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CSA tree based (with RCAs)— Bit-partitioned multi-operand adder employing AC8ee
structures for the partitions with RCAs constitgtiime final stage of the partitions as well as
the final multi-operand adder stage
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decomposition of DIMS solution, utilising dual-raihcoding

DIMS_DRE (strong) — Single-bit strong-indication adder based on DIdffproach adopting
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SSSC_DRE - Type 1- Type 1 section carry based CLA architecture tranted using
single-sum single-carry adder modules based onrdilalata encoding
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single-sum single-carry adder modules with no reldmh logic based on hybrid input
encoding, including a 3-bit CLA generator moduléhia most significant position
SSSC_HIE_NRL — Type 1- Type 1 section carry based CLA architecture tanted using
single-sum single-carry adder modules with no rednh logic based on hybrid input
encoding

SSSC_ HIE_NRL — Type 2- Type 2 section carry based CLA architecture tanged using
single-sum single-carry adder modules with no rednnh logic based on hybrid input
encoding

SSSC_HIE_RL - Single-Sum Single-Carry (adder) based on hyhngut encoding
incorporating redundant logic

SSSC_HIE_RL (2-bit CLA — Type 1)- Type 1 CLA adder architecture built using sirlgie
adders based on hybrid input encoding with redunidgic and 2-bit CLA modules.
SSSC_HIE_RL (2-bit CLA — Type 2)— Type 2 CLA adder architecture built using sinlgie
adders based on hybrid input encoding with redunidgic and 2-bit CLA modules.
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SSSC_HIE_RL (4-bit CLA — Type 1)- Type 1 CLA adder architecture built using sinlgie
adders based on hybrid input encoding with redunidgic and 4-bit CLA modules.
SSSC_HIE_RL (4-bit CLA — Type 2)— Type 2 CLA adder architecture built using sinlgie
adders based on hybrid input encoding with redunidgic and 4-bit CLA modules.
SSSC_HIE_RL (4-bit CLA — Hybrid) — Hybrid CLA adder architecture built using single
bit adders based on hybrid input encoding with nedmt logic and 4-bit CLA modules but
with a 3-bit CLA module in the most significant blb position.

SSSC_HIE_RL (CPA) — A simple carry-propagate adder featuring sifgleadders that
are based on hybrid input encoding with redundagit|

SSSC_ HIE_RL — Hybrid — Hybrid section carry based CLA adder construaisthg
single-sum single-carry adder modules with redunétagic based on hybrid input encoding,
including a 3-bit CLA generator module in the meiginificant position

SSSC_HIE_RL - Type 1- Type 1 section carry based CLA architecture taoted using
single-sum single-carry adder modules with reduhttagic based on hybrid input encoding
SSSC_ HIE_RL — Type 2— Type 2 section carry based CLA architecture tonted
using single-sum single-carry adder modules wittiunelant logic based on hybrid input
encoding

Sync_ST_compressor DRE- Proposed (4:2) logic compressor design emplogiung-rail
encoding, based on a translation of the synchrowersson

Sync_ST_compressor_HIE— Proposed (4:2) logic compressor design employighrid
input encoding for primary inputs, based on a cosige of the synchronous version
Toms_compressor_DRE- (4:2) logic compressor design based on Tomg'oagh, based
on dual-rail encoding

Toms_compressor_HIE— (4:2) logic compressor design based on Toms'oagp, based
on hybrid input data encoding

Toms_DB_HE- Toms' dual-bit adder based on heterogeneouslgngo

Toms_DRE (strong) — Strongly indicating single-bit adder based onm$b approach,
employing dual-rail data encoding

Toms_DSSC- Dual-bit adder synthesised using Toms' apprahah utilises dual-rail data

encoding
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Toms_HIE — Hybrid input encoded single-bit adder synthekissing Toms' approach,
utilising dual-rail data encoding

TSSC- Triple-Sum Single-Carry (adder)

TSSC_CCO - Triple-Sum Single-Carry (adder) with C-elemer@@mplex gates and OR
gates
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Abstract

The unorthodox methods usually employed for symsives self-timed combinational logic
incur substantial area overhead. A novel heuristiproposed on the basis of set theory to
considerably alleviate the problem of input stgtace explosion that besets function block
realisations featuring several concurrent inputse Reuristic has been implemented in Java
and a system configuration in support of this htiariis also presented. The proposed
heuristic also forms the basis for realising maglf-smed adders. The performance potential
of various single-bit and dual-bit adder blocksjehhadopt widely preferred homogeneous or
heterogeneous delay-insensitive data encodingsstgle analysed on the basis of the self-
timed carry-ripple adder architecture. Within tfiamework, hybrid adder schemes are also
considered. With the intent of significantly redugithe datapath delay, the concept of
redundant logic insertion has been put forward.s8gbently, to further improve the latency
of dual-operand adders, self-timed section carryetlacarry-lookahead architectures have
been proposed that outperform the basic self-tiocaady-propagate adder topology. Finally, a
bit-partitioning scheme for self-timed addition miultiple operands is described and a new
self-timed logic compressor design is discussede Thpact of carry save adder and
compressor tree structures, forming part of thetfigld partitions, on multi-operand addition
is analysed through a case study, showing thatatter may be preferable compared to the

former for self-timed multi-input addition.
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Chapter 1 — Introduction

Chapter 1

Introduction

A majority of the present-day digital systems dick based or synchronous, which assume
that signals are binary and time is discrete. Inegal, synchronous systems comprise a
number of subsystems that change from one statmather depending on a global clock
signal, with flip-flops (registers) being used tore the different states of the subsystems. A

conventional synchronous system is portrayed bhy&d.1.

Combinational
logic circuit

> Output data

Register

Input data |::>

Clock
signal

Register

>
>
P

\

Figure 1.1: A typical synchronous system stage

The state updates within the registers are caaugan the rising edge (positive edge)
or falling edge (negative edge) of the global cleckingle edge triggering. The state of the
global clock permits either data loading or dataagje. Since the overall clock utilisation is
only 50% for single edge triggered systems, doubbige triggered flip-flops were
subsequently proposed in the literature with théivemf increasing the system throughput as
data can be loaded on both the rising and falliogkcedges and data is retained when the
clock signal does not toggle [1] [2]. However, thisually comes at the expense of a larger
silicon footprint due to greater number of trarmistand more interconnects for the dual edge
triggered flip-flop and consequently leads to mpogver consumption. Preserving the original
data rate as that of single edge triggered flip-ttiesigns whilst operating at half the system
clock frequency might be helpful in reducing thendmic power dissipation as the transitions
could be reduced by half, but eventually this mayfiset by more leakage power dissipation

[2], which is becoming dominant in deep submicrechnhologies. Moreover, this mechanism
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tends to forego the advantages associated witlhesaalge triggering in that its set-up and hold
times are larger compared to conventional flip$lggnd any deviation from its 50% duty
cycle can lead to timing failures in critical patbpsetting the system behaviour [3]. In
addition, it is more sensitive to noise apart friomnoducing complexity in system design and
as such, the specification on jitter tolerance @earstringent which complicates the design of
the system phase lock loop. As a result, synchreraesigns with rising or falling edge

triggering have been predominant, being the maaastr of digital system architectures;

nevertheless, it is becoming increasingly difficialtovercome some fundamental limitations
inherent in this approach.

The International Technology Roadmap for Semicotmls (ITRS) predicts that
system-wide synchronisation is becoming infeasdyeng to increasing silicon complexity
[33]. A clock-based system can operate correctly drall parts of the system see the clock at
the same time, which can happen only if the delayhe clock wire is negligible. However,
with advances in technology, the systems tend tdigger and bigger in terms of the number
of transistors and as a result the delay on thekclires can no longer be ignored. The
problem of clock skew is thus a major bottleneakrf@any system designers. Since the clock
signal controls all flip-flops to sample and stéeir input data synchronously, it tends to be
highly loaded and the problem becomes more severeidely preferred solution is to
distribute the global clock using a clock netwocko€k tree) with clock buffers and thereby
control the clock skew. Consequently, this resul@n increase in the capacitance of the clock
net and also suffers from increased activity (tgdyctwo transitions per net per cycle), even
ignoring possible hazard activity on such nets.

The primary factors that govern the clock skew tgmcal synchronous digital system
are as follows:

« resistance, capacitance and inductance of thecorteection material used for the clock
distribution network

- clock distribution network architecture, bufferisghemes and clock buffers used

. fabrication process variation over the chip area

- number of processing elements in the system ankb#depresented by each element to the
clock distribution network

- rise and fall times and the clock frequency
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Various clock distribution strategies have beevettsped, with the most common and
general approach being the use of buffered traesdwipotential clock distribution. However,
to distribute high-speed clock signals, symmenees like the H-tree are preferred compared
to the asymmetric buffered clock distribution tsgeucture. The H-tree network is the most
widely used clock distribution network [4] — [6] toinimise the clock skew. It was shown in
[7] that for an N x N array of processing elemetitg clock pulse rise time and the clock
skew associated with it are OYNHence, with increase in N, the clock skew illkto
increase rapidly and become a stumbling block. dfoee, a distributed buffering scheme is
often resorted to for synchronous digital integilatecuits by introducing buffers in the clock
distribution network. However, the disadvantagethaf approach are the extra area overhead
and the increase in design sensitivity to procesmtrons. Also, it has to be noted that buffers
are the primary source of the total clock skew imita well-balanced clock distribution
network. Since global clock periods are now commdeds than half a nanosecond, variations
in delay by tens of picoseconds can seriously digtiae performance and reliability of high-
speed synchronous systems [8]. With Moore's lawhi@jing been a driving force through
process generations, supported by continual infvatin processes and device materials
[10], to relentlessly pursue after greater integplatircuit densities, and with variability of
process and device parameters assuming ever gmegteficance [11] [12] as devices are
scaled down to more narrow dimensions, the abowkl@m might only get exacerbated. The
bottom-line is that clock management is becomingdasingly difficult and solving it in
today’s high-speed complex system-on-chip desigpsars to be a complex and costly affair.

The second major problem faced by designers isepdaigsipation, which is a very
important metric that has gained significance witle phenomenal growth of portable
electronics. For mobile electronic applicationss #verage power consumption has become
the most critical design concern. For maximum @dficy, all gates in the system should be
performing useful work. However in synchronous egs, this is not usually the case.
Consequently, synchronous systems tend to conswne power than necessary. Many gates
switch unnecessarily since they are connected @¢octbck and not because they have to
process new input data. However, to circumvent thisblem, clock gating is widely
employed so as not to enable those sub-systemsahatot required for any useful activity.

The biggest gate is the clock driver itself whiclginh occupy considerable area and must
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switch even if a small part of the system has sbimgtuseful to do: the global clock, in
general, was found to account for 15%-45% of thstesy power budget [13] and in a
processor case study [14], it was found to be mesipte for 34% of the total system power
dissipation.

1.1 Motivation and Context

The problems of clock skew and power dissipatiomehbeen the major drivers for the
worldwide resurgence of interest in asynchronowsgtie— notable major projects include [15]
— [29]. The design of clock-free or asynchronousteys has thus become attractive for
digital system designers during the past two dexaaléhough asynchronous logic was
explored from the infancy of integrated circuit id@s[30] - [32]. But synchronous design
provided a far more efficient vehicle for explodithe technology in commercial applications.
The 2006 Semiconductor Industry Association's (§IATRS report on design stated that the
percentage of designs driven by handshake clocf@sgnchronous signalling) would rise
from 11% in 2008 to 40% by 2020. The latest ITR8atp on design [33] predicts that design
re-use (as a percentage of all logic) would inedasm a current figure of 38% to 55% by
2020. Over this period, parameter uncertainty (ge@entage effect on sign-off delay) is
projected to increase from 10% to 25%. In faeliability has been labelled as one of the five
crosscutting design challenges, which drives homme point that design robustness is
becoming an increasing priority in deep submicmrhhologies. The above projections tend
to forecast and necessitate a considerable shithendesign paradigm from conventional
synchronous logic to asynchronous logic, as therldtenefits owing to its ability to tolerate
supply voltage, process parameter and temperatmations [15]. Due to the absence of a
global clock reference, asynchronous circuits tentlave better noise and electro-magnetic
compatibility properties than synchronous circ(i@4]. Also, they feature greater modularity
permitting convenient design reuse [36]. Asynchranoperation by itself does not imply low
power, but often suggests low power opportuniteseld on the observation that asynchronous
circuits only consume power when and where actBi [36]. The recent demonstration of
the potential advantages of the world's first 8-pitysically flexible asynchronous
microprocessor design over a synchronous flexibtsion in terms of power and noise figures

by Karaki et al. from Seiko Epson's Technology fBlat Research Centre [37], which utilises
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4-phase handshaking and quasi-delay-insensitivegrdestyle, endorses the future of self-
timed design techniques for even unconventionaltrlgics.

Asynchronous circuits assume that signals arerypibat the notion that time is not
discrete. Arasynchronous systeisione in which there is no global synchronisatiethin the
system; subsystems within the system are syncla@niecally by the communication
protocols between them. The results produced bystifsystems in an asynchronous system
can be consumed by other subsystems as soon aarthggnerated without having to wait for
a global clock tick. Moreover in asynchronous systea sub-system can easily be replaced by
another subsystem with the same functionality bth different performance, but this is not a
straightforward task in case of a synchronous sysds the clock period might have to be
recomputed. An asynchronous system stage thatviesolequest/acknowledge handshake
(signal exchange) signalling protocol is shownigufe 1.2. However, robust asynchronous
systems embed the request information within the eldres and are usually referred to as
self-timed systemsSelf-timed systems are characterised by the absefi any timing
reference to which all the operations are synclsexhi- being in stark contrast to synchronous

systems where all operations are synchronisecetgltibal clock signal.

g Combinational g
R} »
Input data > logic circuit > Output data
(14 (14
N Request R R
Request Control Control > Request
Acknowledge < logic « Acknowledge logic < Acknowledge

Figure 1.2: A typical asynchronous system stage

1.2 Research Contributions

Based on the research undertaken on self-timed icatidnal logic realisation and especially
with respect to datapath elements, the originatrdmutions of this thesis are summarised as

follows:
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= Formulation of speed-independent decompositiorsruseng set-theoretic principles.

= General multi-level synthesis models to realisergjror weak-indication combinational

logic, which consider the entire input space.

= A set theory based heuristic for compactly synt#iegi combinational logic of arbitrary

size as self-timed circuits and a system configomah support of the proposed heuristic.

= Design of self-timed carry-ripple adders which teatlocal or global indication property

and proposition of the concept of logic redundainsgrtion for delay reduction.

= Self-timed section carry based carry-lookahead i@ctiures that greatly minimise the

latency of dual-operand addition in comparison whi# ripple carry topology.

= A combinational bit-partitioning strategy addreggsself-timed multi-operand addition and

the design of a self-timed logic compressor.

1.3 Publications

The following list of publications gained and pap#&y be submitted for review corresponds to

the contributions resulting from this research work

> P. Balasubramanian and D.A. Edwards, “Efficientlizaion of strongly indicating
function blocks,”Proc. IEEE Computer Society Annual Symposium orl M5 429-432,
2008.

> P. Balasubramanian and D.A. Edwards, “A new desaghnique for weakly indicating
function blocks,”Proc. 11" IEEE Workshop on Design and Diagnostics of Eleutro
Circuits and Systemgp. 116-121, 2008.

» P. Balasubramanian and D.A. Edwards, “A delay ®fit robust self-timed full adder,”
Proc. 3¢ IEEE International Design and Test Workshpp. 129-134, 2008.

> P. Balasubramanian and D.A. Edwards, “Power, delagl area efficient self-timed
multiplexer and demultiplexer design®foc. 4" IEEE International Conf. on Design and
Technology of Integrated Systems in Nanoscale [ipal73-178, 2009.

> P. Balasubramanian, D.A. Edwards and C. Brej, “Seléd full adder designs based on

hybrid input encoding,”Proc. 12" IEEE Symposium on Design and Diagnostics of
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Electronic Circuits and Systemsp. 56-61, 2009.

» P. Balasubramanian and D.A. Edwards, “Dual-sumisingrry self-timed adder designs,”
Proc. IEEE Computer Society Annual Symposium on,\\Ap5121-126, 2009.

> P. Balasubramanian and D.A. Edwards, “Heterogengoerscoded dual-bit self-timed
adder,”Proc. 8" IEEE Conf. on Ph.D. Research in Microelectronicsl &lectronics pp.
120-123, 2009.

» P. Balasubramanian and D.A. Edwards, “Self-timealization of combinational logic,”
Accepted for presentation in the™Bternational Workshop on Logic and Synthe&{10.

> P. Balasubramanian and D.A. Edwards, “Redundansgrtion and latency reduction in
self-timed adder blocks,” to be submitted for rexie

» P. Balasubramanian and D.A. Edwards, “Self-timectise carry based carry-lookahead

adder architectures,” to be submitted for review.

1.4 Structure of the Thesis

The organisation of this thesis is as follows:

< Chapter 2 discusses the fundamentals of self-tisystems. Specifically, the basics

underlying robust asynchronous datapath logic impletation are explained.
< In Chapter 3, various self-timed combinational toggalisation schemes are reviewed.

In Chapter 4, new terminologies are proposed tardes logic operations on the basis of
set theory. Necessary criteria for speed-indepdandatapath logic decomposition are
discussed and a general multi-level synthesis magroposed for strong or weak-
indication function block designs based on the -daiéhldata encoding protocol, which can
be extended to address any Inalata encoding scheme. A set theory based procéalure
derive two-level minimum orthogonal sum-of-produdiem is elucidated and the

complexity involved in extending this heuristicrtaultiple levels is highlighted. A system
configuration proposed to facilitate strongly or akly indicating function block

implementations on the basis of the above heuristithen presented. Examples of a

multiplexer and demultiplexer are considered tdhhgit the benefits of this strategy.

< Single-bit and dual-bit self-timed adder desigret titilise homogeneous or heterogeneous

delay-insensitive data encoding schemes are disdussChapter 5. Modifications to a
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speed-independent adder, in order to properly emtyel property of indication
(acknowledgement) into it are also mentioned. Taweyeripple adder topology has been
considered for evaluation of the adder modules. ddreept of redundant logic insertion

that facilitates significant delay reduction inogilc cascade is then explained.

In Chapter 6, novel self-timed section carry basadry-lookahead architectures for
reducing the latency associated with conventiomd-tsned dual-operand carry-ripple
addition are presented. An analytical estimatiorthef hardware complexity involved in

realising higher-order carry-lookahead moduledss provided.

Chapter 7 first discusses conventional tree strastdfor performing multi-operand
addition. A combinational bit-partitioning schena performing self-timed multi-operand
addition is then described. A (4:2) logic compredsadesigned and addition of multiple

operands using adders/logic compressors is sepaextEmined through a case study.

An overall summary of the thesis contents is fitistussed in Chapter 8. Next, the issues
involved in extending the two-level heuristic thlhs been proposed to implement
arbitrary combinational logic functions as self#idn circuits into multiple levels are

mentioned, and a feasible solution is then predefigis presents an interesting direction

for further research in the domain of self-timegito
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Chapter 2

Fundamentals of Asynchronous Circuits

The fundamentals of asynchronous systems such radsiake protocols, bundled-data and
delay-insensitive data encoding schemes, modepayhtion, various classes of asynchronous
circuits based on the timing models adopted, Mgll€relement and the concept of indication,
and the notion of a function block are discusseefflgrin this chapter. References [38] — [40]
provide a good introduction and comprehensive aegervof asynchronous design
methodologies in general. This chapter is intenegdrovide only a snapshot of the relevant

details, with emphasis on topics of interest indbetext of the subject matter of this thesis.

2.1 Handshake Mechanism and Data Representation

Asynchronous systems come in many flavours withrtiost prominent among them being
bundled-data and dual-rail data encoding schem®as.cbmmunication protocol among these
systems can also assume two forms: 2-phase (imnsignalling) and 4-phase (level-

sensitive signalling). Bundled-data encoding witipHase signalling and dual-rail data
encoding with 4-phase signalling have been the jpomhoices in asynchronous circuit design
until now and so they will be described here tovmte relevant background information. In

fact, dual-rail data encoding with level sensitsignalling continues to attract attention, as it
is tolerant to variations in logic elements and pmmicating signal wires and hence has

become attractive for deep submicron technolo@8¥[B7] [67].

The bundled-data protocol uses a request wireaanadcknowledge wire and a set of
single-rail data wires for data communication betwéhe sender and receiver, as shown in
figure 2.1. Hence, apart from the data bundle,ettsge two control wires: requeseq) and
acknowledgedckK). Together, they form a channel or medium of comication. In a typical
2-phase handshake protocol, the sender initiaehdmdshake mechanism with the data at
hand by issuing a request to the receiver (by @sitian on thereq wire) and the receiver
accepts the data and issues an acknowledgemerd {nsition on theack wire) to the

sender. This completes a single transaction argdtgettone for a subsequent transaction, as
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depicted in the timing diagram of figure 2.2. Thetations represented by solid arrows are
functional constraints, while those indicated byldal arrows are domain constraints. The
crosshatched areas of input data and output dgrafysithe time periods (intervals) during
which data values may change; otherwise the datatable and defined.

Acknowledge (ack)

Sender Receiver

Single-rail data o

[
o
3

A 4

Request (req)

Figure 2.1: Bundled-data encoding and 2-phase handshaking

h |
Input data W Z&XXXXXXXX XM
\ \
v ! |
Request (req) —/\ ,' \
Output data —— YRXRXIXIX_] 00—

\ \
/

Acknowledge (ack)

Figure 2.2:  Timing diagram of a 2-phase handshake protocol [71]

It can be noticed that every transition ontgwire, both falling and rising, initiates a
new request. Two-phase signalling is particularbeful for the realisation of high-speed
Micropipelines [41]. Alternatively, the receiverrcanitiate the handshake process. Hence, if
the sender is the active party who initiates thedshaking with the receiver being the passive
party, then the channel is callpdsh channebls the sender pushes the data to the receiver.

Alternatively, if the receiver is the active pamyth the sender being the passive party, then
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the channel is known apull channel as the receiver pulls the data from the sender.
Traditionally, the request wire is used to inforime treceiver about the validity of the data on
the data bundle. This inherently places a const@nthereq wire, known as the bundling
constraint. According to this constraint, tleg] wire must be asserted only after the bundled-
data is valid at the receiver end. This is necgssarensure that data wavefronts do not
overlap and the system does not enter into a deladtate. In other words, after a transition in
the ack wire from the receiver to the sender that the tiats been used; the sender can send
the next set of data to the receiver. A micropipelis delay-insensitive once the bundling
constraints are met. Since there is no upper bamnthe delays between consecutive events
and even though theeq wire is asserted after the data becomes valiieatransmitter end,
arbitrary wire delays mean that this condition may hold at the receiver; therefore, bundled-

data protocols are not delay-insensitive.

In contrast to bundled-data encoding, dual-ragdoeling does not use a separedq
wire; instead theeq signal is embedded within the data wires. Morepeach data wire is

represented using two data wisdsandx1, as shown in figure 2.3.

ackin ackout
dy’
; >
do’
Sender . Receiver
[ )
9 Dual-rail data bus o
. dn-1 0
1
dn-1
~ >

Figure 2.3: Delay-insensitive (dual-rail) data encoding and 4-phase handshaking

A transition on thexO wire indicates that zerohas been transmitted, while a transition
on thex1 wire indicates that anehas been transmitted. Since the request is embedit&n
the data wires, a transition on eith@r or x1 informs the receiver about the validity of the
data. The condition of botkD andx1 being a zero at the same time is referred thaspacer

or emptydata Bothx0 andxl1 are not allowed to transition simultaneouslytas illegal and
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invalid. The channel requiringn{2) data wires in a bundled-data system would nomprise
(2n+1) data wires with dual-rail signalling; nonetlsse the latter approach makes the
signalling robust and therefore can tolerate randamations in wire delays when the
bundling constraint cannot be guaranteed. Withreefee to figure 2.3, the 4-phase handshake
protocol can be explained as follows

- The dual-rail data bus is initially in the spacets. The sender transmits the codeword
(valid data). This results in 'low' to 'high' trérens on the bus wires (i.e. any one of the
rails of all the dual-rail signals is assigned gid¢dhigh' state), which correspond to non-

zero bits of the codeword.
- After the receiver receives the codeword, it drithesackout(ackin) wire 'high’ ('low").

- The sender waits for theckinto go 'low' and then resets the data bus (iis.dtiven
to the spacer state).

- After an unbounded, but finite (positive) amountiofe, the receiver drives tlaekout
(ackin) wire 'low" ('high'). A single transaction is naaid to be complete and the system
is ready to proceed with the next transaction.

4
input deta YR XX i
\ IA \ IA
Request (re )J—A\—’l—x/—\/—
4 / I —— / /

Output data —XWWWWX\ ’/ \ ” XXMXX& II \& /I
/ | Y

Acknowledge (ack)

Figure 2.4:  Timing diagram of a 4-phase handshake discipline [71]

The timing diagram for the 4-phase asynchronogsadiing protocol is shown in
figure 2.4, with theeq wire explicitly shown to describe the handshakmngcess. It can be
observed that four transitions are required to detaepa transaction with this approach and
there is an intermediate return-to-zero (RTZ) phafskoth thereq andack wires preceding

! The explanation remains valid for data repres@ntatsing any delay-insensitive data encoding sehem
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every transaction as the signalling conventioreiglsensitivevalid datacorresponding to
logic high andspacer datecorresponding to logitow. Comparing figures 2.2 and 2.4, it can
be seen that the number of transactions process@jdhe same time interval is double in
case of the bundled-data system employing 2-phag®léng compared to the encoded
system employing 4-phase signalling convention. ufo in principle every transition
represents a meaningful event in case of the 2eppiagocol, such interface implementations
require more logic and are more complex as cirdhis process transitions require state. The
increase in logic complexity may lead to more poa@nsumption than was saved by fewer
control transitions. This was the case with the-fmwer asynchronous ARM processor,
AMULET1 [16]. The lack of a distinct low power advage led to an improved
implementation, AMULET?2e [22], in which RTZ signialg convention was employed and
performance improvement and power reduction over UAKRIT1 were reported [42].
Although the improvements were effected owing tohasted design expertise and
architectural improvements as well, nevertheldgssjbstantiated the reasoning that power and
performance attributes cannot be solely judged lon lhasis of the number of control

transitions per event.

It was mentioned earlier that in case of the dadldata encoding scheme, the input
combination of bothxO andx1 being simultaneousligigh is not allowed because the coding
scheme iunordered[43]. A coding scheme is said to be unordered, wieme of its code
words is contained in any other codeword. In simigems, the positions of ones in a
codeword are never a subset of the positions of ama different codeword (example, '01’
and '10). In fact, the dual-rail code is the siegplmember of the general family of delay-
insensitivem-of-n codes [44], wheren lines are asserted ‘high’ out of a totalrophysical

lines to represent a codeword and the size (ieenttmber of unique symbols) of a genenic

|
of-n code is given by the binomial co-efficiemthoosem = ﬁ The dual-rail code is
n—m)!

ideally suited for representing a single bit obimhation. To represent two bits of information
at a time, the dual-rail code can be concatenaeshawn in Table 2.1 or can equivalently be
represented by means of a single 1-of-4 code. thdee 1-of-4 encoded values of single-rail
inputs given in Table 2.1 represent only one of ynpossible encodings and an arbitrary

choice is considered here for illustration. As t@nseen from Table 2.1, two non-redundant
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bits of information are represented at a time bsedsg only half of the physical lines as
logic 'high" in a 1-of-4 code in comparison witll@al-rail code, though both require the same
number of physical lines. As a result, the 1-ofaéaxing approach requires only half as many
transitions as that of a dual-rail encoding appnoaConsequently, the dynamic power
dissipation of the former scheme is very likelylte better than that of the latter due to
reduced switching activity. This phenomenon wadiomed with the practical example of an
ARM thumb instruction decoder [45]. However, comsidg the additional encoding and
decoding circuitry required for 1-of-4 encoded gatas in comparison with dual-rail code
[50], the power savings gained are likely to diremiThis shall be articulated when dealing

with self-timed dual-bit adders in Chapter 5.

Single-rail inputs  |Dual-rail encoded data 1-of-4 en coded data
A B (A1 AO) (B1 BO) EO El E2 E3
0 0 01 01 0 0 0 1
0 1 01 10 0 0 1 0
1 0 (10) (01) 0 1 0 0
1 1 (10) (10) 1 0 0 0
Table 2.1: Data representation in dual-rail and 1-of-4 encoding schemes

Though higher order encoding schemes are possiglertheless, apart from the dual-
rail (or 1-of-2) code that allows easier mappingwa=n conventional binary functions, the
other widely used delay-insensitive code is thd-4-oode. This is due to the reason that for
self-timed datapaths, encoding (by sender) and raeship test and decoding (by receiver)
are important aspects and consequently, encodidglaocoding complexity is dependent on
the message space to be coded [46]. Completioctotetecircuits, which detect the arrival of
valid/empty data, perform the membership test fd7the delay-insensitive unordered codes.
In short, completion detection circuits perform igey/neutrality test of input code words.
Both dual-rail and 1-of-4 codes can be considepdoktong to the class of one-hot codes or 1-
of-n codes, which is a subset of the generic familyredf-n codes [44] [48]. The other
important reason for the non-usability of highedesr 1-ofh codes is the degradation of
coding efficiency, and so self-timed logic realisas are usually based on dual-rail and 1-of-4

codes. Given this, higher orderof-n codes with better efficiency are preferred foerathip
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communication [49] [50]. The efficiency of a codedetermined by the rate R (that specifies

the number of bits per wire) and is equaldg, 'V%] [44]. Here, M represents the size of the

code or the number of data values representedh @etotes the number of physical wires. In
general, a 1-oft code can represektsingle-rail inputs, wher& = log, n. For example, to

represent 8 single-rail binary inputs, a direct-boe code representation would demand 256
physical lines (1-0f-256 code), whereas only 16spdst lines would be required by a dual-rail
coding scheme and a similar count for a 1-of-4 dimgpscheme. Hence, for encoding with
direct one-hot codes, the number of physical lineguired is of O() and therefore
concatenation of lower order 1-nfeodes might lead to a better solution. When a-thibl
code and a 1-of-4 code are used to represent gxad bit and two bits of information
respectively, they are said to bemplete[51]. A code is said to be complete, if and orfli i
contains all code words as implied by its defimticven with one missing codeword, it
would be labelledncomplete A delay-insensitive coding scheme, in generalegiired to be
unordered and complete [74]. In this context, ityrba noticed that the coding efficiency of

complete dual-rail and 1-of-4 data encoding schamegual to 0.5.

2.2 Bounded and Unbounded Delay Models

Asynchronous circuit design methodologies can gdlyebe categorised based on the timing
models. Bounded delay models assume that the delayl circuit elements and wires is
known (thereby bounded). Circuits based on thisehambupled with the fundamental mode
assumption, are generally referred to as Huffmacuits [31]. This is shown in figure 2.5.
There are two basic assumptions underlying thisehadyl only one input to the circuit is
allowed to change at a time, and ii) the preseatesentries of the combinational logic can
change only after the logic has settled in respdosa new input — this condition, when
viewed along with the first constraint leads to thmelerstanding that multiple input changes
would necessitate multiple iterations by the nogererative logic thereby increasing the

number of cycles required to complete computation.

39



Chapter 2 — Fundamentals of Asynchronous Circuits

Combinational

logic circuit Outputs

Inputs

Present state Next state

Delay elements

I

Clock signal
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Figure 2.5: Fundamental mode system configuration

The fundamental mode restriction basically implieat before every external input
transition, the entire system should have setited stable state with respect to a previous
input transition. Burst-mode design style, devetbpg Nowick et al. [52] [53], based on an
earlier work by Davis et al. [54], still requirelset fundamental mode assumption but only
between transitions in different input bursts. éast of the overly restrictive fundamental
mode assumption, burst-mode design permits simedias application of multiple inputs or a
burst of inputs (i.e. multiple input changes arenpted), which is comparable with a
synchronous system specification. No input burst ba a subset of another input burst
leaving the same state, so that the system camnde&ewhen a complete input burst has
occurred without any ambiguity. Fundamental modé harst-mode circuits explicitly add
delays in order to avoid certain hazard cases esmtharefore non-robust design styles in the
presence of variability. This also complicates tietay-fault testing of such circuits. Even
though a circuit may not have any defects thata@rse incorrect function, it might contain
defects that could slow its operation. The delaytfenodels attempt to classify these types of
defects and their effects on the circuit. The twasib models used are: (i) gate delay or
transitional fault model [55], where a single geteassumed to take too long to produce an
output, and (ii) the path delay fault model [S6hexe certain paths in the circuit may take too
long to be exercised. In a typical synchronousudiysuch faults would require the chip to be
clocked at a slower rate, whereas in an asynchsogouuit, since there is no clock-based
synchronisation, it may end up in incorrect circoieration that might be difficult to fix.

Though delay-fault testing is not solely an issuéhvibounded delay models and may be
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problematic for unbounded delay models as well|ése pervasive timing assumptions of the
latter facilitate comparatively easier testing,thsy are more robust than the former. The
bottom-line in fundamental mode circuits [32] iaatlenvironmental timing constraints are
assumed, where the environment must wait for alitito stabilise before responding to the
outputs. This requirement is identical to the hiotae requirement for a simple latch or a flip-
flop [57].

Input/output mode circuits [58] do away with suming assumptions in that the
environment is allowed to respond to a circuit'gpats without any timing constraints. In this
case, outputs may be generated only after cemaunts have occurred and where next inputs
may be generated only after certain outputs haweireed. The following circuit models
operate in input/output mode without timing assuon® on when the environment should

respond to the circuit:

- Delay-insensitive

- Quasi-delay-insensitive
« Speed-independent

A delay-insensitivg(Dl) circuit is designed to operate correctly gpective of the
delays of its gates and the delays encounterechencbmmunicating signal wires, i.e.
unbounded (arbitrary, but positive and finite) gdétay and wire delay models are assumed.
This is the most robust of all the unbounded detaylels, as such circuits are guaranteed to
be correct by constructiormeaning they require no timing verification anch dalerate
fluctuations in process parameters, temperaturermigk and can also be ported between
different technologies with ease, featuring excelidesign modularity. The conceptualisation
of such a circuit evolved from the Macromodulesjgebby Clark and Molnar [59] [60] and
was subsequently formalised by Udding [61]. It wsaswn in [62] and [63] that C-elements
and inverters are the only DI elements as thegfyatiertain criteria (mentioned in the next
paragraph) and so, unfortunately, the class of piecircuits would be very limited,
comprising only such elements. It was proved in] [B%t gate-level realisation of such
elements are not DI, that is to say, internal ® ¢omponent, timing assumptions must be

satisfied, while externally the component operates DI fashion.
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In order that a circuit should be DI, certain ctiods need to be satisfied. Before
proceeding further, let us define the terminologigsrd' and 'production rule’. The rising and
falling signal transitions of signal are denoted bgt anda| respectively. The post-condition
for the result of a transition of ty is a (i.e.a is true), and the post-condition for the result
of a transition of typa| is —a (i.e. a is false). For a Boolean inequality operation hwitputs

X, yand outpug, the following production rules specify the comatits forz andz|:
- (XLCYyLKXLCy)=2

- (xCyLxLy=2

The conditions imposed on the input variables whead to transition of typet and
z| to take place are referred to by the notationsar@ G, which are known as trguardsof
the production ruleswhere a production rule characterises the Boateawdition on the input
variables (guard) that leads to a specific sigsaigmment on the output variable; & zt

and G = z|.

A DI circuit should satisfy the conditions nbn-interferenceandstability [63]. The
simultaneous execution of both the production r@sand G) of a circuit would lead to
malfunctioning of the circuit and therefore theyshld not be executed in parallel, i.e. they
should be mutually exclusive. In that event, thedpiction rules are said to ben-interfering
The other critical issue is the possibility for beds, which can be eliminated by enforcing the
stability of the guard of a production rule. Theagiiof a production rule is said to stbleif
it cannot be falsified before the output correspogdo it has been derived (i.e. the output has
transitioned). It was shown by Martin in [63] thmat glitct? or hazard can corrupt the values of
the variables, if a circuit fulfils stability andn-interference criteria and therefore to uphold
these, two axioms need to be satisfied by DI discun order to implement the stability
criterion, theacknowledgement theorej®3] needs to be satisfied. According to this axio
every non-final transition in a DI circuit shouldvye a successor transition, i.e. a transition on
the input of every gate, excepting that which paaduthe final output, should be accompanied
by a transition on its output so that the transitmn the gate input can be acknowledged
(indicated. The axiom needs to be satisfied for both risamgl falling events. Also, the

unique-successor-set theord68] has to be satisfied, i.e. the set of componat in a DI

2 Glitches produced as a result of electrical efestich as crosstalk and noise, are however extlude
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circuit should adhere to the unique-successor+sgtepty. According to this property, the set
of non-final successor nodes that experience &itran as a result of a transition on an initial
gate output node should be unique and the conditemds to be upheld for both rising and
falling events. From the above discussion, it canirferred that an OR gate is not a DI
component. Following the Kleene star notation [6BE input sequence for an exemplar 3-
input OR gate in which every transition on an inpoild be acknowledged is given below. It
is obvious from the sequence that the 3-input OfR-gath inputsx, y, v and outputz, with a
simultaneous transition on two or more inputs, wofdil to satisfy the acknowledgement
property. In general, for an asynchronous cirauhé classified as a DI circuit, it is imperative
that all transitions need to be acknowledged.

= (O zt sz (s 28y 20 (v 2t vl z))%)*

Since the class of pure DI circuits is very liditea weakest compromise to delay-
insensitivity was introduced, known as tisechronic forkassumption [62] [63]. DI circuits
with isochronic fork assumptions are referred t@aasi-delay-insensitivéQDI) circuits, but
it is not necessary that every fork be an isoclrdoik in a QDI circuit [63]. The isochronic
fork assumption has been defined by Martin in [@follows: ‘In an isochronic fork, when a
transition on one output is acknowledged, and ttorsipleted, the transitions on all outputs
are acknowledged, and thus complétdd simple terms, a fork refers to a node or fjimg,
from where signal wires branch out and thereforésanhronic fork assumption implies that
the value (signal value, say '0' or '1") on all bh@nching-out wires from the fork is similar at
any time instant. Technically, the difference bedwéhe delays in the branches of the fork is
considered to be negligible in comparison with de¢ays in the gate elements and also the
switching thresholds in the different gates to \ahike fork is an input are nearly the same.
Though both these assumptions appear to be difftoutealise in smaller geometries, the
isochronic fork assumption is usually confinedetatively very small circuit areas. However,
when not implemented carefully at the circuit levidlese may give to hazardous circuit
behaviour, which could not have been suspected, santhe approach of uniform logic
threshold voltages was proposed in [66]. In dedprscron technologies, verification at the
layout level may usually be necessitated in ordesttictly enforce this assumption and the
extent of verification would generally depend upwiring lengths, differences in gate
construction and variation in switching thresholddding delay elements to compensate for
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longer wire lengths may be one practical solutorhis issue. Nevertheless, isochronicity is
an essential assumption to facilitate design of-tneral DI circuits. Intuitively, it can be
observed, that the isochronic fork assumption avbiazardous circuit behaviour by ensuring
ideal circuit behaviour, i.e. it resolves the umamty in the arrival of signals to different
destinations (branches) from the same source (nbgednforcing uniformity. Figure 2.6
shows an isochronic fork and the correspondingasitansitions for a simple conjunction of
identical inputs. Given this, the AND gate shoulnt be construed as a DI component, for
reasons that shall be described in the next sedioacent work by Martin et al. [67] showing
that the main building blocks of QDI logic, inclagi realisation of the isochronicity
assumption can be successfully implemented eveann-CMOS technologies, where stricter
design rules and large parameter variations coelcexpected, is an encouraging pointer
towards the feasibility of this approach in the oMOS era. In fact, it was shown that all
QDI computations are deterministic, i.e. all Turcmmputable functions have a QDI
implementation [68]. In view of these, it can balarstood that a DI circuit conforms to the
unbounded delay model for both gates and wires)ewhi QDI circuit conforms to the
unbounded delay model for gates and wires, withettedusion of certain forks (subsequently
certain wires, which are the fan-outs of the fodglled isochronic forks (equivalently,
isochronic branches — those branches of the isnhfork with unacknowledged transitions
[67]).

o/P

3

Y

Fla
Al Al Ak
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Figure 2.6: Illustration of isochronic fork assumption with respect to a primary gate input

The concept oSpeed-independenayiginates from Muller's work of the 1950's and
60's [30] [31] [69] and a speed-independent (Siruif is one which operates correctly
regardless of gate (or component) delays; wiresssamed to have zero or negligible delay —
unbounded gate delay and bounded wire delay. Hneredrlier discussion, it can be identified
that QDI circuits assume zero delays with respecisochronic forks (subsequently their

branches) and so the description of a Sl circusidadly necessitates that every fork be an
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isochronic fork. Technically speaking, wire delagse typically accounted for in the
components according to the model and subsequevitlys are assumed to be ideal (i.e. zero

delay). For this reason, a Sl circuit is commomtigrred to as a QDI circuit in practice.

Referring to the circuit fragment depicted in figl2.7(a) dg1, dgz anddgs represent the
delay values of gategl, g2 andg3 respectively, whiled,;, dy, and d,s signify the delay
values of the corresponding nets. For the DI detagel,dy, dg2, dgz, dwi, dwo @anddyz can be
arbitrary, while in case of the QDI delay mod#j}; is assumed to be equaldg with f being
construed as an isochronic fork junction. Consitgthe SI delay modeti,; = dy, = dyz = 0,
but the wire delays are accounted for in the defagategl, whose output acts as inputs for
gatesg2 andg3. Hence, the delay of gatd is modelled asly;+0wi+dwe OF dyi+0wit+duz as

shown in figure 2.7(b).

g2
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g3
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Output of gate g1 forks to inputs of gates g2 and g3
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g1

————> dgi+dur+di f
93

(b)

Figure 2.7:  Illustration of DI, QDI and SI delay models

Asynchronous systems have been increasingly esféa as self-timed systems in the

literature, as the term 'self-timed' implies thatyatem is governed by its own timing and not
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controlled externally by a common clock reference, the term ‘asynchronous' has become
synonymous with the term 'self-timed’, though thigek is only a classification of the general
category of asynchronous design that correspondsrédust implementation. The term 'self-
timed' was coined by Seitz [70] [71], and a setidd (ST) system is either a single ST
element or a legal interconnection of ST elemefiselementor a group of elements is said
to be contained in arquipotential regionwhere signals may be treated as identical at all
points in a wire, i.e. wires incur negligible delay ST element can be speed-independent.
There are literally no timing assumptions on thengwnication between the regions; i.e.
communication between equipotential regions is Diere are no timing constraints at the
system level in a ST system and its correct opmratan be subjected to only satisfying a
topological constraint with respect to the intemection of elements, with the system being
composed of correctly functioning elements. As sulte systems based on bundled-data
protocol are also referred to as ST systems inlitbeature, which are not robust, and the
hazards associated with the underlying combinatidogic are only hidden within the
handshake mechanism through the use of delay-mateiements, which are optimised to
reflect at least the worst-case delay of the coatlmnal logic. In the true sense, ST systems
would refer to a robust classification of asynclmas systems, when they adopt delay-
insensitive data encoding and usually follow a RSighalling convention. Such systems are
construed to bself-checkingat least with respect to single stuck-at fault2] In fact, this
robust approach has its roots in the pioneerindkwbMuller et al. [30] [31] [69]. Given this,
ST systems could employ a range of timing assumgtio general. At this juncture, we
provide two clear justifications to our argumenthirs regard: Martin compares a ST circuit to
a DI (i.e. in practice QDI) circuit in [62] and [@1]; Seitz refers to his ST full adder as a Sl
circuit. Therefore, ST design, in general, can bneéd as that which guarantees correctness
of circuit operation irrespective of delays asstmdawith design components or that
encountered in the communication signal wires andhstend to possess the inherent
capability to absorb the parametric variations eVides. Henceforth, we shall use the term
'self-timed" to lay emphasis on only robust asyoobus designs, which in general,

incorporate some delay-insensitive data encodinchar@sm with 4-phase signalling.
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2.3 C-element and Indicatability

The C-element, introduced by Muller [69], is an orant gate widely used in asynchronous
circuits and is the key element for implementingust asynchronous logic. Many custom
static and dynamic transistor level solutions hlagen proposed for this gate functionality in
the literature [41] [65] [73] - [75]. The symbol,0Blean equation and a transistor level

realisation of the 2-input C-element (CE2) with wéaedback are shown in the figure below.

|
T e [— - 3—» z

Equation ------------1 > Z=Xy+XZ+yz
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Circuit schematic ------------ >y

—
—
]

e

Figure 2.8:  Schematic, specification and circuit realisation of a 2-input C-element

The CEZ2 outputs a 'high’, when both its inputstaigh' and outputs a 'low', when both
its inputs become 'low'. In general, a random Slzdement waits for all its inputs to become
high (low) before producing a similar logic levelis output. Hence, it is also referred to as a
rendezvouglement, ST element [71] or DI element [62], agowerns the rendezvous of input
signals in that, it acts only after all input eveiiave arrived, i.e. it synchronises different
events, and as such, it is referred to agrametricC-element. When the inputs are different, it
retains its previous state and so the C-elemeaissreferred to as @tate-holdingelement It
basically implements the AND function for eventsgls that if a specific transition takes place
at one input and it is coincident with, or followby, a similar transition on the other input(s),
then that transition will be presented to the otitphie production rules for CE2 with inpws

y and output are specified as follows:
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= XLy=>27f
XL -y=>2z

The C-element is an important DI operator, as indicatable[76] and therefore it
satisfies the acknowledgement axiom [63] — thithes property of the symmetric C-element,
which is widely used in 4-phase signalling convemsi that employ DI codes. In [76],
Varshavsky mentions that if the input(s) of a dirare indicated to its output(s) then the
circuit is indicatable. The condition for circuihdicatability is stated thus:The necessary
condition for a circuit to be indicatable is thall &unctions in the SIF (system of inherent
functions) of the circuit are isotonous (antitonpuis increasing variables and antitonous
(isotonous) in decreasing variables in all allowatput transitions. This condition is
analogous to and can be described through the atbasiic of a non-inverting buffer.
Assuming a' as the input andz' as the output of a buffer cell, the following itpand output
transitions are valida = z} and -a = z|. When the output of a C-element becomes 'high’,
then it highlights the fact that all its inputs kavecome 'high’' and when the output of the C-
element changes from 'high' to 'low’, then it womighly that all its inputs have become 'low'.
So the output of the C-element propeigicatesthe state of its inputs transitions or, the
concurrent arrival of all the inputs are dalgknowledgedreflected) by the output. Because
the output of the C-element properly acknowledgesleierminesthe completearrival of
similar values on all its inputs (i.e. the statetlté inputs can be determined from the output
transition), the C-gafds said to bénput-completd77] or logically determined78]. A gate
(circuit) that does not indicate the arrival of iédl inputs on its output unambiguously is said

to be input-incomplete or not logically determined.

A rudimentary gate level realisation, standard slisation and the Sl realisation of
the CE2 are shown in figure 2.9. The elementarg tatel realisation, shown in figure 2.9(a)
could lead to hazardous circuit behaviour. This &e@n understood from the following
sequence of transitionsa), bt) — mt — yt. Subsequently, this will result it and nft,
which cannot be properly acknowledged by the ORe.g&uch non-acknowledgeable
(unobservable) transitions on gate output nodesedeered to agate orphanswhich need to

be avoided as they may lead to improper circuitrafpen or cause malfunctioning of the

% The C-gate is also identified as an input-compigtie or non-relaxed gate in this thesis.
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circuit (unpredictable circuit behaviour leading possible erroneous output statedjire
orphans though less problematic than gate orphans cae an a circuit, but they are
overcome with the assumption of equipotential negior isochronic forks, eliminating the
need for acknowledgement of a transition on a Wark on all its fan-out branches, i.e. wire
orphans are due to non-isochronic branches. Tadayaie orphans, timing assumptions are
necessary, which in turn complicate the verifigatiprocess. If the environment can be
assumed to be sufficiently slow changing, thendlenentary gate level realisation can be

considered to be safe.

L

>y

Figure 2.9: Different gate level implementations of a 2-input Muller element

A better approach would be to eliminate this tignessumption by a process called

merging —discussed in detail in the context of cell mergieg asynchronous threshold
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networks in [79]. If the three 2-input AND gatesdatine 3-input OR gate can be merged
together and replaced by a single complex gate @@Q2ll) as shown in figure 2.9(b), then
there would not be any gate orphans and therebyitheit is said to preservgate orphan
freedom In this case, the transition gnwould be acknowledged by a transition on the
downstream logic. Merging is possible wheneverdhsra choice of an element in the base
function set for technology mapping which implensetite combined functionality of discrete
logic gates. Given this, the granularity of the ésésction set additionally impacts the
optimisation potential [80]. In general, it can d@ncluded that composing a larger gate from
smaller gates (i.e. merging) could help in elimimaiof hazards, while naive decomposition of
a larger gate into smaller gates [81] [82] by sitilg the associative property [71] can give rise
to hazards. Figure 2.9(c) shows the SI realisatdn2-input C-element functionality
synthesised using Petrify tool [83], requiring twomplex gates — OA12 and AO12 cells.
Since the standard cell realisation requires orgingle complex gate, it was preferred for all

the simulations corresponding to this research work

Since provision of state-holding elements with dyapanularity might be vital for
realising high performance designs, 3-input andpti C-element functionality has also been
realised using the gates of a standard cell lib(aBnm UMC CMOS process technology).
The Boolean expression and the production rulegesponding to the 3-input symmetric C-

element, with inputs, b, c and output is given as follows:
« z=abct+taz+bz+cz

= alLbCc=27

« malL-b[C-c=z

The gate level representation of the 3-input Qrelet based on thextended
isochronic fork assumptiof84] is given in figure 2.10(a), while the morebust proposed
implementation is shown in figure 2.10(b). While ianchronic fork corresponds to a delay
assumption applied to the inputs of gates thatcareected to the branches of a fork, the
notion of an extended isochronic fork introducededay assumption on the outputs of the
inverting CMOS gates connected to the branchesfoika The so-called extended isochronic
fork assumption simplifies the implementation ofjsential gates by further weakening the

original isochronicity assumption. The implemerdatdepicted in figure 2.10(b) utilises the
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combination of a conventional 3-input AND gate amdAO2222 complex gate. It may be that
many standard cell libraries might not have the 222 cell as one of their constituents; in
which case, the 3-input and 4-input C-elements lsandecomposed in a Sl fashion by
employing 2-input C-elements.

B

D

@

oo o

—
L

(b)

Figure 2.10: Different gate level implementations of a 3-input Muller element

A possible robust realisation of the 4-input Credat is depicted by figure 2.11. In this
context, it should be noted that efficient gateelennplementations of high fan-in Muller

elements are largely technology-dependent.

An inverting buffer with inpuk and outputz can be classified as a DI operator and is

governed by the following production rules.
= X = ZT

= X7
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Apart from the NOT gate, many other conventiomajid gates (such as AND, OR,
NAND, NOR, XOR and XNOR) fail to satisfy the ackniedgement property. For example, if
the output of an XNOR gate is 'high’, then no claen be made regarding the certainty of the
state of its inputs, i.e. whether all its inpute dow' or 'high'. Similarly, after this, if the
XNOR gate output switches to 'low', then again eatgr ambiguity is introduced as one
cannot be sure as to which input(s) change caldsedutput to switch from 'high’ to ‘low".
Hence, it is said to be non-indicating, as it dones unambiguously reflect the arrival of its
inputs on its output. In case of simple logic gatesh as AND and OR, the acknowledgement

property is satisfied only for rising or fallingatrsitions respectively and not both.

[eNeRey )

Figure 2.11: Gate level realisation of a 4-input Muller element

2.4 Function Block — Definition and Characterisatia

A function blockis the asynchronous equivalent of a synchronousbomational logic circuit
[40]. However, in addition to satisfying the reqteés functionality, it should also be
transparent to the handshaking as implemented dysutrounding latches. Most robust
function block designs adhere to a 4-phase handshagonvention for simplicity of
implementation and can employ any DI data encodiciteme. The outputs of a function
block are also entrusted with the responsibilityiraficating the completion of computation
within it, i.e. to say, whether all internal nodeasve attained the correct steady-state value.
There should also not be any dangling inputs opust within the function block. Seitz

classified a function block into two basic robusttegories depending on their indicating
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mechanism as eithatrongly indicatingor weakly indicating[71]. It was also proved therein
that a legal interconnection of strongly or wealkiglicating function blocks is itself a strong
or weak-indication function block. This propertyoaés composition of a larger function block
from smaller ones. Besides, QDI combinational lagrcuits naturally tend to have inverter
free realisations regardless of the indication prop[51]. Relatively less robust (requiring
more timing assumptions) models of function blocks, relative timing [85] and monotonic
Boolean networks [86], have also been proposetlariiterature and these basically trade-off
robustness for improved performance gains. Neviedbein this thesis, we shall exclusively

deal with only the two most robust categoriesetish descending order of safety.

Strong-indication In this case, the function block waits for alputs (valid/spacer) to
arrive before it starts to compute and produceoatputs (valid/spacer). The sequencing
constraints are briefly mentioned below:

> All inputs become defined (valid)/undefined (spadsefore any output becomes
defined/undefined, i.e. any or all output(s) becotedined/undefined only after all

inputs become defined/undefined
» All outputs become defined/undefined before anyirgecomes undefined/defined

Weak-indication|In this case, the function block starts to corepand produce outputs
(valid/spacer) even with a subset of the inputdidispacer). However, Seitz's weak
timing specifications require that at least onepattvalid/spacer) should not have been
produced until after all inputs (valid/spacer) hardved. The sequencing constraints are
as follows:

> Some inputs become defined (undefined) before soutputs become defined
(undefined), i.e. some outputs could become defiuediefined) only after at least
some inputs become defined (undefined)

> All inputs become defined (undefined) before alltpuis become defined
(undefined), i.e. all outputs could become defifeddefined) only after all inputs
become defined (undefined)

> All outputs become defined (undefined) before amgut becomes undefined
(defined)
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The signalling scheme for strong and weak-indocatiming regimes in terms of the
inputs and outputs is illustrated graphically iguiie 2.12. From the preceding discussion, it
can be understood that the C-gate and inverter beandentified as strongly indicating
elements. In general, the maximum datapath delaybsareduced in the case of weak-
indication circuits compared to their strong-indica counterparts through relaxation of
indication constraints for all but one of the fuootblock outputs by incorporating relaxed

gates.

A
All

Inputs defined

None

A Strong-indication
Al ——————— — — —

Outputs defined

None - — — — — —

A

All

Outputs defined

—

Figure 2.12: Depicting strong and weak-indication phenomena

None

2.5 Summary

In this chapter, the fundamentals of asynchronausiits, relevant to the subsequent contents
of this thesis have been described in detail. Dpe&es discussed include handshake signalling
protocols, delay-insensitive data encoding scherasus unbounded delay models, Muller
C-element and the concept of indication (acknowdsdent), and classification and

specification of robust timing regimes.
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Chapter 3

Self-Timed Combinational Logic

Dual-rail encoding (DRE) is a widely used DI dataceding convention for robust

asynchronous designs as it is a systematic cogat(ohata being embedded in the encoded
data) [88], and interest in 1-of-4 encoding isiltitable to its inherent low power advantage.
However, since many logic realisation schemes aB& as a standard, a number of well-
known ST combinational logic realisation schemes|die analysed on the basis of DRE with

examples.

ST implementation of combinational logic contintede a field of important research
activity on its own accord as it is inherently kiesgth the problem ofinput state space
explosion which poses exponential complexity with increaseha number of concurrent
inputs; dealing with this problem is indeed a tiegsbme task [89]. Such is the gravity of the
problem that even a standard tool preferred fosy®thesis of asynchronous controllers viz.
Petrify [83] is unable [90] to synthesise a two-attder functionality (comprising 10 inputs
and 6 outputs, in dual-rail format) in a S| fashwith the assumption of inputs being fed from
and outputs being provided to the external envirammA ST realisation typically satisfies the
acknowledgement property and the unique-successqureperty [63]. This is facilitated, if
the monotonic cover conditioff1] that ensures hazard-free implementation ofi&luits is
incorporated into the description of the logic ftiocality. In simple terms, the monotonic
cover constraint requires that only one produanter a sum-of-products implementation is
allowed to assume a logic 'high' at any time irecaseitherset (true output) oreset(false
output) functions [40]. Obviously, this requirememeds to be satisfied by the circuit only in
the states that are reachable. In general, thisdwentail enumeration of the entire input state
space that consists of distinct input combinatiomfus, an exponential increase in
computational complexity of O(Ris exhibited for even a gradual increase in thmiper of
primary function inputs by @ as shown in figure 3.1, with being the number of concurrent
single-rail inputs — this is commonly referred tothe input state space explosion problem and

is a major bottleneck for implementation of randoombinational logic as ST circuits. This
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phenomenon usually manifests while attempting robagnchronous logic design. However,

research has been pursued to alleviate the prabii@mput space explosion.

35000 -
30000 /
25000

20000 -

15000 -
10000 /
5000

0 2 4 6 8 10 12 14 16

Unique input combinations

Number of concurrent inputs

Figure 3.1:  Enumerating the state space based on input order

Many properly indicating logic realisation schemesually suffer from large area
overheads and this has restricted direct functionkbimplementations to usually those with
fewer inputs and outputs, of which the fundamedtdhpath element viz. half/full adder has
generally served as the exemplar circuit. Functiolock implementation of larger
combinational circuits would incur at least doulitee area penalty of a conventional
synchronous realisation, besides rendering thehegrd scheme practically infeasible for large
functions. However, many approaches have been pegpand they differ in the way of

dealing with this problem by either:
a. Assuming the entire space without suggesting alsigitdecomposition procedure or

b. Confining themselves to only full custom solutidios smaller functions of practical

interest or

c. Circumventing this problem considerably in differevays by usually relying upon a
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standard synchronous solution base and then caetistyuasynchronous solutions (de-
synchronisation), with the additional provision @failability of full custom library

gates that are made available as part of a stawddridbrary or
d. Resorting to Sl logic decomposition by considetimg entire input space or

e. Reduction of entire input space consideration i exception of at least a single

output by way of possible SI logic optimisations or

f. Addressing the problem of indication of all thenpairy inputs by way of partial
acknowledgement, starting from a synchronous soiutiase (de-synchronisation), but

assuming/requiring the presence of certain custgic lgates in the library.

Among these, the third approach has been domihantng its roots in some of the
earlier approaches, as it does not synthesise lasymuus circuits based on specifications such
as communicating processes [92] or signal tramsioaphs [93]. Instead, it relies upon
synchronous CAD tools for initial synthesis andnthieplaces every gate in the synchronous
circuit with a dual-rail encoded gate pair in a pdae based fashion, which are subsequently
mapped using NULL convention logic operators [7/Tfjese operators are based on threshold

logic [94] and are made available as custom elesniard standard cell library.

3.1 Seitz's Method

Seitz's approach to self-timed design [71], irb&sic form, can be envisaged as an AND-OR
two-level implementation of logic functions. It eesbles the two-level AND-OR logic
corresponding to the standard C-element architectuhich comprises first-level AND gates
assuming unbounded fan-in and OR gates in thelogixt level, which could be decomposed
into multiple levels in an arbitrary fashion. C+alents are then used to join the set and reset
functions corresponding to each signal [91] [95awever, as with the standard C-element
architecture, synthesis of larger combinationakfioms is practically infeasible as they could
contain several concurrent inputs [91] [96]. Seitziethod basically requires generation of

AND logic operators (assuming unbounded fan-in)dach of the 2unique minternisof a

* A mintermis a canonical product of the input variables 8oalean function, while a cube is any product of
input literals. Aliteral is a Boolean variable (sag) or its complement)).
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Boolean function specified byinputs. Assuming no bounds on the fan-in of theDAgjates
present in the first logic level is a restrictiam dvoid gate orphans. The canonical product
terms are appropriately combined by OR gates (warelpermitted to have bounds on fan-in)
according to the function description — this forrtitee main functional part of the
implementation. Since the AND gate indicates onhew inputs become ‘ones’, separate OR-
logic which performs a logical disjunction of dtlet dual-rail primary input signals is required
in order to acknowledge when inputs become ‘zeroElsérefore, when the outputs of the
main functional part and the separate OR-logicsgrehronised by means of C-elements, on
the whole, the function block is said gtrongly indicatethe arrival of all the primary inputs.
On the other hand, if any one dual-rail output.(aetrue and false output) of the main
functional part is synchronised with the outputtioé extra OR-logic by means of two C-
elements, then all but that dual-rail output magdme defined/undefined before all the
primary inputs have become defined/undefined. imdhse, the function block satisfies Seitz's
weak-indication timing constraints and is therefesd to beweakly indicating Weakly
indicating realisations permit logic optimisaticand incur more area compared to a strong-
indication version for the functional part due t@mm product terms but require fewer C-
elements for synchronisation purpose. Also, suelisaions pave the way for reducing the
overall system latency if a number of subsysterascannected in a linear cascade, assuming
only certain outputs would propagate as inputs betwthe subsystems. A good example of
this would be a conventional ripple carry adder fRConsisting of a cascade of full adder
modules, with the carry output of a less significasider module serving as the input carry for
a more significant adder module. The strong andkviedication realisations of a full adder
based on Seitz's approach are shown in figureaB23.3 respectively. The fundamental
equations governing a full adder with dual-railutg@l, a0), (b1, b0), (cinl, cin0) and dual-
rail outputs Suni, Sun®), (Coutl, CouD) are as follows:

Sunmi =a0b0cinl +alblcin0 +alb0cin0 +alblcinl (3.2)
Sun® =a0b0cin0 +alblcinl +alb0cinl +alblcin0 (3.2)
Coutl =alblcinl +alb0cinl +alblcinO +alblcinl (3.3)
Cou0 =a0b0cin0 +a0b0cinl +alblcinO +alb0cin0 (3.4)
The weak-indication adder takes into account #ue that the output carry of an adder

module could be defined as soon as its input opsréecome defined, depending on carry-
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kill (a0=b0=1) or carry-generateal=bl=1) conditions. Thus, the carry output equaticas c

be optimised as:

Coutl =alblcinl +alb0cinl +albl (3.5)
Cou0 =alblcin0 +alb0cin0 +alb0 (3.6)
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Figure 3.2:  Seitz's strong-indication full adder

Comparing the adder circuitry depicted by figuBes and 3.3, it can be noticed that the
strong-indication adder increases the datapathydelhile the weak-indication adder
incorporates a fast carry propagation path as thdysum output depends on all the inputs,
while the carry output do not always, i.e. the @adion is distributed between the function
outputs in case of the latter realisation. It isoeonoted that the completion detection logic,
when not implemented as a single OR gate due tinfagstrictions of the cell library, would

necessitate timing assumptions.
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Figure 3.3:  Seitz's weak-indication full adder

3.2 Singh's Approach

Singh's approach [97] targets ST implementationthed desired functionality by first
partitioning the entire input space, constructingaler modules for all the different partitions
and then combining all those smaller modules apatgby in order to realise the required
logic. This gives rise to decompositions of finamularity restricted to minimum fan-in and
eventually increases the logic depth. With an iaseein the number of inputs, the number of
partitions would increase considerably and, givee extensive usage of state-holding
elements to perform logical conjunctions, it wowacerbate the area overhead for even
medium sized functions besides degrading the daletyic. Also, no clear method has been
portrayed for SI decomposition of function blocksithw many inputs. An efficient
implementation of a 4-input AND gate based on #pgroach is shown in figure 3.4, where
(a1, a0), (b1, b0), (c1, cO), (d1, dO) are the dual-rail inputs and (Y1, YO) serveshasdual-rail
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output. Multiple acknowledgements might result oms wire forks, which may be useful in

simplifying the isochronicity assumption.

a0

C

c0
d1

cl
do

ct
dt

@w@w@a%@

Figure 3.4: Realisation of a 4-input AND gate based on Singh'’s approach

3.3 Direct Logic and Reduced Direct Logic Styles

Among the four transistor level full custom functiblock styles proposed in [98], namely
static logic, direct logic, semi-controlled preaj@dogic and full-controlled precharge logic,
the direct logic can be classified as DI (QDI) gsteary delays on the input wires of a gate do
not give rise to stale data values. The directcagalisation technique basically considers a
merger of C-elements and OR gates functionalityther words, function blocks based on the
direct logic style incorporate full custom complgate constructions for both the true and false
outputs. The transistor level realisation consistpull-down and pull-up networks, made up
of nMOS and pMOS transistor stacks respectivelybioth the output rails of the dual-rail
output. The NnMOS transistor stack correspondinigatih the outputs comprises a unique path
for each of the 2minterms related ta" inputs of the function block, wherein severalnsig
paths could share the same transistors. The patrede output and ground is established by
the nMOS transistor network that is used for intlacaof the spacer to valid data changes on
all the inputs. The pMOS network consists of aesestack of 2 transistors that establishes a

signal path between the supply and output whethalinputs become spacers, and is used to
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indicate the valid to spacer data signal changeslbthe inputs. Therefore two identical
pMOS transistor networks are required to indicaeeRTZ phase of the inputs on the dual-rail
output. For functions with multiple outputs, separtunction blocks need to be constructed
for each of the individual outputs (which are aldoal-rail encoded). The direct logic
implementation satisfies Seitz's strong-indicatspecifications as the outputs are computed
only after the arrival of all the inputs. A majamnitation of this function block implementation
style being the size of the transistor stacks @afg, pMOS transistor network), as the delay
associated with the reset phase is heavily inflagrzy the size of the pMOS transistor stack
that offers a higher load with even three or foumary inputs; the nMOS transistor stack
adds a large parasitic component to the delay.idp@t AND gate based on the direct logic
realisation style is shown in figure 3Whereal, a0, bl andb0 are the inputs, while (Y1, YO)

signifies the dual-rail output.

In case of the reduced direct logic method, trepaasibility of indication of input
variables is distributed between the output vaesblin other words, the outputs are
collectively responsible for indicating all the utp. The motivation for this is to reduce the

complexity associated with the direct logic andetlax the strong-indication constraints so as

Figure 3.5: 2-input AND gate based on direct logic style

to make the function block weakly indicating. Malgi full adder design [99] corresponds to
the reduced direct logic style and is shown inrgg8.6. &1, a0), (b1, b0) and ¢inl, cin0) are
the dual-rail inputs, whileSurmi, Sun®), (Coutl, Cou) are the dual-rail outputs.
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Figure 3.6: Martin’s full adder (reduced direct logic style)

Seitz's weak-indication timing regime requirest thtaleast one function block output
(i.e. an encoded rail of any output) should notloee defined (undefined) unless all its inputs
have become defined (undefined). Here, it can ba #®at the indication of, a0), (b1, b0)
and €inl, cin0) when becoming a spacer (i.e. during the RTZ @has distributed between
the sum and carry outputs, while in case of theeaddsed on the direct logic style, such
distribution could not be found as it is stronghglicating. The carry output circuitry is based
on majority logic that asserts the sufficient aatief any two of the three inputs during the set
phase, while the sum circuit asserts the arrivadlbthe inputs. The transistor count for the
reduced direct logic based full adder is 42, asosp@ to 60 transistors for the direct logic
based full adder, thus effecting a savings in deemunt by 30% whilst enabling reduction in
delay, as the former exhibits actual case laterntegnadding valid data and propagates empty
values in constant time; the full adder based oectliogic style features constant worst-case

latency in both the scenarios.
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3.4 Delay Insensitive Minterm Synthesis Technique

The delay-insensitive minterm synthesis (DIMS) teghe [100] is identical to the Seitz's
approach discussed earlier in the sense that itireslisting of all the 2canonical product
terms of the Boolean function governed byinputs. The canonical product terms are OR-ed
together according to the function description. ldger, instead of realising the product terms
by AND gates, they are realised using C-gatedsladtual form, it can be envisaged as a two-
level implementation consisting of C-gates in thstflogic level and OR gates in the second
logic level. The C-elements are assumed to havewrded fan-in, while the OR gates can be
decomposed arbitrarily as, at this stage thereoseahot code representation, since for every
function input only one C-gate (which representxamonical product term) would get
activated during the set phase. Similar to Sed#tg[groach, the DIMS technique also assumes
unbounded fan-in for the gates present in the gl and therefore a naive decomposition
based on the associative axiom could lead to hazarédation of gate orphans) as illustrated
in figure 3.7(a), while on the contrary merging kbaliminate hazards as depicted by figure
3.7(b). Referring to figure 3.7(a), given the inpainsitions &7, bt), only Xt results while the
steady state of Y is maintained. Therefore, thasiteon on the intermediate node X is not
reflected on the output Y, which is construed agate orphan. Considering figure 3.7(b),
given the input sequencaf( bt), the steady state of Y is maintained and untéssccurs, Y

does not occur thereby avoiding gate orphans.
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Figure 3.7: Hazards due to naive decomposition of a C-gate

In general, reduction of Boolean equations isallmwed in the DIMS approach as it
could violate the cover constraint. The functiondid constructed with the outputs expressed
in disjunctive normal form utilising all the mintes is strongly indicating, as none of the
outputs would become defined/undefined until adl ihputs have become defined/undefined.

The DIMS approach is similar to an earlier work Agantharaman [101], but has been
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subsequently extended into a standard techniqueniplementation of arbitrary multiple
output function blocks in [100]. The strong-indioat full adder realised according to the

DIMS approach is shown in figure 3.8.
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Figure 3.8:  Strong-indication full adder based on DIMS approach
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Figure 3.9:  Weak-indication full adder based on DIMS approach
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Isochronic fork assumptions are made with regarthé primary inputs as they feed
many C-gates, while the forks that feed the ORgyaeed not be isochronic. Similar to the
case of Seitz's weak-indication adder, the cartyakid carry-propagate conditions can be

enforced thereby making the function block weaklyicating, as shown in figure 3.9.

3.5 Dual-Rail Combinational Logic

The dual-rail combinational logic (DRCL) style iggés De-Morgan's theorems of Boolean
algebra to implement a combinational logic functionan asynchronous style by replacing
each gate by its dual-rail equivalent (dual-raifp@®RCL, as the name implies, is suitable for
translation of synchronous circuits into asynchisaircuits based on the DI dual-rail data
encoding protocol alone and is not generic. Theresgion for the false output of a logical
operator is derived from the complement of the Banl equation corresponding to its true
output, expressed in sum-of-products form. Thus #mpproach could harness the strength of
traditional synchronous logic design. The aim a$ #tyle is to facilitate asynchronous logic
realisation using conventional logic gates, whick available as standard cells, thereby
reducing the area expense. When such discrete gaetassed, it is important to ensure the
completion of computation at the internal nodeshefrealisation apart from guaranteeing the
complete arrival of all the inputs. We consider teaenarios for the DRCL equivalent of a
Boolean function, say, F ab + cd, as shown in figure 3.10, to clarify the necessdy
ensuring proper indication of signal events atghmary inputs as well as intermediate output

nodes and to describe how wire and gate orphard poasibly result.

1. Assuming all the data inputs to be currently spgoehena0 andcO become defined
intermediate signalg0 andy0 would become defined and eventually FO would be
defined. Assuming thadt0 anddO also become defined subsequently, they would not
be acknowledged by the intermediate signals orheydorresponding output in the

present evaluation phase resulting in wire orphans.

2. Let us assume thatl andbl become defined after a RTZ phase. This would tead
defining of the intermediate sign&l. Assuming thatl anddl become subsequently

definedduring the current evaluation phase, F1 could Heeme defined as a result
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of x1 alone becoming defined and hence a late transitio y1 would not be
acknowledged by the primary output giving rise @ase orphan.

Figure 3.10: DRCL realisation of F = ab+ cd

From the above discussion it becomes clear tl@DIRCL scheme is basicalhon-
indicating and, as such, it generally conformsetiger evaluatiorowing to the fact that even
with a subset of the function block inputs becomdtedined, all the outputs could become
defined regardless of the lately arriving input&nkle, it does not adhere to strong or weak-
indication timing constraints. The NCL_X approadlcdssed in section 3.10.2 utilises the
DRCL style for implementing the functional part adeals with ways to eliminate the

problems of wire and gate orphans through the prowiof explicit completion detectors.

3.6 David et al.'s Approach

David et al.'s method [103] consists of deriving Boolean expression for the false Yafl a
function output by complementing the logical eqomtcorresponding to its true rail. With
respect to the implementation, four sub-networks @avolved — ORN, CEN, DRN and
OUTN. The ORN (OR-gates subnet) consists tfvo-input OR gates, where' refers to the
number of single-rail primary inputs. Each 2-in@R gate is used to logically sum the signal
values of both the rails of a dual-rail input irder to detect the proper arrival of valid or

spacer data. The CEN is basically a multiple-inBtglement, which is used to synchronise

®‘F1’ and ‘FO’ correspond to the true rail and &sil of a dual-rail encoded function output ‘Fhey are also
called ‘true’ and ‘false’ outputs of a function blo
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the outputs of all the 2-input OR gates to dethet piroper and complete arrival of all the
inputs during both the set and reset phases. Wheheadual-rail inputs are driven to the
spacer state, the outputs of all the OR gates & @RN would become low and the
simultaneous reset of all the inputs would be caréd by the output of CEN. Similarly, when
valid data is impressed upon the dual-rail inptits, outputs of all the OR gates in the ORN
would transition and the transitions on all the @des would be subsequently acknowledged

by a transition on the CEN output signal.

The DRN represents the dual-rail network that enpnts the desired combinational
logic functionality. It is amonotonicnetworkand monotonicity is achieved by ensuring that
when all the inputs are undefined, all the outpuiesreset and during tlkefining interval an
output should have changed at most once. The dgfimterval is specified as the interval
between the time instances when all the inputsiadefined to the time instance when all the
outputs (i.e. any one rail of each dual-rail oufpoecome defined. The DRN is typically
composed of a two-level AND-OR realisation for thee outputs and a two-level OR-AND
realisation for the false outputs. Of course, #eosad level OR gates in the AND-OR network
can be decomposed arbitrarily as only one of imiis would experience a transition. No
specialised decomposition strategy has been fotetikss part of this approach and it does not
require the listing of all the unique input comldioas, thereby paving the way for reducing
the area overhead considerably in comparison wahynother earlier approaches; however,
this conclusion is actually dependent on the fuamctispecification. The size of the
combinational logic realisation would be limited the fan-in of the basic gates available in
the cell library in a practical scenario. Thougle thethod hints at employing conventional
logic minimisation algorithms for realising the DRM could possibly give rise to gate
orphans, especially because of the OR-AND logicthWespect to the AND-OR logic
realising the true function outputs, gate orphamddbe avoided only by imposing no bounds
on the fan-in of AND gates as random decompositamsd easily lead to gate orphans. Even
with an unbounded fan-in relaxation, the OR-ANDitoghich realises the complementary
function outputs could still give rise to hazardsis will be described shortly with an
example. The logic implementation for the falsection output is complementary to that of

its true output, i.e. to say the DRN implementatibiises the DRCL style.
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OUTN refers to the output subnet, which is comgosEstate-holding elements that
are used to synchronise the outputs of CEN and DBMTN would require a 2-input C-
element for each rail of the output produced by DN and is mainly meant to retain the
DRN outputs until all the inputs become definedd@fimed) in the set (reset) phase in order to
maintain compatibility with the proper sequencinfy events in relation to the external
environment (i.e. with the inputs fed from and thetputs fed to the environment in a
sequence according to the handshake protocol). ghhtlee method may appear to enforce
strong-indication property, it suffers from the whack that the implementation of the
underlying combinational logic functionality (asrpaf the DRN) may not be Sl and therefore

not ST in a strict sense. This reasoning is subatad by the following example.

Let us consider a logic function specified by Xa'b'c + abc'and Y =a'bc' + ab'c. The
equations for the true and false function blockpatg in dual-rail format are given by:

X1 = a0b0cl +alblcO (3.7)
X0 = (al+b1+c0) (a0+b0+cl) (3.8)
Y1 =alblcO +alb0cl (3.9)
Y0 = (@l+b0+cl) (@0+bl1+c0) (3.10)

The realisation of the above functionality accogdito David et al.'s approach is
depicted by figure 3.11. The different sub-netwo(k®RN, CEN, DRN and OUTN) are
highlighted in the diagram. It is to be noted th&d, IX0, 1Y1 and IYO are logically
equivalent to X1, X0, Y1 and YO respectively. TBedhronicity assumption can be extended
to all the forks associated with the primary inpi#hen the true outputs are asserted 'high’,
the indication of internal signals is proper as #ND gate waits for all its inputs to become
'high' before producing a 'high' output. The catissue is concerned with the indication of
internal signals2, n3, n4 andn5, which are the intermediate outputs of the OR-ANGIC,

and towards this end we first consider an instance.

Let us assume that the false function outputs (X0) have become defined after
feeding in appropriate valid input data (sa¥,=bl =cl = 1). This would have been possible
with the internal signalsn@, n3, n4 andn5) experiencing transitions. When spacer data is
applied to the circuit during the RTZ phase, evethal andbl being resetn2 andn5 are
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reset and the false function outputs could evaltmatbe correct spacer state irrespective of the
reset of the remaining internal signals3 (and n4), implying that the outputs have not
indicated the attainment of the correct steadyestatue in all the internal nodes. From this,
we understand that the circuit exhibits the phemameofearly reset(i.e. outputs being reset
in an eager fashion with only a subset of inpuhalg), and it mainly results due to the fact
that bounds are associated with gate delays (edlyeitiose of the two-level OR-AND logic).
Hence, it can be concluded that the DRN subnebisSh, as the Sl timing model specifies
unbounded delay for logical operators. On the eowirif timing assumptions could be
simplified by assuming that bott8 andn4 would be reset simultaneously similar to than2f
andnb, then the circuit operation would be correct. diéveless, such a timing assumption

would only add to the complexity of the verificatiprocess at the layout level.

—— X0

— Y1

— Y0

Figure 3.11: Realising X = ab’c+ abc'and Y = abc'+ abcusing David et al.’s method

Realising the false function outputs of the DRNret using OR-CE logic instead of
OR-AND logic may be a simple solution to fostertbetsynchronisation between events.

However, this may not be sufficient to ensure gafgian freedom within the DRN subnet. To
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comment on this, let us consider another scenariassuming thad0 = b0 =cl = 1, after a
RTZ phase. In this caselt — 1X11, but the transition om3 will not be followed by a
transition on IX0 resulting in a gate orphan. Theo tscenarios considered thus far
demonstrate how gate orphans could inherently rasinih the circuit, which consequently
affects its robustness characteristic.

To resolve the above problem of eager reset, alrsmlution is proposed in this thesis.
The false function outputs typically employ two4¢vOR-AND logic and the AND gates
cannot be decomposed in a random fashion withaitlang gate orphans as described earlier.
However, if the OR-AND logic can be realized usiogmplex gates via cell merging as
opposed to discrete gates, as shown in the DRNeswbriigure 3.12, the timing assumptions
could then be simplified. Further to this, a rekéxa can be allowed such that the output of
CEN need not be synchronised with all the dualaaiputs of the DRN, but rather with only a
single output (say, X or Y). With these modificaiso the circuit would now feature the
property of weak-indication and be robust, elimimgtthe need for sophisticated timing

assumptions. The resulting circuit based on the@baodifications is shown below.

—> X0

al
b1
— Y1
al
b
cl

=l
b
cl
—> YO
al
b1

c0

Figure 3.12: Weakly indicating realisation, based on modifications to David et al.’s method
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By referring to figure 3.12, it can be seen the¢rewith a subset of DRN inputs
becoming undefined (salgl =cl = 0), given the application of input data in #deelier phase
asal =bl =cl1 =1, IX0 and 1YO of the DRN would become undefin8ubsequently, wital
becoming undefined, though its reset may not be&ated by the DRN, with isochronicity
assumption imposed on the primary function blogiuis, the CEN output confirms the reset
of al and X0 and YO would then be reset. With respedhé second scenario considered
previously, it should be obvious that a gate orplimes not arise since there are no
intermediate nodes with respect to the OR-AND lodibus, proposing cell merger and
synthesis of logic using complex gates to achievebaist asynchronous circuit realization,

have solved the problem of circuit orphans.

However, it may be observed that even with theppsed modifications the circuit
would be power-hungry, as when valid data is agptiee cover constraint can be imposed
only on the AND-OR logic of the DRN subnet realgsithe true outputs. All the OR logic
corresponding to the compound implementation of AN, which realise the false outputs,
would have to transition in order to produce vatidtputs, based on appropriate inputs.
Consequently, the dynamic power dissipation woddhigh due to greater switching activity.
In addition, the need for complex gates to redlmefalse outputs of the DRN subnet could
render the implementation practically infeasibléhawiegard to modern standard cell libraries,

due to the requirement for gates with a large faand featuring a sophisticated functionality.

3.7 Toms' Approach

Toms' procedure for Sl synthesis of combinatioogid circuits [104] is based on utilising the
techniques proposed for multi-level logic synthd&i35], such as extraction of single-cubes
and multiple-cubes (must be a sum of two or motgesy by means of solving the rectangle
covering problem, which is actually based on a wvefficient sparse-matrix representation
developed by Rudell [106]. The extracted cubes hau®e then re-substituted as intermediate
variables into the original expressions. Whdetractionis the process of identifying and

creating some intermediate common sub-functionsvanidbles substitution(also known as

® A cube is a product of different literals, wherkteral refers to a variable appearing in its nahx) or
complementary formx().
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re-substitutiol is the process of substituting a function X iatdunction Y such that Y is
expressed as a function of its original inputs An@oth these operations use techniques that
are analogous to Boolean multiplication and diwisin fact, 'division' plays a key role in
multi-level logic optimisation. There are two typekdivision operations viz. algebraic and
Boolean. Algebraic division, also known as weakision is faster in comparison to Boolean
division (strong division), which is algorithmicglinore complex but capable of producing
better results. In general, algebraic methods astldecause the logic function is treated as a
polynomial and hence fast methods of manipulatienavailable [107]. Boolean factoring is

generally non-polynomial and such procedures ugualblve complexity [108].

Given two logic functions, sa¥ and g, if there is an operation which generates
expression$ andr, such that = gh+ r, whereghis an algebraic product (i.g.andh have no
common variable between them or disjoint suppdhgn this operation is referred to as
algebraic division.d is referred to as the quotient amy the remainder of the division
operation. For example, fif=abd+ bcd+ a'c + b'd' andg = a + ¢, the algebraic division could

then yield
f=gh+r=bd(atc) + a'’c+b'd (3.11)

On the other hand, Boolean division uses the idesntof Boolean algebra for
factorisation of logic expressions (For exampig; = 0,yy =y andy+y' = 1 for a variable)).
Thus, if in the expressioh= pq + t, pq is a Boolean product (i.e. wh@nandq do not have
disjoint support), then the division dfby p is called a Boolean division. This division

operation could yield the following expression.
f=pqg +t=(bd+a’) (a+c) + b'd’ (3.12)
The quotient resulting from an algebraic divisimnan expression, say Z, by a cube,

sayc (i.e.%) is called thekernelof Z, if there are at least two cubes in the qmdtand the

cubes are governed by a disjoint support. The natikernelof an algebraic expression was
introduced by Brayton et al. in [109], as a mednfiading sub-expression(s) that are common
to two or more expressions. In fact, all operatiosed to find kernels are algebraic. The cube

divisor ¢, used to obtain the kernel is called twekernel Different co-kernels may produce

’ Factoring is the translation of a function expeess SOP or disjunctive normal form into a parestbed form
having a minimum number of literals.
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the same kernel: hence the co-kernel of a kernabtsunique. If a kernel has no kernels
except itself, it is said to be a level-0 kernelkétnel is said to be of lev&] if it has at least
one level K-1) kernel but no kernel except itself, of lekebr greater. Let us consider the
following function,

Z =abcd + adg + b'dfg + b'cdef (3.13)

The quotient obtained from the division of Z bg tubead is

%d =bc+g (3.14)

The quotient resulting from the division of Z byis
Z/ . _
/3' f =dg + cde (3.15)

%d is a kernel of Z, since it has two cubes and dreycube-free — therefoesl is a

co-kernel of Z. Bu % f is not said to yield a kernel since variadless common to both the

cubes of the quotient, resulting from the divisoperation.

In conventional multi-level logic synthesis, sieglube extraction is referred to as
condensatiorand multiple-cube extraction is referred todagillation. In general, thelistill
algorithm is preceded by a kernelling algorithmewha larger subset of algebraic divisors is
generated. Using these divisorglistill performs multiple-cube decomposition and
factorisation. This is followed by theondensealgorithm, which performs single-cube
decomposition. Often, the heuristic would involveveral iterations of each round of
extraction and re-substitution. However, there ddad cases when divisions could not extract
multiple-cubes or even single-cubes and these depeon the logic functionality. Toms'
method [151] is based on performing distillationd@n condensation operations in a Sl
fashion for multi-level synthesis of combinationlalgic, provided certain conditions of
substitution are upheld [104]. The approach basicainsiders the entire input state space and
therefore it would encounter the problem of inpqueice explosion. The resulting solutions are
strongly indicating to reduce the complexity of shabstitution. It enables decomposition of
cubes expressed in amgof-n encoding style through a technology-independenth&gis

involving 2-input C-elements and OR gates, with #ssumption of isochronic forks, and
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thereby it can be classified as QDI. A dual-rall adder synthesised using this approach is
shown in figure 3.13. The primary multiple and $&agubes extracted are given by (3.20) —

(3.22), while substitutions are visible in the remazr of the equations.

Sum0

Sum1

Cout0

Cout1

SR

Figure 3.13: Full adder synthesised using Toms’ approach

Sund = [0] + [5], Sund. = [1] + [6] (3.16)
CouD = [1] + [5], CoutL = [0] + [6] (3.17)
[0] = cin1[2] + cinO[4] (3.18)
[1] = cin0[2] + cin1[3] (3.19)
[2] = a1b0 +a0bil (3.20)
[3] = a0b0 (3.21)
[4] = albl (3.22)
[5] = cin0[3] (3.23)
[6] = cin1[4] (3.24)

3.8 Folco et al.'s Approach

Folco et al.'s approach [110] bears a similaritshvtine previous approach in the sense that the

synthesis of combinational logic as QDI circuitsperformed assuming 2-input C-elements
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and OR gates. However, the resulting circuits cosidisfy strong or weak-indication
constraints. This approach makes use of algoritttngonstructing reduced ordered binary
decision diagrams (ROBDD) [111] as the basis fersignthesis strategy with the exception
that logical conjunctions are perceived as achieedugh C-element functionality rather
than AND gates. The technology mapping has beesesuiently done targeting a 130nm
standard cell library [112] that includes some omsiasynchronous elements created on the
basis of the STMicroelectronics CMOS process, filhg the structural pattern matching

algorithm proposed by Zhao et al. [113].

To help with further discussion, some basic cotsep binary decision diagrams are
first explained. Théinary decision diagran{BDD), named so by Akers [114], after it was
introduced as a binary decision program concegdtd®y[115] to represent switching circuits,
is a rooted directed acyclic graph (DAG) and isaaanical representation of a logic function
[111]. It is typically constructed by a recursiveptication of Shannon's expansion thedtem
The BDD for a logic function generally has two témai nodes of out-degree (fan-out) zero
labelled '0" or '1' and a set of variable nodesuwifdegree two. The nodes in the first level of
the BDD are referred to as root nodssurce$ and the nodes that represent the constants ‘0’
and ‘1’ are referred to as terminal nodesK9. The rest of the nodes present between the
sources and sinks are generally referred to asmettiate or non-terminah¢n-sink nodes.
The two outgoing edges from a non-sink variableenack labelled as the 1-edge and 0-edge
(directly arising from the assignment of the logjicalue of '1' and '0' to that variable), and
may converge on two other distinct nodes that aferred to as itghild nodes The child
nodes are said to be tlseccessorgone-successor and zero-successor) of a pareet Aod
variable is associated with every node, exceptiegti¢rminal node, whose out-degree is zero.
The BDD for the logic function F (00 g O r) is given in figure 3.14(a). The 1-edges are
drawn as solid lines and the 0-edges are drawrot@sddlines in the diagram. The dual-rail

synthesised circuit is portrayed by figure 3.14(b).

8 According to Shannon's expansion theorem, a fanatan be decomposed by means of a variable(bgof t
function as F aF, + a’F,, where E and K are known as the positive and negative residuéseofunction,
obtained by assigning binary values of '1' antb'the variable of function F respectively.
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Figure 3.14: BDD and circuit solution for F = (p [ g [0 7 based on Folco et al.’s method

A BDD is ordered(i.e. OBDD) if on all paths through the graph tfzgiables follow a
certain ordering. An OBDD is callegduced(i.e. ROBDD), if it incorporates the properties of
‘'uniqueness' and 'non-redundancy’ [116]. The caradfdpOBDD is traced back to the seminal
work of Bryant in the 1980's [111]. Any completety incompletely specified Boolean
function has a unique ROBDD and therefore any o@BDD for the function constructed
using a different order of variables would have enoodes. In other words, ROBDD is unique
for a given logic function when the order of theiahles is fixed [116]. Although the use of
BDDs for synthesis of dual-rail QDI datapath citeus helpful, it is to be borne in mind that
it is generally difficult to find the best orderrftarger problems in a reasonable processing
time. Dynamic variable ordering heuristics can beoked for this purpose but may pose
significant computational complexity, as it is rpmssible to efficiently compute an optimal

variable ordering [117]. Also, for a system of indr@ly complex functions, construction of
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BDDs may be impractical due to the exponentialease in computational complexity due to
the size and/or variable ordering [111] [116]. Whiea notion of BDDs is extended to address
multi-valued logic, they are referred to as mulived decision diagrams (MDD) [116]. The

synthesis mechanism corresponding to this approacliders the use of reduced ordered
MDDs for data encoding using a DI l-ofeode, which boils down to the usage of ROBDDs
for dual-rail data encoding. MDDs correspondingdetapath and CD logic are named as

direct MDD and acknowledgement MDD respectively.

The synthesis of a dual-rail full adder shall bensidered for the purpose of
illustration. ROBDDs exhibit the notion of mutuatedusion and this plays a vital role in
realising QDI circuits, since the cover constrawould be inherently satisfied at the gate level.
A set of BDDs representing many functions with saene variable ordering can be combined
into a uniquely combined graph by transforming théividual BDDs which tend to have
sharing of sub-graphs. Such a BDD is referred tastgearedBDD (SBDD) [118]. In general,
by sharing all the isomorphic (similar) sub-graglspletely, no two nodes that express the
same function co-exist in the graph. The use of BB@o represent the set of Boolean
functions is helpful as it not only reduces therage requirement for the nodes but also
simplifies the equivalence checking of Boolean fioxts. Though the usage of SBDDs has
not been explicitly mentioned as part of this apptg it might have been considered.
However, care should be taken as translation of 3BBpresentation of a multi-output
function into a ST circuit realisation could probalbesult in gate orphans. The full adder
circuit taking into account logic sharing is shownfigure 3.15. It can be observed from the
diagram that while the sum outputs depend on allitputs for evaluation, the carry outputs
need not as they utilise the carry-kill and carepgrate conditions. Thus the full adder is

found to adhere to weak-indication constraints.
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Figure 3.15: Full adder synthesised using Folco et al.’s approach

3.9 Circuits with Partial Acknowledgement

The DRCL style, discussed earlier, often exhiledsly propagationat the gate level when
producing a single dual-rail output, or at the kldevel when producing multiple outputs
[119]. In case of early output logic [120], even when bs&t of inputs becomes defined, all
the outputs of the circuit could become definearky evaluatioh and/or even with a subset of
inputs becoming undefined, all the outputs couldobge undefinede@arly rese), which is a
characteristic inherent in the DRCL style. In congan with the DIMS approach, the
verification demand for checking the timing closwfeinter-module wires is high in case of
the DRCL style [121]. Despite this drawback, the@Rstyle is appealing as it incurs only a
minimum area expense (approximately 2x comparedamo equivalent synchronous
combinational logic, in the absence of local cortipte detectors). On the other hand, the
DIMS approach always paves the way for robust etaln and reset, meaning that it is not
early propagative but suffers from a high area lowad. Therefore, a trade-off between
robustness and circuit size is obvious betweerethes approaches. Circuits based on partial
acknowledgement [121] basically correspond to wedication and try to utilise the
advantage of DRCL and DIMS approaches. Each and/ eyachronous gate is replaced by

either a robust asynchronous dual-gate pair eqnvalr by an early propagative dual-gate
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pair equivalent, such that the circuit would be Mhandicating on an overall basis. This
essentially means that inputs which are indicated pate output(s) in a robust fashion need
not be indicated by other gates to which also ifiets in a robust fashion, therebglaxing
(weakening) the indication constraints for the ramtn(i.e. inputs, which are fed to non-
relaxed gates can also be fed to relaxed gatesxédssary; unique inputs should not be allowed
to be associated only with relaxed gates). Herus, method inherently paves the way for
distribution of acknowledgement of the circuit itpwso that all the circuit variables are
covered by the outputs collectively. A similar apgch appears to have been concurrently
proposed in [122], but the difference between the being that [122] performed mapping
targeting NCL macros made available as part of eciapsed standard cell library fully
characterised for area and delay, provided by Tusekegic Inc., evaluating the designs with
respect to three cost metrics: number of relaxetkgsparea and maximum path delay, while
[121] addressed area (transistor count) as the fosttion considering pseudo-static
implementations of the NCL operator macros [124].mAllti-output combinational logic
function, consisting of four inputs,p,c,d) and three outputs (X,Y,Z), is used to explairs thi

method from a gate level perspective. The logitisaton is given in figure 3.16.

X =ab (3.25)
Y =ab'c+bc'd (3.26)
Z=cd (3.27)

From the Boolean equations listed above, we censid implementation method.

= If single-rail inputs 4,b) and €,d) are considered to be uniquely associated withudstX

and Z respectively, they can then be partially agkadged by output Y.

Given this scenario, outputs X and Z can be sedliusing the DIMS approach
individually, while output Y can take advantagetioé DRCL style. Hence, the input signals
are collectively acknowledged by outputs X and Zaimobust fashion, while the logic for

realising output Y correspondséager evaluatiofi.e. it is early propagative).
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Figure 3.16: Implementing a multi-output circuit on the basis of partial acknowledgement

The number and type of logic operators requiredtifi®e above realisation, taking
cognisance of the elements available in the 130amday (UMC) CMOS commercial cell
library® (along with the proposed semi-custom implememtatiof C-element functionality) is
as follows: 8 CE2, 2 AND3, 1 AND2, 4 OR3 and 1 OR2.

3.10 NCL Based Methods

NULL convention logic (NCL)° utilises symbolic completeness of expression tiea® ST
behaviour and was proposed as a consistent cleeklfigic suitable for asynchronous digital
circuit synthesis [77]. A symbolically complete egpsion depends only on the relationship of

the symbols present in the expression without a treference. In fact, DI data encoding

® AND gates and OR gates have maximum fan-in ofdé3arespectively in this standard cell library.
19 K.M. Fant and S.A. Brandt, “Null convention logigstem,” US Patent 5828228, October 1998.
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schemes combine data and control information inte mixed signal path to eliminate
reference to evaluation instants. Indeed, 'NULLdentical to the spacer (empty data) in a
typical 4-phase handshake protocol. A typical N@icuwit comprises a number of smaller
function modules (also called 'primitive modulesi)erconnected together to achieve the
desired functionality. The primitive modules (othise called as NCL macrt$ are M-of-N
threshold gates with hysteresis. Static, semiestatid dynamic implementations of arbitrary
M-of-N gates along with the technique for resetiatisation are highlighted in [124]. An M-
of-N gate operates on signals which could be eil&TA (i.e. valid data) or NULL (i.e.
spacer data) and exhibithresholdhysteresisbehaviour. The M-of-N gate output could
transition to DATA, if M inputs out of a total of Mputs become DATA (threshold behaviour)
but can attain the NULL state from a DATA stateyoafter all the N inputs become NULL,
i.e. the output remains at DATA until all the N utp have become NULL (hysteresis
behaviour). N-of-N and 1-of-N gates are specialesasf the generic family of M-of-N
threshold gates and they represent C-gates andafR gespectively. Cases wherein M > 1
and M < N are unique, which require determinatidnthee topology after possible logic
optimisation. Due to the limitation imposed by teehnology on the transistors stack size, the
maximum value of N is restricted to at most 4 instmmodern CMOS libraries and therefore
gates with higher fan-in are decomposed into tine fof multi-level circuit structures. Table 1
in [125] lists all the 27 distinct proprietary NGhacros (library elements) along with their

Boolean equations that are used to realise NULIveotion logic based ST circuits.

The static CMOS M-of-N implementation of a samfuection, Z =ab + cd is shown
below in figure 3.17 for the sake of illustratidrhe implementation can be basically split into
4 blocks: 'Go to NULL', 'Hold NULL', 'Go to DATA'ral 'Hold Data'. The 'Go to NULL' and
'Hold DATA' block topologies are a 'standard’ amasist of a series arrangement of p-type
transistors and parallel arrangement of n-typesistors respectively, where the number of p-
type and n-type transistors are identical, govelmgthe function inputs. The 'Go to DATA'
topology is constructed directly from the functicss logic optimisation is not possible,
whereas the 'Hold NULL' topology is derived by ddesing the dual of the function as

follows:

1 K.M. Fant and G.E. Sobelman, “Null convention #ireld gate,” US Patent 5664211, February 1997.
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Z'=(@@b+cd' =@ +b)(c+d) (3.28)

%, Hold NULL

Go to NULL

Go to DATA

\:| — / Hold DATA

Figure 3.17: Static CMOS M-of-N implementation for Z = ab + cd

It could be observed from the circuit diagram ttnet topologies of 'Go to DATA' and
'Hold NULL' blocks are not identical and so thecait does not feature tlself-dual property
which is a special attribute exhibited in only dset of all possible M-of-N threshold gate
realisations (for example, majority logic). Analygithe operation, it can be seen that when all
the inputs (here, N = 4) are NULL, the 'Go to NUland 'Hold NULL' blocks are ON whilst
the 'Go to DATA'" and 'Hold DATA' blocks are OFF ards driven to NULL. If any one of
the inputs becomes DATA (say, sigrebecoming '1"), the 'Go to NULL' block turns OFF but
the 'Hold NULL' block would remain ON. However, shdoes not cause a change in the gate
output, since a signal path still remains establishetweeV4q and the intermediate nodet’.
Supposing, subsequently indgutilso becomes DATA, the 'Hold NULL' block turns O&ifd
the 'Go to DATA' block turns ON — thereby a sigpath gets established betweént’‘and
ground, resulting in a discharge of potential ardaaconsequence Z is forced to DATA. It
may be seen that for Z to again switch state frodTA to NULL, the 'Go to NULL' block
has to turn ON which is possible only if all theidputs become NULL. From the preceding
discussion, it becomes clear that Z can switch fildiLL to DATA even with two function
inputs (saya andb or ¢ andd) becoming logic '1', while Z can switch from DATA NULL
only if all the function inputs attain logic '0'.
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Within the NCL paradigm, ST logic design method=evdeveloped which start from
a synchronous netlist. They mostly take advantdgthe DIMS approach/DRCL style for
obtaining the gate-level asynchronous equivalehbvi@d by technology mapping targeting
the NCL macros, which are made available as custdditions to a cell library. Two well-

known methods and a recent approach proposedsicaniiext are discussed further.

3.10.1 NCL_D Approach

The NCL_D technigue was proposed by Ligthart efH26] as a regular method for NCL
implementation by banking on the DIMS approach.séttisfies Seitz's weak-indication
constraints and ensures input completeness [73)n@ag isochronic fork assumptions. In its
basic form, it derives the asynchronous equivatérd synchronous circuit by first mapping
the optimised synchronous network into two-inputegaThen, it represents each signal wire
as a dual-rail pair and directly translates the-tmput logic gates into threshold gate pairs
with limited optimisation of a threshold network arder to preserve the DI property. A

typical NCL_D system is shown in figure 3.18.

ack b Completion

l detector
A
Request
o o o —pRegister A :@—~ Register B >0 00
Request

L

ack_a Completion
detector

Figure 3.18: NCL_D system configuration [126] [127]

Let us assume that initially all the registersiarthe NULL state and the acknowledge
signals &ck_aandack b are also low. Thus the request line of registeis Active and is
ready to accept new DATA. When the inputs beconime@, the DATA wavefront is passed

through register A onto the function block for peesing and its outputs are fed as inputs to
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the next stage register B in the pipeline. The detigqn detector generating tlaek asignal
performs the validity/neutrality tests of the inmddeword during the set and reset phases
respectively. Currently, it would check the valditf the DATA at its inputs and subsequently
asserts theck_asignal to logic high if the check is true. Thigrsal disables the previous
register's request line and prepares it for stottmegnext NULL wavefront. Collision between
different DATA wavefronts are avoided by means téraating reset and set phases (i.e.
NULL-DATA-NULL). The main advantages associatedwihis approach are the simplicity
of translation of a synchronous circuit into anragyonous equivalent whilst paving the way
for automatic verification of DI properties durimgplementation. This is because the gates
used for realising the ST equivalent are input-cetep thereby proving that the circuits are
correct by construction. As a result, though thieustness of the resulting circuits is high,
unfortunately, due to ensuring locality of DI propyeverification and with little room for
optimisation, it incurs high area overhead and rémultant circuits may be slow. Further
optimisations to the NCL_D approach by means of owrging and optimal technology
mapping were suggested in [79]. The simple gatell@synchronous equivalent of the

example Boolean function considered previouslyvsmgin figure 3.19.

D e D

—

Figure 3.19: NCL_D based logic equivalent for the function, Z = ab + cd
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3.10.2 NCL_X Approach

NCL design incorporating explicit completion detentis referred to as NCL_X, proposed by
Kondratyev et al. [127]. A typical NCL_X systemsdeiption is shown in figure 3.20.

ack_b ) b.go

C
Completion detectors
___________ K - for register and
~ T " — — — > combinational logic

e o0
© l
y
o]

Request Request
® o ¢ —p Register A Function block Register B >0 0 0

Figure 3.20: NCL_X system configuration [127]

ack_a

Separate completion detectors are made availasléhe combinational logic and
registers. It can be noticed that the NCL_X techeigealises a NCL circuit using separate
completion and functional parts allowing room foptimising each of them whilst
guaranteeing completeness of inputs. @tgo signal basically corresponds to the completion
detection of the input signals, which is synchredisvith that of the functional part to
generate thelone signal. The NCL_X approach relies extensively ba DRCL style for
implementing the functional part, i.e. input-complejates are scarcely used. As a result,
NCL_X circuits consume less area than their NCL ddorterparts. Because the DRCL style
pertains to eager evaluation, gate and wire orpbankl result. To eliminate the problem of
gate orphans, provision of explicit local complatidetectors (depicted by OR gates drawn
using discontinuous lines in figure 3.21) is dom@ider to unambiguously ascertain the state
of the internal nodes by means of OR-ing both tireswof each intermediate dual-rail signal
[76] [102]. It can be intuitively observed that tte¢al number of internal completion detectors
required would be equal to the total number of gatethe original synchronous netlist which
were subsequently replaced by a dual-rail gateqepirvalent in addition to the one associated

86



Chapter 3 — Self-Timed Combinational Logic

with the primary output. This would eventually legadmore activity in the intermediate nodes,
but the activity in the functional part gets offsetcomparison with the NCL_D realisation.
The problem of wire orphans with respect to thempry inputs in the functional part is
eliminated by the acknowledgement of transitionswares in the completion part with the
assumption of isochronic forks. If certain inpugrals are fully acknowledged in the
functional part, then they can be eliminated fréva tompletion part to avoid redundancy in
detection. With respect to power dissipation, bBtGL_D and NCL_X approaches were
found to result in similar figures [127]. The gdeel NCL_X equivalent for the example

function considered previously is shown in figur213

at

=

a0
o ||

Y
L/

[
d1

.........

}——» Z0

Figure 3.21: NCL_X equivalent for the function, Z = ab + cd

c0
do

3.10.3 Block-Level Relaxation

The block-level relaxation technique [128] is atession and generalisation of the gate-level
relaxation approach to logic blocks with fewer itgpand multiple outputs [121] [122] by
either distributing the responsibility of indicati@f all the inputs between different outputs
(distributive implementation approach) or by confining the resilaility wholly to a single
dual-rail output while relaxing the other outputga&edimplementation approach). Both these
approaches actually correspond to different waysacdhiieving weak-indication. Input-
complete and input-incomplete gates (circuits) @teerwise referred to as non-relaxed and

relaxed gates (circuits). For example, the DIMSrapph facilitates non-relaxed circuits while
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the DRCL style leads to relaxed circuit implemeiotad. The approach elucidated in section
3.9 attempts to realise each and every gate in@rt-complete fashion or in early propagative
style and therefore it corresponds to gate-levakegion, whereas the block-level technique is
suitable for dealing with smaller logic blocks on gdividual basis and is beneficial for
iterative logic circuits which involves a cascadesimilar logic elements probably allowing
more optimisation opportunities on a holistic bakisnay be noticed that both gate-level and
block-level relaxation approaches actually tendnimorporate the weak-indication property
into the resulting circuit in order to reduce thatapath delay whilst ensuring input-
completeness. Depending on the logic network sigatibn, it may be that both these
technigues might converge to similar synthesistgwnis in cases. For example, in case of the
sample multi-output function block considered irctem 3.9, the block-level relaxation
approach can also lead to a similar robust solutaevertheless, the mapping is performed

targeting the NCL macros made available in a stahdeall library.

3.11 Summary

A number of ST combinational logic realisation teicjues have been presented and analysed
in this chapter that spans nearly three decadeesafarch activity in this domain. Broadly,
three different directions pursued so far can bentified — i) ST logic implementation
restricted to fewer inputs and outputs (Singh'#zSe Anantharaman's and DIMS approaches),
i) ST logic design methods based on well-establissiynchronous synthesis concepts such as
multi-level synthesis by considering the entireunppace or utilising the concept of reduced
ordered decision diagrams facilitating moderateicédn in input space, though they may not
be scalable (Toms’ and Folco et al.'s approachgsentively) and iii) ST logic realisation
utilising DIMS and/or DRCL styles, but starting froan initial synchronous description
(Ligthart et al., Kondratyev et al., Zhou et ahdaleong et al.). Of these, the former two are

technology-independent schemes while the lattehaakst are largely technology-dependent.

Seitz’'s and DIMS methods are generally usefulcfozuit conceptions at a theoretical
level, of which the latter method has been popovaing to its robustness (QDI property) and
no requirement of separate completion detectorsisTand Folco et al.’s procedures can be

used for multi-level realisation of ST logic, butffer from the problem of state explosion,
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which restricts their application to circuits wigkwer inputs. Especially, in case of the former
method, practical realisation of ST circuits compry many inputs (greater than about 10
inputs) and/or outputs would not be feasible, duhé consideration of the entire input space.
NULL convention logic based methods have been @omnd within the ambit of NCL based
design, synthesis of weak-indication circuits byplexing the opportunity for local relaxation
appears to offer a good trade-off between robustaed design metrics optimisation, as they
strike a balance between NCL_D and NCL_X approachies NCL_D is dependent on the
DIMS approach while the NCL_X approach relies oa BRCL style, at the block level. In
fact, the DIMS approach and the DRCL style havenbe® inspiration for a plethora of ST
logic design methods. Circuits with partial acknesdement try to utilise the advantages
inherent in these two different methods, seekingttain a compromise between robustness
and area. This is due to the fact that NCL_D ctecare slower and occupy more area but are
input-complete, while NCL_X style leads to fastexcuwit implementations whilst mitigating
the area overhead but employ extra completion tetedn terms of power dissipation, both
NCL_D and NCL_X methods are likely to be on parhnaiach other since the power saved
through compact logic realisations in case of thitet compared to the former tends to

diminish due to the power dissipation of the in&ércompletion detectors.

This thesis envisions a whole new multi-level ssis strategy for weakly indicating
realisations of arbitrary combinational logic amavards this end a novel two-level synthesis
procedure is presented in the next chapter thaares the state space expansion considerably.
Initial insights into a tangible solution for exting the two-level synthesis procedure to

multiple levels are suggested in the final chaptean opportunity for further work.
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Chapter 4

Function Block Realisation

Following a description of relevant terminologigeneralised multi-level synthesis models for
strong and weak-indication realisation of combimaail logic functions are presented. Due to
the entire state space requirement for these modelsfficient two-level heuristic has been
subsequently proposed and implemented, which sdda considerably alleviate the problem
of input space explosion. A system configurationsirpport of this heuristic is also put
forward that facilitates weak-indication solutioris. general, weakly indicating circuits are
preferable due to the flexibility in relaxing thadication constraints that is absent in the case
of strong-indication circuits. The heuristic hasribots in a novel set theory based procedure,
used to derive minimum orthogonal sum-of-productpression from a minimum sum-of-
products form. The heuristic is suitable for faailing two-level ST implementation of
combinational logic, but its extension to multifdeels involves considerable complexity and
difficulty. This is because the opportunity for feeming Sl decomposition within a
compressed input space cannot always be guaramtaéd striving to preserve gate orphan
freedom. Hence, multi-level synthesis of weak-iatlmn circuits as an extension of the
proposed heuristic warrants further research. Heweyreliminary insights towards achieving
a palpable solution that does not compromise orpthperty of robustness are mentioned in

the final chapter.

Before proceeding further, basic terminologied thidl be often used in this chapter
with regard to non-DI and DI datapaths are eluedatCommonly used definitions of
terminologies in synchronous domain are retain&gl [B07] [123] and are correlated with the

discussion on asynchronous logic for the sakeanftgl

* A literal is a symbol referring to a propositional variapleor its complement
(X). In case of DRE, the notion of a literal is udedefer to either the true-bit

(x1) or the false-bitX0) representation of a variabbg ¢espectively.
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« A cubeis defined as a logical proddét(conjunction) of different literals,
where a variable appears in only one of its synchotitations. For example,
a’b, abc’d are cubes oproduct termsin the case of DRE, a cube specifies a
logical conjunction of the true-bits or false-hitfsdifferent variablesaObl and
alblcOdl are the respective equivalent dual-rail encodedyzct terms of the

single-rail cubes mentioned earlier.

e A coveris a set of irredundant product terms and theiwality of a cover is

the number of cubes comprising the cover.

* The product term is also referred to as phiene-implicant A prime-implicant
is said to beessentialif it cannot be removed without affecting the cgve
otherwise it is classified ason-prime The sumterm implies a logical sum

(disjunction) of literals and is called theme-implicate

4.1 Terminologies and Definitions

Terminologies governing set theory based logic ajp@ns on DI datapaths are defined in this
section, which are subsequently used to explainptioeess of Sl logic decomposition in

section 4.2. These are helpful in developing maitel synthesis models for strong and weak-
indication circuits. However, they could be of useguide the process of SI decomposition in

general. Unless otherwise stated, the followingises address dual-rail encoded datapaths.

4.1.1 Support Set and Dependency Set

Thesupport® set of a cube C, S(C), enumerates the input vasabiat are a constituent of the
cube. On the other hand, a cubdependency sdD(C) entails the listing of all the input

literals that are a function of the cube for italesation to logic ‘high’. For a cube C specified
by alb0cldl, its S(C) and D(C) are:

2 The Muller element typically serves as the logimajunction operator, which is a non-relaxed géte AND
gate is the equivalent relaxed conjunction operdtorthe case of transitions).

3 The term ‘support’ signifies set But the term ‘set’ has been additionally used asffix to maintain
uniformity with the other set definitions to berimduced in this thesis. The support of a functimmoduct term) is
the set of variables appearing in the function dpr term) [107] [123].
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S(C) ={a,b,c,d (4.2)
D(C) = {al,b0,c1,d1} 4.2)

4.1.2 Cubes Support Intersection Set and Cubes Dependency

Intersection Set

The cubes support (dependency) intersection seQ8t (CDI) set, marks the intersection of
the support (dependency) set of two cubes, chaiseteby the variables (literals) that are
common to/shared between the support (dependeatyf both the cubes. For example, with
D(C;) and D(G) specified by &0,b0,c0,d0} and {a0,b0,c0,d1} respectively, their
corresponding CSI and CDI sets are given by,

CSI [S(G), S(G)] ={ab,c,d} 4.3)

CDI [D(Cy), D(C))] = {a0,b0,c0} 4.4)

4.1.3 Cubes Relativity Set

The cubes relativity (CR) set of a cube with respgecanother cube identifies (isolates) the
unique literals in the former compared to the fafidne CR set of cube;CQelative to cube €

is obtained by computing the set-theoretic diffesenf the dependency set of the former cube
and the CDI set of both the cubes. It basically am® to finding the relative complement of
the CDI set of both the cubes in the dependencgfsribe G.

CR[C, G = D(Cy) \ CDI'[D(Cy), D(Cy)] (4.5)
Similarly, CR set of gwith respect to €is given by,
CR[G, Ci] = D(C2) \ CDI [D(Cy), D(C)] (4.6)
For example, with D(g = {al,b1,c0,d1,e0,g1} and D(G) = {b1,c1,d1,0,90},
CR[G, &) ={al1,c0,01}, CR [C,, Ci] = {c1,90} 4.7)

4.1.4 Variables Identification

Variables identification (VI) is an operation thattypically performed on the CR set yielding
a set of variables as elements. It is equivalemmht&racterising the support of a CR set. With
respect to (4.7),

CR_VI[Cy, CG] ={a,c,g}, CR_VI[C,, C] ={c,g} (4.8)
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4.2 Orthogonality and SI Decomposition

In this section, the relationships that govern egtimal cube¥, dual-rail sum-of-products and
orthogonal sum-of-products forms, and S| decomusitf logic based on DRE by extraction

of shared functionality and substitution are ddxsafi

4.2.1 Mutual Orthogonality Set and Degree

The essential relations to be satisfied in ordat ttvo cubes Cand G may be said to be
orthogonal to each other are given below.

IS(Q)[= 1, [S(@Q)=1 (4.9)

ICRI[G, C]|21,|ICRI[G C][=1 (4.10)

The support set of any cube should consist ofeastl a single variable, which is
specified by (4.9). According to (4.10), there dddoe at least one distinct element in B)(C
relative to D(G) and vice-versa; otherwise there would not be ssipdity for G, and Gto
exhibit mutual orthogonality. But the satisfying adnditions (4.9) and (4.10) alone cannot
guarantee the existence of an orthogonal relatipnsétween € and G, since CR [G, G
and CR [G, Ci] may contain literals associated with differentiable indexes. For example,
cubes Cand G specified by dependency set elemera$,{0,c1} and {d1,e0} respectively,
satisfy the inequalities given in (4.9) and (4.b0) are not orthogonal. Hence, if and only if
the inequality mentioned in (4.11) is additionahgtisfied, then can the two cubesdhd G
be labelled as mutually orthogonal, for it shaéritbe guaranteed that two different instances
(literals) of the same support variable would bespnt in either of the sets being intersected.

CR_VI[C;, G] N CRVIC, G+ D (4.11)

The integer measure of the number of variableporesible for establishing the
orthogonal relationship between two cubes is catleel degree of mutual orthogonality
(DMO). Given that (4.9) — (4.11) are true, the nalitarthogonality (MO) set that comprises
orthogonal variables and the DMO betwegra@d G are given by,

MO = CR_VI[C, C] N CR_VI[GC,, C]] (4.12)
DMO = |CR_VI [G, G N CR_VI[C,, Ci]| (4.13)

4 Two cubes are said to be orthogonal to each dfttiezir logical product results in a ‘0’. For exate, x0y0
andxlyl are said to be mutually orthogonal.
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4.2.2 Sum-of-Products and Orthogonal Sum-of-ProdustForms

A sum-of-products (SOP) expression consists ospudction of standard product terms, each
of which involves a conjunction of literals. If tmember of terms in a SOP form is the least
possible, then the SOP is referred to as minimunf SSOP). An orthogonal sum-of-
products (OSOP) form [76] consists of product tetha are all orthogonal to each other, i.e.
the cubes do not overlap. Every cube is orthogtmalery other cube in an OSOP expression
and therefore it would inherently satisfy the mamat cover constraint. An OSOP form with
the least number of product terms can be callednmim OSOP (MOSOP) form. A MSOP
form or MOSOP form comprising an identical singlgbe are said to be equivalent. The
MSOP and MOSOP expressions for the carry outpud dbial-rail full adder are given by
(4.14), (4.15) and (4.16), (4.17) respectively, reh@l,a0), (b1,b0) and €inl.cin0) are the
dual-rail inputs andGoutl,CouD) is the dual-rail output.

Coutlysop=albl +blcinl +alcinl (4.14)
CouDysop = alb0 + b0cin0 +alcin0 (4.15)
Coutlyosop = albl +alblcinl +alb0cinl (4.16)
CouDvosop = alb0 +alb0cin0 +alblcinO (4.17)

4.2.3 Criteria for SI Decomposition

The necessary criteria for performing Sl logic daposition by way of extracting shared
logic between two mutually orthogonal cubesa@d G are listed below. These are also useful
to achieve decomposition up to a finer granulasityelements specified in the base-function

set (i.e. the cell library).

IS(G)| > 1, |S(@)| > 1 (4.18)
S(&) =S(G) (4.19)
ICRI[G, &]|=ICR[G, C[=1 (4.20)

The first constraint conveys that there shouldtleast two elements in the support set
of both the cubes, which is obviously mandatorydecomposition, as a cube with a singleton
support set reduces to a simple wire.

The second relation ensures that the variablé®ibf the cubes are identical, which is
an essential criterion for considering extractidnlagic shared between them. Cubes with

disjoint supports cannot feature any commonalitgsiining that a function consists of a
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number of cubes, where the support set elementespmnding to all the cubes are distinct,
the function could then only be classified as reade”™ as it would have been implicitly
expressed in its MSOP form [129]. In terms of dejaty sets, (4.19) implies that |QYc=
ID(C)), i.e. G and G are said to bequipollent(equal in size and strength).

The third condition is vital, as its fulfilment winl point to an opportunity for
performing SI decomposition of equipollent cubekjoh satisfy relations (4.18) and (4.19). It
essentially means that there is only one unigeesdliin G relative to Gand vice-versa. Given
the above conditions are upheld, it becomes obwuioasthe equality |[CDI [D($, D(G)]| =
ID(Cy)|-1 = |D(G)|-1 would hold good.

If two cubes G and G are not orthogonal to each other and if they saf 18), with
[S(Q)] > |S(Q)], then a possibility for SI decomposition coukisé even though £and G are
not equipollent, provided D [0 D(C,). To explain this, let us assume that&hd G are
given byalb0cOdOel andb0dO respectively. Provided the activation of Would be certainly
acknowledged by the next level logic, €an be expressed as the conjunction of calbe@el
and G. Indeed, & should belong to the cover of a function outpdtedent from that of the
cover comprising & Both G and G cannot be present in the same function coveras C
would be said to containgCwhere G becomes the covered cube andisCthe covering cube
that absorbs £ Also, G, and G cannot be present in different rails (of the dcwaadll)} of the
same encoded function block output as then thesysbuld enter into an illegal state (both
‘set’ and ‘reset’ functions could be asserted ‘higimultaneously). Nevertheless, this sort of
S| decomposition does not normally occur in casendicating circuit synthesis models
(especially, in our multi-level synthesis modeishich consider the entire input space, and is
mentioned here only as a supplementary informa@ogeting scenarios that do not feature

such an assumption.

4.2.4 Primary and Secondary Sl Cubes
The need for SI decomposition arises whenever flazgkes are present in a function which
cannot be implemented directly due to fan-in restms of the cell library and therefore have

to be expressed in terms of smaller physicallyiseble cubes. With the previously mentioned

15 A function is said to besad-onceif each variable appears only once in its factdoem [129]. For example,
the function F xy+yz = x(y+2) is read-once.
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conditions satisfied between two mutually orthodandes, say Cand G, a common cube
can be extracted from among them, which we shé&dr ® as the speed-independent cube
(SIC). If the SIC that can be extracted is labekesdG, then the following properties hold
good: D(G) I D(C;) and D(G) I D(Cy). Similarly, S(G) U S(G) and S(G@) U S(G). The
size of cube gwould then be governed by (4.21), while its literare specified by (4.22).

IS(G)| = IS(Q)|-1 = [S(Q)|-1 (4.21)

D(Cs) = CDI [D(Cy), D(C)] (4.22)

After the process of SI decomposition, the variglaed literals of the parent cubes C
and G can be enumerated using (4.23) and (4.24), (4&pectively.

S(G) = S(G) = S(G) U CR_VI[G, C] = S(G) U CR_VI[C,, G (4.23)

D(Cy) =D(G) U CR[C, CJ (4.24)

D(Cy) = D(G3) U CR [G, C] (4.25)

Cubes ¢ and G can be called primary SICs (PSICs) if their supgets are found to
be a function of all the primary input variablesivéh this, G can be referred to as the
secondary SIC (SSIC) and it is usually substitutéd PSICs as an intermediate node. The
PSIC is basically a canonical product term compgsll the primary input variables of the
function block, while the SSIC is a standard pradeom formed from a subset of the support
set variables of the function. In general, a fumcttomprising a single realisable cube is said
to contain a SIC. From the preceding discussiamsay be intuitively observed that whenever
two cubes become candidates for SI decompositiay, &re necessarily orthogonal but not
vice-versa. For example, [Cand G represented by their dependency sets (€
{a0p1,1,d0} and D(G) = {a0,bl,c0,dl} are orthogonal, yet no common logic can be
extracted from among the two cubes in a Sl fash®14.20) is not satisfied between them.

This observation holds good for ST datapaths adgtny DI data encoding scheme.

4.2.5 Datapaths Employing 1-ofn Codes

The concepts discussed above serve as a basisefdollowing discussion on ST datapaths
incorporating arbitrary one-hot codes. We shalBtfaliscuss this on the basis of the 1-of-4
code to provide a specific illustration. As meng&drnn Chapter 2, two single-rail inputs can be
represented using a 1-of-4 code symbolically. Toiciconfusion that could result from

similar symbolic variable assignments, a condii®mmposed whereby the representation of
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each unique pair of single-rail inputs by a 1-afetle equivalent should be distinct in terms of
the symbol variables used for a corresponding nmgppWotwithstanding, the set definitions
mentioned above would not be adequate to addresslad®paths that employ arbitrary
combinations of generic 1-ofcodes. For example, four single-rail inputgn,o,p) are first
converted into two-pairs and are mapped as higtddym (4.26) and (4.27), which constitutes
a valid representation. On the contrary, the mapgnn) < (q0,q1,02,g3) and 6,p) «
(04,05,06,97) is classified as non-permissible because thepération would yield the same
element. Nevertheless, to permit such similar syiobeariable assignments, a different
mechanism is adopted and is stated in the thepenaix.

(m,n) < (90,q1,92,03) (4.26)

(o,p) « (rOr1r2,r3) (4.27)

Let us assume that a function F is dependentimput variables g,b,c,d,ef), and
expressed by the disjunction of two cubes X andwifich are specified bp’bcd’e’f and
a'b’c’'d’ef in single-rail format. With the pairs of inputnables ,b), (c,d and €, mapped
to symbolic notationsi@,i1,i2,i3), (0,1,2,)3) and k0 k1,k2k3) respectively, and assuming a
similar encoding assignment as shown in Table\#elhave the dependency sets of cubes X
and Y described as thus:

D(X) = {i2j1k2} (4.28)
D(Y) ={i3,3,k0} (4.29)

Referring to relations (4.9) — (4.11), it can leers that cubes X and Y jointly satisfy
them and hence they are categorised as orthogobalscBut, since they do not mutually
satisfy (4.20), SI decomposition does not beconssipte and they may just remain as SICs.

Let us now consider a datapath of odd width ah¢ale,c,d,ef,g,h,i) be the single-rail
inputs. Let us have the following permissible mapgi utilising the 1-of-2, 1-of-4 and 1-of-8
DI codes for a ST datapath.

a< (a0,al) (4.30)
(b,c,d) <> (m0,m1,m2,m3,m4,m5,m6,m7,m3) (4.31)
(ef) « (n0,n1,n2,n3) (4.32)
g« (9091) (4.33)
(h,i) <> (pO,p1,p2,p3) (4.34)
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The mapped representatibit’d’ < m8 andbcd <+ mO is assumed. Let two cubesg Z
and % be specified bya’b’c’d’e’fgh’’’ and a’bcde’fgh’i’ respectively in their single-rail
format. Referring to Table 2.1 again for the 1-afetled value assignments corresponding to a
pair of single-rail inputs, the dependency setthefencoded cubes are given as,

D(Z;) = {a0,m8,n2,g1,p3} (4.35)
D(Z,) = {a0,m0,n2,g1,p3} (4.36)

It can be seen that after encoding, cubgaridl 2 satisfy (4.9) — (4.11). Also, (4.20) is
satisfied between them, as their MO set is singlektence, it can be inferred that cubas Z
and % are not only orthogonal to each other but theyldtalso be candidates for Sl

decomposition, thereby extraction of logic sharetieen them becomes feasible.

4.3 General Synthesis Models

The general multi-level synthesis models for strand weak-indication circuits are discussed
in this section. Though they suffer from the ingpiace explosion phenomenon, they are

helpful to practically implement function blocksnaprising many concurrent inputs.

4.3.1 Architecture for Strongly Indicating Circuits

The general system configuration for realisatiorcombinational logic as strong-indication
circuits is shown below in figure 4.1, which is iyg@ of circuits employing DI data encoding
and a 4-phase handshake protocol and it resentidesy/stem architecture portrayed by figure
3.18. The function block is strongly indicating amauld usually encompass a tree type
structure internally, with all the logical conjuimts achieved through Muller elements. But
unlike the DIMS approach, the logic could be conestly spread over multiple levels in a
straightforward manner whilst preserving speedietelency. The disadvantage is that the
function block size grows exponentially with thenmoer of primary inputs. Nevertheless, this

problem is faced by all existing strong-indicatmrcuit synthesis methods.
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Figure 4.1:  Typical ST system configuration

The function block would usually consist of primagnd secondary SICs. An
illustration of the presence of PSICs and a SSI§h@wn in figure 4.2, for a sample case of
five inputs highlighting a logic tree. It could been that the PSICs are mutually orthogonal as
they adhere to the conditions stated in sectioril4da&hd SI decomposition is feasible as the
constraints implied by (4.18) — (4.20) are sattsfie

e0 c } --------- » PSIC,

c }g---r> SSIC

C  }ooreeeee> PSIC,
et

Figure 4.2: Depicting PSICs and SSIC

a0
b0

cl
do

If the number of primary function block inputs isesified byn single-rail inputs (i.e.
2n dual-rail inputs), and fon > 4, the logic depth required to realise the PSt@s be
estimated asn¢3) for an optimal utilisation of the base functieet comprising C-gates with a
maximum fan-in of 4. The number of PSICs is govdrhg 2'. In general, the first logic level
can accommodate inputs according to the maximumudgieity specified in the base-function
set (maximum fan-in of C-gates), given lbyHence, the number of C-elements in kfidogic
level can be estimated a&™2”, wherek = 1,2,...,6-1+1). Here, the parametar-{+1) denotes
the maximum number of logic levels correspondinth®robust implementation of a function
block. SSICs are realised till tha-)™ logic level and the PSICs, which are all distiaoe
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derived in the subsequent logic level, which cantbe logically summed up to implement
the desired functionality. An illustration of stglg indicating implementation of a
combinational benchmarkheck which comprises 4 single-rail inputs,l§,c,d and produces

a single output (F) is shown in figure 4.3, assugrime base-function set to be composed of
only CE3s and CE2s. SSICs correspond to the outdutse first-level C-gates, while PSICs

are obtained as outputs of the second-level C-gates

ooTm
ey
O
a fo)
=
O

Figure 4.3:  SI decomposed strongly indicating realisation of check function block

4.3.2 Modifications to Suit Weak-Indication Timing Model

The system configuration featuring slight modifioas to suit the weak-indication timing
regime is shown in figure 4.4. In contrast to amsfrindication function block, the weak-
indication block relies upon relaxed gates for fingt logic level to facilitate conjunctions,
thereby possibly reducing some area cost. Withewsjp figure 4.3, equivalent relaxed gates

would now replace the non-relaxed gates in the liogic level. However, this would lead to
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ambiguity in determining the proper reset of priynaputs fed to the first level of logic as it
relaxes the strong-indication constraints. So swikee this, an extra synchronisation block is
introduced in comparison with the architecture smanvfigure 4.1. Thesynchroniselis meant

to synchronise any DI encoded output pair of thecfion block with a portion of the current
stage completion detection (CD) logic circuitry rgeCD for the first-level inputs of the
function block viz.al,a0,b1,b0,c1,c0) using C-gates. This ensures that Seitz's wedication
timing constraints are satisfied by way of guaraintg that all but one of the encoded outputs

(valid/spacer) is not produced until after all éreoded inputs (valid/spacer) have arrived.

ackin ackout

A

Completion
detection logic
A

Y

Current Next
—»| stage » Function block stage

register @ register
A

Completion partial CD logic output ackin

detection logic :]

L/

A

ackout

Figure 4.4:  System architecture for weak-indication circuits

The outputs of the functional part (function bloek)d the synchroniser together define
the weak-indication property for the entire ST camabional logic implementation. If all the
function block outputs were passed onto the nagesthrough the synchroniser module, then
the system would be classified as strongly indagatiHowever, this would necessitate
buffering of the partial CD logic output, as it hasbe synchronised with all the logic block
outputs. Hence, within the ambit of the system igumation shown above, it may be
concluded that weak-indication circuits might camsurelatively less area, suffer less delay
and demand less power than their strong-indicatmmterparts and so the former may be

preferable compared to the latter.
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4.4 Set Theory Based Heuristic for Compact Realis@n of

Function Blocks

Entire state space consideration is the main drekviath the earlier generalised approach
although it permits SI decomposition to be convetiyeextended over multiple levels. As a
result, function blocks featuring several concutrii@puts cannot be implemented efficiently
following this approach. To pave the way for contpaealisation of function blocks
containing several inputs, an aggressive strategyaposed in this section. Significantly, it is
found to contain the exponentially expanding stgtace, thereby being useful for addressing
larger function block specifications. It also forrmsvery good starting point for multi-level
synthesis of weak-indication circuits.

4.4.1 Deriving MOSOP Expression from MSOP Expressio

In section 4.2, guidelines to identify mutually leyjonal cubes and the conditions to be
satisfied for performing Sl decomposition of sualbes were discussed in detail. In this
section, a set theory based heuristic to deriveirmim disjoint SOP (MDSOP) expression
from a MSOP expression is presented. Obtaining MPS30lutions for the true and false
outputs of a logic function would amount to findiMOSOP form for the function block on

the whole, which has been described using DREtHaravords, though the DSOP and OSOP
expressions comprise non-overlapping product tethesOSOP form is distinguished in that
it features encoded outputs which are dependentrmoded inputs. Hence, it may be
concluded that the efficiency of the MDSOP heuwistould have a direct impact on the
effectiveness of the resulting MOSOP solutions.oBefproceeding further with respect to

deducing MDSOP solutions, some background inforonas provided.

A Boolean functionf, is a mapping of typé& {0,1}" — {0,1,d}, where ' denotes a
don't carecondition. If ‘d’ does not exist, then the functiéims said to be completely specified
or two-valued, otherwise it is called incompletepecified or ternary. Each of the @odes in
the Boolean space corresponds to a canonical proeluna (minterm). The ON-set, OFF-set
and DC-sets of correspond to those minterms that are mapped ®ahdd respectively.

Conventional two-level logic minimisers typicallprsider the ON-sets and DC-sets of all the
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function outputs simultaneously to reduce the nunabeessential cubes, necessary to realise
the desired multi-output logic functionality by ta§ into account the essential prime
implicants that could be shared between differetpats. Of course, a minimum or reduced
SOP form of a multi-output logic function specifiice can be obtained using a standard two-
level logic minimiser: Espresso [130]. In this caxtt it may be observed that the ON-sets and
DC-sets of a multiple-input, multiple-output (MIMOpgic function can be considered
simultaneously to obtain the reduced SOP expressitomresponding to the true-rail of the
function block outputs (i.e. true outputs), whiletOFF-sets of the MIMO function can be
considered separately to derive the minimised S<piPessions corresponding to the false rall
of the function block outputs (i.e. false outpui)ough this approach appears to be attractive
as it could significantly reduce the input spaaguieement, it may very likely neglect the two
important constraints that need to be satisfiedrédaust asynchronous logic desigesver
constraintandindication It was mentioned in section 4.2.2, that if ak tubes of a reduced
SOP expression are non-overlapping, then the esipreswould implicitly satisfy the
constraint that only one product term of a funcariput should become activated for the case
of transitions. Eventually, either the true railfalse rail of each function output would alone
assume a logic ‘high’ state during the set phassvards this end, Espresso can be used to
generate DSOP expressions for both the true asd falls of a MIMO function block so that
the cover constraint can be satisfied.

A Boolean equation is said to be in DSOP formt iidescribed by a logical sum of
product terms that are all disjoint [131], i.e.tm@ product terms cover a common minterm in
their expanded form. A DSOP form with the least bemof product terms is known as
minimum DSOP (MDSOP) form. While SOP minimisaticendbe likened to a set covering
problem, DSOP minimisation can be likened to thebfem of finding a minimum exact

disjoint cover, which is NP-hard [131]. For example number of essential prime implicants

comprising the SOP expression of an Achilles’ Haattion [131] is given by (%) while
the number of essential prime cubes constitutisg DISOP expression is specified by

O(Z% —1), where i’ represents the number of distinct primary singlg-inputs. DSOPs

have been traditionally used in several applicationCAD areas, for example, calculation of

spectra of Boolean functions [132] — [134] or astarting point for the minimisation of
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Exclusive-OR SOP logic [135] [136], which in turorins the backbone of synthesis schemes
for reversible logic circuits [137] [138] that haapplications related to the field of quantum
computing. It has been found that DSOP solutionsegeged by Espresso are generally far
from the optimum, especially in case of functionshwseveral inputs because it considers
group minimisation of all the function outputs. Atiernative approach would be to consider
deriving MDSOP solutions for the MIMO function outs on an individual basis from their
MSOP forms using heuristics or resort to constngcROBDDs for the entire MIMO function
as they inherently incorporate the mutual-excluséas property, leading to the DSOP forms.
Nevertheless, the latter approach may suffer fraamory space requirements for higher order
functionality and therefore the former method milgatpreferable. In this context, a number of
methods have been proposed by researchers [13944], [ predominantly considering
utilisation of ROBDDs or adopting some evolutionarggramming techniques. A majority of
these methods were found to yield a far betterteolufor many case studies in comparison
with the solution obtained using Espresso.

Some relevant terminologies are defined in the thagk of the conventional bundled-
data encoding (single-rail) protocol for the sakelarity, before propounding the set theory
based method to derive MDSOP expression from a MSOR.

44.1.1 Support Set and Dependency Set

The support setof a cube C, S(C), entails the enumeration oftlal variables that are a
function of the cube, while a cubedependency sdd(C) entails the enumeration of all its
literals in their actual form (complemented or umpdemented) for its evaluation to a logic
‘1’. For a cube C specified gb'c'd its S(C) and D(C) are:

S(C) ={a,b,c,d (4.37)

D(C) ={a,b’,c',d} (4.38)

4.4.1.2 CSI Set, CDI Set and Polarity Eliminated CDSet
The intersection of the support set of two cubepéthdency set of two cubes) is characterised
by the variables (literals) that are common to sheport set (dependency set) of both the
cubes.

The polarity eliminated CDI (CDI_PE) set consistsat) the literals of the CDI set
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represented in their normal (uncomplemented) farhe elements of the CDI_PE set can be
obtained by performing the VI operation on the GBi.

For example, with D(§ and D(G) specified by &’,b,c,dt and {a’,b’,c,f} respectively,
the CSI, CDI and CDI_PE sets are given by,

CSI [S(G), S(&)] ={a,b,g (4.39)
CDI [D(Cy), D(G)] = {a’,c} (4.40)
CDI_PE [D(G), D(C)] = {a,& (4.41)

4.4.1.3 Describing Mutually Disjoint Cubes
When two Boolean cubes; @nd G are said to be mutually disjoint, the followingqualities
hold. Showing that their negations are false prakesnequalities.

ICSI[S(G), S(G)]| = 1 (4.42)

|CDI [D(Cy), D(Cy)]| >0 (4.43)

Let us assume that the first inequality |CSI [$(S(G)]| = 1 is not valid, which would
only imply that |CSI [S(Q, S(G)]] = 0 and therefore CSI [S(§ S(G)] = @. The second
inequality would be automatically satisfied as kdat as we negate the current assumption,
since |CDI [D(G), D(G)]] < 0 is an invalid starting argument because @rye would consist
of at least a single literal. Given the presenuagsion (CSI [S(®), S(G)] = 9), it becomes
obvious that no variable would be shared betweeand G and the function can only be then
classified as read-once implying that it is bagycakpressed in its MSOP form [129]. In such
a situation, the product terms of the function vdodéfinitely overlap [129] and so there is no
mutual-exclusiveness exhibited between the cubdserwhe function is expressed in its
canonical form, the common cube(s) would eventubdlymanifested. The above discussion
assumed Cand G to be non-identical cubes. Provided &d G are identical, a stronger

constraint needs to be enforced, which is givethénext section.

4.4.1.4 Disjoint Set and Degree of Disjointness

Two cubes are said to be disjoint if their conjiumtiachieved by the Boolean AND operator)
yields anull. The disjoint (DJ) set identifies the input vatesbthat are responsible for making
two Boolean cubes (say;@nd G) mutually disjoint. It is given by the set-theocalifference

of CSl and CDI_PE, corresponding to cubgsa@d G. In other words, it amounts to finding
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the relative complement of CDI_PE in CSI.
DJ [C,, C] = CSI [S(G), S(G)] \ CDI_PE [D(G), D(C)] (4.44)

The degree of disjointness (DDJ) gives the integeasure of the number of primary
inputs, which are responsible for making two cuBesnd G mutually disjoint. It is given by
(4.45). Any two non-overlapping cubes would satifg inequality condition highlighted by
(4.46).

DDJ = |DJ [G, G| (4.45)
DDJ>1 (4.46)

If between any two dissimilar cubes, say &d G, the above inequality constraint
would not get satisfied, i.e. DDJ = 0, then thegtlas reason for this scenario is depicted by
(4.47), which is a direct consequence of the cubaturing a disjoint support; for example,
with cubes @ and G represented bgbcdandefgrespectively. This would then revert back to
the situation described in section 4.4.1.3, whetleéhcubes would be found to overlap when
expanded, thereby no disjointness shall exist batwiem. Consequently, the condition
described by (4.48) would be satisfied. In thiseg&3DJ is zero and so there is no variable that
could make the two cubes disjoint as they wouldytreerned by the properties mentioned in
(4.49) and (4.50). If Cand G are similar, then DJ [CC,] = DJ [C, C] = @.

CSI[S(G), S(G)] = CDI_PE [D(G), D(&)] =2 (4.47)
DJ[C, C]= @ (4.48)
|ICSI [S(G), S(G)]| = |CDI [D(G), D(&)]| (4.49)
CSI [S(G), S(G)] = CDI_PE [D(G), D(C)] (4.50)

4415 Deducing MDSOP Form
The heuristic proposed to deduce MDSOP expressmn & MSOP expression is explained
from a high-level perspective by means of the feifg steps.
* Step 10btain the MSOP form of a logic function.
» Step 2Compare each cube with every other cube in th©RI$rm to check whether
they are mutually disjoint. If and only if each eubxhibits mutual disjointness with
every other cube in the MSOP form, then go to Stepelse proceed with Step 3.
» Step 3Enumerate all the overlapping pairs of cubes ltaae a non-disjoint support. If

only pairs of cubes with disjoint support exist,tgdStep 8, else proceed with Step 4.
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Step 4 From among the overlapping pairs of cubes thatufe a non-disjoint support,
choose that pair of cubes, which comprises thedsigtiegree of logic sharing among
its constituents. If many such pairs of cubes exdtich exhibit a similar highest
degree of commonality then an arbitrary choiceesorted to.

Step 5Use thedistributive axiom[ab+ac = a(b+c)] to extract the kernel. Apply the
converse of thebsorption axionof Boolean algebraaf-a’b = atb) to transform the
kernel comprising overlapping cubes with disjoinpgort into non-overlapping cubes
with a non-disjoint support. Apply the distributipeoperty of Boolean algebra(p+c)

= abt+ac] to enumerate the product terms. Should the kecoeiprise cubes whose
dimensions are greater than unity, applyittentity axiom(a+a’ = 1) to the least sized
cube. Then use the distributive law to enumeraggtbducts.

Step 6 Check whether any cube contains any other cubthanfunction; if so, the
covering cube absorbs the covered cube. Also, civeelther any cube is duplicated in
the logic function. If so, the redundancy is eliated by applying thedempotency
axiom[at+a = a].

Step 7:Go to Step 2.

Step 8 Consider any two cubes with a disjoint supporhiolr also have the least
support set cardinalities. If many choices restiien a random selection is made.
Between such a pair of cubes, the identity law oblBan algebra is applied to any of
the pair of cubes considered, which would resuét cube expansion by making use of
the distributive axiom.

Step 9 If any cube is found to cover any other existoupe in the function, the
covered cube is discarded and the covering cubige retained. Logic duplication is
eliminated using the idempotent law.

Step 10Return to Step 2.

Step 11 Terminate the routine as the desired MDSOP swiutas been obtained.

The proposed procedure is followed for all the MS&PBression(s) of the output(s) of

a logic function, independently and in parallel.general, a function would be specified by

several inputs and outputs. The MSOP solution fiamation is obtained through multi-output

minimisation, by using a standard logic minimidespresso [130]. Thiegical correctnes®f

the MDSOP solution is guaranteed by the Booleanmagiused, which are well-established
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and proven properties. THenctional correctnes®f the MDSOP solution is ensured by
comparison of each cube with every other cube fognthe cover of each function output.
However, such a comparison is performed as parthefprocessing. The combinational
equivalence of a MSOP form and its correspondingS®@P form is confirmed through the
‘Dverify’ option of Espresso. The final cost of tMDSOP solution derived for a MSOP
specification is represented by the count of aluhique input cubes, some/all of which may
eventually be shared between the various functigpuis. Depending upon the initial logic
description, several iterations of some/all of é&eve steps may be required in order to arrive
at the final solution. In general, the opporturidy making use of the absorption axiom is first
exploited with respect to a logic expression befaresidering the usage of the identity axiom,
as the former would only increase the dimensioa ofibe whereas the latter would increase
the number of cubes. A possible peephole optinosamight involve determining a good
choice of variable order whilst applying the axiotosthe enumerated sets; here, variable
ordering is similar to the concept of variable isdt used to facilitate a compact BDD
construction [145] [146].
The following serve as guidelines for the propossethod to derive MDSOP form
from a MSOP form, articulating some important umpa@ning set-theoretic operations.
= As mentioned in Step 2, to ascertain whether al ¢hbes corresponding to each
unique function output are non-overlapping, thdofwing set operations are to be
satisfied: DJ [G C] # @ and hence DD3 1 between any pair of arbitrary cubes C
and G comprising a function output, whene ¥) [l i andx #y, given EADSOP:Zk:Ci ,
i=1
where the MDSOP form of a function output F is daidontaink cubes.
» To enumerate the overlapping cubes as mention8tem 3, between say,@nd G in
a logic expression, the condition CSI [SJCS(G)] # @ should be upheld.
= To single out a pair of cubes that feature a nejouit support but differ by only a
single literal as described in Step 4, the follayviequality relationship has to be
satisfied: |CDI [D(G), D(C)]| = ID(Gy)| - 1 = |ID(G)| - 1. Also, amongst any three
overlapping cubes, saycC, and G of a logic expression, if the following hold good,
viz. CDI [D(Cr), D(G)] # @, CDI [D(Gy), D(Co)] # @ and CDI [D(G), D(G)] # 9,
the choice of the pair of cubes made during tret fteration would depend upon the
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highest value corresponding to |CDI [MCD(GC,)]|, |CDI [D(G,), D(Co)]| and |CDI
[D(Ch), D(CY)]I- In case of a tie between the cardinalitiesCail sets, an arbitrary

choice is made. The sorting procedure considethaltlistinct cubes of the expression.
In general, for the worst-case, a computational lerity of O(@j would be
involved, whereK refers to the number of non-redundant cubes c@imgr a function
output.

= When a cube gis said to cover another cubg i@ an output expression as mentioned
in Step 6, then the following would be true: RJCI D(C,) and |D(G)| > |D(Gy), in
which case G is alone retained and,& discarded. Additionally, if there exists a cube
C, in the expression, andy@ newly introduced due to a set operation, if P)(€
D(Cy), then the cubes Gand G are said to be identical. To avoid logic duplioafi
either G or G is discarded and the other retained.

= Between a pair of cubes, say, @nd G, featuring a disjoint support as specified in
Step 8, the condition CSI [SEL S(G)] = @ is satisfied.

4.4.1.6 MDSOP Cost of Combinational Benchmarks

The MDSOP heuristic mentioned above has been imgoleed in Java and has been used to
generate results for some combinational benchmddscribed in PLA format [147], to
comment on its potential in comparison with othé8@P heuristics. However, it should be
noted that the MDSOP heuristic, as such, corresptmgurelysynchronous logicMinimum
SOP and DSOP forms of a MCNC benchmark [1#&wtag obtained using Espresso are
represented by means of the cube-variable suppairiaes of figures 4.5 and 4.6 respectively
for illustration purpose. The benchmark has a simgitput and its support set is composed of
8 elements. The cube-variable support matrix i©én x n) matrix, where m’' specifies the
number of irredundant cubes of the function (rofthe matrix) andn’ refers to the number
of unique input variables of the function (columaot the matrix). A ‘1’ entry at the
intersection of a particular row and column index,) implies the existence of a variable in
its normal form, while ‘0’ and ‘-’ entries signifthe inverted and don’t care states of the
variable respectively. The conjunction of all theriables in a row, appearing in either their

normal or complementary forms describes the culbeesponding to that row of the matrix.
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m
The logic function is expressed as FEQ , i.e. the summation ah non-redundant cubes
i=1

that may have a maximum dimensionjn the cube-variable support matrix of a DSORMor
apq # arg, for any 0, r) of mwith respect to at least a colummf the matrix, wher@ # r andq
signifying a column index. Figure 4.7 depicts thube-variable support matrix of the DSOP
form of newtagcorresponding to the MDSOP heuristic. It can Herned from this example
that the cost (number of essential cubes) of tbpgsed heuristic is similar to the cost of the
SOP solution of Espresso, and thus the former ffasted reduction in cost by 43% when

compared with the DSOP solution of Espresso.

dfh’ B - - -1 - 0 - 0 N
de’h’ - - =1 0o - - 0
dfg’ - - -1 - 0 0 -
de’g’ - - =1 o - 0 -
de’f’ - - -1 o 0 - -

c - - 1 = = = = =

b - 0 - - - - - -

a 1 = = = = = = =

Figure 4.5:  Cube-variable support matrix of SOP form of newtag, based on Espresso

- . . . . o7
-1 - 1 - 0 0 -
- 1 - 1 0 1 0 -
-1 - 1 - 0 1 0
-1 - 1 0o 1 1 o0
-1 - 1 0 0 1 1
-1 1 0 - - - -
I T T T T
-1 1 1 0 1 1 1
- 1 1 1 1 0 1 1
1t 1. 0 0 - - - -
1 1 0 1 1 1 - -
1 1 0 1 0 1 1 1
1 1 0 1 1 0 1 1

Figure 4.6:  Cube-variable support matrix of DSOP form of newtag, based on Espresso
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0 1 0 1 1 0 1 o |
01 0 1 0 1 1 0
o1 0 1 1 0 0 -
o1 0 1 0 1 0o -
o1 0 1 0 0 - -
o1 1 - - - - -
00 - - - - - -
1 = = = = = = =

Figure 4.7: Cube-variable support matrix of DSOP form of newtag, based on the MDSOP heuristic

A number of MCNC/LGSynth93 combinational benchmaréblems [147] [148] were
considered to comment on the potential of the pgegdeuristic. Table 4.1 shows the number

of essential cubes for SOP and DSOP forms of vafi@nchmarks, obtained using Espresso.

Benchmark | Number of | Number of | # Cubesin # Cubes in
name inputs outputs SOP form DSOP form

5xpl 7 10 44 62

alu4 14 8 575 3551

b12 15 9 43 654

clip 9 5 120 359

cordic 23 2 914 22228

max1024 10 6 274 776

misex1 8 7 12 18

misex2 25 18 28 29

mlip4 8 8 128 206

rd53 5 3 31 31

rd73 7 3 127 127

rd84 8 4 255 255

x7dn 66 15 538 1697

Xxor5 5 1 16 16

Z9sym 9 1 86 190

Table 4.1: SOP and DSOP cubes for some combinational benchmarks, generated by Espresso

Benchmark [130] | [139] [140] [141] |[142]/[143] [144] Proposed
5xpl 62 70 - - 82 79 48
alu4 3551 - - - 1545 1372 | 1206
b12 654 57 - - 60 60 62
clip 359 162 - - 262 212 167
cordic 22228 | - - - 19763 8311 | 6687
max1024 776 - - - 444 - 362
misex1 18 15 - - 34 34 15
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misex2 29 28 - - 30 29 28

mip4 206 - - - 203 - 155

rd53 31 31 - - 35 35 31

rd73 127 127 - - 147 147 127

rdg4 255 - - - 294 294 255

X7dn 1697 - - - 1091 - 1228
xor5 16 - 16 16 16 16 16

Z9sym 190 - 186 148 - - 171

Table 4.2: DSOP cubes of various combinational benchmarks corresponding to different methods

Table 4.2 lists the number of cubes in the DSORtiso, rendered by various
heuristics for the combinational benchmarks listedable 4.1. The ‘dash’ in certain positions
of the above tabular column indicates the unavéitiabof result for the benchmark
corresponding to a specific method in the literaturhe optimal solution for a benchmark
based on a particular method(s) is highlighted binld-face’. From Table 4.2, it can be
observed that the proposed heuristic has facititaiptimal/near-optimal solutions for a
majority of problems. Amongst the following funatig alu4, cordic, max1024andx7dnare
relatively bigger specifications, withlu4, max1024andx7dn having been classified dsrd
problems in the original Espresso benchmark s#itestly, in comparison with the DSOP
solution rendered by Espresso, it can be seernthibgbroposed method enables a substantial
reduction in the number of essential cubes by 6&¥mpared to the SOP expression
generated using Espresso, the proposed MDSOP tiebased solution is found to be greater
by 3.3x, while the DSOP solution of Espresso isemtpensive than its logically equivalent
SOP format by 9.5%. With respect to the larger [@oils, the proposed method enables a
reduction in the number of essential DSOP cubed®%% in comparison with the best
solution rendered by the other heuristics. Whersictaning all the benchmarks, the proposed

heuristic facilitates a cost reduction of the ordet4.3%, on a mean basis.

4.4.1.7 MOSOP Cost of Function Blocks

The MOSOP form of an asynchronous logic block (fiorc block) can be obtained by

invoking the MDSOP heuristic for both the true dalse rails of the encoded function block
outputs. To this end, the MOSOP heuristic has eghemented in Java on the basis of the

MDSOP procedure. Asynchronous dual-rail equivalafitseveral combinational benchmark
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specifications [147] [148] were considered to eat@nthe cost of their equivalent MOSOP
forms, i.e. both the true and false rails of thalehail encoded combinational function outputs
were considered. The MOSOP cost shown in columih Rable 4.3 reflects the number of
unique cubes, of which some/many/all may be foundet shared between the various output
rails. The count of the number of cubes, assummbpgic sharing, is also given in the tabular
column (column 5). It can be seen that, on an @egrthe MOSOP heuristic has resulted in
solutions, which encompass approximately 22% I¢gubes) sharing, but can be higher in
specific cases. For example, in casexd an 83% reduction in the number of cubes has been
possible due to shared logic. Overall, the extdntogic sharing achieved appears to be
significant considering the fact that the ON-satliiding the DC-set) of a true output is non-
identical with the OFF-set of a false output. Hoeewn case of function blocks that comprise
only two outputs (dual-rail), for examp8sym newill, ryy6, sym1Qt481 andZ9sym it should

be obvious that hardly any logic sharing is feasibl

The benchmarks highlighted in ‘bold-face’ correspoto dual-rail asynchronous
equivalents othard combinational logic specifications. MSOP formsregponding to both
the true and false rails of the encoded combinatidanction (function block) form the
content of the input file of the package, while theput file reflects the MOSOP form of the
entire function block, which also takes cognisaatéhe cubes that could be shared between
various outputs. The runtime for obtaining the sohs of different problems is also given in
Table 4.3. These correspond to the heuristic rgnmra Windows XP environment on a Dell
Precision machine (T3400), installed with Linux anihdows OS alongside many software
packages, consisting of an Intel Core2 Duo proce§8@GHz) and a 1GB RAM. The
processing time taken by the package primarily dédpen the number of inputs and the logic
description. Hence, functions with many inputs anigger logic specification would require
more processing time than functions with many ispand a smaller description. As a result,
the number of outputs does not matter much comparédue number of inputs. A closer look
at 9sym newill, ryy6, sym10 t481 and Z9symin terms of their number of inputs, resultant

orthogonal product terms, and processing timestanbates the above observation.

The significance of the proposed scheme in comepariwith other standard
approaches, such as DIMS or Seitz's methods, maynderstandable from the large size of
the function blocks considered. For example, cagid the benchmarkoar, the proposed
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method results in only 1269 product terms, whef&4S or Seitz’s approach would address
the entire input space, which is massive as itfi©O@®). Other strong [104] or weak-

indication [110] approaches are unlikely to cop&hwguch larger specifications.

# Inputs in # Outputs # Orthogonal product terms Runtime

Function block dual-rail in dual-rail - - (Minutes:
format format After sharing |Before sharing Seconds)

5xpl 14 20 93 122 0:0
9sym 18 2 251 251 0:2
al2 32 94 310 472 0:0
alcom 30 76 134 226 0:0
alu4 28 16 2711 2803 3:16
amd 28 48 358 613 0:0
apex3 108 100 1351 2504 0:9
apla 20 24 205 246 0:0
b3 64 40 1298 1507 1:7
b12 30 18 102 109 0:0
bcd 52 76 6831 7942 10:15
chkn 58 14 523 526 0:17
clpl 22 10 41 41 0:0
cps 48 218 3390 5001 0:36
dk17 20 22 132 164 0:0
dk48 30 34 120 132 0:0
duke2 44 58 705 955 0:1
e64 130 130 2376 3033 3:55
ex4 256 56 1062 1062 0:5
ex5 16 126 346 2054 0:2
exep 60 126 3177 3591 0:27
gary 30 22 401 596 0:1
ibm 96 34 1365 1366 0:14
in3 70 58 496 813 0:1
in4 64 40 1396 1673 1:11
inc 14 18 82 134 0:0
intb 60 28 2320 2320 3:10
jbp 72 114 636 869 0:1
luc 16 54 175 496 0:0
max512 18 12 328 431 0:1
max1024 20 12 663 826 0:6
misex1 16 14 45 95 0:0
misex2 50 36 207 272 0:0
misex3 28 28 3826 4422 3:5
misg 112 46 189 192 0:0
mish 188 86 163 173 0:0
misj 70 28 58 69 0:0
mip4 16 16 319 403 0:0
mp2d 28 28 166 196 0:0
newapla 24 20 82 94 0:0
newcplal 18 32 126 159 0:0
newill 16 2 19 19 0:0
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opa 34 138 572 1464 0:2
p82 10 28 78 164 0:0
pdc 32 80 1358 1740 0:4
rd53 10 6 46 71 0:0
rd73 14 6 190 294 0:0
rd84 16 8 365 589 0:2
risc 16 62 128 212 0:0
root 16 10 124 180 0:0
ryy6 32 2 155 155 0:4
sao2 20 8 202 258 0:0
shift 38 32 200 212 0:0
soar 166 188 1269 1566 0:3
spla 32 92 1577 2209 0:7
sgn 14 6 90 102 0:0
sym10 20 2 478 478 0:24
t1 42 46 384 501 0:0
t481 32 2 2142 2142 26:23
ti 94 144 1388 2500 0:5
ts10 44 32 272 512 0:0
vg?2 50 16 632 647 0:6
x6dn 78 10 432 603 0:5
X7dn 132 30 3711 3752 2:1
Z9sym 18 2 243 243 0:1
Table 4.3: Cost of ST realisation of combinational benchmark functions

A recent method proposed for weak-indication gtreaalisation of combinational
logic [149], which also corresponds to two-levedswaming unbounded fan-in of primary input
gates may also not be suitable for comparisont had targeted only function blocks with
fewer inputs or addressed small clusters of bidmggrchmarks. For example, the maximum
cluster size derived from a combinational benchmark C6288 [150], was limited to 16
dual-rail inputs and 18 dual-rail outputs while teecoded circuit consists of 64 dual-ralil
inputs and outputs. In fact, the method of [149brisne to indirectly suffer from the problem
of input space explosion and the function blocle siestricts its scalability. This is because,
although it does not consider the entire inpuessgiace initially unlike that of [104] [151], but
during the process of distributing the indicatidnirgputs between different function block
outputs, it is forced to selectively expand theucst! input cubes to accommodate the missing
inputs. The process of selective expansion willeham adverse impact on the size of the
function block depending on its initial specificati eventually making its realisation
unrealistic to a great extent as it would be dca#iy affected by the exponentially expanding

input space. In contrast, the proposed scheme basidered substantially bigger logic
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specifications (256 dual-rail inputs) that are gigantly larger compared to those that could
be processed by any of the above methods in anablotimeframe. Also, the evidence that
only fewer cubes were required for realising evemcfion blocks based on hard
combinational problems highlights the fact that snanbes were found to be shared between
the different outputs in the MOSOP form, based loa proposed heuristic. The issue of
variable/literal ordering has not been considerggart of the proposal and it remains to be
seen whether it could benefit in terms of facilitgtmore logic sharing. But this might be at
the expense of increasing the computational contgleaf the heuristic. It may be
understandable that the function block realisatiased on the proposed method has only
ensured that the cover constraint is satisfiedethernvoiding the possibility for occurrence of

gate orphans, but without considering the systetitation aspect.

4.4.2 System Configuration

The system architecture that externally takes cdréhe indication phenomenon without
casting the responsibility on the function blocksigwn in figure 4.8. Basically, this system
configuration is robust and generally favours a ks@alication circuit realisation. In
comparison with the topology shown in figure 4Here are two fundamental differences.
With the exclusion of a dual-rail function blocktput that is synchronised with the output of
the CD logic of the current stage (rather thangsial output corresponding to the CD logic
of the current stage, as in the previous configomatall other outputs can be directly fed to
the next stage. The function block correspondswio-levels of logic instead of being
described in terms of multiple-levels as with tlaelier architecture. Nevertheless, the system
topology depicted in figure 4.8 could facilitatdaatiable implementation of function blocks
of larger sizes, given the substantially reduceohimer of primary input cubes as opposed to
considering the entire state space, which is etiftem the values listed in Table 4.3. In fact,
function block realisations of bigger logic specdfiions such as those mentioned in Table 4.3,
on the basis of the other methods mentioned abauddnwbe highly cumbersome, as they
would directly or indirectly encounter the problerinput space explosion, which has been
largely annihilated in case of the proposed approfics assumed that there are no bounds

imposed on the fan-in of first-level gates impletn@y primary input cubes while logical
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disjunctions can be constrained by bounds as thgt1g [91] [100] [149]. Also, given the
system topology of figure 4.8, and considering a-tewel implementation, the primary input
cubes can be realised using relaxed conjunctioratgs rather than resorting to state-holding
elements, which may be beneficial from area/povedadperspectives.

ackin ackout

/\
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Completion
detection logic

A

A

Current m Next
—»| stage > Function block L stage >
register W} @ register

A

A 4

Completion ackin
detection logic j

ackout CD logic output

Figure 4.8:  System topology in support of the proposed MOSOP heuristic for function blocks

The proposed two-level heuristic forms a goodtistgupoint for multi-level synthesis
of combinational logic as weak-indication ST citsywhich nevertheless involves substantial
complexity and difficulty as was echoed in [10449]. However, a preliminary solution has
been put forward [152]. In simple terms, it badicaimounts to finding suitable candidates for
performing Sl decomposition from within the MOSQd#?ri of a function block specification
whilst recognising the granularity of the base fiorc set. Since the provision for Sl
decomposition may not always be manifest withinftivection block, SI decomposition may
not always be feasible. Naive decomposition camuatrantee gate orphan freedom of the
resulting solutions, rendering them'd), subsequently affecting the circuit’s robustness
where ' refers to the number of levels through which #éegarphan could propagate. It has
been inferred from a number of case studies tlaigh the proposed preliminary solution is
not universal, it could be helpful in facilitatimgtimal solutions for some widely known logic
functionality of arbitrary size, for example, mplexer (MUX), demultiplexer (DEMUX),
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adder, encoder, decoder and comparator. An iterai@ture is inherent in such functionality,
probably due to the variable symmetricity, whicloak them to be cascaded to derive higher
order specifications. For example, the sum anduwutprry functions of a typical adder cell
are symmetrit® with respect to permutation of their variables.

Let us consider a small benchmark from the ISC8S benchmark set, C17, to
differentiate between the different approaches. fiumetion block comprises 10 dual-rail
inputs and 4 dual-rail outputs. Table 4.4 listsdleéay, area and power metrics corresponding
to various approaches. The optimal values of theigdeparameters corresponding to a
particular approach are highlighted in ‘bold-faeehis procedure shall be followed for all the
subsequent tabular columns to be presented inthb&s. Since the synchroniser module, in
effect, forms a part of the function block in terofssatisfying the indication constraints; the
term ‘datapath’ would be used to refer to eithex thnction block or a combination of the

function block and the synchroniser (and also ahgroelements in the forward path).

The delay parameter refers to the maximum propagatelay encountered in the
datapath (ideally, maximum delay encountered inftimetion block). The delay metric was
estimated using PrimeTime. To avoid the notion olioak source, the option of a virtual clock
was used that only acts as a remote referencestmire the input and output ports of the
design. To ensure that all the valid data patith@function block design will be reported, the
dynamic loop breaking technique has been utilid&8]. Thus, no timing arc disabling was
reported when static timing analysis was perforn@daiamic timing analysis is not possible
within the PrimeTime environment. The area and pometrics correspond to the input
registers, CD logic and function block. The delayd gpower metrics consider estimated
parasitics (resulting from enabling of the automatire load selection feature), in addition to
the parameters associated with the actual compean@he area metric gives a combined
account of the area of all the logic cells and basn obtained as part of the PrimeTime
framework. The total/average power dissipatiortnéesgummation of dynamic and static power
components, where dynamic power is in turn the gyrok switching and internal power
consumption figures. NC-Verilog has been used d@mcfional simulation and also to obtain

the switching activity files corresponding to theteylevel simulations of Verilog descriptions.

16 A function F is totally symmetric, if any permutat of the variables in F does not change its dtéim In a
partially symmetric function, any permutation afubset of the variables does not alter its speti€io.
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Input data were applied to the function blockspeicic intervals through test benches, which
model the environment. The switching activity filebtained were subsequently used for
power estimation using PrimeTime PX. For all thedation results to be presented in this
thesis, which would correspond to various functobocks, the design parameters estimation

mechanism detailed above has been adopted uniformly

The test bench for the C17 function block corresjsoto the input trace of its logic
specification and the inputs were fed to the ctratiintervals of 2ns. The simulations targeted
the best-case PVT corner (supply voltage = 1.38Kc¢tjon temperature = -40°C) of the high-
speed 130nm Faraday (UMC) bulk CMOS standard dmthry. All the circuit inputs were
configured to possess the driving strength of theimum sized inverter of the cell library,
while the outputs were associated with fanout-¢F®-4) drive strength. Suitable buffering
for the acknowledge input was provided, where reangs to eliminate timing violations.
Furthermore, the logic corresponding to functioackk of various methods were optimised
for minimum delay. For all the forthcoming simutati results to be mentioned in this thesis,
the above drive capability for the function bloclputs and outputs, manual delay oriented
technology dependent logic optimisation of the fiorc blocks corresponding to different
methods, and similar electrical library specifioatican be assumed. Since identical registers
and a similar CD circuit were used for all the i&gtions, the area and power metrics can be
deemed to approximately reflect that of the ac&mRicombinational logic, paving the way for
a legitimate comparison between different ST |logadisation schemes.

With only two levels of logic depth required fdret physical implementation of C17
block, Architecture_C17 (strong and weak) refershim C17 circuit realisation based on the
strong and weak-indication circuit architecturescdssed in sections 4.3.1 and 4.3.2
respectively, while MOSOP_C17 (strong and weak) oteessn the C17 function block
realisation based on the architecture discussdekretiirough the illustration in figure 4.8. It
can be observed from Table 4.4 that the MOSOP_QidgaK) design features the least
datapath delay whilst being beneficial in termsagda and power metrics as well. The main
reason for the optimality of MOSOP solutions igihttted to the presence of relaxed gates in
the first logic level.
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Realisation Delay | Area | Power

style (ns) | (um? | uw)
Architecture C17 (strong) | 1.4 1232 | 432.6
Architecture C17 (weak) | 1.3 888 352.1
MOSOP_C17 (strong) 1.3 364 257.8
MOSOP_C17 (weak) 1.2 340 233.9

Table 4.4: Delay, area and power metrics corresponding to different approaches for

implementing C17 function block

Let us consider two more problem cases viz. 32UXNbgic and 1:32 DEMUX logic,
to strengthen the previous observation. The MUXcfiam block considered here consists of
74 inputs and 2 outputs in dual-rail format, whitee DEMUX function block considered
comprises 12 inputs and 64 outputs. Table 4.5th&glelay, area and power parameters of the

MUX logic realised using various approaches.

Realisation Delay | Area | Power
style (s) | (m? | uw)

Seitz method (strong) | 2.5 5130 | 1805.9

DIMS method (strong) | 2.8 8306 | 1924.3

Toms method (strong) | 3.0 7105 | 1734.1

SIMCO (strong) 1.8 3416 | 931.8
SIMCAO (strong) 1.8 3048 [880.1
Table 4.5: Delay, area and power metrics corresponding to different ST approaches for realising

32:1 MUX function block

SIMCO refers to the directrong-indication design for thi&1 UX logic utilising only
C-gates andOR gates, while SIMCAO refers to the diregtrongly indicating MUX
realisation featuringc-gates, AND gates an®R gates. For both these designs, the proposed
MOSOP heuristic is used greatly reducing the irgmaice requirements. Since direct function
block realisation is not possible with other apptes, given the large number of inputs, tree
structures were resorted to — four 8:1 MUXes inftret level and a 4:1 MUX in the second
level. In turn, an 8:1 MUX was composed from twd MUXes in the first level and a 2:1
MUX in the second level, with the 4:1 MUX evolved a tree structure involving two 2:1
MUXes in the first level and a 2:1 MUX in the seddevel. It can be observed from Table 4.5

that both the proposed realisations exhibit lesapddh delay, area and power metrics, with
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the SIMCAO MUX block outperforming the other implentations. The inputs were fed into
the MUX function block at intervals of 4ns and test bench comprised all the unique input
sequences that are possible for the MUX functityaliree structures based on the proposed
approach would not be optimal with respect to dglayer due to increased number of logic
levels. For example, the efficient 32:1 MUX logieé¢ based on the proposed approach,
constructed using a cascade of 8:1 MUXes and MWUX resulted in a delay of 1.9ns, area of
2766unt and total power dissipation of 982.4pW.
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Figure 4.9:  Illustrating CD of intermediate outputs for MUX logic tree based on Seitz's method

DIMS and Toms’ approaches typically employ onlyeléments and OR gates,
whereas Seitz’'s method incorporates AND-OR logis.aAresult, a simple cascade of MUXes
would lead to gate orphans in case of the lattendd, in order to avoid the possibility of gate
orphans, local completion detectors (CD1 and CD&)ewprovided as shown in figure 4.9 for
a 4:1 MUX logic block. Here, (M11, M10) and (M21,2d) represent the intermediate outputs
of the 2:1 MUXes in the first level of the cascadijle (Y1, YO) represent the actual output
of the function block. The internal signa&¢ guarantees the arrival of the intermediate MUX

outputs before the actual outputs are produced. th be noted that timing assumptions are
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made with regard to ensuring completion detectioth® primary dual-rail inputs.

Considering the 1:32 DEMUX logic, function block®rresponding to different
approaches were derived in a similar way. Two tygfedirect implementations were preferred
based on the proposed MOSOP heuristic as treetstescwere found to degrade the delay
metric — WIDCO (eakindicationDEMUX realisation with onlyC-gates andR gates) and
WIDCAO (weaklyindicatingDEMUX logic based oiC-elementsAND gates an®R gates).
Weak-indication realisations for the DEMUX logioobk are possible due to the presence of
multiple outputs, unlike the case with MUX logichd tree structures for the DEMUX logic
corresponding to the other methods are the conwdrdee MUX structures — a 1:4 DEMUX
in the first level of the cascade and four 1:8 DEXMJ in the second level of the cascade. But
unlike the latter, the logic granularity is relatly less for the present case, i.e. the 1:4 and 1:8
DEMUXes were directly synthesised based on therattethods. Internal CDs were provided
for the DEMUX logic constructed using Seitz's apgmb in a manner similar to that described
earlier for the MUX logic, to ensure gate-orphageftom. Table 4.6 gives the delay, area and
power metrics for the different DEMUX function bloémplementations. The test patterns
consisted of unique input sequences that wouldctéte passage of data to all the dual-rail
outputs, and were fed at intervals of 4ns. Againtlie DEMUX logic, the proposed approach

was found to yield superior results with respectiétay, area and power metrics, as could be

seen below.
Realisation Delay | Area | Power
style (ns) | (um® | (uwW)
Seitz method (weak) 1.6 2002 | 559.9
DIMS method (strong) | 2.0 3460 | 720.4
Toms method (strong) | 2.0 2022 | 612.1
WIDCO (weak) 1.3 1535 | 334.1
WIDCAO (weak) 1.4 1285 | 322.4
Table 4.6: Delay, area and power corresponding to different ST approaches for realising
1:32 DEMUX function block
4.5 Summary

This chapter first discussed general multi-leveltegsis models for strong or weak-indication
implementations of arbitrary combinational logic &wmploying SI decomposition. However,

to overcome the problem of state space explosiberent in the multi-level technique, an
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efficient set theory based approach has been pgeskémat is useful for realisation of function

blocks featuring several concurrent inputs. Thetlsebry based MOSOP heuristic forms the
basis for adder, carry-lookahead module and corapregalisations that would be discussed
in the subsequent chapters of this thesis. Thethemiry based MOSOP method greatly
alleviates the problem of input space explosion faditates compact realisations of larger
function block specifications, which is otherwisendbersome with many other techniques.

Some sample case studies were considered to demterisie benefits of the proposition.
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Chapter 5

Self-Timed Carry-Ripple Adders

A study of the operations performed by an ARM pesce’s ALU revealed that additions
constituted nearly 80% of them [154]. About 72%tloé instructions of a prototype RISC
machine resulted in addition/subtraction operatjds$]. In fact, addition was found to be the
most frequently encountered operation amongst afsetal-time digital signal processing
benchmarks [156]. In general, integer addition playvery important and dominant role in

digital computer systems.

In this Chapter, we shall extensively considereadcklls synthesised using various
approaches that form the fundamental datapath eksmeand evaluate their performance
based on the carry-ripple or ripple carry adderAR®pology. The impact of a dual-bit adder
cell in reducing the delay metric of the basic addpology is investigated and the bottleneck
in extending the hierarchy further is discussedg®tbit’ and dual-bit® adders based on
homogeneous and heterogeneous DI data encodinmeshae considered and a comparative
analysis is performed. Also, the usefulness of laridycombination of single-bit and dual-bit
adders within a RCA structure is studied, whiclfoisnd to feature only a minor optimisation
potential. Finally, the concept of redundant logisertion, introduced with the aim of further
minimising the delay of the addition operation liscedated through case studies. In general, it

could help in minimising the latency of iterativaglc circuits.

5.1 Single-Bit Adders and Their Evaluation

We shall first discuss single-bit adders that aaseld on dual-rail encoding, which shall be
followed by a discussion of adders employing hybighut encoding that involves a
combination of dual-rail code and 1-of-4 code.

Y The term ‘single-bit adder’ is used to emphadigetoint that the adder is used to add one augehdrze
addend bit at a time along with an extra inputycdtris commonly called thiull adder.

18 The term ‘dual-bit adder’ is used to refer to dder that can add two augend and addend bits sinedtsly,
taking into account the extra carry input as well.
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5.1.1 Using Dual-Rail Data Encoding

Let us first consider the logical equations coroggphng to the outputs of a full adder.

Sumi =a0b0cinl +alblcin0 +alb0cin0 +alblcinl (5.2)
Sun® =a0b0cin0 +alblcinl +alb0cinl +alblcin0 (5.2)
Coutl =alblcinl +alb0cinl +alblcinO +alblcinl (5.3)
Cou0 =a0b0cin0 +a0b0cinl +alblcin0 +alb0cin0 (5.4)

From the equations listed above, it can be undedsthat an adder circuitry strictly
realising the products using C-elements adherasdostrong-indication timing regime and
therefore strong-indication adders are bound bystzont delay. However, by distributing the
indication between sum and carry outputs, as thiey cautputs are required to propagate

between successive stages in a typical adder aastedoutput carry can be optimised as,

Coutl =alblcinl +alb0cinl +albl (5.5)
Cou =a0blcin0 +alb0cinO +alb0 (5.6)

Thus, the weak-indication adder can take into astthe fact that the output carry of
an adder module could become defined as soon amptd operands become defined,
depending on carry-killaD=b0=1) or carry-generateal=b1=1) conditions. In simple terms,
whenever the carry-propaga@€bl=1 oral=pb0=1) condition does not occur, the dual-rail
carry output of ank" stage of a-bit adder could become defined as soon as itsapyiimput
operands become defined and thereby the sum outfutse k+1)" stage could become
defined with its primary input operands also becapdefined concurrently. As a result, the
lengthy carry propagation chain is avoided under itteal condition. Acknowledging the fact
that worst-case carry propagation may not alwaysugcthe computation speed of weak-
indication adders could vary depending on dataaddtaristics. Thus, in contrast to strong-
indication adder blocks, weakly indicating addeodiks could take advantage of data
dependent computations. Though one could say thatworst-case carry propagation
encountered in a weak-indication adder is approtetwaO(log, n), wheren signifies the
adder size or word length, it generally represehés lower bound on the worst-case time
complexity for binary addition [157]. Therefore etlaverage time taken for sum outputs to
evaluate, that varies as logafter the input operands become defined, holds goaidly for

random data inputs [154] [158]. In case of [154y}, fypical data processing operations on a
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32-bit asynchronous ALU (which formed a part of &kMdULET processor utilising bundled-
data encoding protocol), the carry chain was fotmde approximately 18 bits long, i.e.

greater thar%, whereas address calculations entailed a chagthesf about 9 bits viz. carry

propagation greater thal%r, for the Dhrystone benchmark. For input vectonsegponding

to some benchmarks, it was found in [158] that mearry chains exceeded a propagation

length of 8(%) and many were about 24 bits Ior(%); though some demanded
propagation over the entire length of the carryitha

Strong-indication adder designs always exhibit stxoase latency; weak-indication
counterparts will be faster but their delay depemus$he input vectors as actual case latency is
a feature inherent in case of relaxed adders (ebenweakly indicating adders). Since
dynamic timing analysis is not feasible and eaglynination effects cannot be captured whilst
using an industry standard gate level timing ar@alyas mentioned in the previous Chapter,
we adopt a rather convenient policy of evaluating different adders statically. But at the
same time, we acknowledge the fact those addesfysadg) Seitz's weak-indication criteria are
preferable since the carry logic would have beetinoped for faster carry propagation
between successive stages. However, we compaxeetile addition adders with their strong-
indication counterparts with respect to power giagon, assuming a random input data
distribution corresponding to the lower bound. &ttf proposals for data path optimisation
addressing reduction of critical path delay in xelh but robust asynchronous circuits (both
logic and arithmetic circuits) have been put fomvar recent literature using an NCL style
[122] [128]. The objective therein has been to oedgircuit latencies for worst-case data
processing. Probably, the motivation for this mighte been due to the fact that latency and
area overheads are generally higher for robustcasgnous circuits compared to their non-
robust counterparts due to their inherent stylemfstruction. In this context, an interesting
analogy can be found in the design of a carry-lbeka adder that promises reduced
(logarithmic) maximum datapath delay in comparigoth a basic carry-ripple adder (linear).
Discussion about the former in the context of SJidas done in the next Chapter.

A number of full adders corresponding to various &proaches were realised using
standard cells and evaluated on the basis of theéafuental carry-propagate adder viz. RCA
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topology. The architecture of thebit ST RCA is depicted in figure 5.1. The addertbe
right-hand-side represents the least significasitipm and that on the left-hand-side specifies
the most significant position. The carry-propagatesa ripple fashion from the least
significant to the most significant adder, while sum output of a particular stage is produced

depending on the value of the augend and addesdtilhat stage inclusive of its carry input.

a(n-1)1 b(n-1)1 a01 b01
l a(n-1)0 l b(n-1)0 l a00 l b00
Overflow - L ¥ ~ L ¥
carry carry(n-2)1  carry(0)1 carryini
DRE based ST full o o o DRE based ST full
adder carry(n-2)0 carry(0)0 adder carryin0
h— T — I
Sum(n-1)1 Sum(n-1)0 SumO01 Sum00

Figure 5.1: rbit dual-rail encoded ST carry-ripple adder architecture

Next, we discuss the transformation of a Sl addey an indicating function block.
Petrify [83] is a tool predominantly used for thiesgnthesis of asynchronous control logic but
is unsuitable for synthesising datapath logic dwets inability to handle many concurrent
inputs. However, the full adder functionality coddd synthesised in a Sl fashion. To achieve
this, a pure, unique choice Petri Net model of shene has been first described. Next, to
perform the synthesis routine and to maintain unifty, a sample library irgenlib format,
comprising the elements of the 130nm UMC standalll Idorary was created and the
technology mapping process was set to target ttes gd this sample library. Nevertheless,
the resulting circuitry is purely Sl and so is ulealo properly indicate the complete arrival of
all the inputs on its outputs, collectively or noollectively without any ambiguity. For
example, when the circuit has to shift from theid/alata state to the spacer state, even with
any dual-rail input assuming the spacer statethalldual-rail primary outputs can be reset
after all the intermediate outputs have stabiliggdng rise to ambiguity with regard to
determining the correct steady state of all thd-daiprimary inputs. However, assuming the
circuit to be initially in the spacer state andhwihe application of valid data, only after the
sufficient arrival of the required dual-rail inputee encoded outputs would be asserted ‘high’.
Hence, this circuit attribute is similar to thatielnis seen in a typical Seitz’'s implementation
and therefore, an extra CD logic needs to be irdughown enclosed within dotted lines in
figure 5.2) for synchronisation with at least a lehaél output (in this case, the sum output) to

impose indication constraints on the module.
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Figure 5.2:  Weakly indicating realisation of Petrify based full adder block

The proposed full adder design (henceforth refeteeds the SSSC_DRE adder —
single-sum, single-carry adder based on DRE) idrgged by figure 5.3 [180]. It was
manually designed in a semi-custom style in ordenvestigate two important issues: i) how
the responsibility of indication can be confinedthe sum output alone, thereby freeing the
carry signal from indication constraints, and bwhlogic redundancy can be made implicit in
a ST design to enable reduction in latency. It samoticed that the sum output is strongly
indicating, while the carry output is eager andtkgrised by means of a complex gate, viz. an
AO222 cell. Even with the arrival of any subsetlod inputs, the carry outputs could become
defined/undefined, while the sum outputs would @itthe arrival of all the inputs to become
defined/undefined. Thus, the full adder, on the Mhsatisfies Seitz’'s weak-indication timing
constraints and there is no distribution of inpatdication. This style of implementation was
later labelled as the biased approach in [128Ftarg ST circuit optimisation at a block level.
However, our method differs from the above approacthat the latter relies upon DRCL

style for realising those outputs, which have bekasen as candidates for relaxation. The
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SSSC_DRE adder has also served as the forerunnénefcanalysis and proposition of the

novel concept of logic redundancy insertion (expliclealt with in detail in section 5.5.

:[>—> Sumt

bo Coutd b1
Gin0 outt cint Cout1

a0 al
cin0 cin1

Figure 5.3: Proposed weak-indication full adder module

Full adders corresponding to different ST approadiere been constructed in a semi-
custom fashion and have all been optimised foryd@&tency, as described in section 4.4.2),
individually, so as to pave the way for a straightfard comparison. Table 5.1 gives the
maximum datapath delay, area and power parametedtee ovarious full adder modules for
performing 32-bit addition based on the ST RCA togg. The nature of indication of the
various adders is also given in Table 5.1. The lhesich corresponds to the input trace of a
simple combinational benchmartt¢1, which comprises thirty eight input sequences ted
test vectors were supplied to the adders at inteia25ns. In these, the input profile of the
combinational function was duplicated on the lesaghificant nibble position of the dual-rail
adder bits, while the more significant adder stagese assigned with zeroes (i.e. the false
rails of the dual-rail adder inputs were assignéith W's, whilst the true-rails of the dual-rail
adder inputs were assigned with 0’s). Similar inpatterns were used for all the adder
simulations performed as part of this research wadihe presence of an input carry was
assumed for approximately half of the input patiefReferring to [154], it can be seen that
application of random input data resulted in a mmaxn carry propagation of about 4-bits for
an adder of size 32-bits in an ARM processor casdys which is found to be typical of

operations such as memory address calculationbramg¢hing operations. The input profile of
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the logic function considered, when used to govwbeninputs to an adder block is found to
limit the maximum carry propagation length to thadt significant nibble position.

Adder realisation Delay Area | Power

style (ns) | (um* | uw)

Seitz DRE (strong) 12.8 8329 493.1
Seitz DRE (weak) 6.5 7689 445.6
Singh DRE (strong) 10.7 8297 444.4

Modified David et al. DRE (strong) | 20.8 11753 | 895.1
Modified David et al. DRE (weak) 15.0 10985 | 833.2

DIMS DRE (strong) 13.8 10089 | 415.3
DIMS DRE (weak) 12.8 10665 | 462.8
Petrify DRE (strong) 13.3 8009 491.5
Petrify DRE (weak) 7.0 7241 433.5
Folco et al. DRE (weak) 8.0 6633 371.7
Toms_ DRE (strong) 10.6 7561 376.9
SSSC_DRE (weak) 5.8 7081 407.7

Suffix DRE is used to explicitly convey the fact that the adders are dual-rail encoded.

Table 5.1: Delay and area metrics corresponding to different 32-bit ST RCAs

It may be useful to know that the adder circuitseveptimised with the motive of
maintaining a balance between effective logic sttaend minimal logic depth while giving
more preference to the latter. The difference laybetween various adders is attributable to

the elements present in their respective critieghpaths, which are given below.

Adder realisation Critical path
style elements
Seitz DRE (strong) OR2+0OR2+CE2
Seitz DRE (weak) AND3+OR3
Singh DRE (strong) CE2+OR3

Modified David et al. DRE (strong) | OR2+CE3+CE2
Modified David et al. DRE (weak) OR3+CE2+CE2

DIMS_DRE (strong) CE3+OR2+0OR2
DIMS DRE (weak) CE3+0OR3
Petrify DRE (strong) OR2+0OR2+CE2
Petrify DRE (weak) NAND3+NAND4
Folco et al. DRE (weak) CE2+0OR2
Toms_DRE (strong) CE2+OR2+0OR2
SSSC DRE (weak) AO222

Table 5.2: Listing critical path elements of the various ST RCAs

As can be seen from Tables 5.1 and 5.2, weak-indicadders are preferable in
comparison with strong-indication adders from tieéag perspective. This is obvious in case
of Seitz's, modified David et al.’s, DIMS and Pétrbased adders. Amongst all the adders,
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modified David et al.’s adders (taking into accotlré simple modifications to David et al.’s
method, as mentioned in section 3.6) were fountoktaferior in terms of delay and also high
in power consumption; this is because of the ORIdggie, used to realise the false rails of the
sum and carry outputs, which resulted in considgraigher switching activity as all the
intermediate OR gate outputs would have to be &sbérigh’. The false bits of the sum and
carry outputs were not realised in a robust fashiming complex gates, due to the
unavailability of suitable gates in the cell libyam terms of area and power dissipation, Folco
et al.’s adder is found to be the best. It canriferied that the proposed adder features the
least datapath delay among all the other addgpsrtieg a reduction in comparison with the
weakly indicating Seitz’s adder by 11%. At the sdimee, the SSSC_DRE adder occupies less

area than Seitz's weak-indication adder by 15%dissipates less power to the tune of 8.5%.

5.1.2 Employing Hybrid Input Data Encoding

The term ‘hybrid input encoding’ (HIE) refers tonaix of at least two different DI data
encoding schemes as adopted for the inputs. Comgydéhe single-bit adder block, the
augend and addend bits can be encoded using & bade, while the carry input, sum and
carry outputs can adopt the dual-rail code, i.daridyor heterogeneous encoding of primary
inputs and homogeneous encoding of primary outprgsione. The motivation for the use of
a 1l-of-4 code being reduced switching activity omparison with a simple dual-rail code;
however, given the extra encoding circuitry reqdifer the 1-of-4 code with respect to the
dual-rail code (which serves as the base or reteremcoding protocol), the power savings
gained are found to be substantially reduced ferctse study of a 32-bit ST RCA.
The structure of the-bit hybrid input encoded ST RCA is shown below,ichhis

similar to the topology shown in figure 5.1, butthwthe only exception that the augend and

addend single-rail inputs are now encoded usingf4lcode.

i4n-1) i(4n-3) i3) i(1)

l i(4n-2) l i(4n-4) l i2) l i(0)
Overflow ¥ ¥ v v
e (" i
carry carry(n-2)1  carry(0)1 carryin1
HIE based ST full o o o :1‘ HIE based ST full
adder adder .
carry(n-2)0  carry(0)0 carryin0
— I B I
Sum(n-1)1 Sum(n-1)0 SumO01 Sum00

Figure 5.4:  Architecture of the n-bit hybrid input encoded ST RCA
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The basic equations governing a full adder bladising HIE are as follows:

Sunmi =i3cinl +i2cin0 +ilcin0 +i0cinl (5.7)
Sun® =i3cin0 +i2cinl +ilcinl +i0cin0 (5.8)
Coutl =i2cinl +ilcinl +i0cin0 +i0cinl (5.9)
Cou® =i3cin0 +i3cinl +i2cin0 +ilcin0 (5.10)

In the above expression#)(i1,i2,i3) represents the 1-of-4 encoded equivalent of the
augend and addend inputs D), with a similar encoding mechanism adopted asvshim
Table 2.1. The full adder block realising the abegeations using C-gates (based on a direct
translation from DRE to hybrid encoding represaatgtwould be dubbed strongly indicating.

The hybrid input encoded full adder based on Tapgroach is shown below.

i3
cin1
. ) )>—> Sum1
¢cin0 .

1=

Sumo

1 >—
cin1 .
i0
cin0 _D—» Cout1

Cout0

i0

cin1 :B
i3

cin0 :@

Figure 5.5: Hybrid input encoded full adder based on Toms' approach

An analysis of HIE for a full adder is undertakemddhe proposed adder design based
on hybrid encoding of input data, that featuregycautput logic optimisation is shown in
figure 5.6. Henceforth, it shall be identified e SSSC_HIE_NRL adder, where the acronym
NRL expands as non-redundant logic. This is to eanjge that all the gates that are a
constituent of this adder are non-redundant, asal tal distinguish it from another version of a
SSSC_HIE full adder that incorporates redundargggavhich shall be discussed in the later
portion of this Chapter (in section 5.5). It coblel observed that the sum outputs are entrusted
with the responsibility of inputs indication, whillee carry output could evaluate to the correct
state when carry-kill or carry-generate conditimturs, without having to wait for the input

carry signal.
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Figure 5.6: Proposed hybrid input encoded full adder block

The system configuration that supports embodying tar inputs and DRE for outputs

is shown below, which is a slightly modified versiof the typical ST system architecture.

ackin ackout

M Completion
N detection logic
Subset of dual-rail A
 / inputs
~
Current Y Next
—» stage ‘3 Encoder Function block —» stage >
register register
A
ackin ]
“y
A Remainder of
ackout Completion dual-rail inputs

detection logic

Figure 5.7: ST system architecture highlighting input protocol conversion and data processing

A subset of the actual dual-rail inputs (here, aagend addend inputs) are fed to the
protocol conversion circuit for data encoding usand-of-4 code and then supplied to the
function block. The remnant of the dual-rail inpgkere, input carry) is fed as it is to the
function block for processing, along with the 14ofencoded inputs. The function block
outputs, which are purely dual-rail encoded aresst@nd subsequently fed to the next stage.

In Table 5.3, the delay, area and power fige@scifiedwithin bracketsare the ones to
be considered and correspond to the case whenxtre encoding logic is also included to
obtain the 1-of-4 encoded data from the dual-radoeled data. The values given outside

brackets refer purely to the delay, area and pqueeameters of the hybrid input encoded
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adders that do not have the extra encoding ciscuatnd are just listed here to highlight the
offset in power savings when encoding is employidek cost of encoding is 28 transistors per
bit, due to the implementation of the CE2 functidgdy means of a complex gate. A similar
test bench was used as that of the earlier cas¢haniést vectors were also fed at the same
rate. The SSSC_HIE_NRL adder features the leastydehd area in comparison with
Toms_HIE adder, benefitting from the weak-indicatighenomenon, with the latter suffering
from 35% more delay and an increase in area ovedrbgal4%. Nevertheless, the average
power components of both the adders are compar@blaparison with adders based on other
ST methods is not possible as they basically cpoms to the dual-rail signalling convention,

while Toms’ approach is suitable for realising aits employing arbitraryn-of-n codes.

Adder realisation Delay Area Power
style (ns) (Hm®) (HW)

Toms HIE 10.6 (10.8) | 5721 (7561) | 224.0 (374.4)

SSSC HIE_NRL | 7.8 (8.0) 4793 (6633) | 224.8 (371.9)

Table 5.3: Delay, area and power metrics of 32-bit ST RCAs incorporating HIE

It might be interesting to study the switching @ovaspect of the different adders to
ascertain how the hybrid input encoded adders §ivimicorporating the protocol conversion
circuit) would fare in comparison with the dualtr@ncoded adders. The results of this
analysis are depicted in figure 5.8. It can be $kahSSSC_HIE_NRL and Folco et al._DRE
adders exhibit relatively less switching power amparison with all the other adders.

Comparing Tables 5.1 and 5.3, it can be noticed tor performing a 32-bit ST
addition operation, the SSSC_DRE adder is prefertblthe SSSC_HIE_NRL adder as the
former exhibits reduced latency in comparison lith latter by 28%. On the other hand, with
respect to area and total power consumption, tier leeports less area occupancy and lower
total power dissipation by 6.3% and 8.8% respelgtjvéhus maintaining area and power
advantage over the former.
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SSSC_HIE_NRL | 1223.6
Toms_HIE | 1233.7
SSSC_DRE (Weak) | 12475
Toms_DRE (Strong) | 1234.8
Folco et al. DRE (Weak) | 223.6
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g Petrify_DRE (Strong) | ]287.1
ke DIMS_DRE (Weak) ] 290.9
3 DIMS_DRE (Strong) ] 260
2 Modified David et al, DRE (Weak) | 1474.6
Modified David et al._DRE (Strong) | 1515.5
Singh_DRE (Strong) | ] 275.3
Seitz_DRE (Weak) | 1 248
Seitz_DRE (Strong) | 283.1
0 100 200 300 400 500 600
Switching power dissipation (microwatts)

Figure 5.8:  Analysis of switching power dissipation of various 32-bit ST RCAs

5.2 Dual-Bit Adder Designs and Their Evaluation

The main motivation for the dual-bit adder stenmrfrthe observation that if a simple series
cascade of dual-bit adders is envisaged, thenuh#aer of stages that the carry signal has to
traverse would be halved in comparison with a linemscade employing only conventional
single-bit adders. The approach is interesting has the potential to roughly halve the worst-
case datapath delay of afbit carry-ripple adder employing full adders, assug stage delay

to be the same, where'‘is the adder size. Nevertheless, this would lzsifde only at the
expense of an area increase as the input state spac gets quadrupled even though the
number of stages is halved. To examine this isguédr and to comment on its usefulness,
dual-bit adder designs based on homogeneous aatbfeheous data encoding schemes are
considered and analysed in detail in this sectithile homogeneous encodingocedure
refers to a similar DI data encoding scheme adofatedll the inputs and outputs of a function
block, heterogeneous encodimgechanism refers to a combination of at leastdifferent DI

encoding schemes, as adopted for the inputs angutsutThe dual-bit adder shall either
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employ dual-rail data encoding (homogeneous engositheme) for all its inputs and outputs
or a combination of dual-rail and 1of-4 encoding its inputs and outputs (heterogeneous

encoding scheme).

5.2.1 Adopting Dual-Rail Data Encoding
A dual-bit adder block basically consists of fivagie-rail inputsal, a0, b1, bO andcin and
three single-rail output€out Suni andSun®, where &1,a0) and b1,b0) could represent the
addend and augend inputs and, the carry input. OutpuCoutis the overflow bit or output
carry signal of the addition process, @dni andSun® are the most significant and least
significant sum outputs respectively.

The MOSOP form for the dual-rail encoded dual-dider block is given below. Out of
46 cubes comprising the different encoded outdi#s;ubes are found to be shared and thus a
total of 34 distinct cubes are found to comprise MOSOP form of the dual-bit adder block.
Decomposition of larger cubes can be subsequeatipmned in a Sl fashion [152] and logic
sharing is feasible, since suitable candidatesdcbel ascertained from within the MOSOP
expressions corresponding to the encoded outputs.
Coutl =a10a00b11b01cinl +al11a00b10b01cinl +a10a01b11b00cinl +al1a01b10b00cinl

+ al0a01b11b01 +al11a01b10b01 +allbll (5.11)
Cou0 =al1a01b10b00cin0 +al0a01b11b00cin0 + al1a00b10b01cin0 + al0a00b11b01cin0
+ al11a00b10b00 +a10a00b11b00 +al0b10 (5.12)

Sumil =a11a01b10b00cin0 +a10a01b11b00cin0 +al1a00b10b01cin0 +al0a00b11b01cinO
+ al11a00b11b01cinl + al11a01b11b00cinl +al0a00b10b01cinl +al0a01b10b00cinl +
a10a01b10b01 +al11a00b10b00 +al10a00b11b00 +alla01b11b01 (5.13)
Suni0 =al1a01b10b00cinl +al0a01b11b00cinl +alla00b10b01cinl +al0a00b11b01cinl
+ a10a01b10b00cin0 + a10a00b10001cin0 +al1a01b11b00cin0 + a11a00b11b01cin0 +
a11a00b11b00 +a11a01b10b01 +a10a01b11b01 +al0a00b10b00 (5.14)
Sun®1 =a01b00cin0 +a00b01cin0 +a00b00cinl +a01b01cinl (5.15)
Sun®0 =a01b01cin0 +a01b00cinl +a00b01cinl +a00b00cin0 (5.16)
The above equations can be used to facilitateradg#gementations that correspond to
eitherlocal or global weak-indication. The architecture of thébit ST RCA that comprises

dual-bit adder modules is portrayed by figure 5.9.

136



Chapter 5 — Self-Timed Carry-Ripple Adders
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Figure 5.9: Dual-rail encoded rbit carry-ripple adder architecture featuring local indication

5211 Local Weak-Indication

The dual-bit adder realised using C-elements, cexgates and OR gates shall be referred to
as the DSSC_CCO adder (with the acronym DSSC expguas dual-sum, single-carry) and
that employing C-elements, complex gates, AND gata$ OR gates shall be called as the
DSSC_CCAOQ_local adder. They are depicted througtrdis 5.10 and 5.11 respectively. In
case of local indication, each and every dual-bdem module is individually responsible for
indicating the arrival of all its specific inputsoflective indication), in which case the system

architecture would be governed by the configurasibbown in figure 4.1.
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Figure 5.10: Weak-indication DSSC_CCO adder module

The DSSC_CCAOQO_local adder module is derived thnaig following modifications
to the DSSC_CCO adder block, shown above.

* The input-complete gates in the first level ardaegd by input-incomplete gates

» The above modification necessitates the inclusibraro additional synchronisation
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circuitry for detecting completion (shown by dottetes in figure 5.11) to ensure that
weak-indication criteria are upheld collectively thye module’s outputs.

b—r\ » Coutl
.:_ll_/\ > sumii
:)_/i\ P Cout0
D > sum10
00— S ) e }
b01 L2 >
ao1
b00
1ISum00 -
ol C Pemeeeoen- >  Sum00

Figure 5.11: Weakly indicating DSSC_CCAO_local adder block
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It can be seen from figure 5.11 thH&unNd1 andISun®0 are logically equivalent to
Sun®l andSun®0. When certain augend/addend inputs and inpuy baicome undefined, the
carry output and most significant sum output cacobee undefined. However, only when all
the inputs (addend/augend) become undefined, aametst significant sum output become
undefined. The problem of wire orphans gets elite@davith the isochronic fork assumption
imposed on the primary inputs of the adder blotkah be noticed that both DSSC_CCO and

DSSC_CCAOQ_local adder modules are input-completarooverall basis.

5.2.1.2 Global Weak-Indication

The dual-bit adder module used to construct a Slemaéeaturing global weak-indication is
shown in figure 5.12, and shall be identified as BSSC_CCAO_global adder. This module
is basically a derivative of the DSSC_CCO addecllwith the first level non-relaxed gates
replaced by their relaxed equivalents. As sucljoies not satisfy either strong or weak-
indication specifications. It is early propagatinghe sense that eager reset is possible but not
eager evaluation. This is because the encoded suincarry outputs would collectively
indicate the transitions on the adder inputs inidgdhe input carry. In comparison with the
DSSC_CCAOQO_local adder block shown in figure 5.1t DPSSC_CCAOQ_global adder does
not consist of any local detectors and is not inqmuhplete as well. Nevertheless, the adder

module by itself is gate-orphan-free.

Input-completeness is guaranteed on the entirgtythle n-bit ST RCA topology,
specified by the system architecture shown in Bgdrd. In this case, the partial CD logic
output would correspond to synchronisation of &k taugend and addend adder inputs
excluding the carry input, as a transition on ahthe double rails of the input carry would be
acknowledged by the sum outputs of the least saamf dual-bit adder stage (probably by its
corresponding carry output as well) thus facilitgtimultiple acknowledgement, which is
welcome. Therefore, considering the overall syséeohitecture, it can be said that with the
exception of the least significant sum outpbtif®1 Sun®0), the rest of the sum outputs and
the intermediate carry outputs are relaxed wittpees to indication of the main adder

operands, thereby paving the way for potential beni@ terms of delay, area and power.
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Figure 5.12: DSSC_CCAQ_global adder module

5.2.1.3 Comparative Evaluation

A number of dual-bit adder modules based on diffe®T design methods were constructed
and evaluated based on a 32-bit ST RCA architecBuel-bit adders based on Seitz's, DIMS
and Toms’ approaches were also considered for c@tipa evaluation. In fact, due to the
limitation of the granularity of the base functieat for mapping (maximum fan-in of AND
gates and C-elements is 4), the logic correspontirgeitz’'s and DIMS approaches required

modification and S| decomposition respectively. TH#MS dual-bit adder implementation is
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based on the SI decomposition mechanism discusseeadtion 4.3.1, and Seitz's dual-bit
adder block incorporates the concepts discussegdtions 4.3.1 and 4.3.2 respectively, i.e.
the DIMS dual-bit adder features two-levels of Gegawhile Seitz’s dual-bit adder has a first
level composed of AND gates followed by a secondellecomprising C-elements to
implement higher fan-in gates. However, weak-intica versions of these methods were
considered, which could facilitate faster carrygagation to the successive stages. Table 5.4
reports the delay, area and power parameters ofatti@us ST dual-bit adders, with input data

sequences applied every 15ns for power estimatigooge.

Adder realisation Delay | Area Power
style (ns) | @m? | (uw)
Modified_Seitz DSSC 12.8 16521 | 932.6
Decomposed DIMS DSSC | 12.8 21833 | 1026.0
Toms_DSSC 9.4 10793 | 693.1
DSSC_CCO 5.9 14921 | 871.9
DSSC_CCAO local 5.7 10041 | 839.1
DSSC _CCAO global 5.6 8833 648.3

Table 5.4: Delay, area and power of various dual-rail dual-bit adder based 32-bit ST RCAs

To begin the analysis, let us first consider tasecof Toms’ adder. The delay of the
32-bit ST RCA utilising Toms_DRE single-bit addes 10.6ns (from Table 5.1); in
comparison, the delay of the 32-bit ST RCA utilgsihoms_DSSC dual-bit adder blocks is
9.4ns. Though from a theoretical point of view, tager value is significantly greater than
half of the former value, it is mainly attributalite three important factors: many logic stages
to be traversed to produce the least significamycautput signal (CE2 + OR2 + CE2 + OR2
+ CE2 + 30R2), more elements in the critical p&&Z + 30R2, as opposed to CE2 + 20R2
for the single-bit adder) and increased loading ©duan area increase by 1.43x, on average.
Indeed, these three factors were found to be padltiresponsible for the degradation of the

ideal delay metric in case of the entire dual-dder module based ST RCAs.

Among the three versions of the DSSC adders, t&S® CCAO_global adder
exhibits reduced datapath delay, area and poweugththe critical path comprises only a
CE2 and OR2 for all the three adders — thanksearttlication being taken care of externally
(globally) rather than confining it to the addeodit. Compared to the DSSC_CCAOQ_global
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adder, the SSSC_DRE adder reports an increasdan b 4% and decrease in area by 64%.
However, in terms of total power, for the similat sf test patterns and simulation conditions,
the SSSC_DRE adder is found to be more expensarettie DSSC_CCAO_global adder by
5%, dissipating 678.8uW. The power advantage ferlafter mainly results from its system

configuration, sharing the logic with the preced®ig stage.

5.2.2 Incorporating Heterogeneous Data Encoding

A dual-bit adder block based on heterogeneous émgo@HE) can represent the augend,;
addend inputs and sum outputs by a 1-of-4 coddewthe input and output carry signals can
be represented using a dual-rail code. With suclerasoding mechanism, the minimised
expressions for the function block outputs are mgielow. It is to be noted that the 1-of-4
code assignments for the augend inputs, addendsigma the sum outputs are the reverse of
the assignments given in Table 2.1. Thébit ST RCA topology that encompasses
heterogeneously encoded dual-bit adder modulesrieaged by figure 5.13.

Coutl =a0b3cinl +alb2cinl +a2blcinl +a3b0cinl +alb3 +a2b2 +a3bl +a2b3 +a3b2 +

a3b3 (5.17)
Cou® =a0b3cin0 +alb2cin0 +a2blcin0 +a3b0cin0 +alb0 +albl +alb2 +alb0 +albl +

a2b0 (5.18)

Sun8 =a0b3cin0 +alb2cin0 +a2blcin0 +a3b0cin0 +alb2cinl +alblcinl +a2b0cinl +
a3b3cinl (5.19)

Sun? =a0b2cin0 +alblcin0 +a2b0cin0 +a3b3cin0 +alblcinl +alb0cinl +a2b3cinl +
a3b2cinl (5.20)

Suni =a0blcin0 +alb0cin0 +a2b3cin0 +a3b2cin0 +alb0cinl +alb3cinl +a2b2cinl +
a3blcinl (5.21)

Sun® =a0b0cin0 +alb3cin0 +a2b2cin0 +a3blcin0 +alb3cinl +alb2cinl +a2blcinl +
a3b0cinl (5.22)

The circuit realisation that synthesises (5.17§5-22) is depicted in figure 5.14.
Basically, it considers utilisation of input-comig@egates and shall be referred to as the
DB_HE_local adder (DB — dual-bit). It could be settiat the module adheres to weak-
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indication timing constraintgocally. The 1-of-4 encoded sum outputs strongly indichte
arrival of all the function block inputs, while tloeial-rail encoded carry output can be relaxed

with respect to ensuring completeness of inputs.

a@2n-1) a@@n-3) b(2n-1) b(2n-3) a@3) a(1) b(3) b(1)

la(2n—2) la(2n-4)lb(2n—2)lb(2n—4) la(Z)la(O) lb(Z)lb(O)
Overflow v 2 v 2 v 2 2 2

carry carry(n-2)1 carry(1)1 4

Heterogeneously encoded
dual-bit ST adder dual-bit ST adder

171 L

Sum(2n-1) Sum(2n-3) Sum(2) Sum(0)

carryin(1)

Heterogeneously encoded

carry(n-2)0 carry(1)0 \ carryin(0)

Sum(2n-2) Sum(2n-4) Sum(3) Sum(1)

Figure 5.13: Heterogeneously encoded dual-bit adder block based n-bit ST RCA structure
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Figure 5.14: Weakly indicating heterogeneously encoded dual-bit adder module, corresponding to

local indication
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The ST system configuration that supports the RGpology is illustrated in the
diagram that follows. A subset of the dual-railutg(augends and addends) is 1-of-4 encoded
before being fed to the function block while thenening inputs (input carry) are fed as is.
The non-dual-rail outputs produced by the logiccklsum outputs) are decoded before being
passed onto the next stage, while the dual-rapuiat(output carry) are driven to the next
stage as such. As mentioned earlier, the encodisgis 28 transistors per bit. The cost of

decoding is 12 transistors per bit.

ackin ackout

1 Completion
N detection logic
Subset of dual-rail A
Y inputs
Current / e S . Next
—»{ stage » Encoder }-»" Functionblock *-e» Decoder :-» stage >
register kY o P T register
e e P L e
\ ackin ]
Y Remainder of
ackout Completion dual-rail inputs

detection logic

Figure 5.15: ST system configuration handling heterogeneously encoded inputs and outputs

If the logically determined gates in the first ééwf figure 5.14 are replaced by non-
logically determined gates, then proper local iatlan cannot be guaranteed by the above
system architecture as the function block coulddset in an eager fashion but would evaluate
robustly. Hereafter, it is identified as the DB_Hffobal adder. Therefore, a modification is
necessary, which is illustrated in figure 5.16the context of the dual-bit adder employing
heterogeneous data encoding protocol. Basicallyenves as a replacement for the datapath
represented using dotted lines in the above figurdact, not all the distinct outputs of the
function block need to be synchronised with thadalgsum of the homogeneously encoded
input signals (OR-logic block output), but only ancoded DB adder sum output would
suffice. Similar to the previous case, the leaghificant encoded dual-bit adder sum output
(Sun3,Sun2,Sunm.,Sun®) is alone synchronised with the output of the IO§le block, while
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the other adder sum outputs (including the inteiatedand output carries) could be relaxed.

Thus, the overall system configuration would nowrespond to global indication.

Function block <—

Logical sum of
OR-logic homogeneous inputs
block

Subset of
dual-rail —>
inputs

Decoder

Remainder of
dual-rail
inputs

v

A 4

Figure 5.16: Modifications to the ST system configuration handling heterogeneously encoded inputs
and outputs to pave the way for global indication

Table 5.5 below highlights the delay, area and gpowetrics of three different
heterogeneously encoded dual-bit adder moduleSToaddition of size 32 bits, based on the
fundamental carry-propagate adder architecture shiowfigure 5.13. The test bench and

simulation conditions are the same as that of énkee case.

Adder realisation Delay | Area Power
style (ns) | (um? | (uw)
Toms DB HE 9.0 12121 | 695.9
DB _HE_ local 5.8 10889 | 688.4
DB _HE_global 5.7 9594 | 685.5
Table 5.5: Delay, area and power parameters of heterogeneously encoded 32-bit ST RCAs

incorporating DB adders (with extra /ogic)

The critical path elements in case of the Toms_IBB adder are CE2 + 30R2, while
in case of the proposed adders CE2 + OR2 are therieg elements in the longest signal
path. This explains the reason for the higher ddtapelay in case of the former. Due to the
replacement of primary input-complete gates by inpcomplete gates, the DB_HE_global
adder exhibits the least datapath delay. Also,enefits from reduced loading and area
occupancy due to the above, because a CE2 requ#&smore area than an AND2. From
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Table 5.5, it is clear that the DB_HE_global addissipates the least average power and also
has the least area requirement. However, when aomgpéhe DB_HE_global adder with the
DSSC_CCAO_global adder of Table 5.4, it could bermed that the latter is preferable in
terms of the design metrics estimated. Thoughrttag be surprising, the main reason for this
can be attributed to thextra logic (encoder, OR-logic block that performs completion
detection, synchroniser and decoder) present irdétapath apart from the main functional
logic in case of the former. To confirm this, si@ibns have been carried out assuming the
presence of mixed protocol datapaths. The simulatsults listed in Table 5.6 substantiate

the above reasoning.

Adder realisation Delay | Area Power
style (ns) | (um? | (uw)
Toms_DB_HE 8.9 9978 | 457.3
DB_HE_local 5.6 8746 | 451.8
DB _HE_global 5.4 7002 | 388.7
Table 5.6: Delay, area and power parameters of 32-bit heterogeneously encoded ST RCAs

(without extra /logic)

5.3 Hybrid Adders

It was stated in section 5.2.1.3 that the leastiogint dual-bit adder stage actually incurred
significant delay and this effect was observablehi& entire dual-bit adder block based ST
RCAs. Hence, a minor logic optimisation to mitigétes drawback has been resorted to. This
involved optimal replacement of dual-bit adder megk) in the least significant position(s) by
single-bit adder block(s) so that the overall dedagl area parameters could be reduced. Area
would also get reduced as a typical dual-bit addeck consumes more area than a pair of
single-bit adders, as shown in figure 5.17. ‘Sdriesighlighted in blue represents the
normalised area measure of the dual-bit adder nesdnlcomparison with the single-bit adder
block, while ‘Series2’ highlighted in brown represe the normalised area measure of the

dual-bit adder modules compared to a pair of sibgladder blocks.

The carry-ripple adder structure would now featareombination of single-bit and

dual-bit adder modules resulting in the hybrid @estture. Since the dual-rail encoded dual-
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bit adder block based ST RCA is found to be mofieieht than the heterogeneously encoded
dual-bit adder module based ST RCA with respecaietay, area and power from Tables 5.4

and 5.5, the simulation results corresponding adyais of the former are given in Table 5.7.

m Seriesl

| Series2

Normalised area
w

DSSC_CCO adder DSSC_CCAO_local adder DSSC_CCAQ_global adder

Dual-bit adder modules

Figure 5.17: Highlighting the area expense of dual-bit adder blocks in comparison with single-bit
adder modules

Adder realisation Delay | Area | Power

style (ns) | (um?) | (uw)

DSSC_CCO 5.9 14921 | 871.9

Dual-bit adders | DSSC CCAOQ local 5.7 10041 | 839.1
DSSC_CCAO_global 5.6 8834 | 648.3

Hybrid DSSC CCO 5.5 13941 | 847.6

Hybrid adders | Hybrid DSSC_CCAO local | 5.5 9856 | 828.8
Hybrid DSSC CCAO global | 5.4 8726 | 650.2

CD logic for DSSC_CCAOQ_global and Hybrid_DSSC_CCAO_global are different from the rest of the adders

Table 5.7: Delay, area and power metrics of 32-bit dual-rail encoded hybrid ST RCAs

The Hybrid DSSC_CCO adder is derived by substtutfour stages of the
SSSC_DRE adder in place of two least significanBDSCCO adder modules, while in case
of Hybrid DSSC_CCAO local and Hybrid DSSC_CCAO_gloladders, two stages of
SSSC_DRE adder modules in the least significanttipns were found to be an optimal

replacement. Any further inclusion of the singlé-adder block was only found to have a
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detrimental effect on the datapath delay. It carséen from Table 5.7 that, in general, the
hybrid ST RCAs exhibit slightly reduced delay, asgal power over the dual-bit adder based
RCAs. The conclusion is that the Hybrid_ DSSC_CCAObgl adder reports only marginal
reduction in delay and area parameters (3.5% and rd8pectively) compared to the
DSSC_CCAOQO_global adder, and is associated withgéigilele increase in total power. The
logic optimisation method put forward in sectio® presents a rather efficient technique to

decrease the adder latency.

5.4 Bottlenecks with Increase in Order

To evaluate whether an increase in the order afhddmental adder block would be helpful,
given the possibility of the hybrid architecturalheme, triple-bit ST adder designs were
explored. A dual-rail encoded triple-sum, singlerga(TSSC) adder block consists of 14
inputs and 8 outputs. It is to be noted that, imparison with the DSSC adder module, the
input space would now be quadrupled, and as atrdsalarea demand would also increase
significantly. It was found that a TSSC adder blbased on C-elements, complex gates and
OR gates (TSSC_CCO adder) is larger compared toirtd&vidual DSSC_CCO and
SSSC_DRE adder modules by 1.5x and 4.9x% respectivedventually this implies higher

loading effect, more logic levels, greater delagt axcreased power consumption.

With respect to the output carry signal generatedn adder module, it was estimated
through the principle of mathematical inductionttbi@ number of irredundant cubes in the
MDSOP expression would be of @' -1), which approximates an exponential order, and
consequently, this will have an adverse impacthendverall adder delay as the adder size
increases. To confirm this, simulations were penedl under similar conditions assuming
operand sizes of 48-bits, and the results showralile 5.8 vindicate the above observation.
24 stages are required for implementing the duakfider block based ST RCA, while 16
stages are required for realising the triple-bdexdnodule based ST RCA.

The Hybrid_DSSC_CCO adder comprises four stagegheoSSSC_DRE adder while
the Hybrid TSSC_CCO adder incorporates six staflgbeoSSSC_DRE adder. The hybrid

scheme has benefitted the latter in comparison wathtrue version by effecting an area
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decrease of 8.7% and enabling reduction in delaytatal power dissipation by 20.5% and
12% respectively. However, the Hybrid_TSSC_CCO a@ddibits increased delay and area
compared to the Hybrid DSSC_CCO adder by approein&% and 49% respectively. It

may be understandable that an area increase majwengs result in a proportionate increase
in average power in case of ST logic unlike theeagisite common in synchronous designs,
due to the activation of unique signal paths inftrener. Therefore, the former dissipates only

12% more average power than the latter whilst fegjuan area expense of 1.5x%.

Adder realisation Delay | Area | Power
style (s) | m* | @w)

DSSC_CCO 9.1 22639 | 1399.6

TSSC_CCO 11.6 34849 | 1747.5

Hybrid DSSC CCO | 8.7 | 21389 | 1377.4
Hybrid TSSC CCO | 9.2 | 31819 | 1537.8

Table 5.8: Delay, area and power metrics of dual-bit and triple-bit adder based 48-bit ST RCAs

5.5 Redundant Logic Insertion

This section deals with an efficient method forueidg the datapath latency of an ST dual-bit
adder based RCAs by means of a novel concept aathchdancy insertionin general, the
concept can be extended to effect latency reducdtiaterative logic circuits, which would
comprise a cascade of basic building blocks. Realey insertion, in general, implies
inclusion of extra redundant logic into the actuan-redundant implementation (which
synthesises a specific functionality) with the miten of speeding up the propagation of
certain signals, which would be required to drieet(as inputs for) the subsequent stages,

without affecting the original functionality.

Redundancy can be incorporated into a functiorcklionplementation by careful
duplication of similar logic and can be expected pave the way for multiple
acknowledgements, which may be useful in simpldyithe timing assumptions in a ST
realisation. Additionally, it could facilitate tHaster reset of logic during the RTZ handshake
protocol with a constant latency. Logic redundaackiieved through input-incomplete gates,

basically introduces the weak-indication propertioithe circuit as it relaxes the indication
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(acknowledgement) constraints of those functionclbl@utputs that are considered as
candidates for optimisation. It can either be imipl{for example, the SSSC_DRE adder) or
explicit in the design and herein we consider explhsertion of redundant logic with the
objective of decreasing the critical path delayroefThe minor drawbacks of this approach
are marginal increases in area and power parameerse logic duplication is involved,
switching activity would increase due to multiplekaowledgements, subsequently pushing
up the dynamic power and thereby increasing theageepower dissipation. However, the
area and power overheads may be insignificant dipgmupon the functionality and its initial
non-redundant implementation, and the degree of leglundancy subsequently resorted to.
We will now consider six case studies to demonstiia¢ benefits of the redundancy insertion
scheme based on the ST RCA architecture, where tedundancy addresses the carry output
since it is required to propagate between successtimges. Redundant logic insertion was

performed manually with respect to all the ST aduieuits considered here.

5.5.1 Impact on a Single-Bit Adder Based on Hybridnput Encoding

Let us first consider the ST full adder functiohalbased on HIE to explain how logic

redundancy can be achieved through the insertiompott-incomplete gates.

cin1 —

) b
i0

cin0 —
Sumo :[>—> Sum1
cinl —

=

cin0 —

) o1 Cout1
cinl —

cin0 — i3 Cout0

Figure 5.18: Hybrid input encoded ST full adder with logic redundancy
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In the above figure, gates @nd G denote 2-input C-elements, while gatesagd g
represent 2-input AND gates. It can be noticechendiagram that the logic realised byand
C, are equivalent to that ofi @nd g respectively, for transitions. It can be seenigure 5.6
that g and g are not present and hence redundancy is exphcithe present design,
henceforth referred to as the SSSC_HIE_RL addes. ffitoves to be beneficial in two ways.
During the spacer phase, all the sum outputs coalteset in a parallel fashion, as the dual-
rail carry output of thé&" stage could be reset based on its 1-of-4 encoagehd and addend
inputs, and the dual-rail sum output of the )" stage would then depend only on the dual-
rail carry input of its preceding stage. There Isoaa benefit in terms of improving
computation speed during the valid data phase. Waisld be obvious by comparing the
designs portrayed by figures 5.6 and 5.18; it carolbserved that the carry propagation path
delay is less in case of the SSSC_HIE_RL adder thanSSSC_HIE_NRL adder. This is
further substantiated by the results shown belawhe case of a 32-bit addition, based on the

ST carry-ripple adder topology, with inputs fed Bv&5ns to the adder circuits.

Adder realisation Delay Area | Power
style (ns) | (um® | (uw)
SSSC HIE NRL 8.0 6633 619.1
SSSC HIE RL 5.9 6953 630.2
Table 5.9: Comparing delay, area and power parameters of redundant and non-redundant 32-bit

hybrid input encoded ST RCAs

It is evident from the results tabulated above tha SSSC_HIE_RL adder achieves
latency reduction over the SSSC_HIE_NRL adder by3%6 whilst reporting associated

increases in area and average power parameter8%yahd 1.8% respectively.

5.5.2 Impact on Dual-Bit Adders Utilising Dual-Rail Encoding

We now analyse the effect of redundant logic inserin a ST dual-bit adder module based on
DRE. Figure 5.19 depicts the redundant gates (sh&d¢D gates) inserted into a typical
DSSC_CCO adder module. The non-redundant addek mocld not featuregl andrg2,
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and so one of the inputs for the OR2 gates produCoutl andCou®D would be the outputs of
C-elements (€and G), which are netgn2 andgn3 respectively that were wire forks earlier.
But in the redundant version, the OR2 gates prodp€outl andCou consideignl andgr4
as inputs respectively. Again, for the case of ditaons, rgl and rg2 are functionally

equivalent to ¢and G.

P Cout1

Sum11

?@

- Cout0

> Sum10

VA

Sum00 % Sumo1

Figure 5.19: Showing redundant logic insertion in DSSC_CCO adder module
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The gate output node labelledf* signifies an isochronic fork junction. Referring
figure 5.19, it can be observed tlisft would be followed by eithegn2t or gn371 in case of
the non-redundant DSSC_CCO adder block andyby/( gn21) or (@n3t, grd?) in case of the
DSSC_CCO adder module that incorporates logic realicy — this signifies the possible
multiple acknowledgements. It can also be notetttiere becomes available a provision for
fast or eager reset during the RTZ phase aftertinseof logic redundancy. During the spacer
phase, all the sum outputs could be reset in al@lafashion, as the carry output of the
previous adder’s stage could be reset even byoitesponding augend and addend inputs
without having to wait for an input carry from pigeceding stage. The above condition would
however be strictly enforced only in case of theSOSCCO adder as it mainly incorporates
gates that are input complete, and it could bexeelan case of DSSC_CCAO_local and
DSSC_CCAOQ_global adder modules, since they widelyley gates that are input-
incomplete. Nevertheless, in all the redundantclagiders, the sum output(s) of thel)"
adder stage could evaluate based on the carry frgnatits previous™ stage and there does
not arise the need for carry propagation over tiigeslength during the reset phase that might
have occurred for the set phase. The advantagdesfdy reduction gained by introduction of
redundant logic is attributable to the lower dathp#elay encountered, as the critical path in
every dual-bit adder stage comprises only inpubimglete gates instead of a mix of input-
complete and input-incomplete gates in the origmoad-redundant version.

The results corresponding to the simulations of-remlundant and redundant logic
dual-bit adders, performed under similar conditjcare given below. The increase in latency
for the non-redundant logic adders correspondintyeéo redundant versions and the area and
power overheads for the latter in relative compmarisvith the former are specified within
brackets in Table 5.10. Non-redundant logic dutialdiders are found to suffer from 29.3%
delay increase compared to their redundant couartisypn an average.

A visual inspection of Table 5.10 reveals thatdhea expense is very minimal for the
adders incorporating logic redundancy, with virtpaho increase in average power
dissipation. The redundant logic included DSSC_CCglobal adder based ST RCA was
alone optimised further following the hybrid appcbadiscussed earlier using two stages of
the SSSC_DRE adder, as its non-redundant versisrfausd to be efficient amongst all the
dual-bit adders based on either DRE or HE.
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Adder realisation Delay Area Power
style (ns) (um?) (uw)
DSSC_CCO 5.9 (28.3%) | 14921 871.9
Non-redundant logic | DSSC_CCAO local 5.7 (29.5%) | 10041 839.1
DSSC_CCAO global | 5.6 (30.2%) | 8833 648.3
DSSC_CCO 4.6 15081 (1.1%) | 875.3 (0.4%)
Redundant logic DSSC_CCAOQO local 4.4 10201 (1.6%) | 842.5 (0.4%)
DSSC CCAO global | 4.3 8993 (1.8%) | 651.7 (0.5%)

Table 5.10: Comparing delay and area metrics of redundant and non-redundant logic dual-bit
adder based 32-bit ST RCAs employing DRE

It can be seen in Table 5.11 that there is prattico difference between the non-
hybrid and hybrid versions in terms of power diasign, while a marginal difference occurs

with respect to delay and area.

Adder realisation Delay Area Power
style (ns) (um*) (W)
DSSC_CCAOQO_global 4.3 (2.4%) | 8993 (1.3%) | 651.7
Hybrid DSSC CCAOQO global | 4.2 8875 653.3 (0.2%)

Table 5.11: Comparing delay, area and power of hybrid and non-hybrid DSSC_CCAO_global adder
incorporating redundant logic, evaluated using a 32-bit ST RCA structure

5.5.3 Impact on Dual-Bit Adders Adopting Heterogeneus Encoding

Lastly, the impact of redundant logic insertiontwterogeneously encoded dual-bit adders is
briefly analysed in this section. Logic redundarmay,introduced into a typical DB_HE_local
dual-bit adder module, is portrayed in figure 5vi@h the input-incomplete gates marked by
rgl andrg2. Similar notations have been used as that ofdi§ul9 so that the discussions of
the previous section would hold well for this saam&oo. The non-redundant DB_HE_local
block was shown in figure 5.14. The latency incecasffered by the non-redundant adders
compared to their redundant counterparts and tea and power expense of the latter in
relative comparison with the former are given iml€sb.12 to arrive at a quick inference.
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Adder realisation Delay Area Power
style (ns) (Hm?) (W)
DB_HE local | 5.8 (26.1%) | 10889 688.4
Non-redundant logic | DB_HE global | 5.7 (29.5%) | 9594 685.5
DB_HE local | 4.6 11049 (1.5%) | 691.9 (0.5%)
Redundant logic DB_HE_global | 4.4 9754 (1.7%) 688.9 (0.5%)

Table 5.12: Delay, area and power of NRL and RL dual-bit adder based 32-bit ST RCAs with HE
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Figure 5.20: Highlighting redundant logic insertion in DB_HE_local adder module
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From Table 5.12, it can be inferred that approxatya28% reduction in latency has
been achieved by means of logic redundancy, wtgcsignificant, while noting that this is
accompanied by only insignificant area and powerafiees. As with the earlier case studies,
the present example also underlines the appreciadhefit resulting from inclusion of

redundant logic in a ST arithmetic circuit.

5.6 Summary

A plethora of ST adder blocks and logic optimisasidargeting reduced latency have been
analysed and evaluated in this chapter on the lmdsiee fundamental carry-ripple adder
topology. The individual adder modules were confegluto utilise either a homogeneous DI
data encoding scheme for both the inputs and astput a hybrid DI data encoding
mechanism for the inputs and a homogeneous datdieigc method for the outputs, or a
heterogeneous DI data encoding protocol for boghitiputs as well as outputs, depending

upon the adder block size.

Adder type Referencing
SSSC_DRE (Implicit redundant logic) Addl
SSSC_HIE_ NRL (Non-redundant logic) Add2
DSSC CCO (Non-redundant logic) Add3
DSSC_CCAO_local (Non-redundant logic) Add4
DSSC_CCAOQO_global (Non-redundant logic) Add5
DB_HE_local (Non-redundant logic) Add6
DB_HE_global (Non-redundant logic) Add7
Hybrid DSSC_CCO (Non-redundant logic) Add8

Hybrid DSSC_CCAO local (Non-redundant logic) | Add9
Hybrid DSSC CCAO_global (Non-redundant logic) | Add10

SSSC_HIE RL (Redundant logic) Add11
DSSC CCO (Redundant logic) Add12
DSSC_CCAO_local (Redundant logic) Add13
DSSC_CCAO global (Redundant logic) Add14
Hybrid DSSC_CCAO global (Redundant logic) Add15
DB_HE_local (Redundant logic) Add16
DB HE_ global (Redundant logic) Add17

Table 5.13: Reference text for various ST adder blocks

Table 5.13 lists the referencing for the variousposed weak-indication ST adder

blocks, whose design parameters corresponding@lat addition operation are portrayed in
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figure 5.21. The delay, power and area parameterhe different 32-bit ST RCAs are
specified in 10(s), 10 (W) and 16(m?) units respectively.

Overall, the various adder designs considered boraete the fact that inclusion of
logic redundancy leads to dramatic savings in tesmkstency with only marginal area and
power penalties, which is evident from figure 5.2inongst the different ST adders analysed,
the hybrid DSSC_CCAOQ_global adder (Add15) featuredundant logic is found to exhibit
the least datapath delay for performing 32-bit addition. RViespect to power and area, the
SSSC_HIE_NRL adder (Add2) and Folco et al._ DRE adelgort optimum figures of 619uW
and 6633um respectively. They report a similar latency of 8os 32-bit addition. In
comparison, the hybrid DSSC_CCAO_global adder emeos less datapath delay by 48%,
while the former adders dissipate less average pbw&.3% and demand less area by 25.3%

compared to the latter.

M Delay
W Power

W Area

F P I P FL Iy
CERC AR S RGN SIS

Figure 5.21: Depicting the delay, power and area metrics of various ST adder blocks for performing
32-bit addition based on the RCA topology
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Chapter 6

Self-Timed Section Carry Based Carry-Lookahead Addes

RCAs were found to occupy the least area and dissijess average/maximum energy per
addition, next only to the Manchester carry chaldea, in relative comparison with many
high-speed adder architectures of the synchronousach [159]. Though the basic carry-
propagate adder structure is relatively simple easler to implement in accordance with the
ST design style, it suffers from a linear increas&atapath delay proportional to the word
width. It has been found that adder topologies faghbarry-select [160] and conditional-sum
logic [161] lend themselves to square-root timeitaaiu [162].

Carry-Lookahead (CLA) adders represent a widelydusigh-speed carry-propagate
scheme for performing addition in logarithmic tirf62], unlike the case with RCAs. In
general, the design of a CLA adder is based oipriheiple that by examining the augend and
addend bits, it is possible to predict/determireedarry signals beforehand and thereby reduce
the delay that could otherwise be expected in gestey-stage propagation scenario. However,
obtaining a ST derivative of the synchronous CL&hé&ecture in a straightforward fashion is
likely to give rise to gate orphans, mainly becaokée propagate and generate signals that
are generated for each adder stage, which arecqudrstéy used for producing the CLA signal
corresponding to a group of adder inputs. ST dgsignedures that rely upon the DRCL style
may be helpful in permitting a direct translatiohtbe synchronous architecture to robust
asynchronous style, but can be expected to incproapnately thrice the area penalty in
comparison with the former while accounting for gresence of explicit completion detectors
as well. Nevertheless, our interest here is onifaitng a generalised gate level logic synthesis
followed by an optimal SI decomposition with théeimtion of realising CLA modules that are
inherently ST and compact. Hence, in this connacti8T section carry based CLA
(SCBCLA) architectures are proposed in this chapbat bear some similarity with the
traditional CLA scheme, and are evaluated on tlsesled DRE and HIE protocols.
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6.1 Background

We will now consider three scenarios to illustrite problem of gate orphans inherent in
recursive carry formulations. Let us first considbe basic equation governing the carry
output signal, represented in single-rail format.
Cout=ab+ (@ O b) cin (6.1)
G=abP=alOb (6.2)

In (6.2), G and P signifgenerateandpropagatesignals. It can be interpreted from the
above equations that an output carrygeneratedif both the operand bits are 1, while an
incoming carry ipropagatedto the output if the operand bits are mutuallylesize. Hence,
with notations Pand G denoting the generate and propagate functions raihdom adder
stagei, we have,

Ci=G+PRC (6.3)

It may be that (6.3) can be thought of as a secoddr equation, sincej@nd R can
be further expressed in terms of the primary inpfits generic adder stage. In general, there is
a carry at stage if there is a carry-generated at stage, if there is a carry that is generated at
stagei-1, which is propagated to stageThis notion can be extended poedict the carry
signal at any arbitrary adder stage and therefogeabove equation is basically recursive in
nature. Unwinding the recursion implicit in (6.8 each stage, would yield the followiif
order equation, where {Jepresents the carry input to the least signifieaider stage.

Ci=G+PRG1+RPaG2+ .... + BP1P2...PCy (6.4)

Representing (6.3) in dual-rail encoded formagrabbtaining dual of the positive-rail

output and subsequent logic transformation tofyatie cover constraint, we have,
G'=G'+GP'Cit’ (6.5)
c’=GP°+ G°P'C.y° (6.6)

It can be seen that'Cand G are expressed in their MOSOP forms. With respect t
these second-order equations, gate-orphan freedonotbe guaranteed even when the cubes
are physically realised without any decompositionwhich case the inference would hold
good for the recursive formulation of (6.4) as wé&le possibility for the occurrence of gate
and wire orphans is clarified through the followidgcussion. Figure 6.1 depicts the carry
output (G) formulation using generate and propagate sigrassgiven by (6.5) and (6.6),
where &%, a9, (b, b°% and (G, C) represent the dual-rail augend, addend and carry
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inputs of an adder stage and,{CGC.°) specify the dual-rail carry output generated friis
stage. In figure 6.1is1 andis3 represent the true and false rail expressionthefcarry-
generate signal, whilis4 andis2 correspond to the true and false rail expresbtise carry-
propagate signal. For the condition when carry-gaedunction becomes valid, the following
sequence of transitions occursy’f, bi't) - islt — C.'t. Even if the transition &1
occurs, since the intermediate output signs®sandis4 did not fire, the transition at gate
output nodds2 (is11 - is21) is said to give rise to a gate orphan apth Gesults in a wire

orphan.

i e — e

(o

)

Figure 6.1: Carry output description using generate and propagate signals

Alternatively, the carry equations can also beesented taking into account the carry-
kill condition, apart from generate and propagairditions, which signifies the state when
both the augend and addend inputs of an adder steglene a logic low state. This state
avoids the generation of a carry signal from tkégs and also prevents the propagation of an
input carry to the output.

G'=G'+GP'Cia’ (6.7)
c’ = K + KP'C (6.8)
The logic realising the above equations, takingoant of carry-generate, propagate

and kill conditions, is depicted by figure 6.2.figure 6.2,im1 andim4 represent the true and
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false rail expressions of the carry-generate sjgmhlle im5 andim2 correspond to the true
and false rail expressions of the carry-kill signdhe equation pertaining to the carry-
propagate condition is realised by the intermedraideim6. Let us consider a worst-case
scenario to describe how orphans occur in the itiftican be seen from figure 6.2 that'(,
bi'1) - imlt - Ci't. The following also occursmit — im21. But the transition on the
intermediate gate outpun2 will not be subsequently acknowledged by the wuitp3, for a

transition on the carry inputo€ This leads to the creation of gate and wire anpha

as im1

b11—
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Figure 6.2:  Output carry representation on the basis of generate, propagate and kill functions

Lastly, we analyse the situation when the carryppgate signal is expressed in its
simplified version as P a + b, when the output carry is given @sut=ab + (a + b)cin. This
result in the dual-rail carry output to be exprésseits MSOP form as,

Coutl =albl +alcinl +blcinl (6.9)
Cou® =a0b0 +a0cin0 + bOcin0 (6.10)
Based on the recursive formulation of (6.5) an@)(6he carry-lookahead function is

then implemented as shown in figure 6.3. The tne false rail expressions of the carry-
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generate signal are specified igyt andig5, while the true and false rail expressions of the
carry-propagate condition are signifiedigg andig6 respectively in the figure below.

a’

C

by —

ar —

by ——

a,
by —

S

igs
L

S

ig6

o Q
_\O_\O
)

ig2 c’
c
igd

Figure 6.3:  Carry output representation assuming P = a+b

Here, whenever the adder inputs are different itoelic would be gate orphan free and
this would be guaranteed even when the carry-&ilidition occurs. However, when the carry-
generate condition becomes valiglt — C't. Butiglt — ig2t and the transition oig2
would not be acknowledged ligy3 orig4, which gives rise to a gate orphan. At this junet
the transition on any of the input carry rails wibbk classified as a wire orphan.

Thus, the preceding discussions have demonstraédortoblematic issue of gate
orphans and/or wire orphans, possible in case mcarsive asynchronous carry synthesis.
However, the problem with recursive equations canovercome if the essential logic
transformations to satisfy the cover constraintgagormed on a first-order equation, and this
would therefore necessitate reduction &"arder carry equation to the first-order that would
actually involve unfolding cube expansions. As aisgmuence, the need for stage-wise
propagate and generate signals is deemed unngcessar

A better way to achieve this is to invoke the MOS@Riristic for an initial two-level

MSOP form of the carry equation, and for physiecaplementation, SI decomposition can
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then be resorted to since suitable candidates deeildscertained from within the MOSOP
form — this is owing to the carry output functiorhéiting symmetricity with respect to
permutation of its literals. It has been deducedubh the principle of mathematical induction
that the MOSOP expression for the carry output qftit CLA would consist of % -1)
logical conjunctions with the support set of thebewf maximum dimension comprising

(2q+1) literals. Owing to the existence of an exponénmgéationship between the CLA size

and the resulting number of product terms, CLA sizecase of a ST implementation would
have to be restricted so as to gain the maximureftien terms of reduced latency using this
topology. Nevertheless, it has been intuitivelyaskied that CLA logic of any size would be

practically feasible through Sl logic decomposition

6.2 Section Carry Based CLA Architectures

Two CLA adder architectures have been conceivedrifg in mind the spatial demand of a

robust asynchronous implementation and they amssed in this section.

6.2.1 Type 1 Architecture — Fundamental Topology

The Type 1 architecture bears some similarity waitblock CLA adder featuring intra-group
carry ripple [161], which is the structure of aitgd CLA adder. However, it mainly differs in
that propagate and generate signals correspondirgdh single-bit adder stage need not be
computed — hence the term ‘section carry’. Figuredepicts the Type 1 architecture of the
proposed section carry based CLA adder adopting.DRE

Theg-bit CLA module generates a CLA signal correspogdima section/group af
bits of the adder operands. To this end, it accemarry input from a previous stage/section.
The CLA signal corresponding to a section is useéeed the subsequent CLA unit in the

cascade and also the next adder element in theseguThus, the sum outputs of the adder
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a(29-1) a(q)
b(29-1) b(a)
2 {2 e e e 2 /|V/2

g-bit CLA module based on
2 DRE

a(g-1) a(0)

b(g-1) b(0)
FF... b

g-bit CLA module based on
DRE

2 2 2 2
o o Carryln
adder adder 2
2 2
Sum(2g-1) Sum(q) Sum(g-1) Sum(0)
Figure 6.4:  Type 1 ST section carry based CLA adder architecture based on DRE

can be produced simply by a rippling of the cargnal within each section, while the carry
output of a section can be produced simultaneoasty be quickly passed onto the next
section to generate the lookahead signal of tlaafestAs a result, there arises an opportunity
for optimising the CLA logic at the expense of suan producing logic, i.e. the sum outputs of
a section can assume the collective responsilafitydicating all the input operands of that
section, while the CLA unit corresponding to a mettcan be freed from adhering to
indication constraints, permitting it to be earlppagative whilst ensuring that the realisation

is free from the problem of gate orphans.
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i(89-4) i(89-2) i(4q) i(49+2) i(49-4) i(49-2) i(0) i(2)
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carryin
ST full adder ST SOL ST full adder 73

Sum(2g-1) Sum(q) Sum(g-1) Sum(0)

Figure 6.5:  Type 1 ST section carry based CLA adder architecture based on HIE

The acronym ‘SOL’ stands faum only logic which accepts an augend, addend and
carry input and processes them to produce a supubuh fact, the SOL unit can be derived
from the basic full adder module. Hence, accordinthe Type 1 topology, for ambit adder
comprising g-bit CLA units, (g—lJ CLA modules would be required as CLA signal
generation is necessitated only till the penultensgction. The Type 1 CLA adder structure
for a hybrid input encoded datapath is shown inrg6.5, which features a combination of
dual-rail and 1-of-4 codes.

6.2.2 Type 2 Architecture — Topology with Least Sigficant RCA

Section

From a physical implementation perspective, it baranticipated that substantial delay would
be encountered in the least significant CLA sectias opposed to the successive CLA
sections in case of the Type 1 architecture. Thas wdeed observed during simulations,
where the critical path in case of the least sigaift dual-rail encoded CLA unit consists of
AND4, CE2, 30R2 gates (5CE2, 50R2), while the aaitpath in the least significant hybrid

input encoded CLA block comprises A02222, CE2, @Ri&s (AND4, CE2, 20R3, 20R?2)
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a(p+a-1) a(p)
b(p+g-1) b(p)
2 {2 L) 2 /|V/2

g-bit dual-rail encoded CLA
2 module

carryin

a(p+g-1)

ST full
adder

Sum(p+g-1) Sum(p)

Figure 6.6:  Type 2 ST section carry based CLA adder topology based on DRE

for two-bit (four-bit) lookahead carry signal geaton, based on the proposed design. Since
the latency of the least significant CLA moduledtar four bits) was found to be higher than
what could be expected from a series cascade vidodl adder sections, the least significant
CLA adder section can preferably be replaced byn®ls carry-propagate adder section
paving way for marginal reduction in terms of delayea and power parameters. With this
modification, the structure of the Type 2 CLA addechitecture would be as shown in figure
6.6, for the case of dual-rail encoded datapatlesice, the Type 2 topology is basically a

refinement of the Type 1 structure primarily tanggtdelay optimisation. As a result, the

number of CLA units required, would in general pedfied b{%—lj, wheren, p andq

are assumed to be even. Hegresignifies the number of full adder stages preserihe least
significant positions of the adder architectureeTitype 2 topology for hybrid input encoded

datapaths is portrayed by figure 6.7.
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Figure 6.7:  Type 2 ST section carry based CLA adder topology based on HIE

6.3 Evaluation with Two-Bit CLA Generator

Simulations have been performed with a two-bit Cg#nerator module addressing both the
Type 1 and Type 2 architectures, on the basiswairi@ty of approaches. Table 6.1 shows the
delay, area and power metrics corresponding to Typepology, while Table 6.2 lists the
same for the Type 2 architecture.

Adder realisation Delay | Area | Power

style (ns) | um? | (uw)
Seitz_ DRE 13.7 17229 | 1168.9
DIMS DRE 14.9 25245 | 1233.8
Toms_DRE 10.2 14191 | 927.4
SSSC_DRE 5.5 9016 | 755.0
Toms_HIE 7.2 12331 | 807.1
SSSC_HIE_NRL 5.1 7593 | 659.4
SSSC _HIE_RL 5.2 7763 | 663.2

Table 6.1: Delay, area and power for 32-bit ST addition based on Type 1 topology with 2-bit CLA
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The SSSC_HIE_NRL adder is found to exhibit the tidatency, area and power
parameters among the Type 1 architecture addeosighithe SOL and two-bit CLA modules
for the SSSC_HIE_NRL adder and SSSC_HIE_RL addetra@r same, the difference between
the two is with respect to the single-bit addertisgaised, i.e. in comparison with the latter,
the former occupies 0.89% area. This could evelythalve had an impact on the delay metric
as well; less power, due to absence of redundaasgen comparison with dual-rail encoded
adders, hybrid input encoded adders are prefeeabthey facilitate relatively compact circuit
realisations. Figure 6.8 highlights the size of th@-bit ST CLA logic corresponding to
various methods. It can be seen that the proposadt-mdication hybrid input encoded 2-bit
CLA unit is an order of magnitude smaller than doal-rail encoded 2-bit CLA modules and
even in comparison with the strongly indicatingi2®LA unit based on HIE — thanks to a
significant shrinkage of the input space.

It should be noted that for the case of DRE, Typaréhitecture generally gives
relatively less datapath delay than the Type lierctiure. This is primarily attributable to the
elements found in the critical path of the dual-emicoded 2-bit CLA modules. For example,
in case of the proposed adder, the critical pathe®fual-rail encoded 2-bit CLA unit consists
of AND4, CE2 and 30R2 gates, while in case of tl@ARsection of size 2, the carry signal

would only encounter the propagation delay assediatith two AO222 cells, and hence
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@ 452
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@ 328
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200 -
& 153

&4

Seitz_DRE DIMS_DRE Toms_DRE  Proposed_DRE  Toms_HIE Proposed_HIE
2-bit CLA block design method

Figure 6.8: Relative comparison of area occupancy of two-bit CLA module designs
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Adder realisation Delay | Area Power

style (s) | @m? | (uw)
Seitz DRE 13.3 16593 | 1145.7
DIMS DRE 14.8 24273 | 1208.8
Toms_DRE 10.1 13479 | 906.1
SSSC DRE 5.3 8887 749.7
Toms_HIE 7.1 12013 | 794.0
SSSC_HIE_NRL 5.2 7529 656.8
SSSC HIE_RL 5.2 7709 660.9

Table 6.2: Delay, area and power parameters of 32-bit ST addition based on Type 2 adder
architecture with two-bit SCBCLA

comparatively lower delay. In case of the Type ¢hdecture, the SSSC_HIE_RL adder can
now be expected to feature the least delay dube@tesence of a RCA section in the least
significant adder stages. It has already been sksrlin section 5.5.1 how the SSSC_HIE_RL
adder achieves latency reduction over the SSSC MRE_adder at the expense of more
silicon (refer Table 5.9). But, on an overall basisis found that the Type 1 architecture
incorporating the SSSC_HIE_NRL adder exhibits thast datapath delay. This is mainly
because, with respect to the SSSC_HIE_RL adderpocated into the Type 2 configuration,
the critical path elements corresponding to the REétion would be OR2, 2AND2 and 20R2
gates, whereas in case of the SSSC_HIE_NRL aduy,would correspond to OR2, 2CE2
and 20R2 gates. However, in case of the Type ligunation, the SSSC_HIE_NRL adder
would only experience the propagation delay assetiawith the datapath comprising
A02222, CE2 and OR2 cells, thereby resulting irduced latency. By comparing Tables 6.1
and 6.2, it can be seen that the SSSC_HIE_NRL daglenging to the Type 2 architecture
dissipates the least average power, mainly dubdabsence of a CLA module in the least

significant stage. The test vectors were fed tcattaer blocks every 15ns for the simulations.

6.4 Evaluation with 4-Bit CLA Generator

This section investigates extending the levelsookédhead from 2-bits to 4-bits. Simulations
have been performed with a 4-bit ST CLA structumglying DRE and HIE protocols. In
case of Seitz’s, DIMS or Toms’ approaches, fordage of DRE, the input space enumeration
would be of O(2) and therefore the resulting CLA logic would bessige. Due to this reason,

such realisations are not considered here, asateyot likely to be of benefit in terms of
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optimising the delay parameter owing to an assediatcrease in the number of logic levels.
This observation is further reinforced by the iefaze, which can be derived from the values
given in Table 6.3. The delay, area and averageep®alues mentioned within brackets in

Table 6.3 refer to that of the ST RCA architectiareaddition of size 32 bits, as discussed in

the previous Chapter.

Adder realisation Delay Area Power
style (ns) (Hm®) (W)
Seitz DRE 13.3 (6.5) 16593 (7689) | 1145.7 (741.8)
DIMS DRE 14.8 (12.8) | 24273 (10665) | 1208.8 (770.5)
Toms DRE 10.1 (10.6) | 13479 (7561) | 906.1 (627.6)

Table 6.3: Delay, area and power for 32-bit ST addition based on Type 2 adder architecture with
two-bit CLA and RCA topology corresponding to Seitz, DIMS and Toms methods

Seitz’'s and DIMS approaches suffer a delay peradlgpproximately 105% and 16%
respectively, while in case of Toms’ procedure ¢hisra decrease in latency by 4.7%, for the
section carry based Type 2 CLA topology in compmarigvith the basic carry-ripple addition
scheme. Nevertheless, in case of the latter, tlay deduction is at the expense of an increase
in average power by 44.4% and area requirement8x394. In case of Seitz's and DIMS
approaches, delay degradation is accompanied bgased area and power metrics as well,

which can be seen in Table 6.3.

The results obtained for a 4-bit ST CLA structbeesed on the proposed approach
relating to Type 1, Type 2 and Hybrid architectuses listed in Table 6.4. The hybrid
configuration involves supplementing the three leifiit adder stages (preceding the most
significant full adder block) in the most signifidanibble position of a section carry based
CLA adder (Type 2 in case of DRE and Type 1 in aasEllE) by a 3-bit CLA module in
order to effect a marginal reduction in delay, anty constitutes a peephole optimisation that
is accompanied by associated area and power owvirhéath respect to DRE, the 3-bit and 4-
bit CLA units are 1.6x and 2.7% bigger compareth®?2-bit CLA module; in case of HIE, the
3-bit and 4-bit CLA units are 3.1x and 7.8x biggerrelative comparison with the 2-bit

lookahead version.
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Adder realisation Delay Area Power
style (ns) | m? | uw)
SSSC_DRE — Type 1 4.3 9769 770.6
SSSC DRE — Type 2 4.0 9385 757.3
SSSC_DRE — Hybrid 3.8 9601 765.5
SSSC HIE_ NRL —Type 1 | 3.8 10609 | 681.6
SSSC HIE NRL—-Type 2 | 4.1 10041 | 672.8
SSSC HIE_NRL — Hybrid | 3.6 10829 | 687.3
SSSC _HIE_RL —Type 1 3.7 10859 | 689.4
SSSC HIE_RL — Type 2 3.7 10301 | 680.8
SSSC HIE RL — Hybrid 3.6 11069 | 694.5

Table 6.4: Delay, area and power metrics for 32-bit ST addition based on Typel, Type 2 and
Hybrid adder architectures with four-bit SCBCLA logic

The 4-bit ST CLA logic based hybrid configuratioasled on HIE incorporating the
SSSC_HIE_RL adder, that corresponds to the TypecHitacture, was found to exhibit the
least delay, while the Type 2 architecture emplgyihe SSSC_DRE adder was found to
occupy the least area. As can be seen from Tablettee Type 2 architecture featuring the
SSSC_HIE_NRL adder was found to dissipate the baastage power.

SSSC_HIE_RL (4-bit
CLA - Hybrid)

SSSC_HIE_RL (4-bit
CLA - Type 2)

SSSC_HIE_RL (4-bit
CLA -Type 1)

SSSC_HIE_RL (2-bit
CLA - Type 2)

Adder realisation style

SSSC_HIE_RL (2-bit
CLA - Type 1)

SSSC_HIE_RL (RCA) ‘ 5.9

0 1 2 3 4 5 6 7
Delay (ns)

Figure 6.9: Highlighting the merit of HIE CLA adder topology over HIE RCA topology with respect

to delay parameter
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The performance advantage gained by the improeed/-propagate adder (section
carry based CLA adder) scheme over the basic gaiayagate adder (RCA) architecture is
illustrated by figure 6.9 for the case of 32-bitdaibn, incorporating the SSSC_HIE_RL
adder. On an average, latency reduction of 12% 3@ has been achieved for the CLA
structure employing 2-bit CLA and 4-bit CLA unitsspectively, in comparison with the RCA
topology. In this context, the following chart defsithe compromise made in terms of average
power dissipation for the ST lookahead architectaoenpared to the ST carry-ripple
architecture. Evidently, the 2-bit and 4-bit CLAptdogies exhibit a relative increase in total

power dissipation over the RCA architecture by 5% 8% respectively.

SSSC_HIE_RL (4-bit
CLA - Hybrid)

694.5

|

SSSC_HIE_RL (4-bit
CLA - Type 2)

680.8

SSSC_HIE_RL (4-bit
CLA -Type 1)

689.4

SSSC_HIE_RL (2-bit
CLA - Type 2)

660.9

Adder realisation style

SSSC_HIE_RL (2-bit
CLA - Type 1)

663.2

SSSC_HIE_RL (RCA) 630.2

|

150 300 450 600 750

Power dissipation (microwatts)

o

Figure 6.10: Portraying the power increase of HIE CLA adder architecture in comparison with HIE
RCA architecture

6.5 Summary and Inferences

High-speed ST adder architectures based on theepbf CLA have been discussed in this
Chapter. ST CLA logic realisation based on theisectarry formulation has been put

forward. Owing to the exponential spatial demaedtisn carry based lookahead architectures
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may not be a viable option with many ST approadies to confirm this, CLA structures

corresponding to some methods were constructedptndised for minimum delay. It is to be

noted that the MOSOP heuristic has been helpfsuisstantially minimising the input space
consideration from an initial @f*") to O(2** -1) with respect to the number of essential
prime implicants required, thereby facilitating $éde construction of CLA structures.

With respect to power and area, the Type 2 twd@&hiA architecture incorporating the
SSSC_HIE_NRL adder is found to be superior (656.8aMl 7529ur). With respect to
delay, the SSSC_HIE_NRL adder (hybrid adder bagetype 1 architecture) founded upon a
4-bit lookahead carry is preferable (3.6ns). Corepdo the former, the latter facilitates delay
reduction by 30.8%, but the former dissipates pEsser and occupies less area by 4.4% and
30.5% respectively.

The main issue that has been found to hinderrtwestation of a synchronous CLA
structure into a robust gate-level asynchronousdamentation is the problem of orphans (gate
orphans and/or wire orphans), which appear to herent in a recursive carry formulation
that affects the robustness property of the addetementation. This reason also appears to
negatively impact gate level ST realisation of pargrefix adders [163] — [166], where the
prefix operation is also recursive involving generand propagate signals. Nevertheless, such
adders could be realised following the block-lenethxation approach [128]. But the parallel
prefix adder architecture might experience a gredtday than the proposed SCBCLA
architecture since the full P/G (FPG) block [128]jts input-complete version, would incur
the delay equivalent of a CE4, an OR3 and two O&2gy(assuming maximum fan-in of an
OR gate is 3). For a 32-bit ST adder, the critjgath is likely to comprise five such FPG
blocks and the delays due to the above elementbeanughly multiplied and added to the
propagation delay of the overflow carry logic irdéobn to the delay of the initial PG stage. In
contrast, for the 32-bit SCBCLA based on a hybodrfat of the Type 2 architecture, the
longest path traversed would result in a delay\edent of five full adders, six 4-bit CLAs
and a 3-bit CLA. The delay experienced in each $R & equivalent to the delay of a CE2
and an ORZ2, though the delay values vary accotditige CLA unit size.

It is worth studying the potential benefits of tpeoposed lookahead scheme for
addition involving higher operand sizes and theiltesof this analysis for adders of size 32,
48 and 64 bits are presented in Tables 6.5 andrédase of the dual-rail encoded CLA adder,
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the hybrid configuration considered here is foundpdn the original Type 2 architecture. The

percentage figures given within brackets in Tallés and 6.6 represent the corresponding

reduction in latency and increases in area ancagegpower for the ST CLA adder scheme in

relative comparison with the ST RCA scheme.

It can be concluded that the proposed carry-lookdh&cheme enables significant

reduction in critical datapath delay compared ® Itlasic carry-propagate adder structure at

the expense of more area and power dissipatiomadt been found that a hierarchical

arrangement of CLA units does not guarantee gatkaor freedom owing to the problem

inherent in a recursive carry formulation, as diésd in section 6.1.

Adder Realisation Delay Area
size style (ns) (um?)
32 SSSC DRE (RCA) 5.8 7081
bits SSSC DRE (Hybrid with 4-bit CLA) | 3.8 (-34.5%) | 9601 (+35.6%)
48 SSSC_DRE (RCA) 8.3 10611
bits SSSC_DRE (Hybrid with 4-bit CLA) | 4.8 (-41.6%) | 14667 (+38.2%)
64 SSSC_DRE (RCA) 10.9 14129
bits SSSC DRE (Hybrid with 4-bit CLA) | 6.6 (-39.7%) | 19721 (+39.6%)
Table 6.5: Comparing ST ripple carry and hybrid CLA adders in terms of delay and area
components for different word widths
Adder Realisation Power
size style (LW)
32 SSSC DRE (RCA) 678.8
bits SSSC_DRE (Hybrid with 4-bit CLA) | 765.5 (+12.8%)
48 SSSC DRE (RCA) 1011.4
bits SSSC_DRE (Hybrid with 4-bit CLA) | 1150.5 (+13.8%)
64 SSSC_DRE (RCA) 1351.1
bits SSSC_DRE (Hybrid with 4-bit CLA) | 1697.1 (+25.6%)

Table 6.6: Comparing ST ripple carry and hybrid CLA adders in terms of power dissipation for

different word widths
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Chapter 7

Self-Timed Multi-Operand Addition

In Chapters 5 and 6, ST dual-operand addition veadt dvith. In this Chapter, ST addition of
multiple operands is considered. Multi-input adzfitis an operation widely prevalent in both
multiplication and computation of vector inner puots [167] [168]. Various tree structures
that are available for multi-operand addition arst fdiscussed in brief. Next, a bit-partitioning
strategy that parallelises the addition of multipfeerands of arbitrary size is described, with

an analysis of carry save adders/logic compregearsng part of the input field partitions.

7.1 Tree Constructs

The carry save adder (CSA) is useful for handlidditton of many numbers and therefore
suitable for building multipliers and digital filtg, where complicated additions are required.
Unlike the basic carry-propagate adder (CPA), @SA, the carry output signal of the current
bit at a level is not transferred to the next-bitler of the same level as the carry input signal,
instead, it is transferred to the next-bit addetha lower level as the carry input signal. A
CSA tree can reduce binary numbers to two numbers in O(loy levels [168]. A fast
logarithmic time dual-operand adder can then bel useadd the two resulting numbers.
Hence, CSAs were predominantly used in various staeectures for performing multi-input

addition.

The rudimentary tree structure [167], also calésdthe iterative CSA array, is a
straightforward way to accumulate partial produ&s. n-operand array would consist of
(n—2) CSAs and a final CPA stage. As a result, the tomaplexity of the fundamental array
topology would be the summation of the propagatiefay of the CSA tree governed by a
height of (n—-2) and the propagation delay associated with the GRfye, which is
approximately linear. Wallace trees [169] are kndantheir optimal computation time; in
fact, they constitute the theoretically fastesteaddvhen reducing multiple operands to two
outputs using CSA trees [170]. In Wallace trees, namber of operands is reduced at the
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earliest opportunity by employin% full adders for all them columns, wheren’ specifies

the number of single-rail operands amd tenotes the size of each operand. This procedure
tends to minimise the overall delay by making timalf CPA stage as compact as possible.
Although the Wallace tree guarantees the lowestativéelay, it requires the largest number
of wiring tracks (vertical feed-throughs betweenaadnt bit-slices), thereby compounding
their wiring complexity [171]. The iterative CSAray and Wallace trees represent two
extremes in the spectrum of multi-operand addifib88]. While the former features the
simplest and regular structure, it is also the sktwthe latter is the fastest, but is also thetmos
difficult structure to implement. Other tree sturets proposed for multi-operand addition lie
between these two extremes, permitting tradeoffa/den regularity and speed [167]. While
Wallace used a word-level description of his trd@mdda gave a refined presentation of the
same concept at the bit-level [172]. In Dadda tré®s number of operands is reduced to the
next lower number in comparison with the Wallaeztusing the fewest number of full adders
and half adders possible, i.e. combining of pagialduct bits takes place as late as possible
and this usually leads to a simple CSA tree, unialace’s method where partial products
are combined at the earliest opportunity. The forstiategy minimises the number of full and
half adders at the expense of a wider CPA, whigddkter tends to make the width of the final
CPA smaller. Wallace’s and Dadda’s strategies fonstructing CSA trees give rise to
Wallace and Dadda tree multipliers. An analysi®atfida and Wallace multiplier delays was
performed for different multiplier sizes [173], antdwas found that the former showed
improvement in speed compared to the latter by 9%:;1however, this work assumed the
presence of only discrete logic gates (AND2, OR&@ &V cells). It has been clarified in
[168] that the above strategies, which achieve rilgaic depth reduction based on CSA
trees, tend to suffer from the drawback of an fagstructure that subsequently complicates
the design and layout. Additionally, connectionssafying lengths and complex signal paths
lead to logic hazards and signal skew that woulkhaegative implications for power and
performance parameters. Overturned-stairs (OS) s$tegctures [174] can be designed
systematically paving way for a simple and regutdaerconnection scheme in comparison
with the Wallace tree, whilst achieving similar sgeperformance in certain cases. The
balanced delay tree [175], on the other hand, reguihe smallest number of wiring tracks but

suffer from greater delay compared to the OS tréésvertheless, it has been widely
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understood that iterated or recursive structuraswiould feature a greater degree of structural
regularity, less hardware complexity and promisgh¥speed, such as those incorporating
parallel counters or logic compressors, are prbfereompared to CSA based tree structures
[162] [167] [168] [170] [174] [176].

7.2 Bit-Partitioning Scheme

In CSAs, row-wise parallel addition is performedhese the tree height grows with the
increase in the number of input operands by ancxppate linear order. Here, a bit-
partitioning strategy is considered, which woulddlve splitting the entire group of operands
horizontally into sub-groups as desired, and tiselte of the sub-groups can then be summed
up to produce the final sum. The bit-partitioningpeoach to multi-input addition is illustrated
through figure 7.1, where addition ofbinary operands, with each operand of sizbits is

considered, assumimgis even. A ‘dot’ represents a bit position in flgeire below.

Position of input operand bits

o o
Y_field e
[ I ]
[ N ]

X_field Y_field
outputs outputs

Desired result

Figure 7.1:  Illustration of bit-partitioned multi-input addition scheme
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The entire set of input operands,(...,a,_,) is divided into two equal-sized groups,
namely X_field (that comprises inputs,,...,a,.,) and Y_field (consisting of inputs,
Qnigy/20+++8 ). Addition within the individual fields can be permed either using CSAs or

with logic compressors. The sum bits generated fituese individual fields can then be added
together using a dual-operand adder. Herein, weusana carry-ripple adder for performing

summation of the outputs of X and Y data fieldsed$ a RCA stage would help in further

evaluating the ST full adder blocks discussed jngsly.

In general, the combinational bit-partitioning pedure might only effect a slight
improvement in delay when many operands have tadoed, by way of performing parallel
column wise addition of row-wise partitions. Foraexple, considering the addition of 32
single-rail operands, each of size 32-bits, thecali path delay of the multi-operand adder is
equivalent to 8 full adder delays (assuming thel&al bound) and the delay of a 36-bit RCA
stage. On the other hand, with eight equal-sizpdtifield partitions, the maximum path delay
could be reduced by 2 full adder days. If say 1érapds are to be added, then they could be
initially partitioned into 4 fields (say, V, W, Xnd Y). The outputs of input fields V and W
can be combined into an intermediate output fiklagtwise with input fields X and Y. The
sum outputs corresponding to the intermediate ditplds can then be added to obtain the
desired final result. Alternatively, the outputstb& four input fields can be added together
using a single multi-input adder to produce theunegl result. It can be noticed that additions
within the partitions are done in parallel, whileetfinal adder stage that could comprise a

simple CPA performs serial computation.

The procedure is scalable and may benefit modgratéerms of latency reduction, as
opposed to employing conventional combinationad tyge structures for problems of higher
dimensions. Also, a high regularity would be impliwithin the overall architecture as the
input partitions are being replicated. Hencefortle, shall discuss about ST CSAs and logic
compressors in the following sections, as emplofj@dthe input field partitions, whose

evaluation is our main interest with regard to tisapter.
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7.2.1 CSA Based Multi-Operand Addition

Figure 7.2 shows the ST equivalent of a traditiossichronous CSA structure, used for
addition of four dual-rail encoded binary numbea®,€,d), each of sizen bits, and ther+1)
sum outputs produced are also in dual-rail forngputs and outputs with subscript zero
correspond to the least significant bits and thes the maximum subscript notation
represent the most significant bits. As shown gurfe 7.2, there are three adders in three
levels — two levels of CSAs and one level of RCAatlnl four input operands. In each CSA,
the output carry signal of the current bit at elds not transferred to the next bit adder of the
same level as the input carry. Instead, the owtpuy is transferred to the next bit adder in the
lower level as the carry input signal. In the tepdl adder, three numbers{,c) are added
simultaneously, i.e. the bits corresponding to mamber could act as the input carries for the
full adders of the first level CSA. In the next lesMevel, an extra numbed)(is added. The
adder in the bottom level is a conventional caipple adder that produces the final sum. The
propagation delay of the whole multi-operand addergeneral, is equal to the sum of the
delay of two full adder cells in the first two ldsend the delay associated with the basic CPA

of the final level.

a  bo Co a; by C1 an1 bnt Cog
/iz iz 2 /1}2 iz

2
JL ST full )L ST full coe e ./{ ST full

N
N
)

adder adder [+, adder
X2 X . —/
(_"2 2 do /_72 2 di “'q /2 (_vz 5 n

ST half ST full *d STfull

adder adder [\ e e e e oo adder

N—

ST half ST full
adder adder

v

Sumg Sum; Sump4 Sum, Sump.q

Figure 7.2: ST version of a typical rnbit CSA for adding four operands
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7.2.2 Compressor Based Multi-Operand Addition

Instead of using CSAs for the partitions, logic guessors can also be employed for adding
multiple input operands as shown in figure 7.3. &) compressor [177] usually takes in
five inputs (four inputs in the absence of an inpatry) including a carry input from the
preceding stage and produces three outputs — twy ocatputs, with one carryl@arry)
propagating as carry input to the compressor btddke next column in the same row, while
the sum $un) and carry Couf outputs are fed as inputs to the final stageyedpple adder.

In essence, it is a 5-bit column adder [168].

ST (4:2)
compressor

ST (4:2)
compressor

ST (4:2)
compressor

ST half
adder

A\ 4

Sumg Sumy Sump.4 Sum, Sump.+

Figure 7.3: ST logic compressor based multi-input adder to add four operands

The efficient realisation of a (4:2) compressorchklas necessary for multi-operand
addition. It is usual practice to realise compressesing full adder blocks [168] [176] that
constitutes a scalable approach rather than systhgsthem as a single block — this is
because of the input space demand. A typical (@o2)pressor design [178] using two full
adder modules is shown in figure 7.4. The ST versioa (4:2) compressor can then be easily
derived by replacement of synchronous full addeduhes by equivalent ST blocks. It may be
noticeable that the compressor shown in figuretrédts a full adder as a CSA and thus the
compressor logic is equivalent to that realisedhgyCSA tree (first two levels, preceding the
RCA stage) of figure 7.2.
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a b ¢ d
Full adder
ICarry «—
Full adder cin
v
Cout Sum

Figure 7.4: A synchronous (4:2) logic compressor implemented using two full adders

Alternatively, a (4:2) compressor can also be sedliusing discrete gates as shown in
figure 7.5 [179]. The proposed weak-indication dasof the (4:2) compressor (with input

carry), shown in figure 7.6, is based on a traimtabf the synchronous version given below.

f—]
v
0

1l
0 1 ?
Sum

Cout

cin

Figure 7.5: A synchronous (4:2) compressor design based on discrete gates
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b1a1 b0 a0 bOal b1al0 d1c1 dOcO dOc1 d1cO

Figure 7.6: ST (4:2) logic compressor block with carry input

The multi-level expressions corresponding to theppsed compressor design shown
in figure 7.6 that utilises DRE (hereafter, ideetif as Sync_ST_compressor_DRE) are given
below. Given these, the synthesis of a compressmiuta without input carry would be

straightforward and is portrayed by figure 7.7.

Surm =w3%in1 +wa'cin0 (7.1)
Sun® =w3°cin0 +w3a'cinl (7.2)
ICarryl =d1w3’ + cinlw3" (7.3)
ICarry0 =dow3® + cinow3! (7.4)
Coutl =alw1’ + clw1* (7.5)
Cou® =a0w1® + cow1* (7.6)
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b1t al b0 a0 b0 a1t b1 a0 di ¢t d0O cO dO c1 di cO

Sum1

Sum0

Figure 7.7: ST (4:2) logic compressor module without input carry

From the above diagrams, it may be apparent tatST compressor realisations
correspond to the weak-indication timing disciplias only the sum output strongly indicates
the arrival of all the inputs, while the intermeadiand actual carry outputs do not and they are

allowed to evaluate/reset in an eager fashion.

7.3 Evaluation and Comparison

In order to analyse the efficacy of CSAs and corsgues forming part of the partitions in case
of a multi-operand adder, an example scenario oa&lition of 8 single-rail (16 with DRE)

input operands, each of size 32 bits (64 bits sea# DRE) was considered. The inputs were
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divided into two equal input fields and the indived summation result of these two partitions
is composed of 34 intermediate single-rail sum otgtpwhich were then added using a carry-
ripple adder to generate the final result that ieaf 35 single-rail (70 in dual-rail format)

sum outputs. The delay, area and power parametdfrgsobit-partitioned addition process,

assuming CSAs for the input field partitions isegivin Table 7.1. Similar input patterns were
used as that of the previous adder simulationghfemulti-input adder and they were fed at
intervals of 25ns to the entire adder, slower ttenearlier case (15ns), taking into account the
delay of Modified David et al._DRE adder. Weak-gation adders corresponding to various

ST design methods were constructed and also subasiyjoptimised for minimum latency.

Adder realisation Delay Area Power
style (ns) @m?* | @w)
Seitz_DRE 9.2 45805 | 3068.3
Singh DRE 14.7 49959 | 2931.3
Modified David et al. DRE | 19.9 68663 | 6079.9
DIMS DRE 16.6 66303 | 3245.0
Petrify DRE 9.7 42701 | 2943.5
Folco et al. DRE 10.8 38457 | 2311.9
Toms DRE 14.1 44866 | 2397.3
SSSC DRE 9.0 41586 | 2740.6
Table 7.1: Delay, area and power parameters corresponding to bit-partitioned CSA based ST

addition of 8 input operands, each of size 32 bits

By comparing Table 7.1 with Table 5.1, a near kimirend can be observed with
respect to all the adders in terms of delay, arehpower metrics. It can be seen from Table
7.1, that the Seitz_DRE adder reports a delay asereof only 2% in comparison with the
SSSC_DRE adder, which facilitates the least latemgngst all the other multi-input adders,
but the former occupies more area to the tune &b Hdd suffers from enhanced average
power dissipation of 12%. With respect to areaamaer, Folco et al.’s adder was found to be

optimal; however it experiences degradation inylempared to the proposed adder by 20%.

The design metrics corresponding to multi-operautlition based on the bit-
partitioning scheme that considers logic compresgothe input field partitions are given in
Table 7.2. (4:2) logic compressors based on JelidS, Toms and MOSOP approaches were

constructed following a semi-custom design styléthwsubsequent delay-oriented logic
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optimisations where feasible. For example, the DIMEak-indication compressor involved Sl
logic decomposition, while Seitz’'s weak-indicatioompressor entailed logic decomposition
of higher fan-in AND gates and replacement of theosd-level AND gates by state-holding
gates so as to guarantee gate orphan freedom ofphiysical implementation. The
Sync_ST_compressor_HIE represents the equivalenthef Sync_ST_compressor_DRE
design that adopts a combination of dual-rail astd-4 codes to encode the inputs (HIE). The
increase in datapath delay and area expense ftirealidders in relative comparison with the
Sync_ST_compressor_ DRE based multi-input adderthedoverhead in terms of average
power for all the adders in comparison with Tomsnpressor DRE based multiple input
adder have been highlighted in Table 7.2 to fatédita quick comparison. The proposed
compressor based multi-input adder utilising DREedabetter than that adopting the HIE
protocol for the first layer of the first level die input field partitions in terms of delay, area
and power. However, with respect to average povissightion, the Sync_ST_compressor
(DRE and HIE) based multi-input adder implementaitend to consume more than Toms’
solutions. This is probably attributable to theagee number of complex gates used in the
former and the optimisation that was effected isecaf the latter (4 OR2 gates were reduced

after logic optimisation of the original synthes@ution).

Power
(HW)

Area

Adder realisation Delay :
(pm°)

style (ns)

Seitz_compressor DRE 9.7 (10%)

77611 (1.91x)

3605.3 (49.1%)

DIMS compressor DRE 17.3 (97%)

111757 (2.75%)

3974.4 (64.3%)

Toms_compressor DRE 22.5 (157%)

51950 (1.28x)

2418.5

MOSOP compressor DRE 8.9 (1%)

72286 (1.78%)

3401.6 (40.6%)

Sync_ ST compressor DRE 8.8

40608

2588.6 (7%)

Sync_ST compressor HIE 8.9 (1%)

42124 (1.04x)

2667.4 (10.3%)

Table 7.2: Delay, area and power metrics corresponding to bit-partitioned compressor based ST

addition of 8 input operands, each of size 32 bits

From Tables 7.1 and 7.2, it can be inferred thathit-partitioned multi-operand adder
employing CSAs (compressors based on CSAs) fopanitions are preferable with respect to
power, delay and area in case of Seitz, DIMS andsTapproaches. This is likely because of

the greater input space consideration for a diceatpressor realisation as opposed to a full
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adder. The MOSOP_compressor_DRE based multi-ingderahowever features a similar
delay as that of the SSSC_DRE adder based mulii-iaqgder; this is because of the finer Si
logic decomposition attainable in case of the fornBait due to the greater number of cubes,
the area and power parameters are high for theefonompared to the latter. On the other
hand, the Sync_ST_compressor_DRE based multi-ixaier is found to be optimal from the
delay perspective. For its respective value of maxn datapath delay, it can be seen that the
SSSC_DRE adder based multi-operand adder consuoresarea and dissipates more power

by 2% and 6% respectively.

It has been observed that hybrid input encodedismplut adders generally tend to
suffer from an increase in delay, area and powearpeaters over their dual-rail encoded
counterparts. The dual-rail and hybrid input encbdersions of the proposed compressor
design serves as an illustration in this regards Thvery likely due to the fact that only the
primary inputs of the multi-operand adder can lmuged together using the HIE mechanism,
while all the intermediate and primary outputs ®sgate maintaining the dual-rail
convention. As a result, the possible reductionpawer dissipation and area requirement of
the HIE compressor logic tends to be nullified I textra power dissipation and area
occupancy of the associated encoding circuitry. dderencoding of primary inputs in a
heterogeneous fashion does not appear to haveefidd@hnimpact on the resultant multi-input
adder implementations. This effect is likely even dase of bit-partitioned multi-input
addition, which employs CSAs for the input fieldrjifeons. Hence, it is opined that DRE
might be an optimum DI data encoding conventiondffectively implementing ST multi-
operand addition in general (also with regard ® lbit-partitioning scheme), as opposed to
any other heterogeneous input-encoding scheme.ig mscontrast to the observation that has

been made with respect to ST dual-operand addititime previous Chapter.

Compressor designs based on many ST logic realsatethods tend to exacerbate
the area requirement and eventually have an adimapsect on delay and power metrics due to
an increase in the number of logic levels and tpr@ements. This is because the (4:2)
compressor logic would quadruple the input spaassideration in comparison with a full
adder block. Figure 7.8 graphically describes ttea &xpenditure of various ST compressor
realisations that make use of DRE or HIE protoc8eriesl’ represents the area of a (4:2) ST

compressor block without carry input and ‘Seriesigjnifies the area assuming input carry.
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The values mentioned in the ‘vertical bars’ of theg chart specify the area for a cell-based
implementation. Indeed, the area figures correspmndhat of optimised designs of the

respective ST methods.
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Figure 7.8:  Area comparison of ST (4:2) compressors realised using different methods

7.4 Summary and Inferences

ST multiple input addition based on a bit-partitran strategy has been discussed in this
Chapter. The impact of CSAs and compressors ompahallel input field partitions has been
analysed for the case study of an addition invg\8rsingle-rail input operands, each of width
32 bits. It is observed that the CSA tree strucamd compressor tree structure based multi-
input adders exhibit a near similar performanceénwigard to this case study, but it appears
that the Sync_ST_compressor_DRE based multi-opeadddr might be a good design choice
from the viewpoint of delay, area and power. Consetly, it could be of use in building

higher order ST logic compressors.
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In fact, ST CLA adders can be employed in placehef ST RCAs to minimise the
latency of multi-operand addition, as highlightedigure 7.9. Of course, this can be expected
to incur penalties in terms of area and power metlue to the greater area overhead for CLA

adders over RCAs.

CSA (2 levels)
or
Compressor (1 level);
Last stage
RCA/CLA

CSA (2 levels)
or

Compressor (1 level);
Last stage
RCA/CLA

Final stage
RCA/CLA

Figure 7.9: Describing positioning of CLA adders as a replacement for RCAs in the multi-operand
adder

Figure 7.10 portrays the delay reduction that @du# attained by incorporating the
proposed ST section carry based CLA adders instédde ST carry-ripple adders, in the
intermediate and final dual-operand carry propagal#er stages of the multi-operand adder
that employs a CSA tree (SSSC_DRE adder) or compréee (Sync_ST_compressor_DRE)

for the input field partitions.
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Delay (ns) B CSA tree based

B Compressor based

1 2
CSA/Compressor based design

Figure 7.10: Latency metrics for CLA adders and carry-ripple adders to perform bit-partitioned ST
addition of 8 inputs, each of width 32 bits

Label ‘1’ on the X-axis represents the delay valgerresponding to the usage of
RCAs, while label 2’ signifies the delay figurebtained by utilising hybrid CLA adders that
are based on the Type 2 configuration, which cosep8-bit and 4-bit lookahead carry logic.
It is evident that CLA adders enable a reductiofatency by around 19%, on an average, for

this case study.

Adder Area | Power

realisation style (um?) (LW)
CSA tree based (with RCASs) 41586 | 2740.6
CSA tree based (with CLA adders) 49314 | 2915.0
Compressor based (with RCAs) 40608 | 2588.6
Compressor based (with CLA adders) | 48336 | 2763.1

Table 7.3: Area and power figures for bit-partitioned ST addition of 8 inputs, each of width 32
bits, using RCAs and CLA adders
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However, the downside being associated increasaea and power figures, as can be
seen in Table 7.3. Hence, the RCA topology incafeat multi-input adders exhibit less area
expenditure and dissipate less power than the smpltit adders that feature the CLA
topology by 16% and 6% respectively, on a meansb&ence, there is a trade-off involved

between the above two approaches in terms of @eldyarea/power.

It should be noted that the exemplar circuit coeed here and the analysis that
accompanied might only be a representative of thepgsition and just serves as a
demonstration of the concept. For example, to agkit dinary operands of arbitrary size, a
compressor tree based realisation would encoundetesy of two compressor modules and a
final CPA stage, whereas the bit-partitioned aduaerd be expected to have a critical signal
path traversed through a compressor block, a fidiea block and the final CPA stage. It is
also anticipated that though a generic groupingnédation may be helpful with respect to
addition of operands of random size, the actuapaititioning decision may better follow a
case-by-case analysis approach when concerned phiyisical implementation. This is
because many permutations may be feasible and rm@aythem could merit consideration
when targeting optimisation of delay/area/poweis lto be noted that only a straightforward
bit-partitioning strategy has been considered hd&d¢her optimisations might include
determining an optimal pipelining strategy alonghwionsidering ST implementation of other
conventional techniques for multi-operand addifib®7] [168] [176] [178]. These are left for

further investigation.
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Chapter 8

Conclusions and Scope for Further Work

In this final Chapter, a concise description of thesis contributions is provided along with

certain insights, followed by a brief discussioraadirection for future research.

8.1 Summarising the Thesis Contributions

ST design presents an attractive alternative toveational synchronous design, especially in
the current/future era where issues such as rifyabnd variability tend to assume greater
significance than quality-of-results. Hence, punguresearch in the domain of ST logic is
deemed necessary and plausible, owing to the HattST designs are inherently elastic and
hence they are better placed to tackle the chaleraf process, device and parameter
variations at the logic level rather than tradiibeynchronous design methods. However, they
necessitate unorthodox design methodologies, whiablve greater complexities that in turn
complicate the synthesis process.
In brief, this thesis makes the following majomtributions towards advancement of
existing knowledge in the domain of ST design:
* A set theory based heuristic for efficient self¢itinsynthesis of random combinational
logic specifications
* A mechanism of achieving global indication with theent of reducing delay/area
* Proposition of redundant logic insertion as an a&ategmethod to speed-up dual-
operand addition based on a RCA topology, withigdhe area/power overheads
» ST section carry based CLA adder architecturesghwhirther minimise the latency of
dual-operand addition in comparison with the b&#A structure
* A bit-partitioning scheme for multi-operand additiand a ST logic compressor design
The major issue that has been dealt with in Chapiserthe reduction of input space,
which expands exponentially causing a state exmphosvithout compromising the robustness
criterion. This has been possible through the psiijom of a novel heuristic, based on the

principles of set theory, to derive MDSOP formsnfirdSOP expressions. The heuristic has
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been implemented in Java and its efficacy vis-aetieer approaches has been analysed with
respect to some combinational benchmarks. Howeles, heuristic purely corresponds to
synchronous logic. Hence, it has been subsequemttgnded to address ST designs
embodying DI dual-rail encoded datapaths and tkeltant MOSOP procedure has also been
implemented in Java. To prove the feasibility af tmplementation with respect to obtaining
solutions for larger problems in reasonable timg&ynahronous equivalents of numerous
combinational benchmark specifications (i.e. fumetblocks) that comprise several inputs and
outputs have been targeted. On an average, thataigdor function block realisations has
attained 22% logic sharing. Direct symbolic tratista coupled with signal insertion may be
used to implement datapaths featuring higher ofdef-n codes. Furthermore, a system
configuration has also been proposed in suppoth@fproposed MOSOP heuristic so as to
retain the benefits of the synthesis scheme. Exasngfl a multiplexer and demultiplexer were
considered to validate the benefits of the propmsit

It appears that asynchronous adders were concewezhrly as the 50’s [181] — the
carry-completion sensing adder (CCSA), which icpeed to be the asynchronous equivalent
of a synchronous RCA. But a majority of the effaeating to implementation of arithmetic
circuits in asynchronous design style were mairdgutsed on the non-DI bundled-data
protocol that does not correspond to a robust #iggaconvention; a representative list
includes [182] — [192]. This may be because theedgohg combinational logic is usually
similar to that that could be implemented usingcéyonous design methods. Also, relatively
less modification would be required even with emegaf certain signals in dual-rail format,
For example, the carry signal in a typical CCSAullisne dual-rail encoded, while the rest of
the signals are retained in single-rail formatcémtrast, ST arithmetic circuit realisations (i.e.
those with no matched delays) have received relgtilittle attention. In this regard, this
thesis has specifically dealt with this issue fransynthesis perspective by drawing inputs
from the proposed MOSOP heuristic. In Chapter Bipua carry-ripple adders corresponding
to different ST approaches have been constructdchnalysed with the intent of minimising
the datapath latency within this architecture. Ais &nd, firstly, various single-bit and dual-bit
adders based on DRE, HIE or HE have been implemer@econdly, a hybrid scheme
involving a mix of single-bit and dual-bit adder dutes has been considered that only

facilitated meagre delay reduction. Finally, to iagk dramatic reduction in datapath delay,
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the concept of redundant logic insertion was putwéwsd and its potential has been
demonstrated by comprehensively analysing its impacsingle-bit and dual-bit adders that
are incorporated into the basic CPA structure.

To achieve non-linear computation, even for thestvoase, a new ST section carry
based CLA topology was proposed in Chapter 6. is tlonnection, two slightly different
architectural styles (Type 1 and Type 2) were erachiand their benefits were studied based
on 2-bit and 4-bit lookahead carry generators. @d#élers based on many other methods were
also constructed for the purpose of comparativduatian. A theoretical estimation of the
complexity involved in realising higher order lodlead modules was also provided. Further, a
peephole optimisation involving a hybrid schemehmitthese structural styles was performed
and it was found that the Type 2 configuration base the 4-bit lookahead carry is suitable
for dual-rail encoded datapaths, while the Typedfiguration based on a 4-bit lookahead is
optimal for hybrid input encoded datapaths fromedayg perspective. Also, the problems
involved in direct translation of conventional shnenous lookahead architecture into its ST
equivalent had been elucidated.

Considering ST dual-operand addition, dealt witiCimapters 5 and 6, the proposed
section carry based CLA scheme has the best dedarycmThe hybrid SSSC_HIE_NRL adder
when incorporated into a 4-bit lookahead carry citme (corresponding to the Type 1
architecture) leads to critical path delay reductioy 14.3% compared to the hybrid
DSSC_CCAOQ_global adder, which is the fastest wibard to the basic CPA topology.
Nevertheless, the latter features less area occypard lower power dissipation by 18% and
5% respectively. In general, ST RCAs comprisingglgirbit adder modules were found to
occupy less area and dissipate less average pbaretheir CLA counterparts but suffer from
delay degradation. For example, the SSSC_HIE_NRilemadorresponding to the basic ST
RCA topology reports the least power and area rement amongst all the dual-operand
adders, exhibiting reduced power dissipation aed accupancy compared to the fastest CLA
adder by 10% and 39% respectively, but accompanittda corresponding increase in delay
to the tune of 122%. Hence, in view of these, it ba stated that the ST SCBCLA adder
features approximately half the longest datapataydef a ST RCA structure whilst suffering

from 11% increased power dissipation and 63% mia expenditure.
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In Chapter 7, ST multi-input addition has been teéh and a simple bit-partitioning
scheme has been described. The advantage of caopmever CSA trees has been explained
through simulation results for the case study difitepartitioned addition, comprising eight
single-rail input operands, each of size 32-bitsthis connection, compressor based and CSA
based bit-partitioned multi-input adders based dferént ST approaches have also been
constructed. It has been inferred that, in genemhpressors could be beneficial in terms of
delay, while CSAs might occupy less area and elgaypower dissipation when used for the
partitions. It is opined that this observation ntigh a generalisation for ST addition involving
multiple input operands. Given this, the exact ffieméth respect to delay for the former, and
area and power for the latter may however vary dejog on the number of input operands

and their corresponding sizes.

8.2 Multi-Level Synthesis of Weak-Indication Circuis

An important direction for further research is tetemd the two-level MOSOP heuristic
proposed in this thesis to multiple levels, esgbciaith the aim of propounding a universal
solution for weakly indicating realisations of drary combinational logic. This entails greater
complexity mainly due to the need for preserving tlover constraint over multiple levels of
logic, so that the unique successor set and ackwmm&ment criteria can be upheld.
Nevertheless, this is currently achievable witlatiee ease with respect to a restricted class of
functions (certain logic and arithmetic circuitshish are generally weighted functions),
where suitable candidates for SI decomposition tentbecome available from within the
MOSOP expressions. This seems to have been possibig to the reason that the functions
tend to exhibit full or partial symmetricity withespect to permutation of its variables or
literals. At present, this constitutes only a prgtiary solution [152], but the search is for a
universal method that could address any randontibumadity.

Decomposition of larger cubes into smaller phybicaealisable cubes primarily
depends upon the possibility for performing S| deposition. It may be that in many cases,
such an opportunity may not exist (i.e. the cubmsesponding to different function outputs
may not be orthogonal to each other in the firat@) or even if it does, the size of the SSIC
may still exceed the maximum element size consiguthe base function set. In such
situations, the opportunity for finding a mutuatisthogonal SSIC/PSIC needs to be explored
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whose existence cannot be guaranteed. It may hethtbse issues can likely be overcome
through selective expansion of certain PSICs, airathe decomposed solution may not be
physically realisable. Therefore, the likelihood the non-availability of suitable orthogonal
cubes for SI decomposition and the impossibilityeffecting decomposition to a finer level
were found to be the major reasons that hamperi-feu#l implementation of combinational
logic as weak-indication circuits.

To overcome these drawbacks, a possible solusosuggested in this thesis. The
concept of ‘complementary cubes insertion’ is psgzbto supplement the above procedure
that can act as a driver for facilitating weaklylicating realisations of any combinational
logic specification. In simple terms, this amoutatsntroducing complementary OFF-set/ON-
set cubes in a rail of the encoded function blogkpot, whose complementary rail actually
contains an indecomposable ON-set/OFF-set cubeectgply. The introduction of such
complementary cubes would not affect its functidpalThis is because, in generd,
completely specified cubes corresponding to the tail of a function output implies thgt
completely specified cubes would belong to theefalsl of that function output, wherd' 2
(p + ) signifies the Boolean space, withreferring to the number of elements comprising the
support set of the indecomposable cube. Therefoeeprocedure would lead to inclusion of
redundant cubes, which is unavoidable. It shoulchbed that this would not necessarily
require consideration of the entire input spacecesm may not be equal toa, wheren
represents the number of concurrent single-railiimpWith the availability of 2 cubes, the
problem of SI decomposition of larger sized cubets golved as all the"Aistinct cubes
exhibit mutual orthogonality between them and tfeeethey can be decomposed up till a
specified granularity of the base function set. ldeer, it should be borne in mind that for the
worst-case scenarim may become equal tg though this may rarely occur. Even in such a
case, there may be a good likelihood of the exteterf many cubes that may match with the
new cubes introduced and duplication of cubes lsan be eliminated.

In addition, considering the notion of covering esland covered cubes, a larger sized
cube corresponding to a function block output cardnveniently expressed with reference to
a smaller sized cube (that belongs to a differenttion block output) through substitution as
described in section 4.2.3. This assumes thatriadler sized cube acts as the covering cube

and the larger sized cube is the covered cube.nGlve above insights, the effectiveness of
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the proposed solution may ultimately depend upemtiture of logic functionality considered
and the initial MOSOP solution obtained. Impleménta of this procedure and further
analysis targeting asynchronous equivalents of cwmaibnal benchmarks, exploring the
opportunities for global/local optimisations andditing the beneficial impact of various DI

data encodings within this framework are resengefiiure work.
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Appendix

Datapaths Employing 1-ofh Codes with Similar Symbolic Variable
Assignments

This section describes a mechanism to identify allytuorthogonal cubes and states the
relations to be satisfied for SI decomposition whdlealing with datapaths that employ any
combination of arbitrary one-hot codes and optiorgaf similar symbolic variable assignment.
As stated in section 4.1, the following discuss®melevant in the context of general multi-

level synthesis models for indicating realisatioharbitrary combinational logic functions.

We shall consider an example using the 1-of-4 dodéhe purpose of illustration. As
mentioned in Chapter 2, two single-rail inputs dam represented using a 1-of-4 code
symbolically. Let us assume that a function F igaetelent upon 6 input variablesly,c,d,e )
and expressed by the disjunction of two cubes X¥anspecified bya’bcd’e’f anda’b’c’d’ef.
The pairs of single-rail input variables,lf), (c,d) and €,f) are now represented by code group
sets, sayl, g2 andg3, wheregl, g2 andg3 are specified byi0,i1,2,3}, {i4,5,6,7} and
{i8,i9,i110j11} respectively. In general, to represent a grotim single-rail inputs using a 1-
of-n code, the corresponding code group set of thehoheepresentation would requir€' 2
distinct elements, whenme = 2". Assuming a similar encoding assignment as showhable
2.1, we have X #2i5i10 and Y =3i7i8.

From the one-hot code representation of cubesdXYarit is apparent that enumerating
their support sets would not convey any useful nmgpas I’ serves as the common symbolic
variable index. Therefore, the notion of dependesetywould be used extensively. In this
context, the basic criterion to be satisfied by teudbes P and B, which may be mutually

orthogonal is given by the following:

ID(P)| =1, ID(R)|> 1 (A1)
This equation conveys that 8nd B consist of at least a single literal correspondong
a code group set. Instead of ascertaining the Mtlsat corresponds to the variables of the

CR set), the orthogonality relation between twoexuks established based on the value of
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DMO. DMO is determined in a different way for l4ofeodes assuming similar symbolic
variable assignments with variables identificatioging replaced by the notion of literals
identification (LI), corresponding to each codeugoll is an operation performed on all the
CR sets addressing each code group individuallyyaelds a single literal that belongs to a

unique code group set. For example, with respectib@s X and Y, we get the following:
CR_LILg1[X,Y]=i2,CR_LILg2[X, Y]=i5, CR_LI g3 [X, Y]=i10 (A.2)
CR_LILO1[Y,X]=i3,CR_LILg2[Y, X]=i7,CR_LI.g3[Y, X]=i8 (A.3)

Hence, in addition to (A.1), the conditions todaisfied such that two random cubes
P, and B adopting any higher-order 1-of-encoding protocol can be dubbed as mutually

orthogonal are given below, wheékean refer to any unique code group.
CR_LIgk[P1, P] #0, CR_LI_gk[P,, P] #0 (A.4)
CR_LI_gk[P1, P] N CR_LI gk[P,, P =0 (A.5)

(A.4) and (A.5) essentially mean |CR_gk[Pi, P]| = |CR_LI_gk [P, Pi]| = 1, for any
k. In simple terms, considering a specific code grset, there should be a unique literal in P
relative to B and vice-versa. DMO is basically an integer coafnthe number of times that
(A.4) and (A.5) gets satisfied between the paicabes considering the entire distinct code
group sets. It is imperative that DM®1 be upheld between two cubes exhibiting mutual
orthogonality. DMO = 0 implies that both the cukm® identical (in case of equipollent
cubes). In general, it could hint at the possipibf two cubes constituting an output cover
function to become activated for an input combratithereby violating the monotonic cover
constraint. Referring back to (A.2) and (A.3),ancbe concluded that X is orthogonal to Y.

The conditions that may be deemed sufficient fowalSlI decomposition of two
mutually orthogonal cubes, Rnd B (i.e. the pair of cubes satisfying (A.4) and (A,Fased

on arbitrary 1-ofa codes, are given below:

ID(PYI > 1, [D(R)] > 1 (A.6)
ID(PY)| = ID(R)] (A.7)
|ICDI[D(Py), D(R)]| = ID(R)I-1 = [D(R)|-1 (A.8)

(A.6) implies that there should be at least tverdls in both Pand B in order that an
opportunity for SI decomposition can be exploréd7] mandates that the dimension of both
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the cubes should be equal. Lastly, (A.8) convegs €DI [D(R), D(P)] LI D(P.) and CDI
[D(P.), D(P,)] OO D(P,), signifying that > and B differ only with respect to a single code

group set element.
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