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Abstract 
 

Multi-threading is one of the most important features of modern programming languages: 

running the multiple threads at a time on Symmetric Multiprocessing (SMP) environment 

gives the high performance in terms of execution speed and parallelism. In addition, 

multithreaded programs can improve the throughput on SMP environment by utilizing 

the available processors more effectively. This dissertation presents a means of 

implementing Java threads using underlying native mechanism. 

  

This dissertation first presents the key details of JikesRVM. Then, it describes the 

existing multi-threaded green model in JikesRVM followed by a number of issues in this 

threading system. This dissertation explains how we can exploit the multi-processor 

environment by direct binding of Java threads to operating system�s threads. 

 

This dissertation illustrates the clean refactorization of existing thread model into two 

separate thread models. With this refactorization, users can choose the more appropriate 

threading models according to the nature of their applications. This dissertation concludes 

by explaining design and implementation of major components of native thread model in 

JikesRVM using POSIX pthread library. 
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CHAPTER 1 

 

Introduction 
 

In this thesis, we present the existing green threading m:n model of the JikesRVM, 

implementation of a clean refactorization of existing thread model into green thread and 

native thread models, an attempt to give direction for native thread model using POSIX 

thread library. We used the last version of JikesRVM (JikesRVM 2.9.0) in order to do our 

research and development in threading model. This work was carried out in the Advanced 

Processor Technology (APT) group, Computer Science Department at the University of 

Manchester. 

 

1.1 Motivation and Objective 
 

The main aim to design native threading model in Jikes Research Virtual Machine is to 

provide true concurrency and parallelism in multiprocessor environment and is to gain 

performance from multiprocessing hardware (parallelism). A further motive is to give 

threading control to operating system and to improve the modularity. 

 

Currently, JikesRVM supports an m:n green thread model where scheduling is done in 

user space; m Java threads map on to n virtual processors (which are further mapped on 

operating system�s threads). We experienced a number of performance issues in the 

existing model. For instance, the current model is using a �jacket� routine around 

input/output blocking operations; this jacket routine intercepts the blocking I/O 

operations and replaces with non-blocking (asynchronous I/O) operations. However, 

JikesRVM is not always able to intercept blocking I/O operations in native code and 

cannot set �yield points�* in the native code. This could be the cause of deadlock of  

 
 

*yield point is described in section 3.1, 3.3.3 and 3.6. 
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VM_Processor and they would not be able to schedule the other threads. Direct mapping 

of Java threads to operating system threads (pthreads) and giving control to operating 

system to schedule the threads by using a regular native model can overcome such issues. 

Building on the operating system�s native pre-emptive scheduling provides the tight 

coupling with kernel so that applications can use the system resources efficiently and 

optimally which would increase application throughput and responsiveness. Furthermore, 

a number of empirical studies indicate that pthread ends up becoming faster [1]. 

 

We also aim to provide the choice of both green thread and native thread to the users so 

that they can exploit the flexible threading system of JikesRVM by having this choice 

according to nature of their application. 
 

For example, they can use native  model for normal cases where intensive computation is 

required and can use m:n green thread model (existing JikesRVM threading model) when 

they are going to have very large number of threads such as for server applications where 

numerous client requests need to be processed. 

 

The objectives of this work are to examine the behaviour of the existing threading model 

and to enhance its capabilities by a clean refactorization and introducing a new native 

thread model. 
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Organization of Thesis 
 

This thesis is organized into six chapters. In each chapter some specific details of the 

JikesRVM, m:n threading model and native model have been discussed. It will also 

describe our analysis for future pthread model by native support. Following is a succinct 

description of each chapter: 

 

Chapter 2 discusses the key details of the JikesRVM, its architecture, bootstrapping 

mechanism and major subsystems such as runtime service, memory management, object 

model, compiler. 

 

Chapter 3 discusses the current threading model, thread queues, synchronization, 

locking/unlocking, thread cooperation, thread states in JikesRVM, load balancing, 

garbage collection and issues in existing threading model. 

 

Chapter 4 discusses the factory design pattern, refactorization of existing threading 

model, clean approach for keeping both models and separate command line arguments.   

 

Chapter 5 discusses an implementation of native threads using the POSIX thread library 

and its benefits over the m:n, some major components of pthread such as mutex, 

conditional variables and cancellation point and indicates how the native model will look 

like in the real system 

  

Chapter 6 Conclusions and future work 
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CHAPTER 2 

 

Infrastructure 
 

This dissertation is based on the threading model of JikesRVM and describes the current 

threading model (m:n green thread model) and future one-to-one native model using 

Linux POSIX library. This chapter explains the fundamentals of JikesRVM and its main 

subsystems briefly.  

 

2.1 JikesRVM 
 

JikesRVM is a Research Virtual Machine initially developed by IBM. It is now an open-

source project. The salient features of JikesRVM are that it is implemented in the Java 

programming language and is self-hosted, which means that its Java code runs on itself 

without requiring another virtual machine.  

 

Fundamentally, JikesRVM comprises two bytecode-to-native compilers: baseline and 

optimizing; both having their own advantages. It also implements modern garbage 

collectors and includes an adaptive compilation infrastructure. JikesRVM does not use 

interpreter, in other words JikesRVM is completely based on the Just-In-Time 

compilation with the choice between two different compilers. This section describes 

important details of Jikesrvm that are useful to understand this dissertation and 

JikesRVM. 

 

2.1 JikesRVM in Java 
 

Almost all of the components of JikesRVM are written in Java, this means that the 

different components of JikesRVM have tight coupling and that these components 

support each other more strongly as compared to other available virtual machines: for 
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example, the compilers compile the code of the garbage collectors and the garbage 

collectors reclaim memory of unused objects allocated by the compilers. However, not all 

the components of Jikes RVM are written in Java, some of these are written in the C 

programming language. The Boot Image Runner, a tiny C program is responsible for 

starting Jikes RVM. Magic mechanism provides low-levels system code that is necessary 

to implement Jikes virtual machine. We will adhere with this and will explain briefly in 

the next section.  

 

Another interesting aspect of JikesRVM is its self-hosting which has both, the upside and 

downside. One of the benefits is that all of the components of virtual machine get 

advantages from each other�s improvements; for instance, the performance of the 

allocation sequence of the garbage collector benefits from the compiler�s ability to inline 

and optimize it. On the other hand, the major challenge is that different components of 

JikesRVM are under more stress because they have to service not only the application but 

also the virtual machine itself. 

 

 

2.2 How Jikes RVM Starts 

2.2.1 Bootstrapping � Boot image Creation and loading 
 

JikesRVM starts from the boot image, a set of files containing the compiled code and 

Java objects that are needed to start execution of JikesRVM. Before the JikesRVM loads 

into memory, a set of essential core services - a class loader, a JIT compiler, garbage 

collector and an object allocator - are required for operation. Generally, these initial core 

services for a JVM are written in native code, but JikesRVM is written in Java and it has 

no underlying run-time routines. Thus all the essential core services are assembled into an 

executable boot image. This boot image, also called a snapshot of JikesRVM [2], is 

written into a file and this file must be loaded into memory and then executed to run the 

JikesRVM. For creating the Boot Image, the host JVM would need to execute a Java 

program, called the boot image writer. 
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The boot image writer executes the initialization code for various Jikes RVM classes; 

also known as primordial classes, to pre-allocate Java objects. The boot-image writer 

constructs a mock-up of running JikesRVM and then put into a boot image. This builds a 

boot image for the execution of JikesRVM.  The JVM, which runs the boot-image writer 

program, is called the bootstrap JVM. 

 

When the source JVM (e.g. Sun Hotspot) runs the boot-image writer program, it 

instantiates the Java objects of the Jikes virtual machine in objects of source JVM. Then 

it uses Java�s built-in reflection facility to translate these mock-up objects from the object 

model of bootstrap JVM to JikesVM�s object model and storing them in a boot-image 

array. This is the transformation process of creating the boot-image. 

 

A short C program called the boot-image runner starts JikesRVM. The Boot-runner loads 

the boot image into memory and jumps to the address of the instructions responsible for 

starting the JVM, which were compiled from Java at build time and then branches to 

boot() method. The VM.boot method is the first Java method executed in the boot image. 

Once JikesRVM started running then it would not need the bootstrap JVM anymore. The 

whole process of boot image creation and loading is indicated in the figure 2.1. 
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Figure 2.1 Boot Image Creation and Loading [3] 
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2.3 Magic Classes 
 

As JikesRVM is written in Java, low level functionality, which is not possible to write in 

pure Java, is implemented through the special MAGIC mechanism. Magic mechanism 

allows JikesRVM to implement certain functionalities such as invoking underlying 

operating system�s (OS) services, accessing machine registers, read/write value from/to 

memory, make system calls etc. In addition, input/output requires access to OS services 

and pointer manipulation that are unknown to Java. Thus magic helps in achieving these 

low-level services.  

Magic mechanism looks like normal Java object with methods. They are identified by the 

compiler and translated into low-level operations. Magic class contains empty methods. 

When the compiler identifies these methods; it inserts the corresponding machine code in 

line.  

 

2.4 JikesRVM�s Major Sub-systems 
 

Figure 2.2 indicates the main sub-systems and the core services of the JikesRVM and 

also the process through which they communicate with the underlying operating system. 
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Figure 2.2 JikesRVM � Subsystems and Core Services 

 

 

JikesRVM can be divided into three major components: core runtime services, compilers 

and memory managers/garbage collection. Succinct details about each component and 

their functions have been provided in the following sections followed by the Object 

Model as it underlies the other systems. 

 

2.4.1 Object Model 

 

JikesRVM�s object model specifies how to represent objects in memory. The 

VM_ObjectModel class defines JikesRVM�s object in source code. Generally, Java 

virtual machines perform operations on certain types of data and these data types are 

defined by the Java library. In the Java programming language, a data type can be divided 
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into two categories: primitive and reference data types. Primitive type variables and 

reference type variables hold primitive values (int, double, etc.) and reference values 

respectively. Reference values refer to objects but they are not objects themselves. 

Objects are either arrays having elements or scalars (class instance) having fields. In 

addition, one other reference value is the null value, which specifies that the reference 

variable does not refer to any object.  

 

JikesRVM�s object model is based and developed on the following requirements: 

 

1. Allowing fast access to instance field and array elements  

2. Virtual dispatch method should be fast  

3. Performing Null pointer checks by the hardware 

4. Less frequent operations should not be slow  

5. Supporting fast access to static objects and  methods 

6. Reducing overhead related to object storage (e.g. object header size) in order to 

minimize heap space overhead [2]. 

 

If the reference to an object is stored in a register then the fields of the object can be 

accessed at a fixed displacement in a single RISC instruction. In contrast, for the array 

access, the reference points to the first element of the array and the remaining elements 

are positioned in the ascending order. The number of elements is kept before its first 

element as indicated in the figure 2.3. Thus the array elements can be accessed through 

base and scaled index addressing. In JikesRVM, arrays grow up from the object 

reference; while scalar objects grow down from the object reference (see Figure 2.3). 
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Figure 2.3 Layout of an array object and a scalar object in JikesRVM [2] 

 

2.4.1.1 Object Header 
 

In standard configurations, the JikesRVM has a two-word object header attached with 

each object, which supports virtual method dispatch, dynamic type checking, memory 

management, synchronization, and hashing. It is positioned twelve bytes (3-word) below 

the value of a reference to the object because this leaves space for the length field, if 

object is an array. 

 

One word of the object header is status and the other is the TIB. The status word is 

further divided into three bit fields. The first bit field is used for locking (for associating a 

lock state); it contains a pointer to a lock object or direct presentation of the lock, we will 

see this in further chapters. The second bit field holds the default identity hash value of 

objects. The third bit field is used by the memory management system for associating 

garbage collection information. This can include a combination of reference count, 

forwarding pointer, and other GC information. 
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The other word of an object header is a reference to the Type Information Block (TIB) for 

the object's class. A TIB is an array of Java object references and serves as Jikes's virtual 

method table. Its first element specifies the object's class. The remaining components are 

compiled method bodies (executable code) for the virtual methods of the class [2]. 

The object header implementation is defined by three Java classes in the JikesRVM: 

VM_JavaHeader, which supports locking, TIB access, and hash code; garbage collection 

information is supported by VM_AllocatorHeader; and there is one more Java program 

that is called VM_MiscHeader, which supports adding additional fields to all objects. 

 

2.4.1.2 JTOC � methods and fields 

 

JikesRVM Table of Contents (JTOC) is declared as an array of ints in JikesRVM but 

contains values of all types because JikesRVM uses a descriptor array (co-indexed with 

the JTOC) to identify the type of each entry. The reference to this array (JTOC array) is 

maintained in a machine register is called JTOC register. JTOC stores all the static fields 

and the references to all the static method bodies. All the JikesRVM�s global data 

structures are also accessible through pointers hold in JTOC. Moreover, numeric 

constants and literals also reside in JTOC. The JTOC also contains pointers to TIBs in 

order to enable fast-dynamic type checking. In the JTOC, reference and non-reference 

values are indexed positively and negatively respectively with respect to the middle of 

the table so that garbage collector can differentiate them. In addition, the JTOC register 

always points to the middle element. Figure 2.4 illustrates the JTOC in memory. 



CHAPTER 2. INFRASTRUCTURE   

 22 

 
Figure 2.4 JikesRVM Table of Contents (JTOC) [4] 

 

2.4.2 JikesRVM�s Core Runtime Subsystems 
 

One of the unique components of the JikesRVM is its runtime service; it includes 

exception handling, thread scheduling, dynamic class loading, dynamic type checking, 

reflection, Input/Output, interface invocation etc. These all are implemented in Java with 

the use of MAGIC classes. However, these are conventionally implemented using native 

code (typically in C/C++, assembler code) in other JVMs. These are explained briefly in 

the section below: 

 

2.4.2.1 Exception Management 

 

In JikesRVM, exceptions can be explicitly generated either by software (example athrow) 

or by hardware (both synchronous and asynchronous exceptions). The cause of hardware 

exception could be if a null-pointer is dereferenced, number divided by zero, and stack-

overflow. JikesRVM handles the software exceptions internally and the hardware 
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exceptions are handled through the native support. A small C interrupt handler catches 

hardware exceptions particularly. This interrupt handler calls a Java method and this 

method builds the appropriate exception and passes it to the delieverException method. 

Then VM_Runtime.delieverException has to perform two tasks; first, it must save in the 

exception object information that would allow a stack trace to be printed, if needed. It 

does this by the walking up the stack and recording the compiled method identifiers and 

next instructor pointer for each stack frame. The second task involves, transferring 

control to appropriate catch block. This also involves walking the stack [5]. When a catch 

block is found, update in VM_Register is made so catch block can find compiler-specific 

exception object and then modify the VM_Register to resume execution at first 

instruction in catch block. If no catch block is encountered, JikesRVM kills the thread. 

In order to walk the thread stack, the exception handler uses the memory access facilities. 

It also exploits magic services for restoring the register state and transferring control 

whenever an appropriate catch block is found. 

 

2.4.2.2 Thread Management 

 

Currently, JikesRVM is using m:n green threading model, which means that all threads 

are scheduled by the virtual-machine itself in the user space. JikesRVM multiplexes m 

Java threads to the n operating system threads which ensure that virtual machine is 

running at least n threads simultaneously. JikesRVM does not map Java threads to 

operating system threads directly; it multiplexes Java threads on virtual processors that 

further implemented as OS threads. This model is also called user-level model, because 

threads are scheduled in user-space; no calls into operating system are required to handle 

any of the thread detail. 

 

The fundamental goals of mapping threads on virtual processor are to support rapid 

thread switching and fast transition between Java threads (mutators) and garbage 

collection threads. In this model, underlying operating system does not know about the 

threads scheduling at all; it is up to the JikesRVM to handle this. We will explain about 
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the current m:n green threading model and will discuss the future native thread model in 

next chapters.    

 

2.4.2.3 I/O Management and Reflection 

 

I/O: The input/output operations need operating system's support. JikesRVM uses system 

calls mechanism to communicate with the underlying operating system.  In order to read 

a block from a file or write something in it, an operating system routine is called with a 

Java array for copying its result. 

Reflection: With the use of reflection mechanism JikesRVM allows run-time access to 

fields and invocation of methods. For passing the parameters to and from the caller, 

JikesRVM creates additional artificial frames on thread stack. When the method returns, 

the stack frame disposed of and the result returns to the reflective call.  

 

2.4.3 Memory Management 

 

Memory management is itself a huge topic but we will describe an overview of it along 

with how garbage collector (GC) works in JikesRVM. JikesRVM supports four major 

types of manager systems, these are copying, noncopying, generational copying and 

generational noncopying.  Each memory manager consists of a concurrent object 

allocator and a stop-the-world, parallel, type accurate garbage collector. In addition, 

JikesRVM can be configured to use different allocation managers provided by the 

MMTk. These allocation managers automatically divide the available memory as they see 

fit.  

More specifically, in MMTk, there is a main class that is called Plan, which is used to 

interface to memory manager and contains different implementation for each type of 

memory manager. Most of the plans are inherited from class StopTheWorldGC [6] that 

ensures that all the active Java threads are suspended before reclamation is started, in the 

next section we will see how it happens in JikesRVM. 
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2.4.3.1 How GC works in JikesRVM 

 

A collector thread is associated with each virtual processor in JikesRVM. JikesRVM 

operates in one of two modes either normal Java threads are running, and the GC threads 

are idle or GC threads are running and the Java threads are idle. In JikesRVM, mutator 

threads request for the collection thread when the allocator cannot satisfy the space 

request by them. 

  

When the mutator threads run, collector threads wait in the waiting queue. Once the 

mutators trigger the collector threads, they start reclaiming memory on their virtual 

processors. Furthermore, GC begins when the executing thread on each processor reaches 

the safe point. In the next chapter, we will describe how mutator and collector threads 

schedule on virtual processors interchangeably and about the parallel GC and its phases.  

 

2.4.4 Compiler Subsystem 
 
The core function of JikesRVM compiler subsystem is to generate the machine code from 

the Java bytecode. The compiler subsystem comprises two types of compilers: the 

baseline compiler and the optimising compiler. They can be differentiated from each 

other in terms of compilation time and the quality of code that they generate.  

 

The mechanism employed by the baseline compiler is very simple and straightforward 

and it does the byte-by-byte translation of Java byte codes  into machine code. It directly 

translates bytecode into machine code, thus the baseline compiler generates machine code 

very quickly. However the downside of base compiler is the poor performance of the 

machine code generated by it, because the base compiler does not implement any 

optimisation. The other compiler is the optimizing compiler and it produces high 

performance machine code because of its complex optimization. However, optimising 

compiler takes longer compiling time than the baseline compiler, which is a cause of 

higher cost compilation. 
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Another important task of the JikesRVM�s compilers is to maintain tables that support 

both exception handling and that allow memory managers to find out the object 

references on the thread stack. Reference maps help in locating the object reference for 

each safe point in the method body. When a call to garbage collection is made, each of 

the methods represented on the thread stack will be at garbage collection safe point. Thus 

for any given safe point within the method body [2], the compiler that created the method 

body must be able to illustrate where the live references exist.  

 

2.5 Summary 

 
In summary, we have discussed the JikesRVM and it main subsystems and the core 

services briefly, which are important to understand the JikesRVM. Now in next few 

chapters, we will discuss the current threading model and performance issues in it and 

how we can resolve them by introducing the native thread model. 
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CHAPTER 3 

 
Current Thread Model 
 
3.1 Overview of Current M:N Green Threading Model 
 

As in the preamble of JikesRVM in the previous chapter, we discussed about the current 

thread implementation of JikesRVM in brief, which is m:n green thread model. We call 

m:n model because several Java threads (M) schedule and implement on limited 

underlying operating system�s thread (N). Thus it ensures that JikesRVM is running an 

utmost of n threads simultaneously. We also call it a green model because the thread 

scheduling in JikesRVM is done in the user-space. Therefore the responsibility of thread 

scheduling is on the virtual machine.  

 

JikesRVM introduced the concept of a virtual processor in order to achieve quicker 

thread switching among the threads and fast transition between mutators and the collector 

threads. The Virtual processors (VM_Processor.java) are the Java objects implemented as 

operating system�s pthread. As we mentioned previously, all Java threads running on the 

top of JikesRVM map to the virtual processors, which are further, multiplexed on the 

underlying OS threads.  

   

In the current model, the underlying operating system does not know anything about the 

threads scheduling at all; it is up to the JikesVM to manage them; JikesVM holds all the 

details of the threading API in scheduler package. The benefit of the current model is that 

it is portable because this model does not depend on the specific operating system to 

provide any thread specific details. 

 

JikesRVM thread scheduling is based on quasi-preemptive which means neither fully 

preemptive nor �run until blocked� since it is driven by the JikesRVM compiler. 

However, in JikesRVM threads can be preempted but only at predefined yield-point. The 
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compiler sets up a special code for yield point within each compiled method body that 

causes currently running thread to request its virtual processor if it can continue running 

or not. If the VP grants the execution, the thread continues until a new yield point is 

reached, otherwise it suspends itself in favor of other threads so that the virtual processor 

can execute another virtual thread. In addition, at the yield point, JikesRVM compiler 

provides information about object references on the thread�s stack, which could be used 

by GC to reclaim memory. So here the noticeable point is the process through which 

these three components work together (compiler, garbage collection and threading 

model).  

 

All Java threads such as application threads, system threads (garbage collector threads, 

idle threads) etc. derive from virtual machine thread, VM_Thread. JikesRVM does not 

directly map them to operating system threads. Instead, JikesRVM creates a virtual 

processor object (VM_Processor) for each pthread in use and Java threads map on them.  

Each virtual processor is bound to a pthread (normally one pthread for each physical 

CPU). If the users want to exploit the multi-processor architecture with JikesRVM, they 

need to specify the number of virtual processors as a command line argument; this 

number must not be more than the number of physical CPUs. For example �

X:processors=5, in this case JikesRVM will create five virtual processors and all the vm 

threads will be scheduled on them, otherwise by default JikesRVM creates only one 

virtual processor. A thread stops execution when it calls the yield method voluntarily, or 

interrupted and blocked by a lock. 

 

A couple of queues are associated with each virtual processor, also called the processor-

local queues, and there are other queues called the global queues (they are common to all 

virtual processors) so all virtual processors need to synchronize access to them. These 

queues hold threads such as runnable threads, idle threads, blocked threads, waiting 

threads and transferring threads etc.  

Threads in different states reside in separate queues such as an idleQueue only holds an 

idle thread that will execute whenever virtual processors have nothing to do, a 

readyQueue holds only ready to execute threads and so on.  
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JikesRVM�s scheduler follows FIFO and RR policy that means it always selects the first 

thread from the readyQueue and assigns to the virtual processor for execution and if it 

suspends then adds in to the rear of the queue. In addition, JikesRVM has a timer 

interrupt event (timer-tick) that sets timeSliceExpired. If the time slice expired of the 

current thread, it suspends execution in favor of other threads and enqueue in the run 

queue. If the runQueue associated with its VP is empty then suspended thread schedules 

again on the same VP otherwise this thread can move to a random virtual processor if its 

current processor has other runnable work.   

There is no time slicing mechanism for JikesRVM's scheduler as Java Runtime 

Environment does not provide this. Currently, JikesRVM has no priority mechanism, 

which means all the threads run at the same priority. The following figures 3.1 and 3.2 

indicate the high-level and detailed thread scheduling respectively, in JikesRVM�s m:n 

threading model. 

 

 
 

Figure 3.1 JikesRVM�s M:N threading Model 
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3.2 Thread Scheduling in JikesRVM�s M:N model 
 

 

 
 

Figure 3.2 JikesRVM�s  M:N green thread Scheduling 

 

 

3.2.1 Thread Switching  

 

Switching from one thread to another in the current threading model is a complex 

operation and is normally managed by the four main methods:  yield() and morph() (of 

VM_Thread) and dispatch() (of VM_Processor) and threadSwitch() of (VM_Magic).  

 

Let�s take an example of two threads A and B. Yield() suspends execution of the current 

thread (A), in favor of some other thread (B), in other words it gives the chance to thread 
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B to execute on the Virtual Processor. It places thread A on any indicated queue either 

processor-local (like ioQueue) or global queue (such as proxyWaitingQueue etc.). For 

global queues, it locks the queue before putting the thread (A) on it. It also ensures 

whether this thread is not available on any other queue. This method is also responsible to 

set the value true to thread's beingDispatched field in order to prevent it (thread A) to not 

schedule on some other virtual processor as thread A�s stack in use by some other 

dispatcher. Then it transfers the control to morph method of VM_Thread. 

 

morph() performs some housekeeping operations and transfers the control to the dispatch 

method of VM_Processor which is responsible to select the next thread (B) to execute. 

dispatch() of VM_Processor does selection of the next thread to be executed on the 

processor by invoking  the  getRunnableThread() of the VM_Processor.   

 

getRunnableThread() will check the transferQueue to see whether the next thread (B) is a 

collector thread (if yes it would return the thread) or mutator thread. If it is mutator then it 

would check whether this thread's stack (B's stack) is used by other dispatcher, if yes it 

would enqueue that thread back to the transferQueue. If the thread's stack is not used by 

any other dispatcher then this method transfers the thread (B) from the transferQueue to 

readyQueue for the execution. 

 

dispatch() makes the current running thread (A) to previous thread and take thread (B) 

from the readyQueue and makes it active thread and then invokes the 

VM_Magic.threadSwitch to save the hardware context of thread A and restore the 

hardware context of B. 

 

VM_Magic.threadSwitch method switches the threads; saves and restores some registers 

such as non-volatile fpr (frame pointer), gpr (general purpose) registers etc. In addition, it 

takes two parameters currentThread and restoreRegs; currentThread parameter is for 

currently running thread and restoreRegs parameter is for registers from which it restores 

the hardware state of another thread B. Finally, it appears as if B�s previous call to 

dispatch has just returned and it continues executing [7]. 
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A diagram illustrates thread switching at code level is attached in appendices section 

(appendix A) at the end of this dissertation. 

 

3.2.2 JikesRVM Load Balancing Mechanism - migration of threads among 

virtual processors 

 

In JikesRVM load balancing mechanism, a thread moves from one virtual processor to 

another (if transferring virtual processor has much runnable work and other virtual 

processor has nothing to do). This transfer of threads or sharing work among virtual 

processors happens because either a timer tick or a collector thread interrupts the thread. 

These movements of threads among virtual processors will not applicable if the thread is 

last executable thread on the current virtual processor.  

 

We have mentioned that an idleQueue is associated with each virtual processor, which 

contains only one, idle thread. Thus, when a VM processor has no other executable thread 

then its idle thread wakes up and runs in order to post request for work. Then it enters in 

the busy-wait cycle for a very short time (approx. 0.001 seconds). If no work arrives in 

this period, the virtual processor surrenders rest of its time slice back to underlying 

operating system [7]. However, if any virtual processor notices that this one needs work, 

it will add an extra runnable thread (if it has extra) by transferring to this processor�s 

transferQueue. And when work arrives, the idle thread goes back to the idleQueue of the 

processor and the transferred thread starts execution. 

 

Load balancing is managed by three main methods of VM_processor class of scheduler 

package: transferThread(), scheduleThread() and chooseNextProcessor(). 

scheduleThread() puts the thread on the most lightly loaded virtual processor. This 

method is responsible to check whether the thread is the last runnable thread on the 

processor, if it is, then scheduleThread() does not allow it to move on other virtual 

processor. It also checks that other virtual processor(s) is/are idle; if they are idle then it 

transfers the threads by invoking the transferThread() to add the threads to virtual 

processor's transferQueue in order to transfer the threads. Furthermore, this method 
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distributes the threads to available virtual processor in a round-robin fashion by invoking 

the chooseNextProcessor().  

 

3.2.3 Scheduling among mutator threads and collector threads: 
 

As we discussed in the previous chapter that one collector thread associated with each 

virtual processor so it allows JikesRVM to run in one of two modes: either the Java 

threads are running or the collector threads are running. When the mutator threads are 

running, the collector threads will stay idle and when the garbage collector threads start 

executing, mutator threads will go to sleep and will only resume automatically when GC 

threads return.  

 

When normal Java threads makes a request for memory space that the allocator cannot 

satisfy or the application makes an explicit call (System.gc()) then garbage collection is 

triggered. Once a collection is requested, the collector threads are notified and scheduled 

for execution like normal threads on their corresponding virtual processors. When the 

garbage collector threads start executing, they disable the thread switching on their 

corresponding virtual processors and they intimate other GC threads that they have 

control of their virtual processors. In addition, these collector threads perform some 

initialization and synchronize themselves with each other at the first rendezvous instance. 

It is called the parallel garbage collection. JikesRVM executes its garbage collector 

threads in parallel.  

Another salient feature of JikesRVM's scheduling is, when GC threads are running, all 

mutators must be at yield points. Since all yield points are safe points in JikesRVM, the 

collector threads can start with collection to reclaim the memory space. JikesRVM uses 

stop-the-world garbage collection algorithm as it stops the thread switching and 

execution of mutators. Furthermore, when all the mutator threads reach the safe points 

then collector threads start reclaiming the memory. 

 

When the collection is finished, the GC threads re-enable the thread-switching on their 

virtual processors and then wait until another collection request being made. In contrast, 
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mutator threads do not need notification; they start up automatically as the GC threads 

release their virtual processors. 

 

3.2.3.1 JikesRVM's parallel garbage collection 

 

In order to perform the parallel garbage collection, all collector threads must synchronize 

themselves at the end of each of three phases as indicated in the figure 3.3. For this 

purpose, JikesRVM provides the rendezvous mechanism where no GC thread proceeds 

before the rendezvous point until all GC threads reach it. In other words, all the GC 

threads meet at the rendezvous point and start claiming the memory together.  

 

 
Fig. 3.3 Transition b/w mutator and collector threads and phases of parallel GC [8] 

 

In initialization phase, all collector threads participate. All collector threads (copying 

collector threads) make new copies of their own objects and their virtual processor's 

object because the old copy will be discarded after collection and changes are made into 
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new copy (this is the downside of copying managers because they waste about half of this 

memory).  

In root identification and scan phase, GC threads contend for each mutator's stack and for 

the JTOC and scan them in parallel for roots and then mark them. They place marked 

roots (also known as object reference) into the work queue and then they mark the objects 

that are accessible by the object references available in work queue. Each GC thread 

marks one object because of synchronized marking operation. Then for scanning the 

object reference, it removes the objects from the global work queue. In finish phase, 

collector threads get the empty space for the next mutator cycle. All three phases and 

switching among mutator and collection threads are indicated in the above figure [8]. 

 

3.2 Thread States in JikesRVM 
 

At a conceptual level, every thread in the JikesRVM can be in one of the eight states of 

its lifecycle. Figure 3.4 shows the thread states. These are following: 

  

New: When a thread creates (that is, when thread�s constructor is called) then it will be in 

new state. It remains in initial condition until its start method is called. It can start 

execution immediately if no other thread(s) is running on the available cpu(s) or can wait 

for its turn. 

 

Runnable/Active: A thread starts running once its start method called. When the 

scheduler assigns thread to available CPU and when they start using CPU�s cycle time 

then they come in the runnable state.  

 

Ready: threads that are in readyQueue are waiting for a chance to run. When the active 

threads finish their task or block into waiting state then threads in ready state become 

active and schedule on the processor from the ready state. 

 

Blocked: A thread is in a blocked state if it is waiting for a lock on monitor. This will 

remain in the block state until the owner of the lock releases it.  
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I/O Waiting: A thread is in I/O waiting state if it cannot be run because it is waiting for 

some specific event to occur. For instance, an active thread can be suspended due to 

blocking input/output operations and then it deadlocks the virtual processor until it 

resumes.  

 

Suspended: A thread is in a suspended state if it is waiting for On-stack replacement 

(OSR)*. Threads are rescheduled by recompilation when OSR is done.  

 

Waiting/ Sleeping: A Thread is waiting for some event or for some specific time is in 

this state. A thread can be in a sleep state for some milliseconds. Waiting thread could be 

notified by the other threads through sending the signals. Furthermore, waiting threads 

can also wait for some specified time (timedwait).  In these cases, threads do not hog the 

CPU. 

 

Termination: A thread is in exiting state if its run() method returns or its exit() method 

has been called. Threads can be terminated by their own will or killed forcibly. In other 

words, if they finish their work then they naturally terminates, or they can exit the 

JikesRVM by calling killInternal() method. 

 

 

 

 

 

 

 

 
 

 

 

 

* OSR is used to improve performance with adaptive recompilation, transferring execution from slow code 

to faster code [9]. 
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Figure 3.4 Thread States in JikesRVM 

 

3.4 Thread Queues 
Threads that compete for CPU resources in order to execute are either stay in the thread 

queues or proxied. In JikesRVM, there are two kinds of queues: processor-local queues 

and the global queues. 

 

3.4.1 Processor-local queues are associated with each virtual processor since a VP can 

only execute one thread at a time so there is no need to synchronize access. In contrast, 

global queues need synchronized access because they are common for all threads which 

are running on different virtual processors. A number of processor-local queues are 

following: 
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An idleQueue holds an idle thread that will execute (post request for work) whenever 

virtual processors have nothing to do.   

 

A readyQueue holds only ready to execute threads, which are waiting for a time slice in 

which they have to run. 

 

The transferQueue helps in load balancing by transferring threads among virtual 

processors when the other processor has nothing to do. Any virtual processors can put the 

threads on this queue then the thread moves from this queue to readyQueue for execution.    

 

The ioQueue holds a number of threads that are waiting for availability of input/output 

data. To prevent from blocking the thread I/O operations in the green thread model 

maintain a several descriptors that need to be checked to poll for data availability. When 

data becomes available on file descriptors, determined using the non-blocking select 

system call, then the corresponding thread resumes its execution.  
 

The processWaitQueue holds threads that are waiting for a sub-process to execute. This 

is used to implement the exitValue() and waitFor() of java.lang.process. 

 

3.4.2 Global queues need to synchronize access. The global queues are following: 

 

The processorQueue handles the set of virtual processors. Its instance deadVPQueue 

holds a special virtual processor and pthread so that when a virtual machine thread 

(VM_Thread) calls the native code for the first time, the virtual processor and pthread are 

created (virtual processor implemented as pthread) and run together until the virtual 

thread terminates and after serving the caller thread the virtual processor enqueues back 

into deadVPQueue for recycling. Thus if other threads call to native code then a request 

to reuse the virtual processors from deadVPQueue is made in order to execute them. 

  

The wakeupQueue (type of VM_ProxyWakeupQueue) is a queue of proxies for threads 

that are awaiting timeout on this object. This queue is the mechanism to implement to 
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Java sleep semantics. In order to implement timed-waits, a thread needs to be in both 

waiting queue and the wakeup queue. But the current threading model allows a thread to 

be in one queue at a time so in order to perform this both queues are of proxies for thread 

rather than thread.  Unlike thread, proxy can be on both a waiting queue and a wakeup 

queue. The VM_Proxy class of the scheduler package is responsible for representing the 

same thread on more than one proxy queue. 

 

The waitingQueue (type of VM_ProxyWaitingQueue) is a queue of proxies for threads 

that are awaiting notification on this object. When a notification is received from an other 

thread, the thread is taken from this queue (waiting queue) and transferred to the 

readyQueue. This queue is the mechanisms to implement to Java's wait/notify semantics. 

 

The enteringQueue contains a number of threads that are contending for a lock, so it is 

also called the lock queues and is guarded by mutex. 

 

The CollectorQueue all collector threads reside in this queue. collect() of 

VM_CollectorThread is called by the mutator thread when the object allocator is not able 

to manage the requested memory. The caller thread also pass the handshake object when 

called the collect() for collection. 

  

The DebuggerQueue contains one debugger thread, which can be scheduled by an 

external signal. 
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3.5 Synchronization 
 

Synchronization is required for concurrent execution on Symmetric Multiprocessing 

(SMP) environments. Mapping the Java threads to virtual processors allows the tight 

integration of synchronization support with thread switching in the m:n green thread 

model. 

 

The JikesRVM's thread synchronization is based on monitor mechanism as it is 

developed in Java. The JikesRVM implements both kinds of thread synchronization: 

cooperation and mutual exclusion. Cooperation is supported via wait and notify methods 

of object, it enables threads to work together to achieve a common goal.  For mutual 

exclusion, JikesRVM implements the locking-unlocking in order to enable multiple 

threads to independently work on shared data without intervention with each other. 

 

3.5.1 Mutual Exclusion (Locking/Unlocking) 
 

In JikesRVM, both thread scheduling and load balancing require atomicity and singular 

access to the global data structure. In addition, the user threads also need to synchronize 

access to their global data. In order to get the synchronized access; JikesRVM's scheduler 

uses three types of locks: 

 

1. processor lock 

2. thin lock 

3. thick lock 

 

3.5.1.1 Processor locks play a significant role in thread scheduling and load balancing.  

They underlie other locking mechanisms. Processor locks are implemented as Java 

objects in JikesRVM, with a single field latestContender that identifies the virtual 

processor that owns the lock. They are intended to be held only for a short period as they 

�busy-wait�. Furthermore, they cannot be acquired recursively.  
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The lock() method of (VM_ProcessorLock class) in the scheduler package performs 

operations to acquire the processor lock for the thread that is running on the virtual 

processor. Getting and releasing a lock involves atomically reading this lock field 

latestContender and setting the value to this. If this field is null it means this lock is not 

owned, otherwise this field points to the virtual processor's id which owns this lock; in 

other words, this field identifies the owner of the lock. A processor lock is released by 

storing null value into the owner field.   

 

If the virtual processor fails to acquire a lock due to contention, then it tries again by 

spinning on this processor lock's latestContender field. Processor locking also 

implements the MCS (Mellor-Crummey and Scott) locking mechanism [10].  When MCS 

Locking is set, the processors spin on processor local data with the last virtual processor 

on a circular queue (of virtual processors); spinning until it gets the lock. It also updates 

this queue by adding itself into this circular waiting queue, for this a processor must 

succeed in setting the latestContender field to IN_FLUX. The major advantage of MCS 

locking is it�s a queue based spin locking mechanism [10].  

 

If an attempt to lock or unlock a processor-lock has failed, assuming contention with 

another processor,  a backoff mechanism is used which delays for a different time period 

on each processor to try to solve contention and to some extent in order to increase the 

likelihood that a subsequent retry will succeed in locking or unlocking. 

 

In addition, a thread will not yield control of a VM_Processor while it owns a processor 

lock because it cannot release the lock until it resumes execution. The identity of the 

virtual processor which owns the lock is maintained in a dedicated Processor (PR) 

Register. 
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3.5.1.2 Thin and Thick Locks 

 

The JikesRVM's other locking scheme is based on the thin locks also called light-weight 

locks: if there is no contention among threads then thin locks are used to lock the 

resource (object) and the bits in the object field are used for this purpose (as discussed in 

the second chapter section 2.4.1, bits in the status word fields in the object header are 

used for locking). In contrast, in case of contention (if two or more threads are competing 

for same object) these bits in the object header represent a heavy lock. 

 

In contrast to the processor lock, thin locks can be recursively held by the same thread. 

One bit from the bit field in the status word tells whether a thick lock is associated with 

the object or not. If the thick lock is not associated then the remaining bits are divided in 

to two fields: thin lock owner ownerId subfield that represents the thread holding a thin 

lock on the object and the recursion count field recursionCount, it records the number of 

times the owner thread has acquired the lock. On the other hand, if the thin lock is 

associated, the rest of the bits in the locking field become the index of this lock in the 

global array of thick locks. This global array is partitioned into virtual processor regions 

to allow unsynchronized allocation of thick locks. If any thread does not lock the object 

then all the bits in the locking fields are set to zero [5]. 

 

In addition, if the lock is not acquired (that means all locking bits are zero) then in order 

to acquire the lock, the thread sets the owner bit field to its identifier. The identifier of the 

thread, which is currently running on a virtual processor, is kept in a dedicated thread 

identifier (TI) register.  

 

When an attempt to lock an object fails there are three situations either try again (busy-

wait cycle) or yield and then try again or inflate the lock [11]. Currently, the situation is 

handled through yielding �forty� times*, and then inflating. Inflation means 

transformation the thin lock into the thick lock [12].  

 
* The current value was for the portBOB benchmark on a 12-way SMP (AIX) in the Fall of '99. 
(VM_ThinLock.java) 
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The thick lock is defined as VM_Lock in the scheduler package of JikesRVM. It has six 

fields: the mutex field is a processor lock that synchronizes access to thick lock or in other 

words it handles contention for the data structures of this lock. The lockedObject is a 

reference to the object being locked. The ownerId contains the id of the thread that owns 

the lock. The recursionCount is responsible for recording the number of times the owning 

thread has held the lock. The entering field is a queue of threads contending for this lock 

guarded by the lock. waiting field is the queue of threads awaiting the notifications on 

lockedObject guarded by the mutex [5]. 

  

 
Currently, each processor maintains a pool of free locks.  When a processor inflates a 

lock, it is taken from this pool and when a processor deflates a lock it gets added to the 

processors pool [13]. In contrast, deflate() gets invoked when the lock is unlocked and 

there is nothing on either of its queues.  

 

Above-mentioned locks implement the mutual exclusion, and it refers to the mutually 

exclusive execution by multiple threads.   

 

3.5.2 Cooperation (Wait/notify) 
 

The VM_Lock class of the scheduler package provides the JikesRVM's support for 

monitors and also support for wait/notify synchronization (methods of java.lang.Object). 

Cooperation is useful when one thread needs some data in a particular state and another 

thread is responsible for getting the data into that state. The JikesRVM implements this 

form of behaviour using the wait/notify/notifyAll semantics. In this type of monitor, a 

thread that currently holds the lock/monitor can suspend itself by executing the wait() of 

VM_Lock. Once a thread executes wait(), it releases the monitor and enqueue into a 

waitingQueue in favor of some other threads so that they can acquire the lock. 
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This thread will wait into a waitingQueue until some time later another thread executes 

the notify(). Furthermore, the enteringQueue can schedule other threads (as 

enteringQueue contains a number of threads that are contending for lock. Once another 

thread executes notify, it continues to hold the monitor until it frees the monitor of its 

own wish (either completing its own task or executing the wait). When the notifying 

thread frees the monitor, the waiting thread will wake up from the waitingQueue and will 

re-acquire the lock. 

 

The waiting thread suspended itself because the data locked by it, is not in a state that 

would allow the thread to continue execution. In the same way the notifying thread 

executes the notify method after it had put the data protected by lock into a state required 

by the waiting thread.   

 

3.6 Drawbacks of M:N Green Thread Scheduling 
 

We list the issues with m:n green threading below: 

 

1. One of the problems in the current threading model is with blocked native 

methods. Most of the native input/output operations are blocking I/O and the 

Java threads that call these operations will block until the input/output 

operation finishes. For instance, if a virtual processor (VM_Processor) 

schedules five Java threads and one of the threads calls the blocking I/O 

operation, as a result the whole VM_Processor will be blocked until that I/O 

operation completes and will be unable to schedule the other four threads. 

However, JikesRVM avoids this problem by capturing/hijacking blocking 

input/output and replacing them with non-blocking operations. The calling 

thread is then suspended and placed into IOQueue. The virtual processor 

(VM_Processor) checks the awaiting i/o operations at short polling intervals 

and after they complete the operations, the virtual processor brings the calling 

thread back into the runningQueue from the Input Output Queue 

(VM_ThreadIOQueue).  
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But the JikesRVM can not insert the �yield points�* into native methods and 

can not always be able to intercept blocking I/O operations in native code. In 

other words, it is fairly complex to support the blocking native code together 

with the m:n threading in JikesRVM. () 

2. Another drawback is that too much control logic is embedded in the low-level, 

in order to call and return (transition) between C and Java code, which makes 

the code harder to maintain. 

3. Java threads may be scheduled for execution by different operating system�s 

thread (pthreads) at different stages during in its execution. Thus, it can 

increase the performance cost caused by cache invalidation due to thread 

switching. 

4. In current thread model scheduling is non-preemptive scheduling; and no 

priorities are assigned to threads so threads are unable to take optimum 

benefits of processors, as they are not scheduled by operating system. For true 

concurrency, underlying Operating System�s incorporation is required 

5. Transition between mutator and collector threads could be a performance 

issue if the number of mutator threads is large.  

6. Threads in this model are lacking the cooperation of Operating System. 

 

3.7 Summary 
 

In this chapter, we have discussed the current threading model supported by JikesRVM 

and how the Java threads map on to virtual processors and how the virtual processor 

execute them efficiently with the support of other threading components such as thread 

queues and locks. We have also seen the fast transition among threads including mutator 

and garbage collector threads. 
 

 

 

Please note: yield points are the hidden thread switch points in the compiled code of the method inserted by 

JikesRVM compiler [14].  
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We also indicated a set of thread queues in the entire threading system which plays a 

pivotal role in multi-threading environment. Synchronization is another important 

component of Jikes threading supported by Java monitors and some synchronized 

methods of java.lang.Object. JikesRVM also supports the implementation of an efficient 

way for load balancing and distributes work among virtual processors to achieve high 

performance in SMP environment. However, at the end of chapter we have noted 

drawbacks in the present model which raise some issues in terms of performance. In next 

few chapters, we will analyze a new threading model called native thread model (using 

POSIX thread library) in order to remove those performance issues and to make the 

JikesRVM threading more robust. 
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CHAPTER 4 

 

Re-factoring and Design Pattern 
4.1 Introduction: 

 
In the previous chapters we talked about JikesRVM�s components and current thread 

scheduling model. In this chapter, we will specify the work that we contributed and the 

approach that we adopted for re-factoring the existing scheduler API in order to introduce 

new native thread model without breaching the consistency of the present system. In 

addition, our aim is to keep the code organization simple and clean. For this purpose, we 

decided to re-factor the current system into two models and sub-divide the existing 

scheduler package, where all multi-threaded programming resides*, into two packages: 

one for each model (green thread and native thread). We kept the classes of scheduler 

package as a base wrapper classes and they contain common functionalities of both the 

thread models. In essence, these two models contain the code for the specific threading 

system. For example, on the one hand all user space thread scheduling will reside in the 

green thread model; on the other hand all kernel-level preemptive scheduling will be 

contained into native model. The following block diagram represents package structure 

for the scheduler API: 

 
Figure 4.1 Division of the JikesRVM�s scheduler API 

*In practice, lazy programming practices had placed scheduling code outside of this package. 
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We will discuss our approach and the design pattern we adopted next. We will also see 

some code examples to better explain this work. 

 

4.2 Our approach to re-factorization 

 
With the aim of simple and clean code organization, we decided to implement one 

popular design pattern called the �factory design pattern�as it was matched our 

requirements. In addition, we adopted and implemented this in order to keep the 

consistency among classes in the scheduler API. 

 

4.2.1 Factory Method Pattern  

 
�Define an interface for creating an object, but let the subclasses decide which class to 

instantiate [15]. The Factory method lets a class defer instantiation to subclasses�. 

 

The main purpose of this method is to create the objects without specifying the exact 

class of objects that will be created; in other words, subclasses decide which class to 

instantiate. Above all, factory methods are static methods that return an instance of the 

sub-class at run-time. 

 

4.2.2 Why we used the factory design pattern 

We used this pattern because it proved an efficient design model for refactorization. 

Furthermore, a number of reasons of using factory method are to obtain the reference of 

sub-classes saves lots of work, an easy implementation and most importantly if the 

requirements change in the future we would not need to make changes in every class that 

uses our base class (e.g. VM_Thread). We will need to make only one change in one 

class in order to meet the new requirements. The main advantage of factory method is 

new threading model (e.g. native model for Windows) can be added without changing the 

framework. Moreover, this is useful when we don�t know what concrete implementation 

whether green thread or native pthread of VM_Thread has to instantiate. We delegate this 
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responsibility to the factory method. The UML class diagram of our factorization is given 

below in fig. 4.2, considering only one class VM_Thread in scheduler API: 

 

 
 
 

Figure 4.2 UML Diagram of Factorization of Scheduler API 
 

 

 

4.2.3 Factory Design Pattern in Our Framework 
 

The factory method pattern returns an instance one of possible class (green or native). 

Which class it will return depends on provided arguments on the command line by the 

users. Usually both of the classes (VM_GreenThread or VM_NativeThread) it returns 

extend the base class such as VM_Thread, but each of them is optimized for specific type 
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of threading system; in other words to realize their application specific implementations. 

For instance, to provide a green thread mechanism, we defined a class VM_GreenThread. 

 
 
 

 
 

Figure 4.3 Structure of Factory Pattern in SchedulerAPI 
 
 
In the structure presented above, This VM_Thread wrapper class is responsible for 

managing the threading systems and will create them as required, when the users pass the 

arguments; -vmt for green and -pt for native posix thread, for example. We defined one 

more class is called VM_Scheduler which creates the factory method (s) to return an 

instance of either VM_GreenThread or VM_NativeThread.  

 

This factory method in the VM_Scheduler decides at runtime which subclass has to 

instantiate by using the arguments passed by the user at command line. Then, 

VM_Scheduler will create the instance of either green or native model and pass them to 

virtual machine thread system (VM_GreenThread) or OS�s native thread system 

(VM_NativeThread) for invoking their functionality. The same design pattern applies to 
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other classes in the scheduler package. The program flow is indicated in the following 

figure.  

 

 

 

 
                                                Figure 4.4 Program Flow 
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4.3 Our Design Attempt 
 

Our design attempts to make classes in scheduler package thin wrapper around the 

implementers (green or pthread model) of interfaces located in org.jikesrvm.scheduler. 

For instance, making class VM_Thread a thin wrapper around implementors 

VM_GreenThread and VM_NativeThread. So, VM_Thread  maintains a reference to an 

instance of the implementing class and redirects instance methods to it. Static methods, 

including the calls to create the implementing instance are redirected via static classes in 

VM_Scheduler. We used this design pattern with many of the classes originally located 

in the scheduler package. 

We retained the public fields in the thin wrapper classes in order to keep the consistency 

with other subsystems of the JikesRVM and maintaining a single copy of data. For this, 

our implementor classes maintain a back-link to the VM_Scheduler class.  
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4.4 Re-factoring at Code Level: 
 
// VM_Thread – super class of green thread and native thread 

public abstract class VM_Thread { 
 
protected VM_Thread(byte[] stack, Thread thread, String name, 

boolean daemon, boolean system, int priority) 

{ 

….. 

} 

public static void yieldpointFromPrologue() { 
 
org.jikesrvm.scheduler.greenthreads.VM_GreenThread.yieldpoint(PRO
LOGUE); 
 } 
 
public static void yieldpointFromPrologue() { 
org.jikesrvm.scheduler.greenthreads.VM_GreenThread.yieldpoint(PRO
LOGUE); 
  } } 
 
 

 

// VM_Scheduler, also consist of factory methods 

public abstract class VM_Scheduler { 
 
 // back-link 
private static final VM_Scheduler singleton = new 
VM_GreenScheduler();   
 
public static class ThreadModel extends 
 org.jikesrvm.scheduler.greenthreads.VM_GreenThread { 
    
 public ThreadModel(byte[] stack, String s) { 
   // passing to implementor class VM_GreenThread   
 super(stack, s); 
    } 
      public ThreadModel(String s) { 
      super(s); 
   } 
   
public static final class LockModel extends 
org.jikesrvm.scheduler.greenthreads.VM_GreenLock { 
 } 
// factory method 
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private static VM_Scheduler getScheduler() { 
  return singleton; 
  } 
 
// static method 
 
public static VM_Thread getCurrentThread() { 
    return 
VM_Magic.objectAsThread(VM_Processor.getCurrentProcessor().active
Thread) 
   } 
 
 
// green thread implementor class VM_GreenThread 

// extend from VM_Thread 
 
public class VM_GreenThread extends VM_Thread { 
 
public VM_GreenThread(byte[] stack, String name) { 
    this(stack, 
       null, // java.lang.Thread 
       name,        
       true, // daemon 
       true, // system  
      Thread.NORM_PRIORITY); 
  } 
 
// thread specific implementation 
public static void yieldpoint(int whereFrom) { 
…. 
} 
 
 
 
// native thread Implementor class 
 
public class VM_NativeThread extends VM_Thread { 
 
public VM_NativeThread(byte[] stack, String name) { 
    this(stack, 
       null, // java.lang.Thread 
       name, 
       true, // daemon 
       true, // system 
       Thread.NORM_PRIORITY); 
 } 
protected void notifyInternal(Object o, VM_Lock l) { 
… 
 } 
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4.5 Flexible Threading model � User�s choice 
 

We have given the users a choice of both the threading models by providing command 

line arguments so according to their applications they can choose the desired model. If 

they are using an SMP environment then native model is a better choice because on the 

multi-processor system, this model can easily split threads among processors and can 

greatly improve the performance. Although, if users are running applications which 

create a large number of threads such as server applications then in these cases green 

thread model has proven better and faster. 

In order to supply the command line arguments so that Jikes virtual machine behaves 

according to them, we made some changes in the Jikesrvm�s configuration files such as 

VM_Properties, VM_CommandLineArgs and build.xml. We are discussing them briefly 

in the following text. 

 

4.5.1 Properties defined in VM_Properties 

 

In current situation, there is no command line argument for the selection of threading 

model since there is by default only one threading model. So in order to take input from 

the user, we defined two properties both for green thread model and for pthread model in 

the VM_Properties.java. Properties defined in this Java program control the behavior of 

JikesRVM and can be set from the command-line. 

 

Below is the code snippet which specifies the properties:  
 
public class VM_Properties extends VM_Options {   
…… 
public static int verboseBoot = 0; 
…. 
public static boolean greenThread = true; 
public static boolean pthread = false; 
} 
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So here the property for green thread is true. The reason is if users do not specify their 

choice then by default green model will execute and threads will be scheduler at user-

space. 

 

4.5.2 Prefixes defined in VM_CommandLineArgs 

 

A list of possible prefixes for command line arguments is defined in the 

VM_CommandlineArgs. For making standard prefix, we have added two entries in the 

VM_CommandlineArgs and edited two more cases in 

earlyProcessCommandLineArguments method. This method is responsible for processing 

of several command-line arguments that need to be handled early in the booting and 

contains only those command line arguments that require fully booted Virtual Machine to 

handle. The code snippet is for doing this is as follows:  
 
public class VM_CommandLineArgs {  
  ...... 
  public static final int PROCESSORS_ARG       = 29; 
 
  public static final int GREEN_MODEL          = 30; 
  public static final int PTHREAD_MODEL        = 31; 
  ........ 
    new Prefix("-X:processors=",        PROCESSORS_ARG), 
    .... 
    new Prefix("-vmt",    GREEN_MODEL ), 
    new Prefix("-pt",    PTHREAD_MODEL ), 
... 
   switch (type) { 
 
      case GREEN_MODEL: 
        VM.greenThread=true; 
        break; 
      case PTHREAD_MODEL: 
        VM.greenThread=false; 
        VM.pthread=true; 
        break; 
..... 
// other code� 
case PROCESSORS_ARG: // "-X:processors=<n>" or "-X:processors=all" 
.... 
} 
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It ensures the encapsulation among threading models; if the program runs with a 

particular threading model chosen by user on command line then JikesRVM's threading 

system will not switch from one thread model to another in the middle of execution. For 

example, if user chooses native model on the command-line then the thread scheduling 

will be done with native model only and program control cannot get into green thread 

model.  

 

4.5.3 Configure build.xml 

 

In order to add new configuration details in JikesRVM, we added some details in the 

build.xml that contains all the configuration details of Jikes. Following the tradition of 

build.xml in setting attributes, we added two arguments in this; you can find some 

changes into build.xml in appendices section (appendix b). Moreover, you can also find 

the new command line options for executing programs with the green and pthread model.  

 
4.6 Summary 

 
In this chapter, we have discussed our refactoring mechanism, which we contributed in 

JikesRVM and have explained our choice of using factory pattern. We also copied a 

small code snippet here which is important to understand the refactorization. This design 

pattern we applied for most of the classes which are originally located in the scheduler 

package. Some of them are thread model specific (e.g. green thread model) so they have 

brought in to green thread model without factorization. For instance, most of the queues 

existed in scheduler package that are not useful for native pthread model, we are keeping 

them in green thread model package (org.jikesrvm.sceduler.greenthreads). We have also 

given choice to users by providing them command-line arguments so that they can 

choose the better model according to their requirements. For this we have made changes 

in some configuration files of JikesRVM.  

In essence, this factorization ensures a clean and consistent organization of the code and 

provides flexibility to future requirements. 
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CHAPTER 5 
 
Native Thread Model 
 
5.1 Introduction 
 

In this chapter, we will discuss the native thread model and how this model will work in 

the real system. Furthermore, we will present an analysis of how to implement the major 

components of the native threading model such as monitorEnter/monitorExit, 

cooperation, scheduling, yield, and thread cancellation. by using POSIX pthread library.  

 

The native thread model defines that each Java thread created by JikesRVM corresponds 

directly to a single thread in the OS kernel, also known as 1:1 threading model. In other 

words, one Java thread maps to one pthread and the OS scheduler further multiplexes this 

pthread to kernel thread (NB: in Linux there is a 1:1 correlation). Unlike the green thread 

model, in this model JikesRVM is not responsible for scheduling the threads, the kernel is 

the only one which selects and schedules the threads. In essence, all scheduling of threads 

is done by kernel. 

. 

5.2 Native Thread Model 

 
This 1:1 native model allows many threads to run simultaneously on different processors 

in Symmetric multiprocessing (SMP)* environment. This also allows threads to continue 

to run, even on the uniprocessor, if one or more threads issues a blocking system call. 

This model is simple to understand and transparent to the programmers because there is 

tight coupling between the programmatic abstraction (user threads) and the kernel thread. 

[16]. In addition, in this model every thread can be thought as a process. The operating 

system scheduler makes no distinction in this case between a process and a thread. 

 

 
* SMP is a multiprocessor architecture where two or more identical processors are connected to a shared 
memory [17]. 
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The native thread model is a preemptive threading model, which means thread switching 

can occur at any time. In addition, threads are scheduled on a priority based mechanisms. 

Therefore, in this model, if one thread uses its whole time slices, it gets preempted by OS 

scheduler and another Java thread gets to run instead. The scheduling of the Java threads 

mapped to native threads is controlled by the underlying operating system�s scheduler. 

Figure 5.1 shows a high-level overview of the pthread native model in JikesRVM. 

 

The downside of this threading model is the overhead for each kernel thread (memory, 

slots in the scheduling algorithm) that may be excessive for programs that create a large 

number of Java threads as each thread creation involves a separate kernel thread creation, 

also called Light-Weight Process (LWP) so it requires additional kernel resources.  

 

 
 

Figure 5.1 Native Thread Model in JikesRVM 
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5.3 Native Pthread scheduling 
 

Linux pthread library defines two ways of scheduling: one is process scope scheduling; 

all of the scheduling is local (similar to JikesRVM�s green thread scheduling) and another 

is system contention scope scheduling where scheduling is done by the kernel. We will 

use the latter one in the future native thread model of JikesRVM. This scheduling is also 

called global or bound thread scheduling. This scheduling mechanism also has a policy 

and priority associated with threads, which further refines the scheduling details at the 

kernel level [1]. In this scheduling mechanism, the operating system (LINUX) schedules 

threads just like it schedules processes. That means that threads are scheduled on a 

preemptive, priority-based mechanism which is a property of the OS.  

 

In system contention scheduling, each Java thread is permanently bound to a LWP 

meaning the thread will only run on that particular LWP. With this scheduling, Java 

threads will get the maximum execution time as they will almost never be in a ready 

state, they will be either active (running), sleeping on a condition variable or blocked 

because of their tight binding with kernel threads. In addition, they will never be 

prevented from chewing CPU time by other Java threads. Thus, the JikesRVM users will 

use this native model when they know that their programs are computationally intensive. 

Therefore, multi-threaded Java applications with this scheduling will have less thread 

switching as compared to green thread scheduling. 

 

Our effort will be creating one pthread for each Java thread and mapping that pthreads to 

individual physical CPUs, which can ensure fast execution for Java threads. This will be 

helpful for applications that have multiple threads that spend a significant amount of time 

executing code without blocking. 

 

We will see the best throughput when the number of running threads is equal to the 

number of CPUs on the machine. If there is a lower number of running threads than 

available CPUs then there will be idle CPUs and if there are more than available CPUs 

then the LWPs will compete for the CPU time. In addition, there is never really an 
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advantage to having more LWPs than CPUs - even if user applications have hundreds of 

threads that the user wants to time-slice [18]. In order to run such kind of applications, we 

are able to create hundreds of LWPs by using modern POSIX thread library.   

 

5.4 Binding Java Threads to Kernel Threads - CPU Affinity 

 
The fundamental concept of binding each thread to a separate operating system�s thread 

is cache memory latency because each processor has its external caches of significant 

size (e.g. 1-4 megabytes). So, replacing the contents of such a cache completely can take 

a very long time. If a light-weight process is running on CPU 2 and it is context switched 

off for a short time, then the vast majority of that cache will still be valid. So it would be 

much better for that LWP to go back onto CPU 2 [1]. Linux library provides the ability to 

bind one processes (LWP) to one physical CPU, is called CPU affinity. The point is to 

say that always run this particular process to this particular CPU. The scheduler then 

obeys the order, and the process runs only on the allowed processor. The operating 

system will optimize the CPU affinity by itself. 

 

5.5 Implementation of yield method 
 

In contrast to yield method of green model, we will implement this via pthread library 

method pthread_yield. This method explicitly forces the calling thread to give up the 

control of its processor, and then the thread will wait before it is scheduled again on the 

processor. As we have already discusses in chapter 2 and 3, yield points are also safe 

point where garbage collection triggers and reclaims unused memory. When a thread 

executes the yield, the conditions will be checked, if it�s a garbage collection point (or 

GC safe point) then the JikesRVM� garbage collector will start reclaiming the memory. 

Or, if it is a generic yield then it will call the pthread yield method (pthread_yield). 

Calling thread�s state will store into the registers and scheduler will select the next 

available thread and restore its states from the registers. If the virtual processor does not 

have runnable threads then the calling thread will immediately reschedule. Figure 5.2 
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shows this mechanism, thread A calls the yield method and then JikesRVM passes to 

pthread_yield method of pthread library using system call. 

 
Figure 5.2 Thread yield in native model 
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5.6 Thread Synchronization - Monitor 
 

In the native model, mutual exclusion and cooperation map well to mutex and condition 

variables. We briefly discuss the pthread mutex and condition variables below and then 

we discuss their use in implementations. 

 

5.6.1 Mutex  

 

Pthread mutex are used for protecting shared data when multiple writes occur. A mutex 

variable operates as lock in order to protect a shared data. The concept of a POSIX mutex 

in Pthreads is that only one thread can lock (or own) a mutex variable at any given time. 

As a result, even if many threads try to acquire a lock, only one thread will own it. Other 

threads will block and will wait until the owning thread releases the lock. In essence, we 

will use mutexes for locking the global data to ensure safety when several threads update 

the same variable and to ensure that only the owner of the mutex is updating the protected 

global variables. In particular, thick lock will be implemented by using these mutex and 

condition variable in native thread model.  

 

In addition, whenever a thread needs to acquire a lock on the specified mutex variable, it 

will call pthread_mutex_lock() routine of the pthread library. If the mutex is 

already held by another thread then this call will block the calling thread and it will wait 

on the pthread condition variable until mutex is released. In contrast, if the owner thread 

calls pthread_mutex_unlock() then  it unlocks the mutex. When a thread finishes 

its operation on protected global data then it calls this routine in favor of other threads 

that are waiting to hold the mutex. This method will return error if the mutex was already 

locked and was held by another thread.  
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5.6.2 Condition Variable 
 

Condition variables play a significant role in thread synchronization and provide 

capability of inter-communication among threads both, in one process and in different 

processes. With the use of conditional variables, we can allow threads to wait without 

wasting CPU time until some events occur. In addition, several threads can wait on a 

conditional variable, until some other threads signals (in other words, send the 

notifications) this conditional variable. After being notified, one of the threads waiting on 

the conditional variable wakes up and performs the operation. By using broadcast 

method of pthread library (work similar to notifyAll of Java primitives), it is possible to 

wake up all the threads waiting on the conditional variable.  

 

 
5.6.2.1 Waiting on a Condition Variable 

 

To get the protected global data in some desired state, a thread can wait for the signal 

calling either pthread_cond_wait() or pthread_cond_timedwait() 

methods of pthread library. Both methods take a condition variable and a mutex as 

arguments. This mutex should be locked before calling the wait function as the condition 

variables used in conjunction with mutex variables. When these methods are called by 

thread, calling thread unlocks the mutex, and suspends the execution (wait on condition 

variable) until other threads signal the condition variable. If the thread awakes by this 

notification then the mutex is automatically locked again by the wait function, and the 

wait function returns. In comparison with pthread_cond_wait(), 

pthread_cond_timedwait() allows us to specify a timeout for the waiting. In 

contrast, the pthread_cond_wait() would wait for an indefinite period if it was 

never signaled. 
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5.6.2.2 Signaling Conditional Variable 

 

For signaling a condition variable, we can use both pthread_cond_signal() and 

pthread_cond_broadcast() functions to wake up only one thread and all threads 

waiting on this variable respectively. They will implement notify/notifyAll primitives of 

Java. But in our analysis, we will try not to use broadcast method, as it could be the 

cause of more contention among threads for a shared data because all threads wake up 

together and contend for one single data resource.  Below is an example of signal and 

broadcast methods: 

 
//initialize the condition variable 

pthread_cond_t   b  =  PTHREAD_COND_INITIALIZER;  

 

int a = pthread_cond_signal(&b);  // signal only one thread  

Or 

int a = pthread_cond_broadcast(&b); // signal all threads that  

// are waiting on cond. var. 

 

If more than one thread is blocked on a condition variable, the scheduling policy will 

determine the order in which threads are unblocked [19]. 

 

We will use the conditional variables in native thread model to give the JikesRVM same 

functionality of thread cooperation as in the green thread model.  

 

 
 
 
 
 
 
 
 
 
 



CHAPTER 5. NATIVE THREAD MODEL 
   

 66 

5.6.3 Mutual Exclusion Implementation � monitorEnter/monitorExit 
 

In order to implement the mutual exclusion capability of monitors in the native pthread 

model, JikesRVM associates a lock with each object. A lock ensures that only one thread 

can own the global resources at a time. If a thread holds a lock then no other thread can 

hold a lock on the same resources (or data) at the same time. 

 

In addition, in Java it is allowed that a single thread can lock the same object multiple 

times by spinning on it. Thus for each object, the JikesRVM maintains a count of the 

number of times that the object has been locked. Initially, an unlocked object has count of 

zero. When a thread acquires the lock for the first time, the count will incremented to 

one. Each time the owner thread acquires a lock on the same object, as only the owner of 

lock is allowed to lock it again, the count will be incremented. Reversely, each time the 

thread releases the lock, the count is decremented by one and when the count reaches 

zero, the lock is released and is made available to other threads and now other thread can 

obtain the lock. 

 

In the figure 5.3, a thread in JikesRVM�s native model will request a lock when it arrives 

at the beginning of a monitor region. The monitor region is a piece of code that needs to 

be executed as one inseparable operation. In other words, it ensures that only one thread 

is able to execute that monitor region (code) from start to end without other threads 

concurrently executing the same code. An object reference is associated with each of the 

monitor regions in Java applications. Therefore, when a thread reaches the first 

instruction of the monitor region, the thread must obtain a lock on the referenced object. 

Otherwise, the thread is not allowed to execute the code until it obtains the lock. Once the 

thread obtained the lock and performs operation in the protected block, also called 

critical section, thread switching will be disabled. When the thread completes operation 

and leaves the block, it releases the lock on the associated object and enables the thread 

switching. The following block represents the critical section. 

 

 



CHAPTER 5. NATIVE THREAD MODEL 
   

 67 

pthread_mutex_lock(pthread_mutex_t *mutex) 

� 

� 

pthread_mutex_unlock(pthread_mutex_t *mutex) 

Monitor Region/Critical Section    

 
 
 
 
 
 

 
Figure 5.3 Mutual Exclusion 
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In the above figure 5.3, thread A is trying to acquire a lock and implementing the Java 

primitives� monitorEnter/monitorExit with the help of pthread mutex and conditional 

variables. Thread A needs to enter into the monitor region in order to perform some 

operation on the protected shared resource. In order to enter into monitor region, thread A 

tries to lock the mutex by thin lock first. If there is no contention then the thread grabs the 

lock and performs the operation (the thin locking is the same as in green thread model as 

discussed in third chapter: Section3.5). If the thread could not get the lock, it will try 

again and eventually it will inflate the lock (i.e. transform the thin lock into thick lock). 

In this situation, if the thread tries to lock the thick lock and it is already locked by some 

other threads, it will wait on the conditional variable and will enter into the blocked state. 

After getting signaled from the owing thread it will lock the mutex by calling 

pthread_mutex_lock function of pthread library. Once it will hold the mutex, it can 

enter in the critical section and can perform operation on protected global data. After 

finishing its task, thread A will exit from the monitor and release the lock. Furthermore, it 

will notify the other waiting threads for this lock by sending signals via 

pthread_cond_signal method of pthread library. 

 

 

5.6.4 Cooperation Implementation  

 

As indicated in below figure 5.4, there are two threads (thread A and B), working 

together in a cooperative manner. Thread A wants the protected global data (int a) in 

some state (e.g. value of a =9) in order to process its task. Thus, A locks the global data a 

and checks the value of it, if condition does not satisfy then it suspends execution and 

waits on the condition variable for the signal from other thread B, by calling 

pthread_cond_wait()routine, until the value of a comes in desired state. This 

method will be used while mutex is locked, and this will also allow the thread to free the 

mutex automatically while it waits for some event. 

As in figure, thread B modifies global data (add 7 to it) and brings in to desired state for 

thread A (a=9), thread B will signal A, which is waiting on the condition variable, via 

pthread_cond_signal() routine and will unlock the mutex. After receiving the 
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notification, thread A will wake up and mutex will be automatically locked for use by the 

thread A. Now thread A can process its operation on the shared global data and will 

explicitly unlock this shared data after use in favor of other thread�s execution. Later, it 

can destroy the condition variable by calling the pthread_cond_destroy() method of 

pthread library. pthread_cond_signal() routine signals only one thread. In 

addition, if there are several threads waiting on a condition variable then we can use 

pthread_cond_broadcast() method to notify them. 

pthread_cond_broadcast() will implement notifyAll method of green model in 

JikesRVM. 

 

Figure 5.4 Implementation of Wait/notify semantics using Pthread functions 
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5.7 Thread Interruption - Cancellation and Termination 
 

The thread termination is associated with several issues and stopping a thread safely, 

quickly, and reliably is not always easy. So it�s better to use a cooperative mechanism (by 

which task and the code requesting cancellation follow an agreed way to stop the thread) 

that lets one thread ask another to stop what it is doing because there is no safe way to 

pre-emptively stop a thread [20]. 

 

Cancellation a thread means, a thread sends request to terminate the execution of another 

thread before it has finished. There are a number of reasons why we might want to cancel 

an activity such as we can click on the �cancel� or �stop� button in GUI application (e.g. 

stop button in Internet explorer). The thread processes the request based on its state. It 

may act immediately and terminate the thread, may act on the request when it reaches the 

cancellation point (discussed below) or may ignore it.  

 

Cancellation point 

In some situations, a thread can be in a state where it can not handle the cancellation 

requests immediately such as holding a lock; in such cases thread defers requests until the 

cancellation point. There could be many reasons for cancellation point such as when a 

thread is in suspended or waiting state. Moreover, some system calls that cause the thread 

to block such as read(), wait(), select() etc. are also cancellation point. 

 

We have two approached to terminate a thread: 

 

Asynchronous cancellation - Asynchronous cancellation terminates the target thread 

immediately 

Deferred cancellation � it allows the target thread to periodically check if it should be 

cancelled. 

We will use the latter approach in the native model, as the Thread.stop method is 

deprecated from Java because it is unsafe as it leaves the shared resources in inconsistent 

state.  
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In native model, we will provide the capability to terminate threads cleanly as pthread 

library has the capability for cancelling a thread safely. In order to terminate a thread, we 

will use the pthread_cancel method of pthread library. This method takes the 

thread id as parameter and then sends the cancellation request to that thread. The 

pthread_self() function returns the thread ID of the calling thread. Following are the 

statement, which we will use to terminate the thread: 

 
p_thread thread_id; 

thread_id= pthread_self(); 

pthread_cancel(thread_id); // thread_id is the id of running 

thread    

 

When the user�s Java thread invokes interrupt method, it would be implemented as 

pthread_cancel() in native model. First, it will creates a cancellation point in the calling 

thread with pthread_testcancel() function. When the thread ensures the cancellation point 

then it calls pthread_cancel() function to terminate the thread safely. Figure 5.5 shows the 

thread cancellation operation in native model. 

 
Figure 5.5 Thread Cancellations 
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5.8 Adding System Calls in JikesRVM 
 

In order to use the Linux POSIX library methods, we will use the system calls mechanism 

in the native threading model. In particular, to add a system call in JikesRVM, we will 

have to make changes in three classes. We are mentioning these changes with an example 

of adding a system call for locking a mutex. These classes are following 

 

1. Add an abstract method to VM_SysCall class; this class supports for low-level 

invocation of C library with static addresses. For example, all classes must have the 

following signature: 

 

public abstract Address sysMutexLock(Address mutex); 

 

2. Add the function in sys.C which actually does the work; this class provides support 

services from operating system required by Java classes.  

 

Address sysMutexLock (pthread_mutex_t *mutex) 

{ 

..... 

pthread_mutex_lock(mutex); 

..... 

} 

3. Add a field with the name of function in VM_BootRecord; in this class there must be 

matching field name (methodnameIP) for each method declared in the VM_SysCall. For 

example, 

 

public Address sysMutexLockIP;  
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5.9 Comparison between Native Model and Green Model 
 

1. The native Pthread model is transparent because of tight coupling between the 

user threads and the kernel threads. Native thread model has ability to take 

advantage of multiprocessor environments. 

 

2. The native model can have advantage over green model if the scheduled 

threads are CPU intensive that means most of the time threads use CPU cycle 

time and rarely go into waiting state. For example, applications like complex 

numerical calculations, in such cases, threads will not go into wait state and 

run until die or finish on their designated kernel threads. Furthermore, this can 

ensure the maximum execution speed for that thread and also prevents the 

performance cost caused by cache invalidation due to thread switching. We 

will evaluate these performance issues in further implementation of native 

model. 

 

3. In m:n green thread model, if one thread makes a blocking system call  then 

other threads block, but this is not the case in native model as each thread is 

running on different processors. In addition, to achieve high-performance on a 

symmetric multiprocessor (SMP) we need one thread per processor as no CPU 

time is wasted in context switching. 

 

4. Native thread model supports relatively simpler for libraries than the green 

thread model as it uses OS�s thread scheduling and virtual machine does not 

have to bother with thread scheduling. 

 

5. Native thread model is pre-emptive and JikesRVM�s green model is not fully 

preemptive. Native threads can switch between threads pre-emptively, they 

can switch control at anytime whereas green threads switches only when 

control is given explicitly by Thread.yield and Object.wait() 
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6. Green thread model is platform independent and whereas native model is 

platform-specific as it uses capabilities of underlying operating system�s 

scheduler. 

 

7. In the native thread model, garbage collector can take more time to stop and 

restart the threads because each thread will be dealt as a process* in this 

model, whereas JikesRVM�s green model provides a quick garbage collection 

(as discussed in section 3.2.3). We can evaluate this performance issue after 

the implementation of pthread model. 
 

8. M:N green thread model does not use priority mechanism and threads are 

scheduled by counters and time outs. In contrast, native threads are scheduled 

by underlying OS�s scheduler and scheduler uses the priority mechanism in 

thread scheduling. 

 

9. In green thread model, threads are created in user-level space so they use less 

kernel resources compare to native thread model where each Java thread 

involves a separate LWP creation and it require additional kernel resources 

such as LWP has its own memory space, file-descriptor and runtime 

environment. 

 

5.10 Summary 

 
In this chapter, we described a means for implementing the native model in JikesRVM by 

using the POSIX pthread library. We described some major portion of native threading 

such as how we can bind Java threads to kernel threads, synchronization: mutual 

exclusion, cooperation and implementation of yield method. 

 

 

 
* processes are heavier than threads. 
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 In addition, we discussed the clean approach for thread cancellation and termination and 

how we can stop and resume the threads in thread scheduling. 

 

We also discussed the fundamental details of contention scope of threads (process and 

global) and also stated some specific details about the pthread attributes such as priority, 

scope and policy. At the end of the chapter, we gave some distinctions between native 

thread and green thread models. Furthermore, we also specified how we can add system 

calls in the JikesRVM as we are intending to use system calls for passing the flow from 

Java classes to pthread library. 
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CHAPTER 6 
 
6.1 Conclusions 
 

In this dissertation we have shown how the direct mapping of Java threads to Operating 

System�s thread in one-to-one fashion and passing the control to operating system�s 

scheduler in order to improve the performance of the JikesRVM�s threading model. 

Furthermore, by introducing the native model, JikesRVM�s threading model can exploit 

the SMP platform efficiently with the cooperation of underlying operating system. 

 

This dissertation explained the main features and key information of Jikes Research 

Virtual Machine; particularly bootstrapping, object model, magic mechanism and other 

main subsystems of JikesRVM including runtime core services, memory management, 

garbage collection, compilers. Then, it provided substantial information about the 

existing threading model followed by a number of issues that we experienced. 

Specifically, the third chapter described how threads were scheduled by m:n green thread 

scheduling and also some details about thread synchronization, JikesRVM�s thread 

queues and states,  and thread switching. It also described load balancing among virtual 

processors.  

 

Furthermore, this research work introduced a new native threading model by 

refactorization of existing thread model into two threading models (green and native).  

 
The fifth chapter has shown the design and implementation indication for new native 

threading model by using POSIX pthread library. Later, we can evaluate the performance 

improvement of this model over JikesRVM�s existing green thread model, particularly 

when the users run the CPU intensive applications. 

 

In essence, our refactorization gives the flexibility to users for choosing either of thread 

models according to the nature of their application. Furthermore, user applications can 

obtain the underlying operating system�s support for fast execution in SMP environment. 
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6.2 Future work 
 

As we contributed the source code for this refactorization into the JikesRVM�s new 

release, there is a substantial amount of work remaining in this direction for future. First 

and foremost work is to bring the native pthread design model into the implementation. 

After the implementation of this native thread model for Linux operating system, we also 

intend to implement the native model for windows operating system with support of 

window native thread library (win32 thread library) so that windows users can also 

benefit from JikesRVM�s fast threading models. 

 

Furthermore, efforts are required to introduce new locking algorithm called �Lock 

Reservation� [21] in the JikesRVM�s threading models. In this strategy, we will evaluate 

the ways to reserve the lock for threads. The advantage of the lock reservation is to 

reduce the cost of subsequent lock operations by the thread because when lock 

reservation is made by a thread, the runtime system will allow the thread to acquire the 

lock with a few instructions involving no atomic operation [21]. 
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7.  APPENDICES 
 

Appendix A 

 

 
 

Thread Switching in JikesRVM at code level 
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Appendix B 

 

build.xml 

 
    <condition property="thread.filter" value="-DRVM_WITH_GREENTHREAD=1"> 
      <equals arg1="${thread.model}" arg2="greenthread"/> 
    </condition> 
    <condition property="thread.filter" value="-DRVM_WITH_PTHREAD=1"> 
      <equals arg1="${thread.model}" arg2="pthread"/> 
    </condition> 
 
   
<condition property="pp_RVM_WITH_GREENTHREAD" value="true" else ="false"> 
      <equals arg1="${thread.model}" arg2="greenthread"/> 
    </condition> 
    <condition property="pp_RVM_WITH_PTHREAD� value="true" else ="false"> 
      <equals arg1="${thread.model}" arg2="pthread"/> 
    </condition> 
 
 
<filter token="_RVM_WITH_GREENTHREAD_" 
value="${pp_RVM_WITH_GREENTHREAD}"/> 
        <filter token="_RVM_WITH_PTHREAD_" 
value="${pp_RVM_WITH_PTHREAD}"/> 
 
   
 
Running the RVM - command line 

// for green thread model 

[root@cspool125 jikesrvm]# rvm -vmt HelloWorld 

 

// for pthread model 

[root@cspool125 jikesrvm]# rvm -pt HelloWorld  
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