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SSSC_ HIE_NRL – Hybrid – Hybrid section carry based CLA adder constructed using   
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SSSC_HIE_RL (2-bit CLA – Type 2) – Type 2 CLA adder architecture built using single-bit 

adders based on hybrid input encoding with redundant logic and 2-bit CLA modules.  
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SSSC_HIE_RL (4-bit CLA – Type 1) – Type 1 CLA adder architecture built using single-bit 

adders based on hybrid input encoding with redundant logic and 4-bit CLA modules.  

SSSC_HIE_RL (4-bit CLA – Type 2) – Type 2 CLA adder architecture built using single-bit 

adders based on hybrid input encoding with redundant logic and 4-bit CLA modules.  

SSSC_HIE_RL (4-bit CLA – Hybrid)  – Hybrid CLA adder architecture built using single-

bit adders based on hybrid input encoding with redundant logic and 4-bit CLA modules but 

with a 3-bit CLA module in the most significant nibble position.  

SSSC_HIE_RL (CPA) – A simple carry-propagate adder featuring single-bit adders that      

are based on hybrid input encoding with redundant logic  

SSSC_ HIE_RL – Hybrid – Hybrid section carry based CLA adder constructed using          

single-sum single-carry adder modules with redundant logic based on hybrid input encoding, 

including a 3-bit CLA generator module in the most significant position 

SSSC_HIE_RL – Type 1 – Type 1 section carry based CLA architecture constructed using 

single-sum single-carry adder modules with redundant logic based on hybrid input encoding  

SSSC_ HIE_RL – Type 2 – Type 2 section carry based CLA architecture constructed            

using single-sum single-carry adder modules with redundant logic based on hybrid input 

encoding  

Sync_ST_compressor_DRE – Proposed (4:2) logic compressor design employing dual-rail 

encoding, based on a translation of the synchronous version 

Sync_ST_compressor_HIE – Proposed (4:2) logic compressor design employing hybrid 

input encoding for primary inputs, based on a conversion of the synchronous version  

Toms_compressor_DRE – (4:2) logic compressor design based on Toms' approach, based        

on dual-rail encoding  

Toms_compressor_HIE – (4:2) logic compressor design based on Toms' approach, based       

on hybrid input data encoding  

Toms_DB_HE – Toms' dual-bit adder based on heterogeneous encoding 

Toms_DRE (strong) – Strongly indicating single-bit adder based on Toms' approach, 

employing dual-rail data encoding  

Toms_DSSC – Dual-bit adder synthesised using Toms' approach that utilises dual-rail data 

encoding 
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Toms_HIE – Hybrid input encoded single-bit adder synthesised using Toms' approach,           

utilising dual-rail data encoding 

TSSC – Triple-Sum Single-Carry (adder) 

TSSC_CCO – Triple-Sum Single-Carry (adder) with C-elements, Complex gates and OR 

gates  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 20 

Abstract 
 

The unorthodox methods usually employed for synthesising self-timed combinational logic 

incur substantial area overhead. A novel heuristic is proposed on the basis of set theory to 

considerably alleviate the problem of input state space explosion that besets function block 

realisations featuring several concurrent inputs. The heuristic has been implemented in Java 

and a system configuration in support of this heuristic is also presented. The proposed 

heuristic also forms the basis for realising many self-timed adders. The performance potential 

of various single-bit and dual-bit adder blocks, which adopt widely preferred homogeneous or 

heterogeneous delay-insensitive data encoding styles, are analysed on the basis of the self-

timed carry-ripple adder architecture. Within this framework, hybrid adder schemes are also 

considered. With the intent of significantly reducing the datapath delay, the concept of 

redundant logic insertion has been put forward. Subsequently, to further improve the latency 

of dual-operand adders, self-timed section carry based carry-lookahead architectures have 

been proposed that outperform the basic self-timed carry-propagate adder topology. Finally, a 

bit-partitioning scheme for self-timed addition of multiple operands is described and a new 

self-timed logic compressor design is discussed. The impact of carry save adder and 

compressor tree structures, forming part of the input field partitions, on multi-operand addition 

is analysed through a case study, showing that the latter may be preferable compared to the 

former for self-timed multi-input addition.  
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Chapter 1  
 

Introduction  
 

A majority of the present-day digital systems are clock based or synchronous, which assume 

that signals are binary and time is discrete. In general, synchronous systems comprise a 

number of subsystems that change from one state to another depending on a global clock 

signal, with flip-flops (registers) being used to store the different states of the subsystems. A 

conventional synchronous system is portrayed by figure 1.1.  

 

 

Figure 1.1: A typical synchronous system stage 

 

The state updates within the registers are carried out on the rising edge (positive edge) 

or falling edge (negative edge) of the global clock – single edge triggering. The state of the 

global clock permits either data loading or data storage. Since the overall clock utilisation is 

only 50% for single edge triggered systems, double edge triggered flip-flops were 

subsequently proposed in the literature with the motive of increasing the system throughput as 

data can be loaded on both the rising and falling clock edges and data is retained when the 

clock signal does not toggle [1] [2]. However, this usually comes at the expense of a larger 

silicon footprint due to greater number of transistors and more interconnects for the dual edge 

triggered flip-flop and consequently leads to more power consumption. Preserving the original 

data rate as that of single edge triggered flip-flop designs whilst operating at half the system 

clock frequency might be helpful in reducing the dynamic power dissipation as the transitions 

could be reduced by half, but eventually this may be offset by more leakage power dissipation 

[2], which is becoming dominant in deep submicron technologies. Moreover, this mechanism 
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tends to forego the advantages associated with single edge triggering in that its set-up and hold 

times are larger compared to conventional flip-flops and any deviation from its 50% duty 

cycle can lead to timing failures in critical paths upsetting the system behaviour [3]. In 

addition, it is more sensitive to noise apart from introducing complexity in system design and 

as such, the specification on jitter tolerance is more stringent which complicates the design of 

the system phase lock loop. As a result, synchronous designs with rising or falling edge 

triggering have been predominant, being the mainstream of digital system architectures; 

nevertheless, it is becoming increasingly difficult to overcome some fundamental limitations 

inherent in this approach.  

 The International Technology Roadmap for Semiconductors (ITRS) predicts that 

system-wide synchronisation is becoming infeasible owing to increasing silicon complexity 

[33]. A clock-based system can operate correctly only if all parts of the system see the clock at 

the same time, which can happen only if the delay on the clock wire is negligible. However, 

with advances in technology, the systems tend to get bigger and bigger in terms of the number 

of transistors and as a result the delay on the clock wires can no longer be ignored. The 

problem of clock skew is thus a major bottleneck for many system designers. Since the clock 

signal controls all flip-flops to sample and store their input data synchronously, it tends to be 

highly loaded and the problem becomes more severe. A widely preferred solution is to 

distribute the global clock using a clock network (clock tree) with clock buffers and thereby 

control the clock skew. Consequently, this results in an increase in the capacitance of the clock 

net and also suffers from increased activity (typically two transitions per net per cycle), even 

ignoring possible hazard activity on such nets.  

The primary factors that govern the clock skew in a typical synchronous digital system 

are as follows:  

• resistance, capacitance and inductance of the interconnection material used for the clock 

distribution network 

• clock distribution network architecture, buffering schemes and clock buffers used 

• fabrication process variation over the chip area 

• number of processing elements in the system and the load presented by each element to the 

clock distribution network  

• rise and fall times and the clock frequency 
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 Various clock distribution strategies have been developed, with the most common and 

general approach being the use of buffered trees for equipotential clock distribution. However, 

to distribute high-speed clock signals, symmetric trees like the H-tree are preferred compared 

to the asymmetric buffered clock distribution tree structure. The H-tree network is the most 

widely used clock distribution network [4] – [6] to minimise the clock skew. It was shown in 

[7] that for an N × N array of processing elements, the clock pulse rise time and the clock 

skew associated with it are O(N3). Hence, with increase in N, the clock skew is likely to 

increase rapidly and become a stumbling block. Therefore, a distributed buffering scheme is 

often resorted to for synchronous digital integrated circuits by introducing buffers in the clock 

distribution network. However, the disadvantages of this approach are the extra area overhead 

and the increase in design sensitivity to process variations. Also, it has to be noted that buffers 

are the primary source of the total clock skew within a well-balanced clock distribution 

network. Since global clock periods are now commonly less than half a nanosecond, variations 

in delay by tens of picoseconds can seriously degrade the performance and reliability of high-

speed synchronous systems [8]. With Moore's law [9] having been a driving force through 

process generations, supported by continual innovations in processes and device materials 

[10], to relentlessly pursue after greater integrated circuit densities, and with variability of 

process and device parameters assuming ever greater significance [11] [12] as devices are 

scaled down to more narrow dimensions, the above problem might only get exacerbated. The 

bottom-line is that clock management is becoming increasingly difficult and solving it in 

today’s high-speed complex system-on-chip designs appears to be a complex and costly affair. 

 The second major problem faced by designers is power dissipation, which is a very 

important metric that has gained significance with the phenomenal growth of portable 

electronics. For mobile electronic applications, the average power consumption has become 

the most critical design concern. For maximum efficiency, all gates in the system should be 

performing useful work. However in synchronous systems, this is not usually the case. 

Consequently, synchronous systems tend to consume more power than necessary. Many gates 

switch unnecessarily since they are connected to the clock and not because they have to 

process new input data. However, to circumvent this problem, clock gating is widely 

employed so as not to enable those sub-systems that are not required for any useful activity. 

The biggest gate is the clock driver itself which might occupy considerable area and must 
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switch even if a small part of the system has something useful to do: the global clock, in 

general, was found to account for 15%-45% of the system power budget [13] and in a 

processor case study [14], it was found to be responsible for 34% of the total system power 

dissipation.  

 

1.1 Motivation and Context  

The problems of clock skew and power dissipation have been the major drivers for the 

worldwide resurgence of interest in asynchronous design – notable major projects include [15] 

– [29]. The design of clock-free or asynchronous systems has thus become attractive for 

digital system designers during the past two decades although asynchronous logic was 

explored from the infancy of integrated circuit design [30] - [32]. But synchronous design 

provided a far more efficient vehicle for exploiting the technology in commercial applications. 

The 2006 Semiconductor Industry Association's (SIA's) ITRS report on design stated that the 

percentage of designs driven by handshake clocking (asynchronous signalling) would rise 

from 11% in 2008 to 40% by 2020. The latest ITRS update on design [33] predicts that design 

re-use (as a percentage of all logic) would increase from a current figure of 38% to 55% by 

2020. Over this period, parameter uncertainty (as a percentage effect on sign-off delay) is 

projected to increase from 10% to 25%. In fact, reliability has been labelled as one of the five 

crosscutting design challenges, which drives home the point that design robustness is 

becoming an increasing priority in deep submicron technologies. The above projections tend 

to forecast and necessitate a considerable shift in the design paradigm from conventional 

synchronous logic to asynchronous logic, as the latter benefits owing to its ability to tolerate 

supply voltage, process parameter and temperature variations [15]. Due to the absence of a 

global clock reference, asynchronous circuits tend to have better noise and electro-magnetic 

compatibility properties than synchronous circuits [34]. Also, they feature greater modularity 

permitting convenient design reuse [36]. Asynchronous operation by itself does not imply low 

power, but often suggests low power opportunities based on the observation that asynchronous 

circuits only consume power when and where active [35] [36]. The recent demonstration of 

the potential advantages of the world's first 8-bit physically flexible asynchronous 

microprocessor design over a synchronous flexible version in terms of power and noise figures 

by Karaki et al. from Seiko Epson's Technology Platform Research Centre [37], which utilises 
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4-phase handshaking and quasi-delay-insensitive design style, endorses the future of self-

timed design techniques for even unconventional electronics.  

 Asynchronous circuits assume that signals are binary but the notion that time is not 

discrete. An asynchronous system is one in which there is no global synchronisation within the 

system; subsystems within the system are synchronised locally by the communication 

protocols between them. The results produced by the subsystems in an asynchronous system 

can be consumed by other subsystems as soon as they are generated without having to wait for 

a global clock tick. Moreover in asynchronous systems, a sub-system can easily be replaced by 

another subsystem with the same functionality but with different performance, but this is not a 

straightforward task in case of a synchronous system as the clock period might have to be 

recomputed. An asynchronous system stage that involves request/acknowledge handshake 

(signal exchange) signalling protocol is shown in figure 1.2. However, robust asynchronous 

systems embed the request information within the data wires and are usually referred to as 

self-timed systems. Self-timed systems are characterised by the absence of any timing 

reference to which all the operations are synchronised – being in stark contrast to synchronous 

systems where all operations are synchronised to the global clock signal.   

 

 

Figure 1.2: A typical asynchronous system stage 

 

1.2 Research Contributions  

Based on the research undertaken on self-timed combinational logic realisation and especially 

with respect to datapath elements, the original contributions of this thesis are summarised as 

follows:   
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� Formulation of speed-independent decomposition rules using set-theoretic principles. 

� General multi-level synthesis models to realise strong or weak-indication combinational 

logic, which consider the entire input space.  

� A set theory based heuristic for compactly synthesising combinational logic of arbitrary 

size as self-timed circuits and a system configuration in support of the proposed heuristic.  

� Design of self-timed carry-ripple adders which feature local or global indication property 

and proposition of the concept of logic redundancy insertion for delay reduction.  

� Self-timed section carry based carry-lookahead architectures that greatly minimise the 

latency of dual-operand addition in comparison with the ripple carry topology.   

� A combinational bit-partitioning strategy addressing self-timed multi-operand addition and 

the design of a self-timed logic compressor.  

 

1.3 Publications  

The following list of publications gained and papers to be submitted for review corresponds to 

the contributions resulting from this research work.  

� P. Balasubramanian and D.A. Edwards, “Efficient realization of strongly indicating 

function blocks,” Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 429-432, 

2008.  

� P. Balasubramanian and D.A. Edwards, “A new design technique for weakly indicating 

function blocks,” Proc. 11th IEEE Workshop on Design and Diagnostics of Electronic 

Circuits and Systems, pp. 116-121, 2008.  

� P. Balasubramanian and D.A. Edwards, “A delay efficient robust self-timed full adder,” 

Proc. 3rd IEEE International Design and Test Workshop, pp. 129-134, 2008.  

� P. Balasubramanian and D.A. Edwards, “Power, delay and area efficient self-timed 

multiplexer and demultiplexer designs,” Proc. 4th IEEE International Conf. on Design and 

Technology of Integrated Systems in Nanoscale Era, pp. 173-178, 2009.  

� P. Balasubramanian, D.A. Edwards and C. Brej, “Self-timed full adder designs based on 

hybrid input encoding,” Proc. 12th IEEE Symposium on Design and Diagnostics of 
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Electronic Circuits and Systems, pp. 56-61, 2009.  

� P. Balasubramanian and D.A. Edwards, “Dual-sum single-carry self-timed adder designs,” 

Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 121-126, 2009.  

� P. Balasubramanian and D.A. Edwards, “Heterogeneously encoded dual-bit self-timed 

adder,” Proc. 5th IEEE Conf. on Ph.D. Research in Microelectronics and Electronics, pp. 

120-123, 2009.  

� P. Balasubramanian and D.A. Edwards, “Self-timed realization of combinational logic,” 

Accepted for presentation in the 19th International Workshop on Logic and Synthesis, 2010. 

� P. Balasubramanian and D.A. Edwards, “Redundancy insertion and latency reduction in 

self-timed adder blocks,” to be submitted for review.  

� P. Balasubramanian and D.A. Edwards, “Self-timed section carry based carry-lookahead 

adder architectures,” to be submitted for review.  

 

1.4 Structure of the Thesis 

The organisation of this thesis is as follows:  

� Chapter 2 discusses the fundamentals of self-timed systems. Specifically, the basics 

underlying robust asynchronous datapath logic implementation are explained.  

� In Chapter 3, various self-timed combinational logic realisation schemes are reviewed.  

� In Chapter 4, new terminologies are proposed to describe logic operations on the basis of 

set theory. Necessary criteria for speed-independent datapath logic decomposition are 

discussed and a general multi-level synthesis model is proposed for strong or weak-

indication function block designs based on the dual-rail data encoding protocol, which can 

be extended to address any 1-of-n data encoding scheme. A set theory based procedure to 

derive two-level minimum orthogonal sum-of-products form is elucidated and the 

complexity involved in extending this heuristic to multiple levels is highlighted. A system 

configuration proposed to facilitate strongly or weakly indicating function block 

implementations on the basis of the above heuristic is then presented. Examples of a 

multiplexer and demultiplexer are considered to highlight the benefits of this strategy.    

� Single-bit and dual-bit self-timed adder designs that utilise homogeneous or heterogeneous 

delay-insensitive data encoding schemes are discussed in Chapter 5. Modifications to a 
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speed-independent adder, in order to properly embed the property of indication 

(acknowledgement) into it are also mentioned. The carry-ripple adder topology has been 

considered for evaluation of the adder modules. The concept of redundant logic insertion 

that facilitates significant delay reduction in a logic cascade is then explained.  

� In Chapter 6, novel self-timed section carry based carry-lookahead architectures for 

reducing the latency associated with conventional self-timed dual-operand carry-ripple 

addition are presented. An analytical estimation of the hardware complexity involved in 

realising higher-order carry-lookahead modules is also provided.  

� Chapter 7 first discusses conventional tree structures for performing multi-operand 

addition. A combinational bit-partitioning scheme for performing self-timed multi-operand 

addition is then described. A (4:2) logic compressor is designed and addition of multiple 

operands using adders/logic compressors is separately examined through a case study.  

� An overall summary of the thesis contents is first discussed in Chapter 8. Next, the issues 

involved in extending the two-level heuristic that has been proposed to implement 

arbitrary combinational logic functions as self-timed circuits into multiple levels are 

mentioned, and a feasible solution is then presented. This presents an interesting direction 

for further research in the domain of self-timed logic.   

 



Chapter 2 – Fundamentals of Asynchronous Circuits 
_____________________________________________________________________  

 33 

Chapter 2  
 

Fundamentals of Asynchronous Circuits 
 

The fundamentals of asynchronous systems such as handshake protocols, bundled-data and 

delay-insensitive data encoding schemes, modes of operation, various classes of asynchronous 

circuits based on the timing models adopted, Muller's C-element and the concept of indication, 

and the notion of a function block are discussed briefly in this chapter. References [38] – [40] 

provide a good introduction and comprehensive overview of asynchronous design 

methodologies in general. This chapter is intended to provide only a snapshot of the relevant 

details, with emphasis on topics of interest in the context of the subject matter of this thesis.  

 

2.1 Handshake Mechanism and Data Representation 

Asynchronous systems come in many flavours with the most prominent among them being 

bundled-data and dual-rail data encoding schemes. The communication protocol among these 

systems can also assume two forms: 2-phase (transition signalling) and 4-phase (level- 

sensitive signalling). Bundled-data encoding with 2-phase signalling and dual-rail data 

encoding with 4-phase signalling have been the popular choices in asynchronous circuit design 

until now and so they will be described here to provide relevant background information. In 

fact, dual-rail data encoding with level sensitive signalling continues to attract attention, as it 

is tolerant to variations in logic elements and communicating signal wires and hence has 

become attractive for deep submicron technologies [29] [37] [67].  

 The bundled-data protocol uses a request wire and an acknowledge wire and a set of 

single-rail data wires for data communication between the sender and receiver, as shown in 

figure 2.1. Hence, apart from the data bundle, there are two control wires: request (req) and 

acknowledge (ack). Together, they form a channel or medium of communication. In a typical 

2-phase handshake protocol, the sender initiates the handshake mechanism with the data at 

hand by issuing a request to the receiver (by a transition on the req wire) and the receiver 

accepts the data and issues an acknowledgement (by a transition on the ack wire) to the 

sender. This completes a single transaction and sets the tone for a subsequent transaction, as 
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depicted in the timing diagram of figure 2.2. The relations represented by solid arrows are 

functional constraints, while those indicated by dashed arrows are domain constraints. The 

crosshatched areas of input data and output data signify the time periods (intervals) during 

which data values may change; otherwise the data are stable and defined. 

 

 

Figure 2.1: Bundled-data encoding and 2-phase handshaking 

 

 

Figure 2.2: Timing diagram of a 2-phase handshake protocol [71] 

  

 It can be noticed that every transition on the req wire, both falling and rising, initiates a 

new request. Two-phase signalling is particularly useful for the realisation of high-speed 

Micropipelines [41]. Alternatively, the receiver can initiate the handshake process. Hence, if 

the sender is the active party who initiates the handshaking with the receiver being the passive 

party, then the channel is called push channel as the sender pushes the data to the receiver. 

Alternatively, if the receiver is the active party with the sender being the passive party, then 
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the channel is known as pull channel as the receiver pulls the data from the sender. 

Traditionally, the request wire is used to inform the receiver about the validity of the data on 

the data bundle. This inherently places a constraint on the req wire, known as the bundling 

constraint. According to this constraint, the req wire must be asserted only after the bundled-

data is valid at the receiver end. This is necessary to ensure that data wavefronts do not 

overlap and the system does not enter into a deadlock state. In other words, after a transition in 

the ack wire from the receiver to the sender that the data has been used; the sender can send 

the next set of data to the receiver. A micropipeline is delay-insensitive once the bundling 

constraints are met. Since there is no upper bound on the delays between consecutive events 

and even though the req wire is asserted after the data becomes valid at the transmitter end, 

arbitrary wire delays mean that this condition may not hold at the receiver; therefore, bundled-

data protocols are not delay-insensitive.  

 In contrast to bundled-data encoding, dual-rail encoding does not use a separate req 

wire; instead the req signal is embedded within the data wires. Moreover, each data wire x is 

represented using two data wires x0 and x1, as shown in figure 2.3.  

 

 

Figure 2.3: Delay-insensitive (dual-rail) data encoding and 4-phase handshaking 

  

 A transition on the x0 wire indicates that a zero has been transmitted, while a transition 

on the x1 wire indicates that a one has been transmitted. Since the request is embedded within 

the data wires, a transition on either x0 or x1 informs the receiver about the validity of the 

data. The condition of both x0 and x1 being a zero at the same time is referred to as the spacer 

or empty data. Both x0 and x1 are not allowed to transition simultaneously as it is illegal and 
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invalid. The channel requiring (n+2) data wires in a bundled-data system would now comprise 

(2n+1) data wires with dual-rail signalling; nonetheless, the latter approach makes the 

signalling robust and therefore can tolerate random variations in wire delays when the 

bundling constraint cannot be guaranteed. With reference to figure 2.3, the 4-phase handshake 

protocol can be explained as follows1:  

• The dual-rail data bus is initially in the spacer state. The sender transmits the codeword 

(valid data). This results in 'low' to 'high' transitions on the bus wires (i.e. any one of the 

rails of all the dual-rail signals is assigned a logic 'high' state), which correspond to non-

zero bits of the codeword.  

• After the receiver receives the codeword, it drives the ackout (ackin) wire 'high' ('low').  

• The sender waits for the ackin to go 'low' and then resets the data bus (i.e. it is driven 

to the spacer state).  

• After an unbounded, but finite (positive) amount of time, the receiver drives the ackout 

(ackin) wire 'low' ('high'). A single transaction is now said to be complete and the system 

is ready to proceed with the next transaction.  

 

 

 Figure 2.4: Timing diagram of a 4-phase handshake discipline [71] 

  

 The timing diagram for the 4-phase asynchronous signalling protocol is shown in 

figure 2.4, with the req wire explicitly shown to describe the handshaking process. It can be 

observed that four transitions are required to complete a transaction with this approach and 

there is an intermediate return-to-zero (RTZ) phase of both the req and ack wires preceding 

                                                 
1 The explanation remains valid for data representation using any delay-insensitive data encoding scheme.  
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every transaction as the signalling convention is level-sensitive: valid data corresponding to 

logic high and spacer data corresponding to logic low. Comparing figures 2.2 and 2.4, it can 

be seen that the number of transactions processed during the same time interval is double in 

case of the bundled-data system employing 2-phase signalling compared to the encoded 

system employing 4-phase signalling convention. Though in principle every transition 

represents a meaningful event in case of the 2-phase protocol, such interface implementations 

require more logic and are more complex as circuits that process transitions require state. The 

increase in logic complexity may lead to more power consumption than was saved by fewer 

control transitions. This was the case with the low-power asynchronous ARM processor, 

AMULET1 [16]. The lack of a distinct low power advantage led to an improved 

implementation, AMULET2e [22], in which RTZ signalling convention was employed and 

performance improvement and power reduction over AMULET1 were reported [42]. 

Although the improvements were effected owing to enhanced design expertise and 

architectural improvements as well, nevertheless, it substantiated the reasoning that power and 

performance attributes cannot be solely judged on the basis of the number of control 

transitions per event.  

 It was mentioned earlier that in case of the dual-rail data encoding scheme, the input 

combination of both x0 and x1 being simultaneously high is not allowed because the coding 

scheme is unordered [43]. A coding scheme is said to be unordered, when none of its code 

words is contained in any other codeword. In simple terms, the positions of ones in a 

codeword are never a subset of the positions of ones in a different codeword (example, '01’ 

and '10'). In fact, the dual-rail code is the simplest member of the general family of delay-

insensitive m-of-n codes [44], where m lines are asserted ‘high’ out of a total of n physical 

lines to represent a codeword and the size (i.e. the number of unique symbols) of a generic m-

of-n code is given by the binomial co-efficient n choose m = 
)!(!

!

mnm

n

−
. The dual-rail code is 

ideally suited for representing a single bit of information. To represent two bits of information 

at a time, the dual-rail code can be concatenated as shown in Table 2.1 or can equivalently be 

represented by means of a single 1-of-4 code. Indeed, the 1-of-4 encoded values of single-rail 

inputs given in Table 2.1 represent only one of many possible encodings and an arbitrary 

choice is considered here for illustration. As can be seen from Table 2.1, two non-redundant 
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bits of information are represented at a time by asserting only half of the physical lines as 

logic 'high' in a 1-of-4 code in comparison with a dual-rail code, though both require the same 

number of physical lines. As a result, the 1-of-4 encoding approach requires only half as many 

transitions as that of a dual-rail encoding approach. Consequently, the dynamic power 

dissipation of the former scheme is very likely to be better than that of the latter due to 

reduced switching activity. This phenomenon was confirmed with the practical example of an 

ARM thumb instruction decoder [45]. However, considering the additional encoding and 

decoding circuitry required for 1-of-4 encoded datapaths in comparison with dual-rail code 

[50], the power savings gained are likely to diminish. This shall be articulated when dealing 

with self-timed dual-bit adders in Chapter 5.  

 

Single-rail inputs Dual-rail encoded data 1-of-4 en coded data 
A B (A1 A0) (B1 B0) E0 E1 E2 E3 
0 0 (0 1) (0 1) 0 0 0 1 
0 1 (0 1) (1 0) 0 0 1 0 
1 0 (1 0) (0 1) 0 1 0 0 
1 1 (1 0) (1 0) 1 0 0 0 

 

Table 2.1: Data representation in dual-rail and 1-of-4 encoding schemes 

  

 Though higher order encoding schemes are possible, nevertheless, apart from the dual-

rail (or 1-of-2) code that allows easier mapping between conventional binary functions, the 

other widely used delay-insensitive code is the 1-of-4 code. This is due to the reason that for 

self-timed datapaths, encoding (by sender) and membership test and decoding (by receiver) 

are important aspects and consequently, encoding and decoding complexity is dependent on 

the message space to be coded [46]. Completion detection circuits, which detect the arrival of 

valid/empty data, perform the membership test [47] for the delay-insensitive unordered codes. 

In short, completion detection circuits perform validity/neutrality test of input code words. 

Both dual-rail and 1-of-4 codes can be considered to belong to the class of one-hot codes or 1-

of-n codes, which is a subset of the generic family of m-of-n codes [44] [48]. The other 

important reason for the non-usability of higher order 1-of-n codes is the degradation of 

coding efficiency, and so self-timed logic realisations are usually based on dual-rail and 1-of-4 

codes. Given this, higher order m-of-n codes with better efficiency are preferred for inter-chip 
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communication [49] [50]. The efficiency of a code is determined by the rate R (that specifies 

the number of bits per wire) and is equal to n
M

2log  [44]. Here, M represents the size of the 

code or the number of data values represented and n denotes the number of physical wires. In 

general, a 1-of-n code can represent k single-rail inputs, where k = n2log . For example, to 

represent 8 single-rail binary inputs, a direct one-hot code representation would demand 256 

physical lines (1-of-256 code), whereas only 16 physical lines would be required by a dual-rail 

coding scheme and a similar count for a 1-of-4 encoding scheme. Hence, for encoding with 

direct one-hot codes, the number of physical lines required is of O(2k) and therefore 

concatenation of lower order 1-of-n codes might lead to a better solution. When a dual-rail 

code and a 1-of-4 code are used to represent exactly one bit and two bits of information 

respectively, they are said to be complete [51]. A code is said to be complete, if and only if it 

contains all code words as implied by its definition. Even with one missing codeword, it 

would be labelled incomplete. A delay-insensitive coding scheme, in general, is required to be 

unordered and complete [74]. In this context, it may be noticed that the coding efficiency of 

complete dual-rail and 1-of-4 data encoding schemes is equal to 0.5. 

 

2.2 Bounded and Unbounded Delay Models  

Asynchronous circuit design methodologies can generally be categorised based on the timing 

models. Bounded delay models assume that the delay in all circuit elements and wires is 

known (thereby bounded). Circuits based on this model, coupled with the fundamental mode 

assumption, are generally referred to as Huffman circuits [31]. This is shown in figure 2.5. 

There are two basic assumptions underlying this model: i) only one input to the circuit is 

allowed to change at a time, and ii) the present-state entries of the combinational logic can 

change only after the logic has settled in response to a new input – this condition, when 

viewed along with the first constraint leads to the understanding that multiple input changes 

would necessitate multiple iterations by the non-regenerative logic thereby increasing the 

number of cycles required to complete computation.  
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Figure 2.5: Fundamental mode system configuration 

 

The fundamental mode restriction basically implies that before every external input 

transition, the entire system should have settled to a stable state with respect to a previous 

input transition. Burst-mode design style, developed by Nowick et al. [52] [53], based on an 

earlier work by Davis et al. [54], still requires the fundamental mode assumption but only 

between transitions in different input bursts. Instead of the overly restrictive fundamental 

mode assumption, burst-mode design permits simultaneous application of multiple inputs or a 

burst of inputs (i.e. multiple input changes are permitted), which is comparable with a 

synchronous system specification. No input burst can be a subset of another input burst 

leaving the same state, so that the system can determine when a complete input burst has 

occurred without any ambiguity. Fundamental mode and burst-mode circuits explicitly add 

delays in order to avoid certain hazard cases and are therefore non-robust design styles in the 

presence of variability. This also complicates the delay-fault testing of such circuits. Even 

though a circuit may not have any defects that can cause incorrect function, it might contain 

defects that could slow its operation. The delay-fault models attempt to classify these types of 

defects and their effects on the circuit. The two basic models used are: (i) gate delay or 

transitional fault model [55], where a single gate is assumed to take too long to produce an 

output, and (ii) the path delay fault model [56], where certain paths in the circuit may take too 

long to be exercised. In a typical synchronous circuit, such faults would require the chip to be 

clocked at a slower rate, whereas in an asynchronous circuit, since there is no clock-based 

synchronisation, it may end up in incorrect circuit operation that might be difficult to fix. 

Though delay-fault testing is not solely an issue with bounded delay models and may be 
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problematic for unbounded delay models as well, the less pervasive timing assumptions of the 

latter facilitate comparatively easier testing, as they are more robust than the former. The 

bottom-line in fundamental mode circuits [32] is that environmental timing constraints are 

assumed, where the environment must wait for a circuit to stabilise before responding to the 

outputs. This requirement is identical to the hold time requirement for a simple latch or a flip-

flop [57].  

 Input/output mode circuits [58] do away with such timing assumptions in that the 

environment is allowed to respond to a circuit's outputs without any timing constraints. In this 

case, outputs may be generated only after certain inputs have occurred and where next inputs 

may be generated only after certain outputs have occurred. The following circuit models 

operate in input/output mode without timing assumptions on when the environment should 

respond to the circuit:  

• Delay-insensitive  

• Quasi-delay-insensitive  

• Speed-independent  

 A delay-insensitive (DI) circuit is designed to operate correctly irrespective of the 

delays of its gates and the delays encountered in the communicating signal wires, i.e. 

unbounded (arbitrary, but positive and finite) gate delay and wire delay models are assumed. 

This is the most robust of all the unbounded delay models, as such circuits are guaranteed to 

be correct by construction meaning they require no timing verification and can tolerate 

fluctuations in process parameters, temperature and noise and can also be ported between 

different technologies with ease, featuring excellent design modularity. The conceptualisation 

of such a circuit evolved from the Macromodules project by Clark and Molnar [59] [60] and 

was subsequently formalised by Udding [61]. It was shown in [62] and [63] that C-elements 

and inverters are the only DI elements as they satisfy certain criteria (mentioned in the next 

paragraph) and so, unfortunately, the class of pure DI circuits would be very limited, 

comprising only such elements. It was proved in [64] that gate-level realisation of such 

elements are not DI, that is to say, internal to the component, timing assumptions must be 

satisfied, while externally the component operates in a DI fashion.   
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 In order that a circuit should be DI, certain conditions need to be satisfied. Before 

proceeding further, let us define the terminologies 'guard' and 'production rule'. The rising and 

falling signal transitions of signal a are denoted by a↑ and a↓ respectively. The post-condition 

for the result of a transition of type a↑ is a (i.e. a is true), and the post-condition for the result 

of a transition of type a↓ is ¬a (i.e. a is false). For a Boolean inequality operation, with inputs 

x, y and output z, the following production rules specify the conditions for z↑ and z↓: 

� (¬x ∧  y) ∨  (x ∧  ¬y) ⇒ z↑ 

�  (¬x ∧  ¬y) ∨  (x ∧  y) ⇒ z↓  

 The conditions imposed on the input variables which lead to transition of type z↑ and 

z↓ to take place are referred to by the notations, Gu and Gd, which are known as the guards of 

the production rules, where a production rule characterises the Boolean condition on the input 

variables (guard) that leads to a specific signal assignment on the output variable: Gu ⇒ z↑ 

and Gd ⇒ z↓.  

 A DI circuit should satisfy the conditions of non-interference and stability [63].  The 

simultaneous execution of both the production rules (Gu and Gd) of a circuit would lead to 

malfunctioning of the circuit and therefore they should not be executed in parallel, i.e. they 

should be mutually exclusive. In that event, the production rules are said to be non-interfering. 

The other critical issue is the possibility for hazards, which can be eliminated by enforcing the 

stability of the guard of a production rule. The guard of a production rule is said to be stable if 

it cannot be falsified before the output corresponding to it has been derived (i.e. the output has 

transitioned). It was shown by Martin in [63] that no glitch2 or hazard can corrupt the values of 

the variables, if a circuit fulfils stability and non-interference criteria and therefore to uphold 

these, two axioms need to be satisfied by DI circuits. In order to implement the stability 

criterion, the acknowledgement theorem [63] needs to be satisfied. According to this axiom, 

every non-final transition in a DI circuit should have a successor transition, i.e. a transition on 

the input of every gate, excepting that which produces the final output, should be accompanied 

by a transition on its output so that the transition on the gate input can be acknowledged 

(indicated). The axiom needs to be satisfied for both rising and falling events. Also, the 

unique-successor-set theorem [63] has to be satisfied, i.e. the set of computations in a DI 
                                                 
2 Glitches produced as a result of electrical effects, such as crosstalk and noise, are however excluded.  
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circuit should adhere to the unique-successor-set property. According to this property, the set 

of non-final successor nodes that experience a transition as a result of a transition on an initial 

gate output node should be unique and the condition needs to be upheld for both rising and 

falling events. From the above discussion, it can be inferred that an OR gate is not a DI 

component. Following the Kleene star notation [65], the input sequence for an exemplar 3-

input OR gate in which every transition on an input could be acknowledged is given below. It 

is obvious from the sequence that the 3-input OR-gate with inputs x, y, v and output z, with a 

simultaneous transition on two or more inputs, would fail to satisfy the acknowledgement 

property. In general, for an asynchronous circuit to be classified as a DI circuit, it is imperative 

that all transitions need to be acknowledged.  

� ((x↑; z↑; x↓; z↓)*; (y↑; z↑; y↓; z↓)*; (v↑; z↑; v↓; z↓)*)* 

 Since the class of pure DI circuits is very limited, a weakest compromise to delay-

insensitivity was introduced, known as the isochronic fork assumption [62] [63]. DI circuits 

with isochronic fork assumptions are referred to as quasi-delay-insensitive (QDI) circuits, but 

it is not necessary that every fork be an isochronic fork in a QDI circuit [63]. The isochronic 

fork assumption has been defined by Martin in [63] as follows: “In an isochronic fork, when a 

transition on one output is acknowledged, and thus completed, the transitions on all outputs 

are acknowledged, and thus completed”. In simple terms, a fork refers to a node or junction, 

from where signal wires branch out and therefore an isochronic fork assumption implies that 

the value (signal value, say '0' or '1') on all the branching-out wires from the fork is similar at 

any time instant. Technically, the difference between the delays in the branches of the fork is 

considered to be negligible in comparison with the delays in the gate elements and also the 

switching thresholds in the different gates to which the fork is an input are nearly the same. 

Though both these assumptions appear to be difficult to realise in smaller geometries, the 

isochronic fork assumption is usually confined to relatively very small circuit areas. However, 

when not implemented carefully at the circuit level, these may give to hazardous circuit 

behaviour, which could not have been suspected, and so the approach of uniform logic 

threshold voltages was proposed in [66]. In deep submicron technologies, verification at the 

layout level may usually be necessitated in order to strictly enforce this assumption and the 

extent of verification would generally depend upon wiring lengths, differences in gate 

construction and variation in switching thresholds. Adding delay elements to compensate for 
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longer wire lengths may be one practical solution to this issue. Nevertheless, isochronicity is 

an essential assumption to facilitate design of non-trivial DI circuits. Intuitively, it can be 

observed, that the isochronic fork assumption avoids hazardous circuit behaviour by ensuring 

ideal circuit behaviour, i.e. it resolves the uncertainty in the arrival of signals to different 

destinations (branches) from the same source (node) by enforcing uniformity. Figure 2.6 

shows an isochronic fork and the corresponding signal transitions for a simple conjunction of 

identical inputs. Given this, the AND gate should not be construed as a DI component, for 

reasons that shall be described in the next section. A recent work by Martin et al. [67] showing 

that the main building blocks of QDI logic, including realisation of the isochronicity 

assumption can be successfully implemented even in nano-CMOS technologies, where stricter 

design rules and large parameter variations could be expected, is an encouraging pointer 

towards the feasibility of this approach in the nano-CMOS era. In fact, it was shown that all 

QDI computations are deterministic, i.e. all Turing-computable functions have a QDI 

implementation [68]. In view of these, it can be understood that a DI circuit conforms to the 

unbounded delay model for both gates and wires, while a QDI circuit conforms to the 

unbounded delay model for gates and wires, with the exclusion of certain forks (subsequently 

certain wires, which are the fan-outs of the fork) called isochronic forks (equivalently, 

isochronic branches – those branches of the isochronic fork with unacknowledged transitions 

[67]).  

 

 

Figure 2.6: Illustration of isochronic fork assumption with respect to a primary gate input 

  

 The concept of speed-independency originates from Muller's work of the 1950's and 

60's [30] [31] [69] and a speed-independent (SI) circuit is one which operates correctly 

regardless of gate (or component) delays; wires are assumed to have zero or negligible delay – 

unbounded gate delay and bounded wire delay. From the earlier discussion, it can be identified 

that QDI circuits assume zero delays with respect to isochronic forks (subsequently their 

branches) and so the description of a SI circuit basically necessitates that every fork be an 
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isochronic fork. Technically speaking, wire delays are typically accounted for in the 

components according to the model and subsequently, wires are assumed to be ideal (i.e. zero 

delay). For this reason, a SI circuit is commonly referred to as a QDI circuit in practice. 

 Referring to the circuit fragment depicted in figure 2.7(a), dg1, dg2 and dg3 represent the 

delay values of gates g1, g2 and g3 respectively, while dw1, dw2 and dw3 signify the delay 

values of the corresponding nets. For the DI delay model, dg1, dg2, dg3, dw1, dw2 and dw3 can be 

arbitrary, while in case of the QDI delay model; dw2 is assumed to be equal to dw3 with f being 

construed as an isochronic fork junction. Considering the SI delay model, dw1 = dw2 = dw3 = 0, 

but the wire delays are accounted for in the delay of gate g1, whose output acts as inputs for 

gates g2 and g3. Hence, the delay of gate g1 is modelled as dg1+dw1+dw2 or dg1+dw1+dw3 as 

shown in figure 2.7(b).       

 

 

Figure 2.7: Illustration of DI, QDI and SI delay models 

  

 Asynchronous systems have been increasingly referred to as self-timed systems in the 

literature, as the term 'self-timed' implies that a system is governed by its own timing and not 
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controlled externally by a common clock reference, i.e. the term 'asynchronous' has become 

synonymous with the term 'self-timed', though the latter is only a classification of the general 

category of asynchronous design that corresponds to a robust implementation. The term 'self-

timed' was coined by Seitz [70] [71], and a self-timed (ST) system is either a single ST 

element or a legal interconnection of ST elements. An element or a group of elements is said 

to be contained in an equipotential region, where signals may be treated as identical at all 

points in a wire, i.e. wires incur negligible delay. A ST element can be speed-independent. 

There are literally no timing assumptions on the communication between the regions; i.e. 

communication between equipotential regions is DI. There are no timing constraints at the 

system level in a ST system and its correct operation can be subjected to only satisfying a 

topological constraint with respect to the interconnection of elements, with the system being 

composed of correctly functioning elements. As a result, systems based on bundled-data 

protocol are also referred to as ST systems in the literature, which are not robust, and the 

hazards associated with the underlying combinational logic are only hidden within the 

handshake mechanism through the use of delay-matching elements, which are optimised to 

reflect at least the worst-case delay of the combinational logic. In the true sense, ST systems 

would refer to a robust classification of asynchronous systems, when they adopt delay-

insensitive data encoding and usually follow a RTZ signalling convention. Such systems are 

construed to be self-checking, at least with respect to single stuck-at faults [72]. In fact, this 

robust approach has its roots in the pioneering work of Muller et al. [30] [31] [69]. Given this, 

ST systems could employ a range of timing assumptions in general. At this juncture, we 

provide two clear justifications to our argument in this regard: Martin compares a ST circuit to 

a DI (i.e. in practice QDI) circuit in [62] and in [71]; Seitz refers to his ST full adder as a SI 

circuit. Therefore, ST design, in general, can be defined as that which guarantees correctness 

of circuit operation irrespective of delays associated with design components or that 

encountered in the communication signal wires and such tend to possess the inherent 

capability to absorb the parametric variations of devices. Henceforth, we shall use the term 

'self-timed' to lay emphasis on only robust asynchronous designs, which in general, 

incorporate some delay-insensitive data encoding mechanism with 4-phase signalling.  
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2.3 C-element and Indicatability 

The C-element, introduced by Muller [69], is an important gate widely used in asynchronous 

circuits and is the key element for implementing robust asynchronous logic. Many custom 

static and dynamic transistor level solutions have been proposed for this gate functionality in 

the literature [41] [65] [73] - [75]. The symbol, Boolean equation and a transistor level 

realisation of the 2-input C-element (CE2) with weak feedback are shown in the figure below.  

 

 

Figure 2.8: Schematic, specification and circuit realisation of a 2-input C-element 

  

 The CE2 outputs a 'high', when both its inputs are 'high' and outputs a 'low', when both 

its inputs become 'low'. In general, a random size C-element waits for all its inputs to become 

high (low) before producing a similar logic level at its output. Hence, it is also referred to as a 

rendezvous element, ST element [71] or DI element [62], as it governs the rendezvous of input 

signals in that, it acts only after all input events have arrived, i.e. it synchronises different 

events, and as such, it is referred to as a symmetric C-element. When the inputs are different, it 

retains its previous state and so the C-element is also referred to as a state-holding element. It 

basically implements the AND function for events, such that if a specific transition takes place 

at one input and it is coincident with, or followed by, a similar transition on the other input(s), 

then that transition will be presented to the output. The production rules for CE2 with inputs x, 

y and output z are specified as follows:  
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� x ∧  y ⇒ z↑ 

� ¬x ∧  ¬y ⇒ z↓  

 The C-element is an important DI operator, as it is indicatable [76] and therefore it 

satisfies the acknowledgement axiom [63] – this is the property of the symmetric C-element, 

which is widely used in 4-phase signalling conventions that employ DI codes. In [76], 

Varshavsky mentions that if the input(s) of a circuit are indicated to its output(s) then the 

circuit is indicatable. The condition for circuit indicatability is stated thus: “The necessary 

condition for a circuit to be indicatable is that all functions in the SIF (system of inherent 

functions) of the circuit are isotonous (antitonous) in increasing variables and antitonous 

(isotonous) in decreasing variables in all allowed input transitions”. This condition is 

analogous to and can be described through the characteristic of a non-inverting buffer. 

Assuming ‘a’ as the input and ‘z’ as the output of a buffer cell, the following input and output 

transitions are valid: a ⇒ z↑ and ¬a ⇒ z↓. When the output of a C-element becomes 'high', 

then it highlights the fact that all its inputs have become 'high' and when the output of the C-

element changes from 'high' to 'low', then it would imply that all its inputs have become 'low'. 

So the output of the C-element properly indicates the state of its inputs transitions or, the 

concurrent arrival of all the inputs are duly acknowledged (reflected) by the output. Because 

the output of the C-element properly acknowledges or determines the complete arrival of 

similar values on all its inputs (i.e. the state of the inputs can be determined from the output 

transition), the C-gate3 is said to be input-complete [77] or logically determined [78]. A gate 

(circuit) that does not indicate the arrival of all its inputs on its output unambiguously is said 

to be input-incomplete or not logically determined.  

 A rudimentary gate level realisation, standard cell realisation and the SI realisation of 

the CE2 are shown in figure 2.9. The elementary gate level realisation, shown in figure 2.9(a) 

could lead to hazardous circuit behaviour. This can be understood from the following 

sequence of transitions: (a↑, b↑) → m↑ → y↑. Subsequently, this will result in l↑ and n↑, 

which cannot be properly acknowledged by the OR gate. Such non-acknowledgeable 

(unobservable) transitions on gate output nodes are referred to as gate orphans, which need to 

be avoided as they may lead to improper circuit operation or cause malfunctioning of the 

                                                 
3 The C-gate is also identified as an input-complete gate or non-relaxed gate in this thesis. 
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circuit (unpredictable circuit behaviour leading to possible erroneous output states). Wire 

orphans, though less problematic than gate orphans can arise in a circuit, but they are 

overcome with the assumption of equipotential regions or isochronic forks, eliminating the 

need for acknowledgement of a transition on a wire fork on all its fan-out branches, i.e. wire 

orphans are due to non-isochronic branches. To avoid gate orphans, timing assumptions are 

necessary, which in turn complicate the verification process. If the environment can be 

assumed to be sufficiently slow changing, then the elementary gate level realisation can be 

considered to be safe.    

 

 

Figure 2.9: Different gate level implementations of a 2-input Muller element 

  

 A better approach would be to eliminate this timing assumption by a process called 

merging – discussed in detail in the context of cell merging for asynchronous threshold 
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networks in [79]. If the three 2-input AND gates and the 3-input OR gate can be merged 

together and replaced by a single complex gate (AO222 cell) as shown in figure 2.9(b), then 

there would not be any gate orphans and thereby the circuit is said to preserve gate orphan 

freedom. In this case, the transition on y would be acknowledged by a transition on the 

downstream logic. Merging is possible whenever there is a choice of an element in the base 

function set for technology mapping which implements the combined functionality of discrete 

logic gates. Given this, the granularity of the base-function set additionally impacts the 

optimisation potential [80]. In general, it can be concluded that composing a larger gate from 

smaller gates (i.e. merging) could help in elimination of hazards, while naive decomposition of 

a larger gate into smaller gates [81] [82] by utilising the associative property [71] can give rise 

to hazards. Figure 2.9(c) shows the SI realisation of 2-input C-element functionality 

synthesised using Petrify tool [83], requiring two complex gates – OA12 and AO12 cells. 

Since the standard cell realisation requires only a single complex gate, it was preferred for all 

the simulations corresponding to this research work.  

 Since provision of state-holding elements with good granularity might be vital for 

realising high performance designs, 3-input and 4-input C-element functionality has also been 

realised using the gates of a standard cell library (130nm UMC CMOS process technology). 

The Boolean expression and the production rules corresponding to the 3-input symmetric C-

element, with inputs a, b, c and output z is given as follows: 

� z = abc + az + bz + cz 

� a ∧  b ∧  c ⇒ z↑ 

� ¬a ∧  ¬b ∧  ¬c ⇒ z↓  

 The gate level representation of the 3-input C-element based on the extended 

isochronic fork assumption [84] is given in figure 2.10(a), while the more robust proposed 

implementation is shown in figure 2.10(b). While an isochronic fork corresponds to a delay 

assumption applied to the inputs of gates that are connected to the branches of a fork, the 

notion of an extended isochronic fork introduces a delay assumption on the outputs of the 

inverting CMOS gates connected to the branches of a fork. The so-called extended isochronic 

fork assumption simplifies the implementation of sequential gates by further weakening the 

original isochronicity assumption. The implementation depicted in figure 2.10(b) utilises the 



Chapter 2 – Fundamentals of Asynchronous Circuits 
_____________________________________________________________________  

 51 

combination of a conventional 3-input AND gate and an AO2222 complex gate. It may be that 

many standard cell libraries might not have the AO2222 cell as one of their constituents; in 

which case, the 3-input and 4-input C-elements can be decomposed in a SI fashion by 

employing 2-input C-elements.   

 

 

 Figure 2.10: Different gate level implementations of a 3-input Muller element 

 

 A possible robust realisation of the 4-input C-element is depicted by figure 2.11. In this 

context, it should be noted that efficient gate level implementations of high fan-in Muller 

elements are largely technology-dependent.  

 An inverting buffer with input x and output z can be classified as a DI operator and is 

governed by the following production rules.  

� ¬x ⇒ z↑ 

� x ⇒ z↓  
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 Apart from the NOT gate, many other conventional logic gates (such as AND, OR, 

NAND, NOR, XOR and XNOR) fail to satisfy the acknowledgement property. For example, if 

the output of an XNOR gate is 'high', then no claim can be made regarding the certainty of the 

state of its inputs, i.e. whether all its inputs are 'low' or 'high'. Similarly, after this, if the 

XNOR gate output switches to 'low', then again a greater ambiguity is introduced as one 

cannot be sure as to which input(s) change caused the output to switch from 'high' to 'low'. 

Hence, it is said to be non-indicating, as it does not unambiguously reflect the arrival of its 

inputs on its output. In case of simple logic gates such as AND and OR, the acknowledgement 

property is satisfied only for rising or falling transitions respectively and not both. 

 

 

Figure 2.11: Gate level realisation of a 4-input Muller element 

 

2.4 Function Block – Definition and Characterisation 

A function block is the asynchronous equivalent of a synchronous combinational logic circuit 

[40]. However, in addition to satisfying the requisite functionality, it should also be 

transparent to the handshaking as implemented by its surrounding latches. Most robust 

function block designs adhere to a 4-phase handshaking convention for simplicity of 

implementation and can employ any DI data encoding scheme. The outputs of a function 

block are also entrusted with the responsibility of indicating the completion of computation 

within it, i.e. to say, whether all internal nodes have attained the correct steady-state value. 

There should also not be any dangling inputs or outputs within the function block. Seitz 

classified a function block into two basic robust categories depending on their indicating 
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mechanism as either strongly indicating or weakly indicating [71]. It was also proved therein 

that a legal interconnection of strongly or weakly indicating function blocks is itself a strong 

or weak-indication function block. This property allows composition of a larger function block 

from smaller ones. Besides, QDI combinational logic circuits naturally tend to have inverter 

free realisations regardless of the indication property [51]. Relatively less robust (requiring 

more timing assumptions) models of function blocks, viz. relative timing [85] and monotonic 

Boolean networks [86], have also been proposed in the literature and these basically trade-off 

robustness for improved performance gains. Nevertheless, in this thesis, we shall exclusively 

deal with only the two most robust categories, listed in descending order of safety.   

• Strong-indication: In this case, the function block waits for all inputs (valid/spacer) to 

arrive before it starts to compute and produce all outputs (valid/spacer). The sequencing 

constraints are briefly mentioned below:   

� All inputs become defined (valid)/undefined (spacer) before any output becomes 

defined/undefined, i.e. any or all output(s) become defined/undefined only after all 

inputs become defined/undefined 

� All outputs become defined/undefined before any input becomes undefined/defined 

• Weak-indication: In this case, the function block starts to compute and produce outputs 

(valid/spacer) even with a subset of the inputs (valid/spacer). However, Seitz's weak 

timing specifications require that at least one output (valid/spacer) should not have been 

produced until after all inputs (valid/spacer) have arrived. The sequencing constraints are 

as follows:  

� Some inputs become defined (undefined) before some outputs become defined 

(undefined), i.e. some outputs could become defined (undefined) only after at least 

some inputs become defined (undefined) 

� All inputs become defined (undefined) before all outputs become defined 

(undefined), i.e. all outputs could become defined (undefined) only after all inputs 

become defined (undefined) 

�  All outputs become defined (undefined) before any input becomes undefined 

(defined) 
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 The signalling scheme for strong and weak-indication timing regimes in terms of the 

inputs and outputs is illustrated graphically in figure 2.12. From the preceding discussion, it 

can be understood that the C-gate and inverter can be identified as strongly indicating 

elements. In general, the maximum datapath delay can be reduced in the case of weak-

indication circuits compared to their strong-indication counterparts through relaxation of 

indication constraints for all but one of the function block outputs by incorporating relaxed 

gates.  

 

 

Figure 2.12: Depicting strong and weak-indication phenomena  

 

2.5 Summary 

In this chapter, the fundamentals of asynchronous circuits, relevant to the subsequent contents 

of this thesis have been described in detail. The topics discussed include handshake signalling 

protocols, delay-insensitive data encoding schemes, various unbounded delay models, Muller 

C-element and the concept of indication (acknowledgement), and classification and 

specification of robust timing regimes.  
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Chapter 3  
 

Self-Timed Combinational Logic  
 

Dual-rail encoding (DRE) is a widely used DI data encoding convention for robust 

asynchronous designs as it is a systematic code (input data being embedded in the encoded 

data) [88], and interest in 1-of-4 encoding is attributable to its inherent low power advantage. 

However, since many logic realisation schemes adopt DRE as a standard, a number of well-

known ST combinational logic realisation schemes shall be analysed on the basis of DRE with 

examples.  

 ST implementation of combinational logic continues to be a field of important research 

activity on its own accord as it is inherently beset with the problem of input state space 

explosion, which poses exponential complexity with increase in the number of concurrent 

inputs; dealing with this problem is indeed a troublesome task [89]. Such is the gravity of the 

problem that even a standard tool preferred for SI synthesis of asynchronous controllers viz. 

Petrify [83] is unable [90] to synthesise a two-bit adder functionality (comprising 10 inputs 

and 6 outputs, in dual-rail format) in a SI fashion with the assumption of inputs being fed from 

and outputs being provided to the external environment. A ST realisation typically satisfies the 

acknowledgement property and the unique-successor-set property [63]. This is facilitated, if 

the monotonic cover condition [91] that ensures hazard-free implementation of SI circuits is 

incorporated into the description of the logic functionality. In simple terms, the monotonic 

cover constraint requires that only one product term in a sum-of-products implementation is 

allowed to assume a logic 'high' at any time in case of either set (true output) or reset (false 

output) functions [40]. Obviously, this requirement needs to be satisfied by the circuit only in 

the states that are reachable. In general, this would entail enumeration of the entire input state 

space that consists of distinct input combinations. Thus, an exponential increase in 

computational complexity of O(2n) is exhibited for even a gradual increase in the number of 

primary function inputs by O(n) as shown in figure 3.1, with n being the number of concurrent 

single-rail inputs – this is commonly referred to as the input state space explosion problem and 

is a major bottleneck for implementation of random combinational logic as ST circuits. This 
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phenomenon usually manifests while attempting robust asynchronous logic design. However, 

research has been pursued to alleviate the problem of input space explosion.  
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Figure 3.1: Enumerating the state space based on input order 

  

 Many properly indicating logic realisation schemes usually suffer from large area 

overheads and this has restricted direct function block implementations to usually those with 

fewer inputs and outputs, of which the fundamental datapath element viz. half/full adder has 

generally served as the exemplar circuit. Function block implementation of larger 

combinational circuits would incur at least double the area penalty of a conventional 

synchronous realisation, besides rendering the synthesis scheme practically infeasible for large 

functions. However, many approaches have been proposed and they differ in the way of 

dealing with this problem by either:  

a. Assuming the entire space without suggesting a suitable decomposition procedure or  

b. Confining themselves to only full custom solutions for smaller functions of practical 

interest or 

c. Circumventing this problem considerably in different ways by usually relying upon a 
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standard synchronous solution base and then constructing asynchronous solutions (de-

synchronisation), with the additional provision of availability of full custom library 

gates that are made available as part of a standard cell library or   

d. Resorting to SI logic decomposition by considering the entire input space or  

e. Reduction of entire input space consideration with the exception of at least a single 

output by way of possible SI logic optimisations or   

f. Addressing the problem of indication of all the primary inputs by way of partial 

acknowledgement, starting from a synchronous solution base (de-synchronisation), but 

assuming/requiring the presence of certain custom logic gates in the library.  

 Among these, the third approach has been dominant, having its roots in some of the 

earlier approaches, as it does not synthesise asynchronous circuits based on specifications such 

as communicating processes [92] or signal transition graphs [93]. Instead, it relies upon 

synchronous CAD tools for initial synthesis and then replaces every gate in the synchronous 

circuit with a dual-rail encoded gate pair in a template based fashion, which are subsequently 

mapped using NULL convention logic operators [77]. These operators are based on threshold 

logic [94] and are made available as custom elements in a standard cell library. 

 

3.1 Seitz's Method 

Seitz's approach to self-timed design [71], in its basic form, can be envisaged as an AND-OR 

two-level implementation of logic functions. It resembles the two-level AND-OR logic 

corresponding to the standard C-element architecture, which comprises first-level AND gates 

assuming unbounded fan-in and OR gates in the next logic level, which could be decomposed 

into multiple levels in an arbitrary fashion. C-elements are then used to join the set and reset 

functions corresponding to each signal [91] [95]. However, as with the standard C-element 

architecture, synthesis of larger combinational functions is practically infeasible as they could 

contain several concurrent inputs [91] [96]. Seitz's method basically requires generation of 

AND logic operators (assuming unbounded fan-in) for each of the 2n unique minterms4 of a 

                                                 
4 A minterm is a canonical product of the input variables of a Boolean function, while a cube is any product of 
input literals. A literal is a Boolean variable (say, a) or its complement (a').   
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Boolean function specified by n inputs. Assuming no bounds on the fan-in of the AND gates 

present in the first logic level is a restriction to avoid gate orphans. The canonical product 

terms are appropriately combined by OR gates (which are permitted to have bounds on fan-in) 

according to the function description – this forms the main functional part of the 

implementation. Since the AND gate indicates only when inputs become ‘ones’, separate OR-

logic which performs a logical disjunction of all the dual-rail primary input signals is required 

in order to acknowledge when inputs become ‘zeroes’. Therefore, when the outputs of the 

main functional part and the separate OR-logic are synchronised by means of C-elements, on 

the whole, the function block is said to strongly indicate the arrival of all the primary inputs. 

On the other hand, if any one dual-rail output (i.e. a true and false output) of the main 

functional part is synchronised with the output of the extra OR-logic by means of two C-

elements, then all but that dual-rail output may become defined/undefined before all the 

primary inputs have become defined/undefined. In this case, the function block satisfies Seitz's 

weak-indication timing constraints and is therefore said to be weakly indicating. Weakly 

indicating realisations permit logic optimisation, and incur more area compared to a strong-

indication version for the functional part due to more product terms but require fewer C-

elements for synchronisation purpose. Also, such realisations pave the way for reducing the 

overall system latency if a number of subsystems are connected in a linear cascade, assuming 

only certain outputs would propagate as inputs between the subsystems. A good example of 

this would be a conventional ripple carry adder (RCA) consisting of a cascade of full adder 

modules, with the carry output of a less significant adder module serving as the input carry for 

a more significant adder module. The strong and weak-indication realisations of a full adder 

based on Seitz's approach are shown in figures 3.2 and 3.3 respectively. The fundamental 

equations governing a full adder with dual-rail inputs (a1, a0), (b1, b0), (cin1, cin0) and dual-

rail outputs (Sum1, Sum0), (Cout1, Cout0) are as follows: 

Sum1 = a0b0cin1 + a0b1cin0 + a1b0cin0 + a1b1cin1 (3.1) 

Sum0 = a0b0cin0 + a0b1cin1 + a1b0cin1 + a1b1cin0 (3.2) 

Cout1 = a0b1cin1 + a1b0cin1 + a1b1cin0 + a1b1cin1 (3.3) 

Cout0 = a0b0cin0 + a0b0cin1 + a0b1cin0 + a1b0cin0 (3.4) 

 The weak-indication adder takes into account the fact that the output carry of an adder 

module could be defined as soon as its input operands become defined, depending on carry-
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kill (a0=b0=1) or carry-generate (a1=b1=1) conditions. Thus, the carry output equations can 

be optimised as: 

Cout1 = a0b1cin1 + a1b0cin1 + a1b1 (3.5) 

Cout0 = a0b1cin0 + a1b0cin0 + a0b0 (3.6) 

 

 

Figure 3.2: Seitz’s strong-indication full adder  

 

 Comparing the adder circuitry depicted by figures 3.2 and 3.3, it can be noticed that the 

strong-indication adder increases the datapath delay, while the weak-indication adder 

incorporates a fast carry propagation path as only the sum output depends on all the inputs, 

while the carry output do not always, i.e. the indication is distributed between the function 

outputs in case of the latter realisation. It is to be noted that the completion detection logic, 

when not implemented as a single OR gate due to fan-in restrictions of the cell library, would 

necessitate timing assumptions.  
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Figure 3.3: Seitz’s weak-indication full adder 

 

3.2 Singh's Approach 

Singh's approach [97] targets ST implementation of the desired functionality by first 

partitioning the entire input space, constructing smaller modules for all the different partitions 

and then combining all those smaller modules appropriately in order to realise the required 

logic. This gives rise to decompositions of fine granularity restricted to minimum fan-in and 

eventually increases the logic depth. With an increase in the number of inputs, the number of 

partitions would increase considerably and, given the extensive usage of state-holding 

elements to perform logical conjunctions, it would exacerbate the area overhead for even 

medium sized functions besides degrading the delay metric. Also, no clear method has been 

portrayed for SI decomposition of function blocks with many inputs. An efficient 

implementation of a 4-input AND gate based on this approach is shown in figure 3.4, where 

(a1, a0), (b1, b0), (c1, c0), (d1, d0) are the dual-rail inputs and (Y1, Y0) serves as the dual-rail 
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output. Multiple acknowledgements might result on some wire forks, which may be useful in 

simplifying the isochronicity assumption.  

 

 

Figure 3.4: Realisation of a 4-input AND gate based on Singh’s approach  

 

3.3 Direct Logic and Reduced Direct Logic Styles 

Among the four transistor level full custom function block styles proposed in [98], namely 

static logic, direct logic, semi-controlled precharge logic and full-controlled precharge logic, 

the direct logic can be classified as DI (QDI) as arbitrary delays on the input wires of a gate do 

not give rise to stale data values. The direct logic realisation technique basically considers a 

merger of C-elements and OR gates functionality. In other words, function blocks based on the 

direct logic style incorporate full custom complex gate constructions for both the true and false 

outputs. The transistor level realisation consists of pull-down and pull-up networks, made up 

of nMOS and pMOS transistor stacks respectively for both the output rails of the dual-rail 

output. The nMOS transistor stack corresponding to both the outputs comprises a unique path 

for each of the 2n minterms related to 'n' inputs of the function block, wherein several signal 

paths could share the same transistors. The path between output and ground is established by 

the nMOS transistor network that is used for indication of the spacer to valid data changes on 

all the inputs. The pMOS network consists of a series stack of 2n transistors that establishes a 

signal path between the supply and output when all the inputs become spacers, and is used to 
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indicate the valid to spacer data signal changes on all the inputs. Therefore two identical 

pMOS transistor networks are required to indicate the RTZ phase of the inputs on the dual-rail 

output. For functions with multiple outputs, separate function blocks need to be constructed 

for each of the individual outputs (which are also dual-rail encoded). The direct logic 

implementation satisfies Seitz's strong-indication specifications as the outputs are computed 

only after the arrival of all the inputs. A major limitation of this function block implementation 

style being the size of the transistor stacks (especially, pMOS transistor network), as the delay 

associated with the reset phase is heavily influenced by the size of the pMOS transistor stack 

that offers a higher load with even three or four primary inputs; the nMOS transistor stack 

adds a large parasitic component to the delay. A 2-input AND gate based on the direct logic 

realisation style is shown in figure 3.5, where a1, a0, b1 and b0 are the inputs, while (Y1, Y0) 

signifies the dual-rail output.  

 In case of the reduced direct logic method, the responsibility of indication of input 

variables is distributed between the output variables. In other words, the outputs are 

collectively responsible for indicating all the inputs. The motivation for this is to reduce the 

complexity associated with the direct logic and to relax the strong-indication constraints so as 

 

 

Figure 3.5: 2-input AND gate based on direct logic style 

 

to make the function block weakly indicating. Martin's full adder design [99] corresponds to 

the reduced direct logic style and is shown in figure 3.6. (a1, a0), (b1, b0) and (cin1, cin0) are 

the dual-rail inputs, while (Sum1, Sum0), (Cout1, Cout0) are the dual-rail outputs.   
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Figure 3.6: Martin’s full adder (reduced direct logic style) 

  

 Seitz's weak-indication timing regime requires that at least one function block output 

(i.e. an encoded rail of any output) should not become defined (undefined) unless all its inputs 

have become defined (undefined). Here, it can be seen that the indication of (a1, a0), (b1, b0) 

and (cin1, cin0) when becoming a spacer (i.e. during the RTZ phase), is distributed between 

the sum and carry outputs, while in case of the adder based on the direct logic style, such 

distribution could not be found as it is strongly indicating. The carry output circuitry is based 

on majority logic that asserts the sufficient arrival of any two of the three inputs during the set 

phase, while the sum circuit asserts the arrival of all the inputs. The transistor count for the 

reduced direct logic based full adder is 42, as opposed to 60 transistors for the direct logic 

based full adder, thus effecting a savings in device count by 30% whilst enabling reduction in 

delay, as the former exhibits actual case latency when adding valid data and propagates empty 

values in constant time; the full adder based on direct logic style features constant worst-case 

latency in both the scenarios.  
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3.4 Delay Insensitive Minterm Synthesis Technique 

The delay-insensitive minterm synthesis (DIMS) technique [100] is identical to the Seitz's 

approach discussed earlier in the sense that it requires listing of all the 2n canonical product 

terms of the Boolean function governed by 'n' inputs. The canonical product terms are OR-ed 

together according to the function description. However, instead of realising the product terms 

by AND gates, they are realised using C-gates. In its actual form, it can be envisaged as a two-

level implementation consisting of C-gates in the first logic level and OR gates in the second 

logic level. The C-elements are assumed to have unbounded fan-in, while the OR gates can be 

decomposed arbitrarily as, at this stage there is a one-hot code representation, since for every 

function input only one C-gate (which represents a canonical product term) would get 

activated during the set phase. Similar to Seitz's approach, the DIMS technique also assumes 

unbounded fan-in for the gates present in the first level and therefore a naive decomposition 

based on the associative axiom could lead to hazards (creation of gate orphans) as illustrated 

in figure 3.7(a), while on the contrary merging could eliminate hazards as depicted by figure 

3.7(b). Referring to figure 3.7(a), given the input transitions (a↑, b↑), only X↑ results while the 

steady state of Y is maintained. Therefore, the transition on the intermediate node X is not 

reflected on the output Y, which is construed as a gate orphan. Considering figure 3.7(b), 

given the input sequence (a↑, b↑), the steady state of Y is maintained and unless c↑ occurs, Y↑ 

does not occur thereby avoiding gate orphans.  

 

 

Figure 3.7: Hazards due to naïve decomposition of a C-gate 

  

 In general, reduction of Boolean equations is not allowed in the DIMS approach as it 

could violate the cover constraint. The function block constructed with the outputs expressed 

in disjunctive normal form utilising all the minterms is strongly indicating, as none of the 

outputs would become defined/undefined until all the inputs have become defined/undefined. 

The DIMS approach is similar to an earlier work by Anantharaman [101], but has been 
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subsequently extended into a standard technique for implementation of arbitrary multiple 

output function blocks in [100]. The strong-indication full adder realised according to the 

DIMS approach is shown in figure 3.8.   

 

 

Figure 3.8: Strong-indication full adder based on DIMS approach  

 

 

Figure 3.9: Weak-indication full adder based on DIMS approach  
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 Isochronic fork assumptions are made with regard to the primary inputs as they feed 

many C-gates, while the forks that feed the OR-gates need not be isochronic. Similar to the 

case of Seitz's weak-indication adder, the carry-kill and carry-propagate conditions can be 

enforced thereby making the function block weakly indicating, as shown in figure 3.9.  

 

3.5 Dual-Rail Combinational Logic 

The dual-rail combinational logic (DRCL) style utilises De-Morgan's theorems of Boolean 

algebra to implement a combinational logic function in an asynchronous style by replacing 

each gate by its dual-rail equivalent (dual-rail pair). DRCL, as the name implies, is suitable for 

translation of synchronous circuits into asynchronous circuits based on the DI dual-rail data 

encoding protocol alone and is not generic. The expression for the false output of a logical 

operator is derived from the complement of the Boolean equation corresponding to its true 

output, expressed in sum-of-products form. Thus this approach could harness the strength of 

traditional synchronous logic design. The aim of this style is to facilitate asynchronous logic 

realisation using conventional logic gates, which are available as standard cells, thereby 

reducing the area expense. When such discrete gates are used, it is important to ensure the 

completion of computation at the internal nodes of the realisation apart from guaranteeing the 

complete arrival of all the inputs. We consider two scenarios for the DRCL equivalent of a 

Boolean function, say, F = ab + cd, as shown in figure 3.10, to clarify the necessity for 

ensuring proper indication of signal events at the primary inputs as well as intermediate output 

nodes and to describe how wire and gate orphans could possibly result.   

1. Assuming all the data inputs to be currently spacers, when a0 and c0 become defined 

intermediate signals x0 and y0 would become defined and eventually F0 would be 

defined. Assuming that b0 and d0 also become defined subsequently, they would not 

be acknowledged by the intermediate signals or by the corresponding output in the 

present evaluation phase resulting in wire orphans.   

2. Let us assume that a1 and b1 become defined after a RTZ phase. This would lead to 

defining of the intermediate signal x1. Assuming that c1 and d1 become subsequently 

defined during the current evaluation phase, F1 could have become defined as a result 
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of x1 alone becoming defined and hence a late transition on y1 would not be 

acknowledged by the primary output giving rise to a gate orphan.  

 

 

Figure 3.10: DRCL realisation of F = ab + cd  

 

 From the above discussion it becomes clear that the DRCL scheme is basically non-

indicating and, as such, it generally conforms to eager evaluation owing to the fact that even 

with a subset of the function block inputs becoming defined, all the outputs could become 

defined regardless of the lately arriving inputs. Hence, it does not adhere to strong or weak-

indication timing constraints. The NCL_X approach discussed in section 3.10.2 utilises the 

DRCL style for implementing the functional part and deals with ways to eliminate the 

problems of wire and gate orphans through the provision of explicit completion detectors.  

  

3.6 David et al.'s Approach 

David et al.'s method [103] consists of deriving the Boolean expression for the false rail5 of a 

function output by complementing the logical equation corresponding to its true rail. With 

respect to the implementation, four sub-networks are involved – ORN, CEN, DRN and 

OUTN. The ORN (OR-gates subnet) consists of n two-input OR gates, where 'n' refers to the 

number of single-rail primary inputs. Each 2-input OR gate is used to logically sum the signal 

values of both the rails of a dual-rail input in order to detect the proper arrival of valid or 

spacer data. The CEN is basically a multiple-input C-element, which is used to synchronise 
                                                 
5 ‘F1’ and ‘F0’ correspond to the true rail and false rail of a dual-rail encoded function output ‘F’. They are also 
called ‘true’ and ‘false’ outputs of a function block.  
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the outputs of all the 2-input OR gates to detect the proper and complete arrival of all the 

inputs during both the set and reset phases. When all the dual-rail inputs are driven to the 

spacer state, the outputs of all the OR gates in the ORN would become low and the 

simultaneous reset of all the inputs would be confirmed by the output of CEN. Similarly, when 

valid data is impressed upon the dual-rail inputs, the outputs of all the OR gates in the ORN 

would transition and the transitions on all the OR gates would be subsequently acknowledged 

by a transition on the CEN output signal.  

 The DRN represents the dual-rail network that implements the desired combinational 

logic functionality. It is a monotonic network and monotonicity is achieved by ensuring that 

when all the inputs are undefined, all the outputs are reset and during the defining interval, an 

output should have changed at most once. The defining interval is specified as the interval 

between the time instances when all the inputs are undefined to the time instance when all the 

outputs (i.e. any one rail of each dual-rail output) become defined. The DRN is typically 

composed of a two-level AND-OR realisation for the true outputs and a two-level OR-AND 

realisation for the false outputs. Of course, the second level OR gates in the AND-OR network 

can be decomposed arbitrarily as only one of its inputs would experience a transition. No 

specialised decomposition strategy has been formulated as part of this approach and it does not 

require the listing of all the unique input combinations, thereby paving the way for reducing 

the area overhead considerably in comparison with many other earlier approaches; however, 

this conclusion is actually dependent on the function specification. The size of the 

combinational logic realisation would be limited by the fan-in of the basic gates available in 

the cell library in a practical scenario. Though the method hints at employing conventional 

logic minimisation algorithms for realising the DRN, it could possibly give rise to gate 

orphans, especially because of the OR-AND logic. With respect to the AND-OR logic 

realising the true function outputs, gate orphans could be avoided only by imposing no bounds 

on the fan-in of AND gates as random decompositions could easily lead to gate orphans. Even 

with an unbounded fan-in relaxation, the OR-AND logic which realises the complementary 

function outputs could still give rise to hazards. This will be described shortly with an 

example. The logic implementation for the false function output is complementary to that of 

its true output, i.e. to say the DRN implementation utilises the DRCL style.  
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 OUTN refers to the output subnet, which is composed of state-holding elements that 

are used to synchronise the outputs of CEN and DRN. OUTN would require a 2-input C-

element for each rail of the output produced by the DRN and is mainly meant to retain the 

DRN outputs until all the inputs become defined (undefined) in the set (reset) phase in order to 

maintain compatibility with the proper sequencing of events in relation to the external 

environment (i.e. with the inputs fed from and the outputs fed to the environment in a 

sequence according to the handshake protocol). Though the method may appear to enforce 

strong-indication property, it suffers from the drawback that the implementation of the 

underlying combinational logic functionality (as part of the DRN) may not be SI and therefore 

not ST in a strict sense. This reasoning is substantiated by the following example.  

 Let us consider a logic function specified by X = a'b'c + abc' and Y = a'bc' + ab'c. The 

equations for the true and false function block outputs in dual-rail format are given by:  

X1 = a0b0c1 + a1b1c0   (3.7) 

X0 = (a1+b1+c0) (a0+b0+c1)  (3.8) 

Y1 = a0b1c0 + a1b0c1   (3.9) 

Y0 = (a1+b0+c1) (a0+b1+c0)  (3.10) 

 The realisation of the above functionality according to David et al.'s approach is 

depicted by figure 3.11. The different sub-networks (ORN, CEN, DRN and OUTN) are 

highlighted in the diagram. It is to be noted that IX1, IX0, IY1 and IY0 are logically 

equivalent to X1, X0, Y1 and Y0 respectively. The isochronicity assumption can be extended 

to all the forks associated with the primary inputs. When the true outputs are asserted 'high', 

the indication of internal signals is proper as the AND gate waits for all its inputs to become 

'high' before producing a 'high' output. The critical issue is concerned with the indication of 

internal signals n2, n3, n4 and n5, which are the intermediate outputs of the OR-AND logic, 

and towards this end we first consider an instance.  

 Let us assume that the false function outputs (X0, Y0) have become defined after 

feeding in appropriate valid input data (say, a1 = b1 = c1 = 1). This would have been possible 

with the internal signals (n2, n3, n4 and n5) experiencing transitions. When spacer data is 

applied to the circuit during the RTZ phase, even with a1 and b1 being reset, n2 and n5 are 
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reset and the false function outputs could evaluate to the correct spacer state irrespective of the 

reset of the remaining internal signals (n3 and n4), implying that the outputs have not 

indicated the attainment of the correct steady-state value in all the internal nodes. From this, 

we understand that the circuit exhibits the phenomenon of early reset (i.e. outputs being reset 

in an eager fashion with only a subset of input signals), and it mainly results due to the fact 

that bounds are associated with gate delays (especially those of the two-level OR-AND logic). 

Hence, it can be concluded that the DRN subnet is not SI, as the SI timing model specifies 

unbounded delay for logical operators. On the contrary, if timing assumptions could be 

simplified by assuming that both n3 and n4 would be reset simultaneously similar to that of n2 

and n5, then the circuit operation would be correct. Nevertheless, such a timing assumption 

would only add to the complexity of the verification process at the layout level.  
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Figure 3.11: Realising X = a'b'c + abc' and Y = a'bc' + ab'c using David et al.’s method 

  

 Realising the false function outputs of the DRN subnet using OR-CE logic instead of 

OR-AND logic may be a simple solution to foster better synchronisation between events. 

However, this may not be sufficient to ensure gate-orphan freedom within the DRN subnet. To 
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comment on this, let us consider another scenario by assuming that a0 = b0 = c1 = 1, after a 

RTZ phase. In this case, n1↑ → IX1↑, but the transition on n3 will not be followed by a 

transition on IX0 resulting in a gate orphan. The two scenarios considered thus far 

demonstrate how gate orphans could inherently manifest in the circuit, which consequently 

affects its robustness characteristic.  

 To resolve the above problem of eager reset, a novel solution is proposed in this thesis. 

The false function outputs typically employ two-level OR-AND logic and the AND gates 

cannot be decomposed in a random fashion without avoiding gate orphans as described earlier. 

However, if the OR-AND logic can be realized using complex gates via cell merging as 

opposed to discrete gates, as shown in the DRN subnet of figure 3.12, the timing assumptions 

could then be simplified. Further to this, a relaxation can be allowed such that the output of 

CEN need not be synchronised with all the dual-rail outputs of the DRN, but rather with only a 

single output (say, X or Y). With these modifications, the circuit would now feature the 

property of weak-indication and be robust, eliminating the need for sophisticated timing 

assumptions. The resulting circuit based on the above modifications is shown below.  

 

 

Figure 3.12: Weakly indicating realisation, based on modifications to David et al.’s method 
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 By referring to figure 3.12, it can be seen that even with a subset of DRN inputs 

becoming undefined (say, b1 = c1 = 0), given the application of input data in the earlier phase 

as a1 = b1 = c1 = 1, IX0 and IY0 of the DRN would become undefined. Subsequently, with a1 

becoming undefined, though its reset may not be indicated by the DRN, with isochronicity 

assumption imposed on the primary function block inputs, the CEN output confirms the reset 

of a1 and X0 and Y0 would then be reset. With respect to the second scenario considered 

previously, it should be obvious that a gate orphan does not arise since there are no 

intermediate nodes with respect to the OR-AND logic. Thus, proposing cell merger and 

synthesis of logic using complex gates to achieve a robust asynchronous circuit realization, 

have solved the problem of circuit orphans.  

 However, it may be observed that even with the proposed modifications the circuit 

would be power-hungry, as when valid data is applied the cover constraint can be imposed 

only on the AND-OR logic of the DRN subnet realising the true outputs. All the OR logic 

corresponding to the compound implementation of OR-AND, which realise the false outputs, 

would have to transition in order to produce valid outputs, based on appropriate inputs. 

Consequently, the dynamic power dissipation would be high due to greater switching activity. 

In addition, the need for complex gates to realise the false outputs of the DRN subnet could 

render the implementation practically infeasible with regard to modern standard cell libraries, 

due to the requirement for gates with a large fan-in and featuring a sophisticated functionality. 

 

3.7 Toms' Approach 

Toms' procedure for SI synthesis of combinational logic circuits [104] is based on utilising the 

techniques proposed for multi-level logic synthesis [105], such as extraction of single-cubes6 

and multiple-cubes (must be a sum of two or more cubes) by means of solving the rectangle 

covering problem, which is actually based on a very efficient sparse-matrix representation 

developed by Rudell [106]. The extracted cubes have to be then re-substituted as intermediate 

variables into the original expressions. While extraction is the process of identifying and 

creating some intermediate common sub-functions and variables, substitution (also known as 

                                                 
6 A cube is a product of different literals, where a literal refers to a variable appearing in its normal (x) or 
complementary form (x’).  



Chapter 3 – Self-Timed Combinational Logic 
_____________________________________________________________________  

 73 

re-substitution) is the process of substituting a function X into a function Y such that Y is 

expressed as a function of its original inputs and X. Both these operations use techniques that 

are analogous to Boolean multiplication and division. In fact, 'division' plays a key role in 

multi-level logic optimisation. There are two types of division operations viz. algebraic and 

Boolean. Algebraic division, also known as weak division is faster in comparison to Boolean 

division (strong division), which is algorithmically more complex but capable of producing 

better results. In general, algebraic methods are fast because the logic function is treated as a 

polynomial and hence fast methods of manipulation are available [107]. Boolean factoring is 

generally non-polynomial and such procedures usually involve complexity [108].  

 Given two logic functions, say f and g, if there is an operation which generates 

expressions h and r, such that f = gh + r, where gh is an algebraic product (i.e. g and h have no 

common variable between them or disjoint support), then this operation is referred to as 

algebraic division. 'g' is referred to as the quotient and 'r ', the remainder of the division 

operation. For example, if f = abd + bcd + a'c + b'd' and g = a + c, the algebraic division could 

then yield  

f = gh + r = bd(a+c) + a'c + b'd'   (3.11) 

 On the other hand, Boolean division uses the identities of Boolean algebra for 

factorisation7 of logic expressions (For example, yy' = 0, yy = y and y+y' = 1 for a variable y). 

Thus, if in the expression f = pq + t, pq is a Boolean product (i.e. when p and q do not have 

disjoint support), then the division of f by p is called a Boolean division. This division 

operation could yield the following expression. 

f = pq + t = (bd+a') (a+c) + b'd'   (3.12) 

 The quotient resulting from an algebraic division of an expression, say Z, by a cube, 

say c (i.e. c
Z ) is called the kernel of Z, if there are at least two cubes in the quotient and the 

cubes are governed by a disjoint support. The notion of kernel of an algebraic expression was 

introduced by Brayton et al. in [109], as a means of finding sub-expression(s) that are common 

to two or more expressions. In fact, all operations used to find kernels are algebraic. The cube 

divisor c, used to obtain the kernel is called the co-kernel. Different co-kernels may produce 
                                                 
7 Factoring is the translation of a function expressed in SOP or disjunctive normal form into a parenthesised form 
having a minimum number of literals. 
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the same kernel: hence the co-kernel of a kernel is not unique. If a kernel has no kernels 

except itself, it is said to be a level-0 kernel. A kernel is said to be of level k, if it has at least 

one level (k-1) kernel but no kernel except itself, of level k or greater. Let us consider the 

following function, 

Z = abcd + adg + b'dfg + b'cdef   (3.13) 

 The quotient obtained from the division of Z by the cube ad is 

ad
Z  = bc + g      (3.14) 

 The quotient resulting from the division of Z by b'f is 

fb
Z

'  = dg + cde     (3.15) 

 ad
Z  is a kernel of Z, since it has two cubes and they are cube-free – therefore ad is a 

co-kernel of Z. But fb
Z

'  is not said to yield a kernel since variable d is common to both the 

cubes of the quotient, resulting from the division operation.  

 In conventional multi-level logic synthesis, single-cube extraction is referred to as 

condensation and multiple-cube extraction is referred to as distillation. In general, the distill 

algorithm is preceded by a kernelling algorithm, where a larger subset of algebraic divisors is 

generated. Using these divisors, distill performs multiple-cube decomposition and 

factorisation. This is followed by the condense algorithm, which performs single-cube 

decomposition. Often, the heuristic would involve several iterations of each round of 

extraction and re-substitution. However, there could be cases when divisions could not extract 

multiple-cubes or even single-cubes and these depend upon the logic functionality. Toms' 

method [151] is based on performing distillation and/or condensation operations in a SI 

fashion for multi-level synthesis of combinational logic, provided certain conditions of 

substitution are upheld [104]. The approach basically considers the entire input state space and 

therefore it would encounter the problem of input space explosion. The resulting solutions are 

strongly indicating to reduce the complexity of the substitution. It enables decomposition of 

cubes expressed in any m-of-n encoding style through a technology-independent synthesis 

involving 2-input C-elements and OR gates, with the assumption of isochronic forks, and 
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thereby it can be classified as QDI. A dual-rail full adder synthesised using this approach is 

shown in figure 3.13. The primary multiple and single-cubes extracted are given by (3.20) – 

(3.22), while substitutions are visible in the remainder of the equations.  

 

 

Figure 3.13: Full adder synthesised using Toms’ approach  

 

Sum0 = [0] + [5], Sum1 = [1] + [6]   (3.16) 

Cout0 = [1] + [5], Cout1 = [0] + [6]   (3.17) 

[0] = cin1[2] + cin0[4]    (3.18) 

[1] = cin0[2] + cin1[3]    (3.19) 

[2] = a1b0 + a0b1     (3.20) 

[3] = a0b0      (3.21) 

[4] = a1b1      (3.22) 

[5] = cin0[3]      (3.23) 

[6] = cin1[4]      (3.24)  

 

3.8 Folco et al.'s Approach 

Folco et al.'s approach [110] bears a similarity with the previous approach in the sense that the 

synthesis of combinational logic as QDI circuits is performed assuming 2-input C-elements 
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and OR gates. However, the resulting circuits could satisfy strong or weak-indication 

constraints. This approach makes use of algorithms for constructing reduced ordered binary 

decision diagrams (ROBDD) [111] as the basis for its synthesis strategy with the exception 

that logical conjunctions are perceived as achieved through C-element functionality rather 

than AND gates. The technology mapping has been subsequently done targeting a 130nm 

standard cell library [112] that includes some custom asynchronous elements created on the 

basis of the STMicroelectronics CMOS process, following the structural pattern matching 

algorithm proposed by Zhao et al. [113].  

 To help with further discussion, some basic concepts of binary decision diagrams are 

first explained. The binary decision diagram (BDD), named so by Akers [114], after it was 

introduced as a binary decision program concept by Lee [115] to represent switching circuits, 

is a rooted directed acyclic graph (DAG) and is a canonical representation of a logic function 

[111]. It is typically constructed by a recursive application of Shannon's expansion theorem8. 

The BDD for a logic function generally has two terminal nodes of out-degree (fan-out) zero 

labelled '0' or '1' and a set of variable nodes of out-degree two. The nodes in the first level of 

the BDD are referred to as root nodes (sources) and the nodes that represent the constants ‘0’ 

and ‘1’ are referred to as terminal nodes (sinks). The rest of the nodes present between the 

sources and sinks are generally referred to as intermediate or non-terminal (non-sink) nodes. 

The two outgoing edges from a non-sink variable node are labelled as the 1-edge and 0-edge 

(directly arising from the assignment of the logical value of '1' and '0' to that variable), and 

may converge on two other distinct nodes that are referred to as its child nodes. The child 

nodes are said to be the successors (one-successor and zero-successor) of a parent node. A 

variable is associated with every node, excepting the terminal node, whose out-degree is zero. 

The BDD for the logic function F = (p ⊕  q ⊕  r) is given in figure 3.14(a). The 1-edges are 

drawn as solid lines and the 0-edges are drawn as dotted lines in the diagram. The dual-rail 

synthesised circuit is portrayed by figure 3.14(b).  

 

                                                 
8 According to Shannon's expansion theorem, a function can be decomposed by means of a variable(s) of the 
function as F = aFa + a’Fa', where Fa and Fa' are known as the positive and negative residues of the function, 
obtained by assigning binary values of '1' and '0' to the variable a of function F respectively.  
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Figure 3.14: BDD and circuit solution for F = (p ⊕  q ⊕  r) based on Folco et al.’s method 

  

 A BDD is ordered (i.e. OBDD) if on all paths through the graph the variables follow a 

certain ordering. An OBDD is called reduced (i.e. ROBDD), if it incorporates the properties of 

'uniqueness' and 'non-redundancy' [116]. The concept of ROBDD is traced back to the seminal 

work of Bryant in the 1980's [111]. Any completely or incompletely specified Boolean 

function has a unique ROBDD and therefore any other OBDD for the function constructed 

using a different order of variables would have more nodes. In other words, ROBDD is unique 

for a given logic function when the order of the variables is fixed [116]. Although the use of 

BDDs for synthesis of dual-rail QDI datapath circuits is helpful, it is to be borne in mind that 

it is generally difficult to find the best order for larger problems in a reasonable processing 

time. Dynamic variable ordering heuristics can be invoked for this purpose but may pose 

significant computational complexity, as it is not possible to efficiently compute an optimal 

variable ordering [117]. Also, for a system of inherently complex functions, construction of 
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BDDs may be impractical due to the exponential increase in computational complexity due to 

the size and/or variable ordering [111] [116]. When the notion of BDDs is extended to address 

multi-valued logic, they are referred to as multi-valued decision diagrams (MDD) [116]. The 

synthesis mechanism corresponding to this approach considers the use of reduced ordered 

MDDs for data encoding using a DI 1-of-n code, which boils down to the usage of ROBDDs 

for dual-rail data encoding. MDDs corresponding to datapath and CD logic are named as 

direct MDD and acknowledgement MDD respectively.   

 The synthesis of a dual-rail full adder shall be considered for the purpose of 

illustration. ROBDDs exhibit the notion of mutual-exclusion and this plays a vital role in 

realising QDI circuits, since the cover constraint would be inherently satisfied at the gate level. 

A set of BDDs representing many functions with the same variable ordering can be combined 

into a uniquely combined graph by transforming the individual BDDs which tend to have 

sharing of sub-graphs. Such a BDD is referred to as a shared BDD (SBDD) [118]. In general, 

by sharing all the isomorphic (similar) sub-graphs completely, no two nodes that express the 

same function co-exist in the graph. The use of SBDDs to represent the set of Boolean 

functions is helpful as it not only reduces the storage requirement for the nodes but also 

simplifies the equivalence checking of Boolean functions. Though the usage of SBDDs has 

not been explicitly mentioned as part of this approach, it might have been considered. 

However, care should be taken as translation of SBDD representation of a multi-output 

function into a ST circuit realisation could probably result in gate orphans. The full adder 

circuit taking into account logic sharing is shown in figure 3.15. It can be observed from the 

diagram that while the sum outputs depend on all the inputs for evaluation, the carry outputs 

need not as they utilise the carry-kill and carry-generate conditions. Thus the full adder is 

found to adhere to weak-indication constraints.  
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Figure 3.15: Full adder synthesised using Folco et al.’s approach  

 

3.9 Circuits with Partial Acknowledgement 

The DRCL style, discussed earlier, often exhibits early propagation at the gate level when 

producing a single dual-rail output, or at the block level when producing multiple outputs 

[119]. In case of early output logic [120], even when a subset of inputs becomes defined, all 

the outputs of the circuit could become defined (early evaluation) and/or even with a subset of 

inputs becoming undefined, all the outputs could become undefined (early reset), which is a 

characteristic inherent in the DRCL style. In comparison with the DIMS approach, the 

verification demand for checking the timing closure of inter-module wires is high in case of 

the DRCL style [121]. Despite this drawback, the DRCL style is appealing as it incurs only a 

minimum area expense (approximately 2× compared to an equivalent synchronous 

combinational logic, in the absence of local completion detectors). On the other hand, the 

DIMS approach always paves the way for robust evaluation and reset, meaning that it is not 

early propagative but suffers from a high area overhead. Therefore, a trade-off between 

robustness and circuit size is obvious between these two approaches. Circuits based on partial 

acknowledgement [121] basically correspond to weak-indication and try to utilise the 

advantage of DRCL and DIMS approaches. Each and every synchronous gate is replaced by 

either a robust asynchronous dual-gate pair equivalent or by an early propagative dual-gate 
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pair equivalent, such that the circuit would be weakly indicating on an overall basis. This 

essentially means that inputs which are indicated by a gate output(s) in a robust fashion need 

not be indicated by other gates to which also it is fed in a robust fashion, thereby relaxing 

(weakening) the indication constraints for the remnant (i.e. inputs, which are fed to non-

relaxed gates can also be fed to relaxed gates if necessary; unique inputs should not be allowed 

to be associated only with relaxed gates). Hence, this method inherently paves the way for 

distribution of acknowledgement of the circuit inputs so that all the circuit variables are 

covered by the outputs collectively. A similar approach appears to have been concurrently 

proposed in [122], but the difference between the two being that [122] performed mapping 

targeting NCL macros made available as part of a specialised standard cell library fully 

characterised for area and delay, provided by Theseus Logic Inc., evaluating the designs with 

respect to three cost metrics: number of relaxed nodes, area and maximum path delay, while 

[121] addressed area (transistor count) as the cost function considering pseudo-static 

implementations of the NCL operator macros [124]. A multi-output combinational logic 

function, consisting of four inputs (a,b,c,d) and three outputs (X,Y,Z), is used to explain this 

method from a gate level perspective. The logic realisation is given in figure 3.16.  

X = ab     (3.25) 

Y = ab'c + bc'd   (3.26) 

Z = cd     (3.27) 

 From the Boolean equations listed above, we consider an implementation method.  

� If single-rail inputs (a,b) and (c,d) are considered to be uniquely associated with outputs X 

and Z respectively, they can then be partially acknowledged by output Y.   

  Given this scenario, outputs X and Z can be realised using the DIMS approach 

individually, while output Y can take advantage of the DRCL style. Hence, the input signals 

are collectively acknowledged by outputs X and Z in a robust fashion, while the logic for 

realising output Y corresponds to eager evaluation (i.e. it is early propagative).  
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Figure 3.16: Implementing a multi-output circuit on the basis of partial acknowledgement 

  

  The number and type of logic operators required for the above realisation, taking 

cognisance of the elements available in the 130nm Faraday (UMC) CMOS commercial cell 

library9 (along with the proposed semi-custom implementations of C-element functionality) is 

as follows: 8 CE2, 2 AND3, 1 AND2, 4 OR3 and 1 OR2.  

 

3.10 NCL Based Methods 

NULL convention logic (NCL)10 utilises symbolic completeness of expression to achieve ST 

behaviour and was proposed as a consistent clock-free logic suitable for asynchronous digital 

circuit synthesis [77]. A symbolically complete expression depends only on the relationship of 

the symbols present in the expression without a time reference. In fact, DI data encoding 
                                                 
9 AND gates and OR gates have maximum fan-in of 4 and 3 respectively in this standard cell library.  
10 K.M. Fant and S.A. Brandt, “Null convention logic system,” US Patent 5828228, October 1998. 
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schemes combine data and control information into one mixed signal path to eliminate 

reference to evaluation instants. Indeed, 'NULL' is identical to the spacer (empty data) in a 

typical 4-phase handshake protocol. A typical NCL circuit comprises a number of smaller 

function modules (also called 'primitive modules') interconnected together to achieve the 

desired functionality. The primitive modules (otherwise called as NCL macros11) are M-of-N 

threshold gates with hysteresis. Static, semi-static and dynamic implementations of arbitrary 

M-of-N gates along with the technique for reset initialisation are highlighted in [124]. An M-

of-N gate operates on signals which could be either DATA (i.e. valid data) or NULL (i.e. 

spacer data) and exhibits threshold/hysteresis behaviour. The M-of-N gate output could 

transition to DATA, if M inputs out of a total of N inputs become DATA (threshold behaviour) 

but can attain the NULL state from a DATA state only after all the N inputs become NULL, 

i.e. the output remains at DATA until all the N inputs have become NULL (hysteresis 

behaviour). N-of-N and 1-of-N gates are special cases of the generic family of M-of-N 

threshold gates and they represent C-gates and OR gates respectively. Cases wherein M > 1 

and M < N are unique, which require determination of the topology after possible logic 

optimisation. Due to the limitation imposed by the technology on the transistors stack size, the 

maximum value of N is restricted to at most 4 in most modern CMOS libraries and therefore 

gates with higher fan-in are decomposed into the form of multi-level circuit structures. Table 1 

in [125] lists all the 27 distinct proprietary NCL macros (library elements) along with their 

Boolean equations that are used to realise NULL convention logic based ST circuits.  

 The static CMOS M-of-N implementation of a sample function, Z = ab + cd is shown 

below in figure 3.17 for the sake of illustration. The implementation can be basically split into 

4 blocks: 'Go to NULL', 'Hold NULL', 'Go to DATA' and 'Hold Data'. The 'Go to NULL' and 

'Hold DATA' block topologies are a 'standard' and consist of a series arrangement of p-type 

transistors and parallel arrangement of n-type transistors respectively, where the number of p-

type and n-type transistors are identical, governed by the function inputs. The 'Go to DATA' 

topology is constructed directly from the function, as logic optimisation is not possible, 

whereas the 'Hold NULL' topology is derived by considering the dual of the function as 

follows:  

                                                 
11 K.M. Fant and G.E. Sobelman, “Null convention threshold gate,” US Patent 5664211, February 1997. 
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Z' = (ab + cd)' = (a' + b') (c' + d') (3.28) 

 

 

Figure 3.17: Static CMOS M-of-N implementation for Z = ab + cd 

  

 It could be observed from the circuit diagram that the topologies of 'Go to DATA' and 

'Hold NULL' blocks are not identical and so the circuit does not feature the self-dual property, 

which is a special attribute exhibited in only a subset of all possible M-of-N threshold gate 

realisations (for example, majority logic). Analysing the operation, it can be seen that when all 

the inputs (here, N = 4) are NULL, the 'Go to NULL' and 'Hold NULL' blocks are ON whilst 

the 'Go to DATA' and 'Hold DATA' blocks are OFF and Z is driven to NULL. If any one of 

the inputs becomes DATA (say, signal a becoming '1'), the 'Go to NULL' block turns OFF but 

the 'Hold NULL' block would remain ON. However, this does not cause a change in the gate 

output, since a signal path still remains established between Vdd and the intermediate node ‘int’. 

Supposing, subsequently input b also becomes DATA, the 'Hold NULL' block turns OFF and 

the 'Go to DATA' block turns ON – thereby a signal path gets established between ‘int’ and 

ground, resulting in a discharge of potential and as a consequence Z is forced to DATA. It 

may be seen that for Z to again switch state from DATA to NULL, the 'Go to NULL' block 

has to turn ON which is possible only if all the N inputs become NULL. From the preceding 

discussion, it becomes clear that Z can switch from NULL to DATA even with two function 

inputs (say, a and b or c and d) becoming logic '1', while Z can switch from DATA to NULL 

only if all the function inputs attain logic '0'.  
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 Within the NCL paradigm, ST logic design methods were developed which start from 

a synchronous netlist. They mostly take advantage of the DIMS approach/DRCL style for 

obtaining the gate-level asynchronous equivalent followed by technology mapping targeting 

the NCL macros, which are made available as custom additions to a cell library. Two well-

known methods and a recent approach proposed in this context are discussed further.    

 

3.10.1 NCL_D Approach 

The NCL_D technique was proposed by Ligthart et al. [126] as a regular method for NCL 

implementation by banking on the DIMS approach. It satisfies Seitz's weak-indication 

constraints and ensures input completeness [77], assuming isochronic fork assumptions. In its 

basic form, it derives the asynchronous equivalent of a synchronous circuit by first mapping 

the optimised synchronous network into two-input gates. Then, it represents each signal wire 

as a dual-rail pair and directly translates the two-input logic gates into threshold gate pairs 

with limited optimisation of a threshold network in order to preserve the DI property. A 

typical NCL_D system is shown in figure 3.18.  

 

 

Figure 3.18: NCL_D system configuration [126] [127] 

  

 Let us assume that initially all the registers are in the NULL state and the acknowledge 

signals (ack_a and ack_b) are also low. Thus the request line of register A is active and is 

ready to accept new DATA. When the inputs become defined, the DATA wavefront is passed 

through register A onto the function block for processing and its outputs are fed as inputs to 
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the next stage register B in the pipeline. The completion detector generating the ack_a signal 

performs the validity/neutrality tests of the input codeword during the set and reset phases 

respectively. Currently, it would check the validity of the DATA at its inputs and subsequently 

asserts the ack_a signal to logic high if the check is true. This signal disables the previous 

register's request line and prepares it for storing the next NULL wavefront. Collision between 

different DATA wavefronts are avoided by means of alternating reset and set phases (i.e. 

NULL-DATA-NULL). The main advantages associated with this approach are the simplicity 

of translation of a synchronous circuit into an asynchronous equivalent whilst paving the way 

for automatic verification of DI properties during implementation. This is because the gates 

used for realising the ST equivalent are input-complete, thereby proving that the circuits are 

correct by construction. As a result, though the robustness of the resulting circuits is high, 

unfortunately, due to ensuring locality of DI property verification and with little room for 

optimisation, it incurs high area overhead and the resultant circuits may be slow. Further 

optimisations to the NCL_D approach by means of cell merging and optimal technology 

mapping were suggested in [79]. The simple gate-level asynchronous equivalent of the 

example Boolean function considered previously is given in figure 3.19.  

 

 

Figure 3.19: NCL_D based logic equivalent for the function, Z = ab + cd   
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3.10.2 NCL_X Approach 

NCL design incorporating explicit completion detection is referred to as NCL_X, proposed by 

Kondratyev et al. [127].  A typical NCL_X system description is shown in figure 3.20.  

 

 

Figure 3.20: NCL_X system configuration [127] 

  

 Separate completion detectors are made available for the combinational logic and 

registers. It can be noticed that the NCL_X technique realises a NCL circuit using separate 

completion and functional parts allowing room for optimising each of them whilst 

guaranteeing completeness of inputs. The a.go signal basically corresponds to the completion 

detection of the input signals, which is synchronised with that of the functional part to 

generate the done signal. The NCL_X approach relies extensively on the DRCL style for 

implementing the functional part, i.e. input-complete gates are scarcely used. As a result, 

NCL_X circuits consume less area than their NCL_D counterparts. Because the DRCL style 

pertains to eager evaluation, gate and wire orphans could result. To eliminate the problem of 

gate orphans, provision of explicit local completion detectors (depicted by OR gates drawn 

using discontinuous lines in figure 3.21) is done in order to unambiguously ascertain the state 

of the internal nodes by means of OR-ing both the wires of each intermediate dual-rail signal 

[76] [102]. It can be intuitively observed that the total number of internal completion detectors 

required would be equal to the total number of gates in the original synchronous netlist which 

were subsequently replaced by a dual-rail gate pair equivalent in addition to the one associated 
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with the primary output. This would eventually lead to more activity in the intermediate nodes, 

but the activity in the functional part gets offset in comparison with the NCL_D realisation. 

The problem of wire orphans with respect to the primary inputs in the functional part is 

eliminated by the acknowledgement of transitions on wires in the completion part with the 

assumption of isochronic forks. If certain input signals are fully acknowledged in the 

functional part, then they can be eliminated from the completion part to avoid redundancy in 

detection. With respect to power dissipation, both NCL_D and NCL_X approaches were 

found to result in similar figures [127]. The gate-level NCL_X equivalent for the example 

function considered previously is shown in figure 3.21.  

 

 

Figure 3.21: NCL_X equivalent for the function, Z = ab + cd  

 

3.10.3 Block-Level Relaxation  

The block-level relaxation technique [128] is an extension and generalisation of the gate-level 

relaxation approach to logic blocks with fewer inputs and multiple outputs [121] [122] by 

either distributing the responsibility of indication of all the inputs between different outputs 

(distributive implementation approach) or by confining the responsibility wholly to a single 

dual-rail output while relaxing the other outputs (biased implementation approach). Both these 

approaches actually correspond to different ways of achieving weak-indication. Input-

complete and input-incomplete gates (circuits) are otherwise referred to as non-relaxed and 

relaxed gates (circuits). For example, the DIMS approach facilitates non-relaxed circuits while 
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the DRCL style leads to relaxed circuit implementations. The approach elucidated in section 

3.9 attempts to realise each and every gate in an input-complete fashion or in early propagative 

style and therefore it corresponds to gate-level relaxation, whereas the block-level technique is 

suitable for dealing with smaller logic blocks on an individual basis and is beneficial for 

iterative logic circuits which involves a cascade of similar logic elements probably allowing 

more optimisation opportunities on a holistic basis. It may be noticed that both gate-level and 

block-level relaxation approaches actually tend to incorporate the weak-indication property 

into the resulting circuit in order to reduce the datapath delay whilst ensuring input-

completeness. Depending on the logic network specification, it may be that both these 

techniques might converge to similar synthesis solutions in cases. For example, in case of the 

sample multi-output function block considered in section 3.9, the block-level relaxation 

approach can also lead to a similar robust solution. Nevertheless, the mapping is performed 

targeting the NCL macros made available in a standard cell library.  

 

3.11 Summary 

A number of ST combinational logic realisation techniques have been presented and analysed 

in this chapter that spans nearly three decades of research activity in this domain. Broadly, 

three different directions pursued so far can be identified – i) ST logic implementation 

restricted to fewer inputs and outputs (Singh's, Seitz's, Anantharaman's and DIMS approaches), 

ii) ST logic design methods based on well-established synchronous synthesis concepts such as 

multi-level synthesis by considering the entire input space or utilising the concept of reduced 

ordered decision diagrams facilitating moderate reduction in input space, though they may not 

be scalable (Toms’ and Folco et al.'s approaches respectively) and iii) ST logic realisation 

utilising DIMS and/or DRCL styles, but starting from an initial synchronous description 

(Ligthart et al., Kondratyev et al., Zhou et al., and Jeong et al.). Of these, the former two are 

technology-independent schemes while the latter methods are largely technology-dependent.  

 Seitz’s and DIMS methods are generally useful for circuit conceptions at a theoretical 

level, of which the latter method has been popular owing to its robustness (QDI property) and 

no requirement of separate completion detectors. Toms’ and Folco et al.’s procedures can be 

used for multi-level realisation of ST logic, but suffer from the problem of state explosion, 
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which restricts their application to circuits with fewer inputs. Especially, in case of the former 

method, practical realisation of ST circuits comprising many inputs (greater than about 10 

inputs) and/or outputs would not be feasible, due to the consideration of the entire input space. 

NULL convention logic based methods have been popular and within the ambit of NCL based 

design, synthesis of weak-indication circuits by exploring the opportunity for local relaxation 

appears to offer a good trade-off between robustness and design metrics optimisation, as they 

strike a balance between NCL_D and NCL_X approaches. The NCL_D is dependent on the 

DIMS approach while the NCL_X approach relies on the DRCL style, at the block level. In 

fact, the DIMS approach and the DRCL style have been an inspiration for a plethora of ST 

logic design methods. Circuits with partial acknowledgement try to utilise the advantages 

inherent in these two different methods, seeking to attain a compromise between robustness 

and area. This is due to the fact that NCL_D circuits are slower and occupy more area but are 

input-complete, while NCL_X style leads to faster circuit implementations whilst mitigating 

the area overhead but employ extra completion detectors. In terms of power dissipation, both 

NCL_D and NCL_X methods are likely to be on par with each other since the power saved 

through compact logic realisations in case of the latter compared to the former tends to 

diminish due to the power dissipation of the internal completion detectors.  

 This thesis envisions a whole new multi-level synthesis strategy for weakly indicating 

realisations of arbitrary combinational logic and towards this end a novel two-level synthesis 

procedure is presented in the next chapter that restrains the state space expansion considerably. 

Initial insights into a tangible solution for extending the two-level synthesis procedure to 

multiple levels are suggested in the final chapter as an opportunity for further work.  
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Chapter 4  
 

Function Block Realisation  
 

Following a description of relevant terminologies, generalised multi-level synthesis models for 

strong and weak-indication realisation of combinational logic functions are presented. Due to 

the entire state space requirement for these models, an efficient two-level heuristic has been 

subsequently proposed and implemented, which is found to considerably alleviate the problem 

of input space explosion. A system configuration in support of this heuristic is also put 

forward that facilitates weak-indication solutions. In general, weakly indicating circuits are 

preferable due to the flexibility in relaxing the indication constraints that is absent in the case 

of strong-indication circuits. The heuristic has its roots in a novel set theory based procedure, 

used to derive minimum orthogonal sum-of-products expression from a minimum sum-of-

products form. The heuristic is suitable for facilitating two-level ST implementation of 

combinational logic, but its extension to multiple levels involves considerable complexity and 

difficulty. This is because the opportunity for performing SI decomposition within a 

compressed input space cannot always be guaranteed whilst striving to preserve gate orphan 

freedom. Hence, multi-level synthesis of weak-indication circuits as an extension of the 

proposed heuristic warrants further research. However, preliminary insights towards achieving 

a palpable solution that does not compromise on the property of robustness are mentioned in 

the final chapter.  

 Before proceeding further, basic terminologies that will be often used in this chapter 

with regard to non-DI and DI datapaths are elucidated. Commonly used definitions of 

terminologies in synchronous domain are retained [87] [107] [123] and are correlated with the 

discussion on asynchronous logic for the sake of clarity.  

• A literal is a symbol referring to a propositional variable (x) or its complement 

(x’). In case of DRE, the notion of a literal is used to refer to either the true-bit 

(x1) or the false-bit (x0) representation of a variable (x) respectively.  
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• A cube is defined as a logical product12 (conjunction) of different literals, 

where a variable appears in only one of its symbolic notations. For example, 

a’b, abc’d are cubes or product terms. In the case of DRE, a cube specifies a 

logical conjunction of the true-bits or false-bits of different variables. a0b1 and 

a1b1c0d1 are the respective equivalent dual-rail encoded product terms of the 

single-rail cubes mentioned earlier.  

• A cover is a set of irredundant product terms and the cardinality of a cover is 

the number of cubes comprising the cover.   

• The product term is also referred to as the prime-implicant. A prime-implicant 

is said to be essential if it cannot be removed without affecting the cover, 

otherwise it is classified as non-prime. The sum term implies a logical sum 

(disjunction) of literals and is called the prime-implicate.   

 

4.1 Terminologies and Definitions  

Terminologies governing set theory based logic operations on DI datapaths are defined in this 

section, which are subsequently used to explain the process of SI logic decomposition in 

section 4.2. These are helpful in developing multi-level synthesis models for strong and weak-

indication circuits. However, they could be of use to guide the process of SI decomposition in 

general. Unless otherwise stated, the following sections address dual-rail encoded datapaths.   

 

4.1.1 Support Set and Dependency Set 

The support13 set of a cube C, S(C), enumerates the input variables that are a constituent of the 

cube. On the other hand, a cube’s dependency set D(C) entails the listing of all the input 

literals that are a function of the cube for its evaluation to logic ‘high’. For a cube C specified 

by a1b0c1d1, its S(C) and D(C) are:  

                                                 
12 The Muller element typically serves as the logical conjunction operator, which is a non-relaxed gate. The AND 
gate is the equivalent relaxed conjunction operator (for the case of transitions).  
13 The term ‘support’ signifies a set. But the term ‘set’ has been additionally used as a suffix to maintain 
uniformity with the other set definitions to be introduced in this thesis. The support of a function (product term) is 
the set of variables appearing in the function (product term) [107] [123]. 
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S(C) = {a,b,c,d}      (4.1) 

D(C) = {a1,b0,c1,d1}      (4.2) 

 

4.1.2 Cubes Support Intersection Set and Cubes Dependency 

Intersection Set 

The cubes support (dependency) intersection set viz. CSI (CDI) set, marks the intersection of 

the support (dependency) set of two cubes, characterised by the variables (literals) that are 

common to/shared between the support (dependency) set of both the cubes. For example, with 

D(C1) and D(C2) specified by {a0,b0,c0,d0} and {a0,b0,c0,d1} respectively, their 

corresponding CSI and CDI sets are given by,     

CSI [S(C1), S(C2)] = {a,b,c,d}    (4.3) 

CDI [D(C1), D(C2)] = {a0,b0,c0}    (4.4) 

 

4.1.3 Cubes Relativity Set   

The cubes relativity (CR) set of a cube with respect to another cube identifies (isolates) the 

unique literals in the former compared to the latter. The CR set of cube C1 relative to cube C2 

is obtained by computing the set-theoretic difference of the dependency set of the former cube 

and the CDI set of both the cubes. It basically amounts to finding the relative complement of 

the CDI set of both the cubes in the dependency set of cube C1.  

CR [C1, C2] = D(C1) \ CDI [D(C1), D(C2)]   (4.5) 

 Similarly, CR set of C2 with respect to C1 is given by, 

CR [C2, C1] = D(C2) \ CDI [D(C1), D(C2)]   (4.6) 

 For example, with D(C1) = {a1,b1,c0,d1,e0,g1} and D(C2) = {b1,c1,d1,e0,g0},  

CR [C1, C2] = {a1,c0,g1}, CR [C2, C1] = {c1,g0}  (4.7) 

 

4.1.4 Variables Identification 

Variables identification (VI) is an operation that is typically performed on the CR set yielding 

a set of variables as elements. It is equivalent to characterising the support of a CR set. With 

respect to (4.7),  

CR_VI [C1, C2] = {a,c,g}, CR_VI [C2, C1] = {c,g}  (4.8) 
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4.2 Orthogonality and SI Decomposition  

In this section, the relationships that govern orthogonal cubes14, dual-rail sum-of-products and 

orthogonal sum-of-products forms, and SI decomposition of logic based on DRE by extraction 

of shared functionality and substitution are described.  

 

4.2.1 Mutual Orthogonality Set and Degree 

The essential relations to be satisfied in order that two cubes C1 and C2 may be said to be 

orthogonal to each other are given below.  

|S(C1)| ≥ 1, |S(C2)| ≥ 1      (4.9) 

|CR [C1, C2]| ≥ 1, |CR [C2, C1]| ≥ 1    (4.10) 

 The support set of any cube should consist of at least a single variable, which is 

specified by (4.9). According to (4.10), there should be at least one distinct element in D(C1) 

relative to D(C2) and vice-versa; otherwise there would not be a possibility for C1 and C2 to 

exhibit mutual orthogonality. But the satisfying of conditions (4.9) and (4.10) alone cannot 

guarantee the existence of an orthogonal relationship between C1 and C2, since CR [C1, C2] 

and CR [C2, C1] may contain literals associated with different variable indexes. For example, 

cubes Ci and Cj specified by dependency set elements {a1,b0,c1} and {d1,e0} respectively, 

satisfy the inequalities given in (4.9) and (4.10) but are not orthogonal. Hence, if and only if 

the inequality mentioned in (4.11) is additionally satisfied, then can the two cubes C1 and C2 

be labelled as mutually orthogonal, for it shall then be guaranteed that two different instances 

(literals) of the same support variable would be present in either of the sets being intersected.  

CR_VI [C1, C2] ∩  CR_VI [C2, C1] ≠ Ø   (4.11)  

 The integer measure of the number of variables responsible for establishing the 

orthogonal relationship between two cubes is called the degree of mutual orthogonality 

(DMO). Given that (4.9) – (4.11) are true, the mutual orthogonality (MO) set that comprises 

orthogonal variables and the DMO between C1 and C2 are given by,  

MO = CR_VI [C1, C2] ∩  CR_VI [C2, C1]   (4.12) 

DMO = |CR_VI [C1, C2] ∩  CR_VI [C2, C1]|   (4.13) 

                                                 
14 Two cubes are said to be orthogonal to each other if their logical product results in a ‘0’. For example, x0y0 
and x1y1 are said to be mutually orthogonal.  
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4.2.2 Sum-of-Products and Orthogonal Sum-of-Products Forms  

A sum-of-products (SOP) expression consists of a disjunction of standard product terms, each 

of which involves a conjunction of literals. If the number of terms in a SOP form is the least 

possible, then the SOP is referred to as minimum SOP (MSOP). An orthogonal sum-of-

products (OSOP) form [76] consists of product terms that are all orthogonal to each other, i.e. 

the cubes do not overlap. Every cube is orthogonal to every other cube in an OSOP expression 

and therefore it would inherently satisfy the monotonic cover constraint. An OSOP form with 

the least number of product terms can be called minimum OSOP (MOSOP) form. A MSOP 

form or MOSOP form comprising an identical single cube are said to be equivalent. The 

MSOP and MOSOP expressions for the carry output of a dual-rail full adder are given by 

(4.14), (4.15) and (4.16), (4.17) respectively, where (a1,a0), (b1,b0) and (cin1,cin0) are the 

dual-rail inputs and (Cout1,Cout0) is the dual-rail output.  

Cout1MSOP = a1b1 + b1cin1 + a1cin1    (4.14) 

Cout0MSOP = a0b0 + b0cin0 + a0cin0    (4.15) 

Cout1MOSOP = a1b1 + a0b1cin1 + a1b0cin1   (4.16) 

Cout0MOSOP = a0b0 + a1b0cin0 + a0b1cin0   (4.17) 

 

4.2.3 Criteria for SI Decomposition 

The necessary criteria for performing SI logic decomposition by way of extracting shared 

logic between two mutually orthogonal cubes C1 and C2 are listed below. These are also useful 

to achieve decomposition up to a finer granularity of elements specified in the base-function 

set (i.e. the cell library).  

|S(C1)| > 1, |S(C2)| > 1      (4.18) 

S(C1) = S(C2)       (4.19) 

|CR [C1, C2]| = |CR [C2, C1]| = 1    (4.20) 

 The first constraint conveys that there should be at least two elements in the support set 

of both the cubes, which is obviously mandatory for decomposition, as a cube with a singleton 

support set reduces to a simple wire.  

 The second relation ensures that the variables of both the cubes are identical, which is 

an essential criterion for considering extraction of logic shared between them. Cubes with 

disjoint supports cannot feature any commonality. Assuming that a function consists of a 
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number of cubes, where the support set elements corresponding to all the cubes are distinct, 

the function could then only be classified as read-once15 as it would have been implicitly 

expressed in its MSOP form [129]. In terms of dependency sets, (4.19) implies that |D(C1)| = 

|D(C2)|, i.e. C1 and C2 are said to be equipollent (equal in size and strength).  

The third condition is vital, as its fulfilment would point to an opportunity for 

performing SI decomposition of equipollent cubes, which satisfy relations (4.18) and (4.19). It 

essentially means that there is only one unique literal in C1 relative to C2 and vice-versa. Given 

the above conditions are upheld, it becomes obvious that the equality |CDI [D(C1), D(C2)]| = 

|D(C1)|-1 = |D(C2)|-1 would hold good.  

 If two cubes Ca and Cb are not orthogonal to each other and if they satisfy (4.18), with 

|S(Ca)| > |S(Cb)|, then a possibility for SI decomposition could exist even though Ca and Cb are 

not equipollent, provided D(Cb) ⊆ D(Ca). To explain this, let us assume that Ca and Cb are 

given by a1b0c0d0e1 and b0d0 respectively. Provided the activation of Cb would be certainly 

acknowledged by the next level logic, Ca can be expressed as the conjunction of cubes a1c0e1 

and Cb. Indeed, Cb should belong to the cover of a function output different from that of the 

cover comprising Ca. Both Ca and Cb cannot be present in the same function cover as Cb 

would be said to contain Ca, where Ca becomes the covered cube and Cb is the covering cube 

that absorbs Ca. Also, Ca and Cb cannot be present in different rails (of the dual-rail) of the 

same encoded function block output as then the system could enter into an illegal state (both 

‘set’ and ‘reset’ functions could be asserted ‘high’ simultaneously). Nevertheless, this sort of 

SI decomposition does not normally occur in case of indicating circuit synthesis models 

(especially, in our multi-level synthesis models), which consider the entire input space, and is 

mentioned here only as a supplementary information targeting scenarios that do not feature 

such an assumption.   

 

4.2.4 Primary and Secondary SI Cubes 

The need for SI decomposition arises whenever larger cubes are present in a function which 

cannot be implemented directly due to fan-in restrictions of the cell library and therefore have 

to be expressed in terms of smaller physically realisable cubes. With the previously mentioned 
                                                 
15 A function is said to be read-once, if each variable appears only once in its factored form [129]. For example, 
the function F = xy+yz = x(y+z) is read-once.  
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conditions satisfied between two mutually orthogonal cubes, say C1 and C2, a common cube 

can be extracted from among them, which we shall refer to as the speed-independent cube 

(SIC). If the SIC that can be extracted is labelled as C3, then the following properties hold 

good: D(C3) ⊆  D(C1) and D(C3) ⊆  D(C2). Similarly, S(C3) ⊆  S(C1) and S(C3) ⊆  S(C2). The 

size of cube C3 would then be governed by (4.21), while its literals are specified by (4.22).  

|S(C3)| = |S(C1)|-1 = |S(C2)|-1       (4.21) 

D(C3) = CDI [D(C1), D(C2)]       (4.22) 

After the process of SI decomposition, the variables and literals of the parent cubes C1 

and C2 can be enumerated using (4.23) and (4.24), (4.25) respectively.   

S(C1) = S(C2) = S(C3) ∪  CR_VI [C1, C2] = S(C3) ∪  CR_VI [C2, C1] (4.23) 

D(C1) = D(C3) ∪  CR [C1, C2]      (4.24) 

D(C2) = D(C3) ∪  CR [C2, C1]      (4.25) 

 Cubes C1 and C2 can be called primary SICs (PSICs) if their support sets are found to 

be a function of all the primary input variables. Given this, C3 can be referred to as the 

secondary SIC (SSIC) and it is usually substituted into PSICs as an intermediate node. The 

PSIC is basically a canonical product term comprising all the primary input variables of the 

function block, while the SSIC is a standard product term formed from a subset of the support 

set variables of the function. In general, a function comprising a single realisable cube is said 

to contain a SIC. From the preceding discussions, it may be intuitively observed that whenever 

two cubes become candidates for SI decomposition, they are necessarily orthogonal but not 

vice-versa. For example, Cm and Cn represented by their dependency sets D(Cm) = 

{ a0,b1,c1,d0} and D(Cn) = {a0,b1,c0,d1} are orthogonal, yet no common logic can be 

extracted from among the two cubes in a SI fashion as (4.20) is not satisfied between them. 

This observation holds good for ST datapaths adopting any DI data encoding scheme.  

 

4.2.5 Datapaths Employing 1-of-n Codes 

The concepts discussed above serve as a basis for the following discussion on ST datapaths 

incorporating arbitrary one-hot codes. We shall first discuss this on the basis of the 1-of-4 

code to provide a specific illustration. As mentioned in Chapter 2, two single-rail inputs can be 

represented using a 1-of-4 code symbolically. To avoid confusion that could result from 

similar symbolic variable assignments, a condition is imposed whereby the representation of 
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each unique pair of single-rail inputs by a 1-of-4 code equivalent should be distinct in terms of 

the symbol variables used for a corresponding mapping. Notwithstanding, the set definitions 

mentioned above would not be adequate to address ST datapaths that employ arbitrary 

combinations of generic 1-of-n codes. For example, four single-rail inputs (m,n,o,p) are first 

converted into two-pairs and are mapped as highlighted in (4.26) and (4.27), which constitutes 

a valid representation. On the contrary, the mapping (m,n) ↔ (q0,q1,q2,q3) and (o,p) ↔ 

(q4,q5,q6,q7) is classified as non-permissible because the VI operation would yield the same 

element. Nevertheless, to permit such similar symbolic variable assignments, a different 

mechanism is adopted and is stated in the thesis appendix.   

(m,n) ↔ (q0,q1,q2,q3)     (4.26) 

(o,p) ↔ (r0,r1,r2,r3)      (4.27) 

 Let us assume that a function F is dependent on six input variables (a,b,c,d,e,f), and 

expressed by the disjunction of two cubes X and Y, which are specified by a’bcd’e’f and 

a’b’c’d’ef   in single-rail format. With the pairs of input variables (a,b), (c,d) and (e,f) mapped 

to symbolic notations (i0,i1,i2,i3), (j0,j1,j2,j3) and (k0,k1,k2,k3) respectively, and assuming a 

similar encoding assignment as shown in Table 2.1, we have the dependency sets of cubes X 

and Y described as thus:  

D(X) = { i2,j1,k2}       (4.28) 

D(Y) = { i3,j3,k0}       (4.29) 

 Referring to relations (4.9) – (4.11), it can be seen that cubes X and Y jointly satisfy 

them and hence they are categorised as orthogonal cubes. But, since they do not mutually 

satisfy (4.20), SI decomposition does not become possible and they may just remain as SICs.   

 Let us now consider a datapath of odd width and let (a,b,c,d,e,f,g,h,i) be the single-rail 

inputs. Let us have the following permissible mappings utilising the 1-of-2, 1-of-4 and 1-of-8 

DI codes for a ST datapath.  

a ↔ (a0,a1)       (4.30) 

(b,c,d) ↔ (m0,m1,m2,m3,m4,m5,m6,m7,m8)   (4.31) 

(e,f) ↔ (n0,n1,n2,n3)      (4.32) 

g ↔ (g0,g1)       (4.33) 

(h,i) ↔ (p0,p1,p2,p3)      (4.34) 
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 The mapped representation b’c’d’  ↔ m8 and bcd ↔ m0 is assumed. Let two cubes Z1 

and Z2 be specified by a’b’c’d’e’fgh’i’  and a’bcde’fgh’i’ respectively in their single-rail 

format. Referring to Table 2.1 again for the 1-of-4 coded value assignments corresponding to a 

pair of single-rail inputs, the dependency sets of the encoded cubes are given as,  

D(Z1) = {a0,m8,n2,g1,p3}    (4.35)  

D(Z2) = {a0,m0,n2,g1,p3}    (4.36) 

 It can be seen that after encoding, cubes Z1 and Z2 satisfy (4.9) – (4.11). Also, (4.20) is 

satisfied between them, as their MO set is singleton. Hence, it can be inferred that cubes Z1 

and Z2 are not only orthogonal to each other but they could also be candidates for SI 

decomposition, thereby extraction of logic shared between them becomes feasible.   

 

4.3 General Synthesis Models 

The general multi-level synthesis models for strong and weak-indication circuits are discussed 

in this section. Though they suffer from the input space explosion phenomenon, they are 

helpful to practically implement function blocks comprising many concurrent inputs.  

 

4.3.1 Architecture for Strongly Indicating Circuits  

The general system configuration for realisation of combinational logic as strong-indication 

circuits is shown below in figure 4.1, which is typical of circuits employing DI data encoding 

and a 4-phase handshake protocol and it resembles the system architecture portrayed by figure 

3.18. The function block is strongly indicating and would usually encompass a tree type 

structure internally, with all the logical conjunctions achieved through Muller elements. But 

unlike the DIMS approach, the logic could be conveniently spread over multiple levels in a 

straightforward manner whilst preserving speed-independency. The disadvantage is that the 

function block size grows exponentially with the number of primary inputs. Nevertheless, this 

problem is faced by all existing strong-indication circuit synthesis methods.    
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Figure 4.1: Typical ST system configuration  

  

The function block would usually consist of primary and secondary SICs. An 

illustration of the presence of PSICs and a SSIC is shown in figure 4.2, for a sample case of 

five inputs highlighting a logic tree. It could be seen that the PSICs are mutually orthogonal as 

they adhere to the conditions stated in section 4.2.1, and SI decomposition is feasible as the 

constraints implied by (4.18) – (4.20) are satisfied.  

 

 

Figure 4.2: Depicting PSICs and SSIC  

 

If the number of primary function block inputs is specified by n single-rail inputs (i.e. 

2n dual-rail inputs), and for n > 4, the logic depth required to realise the PSICs can be 

estimated as (n-3) for an optimal utilisation of the base function set comprising C-gates with a 

maximum fan-in of 4. The number of PSICs is governed by 2n. In general, the first logic level 

can accommodate inputs according to the maximum granularity specified in the base-function 

set (maximum fan-in of C-gates), given by l. Hence, the number of C-elements in the kth logic 

level can be estimated as 2(k+l-1), where k = 1,2,…,(n-l+1). Here, the parameter (n-l+1) denotes 

the maximum number of logic levels corresponding to the robust implementation of a function 

block. SSICs are realised till the (n-l)th logic level and the PSICs, which are all distinct are 



Chapter 4 – Function Block Realisation 
_____________________________________________________________________  

 100 

derived in the subsequent logic level, which can then be logically summed up to implement 

the desired functionality. An illustration of strongly indicating implementation of a 

combinational benchmark, check, which comprises 4 single-rail inputs (a,b,c,d) and produces 

a single output (F) is shown in figure 4.3, assuming the base-function set to be composed of 

only CE3s and CE2s. SSICs correspond to the outputs of the first-level C-gates, while PSICs 

are obtained as outputs of the second-level C-gates.   

 

 

Figure 4.3: SI decomposed strongly indicating realisation of check function block 

 

4.3.2 Modifications to Suit Weak-Indication Timing Model  

The system configuration featuring slight modifications to suit the weak-indication timing 

regime is shown in figure 4.4. In contrast to a strong-indication function block, the weak-

indication block relies upon relaxed gates for the first logic level to facilitate conjunctions, 

thereby possibly reducing some area cost. With respect to figure 4.3, equivalent relaxed gates 

would now replace the non-relaxed gates in the first logic level. However, this would lead to 
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ambiguity in determining the proper reset of primary inputs fed to the first level of logic as it 

relaxes the strong-indication constraints. So to resolve this, an extra synchronisation block is 

introduced in comparison with the architecture shown in figure 4.1. The synchroniser is meant 

to synchronise any DI encoded output pair of the function block with a portion of the current 

stage completion detection (CD) logic circuitry (here, CD for the first-level inputs of the 

function block viz. a1,a0,b1,b0,c1,c0) using C-gates. This ensures that Seitz’s weak-indication 

timing constraints are satisfied by way of guaranteeing that all but one of the encoded outputs 

(valid/spacer) is not produced until after all the encoded inputs (valid/spacer) have arrived.  

 

ackin ackout

Function block

Current 

stage 

register

Next 

stage 

register

Synchro-

niser

Completion 

detection logic

Completion 

detection logic

ackout

ackinpartial CD logic output

 

Figure 4.4: System architecture for weak-indication circuits 

 

The outputs of the functional part (function block) and the synchroniser together define 

the weak-indication property for the entire ST combinational logic implementation. If all the 

function block outputs were passed onto the next stage through the synchroniser module, then 

the system would be classified as strongly indicating. However, this would necessitate 

buffering of the partial CD logic output, as it has to be synchronised with all the logic block 

outputs. Hence, within the ambit of the system configuration shown above, it may be 

concluded that weak-indication circuits might consume relatively less area, suffer less delay 

and demand less power than their strong-indication counterparts and so the former may be 

preferable compared to the latter.     
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4.4 Set Theory Based Heuristic for Compact Realisation of 

Function Blocks  

Entire state space consideration is the main drawback with the earlier generalised approach 

although it permits SI decomposition to be conveniently extended over multiple levels. As a 

result, function blocks featuring several concurrent inputs cannot be implemented efficiently 

following this approach. To pave the way for compact realisation of function blocks 

containing several inputs, an aggressive strategy is proposed in this section. Significantly, it is 

found to contain the exponentially expanding state space, thereby being useful for addressing 

larger function block specifications. It also forms a very good starting point for multi-level 

synthesis of weak-indication circuits. 

 

4.4.1 Deriving MOSOP Expression from MSOP Expression 

In section 4.2, guidelines to identify mutually orthogonal cubes and the conditions to be 

satisfied for performing SI decomposition of such cubes were discussed in detail. In this 

section, a set theory based heuristic to derive minimum disjoint SOP (MDSOP) expression 

from a MSOP expression is presented. Obtaining MDSOP solutions for the true and false 

outputs of a logic function would amount to finding MOSOP form for the function block on 

the whole, which has been described using DRE. In other words, though the DSOP and OSOP 

expressions comprise non-overlapping product terms, the OSOP form is distinguished in that 

it features encoded outputs which are dependent on encoded inputs. Hence, it may be 

concluded that the efficiency of the MDSOP heuristic could have a direct impact on the 

effectiveness of the resulting MOSOP solutions. Before proceeding further with respect to 

deducing MDSOP solutions, some background information is provided.  

 A Boolean function, f, is a mapping of type f: {0,1} n
 → {0,1,d}, where 'd' denotes a 

don't care condition. If ‘d’ does not exist, then the function f is said to be completely specified 

or two-valued, otherwise it is called incompletely specified or ternary. Each of the 2n nodes in 

the Boolean space corresponds to a canonical product term (minterm). The ON-set, OFF-set 

and DC-sets of f correspond to those minterms that are mapped to 1, 0 and d respectively. 

Conventional two-level logic minimisers typically consider the ON-sets and DC-sets of all the 
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function outputs simultaneously to reduce the number of essential cubes, necessary to realise 

the desired multi-output logic functionality by taking into account the essential prime 

implicants that could be shared between different outputs. Of course, a minimum or reduced 

SOP form of a multi-output logic function specification can be obtained using a standard two-

level logic minimiser: Espresso [130]. In this context, it may be observed that the ON-sets and 

DC-sets of a multiple-input, multiple-output (MIMO) logic function can be considered 

simultaneously to obtain the reduced SOP expressions corresponding to the true-rail of the 

function block outputs (i.e. true outputs), while the OFF-sets of the MIMO function can be 

considered separately to derive the minimised SOP expressions corresponding to the false rail 

of the function block outputs (i.e. false outputs). Though this approach appears to be attractive 

as it could significantly reduce the input space requirement, it may very likely neglect the two 

important constraints that need to be satisfied for robust asynchronous logic designs: cover 

constraint and indication. It was mentioned in section 4.2.2, that if all the cubes of a reduced 

SOP expression are non-overlapping, then the expression would implicitly satisfy the 

constraint that only one product term of a function output should become activated for the case 

of transitions. Eventually, either the true rail or false rail of each function output would alone 

assume a logic ‘high’ state during the set phase. Towards this end, Espresso can be used to 

generate DSOP expressions for both the true and false rails of a MIMO function block so that 

the cover constraint can be satisfied.  

A Boolean equation is said to be in DSOP form, if it is described by a logical sum of 

product terms that are all disjoint [131], i.e. no two product terms cover a common minterm in 

their expanded form. A DSOP form with the least number of product terms is known as 

minimum DSOP (MDSOP) form. While SOP minimisation can be likened to a set covering 

problem, DSOP minimisation can be likened to the problem of finding a minimum exact 

disjoint cover, which is NP-hard [131]. For example, the number of essential prime implicants 

comprising the SOP expression of an Achilles’ heel function [131] is given by O( )2
n , while 

the number of essential prime cubes constituting its DSOP expression is specified by 

O 




 −12 2

n
, where ‘n’ represents the number of distinct primary single-rail inputs. DSOPs 

have been traditionally used in several applications in CAD areas, for example, calculation of 

spectra of Boolean functions [132] – [134] or as a starting point for the minimisation of 
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Exclusive-OR SOP logic [135] [136], which in turn forms the backbone of synthesis schemes 

for reversible logic circuits [137] [138] that have applications related to the field of quantum 

computing. It has been found that DSOP solutions generated by Espresso are generally far 

from the optimum, especially in case of functions with several inputs because it considers 

group minimisation of all the function outputs. An alternative approach would be to consider 

deriving MDSOP solutions for the MIMO function outputs on an individual basis from their 

MSOP forms using heuristics or resort to constructing ROBDDs for the entire MIMO function 

as they inherently incorporate the mutual-exclusiveness property, leading to the DSOP forms. 

Nevertheless, the latter approach may suffer from memory space requirements for higher order 

functionality and therefore the former method might be preferable. In this context, a number of 

methods have been proposed by researchers [139] – [144], predominantly considering 

utilisation of ROBDDs or adopting some evolutionary programming techniques. A majority of 

these methods were found to yield a far better solution for many case studies in comparison 

with the solution obtained using Espresso.  

Some relevant terminologies are defined in the backdrop of the conventional bundled-

data encoding (single-rail) protocol for the sake of clarity, before propounding the set theory 

based method to derive MDSOP expression from a MSOP form.  

 

4.4.1.1 Support Set and Dependency Set 

The support set of a cube C, S(C), entails the enumeration of all the variables that are a 

function of the cube, while a cube’s dependency set D(C) entails the enumeration of all its 

literals in their actual form (complemented or uncomplemented) for its evaluation to a logic 

‘1’. For a cube C specified by ab'c'd, its S(C) and D(C) are:  

S(C) = {a,b,c,d}    (4.37) 

D(C) = {a,b’,c',d}    (4.38) 

 

4.4.1.2 CSI Set, CDI Set and Polarity Eliminated CDI Set 

The intersection of the support set of two cubes (dependency set of two cubes) is characterised 

by the variables (literals) that are common to the support set (dependency set) of both the 

cubes.  

The polarity eliminated CDI (CDI_PE) set consists of all the literals of the CDI set 
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represented in their normal (uncomplemented) form. The elements of the CDI_PE set can be 

obtained by performing the VI operation on the CDI set.  

For example, with D(C1) and D(C2) specified by {a’,b,c,d} and {a’,b’,c,f} respectively, 

the CSI, CDI and CDI_PE sets are given by,   

CSI [S(C1), S(C2)] = {a,b,c}      (4.39) 

CDI [D(C1), D(C2)] = {a’,c}      (4.40) 

CDI_PE [D(C1), D(C2)] = {a,c}     (4.41)  

 

4.4.1.3 Describing Mutually Disjoint Cubes 

When two Boolean cubes C1 and C2 are said to be mutually disjoint, the following inequalities 

hold. Showing that their negations are false proves the inequalities.  

|CSI [S(C1), S(C2)]| ≥ 1      (4.42) 

|CDI [D(C1), D(C2)]| ≥ 0      (4.43) 

 Let us assume that the first inequality |CSI [S(C1), S(C2)]| ≥ 1 is not valid, which would 

only imply that |CSI [S(C1), S(C2)]| = 0 and therefore CSI [S(C1), S(C2)] = Ø. The second 

inequality would be automatically satisfied as a fall-out as we negate the current assumption, 

since |CDI [D(C1), D(C2)]| < 0 is an invalid starting argument because any cube would consist 

of at least a single literal. Given the present assumption (CSI [S(C1), S(C2)] = Ø), it becomes 

obvious that no variable would be shared between C1 and C2 and the function can only be then 

classified as read-once implying that it is basically expressed in its MSOP form [129]. In such 

a situation, the product terms of the function would definitely overlap [129] and so there is no 

mutual-exclusiveness exhibited between the cubes. When the function is expressed in its 

canonical form, the common cube(s) would eventually be manifested. The above discussion 

assumed C1 and C2 to be non-identical cubes. Provided C1 and C2 are identical, a stronger 

constraint needs to be enforced, which is given in the next section.  

 

4.4.1.4 Disjoint Set and Degree of Disjointness 

Two cubes are said to be disjoint if their conjunction (achieved by the Boolean AND operator) 

yields a null. The disjoint (DJ) set identifies the input variables that are responsible for making 

two Boolean cubes (say C1 and C2) mutually disjoint. It is given by the set-theoretic difference 

of CSI and CDI_PE, corresponding to cubes C1 and C2. In other words, it amounts to finding 
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the relative complement of CDI_PE in CSI.  

DJ [C1, C2] = CSI [S(C1), S(C2)] \ CDI_PE [D(C1), D(C2)]  (4.44) 

The degree of disjointness (DDJ) gives the integer measure of the number of primary 

inputs, which are responsible for making two cubes C1 and C2 mutually disjoint. It is given by 

(4.45). Any two non-overlapping cubes would satisfy the inequality condition highlighted by 

(4.46). 

DDJ = |DJ [C1, C2]|       (4.45) 

DDJ ≥ 1        (4.46) 

 If between any two dissimilar cubes, say C1 and C2, the above inequality constraint 

would not get satisfied, i.e. DDJ = 0, then the possible reason for this scenario is depicted by 

(4.47), which is a direct consequence of the cubes featuring a disjoint support; for example, 

with cubes C1 and C2 represented by abcd and efg respectively. This would then revert back to 

the situation described in section 4.4.1.3, wherein the cubes would be found to overlap when 

expanded, thereby no disjointness shall exist between them. Consequently, the condition 

described by (4.48) would be satisfied. In this case, DDJ is zero and so there is no variable that 

could make the two cubes disjoint as they would be governed by the properties mentioned in 

(4.49) and (4.50). If C1 and C2 are similar, then DJ [C1, C2] = DJ [C2, C1] = Ø.  

CSI [S(C1), S(C2)] = CDI_PE [D(C1), D(C2)] = Ø   (4.47) 

DJ [C1, C2] = Ø       (4.48) 

|CSI [S(C1), S(C2)]| = |CDI [D(C1), D(C2)]|    (4.49) 

CSI [S(C1), S(C2)] = CDI_PE [D(C1), D(C2)]   (4.50)  

 

4.4.1.5 Deducing MDSOP Form 

The heuristic proposed to deduce MDSOP expression from a MSOP expression is explained 

from a high-level perspective by means of the following steps.   

• Step 1: Obtain the MSOP form of a logic function. 

• Step 2: Compare each cube with every other cube in the MSOP form to check whether 

they are mutually disjoint. If and only if each cube exhibits mutual disjointness with 

every other cube in the MSOP form, then go to Step 11, else proceed with Step 3. 

• Step 3: Enumerate all the overlapping pairs of cubes that have a non-disjoint support. If 

only pairs of cubes with disjoint support exist, go to Step 8, else proceed with Step 4.  
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• Step 4: From among the overlapping pairs of cubes that feature a non-disjoint support, 

choose that pair of cubes, which comprises the highest degree of logic sharing among 

its constituents. If many such pairs of cubes exist, which exhibit a similar highest 

degree of commonality then an arbitrary choice is resorted to. 

• Step 5: Use the distributive axiom [ab+ac = a(b+c)] to extract the kernel. Apply the 

converse of the absorption axiom of Boolean algebra (a+a’b = a+b) to transform the 

kernel comprising overlapping cubes with disjoint support into non-overlapping cubes 

with a non-disjoint support. Apply the distributive property of Boolean algebra [a(b+c) 

= ab+ac] to enumerate the product terms. Should the kernel comprise cubes whose 

dimensions are greater than unity, apply the identity axiom (a+a’ = 1) to the least sized 

cube. Then use the distributive law to enumerate the products. 

• Step 6: Check whether any cube contains any other cube in the function; if so, the 

covering cube absorbs the covered cube. Also, check whether any cube is duplicated in 

the logic function. If so, the redundancy is eliminated by applying the idempotency 

axiom [a+a = a].  

• Step 7: Go to Step 2.   

• Step 8: Consider any two cubes with a disjoint support, which also have the least 

support set cardinalities. If many choices result, then a random selection is made. 

Between such a pair of cubes, the identity law of Boolean algebra is applied to any of 

the pair of cubes considered, which would result in a cube expansion by making use of 

the distributive axiom.  

• Step 9: If any cube is found to cover any other existing cube in the function, the 

covered cube is discarded and the covering cube is alone retained. Logic duplication is 

eliminated using the idempotent law.   

• Step 10: Return to Step 2. 

• Step 11: Terminate the routine as the desired MDSOP solution has been obtained.  

The proposed procedure is followed for all the MSOP expression(s) of the output(s) of 

a logic function, independently and in parallel. In general, a function would be specified by 

several inputs and outputs. The MSOP solution for a function is obtained through multi-output 

minimisation, by using a standard logic minimiser: Espresso [130]. The logical correctness of 

the MDSOP solution is guaranteed by the Boolean axioms used, which are well-established 



Chapter 4 – Function Block Realisation 
_____________________________________________________________________  

 108 

and proven properties. The functional correctness of the MDSOP solution is ensured by 

comparison of each cube with every other cube forming the cover of each function output. 

However, such a comparison is performed as part of the processing. The combinational 

equivalence of a MSOP form and its corresponding MDSOP form is confirmed through the 

‘Dverify’ option of Espresso. The final cost of the MDSOP solution derived for a MSOP 

specification is represented by the count of all the unique input cubes, some/all of which may 

eventually be shared between the various function outputs. Depending upon the initial logic 

description, several iterations of some/all of the above steps may be required in order to arrive 

at the final solution. In general, the opportunity for making use of the absorption axiom is first 

exploited with respect to a logic expression before considering the usage of the identity axiom, 

as the former would only increase the dimension of a cube whereas the latter would increase 

the number of cubes. A possible peephole optimisation might involve determining a good 

choice of variable order whilst applying the axioms to the enumerated sets; here, variable 

ordering is similar to the concept of variable sifting used to facilitate a compact BDD 

construction [145] [146].  

The following serve as guidelines for the proposed method to derive MDSOP form 

from a MSOP form, articulating some important underpinning set-theoretic operations.  

� As mentioned in Step 2, to ascertain whether all the cubes corresponding to each 

unique function output are non-overlapping, the following set operations are to be 

satisfied: DJ [Cx, Cy] ≠ Ø and hence DDJ ≥ 1 between any pair of arbitrary cubes Cx 

and Cy comprising a function output, where (x, y) ∈ i and x ≠ y, given FMDSOP =∑
=

k

i
iC

1

, 

where the MDSOP form of a function output F is said to contain k cubes.  

� To enumerate the overlapping cubes as mentioned in Step 3, between say Cm and Cn in 

a logic expression, the condition CSI [S(Cm), S(Cn)] ≠ Ø should be upheld.  

� To single out a pair of cubes that feature a non-disjoint support but differ by only a 

single literal as described in Step 4, the following equality relationship has to be 

satisfied: |CDI [D(Cm), D(Cn)]| = |D(Cm)| - 1 = |D(Cn)| - 1. Also, amongst any three 

overlapping cubes, say Cm, Cn and Co of a logic expression, if the following hold good, 

viz. CDI [D(Cm), D(Cn)] ≠ Ø, CDI [D(Cn), D(Co)] ≠ Ø and CDI [D(Cm), D(Co)] ≠ Ø, 

the choice of the pair of cubes made during the first iteration would depend upon the 
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highest value corresponding to |CDI [D(Cm), D(Cn)]|, |CDI [D(Cn), D(Co)]| and |CDI 

[D(Cm), D(Co)]|. In case of a tie between the cardinalities of CDI sets, an arbitrary 

choice is made. The sorting procedure considers all the distinct cubes of the expression. 

In general, for the worst-case, a computational complexity of O 






 −
2

)1(kk
 would be 

involved, where ‘k’ refers to the number of non-redundant cubes comprising a function 

output.  

� When a cube Cm is said to cover another cube Cn in an output expression as mentioned 

in Step 6, then the following would be true: D(Cm) ⊆ D(Cn) and |D(Cn)| > |D(Cm)|, in 

which case Cm is alone retained and Cn is discarded. Additionally, if there exists a cube 

Cp in the expression, and Cq is newly introduced due to a set operation, if D(Cp) = 

D(Cq), then the cubes Cp and Cq are said to be identical. To avoid logic duplication, 

either Cp or Cq is discarded and the other retained.    

� Between a pair of cubes, say Cm and Cn, featuring a disjoint support as specified in 

Step 8, the condition CSI [S(Cm), S(Cn)] = Ø is satisfied.   

 

4.4.1.6 MDSOP Cost of Combinational Benchmarks 

The MDSOP heuristic mentioned above has been implemented in Java and has been used to 

generate results for some combinational benchmarks described in PLA format [147], to 

comment on its potential in comparison with other DSOP heuristics. However, it should be 

noted that the MDSOP heuristic, as such, corresponds to purely synchronous logic. Minimum 

SOP and DSOP forms of a MCNC benchmark [147], newtag, obtained using Espresso are 

represented by means of the cube-variable support matrices of figures 4.5 and 4.6 respectively 

for illustration purpose. The benchmark has a single output and its support set is composed of 

8 elements. The cube-variable support matrix is an O(m × n) matrix, where ‘m’ specifies the 

number of irredundant cubes of the function (rows of the matrix) and ‘n’ refers to the number 

of unique input variables of the function (columns of the matrix). A ‘1’ entry at the 

intersection of a particular row and column index (amn) implies the existence of a variable in 

its normal form, while ‘0’ and ‘-’ entries signify the inverted and don’t care states of the 

variable respectively. The conjunction of all the variables in a row, appearing in either their 

normal or complementary forms describes the cube corresponding to that row of the matrix. 
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The logic function is expressed as F = ∑
=

m

i
iC

1

, i.e. the summation of m non-redundant cubes 

that may have a maximum dimension, n. In the cube-variable support matrix of a DSOP form, 

apq ≠ arq, for any (p, r) of m with respect to at least a column q of the matrix, where p ≠ r and q 

signifying a column index. Figure 4.7 depicts the cube-variable support matrix of the DSOP 

form of newtag corresponding to the MDSOP heuristic. It can be inferred from this example 

that the cost (number of essential cubes) of the proposed heuristic is similar to the cost of the 

SOP solution of Espresso, and thus the former has effected reduction in cost by 43% when 

compared with the DSOP solution of Espresso.  

 

 

Figure 4.5: Cube-variable support matrix of SOP form of newtag, based on Espresso  

 

 

Figure 4.6: Cube-variable support matrix of DSOP form of newtag, based on Espresso 
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Figure 4.7: Cube-variable support matrix of DSOP form of newtag, based on the MDSOP heuristic  

  

 A number of MCNC/LGSynth93 combinational benchmark problems [147] [148] were 

considered to comment on the potential of the proposed heuristic. Table 4.1 shows the number 

of essential cubes for SOP and DSOP forms of various benchmarks, obtained using Espresso.  

 

Benchmark  
name 

Number of 
inputs 

Number of 
outputs 

# Cubes in  
SOP form 

# Cubes in  
DSOP form 

5xp1 7 10 44 62 
alu4 14 8 575 3551 
b12 15 9 43 654 
clip 9 5 120 359 
cordic 23 2 914 22228 
max1024 10 6 274 776 
misex1 8 7 12 18 
misex2 25 18 28 29 
mlp4 8 8 128 206 
rd53 5 3 31 31 
rd73 7 3 127 127 
rd84 8 4 255 255 
x7dn 66 15 538 1697 

xor5 5 1 16 16 
Z9sym 9 1 86 190 

 

Table 4.1: SOP and DSOP cubes for some combinational benchmarks, generated by Espresso 

 

Benchmark  [130] [139] [140] [141] [142]/[143] [144]  Proposed  
5xp1 62 70 - - 82 79 48 
alu4 3551 - - - 1545 1372 1206 
b12 654 57 - - 60 60 62 
clip 359 162 - - 262 212 167 
cordic 22228 - - - 19763 8311 6687 
max1024 776 - - - 444 - 362 
misex1 18 15 - - 34 34 15 
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misex2 29 28 - - 30 29 28 
mlp4 206 - - - 203 - 155 
rd53 31 31 - - 35 35 31 
rd73 127 127 - - 147 147 127 
rd84 255 - - - 294 294 255 
x7dn 1697 - - - 1091 - 1228 
xor5 16 - 16 16 16 16 16 
Z9sym 190 - 186 148 - - 171 

 

Table 4.2: DSOP cubes of various combinational benchmarks corresponding to different methods 

  

 Table 4.2 lists the number of cubes in the DSOP solution, rendered by various 

heuristics for the combinational benchmarks listed in Table 4.1. The ‘dash’ in certain positions 

of the above tabular column indicates the unavailability of result for the benchmark 

corresponding to a specific method in the literature. The optimal solution for a benchmark 

based on a particular method(s) is highlighted in ‘bold-face’. From Table 4.2, it can be 

observed that the proposed heuristic has facilitated optimal/near-optimal solutions for a 

majority of problems. Amongst the following functions, alu4, cordic, max1024 and x7dn are 

relatively bigger specifications, with alu4, max1024 and x7dn having been classified as hard 

problems in the original Espresso benchmark suite. Firstly, in comparison with the DSOP 

solution rendered by Espresso, it can be seen that the proposed method enables a substantial 

reduction in the number of essential cubes by 65%. Compared to the SOP expression 

generated using Espresso, the proposed MDSOP heuristic based solution is found to be greater 

by 3.3×, while the DSOP solution of Espresso is more expensive than its logically equivalent 

SOP format by 9.5×. With respect to the larger problems, the proposed method enables a 

reduction in the number of essential DSOP cubes by 15.5% in comparison with the best 

solution rendered by the other heuristics. When considering all the benchmarks, the proposed 

heuristic facilitates a cost reduction of the order of 14.3%, on a mean basis.   

 

4.4.1.7 MOSOP Cost of Function Blocks 

The MOSOP form of an asynchronous logic block (function block) can be obtained by 

invoking the MDSOP heuristic for both the true and false rails of the encoded function block 

outputs. To this end, the MOSOP heuristic has been implemented in Java on the basis of the 

MDSOP procedure. Asynchronous dual-rail equivalents of several combinational benchmark 
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specifications [147] [148] were considered to estimate the cost of their equivalent MOSOP 

forms, i.e. both the true and false rails of the dual-rail encoded combinational function outputs 

were considered. The MOSOP cost shown in column 4 of Table 4.3 reflects the number of 

unique cubes, of which some/many/all may be found to be shared between the various output 

rails. The count of the number of cubes, assuming no logic sharing, is also given in the tabular 

column (column 5). It can be seen that, on an average, the MOSOP heuristic has resulted in 

solutions, which encompass approximately 22% logic (cubes) sharing, but can be higher in 

specific cases. For example, in case of ex5, an 83% reduction in the number of cubes has been 

possible due to shared logic. Overall, the extent of logic sharing achieved appears to be 

significant considering the fact that the ON-set (including the DC-set) of a true output is non-

identical with the OFF-set of a false output. However, in case of function blocks that comprise 

only two outputs (dual-rail), for example 9sym, newill, ryy6, sym10, t481 and Z9sym, it should 

be obvious that hardly any logic sharing is feasible.  

 The benchmarks highlighted in ‘bold-face’ correspond to dual-rail asynchronous 

equivalents of hard combinational logic specifications. MSOP forms corresponding to both 

the true and false rails of the encoded combinational function (function block) form the 

content of the input file of the package, while the output file reflects the MOSOP form of the 

entire function block, which also takes cognisance of the cubes that could be shared between 

various outputs. The runtime for obtaining the solutions of different problems is also given in 

Table 4.3. These correspond to the heuristic running in a Windows XP environment on a Dell 

Precision machine (T3400), installed with Linux and Windows OS alongside many software 

packages, consisting of an Intel Core2 Duo processor (2.4GHz) and a 1GB RAM. The 

processing time taken by the package primarily depends on the number of inputs and the logic 

description. Hence, functions with many inputs and a bigger logic specification would require 

more processing time than functions with many inputs and a smaller description. As a result, 

the number of outputs does not matter much compared to the number of inputs. A closer look 

at 9sym, newill, ryy6, sym10, t481 and Z9sym in terms of their number of inputs, resultant 

orthogonal product terms, and processing times substantiates the above observation.  

 The significance of the proposed scheme in comparison with other standard 

approaches, such as DIMS or Seitz’s methods, may be understandable from the large size of 

the function blocks considered. For example, considering the benchmark soar, the proposed 
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method results in only 1269 product terms, whereas DIMS or Seitz’s approach would address 

the entire input space, which is massive as it is of O(283). Other strong [104] or weak-

indication [110] approaches are unlikely to cope with such larger specifications.  

 

# Orthogonal product terms  
Function block  

 

 # Inputs in 
dual-rail 
format 

# Outputs 
in dual-rail 

format After sharing Before sharing 

Runtime  
(Minutes: 
Seconds)  

5xp1 14 20 93 122 0:0 
9sym 18 2 251 251 0:2 
al2 32 94 310 472 0:0 
alcom 30 76 134 226 0:0 
alu4 28 16 2711 2803 3:16 
amd 28 48 358 613 0:0 
apex3 108 100 1351 2504 0:9 
apla 20 24 205 246 0:0 
b3 64 40 1298 1507 1:7 
b12 30 18 102 109 0:0 
bcd 52 76 6831 7942 10:15 
chkn 58 14 523 526 0:17 
clpl 22 10 41 41 0:0 
cps 48 218 3390 5001 0:36 
dk17 20 22 132 164 0:0 
dk48 30 34 120 132 0:0 
duke2 44 58 705 955 0:1 
e64 130 130 2376 3033 3:55 
ex4 256 56 1062 1062 0:5 
ex5 16 126 346 2054 0:2 
exep 60 126 3177 3591 0:27 
gary 30 22 401 596 0:1 
ibm 96 34 1365 1366 0:14 
in3 70 58 496 813 0:1 
in4 64 40 1396 1673 1:11 
inc 14 18 82 134 0:0 
intb 60 28 2320 2320 3:10 
jbp 72 114 636 869 0:1 
luc 16 54 175 496 0:0 
max512 18 12 328 431 0:1 
max1024 20 12 663 826 0:6 
misex1 16 14 45 95 0:0 
misex2 50 36 207 272 0:0 
misex3 28 28 3826 4422 3:5 
misg 112 46 189 192 0:0 
mish 188 86 163 173 0:0 
misj 70 28 58 69 0:0 
mlp4 16 16 319 403 0:0 
mp2d 28 28 166 196 0:0 
newapla 24 20 82 94 0:0 
newcpla1 18 32 126 159 0:0 
newill 16 2 19 19 0:0 
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opa 34 138 572 1464 0:2 
p82 10 28 78 164 0:0 
pdc 32 80 1358 1740 0:4 
rd53 10 6 46 71 0:0 
rd73 14 6 190 294 0:0 
rd84 16 8 365 589 0:2 
risc 16 62 128 212 0:0 
root 16 10 124 180 0:0 
ryy6 32 2 155 155 0:4 
sao2 20 8 202 258 0:0 
shift 38 32 200 212 0:0 
soar 166 188 1269 1566 0:3 
spla 32 92 1577 2209 0:7 
sqn 14 6 90 102 0:0 
sym10 20 2 478 478 0:24 
t1 42 46 384 501 0:0 
t481 32 2 2142 2142 26:23 
ti 94 144 1388 2500 0:5 
ts10 44 32 272 512 0:0 
vg2 50 16 632 647 0:6 
x6dn 78 10 432 603 0:5 
x7dn 132 30 3711 3752 2:1 
Z9sym 18 2 243 243 0:1 

 

Table 4.3: Cost of ST realisation of combinational benchmark functions  
 

 A recent method proposed for weak-indication circuit realisation of combinational 

logic [149], which also corresponds to two-levels assuming unbounded fan-in of primary input 

gates may also not be suitable for comparison, as it has targeted only function blocks with 

fewer inputs or addressed small clusters of bigger benchmarks. For example, the maximum 

cluster size derived from a combinational benchmark viz. C6288 [150], was limited to 16 

dual-rail inputs and 18 dual-rail outputs while the encoded circuit consists of 64 dual-rail 

inputs and outputs. In fact, the method of [149] is prone to indirectly suffer from the problem 

of input space explosion and the function block size restricts its scalability. This is because, 

although it does not consider the entire input state space initially unlike that of [104] [151], but 

during the process of distributing the indication of inputs between different function block 

outputs, it is forced to selectively expand the reduced input cubes to accommodate the missing 

inputs. The process of selective expansion will have an adverse impact on the size of the 

function block depending on its initial specification, eventually making its realisation 

unrealistic to a great extent as it would be drastically affected by the exponentially expanding 

input space. In contrast, the proposed scheme has considered substantially bigger logic 
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specifications (256 dual-rail inputs) that are significantly larger compared to those that could 

be processed by any of the above methods in a reasonable timeframe. Also, the evidence that 

only fewer cubes were required for realising even function blocks based on hard 

combinational problems highlights the fact that many cubes were found to be shared between 

the different outputs in the MOSOP form, based on the proposed heuristic. The issue of 

variable/literal ordering has not been considered as part of the proposal and it remains to be 

seen whether it could benefit in terms of facilitating more logic sharing. But this might be at 

the expense of increasing the computational complexity of the heuristic. It may be 

understandable that the function block realisation based on the proposed method has only 

ensured that the cover constraint is satisfied thereby avoiding the possibility for occurrence of 

gate orphans, but without considering the system indication aspect.  

 

4.4.2 System Configuration 

The system architecture that externally takes care of the indication phenomenon without 

casting the responsibility on the function block is shown in figure 4.8. Basically, this system 

configuration is robust and generally favours a weak-indication circuit realisation. In 

comparison with the topology shown in figure 4.4, there are two fundamental differences. 

With the exclusion of a dual-rail function block output that is synchronised with the output of 

the CD logic of the current stage (rather than the partial output corresponding to the CD logic 

of the current stage, as in the previous configuration) all other outputs can be directly fed to 

the next stage. The function block corresponds to two-levels of logic instead of being 

described in terms of multiple-levels as with the earlier architecture. Nevertheless, the system 

topology depicted in figure 4.8 could facilitate affordable implementation of function blocks 

of larger sizes, given the substantially reduced number of primary input cubes as opposed to 

considering the entire state space, which is evident from the values listed in Table 4.3. In fact, 

function block realisations of bigger logic specifications such as those mentioned in Table 4.3, 

on the basis of the other methods mentioned above would be highly cumbersome, as they 

would directly or indirectly encounter the problem of input space explosion, which has been 

largely annihilated in case of the proposed approach. It is assumed that there are no bounds 

imposed on the fan-in of first-level gates implementing primary input cubes while logical 
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disjunctions can be constrained by bounds as that of [71] [91] [100] [149]. Also, given the 

system topology of figure 4.8, and considering a two-level implementation, the primary input 

cubes can be realised using relaxed conjunction operators rather than resorting to state-holding 

elements, which may be beneficial from area/power/delay perspectives.   

 

 

Figure 4.8: System topology in support of the proposed MOSOP heuristic for function blocks 

  

 The proposed two-level heuristic forms a good starting point for multi-level synthesis 

of combinational logic as weak-indication ST circuits, which nevertheless involves substantial 

complexity and difficulty as was echoed in [104] [149]. However, a preliminary solution has 

been put forward [152]. In simple terms, it basically amounts to finding suitable candidates for 

performing SI decomposition from within the MOSOP form of a function block specification 

whilst recognising the granularity of the base function set. Since the provision for SI 

decomposition may not always be manifest within the function block, SI decomposition may 

not always be feasible. Naïve decomposition cannot guarantee gate orphan freedom of the 

resulting solutions, rendering them QnDI, subsequently affecting the circuit’s robustness, 

where ‘n’ refers to the number of levels through which a gate orphan could propagate. It has 

been inferred from a number of case studies that though the proposed preliminary solution is 

not universal, it could be helpful in facilitating optimal solutions for some widely known logic 

functionality of arbitrary size, for example, multiplexer (MUX), demultiplexer (DEMUX), 
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adder, encoder, decoder and comparator. An iterative nature is inherent in such functionality, 

probably due to the variable symmetricity, which allows them to be cascaded to derive higher 

order specifications. For example, the sum and output carry functions of a typical adder cell 

are symmetric16 with respect to permutation of their variables. 

 Let us consider a small benchmark from the ISCAS ‘85 benchmark set, C17, to 

differentiate between the different approaches. The function block comprises 10 dual-rail 

inputs and 4 dual-rail outputs. Table 4.4 lists the delay, area and power metrics corresponding 

to various approaches. The optimal values of the design parameters corresponding to a 

particular approach are highlighted in ‘bold-face’ – this procedure shall be followed for all the 

subsequent tabular columns to be presented in this thesis. Since the synchroniser module, in 

effect, forms a part of the function block in terms of satisfying the indication constraints; the 

term ‘datapath’ would be used to refer to either the function block or a combination of the 

function block and the synchroniser (and also any other elements in the forward path).  

 The delay parameter refers to the maximum propagation delay encountered in the 

datapath (ideally, maximum delay encountered in the function block). The delay metric was 

estimated using PrimeTime. To avoid the notion of a clock source, the option of a virtual clock 

was used that only acts as a remote reference to restrain the input and output ports of the 

design. To ensure that all the valid data paths of the function block design will be reported, the 

dynamic loop breaking technique has been utilised [153]. Thus, no timing arc disabling was 

reported when static timing analysis was performed; dynamic timing analysis is not possible 

within the PrimeTime environment. The area and power metrics correspond to the input 

registers, CD logic and function block. The delay and power metrics consider estimated 

parasitics (resulting from enabling of the automatic wire load selection feature), in addition to 

the parameters associated with the actual components. The area metric gives a combined 

account of the area of all the logic cells and has been obtained as part of the PrimeTime 

framework. The total/average power dissipation is the summation of dynamic and static power 

components, where dynamic power is in turn the gross of switching and internal power 

consumption figures. NC-Verilog has been used for functional simulation and also to obtain 

the switching activity files corresponding to the gate level simulations of Verilog descriptions. 

                                                 
16 A function F is totally symmetric, if any permutation of the variables in F does not change its definition. In a 
partially symmetric function, any permutation of a subset of the variables does not alter its specification.   
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Input data were applied to the function blocks at specific intervals through test benches, which 

model the environment. The switching activity files obtained were subsequently used for 

power estimation using PrimeTime PX. For all the simulation results to be presented in this 

thesis, which would correspond to various function blocks, the design parameters estimation 

mechanism detailed above has been adopted uniformly.   

 The test bench for the C17 function block corresponds to the input trace of its logic 

specification and the inputs were fed to the circuit at intervals of 2ns. The simulations targeted 

the best-case PVT corner (supply voltage = 1.32V, junction temperature = -40°C) of the high-

speed 130nm Faraday (UMC) bulk CMOS standard cell library. All the circuit inputs were 

configured to possess the driving strength of the minimum sized inverter of the cell library, 

while the outputs were associated with fanout-of-4 (FO-4) drive strength. Suitable buffering 

for the acknowledge input was provided, where necessary, to eliminate timing violations. 

Furthermore, the logic corresponding to function blocks of various methods were optimised 

for minimum delay. For all the forthcoming simulation results to be mentioned in this thesis, 

the above drive capability for the function block inputs and outputs, manual delay oriented 

technology dependent logic optimisation of the function blocks corresponding to different 

methods, and similar electrical library specification can be assumed. Since identical registers 

and a similar CD circuit were used for all the realisations, the area and power metrics can be 

deemed to approximately reflect that of the actual ST combinational logic, paving the way for 

a legitimate comparison between different ST logic realisation schemes.  

 With only two levels of logic depth required for the physical implementation of C17 

block, Architecture_C17 (strong and weak) refers to the C17 circuit realisation based on the 

strong and weak-indication circuit architectures discussed in sections 4.3.1 and 4.3.2 

respectively, while MOSOP_C17 (strong and weak) denotes the C17 function block 

realisation based on the architecture discussed earlier through the illustration in figure 4.8. It 

can be observed from Table 4.4 that the MOSOP_C17 (weak) design features the least 

datapath delay whilst being beneficial in terms of area and power metrics as well. The main 

reason for the optimality of MOSOP solutions is attributed to the presence of relaxed gates in 

the first logic level.  
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Realisation 
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

Architecture_C17 (strong) 1.4 1232 432.6 
Architecture_C17 (weak) 1.3 888 352.1 
MOSOP_C17 (strong) 1.3 364 257.8 
MOSOP_C17 (weak) 1.2 340 233.9 

 

Table 4.4: Delay, area and power metrics corresponding to different approaches for 

implementing C17 function block  

  

 Let us consider two more problem cases viz. 32:1 MUX logic and 1:32 DEMUX logic, 

to strengthen the previous observation. The MUX function block considered here consists of 

74 inputs and 2 outputs in dual-rail format, while the DEMUX function block considered 

comprises 12 inputs and 64 outputs. Table 4.5 lists the delay, area and power parameters of the 

MUX logic realised using various approaches.  

 

Realisation 
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

Seitz method (strong) 2.5 5130 1805.9 
DIMS method (strong) 2.8 8306 1924.3 
Toms method (strong) 3.0 7105 1734.1 
SIMCO (strong) 1.8 3416 931.8 
SIMCAO (strong) 1.8 3048 880.1 

 

Table 4.5: Delay, area and power metrics corresponding to different ST approaches for realising 

32:1 MUX function block  

  

 SIMCO refers to the direct strong-indication design for the MUX logic utilising only 

C-gates and OR gates, while SIMCAO refers to the direct strongly indicating MUX 

realisation featuring C-gates, AND gates and OR gates. For both these designs, the proposed 

MOSOP heuristic is used greatly reducing the input space requirements. Since direct function 

block realisation is not possible with other approaches, given the large number of inputs, tree 

structures were resorted to – four 8:1 MUXes in the first level and a 4:1 MUX in the second 

level. In turn, an 8:1 MUX was composed from two 4:1 MUXes in the first level and a 2:1 

MUX in the second level, with the 4:1 MUX evolved as a tree structure involving two 2:1 

MUXes in the first level and a 2:1 MUX in the second level. It can be observed from Table 4.5 

that both the proposed realisations exhibit less datapath delay, area and power metrics, with 
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the SIMCAO MUX block outperforming the other implementations. The inputs were fed into 

the MUX function block at intervals of 4ns and the test bench comprised all the unique input 

sequences that are possible for the MUX functionality. Tree structures based on the proposed 

approach would not be optimal with respect to delay/power due to increased number of logic 

levels. For example, the efficient 32:1 MUX logic tree based on the proposed approach, 

constructed using a cascade of 8:1 MUXes and a 4:1 MUX resulted in a delay of 1.9ns, area of 

2766µm2 and total power dissipation of 982.4µW.  

 

 
Figure 4.9: Illustrating CD of intermediate outputs for MUX logic tree based on Seitz’s method 

  

 DIMS and Toms’ approaches typically employ only C-elements and OR gates, 

whereas Seitz’s method incorporates AND-OR logic. As a result, a simple cascade of MUXes 

would lead to gate orphans in case of the latter. Hence, in order to avoid the possibility of gate 

orphans, local completion detectors (CD1 and CD2) were provided as shown in figure 4.9 for 

a 4:1 MUX logic block. Here, (M11, M10) and (M21, M20) represent the intermediate outputs 

of the 2:1 MUXes in the first level of the cascade, while (Y1, Y0) represent the actual output 

of the function block. The internal signal ‘isc’ guarantees the arrival of the intermediate MUX 

outputs before the actual outputs are produced. It is to be noted that timing assumptions are 
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made with regard to ensuring completion detection of the primary dual-rail inputs.  

 Considering the 1:32 DEMUX logic, function blocks corresponding to different 

approaches were derived in a similar way. Two types of direct implementations were preferred 

based on the proposed MOSOP heuristic as tree structures were found to degrade the delay 

metric – WIDCO (weak-indication DEMUX realisation with only C-gates and OR gates) and 

WIDCAO (weakly indicating DEMUX logic based on C-elements, AND gates and OR gates). 

Weak-indication realisations for the DEMUX logic block are possible due to the presence of 

multiple outputs, unlike the case with MUX logic. The tree structures for the DEMUX logic 

corresponding to the other methods are the converse of the MUX structures – a 1:4 DEMUX 

in the first level of the cascade and four 1:8 DEMUXes in the second level of the cascade. But 

unlike the latter, the logic granularity is relatively less for the present case, i.e. the 1:4 and 1:8 

DEMUXes were directly synthesised based on the other methods. Internal CDs were provided 

for the DEMUX logic constructed using Seitz’s approach in a manner similar to that described 

earlier for the MUX logic, to ensure gate-orphan freedom. Table 4.6 gives the delay, area and 

power metrics for the different DEMUX function block implementations. The test patterns 

consisted of unique input sequences that would detect the passage of data to all the dual-rail 

outputs, and were fed at intervals of 4ns. Again, for the DEMUX logic, the proposed approach 

was found to yield superior results with respect to delay, area and power metrics, as could be 

seen below.   

 

Realisation 
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

Seitz method (weak) 1.6 2002 559.9 
DIMS method (strong) 2.0 3460 720.4 
Toms method (strong) 2.0 2022 612.1 
WIDCO (weak) 1.3 1535 334.1 
WIDCAO (weak) 1.4 1285 322.4 

 

Table 4.6: Delay, area and power corresponding to different ST approaches for realising  

1:32 DEMUX function block 

 

4.5 Summary 

This chapter first discussed general multi-level synthesis models for strong or weak-indication 

implementations of arbitrary combinational logic by employing SI decomposition. However, 

to overcome the problem of state space explosion inherent in the multi-level technique, an 
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efficient set theory based approach has been presented that is useful for realisation of function 

blocks featuring several concurrent inputs. The set theory based MOSOP heuristic forms the 

basis for adder, carry-lookahead module and compressor realisations that would be discussed 

in the subsequent chapters of this thesis. The set theory based MOSOP method greatly 

alleviates the problem of input space explosion and facilitates compact realisations of larger 

function block specifications, which is otherwise cumbersome with many other techniques. 

Some sample case studies were considered to demonstrate the benefits of the proposition.      
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Chapter 5  
 

Self-Timed Carry-Ripple Adders 
 

A study of the operations performed by an ARM processor’s ALU revealed that additions 

constituted nearly 80% of them [154]. About 72% of the instructions of a prototype RISC 

machine resulted in addition/subtraction operations [155]. In fact, addition was found to be the 

most frequently encountered operation amongst a set of real-time digital signal processing 

benchmarks [156]. In general, integer addition plays a very important and dominant role in 

digital computer systems.  

 In this Chapter, we shall extensively consider adder cells synthesised using various 

approaches that form the fundamental datapath elements, and evaluate their performance 

based on the carry-ripple or ripple carry adder (RCA) topology. The impact of a dual-bit adder 

cell in reducing the delay metric of the basic adder topology is investigated and the bottleneck 

in extending the hierarchy further is discussed. Single-bit17 and dual-bit18 adders based on 

homogeneous and heterogeneous DI data encoding schemes are considered and a comparative 

analysis is performed. Also, the usefulness of a hybrid combination of single-bit and dual-bit 

adders within a RCA structure is studied, which is found to feature only a minor optimisation 

potential. Finally, the concept of redundant logic insertion, introduced with the aim of further 

minimising the delay of the addition operation is elucidated through case studies. In general, it 

could help in minimising the latency of iterative logic circuits.   

 

5.1 Single-Bit Adders and Their Evaluation 

We shall first discuss single-bit adders that are based on dual-rail encoding, which shall be 

followed by a discussion of adders employing hybrid input encoding that involves a 

combination of dual-rail code and 1-of-4 code.  

                                                 
17 The term ‘single-bit adder’ is used to emphasise the point that the adder is used to add one augend and one 
addend bit at a time along with an extra input carry. It is commonly called the full adder.  
18 The term ‘dual-bit adder’ is used to refer to an adder that can add two augend and addend bits simultaneously, 
taking into account the extra carry input as well.  



Chapter 5 – Self-Timed Carry-Ripple Adders 
_____________________________________________________________________  

 125 

5.1.1 Using Dual-Rail Data Encoding 

Let us first consider the logical equations corresponding to the outputs of a full adder.  

Sum1 = a0b0cin1 + a0b1cin0 + a1b0cin0 + a1b1cin1 (5.1) 

Sum0 = a0b0cin0 + a0b1cin1 + a1b0cin1 + a1b1cin0 (5.2) 

Cout1 = a0b1cin1 + a1b0cin1 + a1b1cin0 + a1b1cin1 (5.3) 

Cout0 = a0b0cin0 + a0b0cin1 + a0b1cin0 + a1b0cin0 (5.4) 

 From the equations listed above, it can be understood that an adder circuitry strictly 

realising the products using C-elements adheres to the strong-indication timing regime and 

therefore strong-indication adders are bound by constant delay. However, by distributing the 

indication between sum and carry outputs, as the carry outputs are required to propagate 

between successive stages in a typical adder cascade, the output carry can be optimised as,  

Cout1 = a0b1cin1 + a1b0cin1 + a1b1   (5.5) 

Cout0 = a0b1cin0 + a1b0cin0 + a0b0   (5.6) 

 Thus, the weak-indication adder can take into account the fact that the output carry of 

an adder module could become defined as soon as its input operands become defined, 

depending on carry-kill (a0=b0=1) or carry-generate (a1=b1=1) conditions. In simple terms, 

whenever the carry-propagate (a0=b1=1 or a1=b0=1) condition does not occur, the dual-rail 

carry output of any kth stage of a n-bit adder could become defined as soon as its primary input 

operands become defined and thereby the sum outputs of the (k+1)th stage could become 

defined with its primary input operands also becoming defined concurrently. As a result, the 

lengthy carry propagation chain is avoided under this ideal condition. Acknowledging the fact 

that worst-case carry propagation may not always occur, the computation speed of weak-

indication adders could vary depending on data characteristics. Thus, in contrast to strong-

indication adder blocks, weakly indicating adder blocks could take advantage of data 

dependent computations. Though one could say that the worst-case carry propagation 

encountered in a weak-indication adder is approximately O( n2log ), where n signifies the 

adder size or word length, it generally represents the lower bound on the worst-case time 

complexity for binary addition [157]. Therefore, the average time taken for sum outputs to 

evaluate, that varies as log2n after the input operands become defined, holds good mainly for 

random data inputs [154] [158]. In case of [154], for typical data processing operations on a 
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32-bit asynchronous ALU (which formed a part of the AMULET processor utilising bundled-

data encoding protocol), the carry chain was found to be approximately 18 bits long, i.e. 

greater than 2
n , whereas address calculations entailed a chain length of about 9 bits viz. carry 

propagation greater than 4
n , for the Dhrystone benchmark. For input vectors corresponding 

to some benchmarks, it was found in [158] that many carry chains exceeded a propagation 

length of 8 ( )4
n  and many were about 24 bits long ( )4

3n ; though some demanded 

propagation over the entire length of the carry chain.  

 Strong-indication adder designs always exhibit worst-case latency; weak-indication 

counterparts will be faster but their delay depends on the input vectors as actual case latency is 

a feature inherent in case of relaxed adders (example, weakly indicating adders). Since 

dynamic timing analysis is not feasible and early termination effects cannot be captured whilst 

using an industry standard gate level timing analyser, as mentioned in the previous Chapter, 

we adopt a rather convenient policy of evaluating the different adders statically. But at the 

same time, we acknowledge the fact those adders satisfying Seitz's weak-indication criteria are 

preferable since the carry logic would have been optimised for faster carry propagation 

between successive stages. However, we compare the weak-addition adders with their strong-

indication counterparts with respect to power dissipation, assuming a random input data 

distribution corresponding to the lower bound. In fact, proposals for data path optimisation 

addressing reduction of critical path delay in relaxed but robust asynchronous circuits (both 

logic and arithmetic circuits) have been put forward in recent literature using an NCL style 

[122] [128]. The objective therein has been to reduce circuit latencies for worst-case data 

processing. Probably, the motivation for this might have been due to the fact that latency and 

area overheads are generally higher for robust asynchronous circuits compared to their non-

robust counterparts due to their inherent style of construction. In this context, an interesting 

analogy can be found in the design of a carry-lookahead adder that promises reduced 

(logarithmic) maximum datapath delay in comparison with a basic carry-ripple adder (linear). 

Discussion about the former in the context of ST logic is done in the next Chapter.  

A number of full adders corresponding to various ST approaches were realised using 

standard cells and evaluated on the basis of the fundamental carry-propagate adder viz. RCA 
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topology. The architecture of the n-bit ST RCA is depicted in figure 5.1. The adder on the 

right-hand-side represents the least significant position and that on the left-hand-side specifies 

the most significant position. The carry-propagates in a ripple fashion from the least 

significant to the most significant adder, while the sum output of a particular stage is produced 

depending on the value of the augend and addend bits of that stage inclusive of its carry input.   

 

 

Figure 5.1: n-bit dual-rail encoded ST carry-ripple adder architecture 

 

Next, we discuss the transformation of a SI adder into an indicating function block. 

Petrify [83] is a tool predominantly used for the SI synthesis of asynchronous control logic but 

is unsuitable for synthesising datapath logic due to its inability to handle many concurrent 

inputs. However, the full adder functionality could be synthesised in a SI fashion. To achieve 

this, a pure, unique choice Petri Net model of the same has been first described. Next, to 

perform the synthesis routine and to maintain uniformity, a sample library in genlib format, 

comprising the elements of the 130nm UMC standard cell library was created and the 

technology mapping process was set to target the gates of this sample library. Nevertheless, 

the resulting circuitry is purely SI and so is unable to properly indicate the complete arrival of 

all the inputs on its outputs, collectively or non-collectively without any ambiguity. For 

example, when the circuit has to shift from the valid data state to the spacer state, even with 

any dual-rail input assuming the spacer state, all the dual-rail primary outputs can be reset 

after all the intermediate outputs have stabilised giving rise to ambiguity with regard to 

determining the correct steady state of all the dual-rail primary inputs. However, assuming the 

circuit to be initially in the spacer state and with the application of valid data, only after the 

sufficient arrival of the required dual-rail inputs, the encoded outputs would be asserted ‘high’. 

Hence, this circuit attribute is similar to that which is seen in a typical Seitz’s implementation 

and therefore, an extra CD logic needs to be included (shown enclosed within dotted lines in 

figure 5.2) for synchronisation with at least a dual-rail output (in this case, the sum output) to 

impose indication constraints on the module.   
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Figure 5.2: Weakly indicating realisation of Petrify based full adder block  

 

The proposed full adder design (henceforth referred to as the SSSC_DRE adder – 

single-sum, single-carry adder based on DRE) is portrayed by figure 5.3 [180]. It was 

manually designed in a semi-custom style in order to investigate two important issues: i) how 

the responsibility of indication can be confined to the sum output alone, thereby freeing the 

carry signal from indication constraints, and ii) how logic redundancy can be made implicit in 

a ST design to enable reduction in latency. It can be noticed that the sum output is strongly 

indicating, while the carry output is eager and synthesised by means of a complex gate, viz. an 

AO222 cell. Even with the arrival of any subset of the inputs, the carry outputs could become 

defined/undefined, while the sum outputs would wait for the arrival of all the inputs to become 

defined/undefined. Thus, the full adder, on the whole, satisfies Seitz’s weak-indication timing 

constraints and there is no distribution of inputs indication. This style of implementation was 

later labelled as the biased approach in [128] targeting ST circuit optimisation at a block level. 

However, our method differs from the above approach in that the latter relies upon DRCL 

style for realising those outputs, which have been chosen as candidates for relaxation. The 



Chapter 5 – Self-Timed Carry-Ripple Adders 
_____________________________________________________________________  

 129 

SSSC_DRE adder has also served as the forerunner for the analysis and proposition of the 

novel concept of logic redundancy insertion (explicit), dealt with in detail in section 5.5.  

 

 
Figure 5.3: Proposed weak-indication full adder module 

 

Full adders corresponding to different ST approaches have been constructed in a semi-

custom fashion and have all been optimised for delay (latency, as described in section 4.4.2), 

individually, so as to pave the way for a straightforward comparison. Table 5.1 gives the 

maximum datapath delay, area and power parameters of the various full adder modules for 

performing 32-bit addition based on the ST RCA topology. The nature of indication of the 

various adders is also given in Table 5.1. The test bench corresponds to the input trace of a 

simple combinational benchmark, dc1, which comprises thirty eight input sequences and the 

test vectors were supplied to the adders at intervals of 25ns. In these, the input profile of the 

combinational function was duplicated on the least significant nibble position of the dual-rail 

adder bits, while the more significant adder stages were assigned with zeroes (i.e. the false 

rails of the dual-rail adder inputs were assigned with 1’s, whilst the true-rails of the dual-rail 

adder inputs were assigned with 0’s). Similar input patterns were used for all the adder 

simulations performed as part of this research work. The presence of an input carry was 

assumed for approximately half of the input patterns. Referring to [154], it can be seen that 

application of random input data resulted in a maximum carry propagation of about 4-bits for 

an adder of size 32-bits in an ARM processor case study, which is found to be typical of 

operations such as memory address calculations and branching operations. The input profile of 
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the logic function considered, when used to govern the inputs to an adder block is found to 

limit the maximum carry propagation length to the least significant nibble position.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

Seitz_DRE (strong)  12.8 8329 493.1 
Seitz_DRE (weak) 6.5 7689 445.6 
Singh_DRE (strong) 10.7 8297 444.4 
Modified David et al._DRE (strong) 20.8 11753 895.1 
Modified David et al._DRE (weak) 15.0 10985 833.2 
DIMS_DRE (strong) 13.8 10089 415.3 
DIMS_DRE (weak) 12.8 10665 462.8 
Petrify_DRE (strong) 13.3 8009 491.5 
Petrify_DRE (weak) 7.0 7241 433.5 
Folco et al._DRE (weak) 8.0 6633 371.7 
Toms_DRE (strong)  10.6 7561 376.9 
SSSC_DRE (weak) 5.8 7081 407.7 

Suffix DRE is used to explicitly convey the fact that the adders are dual-rail encoded. 

Table 5.1: Delay and area metrics corresponding to different 32-bit ST RCAs 

 

It may be useful to know that the adder circuits were optimised with the motive of 

maintaining a balance between effective logic sharing and minimal logic depth while giving 

more preference to the latter. The difference in delay between various adders is attributable to 

the elements present in their respective critical datapaths, which are given below.  

 

Adder realisation  
style 

Critical path  
elements 

Seitz_DRE (strong)  OR2+OR2+CE2 
Seitz_DRE (weak) AND3+OR3 
Singh_DRE (strong) CE2+OR3 
Modified David et al._DRE (strong) OR2+CE3+CE2 
Modified David et al._DRE (weak) OR3+CE2+CE2 
DIMS_DRE (strong) CE3+OR2+OR2 
DIMS_DRE (weak) CE3+OR3 
Petrify_DRE (strong) OR2+OR2+CE2 
Petrify_DRE (weak) NAND3+NAND4 
Folco et al._DRE (weak) CE2+OR2 
Toms_DRE (strong)  CE2+OR2+OR2 
SSSC_DRE (weak) AO222 

 

Table 5.2: Listing critical path elements of the various ST RCAs 

 

As can be seen from Tables 5.1 and 5.2, weak-indication adders are preferable in 

comparison with strong-indication adders from the delay perspective. This is obvious in case 

of Seitz’s, modified David et al.’s, DIMS and Petrify based adders. Amongst all the adders, 
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modified David et al.’s adders (taking into account the simple modifications to David et al.’s 

method, as mentioned in section 3.6) were found to be inferior in terms of delay and also high 

in power consumption; this is because of the OR-CE logic, used to realise the false rails of the 

sum and carry outputs, which resulted in considerably higher switching activity as all the 

intermediate OR gate outputs would have to be asserted ‘high’. The false bits of the sum and 

carry outputs were not realised in a robust fashion using complex gates, due to the 

unavailability of suitable gates in the cell library. In terms of area and power dissipation, Folco 

et al.’s adder is found to be the best. It can be inferred that the proposed adder features the 

least datapath delay among all the other adders, reporting a reduction in comparison with the 

weakly indicating Seitz’s adder by 11%. At the same time, the SSSC_DRE adder occupies less 

area than Seitz’s weak-indication adder by 15% and dissipates less power to the tune of 8.5%.  

 

5.1.2 Employing Hybrid Input Data Encoding  

The term ‘hybrid input encoding’ (HIE) refers to a mix of at least two different DI data 

encoding schemes as adopted for the inputs. Considering the single-bit adder block, the 

augend and addend bits can be encoded using a 1-of-4 code, while the carry input, sum and 

carry outputs can adopt the dual-rail code, i.e. hybrid or heterogeneous encoding of primary 

inputs and homogeneous encoding of primary outputs are done. The motivation for the use of 

a 1-of-4 code being reduced switching activity in comparison with a simple dual-rail code; 

however, given the extra encoding circuitry required for the 1-of-4 code with respect to the 

dual-rail code (which serves as the base or reference encoding protocol), the power savings 

gained are found to be substantially reduced for the case study of a 32-bit ST RCA.  

The structure of the n-bit hybrid input encoded ST RCA is shown below, which is 

similar to the topology shown in figure 5.1, but with the only exception that the augend and 

addend single-rail inputs are now encoded using a 1-of-4 code.  

 

 

Figure 5.4: Architecture of the n-bit hybrid input encoded ST RCA 
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 The basic equations governing a full adder block utilising HIE are as follows:  

Sum1 = i3cin1 + i2cin0 + i1cin0 + i0cin1   (5.7) 

Sum0 = i3cin0 + i2cin1 + i1cin1 + i0cin0        (5.8) 

Cout1 = i2cin1 + i1cin1 + i0cin0 + i0cin1        (5.9) 

Cout0 = i3cin0 + i3cin1 + i2cin0 + i1cin0        (5.10) 

In the above expressions, (i0, i1, i2, i3) represents the 1-of-4 encoded equivalent of the 

augend and addend inputs (a, b), with a similar encoding mechanism adopted as shown in 

Table 2.1. The full adder block realising the above equations using C-gates (based on a direct 

translation from DRE to hybrid encoding representation) would be dubbed strongly indicating. 

The hybrid input encoded full adder based on Toms’ approach is shown below.   

 

 

Figure 5.5: Hybrid input encoded full adder based on Toms’ approach  

    

An analysis of HIE for a full adder is undertaken and the proposed adder design based 

on hybrid encoding of input data, that features carry output logic optimisation is shown in 

figure 5.6. Henceforth, it shall be identified as the SSSC_HIE_NRL adder, where the acronym 

NRL expands as non-redundant logic. This is to emphasise that all the gates that are a 

constituent of this adder are non-redundant, and also to distinguish it from another version of a 

SSSC_HIE full adder that incorporates redundant gates, which shall be discussed in the later 

portion of this Chapter (in section 5.5). It could be observed that the sum outputs are entrusted 

with the responsibility of inputs indication, while the carry output could evaluate to the correct 

state when carry-kill or carry-generate condition occurs, without having to wait for the input 

carry signal.  
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Figure 5.6: Proposed hybrid input encoded full adder block 

 

The system configuration that supports embodying HIE for inputs and DRE for outputs 

is shown below, which is a slightly modified version of the typical ST system architecture.  

 

 

Figure 5.7: ST system architecture highlighting input protocol conversion and data processing 

 

A subset of the actual dual-rail inputs (here, augend and addend inputs) are fed to the 

protocol conversion circuit for data encoding using a 1-of-4 code and then supplied to the 

function block. The remnant of the dual-rail inputs (here, input carry) is fed as it is to the 

function block for processing, along with the 1-of-4 encoded inputs. The function block 

outputs, which are purely dual-rail encoded are stored and subsequently fed to the next stage.  

In Table 5.3, the delay, area and power figures specified within brackets are the ones to 

be considered and correspond to the case when the extra encoding logic is also included to 

obtain the 1-of-4 encoded data from the dual-rail encoded data. The values given outside 

brackets refer purely to the delay, area and power parameters of the hybrid input encoded 
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adders that do not have the extra encoding circuitry, and are just listed here to highlight the 

offset in power savings when encoding is employed. The cost of encoding is 28 transistors per 

bit, due to the implementation of the CE2 functionality by means of a complex gate. A similar 

test bench was used as that of the earlier case and the test vectors were also fed at the same 

rate. The SSSC_HIE_NRL adder features the least delay and area in comparison with 

Toms_HIE adder, benefitting from the weak-indication phenomenon, with the latter suffering 

from 35% more delay and an increase in area overhead by 14%. Nevertheless, the average 

power components of both the adders are comparable. Comparison with adders based on other 

ST methods is not possible as they basically correspond to the dual-rail signalling convention, 

while Toms’ approach is suitable for realising circuits employing arbitrary m-of-n codes.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

Toms_HIE 10.6 (10.8) 5721 (7561) 224.0 (374.4) 
SSSC_HIE_NRL 7.8 (8.0) 4793 (6633) 224.8 (371.9) 

 

Table 5.3: Delay, area and power metrics of 32-bit ST RCAs incorporating HIE  

  

 It might be interesting to study the switching power aspect of the different adders to 

ascertain how the hybrid input encoded adders (whilst incorporating the protocol conversion 

circuit) would fare in comparison with the dual-rail encoded adders. The results of this 

analysis are depicted in figure 5.8. It can be seen that SSSC_HIE_NRL and Folco et al._DRE 

adders exhibit relatively less switching power in comparison with all the other adders.    

 Comparing Tables 5.1 and 5.3, it can be noticed that for performing a 32-bit ST 

addition operation, the SSSC_DRE adder is preferable to the SSSC_HIE_NRL adder as the 

former exhibits reduced latency in comparison with the latter by 28%. On the other hand, with 

respect to area and total power consumption, the latter reports less area occupancy and lower 

total power dissipation by 6.3% and 8.8% respectively, thus maintaining area and power 

advantage over the former. 
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Figure 5.8: Analysis of switching power dissipation of various 32-bit ST RCAs  

 

5.2 Dual-Bit Adder Designs and Their Evaluation 

The main motivation for the dual-bit adder stems from the observation that if a simple series 

cascade of dual-bit adders is envisaged, then the number of stages that the carry signal has to 

traverse would be halved in comparison with a linear cascade employing only conventional 

single-bit adders. The approach is interesting as it has the potential to roughly halve the worst-

case datapath delay of an n-bit carry-ripple adder employing full adders, assuming stage delay 

to be the same, where ‘n’ is the adder size. Nevertheless, this would be feasible only at the 

expense of an area increase as the input state space now gets quadrupled even though the 

number of stages is halved. To examine this issue further and to comment on its usefulness, 

dual-bit adder designs based on homogeneous and heterogeneous data encoding schemes are 

considered and analysed in detail in this section. While homogeneous encoding procedure 

refers to a similar DI data encoding scheme adopted for all the inputs and outputs of a function 

block, heterogeneous encoding mechanism refers to a combination of at least two different DI 

encoding schemes, as adopted for the inputs and outputs. The dual-bit adder shall either 
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employ dual-rail data encoding (homogeneous encoding scheme) for all its inputs and outputs 

or a combination of dual-rail and 1of-4 encoding for its inputs and outputs (heterogeneous 

encoding scheme).  

 

5.2.1 Adopting Dual-Rail Data Encoding 

A dual-bit adder block basically consists of five single-rail inputs a1, a0, b1, b0 and cin and 

three single-rail outputs Cout, Sum1 and Sum0, where (a1,a0) and (b1,b0) could represent the 

addend and augend inputs and cin, the carry input. Output Cout is the overflow bit or output 

carry signal of the addition process, and Sum1 and Sum0 are the most significant and least 

significant sum outputs respectively.  

The MOSOP form for the dual-rail encoded dual-bit adder block is given below. Out of 

46 cubes comprising the different encoded outputs, 12 cubes are found to be shared and thus a 

total of 34 distinct cubes are found to comprise the MOSOP form of the dual-bit adder block. 

Decomposition of larger cubes can be subsequently performed in a SI fashion [152] and logic 

sharing is feasible, since suitable candidates could be ascertained from within the MOSOP 

expressions corresponding to the encoded outputs.         

Cout1 = a10a00b11b01cin1 + a11a00b10b01cin1 + a10a01b11b00cin1 + a11a01b10b00cin1 

+ a10a01b11b01 + a11a01b10b01 + a11b11     (5.11) 

Cout0 = a11a01b10b00cin0 + a10a01b11b00cin0 + a11a00b10b01cin0 + a10a00b11b01cin0 

+ a11a00b10b00 + a10a00b11b00 + a10b10     (5.12) 

Sum11 = a11a01b10b00cin0 + a10a01b11b00cin0 + a11a00b10b01cin0 + a10a00b11b01cin0 

+ a11a00b11b01cin1 + a11a01b11b00cin1 + a10a00b10b01cin1 + a10a01b10b00cin1 + 

a10a01b10b01 + a11a00b10b00 + a10a00b11b00 + a11a01b11b01 (5.13) 

Sum10 = a11a01b10b00cin1 + a10a01b11b00cin1 + a11a00b10b01cin1 + a10a00b11b01cin1 

+ a10a01b10b00cin0 + a10a00b10b01cin0 + a11a01b11b00cin0 + a11a00b11b01cin0 + 

a11a00b11b00 + a11a01b10b01 + a10a01b11b01 + a10a00b10b00 (5.14) 

Sum01 = a01b00cin0 + a00b01cin0 + a00b00cin1 + a01b01cin1  (5.15) 

Sum00 = a01b01cin0 + a01b00cin1 + a00b01cin1 + a00b00cin0  (5.16) 

 The above equations can be used to facilitate adder implementations that correspond to 

either local or global weak-indication. The architecture of the n-bit ST RCA that comprises 

dual-bit adder modules is portrayed by figure 5.9.  



Chapter 5 – Self-Timed Carry-Ripple Adders 
_____________________________________________________________________  

 137 

 

Figure 5.9: Dual-rail encoded n-bit carry-ripple adder architecture featuring local indication  

 

5.2.1.1 Local Weak-Indication 

The dual-bit adder realised using C-elements, complex gates and OR gates shall be referred to 

as the DSSC_CCO adder (with the acronym DSSC expanding as dual-sum, single-carry) and 

that employing C-elements, complex gates, AND gates and OR gates shall be called as the 

DSSC_CCAO_local adder. They are depicted through figures 5.10 and 5.11 respectively. In 

case of local indication, each and every dual-bit adder module is individually responsible for 

indicating the arrival of all its specific inputs (collective indication), in which case the system 

architecture would be governed by the configuration shown in figure 4.1.  
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Figure 5.10: Weak-indication DSSC_CCO adder module 

  

 The DSSC_CCAO_local adder module is derived through the following modifications 

to the DSSC_CCO adder block, shown above.  

• The input-complete gates in the first level are replaced by input-incomplete gates 

• The above modification necessitates the inclusion of an additional synchronisation 
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circuitry for detecting completion (shown by dotted lines in figure 5.11) to ensure that 

weak-indication criteria are upheld collectively by the module’s outputs. 

 

 

Figure 5.11: Weakly indicating DSSC_CCAO_local adder block 
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It can be seen from figure 5.11 that ISum01 and ISum00 are logically equivalent to 

Sum01 and Sum00. When certain augend/addend inputs and input carry become undefined, the 

carry output and most significant sum output can become undefined. However, only when all 

the inputs (addend/augend) become undefined, can the least significant sum output become 

undefined. The problem of wire orphans gets eliminated with the isochronic fork assumption 

imposed on the primary inputs of the adder block. It can be noticed that both DSSC_CCO and 

DSSC_CCAO_local adder modules are input-complete on an overall basis.  

 

5.2.1.2 Global Weak-Indication 

The dual-bit adder module used to construct a ST adder featuring global weak-indication is 

shown in figure 5.12, and shall be identified as the DSSC_CCAO_global adder. This module 

is basically a derivative of the DSSC_CCO adder block with the first level non-relaxed gates 

replaced by their relaxed equivalents. As such, it does not satisfy either strong or weak-

indication specifications. It is early propagative in the sense that eager reset is possible but not 

eager evaluation. This is because the encoded sum and carry outputs would collectively 

indicate the transitions on the adder inputs including the input carry. In comparison with the 

DSSC_CCAO_local adder block shown in figure 5.11, the DSSC_CCAO_global adder does 

not consist of any local detectors and is not input-complete as well. Nevertheless, the adder 

module by itself is gate-orphan-free.  

 Input-completeness is guaranteed on the entirety by the n-bit ST RCA topology, 

specified by the system architecture shown in figure 4.4. In this case, the partial CD logic 

output would correspond to synchronisation of all the augend and addend adder inputs 

excluding the carry input, as a transition on any of the double rails of the input carry would be 

acknowledged by the sum outputs of the least significant dual-bit adder stage (probably by its 

corresponding carry output as well) thus facilitating multiple acknowledgement, which is 

welcome. Therefore, considering the overall system architecture, it can be said that with the 

exception of the least significant sum output (Sum01,Sum00), the rest of the sum outputs and 

the intermediate carry outputs are relaxed with respect to indication of the main adder 

operands, thereby paving the way for potential benefits in terms of delay, area and power.   
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Figure 5.12: DSSC_CCAO_global adder module 

 

5.2.1.3 Comparative Evaluation 

A number of dual-bit adder modules based on different ST design methods were constructed 

and evaluated based on a 32-bit ST RCA architecture. Dual-bit adders based on Seitz’s, DIMS 

and Toms’ approaches were also considered for comparative evaluation. In fact, due to the 

limitation of the granularity of the base function set for mapping (maximum fan-in of AND 

gates and C-elements is 4), the logic corresponding to Seitz’s and DIMS approaches required 

modification and SI decomposition respectively. The DIMS dual-bit adder implementation is 
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based on the SI decomposition mechanism discussed in section 4.3.1, and Seitz’s dual-bit 

adder block incorporates the concepts discussed in sections 4.3.1 and 4.3.2 respectively, i.e. 

the DIMS dual-bit adder features two-levels of C-gates, while Seitz’s dual-bit adder has a first 

level composed of AND gates followed by a second level comprising C-elements to 

implement higher fan-in gates. However, weak-indication versions of these methods were 

considered, which could facilitate faster carry propagation to the successive stages. Table 5.4 

reports the delay, area and power parameters of the various ST dual-bit adders, with input data 

sequences applied every 15ns for power estimation purpose.  

 

Adder realisation  
style 

Delay 
(ns) 

Area  
(µm2) 

Power  
(µW) 

Modified_Seitz_DSSC  12.8 16521  932.6 
Decomposed_DIMS_DSSC  12.8 21833  1026.0 
Toms_DSSC  9.4 10793  693.1 
DSSC_CCO  5.9 14921 871.9 
DSSC_CCAO_local  5.7 10041  839.1 
DSSC_CCAO_global  5.6 8833  648.3 

 

Table 5.4: Delay, area and power of various dual-rail dual-bit adder based 32-bit ST RCAs 

 

 To begin the analysis, let us first consider the case of Toms’ adder. The delay of the 

32-bit ST RCA utilising Toms_DRE single-bit adder is 10.6ns (from Table 5.1); in 

comparison, the delay of the 32-bit ST RCA utilising Toms_DSSC dual-bit adder blocks is 

9.4ns. Though from a theoretical point of view, the latter value is significantly greater than 

half of the former value, it is mainly attributable to three important factors: many logic stages 

to be traversed to produce the least significant carry output signal (CE2 + OR2 + CE2 + OR2 

+ CE2 + 3OR2), more elements in the critical path (CE2 + 3OR2, as opposed to CE2 + 2OR2 

for the single-bit adder) and increased loading due to an area increase by 1.43×, on average. 

Indeed, these three factors were found to be practically responsible for the degradation of the 

ideal delay metric in case of the entire dual-bit adder module based ST RCAs.  

 Among the three versions of the DSSC adders, the DSSC_CCAO_global adder 

exhibits reduced datapath delay, area and power, though the critical path comprises only a 

CE2 and OR2 for all the three adders – thanks to the indication being taken care of externally 

(globally) rather than confining it to the adder block. Compared to the DSSC_CCAO_global 



Chapter 5 – Self-Timed Carry-Ripple Adders 
_____________________________________________________________________  

 143 

adder, the SSSC_DRE adder reports an increase in delay by 4% and decrease in area by 64%. 

However, in terms of total power, for the similar set of test patterns and simulation conditions, 

the SSSC_DRE adder is found to be more expensive than the DSSC_CCAO_global adder by 

5%, dissipating 678.8µW. The power advantage for the latter mainly results from its system 

configuration, sharing the logic with the preceding CD stage.  

 

5.2.2 Incorporating Heterogeneous Data Encoding 

A dual-bit adder block based on heterogeneous encoding (HE) can represent the augend; 

addend inputs and sum outputs by a 1-of-4 code, while the input and output carry signals can 

be represented using a dual-rail code. With such an encoding mechanism, the minimised 

expressions for the function block outputs are given below. It is to be noted that the 1-of-4 

code assignments for the augend inputs, addend inputs and the sum outputs are the reverse of 

the assignments given in Table 2.1. The n-bit ST RCA topology that encompasses 

heterogeneously encoded dual-bit adder modules is portrayed by figure 5.13.  

Cout1 = a0b3cin1 + a1b2cin1 + a2b1cin1 + a3b0cin1 + a1b3 + a2b2 + a3b1 + a2b3 + a3b2 + 

a3b3         (5.17) 

Cout0 = a0b3cin0 + a1b2cin0 + a2b1cin0 + a3b0cin0 + a0b0 + a0b1 + a0b2 + a1b0 + a1b1 + 

a2b0         (5.18) 

Sum3 = a0b3cin0 + a1b2cin0 + a2b1cin0 + a3b0cin0 + a0b2cin1 + a1b1cin1 + a2b0cin1 + 

a3b3cin1        (5.19) 

Sum2 = a0b2cin0 + a1b1cin0 + a2b0cin0 + a3b3cin0 + a0b1cin1 + a1b0cin1 + a2b3cin1 + 

a3b2cin1        (5.20) 

Sum1 = a0b1cin0 + a1b0cin0 + a2b3cin0 + a3b2cin0 + a0b0cin1 + a1b3cin1 + a2b2cin1 + 

a3b1cin1        (5.21) 

Sum0 = a0b0cin0 + a1b3cin0 + a2b2cin0 + a3b1cin0 + a0b3cin1 + a1b2cin1 + a2b1cin1 + 

a3b0cin1        (5.22) 
   

 The circuit realisation that synthesises (5.17) – (5.22) is depicted in figure 5.14. 

Basically, it considers utilisation of input-complete gates and shall be referred to as the 

DB_HE_local adder (DB – dual-bit). It could be seen that the module adheres to weak-
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indication timing constraints locally. The 1-of-4 encoded sum outputs strongly indicate the 

arrival of all the function block inputs, while the dual-rail encoded carry output can be relaxed 

with respect to ensuring completeness of inputs.  

 

 

Figure 5.13: Heterogeneously encoded dual-bit adder block based n-bit ST RCA structure 

 

 

Figure 5.14: Weakly indicating heterogeneously encoded dual-bit adder module, corresponding to 

local indication 
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 The ST system configuration that supports the RCA topology is illustrated in the 

diagram that follows. A subset of the dual-rail inputs (augends and addends) is 1-of-4 encoded 

before being fed to the function block while the remaining inputs (input carry) are fed as is. 

The non-dual-rail outputs produced by the logic block (sum outputs) are decoded before being 

passed onto the next stage, while the dual-rail outputs (output carry) are driven to the next 

stage as such. As mentioned earlier, the encoding cost is 28 transistors per bit. The cost of 

decoding is 12 transistors per bit. 

 

 

Figure 5.15: ST system configuration handling heterogeneously encoded inputs and outputs 

 

 If the logically determined gates in the first level of figure 5.14 are replaced by non-

logically determined gates, then proper local indication cannot be guaranteed by the above 

system architecture as the function block could be reset in an eager fashion but would evaluate 

robustly. Hereafter, it is identified as the DB_HE_global adder. Therefore, a modification is 

necessary, which is illustrated in figure 5.16, in the context of the dual-bit adder employing 

heterogeneous data encoding protocol. Basically, it serves as a replacement for the datapath 

represented using dotted lines in the above figure. In fact, not all the distinct outputs of the 

function block need to be synchronised with the logical sum of the homogeneously encoded 

input signals (OR-logic block output), but only an encoded DB adder sum output would 

suffice. Similar to the previous case, the least significant encoded dual-bit adder sum output 

(Sum3,Sum2,Sum1,Sum0) is alone synchronised with the output of the OR-logic block, while 
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the other adder sum outputs (including the intermediate and output carries) could be relaxed. 

Thus, the overall system configuration would now correspond to global indication.  

 

 

Figure 5.16: Modifications to the ST system configuration handling heterogeneously encoded inputs 

and outputs to pave the way for global indication  

 

 Table 5.5 below highlights the delay, area and power metrics of three different 

heterogeneously encoded dual-bit adder modules for ST addition of size 32 bits, based on the 

fundamental carry-propagate adder architecture shown in figure 5.13. The test bench and 

simulation conditions are the same as that of the earlier case.  

 

Adder realisation  
style 

Delay 
(ns) 

Area  
(µm2) 

Power  
(µW) 

Toms_DB_HE  9.0  12121 695.9 
DB_HE_local  5.8  10889 688.4 
DB_HE_global 5.7  9594 685.5 

 

Table 5.5: Delay, area and power parameters of heterogeneously encoded 32-bit ST RCAs 

incorporating DB adders (with extra logic) 

  

 The critical path elements in case of the Toms_DB_HE adder are CE2 + 3OR2, while 

in case of the proposed adders CE2 + OR2 are the recurring elements in the longest signal 

path. This explains the reason for the higher datapath delay in case of the former. Due to the 

replacement of primary input-complete gates by input-incomplete gates, the DB_HE_global 

adder exhibits the least datapath delay. Also, it benefits from reduced loading and area 

occupancy due to the above, because a CE2 requires 1.4× more area than an AND2. From 
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Table 5.5, it is clear that the DB_HE_global adder dissipates the least average power and also 

has the least area requirement. However, when comparing the DB_HE_global adder with the 

DSSC_CCAO_global adder of Table 5.4, it could be inferred that the latter is preferable in 

terms of the design metrics estimated. Though this may be surprising, the main reason for this 

can be attributed to the extra logic (encoder, OR-logic block that performs completion 

detection, synchroniser and decoder) present in the datapath apart from the main functional 

logic in case of the former. To confirm this, simulations have been carried out assuming the 

presence of mixed protocol datapaths. The simulation results listed in Table 5.6 substantiate 

the above reasoning.    

 

Adder realisation  
style 

Delay 
(ns) 

Area  
(µm2) 

Power  
(µW) 

Toms_DB_HE  8.9 9978 457.3 
DB_HE_local  5.6 8746 451.8 
DB_HE_global 5.4 7002 388.7 

 

Table 5.6: Delay, area and power parameters of 32-bit heterogeneously encoded ST RCAs 

(without extra logic)  

 

5.3 Hybrid Adders 

It was stated in section 5.2.1.3 that the least significant dual-bit adder stage actually incurred 

significant delay and this effect was observable in the entire dual-bit adder block based ST 

RCAs. Hence, a minor logic optimisation to mitigate this drawback has been resorted to. This 

involved optimal replacement of dual-bit adder module(s) in the least significant position(s) by 

single-bit adder block(s) so that the overall delay and area parameters could be reduced. Area 

would also get reduced as a typical dual-bit adder block consumes more area than a pair of 

single-bit adders, as shown in figure 5.17. ‘Series1’ highlighted in blue represents the 

normalised area measure of the dual-bit adder modules in comparison with the single-bit adder 

block, while ‘Series2’ highlighted in brown represents the normalised area measure of the 

dual-bit adder modules compared to a pair of single-bit adder blocks.  

 The carry-ripple adder structure would now feature a combination of single-bit and 

dual-bit adder modules resulting in the hybrid architecture. Since the dual-rail encoded dual-
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bit adder block based ST RCA is found to be more efficient than the heterogeneously encoded 

dual-bit adder module based ST RCA with respect to delay, area and power from Tables 5.4 

and 5.5, the simulation results corresponding to analysis of the former are given in Table 5.7. 
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Figure 5.17: Highlighting the area expense of dual-bit adder blocks in comparison with single-bit 

adder modules 

 

Adder realisation 
style 

Delay 
(ns) 

Area  
(µm2) 

Power  
(µW) 

DSSC_CCO 5.9 14921 871.9 
DSSC_CCAO_local 5.7 10041 839.1 

 
Dual-bit adders 

DSSC_CCAO_global 5.6 8834 648.3 
Hybrid_DSSC_CCO 5.5 13941 847.6 
Hybrid_DSSC_CCAO_local 5.5 9856 828.8 

 
Hybrid adders 

Hybrid_DSSC_CCAO_global 5.4 8726 650.2 
CD logic for DSSC_CCAO_global and Hybrid_DSSC_CCAO_global are different from the rest of the adders 

Table 5.7: Delay, area and power metrics of 32-bit dual-rail encoded hybrid ST RCAs 

 

 The Hybrid_DSSC_CCO adder is derived by substituting four stages of the 

SSSC_DRE adder in place of two least significant DSSC_CCO adder modules, while in case 

of Hybrid_DSSC_CCAO_local and Hybrid_DSSC_CCAO_global adders, two stages of 

SSSC_DRE adder modules in the least significant positions were found to be an optimal 

replacement. Any further inclusion of the single-bit adder block was only found to have a 
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detrimental effect on the datapath delay. It can be seen from Table 5.7 that, in general, the 

hybrid ST RCAs exhibit slightly reduced delay, area and power over the dual-bit adder based 

RCAs. The conclusion is that the Hybrid_DSSC_CCAO_global adder reports only marginal 

reduction in delay and area parameters (3.5% and 1% respectively) compared to the 

DSSC_CCAO_global adder, and is associated with a negligible increase in total power. The 

logic optimisation method put forward in section 5.5 presents a rather efficient technique to 

decrease the adder latency. 

 

5.4 Bottlenecks with Increase in Order 

To evaluate whether an increase in the order of a fundamental adder block would be helpful, 

given the possibility of the hybrid architectural scheme, triple-bit ST adder designs were 

explored. A dual-rail encoded triple-sum, single-carry (TSSC) adder block consists of 14 

inputs and 8 outputs. It is to be noted that, in comparison with the DSSC adder module, the 

input space would now be quadrupled, and as a result the area demand would also increase 

significantly. It was found that a TSSC adder block based on C-elements, complex gates and 

OR gates (TSSC_CCO adder) is larger compared to the individual DSSC_CCO and 

SSSC_DRE adder modules by 1.5× and 4.9× respectively – eventually this implies higher 

loading effect, more logic levels, greater delay and increased power consumption.  

 With respect to the output carry signal generated by an adder module, it was estimated 

through the principle of mathematical induction that the number of irredundant cubes in the 

MDSOP expression would be of O( 12 1 −+n ), which approximates an exponential order, and 

consequently, this will have an adverse impact on the overall adder delay as the adder size 

increases. To confirm this, simulations were performed under similar conditions assuming 

operand sizes of 48-bits, and the results shown in Table 5.8 vindicate the above observation. 

24 stages are required for implementing the dual-bit adder block based ST RCA, while 16 

stages are required for realising the triple-bit adder module based ST RCA.    

 The Hybrid_DSSC_CCO adder comprises four stages of the SSSC_DRE adder while 

the Hybrid_TSSC_CCO adder incorporates six stages of the SSSC_DRE adder. The hybrid 

scheme has benefitted the latter in comparison with its true version by effecting an area 
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decrease of 8.7% and enabling reduction in delay and total power dissipation by 20.5% and 

12% respectively. However, the Hybrid_TSSC_CCO adder exhibits increased delay and area 

compared to the Hybrid_DSSC_CCO adder by approximately 6% and 49% respectively. It 

may be understandable that an area increase may not always result in a proportionate increase 

in average power in case of ST logic unlike the case quite common in synchronous designs, 

due to the activation of unique signal paths in the former. Therefore, the former dissipates only 

12% more average power than the latter whilst featuring an area expense of 1.5×. 

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

DSSC_CCO 9.1 22639 1399.6 
TSSC_CCO 11.6 34849 1747.5 
Hybrid_DSSC_CCO 8.7 21389 1377.4 
Hybrid_TSSC_CCO 9.2 31819 1537.8 

 

Table 5.8: Delay, area and power metrics of dual-bit and triple-bit adder based 48-bit ST RCAs 

 

5.5 Redundant Logic Insertion 

This section deals with an efficient method for reducing the datapath latency of an ST dual-bit 

adder based RCAs by means of a novel concept called redundancy insertion. In general, the 

concept can be extended to effect latency reduction in iterative logic circuits, which would 

comprise a cascade of basic building blocks. Redundancy insertion, in general, implies 

inclusion of extra redundant logic into the actual non-redundant implementation (which 

synthesises a specific functionality) with the intention of speeding up the propagation of 

certain signals, which would be required to drive (act as inputs for) the subsequent stages, 

without affecting the original functionality.  

 Redundancy can be incorporated into a function block implementation by careful 

duplication of similar logic and can be expected to pave the way for multiple 

acknowledgements, which may be useful in simplifying the timing assumptions in a ST 

realisation. Additionally, it could facilitate the faster reset of logic during the RTZ handshake 

protocol with a constant latency. Logic redundancy achieved through input-incomplete gates, 

basically introduces the weak-indication property into the circuit as it relaxes the indication 
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(acknowledgement) constraints of those function block outputs that are considered as 

candidates for optimisation. It can either be implicit (for example, the SSSC_DRE adder) or 

explicit in the design and herein we consider explicit insertion of redundant logic with the 

objective of decreasing the critical path delay metric. The minor drawbacks of this approach 

are marginal increases in area and power parameters. Since logic duplication is involved, 

switching activity would increase due to multiple acknowledgements, subsequently pushing 

up the dynamic power and thereby increasing the average power dissipation. However, the 

area and power overheads may be insignificant depending upon the functionality and its initial 

non-redundant implementation, and the degree of logic redundancy subsequently resorted to. 

We will now consider six case studies to demonstrate the benefits of the redundancy insertion 

scheme based on the ST RCA architecture, where logic redundancy addresses the carry output 

since it is required to propagate between successive stages. Redundant logic insertion was 

performed manually with respect to all the ST adder circuits considered here. 

 

5.5.1 Impact on a Single-Bit Adder Based on Hybrid Input Encoding 

Let us first consider the ST full adder functionality based on HIE to explain how logic 

redundancy can be achieved through the insertion of input-incomplete gates.  

 

 

Figure 5.18: Hybrid input encoded ST full adder with logic redundancy 
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 In the above figure, gates C1 and C2 denote 2-input C-elements, while gates g1 and g2 

represent 2-input AND gates. It can be noticed in the diagram that the logic realised by C1 and 

C2 are equivalent to that of g1 and g2 respectively, for transitions. It can be seen in figure 5.6 

that g1 and g2 are not present and hence redundancy is explicit in the present design, 

henceforth referred to as the SSSC_HIE_RL adder. This proves to be beneficial in two ways. 

During the spacer phase, all the sum outputs could be reset in a parallel fashion, as the dual-

rail carry output of the kth stage could be reset based on its 1-of-4 encoded augend and addend 

inputs, and the dual-rail sum output of the (k+1)th stage would then depend only on the dual-

rail carry input of its preceding stage. There is also a benefit in terms of improving 

computation speed during the valid data phase. This would be obvious by comparing the 

designs portrayed by figures 5.6 and 5.18; it can be observed that the carry propagation path 

delay is less in case of the SSSC_HIE_RL adder than the SSSC_HIE_NRL adder. This is 

further substantiated by the results shown below for the case of a 32-bit addition, based on the 

ST carry-ripple adder topology, with inputs fed every 15ns to the adder circuits.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

SSSC_HIE_NRL 8.0 6633 619.1 
SSSC_HIE_RL 5.9 6953 630.2 

 

Table 5.9: Comparing delay, area and power parameters of redundant and non-redundant 32-bit 

hybrid input encoded ST RCAs 

 

 It is evident from the results tabulated above that the SSSC_HIE_RL adder achieves 

latency reduction over the SSSC_HIE_NRL adder by 26.3%, whilst reporting associated 

increases in area and average power parameters by 4.8% and 1.8% respectively.  

 

5.5.2 Impact on Dual-Bit Adders Utilising Dual-Rail Encoding 

We now analyse the effect of redundant logic insertion in a ST dual-bit adder module based on 

DRE. Figure 5.19 depicts the redundant gates (shaded AND gates) inserted into a typical 

DSSC_CCO adder module. The non-redundant adder block would not feature rg1 and rg2, 
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and so one of the inputs for the OR2 gates producing Cout1 and Cout0 would be the outputs of 

C-elements (C1 and C2), which are nets gn2 and gn3 respectively that were wire forks earlier. 

But in the redundant version, the OR2 gates producing Cout1 and Cout0 consider gn1 and gn4 

as inputs respectively. Again, for the case of transitions, rg1 and rg2 are functionally 

equivalent to C1 and C2.  

 

 

Figure 5.19: Showing redundant logic insertion in DSSC_CCO adder module 
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The gate output node labelled ‘isf’ signifies an isochronic fork junction. Referring to 

figure 5.19, it can be observed that isf↑ would be followed by either gn2↑ or gn3↑ in case of 

the non-redundant DSSC_CCO adder block and by (gn1↑, gn2↑) or (gn3↑, gn4↑) in case of the 

DSSC_CCO adder module that incorporates logic redundancy – this signifies the possible 

multiple acknowledgements. It can also be noted that there becomes available a provision for 

fast or eager reset during the RTZ phase after insertion of logic redundancy. During the spacer 

phase, all the sum outputs could be reset in a parallel fashion, as the carry output of the 

previous adder’s stage could be reset even by its corresponding augend and addend inputs 

without having to wait for an input carry from its preceding stage. The above condition would 

however be strictly enforced only in case of the DSSC_CCO adder as it mainly incorporates 

gates that are input complete, and it could be relaxed in case of DSSC_CCAO_local and 

DSSC_CCAO_global adder modules, since they widely employ gates that are input-

incomplete. Nevertheless, in all the redundant logic adders, the sum output(s) of the (i+1)th 

adder stage could evaluate based on the carry input from its previous i th stage and there does 

not arise the need for carry propagation over the entire length during the reset phase that might 

have occurred for the set phase. The advantage of latency reduction gained by introduction of 

redundant logic is attributable to the lower datapath delay encountered, as the critical path in 

every dual-bit adder stage comprises only input-incomplete gates instead of a mix of input-

complete and input-incomplete gates in the original non-redundant version.  

The results corresponding to the simulations of non-redundant and redundant logic 

dual-bit adders, performed under similar conditions, are given below. The increase in latency 

for the non-redundant logic adders corresponding to their redundant versions and the area and 

power overheads for the latter in relative comparison with the former are specified within 

brackets in Table 5.10. Non-redundant logic dual-bit adders are found to suffer from 29.3% 

delay increase compared to their redundant counterparts, on an average.  

 A visual inspection of Table 5.10 reveals that the area expense is very minimal for the 

adders incorporating logic redundancy, with virtually no increase in average power 

dissipation. The redundant logic included DSSC_CCAO_global adder based ST RCA was 

alone optimised further following the hybrid approach discussed earlier using two stages of 

the SSSC_DRE adder, as its non-redundant version was found to be efficient amongst all the 

dual-bit adders based on either DRE or HE.  
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Adder realisation 
style 

Delay 
(ns) 

Area 
(µm2) 

Power  
(µW) 

DSSC_CCO 5.9 (28.3%) 14921  871.9 
DSSC_CCAO_local 5.7 (29.5%) 10041 839.1 

 
Non-redundant logic 

DSSC_CCAO_global 5.6 (30.2%) 8833 648.3 
DSSC_CCO 4.6 15081 (1.1%) 875.3 (0.4%) 
DSSC_CCAO_local 4.4 10201 (1.6%) 842.5 (0.4%) 

 
Redundant logic 

DSSC_CCAO_global 4.3 8993 (1.8%) 651.7 (0.5%) 
 

Table 5.10: Comparing delay and area metrics of redundant and non-redundant logic dual-bit 

adder based 32-bit ST RCAs employing DRE 
 

  

 It can be seen in Table 5.11 that there is practically no difference between the non-

hybrid and hybrid versions in terms of power dissipation, while a marginal difference occurs 

with respect to delay and area. 

 

Adder realisation  
style 

Delay  
(ns) 

Area 
(µm2) 

Power 
(µW) 

DSSC_CCAO_global  4.3 (2.4%) 8993 (1.3%) 651.7 
Hybrid_DSSC_CCAO_global 4.2 8875 653.3 (0.2%) 

 

Table 5.11: Comparing delay, area and power of hybrid and non-hybrid DSSC_CCAO_global adder 

incorporating redundant logic, evaluated using a 32-bit ST RCA structure 

 

5.5.3 Impact on Dual-Bit Adders Adopting Heterogeneous Encoding 

Lastly, the impact of redundant logic insertion on heterogeneously encoded dual-bit adders is 

briefly analysed in this section. Logic redundancy, as introduced into a typical DB_HE_local 

dual-bit adder module, is portrayed in figure 5.20 with the input-incomplete gates marked by 

rg1 and rg2. Similar notations have been used as that of figure 5.19 so that the discussions of 

the previous section would hold well for this scenario too. The non-redundant DB_HE_local 

block was shown in figure 5.14. The latency increase suffered by the non-redundant adders 

compared to their redundant counterparts and the area and power expense of the latter in 

relative comparison with the former are given in Table 5.12 to arrive at a quick inference.   
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Adder realisation 
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

DB_HE_local 5.8 (26.1%) 10889 688.4  
Non-redundant logic DB_HE_global 5.7 (29.5%) 9594 685.5 

DB_HE_local 4.6 11049 (1.5%) 691.9 (0.5%)  
Redundant logic DB_HE_global 4.4 9754 (1.7%) 688.9 (0.5%) 

 

Table 5.12: Delay, area and power of NRL and RL dual-bit adder based 32-bit ST RCAs with HE 

   

 

Figure 5.20: Highlighting redundant logic insertion in DB_HE_local adder module 
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 From Table 5.12, it can be inferred that approximately 28% reduction in latency has 

been achieved by means of logic redundancy, which is significant, while noting that this is 

accompanied by only insignificant area and power penalties. As with the earlier case studies, 

the present example also underlines the appreciable benefit resulting from inclusion of 

redundant logic in a ST arithmetic circuit.  

 

5.6 Summary 

A plethora of ST adder blocks and logic optimisations targeting reduced latency have been 

analysed and evaluated in this chapter on the basis of the fundamental carry-ripple adder 

topology. The individual adder modules were configured to utilise either a homogeneous DI 

data encoding scheme for both the inputs and outputs, or a hybrid DI data encoding 

mechanism for the inputs and a homogeneous data encoding method for the outputs, or a 

heterogeneous DI data encoding protocol for both the inputs as well as outputs, depending 

upon the adder block size.    

 

Adder type Referencing  
SSSC_DRE (Implicit redundant logic) Add1 
SSSC_HIE_NRL (Non-redundant logic) Add2 
DSSC_CCO (Non-redundant logic) Add3 
DSSC_CCAO_local (Non-redundant logic) Add4 
DSSC_CCAO_global (Non-redundant logic) Add5 
DB_HE_local (Non-redundant logic) Add6 
DB_HE_global (Non-redundant logic) Add7 
Hybrid_DSSC_CCO (Non-redundant logic) Add8 
Hybrid_DSSC_CCAO_local (Non-redundant logic) Add9 
Hybrid_DSSC_CCAO_global (Non-redundant logic) Add10 
SSSC_HIE_RL (Redundant logic) Add11 
DSSC_CCO (Redundant logic) Add12 
DSSC_CCAO_local (Redundant logic) Add13 
DSSC_CCAO_global (Redundant logic) Add14 
Hybrid_DSSC_CCAO_global (Redundant logic) Add15 
DB_HE_local (Redundant logic) Add16 
DB_HE_global (Redundant logic) Add17 

Table 5.13: Reference text for various ST adder blocks 

 

Table 5.13 lists the referencing for the various proposed weak-indication ST adder 

blocks, whose design parameters corresponding to a 32-bit addition operation are portrayed in 
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figure 5.21. The delay, power and area parameters of the different 32-bit ST RCAs are 

specified in 10-9(s), 10-4(W) and 10-9(m2) units respectively.   

Overall, the various adder designs considered corroborate the fact that inclusion of 

logic redundancy leads to dramatic savings in terms of latency with only marginal area and 

power penalties, which is evident from figure 5.21. Amongst the different ST adders analysed, 

the hybrid DSSC_CCAO_global adder (Add15) featuring redundant logic is found to exhibit 

the least datapath delay for performing 32-bit addition. With respect to power and area, the 

SSSC_HIE_NRL adder (Add2) and Folco et al._DRE adder report optimum figures of 619µW 

and 6633µm2 respectively. They report a similar latency of 8ns for 32-bit addition. In 

comparison, the hybrid DSSC_CCAO_global adder encounters less datapath delay by 48%, 

while the former adders dissipate less average power by 5.3% and demand less area by 25.3% 

compared to the latter.  
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Figure 5.21: Depicting the delay, power and area metrics of various ST adder blocks for performing 

32-bit addition based on the RCA topology 
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Chapter 6  
 

Self-Timed Section Carry Based Carry-Lookahead Adders  
 

RCAs were found to occupy the least area and dissipate less average/maximum energy per 

addition, next only to the Manchester carry chain adder, in relative comparison with many 

high-speed adder architectures of the synchronous domain [159]. Though the basic carry-

propagate adder structure is relatively simple and easier to implement in accordance with the 

ST design style, it suffers from a linear increase in datapath delay proportional to the word 

width. It has been found that adder topologies such as carry-select [160] and conditional-sum 

logic [161] lend themselves to square-root time addition [162].  

Carry-Lookahead (CLA) adders represent a widely used high-speed carry-propagate 

scheme for performing addition in logarithmic time [162], unlike the case with RCAs. In 

general, the design of a CLA adder is based on the principle that by examining the augend and 

addend bits, it is possible to predict/determine the carry signals beforehand and thereby reduce 

the delay that could otherwise be expected in a stage-by-stage propagation scenario. However, 

obtaining a ST derivative of the synchronous CLA architecture in a straightforward fashion is 

likely to give rise to gate orphans, mainly because of the propagate and generate signals that 

are generated for each adder stage, which are subsequently used for producing the CLA signal 

corresponding to a group of adder inputs. ST design procedures that rely upon the DRCL style 

may be helpful in permitting a direct translation of the synchronous architecture to robust 

asynchronous style, but can be expected to incur approximately thrice the area penalty in 

comparison with the former while accounting for the presence of explicit completion detectors 

as well. Nevertheless, our interest here is on facilitating a generalised gate level logic synthesis 

followed by an optimal SI decomposition with the intention of realising CLA modules that are 

inherently ST and compact. Hence, in this connection, ST section carry based CLA 

(SCBCLA) architectures are proposed in this chapter that bear some similarity with the 

traditional CLA scheme, and are evaluated on the basis of DRE and HIE protocols.  
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6.1 Background 

We will now consider three scenarios to illustrate the problem of gate orphans inherent in 

recursive carry formulations. Let us first consider the basic equation governing the carry 

output signal, represented in single-rail format.   

Cout = ab + (a ⊕  b) cin     (6.1) 

G = ab, P = a ⊕  b      (6.2) 

 In (6.2), G and P signify generate and propagate signals. It can be interpreted from the 

above equations that an output carry is generated if both the operand bits are 1, while an 

incoming carry is propagated to the output if the operand bits are mutually exclusive. Hence, 

with notations Pi and Gi denoting the generate and propagate functions of a random adder 

stage i, we have,  

Ci = Gi + PiCi-1      (6.3) 

 It may be that (6.3) can be thought of as a second-order equation, since Gi and Pi can 

be further expressed in terms of the primary inputs of a generic adder stage. In general, there is 

a carry at stage i, if there is a carry-generated at stage i or, if there is a carry that is generated at 

stage i-1, which is propagated to stage i. This notion can be extended to predict the carry 

signal at any arbitrary adder stage and therefore the above equation is basically recursive in 

nature. Unwinding the recursion implicit in (6.3), for each stage, would yield the following i th 

order equation, where C-1 represents the carry input to the least significant adder stage.  

Ci = Gi + PiGi-1 + PiPi-1Gi-2 + …. + PiPi-1Pi-2…P0C-1  (6.4) 

 Representing (6.3) in dual-rail encoded format, after obtaining dual of the positive-rail 

output and subsequent logic transformation to satisfy the cover constraint, we have,  

Ci
1 = Gi

1 + Gi
0Pi

1Ci-1
1      (6.5) 

Ci
0 = Gi

0Pi
0 + Gi

0Pi
1Ci-1

0     (6.6) 

 It can be seen that Ci
1 and Ci

0 are expressed in their MOSOP forms. With respect to 

these second-order equations, gate-orphan freedom cannot be guaranteed even when the cubes 

are physically realised without any decomposition, in which case the inference would hold 

good for the recursive formulation of (6.4) as well. The possibility for the occurrence of gate 

and wire orphans is clarified through the following discussion. Figure 6.1 depicts the carry 

output (C1) formulation using generate and propagate signals, as given by (6.5) and (6.6), 

where (a1
1, a1

0), (b1
1, b1

0) and (C0
1, C0

0) represent the dual-rail augend, addend and carry 
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inputs of an adder stage and (C1
1, C1

0) specify the dual-rail carry output generated from this 

stage. In figure 6.1, is1 and is3 represent the true and false rail expressions of the carry-

generate signal, while is4 and is2 correspond to the true and false rail expressions of the carry-

propagate signal. For the condition when carry-generate function becomes valid, the following 

sequence of transitions occurs: (a1
1↑, b1

1↑) → is1↑ → C1
1↑. Even if the transition C0

1↑ 

occurs, since the intermediate output signals is3 and is4 did not fire, the transition at gate 

output node is2 (is1↑ → is2↑) is said to give rise to a gate orphan and C0
1↑ results in a wire 

orphan.    
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Figure 6.1: Carry output description using generate and propagate signals 

  

Alternatively, the carry equations can also be represented taking into account the carry-

kill condition, apart from generate and propagate conditions, which signifies the state when 

both the augend and addend inputs of an adder stage assume a logic low state. This state 

avoids the generation of a carry signal from this stage and also prevents the propagation of an 

input carry to the output.  

Ci
1 = Gi

1 + Gi
0Pi

1Ci-1
1     (6.7) 

Ci
0 = Ki

1 + Ki
0Pi

1Ci-1
0     (6.8) 

 The logic realising the above equations, taking account of carry-generate, propagate 

and kill conditions, is depicted by figure 6.2. In figure 6.2, im1 and im4 represent the true and 
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false rail expressions of the carry-generate signal, while im5 and im2 correspond to the true 

and false rail expressions of the carry-kill signal. The equation pertaining to the carry-

propagate condition is realised by the intermediate node im6. Let us consider a worst-case 

scenario to describe how orphans occur in the circuit. It can be seen from figure 6.2 that (a1
1↑, 

b1
1↑) → im1↑ → C1

1↑. The following also occurs: im1↑ → im2↑. But the transition on the 

intermediate gate output im2 will not be subsequently acknowledged by the output im3, for a 

transition on the carry input C0
1. This leads to the creation of gate and wire orphans.     

 

 
Figure 6.2: Output carry representation on the basis of generate, propagate and kill functions 

 

Lastly, we analyse the situation when the carry-propagate signal is expressed in its 

simplified version as P = a + b, when the output carry is given as Cout = ab + (a + b)cin. This 

result in the dual-rail carry output to be expressed in its MSOP form as,  

Cout1 = a1b1 + a1cin1 + b1cin1    (6.9) 

Cout0 = a0b0 + a0cin0 + b0cin0    (6.10) 

Based on the recursive formulation of (6.5) and (6.6), the carry-lookahead function is 

then implemented as shown in figure 6.3. The true and false rail expressions of the carry-
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generate signal are specified by ig1 and ig5, while the true and false rail expressions of the 

carry-propagate condition are signified by ig2 and ig6 respectively in the figure below.    
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Figure 6.3: Carry output representation assuming P = a+b 

 

Here, whenever the adder inputs are different the circuit would be gate orphan free and 

this would be guaranteed even when the carry-kill condition occurs. However, when the carry-

generate condition becomes valid, ig1↑ → C1
1↑. But ig1↑ → ig2↑ and the transition on ig2 

would not be acknowledged by ig3 or ig4, which gives rise to a gate orphan. At this juncture, 

the transition on any of the input carry rails would be classified as a wire orphan.  

Thus, the preceding discussions have demonstrated the problematic issue of gate 

orphans and/or wire orphans, possible in case of a recursive asynchronous carry synthesis. 

However, the problem with recursive equations can be overcome if the essential logic 

transformations to satisfy the cover constraint are performed on a first-order equation, and this 

would therefore necessitate reduction of a kth order carry equation to the first-order that would 

actually involve unfolding cube expansions. As a consequence, the need for stage-wise 

propagate and generate signals is deemed unnecessary.  

A better way to achieve this is to invoke the MOSOP heuristic for an initial two-level 

MSOP form of the carry equation, and for physical implementation, SI decomposition can 



Chapter 6 – Self-Timed Section Carry Based Carry-Lookahead Adders 
_____________________________________________________________________  

 164 

then be resorted to since suitable candidates could be ascertained from within the MOSOP 

form – this is owing to the carry output function exhibiting symmetricity with respect to 

permutation of its literals. It has been deduced through the principle of mathematical induction 

that the MOSOP expression for the carry output of a q-bit CLA would consist of ( 12 1 −+q ) 

logical conjunctions with the support set of the cube of maximum dimension comprising 

( 12 +q ) literals. Owing to the existence of an exponential relationship between the CLA size 

and the resulting number of product terms, CLA sizes in case of a ST implementation would 

have to be restricted so as to gain the maximum benefit in terms of reduced latency using this 

topology. Nevertheless, it has been intuitively observed that CLA logic of any size would be 

practically feasible through SI logic decomposition.   

 

6.2 Section Carry Based CLA Architectures 

Two CLA adder architectures have been conceived, bearing in mind the spatial demand of a 

robust asynchronous implementation and they are discussed in this section.  

 

 

6.2.1 Type 1 Architecture – Fundamental Topology 

The Type 1 architecture bears some similarity with a block CLA adder featuring intra-group 

carry ripple [161], which is the structure of a typical CLA adder. However, it mainly differs in 

that propagate and generate signals corresponding to each single-bit adder stage need not be 

computed – hence the term ‘section carry’. Figure 6.4 depicts the Type 1 architecture of the 

proposed section carry based CLA adder adopting DRE.  

 The q-bit CLA module generates a CLA signal corresponding to a section/group of q-

bits of the adder operands. To this end, it accepts a carry input from a previous stage/section. 

The CLA signal corresponding to a section is used to feed the subsequent CLA unit in the 

cascade and also the next adder element in the sequence. Thus, the sum outputs of the adder 
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Figure 6.4: Type 1 ST section carry based CLA adder architecture based on DRE 

 

can be produced simply by a rippling of the carry signal within each section, while the carry 

output of a section can be produced simultaneously and be quickly passed onto the next 

section to generate the lookahead signal of that stage. As a result, there arises an opportunity 

for optimising the CLA logic at the expense of the sum producing logic, i.e. the sum outputs of 

a section can assume the collective responsibility of indicating all the input operands of that 

section, while the CLA unit corresponding to a section can be freed from adhering to 

indication constraints, permitting it to be early propagative whilst ensuring that the realisation 

is free from the problem of gate orphans.   
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Figure 6.5: Type 1 ST section carry based CLA adder architecture based on HIE  

  

The acronym ‘SOL’ stands for sum only logic, which accepts an augend, addend and 

carry input and processes them to produce a sum output. In fact, the SOL unit can be derived 

from the basic full adder module. Hence, according to the Type 1 topology, for an n-bit adder 

comprising q-bit CLA units, 







−1

q

n
CLA modules would be required as CLA signal 

generation is necessitated only till the penultimate section. The Type 1 CLA adder structure 

for a hybrid input encoded datapath is shown in figure 6.5, which features a combination of 

dual-rail and 1-of-4 codes. 

 

6.2.2 Type 2 Architecture – Topology with Least Significant RCA 

Section 

From a physical implementation perspective, it can be anticipated that substantial delay would 

be encountered in the least significant CLA section, as opposed to the successive CLA 

sections in case of the Type 1 architecture. This was indeed observed during simulations, 

where the critical path in case of the least significant dual-rail encoded CLA unit consists of 

AND4, CE2, 3OR2 gates (5CE2, 5OR2), while the critical path in the least significant hybrid 

input encoded CLA block comprises AO2222, CE2, OR2 gates (AND4, CE2, 2OR3, 2OR2)  
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Figure 6.6: Type 2 ST section carry based CLA adder topology based on DRE 

 

for two-bit (four-bit) lookahead carry signal generation, based on the proposed design. Since 

the latency of the least significant CLA module (two or four bits) was found to be higher than 

what could be expected from a series cascade of individual adder sections, the least significant 

CLA adder section can preferably be replaced by a simple carry-propagate adder section 

paving way for marginal reduction in terms of delay, area and power parameters. With this 

modification, the structure of the Type 2 CLA adder architecture would be as shown in figure 

6.6, for the case of dual-rail encoded datapaths. Hence, the Type 2 topology is basically a 

refinement of the Type 1 structure primarily targeting delay optimisation. As a result, the 

number of CLA units required, would in general be specified by 







−−

1
q

pn
, where n, p and q 

are assumed to be even. Here, p signifies the number of full adder stages present in the least 

significant positions of the adder architecture. The Type 2 topology for hybrid input encoded 

datapaths is portrayed by figure 6.7.  
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Figure 6.7: Type 2 ST section carry based CLA adder topology based on HIE  

 

6.3 Evaluation with Two-Bit CLA Generator 

Simulations have been performed with a two-bit CLA generator module addressing both the 

Type 1 and Type 2 architectures, on the basis of a variety of approaches. Table 6.1 shows the 

delay, area and power metrics corresponding to Type 1 topology, while Table 6.2 lists the 

same for the Type 2 architecture.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

Seitz_DRE 13.7 17229 1168.9 
DIMS_DRE 14.9 25245 1233.8 
Toms_DRE 10.2 14191 927.4 
SSSC_DRE 5.5 9016 755.0 
Toms_HIE 7.2 12331 807.1 
SSSC_HIE_NRL 5.1 7593 659.4 
SSSC_HIE_RL 5.2 7763 663.2 

 

Table 6.1: Delay, area and power for 32-bit ST addition based on Type 1 topology with 2-bit CLA  
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The SSSC_HIE_NRL adder is found to exhibit the least latency, area and power 

parameters among the Type 1 architecture adders. Though the SOL and two-bit CLA modules 

for the SSSC_HIE_NRL adder and SSSC_HIE_RL adder are the same, the difference between 

the two is with respect to the single-bit adder synthesised, i.e. in comparison with the latter, 

the former occupies 0.89× area. This could eventually have had an impact on the delay metric 

as well; less power, due to absence of redundant gates. In comparison with dual-rail encoded 

adders, hybrid input encoded adders are preferable as they facilitate relatively compact circuit 

realisations. Figure 6.8 highlights the size of the two-bit ST CLA logic corresponding to 

various methods. It can be seen that the proposed weak-indication hybrid input encoded 2-bit 

CLA unit is an order of magnitude smaller than the dual-rail encoded 2-bit CLA modules and 

even in comparison with the strongly indicating 2-bit CLA unit based on HIE – thanks to a 

significant shrinkage of the input space.  

It should be noted that for the case of DRE, Type 2 architecture generally gives 

relatively less datapath delay than the Type 1 architecture. This is primarily attributable to the 

elements found in the critical path of the dual-rail encoded 2-bit CLA modules. For example, 

in case of the proposed adder, the critical path of the dual-rail encoded 2-bit CLA unit consists 

of AND4, CE2 and 3OR2 gates, while in case of the RCA section of size 2, the carry signal 

would only encounter the propagation delay associated with two AO222 cells, and hence 
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Figure 6.8: Relative comparison of area occupancy of two-bit CLA module designs  
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Adder realisation  
style 

Delay  
(ns) 

Area 
(µm2) 

Power 
(µW) 

Seitz_DRE 13.3 16593 1145.7 
DIMS_DRE 14.8 24273 1208.8 
Toms_DRE 10.1 13479 906.1 
SSSC_DRE 5.3 8887 749.7 
Toms_HIE 7.1 12013 794.0 
SSSC_HIE_NRL 5.2 7529 656.8 
SSSC_HIE_RL 5.2 7709 660.9 

 

Table 6.2: Delay, area and power parameters of 32-bit ST addition based on Type 2 adder 

architecture with two-bit SCBCLA  

 

comparatively lower delay. In case of the Type 2 architecture, the SSSC_HIE_RL adder can 

now be expected to feature the least delay due to the presence of a RCA section in the least 

significant adder stages. It has already been discussed in section 5.5.1 how the SSSC_HIE_RL 

adder achieves latency reduction over the SSSC_HIE_NRL adder at the expense of more 

silicon (refer Table 5.9). But, on an overall basis, it is found that the Type 1 architecture 

incorporating the SSSC_HIE_NRL adder exhibits the least datapath delay. This is mainly 

because, with respect to the SSSC_HIE_RL adder incorporated into the Type 2 configuration, 

the critical path elements corresponding to the RCA section would be OR2, 2AND2 and 2OR2 

gates, whereas in case of the SSSC_HIE_NRL adder, they would correspond to OR2, 2CE2 

and 2OR2 gates. However, in case of the Type 1 configuration, the SSSC_HIE_NRL adder 

would only experience the propagation delay associated with the datapath comprising 

AO2222, CE2 and OR2 cells, thereby resulting in a reduced latency. By comparing Tables 6.1 

and 6.2, it can be seen that the SSSC_HIE_NRL adder belonging to the Type 2 architecture 

dissipates the least average power, mainly due to the absence of a CLA module in the least 

significant stage. The test vectors were fed to the adder blocks every 15ns for the simulations.   

 

6.4 Evaluation with 4-Bit CLA Generator 

This section investigates extending the levels of lookahead from 2-bits to 4-bits. Simulations 

have been performed with a 4-bit ST CLA structure employing DRE and HIE protocols. In 

case of Seitz’s, DIMS or Toms’ approaches, for the case of DRE, the input space enumeration 

would be of O(29) and therefore the resulting CLA logic would be massive. Due to this reason, 

such realisations are not considered here, as they are not likely to be of benefit in terms of 
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optimising the delay parameter owing to an associated increase in the number of logic levels. 

This observation is further reinforced by the inference, which can be derived from the values 

given in Table 6.3. The delay, area and average power values mentioned within brackets in 

Table 6.3 refer to that of the ST RCA architecture for addition of size 32 bits, as discussed in 

the previous Chapter.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

Seitz_DRE 13.3 (6.5) 16593 (7689) 1145.7 (741.8) 
DIMS_DRE 14.8 (12.8) 24273 (10665) 1208.8 (770.5) 
Toms_DRE 10.1 (10.6) 13479 (7561) 906.1 (627.6) 

 

Table 6.3: Delay, area and power for 32-bit ST addition based on Type 2 adder architecture with 

two-bit CLA and RCA topology corresponding to Seitz, DIMS and Toms methods  

 

 Seitz’s and DIMS approaches suffer a delay penalty of approximately 105% and 16% 

respectively, while in case of Toms’ procedure there is a decrease in latency by 4.7%, for the 

section carry based Type 2 CLA topology in comparison with the basic carry-ripple addition 

scheme. Nevertheless, in case of the latter, the delay reduction is at the expense of an increase 

in average power by 44.4% and area requirement by 78.3%. In case of Seitz’s and DIMS 

approaches, delay degradation is accompanied by increased area and power metrics as well, 

which can be seen in Table 6.3.    

 The results obtained for a 4-bit ST CLA structure based on the proposed approach 

relating to Type 1, Type 2 and Hybrid architectures are listed in Table 6.4. The hybrid 

configuration involves supplementing the three single-bit adder stages (preceding the most 

significant full adder block) in the most significant nibble position of a section carry based 

CLA adder (Type 2 in case of DRE and Type 1 in case of HIE) by a 3-bit CLA module in 

order to effect a marginal reduction in delay, and only constitutes a peephole optimisation that 

is accompanied by associated area and power overheads. With respect to DRE, the 3-bit and 4-

bit CLA units are 1.6× and 2.7× bigger compared to the 2-bit CLA module; in case of HIE, the 

3-bit and 4-bit CLA units are 3.1× and 7.8× bigger in relative comparison with the 2-bit 

lookahead version.  
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Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

SSSC_DRE – Type 1 4.3 9769 770.6 
SSSC_DRE – Type 2 4.0 9385 757.3 
SSSC_DRE – Hybrid 3.8 9601 765.5 
SSSC_HIE_NRL – Type 1 3.8 10609 681.6 
SSSC_HIE_NRL – Type 2 4.1 10041 672.8 
SSSC_HIE_NRL – Hybrid 3.6 10829 687.3 
SSSC_HIE_RL – Type 1 3.7 10859 689.4 
SSSC_HIE_RL – Type 2 3.7 10301 680.8 
SSSC_HIE_RL – Hybrid 3.6 11069 694.5 

 

Table 6.4: Delay, area and power metrics for 32-bit ST addition based on Type1, Type 2 and 

Hybrid adder architectures with four-bit SCBCLA logic 

  

The 4-bit ST CLA logic based hybrid configuration based on HIE incorporating the 

SSSC_HIE_RL adder, that corresponds to the Type 1 architecture, was found to exhibit the 

least delay, while the Type 2 architecture employing the SSSC_DRE adder was found to 

occupy the least area. As can be seen from Table 6.4, the Type 2 architecture featuring the 

SSSC_HIE_NRL adder was found to dissipate the least average power.  
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Figure 6.9: Highlighting the merit of HIE CLA adder topology over HIE RCA topology with respect 

to delay parameter  
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 The performance advantage gained by the improved carry-propagate adder (section 

carry based CLA adder) scheme over the basic carry-propagate adder (RCA) architecture is 

illustrated by figure 6.9 for the case of 32-bit addition, incorporating the SSSC_HIE_RL 

adder. On an average, latency reduction of 12% and 37% has been achieved for the CLA 

structure employing 2-bit CLA and 4-bit CLA units respectively, in comparison with the RCA 

topology. In this context, the following chart depicts the compromise made in terms of average 

power dissipation for the ST lookahead architecture compared to the ST carry-ripple 

architecture. Evidently, the 2-bit and 4-bit CLA topologies exhibit a relative increase in total 

power dissipation over the RCA architecture by 5% and 9% respectively.  
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Figure 6.10: Portraying the power increase of HIE CLA adder architecture in comparison with HIE 

RCA architecture 

 

6.5 Summary and Inferences 

High-speed ST adder architectures based on the concept of CLA have been discussed in this 

Chapter. ST CLA logic realisation based on the section carry formulation has been put 

forward. Owing to the exponential spatial demand, section carry based lookahead architectures 
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may not be a viable option with many ST approaches and to confirm this, CLA structures 

corresponding to some methods were constructed and optimised for minimum delay. It is to be 

noted that the MOSOP heuristic has been helpful in substantially minimising the input space 

consideration from an initial O( 122 +q ) to O( 12 1 −+q ) with respect to the number of essential 

prime implicants required, thereby facilitating feasible construction of CLA structures.  

With respect to power and area, the Type 2 two-bit CLA architecture incorporating the 

SSSC_HIE_NRL adder is found to be superior (656.8µW and 7529µm2). With respect to 

delay, the SSSC_HIE_NRL adder (hybrid adder based on Type 1 architecture) founded upon a 

4-bit lookahead carry is preferable (3.6ns). Compared to the former, the latter facilitates delay 

reduction by 30.8%, but the former dissipates less power and occupies less area by 4.4% and 

30.5% respectively.  

 The main issue that has been found to hinder the translation of a synchronous CLA 

structure into a robust gate-level asynchronous implementation is the problem of orphans (gate 

orphans and/or wire orphans), which appear to be inherent in a recursive carry formulation 

that affects the robustness property of the adder implementation. This reason also appears to 

negatively impact gate level ST realisation of parallel prefix adders [163] – [166], where the 

prefix operation is also recursive involving generate and propagate signals. Nevertheless, such 

adders could be realised following the block-level relaxation approach [128]. But the parallel 

prefix adder architecture might experience a greater delay than the proposed SCBCLA 

architecture since the full P/G (FPG) block [128], in its input-complete version, would incur 

the delay equivalent of a CE4, an OR3 and two OR2 gates (assuming maximum fan-in of an 

OR gate is 3). For a 32-bit ST adder, the critical path is likely to comprise five such FPG 

blocks and the delays due to the above elements can be roughly multiplied and added to the 

propagation delay of the overflow carry logic in addition to the delay of the initial PG stage. In 

contrast, for the 32-bit SCBCLA based on a hybrid format of the Type 2 architecture, the 

longest path traversed would result in a delay equivalent of five full adders, six 4-bit CLAs 

and a 3-bit CLA. The delay experienced in each ST CLA is equivalent to the delay of a CE2 

and an OR2, though the delay values vary according to the CLA unit size.  

 It is worth studying the potential benefits of the proposed lookahead scheme for 

addition involving higher operand sizes and the results of this analysis for adders of size 32, 

48 and 64 bits are presented in Tables 6.5 and 6.6. In case of the dual-rail encoded CLA adder, 
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the hybrid configuration considered here is founded upon the original Type 2 architecture. The 

percentage figures given within brackets in Tables 6.5 and 6.6 represent the corresponding 

reduction in latency and increases in area and average power for the ST CLA adder scheme in 

relative comparison with the ST RCA scheme.  

It can be concluded that the proposed carry-lookahead scheme enables significant 

reduction in critical datapath delay compared to the basic carry-propagate adder structure at 

the expense of more area and power dissipation. It has been found that a hierarchical 

arrangement of CLA units does not guarantee gate-orphan freedom owing to the problem 

inherent in a recursive carry formulation, as described in section 6.1.        

 

Adder  
size 

Realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

SSSC_DRE (RCA) 5.8  7081  32 
bits SSSC_DRE (Hybrid with 4-bit CLA) 3.8 (-34.5%) 9601 (+35.6%) 

SSSC_DRE (RCA) 8.3  10611 48  
bits SSSC_DRE (Hybrid with 4-bit CLA) 4.8 (-41.6%) 14667 (+38.2%) 

SSSC_DRE (RCA) 10.9 14129 64  
bits SSSC_DRE (Hybrid with 4-bit CLA) 6.6 (-39.7%) 19721 (+39.6%) 

 

Table 6.5: Comparing ST ripple carry and hybrid CLA adders in terms of delay and area 

components for different word widths 

 

Adder  
size 

Realisation  
style 

Power  
(µW) 

SSSC_DRE (RCA) 678.8 32 
bits SSSC_DRE (Hybrid with 4-bit CLA) 765.5 (+12.8%) 

SSSC_DRE (RCA) 1011.4 48  
bits SSSC_DRE (Hybrid with 4-bit CLA) 1150.5 (+13.8%) 

SSSC_DRE (RCA) 1351.1 64  
bits SSSC_DRE (Hybrid with 4-bit CLA) 1697.1 (+25.6%) 

 

Table 6.6: Comparing ST ripple carry and hybrid CLA adders in terms of power dissipation for 

different word widths  
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Chapter 7  
 

Self-Timed Multi-Operand Addition  
 

In Chapters 5 and 6, ST dual-operand addition was dealt with. In this Chapter, ST addition of 

multiple operands is considered. Multi-input addition is an operation widely prevalent in both 

multiplication and computation of vector inner products [167] [168]. Various tree structures 

that are available for multi-operand addition are first discussed in brief. Next, a bit-partitioning 

strategy that parallelises the addition of multiple operands of arbitrary size is described, with 

an analysis of carry save adders/logic compressors forming part of the input field partitions.  

 

7.1 Tree Constructs 

The carry save adder (CSA) is useful for handling addition of many numbers and therefore 

suitable for building multipliers and digital filters, where complicated additions are required. 

Unlike the basic carry-propagate adder (CPA), in a CSA, the carry output signal of the current 

bit at a level is not transferred to the next-bit adder of the same level as the carry input signal; 

instead, it is transferred to the next-bit adder in the lower level as the carry input signal. A 

CSA tree can reduce n binary numbers to two numbers in O(log n) levels [168]. A fast 

logarithmic time dual-operand adder can then be used to add the two resulting numbers. 

Hence, CSAs were predominantly used in various tree structures for performing multi-input 

addition.   

 The rudimentary tree structure [167], also called as the iterative CSA array, is a 

straightforward way to accumulate partial products. An n-operand array would consist of 

( 2−n ) CSAs and a final CPA stage. As a result, the time complexity of the fundamental array 

topology would be the summation of the propagation delay of the CSA tree governed by a 

height of ( 2−n ) and the propagation delay associated with the CPA stage, which is 

approximately linear. Wallace trees [169] are known for their optimal computation time; in 

fact, they constitute the theoretically fastest adders when reducing multiple operands to two 

outputs using CSA trees [170]. In Wallace trees, the number of operands is reduced at the 



Chapter 7 – Self-Timed Multi-Operand Addition 
_____________________________________________________________________  

 177 

earliest opportunity by employing 3
n  full adders for all the m columns, where ‘n’ specifies 

the number of single-rail operands and ‘m’ denotes the size of each operand. This procedure 

tends to minimise the overall delay by making the final CPA stage as compact as possible. 

Although the Wallace tree guarantees the lowest overall delay, it requires the largest number 

of wiring tracks (vertical feed-throughs between adjacent bit-slices), thereby compounding 

their wiring complexity [171]. The iterative CSA array and Wallace trees represent two 

extremes in the spectrum of multi-operand addition [168]. While the former features the 

simplest and regular structure, it is also the slowest; the latter is the fastest, but is also the most 

difficult structure to implement. Other tree structures proposed for multi-operand addition lie 

between these two extremes, permitting tradeoffs between regularity and speed [167]. While 

Wallace used a word-level description of his trees, Dadda gave a refined presentation of the 

same concept at the bit-level [172]. In Dadda trees, the number of operands is reduced to the 

next lower number in comparison with the Wallace tree using the fewest number of full adders 

and half adders possible, i.e. combining of partial product bits takes place as late as possible 

and this usually leads to a simple CSA tree, unlike Wallace’s method where partial products 

are combined at the earliest opportunity. The former strategy minimises the number of full and 

half adders at the expense of a wider CPA, while the latter tends to make the width of the final 

CPA smaller. Wallace’s and Dadda’s strategies for constructing CSA trees give rise to 

Wallace and Dadda tree multipliers. An analysis of Dadda and Wallace multiplier delays was 

performed for different multiplier sizes [173], and it was found that the former showed 

improvement in speed compared to the latter by 9%-14%; however, this work assumed the 

presence of only discrete logic gates (AND2, OR2 and INV cells). It has been clarified in 

[168] that the above strategies, which achieve logarithmic depth reduction based on CSA 

trees, tend to suffer from the drawback of an irregular structure that subsequently complicates 

the design and layout. Additionally, connections of varying lengths and complex signal paths 

lead to logic hazards and signal skew that would have negative implications for power and 

performance parameters. Overturned-stairs (OS) tree structures [174] can be designed 

systematically paving way for a simple and regular interconnection scheme in comparison 

with the Wallace tree, whilst achieving similar speed performance in certain cases. The 

balanced delay tree [175], on the other hand, requires the smallest number of wiring tracks but 

suffer from greater delay compared to the OS trees. Nevertheless, it has been widely 
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understood that iterated or recursive structures that would feature a greater degree of structural 

regularity, less hardware complexity and promise high-speed, such as those incorporating 

parallel counters or logic compressors, are preferable compared to CSA based tree structures 

[162] [167] [168] [170] [174] [176].  

 

7.2 Bit-Partitioning Scheme 

In CSAs, row-wise parallel addition is performed, where the tree height grows with the 

increase in the number of input operands by an approximate linear order. Here, a bit-

partitioning strategy is considered, which would involve splitting the entire group of operands 

horizontally into sub-groups as desired, and the results of the sub-groups can then be summed 

up to produce the final sum. The bit-partitioning approach to multi-input addition is illustrated 

through figure 7.1, where addition of n binary operands, with each operand of size m bits is 

considered, assuming n is even. A ‘dot’ represents a bit position in the figure below.  

 

Σ

 
Figure 7.1: Illustration of bit-partitioned multi-input addition scheme  
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 The entire set of input operands ( 10,...., −naa ) is divided into two equal-sized groups, 

namely X_field (that comprises inputs, 2)1(0,..., −naa ) and Y_field (consisting of inputs, 

12)1( ,..., −+ nn aa ). Addition within the individual fields can be performed either using CSAs or 

with logic compressors. The sum bits generated from these individual fields can then be added 

together using a dual-operand adder. Herein, we can use a carry-ripple adder for performing 

summation of the outputs of X and Y data fields. Use of a RCA stage would help in further 

evaluating the ST full adder blocks discussed previously.  

 In general, the combinational bit-partitioning procedure might only effect a slight 

improvement in delay when many operands have to be added, by way of performing parallel 

column wise addition of row-wise partitions. For example, considering the addition of 32 

single-rail operands, each of size 32-bits, the critical path delay of the multi-operand adder is 

equivalent to 8 full adder delays (assuming the Wallace bound) and the delay of a 36-bit RCA 

stage. On the other hand, with eight equal-sized input field partitions, the maximum path delay 

could be reduced by 2 full adder days. If say 16 operands are to be added, then they could be 

initially partitioned into 4 fields (say, V, W, X and Y). The outputs of input fields V and W 

can be combined into an intermediate output field; likewise with input fields X and Y. The 

sum outputs corresponding to the intermediate output fields can then be added to obtain the 

desired final result. Alternatively, the outputs of the four input fields can be added together 

using a single multi-input adder to produce the required result. It can be noticed that additions 

within the partitions are done in parallel, while the final adder stage that could comprise a 

simple CPA performs serial computation.  

 The procedure is scalable and may benefit moderately in terms of latency reduction, as 

opposed to employing conventional combinational tree type structures for problems of higher 

dimensions. Also, a high regularity would be implicit within the overall architecture as the 

input partitions are being replicated. Henceforth, we shall discuss about ST CSAs and logic 

compressors in the following sections, as employed for the input field partitions, whose 

evaluation is our main interest with regard to this Chapter.   
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7.2.1 CSA Based Multi-Operand Addition 

Figure 7.2 shows the ST equivalent of a traditional synchronous CSA structure, used for 

addition of four dual-rail encoded binary numbers (a,b,c,d), each of size n bits, and the (n+1) 

sum outputs produced are also in dual-rail format. Inputs and outputs with subscript zero 

correspond to the least significant bits and those with the maximum subscript notation 

represent the most significant bits. As shown in figure 7.2, there are three adders in three 

levels – two levels of CSAs and one level of RCA to add four input operands. In each CSA, 

the output carry signal of the current bit at a level is not transferred to the next bit adder of the 

same level as the input carry. Instead, the output carry is transferred to the next bit adder in the 

lower level as the carry input signal. In the top-level adder, three numbers (a,b,c) are added 

simultaneously, i.e. the bits corresponding to any number could act as the input carries for the 

full adders of the first level CSA. In the next lower level, an extra number (d) is added. The 

adder in the bottom level is a conventional carry-ripple adder that produces the final sum. The 

propagation delay of the whole multi-operand adder, in general, is equal to the sum of the 

delay of two full adder cells in the first two levels and the delay associated with the basic CPA 

of the final level. 

 

 

Figure 7.2: ST version of a typical n-bit CSA for adding four operands 
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7.2.2 Compressor Based Multi-Operand Addition 

Instead of using CSAs for the partitions, logic compressors can also be employed for adding 

multiple input operands as shown in figure 7.3. The (4:2) compressor [177] usually takes in 

five inputs (four inputs in the absence of an input carry) including a carry input from the 

preceding stage and produces three outputs – two carry outputs, with one carry (ICarry) 

propagating as carry input to the compressor block of the next column in the same row, while 

the sum (Sum) and carry (Cout) outputs are fed as inputs to the final stage carry-ripple adder. 

In essence, it is a 5-bit column adder [168].  

 

 

Figure 7.3: ST logic compressor based multi-input adder to add four operands 

 

The efficient realisation of a (4:2) compressor block is necessary for multi-operand 

addition. It is usual practice to realise compressors using full adder blocks [168] [176] that 

constitutes a scalable approach rather than synthesising them as a single block – this is 

because of the input space demand. A typical (4:2) compressor design [178] using two full 

adder modules is shown in figure 7.4. The ST version of a (4:2) compressor can then be easily 

derived by replacement of synchronous full adder modules by equivalent ST blocks. It may be 

noticeable that the compressor shown in figure 7.4 treats a full adder as a CSA and thus the 

compressor logic is equivalent to that realised by the CSA tree (first two levels, preceding the 

RCA stage) of figure 7.2.  
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Figure 7.4: A synchronous (4:2) logic compressor implemented using two full adders 

 

Alternatively, a (4:2) compressor can also be realised using discrete gates as shown in 

figure 7.5 [179]. The proposed weak-indication design of the (4:2) compressor (with input 

carry), shown in figure 7.6, is based on a translation of the synchronous version given below.   

 

 
Figure 7.5: A synchronous (4:2) compressor design based on discrete gates  
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Figure 7.6: ST (4:2) logic compressor block with carry input  

 

The multi-level expressions corresponding to the proposed compressor design shown 

in figure 7.6 that utilises DRE (hereafter, identified as Sync_ST_compressor_DRE) are given 

below. Given these, the synthesis of a compressor module without input carry would be 

straightforward and is portrayed by figure 7.7.  

Sum1 = w30cin1 + w31cin0   (7.1) 

Sum0 = w30cin0 + w31cin1   (7.2) 

ICarry1 = d1w30 + cin1w31   (7.3) 

ICarry0 = d0w30 + cin0w31   (7.4) 

Cout1 = a1w10 + c1w11   (7.5) 

Cout0 = a0w10 + c0w11   (7.6) 
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Figure 7.7: ST (4:2) logic compressor module without input carry 

  

 From the above diagrams, it may be apparent that the ST compressor realisations 

correspond to the weak-indication timing discipline, as only the sum output strongly indicates 

the arrival of all the inputs, while the intermediate and actual carry outputs do not and they are 

allowed to evaluate/reset in an eager fashion.  

  

7.3 Evaluation and Comparison 

In order to analyse the efficacy of CSAs and compressors forming part of the partitions in case 

of a multi-operand adder, an example scenario of ST addition of 8 single-rail (16 with DRE) 

input operands, each of size 32 bits (64 bits in case of DRE) was considered. The inputs were 
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divided into two equal input fields and the individual summation result of these two partitions 

is composed of 34 intermediate single-rail sum outputs, which were then added using a carry-

ripple adder to generate the final result that consists of 35 single-rail (70 in dual-rail format) 

sum outputs. The delay, area and power parameters of this bit-partitioned addition process, 

assuming CSAs for the input field partitions is given in Table 7.1. Similar input patterns were 

used as that of the previous adder simulations for the multi-input adder and they were fed at 

intervals of 25ns to the entire adder, slower than the earlier case (15ns), taking into account the 

delay of Modified David et al._DRE adder. Weak-indication adders corresponding to various 

ST design methods were constructed and also subsequently optimised for minimum latency.  

 

Adder realisation  
style 

Delay 
(ns) 

Area 
(µm2) 

Power 
(µW) 

Seitz_DRE 9.2 45805 3068.3 
Singh_DRE 14.7 49959 2931.3 
Modified David et al._DRE 19.9 68663 6079.9 
DIMS_DRE 16.6 66303 3245.0 
Petrify_DRE 9.7 42701 2943.5 
Folco et al._DRE 10.8 38457 2311.9 
Toms_DRE 14.1 44866 2397.3 
SSSC_DRE 9.0 41586 2740.6 

 

Table 7.1: Delay, area and power parameters corresponding to bit-partitioned CSA based ST 

addition of 8 input operands, each of size 32 bits 

  

 By comparing Table 7.1 with Table 5.1, a near similar trend can be observed with 

respect to all the adders in terms of delay, area and power metrics. It can be seen from Table 

7.1, that the Seitz_DRE adder reports a delay increase of only 2% in comparison with the 

SSSC_DRE adder, which facilitates the least latency amongst all the other multi-input adders, 

but the former occupies more area to the tune of 10% and suffers from enhanced average 

power dissipation of 12%. With respect to area and power, Folco et al.’s adder was found to be 

optimal; however it experiences degradation in delay compared to the proposed adder by 20%.  

 The design metrics corresponding to multi-operand addition based on the bit-

partitioning scheme that considers logic compressors in the input field partitions are given in 

Table 7.2. (4:2) logic compressors based on Seitz, DIMS, Toms and MOSOP approaches were 

constructed following a semi-custom design style, with subsequent delay-oriented logic 
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optimisations where feasible. For example, the DIMS weak-indication compressor involved SI 

logic decomposition, while Seitz’s weak-indication compressor entailed logic decomposition 

of higher fan-in AND gates and replacement of the second-level AND gates by state-holding 

gates so as to guarantee gate orphan freedom of the physical implementation. The 

Sync_ST_compressor_HIE represents the equivalent of the Sync_ST_compressor_DRE 

design that adopts a combination of dual-rail and 1-of-4 codes to encode the inputs (HIE). The 

increase in datapath delay and area expense for all the adders in relative comparison with the 

Sync_ST_compressor_DRE based multi-input adder and the overhead in terms of average 

power for all the adders in comparison with Toms_compressor_DRE based multiple input 

adder have been highlighted in Table 7.2 to facilitate a quick comparison. The proposed 

compressor based multi-input adder utilising DRE fares better than that adopting the HIE 

protocol for the first layer of the first level of the input field partitions in terms of delay, area 

and power. However, with respect to average power dissipation, the Sync_ST_compressor 

(DRE and HIE) based multi-input adder implementations tend to consume more than Toms’ 

solutions. This is probably attributable to the greater number of complex gates used in the 

former and the optimisation that was effected in case of the latter (4 OR2 gates were reduced 

after logic optimisation of the original synthesis solution).  

 

Adder realisation  
style 

Delay  
(ns) 

Area 
(µm2) 

Power 
(µW) 

Seitz_compressor_DRE 9.7 (10%) 77611 (1.91×) 3605.3 (49.1%) 
DIMS_compressor_DRE 17.3 (97%) 111757 (2.75×) 3974.4 (64.3%) 
Toms_compressor_DRE 22.5 (157%) 51950 (1.28×) 2418.5 
MOSOP_compressor_DRE 8.9 (1%) 72286 (1.78×) 3401.6 (40.6%) 
Sync_ST_compressor_DRE 8.8 40608 2588.6 (7%) 
Sync_ST_compressor_HIE 8.9 (1%) 42124 (1.04×) 2667.4 (10.3%) 

 

Table 7.2: Delay, area and power metrics corresponding to bit-partitioned compressor based ST 

addition of 8 input operands, each of size 32 bits 

  

 From Tables 7.1 and 7.2, it can be inferred that the bit-partitioned multi-operand adder 

employing CSAs (compressors based on CSAs) for the partitions are preferable with respect to 

power, delay and area in case of Seitz, DIMS and Toms approaches. This is likely because of 

the greater input space consideration for a direct compressor realisation as opposed to a full 
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adder. The MOSOP_compressor_DRE based multi-input adder however features a similar 

delay as that of the SSSC_DRE adder based multi-input adder; this is because of the finer SI 

logic decomposition attainable in case of the former. But due to the greater number of cubes, 

the area and power parameters are high for the former compared to the latter. On the other 

hand, the Sync_ST_compressor_DRE based multi-input adder is found to be optimal from the 

delay perspective. For its respective value of maximum datapath delay, it can be seen that the 

SSSC_DRE adder based multi-operand adder consumes more area and dissipates more power 

by 2% and 6% respectively.  

 It has been observed that hybrid input encoded multi-input adders generally tend to 

suffer from an increase in delay, area and power parameters over their dual-rail encoded 

counterparts. The dual-rail and hybrid input encoded versions of the proposed compressor 

design serves as an illustration in this regard. This is very likely due to the fact that only the 

primary inputs of the multi-operand adder can be grouped together using the HIE mechanism, 

while all the intermediate and primary outputs necessitate maintaining the dual-rail 

convention. As a result, the possible reductions in power dissipation and area requirement of 

the HIE compressor logic tends to be nullified by the extra power dissipation and area 

occupancy of the associated encoding circuitry. Hence, encoding of primary inputs in a 

heterogeneous fashion does not appear to have a beneficial impact on the resultant multi-input 

adder implementations. This effect is likely even in case of bit-partitioned multi-input 

addition, which employs CSAs for the input field partitions. Hence, it is opined that DRE 

might be an optimum DI data encoding convention for effectively implementing ST multi-

operand addition in general (also with regard to the bit-partitioning scheme), as opposed to 

any other heterogeneous input-encoding scheme. This is in contrast to the observation that has 

been made with respect to ST dual-operand addition in the previous Chapter.    

 Compressor designs based on many ST logic realisation methods tend to exacerbate 

the area requirement and eventually have an adverse impact on delay and power metrics due to 

an increase in the number of logic levels and library elements. This is because the (4:2) 

compressor logic would quadruple the input space consideration in comparison with a full 

adder block. Figure 7.8 graphically describes the area expenditure of various ST compressor 

realisations that make use of DRE or HIE protocols. ‘Series1’ represents the area of a (4:2) ST 

compressor block without carry input and ‘Series2’ signifies the area assuming input carry. 
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The values mentioned in the ‘vertical bars’ of the bar chart specify the area for a cell-based 

implementation. Indeed, the area figures correspond to that of optimised designs of the 

respective ST methods.  
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Figure 7.8: Area comparison of ST (4:2) compressors realised using different methods  

  

7.4 Summary and Inferences 

ST multiple input addition based on a bit-partitioning strategy has been discussed in this 

Chapter. The impact of CSAs and compressors on the parallel input field partitions has been 

analysed for the case study of an addition involving 8 single-rail input operands, each of width 

32 bits. It is observed that the CSA tree structure and compressor tree structure based multi-

input adders exhibit a near similar performance with regard to this case study, but it appears 

that the Sync_ST_compressor_DRE based multi-operand adder might be a good design choice 

from the viewpoint of delay, area and power. Consequently, it could be of use in building 

higher order ST logic compressors.   
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 In fact, ST CLA adders can be employed in place of the ST RCAs to minimise the 

latency of multi-operand addition, as highlighted in figure 7.9. Of course, this can be expected 

to incur penalties in terms of area and power metrics due to the greater area overhead for CLA 

adders over RCAs.  

 

 

Figure 7.9: Describing positioning of CLA adders as a replacement for RCAs in the multi-operand 

adder 

 

 Figure 7.10 portrays the delay reduction that could be attained by incorporating the 

proposed ST section carry based CLA adders instead of the ST carry-ripple adders, in the 

intermediate and final dual-operand carry propagate adder stages of the multi-operand adder 

that employs a CSA tree (SSSC_DRE adder) or compressor tree (Sync_ST_compressor_DRE) 

for the input field partitions.     

 



Chapter 7 – Self-Timed Multi-Operand Addition 
_____________________________________________________________________  

 190 

0

1

2

3

4

5

6

7

8

9

1 2

9.0

7.4

8.8

7.1

Delay (ns)

CSA/Compressor based design

CSA tree based

Compressor based

 

Figure 7.10: Latency metrics for CLA adders and carry-ripple adders to perform bit-partitioned ST 

addition of 8 inputs, each of width 32 bits 

  

 Label ‘1’ on the X-axis represents the delay values corresponding to the usage of 

RCAs, while label ‘2’ signifies the delay figures obtained by utilising hybrid CLA adders that 

are based on the Type 2 configuration, which comprise 3-bit and 4-bit lookahead carry logic. 

It is evident that CLA adders enable a reduction in latency by around 19%, on an average, for 

this case study.  

 

  Adder 
realisation style 

Area 
(µm2) 

Power  
(µW) 

CSA tree based (with RCAs) 41586 2740.6 
CSA tree based (with CLA adders) 49314 2915.0 
Compressor based (with RCAs) 40608 2588.6 
Compressor based (with CLA adders) 48336 2763.1 

 

Table 7.3: Area and power figures for bit-partitioned ST addition of 8 inputs, each of width 32 

bits, using RCAs and CLA adders 
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 However, the downside being associated increases in area and power figures, as can be 

seen in Table 7.3. Hence, the RCA topology incorporated multi-input adders exhibit less area 

expenditure and dissipate less power than the multi-input adders that feature the CLA 

topology by 16% and 6% respectively, on a mean basis. Hence, there is a trade-off involved 

between the above two approaches in terms of delay and area/power. 

 It should be noted that the exemplar circuit considered here and the analysis that 

accompanied might only be a representative of the proposition and just serves as a 

demonstration of the concept. For example, to add eight binary operands of arbitrary size, a 

compressor tree based realisation would encounter a delay of two compressor modules and a 

final CPA stage, whereas the bit-partitioned adder could be expected to have a critical signal 

path traversed through a compressor block, a full adder block and the final CPA stage. It is 

also anticipated that though a generic grouping formulation may be helpful with respect to 

addition of operands of random size, the actual bit-partitioning decision may better follow a 

case-by-case analysis approach when concerned with physical implementation. This is 

because many permutations may be feasible and any one of them could merit consideration 

when targeting optimisation of delay/area/power. It is to be noted that only a straightforward 

bit-partitioning strategy has been considered here. Other optimisations might include 

determining an optimal pipelining strategy along with considering ST implementation of other 

conventional techniques for multi-operand addition [167] [168] [176] [178]. These are left for 

further investigation.    
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Chapter 8  
 

Conclusions and Scope for Further Work  
 

In this final Chapter, a concise description of the thesis contributions is provided along with 

certain insights, followed by a brief discussion of a direction for future research.  

 

8.1 Summarising the Thesis Contributions 

ST design presents an attractive alternative to conventional synchronous design, especially in 

the current/future era where issues such as reliability and variability tend to assume greater 

significance than quality-of-results. Hence, pursuing research in the domain of ST logic is 

deemed necessary and plausible, owing to the fact that ST designs are inherently elastic and 

hence they are better placed to tackle the challenges of process, device and parameter 

variations at the logic level rather than traditional synchronous design methods. However, they 

necessitate unorthodox design methodologies, which involve greater complexities that in turn 

complicate the synthesis process.  

 In brief, this thesis makes the following major contributions towards advancement of 

existing knowledge in the domain of ST design:  

• A set theory based heuristic for efficient self-timed synthesis of random combinational 

logic specifications 

• A mechanism of achieving global indication with the intent of reducing delay/area 

• Proposition of redundant logic insertion as an elegant method to speed-up dual-

operand addition based on a RCA topology, with negligible area/power overheads 

• ST section carry based CLA adder architectures, which further minimise the latency of 

dual-operand addition in comparison with the basic CPA structure 

• A bit-partitioning scheme for multi-operand addition and a ST logic compressor design 

The major issue that has been dealt with in Chapter 4 is the reduction of input space, 

which expands exponentially causing a state explosion, without compromising the robustness 

criterion. This has been possible through the proposition of a novel heuristic, based on the 

principles of set theory, to derive MDSOP forms from MSOP expressions. The heuristic has 
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been implemented in Java and its efficacy vis-à-vis other approaches has been analysed with 

respect to some combinational benchmarks. However, this heuristic purely corresponds to 

synchronous logic. Hence, it has been subsequently extended to address ST designs 

embodying DI dual-rail encoded datapaths and the resultant MOSOP procedure has also been 

implemented in Java. To prove the feasibility of the implementation with respect to obtaining 

solutions for larger problems in reasonable time, asynchronous equivalents of numerous 

combinational benchmark specifications (i.e. function blocks) that comprise several inputs and 

outputs have been targeted. On an average, the algorithm for function block realisations has 

attained 22% logic sharing. Direct symbolic translation coupled with signal insertion may be 

used to implement datapaths featuring higher order 1-of-n codes. Furthermore, a system 

configuration has also been proposed in support of the proposed MOSOP heuristic so as to 

retain the benefits of the synthesis scheme. Examples of a multiplexer and demultiplexer were 

considered to validate the benefits of the proposition.  

It appears that asynchronous adders were conceived as early as the 50’s [181] – the 

carry-completion sensing adder (CCSA), which is perceived to be the asynchronous equivalent 

of a synchronous RCA. But a majority of the efforts relating to implementation of arithmetic 

circuits in asynchronous design style were mainly focussed on the non-DI bundled-data 

protocol that does not correspond to a robust signalling convention; a representative list 

includes [182] – [192]. This may be because the underlying combinational logic is usually 

similar to that that could be implemented using synchronous design methods. Also, relatively 

less modification would be required even with encoding of certain signals in dual-rail format, 

For example, the carry signal in a typical CCSA is alone dual-rail encoded, while the rest of 

the signals are retained in single-rail format. In contrast, ST arithmetic circuit realisations (i.e. 

those with no matched delays) have received relatively little attention. In this regard, this 

thesis has specifically dealt with this issue from a synthesis perspective by drawing inputs 

from the proposed MOSOP heuristic. In Chapter 5, various carry-ripple adders corresponding 

to different ST approaches have been constructed and analysed with the intent of minimising 

the datapath latency within this architecture. To this end, firstly, various single-bit and dual-bit 

adders based on DRE, HIE or HE have been implemented. Secondly, a hybrid scheme 

involving a mix of single-bit and dual-bit adder modules has been considered that only 

facilitated meagre delay reduction. Finally, to achieve dramatic reduction in datapath delay, 
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the concept of redundant logic insertion was put forward and its potential has been 

demonstrated by comprehensively analysing its impact on single-bit and dual-bit adders that 

are incorporated into the basic CPA structure.  

To achieve non-linear computation, even for the worst-case, a new ST section carry 

based CLA topology was proposed in Chapter 6. In this connection, two slightly different 

architectural styles (Type 1 and Type 2) were examined and their benefits were studied based 

on 2-bit and 4-bit lookahead carry generators. CLA adders based on many other methods were 

also constructed for the purpose of comparative evaluation. A theoretical estimation of the 

complexity involved in realising higher order lookahead modules was also provided. Further, a 

peephole optimisation involving a hybrid scheme within these structural styles was performed 

and it was found that the Type 2 configuration based on the 4-bit lookahead carry is suitable 

for dual-rail encoded datapaths, while the Type 1 configuration based on a 4-bit lookahead is 

optimal for hybrid input encoded datapaths from a delay perspective. Also, the problems 

involved in direct translation of conventional synchronous lookahead architecture into its ST 

equivalent had been elucidated.    

Considering ST dual-operand addition, dealt with in Chapters 5 and 6, the proposed 

section carry based CLA scheme has the best delay metric. The hybrid SSSC_HIE_NRL adder 

when incorporated into a 4-bit lookahead carry structure (corresponding to the Type 1 

architecture) leads to critical path delay reduction by 14.3% compared to the hybrid 

DSSC_CCAO_global adder, which is the fastest with regard to the basic CPA topology. 

Nevertheless, the latter features less area occupancy and lower power dissipation by 18% and 

5% respectively. In general, ST RCAs comprising single-bit adder modules were found to 

occupy less area and dissipate less average power than their CLA counterparts but suffer from 

delay degradation. For example, the SSSC_HIE_NRL adder corresponding to the basic ST 

RCA topology reports the least power and area requirement amongst all the dual-operand 

adders, exhibiting reduced power dissipation and area occupancy compared to the fastest CLA 

adder by 10% and 39% respectively, but accompanied with a corresponding increase in delay 

to the tune of 122%. Hence, in view of these, it can be stated that the ST SCBCLA adder 

features approximately half the longest datapath delay of a ST RCA structure whilst suffering 

from 11% increased power dissipation and 63% more area expenditure.   
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In Chapter 7, ST multi-input addition has been dealt with and a simple bit-partitioning 

scheme has been described. The advantage of compressors over CSA trees has been explained 

through simulation results for the case study of a bit-partitioned addition, comprising eight 

single-rail input operands, each of size 32-bits. In this connection, compressor based and CSA 

based bit-partitioned multi-input adders based on different ST approaches have also been 

constructed. It has been inferred that, in general, compressors could be beneficial in terms of 

delay, while CSAs might occupy less area and enjoy low power dissipation when used for the 

partitions. It is opined that this observation might be a generalisation for ST addition involving 

multiple input operands. Given this, the exact benefit with respect to delay for the former, and 

area and power for the latter may however vary depending on the number of input operands 

and their corresponding sizes.    

 

8.2 Multi-Level Synthesis of Weak-Indication Circuits 

An important direction for further research is to extend the two-level MOSOP heuristic 

proposed in this thesis to multiple levels, especially with the aim of propounding a universal 

solution for weakly indicating realisations of arbitrary combinational logic. This entails greater 

complexity mainly due to the need for preserving the cover constraint over multiple levels of 

logic, so that the unique successor set and acknowledgement criteria can be upheld. 

Nevertheless, this is currently achievable with relative ease with respect to a restricted class of 

functions (certain logic and arithmetic circuits, which are generally weighted functions), 

where suitable candidates for SI decomposition tend to become available from within the 

MOSOP expressions. This seems to have been possible owing to the reason that the functions 

tend to exhibit full or partial symmetricity with respect to permutation of its variables or 

literals. At present, this constitutes only a preliminary solution [152], but the search is for a 

universal method that could address any random functionality.  

 Decomposition of larger cubes into smaller physically realisable cubes primarily 

depends upon the possibility for performing SI decomposition. It may be that in many cases, 

such an opportunity may not exist (i.e. the cubes corresponding to different function outputs 

may not be orthogonal to each other in the first place) or even if it does, the size of the SSIC 

may still exceed the maximum element size constituting the base function set. In such 

situations, the opportunity for finding a mutually orthogonal SSIC/PSIC needs to be explored 
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whose existence cannot be guaranteed. It may be that these issues can likely be overcome 

through selective expansion of certain PSICs, but again the decomposed solution may not be 

physically realisable. Therefore, the likelihood for the non-availability of suitable orthogonal 

cubes for SI decomposition and the impossibility in effecting decomposition to a finer level 

were found to be the major reasons that hamper multi-level implementation of combinational 

logic as weak-indication circuits.  

 To overcome these drawbacks, a possible solution is suggested in this thesis. The 

concept of ‘complementary cubes insertion’ is proposed to supplement the above procedure 

that can act as a driver for facilitating weakly indicating realisations of any combinational 

logic specification. In simple terms, this amounts to introducing complementary OFF-set/ON-

set cubes in a rail of the encoded function block output, whose complementary rail actually 

contains an indecomposable ON-set/OFF-set cube respectively. The introduction of such 

complementary cubes would not affect its functionality. This is because, in general, p 

completely specified cubes corresponding to the true rail of a function output implies that q 

completely specified cubes would belong to the false rail of that function output, where 2m = 

(p + q) signifies the Boolean space, with m referring to the number of elements comprising the 

support set of the indecomposable cube. Therefore, the procedure would lead to inclusion of 

redundant cubes, which is unavoidable. It should be noted that this would not necessarily 

require consideration of the entire input space, since m may not be equal to n, where n 

represents the number of concurrent single-rail inputs. With the availability of 2m cubes, the 

problem of SI decomposition of larger sized cubes gets solved as all the 2m distinct cubes 

exhibit mutual orthogonality between them and therefore they can be decomposed up till a 

specified granularity of the base function set. However, it should be borne in mind that for the 

worst-case scenario m may become equal to n, though this may rarely occur. Even in such a 

case, there may be a good likelihood of the existence of many cubes that may match with the 

new cubes introduced and duplication of cubes can then be eliminated.  

In addition, considering the notion of covering cubes and covered cubes, a larger sized 

cube corresponding to a function block output can be conveniently expressed with reference to 

a smaller sized cube (that belongs to a different function block output) through substitution as 

described in section 4.2.3. This assumes that the smaller sized cube acts as the covering cube 

and the larger sized cube is the covered cube. Given the above insights, the effectiveness of 
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the proposed solution may ultimately depend upon the nature of logic functionality considered 

and the initial MOSOP solution obtained. Implementation of this procedure and further 

analysis targeting asynchronous equivalents of combinational benchmarks, exploring the 

opportunities for global/local optimisations and studying the beneficial impact of various DI 

data encodings within this framework are reserved as future work.  
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Appendix 
 

Datapaths Employing 1-of-n Codes with Similar Symbolic Variable 

Assignments 

 

This section describes a mechanism to identify mutually orthogonal cubes and states the 

relations to be satisfied for SI decomposition while dealing with datapaths that employ any 

combination of arbitrary one-hot codes and opting for a similar symbolic variable assignment. 

As stated in section 4.1, the following discussion is relevant in the context of general multi-

level synthesis models for indicating realisations of arbitrary combinational logic functions.  

 We shall consider an example using the 1-of-4 code for the purpose of illustration. As 

mentioned in Chapter 2, two single-rail inputs can be represented using a 1-of-4 code 

symbolically. Let us assume that a function F is dependent upon 6 input variables (a,b,c,d,e,f) 

and expressed by the disjunction of two cubes X and Y, specified by a’bcd’e’f and a’b’c’d’ef . 

The pairs of single-rail input variables (a,b), (c,d) and (e,f) are now represented by code group 

sets, say g1, g2 and g3, where g1, g2 and g3 are specified by {i0,i1,i2,i3}, { i4,i5,i6,i7} and 

{ i8,i9,i10,i11} respectively. In general, to represent a group of m single-rail inputs using a 1-

of-n code, the corresponding code group set of the one-hot representation would require 2m 

distinct elements, where n = 2m. Assuming a similar encoding assignment as shown in Table 

2.1, we have X = i2i5i10 and Y = i3i7i8.  

 From the one-hot code representation of cubes X and Y, it is apparent that enumerating 

their support sets would not convey any useful meaning as ‘i’ serves as the common symbolic 

variable index. Therefore, the notion of dependency set would be used extensively. In this 

context, the basic criterion to be satisfied by two cubes P1 and P2, which may be mutually 

orthogonal is given by the following:  

|D(P1)| ≥ 1, |D(P2)| ≥ 1        (A.1) 

 This equation conveys that P1 and P2 consist of at least a single literal corresponding to 

a code group set. Instead of ascertaining the MO set (that corresponds to the variables of the 

CR set), the orthogonality relation between two cubes is established based on the value of 
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DMO. DMO is determined in a different way for 1-of-n codes assuming similar symbolic 

variable assignments with variables identification being replaced by the notion of literals 

identification (LI), corresponding to each code group. LI is an operation performed on all the 

CR sets addressing each code group individually and yields a single literal that belongs to a 

unique code group set. For example, with respect to cubes X and Y, we get the following: 

CR_LI_g1 [X, Y] = i2, CR_LI_g2 [X, Y] = i5, CR_LI_g3 [X, Y] = i10  (A.2) 

CR_LI_g1 [Y, X] = i3, CR_LI_g2 [Y, X] = i7, CR_LI_g3 [Y, X] = i8  (A.3) 

 Hence, in addition to (A.1), the conditions to be satisfied such that two random cubes 

P1 and P2 adopting any higher-order 1-of-n encoding protocol can be dubbed as mutually 

orthogonal are given below, where k can refer to any unique code group.  

CR_LI_gk [P1, P2] ≠ ∅, CR_LI_gk [P2, P1] ≠ ∅     (A.4) 

CR_LI_gk [P1, P2] ∩  CR_LI_gk [P2, P1] = ∅     (A.5) 

 (A.4) and (A.5) essentially mean |CR_LI_gk [P1, P2]| = |CR_LI_gk [P2, P1]| = 1, for any 

k. In simple terms, considering a specific code group set, there should be a unique literal in P1 

relative to P2 and vice-versa. DMO is basically an integer count of the number of times that 

(A.4) and (A.5) gets satisfied between the pair of cubes considering the entire distinct code 

group sets. It is imperative that DMO ≥ 1 be upheld between two cubes exhibiting mutual 

orthogonality. DMO = 0 implies that both the cubes are identical (in case of equipollent 

cubes). In general, it could hint at the possibility of two cubes constituting an output cover 

function to become activated for an input combination, thereby violating the monotonic cover 

constraint. Referring back to (A.2) and (A.3), it can be concluded that X is orthogonal to Y.   

 The conditions that may be deemed sufficient to allow SI decomposition of two 

mutually orthogonal cubes P1 and P2 (i.e. the pair of cubes satisfying (A.4) and (A.5)), based 

on arbitrary 1-of-n codes, are given below:  

|D(P1)| > 1, |D(P2)| > 1         (A.6)  

|D(P1)| = |D(P2)|         (A.7) 

|CDI [D(P1), D(P2)]| = |D(P1)|-1 = |D(P2)|-1      (A.8) 

 (A.6) implies that there should be at least two literals in both P1 and P2 in order that an 

opportunity for SI decomposition can be explored. (A.7) mandates that the dimension of both 
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the cubes should be equal. Lastly, (A.8) conveys that CDI [D(P1), D(P2)] ⊆  D(P1) and CDI 

[D(P1), D(P2)] ⊆  D(P2), signifying that P1 and P2 differ only with respect to a single code 

group set element.  


