Lock Tid” record and proclaims
ownership of the location associated with that record. This action prevents another
speculative thread from performing an operation at the same memory location simulta-
neously with the currently owner thread allowing predictable results. The owner thread
is allowed to perform a speculative operation, either a load or a store by setting the cor-
responding record with its unique thread identifier. The lock is released immediately
after the speculative operation takes place in order to allow other threads to examine

2.3. SPECULATIVE PARALLELIZATION 39

the information on that location.

Metadata for Speculative Threads. Apart from the metadata required to reflect any
user memory location, speculative threads also require some extra information regard-
ing the locations they access during their lifetime. For example, Figure 2.4b implies
that information is kept regarding which memory locations have been accessed for
reading or writing. When a speculative thread performs a read operation on a mem-
ory location, the address of that location is saved in a thread-local set that contains all
locations read by that thread while executing a particular speculative region. This set
is known as the read-set. Similarly, when a thread performs a speculative write on a
memory location, that location is recorded on the thread-local write-set. The write-
set usually contains also the speculative value produced by the thread for the address
accessed for writing. The reason for that is discussed later in the next sub-section
(“Version Management”).

Version Management

While threads execute speculative code, different versions of data are being produced.
Version Management refers to the way those different versions are maintained by the
TLS system. Typically, there are two major approaches for that: Lazy Version Manage-

ment (LVM), also known as deferred updates and Eager Version Management (EVM),
also known as in-place updates.

When LVM is used as a choice, speculative threads require at least a write buffer
per thread in order to keep any tentative stores. Speculative loads search first the
thread’s local buffer in case they find an associated value for that location there. If
not, the value needs to be loaded from memory. Speculative stores just need to add or
update the corresponding value in the local buffer. At the end of a thread’s specula-
tive execution (and provided that there was no conflict for this thread) the results from
the local buffer are propagated to main memory to make visible the updates to other
threads. In the case of a conflict, the speculative thread only needs to discard its local
write buffer since there was no modification of the actual data in memory.

EVM systems, on the other hand, update memory locations directly when the spec-
ulative store occurs rather than delaying the action. This involves having a buffer that
preserves the original value of the memory location just before the update. This buffer
is known in the literature as the undo log since in the case of a conflict the log is used to
restore the memory back to a correct state. Speculative loads can use the values form

40 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

memory, since the new values are already there. Upon successful commit, the thread
simply discards the undo log without requiring any value propagation as in LVM.

Conflict Detection

A conflict can occur when two or more speculative threads access the same memory
location in a way that cause a data dependency violation. Depending on the version
management system used, different actions may or may not cause violations. There are
three type of data dependencies: flow, anti, and output dependencies which give rise
to Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW)

hazards respectively. A RAW violation is caused when a thread loads a value that
was not produced by itself. WAR and WAW violations arise due to reuse of memory
locations. A system that uses LVM does not need to worry about WAR and WAW
dependence violations since the updates are buffered and speculative loads use those
instead. This is somewhat similar to the Register Renaming action taken at the hard-
ware level to prevent those kind of hazards. In contrast, EVM has to take precautions
for WAR and WAW dependence violations since the values in memory are always up-
to-date. Nevertheless, both EVM as well as LVM systems need to be observant for
RAW violations.

There are two types of conflict detection: Lazy Conflict Detection (LCD) and Ea-

ger Conflict Detection (ECD). LCD implies that threads may be allowed to run through
their respective speculative code without checking for conflicts on every access. Con-
flict detection can occur at a later stage as long as that happens before thread commit.
In this way eager checks during execution are eliminated. ECD checks for conflicts
usually on every speculative access in order to catch any violations as soon as they
arise. The idea here is to prevent any wasted work after a conflict has happened.

Commit and Rollback

If the TLS system confirms that a group of speculative threads had correct execution
the commit phase allows those threads to provide memory with the correct values. A
system using lazy version management (LVM) typically commits those values sequen-
tially. That is, the threads propagate their speculative (currently buffered) values to

2.3. SPECULATIVE PARALLELIZATION 41

main memory one by one in order1 of speculation (i.e. starting from the least and mov-
ing towards the most speculative thread). The reason is that, during speculation some
threads might have triggered a conflict due to a RAW dependence violation and thus
had to wait for the correct value to be produced. A less speculative thread is always
more correct than a more speculative thread. If the threads are allowed to commit out
of order then this assumption is lost and the wrong values may be populated. On the
other hand, since on an eager management system updates are performed in-place, at
the end of speculative execution the committed values are already in the correct place
in memory. Thus, commit across multiple speculative threads occurs in parallel.

When a conflict arises, main memory must be restored to the last known correct
state. This involves squashing the offending threads and rollbacking speculative state.
With LVM this procedure is very simple, effective, and threads can operate in paral-
lel. Since LVM systems buffer speculative updates, each thread is allowed to proceed
in parallel with each other and discard their speculative values. Unfortunately for an
EVM system the process is a bit more complicated since main memory already con-
tains the “polluting” values. Speculative thread buffers contain the correct values and
are iterated sequentially to restore main memory. The reason they are iterated sequen-
tially is because not all the values are eligible for rollback. In the case that multiple
threads have updated a memory location, only one thread -the one that performed the
first update- has the correct value and should restore the memory location. As a result
every location examined in a thread’s buffer requires to check other threads’ buffers to
identify such a scenario.

Scheduling

Since the loop is parallelized automatically from sequential code, the execution behav-
ior is rather unpredictable. The way iterations are scheduled to run across the available
threads can have significant impact in the final performance. Traditional scheduling
possibilities include static and dynamic scheduling. Static scheduling partitions the
loop into equal chunks of iterations based on the number of available threads. The
thread that will execute a particular chunk is decided statically. In contrast, dynamic
scheduling allows those chunks to be assigned to threads at runtime. Both of these are

1Assume n iterations are mapped on n threads in order (thread 0 has iteration 0, thread1 has iteration
1, and so on). This specifies a speculation order in which thread k is less speculative than thread k+1,
where 0 < k < n.

42 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

not very well suited for TLS since they can cause load imbalance, increase the proba-
bility of dependence violation, and increase memory overhead. A different scheduling
technique known as Sliding Window (originally introduced by [DYR02]) was evalu-
ated amongst different scheduling techniques by [CL03, CL05] and found to be a good
alternative for TLS. Under sliding window (see Figure 2.5), chunks of iterations are as-
signed into windows of size W . The window moves forward (slides) when all iterations
in the window have finished. This allows better load balancing, decrease in likelihood
of dependence violation and better decoupling of memory overhead [CL03, CL05].

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	

	
 0	
 	
 2	
 	
 3	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 99	

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	

	
 0	
 	
 2	
 	
 3	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 99	

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	

	
 0	
 	
 2	
 	
 3	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 99	

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	

	
 0	
 	
 2	
 	
 3	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 99	

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	

	
 0	
 	
 2	
 	
 3	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 99	

Progress	
 Window	
 Itera6on	
 Space	

Figure 2.5: Sliding window scheduling.

2.3.3 Other Implementation Details

The main overhead in software TLS arises from maintaining the speculative state. Cer-
tain hardware solutions that apply lazy version management (LVM) can overcome this
problem by taking advantage of the cache coherence protocol [GVSS98]. For exam-
ple, cache lines are modified with additional information, an extra bit and a pointer, to

2.3. SPECULATIVE PARALLELIZATION 43

facilitate marking of speculative data. The bit, known as the “load bit”, is set when a
processor loads a value not produced by itself (i.e. a potential RAW violation). The
extra pointer indicates the next most speculative cache line that has a version of that
datum in case a value needs to be forwarded to a remote cache. Furthermore, L1 cache
is normally private to the processor and thus buffering occurs at the L1 cache lines
by default. Not only buffering is cheap but also marking simply needs to write a bit
and change a pointer. Software approaches, on the other hand, rely on additional data
structures to maintain marking information. Thus each potential speculative load or
store will produce at least an extra load and store from the hardware point of view (to
read and insert that item to the data structure). These data structures are normally ac-
cessed via locks or Compare-And-Swap (CAS) operations to avoid data races between
different threads.

2.3.4 General Considerations

Generally speaking, a system that utilizes EVM might be more complicated to imple-
ment than one using LVM. Since stores are written in-place (eagerly), the designer has
to also consider Write-After-Read (WAR) and Write-After-Write (WAW) dependencies,
apart from Read-After-Write (RAW) dependencies. Nevertheless, both design choices
(LVM and EVM) are advantageous in different cases. Recall from Section 2.3.2 that
EVM has a cheap commit phase (updates are in-place) but an expensive rollback. To
the contrary, an LVM system has a cheap rollback (just discard local buffers) but a
more expensive commit. Thus, a rule that may be wise to follow is that EVM is proba-
bly more appropriate for applications with minimal runtime conflicts (since commit is
cheap) and LVM more appropriate for applications with high number of conflicts (since
rollback is cheaper). This pattern was also observed by Garzarán et al. [GPL+05] in
a study where separation of task state (version management) and merging of task state
(commit) were analyzed. Consider, for instance, the following scenarios:

Best Case Scenarios

Ideally, the best case scenario would be an application with very few speculative ac-
cesses and no conflict at runtime. Every time a load or store occurs to a shared mutable
data item, an instrumentation call needs to be inserted to the TLS system. This call in
turn will cause the system to register the action and validate whether the execution is

44 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

still correct. Clearly less instrumentation means less time spend on speculative oper-
ations. Furthermore, an application that does no trigger any conflicts will not suffer
from re-executing any code path. In such scenarios eager version management will be
more ideal since commits do not cause extra overhead.

Worst Case Scenarios

An application that consists of mainly accesses to shared mutable data as well as causes
a large number of conflicts would be a worst case scenario. In this case it may be
more beneficial to fall back to sequential execution. Maintaining speculative state is
expensive as well as frequent rollbacks as Chapter 6 (experimental results) shows later
thus ideally these should be minimal. Previous work [OMH09] has found beneficial
the fact of reverting to sequential execution if the number of rollback exceeds 1% of
the number of executed iterations.

2.4 Transactional Execution

Speculative execution closely resembles the techniques used in Transactional Mem-

ory, another form of optimistic execution. As a matter of fact, both speculative execu-
tion and transactional memory inherited most of their semantic details from Database

Transactions. The following sections provide the connection between those areas.

2.4.1 What is a Transaction?

A transaction is a sequence of actions that appear to occur indivisibly and instanta-
neously to an outside observer. In the context of speculative parallelization, a trans-
action is the region that executes speculatively. Assuming work chunks are assigned
one per speculative thread, then a speculative thread is equivalent to a transaction. A
transaction serves as a nice abstraction so the user can specify the parts they wish
to execute atomically and the underlying system takes care of the rest so everything
works correctly. The definition of correctness may vary depending on the executing
environment, as the following sections explore.

2.4. TRANSACTIONAL EXECUTION 45

2.4.2 Database Transactions

Transactional processing has been successfully used in database systems for decades as
a means of exploiting parallel architectures. Multiple queries are allowed to execute in
a simultaneous fashion without the programmer having to worry about the parallelism.
Database transactions must conform to the ACID [HR83] properties which are defined
as follows:

1. Atomicity. The actions specified within a transaction must either all complete
successfully or none of them to appear executing alone.

2. Consistency. Depending on the specification of consistency for a given system,
a transaction must initiate from one consistent state after termination leave the
database to another consistent state.

3. Isolation. Transactions must not interfere with each other during execution.

4. Durability. Any modifications done by a transaction must be stored perma-
nently (e.g. on a disk) on commit and be available to other subsequent transac-
tions.

2.4.3 Transactional Memory

In Transactional Memory (TM) [HM93], parallel portions of applications are exe-
cuted concurrently as transactions, and access shared data simultaneously. In the TLS
paradigm, a sequential program is first transformed to parallel and then execute spec-
ulatively. In TM the input program is already parallel but instead of using locks to
protect critical sections, synchronization is achieved by transactions. Transactional

threads in TM have the same guarantees as in TLS apart from the requirement to com-
mit in a predefined total order (the sequential order). As such, transactional memory
can be seen as a general form of TLS.

The main difference between transactions in databases and transactions in TLS
and TM is in terms of the last ACID property. Traditional database operate on disks
whereas TLS and TM operate only with main memory. Furthermore, work done by
transactions in TM and TLS normally cease to exist after program completion unlike
databases where work must be committed back to disk.

46 CHAPTER 2. FUNDAMENTALS OF RUNTIME PARALLELIZATION

2.5 Summary

The topic of this chapter was runtime parallelization with focus on speculative paral-

lelization.
Static approaches to automatic parallelization are generally very successful but fail

to parallelize code where sufficient information is not known until runtime. Initial
attempts to runtime parallelization applied the Inspector/Executor model where an in-
spector phase determines at runtime the applicability of a loop to run in parallel, an
action accomplished by the executor phase. Overheads associated with the inspec-
tion phase of that model directed research in runime parallelization towards a more
promising solution: speculative parallelization.

Speculative parallelization executes a loop in parallel optimistically (without knowl-
edge whether the loop can be parallelized) and provides mechanisms to maintain cor-
rectness during runtime. This entails ways to schedule speculative threads, ways to
monitor accesses by speculative threads, ways to detect undesirable actions, and pre-
vent wrong results to be maintained in main memory. This chapter elaborated on those
mechanisms and explained different ways they can be implemented.

The next chapter moves a step forward to discuss the main speculative paralleliza-
tion systems in the literature and how each of those systems proposes a solution for the
above design choices.

Chapter 3

Advanced Topics in Runtime
Parallelization

3.1 Introduction

Chapter 2 introduced the area of runtime parallelization providing an overview of the
early ideas using the Inspector/Executor model and the rise of Speculation as a way
to parallelize an application at runtime. There has been numerous work in specula-
tive parallelization over the last two decades. This chapter identifies and presents the
most important ones while discussing various advances in the area of speculation. The
contributions of this thesis (mentioned in Chapter 1) are the result of two speculative
parallelization systems implemented purely in software. Thus, any work discussed in
this chapter concerns software implementations of speculative parallelization systems
unless otherwise stated. A significant portion of Chapter 2 also explored the various
dimensions to implement a speculative parallelization system: metadata, version man-
agement, conflict detection, commit/rollback, and scheduling speculative threads. This
is illustrated in Figure 3.1.

Those categories will lead the structure of this chapter while explaining the main
work in software speculative parallelization (summarized in Table 3.1). The last col-
umn of Table 3.1, MiniTLS and Lector, is published work by the author of this thesis.
Both systems are involved in the contributions of this thesis and are described in detail
in Chapters 4 and 5 respectively. As in Chapter 2 the terms Speculative Parallelization,
Thread-Level Speculation, and TLS will be used interchangeably throughout the rest
of the chapter. To aid the information flow of this chapter, some categories will be

47

48 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

Figure 3.1: The various design points that make up a speculative parallelization system.

merged together and one more category will be added in regards to the runtime exe-
cution technique each system utilizes. For example, Chapter 2 explained two different
runtime execution models: Inspector/Executor and Speculative Parallelization.

3.2 Execution Model

3.2.1 Inspector/Executor

The first serious discussions and analyses of Runtime Parallelization emerged dur-
ing the late 1980s with the Inspector/Executor technique. Early work on this model
[ZY87, SMC89, SM91, SMC91], focused on how the inspector phase could analyze

3.2. EXECUTION MODEL 49

YEAR WORK

1994 DOALL test [RP94a]
1995 LRPD test [RP95]
1998 Gupta and Nim [GN98]
2001 Rundberg and Stenström [RS01]
2002 R-LRPD [DYR02]

2003/2005 Cintra and Llanos [CL03, CL05]
2008/2010 CorD-based systems [TFNG08, TFG10]

2009 SpLIP [OMH09]
2009 STMLite [MHHM09]
2010 Raman et al. [RKM+10]
2013 MiniTLS, Lector [YRHBL13]

Table 3.1: Advances in the literature of speculative parallelization.

the runtime access patterns among loop iterations and produce a valid execution sched-
ule that the executor phase would later materialize. Subsequent attempts of Inspec-
tor/Executor [RP94a] used the model to identify the presence of a fully parallel loop
at runtime and proceed with parallel execution. Apparently the model was successful
mainly in cases where an efficient inspector loop could be obtained [Rau98]. That is, if
the inspector loop is not able to be decoupled sufficiently from the loop (i.e. small code
replication), then the inspector becomes computationally expensive making it nearly
equivalent to the loop itself. Mainly for this reason, research in runtime parallelization
turned towards solutions employing speculation.

3.2.2 Speculative Parallelization

The first traces of speculative runtime parallelization in the literature was the DOALL test
proposed by Rauchwerger and Padua [RP94a]. The DOALL test is a runtime technique
for DOALL loop identification (i.e. loops without cross-iteration data dependencies)
initially practiced using the inspector/executor model. The test later became the core
of one of the earliest and most influential work on speculative parallelization known
as the LRPD test (Lazy Reduction Privatization DOALL test) [RP95], proposed also by
Rauchwerger and Padua.

LRPD [RP95], eliminates the overheads of a possibly poor inspector (one that con-
tains a large potion of the original loop) by combining the inspection and execution

face in a single step. Furthermore, certain types of anti and output dependencies are

50 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

removed by using a transformation known as privatization. Privatization transforms
certain shared variables into private copies for each thread cooperating on the exe-
cution of the loop. For instance, variables that are first defined (written) every time
before they are used (read) inside the same loop iteration, can be safely privatized.
Sometimes, variables initialized outside of the loop could be privatized if a copy-in

mechanism is provided (i.e. provide a copy of the external value for the first use of that
variable in each iteration). Similarly, if a privatized variable is required after the loop
execution, a copy-out mechanism needs to be provided to ensure that the correct value
is copied out to the original (non privatized) version of that variable.

While inspection of memory accesses takes place by a thread, the actual memory
values of the shared user data structure are computed as well, only instead of being
placed immediately in main memory, they reside in thread-local storage until inspec-
tion completes. This introduces a notion of speculation on the values being produced
during the loop execution. Yet another novel feature of LRPD is the ability to identify
and handle code that fits the reduction1 pattern, thus allowing for more loops to be
parallelized.

The majority of subsequent speculative system implementations in the literature
[GN98, RS01, DYR02, CL03, CL05, TFNG08, OMH09, MHHM09, TFG10, YRHBL13]
are considered as an extension to the LRPD test.

3.2.3 Speculative Parallelization with Inspection Support

Yiapanis et al. [YRHBL13] propose a TLS system, called Lector, where the tech-
niques of speculative parallelization and inspector/executor are combined together. For
simplicity, assume that speculative parallelization is implemented in a similar manner
to the LRPD [RP95]. From the inspector/executor model, only the inspection loop is
manipulated. Lightweight threads, coined in Lector as inspector threads, are ex-
tracted and applied in a similar fashion as the DOALL [RP94a] runtime test. While
inspector threads are running, speculation continues as usual. Inspector threads do not
replicate the entire code from the loop and thus are expected to be faster than typical
TLS threads. If inspector threads determine that the loop is fully parallel, specula-
tion is withdrawn and parallel execution continues without the speculative overheads.
If inspector threads fail due to data dependencies, speculation continues without any
changes.

1Reduction operation of the form: x = x⊗ exp, where ⊗ is an associative operation and variable x
does not occur in exp or anywhere else in the loop.

3.2. EXECUTION MODEL 51

The traditional inspector/executor model would suffer performance losses in two
cases: (a) When the inspector replicates a large portion of the loop, (b) When the in-
spector identifies data dependencies since the inspection time is completely lost. Com-
bining the model with speculation these two drawbacks are addressed as follows: (a)
Even if inspection completes at the same time as speculation, at least the loop was exe-
cuted speculatively rather than serially, (b) If the inspector identifies data dependencies
the inspection time is amortized by having speculation executing the loop simultane-
ously.

Lector is one of the contributions of this thesis and it is described in greater detail
in Chapter 5.

3.2.4 Decoupled Software Pipelining with Speculation Support

Raman et al. [RKM+10] demonstrated a different approach to runtime paralleliza-
tion by enhancing a technique known as Decoupled Software Pipelining (DSWP) with
speculation support.

DSWP is somewhat similar to another earlier form of offline-based parallelism
transformation known as DOACROSS [Cyt86]. DOACROSS targets loops with cross-
iteration data dependencies and enables parallelism by scheduling parts of each loop
iteration across multiple threads. In DSWP each thread executes part of the loop for
all iterations and threads are scheduled is such a way to form a pipeline. To better
understand the difference consider an example2 code traversing a linked-list as in Fig-
ure 3.2a and its dependence graph (the graph showing the program’s data dependence
relationships). The pointer chasing load is labeled “LD” and the loop body is labeled
“X”.

Figure 3.2b illustrates how the DOACROSS technique would schedule the loop
iterations among two threads (T 1 and T 2) in an alternate fashion. This way the body
of the loop in one thread can be executed in parallel with the next field traversal load
of the other thread. In contrast, the DSWP technique (see Figure 3.2c) schedules the
iteration of the loop in a way that half of the iteration (the pointer chasing load) is in one
thread and the other half (the body of the loop) in another thread. What DSWP aims to
optimize over the DOACROOS technique is to keep the loop’s critical path (the longest
path in the dependence graph) dependence in the same thread. If the critical path has to
be routed across threads as in the DOACROSS example, the total execution time of the

2This example was taken from [ORSA05a].

52 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

while(ptr	
 =	
 ptr-­‐>next){	

	
 ptr-­‐>val	
 =	
 ptr-­‐>val	
 +	
 1;	
 //	
 X	

}	

	

LD	

X	

a)	

PDG	

LD	

X	
 LD	

X	
 LD	

X	
 LD	

T1	
 T2	

LD	

LD	
 X	

X	
 LD	

LD	
 X	

T1	
 T2	

b)	
 c)	

Figure 3.2: a) Linked-list traversal. b) DOACROSS scheduling. b) DSWP scheduling.
This example appears in [ORSA05a]

loop may increase due to communication costs. Placing the critical path in the same
thread allows decoupling from that communication latency among multiple threads.
One limitation of DSWP is the requirement that the loop must be able to be broken
up in such a way that all instructions from the same recurrence (strongly-connected
component) in the flow graph can be placed on the same thread.

By default, DSWP is a non-speculative technique and therefore has to respect all
dependencies in the loop. In an attempt to allow more loops to be parallelized, Vach-
harajani et al. [VRR+07] proposed the first system towards speculative DSWP, al-
though, requiring specialized hardware support. Raman et al. [RKM+10] present a
software approach for DSWP by providing a software TLS back-end to the initial idea
in [VRR+07]. In their work, they coin this TLS support as Software Multi-threaded

Transactions (SMTX).

As with the non-speculative technique, speculative DSWP is limited to the number
of strongly-connected components in each loop, which is typically much smaller than

3.3. METADATA AND VERSION MANAGEMENT 53

the number of loop iterations [RVOA08].

3.3 Metadata and Version Management

Typically work on runtime parallelization manipulates additional data structures to in-
dicate an action on a particular memory location (this idea was explained in Chapter
2, Section 2.3.2). Usually these data structures are implemented using arrays or hash
tables. Since each of those array elements reflects a memory location, they are referred
to as shadow arrays. There are three ways that have been mainly used in literature to
maintain metadata: (a) Keep the shadow arrays private to threads and check for cor-
rectness only at the end of speculation, (b) Keep shadow arrays shared among threads
so that each thread could see what other data threads are accessing during speculative
execution, and (c) Keep shadow arrays private to threads but provide means to enable
early detection in case of a conflict. In other words, allow threads to commit partial re-
sults during execution so that conflicts are not delayed until the end. The next sections
elaborate more on those three types of maintaining metadata.

3.3.1 Speculation with Decoupled Shadow Data

Early work on speculative parallelization was fully optimistic in the sense that it was
more effective when speculation triggered no conflicts. Speculative threads did not
attempt to communicate between each other until only after the end of their corre-
sponding speculative execution. Thus, a misspeculation was only detected after the
final commit.

The DOALL

The DOALL test [RP94a] involves the manipulation of helper data structures in order to
track any memory accesses performed on the user shared data structures. Loads and
stores are marked during program execution based on memory accesses using those
helper or shadow data structures. In its simplest form, the compiler analyzes the loop
to be parallelized and generates shadow data structures for each user data structure
under question. Figure 3.3a shows an example of a candidate loop for DOALL paral-
lelization. In order for the loop to be classified as DOALL, no data dependencies must
exist among different iterations (or chunks of iterations). The shared data structure
in question for this example is an array A[n], where n indicates the size of the array.

54 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

Assuming that integer arrays B and C are populated at runtime, there is no way to
analyze A for data dependencies at compile time as its indexes are unknown by that
time. During compilation two versions of the loop are generated. The first loop will
be used to compute all the indexes and perform the DOALL test, without actually mod-
ifying any shared data. The second loop, provided that the DOALL test was a success,
will use those indexes to access the actual storage and perform the computation. Two
additional arrays, Load[] and Store[], are introduced to record the indexes of loads and
stores respectively for array A (see Figure 3.3b). The two arrays have the same length
as A and are used only to mark index locations. Loop iterations are distributed among
multiple threads and the shadow structures are replicated for each thread to perform the
marking concurrently (without the need of synchronization). At the end of the inspec-
tion/marking phase, the different copies of those shadow structures are examined. For
a given index i, if Load[i] and Store[i] are both marked in different threads (i.e. chunks
of iterations) then the loop is NOT a DOALL. If no load from one thread intersects with
a store from a different thread in the same memory location, then the loop is classified
as fully parallel. Several extensions to this simplified version have been proposed over
time and will be discussed below. Given the test yields a success, the second loop that
will perform the actual computation can be executed as a DOALL loop across multiple
threads.

The LRPD

The LRPD test [RP95] takes the DOALL test [RP94a] a step forward and actually com-
putes the loop in a speculative fashion while inspecting. LRPD allocates five data struc-
tures in total: four boolean-valued shadow arrays to indicate actions on memory loca-
tions and another array as temporary space for speculative values to be stored during
execution. The four shadow arrays are defined as follows:

Load: An element Load[i] in this array is set to “true” to indicate a speculative load
performed on a memory location i in the user space.

Store: Similar to the load array, an element in this array is set to indicate a speculative
store operation on a memory location.

NotPrivatizable: A thread sets an element in this shadow array if a load was per-
formed in a location without a preceding write by the same thread. This is done

3.3. METADATA AND VERSION MANAGEMENT 55

for(int	
 i	
 =	
 0;	
 i	
 <	
 n;	
 i++){	

	
 A[
 B[i]	
]	
 =	
 …	
 ;	
 //	
 Iteration	
 1:	
 B[i]	
 =	
 4	

	
 …	
 =	
 A[
 C[i]	
];	
 	
 //	
 Iteration	
 1:	
 C[i]	
 =	
 6	

}	

a)	

b)	

3	

4	

5	

6	

✗	

✗	

-­‐	

-­‐	

-­‐	

✗	

-­‐	

✗	

-­‐	

-­‐	

Load	
 Store	
 A[
]	

Figure 3.3: DOALL test [RP94a] basic data structures.

to prevent the possibility of the loading thread reading a value produced by a dif-
ferent thread in the wrong order. Thus, the array is used to indicate an element
that cannot be privatized.

NotReduction: Indicates that memory location cannot participate in a reduction op-
eration.

When the loop is parallelized speculatively, every thread is assigned a chunk of
iterations to execute. Each thread has its own copy of the above data structures that
reflect only the memory locations accessed by that thread. A local copy of those data
structures can be accessed only by the thread that owns it. Therefore, during execution
there is no need for synchronization to mark those arrays. Nevertheless, at the end of
the speculative execution, all these local copies must be merged in order to check for
cross-thread memory accesses.

LRPD is an example of a lazy version management system, since tentative stores
reside in private storage and only become visible to memory at a thread’s commit

56 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

time.

3.3.2 Speculation with Shared Shadow Data

In the work discussed above [RP94a, RP95] threads avoid communication between
them until the end of speculative execution. Other proposals, such as the ones that
will be discussed below, expose the metadata to multiple threads during execution but
prevent data races between threads through the use of locks or CAS operations. One
important reason that a TLS system designer might choose to do that is to allow threads
to detect early misspeculations.

Rundberg and Stenström

Rundberg and Stenström [RS01] proposed a speculative parallelization scheme in which
a thread must first secure exclusive ownership of a particular location before any spec-
ulative access. This is enabled by requiring a thread to acquire a lock associated with
each memory location that may be accessed in a speculative manner.

Every user shared data structure is shadowed by three helper arrays. Every location
of these shadow arrays is associated with an individual memory location in the user
shared data structure, the same way as in the LRPD test [RP95]. The first shadow
structure is an array of locks used to indicate ownership of a particular location by a
thread. The remaining two are used to keep an identifier for a thread that has performed
a speculative load or store on a particular location, respectively. Also a private storage
is maintained for each thread to buffer any speculatively produced values.

Cintra and Llanos

Cintra and Llanos [CL03, CL05] use a slightly different layout for the metadata than
the work from Rundberg and Stenström [RS01]. Apart from the private storage for
speculative values, three other shadow arrays are used as follows (and illustrated in
Figure 3.4):

AT: The AT array, short for Access Type, shadows the user memory locations. It is
used to contain information about the access type upon a memory location by
a thread. Access types can be in Read or Mod state (corresponding to Load or
Store actions respectively), in NotAcc (to indicate a memory location never ac-
cessed before by different thread) state, or in ExpLd state (to indicate a memory

3.3. METADATA AND VERSION MANAGEMENT 57

location could have potentially been written by a different thread and consumed
by the current thread - this action is termed as exposed load in this work).

IA: Indirection Array. This array is just a summary of memory locations in state other
than NotAcc (not accessed) for each thread. It is used to speed up checking which
data a given thread has accessed. An integer variable “Tail” is used to indicate
the last element of this array.

GlExpLd: An element of this array (Global Exposed Loads) reflects a memory loca-
tion across multiple threads. If a given memory location i shadowed by GlExpLd
is consumed by a speculative thread but not written first (i.e. exposed load), then
GlExpLd[i] is set to indicate a potential violation. This is another attempt to
speedup the checking process. If a memory located has never been exposed
loaded then there is no need to be included in any checking for violation.

Cintra and Llanos [CL03, CL05] work is also an example of lazy version manage-
ment. In their work, to prevent certain memory access violations, threads are allowed
to communicate values between them using a mechanism known as value forwarding.
This will be revisited in the discussion regarding conflict detection.

SpLIP and MiniTLS

SpLIP [OMH09] and MiniTLS [YRHBL13] are two speculative parallelization exam-
ples of eager version management. MiniTLS is one of the contributions of this thesis
and it is described in detail in Chapter 4.

SpLIP [OMH09] is the first TLS system supporting in-place updates (eager ver-
sion management). The systems discussed so far employ a deferred update (or lazy)
version management. A thread-local buffer is still required, only in this case it is used
to record the original value of a memory location just before the speculative memory
update is performed. Two supporting data structures are required in order to record the
thread id that is currently performing a load or a store for a given location, respectively.
Up to this point the data structures used are very similar to the ones used in the work
by Rundberg and Stenström [RS01]. A major difference from [RS01] is the interest-
ing way exclusive ownership is defined. SpLIP takes advantage of certain properties
of the Intel x86 architecture in order to abolish locks or CAS operations used by con-
ventional TLS systems to protect a speculative location from multiple thread accesses.
This comes at the cost of increasing memory requirements by requiring two additional

58 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Storage	

NotAcc	

NotAcc	

Mod	

-­‐	

4	

-­‐	

-­‐	

-­‐	

AT	
 IA	

User	
 	

Data	
 2	
 Tail	

Thread	
 1	
 	
 	
 	
 	
 Thread	
 2	

Metadata	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Storage	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

AT	
 IA	

0	
 Tail	

F	

F	

T	

-­‐	

GlExpLd	

Figure 3.4: The data structures used by Cintra and Llanos [CL03, CL05]. “AT” stands
for Access Type,“IA” stands for Indirection Array, and “GlExpLd” stands for Global
Exposed Load. The values inside the “GlExpLd” can be either true (T) or false (F).

shadow data structures to ensure proper synchronization between multiple thread ac-
cesses (the use of the two arrays is discussed in Appendix A). Intel x86 guarantees that
read/write access to a 64-bit word occurs atomically as well as access to any subwords
of the corresponding word. Exploiting this information the four shadow structures (two
for read/write marking and two for read/write synchronization) are implemented as in-
terleaved, aligned 16-bit subwords of a 64-bit word; reading any of these is replaced
by reading the full word and computing the required value. As a result read/write op-
erations from SpLIP are sound for Intel x86 without the use of locks even though this
hardware does not provide sequential consistency. A multi-core system is sequentially
consistent if “the result of any execution is the same as if the operations of all the pro-
cessors were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program” [Lam79]. This
sequentially consistent behavior is likely due to flushing the cache line when cache

3.3. METADATA AND VERSION MANAGEMENT 59

coherency detects concurrent accesses to a word and one of its contained subwords.
More details on SpLIP can be found in Appendix A.

3.3.3 Speculation using a Centralized Manager Thread

The work discussed above concerned either systems that communicate their shadow
arrays at the end of speculation or work that the shadow arrays are shared between
multiple threads. The following paragraphs discuss a different approach in which al-
though shadow data are distributed among threads, there exist a centralized manager
unit to ensure misspeculations are detected before the end of speculation. Also if the
manager is executed in a dedicated thread and it is the only thread allowed to commit
values to memory then commit-time locks can be avoided. Nevertheless locks may
still be required to coordinate multiple threads from accessing the manager thread and
vice versa.

CorD

Tian et al. describe CorD [TFNG08], a TLS system which maintains a central manager
unit that is dedicated to only one thread. The manager is the only thread that has
access to user data and it is not speculative. Each speculative worker thread maintains
its own private space for marking and execution. When a speculative thread is created,
any value that is needed, is copied-in from the non-speculative state (the user data) to
the speculative one (the worker’s thread private space) and later the results are copied
back if speculation was successful. This transfer of data between the user space and the
speculative space is performed only through the central manager. A mapping table is
maintained for each speculative thread that has entries associated with each variable’s
copy. Version numbers are used between the two states (user space and speculative
space) in order to detect misspeculations. When a memory location is needed, the
main thread provides a copy of the associate value to a speculative thread and stores
an integer value in the “version shadow array” (shown in Figure 3.5) for that location.
The version number is also provided to the speculative thread’s mapping table. If that
user location has changed during execution the version number will be updated. When
a speculative thread finishes execution, its mapping table will be sent to the manager
thread. The mapping table will be traversed by the manager thread to identify any
expired versions. The “WriteFlag” is set to true by a speculative thread to indicate the
memory locations needed to be copied back to the user space. Work from speculative

60 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

threads is committed in-order by the main thread.
Furthermore, in [TFG10] they address certain challenges specific to applications

manipulating dynamic data structures. For example, the copying of objects is lim-
ited to only those that are modified by a speculative thread. Also when an object is
moved to the speculative space, all other references that may point to that object must
be changed to point to the speculative copy rather than the original. This causes the
address translation problem. To overcome copying all those references, the authors
introduce double pointers. Under this idea, every pointer variable in the program, is
modified by the compiler and represented by two pointers. One for the non-speculative
state and one for the speculative state. In this way extra copying is avoided by using
the appropriate pointer for corresponding space.

2	

3	

4	

5	

f	

g	

e	

a	

User	
 	

Data	

Central	

Manager	

Thread	

-­‐	

-­‐	

-­‐	

-­‐	

Memory	

loca0on	
 	

Version	

WriteFlag	

-­‐	

-­‐	

-­‐	

-­‐	

Memory	

loca0on	
 	

Version	

WriteFlag	

Thread	
 1	
 	
 	
 	
 	

Thread	
 2	
 	
 	
 	
 	

-­‐	

-­‐	

-­‐	

-­‐	

Version	

Private	

Storage	

Private	

Storage	

Mapping	

Table	

Mapping	

Table	

Figure 3.5: Metadata used for CorD [TFNG08].

One requirement in CorD is that the user space and speculative space remain com-
pletely separated. The manager thread supplies any value needed to a newly created
speculative thread, even values to be loaded. This could cause unnecessary copying
overhead since anyway if a value needs to be loaded it could be retrieved on demand

3.3. METADATA AND VERSION MANAGEMENT 61

from main memory. In any case CorD would invalidate a copy that was updated during
speculative execution. Also in many scenarios, pointer values may be undefined by
the time they are required to be copied (i.e. when the speculative thread is created).
CorD addresses this issue by delaying the copying of the pointer address up until it is
actually read for the first time.

STMLite

Mehara et al. [MHHM09] present STMLite, a Software Transnational Memory (STM)
model modified to support speculative parallelization. STMLite aims to reduce the
overhead associated with validating the read-set by decoupling the conflict detection
process from the main process using a Central Commit Manager (CCM). Also indi-
vidual locks for copying out the write-set are avoided. The CCM, runs on a dedicated
thread and allows only one transaction (or in this case a chunk of iterations) at a time
to write to a particular location (note that, multiple transactions can update different
locations concurrently). During execution, each transaction computes their read and
write accesses in the form of software signatures (inspired by hardware signatures
[CTTC06]), while buffering their speculative store values. At the end of their specu-
lative execution, signatures are send for validation to the CCM. If granted by CCM, a
transaction is safe to commit its buffered values. The relative start and commit times
of transactions is tracked using a global clock mechanism (a shared counter used to
maintain consistency between transactions), which is incremented every time a trans-
action commits. The clock is incremented every time a transaction commits and it is
used to invalidate other “live” transactions with an out of date value. This is possible
since every memory location is associated with a version number. Before the trans-
action terminates, as part of its commit procedure all write and all read accesses are
re-validated. If successful, the global clock is incremented atomically, all speculative
updates are propagated to memory, and all writes are amended to hold the new value of
the global clock. This way the next committing transaction can ensure consistency by
comparing their previously recorded local value of the global clock against the current
up-to-date clock of any values read. They global clock idea for STM was first used in
[SMSS06]. Loop iterations are given ordered ids and they must commit in that order.

Raman et al.

Raman et al. [RKM+10] also use a centralized commit unit in a similar manner as
in STMLite [MHHM09]. Their system uses lazy version management and therefore

62 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

speculative loads must first consult their write-sets to check whether that value has
been already produced there. This incurs additional costs on such systems especially
for applications with long running iterations as every load operation must first search
potentially large write buffers. Raman et al. [RKM+10] take advantage of certain prop-
erties of the operating system to optimize such a potential bottleneck. The speculative
regions are executed inside UNIX processes. This allows the underlying virtual mem-
ory to transparently create private physical copies of locations being updated (at the
page granularity). As a result any subsequent load operation to a memory location be-
ing updated in the same speculative thread will have the up-to-date value (with respect
to that thread) available without the need to scan the write-set.

Furthermore, their execution scheme (explained in Section 3.2) allows a loop iter-
ation to span across multiple threads. Since the unit of atomicity is still considered to
be a loop iteration, the proposed system allows a speculative thread to generate sub-
threads in order to cover the entire code from a single iteration across the pipeline.
This complicates further the implementation of the system as the interaction between
parent speculative threads and sub-threads must be handled with care. Such a situa-
tion is known as transaction composability problem in databases. Nested transactions

provide suitable semantics to address composability [BN97]. For instance, a parent
transaction (or thread in this case) is not allowed to commit until all of its children
commit. Counters are introduced to the parent transaction which increment when a
child transaction starts and decrement when one commits. Furthermore, in TLS, the
speculative order among children threads is only meaningful within their parent thread.
Aborting a child transaction entails aborting the parent thread entirely.

The CorD-based systems [TFNG08, TFG10], STMLite [MHHM09], and the sys-
tem by Raman et al. [RKM+10] employ lazy version management.

3.4 Conflict Detection, Rollback, and Commit

Earlier, Section 3.3 described the methods that different TLS systems devised to enable
a way of communication between the accesses from speculative threads and the rest
of the system. The following paragraphs will provide the critical piece that is missing
from the puzzle which is how each of those approaches maintains correctness during
speculative execution. This section is structured based on the two popular ways that
a TLS system can use to detect a conflict: Lazy and Eager conflict detection. While
discussing conflict detection, information about different types of commit and rollback

3.4. CONFLICT DETECTION, ROLLBACK, AND COMMIT 63

will be explained.

3.4.1 Lazy Conflict Detection

A thread that delays the validation for correctness to the end of its speculative execution
is said to employ a lazy conflict detection mechanism. The benefit of acting as such is
to avoid the overhead of checking for correctness upon every speculative access. The
downside is that if a misspeculation is detected, any work performed during speculative
execution is wasted. So far in the literature of software speculative parallelization, lazy
conflict detection has been used only by lazy version management systems.

LRPD

LRPD test [RP95] is a very simple and effective technique for applications that have no
data dependencies. The user data structure is shadowed by helper arrays to mark the
loads and stores from each thread. At the end of speculative execution the arrays are
examined.

Rollback & Commit: In the simplest case, a conflict can arise if two threads have

marked the same location, one thread as a store and the other one as a load. That is,
the same memory location has been read and written in different iterations (threads in
this case) indicating a RAW or WAR violation. Nevertheless, if the load is preceded
by a store from the same thread then there is no conflict since speculative values are
committed lazily. Furthermore, the LRPD keeps track of the total number of store op-
erations performed by all threads. If that number is different from the total number of
store operation markings in the shadow arrays then some locations have been overwrit-
ten causing a WAW violation. Also violation is caused if a variable was not able to be
privatized but written during speculation. When a conflict is detected all speculative
work is discarded and the loop re-executes sequentially. If the loop is found validly
parallelized then all threads can commit their speculative results in parallel to main
memory (in parallel only if no two or more threads have performed an update to the
same memory location, otherwise sequentially and in-order to avoid WAW conflicts).

The LRPD test [RP95] is probably one of the laziest3 TLS systems. The test for cor-
rectness is performed at the end of the entire speculative execution. While this scheme

3Laziest in terms of conflict detection.

64 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

is ideal for an application that contains no data dependencies, many opportunities for
parallelization remain unexploited.

R-LRPD

As mentioned earlier, the main disadvantage of the LRPD [RP95] is having to waste
all speculative work performed during execution, by discarding all computed values,
when the test was unsuccessful. The R-LRPD (Recursive-LRPD) test [DYR02] aims to
address this shortcoming. To a great extent R-LRPD is the same as its predecessor. The
loop is executed speculative using the same technique as in LRPD and performing the
correctness test at the end. If the test is “passed”, then the process is equivalent to the
LRPD test. However, in the unfortunate case where the test fails, a complete rollback is
not necessary. Instead, all iterations of the loop under question that computed any re-
sults before the misspeculation is triggered, are allowed to commit, whereas the rest of
the iterations are re-executed in the same fashion. This process continues in a recursive
fashion until all the executions of the loop complete.

This optimized rollback procedure of R-LRPD is made possible by using a sliding

window scheduling mechanism. Only a set of iterations are executed in the window at
a time. Thus, successful execution of iterations inside the same window phase appears
the same as LRPD. When a conflict arises, it is isolated within the current window of
execution.

Gupta and Nim

Gupta and Nim [GN98] also aim to address the shortcomings of LRPD by proposing
some simple extensions. The main extension concerns elements not able to be pri-
vatized. In LRPD a thread that loads a value initialized by a different thread causes a
violation. In the scheme proposed by Gupta and Nim [GN98] a thread that attempts
to load a value not initialized by itself can decide to stall until the previous threads
have finished execution. This is done by inserting synchronizations for the threads that
may require a value not yet produced. This scheme assumes that threads are totally
ordered and iterations are assigned to threads in increasing order. This implies that a
lower thread in the ordering will always be less speculative than a higher thread. The
stalled thread can proceed only when its less speculative threads have finished and thus
commit the value needed in main memory.

3.4. CONFLICT DETECTION, ROLLBACK, AND COMMIT 65

CorD

A system, namely CorD [TFNG08], with a centralized manager thread was introduced
earlier in Section 3.3. Figure 3.5 shows the metadata organization for that system. The
manager thread is the only one allowed to interact with the user data. When execution
begins, the central manager creates a speculative thread copying-in to that thread’s
private storage any values needed from the user space. For every user memory location
the manager associates a version number. When a value is required by a thread, the
current version number is also given by the manager. During execution a speculative
thread loads and updates values only in its local storage. The speculative thread also
maintains a mapping table that contains the address of a given location, its original
version number when copied-in, and a flag. The flag is set only to indicate a location
that has been updated locally.

Commit: When a speculative thread completes, the manager is notified. The man-
ager will consult the mapping table of that thread to identify which locations have the
flag set and therefore be copied-out to the user space. When a value is updated in the
user space, its corresponding version number also changes.

Rollback: When the manager consults the mapping table of a speculative thread the
version numbers must be examined. If the thread contains a value that has an expired
version then a violation is raised. The manager notifies the speculative thread to discard
any work done and the values are copied-in again to restart execution.

STMLite

The process for conflict detection in STMLite [MHHM09] is similar to the one im-
plemented in CorD [TFNG08]. Once a speculative thread completes execution, the
addresses of the values read and written are send to the central thread. The central
thread also maintains a log containing the values committed by previously success-
ful speculative threads. The read and write addresses are compared against the log of
committed values.

Rollback: If a conflict is identified between a value consumed by the current specula-
tive thread and a value residing inside the log of committed values, the central manager
notifies the thread to discard its local buffer and restart execution.

66 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

Commit: If the values used by the speculative thread do not intersect with any of the
values in the committed log the central manager notifies the thread to start copying any
updates to main memory. Since the central manager in this case (and unlike in CorD

[TFNG08]) allows speculative threads to begin committing their values independently
and in parallel, a mechanism is required to prevent concurrent memory updates by
multiple committing threads. This is implemented using an additional data structure
that shadows the number of active thread in the system. This data structure is used as a
synchronization point which indicates when a particular thread has finish committing
its values. The manager thread contains the addresses to be committed by all threads.
Before the manager allows a thread to begin the commit process, it consults the write
signatures from the currently committing threads. If any of the write signatures from
the speculative thread waiting permission to commit conflicts with a thread currently
committing, then the manager will postpone the commit for the waiting thread until
the others finish.

Raman et al.

The speculative parallelization system proposed by Raman et al. [RKM+10] also uses
a lazy conflict detection mechanism. Like CorD [TFNG08] the central manager is noti-
fied when a thread completes executing its corresponding speculative region. The cen-
tral manager is then responsible to identify any conflicts among speculative threads.
The main difference from CorD is the extra complication from supporting the sub-
threads. The children threads must commit within the context of their parent threads.
This is required to maintain consistency among speculative threads. The authors ad-
dress this issue by having the sub-threads copying on demand the values they require
from previous sub-threads (or the parent thread). Consequently the parent thread as
well as its children all have the same version of memory.

3.4.2 Eager Conflict Detection

Rundberg and Stenström

In the software TLS system proposed by Rundberg and Stenström [RS01] a given
user memory location is protected by a lock as well as keeping information about its
latest reader and writer threads. This feature allows a speculative thread to check in
isolation (from other threads) whether reading or writing the value in question can
cause a violation. Their implementation prevents a speculative load to cause a data

3.4. CONFLICT DETECTION, ROLLBACK, AND COMMIT 67

dependency violation by supporting a technique known as value forwarding. Using
this technique, a thread performing an exposed load (i.e. a load on a value not produced
by the same thread) is allowed to search backwards (in terms of speculation order) and
find the latest value produced by a less speculative thread to serve that particular load.
After the latest value is found, it can be forwarded from the less speculative thread’s
buffer to the more speculative thread’s buffer bypassing any rollback related costs.

Rollback: A conflict is caused only as a result of a thread reading a value “too early”.
For instance, imagine a thread that is about to perform a speculative store on location
x. The thread first locks x and then checks if a different thread has already loaded
that location. If indeed another thread has loaded that value and that thread is more
speculative, then a misspeculation is detected by the system as this causes a RAW
conflict. As a result the more speculative thread that caused the conflict and all its
successor threads must be squashed and discard their local buffers.

Commit: A thread that carried out its speculative execution without any conflict aris-
ing is allowed to commit its results to main memory. Typically, in a system that em-
ploys a lazy version management, such as this one by Rundberg and Stenström [RS01],
speculative threads commit their buffered values in order one by one. Their scheme
allows this process to be optimized by offering a parallel commit phase. Recall that the
shadow arrays keep track of the latest thread that has written to a particular location.
Even if multiple threads have performed a write on a location during speculation, the
only one that must provide memory with the correct value for that location is the latest
thread. Before commit, the “Store” shadow array that corresponds to the memory lo-
cations to be updated is inspected to find the latest threads recorded there. Threads can
proceed committing in parallel by having each memory locations updated by the latest
thread written on them.

Value Forwarding synchronization: The authors also present a more efficient im-
plementation where Load and Store shadow array locations are represented at the byte
size. Since the architecture they tested supports atomic byte operations, this enables
them to perform speculative loads by issuing low level hardware atomic loads with-
out using explicit locks. Such an optimization needs to be handled with care when
the system allows value forwarding because the future thread must be able to “see”
the correct value produced by the past thread. In other words the thread that owns

68 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

the value to be forwarded must first write that local copy before the forwarding thread
loads it. Rundberg and Stenström [RS01] handle this case in the following way: the
thread that owns the value to be forwarded is allowed first to write a 0x0F to its byte in
the Store shadow array, then perform the update of the local copy, and after this must
write 0xFF to that byte. A load, from the thread that requires that value, discovering
a 0x0F to the byte of the store shadow array simply needs to wait for it to change to
0xFF before it performs the forwarding load operation.

Cintra and LLanos

Cintra and Llanos in [CL03, CL05] experiment with both lazy and eager conflict de-
tection. The idea of implementing lazy conflict detection is so that the cost of checking
every memory location (which usually requires synchronization) is avoided. However,
delaying the conflict detection will cause wasted work if a conflict is triggered. Cin-
tra and Llanos in [CL03, CL05] indicate that the cost of checking for violations on
every speculative access is negligible compared to the cost over checking only at the
end of speculative execution where significant amount of work might be wasted. The
conflict detection idea is the same as in the TLS system by Rundberg and Stenström
[RS01]. Rollback is only triggered by stores as loads do not cause conflicts when
value forwarding is enabled. Their system differs in terms of commits from the one by
Rundberg and Stenström [RS01] in two ways: (a) Cintra and Llanos further optimize
their systems for cases where there were no exposed loads present on a given window
execution. This is accomplished by introducing an extra data structure that raises a
flag whenever any one thread performs the first exposed load for a given location (see
Figure 3.4), (b) Cintra and Llanos employ a serial commit phase.

SpLIP

SpLIP [OMH09] and MiniTLS [YRHBL13] differ from all other TLS systems in that
they are the only software TLS systems implementing an eager version management
system. Eager version management systems perform speculative updates to main
memory but buffer the original values before they do so. Threads update directly the
main memory with speculative values and as a consequence all three types of violations
are possible (RAW, WAR, WAW).

SpLIP uses five shadow arrays to facilitate conflict detection (For simplicity only
three of them are discussed here. For more details see Appendix A):

3.4. CONFLICT DETECTION, ROLLBACK, AND COMMIT 69

Load: To mark the latest thread that performed a load on a memory location.

Store: To mark the latest thread that performed a store on a memory location.

TimeStamp: To mark the relative time that a thread performed a store on a memory
location.

A conflict can be detected as follows:

Read-After-Write: A speculative thread attempts to perform a store to a memory
location but discovers that a more speculative thread has already consumed the
value from there.

Write-After-Read: A speculative thread attempts to perform a load from a memory
location but discovers that a more speculative thread has already stored a value
there.

Write-After-Write: A speculative thread attempts to perform a store to a memory
location but discovers that a more speculative thread has already stored a value
there.

Rollback: When a conflict is detected, the offending threads must go through their
local buffers which include the original values and restore memory back to the latest
known correct state. An issue arises when more than one thread involved in the vi-
olation has written to the same memory location. That is because only one of them
must restore the correct value back to main memory - the one that has the earliest copy
in terms of speculation order. SpLIP [OMH09] uses a “TimeStamp” shadow array to
record the relative time a thread has stored to a location. Using this shadow array the
system is able to recover the earliest value need to be rolled back.

Commit: Since threads update directly the speculative values in memory, if no con-
flict is detected then the final results are already there. Thus commit implicitly happens
in parallel.

MiniTLS [YRHBL13] detects conflicts in the same manner as in SpLIP [OMH09].
MiniTLS offers an enhanced way of performing a parallel rollback and is explained in
detail in Chapter 4.

70 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

3.5 Work Scheduling

Static and Dynamic Work Scheduling

The LRPD test [RP95] can be applied either with static or dynamic scheduling. With
static scheduling the iteration space is divided evenly among the number of threads.
Using dynamic scheduling large chunks of iterations are assigned at runtime to the
number of threads (usually the number of threads is significantly smaller than the num-
ber of chunks).

The work by Gupta and Nim [GN98] can also use both static or dynamic schedul-
ing. The only requirement is that threads are assigned contiguous chunks of iterations
and threads are totally ordered by their speculation level. This allows the notion of
less and more speculative thread. Remember that work performed by a less speculative
thread can potentially invalidate a more speculative thread. The same scheduling policy
is also used by many others [RS01, TFNG08, TFG10, MHHM09, OMH09, RKM+10].

Sliding Window Work Scheduling

Three work scheduling strategies have been investigated using R-LRPD [DYR02] to re-
cover from misspeculation. First, the Non-Redistribution (NRD) strategy is examined,
where failed iterations must re-execute their work in the threads that were originally
assigned to. A major issue with NRD is the load imbalance that can be potentially in-
troduced when some threads finish earlier than others and have to wait sitting idle. This
problem is addressed in the other two work scheduling techniques. The Redistribution

(RD) strategy allows iterations, involved in rollback, to subdivide themselves and be
distributed among different threads. Finally, a Sliding Window scheduling strategy is
applied where contiguous chunks of iterations are assigned to a group (or window) of
threads in a way that satisfies a speculation order. Iterations in lower indexes of the
window are less speculative than iterations in higher indexes and a less speculative
chunk of iterations has priority over a more speculative chunk. This ordering is impor-
tant when different chunks of iterations are involved in a data dependency violation or
they are ready to commit.

Two types of sliding window are evaluated by Cintra and Llanos in [CL03, CL05].
The so called aggressive sliding window that proceeds to retrieve a new chunk of iter-
ations whenever the least speculative thread commits their results and the conservative
sliding window that reloads only when all speculative threads on the window commit

3.6. SUMMARY 71

their results. The aggressive sliding window was found to be superior to the conser-

vative one, however, at the cost of higher implementation complexity. MiniTLS and
Lector employ a conservative sliding window for work scheduling [YRHBL13].

3.6 Summary

This chapter discussed the advances in runtime parallelization with focus on thread-
level speculation. The discussion was broken down to sections reflecting the following
design choices on implementing a TLS system: execution model, metadata, version
management, conflict detection, commit/rollback, and work scheduling for speculative
threads. Each of these sections described how different work in the literature imple-
ments a particular design dimension. Table 3.2 summarizes the design choices that
each work follows. MiniTLS and Lector (indicated in the highlighted rows), which is
work published by the author of this thesis, are discussed in detail in Chapters 4 and 5,
respectively. To the best of the thesis author’s knowledge MiniTLS is the first software
TLS system to combine an eager version management TLS system with parallel roll-
back phase and Lector is the first TLS system that combines the inspector/executor
model with speculation.

72 CHAPTER 3. ADVANCED TOPICS IN RUNTIME PARALLELIZATION

W
O

R
K

E
X

E
C

U
T

IO
N

M
O

D
E

L
V

E
R

S
IO

N
IN

G
C

O
N

FL
IC

T
S

C
O

M
M

IT
R

O
L

L
B

A
C

K
S

C
H

E
D

U
L

IN
G

DO
AL

L
te

st
[R

P9
4a

]
In

sp
ec

to
r/

E
xe

cu
to

r
N

/A
N

/A
N

/A
N

/A
St

at
ic

LR
PD

te
st

[R
P9

5]
Sp

ec
ul

at
iv

e
L

az
y

L
az

y
Se

ri
al

Pa
ra

lle
l

St
at

ic
/D

yn
am

ic
G

up
ta

an
d

N
im

[G
N

98
]

Sp
ec

ul
at

iv
e

L
az

y
L

az
y

Se
ri

al
Pa

ra
lle

l
St

at
ic

/D
yn

am
ic

R
un

db
er

g
an

d
St

en
st

rö
m

[R
S0

1]
Sp

ec
ul

at
iv

e
L

az
y

E
ag

er
Pa

ra
lle

l
Pa

ra
lle

l
St

at
ic

/D
yn

am
ic

R-
LR

PD
[D

Y
R

02
]

Sp
ec

ul
at

iv
e

L
az

y
L

az
y

Se
ri

al
Pa

ra
lle

l
Sl

id
in

g
W

in
do

w
C

in
tr

a
an

d
L

la
no

s
[C

L
03

,C
L

05
]

Sp
ec

ul
at

iv
e

L
az

y
E

ag
er

Se
ri

al
Pa

ra
lle

l
Sl

id
in

g
W

in
do

w
Co

rD
[T

FN
G

08
,T

FG
10

]
Sp

ec
ul

at
iv

e
L

az
y

L
az

y
Se

ri
al

Pa
ra

lle
l

St
at

ic
/D

yn
am

ic
Sp

LI
P

[O
M

H
09

]
Sp

ec
ul

at
iv

e
E

ag
er

E
ag

er
Pa

ra
lle

l
Se

ri
al

St
at

ic
/D

yn
am

ic
ST

ML
it

e
[M

H
H

M
09

]
Sp

ec
ul

at
iv

e
L

az
y

L
az

y
Pa

ra
lle

l
Pa

ra
lle

l
St

at
ic

/D
yn

am
ic

R
am

an
et

al
.[

R
K

M
+

10
]

Sp
ec

ul
at

iv
e/

D
SW

P
L

az
y

L
az

y
Pa

ra
lle

l
Pa

ra
lle

l
St

at
ic

/D
yn

am
ic

Mi
ni

TL
S

[Y
R

H
B

L
13

]
Sp

ec
ul

at
iv

e
E

ag
er

E
ag

er
Pa

ra
lle

l
Pa

ra
lle

l
Sl

id
in

g
W

in
do

w
Le

ct
or

[Y
R

H
B

L
13

]
Sp

ec
ul

at
iv

e/
In

sp
ec

to
r

L
az

y
E

ag
er

Se
ri

al
Pa

ra
lle

l
Sl

id
in

g
W

in
do

w

Ta
bl

e
3.

2:
D

es
ig

n
ch

oi
ce

s
fo

rm
ai

n
w

or
k

in
th

e
lit

er
at

ur
e

of
sp

ec
ul

at
iv

e
pa

ra
lle

liz
at

io
n.

Chapter 4

MINITLS: In-Place Speculative
Parallelization with Parallel Rollback

4.1 Introduction

The previous chapters introduced speculative parallelization along with the latest ad-
vances in the area. Generally speaking, previous work in TLS has focused mainly on
improving the execution runtime of an application.

This chapter is dedicated to a novel speculative parallelization mechanism that
apart from performance improvements, also targets minimizing the memory footprint
used by the supporting TLS data structures (the metadata).

A major bottleneck of software over hardware TLS systems is registering specu-
lative state, since this requires maintaining speculative information in supporting data
structures and ensuring exclusive access from different threads on them. Speculative
data must be registered in such a way that when required the retrieval is as fast as
possible. To allow speedy access, sufficient auxiliary data must be saved for a given
speculative access (e.g. thread id, type of access, version number). These requirements
also introduce additional demands for the data structures to be as memory efficient as
possible, especially for applications with large number of speculative accesses.

The following sections present MiniTLS, a light, compact and memory-efficient
software TLS system, that reduces space overhead as well as showing performance
improvements over state-of-the-art software TLS systems. The memory-efficient side
of MiniTLS is concerned with the overheads associated with maintaining speculative
state as the main barrier for adopting TLS. MiniTLS relies on eager memory data man-
agement; i.e. speculative threads modify directly data which needs to be rollback when

73

74 Chapter 4. MINITLS: In-Place Speculative Parallelization with Parallel Rollback

misspeculation occurs. On the other hand, this eager treatment usually provides faster
execution in the absence of data dependencies. The performance side of MiniTLS is
concerned with optimizing the rollback phase (which is more time consuming for ea-
ger version systems) and it is the first TLS system with eager version management to
implement a parallel rollback phase.

4.2 MINITLS: System Description

MiniTLS is based on eager version management and it is implemented, entirely using
the Java programming language, as a library.

4.2.1 General Concept

In compiler optimization and runtime parallelization, loops are the main target for par-
allelization as most of the parallelism is usually found there [ALSU07]. Although
MiniTLS can be used for any type of parallelization (e.g. methods, basic blocks, in-
structions) the discussion will focus on loop parallelization. Loop iterations run in
parallel while threads are monitored during execution for potential violations. Every
memory location is protected by a lock-bit (implemented using CAS operations) and as
such only one thread at a time is allowed to have access to it. Threads update memory
locations in-place and therefore any load performed by others is guaranteed to have the
most up-to-date value written there. Before a thread updates a memory location, the
original value is saved in a log (write-set), in case it is required by a rollback in the fu-
ture. Marking and monitoring is facilitated by a shadow data structure (explained in the
next section). When a data dependency violation occurs, memory must be recovered
to the latest known correct state by restoring the polluted state using the logs from the
threads involved in the violation. When memory is restored, parallel execution restarts
and continues until all loop iterations complete.

4.2.2 Metadata

Shadow Data Structure

There is a shared data structure, termed a shadow data structure (see Figure 4.1),
that maps every user-accessed address into an array of integers using a hash function.
Figure 4.1 illustrates the case of sixteen running threads. This structure is an array

4.2. MINITLS: SYSTEM DESCRIPTION 75

of Java integer values. In this case of sixteen threads, each address in the user data
space is represented by two consecutive 32-bit integer memory locations in the shadow
array. The first location (named “mark”) is used to mark the thread(s) that performed
a load and/or a store on that user address, and the second (named “owner”) is used to
indicate the thread(s) that are currently operating in the user address. The thread that
currently performs a read or a write has to set the appropriate bit in “owner” in order
to claim exclusive ownership to the location. Besides the action to be performed, the
appropriate bit in “mark” is set before ownership is released.

For a thread T that needs to access memory location x, the order of operations is as
follows: First, T checks that x is available by issuing a CAS operation on h = hash(x).
T indicates that is the owner of x by setting the appropriate bit in ‘owner’. Then, T

operates on h (load or store) accordingly by setting the appropriate bit in ‘mark’ to
indicate the action performed. Finally, T resets the bit in ‘owner’ and releases the lock
so another thread can access h if needed. Note that, the bit location in the bit sequence
acts as thread id and indicates the order of speculation. That is, a less significant bit
indicates a less speculative thread.

The synchronization mechanism is totally flexible to the designer’s choice. Figure
4.1 illustrates how the “owner” could be used for read-write locks which allow multiple
readers but only one writer per user address at a time. In this implementation for the
sake of simplicity a simpler approach was taken so the same lock is used for readers
as well as for writers and thus requiring only half the space of the “owner”. The
underlying locking mechanisms are bounded spin-locks. A thread may busy-wait (a
finite number of times) for another to finish any work in the same location without
blocking.

Assuming an 8-thread configuration, each location in the shadow structure requires
24 bits (although extended to 32 bits to avoid misalignments) to keep the owner-(8-
bits)-reader-(8-bits)-writer-(8-bits) information. After the hash function determines a
location in the shadow structure, the appropriate bits must be examined and updated. If
thread 4 requires to read location x, then hash(x) will be accessed in the shadow struc-
ture, and the information will be read and updated using a CAS operation. Assuming
the contents of hash(x) are empty 00000000hex, thread 4 will check no other thread is
operating there; i.e. the owner part is empty (i.e. 0000hex). Thus the CAS operation
will succeed and set the owner part to 0100hex as well as the reader part to 0100hex.
This will leave the contents of hash(x) being 0100−0100−0000−0000hex.

76 Chapter 4. MINITLS: In-Place Speculative Parallelization with Parallel Rollback

So, in essence, information for all the readers and writers of a particular user ad-
dress, can be stored from as little as 6-bits for 2 threads to 96-bits for 32 threads. This
solution represents a more compact way of memory representation compared to other
solutions in the literature [CL03, CL05, OMH09], as Chapter 6 (experimental results)
explains later. The choice to experiment with only up to 32 threads and not more,
was motivated by the results in previous TLS limit studies (such as [ISK+10]) which
indicate there is no significant benefit with a higher number of threads.

00000000000000000000000000000000	

00000000000000000000000000000000	
 mark	

owner	

user	
 data	

	
 structure	

shadow	
 data	

	
 structure	

0	

1	

2	

..	

n	

X	

32-­‐bit	
 integer	

loads	
 stores	

reader	
 id	
 writer	
 id	

Figure 4.1: Shadow data structure in MiniTLS.

Data Structures Private to Each Thread

In addition to the shadow data structure, each thread has a local read- and write-set
implemented using array structures. The read set consists of a set of indexes accessed
in the shadow array. This is used when the thread finishes, in order to reset all its ac-
cesses in the shadow array and avoid any potential false conflicts in later accesses. The
write set, apart from the indexes accessed, also keeps a record of the values that are up-
dated in main memory. Since, this is an implementation of an in-place (eager) system,
the memory values need to be recorded before being modified by a speculative thread.

4.2. MINITLS: SYSTEM DESCRIPTION 77

The write-set is also called an undo log in this context, since in case of a conflict it is
used to undo all the speculative operations. The only other in-place implementation
[OMH09] in the software TLS literature requires a time-stamp, for each memory loca-
tion, to be recorded in the undo log. This provides a sense of order between multiple
writer threads in case of a rollback. When multiple threads have accessed a location
that has to be reverted, only the value of the thread with the earliest timestamp is used
so that the program’s sequential order is maintained. Unlike [OMH09], MiniTLS does
not need this extra time-stamp. Since the compact shadow structure contains already
all the writer threads of a given location, the one with the lowest ID (lowest bit) can be
used to revert the value.

4.2.3 Speculative Operations

In TLS, threads are normally organized in terms of speculation order. For instance,
in loop-level speculation, where threads execute different loop iterations in parallel,
the thread that executes the first chunk of iterations is known as the least speculative

thread. A thread is always more speculative than the thread that executes the previous
set of iterations. Consequently the thread that executes the last set of iterations is the
most speculative thread. Such an order is useful in TLS, as it facilitates commit and
rollback decisions in order to preserve the program’s sequential order. Less speculative
threads have the right to “kill” more speculative threads.

Loads

A speculative load operation by a thread T to a location x simply needs to set its
corresponding bit in the shadow array. The bit is not set again if x was already accessed
by the same speculative slice. Before this is done, the thread needs to check whether
a more speculative thread has performed a store operation to x, as this can cause a
Write-After-Read (WAR) conflict. The code is shown in Figure 4.2.

Stores

A store operation needs to check whether a more speculative thread has performed a
store to the same location to prevent Write-After-Write (WAW) conflicts. Similarly it
also needs to check whether a more speculative thread has performed a load to the same
location. This causes a Read-After-Write (RAW) conflict. If none of those conflicts
occurs, then the thread can safely record the current memory value in its write set and

78 Chapter 4. MINITLS: In-Place Speculative Parallelization with Parallel Rollback

perform an in-place update to the to-be-modified location (code not shown). Similarly
to loads, the store bit is not set if it was already set earlier by the same thread. The
code is shown in Figure 4.3.

specLoad(int hash, int threadID){

 // lock by setting “owner” bit

 // if cannot lock à throws Exception

 shadowStruct.lock(hash);

 int loads = shadowStruct.getLoads(hash);

 int stores = shadowStruct.getStores(hash);

 // (stores == 0) à no other previous (thread) stores

 // (stores <= threads) à no more speculative stores

 if((stores == 0) || (stores <= threadID)){

 Value v = memory.loadValue(hash);

 thread.setCurrentLoad(v);

 shadowStruct.setLoads(hash, threadID);

 thread.recordLoad(hash, threadID); //in read set

 shadowStruct.unlock(hash);

 return;

 }else { // (store > threadID) à a more speculative

 // store found

 thread.squash(); // WAR

 }

}

Figure 4.2: Speculative load in MiniTLS.

4.2.4 Conflict Detection

MiniTLS implements eager conflict detection, that is, conflicts are detected as soon as
they occur. Another option would be to wait until the end of a speculative thread’s exe-
cution before any conflict is detected. However, previous work identified that checking
for conflicts on every speculative operation is less costly, compared to the wasted exe-
cution when the detection is delayed [CL03, CL05]. Furthermore, the MiniTLS system
employs immediate conflict resolution. That is, a thread that detects a conflict pauses
instantly any speculative execution, and initiates a rollback by notifying all the more
speculative threads than itself, to squash. Since each speculative thread checks for
conflicts on every speculative access, the action will take place immediately. All more

4.2. MINITLS: SYSTEM DESCRIPTION 79

specStore(int hash, int threadID, Value v){

 // lock by setting “owner” bit

 // if cannot lock à throws Exception

 shadowStruct.lock(hash);

 int loads = shadowStruct.getLoads(hash);

 int stores = shadowStruct.getStores(hash);

 if((stores == 0) || (stores <= threadID)){

 if((loads == 0) || (loads <= threadID)){

 Value old_v = memory.loadValue(hash);

 memory.writeBack(hash, v);

 shadowStruct.setStores(hash, threadID);

 thread.recordStore(hash, threadID, old_v);

 shadowStruct.unlock(hash);

 return;

 }else{ //more speculative load found

 thread.squash(); // RAW

 }

 }else{ //more speculative store found

 thread.squash(); // WAW

 }

}

Figure 4.3: Speculative store in MiniTLS.

speculative threads than the offending thread (including the offending one), will wait
until the rollback process begins. As soon as all the less speculative (than the offending
one) threads finish execution and the offending thread becomes the least speculative
thread, rollback is ready to begin.

4.2.5 Scheduling Policy and Ordering

For scheduling the speculative threads we have used a sliding window (explained in
Section 2.3.2 of Chapter 2) mechanism [DYR02]. In a sliding window policy, the
number of active threads depends on the size of the window. There are two reasons
why this mechanism was chosen. First, due to the nature of the policy (chunks of
iterations are scheduled in windows), the probability for data dependency violation
is decreased and load imbalance is reduced. Second, it was found to be beneficial
scheduling choice in previous experiments [DYR02, CL03, CL05]. MiniTLS uses a

80 Chapter 4. MINITLS: In-Place Speculative Parallelization with Parallel Rollback

conservative sliding window implementation where the window is reloaded when all
threads currently occupying the window have completed.

The mapping of iterations to threads within a window is done by allocating contigu-
ous sets of iterations of equal size. The mapping allows for the thread id to inform of
how speculative each thread is; thread T1 is always less speculative than T3 and so on.
MiniTLS performs a static block scheduling of the iteration space within a speculation
window. Once all the threads within a window have completed, the shadow data struc-
ture is reinitialized and a new mapping of the following iterations is performed. Figure
4.4 shows how the sliding window with 4 threads works for a loop of 16 iterations.

for(i	
 =	
 0;	
 i	
 <	
 16;	
 i++)	

T1	
 T2	
 T3	
 T4	

T1	
 T2	
 T3	
 T4	

T1	
 T2	
 T3	
 T4	

T1	
 T2	
 T3	
 T4	

Phase 1!

Phase 2!

Phase 3!

Phase 4!

window	
 itera0ons	

threads	

Figure 4.4: Four-thread sliding window scheduling policy for 16 iterations.

4.2.6 Rollback and Recovery

MiniTLS is the first software TLS eager management system to propose and implement
a parallel rollback operation. This can help in reducing the overhead when misspecu-
lation occurs. Those speculative threads that need to be squashed will take part in the
rollback operation while those less speculative threads for which no data dependency
has been found will wait for the rollback operation to finish. The rollback mechanism
is started by thread.squash() in Figures 4.2 and 4.3. First we need to identify which

4.2. MINITLS: SYSTEM DESCRIPTION 81

is the least speculative thread that modified each location. We can do this in parallel by
allowing each participating speculative thread to visit its write-set data structure and
for each element in the write-set check in the shadow data structure whether any other
thread has modified it. To access the shadow data structure threads use CAS opera-
tions. Should more than one thread have written a given location, the least speculative
thread to have modified it is identified in the following way: If the speculative thread is
the first one to have modified it, the thread can go ahead and restore the value for that
memory location. If the speculative thread is not the first one to modify it and alias-
ing on that location (hash(x)) is possible, the speculative thread has to check whether
its memory location x is actually contained within the write-set of the less speculative
threads denoted in the shadow data structure for hash(x). If it is not found in these
less speculative write-sets, that speculative thread will restore the value for memory
location x.

Once the memory state has been rolled back, the participating speculative thread
can reset the pertinent memory locations in the shadow data structure in parallel.

Performing the rollback procedure efficiently is an important issue and has also
formed a concern in the past for the database community [BN97]. In log-based databases,
a log is maintained by the system to record information regarding memory accesses by
all executing transactions. In case of abort, the log is scanned starting from the last
record moving backwards to restore the original values back to memory. Searching
this log sequentially is inefficient. To avoid this sequential scan a data structure called
transaction descriptor is used to describe each transaction’s updates. Starting from the
descriptor there is a pointer to the last record updated by a given transaction T . The
last record updated by T contains a pointer to the penultimate record updated by T and
so on. This allows transactions to proceed with rollback in parallel with one another
by starting from the transaction descriptor and following the pointers.

4.2.7 Speculative Thread Lifecycle

Figure 4.5 is a state diagram illustrating the lifecycle of a speculative thread. A thread
can be in one of the following states:

1. FREE: Thread is ready to get the next chunk of iterations and start work.

2. RUN: Thread has started speculative execution.

3. WAIT: Thread has finished execution. Note that since updates are in-place, the
thread has actually committed its results (parallel commit). The thread now must

82 Chapter 4. MINITLS: In-Place Speculative Parallelization with Parallel Rollback

wait until it becomes the least-speculative thread. While waiting it can still be
squashed by a less speculative thread.

4. COMMITTING: Thread is now the least-speculative thread and starts clearing
its local data structures. At this stage the thread cannot be squashed since it has
already finished execution and there are no less speculative threads.

5. COMMITTED: Thread has cleared its local data structures and indicates that is
ready to become a speculative thread again.

6. FAILED: Thread has been involved in a data dependency violation.

7. SQUASHING: Thread starts rollback in parallel with any other offending threads.

8. SQUASHED: Thread has finished rollback. It is now waiting to be restarted.

FREE	

RUN	

COMMITTED	

COMMITTING	

WAIT	

get work

work finished

become non-
spec. thread

FAILED	

SQUASHING	

SQUASHED	

conflict

final state

initial pseudostate

transition

transition

state

Figure 4.5: Speculative thread lifecycle in MiniTLS.

4.3 Summary

This chapter presented a software TLS system, MiniTLS, which is based on eager
version management. MiniTLS uses a novel compact data structure for speculative
marking in order to minimize space requirements. This compact data structure enables
MiniTLS to perform the rollback procedure in parallel and thus accelerating the entire

4.3. SUMMARY 83

parallelization process. MiniTLS is the first TLS system with eager version manage-
ment to implement a parallel rollback phase. Later, Chapter 6 presents experimental
results for speedup and memory usage of MiniTLS against state-of-the-art work.

Chapter 5

Accelerating Speculative Runtime
Parallelization using Inspector
Threads

5.1 Introduction

One of the main goals of parallelization is speedup of the application. This has been
the main aim of Thread-level Speculation (TLS) over the last years. A major bottle-
neck of software over hardware TLS systems is registering speculative state, since this
requires maintaining speculative information in supporting data structures and ensur-
ing exclusive access from different threads on them. The following sections describe
a software TLS runtime system, written purely using the Java programming language,
aiming to relax the requirement of speculative state when possible.

Previous TLS limit studies (presented in Chapter 1) observe that on future multi-
core systems it is likely to have more cores idle than those which traditional TLS would
be able to harness. Since idle cores will be available, the question is whether “helper”
tasks can be created to determine whether speculation is actually needed without stop-
ping or damaging the speculative execution. In Lector, for each conventional TLS
thread running speculatively with lazy version management, there is associated with
it a lightweight inspector. The inspector threads execute alongside to verify quickly
whether data dependencies will occur. If inspector threads decide that the loop contains
no data dependencies, then speculation can be switched to regular parallel execution
and thus eliminating any overheads associated with marking and conflict detection.

84

5.2. LECTOR: SYSTEM DESCRIPTION 85

5.2 LECTOR: System Description

There are two main components involved in the system described in this chapter: A
core TLS system, and the extensions for accelerating the overall parallelization. First,
the proposed TLS system is introduced and then the extensions required for accelera-
tion are explained.

5.2.1 General Concept

The runtime speculative software system proposed in this chapter follows lazy version
management and eager conflict detection. Parallel execution proceeds monitored by
the TLS system. Performing a load or store, requires a thread to first acquire exclusive
ownership of the desired memory location. Speculative stores are buffered locally only
after ensuring that none of the more speculative threads has already loaded that loca-
tion. Otherwise the more speculative threads are squashed due to RAW dependence
violation. Speculative loads search the local buffer (write-set) first, before loading from
memory, in case that value has already been written locally from an earlier store. This
provides the illusion of memory consistency. If not found there, then the value has to
be loaded from main memory. In case an earlier thread has written on that location,
the current thread can either forward the most recent value, wait for the earlier thread
to write-back its write-set to memory and then load, or squash. Buffered values are
written-back to main memory after a thread has been proven successful.

5.2.2 Metadata

The proposed TLS system utilizes a shadow data structure as shown in Figure 5.1.
The figure presents the case of 32 speculative threads. Every user memory location
is mapped into this shadow table using a hash function. Each mapping in the shadow
table is composed of three consecutive 32-bit integer memory locations as shown in the
picture: one to represent the owner thread, one to indicate whether a thread performed
a load, and one to indicate a store by a thread. A bit in any of this three locations
reflects the identity of the thread that is accessing the original user’s location for the
appropriate action. The next section will provide more details on how that works in
practice.

In addition to the shadow table, there is a local read- and write-set for each thread.

86 Chapter 5. Accelerating Speculative Runtime Parallelization using Inspector Threads

The read-set is a list with all locations read by that particular thread, whereas the write-
set is a hash map with all the location/value pairs to be written to main memory when
that thread commits.

00000000000000000000000000000000	

00000000000000000000000000000000	

loads	

owner	

user	
 data	

	
 structure	

shadow	
 data	

	
 structure	

0	

1	

2	

..	

n	

X	

32-­‐bit	
 integer	
 (one	
 bit	
 per	
 thread)	

00000000000000000000000000000000	
 stores	

Case	
 of	
 32	
 Specula?ve	
 Threads	

Figure 5.1: Shadow data structure of Lector.

5.2.3 Speculative Operations

Speculative Stores

Whenever a speculative store takes place (see Figure 5.2), the thread must successfully
acquire exclusive ownership of the location to be written in order to proceed. This is
done by accessing the shadow table for that particular location (using a CAS operation)
and setting the appropriate bit in the “owner” to indicate that this thread is operating
on this location. If the thread finds the location occupied, it spins a bounded number
of times before initiating a squash. When the thread acquires exclusive ownership,
it checks “loads” to see whether a more speculative thread has already loaded from
that location. Such a load is called an exposed load in this context and requires all
the more speculative threads to be squashed. There is no need to take any action if
a less speculative thread has loaded that value or if there was a store by a different

5.2. LECTOR: SYSTEM DESCRIPTION 87

less speculative thread since this is a lazy version management system. Following the
check for violations, the thread releases the lock and inserts the value in its write-set.

01. specStore(int hash, int threadID, Value v){

02.
if(shouldSquash()){thread.squash();}

03.
shadowStructure.lock(hash, threadID);

//may throw exception and squash() here

04.
shadowStructure.checkForViolations();

05. if(isNonSpeculativeThread(threadId)){

06.

writeBackToMemory(v);

07.
}else{

08.

shadowStructure.markStore();

09.

writeSet.put(hash, v);

10.
}

11.
shadowStructure.unlock(hash, threadID);

12. }

Figure 5.2: Speculative store in Lector.

Speculative Loads

Since stores are buffered, a speculative load (Figure 5.3) will first check the thread-
local write-set in case the value has already been written earlier by the same speculative
thread. If this is true, the load will return the latest buffered value. There is no need for
such a load to consult the shadow table since, it is guaranteed that the loaded value was
produced by the correct store. If the value is not present in the write-set, then the thread
acquires exclusive ownership of the location in the same manner as in speculative
stores, checks for violations, and loads the value from main memory. There is no need
to worry about different threads loading the same value as no conflict can arise from
that. Also, threads from the future (more speculative) that have written to that location
are harmless for the moment. The reason is because a more speculative thread that has
produced a store in that location, will buffer the value and write it back to memory
when the time is appropriate. Then is when the system will worry about conflicts
because it could be the case that the earlier thread was squashed. The only situation

88 Chapter 5. Accelerating Speculative Runtime Parallelization using Inspector Threads

that can cause a problem is when a less speculative thread has produced a store for
that location but not yet committed. That means that the current thread requires that
value in order to proceed but that value is in earlier thread’s buffer and not yet in
memory. One solution (that is feasible due to the novel representation) is to identify,
using the “stores” in the shadow table, the latest thread that has produced a store in that
location (but not yet committed) and forward the correct value [RS01]. This requires
careful handling in case the write-set of the thread trying to forward from, is updated
simultaneously. Another solution is to wait for the less speculative to write-back its
results and load the value from memory [GN98]. A simpler solution, which is the one
implemented in this case, is to squash the current thread and restart its execution. If no
violation is present the ownership is released, the value is loaded from main memory
as normally, and the hash value from the shadow table is recorded in the read-set. The
read-set is used when the thread commits in order to release the marking in the shadow
table.

01. specLoad(int hash, int threadID){

02.
if(shouldSquash()){thread.squash();}

03. if(writeSet.contains(hash)){

04.

return writeSet.get(hash);

05.
}else{

06.

shadowStructure.lock(hash, threadID);

//may throw exception and squash() here

07.

shadowStructure.checkForViolations();

08.

shadowStructure.markLoad(hash, threadID);

09.

Value v = memory.loadValue();

10.

readSet.add(hash);

11.

shadowStructure.unlock(hash, threadID);

12.

return v;

13.

14.
}

15. }

Figure 5.3: Speculative load in Lector.

5.2. LECTOR: SYSTEM DESCRIPTION 89

Scheduling and Commits

The proposed system follows a type of scheduling window (described in Section 2.3.2
from Chapter 2) for scheduling the threads. The window size is always the same as
the number of threads; therefore, for n threads the window size will be n−1. Thread
in slot 0 is the non-speculative thread and similarly thread n− 1 is the most specu-
lative thread. Although thread 0 is allowed to write its results immediately back to
memory (i.e. no buffering), it still checks the shadow table in order to eagerly squash
more speculative threads that have exposed loaded from a location the non-speculative
thread updates. Threads in the window commit their results back to memory in as-
cending order of speculation by locking the location in the shadow table, propagating
the appropriate values, and clearing the shadow table from their markings. After all
threads in the window have committed, speculation restarts with all threads getting
work from a work-queue.

5.2.4 Speculative Thread Lifecycle

Figure 5.4 is a state diagram illustrating the lifecycle of a speculative thread. A thread
can be in one of the following states:

1. FREE: Thread is ready to get the next chunk of iterations and start work.

2. RUN: Thread has started speculative execution. Note that it can be switched to
squashed, if it was involved in a data dependence violation.

3. WAIT: Thread has finished execution. Thread now must wait until it becomes
the non-speculative thread in order to commit its results to memory. While wait-
ing it can still be squashed by a less speculative thread.

4. COMMITTING: Thread is now the non-speculative thread and starts clearing
its local data structures and propagating the buffered values to memory. At this
stage the thread cannot be squashed since it has already finished execution and
there are no less speculative threads. However, it can initiate a squash for a more
speculative thread that has performed an exposed load form a location this thread
is writing.

5. COMMITTED: Thread has cleared its local data structures and finished any
memory updates. It indicates that is ready to become a speculative thread again.

90 Chapter 5. Accelerating Speculative Runtime Parallelization using Inspector Threads

6. SQUASHED: Thread has been involved in a data dependence violation. It must
clear any marking in the shadow table and wait to be restarted.

FREE	
 RUN	

COMMITTED	
 COMMITTING	

WAIT	

SQUASHED	

transition

initial pseudostate

final state

transition

restarted
state

get work
work
finished

conflict become non-
Spec. thread

Figure 5.4: Speculative thread lifecycle in Lector.

5.2.5 Inspector Threads

A novel technique was investigated in this work which combines the advantages of two
popular models involved in the beginning of the TLS research, namely Inspector/Ex-

ecutor model and LPD (Lazy Privatizing DOALL) Test described in [RP94a].

Inspector/Executor model

Using the Inspector/Executor model (described in Section 2.2.1 from Chapter 2), a
simpler version of the loop under question is extracted and executed to verify whether
the loop carries any data dependencies. The simpler version does not produce any
side-effects as well as does not require all the code from the original loop (just the
memory accesses). Therefore the inspector is expected to execute faster than the orig-
inal sequential loop. If proven safe, then the executor may execute the loop in parallel.
Inspectors are created by analyzing memory accesses, collecting information about
their iteration number and access type (read/write) in a separate data structure, and
then checked for data dependencies [SBW91]. The drawback of this model is that, in

5.2. LECTOR: SYSTEM DESCRIPTION 91

cases where the loop cannot be stripped-down sufficiently, the inspector might end up
taking the same time as the original loop.

LPD Test

The LPD test was known as being the heart of LRPD [RP95] test and R-LRPD [DYR02]
test (both described in Section 3.3 from Chapter 3). The LPD test checks the loop un-
der question for data dependencies or whether dependencies can be eliminated when
privatization is used (i.e. buffered updates). The test flags whether dependencies ex-
ist or not, while the loop executes in parallel buffering any updates to memory. If
dependencies are found, the loop discards any buffered updates and executes sequen-
tially, otherwise the loop has been parallelized correctly using privatization. LPD has
an advantage over the Inspector-Executor model, especially when the inspector cannot
strip-down the loop to an adequate level. A successful parallelization of LPD in that
case simply needs to update main memory, whereas the other model has to still run the
executor. Still though, under both models, in case the loop was not found parallel, all
execution and time spent while the test was running, will be wasted.

LPD meets Inspector/Executor

In this work the two ideas were combined in a way that their drawbacks are eliminated.
A a stripped-down version of the loop to be parallelized is extracted (see Figure 5.5),
like in the case of inspector/executor; however, there is no executor as such. The
inspector performs the LPD test but since it does not replicate the program’s entire
code, it is expected to run faster.

The inspector threads start running ahead, as soon as the application begins. At
the same time the loop is executed using the speculative parallelization runtime envi-
ronment described earlier in Section 5.2. Once the inspector phase completes (end of
“phase 1” in Figure 5.6), its results dictate how the speculation will continue (“phase 2”
in Figure 5.6). When the inspector finds the loop to be DOALL, speculation is dropped,
any buffered results are propagated to memory, and the loop continues to execute in
parallel without any speculative overhead. The inspector terminates as soon as it finds
a data dependency, allowing the execution to proceed speculatively. Moreover, even
in the unfortunate case that the inspector finishes at the same time as the speculative
execution, there is no need to execute the loop sequentially since it has been already
executed speculatively. The same applies in case the loop contained any data depen-
dencies. Using this scheme, DOALL loops that can express a “light” inspector, may

92 Chapter 5. Accelerating Speculative Runtime Parallelization using Inspector Threads

……	

……	

arr[3]	
 =…	

…=	
 arr[5]	

……	

……	

	

Thread	
 1	
 Thread	
 2	

……	

……	

arr[4]	
 =…	

…=	
 arr[6]	

……	

……	

	

arr[3]	
 =…	

…=	
 arr[5]	

	

arr[4]	
 =…	

…=	
 arr[6]	

	

IT	
 1	
 IT	
 2	

Figure 5.5: Inspector threads are created by replicating the memory accesses from
speculative threads. “IT” stands for Inspector Thread.

benefit significantly from the absence of speculation-associated overhead.
The system described in this work takes advantage of the benefit from the Inspector-

Executor model which is discovering whether a loop is DOALL or not, quickly. At the
same time, its drawback of having wasted work is eliminated in case the loop was not
DOALL since the underlying TLS model executes alongside with the inspector. The
same applies in case the inspector was as “heavy” as the loop itself. For the same
reasons any shortcomings related with the LPD test are also eliminated.

The inspector threads in Lector are created following the LPD test [RP94a].

5.3 Summary

A major bottleneck of software over hardware TLS systems is registering specula-
tive state, since this requires maintaining speculative information in supporting data
structures and ensuring exclusive access from different threads on them. This chapter
presented a software TLS runtime system, written purely using the Java programming
language, that is able to relax the requirement of speculative state when possible. An
extended version of a lazy version management TLS for that purpose is explained.

5.3. SUMMARY 93

T1	
 T2	
 IT1	
 IT2	
 Progress	

Phase 1!

Phase 3!

end	
 of	
 	

loop	

specula4ve	

threads	

Parallel?!

inspector	

threads	

✔	
 ✗	

specula4on	

OFF	

specula4on	

con4nues	

Phase 2!

Figure 5.6: Phase 1: Lightweight inspector threads (IT) execute concurrently with TLS
threads. Phase 2: ITs complete execution earlier than TLS threads and test if the loop is
DOALL. Phase 3: Depending on the outcome of phase 2, either speculation continues
as normal, or speculation is turned off (i.e. non-speculative parallel execution).

Lightweight inspector threads run ahead of the TLS execution with the purpose of dis-
covering early the potential of removing any excess speculation. Should the Inspector
threads uncover a DOALL loop, speculation can be relaxed. Otherwise speculation
continues as if nothing happened. As it is shown later in Chapter 6, this technique is
able to increase speedups over normal speculative approaches.

Chapter 6

Evaluation and Results

6.1 Introduction

This chapter provides the results obtained by applying MiniTLS (Chapter 4) and Lector
(Chapter 5) against standard sequential applications used for performance comparisons
in the area of speculative parallelization. These comparisons are provided in terms of
performance improvements over the sequential applications when the proposed TLS
systems are applied to them. Furthermore, the two systems, MiniTLS and Lector, are
compared against state-of-the-art work in terms of performance.

6.2 Evaluation Methodology

6.2.1 Hardware Platform

For all the experiments a UltraSPARC T2 system also known as Niagara 2 was used.
It has 8 processors, each of which has 8 hardware threads, making it able to process
up to 64 threads simultaneously. Furthermore, it has 4-MB shared L2 cache. The
Solaris R©10 OS was installed on the machine. Solaris uses a “maximum dispersal”
thread scheduling to assign threads to their initial processors. The kernel selects the
least loaded core when placing a thread, in order to avoid resource contention among
concurrently running threads. This is the default OS thread affinity and running a
Java application it is not possible to change it using the standard libraries or JVM set-
tings. UltraSPARC T2 was selected because the cores on that chip are simpler (proces-
sors are not speculative, no out-of-order execution, pipelines are less deep, frequency
is lower) compared to other chip-multiprocessor architectures such as Intel R©Zeon,

94

6.2. EVALUATION METHODOLOGY 95

AMD R©Opteron and IBM R©Power7. This allows UltraSPARC T2 to favor more the
multithreaded performance (compared to its single thread execution) over its competi-
tors. Nevertheless, the other architectures due to their richer instruction-level paral-
lelism (from more complex processor design) might be able to offer better performance
on very small thread configurations (2 to 4 threads) where scalability is not such a big
issue in TLS. In fact, as the experiments reveal later on in this chapter, UltraSPARC
T2, seems to offer suboptimal performance (even though still scalable) for 2 to 4 thread
configurations (compared to higher thread configurations).

Java
TM
SDK version 1.6.0 and Java

TM
HotSpot VM were used with fixed 4GB max-

imum heap size for all executions and the System.nanoTime() timer provided by the
JVM. All the results presented are the average of ten executions for each thread number
for each benchmark and also the standard deviation was checked.

6.2.2 Benchmark Applications

The TLS systems proposed in this thesis are designed to be used on applications for
which a (static) parallelizing compiler could not evaluate with certainty the data depen-
dence relations of the loops under question. Having that in mind, the selected applica-
tions for the experiments originate mainly from two benchmark suits: SPECjvm2008

and JOlden. Following the methodology used by SpLIP [OMH09], applications that
parallelizing their loop-kernels improves the total application run time were also cho-
sen. SpLIP has been reimplemented in Java to provide a direct comparison with
MiniTLS. Applications with irregular accesses (not parallelizable by static compilers)
were also selected, thus making them good candidates for TLS. The following bench-
marks were selected from SPECjvm2008 (large data sets used): (i) Sparse, a matrix
multiplication algorithm, (ii) SOR, that simulates Jacobi Successive Over-relaxation,
and (iii) Monte-Carlo, which approximates the value of Pi. From JOlden the follow-
ing benchmarks were selected: (i) Barnes Hut, an implementation of the Barnes-Hut
force calculation algorithm (using input C), (ii) Em3d, a simulation of electro-magnetic
waves traveling through objects in three dimensions, and (iii) Perimeter, an imple-
mentation of Samet’s algorithm for computing perimeters of regions in a binary image.
Finally LeeRouter [WKL07] was selected, a circuit routing application using Lee’s al-
gorithm. For LeeRouter, the mainboard input dataset was used. Most of these appli-
cations are also used in previous TLS studies [QnMS+05, OMH09, TFG10, ISK+10].

As the focus of this thesis is on optimizing the software runtime system of TLS

96 Chapter 6. Evaluation and Results

and not on how to transform a loop into its parallel equivalent by a compiler, the ap-
plications were transformed manually into parallel speculative versions. Two bench-
marks exhibit dependencies (LeeRouter and Em3d), and five have no runtime de-
pendencies. Loop-induction variables were eliminated as they introduce false depen-
dencies under TLS. The most time consuming loops were considered for TLS paral-
lelization. Finding these automatically is an interesting optimization problem in itself
[QnMS+05, LTC+06] (for task selection) and [JEV04, ORSA05b] (for finding suitable
tasks).

6.2.3 Java Virtual Machine Implications

Implementing a software system in Java
TM

as opposed to a language that offers native
execution such as C++ can have both its advantages and disadvantages:

Compilation

The C++ compiler translates and optimizes the application ahead-of-time before the
program executes. Java

TM
code is initially compiled to a generic platform-independent

representation called bytecode. This allows portability since any platform that has a
Java

TM
Virtual Machine (JVM) installed can read the bytecode and produce the ap-

propriate binaries for that specific platform. In most cases, as in HotSpot VM, the
JVM initially performs Just-In-Time (JIT) compilation. That is, while the program ex-
ecutes, a method is compiled only when it is encountered for the first time. During the
program’s execution, the JVM collects statistics to identify “hot methods” (most fre-
quently executed methods) as potential candidates for more aggressive optimizations
(such as aggressive virtual method inlining). On the one hand the compilation route
taken by the JVM at start-up can be slower than a statically compiled language (which
has all the code compiled already before execution starts). On the other hand, run-time
compilation can potentially take advantage of platform-specific information on which
the program is being executed to improve code more effectively.

Garbage Collection

Java
TM

takes advantage of automatic memory management in order to relief the pro-
grammer from the burden of allocating and deallocating objects manually and the risk
of causing further heap fragmentation in case of forgotten objects. However, this adds

6.2. EVALUATION METHODOLOGY 97

an extra cost on performance, since when the Garbage Collector (GC) is triggered to
free the memory from unused objects, the running application has to pause execution.

Thread Synchronization

Since Java
TM

6, the JVM includes an optimization known as biased locking. Basically,
an object that is found to be locked by only one thread during its lifetime is allowed
to remove the locking constraints towards that thread. In other words that thread can
subsequently lock and unlock the object without resorting to expensive atomic instruc-
tions. This is of course another benefit from run-time compilation and its achieved
through a technique known as escape analysis [Bla99].

98 Chapter 6. Evaluation and Results

MINITLS

6.3. MINITLS - EXPERIMENTS 99

6.3 MINITLS - Experiments

6.3.1 Baseline for Experiments: SPLIP

MiniTLS is compared against a state-of-art TLS library, SpLIP [OMH09]. The rea-
son SpLIP was chosen is because it also relies on eager memory version management
and provides the best published performance results. Thus, SpLIP sets an optimized
baseline against which to compare MiniTLS.

Although, MiniTLS and SpLIP use an eager version management technique, their
implementations are fundamentally different. SpLIP employs two data structures for
handling the iterations that load and store for each speculative access. Two additional
data structures are used for imposing order to accesses to each location between read-
ing and writing threads. Yet another data structure is required for storing a timestamp
for a particular location in case of a rollback. The rollback procedure also differs from
MiniTLS. SpLIP aggregates the write-sets of all speculative threads involved in the
violation by comparing timestamps in case of multiple thread access the same loca-
tion. This requires a hash map in order to be able to check whether a location was
already written by a different thread. In contrast, MiniTLS requires no aggregation,
and each thread involved in the violation proceeds in parallel with each other for roll-
back, without using timestamp comparisons. Since all the information is kept in the
main shadow structure and there is no need to check the write-set entries once they
have been recorded, the write-set can be implemented as an array structure. Further
details about the SpLIP implementation can be found in Appendix A.

6.3.2 Performance Results

Figure 6.1 presents speedup results against the original sequential unmodified version,
obtained from applying MiniTLS to the benchmark applications. The y axis indicates
speedup, whereas the x axis shows the benchmarks used. The sequential application’s
speedup is marked by speedup = 1 in the y axis, thus whatever is higher than that, shows
improvement. On average, speedups start to be observed when the system goes over 4
threads. The reason is due to the speculative overhead added by TLS. The parallelism
starts amortizing the cost on average when more than 4, sometimes 8 threads are used.
The cost introduced by speculative operations is high and thus for a small number of
threads it drowns the benefits of parallelism.

100 Chapter 6. Evaluation and Results

15
.2
2	

22
.3
0	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10
	

em
3d

	

Le
e	

Ro

ut
er
	

Sp
ar
se
	

SO
R	

M
on

te
	
 C
ar
lo
	

Ba
rn
es
	
 H
ut
	

Pe
rim

et
er
	

Av
er
ag
e	

Av
er
ag
e	

(w

/o
ut
	

M
C)
	

Ge
om

et
ric

	

M
ea
n	

Speedup	

Be
nc
hm

ar
ks
	

2	

Th
re
ad
s	

4	

Th
re
ad
s	

8	

Th
re
ad
s	

16
	
 T
hr
ea
ds
	

32
	
 T
hr
ea
ds
	

Figure 6.1: Speedup results for MiniTLS. Sequential execution is denoted by 1 in the
y axis.

Figure 6.2 shows an example of the overhead introduced to support MiniTLS in
terms of execution time for the Sparse application. The y axis is intersected where the
sequential time is (i.e. the baseline). When the overhead bars grow below the x axis this

6.3. MINITLS - EXPERIMENTS 101

implies overhead less than the sequential time, and thus the application starts showing
speedups (after 8 threads). With 4 threads TLS is 1.8x faster than the sequential ap-
plication, for 8 threads nearly 3x faster, 16 threads 5x faster and 32 threads almost
7x faster. In order to be objective, the average speedup excluding the Monte-Carlo

benchmark, which does not carry any data dependencies, was also included. Em3d

shows a decline in speedup after 8 threads. The benchmark carries a large number of
data dependencies which causes more frequent rollbacks when more that 8 threads are
used.

0	

100000	

200000	

300000	

400000	

500000	

2	
 4	
 8	
 16	
 32	

Ti
m
e	

(m

s)
	

Number	
 of	
 Threads	

Specula>ve	
 Overhead	

Figure 6.2: Time spent on speculation for Sparse. The y axis is intersected at the
sequential time.

Figure 6.3 shows speedup comparisons between MiniTLS and SpLIP. As before,
the y axis shows speedup against the sequential unmodified application and the x axis
indicates the number of threads used. The same pattern is again observed in which
speedups are observed after 4 or 8 threads (for the reasons explained earlier). MiniTLS
outperforms SpLIP 1.33x, on average: 1.1x for 2 threads, 1.2x for 4 threads, 1.3x for
8 threads, 1.4x for 16 threads and 32 threads. The main reasons for this performance
difference are analyzed in the next section where the execution overhead is presented.

102 Chapter 6. Evaluation and Results

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Sparse	

MiniTLS	
 spLIB	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Barnes	
 Hut	

MiniTLS	
 SpLIB	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Perimeter	

MiniTLS	
 SpLIB	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

em3d	

MiniTLS	
 SpLIB	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

SOR	

MiniTLS	
 SpLIB	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Lee	
 Router	

MiniTLS	
 SpLIB	

Figure 6.3: Speedup comparison of MiniTLS and SpLIP.

6.3. MINITLS - EXPERIMENTS 103

6.3.3 Speculative Overhead Comparison

Figure 6.3 shows how MiniTLS outperforms SpLIP in terms of speedup. The main rea-
son why speculative systems suffer speedup losses is due to speculative overheads, for
example, marking speculative loads/stores and time spent during rollback. MiniTLS

shows performance improvements over its competitor by reducing those overheads.
Figure 6.4 presents the reduction percentage of MiniTLS against SpLIP for speculative
operations. The graph has two parts: The first part shows how much MiniTLS reduces
speculative marking over SpLIP (SpLIP is the normalized baseline in all cases). The
second part shows how much MiniTLS reduces rollback time over SpLIP (SpLIP is
the normalized baseline in all cases). Both parts are independent. That is, Rollback
percentage has nothing to do with the Marking percentage. For example, looking at the
marking section for Em3d for 32 threads one can say that MiniTLS spends around 30%
less time for marking compared to SpLIP (where 100% marking is the total amount of
time for SpLIP to perform marking). LeeRouter and Em3d are shown since they are
the ones that carry data dependencies and thus could see how much time is saved from
rollback. Among the non-carrying dependency benchmarks the average was chosen as
a representative of all benchmarks (except Monte-Carlo) since they all feature similar
execution patterns. The graph clearly shows the effectiveness of the parallel rollback
routine. This is due to two reasons: (i) SpLIP uses extra buffers for conservative syn-
chronization before and after the same location is accessed by multiple threads. Due
to the absence of locks the possibility of those buffers to cause a data-race is very high
when a particular location is accessed by multiple threads concurrently. (ii) When a vi-
olation occurs using SpLIP, the write-sets of the involved threads must aggregate their
values, comparing their timestamps, before write-back occurs. In MiniTLS, this pro-
cess is accelerated since the involved threads can proceed in parallel for write-back and
without the cost of the timestamps. Marking for non-carrying dependency benchmarks
is very similar in both systems. The absence of rollbacks allows both systems to spend
approximately the same amount of effort to book-keep their information. However,
for the dependency-carrying benchmarks the case is different. Rollbacks cause a lot of
code re-execution and thus more marking involved. Since MiniTLS performs less roll-
back, it benefits from having less code to re-mark. Barnes-Hut is the only application
that does not follow the same pattern with other similar benchmarks especially after
8 threads. This application requires very minimal marking. When MiniTLS performs
marking, it requires very little space compared to the other library as it is explained in
the following section.

104 Chapter 6. Evaluation and Results

0%
	

10
%
	

20
%
	

30
%
	

40
%
	

50
%
	

60
%
	

70
%
	

80
%
	

90
%
	

10
0%

	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

Em
3d

	

Le
e	

Ro

ut
er
	

O
th
er
s	
 (
Av

g)
	

Em
3d

	

Le
e	

Ro

ut
er
	

M
ar
ki
ng
	

Ro
llb

ac
k	

Sp
LI
P	

M
in
iT
LS
	

Figure 6.4: Shows the amount of overhead reduction of MiniTLS against SpLIP. The
graph is normalized (baseline SpLIP). The first part shows reduction of speculative
read/write marking. The second part reduction of rollback time.

6.3. MINITLS - EXPERIMENTS 105

6.3.4 Data Structures Space Comparison

To maintain the speculative state, additional space is normally required. This section
compares the space overhead between the two systems: MiniTLS and SpLIP. The
space referred to in this section, is the space in regard to any data structures required
for version management. The space required by the undo log is not considered since
there is negligible difference between the two approaches. The novel marking scheme
in MiniTLS is designed in such a way as to require the minimal space based on the
number of threads running (hence the name MiniTLS). A typical TLS system, unlike
MiniTLS, will consume the same amount of speculative space regardless of the number
of threads used. Figure 6.5a and Figure 6.5b illustrate the memory space required to
facilitate speculative marking for eight threads for SpLIP and MiniTLS respectively.
Figure 6.5a shows that for each user accessed memory location, SpLIP would require
at most 160 bits in order to mark the iterations that will possibly perform a load or
a store, the timestamp, as well as the thread ids for synchronizing loads and stores.
Figure 6.5b shows that MiniTLS requires only 24 bits to perform the same operations
as opposed to 160 bits that SpLIP requires.

0	

1	

2	

..	

n	

X	

X	

Load	
 Store	
 Store	
 	

Sync	

Load	
 	

Sync	

Stamp	

	
 	
 32-­‐bit	
 	
 	
 32-­‐bit	
 	
 	
 32-­‐bit	
 	
 	
 32-­‐bit	
 	
 	
 32-­‐bit	

00000000000000000000000000000000	

Load	
 Store	
 Owner	

24-­‐bits	

160-­‐bits	

a)	
 SpLIP	
 marking	

b)	
 MiniTLS	
 marking	

user	
 	

data	

Figure 6.5: Space required for 8 speculative threads using a) SpLIP and b) MiniTLS .

Figure 6.6 shows the normalized (with SpLIP as baseline) Space Overhead com-
parison between MiniTLS and SpLIP. There is a significant space overhead reduction
of 96% when 2 threads are in use, 92% reduction with 4 threads, 87% with 8 threads,
70% with 16 threads, and 40% with 32. In other words, MiniTLS requires on average

106 Chapter 6. Evaluation and Results

5x less space than SpLIP. This can have a great impact in performance, especially in
automatic memory managed languages such as Java since there will be less garbage
collection triggers than normally required and thus less interruptions of the user’s ap-
plication.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2	
 4	
 8	
 16	
 32	

%	

Number	
 of	
 Threads	

SpLIP	

MiniTLS	

Figure 6.6: Normalized (baseline SpLIP) space overhead comparison between
MiniTLS and SpLIP .

Memory Overhead

While TLS can decrease application execution time, more memory is required to sup-
port the additional data structures. Apart from the single shadow structure, each thread
has its own copy of its read and write sets. Thus, an experiment (similar to [TFG10])
was conducted to measure the memory consumption of TLS. Two representative appli-
cations were selected for comparisons. The first one, Sparse could be considered as
the worst case scenario as 90% of the total application accesses, are speculative. The
second, Lee Router, is the average case application where about 50% of the total ac-
cess are speculative. Figure 6.7 shows the results of comparing the additional memory
required compared to the sequential application.

For the “worst case”, the memory consumed is between 0.2x and 1.8x for MiniTLS
and 2.9x for SpLIP, compared to the sequential version. For the “average case” it
was between 0.02x and 0.4x for MiniTLS and 0.6x for SpLIP, compared to the se-
quential version. What is considered as memory overhead in this experiment the total
amount of storage in order to support the shadow data structure compared to the se-
quential application. For baseline memory overhead, all the memory accesses that

6.3. MINITLS - EXPERIMENTS 107

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

2	
 4	
 8	
 16	
 32	
 2	
 4	
 8	
 16	
 32	

Sparse	
 LeeRouter	

M
em

or
y	

O
ve
rh
ea
d	

SpLIP	
 MiniTLS	

Figure 6.7: Memory overhead of MiniTLS and SpLIP compared to the sequential ver-
sion.

the sequential application performs during the entire execution were taken into ac-
count. The storage required for the shadow structure based on the unique speculative
accesses during the execution of the application (only the unique ones since only one
instance of a read / write exists in the shadow structure) was also measured. along
with how many bits are required for that information. SpLIP is constant across threads
since the amount stored per memory location is always the same. For MiniTLS the
storage requirements grow with the number of threads as more bits are necessary to
support marking on those threads. Although not shown in the graph, there is also the
extra overhead for maintaining local read/write sets. Storing these local per thread
data structures requires 50% extra storage of the sequential application’s memory re-
quirements in these two benchmarks. This number is dependent on the proportion of
data accessed during TLS execution, which in these benchmarks is fairly high. This
is a constant overhead in TLS systems, however it can be significantly optimized by
replacing read-set data structures with bloom filters.

108 Chapter 6. Evaluation and Results

LECTOR

6.4. LECTOR - EXPERIMENTS 109

6.4 LECTOR - Experiments

For the following experiments three systems were compared: TL2TLS, the baseline
which is explained next, LazyTLS which is simply Lector with inspector threads dis-
abled, and Lector with inspector threads enabled. When showing Lector for n num-
ber of threads that signifies n inspector threads and n TLS threads. Thus, for 2 threads,
Lector uses 2 inspector threads and 2 TLS threads which are 4 threads in total.

6.4.1 Baseline TLS system: TL2TLS

In order to test the performance of Lector, a comparison against an established base-
line used in [MHHM09] and [TFG10] is considered. The baseline is based on the state-
of-the-art algorithm - Sun’s Transactional Locking 2 [DSS06]. Similar to [MHHM09]
and [TFG10], speculative code is added within transactions and explicit synchroniza-
tion is added into transactional functions to enforce in-order commit, which is neces-
sary to maintain sequential program semantics. The rest of this chapter refers to the
baseline as TL2TLS. Further details about the baseline [DSS06] implementation can be
found in Appendix A.

6.4.2 Performance Results

Figure 6.8 presents speedup results against the original sequential unmodified version,
obtained from applying Lector to the benchmark applications. On average, Lector
performs between 1.8x and 8.2x faster among multiple threads compared to the sequen-
tial application. The following paragraphs explain how Lector’s inspector threads
help minimize the speculative overhead and allow for more useful computation to be
performed.

Figure 6.9 shows speedup comparisons between LazyTLS, Lector, and TL2TLS.
As before, the y axis shows speedup against sequential unmodified application and x

axis indicates the number of threads used. For em3d and Lee Router, LazyTLS and
Lector are actually identical (thus only one is shown) because the inspection phase
ends shortly after the first data dependency is found which for both benchmarks is
nearly at the beginning of execution. Speedup comparisons for Monte-Carlo are not
shown since it does not carry any speculative activity and thus it has the same behavior
under any system. The most interesting fact is the speedup benefits observed in certain
benchmarks when using the inspector threads. When inspection is enabled, even the

110 Chapter 6. Evaluation and Results

minimal thread configuration produces higher speedup than running 32 threads with
inspection disabled. For instance, in Sparse, SOR, and Barnes Hut it is more ben-
eficial to run the benchmark with 2 speculative plus 2 inspector threads rather just
with 32 speculative threads and no inspector threads. More details are explained in the
following section where speculative overhead is discussed.

6.4. LECTOR - EXPERIMENTS 111

15
.2
2	

22
.3
0	

0	

0.
5	
 1	

1.
5	
 2	

2.
5	
 3	

3.
5	
 4	

4.
5	
 5	

5.
5	
 6	

6.
5	
 7	

7.
5	
 8	

8.
5	
 9	

9.
5	
 10
	

10
.5
	

11
	

11
.5
	

12
	

Em
3d

	

Le
e	

Ro

ut
er
	

Sp
ar
se
	

SO
R	

M
on

te
	
 C
ar
lo
	

Ba

rn
es
	
 H
ut
	

Pe
rim

et
er
	

Av
er
ag
e	

Ge
om

et
ric

	

M
ea
n	

Speedup	

Be
nc
hm

ar
ks
	

2	

Th

re
ad

s	

4	

Th

re
ad

s	

8	

Th

re
ad

s	

16
	
 T
hr
ea
ds
	

32
	
 T
hr
ea
ds
	

Figure 6.8: Speedup results for Lector against the sequential execution. Sequential
execution is denoted by 1 in the y axis.

112 Chapter 6. Evaluation and Results

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Sparse	

LazyTLS	
 LazyTLS+Inspector	
 TL2	
 -­‐	
 TLS	

0	

1	

2	

3	

4	

5	

6	

7	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

SOR	

LazyTLS	
 LazyTLS+Inspector	
 TL2	
 -­‐	
 TLS	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Barnes	
 Hut	

LazyTLS	
 LazyTLS+Inspector	
 TL2	
 -­‐	
 TLS	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Perimeter	

LazyTLS	
 LazyTLS+Inspector	
 TL2	
 -­‐	
 TLS	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Em3d	

LazyTLS	
 TL2	
 -­‐	
 TLS	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Lee	
 Router	

LazyTLS	
 TL2	
 -­‐	
 TLS	

Figure 6.9: Speedup comparison between LazyTLS, Lector, and TL2TLS.

6.4. LECTOR - EXPERIMENTS 113

6.4.3 Speculative Overhead Comparison

Speculative overhead is maintaining the information in the shadow data structure as
well as per thread TLS context support. Lector outperforms the other two configu-
rations as it reduces that extra cost. Figure 6.10 shows the percentage of speculative
overhead reduction between the three systems. The graph is normalized to TL2TLS. For
a given amount of overhead that TL2TLS spends, the reduction for the other two sys-
tems is shown. For example, executing Barnes-Hut with 8 threads, LazyTLS spends
about the same time in speculative overhead as TL2TLS. Lector, on the other hand,
spends about 80% less time compared to TL2TLS. In most cases TL2TLS and LazyTLS

are similar, however in the cases of LeeRouter and Em3d (which are the ones that carry
data dependences) Lector is not only faster but also spends less time for speculative
marking. This is mainly because TL2TLS performs lazy conflict detection (at commit
time) which in case of many conflicts, produces wasted work and additional specu-
lative marking. The idea of TL2 is that a successful thread will change the version
of a memory location at commit time notifying any thread that holds an out-of-date
version of the same location, to be squashed. However, a thread with an out-of-date
version will not discover that incident before its commit time. Therefore more execu-
tion and marking is done between the time a conflict occurs and the time of detection.
In LazyTLS and Lector it is impossible for a thread to have an out-of-date version of
a memory location and still keep executing. If a thread updates a given location it will
“see” in the shadow structure that a different thread has performed an action there and
thus squash that thread eagerly.

In all cases, Lector has the lowest cost compared to the other two systems. In the
non-carrying dependency benchmarks, an adequate inspector version was extracted
and managed to finish earlier than speculative execution. Abandoning speculation (i.e.

speculative marking) with the aid of inspector threads, allows speedup increase since
there is no more speculative work after that point.

Lector shows greater speedups as the number of threads increases. This is due
to the advantages of the inspector threads during the marking phase having to check
only their local speculative locations as opposed to the other two systems that use
the same data structure for all thread configurations. Perimeter does not follow the
same behavior due to the high number of speculative accesses in each inspector thread,
causing the analysis phase to spend considerable time. LeeRouter and Em3d does not
show any advantage using inspector threads since they carry data dependencies.

114 Chapter 6. Evaluation and Results

0%
	

10
%
	

20
%
	

30
%
	

40
%
	

50
%
	

60
%
	

70
%
	

80
%
	

90
%
	

10
0%

	

11
0%

	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

2	

4	

8	

16
	

32
	

Sp
ar
se
	

SO
R	

Ba
rn
es
	
 H
ut
	

Pe
rim

et
er
	

Le
e	

Ro

ut
er
	

Em
3d

	

TL
2T
LS
	

La
zy
TL
S	

Le
ct
or
	

Figure 6.10: Normalized speculative overhead reduction with baseline the TL2TLS

system.

6.4. LECTOR - EXPERIMENTS 115

MINITLS vs. LECTOR

116 Chapter 6. Evaluation and Results

6.5 MINITLS vs. LECTOR - Experiments

Finally, a speedup comparison between the two systems is presented: MiniTLS and
Lector. As previously, speedups are shown over the unmodified sequential execution
for each benchmark. Figure 6.11 clearly shows how Lector outperforms MiniTLS

nearly in every case. Inspector threads are able to quickly identify a loop without data
dependencies and notify Lector that speculation is no longer necessary. Thereafter
the loop can execute in a fully-parallel non-speculative mode. In cases where data
dependencies exist, inspector threads will not be of any additional benefit, however,
they quit inspection as soon as conflicts are found to allow speculation to continue
without any unnecessary overhead. Nevertheless, Lector is still faster in those cases.
For the benchmarks experimented with, Lector still benefits from its lazy version
management as it does not trigger as many data dependencies as an eager version
management system (lazy can only trigger RAW dependencies). On average Lector

performs approximately 2x faster than MiniTLS for 2 and 4 threads, 1.8x faster for 8
threads, and nearly 1.5x faster for 16 and 32 threads. MiniTLS appears to be faster
than Lector on the Perimeter benchmark for 16 and 32 threads. The reason for this
is the relatively high speculative overheads of Lector for Perimeter running with 16
and 32 threads, shown in Figures 6.9 and 6.10.

Inspector threads can only be applied to systems that buffer their memory updates.
Such threads cannot be applied to eager version management systems such as MiniTLS
as updates to main memory are performed in-place and the inspectors can load the
wrong values and by extension addresses.

The results indicate that Lector outperforms MiniTLS in most cases. However,
this comes with the cost introduced by the additional inspector threads in terms of
memory consumption. Figure 6.12 shows the memory overhead of both systems for
the Sparse benchmark against the sequential version. Lector requires 1.5x more
memory than MiniTLS. That is, 2.7x compared to the sequential version. Nevertheless
this is acceptable as it has still lower overhead compared to SpLIP (as shown in Figure
6.7) and it is faster.

Finally, moving a step back from TLS per se, it is interesting to see how speculative
parallelization performance compares to manual or static parallelization. Figure 6.13
shows speedup comparison between parallelizing the Sparse benchmark speculatively
and manually. There are two reasons why manual parallelization, and not from an
automatic tool, was applied. First, no static parallelizing compiler is yet available
for the Java programming language. Second, a static parallelizing compiler would

6.5. MINITLS VS. LECTOR - EXPERIMENTS 117

15
.2
2	

22
.3
0	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

2	

4	

8	

16
	
 32
	

Em
3d

	

Le
e	

Ro

ut
er
	

Sp
ar
se
	

SO
R	

M
on

te
	
 C
ar
lo
	

Ba
rn
es
	
 H
ut
	

Pe
rim

et
er
	

Av
er
ag
e	

Av
er
ag
e	

(w

/
ou

t	
 M
C)
	

Ge
om

et
ric

	

M
ea
n	

Speedup	

Be
nc
hm

ar
ks
	

M
in
iT
LS
	

Le
ct
or
	

Figure 6.11: Speedup results for Lector vs. MiniTLS against the sequential execution.
Sequential execution is denoted by 1 in the y axis.

not be able to parallelize the benchmark due to ambiguities from pointer aliasing and
thus domain knowledge is required. It is clear that the performance difference is very
large, especially for large number of threads. For example, using 8 threads speculative

118 Chapter 6. Evaluation and Results

0	

0.5	

1	

1.5	

2	

2.5	

3	

2	
 4	
 8	
 16	
 32	

M
em

or
y	

ov
er
he

ad
	

Number	
 of	
 Threads	

MiniTLS	
 Lector	

Figure 6.12: Memory overhead of MiniTLS and Lector compared to the sequential
version of the Sparse benchmark.

parallelization is about 3x slower than the parallel equivalent but using 32 threads it is
8x slower. This indicates the impact on performance from only maintaining speculative
state, since Sparse does not trigger any rollbacks.

0	

5	

10	

15	

20	

25	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	

Sp
ee
du

p	

Number	
 of	
 Threads	

Specula;ve	
 Parallel	

Figure 6.13: Speedup comparison between speculative and manual parallel execution
for the Sparse benchmark (with the sequential version of Sparse used as baseline
denoted by speedup == 1).

6.6 Summary

This chapter provided the results obtained by applying MiniTLS (Chapter 4) and Lector
(Chapter 5) against standard sequential applications used for performance comparisons
in the area of speculative parallelization. These comparisons were provided in terms of

6.6. SUMMARY 119

performance improvements over the sequential applications when the proposed TLS
systems are applied to them. Furthermore, the two systems, MiniTLS and Lector,
were compared against state-of-the-art work in terms of performance.

MiniTLS and Lector were found to outperform their state-of-the-art comparison
TLS systems in terms of application runtime performance. MiniTLS was also superior
to the state-of-the-art in terms of memory requirements (i.e. more memory-efficient).
Lector was also found to be superior than MiniTLS in a comparison against the two
systems.

Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

Runtime parallelization is concerned with sequential applications that a static com-
piler cannot parallelize due to insufficient information at compile time. Speculative
parallelization (or Thread-Level Speculation - TLS) is a form of runtime paralleliza-
tion that transforms a sequential application to a semantically equivalent parallel one
by speculating on potential data dependencies. For example, a loop is parallelized with
the assumption that the iterations are independent. During execution, runtime checks
ensure that any data dependencies that may arise will be handled appropriately so that
parallelization continuous correctly. In order for those runtime checks to be able to dis-
cover data dependencies, information regarding memory accesses by iterations must be
maintained by the runtime system. This is known as the speculative state.

Chapter 1 presented the importance of parallelization from the early days of su-
percomputing and vector processors until today’s computer architecture market that is
dominated by multicores. Details were also explained on the difficulty of producing
parallel programs and the tradeoffs between different ways of parallelization. The fo-
cus of the thesis was in speculative parallelization. Chapter 2 introduced the area of
runtime and speculative parallelization while briefly explaining the different parts that
are required to assemble a TLS system in software. Chapter 3 discussed the different
approaches followed by work in the literature in order to build and optimize a soft-
ware TLS system. The discussion of Chapter 3 also subsumes the related work for this
thesis.

A significant barrier for adopting software TLS is the overheads associated with
maintaining speculative state. This thesis has investigated two solutions to optimize

120

7.1. SUMMARY AND CONCLUSIONS 121

speculative parallelization systems. Two techniques for version management (a way of
maintaining speculative state) have been used extensively in the literature. Thus, for
completeness two systems were proposed, one for each technique and in both cases
were found to be better than the state-of-the-art.

Chapter 4 presented a software TLS system with a novel compact version manage-
ment representation; MiniTLS. Facilitated by this representation, MiniTLS reduces the
space overhead over state-of-the-art software TLS systems between 96% on 2 threads
and 40% on 32 threads. MiniTLS relies on eager memory data management and,
thus, when a misspeculation occurs a rollback (to restore memory) process is required.
MiniTLS takes advantage of the novel compact version management representation to
parallelize the rollback process and is able to recover from misspeculation faster than
existing software eager TLS systems.

A second TLS system, Lector (Lazy inspECTOR), is presented in Chapter 5, which
uses a novel way of minimizing speculative marking (also uses the compact version
management data structure). Lector performs on average 1.7x faster for 32 threads
over an established state-of-the-art software TLS system. While the conventional
TLS system is running, lightweight inspector threads are executed alongside to ver-
ify quickly whether speculative state maintenance is actually required. Those threads
are highly likely to be faster than the TLS threads, as they only inspect a stripped-down
version of the actual loop iteration consisting of memory accesses. Should the inspec-
tor threads discover that the loop is DOALL, speculation is abandoned allowing the
application to run in a parallel speculation-free mode. On the other hand, if the inspec-
tor exposes any dependencies, then inspection is terminated and the system continues
with conventional speculative parallelization.

In Chapter 6 MiniTLS and Lector were applied to seven Java sequential bench-
marks (with presence of misspeculations for two benchmarks), including three bench-
marks from SPECjvm2008. The experiments for MiniTLS report average speedups of
1.8x for 4 threads increasing close to 7x speedups with 32 threads. Lector experiments
report average speedups of 1.7x for 2 threads increasing close to 8.2x speedups with
32 threads. It was shown that TLS can speedup the execution of some SPECjvm2008

benchmarks but it was not fully explored which other SPECjvm2008 will benefit from
TLS. Similarly, “informed” scheduling was not explored for Lector, in order to avoid
discovered dependencies.

122 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Directions

There are numerous interesting directions to follow in designing speculative multi-
threaded systems. This section discusses a few of them.

7.2.1 Scheduling Partially Parallel Loops

Chapter 5 explained how a software TLS system such as Lector can boost perfor-
mance by the aid of inspector threads. In Lector, inspector threads execute alongside
the TLS threads in order to verify whether a loop is a DOALL and allow non-speculative
parallelization to take over. This verification is currently tied only to DOALL loop
identification. Previous work using an inspector/executor model demonstrated how
one can create an optimal schedule for partially parallel loops [RAP95]. A partially
parallel loop is one that requires synchronization in order to maintain the correct ex-
ecution order between iterations. Independent loop iterations are grouped together in
sets called wavefronts. Iterations within each wavefront can execute in parallel but
each wavefront must execute one after another. That is, there are no data dependencies
between iterations inside a given wavefront but different sets of wavefronts depend on
one another.

In order to parallelize the partially parallel loop, the inspector must first analyze
at runtime the data dependence relations within statements in the loop and based on
that information construct the appropriate schedule. The schedule dictates how the
executor code will execute the loop iterations.

Combining the above technique with Lector, the inspector could identify a par-
tially parallel loop and provide an optimal schedule such as that iterations within wave-
fronts execute in a speculation-free fashion.

7.2.2 Method-Level Speculation

The experiments for this thesis have considered only loop-level speculation, however,
previous work indicates that there may be advantageous exploiting parallelism at dif-
ferent levels of granularity such as method-level [WS01, LTC+06, Pic07, ISK+10].
Java

TM
language is a suitable candidate for method-level parallelism since it enforces

Object Oriented design and all executable code must be contained within a method
[ISK+10]. Furthermore, since Java

TM
does not allow methods accessing each others

stack, logging stack variables is avoided.

7.2. FUTURE DIRECTIONS 123

In the case of loop-level speculation, loop iterations form the boundaries of specu-
lative regions. Any values before the loop starts that are still used inside the loop must
be handled with care especially if they are updated. Similarly, any values produced
inside the loop by the speculative threads must be copied appropriately if they are still
used after the loop. In method-level speculation, speculative regions are formed by
method boundaries. Each method is registered to a speculative thread and executes in
parallel with other methods. Sometimes a method B, that depends on the return value
of a method A, might be able to start early execution if the return value is predicted.
This is known as Return Value Prediction (RVP). There is no difference in the TLS
support provided for both levels of speculation. The main difference is in the front-end
translator that will take the sequential program and convert it to speculation-ready one.
The loop-level translator would encounter loops, break-up the iterations to form spec-
ulative boundaries, handle the values coming in and going out of the loop, and insert
calls to the TLS back-end library. The method-level translator will do the same except
for method boundaries. The TLS back-end will still be exactly the same.

7.2.3 Adaptive Selection of TLS System

Generally speaking, a system under lazy version management might be more benefi-
cial when conflicts are expected to be relatively frequent. When conflicts occur on a
frequent basis, local buffers need only to be flushed before execution restarts. On the
contrary, in case of frequent conflicts a system under eager version management will
have to undo all values since updates appeared in-place. However, in case the con-
flicts are expected to be rare, lazy version management is not as suitable as eager since
buffers need to be copied-out in memory after speculative execution. In this case an
eager system simply continues execution neglecting any copying-out as updates are al-
ready there. This thesis discussed and experimented with MiniTLS and Lector which
implement eager and lazy version management respectively.

It would be worthwhile for a system that is able to switch between the two systems
during execution based on conflict frequency. For example, the system might start op-
timistically with MiniTLS maintaining some counter regarding the number of conflicts
occurred. When that counter exceeds a certain threshold the system could switch into
using a lazy version management such as the one employed in Lector.

Such an adaptive mechanism has been already evaluated in software transnational
memory and found to be beneficial [Spe10]. Due to the similarities of STM and TLS,
it is anticipated that an adaptive TLS system might offer superior performance to one

124 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

that uses only a single version management scheme. Furthermore this system might be
able to adapt to applications with different behavior or applications that change phases
during execution [GBEDB04].

7.2.4 Hardware Support

One of the main overheads of a thread-level speculation system (implemented in soft-
ware) is maintaining the speculative state. Loads and stores needs to be examined
globally using locks, before are inserted in their local data structures. As a conse-
quence many clock cycles are wasted simply to synchronize and track such informa-
tion. And even if that was not enough, during rollback, values may need to be locked
and restored causing further clock cycles. Work in transactional memory and thread-
level speculation has shown that using hardware might avoid these redundant cycles
by taking advantage of certain properties of the coherence protocol. For example, lo-
cal processor caches might be extended to support speculative behavior at minimal
cost. Research in transactional memory has also demonstrated that it is possible to
implement a hybrid system which some parts of it are controlled by hardware where
others by software [DCW+11]. A future work in TLS that aims to minimize the soft-
ware overheads could use Lector or MiniTLS on top of a full-system simulator (such
as Simics [MHW02]) or a best-effort hardware (such as ASF [CYD+10]) in order to
accelerate speculative operations.

Bibliography

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles Techniques and Tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2007.

[Amd67] Gene M. Amdahl. Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities. In Proceedings of the April

18-20, 1967, Spring Joint Computer Conference, pages 483–485. ACM,
1967.

[BEF+95] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoe-
flinger, David A. Padua, Paul Petersen, William M. Pottenger, Lawrence
Rauchwerger, Peng Tu, and Stephen Weatherford. Polaris: Improving
the Effectiveness of Parallelizing Compilers. In Proceedings of the 7th

International Workshop on Languages and Compilers for Parallel Com-

puting (LCPC), pages 141–154, 1995.

[Bla99] Bruno Blanchet. Escape Analysis for Object-Oriented Languages: Ap-
plication to Java. In Proceedings of the 14th ACM International Confer-

ence on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), pages 20–34, 1999.

[BN97] Philip Bernstein and Eric Newcomer. Principles of Transaction Process-

ing: For the Systems Professional. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[CL03] Marcelo Cintra and Diego R. Llanos. Toward Efficient and Robust Soft-
ware Speculative Parallelization on Multiprocessors. In Proceedings of

the ninth ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming (PPoPP), 2003.

125

126 BIBLIOGRAPHY

[CL05] Marcelo Cintra and Diego Llanos. Design Space Exploration of a Soft-
ware Speculative Parallelization Scheme. IEEE Transactions on Parallel

and Distributed Systems, 16(6):562–576, 2005.

[CMT00] Marcelo Cintra, José F. Martı́nez, and Josep Torrellas. Architectural Sup-
port for Scalable Speculative Parallelization in Shared-Memory Multi-
processors. In Proceedings of the 27th Annual International Symposium

on Computer Architecture (ISCA), pages 13–24, 2000.

[CO03] Michael K. Chen and Kunle Olukotun. The Jrpm System for Dynam-
ically Parallelizing Java Programs. In Proceedings of the 30th Annual

International Symposium on Computer Architecture (ISCA), pages 434–
446, 2003.

[CTTC06] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Dis-
ambiguation of Speculative Threads in Multiprocessors. In Proceedings

of the 33rd Annual International Symposium on Computer Architecture

(ISCA), pages 227–238, 2006.

[CTY94] Ding Kai Chen, Josep Torrellas, and Pen Chung Yew. An Efficient Al-
gorithm for the Run-time Parallelization of DOACROSS Loops. In Pro-

ceedings of the ACM/IEEE International Conference on Supercomputing

(ICS), pages 518–527, 1994.

[CYD+10] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack,
Michael Hohmuth, David Christie, and Dan Grossman. ASF: AMD64
Extension for Lock-Free Data Structures and Transactional Memory. In
Proceedings of the 43rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 39–50, 2010.

[Cyt86] Ron Cytron. DOACROSS: Beyond Vectorization for Multiprocessors.
In Proceedings of the International Conference on Parallel Processing

(ICPP), pages 836–844, 1986.

[DCW+11] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark
Moir, Michael L. Scott, and Michael F. Spear. Hybrid NOrec: A Case

BIBLIOGRAPHY 127

Study in the Effectiveness of Best Effort Hardware Transactional Mem-
ory. In Proceedings of the Sixteenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 39–52, 2011.

[DSS06] Dave Dice, O. Shalev, and Nir Shavit. Transactional Locking II. In Pro-

ceedings of the 20th International Symposium on Distributed Computing

(DISC), pages 194–208, 2006.

[DYR02] Francis Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops. In Proceedings of

the 16th International Parallel and Distributed Processing Symposium

(IPDPS), pages 20–29, 2002.

[For93] MPI Forum. MPI: Message Passing Interface, 1993.

[GBEDB04] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Boss-
chere. Method-level Phase Behavior in Java Workloads. In Proceed-

ings of the 19th annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages
270–287, 2004.

[GN98] Manish Gupta and Rahul Nim. Techniques for Speculative Run-time
Parallelization of Loops. In Proceedings of the ACM/IEEE Conference

on Supercomputing (SC), pages 1–12, 1998.

[GPL+05] Marı́a Jesús Garzarán, Milos Prvulovic, José Marı́a Llaberı́a, Vı́ctor
Viñals, Lawrence Rauchwerger, and Josep Torrellas. Tradeoffs in Buffer-
ing Speculative Memory State for Thread-Level Speculation in Multi-
processors. ACM Transactions in Architecture and Code Optimization

(TACO), 2:247–279, September 2005.

[GVSS98] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning
Cache. In Proceedings of the 4th International Symposium on High-

Performance Computer Architecture (HPCA), pages 195–215, 1998.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. In Proceedings of the

20th Annual International Symposium on Computer Architecture (ISCA),
pages 289–300, 1993.

128 BIBLIOGRAPHY

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2011.

[HR83] Theo Haerder and Andreas Reuter. Principles of Transaction-Oriented
Database Recovery. ACM Computing Surveys (CSUR), 15(4):287–317,
1983.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2008.

[HWO98] Lance Hammond, Mark Willey, and Kunle Olukotun. Data Speculation
Support for a Chip Multiprocessor. In Proceedings of the eighth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 58–69. ACM, 1998.

[Inc12] Apple Inc. MacBook Pro with Retina Display, 2012.

[ISK+10] Nikolas Ioannou, Jeremy Singer, Salman Khan, Paraskevas Yiapanis,
Adam Pocock, Polychronis Xekalakis, Gavin Brown, Mikel Luján, Ian
Watson, and Marcelo Cintra. Toward a More Accurate Understanding of
the Limits of the TLS Execution Paradigm. In Proceedings of the IEEE

Inernational Symposium on Workload Characterization, 2010.

[JEV04] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-cut
Program Decomposition for Thread-Level Speculation. In Proceedings

of the International Conference on Programming Language Design and

Implementation (PLDI), pages 59–70, 2004.

[JEV07] Troy Johnson, Rudolf Eigenmann, and T.N. Vijaykumar. Speculative
Thread Decomposition Through Empirical Optimization. In Proceed-

ings of the 12th Symposium on Principles and Practice of Parallel Pro-

gramming (PPoPP), pages 205–214, 2007.

[KJL+12] Hanjun Kim, Nick Johnson, Jae Lee, Scott Mahlke, and David I. August.
Automatic Speculative DOALL for Clusters. In Proceedings of the Intl.

Symposium on Code Generation and Optimization (CGO), 2012.

BIBLIOGRAPHY 129

[KRL+10] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. Au-
gust. Scalable Speculative Parallelization on Commodity Clusters. In
Proceedings of the 43rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 3–14, 2010.

[Lam79] Leslie. Lamport. How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs. IEEE Transactions on Comput-

ers, 28(9):690–691, 1979.

[LPH+09] Yangchun Luo, Venkatesan Packirisamy, Wei-Chung Hsu, Antonia Zhai,
Nikhil Mungre, and Ankit Tarkas. Dynamic Performance Tuning for
Speculative Threads. In Proceedings of the 36th Annual International

Symposium on Computer Architecture (ISCA), pages 462–473, 2009.

[LTC+06] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Re-
nau, and Josep Torrellas. POSH: A TLS Compiler that Exploits Program
Structure. In Proceedings of the International Symposium on Principles

and Practice of Parallel Programming (PPoPP), pages 158–167, 2006.

[MG99] N. Mukherjee and John Gurd. A Comparative Analysis of Four Paral-
lelisation Schemes. In Proceedings of the 13th International Conference

on Supercomputing (ISC), pages 278–285, 1999.

[MG02] Pedro Marcuello and Antonio González. Thread-Spawning Schemes for
Speculative Multithreading. In Proceedings of the 8th International Sym-

posium on High-Performance Computer Architecture (HPCA), pages
55–67, 2002.

[MHHM09] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Paralleliz-
ing Sequential Applications on Commodity Hardware using a Low-cost
Software Transactional Memory. In Proceedings of the ACM SIGPLAN

International Conference on Programming Language Design and Imple-

mentation (PLDI), pages 166–176, 2009.

[MHW02] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-System Timing-
First Simulation. In Proceedings of the 2002 ACM International Con-

ference on Measurement and Modeling of Computer Systems (SIGMET-

RICS), pages 108–116, 2002.

130 BIBLIOGRAPHY

[MLC+09] Carlos Madriles, Pedro Lopez, Josep Maria Codina, Enric Gibert, Fer-
nando Latorre, Alejandro Martinez, Raul Martinez, and Antonio Gonza-
lez. Anaphase: A Fine-Grain Thread Decomposition Scheme for Spec-
ulative Multithreading. In Proceedings of the 18th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT),
pages 15–25, 2009.

[Moo65] Gordon E. Moore. Cramming More Components onto Integrated Cir-
cuits. Electronics, 38(8):114–117, April 1965.

[NKH04] Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. Bottom-Up
and Top-Down Context-Sensitive Summary-Based Pointer Analysis. In
Proceedings of 11th Static Analysis Symposium (SAS), pages 165–180,
2004.

[OB96] Michel O’Boyle and Mark Bull. Expert Programmer versus Paralleliz-
ing Compiler: A Comparative Study of Two Approaches for Distributed
Shared Memory. Scientific Programming, 5(1):63–88, 1996.

[OHL99] Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In Search
of Speculative Thread-Level Parallelism. In Proceedings of the Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 303–313, 1999.

[OMH09] Cosmin Oancea, Alan Mycroft, and Tim Harris. A Lightweight in-place
Implementation for Software Thread-level Speculation. In Proceedings

of the 21st Annual Symposium on Parallelism in Algorithms and Archi-

tectures (SPAA), pages 223–232, 2009.

[ORSA05a] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic Thread Extraction with Decoupled Software Pipelining. In Pro-

ceedings of the 38th annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pages 105–118, 2005.

[ORSA05b] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic Thread Extraction with Decoupled Software Pipelining. In Pro-

ceedings of International Symposium on Microarchitecture (MICRO),
pages 105–118, 2005.

BIBLIOGRAPHY 131

[PH08] David A. Patterson and John L. Hennessy. Computer Organization and

Design: The Hardware/Software Interface, Fourth Edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[Pic07] Christopher J. F. Pickett. Software speculative multithreading for java. In
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented

Programming Systems and Applications companion (OOPSLA), pages
929–930, 2007.

[PO05] Manohar K. Prabhu and Kunle Olukotun. Exposing Speculative Thread
Parallelism in SPEC2000. In Proceedings of the 10th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 142–152, 2005.

[PZH+09] V. Packirisamy, A. Zhai, Wei-Chung Hsu, Pen-Chung Yew, and Tin-
Fook Ngai. Exploring Speculative Parallelism in SPEC2006. In Per-

formance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE

International Symposium on, pages 77 –88, 2009.

[QnMS+05] Carlos Garcı́a Quiñones, Carlos Madriles, Jesús Sánchez, Pedro Mar-
cuello, Antonio González, and Dean M. Tullsen. Mitosis Compiler:
An Infrastructure for Speculative Threading based on Pre-computation
Slices. In Proceedings of ACM Conference on Programming Language

Design and Implementation (PLDI), pages 269–279, 2005.

[RAP95] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A Scal-
able Method for Run-time Loop Parallelization. International Journal of

Parallel Programming, 23(6):537–576, 1995.

[Rau98] Lawrence Rauchwerger. Run-time Parallelization: Its Time has Come.
Parallel Computing, 24:527–556, 1998.

[RKM+10] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. Speculative Parallelization Using Software Multi-
threaded Transactions. In Proceedings of the fifteenth edition of ASPLOS

on Architectural Support for Programming Languages and Operating

Systems, pages 65–76, 2010.

132 BIBLIOGRAPHY

[RP94a] Lawrence Rauchwerger and David Padua. Speculative Run-Time Paral-
lelization of Loops. Technical Report CSRD-827, Center for Supercom-
puting Research and Development, University of Illinois, 1994.

[RP94b] Lawrence Rauchwerger and David Padua. The privatizing DOALL test:
a run-time technique for DOALL loop identification and array privatiza-
tion. In Proceedings of the 8th International Conference on Supercom-

puting (ICS), pages 33–43, 1994.

[RP95] Lawrence Rauchwerger and David Padua. The LRPD test: speculative
run-time parallelization of loops with privatization and reduction par-
allelization. In Proceedings of the ACM SIGPLAN International Con-

ference on Programming language design and implementation (PLDI),
pages 218–232, 1995.

[RS01] Peter Rundberg and Per Stenström. An All-Software Thread-Level
Data Dependence Speculation System for Multiprocessors. Journal of

Instruction-Level Parallelism, 3:1–28, 2001.

[Rus78] Richard M. Russell. The cray-1 computer system. Communications of

the ACM, 21(1):63–72, January 1978.

[RVOA08] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August.
Performance Scalability of Decoupled Software Pipelining. ACM Trans-

actions on Architecture and Code Optimization (TACO), 5(2):8:1–8:25,
2008.

[Sam12] Samsung. Samsung Galaxy SIII, 2012.

[SBW91] Joel H. Saltz, Harry Berryman, and Janet Wu. Multiprocessors and run-
time compilation. Concurrency, Practice and Experience, 3(6):573–592,
1991.

[SCZM05] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C.
Mowry. The STAMPede Approach to Thread-Level Speculation. ACM

Transactions on Computer Systems, 23(3):253–300, 2005.

[SM91] Joel H. Salz and Ravi Mirchandaney. The Preprocessed DoAcross Loop.
In Proceedings of the International Conference on Parallel Processing

(ICPP), pages 174–178, 1991.

BIBLIOGRAPHY 133

[SMC89] Joel H. Salz, Ravi Mirchandaney, and Kay Crowley. The DoConsider
Loop. In Proceedings of the International Conference on Supercomput-

ing (ISC), pages 29–40, 1989.

[SMC91] Joel H. Salz, Ravi Mirchandaney, and Kay Crowley. Run-Time Paral-
lelization and Scheduling of Loops. IEEE Transactions on Computers,
40(5):603–612, 1991.

[SMSS06] Michael F. Spear, Virendra J. Marathe, William N. Scherer, and
Michael L. Scott. Conflict Detection and Validation Strategies for Soft-
ware Transactional Memory. In Proceedings of the 20th International

Conference on Distributed Computing (DISC), pages 179–193, 2006.

[Spe10] Michael F. Spear. Lightweight, Robust Adaptivity for Software Transac-
tional Memory. In Proceedings of the 22nd ACM Symposium on Paral-

lelism in Algorithms and Architectures (SPAA), pages 273–283, 2010.

[TFG10] Chen Tian, Min Feng, and Rajiv Gupta. Supporting Speculative Paral-
lelization in the Presence of Dynamic Data Structures. In Proceedings

of the ACM SIGPLAN International Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 62–73, 2010.

[TFNG08] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or Dis-
card execution model for speculative parallelization on multicores. In
Proceedings of the 41st annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 330–341, 2008.

[Tho70] James E. Thornton. Design of a Computer - The Control Data 6600.
Scott Foresman, Glenview, IL, 1970.

[TWFO09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P.
O’Boyle. Towards a Holistic Approach to Auto-Parallelization: Integrat-
ing Profile-Driven Parallelism Detection and Machine-Learning Based
Mapping. In Proceedings of the ACM Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 177–187, 2009.

[VRR+07] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. Speculative Decoupled Soft-
ware Pipelining. In Proceedings of the 16th International Conference on

134 BIBLIOGRAPHY

Parallel Architecture and Compilation Techniques (PACT), pages 49–59,
2007.

[WFW+94] Robert Wilson, Robert French, Christopher Wilson, Saman Amaras-
inghe, Jennifer Anderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary
Hall, Monica Lam, and John Hennessy. The SUIF Compiler System: a
Parallelizing and Optimizing Research Compiler. Technical report, Stan-
ford, CA, USA, 1994.

[WKL07] Ian Watson, Chris Kirkham, and Mikel Lujan. A Study of a Transac-
tional Parallel Routing Algorithm. In Proceedings of the 16th Interna-

tional Conference on Parallel Architecture and Compilation Techniques

(PACT), pages 388–398, 2007.

[WS01] Fredrik Warg and Per Stenström. Limits on Speculative Module-Level
Parallelism in Imperative and Object-Oriented Programs on CMP Plat-
forms. In Proceedings of the 2001 International Conference on Parallel

Architectures and Compilation Techniques, pages 221–230, 2001.

[YHM+08] Paraskevas Yiapanis, David J. Haglin, Anna M. Manning, Ken Mayes,
and John A. Keane. Variable-grain and dynamic work generation for
Minimal Unique Itemset mining. In Proceedings of IEEE International

Conference on Cluster Computing (CLUSTER), pages 33–41, 2008.

[YRHBL13] Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel
Luján. Optimizing Software Runtime Systems for Speculative Paral-
lelization. ACM Transactions on Architecture and Code Optimization

(TACO), 9(4):39:1–39:27, 2013.

[ZY87] Chuan-Qi Zhu and Pen-Chung Yew. A Scheme to Enforce Data Depen-
dence on Large Multiprocessor Systems. IEEE Transactions on Software

Engineering, 13(6):726–739, 1987.

Appendix A

Baseline Systems Description

A.1 Introduction

This appendix describes in more details the baseline systems used to compare against
MiniTLS (Chapter 4) and Lector (Chapter 5). The results were presented in Chapter 6.

A.2 Baseline used for MINITLS: SPLIP

Oancea et al. [OMH09] proposed SpLIP for software speculative parallelization sup-
port. To the best of the thesis author knowledge, it is the first software TLS sys-
tem to implement eager version management and the only one in the literature apart
from MiniTLS. Since both systems use the same version management implementa-
tion, SpLIP was the best candidate and thus selected as the baseline. The following
paragraphs provide implementation details on SpLIP.

A.2.1 Metadata

SpLIP uses four shadow arrays apart from the private storage. This organization is
illustrated in Figure A.1.

The data structures for SpLIP are used as follows:

Load: To mark the latest thread performed a load on a memory location.

Store: To mark the latest thread performed a store on a memory location.

TimeStamp: To mark the relative time that a thread performed a store on a memory
location.

135

136 APPENDIX A. BASELINE SYSTEMS DESCRIPTION

User	
 	

Data	

-­‐	

-­‐	

-­‐	

-­‐	

Load	

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

Store	

-­‐	

-­‐	

-­‐	

-­‐	

Time	

Stamp	
 -­‐	

-­‐	

-­‐	

-­‐	

Private	

Storage	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Storage	

Thread	
 1	
 	
 	
 	
 	

Thread	
 2	
 	
 	
 	
 	

Metadata	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

-­‐	

Synch	

Load	

Synch	

Store	

Figure A.1: Metadata organization for SpLIP [OMH09].

SynchLoad: Facilitates synchronization by tracking the current thread performing a
load operation.

SynchStore: Facilitates synchronization by tracking the current thread performing a
store operation.

A.2.2 Algorithm Outline

The execution flow of a speculative thread is the same as in MiniTLS. The differences
between the two systems is how SpLIP performs speculative loads and stores. Since
eager version management systems perform speculative updates directly in main mem-
ory they must be aware for all three types of violations (RAW, WAW, WAR). Assume
a speculative thread with id T performing a speculative operation (load or store) on a
memory location x.

A.2. BASELINE USED FOR MINITLS: SPLIP 137

Load

A speculative load by thread T to be performed at location x eventually needs to ini-
tialize Load[x] with T ’s id to indicate that thread T is the latest one to load from x.
Before loading the value from x, T must first ensure that the last thread to initialize x

comes from a less speculative thread. Otherwise, if the last thread to write x is from a
more speculative thread a WAR violation is triggered. This check is done by ensuring
that Store[x]<= T .

Store

Similarly, a speculative store must initialize Store[x] = T to indicate the latest thread
that has written on x. A speculative store must check that Store[x] > T in order to
discover any WAW violations as well as that Load[x]> T to find any RAW violations.
If no violations are found the original value from x is saved in T ’s private storage along
with the current timestamp in TimeStamp[x].

Synchronization Arrays

SpLIP does not use any locks or CAS operations but instead uses two additional data
structures to facilitate synchronization. When a speculative loads is performed all
the operations are surrounded by actions on the SynchStore array. When speculative
load starts, the SynchStore array is initialized with the id of the thread that performs
the load (i.e. SynchStore[x] = T). At the end of the speculative load the condition
SynchStore[x] == T must hold for the operation to be valid. SynchStore[x] may change
while the load is performed only if a speculative store executed concurrently (the spec-
ulative store also sets SynchStore[x] = T to indicate the action). In a similar way
SynchLoad is initialized with the thread id that performs a load and checked within the
speculative store operation.

The checks to the synchronization arrays are carefully placed before and after cer-
tain instructions and rely on the memory ordering of the architecture to be correct.

Rollback and Commit

When a conflict is detected, the offending threads must go thought their local buffers to
restore memory location to a correct state. An issue arises when more than one thread
involved in the violation has written to the same memory location. That is because
only one of them must restore the correct value back to main memory, the one that has

138 APPENDIX A. BASELINE SYSTEMS DESCRIPTION

the earliest copy in terms of speculation order. SpLIP uses the “TimeStamp” shadow
array to record the relative time a thread has stored to a location. Using this shadow
array the system is able to recover the earliest value need to be rolled back.

Since threads update directly the speculative values in memory, if no conflict is
detected then the final results are already there. Thus commit implicitly happens in

parallel.

A.3 Baseline used for LECTOR: TL2

Characterized by its simplicity, TL2 [DSS06] formed the basis of several TLS and STM
(Software Transactional Memory) designs. TL2 uses a shadow data structure to reflect
every memory location accessed transactionally (i.e. speculatively). The metadata or-
ganization is presented in Figure A.2. This data structure is an array in which every lo-
cation combines a lock (to protect write accesses) along with a version number (that is
used during commit to detect read conflicts). During execution a shared memory loca-
tion is mapped and represented by a location in this shadow array. In the STM context
this type of shadowing is called versioned locks and it is shared between threads. The
system also maintains a global clock (a shared counter used to maintain consistency
between transactions), which is incremented every time a transaction commits. Once
a transaction initiates, the current value of the global clock is read atomically (using
CAS) and stored locally. During execution the local clock of a transaction is used to
ensure that every read operation is consistent across threads. This is possible since
every memory location is associated with a version number. Before the transaction
terminates, as part of its commit procedure all write accesses are locked and all read
accesses are re-validated. If successful, the global clock is incremented atomically, all
speculative updates are propagated to memory, and all writes are amended to hold the
new value of the global clock before releasing their locks. This way the next commit-
ting transaction can ensure consistency by comparing their local value of the global
lock against the lock of any values read. They global lock idea for STM was first used
in [SMSS06].

The main reason that TL2 has been selected for comparisons against Lector is be-
cause it has been already established as a baseline in the literature by [MHHM09] and
[TFG10] in speculative parallelization and in numerous work in transactional memory.

A.3. BASELINE USED FOR LECTOR: TL2 139

User	
 	

Data	

-­‐	

-­‐	

-­‐	

-­‐	

Lock	

2	

3	

4	

5	

f	

g	

e	

a	

-­‐	

-­‐	

-­‐	

-­‐	

Version	

Metadata	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Read-­‐Set	
 Thread	
 1	
 	
 	
 	
 	

Thread	
 2	
 	
 	
 	
 	

-­‐	
 Global	
 Clock	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Write-­‐Set	

-­‐	

Local	
 	

Clock	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Read-­‐Set	

-­‐	

-­‐	

-­‐	

-­‐	

Private	

Write-­‐Set	

-­‐	

Local	
 	

Clock	

Figure A.2: Metadata organization for TL2 [DSS06].

A.3.1 Algorithm Outline

A speculative thread operates as follows:

1. Sample global clock: Load the current value of the global clock and store it in
the thread’s local clock.

2. Execute speculative region: Stores are buffered locally (lazy version manage-
ment) in the thread’s write-set along with the address to be written. Loads first
check to see if the write-set already contains a store on that address to fetch the
value from there (this avoids WAR and WAW dependencies). If not, the value
needs to be loaded from memory in which case the local clock must be checked
with the version lock of the address to ensure no other thread has changed it in
the meantime (eager conflict detection).

3. Lock write-set: Acquire the locks of the locations to be written (based on the
write-set). If not all locks are successful, the thread is squashed.

140 APPENDIX A. BASELINE SYSTEMS DESCRIPTION

4. Increment global clock: When all locks are acquired the global clock is incre-
mented using a CAS operation.

5. Read-set validation: The versions of locations in main memory are checked
(based on the read-set) to ensure that their version did not changed (RAW vio-
lations) in the meantime by another thread (i.e. Their version is still the same as
the local clock).

6. Commit and release locks: The values in the write-set are committed and the
locks are released.

Appendix B

Implementation Details for TLS Limit
Study

The performance potentials of speculative parallelization were assessed in a recent
study [ISK+10] that was conducted in collaboration between the University of Ed-
inburgh and the University of Manchester, a work that the author of this thesis was
also involved. This fact was also discussed in Chapter 1. The study evaluated a mix-
ture of different design aspects of speculative parallelization in a simulation environ-
ment in order to establish an upper bound on performance. The goal was to offer an
architecture-agnostic characterization of the potentials of speculative parallelization.

The following section briefly explains how the study was performed.

Evaluation Details

Applications were tested from a variety of application domains (e.g. scientific and
business domains) and programming styles (e.g. procedural and object-oriented styles).

The compiler was augmented with special instructions that were triggering events
while the application was running. Those events were indications of the points wished
to speculate. For instance, an event would be triggered at the beginning of a loop
and another one at the end of the loop. Between those two events the hardware was
recording every memory access performed by the sequential application. The hardware
was implemented using a full system simulator known as Simics [MHW02] and all
the events along with memory accesses were recorded in files called traces.

Traces were later fed to a custom-made simulation infrastructure. The infrastruc-
ture was simulating a speculative parallelization execution environment driven by the
events and memory accessed recorded in the traces.

141

