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Abstract

MANAGING A REAL-TIME MASSIVELY-PARALLEL

NEURAL ARCHITECTURE

James Cameron Patterson

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2012

A human brain has billions of processing elements operating simultaneously; the

only practical way to model this computationally is with a massively-parallel com-

puter. A computer on such a significant scale requires hundreds of thousands of inter-

connected processing elements, a complex environment which requires many levels of

monitoring, management and control. Management begins from the moment power is

applied and continues whilst the application software loads, executes, and the results

are downloaded.

This is the story of the research and development of a framework of scalable man-

agement tools that support SpiNNaker, a novel computing architecture designed to

model spiking neural networks of biologically-significant sizes.

This management framework provides solutions from the most fundamental set

of power-on self-tests, through to complex, real-time monitoring of the health of the

hardware and the software during simulation. The framework devised uses standard

tools where appropriate, covering hardware up / down events and capacity information,

through to bespoke software developed to provide real-time insight to neural network

software operation across multiple levels of abstraction. With this layered management

approach, users (or automated agents) have access to results dynamically and are able

to make informed decisions on required actions in real-time.
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Chapter 1

Introduction

In the race for improved computing performance, both overall computing capacity and

energy efficiency play key rôles in the design and delivery of new computing sys-

tems. In very large-scale machines the processing hardware may be distributed across

multiple cores, chips, boards, equipment racks, rooms and perhaps physical locations.

Parallelism, once the preserve of research computing, is becoming the prevalent pro-

cessing environment.

Parallelism gives rise to systems comprising large numbers of components, includ-

ing processors, chips, power supplies, memory, disks, circuit boards and interfaces.

The larger the number of elements forming a system, the greater the statistical likeli-

hood of component failures at any time. It is therefore particularly important to manage

the status of equipment and resources in such complicated machines.

SpiNNaker is a specialised massively-parallel computing architecture developed

primarily to model large scale spiking neural networks in real-time. Its architec-

ture is inspired by that of the biological brain, offering high-levels of computational

parallelism, connectivity and redundancy in an energy efficient environment. This

thesis covers the system management of SpiNNaker, within its complex (and con-

strained) real-time computing environment, which ultimately extends to million+ core

machines. The management remit includes each processor’s boot-up and testing, the

loading and execution of software on the platform, through to the operational environ-

ment of the whole machine as it performs simulations – providing facilities for both

hardware operators and software users to view the system and its performance in-flight.
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1.1 Research Motivation

As the number of components rise in a computer platform, it may become difficult to

attain a complete view of the operational status and serviceability of all parts of the sys-

tem for the purposes of management [SyMAF00]. This is true for both hardware and

software systems as they scale in size, including large deployments of the SpiNNaker

platform.

1.1.1 Not Chips, but Cores with Everything

From the beginning of the integrated circuit era until the middle of the first decade of

the 21st century, microprocessor architectures have typically used a single processor

[Gee05]. Incremental performance gains centred around optimisation of this single

processor – by reducing instruction cycles, adding pipeline stages, caching, increasing

memory and miniaturising process geometry to permit increased clock speeds. As the

majority of feasible performance gain using these techniques has already been attained

– due to limiting factors such as power-consumption, heat-dissipation and leakage cur-

rent – designers are increasingly turning to providing greater computational power

by parallelism and placing multiple processors onto the same die [ONH+96]. Using

this approach Chip Multi-Processors (CMPs) provide multiple execution streams and

enhanced performance where the software being run is optimised / compiled to take

advantage of multiple execution threads [Gee05]. However, not every application / sys-

tem lends itself neatly to parallelism and multi-threading, and in a parallel environment

this may leave computing resource sub-optimally used. The ever-increasing spiral of

demand for more processing power is fast becoming more of a software than a hard-

ware issue; to keep processors occupied, and managing limiting parallel factors such

as inter-processor communication, memory input / output contention and coherence.

In CMPs there remains a physical space constraint on the chip die, so placing

multiple cores in a single package is also limited in its scalability. Logically therefore,

once core-numbers approach the limits on-die, multi-chip architectures are used to

scale computer processing capacities further. Multi-chip solutions have been used in

scientific high-performance computing for some time, with the same multi-threaded

limiting factors, where effective performance is maximised by study and optimisation

of the problem to limit the restricting cases. It remains to be seen whether sufficient

parallelism can be incorporated into generic ‘consumer’ applications to make good use

of many-core architectures.
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Mainstream desktop and server architecture shipments now predominantly deliver

CMPs, and this CMP approach even extends to the latest generation of mobile phone

handsets and tablet computers [NVI12]. Amdahl’s Law [Amd67] characterises the

issue – illustrating that in multi-core systems the maximum speed-up achievable by

parallelism is limited by the operational portion which may not be parallelised.

The ‘Holy Grail’ of efficient generic software parallelism seems no closer now than

when the issues first arose and, whilst in the future large arrays of processors may be

available, many of them may be idle at any one time unless there is a transformation

in applications. Processors are becoming plentiful and a true commodity, and process-

ing capability is increasingly not the limiting case in many environments, Amdahl’s

law is. Examining today’s high-end mobile systems provides a valuable insight – ag-

gressive power management turns off unused capacity to preserve the new measure of

ubiquitous computing: energy.

Approaches to Multiprocessor Computers

Differing design philosophies may be taken when building high-performance multi-

processor computers:

1. Computational Focus: use as many fast processors as required in an intercon-

nected configuration to reach the performance target.

2. Energy Focus: deploy numerous, slower, energy-efficient processors to achieve

the maximum performance possible, within the energy budget.

An example of the first approach, is the Blue Gene/P series of super-computers

from IBM. The highest performing Blue Gene/P machine, JUGENE [JUL12], is recor-

ded in the June 2012 TOP500 [MSDS12] (a list of the world’s 500 most powerful

computer systems). It is listed as attaining a peak of 825 TFLOPS (Linpack benchmark

[DLP03]), using 2.268 MW (∼364 MFLOPS / W) across nearly 300,000 PowerPC

processors. As it becomes possible to build these increasingly large machines, their

energy requirements begin to become a significant issue, logistically and financially.

Wholesale electricity pricing in late 2010 (in the UK) was ∼£50 per MWh [UK 10].

The wholesale energy to run JUGENE therefore costs around £3,000 per day, £80,000

per month or £1,000,000 per year. The actual utility charges are likely to be far higher

once the energy supplier margins and infrastructure costs are taken into account and

added to the bill.
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The next generation of the IBM Blue Gene family, the Blue Gene/Q, concentrates

on greater energy efficiency. Machines using this architecture also have entries in the

June 2012 TOP500 [MSDS12], but rather than JUGENE’s 364 MFLOPS / W, the IBM

Blue Gene/Q JUQUEEN (as an example, also installed in the Jülich Supercomputing

Centre), attains 1,380 TFLOPS at ∼2,000 MFLOPS / W. The Blue Gene/Q architecture

is a chart topping entry in the June 2012 Green500 [FC12] (a list of the most efficient

supercomputing platforms across the world), and is a significant generational advan-

tage over its predecessor; being able replicate the same performance as the JUGENE

system for around a fifth of the energy costs. The next major milestone in super-

computing is Exascale computing [Kot07], but even with the Blue Gene/Q generation

of hardware Exascale computing is clearly infeasible, as the operational energy costs

would exceed £200 million per annum, and require 500 MW to operate (a significant

proportion of a large modern power plant).

SpiNNaker [PFT+07] takes the second approach of using many less capable but

highly-efficient processors, with core technology from ARM Ltd. operating at modest

clock frequencies. This biologically inspired architecture can scale to a maximum of

65,536 chips, each with 18 ARM processing cores (> 1 million cores in total), using

30-75 kW to deliver>250 TIPS with an efficiency bettering 3500 MIPS / W [PGP+12].

The machines mentioned above are homogeneous devices, however there are alter-

natives to this approach using hybrid processing technology, such as the Kraken XT5,

the Cray XT5-HE, the IBM Roadrunner, and Tianhe-1A [MSDS12]. A current, notable

European initiative taking this hybrid approach is the Mont-Blanc project [dS12], initi-

ated in October 2011 and coordinated by the Barcelona Supercomputing Centre. This

3-year European project aims to deliver the highest computing:energy ratio of any su-

percomputing platform. It, too, aims to take advantage of the ARM processor family,

albeit in conjunction with nVidia GPU technology, and to attach boards modularly into

larger systems. Their two prototype systems target 300 MFLOPS / W in the ARM only

configuration, and with the ARM plus GPU version: 7,500 MFLOPS / W [Ini12].

Further approaches to multi-processor computing include building ‘virtual’ super-

computers using ‘grid’ technology [Fos03], incorporating a plethora of machines over

multiple areas of control, or using clustering techniques such as Beowulf [SBS+95].
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Host

Figure 1.1: Multi-chip SpiNNaker CMP system shown as a torus.

1.1.2 Large System Management

With large parallel systems becoming increasingly prevalent, they require managing

through all stages of their operation to validate the viability and correctness of the re-

sults they produce. Management of such a system begins at power up, whilst the hard-

ware undergoes Power-On Self-Testing (POST) and system preparation, and continues

during the loading of the system and throughout execution on the platform. Following

completion of the job, the system continues to provide managed facilities including

dumping data for further (off-line) analysis. The system is then either powered down

or reset / reloaded and the cycle recurs.

Options for hardware monitoring of a large system are constrained [BAFL+11],

and for conventional high-performance systems are predominantly based around be-

spoke tools supplied by the manufacturer, custom scripting developed by the system

operators locally, and the use of generic agents and management software such as Na-

gios [BAFL+11]. Similarly, with software monitoring, the user is able to utilise the

interface provided by the vendor, or may be able to modify existing tools or provide a

custom solution.

1.1.3 Neural Networks on Parallel Computers

With its billions of processing elements operating simultaneously, simulation of the

brain seems an ideal fit for the parallel computation model. The brain consists of

highly interconnected repeated fundamental computation units (neurons), which act

together to form an energy-efficient, high-performance computational platform. In an

Artificial Neural Network (ANN) each of the simulated neurons and associated inputs

may be modelled on available processors, including the ability to statistically multi-

plex neurons onto the computing resources as the neural model runs in parallel. The



1.1. RESEARCH MOTIVATION 21

number of neurons that may be modelled depends on the biological fidelity required

of the simulation, the target operational time-base and the parallel computational re-

source available. As each biological neuron operates asynchronously to the system

as a whole, without reference to a coherent clock or memory store, ANNs offer few

of the serial bottlenecks of conventional parallel programming and high resource util-

isation can be attained. Artificial Neural Network modelling does, however, rely on

rich networking to replicate the high-degree of interconnection found between biolog-

ical neurons. The capacity of the communications fabric (measured as its bisectional

bandwidth) must be sufficient to convey the large number of neural signals (spikes) as

they are emitted and replicated in the network, fanning-out to all destination neurons.

This characteristic (and particularly the small message types used to represent spikes)

is often problematic for conventional parallel platforms, leading to the development of

specialised architectures.

1.1.4 Monitoring a Specialised Massively-Parallel Neural System

– SpiNNaker

SpiNNaker is an novel, scalable architecture designed to extend up to a million proces-

sors by the interconnection of SpiNNaker chips. There are 18 low-power ARM cores

in each SpiNNaker chip, the chips typically interconnected in a torus configuration

(fig.1.1). This configuration of a SpiNNaker machine provides a massively-parallel,

resilient environment, ideally suited to the simulation of large artificial neural net-

works.

Whilst the new bespoke SpiNNaker platform is in its infancy there is no pre-

existing software in its management realm. The SpiNNaker platform is a resource-

constrained one, with modest amounts of memory and processors more frequently

found in embedded environments than in high-performance computers; this provides

a limited set of paths which may be taken for the management platform. ‘Customers’

of the SpiNNaker machine will naturally assume that manageability features will be

provided, and this requirement drives much of the research detailed in this thesis. Its

goal is to research and develop frameworks for scalable systems management of the

SpiNNaker machine, throughout its full run-time cycle.

Figure 1.2 depicts the areas over which the management requirements of SpiN-

Naker overarch, which touch on both its hardware and software. This thesis follows

a chronological path in the system management time-line of a SpiNNaker simulation,
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and figure 1.2 and derivatives thereof are used throughout to indicate in which area

each chapter’s contributions are made.

SpiNNaker System Management Time-Line

Power On

/ Reset

System 

Load

Start

Sim

Power Off / 

Reset

Download

Data

End

Sim

management

management

Figure 1.2: The system management time-line of SpiNNaker.

The SpiNNaker management solution is required to scale to a million processor

machine and operate in real-time, from power-on through reset cycles to final power

off. It is required to provide facilities for hardware operators so that faults within

the system can be identified, mapped out if possible, and rectified in a timely fash-

ion. SpiNNaker has a much wider set of users than just hardware operators, as it is

not designed to operate as a ‘black-box’ batch execution system. Researchers running

software on the platform will likely come from areas including psychology, computa-

tional neuroscience and machine learning – therefore providing these user groups with

a suitable management path is also necessary. As SpiNNaker is built with the main pur-

pose of operating massive artificial spiking neural networks in real-time for the user

groups indicated, a software visualisation interface which provides emulation of exist-

ing biological functional brain imaging techniques such as fMRI, PET and EEG may

fulfil their requirements. However as ANN simulations operate on a computational

platform, it is possible to retrieve fine-grained noise-free detail through simulation

imaging, compared with the biology, helping to gain greater functional insight. These

detailed visualisations can be gathered at the level of single neurons and synapses,

through assemblies and populations, to entire aggregated network representations.

A large SpiNNaker deployment retains an immense amount of state. If this data

were to be downloaded in a single session, then the output paths would be saturated by

a million+ cores, 200,000 inter-chip links, and approaching 10 terabytes of RAM. For

this reason the management system must focus its monitoring – initiating aggregation
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and sampling techniques to ensure it does not impact the simulation being run. When

looking at diagnostic information it should only enable functionality in areas where

required: for ongoing statistics, or when a problem is detected in an area and the

management agent is ‘zooming’ in to see the detailed diagnostics. The user viewpoint

needs to be able to encompass the full range of granularity to look at the system health

/ performance as a whole, by neuron population, per chip, core or neuron level. Given

that the simulation is designed to emulate up to 1 billion neurons in real-time, this

range needs to support scales of >109:1.

While it is clear that the external links are constrained by the channel bandwidth

available to them, there are also significant limitations on the processing cycles avail-

able to provide management functionality. Each SpiNNaker core has small local mem-

ories, but has the primary task of simulating neural networks, therefore the lightest of

touches is a fundamental requirement of the management system applied to the ma-

chine. This applies in terms of memory footprint, processor cycles and bandwidth use,

to ensure the primary application function is not disrupted.

Whilst the motivational focus of this thesis is the SpiNNaker system, a lightweight

management framework (developed in this thesis) may also be applicable to other large

resource-constrained distributed applications. This is particularly prescient as ARM

core technology (as used by SpiNNaker) is widespread, with over 20 billion licensed

ARM cores deployed across the globe by 2012 [ARM12]. ARM technology at present

finds itself primarily in (constrained) mobile and embedded environments, a similar

situation to which each SpiNNaker processor finds itself within.

1.2 Contributions

There are a number of contributions the author has made forming the SpiNNaker man-

agement framework time-line (fig. 1.2) and chronologically these include:

• Within the SpiNNaker chip silicon there resides a ROM which has the software

used to initialise and test each chip, processor and peripheral. This ROM image

contains novel routines to reliably flood-fill software throughout the machine,

for dynamic fault recovery, and to deal with network communications across a

machine that powers up with tens of thousands of homogeneous hardware com-

ponents. Results from this work have been published as [SPF11].

• Within the area of software monitoring a primary data visualisation tool has been

developed for managing simulations executing on the SpiNNaker machine. The
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visualiser works in real-time, plotting activity and providing facilities to interact

with the neural network simulations. Visualisation techniques have been tailored

to the users’ requirements, and to suit the SpiNNaker execution environment, in-

cluding the ability to extend to new ANNs (and to plot non-neural data). The

results from this contribution have been presented at the International Joint Con-

ference on Neural Networks 2012 [PGRF12], and are covered in more detail in

chapter 6.

• Within the SpiNNaker system hardware monitoring, the main contribution is the

protocol conversion to permit standard tools to be used to manage the SpiN-

Naker platform. This concept enables tools to interface with the SpiNNaker sys-

tem through a single, unified, and extensible, communications framework. This

novel translation function additionally links with databases to perform mapping

between hardware resources and software functions using them. This technique

also permits extension of the monitoring technique from hardware, to software

components in the system. The results of this contribution are covered in more

detail in chapter 8 and have been accepted for the 2012 EuroMicro Digital Sys-

tems Design conference [PPGF12].

The SpiNNaker project is very much a team effort, and while the above areas within

the management realm are the largest contributions led by the author, other contribu-

tions have been made with simulation, testing and specifications of the SpiNNaker

chip, and in areas and projects led by other group members. Where this work led

to specific publications, this is indicated in the publications section below. Similarly

within the management areas which I have led, there have been contributions made by

other team members acting from the author’s lead. These contributions where substan-

tive are indicated.

1.3 Publications

The following is a chronological list of major peer-reviewed publications to which the

author has contributed. Each publication is referenced, and the contribution to each is

specified:

• ACM Computing Frontiers 2010 conference paper, “Scalable Event-Driven Na-

tive Parallel Processing: The SpiNNaker Neuromimetic System” [RJG+10].

Contribution: Real-Time Communications between the Host System and the
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SpiNNaker board to enable to control of the Hunter in the simulation environ-

ment.

• IEEE World Congress on Computational Intelligence (WCCI) 2010 – Interna-

tional Joint Conference on Neural Networks (IJCNN) conference paper, “Algo-

rithm and Software for Simulation of Spiking Neural Networks on the Multi-

Chip SpiNNaker System” [JGP+10].

Contribution: Support of real-time data collection, by enabling spikes to be sent

to / aggregated and received from the SpiNNaker system.

• International Conference on Neural Information Processing (ICONIP) 2010 con-

ference paper, and Australian Journal of Intelligent Information Processing Sys-

tems, “Interfacing Real-Time Spiking I / O with the SpiNNaker Neuromimetic

Architecture” [DPG+10].

Contribution: Software and control algorithms, communication and interfacing

of silicon retina and robot to the SpiNNaker system.

• WCCI 2011– IJCNN conference paper, “Distributed Configuration of Massively-

Parallel Simulation on SpiNNaker Neuromorphic Hardware” [SPF11].

Contribution: Led on the boot software, flood-fill algorithms and error checking.

• Parallel Computing article, “Event-Driven Configuration of a Neural Network

CMP System over an Homogeneous Interconnect Fabric” [KRN+11].

Contribution: Boot up protocol and application loading process.

• International Journal of Parallel Programming article, “Managing Burstiness and

Scalability in Event-Driven Models on the SpiNNaker Neuromimetic System”

[RNJ+11].

Contribution: Spiking model communications I / O setup in hardware and in

silicon simulation.

• In press – Journal of Parallel and Distributed Computing article, “Scalable Com-

munications for a Million-Core Neural Processing Architecture” [PGP+12].

Contribution: Lead author. This article contains material based on a subset of

chapter 4 and is copyright Elsevier.

• WCCI 2012 – IJCNN conference paper, “Visualising Large-Scale Neural Net-

work Models in Real-Time” [PGRF12].

Contribution: Lead author. This paper contains extracts from chapter 6 and is

copyright IEEE.

• Accepted for 15th EUROMICRO 2012 Conference on Digital System Design,

“Managing a Massively-Parallel Resource-Constrained Computing Architecture”



26 CHAPTER 1. INTRODUCTION

[PPGF12].

Contribution: Lead author. This paper is based on some of the material forming

chapter 8, and is copyright IEEE.

• Accepted for 2012 IEEE Custom Integrated Circuits Conference, “SpiNNaker:

A Multi-Core System-on-Chip for Massively-Parallel Neural Net Simulation”

[PPG+12].

Contribution: Memory performance results as covered in chapter 8 of this thesis.

1.4 Thesis Overview

Following this introductory chapter the thesis continues with a grounding on the essen-

tial biology of neural networks and background on the development of artificial neural

networks, and the systems on which they run. The thesis structure then follows the

chronology of the SpiNNaker system management time-line (fig. 1.2). The time-line

items are covered in turn, with a preceding review chapter followed by methods, tools

and results. This chronological order provides a logical flow from beginning to end of

the time-line of the SpiNNaker management framework. The thesis closes with a dis-

cussion chapter which draws conclusions from the SpiNNaker management research.

A brief overview of each individual chapter follows:

Chapter 2 – Neural Computing

This chapter covers the basic cell and connectivity biology of the brain which is re-

peated billions of times in the brain to form neural networks. The chapter then ex-

plores the development of the different generations of artificial neural networks, from

the simple threshold logic units, through to the next generation of multi-layered percep-

tron models incorporating learning models, and finally to the third generation: Spiking

Neural Networks. The chapter concludes by exploring hardware that has been used

to undertake artificial neural network simulations, particularly focusing on the larger

scale undertakings, from the general purpose to the bespoke.

Chapter 3 – The SpiNNaker Neural Architecture

Chapter three describes SpiNNaker, a large-scale artificial neural network simulation

architecture being developed by the Universities of Manchester and Southampton, and
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partners. This chapter explores SpiNNaker’s features and specifications, particularly

as they relate to system manageability, the available interconnectivity and software.

Chapter 4 – Bootstrapping SpiNNaker

Chapter four covers the creation, implementation and results of the Node-Boot ROM

software executed at power-up or reset of each SpiNNaker chip. This includes the

management aspects of the design process from the power-on self-tests and fault iso-

lation, to the loading of the application software. Detection of capabilities and system

health of the components at this stage aids in the mapping and assignment of load to the

system. Testing of the ROM is carried out and its performance is evaluated based on

its initial requirements. The author led the research and development in this area, and

contributed around two thirds of the programming effort and testing, with the balance

performed by Thomas Sharp from the SpiNNaker research group.

Chapter 5 – Imaging Neural Networks

This chapter firstly reviews the techniques available to record and image the human

brain, covering both its anatomy and its activity, and combinations thereof. The chapter

then moves on to cover visualisation techniques used within the field of artificial neu-

ral networks, and how they differ between generational types. Tool-sets and analysis

techniques for both ‘wetware’ and artificial neural networks are reviewed to determine

the most popular and useful visualisation techniques.

Chapter 6 – Visualising Neural Networks on SpiNNaker

Chapter six covers the specification, implementation and results of a novel real-time

visualisation tool tailored to the requirements of the SpiNNaker system and users. Vi-

sualisation techniques identified in the previous chapter are created, together with an

interface for the user to be able to interact with their simulation. Scalability is a key

topic within very large neural networks, and techniques are devised for data aggrega-

tion and for turning data collection on and off appropriately. As a single parameter

on a particular emulated neuron may be as important as the high-level overview of the

system, techniques covering the whole range of scales in navigation are explored.
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Chapter 7 – Managing Large Network Attached Systems

In this chapter management techniques for large and network attached computing sys-

tems are reviewed. The chapter explores monitoring of traditional and bespoke com-

puting platforms, and the FCAPS systems management framework devised by the ISO.

A review of common management data structures and protocols is carried out and a

more detailed analysis made of the successful SNMP standard and how it is applied to

network attached systems.

Chapter 8 – SpiNNaker Management Framework

In chapter eight the philosophy of efficiently monitoring the large neural computer,

SpiNNaker, is explored, particularly given its resource-constrained execution environ-

ment. It is argued that different sets of requirements can actually be catered for using

the same simple underlying network management framework. This framework pro-

vides an abstraction of the detail from the machine hardware to objects via a transla-

tion function. The translation function is implemented and tested in conjunction with

the industry standard management protocol SNMP, to produce a system that allows

SpiNNaker to be monitored by commercial off-the-shelf software, but is provided at a

low implementation cost to the SpiNNaker machine itself. The author led the research

in this area, and was assisted by a third year undergraduate student, Thomas Preston,

who carried out much of the host-side programming work.

Chapter 9 – Discussion and Conclusions

In this chapter each of the contributions to the management time-line as implemented

on SpiNNaker is discussed and evaluated. As the machines grow in size the scalability

of the solutions is examined, and future enhancements of each of the components are

suggested. This chapter contains overall conclusions for the SpiNNaker management

framework – it explains how standard tools can be applied to the management of a

bespoke machine efficiently, how ANNs can be visualised and interacted with in real-

time on the system, and how the boot process is successful in providing a managed

platform on which the rest of the system may stand.
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Neural Computing

Scientific study of the brain has been undertaken for well over a hundred years in the

attempt to comprehend its function and form, and to aid in the treatment of its ailments.

The brain is a massively-parallel processing organ and offers large resilient computa-

tional ability, albeit provided by a hugely complex system in a far from transparent

fashion. Biological brains exceed any electronic computational platform in energy

efficiency and parallelism and exhibit the remarkable ability to continue to operate

effectively even whilst impaired.

Conventional neuroscience still has a key obstacle in understanding the brain – its

work is typically invasive and destructive. Much research into the brain is performed

in-vivo or post-mortem, with inevitable drawbacks. With post-mortem study, cellular-

decomposition and the lack of natural stimulus from the host are clearly limiting; in-

vivo has ethical considerations, together with an inability to reach every part of the

neural system for study, at least without causing damage to the organ as a whole. In-

vitro experimentation is an alternative, however experimentation is limited to cells and

clusters which may be cultured, and again lacks the real animal input and stimulus –

there is no ‘closed loop’.

Each new generation of computational hardware, however, advances the possibility

of exploiting increased processing and communications capacity for simulating brain

function and pathology by computer experimentation. The biological function of the

brain itself is also of considerable interest to computer and software designers who

are coming to terms with the explosion of parallelism, now required, to continue the

exponential performance gains expected of them.

This chapter continues with some biological concepts of neural networks which are

applicable across many chapters of this thesis, and explores what is known about the

29
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(a) Human brain (src: Wellcome Images) (b) Common cortex regions (src: [Onl12])

Figure 2.1: The human brain.

brain today as it applies to simulations. The latter part of the chapter covers attempts

to simulate fundamental brain components and functions in electronic form, covering

both the software models and the hardware on which they run.

2.1 Biology

The mammalian brain is one of the most complex structures known in the universe,

and there is still no real consensus on how it works as a whole [Uni12]. Experimenta-

tion in the 19th and early 20th centuries has already provided insight into the physical

make-up of the brain, and by observation of dissected samples across many species the

fundamental components have been identified. The outer layer of the brain comprises

the cerebral cortex, which in more complex organisms is folded into the familiar form

found in figure 2.1a, providing an overall larger cortical area. In humans, the typical

cortical surface area is around 0.25 m2 [JL07]. Functional areas have been broadly

identified and mapped onto a cortical patchwork on the brain (Brodmann [Bro09]), a

simplified annotated example can be found in figure 2.1b. Different species, includ-

ing humans, have distinct functional regions corresponding to their needs. The human

cortex primarily follows a regular 6-layered neuronal structure [Mou78, DM91] form-

ing a ‘cortical column’ of around 3 mm in depth (fig. 2.2)∗. Regular structures can

be identified amongst the cortex forming mini-columns of around 100 neurons apiece,

approximately 100 of which comprise a hyper-column. Within this model, the human

∗Note: The notion of the cortical column is contentious, with some researchers taking the position

that there is no such regular cellular ‘micro-circuitry’ within the brain.
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Figure 2.2: Cajal’s classical drawings of the six-layer human cortical column (shown

above the connective white matter at the base of the figure) (src: [Caj99]).

brain is thought to have around 2 million hyper-columns [JL07], and around 200 bil-

lion neurons. Other estimates of total neuron count do vary [WH88, HH09], but as the

brain is so complex, each is a best estimate dependent on the methodology used.

The Neuron

The fundamental computational unit in the brain is the neuron [Tho00], which is in-

terconnected with many other neurons in the cerebal cortex typically forming cortical

columns. A simplified structure of the neuron and its major components can be found

in figure 2.3. Each neuron cell is formed around a nucleus which is enclosed within a

cell body called the soma. Connections are made with upstream afferent neurons via

the dendritic tree, and electrical inputs arrive from this tree at the neuron’s cell body.

These inputs, in conjunction with the current polarisation of the cell (the membrane

potential), determine whether the neuron should emit a spike (also known as an action

potential). The cell’s spikes are transmitted along the neuron’s axon output, which may

extend some distance and is usually sheathed in a fatty insulating material known as

myelin. Myelinated construction of the axon results in accelerated, but relatively slow

propagation of the spike, ranging to over 100 metres per second [Wax80]. Branches

are taken from the neuron’s axon, and its terminals connect with the dendrites of other

downstream efferent neurons, the junction of which is known as the synapse (fig. 2.3).
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Figure 2.3: Simplified neuronal structure.

The Synapse

A synapse is an electro-chemical junction where action potentials are decoupled be-

tween neurons across a synaptic cleft. In the predominating chemical synapses, depo-

larisation following receipt of an action potential leads to transmission of neurotrans-

mitting chemicals across the synaptic cleft between the pre-synaptic axon terminal and

post-synaptic receptor. This process can be either excitatory or inhibitory (increas-

ing or decreasing) the post-synaptic neuron’s membrane potential. Within the human

brain it is estimated there are around 1,000 synapses for each neuron (as a gross aver-

age, some have many more and some far fewer), totalling 1014 synaptic connections

[NLMA+09]. In the simple example found in figure 2.3, for clarity, there are far fewer

connections shown than are typically found for an actual neuron where a connection

fan would be in the hundreds. These numbers multiplied over a large neural network,

such as a brain, would form an almost insurmountable connectivity problem if the con-

nectivity were random. However it is typically found that neurons have a high density

of local connections, with longer connections being somewhat more sparse.
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Neural Plasticity

Given that the sum of inputs and the current state of a neuron combine to determine

whether that particular neuron should ‘fire’, there must be a mechanism which permits

the influence of each input to be altered depending upon its (varying) importance. This

mechanism is known as plasticity, and it permits connections between a pair of neurons

to be strengthened or weakened depending on the correlation between one another’s

spiking behaviour. The changes in behaviour are triggered chemically in the synaptic

connection between two neurons, and can be related to ‘memory’ as the weightings

between the two neurons are persistent to a greater or lesser extent over time. For this

reason the area of learning, particularly synaptic plasticity and how it changes over

time, has received a great deal of study after a conjecture in the late 1940s by Hebb

[Heb49].

In Bliss and Lomo’s work [BL73], evidence for the chemical operation of Long

Term Potentiation (LTP) was discovered in a study with rabbits. This mechanism, in

conjunction with its converse, Long Term Depression (LTD) are proposed plasticity

models which occur within synapses. The consequences are an adjusted behaviour

affecting how incoming spikes are passed on to the post-synaptic neuron. Another

biologically plausible model of plasticity is described by Spike Timing Dependent

Plasticity (STDP) [AN00], which is found to match the behaviour of some types of

synapses. STDP relies on the timing of ingress and egress spikes of a neuron to de-

termine whether to strengthen or weaken a synaptic connection. If the pre-synaptic

neuron has fired and this input arrives in advance of the post-synaptic neuron firing,

the correlation is used to strengthen the connection as they appear to be causally linked.

Similarly if the input spike arrives shortly subsequent to a neuron firing then it is less

likely to have been related, so the strength of that link is depressed. The impact of

these changes is additionally related to time, with closer spike time correlations affect-

ing larger proportional changes in the weighting.

2.2 Neural Network Modelling

From an early stage it has been postulated that the fundamental elements of the brain

can be mathematically modelled, to create artificial neural networks (ANNs). The ap-

parent simplicity, ubiquity and regularity of the neuron model makes it highly desirable

to create electronic simulations; to study their behaviour to devise improved treatment

regimes medically and to understand more of the brain’s computational ability.
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Figure 2.4: Threshold Logic Unit (TLU). When the sum of inputs crosses a threshold

the TLU outputs a 1, otherwise the output is zero.

2.2.1 First Generation Artificial Neural Networks (ANNs)

The field of ANNs was spawned with the work of McCulloch and Pitts in 1943 [MP43]

in proposing the Threshold Logic Unit (TLU) for artificial neurons. In a TLU neu-

ron inputs are weighted and summed, and compared to a simple threshold value to

determine whether to emit an output (fig. 2.4). Their work was based on simplified

observations from ‘wet’ neuroscience, and gave a foundation to the implementation of

artificial neural networks using digital electronic and computing platforms. The TLU

technique, however, is an artificial approximation – it defines that when a neuron is

activated it can emit only a Boolean 1 or 0 to its downstream connections – without

regard to time, or the actual continuous dynamics of biological neurons. It should

however be noted that this initial generation of ANN, albeit crudely defined, is still

in widespread use, extended into networks such as perceptrons for pattern matching

[Res58]. The sum may be optionally (and artificially) biased to influence the result

of the sum if required, rather than adjusting the threshold, and this same external bias

may be applied to many TLUs simultaneously.

2.2.2 Second Generation ANNs

In the first generation of networks there is a limitation based on the requirements for bi-

nary inputs and outputs of the system, and its static nature. In the second generation of

artificial neural networks time now plays a key rôle, in conjunction with a non-binary
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Figure 2.5: A second generation Artificial Neural Network (ANN), with a sigmoidal

activation function. The output is continuous based on the inputs received.

activation function [Bis96]. In this model it is the rate of spikes output from a neuron

which is believed to encode the information, and to represent this rate a continuous ac-

tivation function (such as a sigmoid) is applied. Inputs to a neuron are again weighted

and summed (with optional bias), but instead of a binary result from the comparison

with a threshold, the output is determined by the position of the sum on the continuous

sigmoidal output curve (fig. 2.5). In practice the shape of the sigmoid may be scaled

as appropriate to make it shallower or steeper, and to speed up computation the curve

function may be approximated linearly. The output of a second generation neuron can

therefore be considered a probabilistic representation of the biological firing-rate of a

neuron population, should it be required to recreate ‘spike trains’ from its output.

One of the greatest advantages of the second generation of neural networks is that

they are capable of employing ‘learning’ techniques – using feedback to converge to

the problem space. The primary technique used in this space is Back Propagation

originally discovered in 1974 by Werbos, published in his Ph.D. dissertation [Wer74],

but not exploited fully until the mid 1980s. In this technique cycles of operation are

employed and weights in a Multi-Layer Perceptron (MLP) (fig. 2.6) are adjusted based

on the error passed back from the downstream layer for each network iteration (or

epoch). It was only around 1989 that Heicht-Neilsen [HN89, HN90] showed that a

3-layer MLP can solve non-linear separation problems, such as XOR. These results

were able to truly refute the criticism of ANNs in the 1969 Minsky and Papert book

[MP69], which had stifled research and funding for the area for many years.
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Input Layer            Hidden Layer          Output Layer

Figure 2.6: A Multi-Layer Perceptron (MLP) with 3 layers (input, hidden and output).

A further advantage of second generations networks is that they encompass the

functionality of the Boolean first generation of ANNs [Maa96]. Second generation

modelling remains commonplace [Bis96], particularly Multi-Layer Perceptrons (MLP)

with back-propagation, both in software and distilled to hardware, but there are classes

of problem that prove intractable using this technique [Maa96].

2.2.3 Third Generation ANNs

Latterly the third generation of artificial neural networks has become popular, based

not on the output rate of the spike train, but on the temporal information (i.e. the ar-

rival times) of the input spikes themselves. In this model the operation of the neurons

is decoupled from a system-wide synchronous update cycle, which is far more bio-

logically faithful to the spiking model as seen by Hodgkin – Huxley in 1952 [HH52].

Izhikevich [Izh04] illustrates a diverse range of neuronal spiking patterns replicating

many of those found in biology (fig. 2.7), illustrating clearly why simple rate-coding

may not be sufficient for all modelling purposes.

Indeed, rate-based techniques have been found inadequate to model visual analysis

functions, for example, as they cannot achieve the response times demonstrated in the

biological brain [Maa96]. By choosing to integrate the inputs of a neuron and analyse

their rate-of-change, it is possible to examine the relationship of the temporal spacing



2.2. NEURAL NETWORK MODELLING 37

(A) tonic spiking
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Figure 2.7: Spiking behaviours achievable when using the Izhikevich spiking neuron

model [Izh04] (src: Electronic version of the figure and reproduction permissions are

freely available at http://www.izhikevich.com).

http://www.izhikevich.com
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Figure 2.8: A third generation ANN, spike time arrival is now the key function (src:

adapted from [FT06]).

of the spikes, and use this as the basis for network models. These techniques are called

‘integrate and fire’ models, where afferent neurons provide activation stimuli, and if the

neuron’s membrane potential threshold is reached (including any optional bias to this

potential) a spike is emitted (fig. 2.8). Following a spike event the neuron’s membrane

potential resets to its resting potential, and the neuron enters a refractory period where

it will not spike again regardless of how much stimulation it receives.

If during operation the membrane potential accumulated from input stimuli decays,

providing a diminishing ‘memory’ of inputs received at that neuron over time, and this

potential may contribute to the next firing event. Models employing this technique are

called ‘leaky integrate and fire’, or by their abbreviation – LIF and are commonly used

due to their good output approximation of biological observations. Maass investigated

whether second (and by implication first) generation problem spaces are a subset of

the third generation’s, and found it to be the case for sigmoidal activation functions

[Maa97].

Model Fidelity

In some network models, such as LIF, there is an almost complete abstraction from the

biological mechanisms to the computational model. Adding biochemical fidelity typi-

cally involves reducing either the size of network that may be created, or the speed at

which it may be simulated (or both), on a given simulation platform. Different projects

and protagonists have differing priorities and approaches to the fidelity problem, trad-

ing off the different drawbacks and benefits.
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In 1952 Hodgkin – Huxley [HH52] determined a detailed model of synaptic ionic

dynamics which is often used to maximise biological fidelity, but this comes at the

cost of large computational expense. Projects such as Blue Brain [Mar06], take the

high-fidelity approach across all network components to achieve the closest possible

approximation to biology. Others use highly simplified models including LIF variants

such as the Izhikevich model [Izh03], believing that the dynamics of the neural system

may be simplified into their most basic fundamental behaviours. There are of course

a myriad of approaches that lie between each of these extremes, Izhikevich detailed

many of these in his 2004 review paper ‘Which model to use for cortical spiking neu-

rons?’ [Izh04].

Synapses and Learning

As with neurons, there are multiple synaptic models available for use in simulation

[DA01]. Synapse models are an important part of neural network modelling, learning

and plasticity, transforming spikes from pre-synaptic neurons into electrical stimuli

delivered to the dendrites of downstream neurons. In earlier artificial neural network

examples the synapses were approximated by weight functions (see figures 2.4, 2.5 and

2.8) with no mention of how the weights are calculated. Weights may be set statically,

or learning may be used to trigger plasticity models such as LTP, LTD and STDP which

have been adapted into ANN algorithms. To enable a network to function correctly,

early adjustment of the synaptic weights (training) may be employed, where weights

are adjusted interactively based on one of three learning categories: supervised, un-

supervised and reinforcement. It is important not to ‘over-train’ a network, as it may

learn to fit to the training data too well, and lose its capability to generalise.

2.3 Systems for Neural Network Modelling

Many different system architectures have, and are, used for neural modelling, includ-

ing a range of dedicated, fixed, and programmable hardware, using both analogue

and digital technologies – and those which use general-purpose hardware, from super-

computers, to clusters and individual workstations. While concentrating on the more

scalable solutions, a number of high-profile projects are covered in detail by de Garis

et al. with their world survey of artificial brain projects [dGSGR10].

Logically, applying custom hardware solutions to the problem of neuron modelling

seems to offer the best solution in terms of power and resource utilisation. However,
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there exists a wide gulf in opinion as to which neural network models provide the ap-

propriate level of biological fidelity [Izh04]. This opinion ranges from detailed models,

which include full biochemical ion channel dynamics, to abstracted LIF neurons which

are far less complex computationally. For this reason a wide range of hardware, soft-

ware and hybrid solutions have been developed in the ANN space, and this section

covers the background, advantages, disadvantages and scalability of the approaches.

Modelling neural networks is particularly hard on the communication infrastruc-

tures of machines performing large scale simulation. As a practical example of the

volume of traffic large networks generate: consider a billion neurons, each with a

biologically plausible average 10 Hz spiking rate and fan-out of 1,000 synapses. The

model needs to support 10 trillion communication events per second (at whatever over-

head the platform imposes for each spike). The pre-requisite for being able to cope

with great quantities of communication traffic in neural network simulations has been

outlined by Hines et al. [HKS11].

2.3.1 General Purpose Hardware

In this section the approaches taken to utilise general purpose computing hardware to

execute ANN simulations are considered. As the possibilities for single processor im-

provement have been hampered by limiting factors such as feature geometry, heat dis-

sipation and power provision, the rise in computational power is now primarily driven

by parallel processing. This takes the form of multiple processors per chip, multiple

chips – or both. Fortunately for artificial neural networks, the discrete elements used to

construct ANNs fit neatly into the parallelisation of simulation. Using general purpose

hardware has a clear advantage in that the computational power available in this space

grows year-on-year driven by industrial development, whereas a dedicated hardware

implementation has its potential fixed at the time it is committed to manufacture.

Software

There are many neural network modelling packages which operate across a wide spec-

trum of general purpose hardware platforms. A 2011 survey published in Frontiers in

Neuroinformatics [HH11] suggests that the majority of users operate a GNU / Linux

environment, and the authors provide a website of supplementary analysis [Neu11]

detailing the software packages most popularly used for neural modelling:
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• NEURON [HC97] is a simulation environment typically used to model single,

or networks of, neurons. It abstracts the computational environment on which

the simulations run from the specification and (if required) mathematical detail,

with extensive support for graphical tools to be able to create networks using

drag-and-drop techniques. NEURON can be run on a multitude of operating

systems and environments, including clusters and high performance machines.

As a gauge of the popularity of the tool, the NEURON team announced in Jan-

uary 2012 via their blog that 1,176 peer-reviewed publications include work per-

formed on the NEURON platform. NEURON is especially strong in the areas of

high biological fidelity, the wide-ranging availability of library components and

where extensibility is required via techniques such as scripting.

• Brian [Goo08] is a spiking neural network simulator which may be used on a

range of commonly deployed operating environments. It uses Python [Fou12]

as a scripting language to create its simulation specifications and neural equa-

tions, enabling fast model development and testing within a single software tool.

Whilst Brian is not as abstracted from the detailed implementation as NEURON

at the outset, the familiarity of the Python environment is useful for those with

computational backgrounds, providing simple and ready access to all aspects

and state within the simulation. Brian supports the utilisation of parallel envi-

ronments in a very limited way, in that separate instances of the simulation may

be run, but not in concert with one another. This is a significant disadvantage

as the majority of platforms now deployed use parallel processing via multiple

cores. Users are advised to look elsewhere for large scale simulations or those

with complex biophysical requirements.

• PyNN [DBE+09] is a Python based tool which is used for the description of neu-

ral network modes, but does not contain its own engine for simulation, instead

using NEURON, NEST, PCSIM and Brian for this functionality. Its aim is to

permit modelling at a high-level and to interconnect a range of common compo-

nents from the synapse, neurons and plasticity models in whichever manner the

user chooses. It is possible to think of PyNN as a common overlay that unites

many simulation modules under a common description language. This is a true

advantage when it comes to replicating experimental results.

• Nengo [STE09] is a tool which builds models using neuron populations (ensem-

bles in Nengo terms) which are then interconnected to other ensembles. Each

ensemble represents a value in the system, one which may alter as the simulation
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progresses, and each connection represents a calculation which occurs between

the ensembles. The simplicity of the approach belies the complexity of mod-

els it is able to create, all of which rely on the underlying Network Engineering

Framework (NEF) [EA03]. The NEF is a framework used to represent biological

‘variables’ encoded in the activity of recurrent neural networks, which permits

control theory to be applied to spiking neural networks. The user is presented

with a GUI in which they are able to use drag and drop techniques to construct

their network, and then see visualisation of the operation of the networks.

• GENESIS (or GEneral NEural SImulation System) [BB07] is an environment

which aims to provide an extensible simulation environment for biologically re-

alistic neural networks. GENESIS has been designed to extend to parallel imple-

mentations in clustering or supercomputer environments, running large numbers

of biologically realistic cell models. The users specify the network via a object-

oriented scripting language which provides a GUI environment for the users to

look at visualisation and simulation parameters.

• NEST (or NEural Simulation Tool) [GDG07] has been developed to create a sim-

ulation environment for large networks of neurons, concentrating on biologically

realistic models with varied dynamical accuracies. This model is not suitable for

users who wish to alter or examine neuron characteristics as these are abstracted

during the compilation process. NEST uses scripts to specify and execute its

networks, providing wide-ranging support on many operating platforms, and its

output is provided in the form of data files which may be post-processed as re-

quired by Python or tools such as MATLAB [Mat12a]. Compatibility of the

simulation engine with PyNN network descriptions, as noted earlier, is provided

through the PyNEST binding layer.

The Commodity PC and Workstations

Whilst not specialised in any way for running neural networks, the hardware available

in a workstation proves eminently capable of running small neural simulations, and

fulfils many users’ requirements. Users have the flexibility to choose to operate one of

the software packages mentioned above, to customise them (many are open-source), or

even write bespoke software to meet their modelling requirements. The prime disad-

vantage of the PC is that it is not readily scalable, so larger simulations may be unable

to run or take longer to operate, even where the software is able to take advantage of

any multi-core processing capability.
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Clustering Solutions

Several of the more popular neural network modelling software packages are capable

of executing in parallel environments, and the logical expansion beyond a single work-

station is to use multiple machines to expand the available computing resource. In neu-

ral simulation the inherent parallelism results in the smallest quantum typically being a

single neuronal structure, and message passing is used to distribute data amongst these

components. There are several techniques and software frameworks used to provide

clustering facilities above the ‘bare metal’, and a message passing mechanism such as

MPI [MPI09] is used to communicate amongst the computational nodes. Within the

neural network realm, in 2007 Plesser et al. [PEM+07] used NEST to create a 12,500

LIF neuron network implementation operating on Sun cluster environments utilising

a variant of MPI. Izhikevich and Edelman published work [IE08] in 2008 on mod-

elling a much larger-scale mammalian cortex simulation with a million neurons and

half a billion synapses at 1

60

th
of real-time on a 60 processor Beowulf [SBS+95] cluster

machine.

Unfortunately cluster computers may not always be suitable candidates for simulat-

ing neural networks, particularly those operating in real-time, as message passing over

the interconnection network may introduce undesired latency. Delays due to latency in

real-time systems form a pinch-point, becoming part of the computational cycle (in a

synchronous network), or bounding the performance in asynchronous simulations.

A variant of clustering, where the nodes are less likely to be homogeneous, co-

located, or even within the same management or ownership domain is grid computing.

Again this appears to be an appealing solution, making use of processing cycles across

workstations to create a high-throughput large computing resource [Fos03]. Grid solu-

tions typically function by dividing the workload into coarse-grained parcels of work,

but by their very nature may process these parcels using spare cycles (e.g. Condor

[LLM88]). This method therefore appears unsuitable for neural network simulation

which is usually latency bound. It has not been possible to find significant publications

using grid techniques for neural network simulation, although for non-time critical

applications grid computing may be suitable for parameter-sweep type experiments,

where lots of smaller experiments occur independently and the results are collated and

analysed later. Although not simulating artificial neural networks, grid computing has

been used recently for neuroscience activity, for example the 2005 NeuroGrid initiative

[GLS+05] and in the Ukrainian National Grid [SLS11].
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Supercomputers

For larger scale networks, general-purpose, high-performance computer (HPC) plat-

forms (supercomputers) may be used. Neural networks modelled on (IBM Blue Gene)

HPCs include the Blue Brain [Mar06] initiative, which uses software which is a log-

ical extension of both NEURON [HC97] and NeoCortical Simulator (NCS) [Bra12a]

software to perform high fidelity cortical simulation work. The Blue Brain project is

proposed for continuation as the Human Brain Project [Uni12]. Early work performed

in SyNAPSE [AESM09] involving contentious claims of modelling at a scale of the cat

cortex was also performed on this IBM supercomputer architecture. In software NEU-

RON [HC97], in particular, advertises its support of HPC, noting particular compati-

bility with the IBM Blue Gene family of supercomputers [KHH+09]. Supercomputers

are typically good environments in which to undertake large simulations due to their

high concentration of homogeneous computing resource, and the well-provisioned in-

terconnection networks.

Use of GPUs

Accelerated architectures such as GPUs [FH08] appear inherently suitable to the task

of neural network simulation with their SIMD-type architectures, and are available

from a number of manufactures including AMD (OpenCL) and nVidia (CUDA). Ap-

plying general purpose applications to graphics processors (GPGPU) for the imple-

mentation of neural networks has been explored in many research papers, [PBS11,

HT10, BPS10, BPS10, BK06], typically reporting a many times speed-up compared

with single threaded general CPU implementations. The great challenge with such im-

plementations is keeping up with the memory requirements of the GPUs and in inter-

communications. Software platforms have been created around the application of neu-

ral network modelling problems to the GPGPU architectures such as NeMo [FRSL09]

which concentrates on the real-time simulation of hundreds of thousands of spiking

neurons in real-time, and similarly GPU-SNN [NDK+09]. Whilst GPUs with their

massive parallelism seem to be ideal for neural network simulation, there are issues

with the scaling at points of serial operation such as synchronisation (Amhdal’s Law

[Amd67]), and the power-performance of GPUs compared with more attuned platform

choices. Exaggerated claims of the speed-up possible using GPGPUs led researchers

from Intel to write a paper (albeit not without vested interest) to debunk some of the

more unrealistic comparisons [LKC+10], typically where the equivalent CPU code had
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not been optimised. Until recently GPGPUs have been deployed in (and thus limited

to) single host systems but are now found in larger scale computation platforms such as

clusters [HT10], and in supercomputing deployed as co-processors to computing nodes

and permeate the Top500 list [MSDS12]. These hybrid deployments are beginning to

overhaul some of the scalability issues surrounding interconnectivity and maximum

deployment size which have thus far limited GPGPU ANN simulations.

2.3.2 Specialised Hardware Platforms

For non-specialised platforms, bottlenecks in ANN simulation typically occur as they

encounter communications pinch-points; large neural networks tend to generate heavy

amounts of interconnecting traffic, particularly as simulation moves closer to ‘real-

time’. This leads to the requirement to build specialised solutions for large scale ANN

implementation [IE08].

Neuromorphic Hardware

Neuromorphic hardware [Mea90] fuses analogue electronics and very large scale inte-

gration (VLSI) electronic techniques (perhaps in combination with some digital com-

ponents) to create real-time bio-inspired circuitry. As neuromorphic components are

modelled directly in hardware they are well placed to model spiking ANNs with far

greater efficiency than general purpose computing. Although the lack of reconfig-

urability in neuromorphic hardware may seem limiting, the advantages of providing

fast, power-efficient, solutions for neural network modelling may balance out the re-

strictions. However, any advantage of neuromorphic hardware may be eroded over

time as the speed of development in general-purpose computing hardware tends to

negate any initial advantage within a few years. Neuromorphic building blocks in-

clude silicon neurons and control components, and this modular nature permits effi-

cient implementation of large neuromorphic systems which mimic the operation of

biological circuits. Meade’s implementation of a silicon retina spawned neuromorphic

engineering [Mea89], and silicon retinas have been popularly developed by different

labs: [CECB03, LPD08, CSSGSGLB07]. Liu and Wang’s survey paper [LW09] cov-

ers most major neuromorphic hardware and initiatives. The efficiency of neuromorphic

hardware leads to the opportunity for implementation of large-scale real-time biolog-

ically plausible networks [ILBH+11]. Larger scale neuromorphic systems have been

created to form powerful computational platforms including Neurogrid and FACETS:



46 CHAPTER 2. NEURAL COMPUTING

Boahen’s Neurogrid project [Boa06] is a neuromorphic architecture that uses a

custom analogue chip (a neurocore) to emulate up to 216 neurons per chip. Each

board contains 16 neurocores and provides a digital communication grid infrastruc-

ture known as softwires [MASB07] to interconnect the neurons with routed address

event representation (AER) rather than providing discreet paths for each connection.

Each chip supports up to 60,000 spikes per second to downstream synapses operating

at ion-channel simulation level, with an aggregate 1 million neurons per board and bil-

lions of synapses, consuming just 5 W of power. The aim of Neurogrid is to produce

an affordable supercomputer that operates in real-time for a fraction of the price of a

general purpose supercomputer, albeit at the cost of losing some reconfigurability.

FACETS (Fast Analog Computing with Emergent Transient States) and latterly

BrainScaleS [Bra12b] are European projects aiming to exploit biologically observed

behaviours in novel computational environments. PyNN [DBE+09] was developed as

part of this project to help standardise network descriptions. On the neuromorphic

front the project has examined wafer-scale integration to exploit the communication

density offered by interconnection of many constituent HICANN analogue chips by

digital channels and crossbar switches on 20 cm diameter wafers [SFM08]. By op-

erating in this wafer-scale environment it is anticipated that communication, which is

typically the bottleneck in neural network simulations of any biologically significant

scale can operate effectively with simulations running 104 times faster than real-time.

This is much faster than could feasibly be achieved in a reconfigurable platform for

ANNs of equivalent size.

Finally in this section the second stage initiatives of the SyNAPSE project [Def12]

propose the specialised Cog Ex Machina platform, which makes use of memristors

[SAC+11]. In the classical model of neural network modelling, processing is applied

in each and every case to work out how a post-synaptic neuron is impacted by a spike

arriving at one of its synapses (the weighting typically being recovered from memory

which is onerous). If in simulation this operation is replaced by the application of a

memristor (which maintains its state between operations), then the spike data may be

moved and manipulated (by the memristor weight) without reference to central pro-

cessing or memory – just as if distributed in the brain through the dentritic tree. The

machine is expected to be constructed from ‘Dendra’ chips which are comprised from

two types of processor which act as transforming engines for data passing through

them [VC10]. Firstly a neuron type processor (as there is in ANN simulations to-

day), and the second ‘dendritic’ processor which acts as described above, formed of
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memristors. Overlying this system and its components is a software layer known as

‘cog’ which abstracts the hardware implementation away from the users, who can con-

centrate on the functionality, with the operating system MoNETA (Modular Neural

Exploring Traveling Agent).

FPGA Accelerators

Field-Programmable Gate Arrays (FPGAs) are used in a number of neural network

simulations, due their advantages of being reconfigurable and providing fast opera-

tional performance. One of the key disadvantages of the FPGA is perceived as the

expense to acquire the hardware, particularly in high-end devices, the costs scaling

linearly with the number of devices deployed. This contrasts with the development

of custom hardware where typically the expense is front-loaded and the incremental

price is small. In building a simulator where the choice is between FPGA and custom

silicon, scrutiny of the costs will determine the financial cross-over point between each

approach. One further issue with FPGAs is that they are orders of magnitude less en-

ergy efficient than custom hardware [PPM+07]. Historically FPGAs have been used

to prototype, and as a stepping-stone to dedicated hardware solutions.

In the work performed by Rice et al. [RTV09] a hybrid supercomputer, a Cray

XD1, is used as the target platform; this has available ‘hardware acceleration’ in the

form of 144 FPGAs augmenting 432 dual-core AMD Opteron chips. When examining

speed-ups reported a cautious approach needs to be taken with the GPGPU figures

[LKC+10], as it is not certain whether the native performances have been properly

optimised. In this case the study reports a 75x speed-up due to the parallelisation

of the model made possible by the FPGA hardware acceleration resource. Within

the 2007 study performed by Pearson et al. [PPM+07], both connectivity and power

problems were found to be issues when using FPGAs for real-time simulation of LIF-

type neurons controlling a closed-loop task. While the connectivity problem could

readily be resolved at the price of fewer simulated neurons per constituent FPGA, the

energy efficiency problem was not surmountable in that generation of FPGA hardware.

FPGAs, like GPGPUs have deficits in communications when dealing with the un-

usually heavy bandwidth requirements of artificial neural networks. This may result in

the neuron density of an FPGA solution being artificially constrained by the communi-

cation overheads [HMH+08]. With contemporary (2011) hardware it has been demon-

strated that 1 million neurons are capable of being simulated in real-time [CAG11],

and Moore et al. [MFM+12] propose 4 million real-time Izhikevich [Izh03] neurons
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on their Bluehive architecture fabricated using standard FPGA development boards and

custom interconnection fabric (12 full-duplex 6 Gb / s SATA links per board). While

FPGAs have the advantage of being programmable, their cost and power consumption

limits their ultimate scalability [PPM+07].

FPAA

Field-Programmable Analogue Arrays (FPAAs) act in a similar manner to an FPGA

in that they are reprogrammable and allow the user to create circuits using modules

contained within the FPAA itself, rather than fabricate new silicon. They are ideally

suited for analogue sensors and actuators as no conversion between analogue and digi-

tal or sampling is necessary, making transformations in the analogue domain efficient.

FPAA has the further advantage of operating in a low power signal processing space,

making them of interest to neural modellers as they can effectively provide a form of

programmable neuromorphic hardware. FPAAs have been investigated for use in spik-

ing neural network simulation [RMM+08], and derivations to the Field-Programmable

Neural Array (FPNA) latterly by Hesler et al. [FGH06, BRP+10], and at this early

stage appear a promising alternative to FPGA and more traditional neuromorphic hard-

ware in the neural modelling environment.

2.3.3 The Centre Ground

Summarising thus far, bespoke neuromorphic hardware appears the most energy ef-

ficient but remains generally inflexible in what it can model; the general purpose ap-

proaches, whilst having model flexibility, use more power, and may not be able to cope

with the traffic patterns of neural network modelling. There is room for an approach

that tackles both sets of issues and occupies the central ground – whose structure is op-

timised for neural computation, but remains a general purpose parallel programmable

architecture.

Connectionist Network Supercomputer

One such example originates in the early 1990s a team at U.C. Berkeley worked on

the Connectionist Network Supercomputer [ABF+94], a hybrid supercomputer specif-

ically tailored for neural computation. The system was designed as a 2D mesh of 128

(possibly scaling to 512) nodes, each incorporating a general-purpose RISC processor

plus a vector co-processor. Its architecture included a host machine, directly attached
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to the mesh interconnect, which relied entirely on spatial locality to scale to the re-

quired performance. A prototype of the node was built under the codename T0, but

it is not believed the system operated as a large network. The results of experiments

using up to five nodes in a bus configuration were published [PA97].

SpiNNaker

SpiNNaker is an event-driven platform which attempts to straddle the requirements of

full programmability, but additionally provides a high-degree of connectivity for arti-

ficial neural network modelling. SpiNNaker aims to be at the energy-efficient end of

general purpose programmable platforms by using standard ARM processors, and pro-

vides a specifically designed scalable network infrastructure to cope with the expected

traffic load from a biologically-plausible real-time Spiking Neural Network (SNN).

Due to its general purpose programmability, the models to be simulated can be chosen

flexibly and deployed heterogeneously throughout the machine as desired, with the

chosen level of biological fidelity. For those seeking to compartmentalise the hard-

ware, SpiNNaker is a neuromorphic [Mea90] or neuromimetic [RJG+10] approach,

as the needs of the biological simulations drive the requirements of the constituent

hardware, particularly in SpiNNaker’s communications fabric, and event-driven na-

ture. However, there is no specific neural hardware in the system – the neural aspect is

all provided in the software, and SpiNNaker may, like a general purpose computer, be

deployed for non-neural computational jobs.

Therefore SpiNNaker successfully occupies the middle ground of being a spe-

cialised multi-purpose platform, whose interconnect is tuned to the needs of a SNN

simulator. Chapter 3 provides fuller coverage of the SpiNNaker architecture.



Chapter 3

The SpiNNaker Neural Architecture

The SpiNNaker initiative, led by the Universities of Manchester and Southampton,

and partners, is to create a biologically inspired, massively-parallel, computing archi-

tecture optimised to simulate very large-scale Spiking Neural Networks in real-time

[FTB06b]. Whilst it may be adapted for other computational purposes, the require-

ments of neural computing have dominated its design, creating a novel application-

specific high performance computing (HPC) architecture. SpiNNaker’s philosophy is

to achieve these design goals with frugal use of power and resilience to component

failures within the system [PFT+07, FB09].

SpiNNaker’s targets of fault-tolerance and minimising energy use mimic the char-

acteristics of the biological brain which, in humans, achieves incredibly high perfor-

mance using billions of simple, fundamental, processing components (neurons) work-

ing in parallel [WH88, Dow01]. Biological neurons are slow, but highly-interconnected

units; electronic components are fast but have much lower fanout. The SpiNNaker

design therefore trades-off these properties using processors to simulate neuron and

synaptic behaviour, and a fast network to deliver communications over packet-switched

inter-connections.

Modelling full or fractional ‘brain-sized’ networks in real-time requires a huge

number of processors, with the network capacity to match. SpiNNaker is designed

to be expandable to biologically-significant sizes [HH09], and with large numbers of

processors comes significant amounts of data.

50
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3.1 Architectural Requirements

As far as is understood, biological neurons communicate primarily using electrical

impulses known as spikes; each spike is a ‘digital’ signal in that it is either present

or not. Output variations are represented by the temporal spacing of spikes [Izh06].

Other connectivity information is in the synaptic weight, which indicates how strongly

a spike affects each post-synaptic neuron. Simulation of spiking neural networks is

known as the third generation of artificial neural networks [Maa96].

SpiNNaker represents a spike as a single, short communications packet, which is

multicast into the communications network where it may be replicated to a prepro-

grammed – possibly large – set of destinations. Typically, in a biological neural net-

work, the input and output connection ‘fan’ of a neuron may be of the order 1,000 to

10,000 and sometimes up to 250,000 [NLMA+09]. This electronic transmission of a

spike is nearly ‘instantaneous’ compared with biological timescales [Boa98] and the

‘real’ biological axonal / synaptic delays are modelled by the receiving processors in

software [RJKF09, JGP+10].

Depending on the neuron model used [JGP+10, RGJF10, RGD+11], a million pro-

cessor SpiNNaker system would support around 1 billion neurons in real-time, thus

connectivity may exceed 1 trillion synapses. At an expected biological firing-rate of

10 Hz [DA01] there could be 10 billion-plus neuron firings per second which amplify

in the output fans to trillions of communication events / s. SpiNNaker’s network fab-

ric has been scaled assuming significant locality of spike traffic (destination neurons

are statistically proximate to the transmitting neuron), as is typically seen in the brain

[BDM07]. SpiNNaker therefore has been designed to distribute huge numbers of short

packets very widely amongst hundreds of thousands of processors efficiently, and in a

timely fashion.

3.2 System Architecture

To create a high-performance processing and interconnection environment, the SpiN-

Naker architecture is constructed using custom designed Multi-Processor Systems-on-

Chips (MPSoCs). An MPSoC is similar to the previously defined CMP, but includes

additional components to form a self-contained system on that chip. Each SpiNNaker

MPSoC (fig. 3.1) contains eighteen ARM9 cores for processing, and for connectivity
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(a) A SpiNNaker chip and stacked

SDRAM (src: Unisem Europe)

(b) Packaged production

SpiNNaker chip

Figure 3.1: Photographs of the SpiNNaker die, memory and package.

a bespoke router and communications fabric with full-duplex ports for the 18 inter-

nal cores and the six external chip connections. As spiking neural network models

are essentially event driven environments (based on the arrival time of each spike),

embedded-type processors such as the ARM are well suited as the cores remain dor-

mant and in a low-power mode for a significant proportion of the time. SpiNNaker

chips (nodes) may be interconnected with their six neighbours using a 2D triangular

mesh wrapped into a torus (fig. 1.1). While not biologically realistic, this was chosen

as an extensible configuration with a wide choice of redundant chip-to-chip routing

paths providing high aggregate bisectional bandwidth.

Figure 3.2 is a simplified schematic overview of the SpiNNaker chip. Visible are

the connections of each ARM core and external inter-chip link to the Communications

Network-on-Chip (fig. 3.2: Comms NoC) – with the on- and off-chip networks form-

ing a seamless routed whole. This is facilitated by an asynchronous interconnection

medium so the whole is a GALS (Globally Asynchronous, Locally Synchronous) sys-

tem [Cha84]. The asynchronous interconnect primarily provides better power econ-

omy than a synchronously-clocked alternative with the anticipated network loading

patterns [EFEL05]. The asynchronous NoCs use the Chain [BF02] technology sup-

plied by project partner Silistix.

A second GALS NoC (fig. 3.2: System NoC) gives all cores access to shared pe-

ripherals and a separate (in-package stacked) 128 MB SDRAM (fig. 3.1a). This net-

work has quite different requirements: it has to supply sizable data blocks to the pro-

cessors, usually under DMA control. A shared on-chip 32 kB SRAM – which is used

for inter-core message passing communications – is also addressed using this path, as

is the ROM which contains the boot software.
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Figure 3.2: Simplified schematic of the SpiNNaker chip (node).

Input / Output is provided primarily by 100 Mb / s Fast Ethernet (figs. 1.1, 3.2)

provisioned on a subset of chips. There are also some General Purpose I / O (GPIO)

lines which may interface with external devices at a somewhat lower speed. Fur-

ther details on the overall SpiNNaker system architecture and its design philosophy

to tackle spiking neural computation problems may be found in the following publica-

tions [FT06, FTB06a, PFT+07, PBF+08, FB09].

3.3 SpiNNaker Systems

In its maximal configuration the SpiNNaker platform is designed to simulate around

1% of the neuron count of the human brain [FB09]. A fully configured SpiNNaker

system achieves this by combining SpiNNaker chips into a massive single machine

interconnected as a 6-way toroidal mesh (fig. 1.1). A square system, laid out and tiled

two dimensionally, can range from single chip to 256 × 256 chip configurations –

the edge connections wrapping around to modulo x and y opposites, as illustrated in

figure 3.3.
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Figure 3.3: Regular tiled 2D array of multi-chip connectivity of a nine chip SpiNNaker

machine (detailing wraparound).

Each ARM processor running at a nominal clock speed of 200 MHz is able to

simulate around 1,000 Izhikevich neurons in software using the approach taken by

Jin et al. [JFW08]. The assumption therefore is that around 16,000 neurons can be

simulated per SpiNNaker chip (16 cores are earmarked per chip for simulation work).

In larger systems this requires relative locality of input neurons and populations rather

than a random distribution [NPMA+10]. This is biologically consistent with studies of

the mammalian cortex, which is found to have deeply interconnected local structures,

with sparse longer range connectivity [BDM04, BDM09]. It is expected that any one

moment (using millisecond intervals [Tho90]), a sparse 5-10% input connectivity ratio

is expected (spikes per interval per neuron input), with each neuron typically achieving

a maximum firing-rate of around 60 Hz.

Figure 3.3 shows the 2D Cartesian co-ordinates given to each chip (the origin (0,0)

can actually be arbitrarily chosen due to the wrap-around of connections on the ‘edge’

chips). Sixteen bits are allocated for addressing (x and y co-ordinates in the Cartesian

case), therefore a maximum 65,536 chip system size is possible. One of each chip’s 18

cores is elected to the rôle of ‘Monitor Processor’ (MP) which coordinates chip-level

functions such as non-spike communications, control and management. To remain

fault-tolerant, this assignment is made dynamically after power-on testing from the

set of known-good processors. It is expected to deploy chips where either 18 or 17
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cores are functional to increase yield, with 16 assigned as ‘Application Processors’ to

perform the neural simulation work. The 18th core, where functional, is designated

‘spare’ and may be assigned to utility purposes, or left unused. Whilst this is not a

faithful biological replication of the brain, it takes advantage of the electronic medium

being used to create the neural network simulations, whilst maintaining the spirit of

the redundancy inherent to biological systems. With 16 application cores for neural

simulation, there are 216 × 16 = 1.049 million cores in a full system, each potentially

modelling a thousand Izhikevich-type neurons, giving the opportunity to create real-

time simulations of over a billion neurons (around 1% of the neuron count in the human

brain ([WH88]).

3.4 SpiNNaker Communications

3.4.1 Operation

Neural-network simulation is a highly parallel task; each core is loaded with neural

processing software and its neurons’ local synaptic weights. After initialisation of all

chips, cores run asynchronously and handle events occurring in real-time within the

system. Spike packets are routed and replicated in hardware through the machine’s

communication fabric into multicast trees.

It is anticipated that typical customers for SpiNNaker are psychologists, neuro-

scientists and multi-disciplinary teams creating neural network simulations using bi-

ological principles, as well as others bringing their highly parallelisable tasks to the

platform. These users will wish to gain visibility of application software and hardware

performance data ‘in-flight’, thus the communications fabric must also support transit

of monitoring and debugging management traffic.

The requirements of management services are different from those of spike traffic,

but to ensure neural traffic is not disrupted, the alternative packet types employed retain

the same short message length principle. Longer messages and reliable delivery are

handled by higher-level software protocols.

SpiNNaker, unlike many typical HPC architectures (section 2.3), has no separate

out-of-band control and instrumentation channel. This choice is based on the relatively

low duty-cycle targets of the interconnection network and to reduce MPSoC design

complexity, and thus power, by operating a single, merged network. Therefore spike

event packets and real-time management and diagnostic traffic share the same network
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and may experience contention if assumptions are exceeded and hot-spots occur. It is

expected that only a small proportion of traffic traversing the networks will be used for

system management and instrumentation.

SpiNNaker features interconnection networks at many scales and sizes, from on-

chip to inter-chip, to ex-machine I / O connectivity. It is a marriage of various com-

munication and encoding protocols: ARM’s AMBA [ARM11], plus asynchronous on-

chip 3-of-6 RTZ, chip-to-chip 2-of-7 NRZ and Ethernet. There is a layered approach

to connectivity, with standard and bespoke protocols enabling high-performance neu-

ral messaging and system management functions to be efficiently supported over all

physical transport paths on a large-scale machine.

On the Host system software functions are provided to allow diagnostics and moni-

toring of hardware and software to be turned on and off, so that the SpiNNaker machine

does not operate its jobs as a ‘black-box’. Monitoring functions will alert hardware op-

erators to system issues, permitting the control software to terminate the simulations, or

to dynamically remap around the problem. Other management-type functions include

visualisation of the system – such as plotting fMRI type neural activity – monitoring

resource utilisation (e.g. network links, processor cycles, memory) and bespoke neural

parameter reporting.

3.4.2 SpiNNaker NoCs and the Router

Each SpiNNaker chip has two bespoke asynchronous Network on Chips (NoCs) which

are highly efficient during periods of quiescence, as there is no continuous synchronous

clock burning power.

The System NoC provides a path for cores to share chip-level resources, primarily

conveying large quantities of data amongst its clients, including access to the shared

SDRAM, System RAM / ROM and peripherals (fig. 3.2). Typically DMA is used to

service high-bandwidth block data transfers across this NoC, but ad-hoc single-cycle,

processor-originated accesses are also permitted – such as for message passing across

shared System RAM.

The Comms NoC (fig. 3.2) is used to convey communications packets between

cores and chips within a system, switched by the SpiNNaker router. The router has

twenty-four asynchronous full-duplex ports: six for the external connections and eigh-

teen for on-chip processors. The packet formats supported have been intentionally kept

short as the primary use of the communication channels will be to convey spike traffic

in a timely manner.
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Figure 3.4: SpiNNaker packet formats.

3.4.3 Packet Formats

To cater for the different communication demands, four types of packet are supported

by the router (fig. 3.4). Packets are either 5 or 9 bytes in length, comprising an 8-bit

control header and a 32-bit field typically used for routing; which may be augmented

with an optional 32-bit payload field. Example distribution trees can be seen in fig-

ures 3.5 and 3.6 for each of the four packet types:

• Multicast (MC): intended for neural spike events. (one:many)

• Point-to-Point (P2P): node-to-node communication, for code distribution and

system control. (one:one)

• Nearest Neighbour (NN): principally for boot purposes and fault recovery. (local

node:node)

• Fixed Route (FR): downloading data, analogous to a default route / gateway.

(typically many:one)

The control byte (header) is similar for all packet types (fig. 3.4). Two bits iden-

tify the packet type, one bit indicates the presence of an optional payload and one bit
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Figure 3.5: Multicast and Point to Point packet flow and distribution trees.

records the entire packet’s parity, including any payload. Most packets have a two-

bit timestamp which allows routers to drop packets of a certain age, a means to filter

‘rogue’ looping traffic caused by faults. The MC and FR packets also have 2 bits of

‘emergency routing’ information to control routing around a failed or congested link

[NLMA+09]. The sequence code field for the P2P packets facilitates the structuring of

longer messages by higher-layer software protocols.

Multicast Packets

Multicast spike packets are distributed to a subset of the neural processors using Ad-

dress Event Representation (AER) [MV94, Boa98, Boa00]. For this purpose each node

contains an associative routing table consisting of a 1024-entry key, mask and target

triplet. Where no match is made from this table the packet ‘default routes’ to egress

opposite its ingress, meaning a table entry is only needed where a packet is steered



3.4. SPINNAKER COMMUNICATIONS 59

to destination processors, or where it needs to turn or bifurcate in transmission (e.g.

fig. 3.5a). MC packets may be routed from and to every core in the system. In general

they are intended purely as neural spike events and will not carry a payload, and are

expected to dominate the network traffic.

Point-to-Point Packets

P2P packets target a single destination chip, not an individual core, and are delivered to

the designated Monitor Processor (MP) on the chip. At each chip there is a P2P routing

table which contains 216 routing entries (1 entry for each node in a full SpiNNaker

system). Each of these entries in the P2P table uses 3-bits to specify the direction

of the next hop for that node, which is either ‘here’ or one of the six external links

(fig. 3.5b). P2P packets are typically used for tasks such as code and data distribution,

or management queries usually carrying a payload of higher software protocol layers

and data.

Nearest Neighbour Packets

NN packets are used mainly as part of the boot process and for debug access to neigh-

bouring chips. As the name implies, they are short range, permitting read / write

access to a neighbouring chip’s shared resources (fig. 3.6a). Their distribution tree is

addressed by local link ID and not a routing table. The ‘NN packet type’ field in NN

packets provides information to the router as to whether the packet is a normal packet

(to be delivered to the Monitor Processor of the neighbouring chip) or a peek / poke

packet (for fault handling). The route field enables an NN packet to be directed to the

local Monitor Processor, a particular neighbour or broadcast to all or a subset of the

neighbours.

Fixed-Route Packets

FR packets are similar to MC packets. The difference is that they are routed regardless

of source by a single route-word at each chip so that only fixed, unidirectional merging

tree structures can be implemented (fig. 3.6b). This packet type is designed to allow

extraction by Ethernet of information at low cost both in routing hardware and band-

width overhead (the 32-bit ‘key’ field is available for payload too). The routing entry

may be dynamically altered, so, may form a useful distribution tree for loading and
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Figure 3.6: Nearest Neighbour and Fixed Route packet flow and distribution trees.

saving chip specific data to and from SpiNNaker with the least overhead of any of the

packet types.

3.4.4 Layered Networking

The physical, system-wide SpiNNaker network is optimised for expected traffic; pri-

marily it presents a uniform ‘flat’ source-based routed medium for neural spikes to

traverse to their destinations. The secondary load is machine-control and management

traffic, usually from chip-to-chip, handled by the local Monitor Processors.

Provision for other communication needs (such as a Host probing an individual

neuron model on some arbitrary core) is achieved by overlaying software protocols on

top of the physical hardware and providing a hierarchical communication environment.

There are four distinct identified interoperating communication layers:
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1. Intra-chip – by the asynchronous Comms NoC and router in hardware. There

are four types of packet as discussed in section 3.4.3. At this layer message

passing across the System NoC using the System SRAM for core-to-core non-

spike communications is also supported.

2. Inter-chip – the same packet formats, traversing between chips over the chip-to-

chip external asynchronous links (fig. 3.3).

3. Ex-system – SpiNNaker Datagram Protocol (SDP) (section 3.4.7), developed

within the group, provides for connectivity in and out of the machine via the

Ethernet connections (fig. 3.7). In the near future FPGAs are expected to be

interposed in the connectivity mesh to be used as additional ex-system paths.

4. Internet – beyond the local link, the same SDP software protocol is used to ex-

tend SpiNNaker communications in routed internetworks.

3.4.5 Ex-System, Ethernet

External I / O connectivity is provided by commodity 100 Mb / s ‘Fast Ethernet’ links

attached to a subset of the SpiNNaker chips. Chips which detect the presence of a PHY

(PHYsical layer transceiver) at power-on enable their Ethernet controller, otherwise it

remains dormant to save power. The Ethernet is used to transfer neural spike informa-

tion in and out of the system and for system control and management traffic. Traffic

flowing via the Ethernet frames is constructed in software layers operating above the

physical hardware and network layers.

MAC Headers IP Header SDP Message    

14 bytes 10 to 282 bytes            20 bytes

UDP 

Header

8 bytes

Dest Addr

(chip ID)

Cmd           

Header 

4 bytes          1 byte          1 byte                2 bytes                  2 bytes         16 bytes             0 to 256 bytes

Eth 

CRC32

Ethernet Frame 

(min. 64 bytes)

SDP Payload 

Format

4 bytes

Src Port  

& Core

Flags 

& Tags

Dest Port  

& Core

Src Addr 

(chip ID)

Pad

0-10
bytes

Payload Data 

SDP Header

Figure 3.7: Simple SDP Ethernet framing format used for ex-system and Internet com-

munications. Data is encapsulated by Ethernet, IP, UDP and SDP headers.
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3.4.6 Internet Encapsulation

Internet Protocol (IP) encapsulation of SpiNNaker ex-system data permits remote col-

laboration to occur over routed networks including the Internet. Using IP facilitates

remote access to the machine environment and enables standard ‘sockets’ program-

ming libraries to be used to interface with the SpiNNaker communications stack.

Running a full TCP/IP stack on an ARM system can take 40 kB [Mic09], which

would more than fill the entire instruction memory of the SpiNNaker processor. Hence

only the fundamental requirements of IP and troubleshooting are implemented, in-

cluding responders for Address Resolution Protocol (ARP) and Ping, as well as User

Datagram Protocol (UDP), a low overhead transport mechanism. UDP was selected

as a good match for neural spikes which are time-sensitive and ‘one-shot’, with no fa-

cilities for retransmission. UDP also requires relatively little implementation resource

whilst providing the required functionality.

Transitioning between external and internal machine packets can be inefficient as

a neural spike datum is small (4 or 8 bytes). To convey such an event to a Host device

it must be encapsulated in an Ethernet frame which has a minimum frame size of 64

bytes (fig. 3.7), with the inefficiency being countered by aggregation of data.

All the layers as described above are connectionless, that is they do not store state

or make any attempt to detect and retransmit data lost in the transmission process. The

SDP protocol operates across all the layers of physical communication, from external

Host to internal processors (fig. 3.8), and may carry data regardless of type including

real-time I / O stimulus, program code, application data and management traffic.

3.4.7 SpiNNaker Datagram Protocol (SDP)

SDP Internally Within SpiNNaker

SDP allows messages to be sent using sequences of (short) P2P packets inside the

SpiNNaker machine. The traffic flows on the Comms NoC between processors on a

chip, and beyond this to processors on another chip via inter-chip links. Each sequence

is checksummed and (optionally) acknowledged, with erroneous and dropped packets

identified. This is notified to the application so that it may decide whether a retrans-

mission is to be made. The SDP datagram includes an address and a port which can

be on any core; hence SDP can be used to pass messages anywhere. This is achieved

by a chip’s Monitor Processor relaying data to target Application Processors via the

on-chip shared System RAM across the System NoC.
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(top left) across all 4 distinct communication layers to the destination SpiNNaker Ap-

plication Processor (bottom left).

SDP Outside SpiNNaker

A comparable mechanism is used for external communications where a Monitor Pro-

cessor on an Ethernet-attached chip bridges P2P SDP packets into Ethernet SDP frames

(albeit with fewer fragments due to the larger available payload (fig. 3.7)). A transfer

from an external Host device to an internal processor target is depicted in figure 3.8,

where the Ethernet-attached SpiNNaker chip acts as a seamless bridge between the

internal P2P and the external Ethernet / IP domains for the SDP transport protocol.

3.5 Software on SpiNNaker

At the outset, SpiNNaker neural network implementations were hard coded into binary

files that were loaded to the hardware [JFW08, RGJF10] providing proof-of-concept

validations of particular models. This approach, however, is not scalable or generalis-

able. As SpiNNaker has the goal of providing reconfigurability in large scale systems,

the group has developed a new approach of modular and descriptive modelling – which

also abstracts the neural network description from the underlying hardware.



64 CHAPTER 3. THE SPINNAKER NEURAL ARCHITECTURE

When creating artificial neural networks models which run on reconfigurable plat-

forms, modellers tend not to work at the individual neuron and synapse level as there

are such large numbers in larger simulations. Therefore sets of neurons are bun-

dled together into groupings known as populations (mimicking the biological micro-

architecture and assemblies ([JL07]), with populations being interconnected via pro-

jections which describe the statistical relationship of individual population to popula-

tion interconnection. By abstracting at this level, large biologically plausible artificial

neural networks may be created scalably and without direct reference to the target

architecture. To apply the model description to the target hardware, a ‘compilation’

stage occurs which handles the mapping process. Section 2.3.1 discusses many of the

most common modelling software packages, and SpiNNaker supports several includ-

ing PyNN [GRDF10], NEST [GDR+12], and Nengo [GDF+12].

The abstraction technique aids the resource allocation process, as the problem is

simplified in the initial stages to high-level granularity rather than to low-level cellular

components. Within SpiNNaker this function is performed by PACMAN – the PArti-

tioning and Configuration MANager (fig. 3.9), which takes the high-level representa-

tion and transforms it into a SpiNNaker machine specific set of binaries [GDR+12].

Figure 3.9: Partition And Configuration MANager (PACMAN) (src: [GDR+12]).
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PACMAN relies on several database representations of the neural network (top

right of figure 3.9) which hierarchically decompose the original model level represen-

tation to the device level. The first stage is the splitting stage, where populations too

large to fit on a single SpiNNaker core are split into part-populations, (together with

their required connectivity). Next they are grouped onto cores, such that (part) pop-

ulations may be placed alongside others in a group to maximise use of resources. At

all stages of PACMAN SpiNNaker specific description libraries are used to inform the

process.

The model library contains information about components used in the simulation,

including the implementation resources (computational requirements / memory) re-

quired by particular neuron, synaptic and plasticity models. The system library con-

tains the numbers and dimension information about the target system itself, which may

be dynamically informed by management information about the health of the specific

target machine. These libraries enable the device-level database to be mapped onto the

specific hardware of the target system, including generation of the routing required to

map between them all. It is this final hierarchical mapping stage which is used to gen-

erate SpiNNaker specific binary files, with neural network information and data tables

to be loaded to each individual SpiNNaker chip and core.

At the small scale this place-and-route task is currently performed by a PACMAN

instance on the external Host. In the longer term there are two major scalability issues

to this approach:

1. Volume of Data. Although the executable code may be identical for each Ap-

plication Processor (or be a small set of variants), the synaptic data set for each

chip is unique, and this generated data set is much larger than the code. Serial

loading of ∼8 MB to 106 application cores is clearly infeasible: with a single

100 Mb / s Ethernet link the load time would be measurable in days. More links

can be added to reduce the transmission time, and perhaps advantage taken of

the interposed FPGA connections in large systems.

2. A larger problem is faced by the Host performing the PACMAN task as the

neuron place-and-route of a very large uniformly connected neural network is

a compute-intensive NP-complete problem [GJ79, Bok81]. Although grouping

the neurons into populations and the connectivity into projections is a viable

technique for initial representation, connectivity is the predominating problem

once the system is decomposed into its individual components [GRDF10]. PAC-

MAN has therefore been constructed so that the latter stages of the mapping and
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binary generation process may be parallelised. It is feasible that the aggregated

smaller data sets can be initially distributed coarsely by the Host system with

SpiNNaker itself performing the detailed generation of synaptic structures. This

approach, planned for future PACMAN evolutions, impacts positively on the first

limitation; less data is required to be transmitted into the system at startup and

on the second point it exploits the distributed parallelism of the machine itself.

3.6 Summary

This chapter has outlined many of the architectural features of the SpiNNaker chip

and its planned deployment in a million processor machine. SpiNNaker has been de-

veloped with the primary goal of contributing to the scientific Grand Challenge of

achieving an understanding of the principles of operation of information processing in

the brain. It aims to achieve this in hardware through the deployment of a specialised

high-performance computer, and in software by supporting the execution of a wide

range of simulations of artificial neural networks – scaling up to a billion biologically-

plausible spiking neurons in real-time. The main innovation within the SpiNNaker

architecture is the provision of a novel energy-efficient asynchronous interconnection

network which has the ability to source and replicate very large numbers of small, inde-

pendent, multicast packets each second. Together with the large numbers of standard-

ised, but energy-efficient, programmable processors; this naturally raises the question

as to whether the SpiNNaker configuration may benefit applications beyond the neural

modelling space.

A machine of such a massive scale comprises many tens of thousands of com-

ponents and, so, must also be designed with a resilient philosophy to tolerate faulty

components rather than have the system repeatedly fail and require maintenance. The

external Ethernet connectivity is provided for Input / Output stimuli and, crucially, for

management purposes. This makes it possible to alert system operators of any alarms

in the system and to enable them to be located and fixed or worked around. In the next

chapter the first step of the SpiNNaker system management time-line is described and

is the first major contribution to this thesis. Chapter 4 details the SpiNNaker boot pro-

cess after power-up or reset, its testing, recovery and reporting mechanisms – getting

a SpiNNaker machine to a managed state where applications can be run.



Chapter 4

Bootstrapping SpiNNaker

This chapter covers the boot process of the SpiNNaker chip following reset or power

on and the areas in the system management time-line indicated in figure 4.1.

SpiNNaker System Management Time-Line

Power On

/ Reset

System 

Load

Start

Sim

Power Off / 

Reset

Download

Data

End

Sim

management

management

Figure 4.1: The management time-line of the SpiNNaker platform – The Node-Boot

ROM tackles the POST manageability and supports the initial software and data load.

The boot process of a SpiNNaker machine may be summarised in three distinct

phases (which are also depicted in figure 4.2):

1. Node-Boot is executed at power-on, with the Node-Boot code retrieved from the

read-only ROM on each chip (node). This code performs the primary chip testing

and initialisation, then handles election of a Monitor Processor and leaves the

node ready to receive the externally originated 2nd phase System-Boot image.

67
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Figure 4.2: SpiNNaker boot and application loading sequence.

2. The System-Boot image is received by one or more Ethernet-attached SpiNNaker

‘root’ chips from the Host. The code self-propagates to its immediate neigh-

bours, and so on, until all Monitor Processors in the system are running the

System-Boot image; this process is known as flood-fill. Each SpiNNaker chip

is identical so, following reset, all processors on all chips are in a homogeneous

state, unaware of their position in the machine or their identity. Immediately

following System-Boot the nodes comprising the SpiNNaker machine are ad-

dressed (numbered) enabling the 3rd phase: Application-Load.

3. Application-Load is where the operational software for both Monitor and Ap-

plication Processors is loaded to the appropriate cores including any real-time

system (RTS) that underpins its operation. Additionally, in this phase, route ta-

bles are populated and data supporting the applications is uploaded to the shared

SDRAM of each chip. The application is then executed.

This remainder of this chapter covers the major design decisions and novelty con-

tained within the ‘ROM’ (as Node-Boot software), particularly concentrating on those

tasks related to the management and health of the SpiNNaker system.

4.1 Node-Boot

Node-Boot is the first stage of the SpiNNaker boot-up process (fig. 4.2) and is exe-

cuted on power-up or reset by running code from the ROM (highlighted centre right,
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Figure 4.3: GDS2 plot of the SpiNNaker die (src: IMEC), augmented with labelling

of each core and other major components (including the highlighted ROM).

figure 4.3). The Node-Boot code is executed by all processors on a chip for the pri-

mary purposes of performing Power-On Self-Tests (POST), hardware initialisation of

components and peripherals, and to elect a Monitor Processor for the chip. Gracefully

managing faults ensures that it may not be an immediate requirement to change a cir-

cuit board (which may contain dozens of functional chips), or cause downtime for the

machine as a whole in the event of a component failure.

All 18 cores in each SpiNNaker node populate their instruction pipelines from

the ‘Boot’ ROM. Once a functional processor passes its testing it enters ‘listening’

mode, awaiting a subsequent System-Boot software image to be downloaded to it.

The System-Boot software, as it is external software, can be modified as necessary to

add features and perform debugging as required – unlike the ROM content which is

immutable.

The following sections outline the motivation, implementation and program flow

of the boot sequence in greater detail. Refer to the two Node-Boot flow-charts (fig. 4.4

and 4.5), as necessary while reviewing this section.
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4.1.1 First steps of Node-Boot

The first test in the boot sequence checks the hardware status of an external general pur-

pose Input / Output (GPIO) pin (attached to the chip package) to determine whether a

manufacturing test should be run (for die testing), or whether the default Node-Boot

code should operate. Assuming the default latter behaviour, each core checks the chip-

level ‘Reset Code’ register of the System Controller which influences the booting be-

haviour. Usually Node-Boot is encountered at power-on, but it may also be executed

again if a reset is triggered, or if a watchdog enforced reset has been initiated due to

errant run-time behaviour.

Watchdog caused Boot If the cause of boot is errant software behaviour triggering

the watchdog timer, application authors may optionally provide a user-defined soft-

ware restart mechanism which avoids passing back into Node-Boot. This novel fa-

cility (detailed in section 4.3) is called the ITCM Validation Block (IVB) which, if

required, validates whether the instruction memory remains intact and uncorrupted by

the software malfunction. If so, it branches to restart the core at a user-defined software

function. If the facility is not used, or validation fails, the usual reset procedures apply.

Usage of the Serial ROM With non-watchdog reset codes, including power on or

remote reset, the usual Node-Boot routines are followed to initialise and check the

hardware. One of the cores is selected as the Boot Processor which checks for the

presence of an external Serial ROM chip. The Serial ROM chip is used primarily

to furnish Ethernet-attached chips with unique network addressing information (ta-

ble 4.1), but may also, optionally, be used to exit the Node-Boot sequence early, to

load and execute an image provided on the Serial ROM chip. One common use of this

technique is to load a variant of the Node-Boot software which contains software to

negotiate an address on a network using Dynamic Host Control Protocol (DHCP).

Whilst this occurs all non Boot Processors wait for a signal from the Boot Processor

(on completion of the Serial ROM routine), before rejoining the main flow. Clocks for

the cores, memory, router and system clocks are increased beyond the initial 10 MHz to

safe, uprated, speeds to accelerate the remainder of the boot process. The per-processor

Failure Logs are now cleared (table 4.1) so that hardware faults discovered during the

power-on self-tests can be recorded, before the POST begins:
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8 Words Ethernet Parameters (loaded from optional Serial ROM)

0xF5007FE0

4 Words Mailbox (message passing for image loading) 0xF5007FD0

2 Words SDRAM Information (detected size, and any errors found) 0xF5007FC8

18 Words Processor Failure Log (18 cores)

0xF5007F80

1 Word Monitor History (cores elected MP since power-on) 0xF5007F7C

257 Words Shared Assembly Block (1kB + 4Byte CRC for flood-filling)

0xF5007B78

↓ Not allocated ↓

Table 4.1: System RAM memory allocations following Node-Boot from ROM.

Tightly Coupled Memories Each processor checks its local tightly-coupled instruc-

tion and data memories (ITCM and DTCM) exhaustively with multiple test-patterns

across all memory locations. If a TCM error is detected then the core is disabled as

TCM memories are considered critical to Node- and System-Boot stages and the error

is logged as per tables 4.1 and 4.2. If there are no faults then Node-Boot proceeds.

POST Self-Test for Processor Blocks The processor block POST tests begin by ex-

ercising the non-volatile registers for each processor’s Communications, DMA, Timer,

and Vector Interrupt Controllers in turn. If a failure is detected in any of these compo-

nents the processor is not functional; the reason code (table 4.2) is written to the failure

log for that processor (table 4.1), the processor has its interrupts disabled, and is put

into a low-power sleep mode (effectively shut down).

4.1.2 Monitor Processor Arbitration

It is necessary to select a Monitor Processor (MP) which handles the chip-level man-

agement functions for the node, including the progression from Node-Boot into sub-

sequent stages of system operation. If the reset cause is a power-up then the list of

historic Monitor Processors (table 4.1) is reset, so that all functional processors have a

chance to become elected. If the reset reason is not a power-up, this may be due to an
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Peripheral Method Executor Failure response Err Code

At Power-on

ITCM RAM test All Shut down core 0x4

DTCM RAM test All Shut down core 0x2

Comms controller Register test All Shut down core 0x0

DMA controller Register test All Shut down core 0x1

Timer Register test All Shut down core 0x9

VIC Register test All Shut down core 0xA

After Monitor Election

Previous Monitor Check Register All Shut down core 0xC

System RAM RAM test Monitor Shut down MP 0x7

Router Register test Monitor Shut down MP 0x6

Watchdog Register test Monitor Shut down MP 0xB

PL340 Register test Monitor Record, continue (see:

SDRAM RAM test Monitor Record, continue (fig.4.6

Table 4.2: Ordered list of power-on self-tests performed during Node-Boot. An error

code is written to the processor’s failure log in the indicated bit position if detected.

error with the Monitor Processor. To prevent this failure recurring, if a processor has

already been a Monitor, it will shut itself down and become ineligible for election to

become the new Monitor Processor. The chip is now ready to elect a Monitor Proces-

sor which is achieved by mutex hardware in the System Controller. The first processor

reading back the register following a reset event will be installed as Monitor Proces-

sor and marks itself as having undertaken the Monitor rôle in the bit-wise ‘Monitor

History’ System RAM register (table 4.1). Subsequent processors will become Appli-

cation Processors, and wait for the Monitor Processor to complete node-level hardware

initialisation, and signal Application Processors to progress.

4.1.3 Chip-Level POST and Initialisation

This and subsequent sections are illustrated by the 2nd flowchart, (fig. 4.5). The Mon-

itor Processor continues testing the critical chip-level System RAM, router and watch-

dog controller, with any failures marked in the failure log (tables 4.1 and 4.2) and the

Monitor Processor shutting itself down. This effectively disables the chip, the Appli-

cation Processors are signalled to continue into sleep mode. In subsequent stages of

boot a neighbouring chip may read the cause-code, and it may be possible to ‘nurse’

the node back to some level of functionality, particularly to enable its router.
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Figure 4.5: Node-Boot flow of processors immediately following Monitor Processor

allocation, until entering the listening state in the main loop. (Follows from fig. 4.4).
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SDRAM Testing This POST is designed to operate slightly differently from the

other tests, as any failure detected in the SDRAM or its supporting hardware does

not result in the shut down of the Monitor Processor; consequently the chip remains

active. Failure information is logged in the ‘SDRAM Information’ registers in System

RAM. The testing begins with checking and initialising the RAM controller, a failure

of which results in further SDRAM testing being aborted. If the RAM controller locks

to functional memory, tests are performed on the actual RAM to determine its size, and

any errors when reading / writing samples of memory are also noted. Performing a full

memory test at each boot is too time-consuming, with a comprehensive test (as used

on the TCMs) taking 138 minutes (15.5 kB / s). It should be noted that all SDRAM

memory die used in manufacture are ‘known-good’ components.

The sample SDRAM tests are performed at word positions 2n, with any fault be-

ing noted in the error log at bit position 1-29, representing word 2bitpos in SDRAM.

The discovered SDRAM size (in bytes) is stored in the SDRAM size register – see

figure 4.6. A thorough RAM test is performed on both the first and last 16 Bytes of

memory. This is a small sample of a full memory test using a greater combination of

data and addressing lines. Any errors found are noted per figure 4.6, and recorded in

the SDRAM information fields (table 4.1).

0 2 4   8     16             32                  64                           128    ….       227        228                    229 

Wraps when memory size overreached (size detection) 

Actual SDRAM size 

Thorough 

RAM test 
Thorough 

RAM test 

Tests carried out at word positions: 2n 

SDRAM_INFO[0] = Size of Memory Detected in Bytes 

SDRAM_INFO[1] = (bit errors logged as below – red dotted 2n)… 

1 1 1 0 1 .   .   .  

Bit   0       1      2       3      4        5      6      7                                                                   25     26     27    28    28    29    30    31 

Bit0:  Mem Controller error 

All 1s:  Memory not found 

 

Figure 4.6: SDRAM testing in the ROM. Size is determined by writing at increasing

word powers of 2 until the wraparound is determined. More thorough tests are carried

out on blocks at the top and bottom of detected memory.
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Router At power-up SpiNNaker chips are not numbered, therefore the point-to-point

routing tables are set up to drop all traffic rather than being left indeterminate. For the

Multicast routing tables all 1024 entries are cleared so they do not match any packet,

the outcome being a fail-safe configuration of only default routing, where received

packets traverse the router and egress the chip on the opposite external link to which

they arrived.

Ethernet All SpiNNaker chips have Ethernet controller hardware on-board, but only

when this is connected to an external PHY chip and Serial ROM is connectivity pos-

sible. The unique addressing information is retrieved from the Serial ROM chip (sec-

tion 4.1.1). In the case of the DHCP Node-Boot image, the IP network address and

settings are learned in response to requests made by the image.

Watchdog The Monitor Processor sets up the chip watchdog timer, and if it is ne-

glected for 2.5 seconds the chip will reset with a watchdog cause-code. In normal

Node-Boot operation this will not happen as the watchdog is explicitly refreshed peri-

odically.

4.1.4 Final Processor-Level Initialisation

Once the chip-level tests and initialisations are completed the Monitor Processor sig-

nals all Application Processors to progress to the next initialisation stages:

Timers All Monitor Processors set up their timer to give a tick approximately every

1 ms, which is used by periodic operations.

VIC Each processor’s Vector Interrupt Controller (VIC) is set up to respond to par-

ticular interrupts depending on the processor rôle. The Application Processors rely

solely on System Controller interrupts informing them that they have a message to

be processed (in the mailbox, see table 4.1), whereas the Monitor Processors receive

interrupts when packets are received from the inter-chip links, by Ethernet frames ar-

riving, and the timer interrupts as mentioned above. When a processor is not dealing

with interrupts it enters a low-power wait-for-interrupt ‘sleep’ state.
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4.1.5 The Main Loop

Upon completion of self-testing and initialisation, all processors enter the main loop

of the program, described in the pseudo-code listing below:

while(true) {

sleep_and_wait_for_interrupt();

if(i_am_monitor) refresh_watchdog_counter();

}

The main-loop is the ‘kernel’ of the event-driven operation of Node-Boot: proces-

sors are placed into a low-power wait-for-interrupt state and wake up only in response

to their specific interrupts. On returning from an interrupt, processors are immedi-

ately put back into wait-for-interrupt state, with the exception of the Monitor Processor

which periodically refreshes the watchdog counter. All processors are now in ‘listen-

ing’ mode in Node-Boot, which ends when a complete System-Boot image has been

received by the chip via a flood-fill, and that image begins its execution.

4.2 Loading the System-Boot Image

For the SpiNNaker machine to progress beyond Node-Boot new operating code must

be pushed to it. In the design process for the chip it was decided to keep the Node-Boot

image in ROM simple (and therefore more likely to be reliable), and in operation for it

to remain in a passive state awaiting its instructions. All nodes at power on / reset have

elected a Monitor Processor which is listening on the node’s six external inter-chip

links (and where provisioned on the Ethernet connection too) for their ‘System-Boot’

image, whose functions include preparing the system to load application data and code,

performing any further checks / diagnostics required, and facilitating the numbering of

the homogeneous SpiNNaker nodes.

The process begins with the responsible Host system seeding the transmission of

the System-Boot image, to one or more of the Ethernet linked ‘root’ chips. The code

is assembled and checked by the Monitor Processor on each receiving chip, and the

validated code is executed by this core. The first task of the System-Boot image as it

starts is to self-propagate its own image to the node’s immediate neighbours over the

chip-to-chip links (a process known as flood-fill).
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4.2.1 Ethernet Flood-Fill

To facilitate the automatically discovery of SpiNNaker nodes by the Host, each chip

having an active PHY transmits out a broadcast ‘Hello’ message on the local Ethernet

every 4 seconds triggered by the timer interrupt. These broadcast destinations ensure

that the ‘Hello’ messages get to the (unknown) Host, and are only transmitted once

every 4 seconds to ensure they are not burdensome to the local LAN. An example of a

SpiNNaker ‘Hello’ message can be seen in figure 4.7.

Eth 

CRC32
MAC Headers IP Header SpiNNaker Payload

14 bytes 18 to 1472 bytes20 bytes

UDP 

Header

8 bytes

SpiNN 

Prot Ver

SpiNN 

Opcode
Additional Payload

2 bytes 0 to 1454 bytes4 bytes

Payload / Padding

12 bytes

Ethernet Frame 

(min. 64 bytes)

SpiNNaker 

Payload Format

4 bytes

Prot Ver 

= 1

Opcode = 

0x41, Hello
No Additional 

Payload

Operand1 

‘ROM Ver’ =  2.1.0.0

SpiNNaker 

“Hello” packet

Operand2 

Not Used = 0

Operand3 

‘Authors’ =  CPTS

4 bytes 4 bytes4 bytes

Src + Dest UDP 

Port 54321

Figure 4.7: The basic SpiNNaker Ethernet framing / packet format (used by Node-

Boot). An example of the ‘Hello’ SpiNNaker packet is illustrated, broadcast by each

Ethernet-attached node every 4 seconds.

This same simple SpiNNaker packet format is used by the Host to transmit the

System-Boot image across to the machine (fig. 4.8) using 3 different packet formats:

Flood-Fill Start When a SpiNNaker chip receives the Start message it readies itself

for receipt of an image of up to 32 kB split up into the number of blocks indicated

in the start message (a range of 1–256). The image is assembled in the top half of

the Monitor Processor’s DTCM (fig. 4.8) as it is large enough to collate a full ITCM

image. A receive array is initialised empty with an entry for each Block ID expected.

Flood-Fill Block Data is now transmitted block by block by the Host to the SpiN-

Naker system. Block IDs are numbered beginning 0, and the block size in words is

indicated (a range of 1-256 words). Typically 32 blocks of 256 words (1 kB) are used,

as this has the lowest overhead for production use. If a transmitted block is success-

fully received then the data is copied to the appropriate position in the DTCM image

assembly area, and the receive array is updated to indicate that the block is in place.
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0x0

Unused, 

Blk 

Siz

Blk 

ID

(0-255)

=1-256 

words

(0-255)

= block 

1-256

Block Payload 
1-256 Words (per Blk Siz)

Prot Ver 

= 1
0x5 
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Block ...
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Block Size
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0x410000

 

 

 

Block

Rcvd

Array

Figure 4.8: The three packet formats used by the Host pushing a System-Boot image

to a SpiNNaker node, and the assembly of the data blocks into the image in DTCM.

Flood-Fill End Following transmission of the Start and all Block packets, the Host

transmits the Control packet. When a SpiNNaker chip receives this it firstly validates

that all the blocks in the receive array are populated. If they are not (for example

a frame has been lost), then it continues to listen for the missing Flood-Fill Blocks.

Typically however, all blocks are in place at the first attempt, and the system copies the

assembled image over to ITCM – and branches to the indicated start address.

4.2.2 Inter-Chip Flood-Fill

Sending the image from the Host to Ethernet-attached ‘root’ chip(s) is the first stage

of the flood-fill process. The second is that the System-Boot image should flood-fill

itself out to its immediate neighbours. This is done on a link-by-link basis using Near-

est Neighbour (NN) packets (other packet types are not available at this stage as the

machine is not numbered, so the routing tables are not populated). The NN packet

type provisions an 8-bit control field, a 32-bit key and an optional 32-bit payload. The

payload is nowhere near as large as available in the SpiNNaker packets sent over the

Ethernet, therefore an additional level of hierarchy is added to the flood-fill transmis-

sions as each block now requires segmentation. A layered combination of validation

methods are also used to check the received image’s integrity. As well as simple SpiN-

Naker packet parity, there is a locally calculated checksum at the packet level, and at

the block level the SpiNNaker programmable CRC hardware is employed to generate

and validate CRC-32 checksums at transmit and receive ends of the link.
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Clearly, as the data propagates around the machine due to the inherent multi-path

network connectivity, each node will receive the flood-fill data multiple times. There-

fore, while the node is being flood-filled over its inter-chip links, duplicate packets are

discarded. Transmissions are not system-wide broadcasts, they occur in waves origi-

nating from each node that received the System-Boot software, so there will not be a

broadcast storm in flood-fill, just wave-front(s) of transmissions (an example of which

is shown in figure 4.9).

Figure 4.9: ‘Waves’ of System-Boot flood-filling a tessellated SpiNNaker torus over

time. Distance from a seeded root node is noted by d.

Due to the small SpiNNaker packet payload, the original model outlined in fig-

ure 4.8 for Ethernet is extended to a 5 packet-type model (illustrated in figure 4.16):

Flood-Fill Start This is functionally identical to the Ethernet version

Flood-Fill Block Start The Block start message indicates the block ID, and the size

of the block. If this block has not already been completed, a received word array is

initialised with an empty entry for each word in that block. Subsequently these data

words are listened for. (To take advantage of the CRC hardware the words are collated

into the shared assembly block in System RAM (see table 4.1 and figure 4.16)).

Flood-Fill Block Data The block data message indicates both the block ID and the

word ID within that block. Words from blocks other than the one being listened for are
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discarded – only 1 block is populated at a time. The data word itself is carried in the

payload, and if it has not already been received is copied into the space used to collate

the block. The received word array is updated with words successfully received.

Flood-Fill Block End Firstly a check of the received word array is carried out to

ensure that all words are populated. If the list is incomplete then the software waits for

a retransmission, however, typically there is a complete set and the data block can now

be validated. For the indicated block ID, a CRC-32 is incorporated as the payload of

the block end message. At the transmit end this can be generated in software, or via

the hardware supported DMA process similarly to the receive checks. At the receive

end the CRC check is generated by performing a DMA from the block assembled in

System RAM into the appropriate position in the DTCM image, with the CRC option

enabled. The received CRC-32 is then compared with the one calculated locally as

part of the DMA transfer, and if they match, the entry in the received block table is

populated (fig. 4.16). If it fails, then the whole block is discarded as it is impossible

to calculate which word is in error (as the checksums are not strong enough for error

correction). The system then listens for the next Block Start or Control Message.

Flood-Fill Control This is the same as the Ethernet version.
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Figure 4.10: The state diagram transitioning from Node-Boot to System-Boot via

flood-fill from the Host or a neighbouring chip.
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System-Boot Loading – A state machine

The state of the SpiNNaker node during the loading of a System-Boot image may be

considered as a state machine as detailed in figure 4.10. Note that if a start message

is received either on Ethernet or an inter-chip link the state-machine remains in this

mode, there is no ‘interworking’ of the two methods.

Block size choices and Retransmissions

All packets on both Ethernet and inter-chip links are transmitted as datagrams, with no

guarantee of delivery, so mechanisms are built in to compensate for any loss / errors

(await a retransmission of the data). Purely in terms of payload data transmitted, Eth-

ernet is usually twice as efficient as the inter-chip link method with a best case of 94%

efficiency, versus the best inter-chip efficiency of 44%.

4.3 IVB – ITCM Validation Block – a technique for

graceful recovery of Watchdog resets

Should a Monitor Processor within the SpiNNaker machine experience a software

fault, it is useful to have enabled the watchdog timer so that the chip is signalled to

reset. If a watchdog reset occurs then the whole chip (all 18 cores) would usually re-

turn to the Node-Boot code, the routing tables would be reset, and the node would end

up quiescent awaiting a System-Boot image once again.

This behaviour is not desirable during a simulation, as the surrounding chips will

continue to run their application code, and the routing paths may be interrupted. The

chip that has been reset will require recovery before it may once again play an active

rôle. However, much or all of the operating environment may still be intact.

To facilitate recovery in such a situation, a novel (optional) recovery mechanism

(ITCM Validation Block (IVB)) may be installed at the top of ITCM memory. The

IVB is a series of checksums and a ‘magic-number’ (distinctive unique value) that can

be used to circumvent going directly to Node-Boot on reset. This facility permits a

recovery routine to be executed in the node if a watchdog reset is triggered and the

IVB block is valid, which recovers the core to a ‘known-good’ state. This known-

good state is programmable and could be used to recover the whole ITCM, or run a

small routine simply to maintain the routing table entries so the remaining nodes in the

machine can continue without disruption. If the IVB facility is initiated, but there has
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IVB Magic Number: 0xC0FFEE18 0x7FFC

Grand CRC 0x7FF8

CRC 31 ↑ 0x7FF4

CRC 30 ↑ 0x7FF0

CRC 29 ↑ 0x7FEC

... ↑ ...

CRC 0 ↑ 0x7F78

Recovery execute address ↑ 0x7F74

IVB area size (bytes) ↑ 0x7F70

IVB area start address ↑ 0x7F6C

Table 4.3: ITCM validation block structure.

been corruption of the instruction data that the IVB block protects, then the node will

enter the Node-Boot routine as normal and await external recovery.

Table 4.3 describes the structure of this optional IVB. This should be populated by

the software image which is being setup for recovery, and consists of several fields:

Firstly the magic-number is checked – only if this is in place then further checks are

performed. For each 1 kB of protected ITCM a 4-byte CRC is stored which is calcu-

lated using the programmable CRC on-board the SpiNNaker chip. Furthermore there

is a CRC of CRCs (a ‘Grand CRC’) – this is to ensure that the IVB itself has not been

corrupted. The block also contains start and length fields of the contiguous ITCM

block to be recovered, and a branch address to be executed if all IVB CRC checks

succeed.

4.4 Dynamic Host Control Protocol (DHCP) Support-

ing Node-Boot Image

To aid network manageability of nodes it is necessary to provide a mechanism where

a node may learn its Internet Protocol (IP) addressing information, rather than have

it statically allocated by the Serial ROM chip. This is useful in cases where a board

is mobile and may be attached to many different networks, or where fixed addressing

may clash with existing devices on that LAN and cause it an outage or unreliability. In

many LAN environments the LAN management team also wish to maintain centralised

control of IP address allocations via DHCP so that they can filter devices on and off

the network dynamically, so having a DHCP client to cover these sets of cases for the

SpiNNaker chip is very useful.
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The DHCP standards introduced in [Dro97, Ale97] detail how a host negotiates

a lease of a unique IP address from a network dynamically, which remains valid for

a specific period of time specified by the server. The solution to this problem for

SpiNNaker is an updated variant of the Node-Boot image loaded from Serial ROM (per

section 4.1.1), which remains compatible with the ROM based image, but operates a

DHCP client once the POST has completed.

SpiNNaker DHCP implementation

The flow of how a SpiNNaker machine handles the request for a DHCP lease is illus-

trated in figure 4.11 and begins following the POST and chip initialisation. From the

DHCP INIT mode SpiNNaker proceeds to issue a DHCP Discover request, which is a

broadcast to learn of any DHCP servers it can communicate with, and passes into the

SELECTING state. Assuming a DHCP server responds with a DHCP Offer, the first

response is accepted, and the SpiNNaker implementation sends a DHCP Request mes-

sage to that server to accept its offer, and transitions into the REQUESTING state. The

DHCP server, upon hearing SpiNNaker’s request (and assuming its initial offer of IP

details is still valid) will reply with a DHCP ACK message. If the DHCP ACK details

are verified by the SpiNNaker client as the same as in the original offer its state moves

to BOUND, and the leased IP details are installed in the Ethernet block (table 4.1) and

used by the SpiNNaker system.

The DHCP Node-Boot code has been testing in a variety of DHCP environments to

ensure compatibility with different DHCP servers. It has been tested on the University

of Manchester LAN, with enterprise-class Cisco routers acting as a DHCP server, and

on home-class devices from D-Link and Netgear. In all these cases the DHCP client

software function successfully, obtaining IP information initially and successfully re-

newing DHCP leases based on the lease timers.

Discovery of the board

When using DHCP for IP allocations, the management of the IP information shifts

from being a distributed problem statically coded onto the clients, to a centralised

service typically residing in a different management domain. The DHCP allocation of

IP addresses is usually automatic from a logical pool of free addresses, and thus the IP

address lease assigned to the SpiNNaker board is non-deterministic. If the IP address

of the SpiNNaker board is unknown – the management path to the board is undefined.
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Figure 4.11: DHCP address lease assignment from the SpiNNaker client perspective.
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Figure 4.12: Automatic discovery of the SpiNNaker boards on a network. One is

allocated via DHCP and has its description text displayed, the other is a standard Node-

Boot fixed IP image.

The solution is to extend the ‘Hello’ discovery message (fig. 4.7) which is sent pe-

riodically sent by each Ethernet-attached node at Node-Boot, to include a user-defined

‘identification’ string of up to 32-bytes recovered from the Serial ROM. Therefore

management software may listen to discover SpiNNaker boards attached on the local

Ethernet network. The current Host tools have been extended with an auto-detect op-

tion for those SpiNNaker chips broadcasting ‘Hello’ messages. Once the auto-detect

period is complete, the user is presented with a menu of the detected boards to connect

to (fig. 4.12), including their unique 32 character identifier and network information to

allow the correct selection to be made.

Limitations of the DHCP Approach

Due to the nature of the off-chip serial ROM connection, using this technique adds 2.5

seconds to the time from reset until a chip’s POST is completed. DHCP too adds extra

time to the board’s initialisation on the network as it takes a short time to negotiate an

IP address lease with the server. One further limitation of this solution is that as the

SpiNNaker ‘Hello’ messages are broadcast, they are not routed and remain within the

confines of the local network. Therefore for any device to discover that SpiNNaker

chip, it must be within this local domain.
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4.5 Results from Node-Boot Operation

Eighteen core SpiNNaker chips were first delivered in April 2011, and the ROM Node-

Boot software is used to operate all test boards. The software appears fully functional

and successfully covers the boot sequence from power-on, or reset, through to han-

dover to System-Boot software. The third generation of small (72 core) 4-chip boards

(fig. 4.13) were, in June 2012, overtaken in scale by larger (864 core) 48-chip boards,

but to perform testing of the flood-fill mechanisms, multiple 4-chip boards have been

interlinked in extended configurations.

Figure 4.13: A third generation SpiNNaker 4-chip test board (September 2011).

4.5.1 Fault Detection and Isolation

For economic purposes, in the SpiNNaker architecture, the majority of faulty chips

will be pressed into service as most faults are likely to affect only a single core. With

these chips the faulty core is isolated during power-on self-tests, leaving the remaining

17 processors in operation for Monitor and Application rôles.

The Node-Boot code has been tested with chips that did not pass the full suite

of ‘manufacturing tests’ with equivalent results. The code successfully identified the

faults – setting the appropriate bit positions in the core’s error code entry (table 4.2),

isolating the relevant components and succeeded in booting the rest of the chip’s func-

tional cores correctly. However these tests are not 100% comprehensive, see sec-

tion 9.1.3 for further discussion.

4.5.2 Response Time and Data Rate

The Node-Boot image processes three types of traffic on its Ethernet connections: Ping

requests, ARP requests, and Flood-Fill messages. Ping and Flood-Fill packets are uni-

cast packets targeted at the MAC address of the node, and ARP traffic is transmitted as
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an Ethernet broadcast, requiring SpiNNaker to handle the receipt of broadcast packets

and resiliently drop non-ARP types. To test all three types of packets, a number of

experiments were performed:

Ping Traffic

The SpiNNaker board was attached directly to a Host workstation and a volley of ping

(Internet Control Message Protocol (ICMP) echo) requests were sent using a range

of payload sizes. In response to each ICMP echo request packet, the SpiNNaker chip

must copy the payload data, create network headers and calculate a new checksum over

the whole packet including payload. Three plots are presented from the data recorded

during these ping tests. In figure 4.14a the overall data rate achieved is recorded, in

figure 4.14b the number of ping packets handled / s is plotted, and in figure 4.14c the

response time is recorded.

The differing network hardware on the Host platforms is characterised by the al-

ternate curves in figure 4.14. Two machines were used for the ICMP testing, each

using 32-bit GNU / Linux operating systems. Firstly a Sony Laptop with a 1.4 GHz

U9400 Intel Core2 Duo processor and Intel Ethernet hardware, and secondly a generic

Desktop PC with a 3.16 GHz E8500 Core2 processor using a Realtek Ethernet chipset.

The laptop is not able to sustain either the data rate or packet rate of the desktop ma-

chine for smaller packet sizes, with the curves converging with payloads of 512+ bytes.

This convergence indicates the true maximum turnaround rate that SpiNNaker is able

to achieve for ICMP requests of those sizes. For latency the curves are more widely

displaced, indicating that the Sony is able to achieve better latency results, possibly

through more capable chip-sets and drivers. Where the graphs are divergent, SpiN-

Naker is demonstrating its ability to maintain the better of the two performance sets as

these tests are sustained over 30 second periods for each testing point, and repeated on

multiple occasions.

These results provide a gauge of the performance of the bidirectional network han-

dling code of Node-Boot, with a maximum payload data rate of 0.6 MB / s achieved

at around 4,000 packets / s. The maximum packet rate / s of over 69,000 packets is

achieved using some of the smallest payload sizes, a gauge of the maximum number

of frames that a SpiNNaker can handle / s. For figure 4.14c, the latency rises only very

slightly based on the payload length, and appears to not be a limiting factor.
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Figure 4.14: ICMP echo request – Node-Boot software performance.
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ARP Traffic

To maintain IP connectivity SpiNNaker is required to respond to Address Resolution

Protocol (ARP) requests so that its layer 2 and layer 3 addressing information (MAC

and IP addresses) may be mapped. In a typical Node-Boot situation one or more Host

systems may be communicating with the SpiNNaker node, and it must be able to han-

dle other broadcast traffic on a LAN correctly. SpiNNaker does not have hardware

support for broadcast and multicast filtering, therefore the Node-Boot software must

check every multicast / broadcast packet that arrives on its Ethernet. Two experiments

were performed to test the Node-Boot handling of broadcast traffic:

Firstly a large number of ARP requests are transmitted from a packet generator

and targeted at a SpiNNaker chip. This test is performed directly between the packet-

generator and the SpiNNaker chip, as a network switch will usually ‘rate-limit’ broad-

cast packets to a port to mitigate the impact of a broadcast storm in a production net-

work. The SpiNNaker chip is able to reply to over 71,000 ARP requests each second,

a similar (packet / s) number to that of the ping testing. During the test around 150,000

valid ARP packets / s were sent towards the SpiNNaker chip, more than it can handle,

with the excess dropping at the ingress buffer. The SpiNNaker chip remains functional

while these tests occur, gracefully coping with the packet overflow.

The second test is a real-world test where the SpiNNaker chip is exposed to a

mixed network with a considerable amount of varied broadcast traffic. The Univer-

sity of Manchester’s School of Computer Science LAN was used for this test, where

a range of 20 to 50 broadcast packets / s are typically experienced over a 24 hour pe-

riod (mean average over a 10 s reporting period). The test is judged a success if the

SpiNNaker board maintains the ability respond to ping requests, (which are reliant on

ARP functionality at the outset), and that a System-Boot flood-fill is successful. This

test has been performed successfully on 10 subsequent consecutive observed occasions

over 24 hour periods, and numerous smaller unobserved periods, particularly during

office hours where network load is at its heaviest.

Flood-Fill Traffic

Tests were performed by sending a full 32 kB image to an Ethernet-attached SpiN-

Naker chip as quickly as possible. The image is sent as a series of sequential blocks

(per section 4.2.1) and is not repeated. The success of this test is measured by the

image loading and correctly operating on the target SpiNNaker platform, and on its
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repeatability at this rate of transmission at least 50 times without a fail. As this is a test

of the ultimate performance of the Node-Boot code, it is performed on a back-to-back

connection with the Host rather than via a contended network switch.

The results of this testing show it is possible to transmit the 34 required packets

including a start block, 32 × 1 kB data blocks, and a control block, from a Host sys-

tem towards a SpiNNaker board within an overall period averaging 3.367 milliseconds

(10.4 MB / s when headers and trailers are accounted for). To eliminate buffering as

a factor the rate was validated by transmitting the data towards a second workstation

running a packet capture program, and recording the elapsed time between first and fi-

nal packet transmission. It is therefore possible to draw the conclusion that SpiNNaker

is able to parse flood-fill data input at 10.4 MB / s on its Ethernet interface, which is

approaching line-rate.

The results recorded in these performance tests are the best possible which can be

attained from a SpiNNaker system running Node-Boot. In production it is prudent

to throttle the rates back (by means of inter-packet interval) to ensure reliable perfor-

mance in non-optimal configurations. The next results section concentrates on how a

large system running Node-Boot responds to the flood-fill of a System-Boot image.

4.5.3 Time taken to Flood-Fill a System-Boot Image

Following POST all cores enter a quiescent state, with the Monitor Processor listening

for packets received from the inter-chip links (and the Ethernet interface if it is en-

abled). The Host system injects a software image via Ethernet which is assembled and

executed on the Ethernet-attached ‘root’ chip. This software image propagates itself

through the network as a flood-fill (fig. 4.9) using Nearest Neighbour communication –

the only available mechanism until nodes are numbered and routing tables populated.

The use of self-propagating flood-fill greatly reduces the time taken for System-Boot

as this is performed in parallel rather than sequentially. In a rectangular M ×N SpiN-

Naker network (M being the smaller dimension) the diameter (D) or hop-count from

any one node to its most distant is:

D = ⌊
N

2
+max(0,

2M −N

6
)⌋ (4.1)

The use of well-placed multiple software seeding points in a larger system reduces this

distance. In the earlier example of figure 4.9, the one seed diameter is 8 hops, but using

two seed nodes reduces the distance to 5 flood-fill hops.



92 CHAPTER 4. BOOTSTRAPPING SPINNAKER

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

T
im

e
 t
o
 t

ra
n
s
m

it
 i
m

a
g
e

 (
m

s
)

Flood Fill Hops

8KB

16KB

24KB

32KB

(a) Small 6-hop test system

0

1

2

3

4

5

6

7

8

9

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

T
im

e
 t
o
 t

ra
n
s
m

it
 i
m

a
g

e
 (

s
)

Flood Fill Hops

8KB

16KB

24KB

32KB

256*256
d=170 Hops

(b) Extrapolated large system

Figure 4.15: Flood-filling the System-Boot image. In a 256 × 256 system, maximum

distance is 170 hops.

Experiments on SpiNNaker hardware using this self-propagating technique yielded

results shown in figure 4.15a, further detailed in [SPF11]. The transmit times prove

linear to the number of hops, and the duration of the flood-fill of a System-Boot image

for any regular topology can therefore be anticipated (fig. 4.15b).

The topology of SpiNNaker machines is expected to be approximately ‘square’

(e.g. fig. 3.3). A maximal 216 node system therefore (using equation 4.1) has a distance

of: D = 170 hops from a single code injection point which suggests a maximum

System-Boot time of 5.3 s (from fig. 4.15b). Usually the time taken will be smaller,

e.g. around 4 s for a 24 kB System-Boot image, and in proportion to D if multiple

seed points are used.

If the topology and relative positions of the various injection points are known,

this phase can also trigger an algorithm to number the nodes. Once the nodes are

numbered, point-to-point routing is possible and the Host can communicate with any

node directly. At the numbered stage each individual SpiNNaker node can answer

management polls and / or send their status autonomously to the management stations,

so that the overall health of the system can be determined, and be used in the mapping

stages of the application software and in construction of the multicast routing tables

(see section 3.5).
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4.6 Application Loading

The third and final phase of boot is the Application-Load and run-time stage which fol-

lows System-Boot and node numbering. Applications and data are loaded onto each

core and memory, but this lacks parallelism, and the time taken scales linearly with

the number of nodes and size of the data sets. Exploiting the fact that most cores will

be running identical application software, a flood-fill mechanism may be used for this

requirement too. Monitor Processors at application run-time will have a different im-

age from the Application Processors, but that too can be replicated across the machine

efficiently using flood-fill as has been seen. Larger data sets, however, make up the

majority of the loaded data in a SpiNNaker ANN simulation, primarily the synaptic

interconnection tables, and they are loaded serially onto a SpiNNaker system. In the

future it is planned to make use of the SpiNNaker massively-parallel computational

resource to perform the detailed mapping of the system, therefore reducing the size of

the data sets transmitted to the machine itself at the outset.

4.7 Summary and Contributions

The key contribution from this work is the Node-Boot image itself which is operating

on thousands of cores already as part of the 4 and 48-chip deployments. As the Node-

Boot code is in silicon read-only memory and cannot be changed, its requirements

were that it should be ‘right-first-time’. Node-Boot is functioning successfully and

efficiently as the mechanism to perform power-on self-tests and to enable transition

of all cores on the chips to software operation. It is also logging faults successfully,

including on the 17 functional core nodes which will be deployed, permitting the rest

of the chip to boot up without impact.

Particular points of novelty are:

• The implementation of the ITCM Validation Block (IVB), a mechanism permit-

ting users to subvert the usual reset procedure after a software fault triggers a

watchdog reset to minimise disruption

• Exploiting the hardware CRC mechanisms to checksum flood-fill messages

• The method of SDRAM sizing / error detection

• The auto-discovery mechanism for SpiNNaker nodes (particularly with DHCP)

• The immutable data copy / execution routines enabling full ITCM and DTCM

images to be used in all stages of boot.
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From a performance perspective testing has identified that it should be possible to

pass and execute a full 32 kB System-Boot image across the full diameter of a full

256× 256 system in just over 5 seconds. This time turns out to be trivial in relation to

the time taken for generating the routing and data structures from simulation, and for

loading this information to the actual system in latter stages of boot.

From a management perspective, the system successfully bootstraps the machine

and logs information regarding the hardware health of the system in the correct loca-

tions. This information is available even if the node is shut down due to a node-level

critical fault, and may be used to nurse some level of functionality from the node in

later stages of boot should this be beneficial for overall system operation.
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Figure 4.16: The five packet formats used by the chip-chip flood-filling of a System-

Boot image, detailing the staged validation and assembly of the data into the image.



Chapter 5

Imaging Neural Networks

This chapter introduces monitoring that is performed on neural networks. Similarly to

chapter 2 it begins from a biological perspective, and then covers the artificial neural

network space and software used for visualising ANNs, both for in-flight and post-

simulation analysis.

5.1 ‘Wetware’ Monitoring

‘Wetware’ is a vernacular term used by many computational neuroscientists to describe

the in-vivo brain and its constituent cells in animal subjects (including humans). Study

of the anatomy of the brain, post-mortem, has been performed for hundreds of years,

particularly for teaching, and for the purposes of autopsy to determine cause of death.

The ability to visualise and monitor the brain whilst the subject is still alive is a rel-

atively recent innovation, particularly as the brain is housed within the skull for its

protection.

Today there are diverse techniques used in the brain imaging field, from structural

imaging through to functional monitoring; and from single-unit recordings that can

be made at the cell-level through to assemblies of neurons. This section looks at the

imaging of the brain ‘in vivo’, as there is a great deal of research into understanding

the function as well as the structure of the brain. A number of non-invasive techniques

have been developed to visualise the living tissues of brain; previously the only way

to observe the organ in a living patient or animal was through a craniotomy where a

section of the skull is removed to expose the brain tissue beneath.

96
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(a) Major regions of the human brain (src: NEU-

ROtiker on Wikimedia)

(b) X-ray of brain using pneumoen-

cephalography (src: Wikimedia)

Figure 5.1: Structural representations of the human brain.

There are two main reasons for imaging the brain of a living subject: to explore the

structure of the brain for medical reasons – searching for anomalous formations, and

secondly for research purposes to learn more about the functioning of this complex

computational organ. A greater understanding of the brain as a whole may lead to im-

provements in the treatment of cognitive disabilities and with degenerative diseases or

trauma. Exploiting the techniques employed within the brain would also greatly bene-

fit computer science as the brain undertakes massively-parallel computation with very

low power consumption – mirroring exactly two significant problems facing general

purpose computing today.

An illustration of the major structures of the human brain can be found in fig-

ure 5.1a. Imaging of the brain can be performed structurally or functionally – the

former is analogous to a snapshot photograph of the brain, the latter is able to detect

brain activity levels – how the brain is actually functioning at the time of the scan. In

functional imaging multiple images are typically taken to form a sequence of chang-

ing activity levels within the brain, and is used with reference to the applied stimulus

to discern functional areas. Newer techniques apply tomography to imaging which

effectively allows analysis of arbitrary tissue ‘slices’.

The following sections briefly cover the main brain imaging techniques – beginning

with the anatomy and ending with function – providing a background to their use, their

strengths and weaknesses and examples of their output.
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(a) A LightSpeed CT scanner installation (b) A CT scan detailing contrast in the brain

structure

Figure 5.2: Example of machine and data output from Computed Tomography (CT)

equipment. (src: Wellcome Images).

5.1.1 In-Vivo Structural Imaging

X-ray Based Anatomical Techniques

Plain X-ray Plain X-rays [Ron96], were the first method used for brain imaging, but

have mainly been superseded by newer improved techniques in neuro-imaging. X-rays

are able to pick out some brain anomalies, but due to the fairly uniform density of the

brain [BHK+99], and its soft tissue constitution – its structure is not readily discernible

on the output plate or detector.

Pneumoencephalography In PEG [Dan18], the inter-cranial fluids in the ventricles

of the brain are drained via spinal tap, and replaced with gases to generate better con-

trast in the X-ray images. An example image using this technique can be found in

figure 5.1b, but even this technique exhibits poor contrast. PEG itself is a significant

procedure, requiring an extended recovery period for the patient, and has since been

superseded by many newer, less intrusive techniques described below.

Computed (Axial) Tomography Computed (Axial) Tomography [SAL06], (more

commonly known as CAT or CT), is an imaging technique that uses computer technol-

ogy to control a targeted X-ray source and sensors which are applied radially around

the subject (fig. 5.2a), and to combine the series of plain X-ray data sets. The im-

ages created are therefore tomographic ‘slices’ of the subject, and can furthermore be



5.1. ‘WETWARE’ MONITORING 99

presented in any orientation desired, targeted at the area of investigation [SAL06]. In

a head CT (fig. 5.2b) the sensitivity of this technique far surpasses X-ray, with dif-

fering tissue densities represented clearly, so white matter can be distinguished from

grey matter, tumour from healthy tissue and in trauma haemorrhage can be easily and

quickly identified. As computing technology has improved the time taken to create

images from CT scans has reduced such that near real-time visualisation of the data

may occur as the scan progresses.

The main issue with all X-ray based techniques is that they actively expose the

patient to radiation and, cumulatively, this may have an adverse effect on subjects

increasing their lifetime chance of developing cancer due to their additional exposure

to the ionising radiation used [SBLM+09].

Magnetic Resonance Imaging Techniques

Magnetic Resonance Imaging (MRI) [Lau73] dispenses with X-ray and radioactive

techniques and concentrates on how sub-atomic particles react to being placed in a

strong electro-magnetic (EM) field. In such an environment the protons in hydrogen

atoms orient themselves uniformly to the field (the proportion that do so depends on the

strength of the EM field). This field is then disrupted selectively by a radio frequency

(RF) burst causing hydrogen protons to tip to a different alignment and enter a higher-

energy state. The RF energy is turned off, and the alignment of the hydrogen protons

returns to the direction of the static magnetic field, emitting RF energy as they relax

back to their magnetised state. The rate at which photons are released during the

process is dependent on the tissue type, and is detected by the scanner and measured.

Different tissue types have different hydrogen compositions, so the amount and rate

of emitted RF alters depending on its type. The positional information is retrieved by

addition of gradient magnets in 3 dimensions which, when selectively turned on, can

modify the magnetic field gradient along the associated axis. The specific frequency

required to tip the nuclei now changes spatially over the length of the axis to produce

the ‘slice’. Analysis on the phase and frequency of returned RF information can then

isolate the position in the remaining 2 axes, and form the image (eg. fig. 5.3).

Diffusion Tensor Imaging This variation of MRI scanning examines the connec-

tivity of parts of the brain by observing the motion of water molecules through the

tissue. By examining water molecule diffusion over time at a particular position, geo-

metric structures (and nerve fibre flows) may be inferred. For example water diffuses
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(a) Volumetric representa-

tion of MRI structural data

(b) Sagittal and axial views. Cortical (grey) and connectivity (white)

matter can clearly be discerned

Figure 5.3: Images of the author from the 3T scanner at Salford Royal Hospital, partic-

ipating in a brain imaging study. Results of this study were published as [WLK+11].

more readily along an axon than perpendicular to it due to the constraints of the fibre’s

sheath. DTI studies are carried out in 3 dimensions as facilitated by the MRI imaging,

and thus enable a detailed map of the connectivity structures of the brain to be built.

5.1.2 In-Vivo Functional Activity Imaging

Positron Emission Tomography

Positron Emission Tomography (PET) [TPPHM75] is a technique that uses a radioac-

tive tracer agent, which has a short half-life, injected into the subject’s bloodstream.

Areas in the brain which are active use comparatively more oxygen and glucose than

others, and if the tracer agent is attached to the glucose then proportionally more of

it will be found in the most active portions of the brain. The radioactive agent emits

positrons which when annihilated with a nearby electron emits two photons (gamma

radiation) which disperse at 180◦ from one another and the time of arrival difference

at the detectors may be used to identify the positional source. The scanner may now

‘light up’ this particular area of the brain image using detection incidences to deter-

mine activity levels in that particular brain area (fig. 5.4a). A PET scanner is formed

of a ring of sensors physically resembling the CAT scanner (fig. 5.2a), and is typically

used in conjunction with CT or MRI scans to co-register both structural and functional

data onto the same image (fig. 5.4b). This practice of augmenting a structural scan with

overlying functional data is commonly known as imaging fusion or co-registration.
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(a) An image from a PET scanner

showing radioactivity detected in-

dicating increased blood flow and

hence activity

(b) An additional PET image over-

laid on CT anatomical detail

Figure 5.4: Example of raw and augmented use of PET data for brain activity analysis

(src: Wikimedia).

Single Photon Emission Computer Tomography

Single Photon Emission Computer Tomography (SPECT) [JCSM79] is a technique

which uses a gamma emitting radionuclide in the bloodstream of the patient which is

bonded to a secondary chemical that will be prevalent in the area of interest for the

scan. Gamma detectors rotate around the patient over the period of the scan and from

the 2D measurements of the gamma radiation detected, a 3D view may be constructed.

SPECT is less spatially accurate in its detection than PET, but uses more easily ob-

tained radionuclides

Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) [BKM+91] uses rapid (sub-200ms)

MRI scans to image brain functionality in semi real-time. fMRI operates by detecting

the slight differences in blood oxygenation within the brain and utilises the 3D po-

sitional resolution available in MRI [dLVA+98] to pinpoint the functional activation

centres (fig. 5.5). The technique generally used is Blood Oxygen Level Dependent

(BOLD) [OLKT90], but it should be noted that BOLD does not measure the neu-

ral activity directly, but a secondary effect of the haemodynamic system replenishing

de-oxygenated blood with oxygen-rich blood following periods of increased activity.
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Figure 5.5: A cutaway functional MRI

scan, highlighting visual cortex activation

(src: Wellcome Images).

Figure 5.6: A SQUID skullcap worn

by subjects in MEG studies, (src:

[VMM+04]).

There is therefore a ‘lag’ with this indirect measure when looking at neuronal activ-

ity relative to some other techniques. fMRI is the most common technique used by

researchers studying brain activation and function, as it can image activity in three di-

mension of the brain, and fuse this with a structural scan taken in the same scanner at

the beginning of the study; also, of course, it does not involve ionising radiation.

Magnetoencephalography

Magnetoencephalography (MEG) [Ham92] is a technique where magnetic fields gen-

erated inside the brain are measured externally via devices known as Superconducting

QUantum Interference Devices (SQUIDs) which are usually embedded in skull caps

/ helmets worn by the subject (fig. 5.6). Measurements are taken within a heavily

shielded room, as the magnetic signatures generated by the electrical current flows be-

tween neurons are very weak. Only assemblies of thousands of active neurons at a

time can actually be detected, even in the shielded room. One of the advantages of

this technique over fMRI is that MEG is the observation of the direct effect of activa-

tion, rather than a secondary effect within the brain, and thus its temporal resolution is

consequently much greater.

Electroencephalography

Although not a technique which readily lends itself to brain imaging, the non-invasive

electroencephalography (EEG) [SG98] technique makes uses of electrodes placed on

the scalp (fig. 5.7a) to measure electrical activity of synchronised neural network activ-

ity in the cortex of the brain. This technique differs from MEG due to its monitoring of
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(a) Application of a 10 electrode

skullcap for EEG experimentation

(b) An example trace from an EEG experiment (src:

Wellcome Images)

Figure 5.7: Electroencephalography (EEG).

electrical rather than magnetic artefacts and may suffer distortion due to the electrical

characteristics of the scalp. The typical output from an EEG trace is provided as an

example in figure 5.7b. EEG is often used for Brain Computer Interfacing (BCI) where

brain activity may be read passively from the subject using relatively simple sensing

equipment (fig. 5.7a), and used as input for a computing environment.

Near Infra-Red Spectroscopy

NIRS is an optical method that may be used for monitoring the cerebral haemodynamic

system [Job77]. The wavelength of near infra-red light is able to pass relatively unim-

peded through the scalp and skull where it is either absorbed or scattered by the under-

lying tissue. The absorption spectra of oxygenated and de-oxygenated haemoglobin

differs and hence the returning scatter may be used to record the regions of the cortex

which are active with good temporal resolution. This measurement can be repeated

across the scalp and thus optical recordings can be made of the activation of functional

areas of the brain cortex, the spatial accuracy of which can be improved by the use

of multiple optical detectors. In smaller brains (infants or animals), where light may

pass through the entire brain, Optical Tomography (OT) may be performed by this

technique, although this is not possible in the adult human brain. The technique is typ-

ically carried out using laser light sources and the heating function of the absorption is

a limiting factor in the source powers used for monitoring.
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5.1.3 Single-Unit Monitoring

Although the techniques described above allow some level of direct and indirect record-

ing of neural activity within the brain, this is recorded without precision either spa-

tially, temporally or in sensitivity. The monitoring therefore takes place at a functional

area, or cell assembly level, rather than with individual neuron cell granularity. Single

unit monitoring (at a neuron scale) is readily achievable using in-vitro techniques, for

example the squid giant axon used by Hodgkin and Huxley for their experimentation

[HH52] or in [IHS06]. However in-vivo methods such as Electrocorticography (ECoG)

are more problematic as they require physical access to the subject’s brain. Even after

access is provided issues pervade in-vivo sensor location – as neuronal structures are

small with cell bodies in the micrometre range – and placement cannot be made with

this precision. Results recorded may be the result of several proximate cells (multi-

cellular recording) rather than a single neuron. The brain also proves to be mobile due

to the physical movements of the subject (and brain and sensor inertia), the haemo-

dynamics within the skull, and the operation of plasticity. These changes are large in

comparison with the placement precision of the individual micro-electrodes or micro-

electrode arrays (fig. 5.8), and their attachment to the skull or cortical tissue [MAS11].

The sensor environment is also harsh, there is biological resistance to foreign objects

embedded in the body, and over time sensors may become less effective as they react

with the surroundings. These issues have led to attempts to create movable single unit

sensors [MAS11] to maximise the quality of long-term implanted micro-electrodes.

In-vivo single neuron sensing remains an active area of neuroscience research, with

high-profile results such as the ‘Marilyn Monroe neuron’ [CTM+10] reporting suc-

cess.

Figure 5.8: A Micro-array of electrodes used for single- / multi-unit monitoring (src:

[WC05]).
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Finally, the implanting of sensors is disruptive to a patient, so this type of single unit

monitoring is typically applied in animal subjects, or in humans where there is already

some underlying pathological reason for intervention into the skull, for example when

implanting brain stimulation devices in cases of Parkinson’s disease, chronic pain,

depression and Tourette’s syndrome [KJOA07].

5.1.4 Biological Imaging Software

Much on-line imaging software is supplied to the market as part of a bundle with the

imaging equipment itself [BCFG03], and driven by the operator (usually a radiologist).

Off-line analysis software is available for various platforms, and particularly GNU /

Linux based, in part, on its long-standing support of 64-bit addressing and thus large

data sets, and the low acquisition cost (typically nil). Commonly output from structural

and functional imaging hardware is in the form of data formats created as part of the

Digital Imaging and Communications in Medicine (DICOM) standard [Gib08]. These

standards permit software packages to read off-line data to analyse and manipulate it

in the software package of choice for the user. Referring once again to the 2011 Fron-

tiers in Neuroinformatics survey paper seen in chapter 2 [HH11], the top 5 software

resources used for imaging data as found by the study are:

• SPM [fN12] (Statistical Parametric Mapping) which is a software analysis pack-

age for MATLAB [Mat12a]

• FSL [oFOU12] (Oxford Centre for Functional Magnetic Resonance Imaging of

the Brain Software Library) visualisation and analysis tools for MRI data

• MRIcroN [Ror12] a set of visualisation tools for displaying volumetric and to-

mographic slices of medical images. Figure 5.3 was taken from this software

• Freesurfer [fBI12] is a software package focusing on cortical reconstruction

from MRI data and functional co-registration upon it

• AFNI [Bet12] (Analysis of Functional NeuroImages) is a C based tool to display

functional data from fMRI data sets.

All these tools run on Linux (and Mac), with a few supporting Windows natively (or

in virtual machines). They are all free to download and use, and a number are multi-

modal, in that they can support data from a variety of imaging sources for example

MRI, PET and CT. Similarly tools are available for EEG and MEG type data, such as

EEGLAB [fCN12] and FieldTrip [CfCNotDIfBB12], both Toolboxes freely available

for MATLAB to allow visualisation and analysis of electro-physiological data.
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With brain imaging’s inherent difficulties of recovering good quality data, and in-

vasive nature to examine the single-cell biology, the case for creation of artificial com-

putational equivalents is strengthened. Simulated models also permit parameters to be

obtained through all levels of abstraction in the simulation, in a reliable and noise-free

manner, and are the focus of the next section.

5.2 Artificial Neural Network Monitoring

Observing an animal provides only the merest hint of what its brain is actually doing,

and to understand the activity inside, functional imaging and recording techniques are

used as in the previous section. This notion also holds true for computers and elec-

tronics running artificial neural networks: machines on desks or in racks appear as

‘black-boxes’, giving very little away of their internal machinations.

To provide some insight into the operation of artificial neural networks, a level of

functional analysis of the simulation and its results are required. As the number of

hardware and software tools used for ANN simulations is wide and varied, so too are

the techniques used in this area. Some have the analysis of the data taking place off-

line, with data downloaded from the target platform after the simulation has completed.

This is analogous to batch processing in the computing world, but in the neural space

may consist of the final weights and biases applied to the components in the network,

or in the pattern of action potentials over time. Other analysis methods provide an

insight into the performance of the networks whilst the simulations are operating (real-

time), perhaps providing a feedback path so that the user may help guide the simulation

and direction of learning.

The scientific visualisation [Tuf01, DB91] of neural network data, in whatever

form, takes advantage of the brain to discern patterns within the visualised results

data, something to which the brain is highly attuned. The representation of the data

presented by the visualisation therefore is key to its accessibility, and hence the ability

to understand how the neural system operates and reaches its ‘decisions’. An issue

which pervades visualisation techniques is the high-dimensionality of the data – and

how the pertinent information may be represented visually to the user within a 2- or

pseudo 3-dimensional space.

This section continues to provide an overview of some of the more commonly used

analysis techniques in ANNs, those which operate on the more widespread perceptron

based networks and also third generation spiking neural networks.
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5.2.1 Non-Spiking Neural Networks

The earlier generation of ANNs, as described in chapter 2, are not particularity biolog-

ically faithful on a cellular level, but they do encompass some interesting behaviours,

particularly in the field of learning of the approximated neural assemblies. Conse-

quently visualisations have been created to represent these behaviours, particularly

focusing on how the network ‘learns’ and reaches its final configuration. It is the net-

work configuration as a distributed whole that encodes the behaviour of the ANN, and

it is therefore challenging to represent complex configurations.

Static Representations

Craven and Shavlik [CS91] recognised several reasons why the analysis of result data

from neural network learning behaviours is important, with visualisation a key tech-

nique for achieving this goal. They reasoned that if the network can be understood then

the results can be explained with confidence, and that ANNs may be able to pick out

previously undiscovered patterns and rules within the input data set. With any learned

response care must be taken to maintain the generalisability of a network, and avoid

specialising too closely to the training data – over-fitting. However they also recognise

reasons why representing a network is difficult – including that the parameters are typi-

cally encoded as real numbers, that there are often very high levels of interconnectivity

within the system, and that the overall results are a product of the whole distributed

network – which may not be trivial in size.

The first eminent method of presenting configuration data from a neural network

is the Hinton diagram [HMR87]. The Hinton diagram displays vector information of

input / output weights of a unit’s connections and its individual bias, with the size of a

box representing the magnitude, and the colour its sign. An example Hinton plot can

be found in figure 5.9 where the inputs to the network are at the base of the diagram,

the hidden layers in the centre and at the top are the outputs. Using this representation

it is trivial to discern which weights are contributing to the activations of each unit in

this simple network.

Aiding the topological representation of the network was the key goal of Bond

Diagrams [WT91], which represent the units within the perceptron explicitly (sized

according to their individual bias) and where the bonds between units are depicted

varying in length dependent on the weight magnitude figure 5.10a). Although the

topological data is clearer, and described within a single plot, the bond diagram suffers
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Figure 5.9: Example Hinton diagram, weights are represented by colours for sign, and

size of block the magnitude.

from the different forms used to represent bias and weights, and understanding their

relative contribution to the activation of a unit.

Further insight can be gained by other diagrammatic forms, including hyperplane

diagrams [CS91] where the surface formed describes the linear separability of the prob-

lem (fig. 5.10b). According to the number of hidden units within a perceptron layer,

the number of divisions within the surface of the hyperplane increments. A similar rep-

resentation is the Response-Function plots where a diagram for each unit is produced

and shading represents the output activation based on the inputs.

The limitations of these static techniques is they cannot represent uniquely all di-

mensions of the input space, as they are plotted in two dimensions (or pseudo three

dimensions by projection), and are of a fixed point in time without displaying temporal

information.

Hidden Units

(a) Bond Diagram – colour and magnitude of arrows repre-

sent weights, and node-size the biases applied to that node

Hidden 

Unit 1

Hidden 

Unit 2

+

+

-

-

1

1
0

(b) Hyperplane diagram – Hidden

units in the perceptron demarcate

the output from the input spaces

Figure 5.10: Bond and Hyperplane static representations.
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(Input B)
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Figure 5.11: Trajectory diagram, weights adjust over time as learning takes place.

Dynamic Representations

Static diagrams can either be an instant in time during the training of a network, or are

more typically produced at the end of the training period when the network approaches

equilibrium and its error minima. However it is possible to animate these diagrams to

follow the dynamic adjustment mechanisms of the network during the learning period;

examples of animated hyperplanes can be found in [PMKK91, Mun92]. A further

plot commonly used which incorporates the time dimension is the trajectory diagram

[WT91], which displays a trace of how the weights within the plotted space evolve

over the operational period (fig. 5.11). By necessity, the number of dimensions in

this diagrammatic form is reduced (creating a non-unique space) to represent the error

within the usual gradient descent observed during the learning period. The width and

colour of the trajectory may be used to represent attributes of adjustment over time

such as the network error or rate of change.

Reduction in Dimensionality

As noted, the difficulty in representing multi-dimensional data in a 2 or 3D projection

is selecting the data to plot. Principal component analysis (PCA) [Jol02] is used to

reduce the dimensionality of the data by decomposing it into a smaller number of

components of decreasing variability to the end result. This technique may therefore

be used to reduce the dimensionality of a neural network for visualisation on-screen

or as input to other software, and is also a useful technique in spike timing analysis,

discussed in the next section.
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Further Reading

This short section has briefly covered some of the major visualisation techniques used

in the earlier generations of artificial neural networks (primarily multi-layer percep-

trons). Further reading in the area can be found both in visualisation papers [TDM03,

UJ06, Rou94, TM05], and in both commercial and non-commercial toolsets [Mat12c,

Wil93, KW96, Yos98, SWA01], and on PCA in Gallagher and Downs [GD03].

5.2.2 Spiking Neural Networks

In SNNs the output information encoded is represented by the spike timings rather

than the continuous outputs of previous generational models. The spike is an ‘all-or-

nothing’ type event; an impulse sent from a neuron along its axon which is imparted

to all connected downstream neurons (see figure 2.3). The membrane potential (the

current state) of the neuron is decoupled from the downstream neurons in the spiking

model, with the information encoded into the existence and timing of the spike events.

Within a spiking network there is no clock providing a centralised epoch on which a

network is updated, neurons operate in an asynchronous, event-driven manner, their

dynamics determining whether they should emit a spike once the membrane potential

modelled reaches its trigger threshold.

As the model dynamics are much more biologically realistic within a spiking sim-

ulation, there is increased interest for network modellers in visualisation, particularly

where the perspective may be user-selected. The visualisation abstractions can be flex-

ible, ranging from single unit dynamics – such as neuron membrane potential over

time, through to spike timings of a particular set of neurons, and onto the firing-rates

of particular populations of neurons and across the whole simulation. These differing

perspectives correlate with single- and multi-unit monitoring techniques plus func-

tional area and whole brain monitoring visualisations that are available in the biolog-

ical domain, discussed earlier in this chapter. The main advantage of simulation is

the flexibility and noise-free granularity offered by a computing system, this permits

dynamic scaling from the minutiae of modelled cellular data, to the overview of the

activities of the entire ANN, potentially from the same user interface.

Spiking-Centric Visualisations

The discrete spiking nature of the third generation of neural networks gives rise to a

number of visualisation schemes that centre on the spike events, and their correlation
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with one another. A good proportion of the techniques are based on spike train analysis

techniques performed by Awiszus [Awi97], in which he records spike data from one

of his own motor neurons, and undertakes a series of analysis on the retrieved data. A

number of the more notable spike visualisation techniques derived from this work, and

now widely used in artificial neural network study, are now reviewed.

Raster Plots Perhaps the best known spike-based visualisation has individual neu-

rons represented in a ‘raster plot’, a form of scatter diagram where the x axis represents

time, and the y axis the identification of the neuron (or series). Each time a neuron

spikes it is recorded against its ID and the simulation time, as a vertical bar (c.f. a

voltage trace) or ‘dot’. Raster plots provide a good overview of all (or a set of) results

from an experiment, although it may be difficult even for the human brain to discern

any patterns or coincidence with a large volume of scatter data. An example raster

plot is found in figure 5.12; this demonstrates the spike trains from a small number of

neurons in an ANN over time. The second example has 200 synthetic neurons plot-

ted over a 1 second period (fig. 5.13a). This example illustrates that it is difficult to

discern the repeated pattern within a large subset of a population which has the same

statistical distribution. In its companion figure (fig. 5.13b) the pattern is highlighted

and becomes immediately apparent. The relationship between spike-timings of single,

paired and ensembles of neurons can be detected and plotted using several visualisation

techniques:

Figure 5.12: Raster plot of spike trains from a number of neurons over time.

Post Stimulus Time Histogram This histogram records the time at which a neuron

is expected to fire following its stimulation, the distribution being categorised into

‘bins’ thus providing a probability function of how the neuron will react. By using a

pair of neurons and plotting the co-incidence of their spiking in concert, a Joint PSTH
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(a) Raster plot of synthetic neural network (b) The same raster plot with the pattern high-

lighted

Figure 5.13: Pattern spotting within raster plots. (src: [DRGF11]).

may be formed. Alternatively a normalised JPSTH can be created which removes the

independent firing-rates from the correlation and relates just the comparison. Due to

their low dimensionality these plots are represented in a grid form, but these methods

and presentations do not easily scale to many simultaneous neurons.

Cross-Correlogram This, too, is a common technique to examine pairs of neurons,

with one neuron’s spike train being used as a reference to which a second neuron’s

spike train is overlaid resulting in a distribution plot over the time period studied.

Should the spikes be co-incident within the time bins, or in a manipulation of the

spike-train time-base, a relationship can be inferred between the neurons from peaks

in the distributions. Clearly the number of pairs of neurons rises steeply in large neural

networks and, as with previous methods described, it is most often used with proxi-

mate neurons. The auto-correlogram is a variant, where pairs of spike timings from a

single neuron are compared (the Inter-Spike Interval (ISI)), and this analysis may be

used to pick out rhythms and other characteristics of the firing of that neuron or sets

of neurons. A survey paper detailing the challenges of the analysis of spike-train data

(particularly of a multi-dimensional nature) can be found in [BKM04].

Not all data of interest in ANNs is based around the spikes. In computational neu-

roscience [SKC88] neuron and synaptic simulations are represented by mathematical

models. Being within a computer model ensures that the state of all constituent ele-

ments may be queried, at any time, and in a noise-free repeatable environment. This

data may be useful to the user, and may be visualised too.
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Non-Spiking Data from SNN Networks

As with earlier network generations, weights remain important in spiking neural net-

works, and are used where input spikes arrive at modelled synapses. They determine

the post-synaptic influence of incoming spikes on the downstream efferent neuron.

Weights may be altered in simulation by plasticity models, e.g. Long-Term Potentia-

tion and Depression (LTP and LTD), and Spike Timing Dependent Plasticity (STDP).

Learning rules such as these are instances of Hebbian Learning (chapter 2), which is

commonly paraphrased to ‘Cells that fire together, wire together’. Monitoring of over-

all strength of individual and groups of synaptic weights over time is a common case

for study in spiking ANNs, just as in previous generational models.

SNN Visualisation Software

Many solutions created to visualise spiking neural networks are bespoke, tied to the

implementation software used to specify and execute the simulation. Several of the

tools also permit interaction with the model, as it runs, to change parameters or adjust

settings for the next simulation via GUI software to aid the modeller. This section

summarises the visualisation features in some of the more common neural network

modelling software packages (section 2.3.1), and further software available in this area.

Visualisation in Popular Neural Modelling Software Some of the more popular

software modelling tools were listed in 2.3.1, and examples of several of their visuali-

sation output capabilities are in the 2007 paper from Brette et al. [BRC+07]. This pa-

per provides examples of many of the visualisation modalities across several tools, in-

cluding NEURON [HC97], GENESIS [BB07] via XODUS, the Neocortical Simulator

[Bra12a], NEST [GDG07] and others such as (P)CSIM ((Parallel) Circuit Simulator)

[PN09] which was previously seen used as a simulation engine for PyNN [DBE+09]

in section 2.3.1. The Python oriented simulators such as PyNN are able to make use of

the libraries available in Python to perform graphing, and one notable example in this

space is the NeuroTools suite which provides a plotting environment oriented to the

needs of neural network simulation [DBE+09]. Brian [Goo08] is also Python based,

and has two custom plotting environments for raster and histograms plots, with the re-

mainder of the plotting expected to use the functions from MatPlotLib [HDD11] which

is also the basis for the NeuroTools plotting routines.
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iRaster iRaster [SSSB10] is an analysis tool for post-simulation spike-train data,

and renders raster plot data in sliding windows as users are familiar and comfortable

in exploring and identifying patterns within this representation. It is able to recover

and display a subset of synchronously active neurons detected using a number of tech-

niques including reordering and visual manipulation of relevant spike train data. The

GUI provides facilities for multiple views of data, and facilitates users zooming in on

‘items’ of interest. The tool may also use synthetic or biologically sourced data, and

is able to inter-operate with various standard sources of spike data, including in MAT-

LAB binary form – the authors reasoning that another incompatible format will limit

the iRaster’s exploitation. The main advantages of the software are this wide-ranging

support of data sources, although it does appear focused (limited) to spike trains and

their correlations only, and is not able to represent other forms of input data.

MATLAB Many tools use MATLAB [Mat12a] to provide their input and analysis /

visualisation functions – indicated in section 5.1.4 and a key finding of software and re-

sources sections of the NeuroDebian survey [HH11]. MATLAB may be used for both

biological and simulation data, and thus provides an avenue for tool-sharing, although

this is rarely the case practically. One example of a Spiking Neural Network toolbox

for MATLAB is detailed in [BMT09]; this allows for a full-cycle of description, opera-

tion and visualisation of SNN networks. This implementation builds a layered network

around models of neurons (MATLAB being highly suitable to explicit description of

the mathematical dynamics of neural and synaptic models). The visualisation tech-

nique uses a multi-window environment specified by the user to view the dynamics of

the network, from the neuron and its parameters through to spike-rates which are better

suited to large network sizes, and to rate correlations. MATLAB Central [Mat12b] is

an ideal place to begin when examining the capabilities of MATLAB to perform and

analyse spiking neural networks [Izh03]. MATLAB has the advantages of being eas-

ily extensible and having the manipulation tools and libraries to perform analysis and

signal processing of results data, and that many users are already familiar with the tool

for other analytic purposes. It has the disadvantages of lacking a standardised spiking

neural toolbox, and its lack of integration with the emerging standard of PyNN based

descriptive specification.

Nengo Nengo integrates a highly graphical environment for analysis and evaluation

of the networks built using the NEF (Neural Engineering Framework). Due to this
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tight intertwining there is a strong emphasis on visualisation and parameter interaction

with in-flight networks. For smaller networks in Nengo it is possible to operate and

interact with the networks created in real-time. However, in larger networks where

this is not possible, the simulation runs at a slower rate, but it still remains possible

to interact with the simulation parameters. Plots can be dynamically created directly

from the GUI interface (see figure 5.14 for examples, including voltage levels, raster

plots, tuning curves, and grids of voltage levels and activity rates). The environment

is created in Java providing some level of platform independence, extending to incor-

poration within the MATLAB environment if the user wishes. External renderers may

be used to incorporate visualisations that are not built in, and data may be plotted with

a ‘3D’ flavour using this technique. The GUI is a flexible best-of-breed visualisation

experience, however the NEF is not a generic solution for all neural modelling (and

therefore visualisation).

Figure 5.14: Screen taken from Nengo with multiple population based plots displayed

as the simulation operates. In-flight interaction via input function slider is also illus-

trated (in the figure the input voltage applied is 0.49V).

Neurogrid Neurogrid also includes the ability to visualise within a real-time sim-

ulation environment [GLS+05], their web pages indicating that it is possible, from a

GUI, to select different granularity within the network to visualise – from the low-

level individual neuron voltage through to raster plots from a modelled cortical layer.

Neurogrid provides a layered view, this perspective is derived from the topology of

Neurogrid networks which are constructed in hierarchical layers. Although appear-

ing less flexible than the Nengo interface, different plots may be combined within a
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GUI window. These cover raster plots, rate plots and the voltage levels of monitored

variables – the ability to present various modalities of data being a distinct benefit to

the user. Audio, too, may be used to aid comprehension of network operation, with

clicks sounding as a neuron or group of neurons fire, the frequency of which indicates

their activation. The main disadvantage of the this tool is that it is tied closely to the

Neurogrid spiking hardware and is non-generalisable.

SpikeFun One amateur project SpikeFun [Dim12] uses a single desktop processor

to model over 3 million neurons and 50 million synapses. It is not able to operate in

real-time for larger simulations, but may perform simulations over regular and ‘brain

shaped’ systems. Its visualisation capabilities are of interest, however, as they provide

a topological view of the system being modelled, and its current activity as well as the

more usual features to gather potentials. The visualisation is created using OpenGL

and thus allows easy manipulation of user viewpoint, and slices to be taken from the

system to examine status at any point (as the 3D projection naturally obscures some

detail). In its favour the tool has some striking demonstration material available via

its website and creates simulated output similar to biological observational techniques

such as EEG and fMRI. However its main disadvantage appears to be the lack of prac-

tical experimentation facilities – it would be interesting to tie this tool in with other

biologically significant simulations to study their behaviours graphically.

SNN3DViewer [KPP09] This tool concentrates on the 3D representation of maps of

neural networks, permitting users to explore the dynamics of a system (post-simulation)

with a network-centric perspective. In this way the activity of a network may be visu-

alised with individual spikes travelling over axons and dendrites in the network, with

colour representing the strengths of connections. The sheer number of connections in

large networks may make visualisation difficult, and it is possible to select the con-

nections of interest for display and to disregard the others. As with all 3D projections

data may be obscured and SNN3DView contains controls to adjust the viewpoint to

get a better overall picture over time. Another disadvantage of this technique is that

real-time performance is not possible as it would be too fast to display, therefore this

tool has largely aesthetic appeal.
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Co-registration / Fusion

Within the SpikeFun tool a prototype of a brain is used, and plausible activity projected

onto it. This technique is similar to the activity sequences from biological sources

such as functional MRI data which are plotted in conjunction with structural scans

(co-registration). If populations of simulated neurons may be mapped to functional ar-

eas then a pseudo-fMRI fusion visualisation is created. This technique has been used

within the Blue Brain project, albeit not across an entire brain (see the project presenta-

tions [INC08, Con11]), and has been used with large Izhikevich ANN models, where

activation is projected onto a template human cortex [IE08]. As larger biologically

plausible networks come into existence, exploiting the co-registration technique is a

powerful method of data visualisation and results analysis. If the data can be collected

and stored in the same format as the biological data, then the analysis tools can be

shared and bridges built between computational and wet neuroscience.

Themes from Spiking Visualisation Tools

The visualisation schemes used across the Spiking ANN tools include many of the

same types of representation seen in the biological, and non-spiking ANN imaging

spaces. The data types commonly comprise: raster (scatter) plots, histograms and cur-

rent / potential plots over time. These diagrams are often multichannel, as the points of

recording are numerous, and they support visualising data using more than one method

or viewpoint. 3D and tomographic representations of neural data, although fascinat-

ingly organic, serve the purpose of discerning high-level patterns of behaviours such

as oscillations. However it is the ability to ‘zoom’ into the detail of the implementa-

tion, all the way from the ‘40,000 feet’ overview to populations of neurons and their

firing-rates and patterns, and then again to the individual neuron and to its dynamics

that truly provides the user with a valuable experience.

There are few, if any, standardised tools which operate in the simulation space; each

simulation tool either bundles analysis tools, or the output is recovered and analysed

in tools such as MATLAB off-line, using custom visualisation techniques developed

or adapted for the specific application.

The majority of neural network results analysis (biological and artificial) takes

place off-line, and there are several reasons for this. Firstly the quantity of data recov-

ered can be vast – and creating a channel for this data back to the visualising software

is challenging, particularly as most of the data is discarded as it is irrelevant from the
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users viewpoint. This channel itself may be limited in capacity, or temporal accuracy,

providing the equivalent of peering out of a frosty window although this may be suf-

ficient to provide the results required. By using an off-line dump of all data collected

from the network, analysis tools may drill directly to the required information in the

system but this analysis is delayed until after the simulation is complete, and by the

time taken to obtain and process the data.

5.3 Summary

This chapter has explored techniques used in brain scanning for its functionality and

structure, techniques which can be applied in research and for medical purposes. Mon-

itoring can be active (by invoking a physiological response), or passive (by external

sensors) which is less likely to be injurious to the subject. There are several types of

active monitoring techniques, with a clear distinction made between those which in-

volve radioactive materials, (and are therefore limited in their repeatability due to the

risks of cumulative radiation dosing), and the alternatives. Techniques such as MRI

(based on magnetism) and NIRS (based on light) invoke a physiological response to

the applied stimulus and are thus regarded as active, although no adverse side-effects

of these techniques have been determined to date. In all brain imaging techniques the

resolution of the information retrieved is limited by the sensor technology of the scan-

ner and its situation. It is only by using invasive or in-vitro techniques that specific

cells rather than imprecise functional areas within the brain can be studied.

Computational neuroscience has therefore developed models of the biological con-

stituents of the brain which may be studied in-silico, repeatedly, and non-disruptively

in a noise-free environment and at any level of abstraction. As the models developed

may emulate individual neuron function, it is realistic to produce and image single-

neuron data totally flexibly, which is an increasingly active area of research in both

wet and computational neuroscience.

As SpiNNaker targets primarily third generation simulations: Spiking Artificial

Neural Networks, the biological and artificial visualisation methods described by this

chapter may be appropriately applied to the simulations SpiNNaker runs. Chapter 6

goes on to describe the flexible visualisation framework developed to support the man-

agement of real-time neural network simulations (from SpiNNaker and beyond).



Chapter 6

Visualising Neural Networks on

SpiNNaker

SpiNNaker has been designed with the primary purpose of simulating real-time spiking

neural networks [FB09]. This is an unusual approach to take within the artificial neural

network space as, in addition to the requirements of fidelity and scale, a rigid timing

constraint is added to the system requirements. If a real-time system does not meet

its timing then its results may be invalidated if the constraints are hard, or at best

compromised within a soft constraint environment.

Artificial neural networks operating in real-time, however, open the opportunity

for interactions with real-world objects and systems. This gives rise to applications

where the feedback loop may be closed, with the network interacting with sensors

and actuators to provide a real-time control system. In such networks time-constraints

may take on more significance than in pure simulation, as the tangible system being

controlled may be fragile or have responsibilities with consequential importance – and

may be expected to operate effectively over extended periods of time.

Three factors bound the operation of artificial neural networks on a system: the size

and topology of the modelled network, the computational complexity of the modelled

elements, and the time-constraint on its operation. A real-time approach for simu-

lation is interesting, as all neural networks in biology operate in real-time, so the size

and fidelity of spiking simulations must be selected to meet the constraints of the target

platform. SpiNNaker, as a target platform, is a high-performance architecture designed

to meet the requirements of real-time operation of neurons which spike in a biologi-

cally consistent manner. In its largest configuration SpiNNaker may model 1 billion

neurons with a (gross) mean firing-rate of 10 Hz distributed to 1,000 efferent neurons.

119
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SpiNNaker System Management Time-Line
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Figure 6.1: The system management time-line of the SpiNNaker platform – software

management is performed by the visualisation software. (The visualiser is also capable

of performing limited off-line analysis – hence the hatching here).

This chapter explores the real-time visualisation framework that has been created

to support the management of SpiNNaker’s ANN modelling software. Large scale net-

works generate vast quantities of data, and the challenge is to monitor the relevant data

set from the system, without overwhelming its network or processing capabilities. A

visualisation scheme for SpiNNaker needs to be able to meet the requirements of the

user – to present data in a clear and consistent form – but also be scalable. In SpiN-

Naker’s case the range of visualisation scaling starts at individual neuron dynamics

passes through populations of neurons, and onto an overview of the network itself; all

while it is operating and without degrading the simulation itself.

A successful management visualisation tool permits users to examine behavioural

patterns in real-time data from the explorable system areas. Within the management

time-line this function operates as highlighted in figure 6.1 and additionally allows

interaction to influence the behaviour of the operational software.

6.1 Principles of Visualisation

Whilst many of the fundamentals of scientific visualisations were described and refer-

enced in the previous chapter, it is the transformation of neural data into a graphical

form to aid users’ comprehension that is fundamental to the successful implementation

of results visualisation. There are many techniques for representing data, from glyphs
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to histograms and surfaces to video rasterisations, but what makes a good visualisa-

tion in the ANN space? Replicating the tools from the previous chapter would benefit

from the experience already within the field, and users will be familiar with them.

With visualisations being created in real-time and dependent on computer graphics,

user interaction with this environment is key to the best use of the visualisation experi-

ence. An oft cited seminal paper from Schneiderman [Shn96] explores the area of user

interaction with rapidly expanding sets of data to present a coherent and easy-to-use

visualisation interface. Underlying this paper is the visual information seeking mantra:

‘Overview First, Zoom and Filter, then details on demand’. This simple set of visual

design guidelines is surprisingly effective; to begin with an overall picture and then to

zoom into the details that are pertinent. This forms the backbone of the visualisation

of and data presentation for SpiNNaker software management.

6.2 It’s All Just Data

In the previous chapter visualisation techniques used in both biological and artificial

network monitoring were examined. The goal of the visualisation software is to pro-

vide this type of functionality for the SpiNNaker platform so that users may manage

their in-flight simulations as they operate on SpiNNaker. In this way simulations do

not appear as a ‘black-box’ to the user, or merely run as batch jobs with analysis tak-

ing place off-line following the completion of the job. However it is noted that the

majority of visualisation modalities used: scatter diagrams, histograms, voltage traces

and grid plots are not specific to particular neural parameters – they may be used many

times over, to represent many types of data generically. Therefore the approach taken

was to plot the data independently of what it actually represents – and for each simu-

lation a simple module is prepared which interprets incoming data, processing it into a

form that may be plotted by whichever core visualisation modality is selected as most

appropriate by the user.

6.3 Visualisation Targets

The target of the real-time visualisation platform is to be able to explore operational

neural networks across a range of abstractions from cell dynamics through to popula-

tion activity, as simulation data changes in real-time. This live monitoring, particularly

in long simulations, may be advantageous if it presents enough information to the
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user (or computational agent) to make decisions and adjustments interactively, or if

the situation is not recoverable, to terminate an unsuccessful simulation early to save

resources.

Large ANN simulations are capable of producing prodigious quantities of data, and

it is clearly not practical to replicate this to the visualisation engine(s), nor would it be

feasible to represent all this data in an comprehensible form. Therefore visualisation

software should take a layered approach to the provision of its real-time data, as when

visualising their networks, users will typically wish to monitor a particular segment of

its behaviour. To enable this viewpoint data is filtered and aggregated both internally

within the software framework of the system, and externally – dynamically turning the

monitoring capabilities on and off as required by the user.

If too many sets of information are requested, the data network or the resources of

aggregation points or the visualiser tool itself may be become swamped. A trade-off

needs to be made to observe greater detail at a small scale, or to have more data points

but with a lower resolution. The bandwidth available for real-time monitoring is never

going to match the bandwidth of data available to tools in post-simulation analysis –

therefore this live aggregation remains key to the implementation.

While implementing the real-time visualisation tool an attempt has been made to

provide a general extensible interface which can be used over a variety of neural net-

work models, and one that places little or no burden on the hardware performing the

neural simulation. A variety of visualisation options have been provided, and real-time

simulations on the SpiNNaker system have been used as the test platform.

Communicating Data for SpiNNaker Visualisation

SpiNNaker, as a computer architecture, is a flexible memory-mapped system that may

be probed at all levels, from hardware through to software. Although its communica-

tions networks have been sized to cope with the demands of a biologically plausible

set of interconnected neurons, non-spike management and control-type traffic for the

visualiser also uses this shared infrastructure.

In SpiNNaker, non-spike traffic differs from (the majority) spike traffic in that in-

stead of flowing from one-to-many it typically flows from many-to-one. Details of the

available packet formats used by SpiNNaker were covered in section 3.4.3 and illus-

trated in figure 3.4. At first glance, it appears that Fixed Route (FR) packets are most

suitable for management purposes, but using FR packets requires that each Applica-

tion Processor be programmed to create them. This is not an ideal situation, as the



6.3. VISUALISATION TARGETS 123

(0-255)                            (0-255)              (0=Spike)   (0-15)          (0-2047,   local popid+neurID)

8 bits 8 bits 1 bit     4 bits                   11 bits

Figure 6.2: SpiNNaker spike packet key format (used throughout the machine).

Application Processors should be performing neural processing, and one of the stated

goals for the real-time monitoring is that it should not impact on the neural processing.

Point-to-Point packets similarly require specific support and are routed between Mon-

itor Processors only; Nearest Neighbour packets are not suitable as they are passed

between Monitor Processors and would require hop-by-hop software routing.

For visualisation, therefore, advantage is taken of multicast routing and specific

aggregation cores throughout the machine (typically co-located with Ethernet connec-

tions) which act as collectors for information in the system. If the collectors are cap-

turing information regarding the spikes then simply by adding the collector node to the

distribution tree of the monitored neurons it acts as a passive tap. For other types of

data collection it is useful to visit the multicast packet key field format (fig. 6.2). The

32-bits in the multicast key-space are arbitrary, though by convention the first 16-bits

are used for origin (8-bit x and y Cartesian coordinates), followed by the ‘S’ bit repre-

senting Application (0) or System (1) space. Within the application space (shown), the

remaining 15 bits represent the application core and the firing neuron ID. If the ‘S’ bit

is 1, there are 7 system categorisation bits (representing management / synchronisation

/ experimental etc.), and the remaining 8-bits are free for user-defined signalling (plus

an optional 32-bits of payload if required).

By loading routing tables appropriately, the system space within the ‘multicast’ key

space may be used for destination-based routing and monitoring purposes. The targets

of this management traffic are dedicated collector or aggregation cores such as the 18th

core on fully-functional chips, and multiple overlapping management trees may exist

concurrently (unlike FR). By using in-network collation of visualisation data, aggre-

gation and filtering may be performed within the network, rather than by transmitting

the data externally, thus saving external processing and networking resources. As an

example, in a large neural network where there are many populations of neurons, an

aggregator node can capture data from the neurons in each population, and calculate a

spike-rate for that population, and periodically send this aggregated information to the

visualisation platform for display.
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6.4 Implementing SpiNNaker’s Visualiser

A schematic of the design of the visualisation system is given in figure 6.3. The visual-

isation software operates as a number of threads to maintain modularity and so that the

separate tasks may operate independently. Aggregated live data is fed from the neural

network simulator through the network to the packet decode section of the visualisa-

tion software. This strips the implementation-specific headers from the packet so that

the data payload may pass into the data-specific visualisation module and then to the

visualisation engine. To the right of the figure an optional recording feature is pro-

vided which allows later replay of data for testing and further analysis if required. The

following sections provide brief implementation details for each of these components

which together form the visualisation management system.

6.4.1 Execution Environment

The visualisation software is built using C++ to perform data manipulations and meet

the network and file I / O performance requirements. The visualiser makes use of

threads to partition the execution of the modules (as indicated in figure 6.3), ensur-

ing that each thread may not block the operation of another. The test systems are

GNU / Linux platforms as this is the prevailing operating environment used in the

computational neuroscience community [HH11]. The visualiser has been tested and

executes directly on contemporary Ubuntu and Fedora operating systems and, using a

Ubuntu VirtualBox, on an Apple MacOS X host machine. For the graphical presenta-

tion OpenGL was selected as a platform-independent toolset to take advantage of the

available graphics hardware to improve performance. The GLUT / FreeGLUT libraries

are used in the compilation process for this. OpenGL also simplifies the construction

of the visualisation environment and window management so that the code remains

platform independent.

6.4.2 Packet Decode

A modular approach is taken to the interpretation of data arriving via the network con-

nection. Sockets are opened, as necessary, to receive input data and protocol specific

structures used to gain access to the data therein. This structure may be reused across

different simulations from the same platform, with only separate visualisation mod-

ules for each different visualisation requirement. For example, the decode structure
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Figure 6.3: Schematic of the visualiser operation, data arrives over the network from

the simulation platform and is decoded, then filtered / transformed into the format

required by the specific visualisation. Data received may optionally be recorded and

replayed into the visualisation for post-simulation analysis.

supporting the SpiNNaker SDP packet format (fig. 3.7) is 16 lines long, and for the

basic SpiNNaker packet format (fig. 4.7) – as also used by the flood fill routine – is

even simpler at 7 lines.

Visualisation Data Storage

The data structures used internally within the visualiser are in 2 forms as data may

either be represented based on the last set of data received: ‘immediate’, or it may tem-

poral in nature and have: ‘history’. The data is stored in dynamic array-type structures

to allow adequate storage to be reserved to meet to the requirements of all data that

may require visualisation. Data may also be represented in a variety of formats, from

integer to fixed-point to float, and the user may specify this per simulation.
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Visualisation Decode

Once a packet has arrived and its packet decoded it will pass into a specific visuali-

sation decode stage as each visualisation will usually have a different format of data

presented, or may require some pre-processing before being placed into the appropriate

positions in the ‘immediate’ and ‘history’ data arrays. An example of this visualisation

module for a simple 2 dimensional example is found below.

1 xsrc=sdppkt->srce_addr/XMAX;

2 ysrc=sdppkt->srce_addr%XMAX;

3 for (int i=0;i<numDataItems;i++) {

4 uint arrayindex=(EACHCHIPX*EACHCHIPY)*((xsrc*

(XDIMENSIONS/EACHCHIPX))+ysrc) + i;

5 if (freezedisplay==OFF) {

6 immediate_data[arrayindex]=sdppkt->data[i];

7 history_data[time][arrayindex]=sdppkt->data[i];

8 somethingtoplot=TRUE;

9 }

10 }

Lines 1 and 2 take the sending address and derive the x and y co-ordinates of that

node (a packet may only have one source, but the internal data may present further

categorisation information – such as core or neuron IDs). Line 3 sets up a loop to read

all the additional words of data from the data packet. Line 4 calculates the position

in the storage array that will be populated (here based on the physical dimensions of

the system). Line 5 detects whether the user has paused the display and hence the

data should not overwrite the immediate paused data. Line 6 loads the immediate data

from the received packet and line 7 loads the appropriate position in the circular his-

tory buffer with the same. Line 8 updates a global variable to inform the visualisation

module to update the display at the next opportunity as new data has been received.

Not shown: The historic data is overwritten with null data as it becomes stale as part

of the visualisation code. Pre-processing may also be applied here, for example calcu-

lating rolling-averages, incorporating decay, performing integration or other numeric

manipulations as required. As can be seen, adding a new visualisation for a specific

neural network requires relatively little work on the visualiser.
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6.4.3 Visualisation Interface

This section provides a brief overview of the implementation of the visualisation in-

terface presented to the user and its features. The following facilities are available for

the visualisation of the immediate and historic data arrays. Examples of the output

from the various visualisation modalities can be found in the results sections, so are

not explicitly provided in this section.

Modalities

In the previous chapter an introduction to some of the methods used in both quantised

biological data and in artificial neural networks was given. These, and requests from

users, led to the following visualisation techniques being implemented for use for real-

time SpiNNaker software management:

Temporal Displays This visualisation modality includes the ability to plot values

and data over time. The user has the ability to alter the window duration for the his-

torical data using keyboard input, and may specify a default at simulation definition.

The start of the temporal displays is triggered by the receipt of the first piece of data,

so the user may begin the visualisation software in advance of loading the simulation

software onto the target system. The visualiser supports the following temporal plots:

• The raster plot. This plot represents each incoming event received for a channel

(monitored item), and either uses a vertical bar or dots depending on the number

of items being plotted and the size of the plotting window. For non-spike data

this is useful to view the timings of input data items for a channel.

• Line diagram. This diagram plots output channel values over time as lines for

each channel, with the y-axis representing the quantity being plotted, e.g. the

membrane potential voltage. This variant plots all items on a full-height plot

meaning that series may collide or intersect.

• Multichannel diagram. This second variant of the line plot is similar in output

to an EEG, with the y-axis split into discreet sections for each channel being

plotted. The colour of either of the line plots may be chosen to be constant based

on the channel number, or dynamically adjusted based on the last received value.

2D Plots A number of constantly changing ‘immediate’ displays based on last re-

ceived values may also be chosen by the user if preferred, with data displayed with the
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x and y coordinates required. This is often useful for topologies based on the physical

layout of the simulation.

• Tiled. This is a block 2D plot, with the colour of each rectangular tile in a grid

changing based on the last received value from that channel.

• Interpolated. A variant of the tiled plot which creates a pseudo-node at the inter-

section between adjacent tile corners, and interpolates the value linearly. Smooth

graduated triangles are used around the pseudo-node to the actual channel data

points, and can make for some very smooth and attractive plots, especially where

there are smaller numbers of related channels. The data however is interpolated

and not a true-representation of the channel data.

• Histogram. This is similar to the tiled plot, but where the number of tiles in the

y dimension is equal to 1, and for each channel there is a bar along the x-axis.

The height of the bars in the histogram changes dynamically with respect to its

channel value.

It is possible in most plots to spawn multiple windows with the view of each based

on a sub-set of the zoomed and filtered data, or to open a new window with an alterna-

tive view of the same data set.

Features

As well as the choice of visualisation modality, the users have a number of other fea-

tures to choose from in the visualiser. These include choosing the colour-map to be

used for representation of a range of data values, resizing windows, going ‘full-screen’,

printing data values as text, and transforming the data with rotations and flips as the

user desires. Options may be chosen by keyboard short-cuts, or by a right-mouse-

button click menu. An example of the visualiser and its menu system can be found in

figure 6.4.

One other notable feature allows the user to save data from the visualiser as it is

received (fig. 6.3) in a number of proprietary and standard formats. The user may then

choose either to increase or decrease its later playback speed as required. The reason

this option is hatched in figure 6.1 is that the temporal accuracy of this saved data is

dependent on the network / disk performance as it arrives at the visualisation man-

agement station and on any aggregation performed. Users are therefore encouraged to

perform detailed post-simulation analysis on data saved internally to the simulation if

available.



6.4. IMPLEMENTING SPINNAKER’S VISUALISER 129

Figure 6.4: Using the mouse right-click brings up the visualiser’s menu system – here

the colour map / key menu is being expanded.

6.4.4 Mapping

When creating neural networks for simulation on SpiNNaker, the high level description

of the network is mapped down onto the SpiNNaker hardware using the PACMAN

process (section 3.5). Populations of neurons may be split and dispersed between

multiple cores and chips to achieve efficient use of resources. The SpiNNaker chips are

unaware of this mapping process, and the routing takes care of ensuring the continuity

of the network design.

During the mapping stage, each neuron is assigned a global neuron ID within the

system, formatted as in figure 6.2. This neuron ID is formed from the physical coordi-

nates of the chip, the core ID in that chip and a local neuron ID. The local neuron ID

is formed from a variable length local population which, if a core has neurons from

more than one population, differentiates between them and concludes with the neuron

ID within that local population.

In the mapping system illustrated in figure 6.5, the high-level network model de-

scription passes through the partitioning and configuration manager [GDR+12]. This

system takes into account the type and dimensions of the target system (e.g. SpiN-

Naker), and maps the network into a configuration to be executed.
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Figure 6.5: Diagram of the creation of a neural network for execution on the target

system, and the path to visualisation.

Therefore, information created in the model-to-hardware mapping process must

remain accessible to the visualisation software to re-create population-based views

from data received directly from the hardware. The visualiser is able to access this

local-to-global mapping information and use this in the organisation of data presented

on screen and to consolidate diversely located populations.

6.4.5 SpiNNaker Neural Software and Accessing its Data

SpiNNaker is an event-driven, scalable, programmable platform and targets the real-

time ANN operating space. It may operate anywhere between the high fidelity sim-

ulations used in projects such as Blue Brain [Mar06], whose approach is to use bi-

ologically plausible Hodgkin – Huxley type dynamics [HH52], through to simplified

models which target only the most basic behaviours such as Leaky Integrate and Fire

(LIF) [Ste67] and other ‘computationally light’ models such as Izhikevich [Izh04].

Test boards (fig. 4.13) with four SpiNNaker chips (72 cores) have been available

since May 2011 and these 4-chip SpiNNaker simulations can support many thousands

of simulated neurons and synapses, with modular 48-chip boards delivered in June

2012 increasing this twelvefold. Results may be analysed post-simulation by down-

loading data stored within the machine to tools such as NeuroTools [DBE+09], MAT-

LAB [Mat12a] or gnuplot [WKM11]. It can take a significant time to transfer the

contents of a simulation to a Host machine for analysis, for example 4 SpiNNaker
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chips contain 512 MB of RAM. The Ethernet connection provides for a few MB / s

after overheads and therefore it can take over a minute on a 4-chip system to transfer

the required data for analysis.

Whilst it is therefore impossible to send a full-set of data on the real-time out-

put channel, within a large spiking neural network the user may choose the level and

precision of the data to make best use of the resources, e.g.:

• Observe few neurons with a good precision: Neuron state variables

• Observe a population with spike precision: Raster Plot

• Observe a larger area with more abstract information: Mean activity rates

The same channel capacity applies regardless of what is being visualised; here it is a

trade-off between close visibility and great detail, and wide visibility with less. It is

the switchable aggregation and collation of data within the system that enables this to

occur.

6.5 Results

Results are presented from the implementation of the SpiNNaker real-time visualiser,

whose implementation follows the approach described by this chapter. As SpiNNaker

is a programmable architecture supporting different neural models and network topolo-

gies, the visualiser must be able to represent data with different levels of abstraction,

and organise it in conjunction with the logical to physical mapping information found

in the PACMAN database. The visualisation tool offers diverse visualisation repre-

sentations, so the users may select the most apt for their chosen incoming data. The

examples presented demonstrate the visualisation software’s flexibility, rather than in-

tricacies of the neural models which are not the focus of the management work in this

thesis. The results cover a number of neural network visualisation examples, across

a range of abstraction levels: from single neural dynamics to aggregated population

measures.

6.5.1 Neural Dynamics

Neural networks are composed of single elements – neurons – which are often mod-

elled as being governed by sets of differential equations. Such equations describe the

dynamics of the internal states of the neuron, for example its membrane potential. It
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is of interest to observe such internal states to verify the correct implementation of the

model’s atomic elements and to compare them with single-cell recordings made from

the biology. It is also possible to use the same approach to observe synapses, for exam-

ple the current injected in at the neuron, or the change of a synaptic weight over time

in a plasticity model.

Figures 6.6 and 6.7 show a practical use of the visualiser at this level where it can

be used to detect implementation errors in neural models. A current based LIF model

was implemented whose dynamics follow equation 6.1:

τm
dV

dt
= EL − V +RmI (6.1)

Where τm, Rm and EL are the membrane time constant, resistance and resting poten-

tial respectively and I is the input current. When V > Vthr a spike is emitted and the

potential is reset to V = Vreset. The correct implementation results in the behaviour

recorded in figure 6.6, with the neuron’s membrane potential rising to its threshold

value (at -55 mV), whereupon a spike is emitted and the neuron is reset to its rest-

ing potential. The implementation was then altered to ignore the threshold checking

(fig. 6.7a), leading to erroneous behaviour where the neuron does not fire (and conse-

quently the membrane potential is not reset); the original code was then modified to

introduce a more subtle error where the injection currents are caused to overflow the

data-type used, leading to the evident misbehaviour of figure 6.7b.

Being able to visualise quantities such as these can greatly speed up the debugging

and development process of new neural networks and component models.

Figure 6.6: Correct neural dynamics for a LIF neuron injected with a bias current.
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(a) Example of erroneous neural dynamics for a

LIF neuron: threshold check not working

(b) Example of erroneous neural dynamics for

a LIF neuron: overflow error

Figure 6.7: Visualisation of erroneous single-unit neuron dynamics.

6.5.2 Spike Activity

Spikes are the most basic observed activity of spiking neuronal networks and most

commonly represented as raster plots. Here each neuron is assigned an ID on the

vertical axis and time is represented on the horizontal; every spike for each neuron

ID is noted at the time it arrives on the graph. The results are from a synfire chain

model [VA05] which comprises 1,000 neurons subdivided in feed-forward connected

pools; the signal propagation can be observed in the raster plot presented in figure 6.8,

as well as a mean population firing-rate at the top of the figure, calculated at the visu-

aliser by tallying the spikes received from this population.

Figure 6.8: Raster plot representing signal propagation through a synfire chain.
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6.5.3 Aggregated Information

Data collection and analysis becomes troublesome in large platforms; to report every

spike if the average spike-rate per neuron was 30 Hz, a billion neuron simulation would

require 32 bit × 30 Hz × 1 billion neurons = ∼ 1 terabit of spike data every second. By

using a massively-parallel programmable platform it is, however, possible to aggregate

data directly in the machine using dedicated aggregation processors. This mechanism

drastically decreases the bandwidth and the computational load required on the Host

machine by having the Host plot only the aggregated data. One of the most common

spike-abstraction levels (seen also in the previous example) is the mean firing-rate of

a population of neurons, where the total number of spikes is divided by the number of

neurons in the population. The collector node receives all spikes from a population,

and aggregates this information before sending to the visualiser.

In this experiment a second synfire chain network was implemented where, rather

than individual spikes, the in-system data aggregation is used to transmit only the pop-

ulation rates within the chain to the visualiser. The mean firing-rate r of a population

of neurons is calculated as:

r =
nspikes

N∆T
(6.2)

This is a measure of the mean activity in Hz across that population, where the total

number of spikes recorded in the sample (sampled at interval ∆T ) is divided by the

number of neurons in the population.

Figure 6.9 scrolls and plots the rate history of each population over time, and illus-

trates individual population spiking rates dying off as the stimulus is removed.

Figure 6.9: Representation of the synfire chain model dynamics over time with popu-

lation firing-rates represented as lines. The firing-rate moves from high to zero as the

signal is propagated along the synfire chain and beyond each channel’s population.
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6.5.4 Interaction

Whilst being able to visualise activity in real-time is good, being able to interact with

a simulation is better. For this experiment a neural network simulation was created

which can be adjusted based on user instruction from the visualiser. The population to

interact with can be selected and adjustments can be made to the bias current injected

into the population of neurons. The network created comprises 16 populations of 256

LIF neurons, each population assigned to a separate application core. The output is

plotted in real-time to a user’s screen so that the results may be monitored and activity

displayed. To the left of figure 6.10 differing colours / tones represent the average spik-

ing rates of the neurons in each of the 16 populations and the example population (3,1)

was selected for interaction. To the right of figure 6.10 another real-time plot window

was initiated from the GUI ‘zooming’ into this individual population to examine the

firing pattern of its constituent neurons. This raster plot scrolls in real-time allowing

the results to be observed as changes are made and, over the 10 second period of the

plot, a reduction in the bias current was triggered, followed by a gradual increase.

Figure 6.10: Interactive real-time neural network plots. Left: population rates (average

spikes / neuron / s), users can adjust bias currents for their chosen population e.g. (3,1),

and may open a second raster plot window (right) to view individual neuron firing

events over time for that population.

6.5.5 V1 Modelling, Multi-View Simulation

As SpiNNaker is a general programmable modelling platform, it is possible to specify

different network topologies and request different visualisation geometries. It is then
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possible to visualise activity from different populations directed to the corresponding

sub-plot. An experiment was created to demonstrate this technique with a neural net-

work which extracts the results of a bank of six Gabor filters from an image fed to the

system through a web-cam. Its task is to reproduce the orientation selective receptive

fields found in the primary visual cortex (V1) [DWH82]. A USB web-cam was con-

nected to a standard GNU / Linux PC, which captured the image, sub-sampled it to

a 16 × 16 matrix and fed this to the input neurons of the network as a bias current.

Outputs from the network are a set of 10 × 10 matrices, corresponding to the output

from each neural Gabor filter, computed as the weights between input neurons and the

corresponding orientation filter. The output from the filters and camera is plotted on

screen in real-time (fig. 6.11). Each output filter neuron fires at a rate proportional to

how closely the detected and filter orientations match in that portion of the visual field.

(a) Input of ‘x’ recorded by

web-cam, via the SpiNNaker

board

(b) Orientations detected in the ‘x’

image

(c) Input of ‘+’ recorded by

web-cam, via the SpiNNaker

board

(d) Orientations detected in the ‘+’

image

Figure 6.11: Screen captures from the output provided to the visualisation software in

real-time from the SpiNNaker board with the V1 orientation ANNs in operation.
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6.5.6 Manipulating Visualiser Data

Received data does not have to be plotted directly, manipulation can be performed, if

required, in the visualiser module itself. In this final neural example the plot (fig. 6.12)

is from the output of a network population (ensemble) created in the neural engineering

framework (NEF [EA03]). This particular example is of a Cyclic Attractor [GDF+12]

and the plot is formed by integrating the input at the visualiser over time, where the

previous state (historic data) is used to calculate the latest value to plot. The output

is oscillatory and to trigger this state the system is given a shock and in response

the neural oscillator settles down to its characteristic frequency. This ensures that the

immediate input and previous results are used to determine the latest data to plot. Due

to the existence of the historical data it is possible to perform a range of manipulations

and filtering as required within the visualiser itself – if this is not carried out at the

aggregation point(s) within the network.

Figure 6.12: A Neural Engineering Framework (NEF) model running on the SpiN-

Naker platform may also output its data, an oscillator function is recovered via a first

order filter on the output from a network.

6.5.7 Capacity of the Visualiser

To test the maximum performance of the visualiser with the SpiNNaker simulations

the ‘rate plot’ simulation of section 6.5.4 was used (fig. 6.10). Its stimulus was in-

cremented repeatedly (beyond that illustrated in the plot) and it was found that the

number of plotted spikes plateaus at around 50,000 / s (see the highlighted entries on

the right of table 6.1). This limiting factor was identified as the visualiser software
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and not the simulation or network connection of SpiNNaker. By simply reducing the

frame rate of the visualisation software from 50 fps to 30 fps it was possible to plot all

the spikes. Users must ensure that there is sufficient capacity in both target system and

visualisation platform (and intervening networks) to support what is being requested.

In this case, at 50,000 spikes / s the visualiser screen was solid blue, as per the latter

stages of figure 6.10 would suggest. It appears a good case for filtering by aggregation

techniques or rule enforcement to protect the simulation.

Simulation Time 7m8 7m10 7m14 7m18 P
lo

t
L

im
it

S
p

ik
e

M
ax

Bias Applied (mA) 0.75 0.60 3.12 5.26 19.5+ 28.26+

TX Spikes/Population/s 1602 0 11575 18727 50944 64000

Spikes Plotted (50 fps) 1602 0 11494 18591 49371 49368

RX SDP Ethernet frames/s 843 0 978 1060 1463 1775

RX Av. Spikes/Neuron/s 6.3 0.0 44.9 72.6 192.9 250.0

Table 6.1: Spike-rate delivered for raster plotting the neuron population of fig. 6.10.

6.6 Non-Neural Plotting

One of the philosophies used when creating the visualisation system was that the

modalities can be used for plotting any type of data. This feature decouples the vi-

sualiser from neural network visualisation on the SpiNNaker platform and permits it

to be used as a more generalised tool.

Heat-Map SpiNNaker, as a general purpose programmable platform, may be used

for parallel programming tasks more diverse than just neural networks. One such ex-

ample is the ‘Heatmap’ demonstration of parallel processing and message passing.

This simulation model uses 64 Application Processors of a SpiNNaker 4-chip test

system to calculate the temperature at 8 × 8 points on a rectangular surface – which

has stimulating temperatures applied to all four edges. Once a change in temperature

is applied interactively by the user, the system proceeds to iterate in parallel across

the simulated material using its thermal characteristics as a model, passing messages

to neighbouring cores (points) until a thermal equilibrium is reached. This example
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fits nicely onto the tiled visualisation modality, and a visualisation decoder module

was created to parse the data arriving from the simulation. For the interaction section

(see the bottom right of the visualisation), a custom block was written to display the

temperature stimuli, and when the user clicks into the relevant box and adjusts the

temperature with the standard + / - or mouse scroll wheel, these inputs are sent to the

simulation platform for processing.

Three figures have been included by means of an illustration. Firstly figure 6.13a

is a tiled plot of the initial state, from which further experimentation is performed.

The second plot (fig. 6.13b) is an interpolated version of the experiment where the

values have been adjusted via the user controls in the lower right. The third and final

illustration (fig. 6.14) uses the ‘line’ function of the visualiser, where changes in all 64

data values are plotted over a 30-second period. The lines display the series response

of each data point to the changing temperatures over time. The colour scheme may be

changed at any point via the menu or a keyboard shortcut, and the ribbon key on the

right-hand-side illustrates how the temperature data is represented.

(a) Tiled view with temperatures as at startup. User

interaction is provided via the controls in the lower-

right

(b) Interpolated view of altered temperature

plot. The small tiled version in the bottom

left shows the original data

Figure 6.13: Real-time visualisation of the non-neural heat-map application executing.

Processor Utilisation As the visualisation platform is versatile it may be deployed to

plot any set of data including hardware status. In this example a real-time visualisation

of the utilisation of the individual application cores on multiple SpiNNaker chips has

been created. The application cores are executing a synthetic application which gen-

erates a load proportional to the identification of the core, so core 16 for example has



140 CHAPTER 6. VISUALISING NEURAL NETWORKS ON SPINNAKER

Figure 6.14: Line diagram of how the individual channel temperatures change over

time based on the thermal characteristics of the simulated material. This example

shows the transition from fig 6.13b to all-zero, then an adjustment to a randomised set

of values, back to zero and reset back to the starting state.

four times the work to do as core 4. The status of all processors on each chip is trans-

mitted to, and consolidated by, an aggregation processor in chip (0,0) before being

transmitted to the visualisation workstation. The visualiser has a small visualisation

decoder to interpret the data for display. In figure 6.15a all 4 chips are operating the

same coreID:load code, and 4 chips with their 4× 4 = 16 processors can be identified

in the four corners of the example plot. Within each chip’s 4× 4 subplot the cores are

plotted sequentially from bottom left in columns upwards ending in the upper right.

In the second plot (fig. 6.15b) the colour map has been changed from ‘greens’ to use

a colour map that approximates what would be returned by a ‘thermal camera’. The

option to view the value has been turned on and this is displayed in numeric form and

this updates in real-time.

Calculation of the percentage utilisation is carried out on board the aggregation

core. At any particular moment the active / asleep status of a SpiNNaker core may

be polled from the system controller. A history of this binary status is stored and a

weighted average calculated over the previous second for transmission to the visualiser.

The polling frequency for this dynamic information is important, as if it is co-incident

with the period of the workload, a false aliased representation and / or beating may

occur. Two techniques may be used to cancel out this problem, the first of which is to

poll more frequently than twice the periodicity of the minimum workload (Nyquist’s

criterion), the second is to introduce randomised jitter into the sampling process to

avoid the problems of synchronisation when averaged out over a long enough period.
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(a) Utilisation – by chip represented

tiled per position on the board

(b) Utilisation – as a 1D histogram, but including numeric

labels on the data

Figure 6.15: Real-time visualisation of the processor utilisation of SpiNNaker cores.

6.7 Summary and Contributions

As models of neural networks scale in concert with increasing computational perfor-

mance, gaining insight into their operation becomes increasingly important – espe-

cially as they pass into the realms of biological significance and operate at or near

real-time. This chapter has proposed and demonstrated a generalised method to vi-

sualise data at all layers of SpiNNaker neural networks, providing representation of

the network in many forms in real-time. By providing flexible access to all layers and

elements within a neural network simulation as it runs – from neurons and synapses to

hierarchies of populations, and the network as a whole, an interactive and more easily

understood picture of the network emerges and can be presented to the users.

The key contribution from this work is the management visualisation tool itself

which enables users to gain one or more viewpoints on the performance of their sim-

ulations in real-time. Conventionally the determination of network correctness occurs

post-simulation, but with sufficient ‘in-flight’ insight from this tool, malfunctioning

ANN simulations may be terminated early to save computational resource, or the user

may use interaction mechanisms to intervene (or automate remediation). Longer-term

simulations will benefit from real-time evaluative facilities and, as SpiNNaker targets

the real-time space, then longer-term simulations are expected as the interactive loop

is closed. Conversely, at the small and short-term scale, visualisation is also important

when designing and prototyping small-scale networks to verify correctness.

In terms of novelty and furthering the field, this work recognises that many of the

most common neural network plots are generalisable and modalities may be applied to
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different parameters and network-types. Furthermore, the plots created are not neces-

sarily neural network specific, so a variety of data sources can be plotted in real-time if

so desired and this has been demonstrated in this chapter. The development has led to

a generalised, but modular, extensible visualisation platform, where new visualisations

for experiments can quickly be developed using the framework already in place and

where non-neural applications have equal footing for real-time visualisation.

The real-time view of the data is a specialised space – it is used for troubleshooting

and for gross network validation. It is not intended to replace post-simulation analysis

where diverse analysis tools can be used and more accurate temporal data resolutions

are available (as the network over which the real-time visualisation data flows is non-

deterministic). In this respect it is intended to provide a similar rôle to that of functional

imaging of the brain, where a focused viewpoint is taken but does not examine every

cell simultaneously.

Although this chapter has commonly referred to real-time network simulation, it

may not be possible to achieve this time-basis in all cases – some may run faster, and

some slower depending on the size and complexity of the network and its components.

This does not preclude use of the visualiser or its interactive features as it is possible

to interact at whatever time-base is used by the simulation.

In the development of the visualiser techniques for requesting and switching data,

aggregation within the SpiNNaker system is used, thus allowing zooming to be per-

formed efficiently by focusing only on those areas which are of interest to the exper-

imenter. This aggregation portion is also a key contribution as, without it, it would

prove impossible to scale the visualisation system to larger networks and viewpoints.

The aggregation techniques also perform their rôle without a significant burden being

placed on the software and hardware of the SpiNNaker platform, taking advantage of

the inherent parallelism available in the system being monitored itself.



Chapter 7

Managing Large Network Attached

Systems

Managing the availability of computing facilities and infrastructure is a discipline

known as Systems Management. This field concentrates on the monitoring of physical

equipment (and perhaps the services which run upon it), to locate faults reactively and

begin the remediation process as quickly as possible thus minimising service disrup-

tion. In addition to fault management, systems management often covers a range of

proactive rôles including auditing, security and capacity planning.

While systems management is an operations centric view, alternative analytical

systems exist which take a different perspective. From a business activity viewpoint

for example, if a server goes down the sales team cannot process any orders, and the

revenue stream is cut. This top down approach to monitoring may be more appropriate

to the intended audience than a bottom-up systems approach.

In this chapter, and in the context of managing large network attached systems,

systems management of an operational flavour is examined.

7.1 Principles of System Management

Perhaps the best known and well defined model of systems management best practice

is the 1989 framework: ISO Standard ISO / IEC 7498-4:1989 [ISO89b]. This model

identifies requirements such as system reliability, predictability and the necessity that

users must be able to gather information and exercise control via tools in the manage-

ment environment. The framework identifies five main management functional areas:

Fault, Configuration, Accounting, Performance and Security (FCAPS).

143
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The ISO originally created model specifications in each area with the intention that

tools and protocols would be created to cover each separately. However, as many of the

management areas overlap practically, management tools do not apply the distinctions

rigorously, and the ISO working group decided to merge the protocol specification

for all five areas into Common Management Information Protocol (CMIP) [ISO89a].

One key principle remained: the decoupling of the structure of the management data

(known as the MIB (Management Information Base) [MR88a]), from the protocol used

to access it. Although CMIP was never a great success, the alternative protocol Simple

Network Management Protocol (SNMP) [CFSD89] was, also maintaining this princi-

ple of protocol and data separation. SNMP found favour with equipment and software

vendors who used it as their systems / network management protocol of choice.

The ISO FCAPS model is applied practically in systems management today, for

instance, underlying Cisco Systems’ ‘Network Management System: Best Practices

White Paper’ [Cis07]. The sections below provide a brief overview of the five main

management functional categories:

7.1.1 Fault Management

This functional area covers detecting faults in the system and isolating or correcting

them as swiftly as possible. The management tool used for the fault management

function should handle notification messages from the system (including level of im-

portance), and be able to initiate diagnostic testing and provide the opportunity to

implement remedial measures. Examples of such system management tools include:

IBM Tivoli Netview [IBM12c], CiscoWorks [Cis12a], HP Openview [Hew12c], and

Nagios [NE12]. These fault management tools are populated with device data and are

able to poll proactively or reactively receive event notifications for handling. Actions

that may be triggered include updating a status screen / dashboard, sending emails and

texts, automatically raising a problem ticket, sounding an alarm or other method of no-

tifying the appropriate user(s). Although these event management tools primarily alert

operators to problems, in some circumstances they may initiate automated corrective

actions, such as restarting a service, or rebooting a piece of equipment.

7.1.2 Configuration Management

Configuration management gathers configuration data and exercises control over a

managed system, whether that configuration is in planning, operationally deployed,
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or out of service. Areas covered include configuration files (and versioning of such

documents), carrying out of software and hardware inventories, and collecting infor-

mation on the condition of the system configuration. Examples of tools performing

configuration management are version control tools such as Concurrent Versions Sys-

tem (CVS) [Fre06] which logs and tracks changes to source files in managed software

development projects, Dell’s hardware appliance Kace [Del12b] which automates soft-

ware upgrades for consistency of support, and CFEngine [CFE12] a software compli-

ance checking tool which may be used to validate a business’s infrastructure against

regulatory requirements.

7.1.3 Accounting Management

The account management function keeps a record of resource utilisation, with the ul-

timate goal of being able to identify and categorise utilisation of a system. This in-

formation may be used to initiate billing, to trigger investigations into abnormal use,

or perform statistical analysis or capacity management activities. Examples of where

such management facilities are used include telecommunications billing, or in high

performance computing where processing time is booked, logged and charged back

to users (for example NASA’s High-End Computing Program [NAS11], or the Open

University High Performance Computing Cluster [Uni11]).

7.1.4 Performance Management

Performance management’s goal is to examine the behaviour of the managed system

resources, to understand and evaluate current operating statistics and to enable its sub-

sequent analysis. This information is also used to carry out trending and capacity

planning, ensuring that performance of the managed system remains within accept-

able limits. Examples of performance management software are the open-source tools

Cacti [Cac12] and MRTG [Oet11], which gather data on resource utilisation to present

as graphs or reports and assist in mid-to-long term capacity planning. Other examples

include the Unix ‘top’ command or the Windows Task Manager to determine resource

utilisation of processor or memory allocation on a machine. The output from a per-

formance management tool can be used to trigger actions based on a threshold, for

example to terminate a process, bring more capacity on-line (or take excess capacity

off-line!).
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7.1.5 Security Management

The purpose of security management is to allow application of a defined security policy

to the management system, and may include user access control, encryption of sensi-

tive data, and blocking unauthorised remote access. Security management of a system

should be implemented as part of a wider security policy that includes physical access

control and user validation. Security management also covers the logging of data such

as authentication and authorisations, to ensure that it is possible to reconstruct events

and fully audit the system against the applicable security policies. An example secu-

rity management function is access control of remote connections into a company or

institution (e.g. a VPN, or SSH console access).

7.2 Managing Large Systems

System Management is an important suite of functions ensuring the health of complex

computing systems and services. The majority of large-scale systems are connected

via networks, and therefore may be located where suitable environmental facilities can

be provided. Monitoring of such systems is therefore carried out remotely.

7.2.1 Remote Monitoring

Remote monitoring is now ubiquitous in systems management applications with the in-

evitable reduction of headcount, improved scalability and reliability this affords. This

technique has become convenient due to the reduced commodity pricing of networking

connections and may be enabled by two separate paths:

In-Band

In-band implementations use the same network path for both application and manage-

ment traffic. An example of this option is gaining access to the control interface of a

web server via the same Ethernet connection that it uses to serve up web-pages to end-

users. This clearly has the advantage of simplicity and economy, but the disadvantage

that the command path to the server is vulnerable to failures or attacks on this sin-

gle connection. Additionally excessive amounts of either management or application

traffic may compromise the other class.
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Out-Of-Band

With Out-of-Band (OOB) signalling, a separate path is provided for command and

control purposes. Extending the earlier example, a separate line and modem may be

connected to the server, adding complexity and cost, but providing diversity from the

data-plane. Appropriate security measures must be taken for all OOB connections that

are available via a public telephony network or IP address.

Selecting In- / Out-Of-Band Management

An important decision taken in the design of any large system is whether management

information uses either in- or out-of-band signalling paths. This choice may involve a

number of factors:

1. Cost – extra equipment and telecommunications charges are usually incurred

when choosing OOB management, can the costs be justified?

2. Complexity – how much extra equipment (and support) is required to provide

the OOB access (and can it fit in the space available)?

3. Downtime – how critical is it for the managed service to be ‘up’ – what Service

Level Agreement (SLA) has been set or what proportion of downtime can be

tolerated?

4. Proximity – is the equipment in a machine hall in the same building, or in a

remote location to support staff – how much does it cost, and how long does it

take to get someone on site?

7.2.2 Hardware Management

While it is possible to provide system management in-band, this solution tends to be

used for non-critical and cost-conscious applications. Here the management traffic

shares resources with the data plane, but mechanisms such as quality of service can be

applied to traffic to aid in prioritisation of network or computation resources. In the

realm of performance computing, in-band management is an atypical choice, particu-

larly in critical applications, where separate OOB connections are usual.

Intelligent Platform Management Interface (IPMI) The majority of Intel-based

server manufacturers incorporate IPMI compatible facilities into their hardware. IPMI

[Int09] is a message-based mechanism that permits system operators to independently
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monitor and manage the physical properties of a system. It uses its own Baseboard

Management Controller (BMC) that is independent of the in-band processing path,

giving access to instrumentation and providing control options for the system. This

operates regardless of the main server status and enables remedial actions to be invoked

remotely, such as power-cycling a non-responsive server. Each manufacturer is free

to adapt and extend their IPMI implementation and the major server vendors have

their own solutions tied to their hardware, such as HP’s Integrated Lights-Out (iLO)

[Hew12b], Integrated Dell Remote Access Controller (iDRAC) [Del12a], or IBM’s

Remote Supervisor Adapter (RSA) [IBM12b].

Two techniques are used in IPMI to isolate management traffic from the data plane.

More usually a full out-of-band connection provides a totally distinct path to an exter-

nal connection (such as serial or Ethernet), or alternatively a side-band management

path may be provided which takes a VLAN ‘tap’ from the main network connection

for the server, which is diverse from that passed to the main board. These OOB man-

agement paths may then be consolidated into a separate ‘management’ network, and

IPMI may be extended to provide full remote-access to the keyboard, video and mouse

(KVM) connections. The KVM Input / Output connections from the server main board

can be made available via the IPMI management path, giving full remote access to

items such as the BIOS, which would normally require an on-site presence. IPMI im-

plementations are generally able to be daisy-chained with same-vendor equipment, and

may not require all devices to be wholly homogeneous, which is ideal for server farm

type deployments.

Cluster The above IPMI systems management model can also be used when many of

these systems are interconnected to form a cluster, providing a high-performance com-

puting resource by aggregating the processing capability of the constituent machines.

In many of these instances applications may be communications-bound so separate

high-performance (but standard) interconnection networks such as Infiniband [IBT10]

may optionally be provisioned for message passing, intercommunication and system

purposes. The server vendors are once again strong in the cluster management environ-

ment, as equipment in this configuration tends to be homogeneous, for example HP’s

Insight Cluster Management Utility [Hew12a] and IBM Cluster Systems Management

[IBM12a].
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Grid Computing Grid resource management is necessarily more ad-hoc as not all

the constituent computation resource may be dedicated, or indeed in the same manage-

ment domain. Systems management of grid systems therefore typically targets the re-

source available to perform work, and relies on the constituent computing nodes regis-

tering with a resource management system (RMS), or the RMS having a pre-populated

list of machines [KBM02]. Tools in this space are typically less commercially ori-

ented – as there may be no particular vendor relationship – and open-source solutions

are commonly used (e.g. Netlogger [GTC+00] for performance analysis, and Condor

[LLM88] for workload management). In the event of a soft or hard problem with a

machine in the grid, the job will require reissuing dynamically to another area of the

system, and the RMS is left to take care of the reallocation process.

‘Supercomputers’ In HPC computing there is significant focus on attaining best

utilisation of capacity, and this drives much of the management software available,

which has a heavy focus on job scheduling [THW02, HKKS03]. For system mon-

itoring of very large HPC solutions (supercomputers) a range of vendor provided,

open-source, hybrid and home-grown techniques are employed, as outlined in a 2011

discussion paper on HPC monitoring [BAFL+11].

For example on IBM Blue Gene HPCs, Service and Input / Output nodes maintain

database information about the system state [ABB+03]. This information is made

available in the Blue Gene Navigator, but IBM recognise that a mix of management

techniques may be used, and have published ‘Red Book’ guidelines on how popular

system monitoring and management tools such as Nagios can be deployed alongside

their own tools [DHMW08].

A Distributed System – The Internet

Of course not all systems to be managed are HPCs. A massive distributed system is

found embodied in the switching and routing infrastructure equipment of the Internet.

Its hardware systems are deployed under the management of many competing, but

collaborative domains of command and control. SNMP is almost universally used in

these interconnecting networks [KWC+09], providing device-centric information on

deployed hardware, and statistical information on data-flows amongst them.
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7.2.3 Systems Management Software

Management software is often vendor specific – manufacturers provide software tai-

lored to their particular hardware (or software) solution. This proprietary approach,

however, provides little flexibility when considering monitoring many diverse systems

concurrently, particularly where multiple vendor’s equipment is used. A standardised,

consolidated approach to system management is often used in such environments and

where common management frameworks and protocols can be exploited.

There are a large number of commercial software packages available for gener-

alised systems monitoring: example providers include PRTG [Pae12], Big Brother

Software [Que12] and SolarWinds [Sol12]. There are additionally many open-source

alternatives, SpiceWorks [Spi12], GroundWork [Gro12], OpenNMS [Ope12] and of

particular note – Nagios [NE12]. Nagios is widely and diversely deployed, providing

monitoring capabilities across a number of device-types and applications. In addition

to it being ‘free’, Nagios has the flexibility to support multiple protocols and is readily

extensible via scripting – all of which have helped nurture its popularity.

IBM have recently augmented their presence in the generalised systems manage-

ment space with their acquisition of vendor-agnostic Platform Computing [Pla12], who

produce a portfolio of technical system management tools covering a range of high

performance / throughput platforms, with grid, cluster and supercomputing support.

7.2.4 Protocol and Schema Standards

To understand the health of the system being managed, a monitoring system must

be put into place. There have been several attempts at providing standardised meth-

ods of retrieving management information from systems. A number of protocols and

strategies have been defined to cover both network and systems management, and this

section covers a number of the more significant approaches in this area.

WBEM One such initiative to unify the management of computer systems, par-

ticularly those that are distributed, is Web-based Enterprise Management (WBEM)

[DMTF10]. WBEM defines a set of standardised techniques which together provide

a common method for management data to be gathered and exchanged between man-

aged resources. WBEM defines protocols, mappings and discovery mechanisms, with

the Common Information Model (CIM) [Dis12] standard being used as the basis of

hardware and software object representations.
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16-Mar-2012 19:14:32 UTC WARNING gbmyclon1f Power supply 2 fan fail Ticket 20120316191432727

16-Mar-2012 20:05:51 UTC CRITICAL gbmyclon1f Power supply 2 failure (overheat) Ticket 20120316200551443

16-Mar-2012 19:14:32 UTC INFORMATIONzamycjoh5r Circuit MXZA338751U has >1% errors Ticket 20120315191432727 

04-Mar-2012 06:11:52 UTC WARNING aumycsyd2w Ethernet 4 (server aufrtsyd2s) down Ticket 20120304061152239

Event Date Time Severity Hostname Error Description Linked Ticket (click) Ack
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Figure 7.1: Typical management software view. A console presents events by severity

and chronologically, and a graphical interface presents the real-time status of items

managed topologically, which may then be ‘zoomed into’ to explore in greater detail.

CIM provides a consistent vendor independent method of representing managed

objects and their relationships, whilst its syntax remains extensible to include vendor

specific information. To transport data between managers and entities the standard

HTTP(S) protocol is used, with information encoded using XML objects.

Windows Management Instrumentation (WMI) is the Microsoft implementation

of WBEM / CIM, and is available on its operating systems. It provides access to

managed objects using a unified data model, which integrates with the Windows pro-

gramming environments, event handling and scripting techniques. WMI is perhaps

the most widely deployed implementation of WBEM, but is limited in its application

to the Windows family of Operating Systems. In addition to the WMI implementa-

tion, many GNU / Linux distributions include open-source WBEM implementations

including OpenPegasus [OG11] and OpenWBEM [Ope06].

Once WBEM components are combined with the objects being supported it may

be used as an end-to-end (remote) management solution. WBEM is able to represent

relationships between managed objects, and standard protocols are used across the

board, however it is by no means universally deployed across infrastructure equipment.
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Java Management eXtensions (JMX) JMX is a technology that permits manage-

ment interfaces to be created using Java applications [Ora08]. The managed end-points

(or probes) are known as MBeans, which are created in a Java Virtual Machine (JVM)

environment, and they are probed by an agent which straddles the relationship between

the end MBeans, and the applications which monitor the system. The agents support

two methodologies, ‘connectors’ allow native access to MBeans by the end applica-

tions, and ‘protocol adaptors’ translate the MBean into the desired protocol for the

management system, such as SNMP or HTTP / XML for WBEM / CIM techniques.

The main disadvantage of the JMX technique is that it requires Java to run, so the

platform which has the items to manage needs to be running a JVM. It does however

have the advantage of easy integration and extension where Java is being used, and

supports protocol translation into non-native environments.

ISO Common Management Information Protocol (CMIP) As discussed in sec-

tion 7.1, CMIP lost the battle with SNMP to become the de-facto standard for network

management protocols. The take-up of CMIP was low primarily due to its potential to

overwork the resources on the monitored device, and that the alternative SNMP was

lightweight in comparison and thus less costly to implement. This together with the

proliferation of TCP/IP which is the native SNMP protocol (CMIP was originally de-

signed to operate on the OSI protocol suite which was not a success either), resulted

in the CMIP management protocol falling behind in its use, and all but dying-out for

widespread and commercial use [Dov12].

Simple Network Management Protocol (SNMP) Whereas CMIP failed to garner

support, SNMP was successful, but maintains the common philosophy of having a dis-

tinct protocol for transporting the data, and a separate Management Information Base

(MIB) definition which includes the structure of the objects to be managed. SNMP

is the most prevalent management protocol in use today, with bespoke MIB structures

created to support a vast array of equipment and software.

SNMP has drawbacks, mainly in areas of security and efficiency as the overhead on

each (unencrypted) request is substantial and there is no native aggregation function.

The continued success of SNMP self-perpetuates into near ubiquity of support from

hardware system manufacturers, particularly as it is relatively simple for new manage-

ment trees to be created as required, for whatever application, whether it be hardware

or software.
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Consolidation of System Management It is possible to create a bespoke system

management solution, but with larger and more complex systems, it often makes sense

to choose one of the existing management frameworks. Systems management is also

about providing a consolidated view of the pertinent information for the users. Most

systems managers would prefer all alerts to be presented by a single system, and here

the more general system management tools have an advantage over the niche vendor-

specific tools. A common component in the vast majority of systems management

software is the support of SNMP to monitor devices and equipment remotely, with

most network attached equipment having management MIBs provided for them for

exactly this purpose. SNMP’s ubiquity, and the MIB’s flexibility drive their continued

use for management purposes. This chapter therefore continues with a review of the

SNMP management framework.

7.2.5 SNMP: A Walk Through

Simple Network Management Protocol (SNMP) was proposed in Request For Com-

ment RFC1067 [CFSD89], and designed to be a simple low overhead protocol to allow

Network Management Systems (NMS) to set and retrieve information from multiple

network attached elements. It was produced by the Internet Engineering Task Force

(IETF) in response to the Internet Activities Board (IAB) requirements for a manage-

ment solution for network attached devices [Cer88], and at around the same time as

the ISO CMIP alternative. The management information to be accessed by the NMS

devices is stored on the to-be-managed systems (agents), in the tree-like Management

Information Base (MIB) structure [Pre02]. The MIB is formed of specific objects that

the agent maintains, such as statistical counters and gauges. As well as being located

on the agent, the MIB may supplied by vendors in a standard format to be compiled

onto any NMS platform that needs to use it. Multiple NMS systems can be attached

to the network to attain resilience, or alternative viewpoints for diverse audiences. In

larger systems a hierarchy of NMS machines can service a network of devices, and

agents themselves can also be organised into their own hierarchy, with master / slave

agents to help partition the management tasks (AgentX [DWEF00]).

SNMP became popular quickly [Kas91], and has remained so due to its simplicity

and extensibility, its being free to use and its mature toolsets and vendor indepen-

dence. SNMP agents and implementations can be found in most types of device that

can be network attached, including servers, networking equipment such as routers and

switches, and end stations such as PCs, workstations and printers [Sim12].
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Figure 7.2: IP packet encapsulation of SNMP (version 2c).

SNMP Protocol and Messages

Internet Protocol (IP) is predominantly used to convey SNMP messages between man-

aged agents and the Network Management Systems (NMS). There are three categories

of SNMP message:

• Get – this is the NMS requesting data from the agent, and is responded to with a

get-response. Request variants include, get, get-next, get-bulk.

• Set – this allows an NMS to set a writable value in the MIB, and the agent replies

with a set-response.

• Agent Initiated – this includes messages such as ‘trap’ which inform the NMS

of notable events / alarms on the agent.

Get and set messages use UDP port 161 for SNMP transport, and UDP port 162 is

used for the agent initiated traffic. An example SNMP packet structure with IP encap-

sulation is illustrated in Figure 7.2, and as shown it is possible to convey more than 1

SNMP request / response (variable bindings) within the same packet.

An example ‘get-response’ message is captured from the network in Figure 7.3,

formed of the initial 2 field message header (containing the version number and (in

version 1 and 2) the community string which is used as a ‘shared secret’ for authen-

tication). All SNMP data is transmitted without encryption between managed agents

and the NMS, until SNMP v3 where authentication and integrity checking is added,

however this version is not as widely deployed as the most common SNMP v2c form.

The header is followed by the SNMP PDU (Protocol Data Unit) which is formed of:

• Type – the example in Figure 7.3 is a get-response

• Request ID – to match up specific responses and requests

• Error Status – null, otherwise indicates type, then Error Index indicates the object

ID which is in error
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• Variable Bindings – including Object Identifiers (OIDs) and data, there may be

more than 1 per message to improve the payload:header efficiency

Figure 7.3: Packet capture of a response to an SNMP get operation, returning data

from the agent to the NMS.

Remote Monitoring (RMON)

Remote MONitoring (RMON) [Wal91], is a protocol used to partially distribute the

collecting and analysis task to devices within the network. It runs as a ‘probe’ on

remote devices and is able to collect detailed statistics about what is occurring locally

as the probe is proximate to the monitored device. RMON Probes reduce the quantity

of data transmitted by aggregating data and sending it back to the management station

only as required. Usual SNMP get / set / response packets have small payloads, and

therefore a high percentage of the data transmitted is overheads and encapsulation,

therefore collating and aggregating data locally before transmission is more efficient.

7.2.6 The Management Information Base (MIB)

MIB Construction

The MIB is a structured tree of management information, comprising data objects

that may be retrieved (and / or set) by management systems on demand. It may also

define agent-initiated events / alarms / notifications that are sent from agents to NMS

when a pre-defined set of circumstances occur. The MIB specification which is most

commonly used today is based on MIB-II [Ros90] and successors. It is independent of

the protocol which is used to convey it over the network.
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Figure 7.4: MIB tree structure, including system name, and links to the root of the

private.enterprise MIB for several vendors.

The object tree is generally fixed into the agents’ operating software, with manu-

facturer and product specific information grafted onto the private.enterprise part of the

MIB tree (fig. 7.4). So that generic NMS software can understand individual enterprise

MIBs, they may be supplied by the manufacturer and loaded / compiled into the NMS

software, or items added by hand from the MIB on an ad-hoc basis.

MIB objects are guaranteed to be globally unique, such that each standards body or

private enterprise is assigned its own root identifier in the tree, under which they define

their objects to be managed. MIB objects (stored as the leaves of the tree), are referred

to by their OID (Object IDentifier) which is a dotted decimal notation, but there is

also a textual representation used to aid human comprehension of the MIB and the

information it describes. An example of both formats used to retrieve the hostname of

a system follows: ‘.iso.org.dod.internet.mgmt.mib-2.system.sysName’ proves a more

readable version of the equivalent numeric: .1.3.6.1.2.1.1.5. A view of this particular

object in an example MIB tree has been highlighted in the lower-left of figure 7.4.

Format of Data Storage

Part of the IAB requirements in RFC1065 [MR88b] is for structuring the format of data

stored in the MIB tree, including such items as data-types and bounding values. The
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specified solution is Structure of Management Information (SMI) [CMRW93], which

is a formal set of rules defining data encoding types. Common examples include:

• Unsigned32 – integer value between 0 and (232 − 1)

• Counter64 – non-negative integer that increments positively, wraps to 0 at 264

• Gauge32 – a bounded non-negative integer

• TimeTicks – time between 2 epochs in centi-seconds, 0 – (232 − 1), also wraps

SMI also permits user-defined objects and sub-types to be created e.g.:

• Structures, defining value types and sub-types

• IpAddress – a 32 bit Internet address = a length 4 OctetString – and is an example

pre-defined sub-type

SMI has it roots based in ASN.1 [ITU08], which is an ITU-T defined notation that

allows data structures and values to be efficiently and unambiguously represented and

distributed in a text format across multiple platforms. The most common and prevalent

version in use today is SMIv2 [MPS+99], which is used together with MIB-II and

SNMPv2c.

7.2.7 Previous Large System Research with SNMP

Cluster Machine

In [AMG04], Alves et al. discuss their implementation of a private enterprise MIB to

manage their own cluster environments. They take the idea of removing the SNMP

agent from each of the end stations, and having a front end to the many processing

elements being handled by a ‘cluster controller’, however they limit their functions to

a single management station which reduces both the capacity and the resilience of their

solution. Their implementation was a success, but it did not take into account hardware

monitoring other than just a processor percentage, memory utilisation, etc, as they

were focusing on allowing an operator to be able to assign jobs manually to cluster

machines with lesser loads. The Alves’ solution does not take into account massive

parallel processing solutions that have become increasingly prevalent, nor does it take

a broader overall view of hardware and software management. It appears that the

solution has been built to solve a particular sized problem rather than being created to

cover a broad range of applications, and larger scale systems.
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Grid

Subramanyan et al. [SyMAF00] describe an approach for much larger, albeit hetero-

geneous, systems – such as those undertaking grid type computing applications. In

their SIMONE solution they describe an Intermediate Level Manager (ILM) function,

which serves some of the consolidation needs in a very large scale system. They in-

dicate heavy CPU usage as the main driver for this consolidation function, but do not

approach the issue of reducing this CPU load at source, only to distribute it. They

include a useful study of processor and communications overheads as part of their

paper. Their work quite clearly demonstrates the benefits of distributing the manage-

ment load amongst multiple agents unlike Alves et al. [AMG04], and they list AgentX

[DWEF00] as one such method of reducing overheads of processing SNMP and MIB.

7.3 Summary

This chapter has explored the topic of managing large scale computing systems to

maintain and control them. There are a number of aspects covered by the term ‘sys-

tem management’ including faults, configuration, accounting data, performance and

security. For any network attached equipment, the network itself can be used to pro-

vide the path between the managed and managing systems, and this enables remote

and centralised system management to take place. For network attached systems there

has been standardisation around the protocols used, but there are a wide diversity of

management tools used by operators. System management tools typically provide a

dashboard representation when supporting large systems, using positional and colour

information to indicate the status of the items and faults being monitored. A hierarchy

of management is also often supported, which removes complexity from the manage-

ment screens, only displaying relevant detail. This concentrates the attention on the

components with issues, so that highlighted issues are resolved as quickly as possible

after the initial alert.

In the case of SNMP the data to be serviced is stored in the tree-like MIB database,

whose structure is distributed amongst the managed agents and network management

system(s). The MIB may be polled either to retrieve information, or to set parameters

which remotely influence the behaviour of that end device. The structure of the MIB

data stored on end devices is essentially arbitrary but hierarchical, and is related to the

specific management requirements of that device. SNMP is deployed almost univer-

sally in remote system management where the systems connect to a network, and this
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has led to a wide-ranging set of tools to be developed to manage such systems. These

tools provide multiple arbitrary perspectives for large systems, and may be enabled by

centralised or distributed polling systems.

In the next chapter the system management of the SpiNNaker hardware architecture

is tackled, and a framework developed to permit management data to be transferred to

and from the system efficiently using standardised tools (which would normally be too

heavyweight for SpiNNaker’s constrained operating environment).



Chapter 8

SpiNNaker Management Framework

Monitoring is now almost ubiquitous for computing platforms, as the increased visibil-

ity permits remedial actions to be automated, and maintenance to be minimised. The

visibility of both machine and software health (in real-time) is an important aspect of

their ongoing operational and performance management. Providing real-time visibility

of system resource loading on a machine consisting of many tens of thousands of com-

ponents is not a trivial task and the ability to be able to detect and map around faults,

together with the gathering of load information, permits dynamic allocation of work,

re-routing, or further diagnostics to be initiated.

SpiNNaker is a novel, high-performance architecture, formed from large numbers

of highly-interconnected, energy-efficient processing elements more typically found in

embedded systems. This chapter presents the implementation and results of a manage-

ment strategy for the SpiNNaker hardware environment (fig. 8.1), utilising a universal

translation layer: SpiNNmate. SpiNNmate is a function located between a SpiNNaker

machine and the communication protocols of external applications. On the SpiNNaker

side the management strategy aims to minimise computational impact, while on the

other side providing translation facilities to external protocols and tools.

8.1 SpiNNaker – a Memory-Mapped Architecture

SpiNNaker is a scalable, massively-parallel, computing architecture constructed from

interconnected SpiNNaker chips, each containing 18 ARM9 processors clocked in the

low hundreds of MHz. Each of the cores within the SpiNNaker chip has access to

both individual and chip-level memories, and to the shared hardware of the system in

a memory-mapped architecture (fig. 8.2). Each core locally has its own 32 kB and

160
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SpiNNaker System Management Time-Line
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Figure 8.1: The system management time-line of the SpiNNaker platform – manage-

ment of system hardware, peripherals and memory is carried out by the framework

provided around SpiNNmate.

64 kB of instruction and data memory, and all cores have access to a shared system-

level RAM of 32 kB, and to an off-die (but in-package) shared SDRAM of 128 MB.

Both shared memories have multi-cycle latencies, but each core has DMA hardware

support to transfer blocks of shared memory back and forth efficiently. In addition to

the memories, the majority of the peripheral blocks at both individual processor and

system levels are accessed via memory-mapped locations (fig. 8.2).

There are multiple audiences for real-time visibility of machine monitoring. Those

who monitor hardware operations need information about system health, and end-

users: their application’s performance. Due to SpiNNaker’s resource-constrained ex-

ecution environment, implementing a full universal management suite on all cores is

not practical, and would divert resources from the applications it is designed to sup-

port. To minimise the impact on SpiNNaker a low-overhead, but scalable, management

framework has been created based on low-impact GET and SET operations which can

access hardware and software data via the SpiNNaker memory map.

8.2 A Protocol Translator – SpiNNmate

It is unlikely that users of the SpiNNaker system will attempt to monitor it by accessing

specific memory locations, they will use higher-level software tools. These tools may

be bespoke, but in other cases standardised software and protocols may be employed.
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Figure 8.2: Memory map of a SpiNNaker MPSoC. This is mapped to a Management

Information Base (MIB) model of the system with Object IDentifiers (OID) arcs indi-

cated alongside each resource of the SpiNNaker MPSoC (see section 8.2.3).

SpiNNmate (fig. 8.3) is an intermediate management software layer providing a

simple, extensible, framework for interfacing with the SpiNNaker platform. This ap-

proach leaves the majority of the complexity and overhead outside SpiNNaker with a

set of lightweight, unified, primitives providing the I / O and control required of the

SpiNNaker machine. SpiNNmate’s primary target is to provide a common intermedi-

ate point of access for external protocols and applications that wish to communicate

with SpiNNaker, and dispense with the need to implement bespoke code on SpiNNaker

for each new application or provide on-board translation.
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Figure 8.3: The SpiNNmate translation service. Multiple diverse applications / proto-

cols (right) may access SpiNNaker via the translation layers of SpiNNmate.

8.2.1 Primitive Operations on SpiNNaker

SpiNNaker is a memory-mapped architecture; the vast majority of on-chip resources

can be accessed with a simple read or write of the relevant memory location / memory-

mapped register (fig. 8.2). These two simple ‘GET’ and ‘SET’ operations cover the

majority of transactional requirements to control and manage a SpiNNaker chip. Ac-

cessing the system using these simple primitive operations ensures that the end pro-

cessor does not become overwhelmed or have its limited instruction memory filled

with operations that are rarely used. If operational complexity is required, this can be

performed externally, formed by a series of GET or SET operations on the relevant

memory locations. For this reason, the SpiNNmate framework has been developed

providing GET, SET and a third primitive RUN which provide full access for control

and system management purposes to all areas of the SpiNNaker machine.

8.2.2 SpiNNmate Structure

SpiNNmate is a protocol translator typically implemented on a external Host worksta-

tion which ‘mates’ external protocols with the resource-constrained SpiNNaker ma-

chine. It is formed of several layers providing a full translation service between primi-

tives and different protocols and abstractions. At its first layer (leftmost ‘System Hard-

ware Layer’ in fig. 8.3), SpiNNmate communicates with the SpiNNaker machine via

Ethernet, dealing with system primitives encapsulated in packets (fig. 8.4). Next, SpiN-

Nmate provides a core layer which operates with commands that are macros of system
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primitives, and provides abstractions via the database to SpiNNaker objects (rather

than packets, primitives and memory addresses). The next layer, the application layer,

is where user applications communicate with SpiNNmate. SpiNNmate provides trans-

lation blocks (handlers) within this layer, converting different protocols into SpiNN-

mate procedures. With SpiNNmate’s modular nature, a new external client application

can quickly be communicating with a SpiNNaker machine.
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Figure 8.4: Communication between SpiNNaker and SpiNNmate is via SpiNNaker

Datagram Protocol (SDP) packets. Within the SDP packets, SpiNNmate primitive(s)

may be sent to / received from any SpiNNaker core in the machine.

SpiNNmate System Hardware Layer

SpiNNmate communicates with SpiNNaker chips over a network link using SpiN-

Naker Datagram Protocol (SDP). SDP is a transport protocol utilising standard Inter-

net Protocol (IP), and provides a command space plus up to 256 bytes of payload data

to be sent within its packet structure (fig. 3.7). The SDP header supports control and

addressing (so that any core in a system may be addressed), and a port to identify tar-

get applications. The SDP data portion is prefixed by a command sub-header, which

includes fields for sequence, command code and arguments. In practice this means

that smaller SpiNNmate primitive messages can be conveyed without requiring use

of the optional 256 bytes of optional data payload. SpiNNmate communicates with a

small module of code on a SpiNNaker core which is listening for SpiNNmate primi-

tive packets targeting it (fig. 8.4 details the packet format used). Within the command

header three core operations (SpiNNaker primitives GET, SET and RUN) are encoded

in the Op-Code field, with other fields including target memory address, repeat count,

step-size, data type (words, shorts or bytes), and a mask that can be applied to the data.
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The RUN primitive includes additional headers optionally permitting scheduling and

to provide regular reporting functions or alarms if a threshold is breached. Facilities

to read or write large blocks of information from a single command may be encoded.

The SpiNNmate hardware primitives layer also makes transparent any packet split-

ting, should the user request to GET / SET quantities of memory that exceed the SDP

payload size.

SpiNNmate Core Layer

This layer contains wrappers around the hardware primitives, procedures easing some

of the system specific variable handling, and macro functions providing repetition of

hardware primitives – e.g. supporting dumping and loading memory to and from files.

An important part of this layer is that it can communicate with an SQL database con-

taining the abstraction between ‘objects’ and the detail of SpiNNaker memory ad-

dresses (as well as bit masks, lengths, access rights and register descriptions). There-

fore if a user requests an object (via one of SpiNNmate’s protocol handlers), they are

abstracted from the raw address and bit-wise detail. The database sits behind a DB

interface which is available across all SpiNNmate layers.

SpiNNmate Application Layer

The application layer handles the conversion of various protocols into SpiNNmate core

commands. There are currently two translation blocks supporting management appli-

cations, which are expanded in section 8.2.3 below. In operation, a protocol block

listens for its packets, interprets them into data structures, and makes a request to the

next layer of SpiNNmate to retrieve one or more objects, or to write certain values to

them.

Proactive Alerting

By running a scheduled service routine on the Monitor Processor, chips may proac-

tively send out alerts to the management system when specific registers / counters

breach user-defined thresholds. This mechanism avoids the necessity to continually

poll this information from outside the system, and thus saves computing and band-

width resources.
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8.2.3 Protocol Modules

Two different protocol handlers have been implemented for management applications,

with very different traffic profiles to meet the hardware system management and file

operations requirements of figure 8.1. The first application is to interface SpiNNaker

with SNMP, which is a de-facto standard for monitoring and management of net-

work connected devices. By implementing an SNMP protocol module in SpiNNmate,

the SpiNNaker machine is opened to dozens of standard system management tools

which can be customised for monitoring, alerting, performance and fault management.

SNMP is predominantly a transactional protocol, and is used as such in the exper-

iments. The second implementation is a GUI which interfaces with SpiNNmate to

manipulate the memory / hardware on a SpiNNaker machine. Combinations of prim-

itive commands are used to GET and SET large blocks of data on the shared memory

of each chip pre- and post-simulation. This communications methodology covers the

data-loading and results-saving requirements of simulations executing on the SpiN-

Naker system.

Implementing SNMP and Constructing SpiNNaker’s MIB

As described in chapter 7, Simple Network Management Protocol (SNMP) [CFSD89]

is designed to be a simple, low overhead protocol permitting Network Management

Systems (NMS) to set and retrieve information from multiple network attached ele-

ments. The management information such as settings, statistical counters and gauges

is stored on the managed agents in the Management Information Base (MIB) structure.

The SpiNNaker MIB is formed of specific SpiNNaker objects that the agent maintains,

and can be accessed by the NMS.

As each SpiNNaker chip (and core) does not have its own IP address and stack, it

cannot run a typical full SNMP agent. Only a subset of SpiNNaker chips are provi-

sioned with Ethernet connections which are assigned IP addresses. Potentially there-

fore, an Ethernet-attached chip could act as master agent, with all other downstream

processors acting as slaves in an AgentX implementation. Two problems arise with this

option: AgentX is an SNMP specific extension whereas the SpiNNmate framework is

agnostic to the input protocol, and the overheads of running AgentX clients are higher

than the simple primitive operations outlined. Therefore, the SNMP agent is imple-

mented by SpiNNmate itself, so an NMS directs its SNMP messages at a SpiNNmate

protocol module.
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Figure 8.5: Extract from the SpiNNaker MIB tree structure. Most of the subtrees are

pruned in this diagram so that examples from the Memory (MC) and System Con-

trollers (SC) may be highlighted.

MIB objects are required to be globally unique, and are referred to by their OID

(Object IDentifier) which is either in dotted decimal notation, or an associated textual

representation. The connectivity of SpiNNaker provides a unique co-ordinate address

for each chip, and together with SpiNNaker’s memory map (fig. 8.2), this forms the

template for the construction of the SpiNNaker MIB structure.

The MIB source of a SpiNNaker machine begins with its chip co-ordinate, each

chip having beneath it an identical MIB branch structure. This identical structure is

derived from the memory map of SpiNNaker, with numeric and text OID arcs (sub-

trees) defined for each distinct block (see the right-hand side of fig. 8.2). Each block

may then branch to registers, then each instance of that register, and finally any sub-

registers beneath that.

To illustrate this, a subset from the SpiNNaker MIB is reproduced in figure 8.5. To

navigate to the temperature sensor 1 leaf object (highlighted in the lower right of the

diagram), either the numeric or text OID may be used. The temperature value has a full

numeric OID string: .1.3.6.1.4.1.10.1.1.3.125.31.1.1 or may also be represented in text

as: ‘.iso. identified-organisation. dod.internet.private.enterprise.experiment.machines

.spinnaker.chipcoord3.spkSC.spkSCtemps.spkSCtemps1.spkSCtemps1temperature’.
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Figure 8.6: An example of MemGUI where the user may select to GET or SET ad-

dress(es) in memory of a specific chip / core, with options to repeat, mask and to load

/ save files on the target SpiNNaker machine.

The information required to create the SpiNNaker MIB was created in a database

and includes all data required to distil into the standard MIB format, including OID

numbers, names, permissions, a free-form text description and its syntax. This same

source database also includes (for use in the SpiNNmate hardware layer and the SNMP

agent), the mapping between OID and SpiNNaker memory address, together with mask

and bit positioning information (typically used by sub-registers). The MIB generated

from this source database may be imported into SNMP management tools, and used to

query SpiNNaker machines, chips and cores by object name as required.

MIB Enterprise Number The University of Manchester does not own an enterprise

number for use as a tree root within the proposed MIB. therefore the assignment of a

new enterprise number may be appropriate, especially if commercial exploitation of

the SpiNNaker Intellectual Property is sought. It would therefore be prudent in future

to apply for a unique enterprise number for this project to create a unique enterprise

sub-tree in the longer term.

MemGUI Implementation

MemGUI (an example of which can be seen in fig. 8.6), is an easy-to-use graphi-

cal method of gaining access to read and write a specific SpiNNaker chip’s memory.
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Underlying MemGUI’s operation are a set of commands which are used to access op-

erations from the SpiNNaker machine via SpiNNmate. To provision the MemGUI

load and save operations, its commands are broken down into constituent primitives

by the core and hardware layers within SpiNNmate. By providing macros of low-level

operations, other more complex transactions may be created.

As the object to hardware mapping database is provided externally to SpiNNmate

in a standard format, it may be accessed by more than one client. In this case the

database created primarily for the SNMP MIB is used to provide MemGUI with a

user-friendly method of accessing parts of the system by object name or description,

rather than having to traverse the memory map by address (leftmost tab in fig. 8.6).

The extra client linkage of MemGUI to the database is illustrated in figure 8.3.

8.3 Memory and Communications

Fundamental to the implementation of SpiNNmate and its primitive GET and SET

operations are the performance of the memory operations that it carries out, and the

communications of the requests / results to the SpiNNmate platform. A number of

experiments have been carried out on both categories of infrastructure to maximise the

potential of each of these paths when conveying management information.

8.3.1 Memory Operations – When to use DMA

SpiNNaker has a multi-level model of memory – the view from each processor across

a system is incoherent, with no memory visibility beyond the local chip package. Each

core has its own relatively small (in the tens of kilobytes) instruction (ITCM) and data

(DTCM) memories, private to each processor block (fig. 8.2). Further and larger store

is shared by all processors at the chip / system level, and accessed over the System

NoC, which each processor may elect to access using its DMA controller.

As the GET and SET primitive operations are fundamentally memory operations,

memory performance is of key concern to the SpiNNmate platform. This is particularly

the case where large sections of data are moved about, such as loading and saving data

on the SpiNNaker system pre- and post-simulation. Therefore experiments were per-

formed between blocks of shared system and local processor memories to understand

their characteristics, and to determine the point at which it becomes more efficient to

access shared system memory by DMA rather than use item-by-item operations.
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Figure 8.7: Comparison of memory read performance using on different types of mem-

ory in the system. Selecting DMA on all but the smallest block sizes is faster.

A number of memory performance tests were carried out in the standard operating

environment of the system; this is a thin API which abstracts from the direct hardware,

and is the environment in which SpiNNmate memory transfers are performed. Each

test consists of a repeated gigabyte transfer of data, and the elapsed time is recorded

by reference to the 2nd on-chip timer at the start and end of every transfer (microsec-

ond resolution). Results from the testing are detailed in figure 8.7, where different

memory block sizes are transferred to and from DTCM using all four types of memory

(including DMA where available). Results for read and write figures were approxi-

mately comparable, therefore write results are omitted from the figure for clarity. A

32-bit word size was used for most transfers as it is consistent with the ARM 32-bit

architecture. However, a user may wish to access memory at other item sizes (chars,

shorts), therefore experiments were also performed with 8- and 16-bit operations for

comparison.

The results of the memory tests indicate that a DMA memory operation should be

initiated where the size of the transfer to / from shared memory is 32 bytes or larger.

For shorts / bytes the crossover occurs sooner, as the number of instructions scales

proportionally to the number of memory accesses. Using DMA for system memory has

an additional benefit not recorded in these results: that the processor may undertake

other tasks whilst awaiting the response from the DMA controller. Therefore in the

implementation of the SpiNNmate responder, SpiNNaker has been coded to switch to

DMA as indicated by this set of results.
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8.3.2 Memory Performance Optimisation

A further set of experiments were performed on the tuning of the DMA controller

parameters used for the memory transfers. The output of this work was the selection

of parameters to be used for DMA transfers within the API environment. The bulk

of the experiments were carried out between the DTCM memory of a core and shared

SDRAM memory (the predominant main-store path) to optimise these transfers. The

method to record results used in the earlier tests was used again here. The traffic passes

between the (separately) clocked domains of the requesting core and shared memory,

traversing the asynchronous System NoC (fig. 3.2), therefore any poorly performing

regions as a result of interactions or ‘beating’ are of particular interest.

DMA Parameters

The two parameters which may be chosen to tune the DMA transfers are the width of

the transfer (1 or 2 words (32 or 64-bits)), and the burst size (which may range from

20 − 24). Figure 8.8 presents the results of write operations using the same experi-

ment as earlier. The benchmark for results are those recorded in figure 8.7, where the

maximum transfer rate achievable was ∼125 MB / s. It can be determined, almost

across the board, that a burst size of 16 together with a double-word width produces

the best performance, particularly on larger blocks where an approximate tripling of

performance is achieved. The outcome of these experiments is that these parameters

have become the new defaults for the DMA transfers in the API.
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larger burst sizes of double words typically provide the best performance.



172 CHAPTER 8. SPINNAKER MANAGEMENT FRAMEWORK

Clock Speeds

This next experiment explores the relationship between the clocking domains on the

SpiNNaker chip, and how they influence memory transfer performance. There are five

clock rates which may be influenced by the user. The processors are split into A and

B domains (9 in each, so clocks may be differentiated if desired). Two independent

clocks are derived for the router (not relevant in this test as there are no packets to be

routed), and the System Bus (which again is not relevant as the path to the SDRAM

does not pass over this bus (fig.3.2)). The final clock is supplied to the memory con-

troller to drive the SDRAM.

The experiment therefore uses the 2 degrees of freedom: core and memory clocks

to create a performance surface (using the DMA burst parameters determined as best

in the previous experiment), and to identify combinations that perform well, and elim-

inate any which are poor performers.

The results for read and write directions in this experiment are quite different. The

write direction is the easiest to interpret (fig. 8.9), with its smooth surface contours.

The limiting factor below a core clock rate of 180 MHz is the performance of the core

itself, and above this knee only a very minimal increase is available, so the limitation

is elsewhere. Raising the memory clock rate slowly, but steadily, provides better per-

formance for the same clock core rate. The ceiling therefore appears to be located in

the channel capacity to the fabric.
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Figure 8.9: How the core and memory frequencies influence the DMA transfer rate to

SDRAM for a core. This example uses 32 kB blocks and the write direction.
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Figure 8.10: How the core and memory frequencies influence the DMA transfer rate

to SDRAM for a core. This example uses 32 kB blocks and the read direction.

The read graph is quite different from that of the write direction, although it still

exhibits trends. The resulting surface plot (fig. 8.10) demonstrates that at core clock

speeds below 160 MHz the performance of memory reads drops off relatively quickly,

with the memory clock rates not playing a part. There is a performance plateau that

appears at a core clock of 240 MHz, and anything above this does not gain any signif-

icant extra memory performance. From the memory clock perspective, the faster the

memory speed, the better the performance achieved, rising almost linearly.

The exact reason for the uneven read performance requires further investigation,

but is likely to be a result of the internal scheduling performed by the memory con-

troller in the read direction (attempting to optimise throughput), whereas in the write

direction the operations are carried out strictly in order. To validate these results the

experiment was repeated across all combinations of burst parameters and block sizes,

with the read and write surfaces maintaining the shape discontinuity seen in the illus-

trations.

To give these results some context the SpiNNaker chip is expected to be clocked at

200 MHz core speed and a 165 MHz memory clock in production. By maximising the

core clock from these notional rates a <1% throughput increase in the write direction is

observed, and for the read direction an improvement of 1.3%. This experiment proves

that inflating core speeds beyond their notional rates for purely memory performance

purposes does not provide a sufficient pay-off versus the significant power increase

required.
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Multiple Cores

Thus far, the memory optimisation experiments have concentrated on single-core per-

formance, however, this is not expected to be operationally realistic – there are many

Application Processors all expected to utilise the shared memory. In this final experi-

ment the performance and fairness of the shared access fabric and memory is explored,

in situations where it is contended.

The previous throughput experiment is extended to run on incrementing numbers

of cores, and a synchronisation mechanism is set up between them. The arbitration tree

of the System NoC (fig. 8.11) is used to determine a ‘fair’ order in which to add each

additional core to the experiment. Firstly seven cores are added one-by-one in the read

direction, followed by seven write cores, also added one-by-one. The physical core

order is: 6, 4, 2, 8, 14, 12, 16, 1, 7, 5, 3, 9, 11, 13 which avoids the elected Monitor

Processor on that chip and the ‘top level’ asymmetric shares.

0   16    8    4   12    2   10   6   14   1   17   9    5   13   3   11   7   15   Ext

Figure 8.11: Accessing the System NoC the cores pass through an arbitration tree,

each multiplexer a potential cause of contention / limitation.

The results of this experiment show that fair proportions of the bandwidth continue

to be apportioned to each of the cores as expected. This is graphically displayed in

figure 8.12, which shows that around ∼600 MB / s is available to be read and up to

900 MB / s can be recorded when traffic is flowing bidirectionally over the fabric.

Where the tree becomes unbalanced then each core sharing that branch of the tree still

has a fair share of that bandwidth. For example where there are 12 cores in operation,

there is less individual bandwidth available on cores 1, 5, and 9 in the write direction

than 7 and 3, as there are 3 cores sharing one path in the multiplex tree versus 2.

There is some disruption in overall data rates when write requests are simultaneously

operating, although the bandwidth shares are always fair, further investigation is again

required to profile all components in the system path including the memory controller.
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Figure 8.12: One by one cores are added transferring data with DMA, the first seven

performing reads, then the following seven writes to maximise use of the asynchronous

fabric of the System NoC. (Core clocks all set to 200 MHz and memory 165 MHz).

8.3.3 Communications Bandwidth

Hardware

By generating packets on local cores it is possible to achieve 5.3 Gb / s at entry to the

router, shared amongst the cores by the input processor merge tree. A single (over-

clocked) core in a tight loop can individually achieve 5.0 Gb / s. Each off-chip link

is capable of sustaining around 250 Mb / s, a figure limited by the on- and off-chip

delays.

The Ethernet hardware is capable of supporting 83.2 Mb / s incoming, and trans-

mitting at 92.8 Mb / s. These figures are based on raw packet rates (including headers

and trailers) and do not include any processing overheads or checksumming that may

be required to be productive with the network data.

Software (SDP)

In the current small SpiNNaker machines, SDP is used to load application data and ex-

ecutable code. A measured test, transmitting data from a Host machine to an Ethernet

attached SpiNNaker chip and then to an Application Processor on that node via shared

memory, achieved speeds of 4.7 Mb / s. With the target Application Processor on a

different chip the scenario now appears as per figure 3.8. Here the payload transmis-

sion speed is 3.9 Mb / s, due to the fragmentation, bridging and acknowledgements of

the internal SDP using P2P packets.
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The SDP datagram payload sizes used in the tests were 256 bytes. The total Eth-

ernet frame length of an encapsulated 256 byte SDP packet is 328 bytes: 18 bytes of

Ethernet Headers / Trailers, 20 of IP, 8 of UDP and 26 of SDP giving an overhead of

72 bytes. This is an efficiency of 78%. For 100 Mb / s Fast Ethernet therefore, the

maximum effective SDP data rate is potentially 78 Mb / s.

Internally to SpiNNaker, P2P packets are used to convey SDP data between chips.

Each 72-bit SDP P2P packet carries a 24-bit payload. After including the headers, this

gives an efficiency of 31%. Given the ∼250 Mb / s chip-chip link rate this suggests a

peak data rate ∼80 Mb / s is possible, roughly equivalent to the Ethernet.

The conclusion of these experiments is that memory access times are almost in-

significant when it comes to communications performance. Network communications

are clearly the biggest performance bottleneck for SpiNNmate primitive operations.

The communications performance and potential improvements are discussed in greater

detail in chapter 9.

8.4 Management Framework Results

In this section a number of experiments are presented using the SpiNNaker system

management framework. Results recorded from both the block transfer memory GUI

application and the SNMP model are provided.

8.4.1 Memory Operations – the Performance of SpiNNmate

The capabilities of SDP as the underlying SpiNNaker data transfer protocol play a

large rôle in the data rate that can be achieved between SpiNNaker and an external

management device. The following results focus on the end-to-end performance of

SpiNNmate, comprising both memory and network components.

In the experiment GET and SET (read and write) primitive operations are invoked

via SpiNNmate (using the MemGUI application). Figure 8.13 details the performance

of two memory classes – System (SDRAM) and Local (DTCM) hierarchically com-

paring: native memory performance on-chip, Ethernet channel potential, SDP potential

performance, and SpiNNmate results (for both an Ethernet-attached chip, and one that

is a hop away over a SpiNNaker chip-to-chip link). The results are presented logarith-

mically in the y dimension as there is a wide variation between operational results.
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Figure 8.13: Performance comparison of memory and communications transfers in a

SpiNNmate implementation.

When compared with the native memory and network bandwidths, the figures are

disappointing. The rates achieved by SpiNNaker (2-300 kB / s, depending on target

chip location) are many times slower than the native data rate of the 100 Mb Fast Eth-

ernet connection (which is the slowest of the physical connection paths between all the

devices). On further examination, however, they do bear scrutiny with the maximum

SDP data rate that can be achieved over the Ethernet, which currently applies a limiting

factor (measured at 588 kB / s to an Ethernet-attached chip, and 452 kB / s for a remote

chip). SpiNNmate achieves around 50% of this available SDP bandwidth, but offers

only a single packet in-flight at any one-time, so the serialised latency of a packet (and

its processing) determines the maximum rate of transmission. It should be possible to

almost double the rate and reach near the SDP notional maximum by having 2 packets

in-flight at any one time.

SpiNNmate’s Added Features

The SpiNNmate protocol includes the ability to mask, jump and repeat data for both

GET and SET primitive operations. The impact of applying these features to attain-

able data rates has been examined, with the results provided in table 8.1. The Repeated

Data feature is useful to load a memory block specifically with a value (e.g. resetting

SDRAM). Variants include repeating with increments or decrements to the data, and

repeating a whole block. Step Size provides operations in intermediate steps (hopping

over n addresses each time), which could be ideal to retrieve / reset variables in a re-

peated structure. Masking for the GET primitive involves retrieving data then applying
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the mask before transmitting the results, whereas for SET the operation is subtly more

complex. With SET, if a mask is applied, existing data in the target location is retained

if the mask does not cover it. This process requires a GET, application of the mask,

then a SET with the combined (ANDed) result. The advantage of using SNMP objects

in this situation is clear, as the SNMP object database contains the sub-register mask

mappings (a ready made mask).

Various repeat options are explored in table 8.1, with the experiment target to re-

set all SDRAM on a chip. With no options the Repeated 64 Word Block is clearly

the fastest method for this application, with fewest packets (8) and lowest overall data

transferred to perform the reset. When applying options, little adverse impact is seen

on overall data rates, although the impact is disguised somewhat by the slower net-

work throughput. Internally the step-over performance drop is more dramatic as DMA

cannot be used as operations are not on a contiguous block. Care has been taken in the

implementation of SpiNNmate to ensure that, where DMA is beneficial and possible

to use, it is deployed.

Repeat Approach
Packets/ No Mask: Stepover:

Data TX Options 0x00078980 2 (interleave)

Blocks of 64 Words
524288) 185.696s 190.848s 206.150s

(172MB) (0.7 MB/s) (0.7 MB/s) (0.6 MB/s)

Repeat Single Word
512 13.319s 13.320s 13.350s

(37kB) (10.1 MB/s) (10.1 MB/s) (10.0 MB/s)

Repeat 64 Word Blk
8 1.177s 1.182s n/a

(2.6kB) (114.0 MB/s) (113.5 MB/s) n/a

Table 8.1: Setting SDRAM (128 MB) via SpiNNmate and SpiNNaker primitives. Dif-

fering operational approaches and ‘features’ are compared.

8.4.2 A Real-Time SNMP Temperature Plotter

The SNMP translation functions of SpiNNmate are used for a practical application

of a chip temperature plotter. The SpiNNaker chip temperature sensors are a good

test-case as they are highly dynamic (although, as yet, not calibrated). Whilst ther-

mal load is applied to a chip (by having the Application Processors execute looped

instructions), SNMP was used to poll the temperature sensors of all chips repeatedly

(see the SpiNNaker MIB extract in fig. 8.5). The temperature is a secondary effect of

the load placed on the processors in the system, very much like fMRI brain scans use a



8.4. MANAGEMENT FRAMEWORK RESULTS 179

secondary effect to detect areas of activation by examining blood oxygenation levels.

Using the values retrieved by SNMP, a scrolling real-time graph for all four chips

based on the temperature gauge outputs can be computed and plotted (fig. 8.14). The

sensors in the SpiNNaker chips clearly show at time 275 s the temperatures drop (fin-

gers were placed onto the chip packages for ∼20s, helping conduct heat away), and

this behaviour reverted at around time 295 s. A similar thermal impact can be observed

by moving air over the chip packages. (SpiNNaker chips emit only around 1 W when

all cores are under load, and are not actively cooled on the test boards (fig. 4.13)).

Figure 8.14: SNMP retrieved plot of 4 SpiNNaker chip temperatures when load is

applied to all processors. At simulation time 275 s cooling is supplied to all 4-chip

packages, and removed shortly afterwards. This plot uses the real-time visualiser de-

veloped in chapter 6.

8.4.3 Processor Utilisation Monitor

The SpiNNaker MIB and SNMP may also be used to poll all processors’ activity on a

chip centrally at any instant. A synthetic application was written which creates ramped

loads on the Application Processors, with the load pattern shifting each 30 seconds.

The status of each core was polled using SNMP with a mean rate of 3 Hz; jitter was

added to reduce any synchronisation / beating within the data as the sample period

is low compared to the 1 kHz load cycle. As each poll result is binary (0=active,

1=asleep), the results plot (fig. 8.15) has a rolling average calculated over a window of

the previous 100 samples. From the figure the application load pattern can be discerned

within the output data plotted for a number of SpiNNaker cores.
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Figure 8.15: Load on the individual Application Processors of a SpiNNaker chip. A

varying load is applied to each application core over time, and this data is retrieved via

SNMP.

8.4.4 A Network Packet Counter

SNMP is often used for monitoring network traffic levels. In this experiment SpiNN-

mate SET commands are used to enable router counters for multicast packets which

originate in each of the 4 chips in a large synfire chain [Abe82] (a spiking neural net-

work simulation). Within this network, four populations of neurons are connected to

one another and a cascade of events moves from one population to the next in a chain

reaction. The trigger for the first population (a bias current) is enabled for 30 sec-

onds and then disabled, and the results of this network show that the population firing

pattern is offset in time due to its position within the chain.

SNMP is used to poll each population / chip’s packet counters, and the spike firing-

rate in Hz is plotted in figure 8.16. Here the temporal offset between the populations

on each chip can be seen – and the ordering of the chain by chip may be deduced.

8.4.5 Long Term Monitoring

An extended test was carried out on a quiescent SpiNNaker chip over a number of days,

using the SNMP protocol to perform trend and performance monitoring using an ex-

tended sample period (minutes). The test uses the most dynamic temperature sensor of
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Figure 8.16: Packet / spike-rates per second generated by a SpiNNaker multi-chip

synfire chain neural simulation and retrieved via SNMP.

the three on the SpiNNaker chip as a data source, which reacts to give a lower reading

when the ambient temperature increases (in the experiment the cores are quiescent).

The results were inadvertent, as the test was intended to be a week long soak / stability

test of SpiNNmate, and the SNMP protocol module. The results (fig. 8.17) clearly

capture environmental data about the room the board is located within – showing the

lab heating system is turned on at 7 am daily, and that the heating is not operated at

the same level over the weekend (4 – 6th February 2012). The temperature in the lab

prior to the weekend was remarked upon as being uncomfortable, and to compensate

the radiators were altered downwards during the afternoon of Friday the 3rd February.

It is possible to see that the ambient temperatures were not as high in the weekdays

following the adjustment.

The figure 8.17 graph was captured from the open-source SNMP management tool

Cacti, which queried the temperature gauge every 5 minutes during the monitoring pe-

riod. The results show that the SpiNNmate SNMP protocol module and responding

code on the SpiNNaker chip are reliable over extended periods, and secondly that, by

calibrating the temperature sensors, it will be possible to read the operational tempera-

tures of the system – and detect the secondary effects of diversely active neural activity

in a system. If neural models are properly mapped in simulation it should be possible

to create a convincing real-time fMRI imaging equivalent on a SpiNNaker machine,

also based on this secondary effect (temperature).
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Figure 8.17: The Cacti system’s plot of a SpiNNaker chip’s temperature sensor data

over a weeklong period. A lower reading indicates higher ambient temperatures.

8.4.6 Alerting using Nagios

SNMP is used (via SpiNNmate) to periodically poll all three of the temperature sen-

sors of the chip being tested, from the widely-used Nagios system management tool

[NE12]. Nagios has been set up so that if the temperature wavers upward or downward

outside certain arbitrary ranges, alerts will be raised to warn operators of the breached

temperature thresholds, and when exceeding a second set of more extreme thresholds,

creates a critical alert for high and low temperatures.

In figure 8.18 a number of status alerts for the SpiNNaker board can be seen, as the

temperatures rise and fall repeatedly inside and outside the monitored bands. The tem-

peratures are being influenced by the application and removal of load to Application

Processors on the test board being monitored.

This trivial threshold alerting example can be extended beyond temperature sensors

on the chip, to different system objects for example traffic levels, core utilisations and

error counts, such as those seen in previous experiments, or indeed any object which

can be read from the SpiNNaker MIB tree.
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Figure 8.18: Alerting with Nagios – all 4 chips on a test board are 100% loaded (to

warm them up), then pass into a quiescent mode where they cool down, both extremes

generate warning and critical alerts as defined temperature thresholds are breached.

8.5 Monitoring a SpiNNaker Machine in Production

In the brain, no neuron shares a network connection, processing power or area to store

input weightings, but on the SpiNNaker chip these facilities are contended artificially

by resource sharing and rely on the silicon being faster than biology to meet their

constraints. Some of the more important / key SpiNNaker items to monitor are:

• Network Connections. These need to be monitored for bottlenecks and capacity

issues (the networks have been sized based on statistical data of real neuron

firing-rates). The system also needs to be monitored for link failures and errors

– sending this information back to the management station, so if a threshold is

breached then a faulty link can be shut down.

• Processor. The algorithm used for neural modelling is well known eg. the Izhike-

vich model [JFW08], so monitoring should look for unexpectedly high processor

utilisation. If demand overwhelms a processor then the real-time nature of the
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machine could be lost. Given that the information between neurons is encoded

in the timing and ordering of spike arrival then this may prove detrimental or

disastrous to an ANN simulation.

• Memory. The quantities and rates of DMA requests (and failures) can be read

from the system.

• Plus Others. There are many other counters, parameters and health check regis-

ters in the SpiNNaker MIB tree which it would be useful to have in the managed

system – to be able to both view and set for control purposes.

Management information can also be used to gain visibility of under-utilised re-

sources that are available to take more load – a useful side-effect which can potentially

be used to dynamically reallocate resources if required within the system.

8.6 Summary and Contributions

The SpiNNaker architecture is primarily aimed at real-time simulation, particularly of

neural networks, and is formed of large numbers of components such as cores, chips,

interconnects and memories. Having such a massively-parallel system operating brings

with it challenges of how to manage its component health as it operates. System man-

agement facilities provide the required visibility, enabling hard and soft faults that

occur to be managed in-flight by monitoring and alerting. Users (or automated agents)

may then take appropriate actions – for example to re-route traffic or load onto alterna-

tive resources. This all must be undertaken in a lightweight fashion. Each SpiNNaker

core (and chip) has very limited computational and memory resources available to it,

therefore attempting to implement a conventional management tool chain would prove

difficult, if not impossible.

A bespoke solution to the system management of the massively-parallel, but con-

strained, SpiNNaker architecture has therefore been created. The SpiNNaker frame-

work employs trivial GET and SET commands to ensure management station to chip

communications are as lightweight as possible. These primitive commands support

retrieval and setting of status on the SpiNNaker nodes, for the price of a memory ac-

cess (as the SpiNNaker systems incorporate their peripherals in their memory-mapped

architecture).
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The higher complexity of the native management protocols is abstracted away from

SpiNNaker by the protocol translation function; this dynamically converts requests

from management tools into the low-cost primitive operations, thus minimising mem-

ory and computational overhead on the SpiNNaker platform. The protocol translation

is performed by SpiNNmate, a layered tool which on one side handles the primitive

operations with SpiNNaker, and on the other external application protocols and tools.

For system management purposes two protocol modules were developed, one bespoke

to support bulk memory operations (loading and saving of data), the other to support

the standard management protocol: SNMP. To support SNMP access a private enter-

prise MIB database of the SpiNNaker memory map and registers was created to suit

the configuration of the architecture; this is reusable across the management domain

as it provides an object oriented and hierarchical view of a SpiNNaker system.

Several experiments were performed with SNMP to validate the functionality (via

the protocol translating SpiNNmate) using common industry management tools such

as Nagios [NE12], Cacti [Cac12] and via generic scriptable SNMP operations. The

more typical system ‘Key Performance Indicators’ were queried in the experiments,

from processor utilisation to network loading, and others to read the more dynamic

temperature sensors. To these management tools, the SpiNNmate translator looks like

a standard SNMP agent, configured with the full MIB tree supporting the SpiNNaker

hardware. To the SpiNNaker side the translator merely queries specific memory loca-

tions on the chips for specific data at low overall computational cost. The translator

(via the database) takes care of mapping the raw memory locations of the machine to

the MIB object structure used and onwards to the external protocol polling performed

by the management system(s).

The major contributions made in this area are the creation of the management

framework to manage a resource-constrained massively-parallel computing system,

and ensuring that the burden placed on it is minimised while the functionality is not

compromised. Underlying the operation of the management framework is the novel

protocol translation function, and its conversions between the relatively heavyweight

management tool protocols to the primitive memory-based operations on the SpiN-

Naker side. This extensible modular function can work equally as well with bespoke

and standard protocols and provides a common method of remote access to the SpiN-

Naker system for management (and other) purposes. For scaling the system may be

extended by adding new SpiNNmate instances to improve capacity and resiliently dis-

tribute the management load.
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Discussion and Conclusions

This thesis covers almost all areas of the full system management time-line of the

SpiNNaker platform (fig. 9.1), from the time the power is applied until it is removed.

At power up, the ROM Node-Boot software is retrieved and used to initialise and

test the hardware of each processor and chip in the system. Any faulty components

are disabled, and diagnostics recorded in an accessible record so that the status of a

node may be recovered – even if that node has been shut down due to a system level

fault. The Node-Boot software then enables the next phase of software to be efficiently

flood-filled to the platform.

As SpiNNaker is primarily designed to run large spiking neural networks, the ma-

jority of code and data flood-filled is to support these large simulations. Providing vis-

ibility and analysis of Artificial Neural Networks (ANNs) during operation is provided

SpiNNaker System Management Time-Line

Power On

/ Reset

System 

Load

Start

Sim

Power Off / 

Reset

Download

Data

End

Sim

management
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Figure 9.1: The system management time-line of the SpiNNaker platform.
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for in the simulation visualisation software where user-selected components from the

software model may be visualised as they run in real-time and interactions are per-

formed via the same interface.

The SpiNNaker hardware, on which the simulations run, is a large distributed re-

source and its resources require management whilst the system is active and software

executes. There are extensive ranges of items to monitor and adjust within a running

system from hardware configuration to performance counters and gauges. A unified

management framework has therefore been created to give ‘low-cost’ access to all lev-

els of the machine. This access provides the required visibility to manage the machine

as a whole, supporting access via bespoke and standard management tool sets.

The following sections discuss the research and development performed across all

areas of the system management time-line, presented in the same order that the thesis

has presented each area, and a section on the SpiNNaker platform itself.

9.1 Bootstrapping SpiNNaker

9.1.1 Primary Targets

The ROM image (or Node-Boot) is the first software which runs on all cores on a

SpiNNaker chip after power on or reset. It performs Power-On Self-Tests (POST) and

initialises the SpiNNaker node hardware into a state such that subsequent code may be

loaded to it throughout an interconnected SpiNNaker system. If a fault is detected dur-

ing POST then appropriate actions are taken to isolate the faulty component(s) where

it is critical to a core or the system itself. This fault is recorded such that downstream

management systems may determine the node-by-node health of the system, and use

this information to aid in work allocation. The main goals were to ensure that the

Node-Boot software is ‘right-first-time’ as the code is committed to silicon, and that it

can reliably and repeatedly receive the next layer of software throughout the machine.

If these two constraints are fulfilled, then any other functionality may then be loaded

to the system subsequent to boot as software, whereas the ROM is immutable.

The Node-Boot software has been successful in its task of delivering these require-

ments for the SpiNNaker chips, the first of which were delivered from manufacture

in May 2011, and subsequently no serious fault with Node-Boot has been detected in

operation on the demonstration and test systems.
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9.1.2 Time Taken to Boot

In reality SpiNNaker chips do not run Node-Boot code for long (hardware is passive

and not productive in this mode), but it is the code which operates most frequently on

the SpiNNaker platform as it runs on every core on every chip at every reset. Each node

takes 4.0 seconds to enter its listening state after performing the POST and initialisation

(predominantly TCM memory testing), and it then takes 5.3 seconds to distribute a

32 kB image by flood-fill to all nodes within a 28 × 28 maximum sized system; if

performed consequently these operations total less than 10 seconds.

One way to judge the acceptability of this performance is to examine the overall

end-to-end time of a simulation. Using the 4-chip SpiNNaker demonstration boards,

a modest simulation may have its image flood-filled to the Application Processors and

then the chips individually loaded with half their RAM capacity: 4 × 64 MB. It takes

∼ 20s to transmit this volume of data at (the Ethernet’s) 100 Mb / s, so if the sim-

ulation ran just 1 second, and then results were recovered (e.g. half the loaded data

post-simulation), the end-to-end simulation time exceeds 30 seconds. If systems with

larger networks are considered (data volume and transmission time scaling linearly),

the boot time (time in Node-Boot) tends to insignificance when compared with the

simulation and data load / save stages. This process can be judged a success.

9.1.3 Power-On Self-Test

The POST operates on all chips as they are reset or powered on. For all the physical

SpiNNaker chips tested, the POST has detected (and recorded) all core / peripheral

faults with the exception of a small number of esoteric faults on a handful of cores

which pass the ROM self-test routines (and manufacturing tests). Although it is not fea-

sible to test absolutely every combination of state within such a complicated chip, the

POST targets the die areas most critically affected by manufacturing defects. By area

by core this is the TCM memory – as shown by the dark blocks adjacent to each core in

the chip plot (fig. 4.3) – and testing each core’s TCM memory consumes ∼50% of the

POST initialisation time. If the core is sufficiently functional to execute and complete

the RAM tests by (and the myriad of other tests it performs on its local peripherals),

then there was an implicit assumption that the core would be fully functional.
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This assumption turned out to be incorrect for the case of 1 core in the 3,000 or so

tested so far (150+ SpiNNaker chips). The result of this is that in future all SpiNNaker

chips, before and after packaging, will be tested by a more comprehensive test suite,

to eliminate chips with cores which do not meet the 17-core yield constraints, or in

particular: would not be detected by the POST testing and disabled. This section of

the ROM therefore can be considered only as a partial success.

9.1.4 ITCM Validation Block (IVB)

The IVB enables users to break out of the normal boot sequence should a watchdog

reset be triggered by code which is no longer responding as expected. Users create

an image with a particular routine which is called in the event of a watchdog reset

and may find it possible to recover to a ‘safe’ mode without losing all the state on the

problematic node. The main issue around the resetting of a node is not necessarily the

loss of a data on that node, but the impact it may have on the routing of data in a large

machine, as routing tables are cleared at reset by Node-Boot.

The likely take-up of IVB is unknown at this stage and, while there is the advantage

of being able to save data and the routing tables, it comes at the cost of the space

required for the recovery routine within the ITCM image. It may be more likely that

an IVB enabled image saves the routing tables if they appear credible, sacrificing the

node’s applications, and then awaits external assistance.

9.1.5 DHCP Node-Boot Image

The DHCP Node-Boot code is a variant of the ROM software which provides SpiN-

Naker chips the facility to retrieve a dynamically assigned IP address from a DHCP

server managed on the local LAN. This is useful for users working in dynamically ad-

dressed networks (which are in the majority), as no static reconfiguration of the board

is required when moving it between different LAN connections. The DHCP Node-

Boot code has been successful tested in many LAN environments in conjunction with

routines to auto-discover SpiNNaker boards to enable them to be located and used.

There is a small cost to be paid in boot time which, as the image must be read from

the external ROM chip rather than internally, extends initialisation from 4.0 to 5.5 sec-

onds; there is then a further delay whilst a DHCP server is found and an IP address

lease negotiated, which may be another few seconds. This disadvantage is generally

outweighed by advantages of the additional DHCP functionality.
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9.1.6 Future Work

Whilst the case for future work on a ROM which cannot be changed is slim as it is

‘cast in silicon’; there are a small number of lessons learned and improvements that

could be considered for a future edition of a SpiNNaker chip.

1. Implement electronic fuses which can be ‘blown’ to indicate that a core / chip

should not be used. Whilst this would be useful for cores which have faults the

POST cannot detect, it would also assist in cases where a production chip goes

faulty in the same circumstances by disabling hardware before the POST is even

performed.

2. There is a momentary current spike during boot as each processor switches from

its 10 MHz boot to its Node-Boot 160 MHz operating frequency simultaneously.

On a small-scale this is not problematic, but on larger systems, if this happens

synchronously across dozens, hundreds or thousands of chips, the surge is sig-

nificant. The resolution could have been to include a randomised back-off period

before changing the clock rates. Furthermore, it was determined that this ‘worst

case’ scenario may occur during SpiNNaker operation too, therefore early dis-

covery has aided the power design of larger SpiNNaker systems.

3. Where more than one SpiNNaker chip has an Ethernet connection on the same

local network, the ‘Hello’ messages from one chip can suppress the ‘Hello’ dis-

covery messages from other chips. This is a mistake in the implementation which

was intended to stop ‘Hello’ messages being transmitted once a Host system had

started to communicate with that node (as it was already discovered). In the

ROM code ‘Hello’ messages from other chips are erroneously interpreted as

server messages, and further messages are quenched. This is not a critical issue,

however, even when using auto-discovery, as a system may be booted through a

single connection and one will always remain broadcasting. In any case, most

SpiNNaker chip IP addresses are fixed and pre-populated into server software on

the Host system.

4. Finally, if the POST is disabled by signalling the relevant GPIO pin (fig. 4.4),

then not all status registers are reset (table 4.1) and may have indeterminate

state. A workaround for validation is to check the GPIO pin to see if this is the

case, but it would be preferable to have had the correct status recorded in these

circumstances.
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Other than these points the ROM performs as designed and meets expectations. Overall

the Node-Boot code installed on the ROM is a considered a success, as issues are non-

critical or may be readily worked around.

DHCP Discoverability

The main ‘problem’ for the DHCP Node-Boot image on SpiNNaker remains its dis-

coverability as the IP address provided will not be deterministic in most environments.

Local auto-discovery is employed here, where the SpiNNaker chips send broadcast

‘Hello’ messages every few seconds. This technique is suitable where the Host is local

to the chip (and broadcasts can be seen) and is a success in this environment.

However, if the Host is beyond the local LAN, the user will be blind to the board;

this is a common problem where inter-network client-to-client connections are re-

quired. An example of such an application is Skype, where the problem is solved with

a centralised ‘directory’ where both clients register to locate one another. A similar

technique could be used for SpiNNaker with a central server coded into the SpiN-

Naker DHCP image; clients wishing to attach to a board would be presented with a

list of SpiNNakers which have registered themselves with the directory service. Sim-

ilarly, a Dynamic DNS (Domain Name System) client could be implemented where

the SpiNNaker board reports to a central name server and is assigned a global DNS

name which may be used to locate it. However, this only works where the chip is

assigned a globally unique address and is attached to the Internet. A hybrid solution

is furthermore being considered for the scenario where a static IP address is used in

one place and a dynamic address elsewhere (e.g. office / home). Here the Node-Boot

image would use a pre-programmed IP address unless a response is received from a

DHCP server at reset.

Discovery problems are common with client devices across the Internet which run

services and there is no perfect solution to the problem; combinations of the above

techniques are used. Most typically, however, communications are client / server, with

servers accessed by name, and mapped by DNS to a fixed IP address which changes

infrequently. As larger installations of SpiNNaker boards become more prevalent the

mobility of the SpiNNaker systems reduces, and the installation gravitates to client

/ server and fixed DNS type solutions for the SpiNNaker boards – which are more

formally managed.
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9.2 Visualising Neural Networks on SpiNNaker

As models of the brain become larger, more complex and run for longer periods, the

ability to perform real-time data visualisation and analysis for artificial neural networks

becomes more important. Aggregation of data is an inherent part of the visualisation

process as it is feasible to plot only a subset of the data available in the system in

real-time. If this aggregation can be achieved in parallel on the target architecture,

then real-time visualisation and analysis can remain scalable. Viewing data from the

simulations is achieved through a generalisable real-time visualisation tool.

9.2.1 Modularity

The purpose of the visualiser tool is to provide the type of visualisations found in both

real and artificial neural networks and to display them, in real-time, along with the ex-

ecution of the network. Visualisations are required to cover the full range of network

behaviours. These span from plotting single neuron dynamics, neuron activity within

a population, and population-based activity. These visualisations, too, emulate bio-

logical techniques from embedded single and arrays of electrodes, to EEG and fMRI.

Many of the data plots used in neural network visualisations are standard graphing

techniques and are used in multiple situations to represent various data sets. For this

reason a generalised modular visualisation tool was created, which takes data from

packets on a network, and interprets the data in the packet to populate data structures

that may be plotted. This decision, not to plot the neural data directly, was taken to

ensure that the tool is not tied to a particular simulator or packet format (it could be

used with non-SpiNNaker neural simulators if required). Indeed, although its primary

purpose is to plot neural data from SpiNNaker (and the modalities chosen are mostly

aligned with this target), the visualiser may be used to plot any data that it receives, due

to its modular nature. The visualiser approach has been a success and the results from

chapter 6 cover a wide ranging set of real-time neural network visualisations from the

SpiNNaker platform, plus non-neural network examples.

9.2.2 Modalities

As many of the same types of plot are used for neural network analysis, the tool has

been created supporting many modalities that are suitable for neural data, e.g.: scatter

plots (spike trains), line diagrams (parameter traces), tiled plots (aggregated activity
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maps / pseudo-fMRI), and histograms (synaptic weights). The benefit of these gener-

alisable data plots is that context is abstracted and arbitrary, so the users may use any

plot-type to view any type of data, and choose the appropriate colour-spectra, window

sizes, transformations and ‘zoom level’ to display and interpret their real-time data.

Many transformation and plot options, such as the multi-channel plot (where several

channels of data may be plotted simultaneously over time), have been driven by user

request. In this simulation the modular nature of the software proved useful, as the

components from other plot types could be reused for items such as labelling of axes

and scrolling of data.

The selection of C++ and OpenGL as a programming environment has been useful

in the creation of windowed graphics that are portable across platforms, and in the effi-

cient manipulation of data. The presentation of data on screen is accelerated by what-

ever graphics hardware is available on the machine; this has an impact on the capacity

of the system. C++ has also been useful to create multiple threads to operate plotting

and network modules semi-independently thus, ensuring non-blocking behaviour. At

this stage, with small-scale networks, the visualisation modalities provided in the tool

are successful in being able to represent the data required and, where necessary, it is

easy to extend to add further visualisations, options or transformations.

9.2.3 Interaction

Interaction with simulations is the least developed function in the visualiser. The avail-

ability of the real-time visualisation has enabled the possibility of interacting with a

running simulation, and this facility has been developed for a small number of net-

works. The majority of the interaction with simulations is provided through bespoke

additions directly within the visualiser code. This is necessary as each interaction is

simulation-specific as widely differing parameters may be in use, although some basic

standardisation has been provided for in the high-level tools. For SpiNNaker ANNs

options may be specified at a population level in the PyNN source code to enable spe-

cific ‘reporting’ to be turned on and off. An example of this is found in section 6.5.4,

where the spike trains from a population are turned on and off via a single command

sent to a specific population to ‘zoom’ in on its neurons’ activity. By shifting focus a

user then sends (implicit, by virtue of the code) instructions to turn off reporting that

is out of scope. One section which has been standardised is the ‘play, pause, stop’

controls which output a standard SpiNNaker message to the simulation, which if set

up to do so will react to the message.
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Despite the standard interaction controls, as there is bespoke implementation re-

quired for each different visualisation interaction, this feature is therefore seen as a

limited success. Future work is required in this area to develop a scalable approach to

providing interaction with all simulation types.

9.2.4 Aggregation

Local aggregation is used to solve the problem of data collection and analysis in large

platforms. In SpiNNaker each spike is represented as a 32-bit AER [LWM+93] mes-

sage. A Gb / s (without overheads) is therefore required to convey 3 million neurons

with a spike-rate of 10 Hz (before bifurcation). It is clearly infeasible to plot (or man-

ually interpret) 30 million spikes on screen / s and the real-time visualisation scheme

does not aim to offer this. Its philosophy is to aggregate the information internally,

using spare ‘utility’ cores, to a representation which is practical to present and in-

terpret on screen in real-time. In this example, the 3 million neurons may feasibly

belong to ten thousand populations of 300 neurons each. The data can be plotted as

a 100 × 100 grid, each tile representing the mean firing-rate of that particular popula-

tion, which makes it feasible to present data from 3 million neurons in real-time. The

neural mapping software is set up to add a local ‘pseudo-neuron’ to the output tree

of all the neurons in each monitored population. This aggregator receives all spikes

from a population and manipulates the information as required – in this example each

local aggregator only has to count, on average, 3,000 spikes / s. Depending on how

frequently the real-time visualisation is updated determines the rate of data sent from

each aggregation point to the visualiser. In the example, if the update rate is 5 frames /

s, there are 5× 10, 000 events / s, a feasible rate to plot and to interpret by eye (partic-

ularly if proximate population behaviour is closely aligned). This process may then be

cascaded hierarchically to aggregate information further if required, thus reducing the

quantity of information sent to the visualiser again.

This aggregated approach is feasible and was used in the section 6.5.4 experi-

ment to provide the spike-rate display which may then be adjusted by interaction and

zoomed into, spawning a new display. Aggregation also has a corollary with biological

imaging, which represents areas of activity due to the limited resolution available to it.

The full benefits of aggregation are yet to be experienced, as simulations with millions

of neurons have not yet been built, but at this stage the example cited is a successful

example of the aggregated data approach to real-time ANN visualisation.
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9.2.5 Visualiser Limitations and Future Work

Due to limitations within the OpenGL environment for user-interaction, a rewrite of

the code using Qt, wxWidgets or other such cross-platform framework which provides

better handling of the user interface would be beneficial. Using a framework may

provide a more structured approach than the current monolithic C++ implementation.

The frameworks listed also support integration with OpenGL, so the application would

not require complete redevelopment. A second possibility for the redevelopment of the

visualiser is to use Python (as this language is commonly used in the ANN modelling

community), but this would require more work than maintaining the use of C++. Some

investigation as to the feasibility of using Python for this task would be required, as

specific libraries and compilation may be required for performance purposes.

For future visualisation improvements it is envisaged to extend the real-time plat-

form to add 3D projections, as currently only 2D in the form of (x, y), or (y, time) is

supported. This should be relatively easily attainable as the OpenGL graphics engine

natively supports 3D environments, but there will be some challenges around present-

ing and controlling this data from appropriate ‘viewpoints’ as data may be obscured.

In the same vein, it is also intended to add a tomographic view to offer real-time slices

through 3D data sets. This view can be extended to large-scale cortical simulations,

such as [IE08] or the Blue Brain type activity visualisations [INC08, Con11]. Ad-

ditionally SpiNNaker is being used for non-spiking neural simulation in large-scale

multi-layer perceptrons (MLP) [JLP+10, RPWF12], therefore visualisation of weights

and trajectories will be a target of these large simulations when operating.

The system is already able to make optional recordings of its data for off-line replay

using the visualiser (and to replay at an arbitrary rate), with option to export this data

in a format that may be plotted by Neurotools [DBE+09]. As the SpiNNaker machines

scale in size it is likely that large, functional, cortical simulations will be executed

and it may be useful to export data in a data format that medical imaging tools can

parse [Gib08]. It is not the intention that the visualiser be used to save data for off-line

analysis; network jitter may impact on its temporal accuracy and the aggregation may

hide nuances in the data. Detailed analysis can, of course, be performed off-line by

retrieving data from the machine itself after simulation.

Finally, the visualiser currently requires compilation for each visualisation type

which sets up the parameters and interactions required to support that particular simu-

lation. Two potential improvements to this situation are, firstly, to have the user select

the visualisation required via a menu or the command line at start up; or secondly to
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take parameters from the network itself. Data about the network can be sourced from

the mapping database [GDR+12] directly, or the simulation could transmit a specifica-

tion to detail its visualisation and user-interaction requirements. Both these techniques

would improve on the current hard-coded situation.

9.3 SpiNNaker Management Framework

SpiNNaker presents an unconventional route to providing high-performance paral-

lel computing for neural computation by linking together large numbers of energy-

efficient processors. The main architectural compromise is that each is resource-

constrained compared with contemporary desktop or server processors. Operating in

such a large distributed computing environment presents challenges to the retrieval of

information from the machine as it operates. As there are so many components, it is

essential to understand the health of the machine – with the hardware status guiding

the placement of software elements on the system.

9.3.1 Protocol Translation

In chapter 8 the universal translator concept was introduced, which tackles the broad

range of system communications demands on SpiNNaker, taking into account the lim-

ited resources available to each node. This function ‘SpiNNmate’ provides a simple

low-overhead, but flexible and modular, approach to opening communication paths

between two otherwise incompatible systems (fig. 8.3). The demands and complexity

of external protocols are abstracted from the actual SpiNNaker nodes by SpiNNmate,

ending up as a series of primitive operations which can be performed with minimal

computational impact. Multiple SpiNNmate protocol handling modules provide sup-

port for diverse applications, with the core modules of SpiNNmate knitting together

both sides of this translated conversation. External databases or other data sources

may be introduced to aid in the effective translations between the systems.

Whilst the premise of the translation function clearly extends beyond just the hard-

ware management domain, it was tested in this area. Two diverse management appli-

cations were created that cover bulk memory operations (MemGUI) and transactional

retrieval of information (SNMP). In each of these cases the implementation was a suc-

cess, covering the requirements for hardware management platforms for SpiNNaker

using bespoke and standardised protocols.
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SpiNNaker Primitives

SpiNNaker’s memory-mapped architecture means that the majority of peripherals, reg-

isters and memories can be accessed as locations in its memory map. Those periph-

erals and parameters which cannot be retrieved directly, may be accessed using sets

of instructions executed locally on a processor, and message passing activities. The

primitive operations are: ‘GET’, ‘SET’ and ‘RUN’. The RUN command is necessarily

more specialised it comprises a command code, rather than a memory address, and

arguments which instruct the local SpiNNmate client code to perform one or a series

of primitive operations in the system. The RUN command has been augmented with

scheduler operations which enables local processing and aggregation of information

to be performed in a distributed manner on board the SpiNNaker system. This avoids

the necessity to request and send all raw data out of the system repeatedly, thus aiding

management scaling, a similar philosophy to the aggregation of visualisation data in

chapter 6. Scheduled operations may be layered from simple GET / SET instructions,

for example to retrieve a parameter periodically and perform a rolling average calcula-

tion, or to test a parameter against a threshold and trigger an alert or change in state, all

against a user defined schedule. Regardless of the external protocol translation enabled

by SpiNNmate, the unified primitive commands are consistently used to provide the

required interaction with the SpiNNaker system in real-time, and this scheme has been

a success.

MemGUI Protocol Handler

This GUI has been implemented and successfully provides bulk access to the memory

map of a SpiNNaker chip, including integration with Host file operations. This im-

plementation also successfully integrates with the database of SpiNNaker objects pro-

viding a more user-friendly method of accessing and influencing system state. While

MemGUI is currently not the tool deployed to populate and recover memory blocks

before and after simulations, it is a useful proof of concept implementation, and its

GUI is more intuitive than the current command-line alternative, therefore succeeding

in its purpose.

SNMP Protocol Handler

SNMP is typically used for active periodic polling of system state across a number

of performance variables of interest by a network management system. In chapter 8
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a number of examples were deployed and the SNMP functionality to SpiNNaker has

been proven. These examples used a number of industry standard SNMP tools and

customised polling using SNMP to demonstrate the flexibility of the SpiNNaker im-

plementation. The SNMP MIB design has been a success, distilling information on

the SpiNNaker hardware configuration into a custom database and mapping onto its

MIB tree. The querying of this database in real-time during SNMP object manipula-

tion is also an implementation success, capable of over seven hundred SNMP polling

operations / s, translating via SpiNNmate into the appropriate primitive commands.

It is only when the truly large systems begin to be deployed that the benefit of using

standardised tools for system management such as these will really show their benefits.

9.3.2 SpiNNmate Performance

The results of the functionality tests in chapter 8 have proved that the protocol transla-

tion concept is feasible; functionality is provided at low cost to the SpiNNaker system

itself regardless of the external protocol complexity. The performance results achieved

in the system are, unfortunately, limited due to the underlying SDP protocol whose

overheads and performance are detailed in section 8.3.3. This ceiling in performance,

together with the current restriction that the SpiNNmate responder cannot be incorpo-

rated into the Monitor Processor software (so must handle communications indirectly

via message passing on a separate ‘utility’ core), results in performances in hundreds

of kB / s, rather than in MB / s. Whilst creating the SpiNNmate primitive code, as

well as testing the communication overheads (which are clearly the limiting factor on

overall performance), the memory performance too has been assessed. This has been

tested to ensure that the primitives use the most efficient method of accessing memory

thus maximising the attainable memory bandwidth within the SpiNNaker chip itself.

This optimisation work has led to new recommended defaults for memory transfer pa-

rameters; it has been applied to the SpiNNaker application framework and not just to

SpiNNmate itself. These optimisations approximately triple the best performance pre-

viously possible in large block transfers; this is a success for SpiNNmate and also for

understanding the SpiNNaker chip capabilities.

The poorest possible performance is encountered when variables are polled one

memory location at a time and unfortunately this is how SNMP tends to issue its trans-

actions. In the worst case an SNMP request for a single status bit may result in 128

bytes of network traffic in both the request and the reply. Clearly, performance can be

improved by requesting blocks of data rather than individual items and by reducing the
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frequency of polling; this is where the scheduled aggregation and transformation func-

tions offered by RUN assist in reducing the burden. One other technique which was

added to reduce overheads is that SpiNNmate primitives may be packed into a single

packet. Here SpiNNmate may collate multiple requests and issue them simultaneously

to the system to attain better efficiency of transmission. Ultimately performance is

(and always will be) limited by network overheads, and this is discussed in section 9.4.

9.3.3 Future Work

The SpiNNmate system is currently used on small scale systems with a handful of

chips and processors. As SpiNNaker systems are planned to increase in size tenfold

with each deployment iteration, work is required to ensure monitoring via SpiNNmate

does not become a bottleneck across its many components.

Scaling for Future Requirements

A good estimate of the total system management traffic required can be obtained by

looking at a single node and extrapolating. Monitoring all 16 diagnostic counters, 8

DMA counters, processor utilisation, and the three temperature sensors of each chip

would total 28 data items (words). Packing these into 4 primitives (same category

counters are contiguous) requires 1 SDP packet with around 176 payload bytes. Mon-

itoring these values every second, per node, can comfortably be accommodated by

SpiNNmate’s current performance and the current 1:4 ratio of Ethernets to SpiNNaker

chips. Larger systems will have lower ratios of Ethernet:chip provision (potentially

as low as 1:48), therefore, care is required in issuing management requests to limit

the pace of resulting data. For management traffic, Ethernet-attached chips form the

root (and potential hot-spot) of a management distribution tree. It remains an essential

requirement that, during simulation, management traffic does not disrupt application

traffic and, as all traffic is best effort with no service differentiation, this must be self-

regulatory. A full 65,536 chip SpiNNaker configuration with the suggested monitoring

requires ∼10 MB / s. This requirement rises considerably during block memory op-

erations (as the traffic is not throttled), therefore, in the future, it may be prudent to

deploy multiple SpiNNmate instances per target system. Each SpiNNmate would use

distributed Ethernets in the system to smooth demand and load on the SpiNNmate

server itself.
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Improving SpiNNmate Performance

One simple way which may potentially improve the immediate performance of SpiNN-

mate is to permit more than 1 primitive packet to be in-flight at any one time. Currently,

only a single request may be active until its acknowledgement is received (or it times

out), so the network round-trip-time forms a restriction on the rate at which requests

may be issued. This is currently being developed and tested, and should, in particular,

improve the performance of wide-area transactions (where the latency is higher).

The network is currently the limiting factor on the performance of SpiNNmate,

mainly due to the handling and transport of SDP packets, and their dissemination to

the target SpiNNaker chip. One method to improve this is to interface directly with the

SpiNNaker network itself and the opportunity to do this (using the board interconnec-

tion mechanisms of larger machines) is detailed in section 9.4 below.

Placement of the Translator

SpiNNaker is its own massively-parallel computing resource. There is a potential av-

enue to explore on subsuming the SpiNNmate protocol translation functions within

SpiNNaker itself; this is similar to the way the aggregation techniques of chapter 6

are performed internally. Rather than using external Host devices, Ethernet-attached

SpiNNaker nodes not performing simulation work (utility chips), could be tasked with

spreading the translation burden throughout the system. By using chips, rather than

cores, the full 128 MB of SDRAM becomes available for SpiNNmate to work with;

this is capacious enough to hold any data structures required (and has a further 16 or

so cores to perform computational manipulations). These ‘utility’ chips would be re-

sponsible for sending out responses to target applications which are using their native

protocol, and in this case the protocol translator would not require separate hardware.

Extending the Scope

In this first implementation of SpiNNmate, the scope has been limited to the hardware

function of the SpiNNaker machine; the intention, however, is to use this same mech-

anism to provide access to software structures internally in the system. SpiNNmate

has been created with this link in mind, and other databases may be attached via the

database layer (fig. 8.3). The link to software is facilitated by the database created

when mapping neural networks to the target system architecture with PACMAN (sec-

tion 3.5). By linking into this database, SpiNNaker primitives may be used to access
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software structures stored in local and system memories. Access via SNMP will be ac-

commodated by generating SNMP MIBs systematically from the structures described

in this database, enabling the same set of tools to support the management of both

SpiNNaker hardware and its neural network software simulations.

Finally, there may be the potential to extend this low-overhead modular design to

other target platforms by interchanging the SpiNNaker System Hardware layer within

SpiNNmate (fig. 8.3). As outlined in section 1.1.1 the race is on, not just for the

fastest computer, but for the most energy efficient high-performance computer, and

these machines require management facilities too.

9.4 General SpiNNaker Observations

SpiNNaker chips have been available since May 2011 and have been used extensively

since then for simulation and testing work. Simulations of a fraction of the full mil-

lion+ processor system are currently being undertaken on small scale demonstrator

boards which provide 72 processors over 4 chips (fig. 4.13). The size of SpiNNaker

systems has risen substantially with the June 2012 delivery of modular 48-chip (864

processor) boards, and in the latter half of 2012 these boards will be interconnected to

produce a ∼10,000 processor machine. The full-size million+ processor machines are

targeted for construction and operation in 2013 and beyond.

Although the SpiNNaker chips appear fully functional, with no major faults, there

are a couple of snags. Firstly the inter-chip links run at approximately one quarter

of their intended rate, although the bandwidth they do provide remains well within

the tolerances for simulating biologically realistic spiking neural networks [PGP+12].

Additionally, in power efficiency when a processor is asleep (low-power mode) its

peripherals remain clocked, a design oversight, meaning the granularity of significant

power saving is at a clocking domain level (9 processors), rather than individually.

Perhaps the biggest disappointment from a SpiNNaker management point of view

arises from the software communications aspect of the machine. The SDP layer, which

was developed to overlay the heterogeneous networks in the machine, is successfully

in use to distribute code and data in the small SpiNNaker systems today; however its

performance is constrained by the hardware processing it, and compounded by the low

effective payload:header ratio for data transmission. For larger systems it appears these

problems can be largely overcome...
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9.4.1 Interconnecting Larger Machines

As has been identified, in transactional traffic, the network overhead created by SDP

and Ethernet encapsulations is disproportionate and limits the total throughput of the

system. In future large systems, modular 48-chip SpiNNaker circuit boards will be

interconnected using fast serial connections, enabled by FPGAs, to multiplex inter-

chip asynchronous links. This interposing of FPGA chips into the mesh will facilitate

the direct low-latency insertion of packets into the system via the FPGA input / output

channels. These paths may be taken directly to a Host device running SpiNNmate and

thus instantly remove the overheads and requirements of the Ethernet path; potentially

the FPGAs can offer larger bandwidth Gigabit Ethernet connections too for wide-area

connections. This direct attachment to the mesh also offers a secondary benefit in that

the onerous fragmentation and reassembly of SDP when bridging between external

and internal SpiNNaker networks will no longer be required, or form a bottleneck, for

communications. These future developments will clearly provide greater throughput

for SpiNNmate primitives, and better overall SpiNNmate performance freed from the

majority of the network limiting constraints.

9.4.2 Improving Load and Save Times – FR Packets for SDP

Within the data load and data save management stages (fig. 9.1) SDP is currently used

as the transmission mechanism. Data is loaded sequentially to each chip in the sys-

tem and similarly recovered at the end of the simulation if required. As seen in sec-

tion 8.3.3, due to the small payload of each SpiNNaker packet and the SDP overheads,

the internal efficiency of these transfers cannot exceed 31%. Once the bottleneck of

the Ethernet connection is removed this internal transmission rate will then be the new

limiting factor. It is therefore proposed that the fixed route (FR) packet type is brought

into use for SDP and a dynamically created FR path defined across the network be-

tween ingress point and the target SpiNNaker chip. The route for the FR packets is

implicit, therefore all traffic would flow down this path and have the full 64-bits of

each packet available to it. Some headers would be required, but this method could

more than double the transmission rate in the system for what is its most intensive data

transmission period. Once the transmissions for that node have completed the FR path

is simply reconfigured dynamically to point at the next target.
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9.4.3 Further Works in Software

The most significant current obstacle to large-scale ANN modelling on SpiNNaker is

the distribution of neural data in large networks. Placing-and-routing on a Host and

subsequently downloading the data is adequate for small networks but, as the network

grows, this leads to unacceptable Host compute and data transmission times, even

with the potential improvements listed above. It is therefore essential to distribute this

load into the SpiNNaker machine itself and take advantage of its massively-parallel

processing to ease the place-and-route and data distribution burden.

The scalable SpiNNaker architecture is also garnering interest for use in appli-

cations beyond the purely spiking neural space. In addition to Izhikevich [JGP+10]

and LIF [RGJF10] spiking models, Multi-Layer Perceptron (MLP) networks [JLP+10,

RPWF12] have been built. Partner institutions are already taking advantage of SpiN-

Naker machines to run distributed ray-tracing applications, finite element simulations,

and other applications where its efficient massive-parallelism is beneficial.

9.5 Summary

The SpiNNaker system management time-line has run its course... for this document

at least. Its three major components have delivered:

Firstly, a functional ROM. Node-Boot software held here is able to detect hardware

faults and keep them logged so that a management system can use this information to

route application load around issues in the system. Node-Boot can gracefully manage

faults which cause a watchdog reset and it provides a reliable mechanism for efficient

receipt of flood-filled software and data throughout a SpiNNaker system.

Secondly, Visualisation software. This permits the flood-filled software to be mon-

itored in real-time, across a variety of modes and at any level of neural dynamics. The

visualiser handles on-board aggregation and transformation of data so that it does not

swamp the network and gives the user the option to interact with the simulation to

influence its behaviour and zoom in on the interesting details.

Finally, a low-cost, modular management framework. This translates protocols

into low-overhead operations for SpiNNaker, facilitates easy loading and saving of

data, and allows bespoke and standard SNMP tools to manage the target SpiNNaker

system (with the potential to extend to the monitoring of SpiNNaker’s software).

Implementation of the time-line has delivered an analysis and management frame-

work for the real-time massively-parallel SpiNNaker neural architecture.
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Expansion of Abbreviations

Abbreviation Expansion

ACK Acknowledgement

ACM Association for Computing Machinery

AER Address Event Representation

AFNI Analysis of Functional NeuroImages

AMBA Advanced Microcontroller Bus Architecture

AMD Advanced Micro Devices

ANN Artificial Neural Network

API Application Programming Interface

APT Advanced Processor Technologies

ARP Address Resolution Protocol

ASIC Application Specific Integrated Circuit

BC Broadcast

BCI Brain Computer Interfacing

BIMPA Biologically Inspired Massively Parallel Architectures

BIOS Basic Input Output System

BMC Baseboard Management Controller

BOLD Blood Oxygen Level Dependent

BrainScaleS Brain-inspired multiScale computation in neuromorphic hybrid Systems

CAT Computed Axial Tomography

CCIE Cisco Certified Internetworking Engineer

CIM Common Information Model

CLI Command Line Interface

cm centimetre

CMIP Common Management Information Protocol

CMP Chip MultiProcessor

CPU Central Processing Unit

CRC Cyclic Redundancy Check
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CT Computed Tomography

CVS Concurrent Versions System

DB DataBase

DHCP Dynamic Host Control Protocol

DICOM Digital Imaging and COmmunications in Medicine

DMA Direct Memory Access

DNS Domain Name System

DTCM Data Tightly-Coupled Memory

DTI Diffusion Tensor Imaging

ECoG ElectroCorticoGraphy

EEG ElectroEncephaloGraphy

EM Electro-Magnetic

ER Emergency Routing

FACETS Fast Analog Computing with Emergent Transient States

FCAPS Fault, Configuration, Accounting, Performance and Security

fMRI functional Magnetic Resonance Imaging

FPAA Field-Programmable Analogue Array

FPGA Field-Programmable Gate Array

FPNA Field-Programmable Neural Array

fps frames per second

FR Fixed Route

FSL Functional magnetic resonance imaging of the brain Software Library

GALS Globally Asynchronous, Locally Synchronous

GB GigaByte

Gb Gigabit

GHz GigaHertz

GENESIS GEneral NEural SImulation System

GLUT OpenGL Utility Toolkit

GNU GNU’s Not Unix!

GPGPU General-Purpose computing on Graphics Processing Unit

GPIO General-Purpose Input / Output

GPU Graphics Processing Unit

GUI Graphical User Interface

HICANN High Input Count Analog Neural Network

HP Hewlett-Packard company

HPC High-Performance Computer / Computing

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

Hz Hertz

I / O Input / Output

IAB Internet Activities Board

IBM International Business Machines corporation

ICMP Internet Control Message Protocol

ICONIP International Conference on Neural Information Processing
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ID IDentification

iDRAC Integrated Dell Remote Access Controller

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IET Institution of Engineering and Technology

IETF Internet Engineering Task Force

IJCNN International Joint Conference on Neural Networks

ILM Intermediate Level Manager

INIT INITialising

IP Internet Protocol

IPMI Intelligent Platform Management Interface

IRQ Interrupt ReQuest

ISO International Organization for Standardization

ITCM Instruction Tightly-Coupled Memory

IVB ITCM Validation Block

JMX Java Management eXtensions

JPSTH Joint Post Stimulus Time Histogram

JVM Java Virtual Machine

kB kiloByte

kb kilobit

KVM Keyboard, Video, Mouse

kW kiloWatt

LAN Local Area Network

LIF Leaky Integrate and Fire

LTD Long Term Depression

LTP Long Term Potentiation

MAC Media Access Control

MATLAB MATrix LABoratory

m metre

MB MegaByte

Mb Megabit

MC MultiCast

MEG MagnetoEncephaloGraphy

MFLOPS Mega FLoating-point Operations Per Second

MHz MegaHertz

MIB Management Information Base

MIPS Millions of Instructions Per Second

MLP Multi-Layer Perceptron

mm millimetre

MoNETA Modular Neural Exploring Traveling Agent

MP Monitor Processor

MPI Message Passing Interface

MPSoC Multi-Processor System on Chip

MRI Magnetic Resonance Imaging
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MRTG Multi Router Traffic Grapher

ms millisecond

MW MegaWatt

MWh MegaWatt hour

NCS NeoCortical Simulator

NEF Neural Engineering Framework

NEST NEural Simulation Tool

NIRS Near Infra-Red Spectroscopy

NMS Network Management System

NN Nearest Neighbour

NoC Network on Chip

NRZ Non-Return-to-Zero

NRZI Non-Return-to-Zero Inverted

OID Object IDentifier

OOB Out-Of-Band

OpenCL Open Computing Language

OpenGL Open Graphics Library

OSI Open Systems Interconnection

OT Optical Tomography

PACMAN Partitioning And Configuration MANager

PC Personal Computer

PCA Principal Component Analysis

PCSIM Parallel neural Circuit SIMulator

PDU Protocol Data Unit

PEG PneumoEncephaloGraphy

PET Positron Emission Tomography

PHY PHYsical layer

PLL Phase-Locked Loop

POST Power-On Self-Test

PowerPC Performance Optimization With Enhanced RISC - Performance Computing

PRTG Paessler Router Traffic Grapher

PSTH Post Stimulus Time Histogram

PyNN Python Neural Networks

RAM Random Access Memory

RF Radio Frequency

RFC Request For Comments

RISC Reduced Instruction Set Computing

RMON Remote MONitoring

RMS Resource Management System

ROM Read-Only Memory

RRD Round-Robin Database

RSA Remote Supervisor Adapter

RTS Real-Time System

RTZ Return-To-Zero
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RX Receive

s seconds

SATA Serial AT Attachment

SC System Controller

SDP SpiNNaker Datagram Protocol

SDRAM Synchronous Dynamic Random Access Memory

SLA Service Level Agreement

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SNN Spiking Neural Network

SPECT Single Photon Emission Computer Tomography

SPM Statistical Parametric Mapping

SQL Structured Query Language

SQUID Superconducting QUantum Interference Device

SRAM Static Random Access Memory

SSH Secure SHell

STDP Spike Timing Dependent Plasticity

SVN SubVersioN

SyNAPSE Systems of Neuromorphic Adaptive Plastic Scalable Electronics

TB TeraByte

Tb Terabit

TCM Tightly-Coupled Memory

TFLOPS Tera FLoating-point Operations Per Second

TIPS Tera Instructions Per Second

TLU Threshold Logic Unit

TX Transmit

UC UniCast

UDP User Datagram Protocol

USB Universal Serial Bus

VIC Vector Interrupt Controller

VLAN Virtual Local Area Network

VLSI Very Large Scale Integration

VPN Virtual Private Network

W Watts

WBEM Web-Based Enterprise Management

WCCI World Congress on Computational Intelligence

WMI Windows Management Instrumentation

XML eXtensible Markup Language

XOR eXclusive OR
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