

CONFIGURABLE JVM THREADING

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2007

By

Rahul Mehta

School of Computer Science

 2

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1. Introduction 10

 1.1 Motivation and Objective ������������������. 10

 1.2 Organization of Thesis. ������������������� 12

2. Infrastructure 13
 2.1 JikesRVM �����������������������.. 13

 2.1.1 JikesRVM in Java �����������������.. 13

 2.2 How Jikes RVM Starts ������������������.. 14

 2.2.1 Bootstrapping � Boot image Creation and loading ����... 14

 2.3 Magic Classes ���������������������� 17

 2.4 JikesRVM�s Major Sub-systems ��������������... 17

 2.4.1 Object Model �������������������. 18

 2.4.1.1 Object Header ���������������� 20

 2.4.1.2 JTOC ���������������.����. 21

 2.4.2 JikesRVM�s Core Runtime Subsystems �����.���... 22

 2.4.2.1 Exception Management ������������. 22

 2.4.2.2 Thread Management ���������.����. 23

 2.4.2.3 I/O Management and Reflection ���.����.�.. 24

 2.4.3 Memory management ����������.��.���.. 24

 2.4.3.1 How GC works in JikesRVM ����.��.���.. 25

 2.4.4 Compiler subsystem �����������..�����. 25

 2.5 Summary �������������������..����.. 26

 3

3. Current Thread Model 27

 3.1 Overview of Current M:N Green Threading Model �������. 27

 3.2 Thread Scheduling in JikesRVM�s M:N Model ��������.. 30

 3.2.1 Thread Switching �����������������.. 30

 3.2.2 JikesRVM Load Balancing Mechanism ��������... 32

 3.2.3 Scheduling among mutator and collector threads ����� 33

 3.2.3.1 JikesRVM�s parallel garbage collection �....���.. 34

 3.3 Thread states in JikesRVM ����������������.. 35

 3.4 Thread Queues ���������������������. 37

 3.4.1 Processor-local Queues ��������������� 37

 3.4.2 Global Queues �������.............��������. 38

 3.5 Synchronization �������������.�������... 40

 3.5.1 Mutual exclusion (locking/unlocking) ���������. 40

 3.5.1.1 Processor-lock ���������������.. 40

 3.5.1.2 Thin and thick lock �������������.. 42

 3.5.2 Cooperation (wait/notify) ��������.������ 43

 3.6 Drawbacks of M:N green thread model ������.�����.. 44

 3.7 Summary ������������������.��...��.. 45

4. Re-factoring and Design Pattern 47
 4.1 Introduction ����������������������. 47

 4.2 Our approach for re-factorization �������������� 48

 4.2.1 Factory Method � Design Pattern ����������� 48

 4.2.2 Why we used Factory Design Pattern ���������. 48

 4.2.3 Factory Design Patter in Our Framework �������... 49

 4.3 Our Design Attempt ������������������� 52

 4.4 Re-factoring at code-level (Code-Snippet) ����������. 53

 4.5 Flexible Threading model � User�s choice ����������. 55

 4.5.1 Properties defined in VM_Properties ��������.�. 55

 4.5.2 Prefixes defined in VM_CommandLineArgs ������. 56

 4

 4.5.3 Configure build.xml ���������������� 57

 4.6 Summary ���������������.�..������.. 57

5 Native Thread Model 58
 5.1 Introduction ��������������.����.���.. 58

 5.2 Native Thread Model �����������.���.���... 58

 5.3 Native Pthread Scheduling ���������..���.���.. 60

 5.4 Binding Java thread to Kernel Thread - CPU Affinity ��.���.. 61

 5.5 Implementation of yield method �������������� 61

 5.6 Thread Synchronization � Monitor ������������� 63

 5.6.1 Mutex ���������������������. 63

 5.6.2 Condition Variable ����������������. 64

 5.6.2.1 Waiting on a condition variable ��������. 64

 5.6.2.2 Signaling condition variable ���������... 65

 5.6.3 Mutual Exclusion Implementation ����������. 66

 5.6.4 Cooperation �Implementation ������������ 68

 5.7 Thread Interruption ������������������.� 70

 5.8 Adding System calls in JikesRVM �������������. 72

 5.9 Comparison between Native thread and Green thread model ��� 73

 5.10 Summary �����������������������. 74

6. Conclusions and Future work 76

 6.1 Conclusions ����������������������. 76

 6.2 Future Work ���������������������� 77

7. Appendices 78

8. References 80

 5

List of Figures

 Figure 2.1 Boot Image Creation and Loading ����.��������. 16

 Figure 2.2 JikesRVM � Subsystems and Core Services ����..����. 18

 Figure 2.3 Layout of an array object and a scalar object in JikesRVM ��.... 20

 Figure 2.4 JikesRVM Table of Contents (JTOC) ���������.�� 22

 Figure 3.1 JikesRVM�s M:N green threading Model �������..��. 29

 Figure 3.2 JikesRVM�s M:N green thread Scheduling ������..��.. 30

 Figure 3.3 Transition b/w mutator and collector threads and phases of

 parallel GC ����������������������.�... 34

 Figure 3.4 Thread States in JikesRVM �����������.���.. 37

 Figure 4.1 Division of the JikesRVM�s scheduler API ��������.. 47

 Figure 4.2 UML Diagram of Factorization of Scheduler API �..����.. 49

 Figure 4.3 Structure of Factory Pattern in SchedulerAPI ���...���� 50

 Figure 4.4 Program Flow ��������������...�����.. 51

 Figure 5.1 Native Thread Model in JikesRVM ������.�����.. 59

 Figure 5.2 Thread yield in native model ��������������.. 62

 Figure 5.3 Mutual Exclusion ������������..������. 67

 Figure 5.4 Implementing Wait/notify semantics using Pthread functions �.. 69

 Figure 5.5 Thread Cancellation �����������������... 71

 6

Abstract

Multi-threading is one of the most important features of modern programming languages:

running the multiple threads at a time on Symmetric Multiprocessing (SMP) environment

gives the high performance in terms of execution speed and parallelism. In addition,

multithreaded programs can improve the throughput on SMP environment by utilizing

the available processors more effectively. This dissertation presents a means of

implementing Java threads using underlying native mechanism.

This dissertation first presents the key details of JikesRVM. Then, it describes the

existing multi-threaded green model in JikesRVM followed by a number of issues in this

threading system. This dissertation explains how we can exploit the multi-processor

environment by direct binding of Java threads to operating system�s threads.

This dissertation illustrates the clean refactorization of existing thread model into two

separate thread models. With this refactorization, users can choose the more appropriate

threading models according to the nature of their applications. This dissertation concludes

by explaining design and implementation of major components of native thread model in

JikesRVM using POSIX pthread library.

 7

Declaration

 No portion of the work referred to in this dissertation has been submitted in

 support of an application for another degree or qualification of this or any other

 university or other institution of learning.

 8

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either in

full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the John Rylands University Library of Manchester. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not be

made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this thesis is

vested in the University of Manchester, subject to any prior agreement to the contrary,

and may not be made available for use by third parties without the written permission of

the University, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Head of the School of Computer Science.

 9

Acknowledgements

It gives me immense pleasure to express my profound sense of gratitude to my supervisor

Prof. Ian Watson who provided the opportunity as well as all the facilities to carry out

this project. His admirable forbearance, valuable guidance and motivation helped me

complete this thesis work.

I am deeply indebted to my co-supervisor Dr. Ian Rogers whose help, valuable

suggestions and stimulating support made it feasible to carry the present work to

conclusion. His thorough understanding of this work, insightful discussions and

explanations were really impressive and encouraging. Furthermore, his informative

feedback led to overall improvement of this work.

I also express my thanks to my colleagues in APT group, Mr. Mikel Baer and Mr.

Mohammad Ansari for their interesting ideas and discussions on JikesRVM�s threading

model. Furthermore, I am grateful to Mr. Andrew Dinn for his valuable hints and prompt

help on JikesRVM�s threading model, through long emails. I am also thankful to Dr.

Chris Kirkham and Dr. Mikel Lujan for their comments and valuable suggestions during

my presentation.

I am in dearth of proper words to express my feelings towards my parents who apart from

providing me the best available education, have always encouraged me in all my

endeavors. I also appreciate the affection and moral support given by my elder brothers

Sanjiv and Saurabh who have always pumped a new zeal and spirit in me at all the

challenging times. I also express my thanks to my friend Mr. Siddarth who, with all his

courtesy and alacrity helped me in this endeavor. Finally, I would like to express my

gratitude to all those whose help and support led to the completion of this dissertation.

(RAHUL MEHTA)

 10

CHAPTER 1

Introduction

In this thesis, we present the existing green threading m:n model of the JikesRVM,

implementation of a clean refactorization of existing thread model into green thread and

native thread models, an attempt to give direction for native thread model using POSIX

thread library. We used the last version of JikesRVM (JikesRVM 2.9.0) in order to do our

research and development in threading model. This work was carried out in the Advanced

Processor Technology (APT) group, Computer Science Department at the University of

Manchester.

1.1 Motivation and Objective

The main aim to design native threading model in Jikes Research Virtual Machine is to

provide true concurrency and parallelism in multiprocessor environment and is to gain

performance from multiprocessing hardware (parallelism). A further motive is to give

threading control to operating system and to improve the modularity.

Currently, JikesRVM supports an m:n green thread model where scheduling is done in

user space; m Java threads map on to n virtual processors (which are further mapped on

operating system�s threads). We experienced a number of performance issues in the

existing model. For instance, the current model is using a �jacket� routine around

input/output blocking operations; this jacket routine intercepts the blocking I/O

operations and replaces with non-blocking (asynchronous I/O) operations. However,

JikesRVM is not always able to intercept blocking I/O operations in native code and

cannot set �yield points�* in the native code. This could be the cause of deadlock of

*yield point is described in section 3.1, 3.3.3 and 3.6.

CHAPTER 1. INTRODUCTION

 11

VM_Processor and they would not be able to schedule the other threads. Direct mapping

of Java threads to operating system threads (pthreads) and giving control to operating

system to schedule the threads by using a regular native model can overcome such issues.

Building on the operating system�s native pre-emptive scheduling provides the tight

coupling with kernel so that applications can use the system resources efficiently and

optimally which would increase application throughput and responsiveness. Furthermore,

a number of empirical studies indicate that pthread ends up becoming faster [1].

We also aim to provide the choice of both green thread and native thread to the users so

that they can exploit the flexible threading system of JikesRVM by having this choice

according to nature of their application.

For example, they can use native model for normal cases where intensive computation is

required and can use m:n green thread model (existing JikesRVM threading model) when

they are going to have very large number of threads such as for server applications where

numerous client requests need to be processed.

The objectives of this work are to examine the behaviour of the existing threading model

and to enhance its capabilities by a clean refactorization and introducing a new native

thread model.

CHAPTER 1. INTRODUCTION

 12

Organization of Thesis

This thesis is organized into six chapters. In each chapter some specific details of the

JikesRVM, m:n threading model and native model have been discussed. It will also

describe our analysis for future pthread model by native support. Following is a succinct

description of each chapter:

Chapter 2 discusses the key details of the JikesRVM, its architecture, bootstrapping

mechanism and major subsystems such as runtime service, memory management, object

model, compiler.

Chapter 3 discusses the current threading model, thread queues, synchronization,

locking/unlocking, thread cooperation, thread states in JikesRVM, load balancing,

garbage collection and issues in existing threading model.

Chapter 4 discusses the factory design pattern, refactorization of existing threading

model, clean approach for keeping both models and separate command line arguments.

Chapter 5 discusses an implementation of native threads using the POSIX thread library

and its benefits over the m:n, some major components of pthread such as mutex,

conditional variables and cancellation point and indicates how the native model will look

like in the real system

Chapter 6 Conclusions and future work

 13

CHAPTER 2

Infrastructure

This dissertation is based on the threading model of JikesRVM and describes the current

threading model (m:n green thread model) and future one-to-one native model using

Linux POSIX library. This chapter explains the fundamentals of JikesRVM and its main

subsystems briefly.

2.1 JikesRVM

JikesRVM is a Research Virtual Machine initially developed by IBM. It is now an open-

source project. The salient features of JikesRVM are that it is implemented in the Java

programming language and is self-hosted, which means that its Java code runs on itself

without requiring another virtual machine.

Fundamentally, JikesRVM comprises two bytecode-to-native compilers: baseline and

optimizing; both having their own advantages. It also implements modern garbage

collectors and includes an adaptive compilation infrastructure. JikesRVM does not use

interpreter, in other words JikesRVM is completely based on the Just-In-Time

compilation with the choice between two different compilers. This section describes

important details of Jikesrvm that are useful to understand this dissertation and

JikesRVM.

2.1 JikesRVM in Java

Almost all of the components of JikesRVM are written in Java, this means that the

different components of JikesRVM have tight coupling and that these components

support each other more strongly as compared to other available virtual machines: for

CHAPTER 2. INFRASTRUCTURE

 14

example, the compilers compile the code of the garbage collectors and the garbage

collectors reclaim memory of unused objects allocated by the compilers. However, not all

the components of Jikes RVM are written in Java, some of these are written in the C

programming language. The Boot Image Runner, a tiny C program is responsible for

starting Jikes RVM. Magic mechanism provides low-levels system code that is necessary

to implement Jikes virtual machine. We will adhere with this and will explain briefly in

the next section.

Another interesting aspect of JikesRVM is its self-hosting which has both, the upside and

downside. One of the benefits is that all of the components of virtual machine get

advantages from each other�s improvements; for instance, the performance of the

allocation sequence of the garbage collector benefits from the compiler�s ability to inline

and optimize it. On the other hand, the major challenge is that different components of

JikesRVM are under more stress because they have to service not only the application but

also the virtual machine itself.

2.2 How Jikes RVM Starts

2.2.1 Bootstrapping � Boot image Creation and loading

JikesRVM starts from the boot image, a set of files containing the compiled code and

Java objects that are needed to start execution of JikesRVM. Before the JikesRVM loads

into memory, a set of essential core services - a class loader, a JIT compiler, garbage

collector and an object allocator - are required for operation. Generally, these initial core

services for a JVM are written in native code, but JikesRVM is written in Java and it has

no underlying run-time routines. Thus all the essential core services are assembled into an

executable boot image. This boot image, also called a snapshot of JikesRVM [2], is

written into a file and this file must be loaded into memory and then executed to run the

JikesRVM. For creating the Boot Image, the host JVM would need to execute a Java

program, called the boot image writer.

CHAPTER 2. INFRASTRUCTURE

 15

The boot image writer executes the initialization code for various Jikes RVM classes;

also known as primordial classes, to pre-allocate Java objects. The boot-image writer

constructs a mock-up of running JikesRVM and then put into a boot image. This builds a

boot image for the execution of JikesRVM. The JVM, which runs the boot-image writer

program, is called the bootstrap JVM.

When the source JVM (e.g. Sun Hotspot) runs the boot-image writer program, it

instantiates the Java objects of the Jikes virtual machine in objects of source JVM. Then

it uses Java�s built-in reflection facility to translate these mock-up objects from the object

model of bootstrap JVM to JikesVM�s object model and storing them in a boot-image

array. This is the transformation process of creating the boot-image.

A short C program called the boot-image runner starts JikesRVM. The Boot-runner loads

the boot image into memory and jumps to the address of the instructions responsible for

starting the JVM, which were compiled from Java at build time and then branches to

boot() method. The VM.boot method is the first Java method executed in the boot image.

Once JikesRVM started running then it would not need the bootstrap JVM anymore. The

whole process of boot image creation and loading is indicated in the figure 2.1.

CHAPTER 2. INFRASTRUCTURE

 16

Figure 2.1 Boot Image Creation and Loading [3]

CHAPTER 2. INFRASTRUCTURE

 17

2.3 Magic Classes

As JikesRVM is written in Java, low level functionality, which is not possible to write in

pure Java, is implemented through the special MAGIC mechanism. Magic mechanism

allows JikesRVM to implement certain functionalities such as invoking underlying

operating system�s (OS) services, accessing machine registers, read/write value from/to

memory, make system calls etc. In addition, input/output requires access to OS services

and pointer manipulation that are unknown to Java. Thus magic helps in achieving these

low-level services.

Magic mechanism looks like normal Java object with methods. They are identified by the

compiler and translated into low-level operations. Magic class contains empty methods.

When the compiler identifies these methods; it inserts the corresponding machine code in

line.

2.4 JikesRVM�s Major Sub-systems

Figure 2.2 indicates the main sub-systems and the core services of the JikesRVM and

also the process through which they communicate with the underlying operating system.

CHAPTER 2. INFRASTRUCTURE

 18

Figure 2.2 JikesRVM � Subsystems and Core Services

JikesRVM can be divided into three major components: core runtime services, compilers

and memory managers/garbage collection. Succinct details about each component and

their functions have been provided in the following sections followed by the Object

Model as it underlies the other systems.

2.4.1 Object Model

JikesRVM�s object model specifies how to represent objects in memory. The

VM_ObjectModel class defines JikesRVM�s object in source code. Generally, Java

virtual machines perform operations on certain types of data and these data types are

defined by the Java library. In the Java programming language, a data type can be divided

CHAPTER 2. INFRASTRUCTURE

 19

into two categories: primitive and reference data types. Primitive type variables and

reference type variables hold primitive values (int, double, etc.) and reference values

respectively. Reference values refer to objects but they are not objects themselves.

Objects are either arrays having elements or scalars (class instance) having fields. In

addition, one other reference value is the null value, which specifies that the reference

variable does not refer to any object.

JikesRVM�s object model is based and developed on the following requirements:

1. Allowing fast access to instance field and array elements

2. Virtual dispatch method should be fast

3. Performing Null pointer checks by the hardware

4. Less frequent operations should not be slow

5. Supporting fast access to static objects and methods

6. Reducing overhead related to object storage (e.g. object header size) in order to

minimize heap space overhead [2].

If the reference to an object is stored in a register then the fields of the object can be

accessed at a fixed displacement in a single RISC instruction. In contrast, for the array

access, the reference points to the first element of the array and the remaining elements

are positioned in the ascending order. The number of elements is kept before its first

element as indicated in the figure 2.3. Thus the array elements can be accessed through

base and scaled index addressing. In JikesRVM, arrays grow up from the object

reference; while scalar objects grow down from the object reference (see Figure 2.3).

CHAPTER 2. INFRASTRUCTURE

 20

Figure 2.3 Layout of an array object and a scalar object in JikesRVM [2]

2.4.1.1 Object Header

In standard configurations, the JikesRVM has a two-word object header attached with

each object, which supports virtual method dispatch, dynamic type checking, memory

management, synchronization, and hashing. It is positioned twelve bytes (3-word) below

the value of a reference to the object because this leaves space for the length field, if

object is an array.

One word of the object header is status and the other is the TIB. The status word is

further divided into three bit fields. The first bit field is used for locking (for associating a

lock state); it contains a pointer to a lock object or direct presentation of the lock, we will

see this in further chapters. The second bit field holds the default identity hash value of

objects. The third bit field is used by the memory management system for associating

garbage collection information. This can include a combination of reference count,

forwarding pointer, and other GC information.

CHAPTER 2. INFRASTRUCTURE

 21

The other word of an object header is a reference to the Type Information Block (TIB) for

the object's class. A TIB is an array of Java object references and serves as Jikes's virtual

method table. Its first element specifies the object's class. The remaining components are

compiled method bodies (executable code) for the virtual methods of the class [2].

The object header implementation is defined by three Java classes in the JikesRVM:

VM_JavaHeader, which supports locking, TIB access, and hash code; garbage collection

information is supported by VM_AllocatorHeader; and there is one more Java program

that is called VM_MiscHeader, which supports adding additional fields to all objects.

2.4.1.2 JTOC � methods and fields

JikesRVM Table of Contents (JTOC) is declared as an array of ints in JikesRVM but

contains values of all types because JikesRVM uses a descriptor array (co-indexed with

the JTOC) to identify the type of each entry. The reference to this array (JTOC array) is

maintained in a machine register is called JTOC register. JTOC stores all the static fields

and the references to all the static method bodies. All the JikesRVM�s global data

structures are also accessible through pointers hold in JTOC. Moreover, numeric

constants and literals also reside in JTOC. The JTOC also contains pointers to TIBs in

order to enable fast-dynamic type checking. In the JTOC, reference and non-reference

values are indexed positively and negatively respectively with respect to the middle of

the table so that garbage collector can differentiate them. In addition, the JTOC register

always points to the middle element. Figure 2.4 illustrates the JTOC in memory.

CHAPTER 2. INFRASTRUCTURE

 22

Figure 2.4 JikesRVM Table of Contents (JTOC) [4]

2.4.2 JikesRVM�s Core Runtime Subsystems

One of the unique components of the JikesRVM is its runtime service; it includes

exception handling, thread scheduling, dynamic class loading, dynamic type checking,

reflection, Input/Output, interface invocation etc. These all are implemented in Java with

the use of MAGIC classes. However, these are conventionally implemented using native

code (typically in C/C++, assembler code) in other JVMs. These are explained briefly in

the section below:

2.4.2.1 Exception Management

In JikesRVM, exceptions can be explicitly generated either by software (example athrow)

or by hardware (both synchronous and asynchronous exceptions). The cause of hardware

exception could be if a null-pointer is dereferenced, number divided by zero, and stack-

overflow. JikesRVM handles the software exceptions internally and the hardware

CHAPTER 2. INFRASTRUCTURE

 23

exceptions are handled through the native support. A small C interrupt handler catches

hardware exceptions particularly. This interrupt handler calls a Java method and this

method builds the appropriate exception and passes it to the delieverException method.

Then VM_Runtime.delieverException has to perform two tasks; first, it must save in the

exception object information that would allow a stack trace to be printed, if needed. It

does this by the walking up the stack and recording the compiled method identifiers and

next instructor pointer for each stack frame. The second task involves, transferring

control to appropriate catch block. This also involves walking the stack [5]. When a catch

block is found, update in VM_Register is made so catch block can find compiler-specific

exception object and then modify the VM_Register to resume execution at first

instruction in catch block. If no catch block is encountered, JikesRVM kills the thread.

In order to walk the thread stack, the exception handler uses the memory access facilities.

It also exploits magic services for restoring the register state and transferring control

whenever an appropriate catch block is found.

2.4.2.2 Thread Management

Currently, JikesRVM is using m:n green threading model, which means that all threads

are scheduled by the virtual-machine itself in the user space. JikesRVM multiplexes m

Java threads to the n operating system threads which ensure that virtual machine is

running at least n threads simultaneously. JikesRVM does not map Java threads to

operating system threads directly; it multiplexes Java threads on virtual processors that

further implemented as OS threads. This model is also called user-level model, because

threads are scheduled in user-space; no calls into operating system are required to handle

any of the thread detail.

The fundamental goals of mapping threads on virtual processor are to support rapid

thread switching and fast transition between Java threads (mutators) and garbage

collection threads. In this model, underlying operating system does not know about the

threads scheduling at all; it is up to the JikesRVM to handle this. We will explain about

CHAPTER 2. INFRASTRUCTURE

 24

the current m:n green threading model and will discuss the future native thread model in

next chapters.

2.4.2.3 I/O Management and Reflection

I/O: The input/output operations need operating system's support. JikesRVM uses system

calls mechanism to communicate with the underlying operating system. In order to read

a block from a file or write something in it, an operating system routine is called with a

Java array for copying its result.

Reflection: With the use of reflection mechanism JikesRVM allows run-time access to

fields and invocation of methods. For passing the parameters to and from the caller,

JikesRVM creates additional artificial frames on thread stack. When the method returns,

the stack frame disposed of and the result returns to the reflective call.

2.4.3 Memory Management

Memory management is itself a huge topic but we will describe an overview of it along

with how garbage collector (GC) works in JikesRVM. JikesRVM supports four major

types of manager systems, these are copying, noncopying, generational copying and

generational noncopying. Each memory manager consists of a concurrent object

allocator and a stop-the-world, parallel, type accurate garbage collector. In addition,

JikesRVM can be configured to use different allocation managers provided by the

MMTk. These allocation managers automatically divide the available memory as they see

fit.

More specifically, in MMTk, there is a main class that is called Plan, which is used to

interface to memory manager and contains different implementation for each type of

memory manager. Most of the plans are inherited from class StopTheWorldGC [6] that

ensures that all the active Java threads are suspended before reclamation is started, in the

next section we will see how it happens in JikesRVM.

CHAPTER 2. INFRASTRUCTURE

 25

2.4.3.1 How GC works in JikesRVM

A collector thread is associated with each virtual processor in JikesRVM. JikesRVM

operates in one of two modes either normal Java threads are running, and the GC threads

are idle or GC threads are running and the Java threads are idle. In JikesRVM, mutator

threads request for the collection thread when the allocator cannot satisfy the space

request by them.

When the mutator threads run, collector threads wait in the waiting queue. Once the

mutators trigger the collector threads, they start reclaiming memory on their virtual

processors. Furthermore, GC begins when the executing thread on each processor reaches

the safe point. In the next chapter, we will describe how mutator and collector threads

schedule on virtual processors interchangeably and about the parallel GC and its phases.

2.4.4 Compiler Subsystem

The core function of JikesRVM compiler subsystem is to generate the machine code from

the Java bytecode. The compiler subsystem comprises two types of compilers: the

baseline compiler and the optimising compiler. They can be differentiated from each

other in terms of compilation time and the quality of code that they generate.

The mechanism employed by the baseline compiler is very simple and straightforward

and it does the byte-by-byte translation of Java byte codes into machine code. It directly

translates bytecode into machine code, thus the baseline compiler generates machine code

very quickly. However the downside of base compiler is the poor performance of the

machine code generated by it, because the base compiler does not implement any

optimisation. The other compiler is the optimizing compiler and it produces high

performance machine code because of its complex optimization. However, optimising

compiler takes longer compiling time than the baseline compiler, which is a cause of

higher cost compilation.

CHAPTER 2. INFRASTRUCTURE

 26

Another important task of the JikesRVM�s compilers is to maintain tables that support

both exception handling and that allow memory managers to find out the object

references on the thread stack. Reference maps help in locating the object reference for

each safe point in the method body. When a call to garbage collection is made, each of

the methods represented on the thread stack will be at garbage collection safe point. Thus

for any given safe point within the method body [2], the compiler that created the method

body must be able to illustrate where the live references exist.

2.5 Summary

In summary, we have discussed the JikesRVM and it main subsystems and the core

services briefly, which are important to understand the JikesRVM. Now in next few

chapters, we will discuss the current threading model and performance issues in it and

how we can resolve them by introducing the native thread model.

 27

CHAPTER 3

Current Thread Model

3.1 Overview of Current M:N Green Threading Model

As in the preamble of JikesRVM in the previous chapter, we discussed about the current

thread implementation of JikesRVM in brief, which is m:n green thread model. We call

m:n model because several Java threads (M) schedule and implement on limited

underlying operating system�s thread (N). Thus it ensures that JikesRVM is running an

utmost of n threads simultaneously. We also call it a green model because the thread

scheduling in JikesRVM is done in the user-space. Therefore the responsibility of thread

scheduling is on the virtual machine.

JikesRVM introduced the concept of a virtual processor in order to achieve quicker

thread switching among the threads and fast transition between mutators and the collector

threads. The Virtual processors (VM_Processor.java) are the Java objects implemented as

operating system�s pthread. As we mentioned previously, all Java threads running on the

top of JikesRVM map to the virtual processors, which are further, multiplexed on the

underlying OS threads.

In the current model, the underlying operating system does not know anything about the

threads scheduling at all; it is up to the JikesVM to manage them; JikesVM holds all the

details of the threading API in scheduler package. The benefit of the current model is that

it is portable because this model does not depend on the specific operating system to

provide any thread specific details.

JikesRVM thread scheduling is based on quasi-preemptive which means neither fully

preemptive nor �run until blocked� since it is driven by the JikesRVM compiler.

However, in JikesRVM threads can be preempted but only at predefined yield-point. The

CHAPTER 3. CURRENT THREAD MODEL

 28

compiler sets up a special code for yield point within each compiled method body that

causes currently running thread to request its virtual processor if it can continue running

or not. If the VP grants the execution, the thread continues until a new yield point is

reached, otherwise it suspends itself in favor of other threads so that the virtual processor

can execute another virtual thread. In addition, at the yield point, JikesRVM compiler

provides information about object references on the thread�s stack, which could be used

by GC to reclaim memory. So here the noticeable point is the process through which

these three components work together (compiler, garbage collection and threading

model).

All Java threads such as application threads, system threads (garbage collector threads,

idle threads) etc. derive from virtual machine thread, VM_Thread. JikesRVM does not

directly map them to operating system threads. Instead, JikesRVM creates a virtual

processor object (VM_Processor) for each pthread in use and Java threads map on them.

Each virtual processor is bound to a pthread (normally one pthread for each physical

CPU). If the users want to exploit the multi-processor architecture with JikesRVM, they

need to specify the number of virtual processors as a command line argument; this

number must not be more than the number of physical CPUs. For example �

X:processors=5, in this case JikesRVM will create five virtual processors and all the vm

threads will be scheduled on them, otherwise by default JikesRVM creates only one

virtual processor. A thread stops execution when it calls the yield method voluntarily, or

interrupted and blocked by a lock.

A couple of queues are associated with each virtual processor, also called the processor-

local queues, and there are other queues called the global queues (they are common to all

virtual processors) so all virtual processors need to synchronize access to them. These

queues hold threads such as runnable threads, idle threads, blocked threads, waiting

threads and transferring threads etc.

Threads in different states reside in separate queues such as an idleQueue only holds an

idle thread that will execute whenever virtual processors have nothing to do, a

readyQueue holds only ready to execute threads and so on.

CHAPTER 3. CURRENT THREAD MODEL

 29

JikesRVM�s scheduler follows FIFO and RR policy that means it always selects the first

thread from the readyQueue and assigns to the virtual processor for execution and if it

suspends then adds in to the rear of the queue. In addition, JikesRVM has a timer

interrupt event (timer-tick) that sets timeSliceExpired. If the time slice expired of the

current thread, it suspends execution in favor of other threads and enqueue in the run

queue. If the runQueue associated with its VP is empty then suspended thread schedules

again on the same VP otherwise this thread can move to a random virtual processor if its

current processor has other runnable work.

There is no time slicing mechanism for JikesRVM's scheduler as Java Runtime

Environment does not provide this. Currently, JikesRVM has no priority mechanism,

which means all the threads run at the same priority. The following figures 3.1 and 3.2

indicate the high-level and detailed thread scheduling respectively, in JikesRVM�s m:n

threading model.

Figure 3.1 JikesRVM�s M:N threading Model

CHAPTER 3. CURRENT THREAD MODEL

 30

3.2 Thread Scheduling in JikesRVM�s M:N model

Figure 3.2 JikesRVM�s M:N green thread Scheduling

3.2.1 Thread Switching

Switching from one thread to another in the current threading model is a complex

operation and is normally managed by the four main methods: yield() and morph() (of

VM_Thread) and dispatch() (of VM_Processor) and threadSwitch() of (VM_Magic).

Let�s take an example of two threads A and B. Yield() suspends execution of the current

thread (A), in favor of some other thread (B), in other words it gives the chance to thread

CHAPTER 3. CURRENT THREAD MODEL

 31

B to execute on the Virtual Processor. It places thread A on any indicated queue either

processor-local (like ioQueue) or global queue (such as proxyWaitingQueue etc.). For

global queues, it locks the queue before putting the thread (A) on it. It also ensures

whether this thread is not available on any other queue. This method is also responsible to

set the value true to thread's beingDispatched field in order to prevent it (thread A) to not

schedule on some other virtual processor as thread A�s stack in use by some other

dispatcher. Then it transfers the control to morph method of VM_Thread.

morph() performs some housekeeping operations and transfers the control to the dispatch

method of VM_Processor which is responsible to select the next thread (B) to execute.

dispatch() of VM_Processor does selection of the next thread to be executed on the

processor by invoking the getRunnableThread() of the VM_Processor.

getRunnableThread() will check the transferQueue to see whether the next thread (B) is a

collector thread (if yes it would return the thread) or mutator thread. If it is mutator then it

would check whether this thread's stack (B's stack) is used by other dispatcher, if yes it

would enqueue that thread back to the transferQueue. If the thread's stack is not used by

any other dispatcher then this method transfers the thread (B) from the transferQueue to

readyQueue for the execution.

dispatch() makes the current running thread (A) to previous thread and take thread (B)

from the readyQueue and makes it active thread and then invokes the

VM_Magic.threadSwitch to save the hardware context of thread A and restore the

hardware context of B.

VM_Magic.threadSwitch method switches the threads; saves and restores some registers

such as non-volatile fpr (frame pointer), gpr (general purpose) registers etc. In addition, it

takes two parameters currentThread and restoreRegs; currentThread parameter is for

currently running thread and restoreRegs parameter is for registers from which it restores

the hardware state of another thread B. Finally, it appears as if B�s previous call to

dispatch has just returned and it continues executing [7].

CHAPTER 3. CURRENT THREAD MODEL

 32

A diagram illustrates thread switching at code level is attached in appendices section

(appendix A) at the end of this dissertation.

3.2.2 JikesRVM Load Balancing Mechanism - migration of threads among

virtual processors

In JikesRVM load balancing mechanism, a thread moves from one virtual processor to

another (if transferring virtual processor has much runnable work and other virtual

processor has nothing to do). This transfer of threads or sharing work among virtual

processors happens because either a timer tick or a collector thread interrupts the thread.

These movements of threads among virtual processors will not applicable if the thread is

last executable thread on the current virtual processor.

We have mentioned that an idleQueue is associated with each virtual processor, which

contains only one, idle thread. Thus, when a VM processor has no other executable thread

then its idle thread wakes up and runs in order to post request for work. Then it enters in

the busy-wait cycle for a very short time (approx. 0.001 seconds). If no work arrives in

this period, the virtual processor surrenders rest of its time slice back to underlying

operating system [7]. However, if any virtual processor notices that this one needs work,

it will add an extra runnable thread (if it has extra) by transferring to this processor�s

transferQueue. And when work arrives, the idle thread goes back to the idleQueue of the

processor and the transferred thread starts execution.

Load balancing is managed by three main methods of VM_processor class of scheduler

package: transferThread(), scheduleThread() and chooseNextProcessor().

scheduleThread() puts the thread on the most lightly loaded virtual processor. This

method is responsible to check whether the thread is the last runnable thread on the

processor, if it is, then scheduleThread() does not allow it to move on other virtual

processor. It also checks that other virtual processor(s) is/are idle; if they are idle then it

transfers the threads by invoking the transferThread() to add the threads to virtual

processor's transferQueue in order to transfer the threads. Furthermore, this method

CHAPTER 3. CURRENT THREAD MODEL

 33

distributes the threads to available virtual processor in a round-robin fashion by invoking

the chooseNextProcessor().

3.2.3 Scheduling among mutator threads and collector threads:

As we discussed in the previous chapter that one collector thread associated with each

virtual processor so it allows JikesRVM to run in one of two modes: either the Java

threads are running or the collector threads are running. When the mutator threads are

running, the collector threads will stay idle and when the garbage collector threads start

executing, mutator threads will go to sleep and will only resume automatically when GC

threads return.

When normal Java threads makes a request for memory space that the allocator cannot

satisfy or the application makes an explicit call (System.gc()) then garbage collection is

triggered. Once a collection is requested, the collector threads are notified and scheduled

for execution like normal threads on their corresponding virtual processors. When the

garbage collector threads start executing, they disable the thread switching on their

corresponding virtual processors and they intimate other GC threads that they have

control of their virtual processors. In addition, these collector threads perform some

initialization and synchronize themselves with each other at the first rendezvous instance.

It is called the parallel garbage collection. JikesRVM executes its garbage collector

threads in parallel.

Another salient feature of JikesRVM's scheduling is, when GC threads are running, all

mutators must be at yield points. Since all yield points are safe points in JikesRVM, the

collector threads can start with collection to reclaim the memory space. JikesRVM uses

stop-the-world garbage collection algorithm as it stops the thread switching and

execution of mutators. Furthermore, when all the mutator threads reach the safe points

then collector threads start reclaiming the memory.

When the collection is finished, the GC threads re-enable the thread-switching on their

virtual processors and then wait until another collection request being made. In contrast,

CHAPTER 3. CURRENT THREAD MODEL

 34

mutator threads do not need notification; they start up automatically as the GC threads

release their virtual processors.

3.2.3.1 JikesRVM's parallel garbage collection

In order to perform the parallel garbage collection, all collector threads must synchronize

themselves at the end of each of three phases as indicated in the figure 3.3. For this

purpose, JikesRVM provides the rendezvous mechanism where no GC thread proceeds

before the rendezvous point until all GC threads reach it. In other words, all the GC

threads meet at the rendezvous point and start claiming the memory together.

Fig. 3.3 Transition b/w mutator and collector threads and phases of parallel GC [8]

In initialization phase, all collector threads participate. All collector threads (copying

collector threads) make new copies of their own objects and their virtual processor's

object because the old copy will be discarded after collection and changes are made into

CHAPTER 3. CURRENT THREAD MODEL

 35

new copy (this is the downside of copying managers because they waste about half of this

memory).

In root identification and scan phase, GC threads contend for each mutator's stack and for

the JTOC and scan them in parallel for roots and then mark them. They place marked

roots (also known as object reference) into the work queue and then they mark the objects

that are accessible by the object references available in work queue. Each GC thread

marks one object because of synchronized marking operation. Then for scanning the

object reference, it removes the objects from the global work queue. In finish phase,

collector threads get the empty space for the next mutator cycle. All three phases and

switching among mutator and collection threads are indicated in the above figure [8].

3.2 Thread States in JikesRVM

At a conceptual level, every thread in the JikesRVM can be in one of the eight states of

its lifecycle. Figure 3.4 shows the thread states. These are following:

New: When a thread creates (that is, when thread�s constructor is called) then it will be in

new state. It remains in initial condition until its start method is called. It can start

execution immediately if no other thread(s) is running on the available cpu(s) or can wait

for its turn.

Runnable/Active: A thread starts running once its start method called. When the

scheduler assigns thread to available CPU and when they start using CPU�s cycle time

then they come in the runnable state.

Ready: threads that are in readyQueue are waiting for a chance to run. When the active

threads finish their task or block into waiting state then threads in ready state become

active and schedule on the processor from the ready state.

Blocked: A thread is in a blocked state if it is waiting for a lock on monitor. This will

remain in the block state until the owner of the lock releases it.

CHAPTER 3. CURRENT THREAD MODEL

 36

I/O Waiting: A thread is in I/O waiting state if it cannot be run because it is waiting for

some specific event to occur. For instance, an active thread can be suspended due to

blocking input/output operations and then it deadlocks the virtual processor until it

resumes.

Suspended: A thread is in a suspended state if it is waiting for On-stack replacement

(OSR)*. Threads are rescheduled by recompilation when OSR is done.

Waiting/ Sleeping: A Thread is waiting for some event or for some specific time is in

this state. A thread can be in a sleep state for some milliseconds. Waiting thread could be

notified by the other threads through sending the signals. Furthermore, waiting threads

can also wait for some specified time (timedwait). In these cases, threads do not hog the

CPU.

Termination: A thread is in exiting state if its run() method returns or its exit() method

has been called. Threads can be terminated by their own will or killed forcibly. In other

words, if they finish their work then they naturally terminates, or they can exit the

JikesRVM by calling killInternal() method.

* OSR is used to improve performance with adaptive recompilation, transferring execution from slow code

to faster code [9].

CHAPTER 3. CURRENT THREAD MODEL

 37

Figure 3.4 Thread States in JikesRVM

3.4 Thread Queues
Threads that compete for CPU resources in order to execute are either stay in the thread

queues or proxied. In JikesRVM, there are two kinds of queues: processor-local queues

and the global queues.

3.4.1 Processor-local queues are associated with each virtual processor since a VP can

only execute one thread at a time so there is no need to synchronize access. In contrast,

global queues need synchronized access because they are common for all threads which

are running on different virtual processors. A number of processor-local queues are

following:

CHAPTER 3. CURRENT THREAD MODEL

 38

An idleQueue holds an idle thread that will execute (post request for work) whenever

virtual processors have nothing to do.

A readyQueue holds only ready to execute threads, which are waiting for a time slice in

which they have to run.

The transferQueue helps in load balancing by transferring threads among virtual

processors when the other processor has nothing to do. Any virtual processors can put the

threads on this queue then the thread moves from this queue to readyQueue for execution.

The ioQueue holds a number of threads that are waiting for availability of input/output

data. To prevent from blocking the thread I/O operations in the green thread model

maintain a several descriptors that need to be checked to poll for data availability. When

data becomes available on file descriptors, determined using the non-blocking select

system call, then the corresponding thread resumes its execution.

The processWaitQueue holds threads that are waiting for a sub-process to execute. This

is used to implement the exitValue() and waitFor() of java.lang.process.

3.4.2 Global queues need to synchronize access. The global queues are following:

The processorQueue handles the set of virtual processors. Its instance deadVPQueue

holds a special virtual processor and pthread so that when a virtual machine thread

(VM_Thread) calls the native code for the first time, the virtual processor and pthread are

created (virtual processor implemented as pthread) and run together until the virtual

thread terminates and after serving the caller thread the virtual processor enqueues back

into deadVPQueue for recycling. Thus if other threads call to native code then a request

to reuse the virtual processors from deadVPQueue is made in order to execute them.

The wakeupQueue (type of VM_ProxyWakeupQueue) is a queue of proxies for threads

that are awaiting timeout on this object. This queue is the mechanism to implement to

CHAPTER 3. CURRENT THREAD MODEL

 39

Java sleep semantics. In order to implement timed-waits, a thread needs to be in both

waiting queue and the wakeup queue. But the current threading model allows a thread to

be in one queue at a time so in order to perform this both queues are of proxies for thread

rather than thread. Unlike thread, proxy can be on both a waiting queue and a wakeup

queue. The VM_Proxy class of the scheduler package is responsible for representing the

same thread on more than one proxy queue.

The waitingQueue (type of VM_ProxyWaitingQueue) is a queue of proxies for threads

that are awaiting notification on this object. When a notification is received from an other

thread, the thread is taken from this queue (waiting queue) and transferred to the

readyQueue. This queue is the mechanisms to implement to Java's wait/notify semantics.

The enteringQueue contains a number of threads that are contending for a lock, so it is

also called the lock queues and is guarded by mutex.

The CollectorQueue all collector threads reside in this queue. collect() of

VM_CollectorThread is called by the mutator thread when the object allocator is not able

to manage the requested memory. The caller thread also pass the handshake object when

called the collect() for collection.

The DebuggerQueue contains one debugger thread, which can be scheduled by an

external signal.

CHAPTER 3. CURRENT THREAD MODEL

 40

3.5 Synchronization

Synchronization is required for concurrent execution on Symmetric Multiprocessing

(SMP) environments. Mapping the Java threads to virtual processors allows the tight

integration of synchronization support with thread switching in the m:n green thread

model.

The JikesRVM's thread synchronization is based on monitor mechanism as it is

developed in Java. The JikesRVM implements both kinds of thread synchronization:

cooperation and mutual exclusion. Cooperation is supported via wait and notify methods

of object, it enables threads to work together to achieve a common goal. For mutual

exclusion, JikesRVM implements the locking-unlocking in order to enable multiple

threads to independently work on shared data without intervention with each other.

3.5.1 Mutual Exclusion (Locking/Unlocking)

In JikesRVM, both thread scheduling and load balancing require atomicity and singular

access to the global data structure. In addition, the user threads also need to synchronize

access to their global data. In order to get the synchronized access; JikesRVM's scheduler

uses three types of locks:

1. processor lock

2. thin lock

3. thick lock

3.5.1.1 Processor locks play a significant role in thread scheduling and load balancing.

They underlie other locking mechanisms. Processor locks are implemented as Java

objects in JikesRVM, with a single field latestContender that identifies the virtual

processor that owns the lock. They are intended to be held only for a short period as they

�busy-wait�. Furthermore, they cannot be acquired recursively.

CHAPTER 3. CURRENT THREAD MODEL

 41

The lock() method of (VM_ProcessorLock class) in the scheduler package performs

operations to acquire the processor lock for the thread that is running on the virtual

processor. Getting and releasing a lock involves atomically reading this lock field

latestContender and setting the value to this. If this field is null it means this lock is not

owned, otherwise this field points to the virtual processor's id which owns this lock; in

other words, this field identifies the owner of the lock. A processor lock is released by

storing null value into the owner field.

If the virtual processor fails to acquire a lock due to contention, then it tries again by

spinning on this processor lock's latestContender field. Processor locking also

implements the MCS (Mellor-Crummey and Scott) locking mechanism [10]. When MCS

Locking is set, the processors spin on processor local data with the last virtual processor

on a circular queue (of virtual processors); spinning until it gets the lock. It also updates

this queue by adding itself into this circular waiting queue, for this a processor must

succeed in setting the latestContender field to IN_FLUX. The major advantage of MCS

locking is it�s a queue based spin locking mechanism [10].

If an attempt to lock or unlock a processor-lock has failed, assuming contention with

another processor, a backoff mechanism is used which delays for a different time period

on each processor to try to solve contention and to some extent in order to increase the

likelihood that a subsequent retry will succeed in locking or unlocking.

In addition, a thread will not yield control of a VM_Processor while it owns a processor

lock because it cannot release the lock until it resumes execution. The identity of the

virtual processor which owns the lock is maintained in a dedicated Processor (PR)

Register.

CHAPTER 3. CURRENT THREAD MODEL

 42

3.5.1.2 Thin and Thick Locks

The JikesRVM's other locking scheme is based on the thin locks also called light-weight

locks: if there is no contention among threads then thin locks are used to lock the

resource (object) and the bits in the object field are used for this purpose (as discussed in

the second chapter section 2.4.1, bits in the status word fields in the object header are

used for locking). In contrast, in case of contention (if two or more threads are competing

for same object) these bits in the object header represent a heavy lock.

In contrast to the processor lock, thin locks can be recursively held by the same thread.

One bit from the bit field in the status word tells whether a thick lock is associated with

the object or not. If the thick lock is not associated then the remaining bits are divided in

to two fields: thin lock owner ownerId subfield that represents the thread holding a thin

lock on the object and the recursion count field recursionCount, it records the number of

times the owner thread has acquired the lock. On the other hand, if the thin lock is

associated, the rest of the bits in the locking field become the index of this lock in the

global array of thick locks. This global array is partitioned into virtual processor regions

to allow unsynchronized allocation of thick locks. If any thread does not lock the object

then all the bits in the locking fields are set to zero [5].

In addition, if the lock is not acquired (that means all locking bits are zero) then in order

to acquire the lock, the thread sets the owner bit field to its identifier. The identifier of the

thread, which is currently running on a virtual processor, is kept in a dedicated thread

identifier (TI) register.

When an attempt to lock an object fails there are three situations either try again (busy-

wait cycle) or yield and then try again or inflate the lock [11]. Currently, the situation is

handled through yielding �forty� times*, and then inflating. Inflation means

transformation the thin lock into the thick lock [12].

* The current value was for the portBOB benchmark on a 12-way SMP (AIX) in the Fall of '99.
(VM_ThinLock.java)

CHAPTER 3. CURRENT THREAD MODEL

 43

The thick lock is defined as VM_Lock in the scheduler package of JikesRVM. It has six

fields: the mutex field is a processor lock that synchronizes access to thick lock or in other

words it handles contention for the data structures of this lock. The lockedObject is a

reference to the object being locked. The ownerId contains the id of the thread that owns

the lock. The recursionCount is responsible for recording the number of times the owning

thread has held the lock. The entering field is a queue of threads contending for this lock

guarded by the lock. waiting field is the queue of threads awaiting the notifications on

lockedObject guarded by the mutex [5].

Currently, each processor maintains a pool of free locks. When a processor inflates a

lock, it is taken from this pool and when a processor deflates a lock it gets added to the

processors pool [13]. In contrast, deflate() gets invoked when the lock is unlocked and

there is nothing on either of its queues.

Above-mentioned locks implement the mutual exclusion, and it refers to the mutually

exclusive execution by multiple threads.

3.5.2 Cooperation (Wait/notify)

The VM_Lock class of the scheduler package provides the JikesRVM's support for

monitors and also support for wait/notify synchronization (methods of java.lang.Object).

Cooperation is useful when one thread needs some data in a particular state and another

thread is responsible for getting the data into that state. The JikesRVM implements this

form of behaviour using the wait/notify/notifyAll semantics. In this type of monitor, a

thread that currently holds the lock/monitor can suspend itself by executing the wait() of

VM_Lock. Once a thread executes wait(), it releases the monitor and enqueue into a

waitingQueue in favor of some other threads so that they can acquire the lock.

CHAPTER 3. CURRENT THREAD MODEL

 44

This thread will wait into a waitingQueue until some time later another thread executes

the notify(). Furthermore, the enteringQueue can schedule other threads (as

enteringQueue contains a number of threads that are contending for lock. Once another

thread executes notify, it continues to hold the monitor until it frees the monitor of its

own wish (either completing its own task or executing the wait). When the notifying

thread frees the monitor, the waiting thread will wake up from the waitingQueue and will

re-acquire the lock.

The waiting thread suspended itself because the data locked by it, is not in a state that

would allow the thread to continue execution. In the same way the notifying thread

executes the notify method after it had put the data protected by lock into a state required

by the waiting thread.

3.6 Drawbacks of M:N Green Thread Scheduling

We list the issues with m:n green threading below:

1. One of the problems in the current threading model is with blocked native

methods. Most of the native input/output operations are blocking I/O and the

Java threads that call these operations will block until the input/output

operation finishes. For instance, if a virtual processor (VM_Processor)

schedules five Java threads and one of the threads calls the blocking I/O

operation, as a result the whole VM_Processor will be blocked until that I/O

operation completes and will be unable to schedule the other four threads.

However, JikesRVM avoids this problem by capturing/hijacking blocking

input/output and replacing them with non-blocking operations. The calling

thread is then suspended and placed into IOQueue. The virtual processor

(VM_Processor) checks the awaiting i/o operations at short polling intervals

and after they complete the operations, the virtual processor brings the calling

thread back into the runningQueue from the Input Output Queue

(VM_ThreadIOQueue).

CHAPTER 3. CURRENT THREAD MODEL

 45

But the JikesRVM can not insert the �yield points�* into native methods and

can not always be able to intercept blocking I/O operations in native code. In

other words, it is fairly complex to support the blocking native code together

with the m:n threading in JikesRVM. ()

2. Another drawback is that too much control logic is embedded in the low-level,

in order to call and return (transition) between C and Java code, which makes

the code harder to maintain.

3. Java threads may be scheduled for execution by different operating system�s

thread (pthreads) at different stages during in its execution. Thus, it can

increase the performance cost caused by cache invalidation due to thread

switching.

4. In current thread model scheduling is non-preemptive scheduling; and no

priorities are assigned to threads so threads are unable to take optimum

benefits of processors, as they are not scheduled by operating system. For true

concurrency, underlying Operating System�s incorporation is required

5. Transition between mutator and collector threads could be a performance

issue if the number of mutator threads is large.

6. Threads in this model are lacking the cooperation of Operating System.

3.7 Summary

In this chapter, we have discussed the current threading model supported by JikesRVM

and how the Java threads map on to virtual processors and how the virtual processor

execute them efficiently with the support of other threading components such as thread

queues and locks. We have also seen the fast transition among threads including mutator

and garbage collector threads.

Please note: yield points are the hidden thread switch points in the compiled code of the method inserted by

JikesRVM compiler [14].

CHAPTER 3. CURRENT THREAD MODEL

 46

We also indicated a set of thread queues in the entire threading system which plays a

pivotal role in multi-threading environment. Synchronization is another important

component of Jikes threading supported by Java monitors and some synchronized

methods of java.lang.Object. JikesRVM also supports the implementation of an efficient

way for load balancing and distributes work among virtual processors to achieve high

performance in SMP environment. However, at the end of chapter we have noted

drawbacks in the present model which raise some issues in terms of performance. In next

few chapters, we will analyze a new threading model called native thread model (using

POSIX thread library) in order to remove those performance issues and to make the

JikesRVM threading more robust.

 47

CHAPTER 4

Re-factoring and Design Pattern
4.1 Introduction:

In the previous chapters we talked about JikesRVM�s components and current thread

scheduling model. In this chapter, we will specify the work that we contributed and the

approach that we adopted for re-factoring the existing scheduler API in order to introduce

new native thread model without breaching the consistency of the present system. In

addition, our aim is to keep the code organization simple and clean. For this purpose, we

decided to re-factor the current system into two models and sub-divide the existing

scheduler package, where all multi-threaded programming resides*, into two packages:

one for each model (green thread and native thread). We kept the classes of scheduler

package as a base wrapper classes and they contain common functionalities of both the

thread models. In essence, these two models contain the code for the specific threading

system. For example, on the one hand all user space thread scheduling will reside in the

green thread model; on the other hand all kernel-level preemptive scheduling will be

contained into native model. The following block diagram represents package structure

for the scheduler API:

Figure 4.1 Division of the JikesRVM�s scheduler API

*In practice, lazy programming practices had placed scheduling code outside of this package.

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 48

We will discuss our approach and the design pattern we adopted next. We will also see

some code examples to better explain this work.

4.2 Our approach to re-factorization

With the aim of simple and clean code organization, we decided to implement one

popular design pattern called the �factory design pattern�as it was matched our

requirements. In addition, we adopted and implemented this in order to keep the

consistency among classes in the scheduler API.

4.2.1 Factory Method Pattern

�Define an interface for creating an object, but let the subclasses decide which class to

instantiate [15]. The Factory method lets a class defer instantiation to subclasses�.

The main purpose of this method is to create the objects without specifying the exact

class of objects that will be created; in other words, subclasses decide which class to

instantiate. Above all, factory methods are static methods that return an instance of the

sub-class at run-time.

4.2.2 Why we used the factory design pattern

We used this pattern because it proved an efficient design model for refactorization.

Furthermore, a number of reasons of using factory method are to obtain the reference of

sub-classes saves lots of work, an easy implementation and most importantly if the

requirements change in the future we would not need to make changes in every class that

uses our base class (e.g. VM_Thread). We will need to make only one change in one

class in order to meet the new requirements. The main advantage of factory method is

new threading model (e.g. native model for Windows) can be added without changing the

framework. Moreover, this is useful when we don�t know what concrete implementation

whether green thread or native pthread of VM_Thread has to instantiate. We delegate this

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 49

responsibility to the factory method. The UML class diagram of our factorization is given

below in fig. 4.2, considering only one class VM_Thread in scheduler API:

Figure 4.2 UML Diagram of Factorization of Scheduler API

4.2.3 Factory Design Pattern in Our Framework

The factory method pattern returns an instance one of possible class (green or native).

Which class it will return depends on provided arguments on the command line by the

users. Usually both of the classes (VM_GreenThread or VM_NativeThread) it returns

extend the base class such as VM_Thread, but each of them is optimized for specific type

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 50

of threading system; in other words to realize their application specific implementations.

For instance, to provide a green thread mechanism, we defined a class VM_GreenThread.

Figure 4.3 Structure of Factory Pattern in SchedulerAPI

In the structure presented above, This VM_Thread wrapper class is responsible for

managing the threading systems and will create them as required, when the users pass the

arguments; -vmt for green and -pt for native posix thread, for example. We defined one

more class is called VM_Scheduler which creates the factory method (s) to return an

instance of either VM_GreenThread or VM_NativeThread.

This factory method in the VM_Scheduler decides at runtime which subclass has to

instantiate by using the arguments passed by the user at command line. Then,

VM_Scheduler will create the instance of either green or native model and pass them to

virtual machine thread system (VM_GreenThread) or OS�s native thread system

(VM_NativeThread) for invoking their functionality. The same design pattern applies to

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 51

other classes in the scheduler package. The program flow is indicated in the following

figure.

 Figure 4.4 Program Flow

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 52

4.3 Our Design Attempt

Our design attempts to make classes in scheduler package thin wrapper around the

implementers (green or pthread model) of interfaces located in org.jikesrvm.scheduler.

For instance, making class VM_Thread a thin wrapper around implementors

VM_GreenThread and VM_NativeThread. So, VM_Thread maintains a reference to an

instance of the implementing class and redirects instance methods to it. Static methods,

including the calls to create the implementing instance are redirected via static classes in

VM_Scheduler. We used this design pattern with many of the classes originally located

in the scheduler package.

We retained the public fields in the thin wrapper classes in order to keep the consistency

with other subsystems of the JikesRVM and maintaining a single copy of data. For this,

our implementor classes maintain a back-link to the VM_Scheduler class.

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 53

4.4 Re-factoring at Code Level:

// VM_Thread – super class of green thread and native thread

public abstract class VM_Thread {

protected VM_Thread(byte[] stack, Thread thread, String name,

boolean daemon, boolean system, int priority)

{

…..

}

public static void yieldpointFromPrologue() {

org.jikesrvm.scheduler.greenthreads.VM_GreenThread.yieldpoint(PRO
LOGUE);
 }

public static void yieldpointFromPrologue() {
org.jikesrvm.scheduler.greenthreads.VM_GreenThread.yieldpoint(PRO
LOGUE);
 } }

// VM_Scheduler, also consist of factory methods

public abstract class VM_Scheduler {

 // back-link
private static final VM_Scheduler singleton = new
VM_GreenScheduler();

public static class ThreadModel extends
 org.jikesrvm.scheduler.greenthreads.VM_GreenThread {

 public ThreadModel(byte[] stack, String s) {
 // passing to implementor class VM_GreenThread
 super(stack, s);
 }
 public ThreadModel(String s) {
 super(s);
 }

public static final class LockModel extends
org.jikesrvm.scheduler.greenthreads.VM_GreenLock {
 }
// factory method

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 54

private static VM_Scheduler getScheduler() {
 return singleton;
 }

// static method

public static VM_Thread getCurrentThread() {
 return
VM_Magic.objectAsThread(VM_Processor.getCurrentProcessor().active
Thread)
 }

// green thread implementor class VM_GreenThread

// extend from VM_Thread

public class VM_GreenThread extends VM_Thread {

public VM_GreenThread(byte[] stack, String name) {
 this(stack,
 null, // java.lang.Thread
 name,
 true, // daemon
 true, // system
 Thread.NORM_PRIORITY);
 }

// thread specific implementation
public static void yieldpoint(int whereFrom) {
….
}

// native thread Implementor class

public class VM_NativeThread extends VM_Thread {

public VM_NativeThread(byte[] stack, String name) {
 this(stack,
 null, // java.lang.Thread
 name,
 true, // daemon
 true, // system
 Thread.NORM_PRIORITY);
 }
protected void notifyInternal(Object o, VM_Lock l) {
…
 }

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 55

4.5 Flexible Threading model � User�s choice

We have given the users a choice of both the threading models by providing command

line arguments so according to their applications they can choose the desired model. If

they are using an SMP environment then native model is a better choice because on the

multi-processor system, this model can easily split threads among processors and can

greatly improve the performance. Although, if users are running applications which

create a large number of threads such as server applications then in these cases green

thread model has proven better and faster.

In order to supply the command line arguments so that Jikes virtual machine behaves

according to them, we made some changes in the Jikesrvm�s configuration files such as

VM_Properties, VM_CommandLineArgs and build.xml. We are discussing them briefly

in the following text.

4.5.1 Properties defined in VM_Properties

In current situation, there is no command line argument for the selection of threading

model since there is by default only one threading model. So in order to take input from

the user, we defined two properties both for green thread model and for pthread model in

the VM_Properties.java. Properties defined in this Java program control the behavior of

JikesRVM and can be set from the command-line.

Below is the code snippet which specifies the properties:

public class VM_Properties extends VM_Options {
……
public static int verboseBoot = 0;
….
public static boolean greenThread = true;
public static boolean pthread = false;
}

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 56

So here the property for green thread is true. The reason is if users do not specify their

choice then by default green model will execute and threads will be scheduler at user-

space.

4.5.2 Prefixes defined in VM_CommandLineArgs

A list of possible prefixes for command line arguments is defined in the

VM_CommandlineArgs. For making standard prefix, we have added two entries in the

VM_CommandlineArgs and edited two more cases in

earlyProcessCommandLineArguments method. This method is responsible for processing

of several command-line arguments that need to be handled early in the booting and

contains only those command line arguments that require fully booted Virtual Machine to

handle. The code snippet is for doing this is as follows:

public class VM_CommandLineArgs {

 public static final int PROCESSORS_ARG = 29;

 public static final int GREEN_MODEL = 30;
 public static final int PTHREAD_MODEL = 31;

 new Prefix("-X:processors=", PROCESSORS_ARG),

 new Prefix("-vmt", GREEN_MODEL),
 new Prefix("-pt", PTHREAD_MODEL),
...
 switch (type) {

 case GREEN_MODEL:
 VM.greenThread=true;
 break;
 case PTHREAD_MODEL:
 VM.greenThread=false;
 VM.pthread=true;
 break;
.....
// other code�
case PROCESSORS_ARG: // "-X:processors=<n>" or "-X:processors=all"
....
}

CHAPTER 4. RE-FACTORING AND DESIGN PATTERN

 57

It ensures the encapsulation among threading models; if the program runs with a

particular threading model chosen by user on command line then JikesRVM's threading

system will not switch from one thread model to another in the middle of execution. For

example, if user chooses native model on the command-line then the thread scheduling

will be done with native model only and program control cannot get into green thread

model.

4.5.3 Configure build.xml

In order to add new configuration details in JikesRVM, we added some details in the

build.xml that contains all the configuration details of Jikes. Following the tradition of

build.xml in setting attributes, we added two arguments in this; you can find some

changes into build.xml in appendices section (appendix b). Moreover, you can also find

the new command line options for executing programs with the green and pthread model.

4.6 Summary

In this chapter, we have discussed our refactoring mechanism, which we contributed in

JikesRVM and have explained our choice of using factory pattern. We also copied a

small code snippet here which is important to understand the refactorization. This design

pattern we applied for most of the classes which are originally located in the scheduler

package. Some of them are thread model specific (e.g. green thread model) so they have

brought in to green thread model without factorization. For instance, most of the queues

existed in scheduler package that are not useful for native pthread model, we are keeping

them in green thread model package (org.jikesrvm.sceduler.greenthreads). We have also

given choice to users by providing them command-line arguments so that they can

choose the better model according to their requirements. For this we have made changes

in some configuration files of JikesRVM.

In essence, this factorization ensures a clean and consistent organization of the code and

provides flexibility to future requirements.

 58

CHAPTER 5

Native Thread Model

5.1 Introduction

In this chapter, we will discuss the native thread model and how this model will work in

the real system. Furthermore, we will present an analysis of how to implement the major

components of the native threading model such as monitorEnter/monitorExit,

cooperation, scheduling, yield, and thread cancellation. by using POSIX pthread library.

The native thread model defines that each Java thread created by JikesRVM corresponds

directly to a single thread in the OS kernel, also known as 1:1 threading model. In other

words, one Java thread maps to one pthread and the OS scheduler further multiplexes this

pthread to kernel thread (NB: in Linux there is a 1:1 correlation). Unlike the green thread

model, in this model JikesRVM is not responsible for scheduling the threads, the kernel is

the only one which selects and schedules the threads. In essence, all scheduling of threads

is done by kernel.

.

5.2 Native Thread Model

This 1:1 native model allows many threads to run simultaneously on different processors

in Symmetric multiprocessing (SMP)* environment. This also allows threads to continue

to run, even on the uniprocessor, if one or more threads issues a blocking system call.

This model is simple to understand and transparent to the programmers because there is

tight coupling between the programmatic abstraction (user threads) and the kernel thread.

[16]. In addition, in this model every thread can be thought as a process. The operating

system scheduler makes no distinction in this case between a process and a thread.

* SMP is a multiprocessor architecture where two or more identical processors are connected to a shared
memory [17].

CHAPTER 5. NATIVE THREAD MODEL

 59

The native thread model is a preemptive threading model, which means thread switching

can occur at any time. In addition, threads are scheduled on a priority based mechanisms.

Therefore, in this model, if one thread uses its whole time slices, it gets preempted by OS

scheduler and another Java thread gets to run instead. The scheduling of the Java threads

mapped to native threads is controlled by the underlying operating system�s scheduler.

Figure 5.1 shows a high-level overview of the pthread native model in JikesRVM.

The downside of this threading model is the overhead for each kernel thread (memory,

slots in the scheduling algorithm) that may be excessive for programs that create a large

number of Java threads as each thread creation involves a separate kernel thread creation,

also called Light-Weight Process (LWP) so it requires additional kernel resources.

Figure 5.1 Native Thread Model in JikesRVM

CHAPTER 5. NATIVE THREAD MODEL

 60

5.3 Native Pthread scheduling

Linux pthread library defines two ways of scheduling: one is process scope scheduling;

all of the scheduling is local (similar to JikesRVM�s green thread scheduling) and another

is system contention scope scheduling where scheduling is done by the kernel. We will

use the latter one in the future native thread model of JikesRVM. This scheduling is also

called global or bound thread scheduling. This scheduling mechanism also has a policy

and priority associated with threads, which further refines the scheduling details at the

kernel level [1]. In this scheduling mechanism, the operating system (LINUX) schedules

threads just like it schedules processes. That means that threads are scheduled on a

preemptive, priority-based mechanism which is a property of the OS.

In system contention scheduling, each Java thread is permanently bound to a LWP

meaning the thread will only run on that particular LWP. With this scheduling, Java

threads will get the maximum execution time as they will almost never be in a ready

state, they will be either active (running), sleeping on a condition variable or blocked

because of their tight binding with kernel threads. In addition, they will never be

prevented from chewing CPU time by other Java threads. Thus, the JikesRVM users will

use this native model when they know that their programs are computationally intensive.

Therefore, multi-threaded Java applications with this scheduling will have less thread

switching as compared to green thread scheduling.

Our effort will be creating one pthread for each Java thread and mapping that pthreads to

individual physical CPUs, which can ensure fast execution for Java threads. This will be

helpful for applications that have multiple threads that spend a significant amount of time

executing code without blocking.

We will see the best throughput when the number of running threads is equal to the

number of CPUs on the machine. If there is a lower number of running threads than

available CPUs then there will be idle CPUs and if there are more than available CPUs

then the LWPs will compete for the CPU time. In addition, there is never really an

CHAPTER 5. NATIVE THREAD MODEL

 61

advantage to having more LWPs than CPUs - even if user applications have hundreds of

threads that the user wants to time-slice [18]. In order to run such kind of applications, we

are able to create hundreds of LWPs by using modern POSIX thread library.

5.4 Binding Java Threads to Kernel Threads - CPU Affinity

The fundamental concept of binding each thread to a separate operating system�s thread

is cache memory latency because each processor has its external caches of significant

size (e.g. 1-4 megabytes). So, replacing the contents of such a cache completely can take

a very long time. If a light-weight process is running on CPU 2 and it is context switched

off for a short time, then the vast majority of that cache will still be valid. So it would be

much better for that LWP to go back onto CPU 2 [1]. Linux library provides the ability to

bind one processes (LWP) to one physical CPU, is called CPU affinity. The point is to

say that always run this particular process to this particular CPU. The scheduler then

obeys the order, and the process runs only on the allowed processor. The operating

system will optimize the CPU affinity by itself.

5.5 Implementation of yield method

In contrast to yield method of green model, we will implement this via pthread library

method pthread_yield. This method explicitly forces the calling thread to give up the

control of its processor, and then the thread will wait before it is scheduled again on the

processor. As we have already discusses in chapter 2 and 3, yield points are also safe

point where garbage collection triggers and reclaims unused memory. When a thread

executes the yield, the conditions will be checked, if it�s a garbage collection point (or

GC safe point) then the JikesRVM� garbage collector will start reclaiming the memory.

Or, if it is a generic yield then it will call the pthread yield method (pthread_yield).

Calling thread�s state will store into the registers and scheduler will select the next

available thread and restore its states from the registers. If the virtual processor does not

have runnable threads then the calling thread will immediately reschedule. Figure 5.2

CHAPTER 5. NATIVE THREAD MODEL

 62

shows this mechanism, thread A calls the yield method and then JikesRVM passes to

pthread_yield method of pthread library using system call.

Figure 5.2 Thread yield in native model

CHAPTER 5. NATIVE THREAD MODEL

 63

5.6 Thread Synchronization - Monitor

In the native model, mutual exclusion and cooperation map well to mutex and condition

variables. We briefly discuss the pthread mutex and condition variables below and then

we discuss their use in implementations.

5.6.1 Mutex

Pthread mutex are used for protecting shared data when multiple writes occur. A mutex

variable operates as lock in order to protect a shared data. The concept of a POSIX mutex

in Pthreads is that only one thread can lock (or own) a mutex variable at any given time.

As a result, even if many threads try to acquire a lock, only one thread will own it. Other

threads will block and will wait until the owning thread releases the lock. In essence, we

will use mutexes for locking the global data to ensure safety when several threads update

the same variable and to ensure that only the owner of the mutex is updating the protected

global variables. In particular, thick lock will be implemented by using these mutex and

condition variable in native thread model.

In addition, whenever a thread needs to acquire a lock on the specified mutex variable, it

will call pthread_mutex_lock() routine of the pthread library. If the mutex is

already held by another thread then this call will block the calling thread and it will wait

on the pthread condition variable until mutex is released. In contrast, if the owner thread

calls pthread_mutex_unlock() then it unlocks the mutex. When a thread finishes

its operation on protected global data then it calls this routine in favor of other threads

that are waiting to hold the mutex. This method will return error if the mutex was already

locked and was held by another thread.

CHAPTER 5. NATIVE THREAD MODEL

 64

5.6.2 Condition Variable

Condition variables play a significant role in thread synchronization and provide

capability of inter-communication among threads both, in one process and in different

processes. With the use of conditional variables, we can allow threads to wait without

wasting CPU time until some events occur. In addition, several threads can wait on a

conditional variable, until some other threads signals (in other words, send the

notifications) this conditional variable. After being notified, one of the threads waiting on

the conditional variable wakes up and performs the operation. By using broadcast

method of pthread library (work similar to notifyAll of Java primitives), it is possible to

wake up all the threads waiting on the conditional variable.

5.6.2.1 Waiting on a Condition Variable

To get the protected global data in some desired state, a thread can wait for the signal

calling either pthread_cond_wait() or pthread_cond_timedwait()

methods of pthread library. Both methods take a condition variable and a mutex as

arguments. This mutex should be locked before calling the wait function as the condition

variables used in conjunction with mutex variables. When these methods are called by

thread, calling thread unlocks the mutex, and suspends the execution (wait on condition

variable) until other threads signal the condition variable. If the thread awakes by this

notification then the mutex is automatically locked again by the wait function, and the

wait function returns. In comparison with pthread_cond_wait(),

pthread_cond_timedwait() allows us to specify a timeout for the waiting. In

contrast, the pthread_cond_wait() would wait for an indefinite period if it was

never signaled.

CHAPTER 5. NATIVE THREAD MODEL

 65

5.6.2.2 Signaling Conditional Variable

For signaling a condition variable, we can use both pthread_cond_signal() and

pthread_cond_broadcast() functions to wake up only one thread and all threads

waiting on this variable respectively. They will implement notify/notifyAll primitives of

Java. But in our analysis, we will try not to use broadcast method, as it could be the

cause of more contention among threads for a shared data because all threads wake up

together and contend for one single data resource. Below is an example of signal and

broadcast methods:

//initialize the condition variable

pthread_cond_t b = PTHREAD_COND_INITIALIZER;

int a = pthread_cond_signal(&b); // signal only one thread

Or

int a = pthread_cond_broadcast(&b); // signal all threads that

// are waiting on cond. var.

If more than one thread is blocked on a condition variable, the scheduling policy will

determine the order in which threads are unblocked [19].

We will use the conditional variables in native thread model to give the JikesRVM same

functionality of thread cooperation as in the green thread model.

CHAPTER 5. NATIVE THREAD MODEL

 66

5.6.3 Mutual Exclusion Implementation � monitorEnter/monitorExit

In order to implement the mutual exclusion capability of monitors in the native pthread

model, JikesRVM associates a lock with each object. A lock ensures that only one thread

can own the global resources at a time. If a thread holds a lock then no other thread can

hold a lock on the same resources (or data) at the same time.

In addition, in Java it is allowed that a single thread can lock the same object multiple

times by spinning on it. Thus for each object, the JikesRVM maintains a count of the

number of times that the object has been locked. Initially, an unlocked object has count of

zero. When a thread acquires the lock for the first time, the count will incremented to

one. Each time the owner thread acquires a lock on the same object, as only the owner of

lock is allowed to lock it again, the count will be incremented. Reversely, each time the

thread releases the lock, the count is decremented by one and when the count reaches

zero, the lock is released and is made available to other threads and now other thread can

obtain the lock.

In the figure 5.3, a thread in JikesRVM�s native model will request a lock when it arrives

at the beginning of a monitor region. The monitor region is a piece of code that needs to

be executed as one inseparable operation. In other words, it ensures that only one thread

is able to execute that monitor region (code) from start to end without other threads

concurrently executing the same code. An object reference is associated with each of the

monitor regions in Java applications. Therefore, when a thread reaches the first

instruction of the monitor region, the thread must obtain a lock on the referenced object.

Otherwise, the thread is not allowed to execute the code until it obtains the lock. Once the

thread obtained the lock and performs operation in the protected block, also called

critical section, thread switching will be disabled. When the thread completes operation

and leaves the block, it releases the lock on the associated object and enables the thread

switching. The following block represents the critical section.

CHAPTER 5. NATIVE THREAD MODEL

 67

pthread_mutex_lock(pthread_mutex_t *mutex)

�

�

pthread_mutex_unlock(pthread_mutex_t *mutex)

Monitor Region/Critical Section

Figure 5.3 Mutual Exclusion

CHAPTER 5. NATIVE THREAD MODEL

 68

In the above figure 5.3, thread A is trying to acquire a lock and implementing the Java

primitives� monitorEnter/monitorExit with the help of pthread mutex and conditional

variables. Thread A needs to enter into the monitor region in order to perform some

operation on the protected shared resource. In order to enter into monitor region, thread A

tries to lock the mutex by thin lock first. If there is no contention then the thread grabs the

lock and performs the operation (the thin locking is the same as in green thread model as

discussed in third chapter: Section3.5). If the thread could not get the lock, it will try

again and eventually it will inflate the lock (i.e. transform the thin lock into thick lock).

In this situation, if the thread tries to lock the thick lock and it is already locked by some

other threads, it will wait on the conditional variable and will enter into the blocked state.

After getting signaled from the owing thread it will lock the mutex by calling

pthread_mutex_lock function of pthread library. Once it will hold the mutex, it can

enter in the critical section and can perform operation on protected global data. After

finishing its task, thread A will exit from the monitor and release the lock. Furthermore, it

will notify the other waiting threads for this lock by sending signals via

pthread_cond_signal method of pthread library.

5.6.4 Cooperation Implementation

As indicated in below figure 5.4, there are two threads (thread A and B), working

together in a cooperative manner. Thread A wants the protected global data (int a) in

some state (e.g. value of a =9) in order to process its task. Thus, A locks the global data a

and checks the value of it, if condition does not satisfy then it suspends execution and

waits on the condition variable for the signal from other thread B, by calling

pthread_cond_wait()routine, until the value of a comes in desired state. This

method will be used while mutex is locked, and this will also allow the thread to free the

mutex automatically while it waits for some event.

As in figure, thread B modifies global data (add 7 to it) and brings in to desired state for

thread A (a=9), thread B will signal A, which is waiting on the condition variable, via

pthread_cond_signal() routine and will unlock the mutex. After receiving the

CHAPTER 5. NATIVE THREAD MODEL

 69

notification, thread A will wake up and mutex will be automatically locked for use by the

thread A. Now thread A can process its operation on the shared global data and will

explicitly unlock this shared data after use in favor of other thread�s execution. Later, it

can destroy the condition variable by calling the pthread_cond_destroy() method of

pthread library. pthread_cond_signal() routine signals only one thread. In

addition, if there are several threads waiting on a condition variable then we can use

pthread_cond_broadcast() method to notify them.

pthread_cond_broadcast() will implement notifyAll method of green model in

JikesRVM.

Figure 5.4 Implementation of Wait/notify semantics using Pthread functions

CHAPTER 5. NATIVE THREAD MODEL

 70

5.7 Thread Interruption - Cancellation and Termination

The thread termination is associated with several issues and stopping a thread safely,

quickly, and reliably is not always easy. So it�s better to use a cooperative mechanism (by

which task and the code requesting cancellation follow an agreed way to stop the thread)

that lets one thread ask another to stop what it is doing because there is no safe way to

pre-emptively stop a thread [20].

Cancellation a thread means, a thread sends request to terminate the execution of another

thread before it has finished. There are a number of reasons why we might want to cancel

an activity such as we can click on the �cancel� or �stop� button in GUI application (e.g.

stop button in Internet explorer). The thread processes the request based on its state. It

may act immediately and terminate the thread, may act on the request when it reaches the

cancellation point (discussed below) or may ignore it.

Cancellation point

In some situations, a thread can be in a state where it can not handle the cancellation

requests immediately such as holding a lock; in such cases thread defers requests until the

cancellation point. There could be many reasons for cancellation point such as when a

thread is in suspended or waiting state. Moreover, some system calls that cause the thread

to block such as read(), wait(), select() etc. are also cancellation point.

We have two approached to terminate a thread:

Asynchronous cancellation - Asynchronous cancellation terminates the target thread

immediately

Deferred cancellation � it allows the target thread to periodically check if it should be

cancelled.

We will use the latter approach in the native model, as the Thread.stop method is

deprecated from Java because it is unsafe as it leaves the shared resources in inconsistent

state.

CHAPTER 5. NATIVE THREAD MODEL

 71

In native model, we will provide the capability to terminate threads cleanly as pthread

library has the capability for cancelling a thread safely. In order to terminate a thread, we

will use the pthread_cancel method of pthread library. This method takes the

thread id as parameter and then sends the cancellation request to that thread. The

pthread_self() function returns the thread ID of the calling thread. Following are the

statement, which we will use to terminate the thread:

p_thread thread_id;

thread_id= pthread_self();

pthread_cancel(thread_id); // thread_id is the id of running

thread

When the user�s Java thread invokes interrupt method, it would be implemented as

pthread_cancel() in native model. First, it will creates a cancellation point in the calling

thread with pthread_testcancel() function. When the thread ensures the cancellation point

then it calls pthread_cancel() function to terminate the thread safely. Figure 5.5 shows the

thread cancellation operation in native model.

Figure 5.5 Thread Cancellations

CHAPTER 5. NATIVE THREAD MODEL

 72

5.8 Adding System Calls in JikesRVM

In order to use the Linux POSIX library methods, we will use the system calls mechanism

in the native threading model. In particular, to add a system call in JikesRVM, we will

have to make changes in three classes. We are mentioning these changes with an example

of adding a system call for locking a mutex. These classes are following

1. Add an abstract method to VM_SysCall class; this class supports for low-level

invocation of C library with static addresses. For example, all classes must have the

following signature:

public abstract Address sysMutexLock(Address mutex);

2. Add the function in sys.C which actually does the work; this class provides support

services from operating system required by Java classes.

Address sysMutexLock (pthread_mutex_t *mutex)

{

.....

pthread_mutex_lock(mutex);

.....

}

3. Add a field with the name of function in VM_BootRecord; in this class there must be

matching field name (methodnameIP) for each method declared in the VM_SysCall. For

example,

public Address sysMutexLockIP;

CHAPTER 5. NATIVE THREAD MODEL

 73

5.9 Comparison between Native Model and Green Model

1. The native Pthread model is transparent because of tight coupling between the

user threads and the kernel threads. Native thread model has ability to take

advantage of multiprocessor environments.

2. The native model can have advantage over green model if the scheduled

threads are CPU intensive that means most of the time threads use CPU cycle

time and rarely go into waiting state. For example, applications like complex

numerical calculations, in such cases, threads will not go into wait state and

run until die or finish on their designated kernel threads. Furthermore, this can

ensure the maximum execution speed for that thread and also prevents the

performance cost caused by cache invalidation due to thread switching. We

will evaluate these performance issues in further implementation of native

model.

3. In m:n green thread model, if one thread makes a blocking system call then

other threads block, but this is not the case in native model as each thread is

running on different processors. In addition, to achieve high-performance on a

symmetric multiprocessor (SMP) we need one thread per processor as no CPU

time is wasted in context switching.

4. Native thread model supports relatively simpler for libraries than the green

thread model as it uses OS�s thread scheduling and virtual machine does not

have to bother with thread scheduling.

5. Native thread model is pre-emptive and JikesRVM�s green model is not fully

preemptive. Native threads can switch between threads pre-emptively, they

can switch control at anytime whereas green threads switches only when

control is given explicitly by Thread.yield and Object.wait()

CHAPTER 5. NATIVE THREAD MODEL

 74

6. Green thread model is platform independent and whereas native model is

platform-specific as it uses capabilities of underlying operating system�s

scheduler.

7. In the native thread model, garbage collector can take more time to stop and

restart the threads because each thread will be dealt as a process* in this

model, whereas JikesRVM�s green model provides a quick garbage collection

(as discussed in section 3.2.3). We can evaluate this performance issue after

the implementation of pthread model.

8. M:N green thread model does not use priority mechanism and threads are

scheduled by counters and time outs. In contrast, native threads are scheduled

by underlying OS�s scheduler and scheduler uses the priority mechanism in

thread scheduling.

9. In green thread model, threads are created in user-level space so they use less

kernel resources compare to native thread model where each Java thread

involves a separate LWP creation and it require additional kernel resources

such as LWP has its own memory space, file-descriptor and runtime

environment.

5.10 Summary

In this chapter, we described a means for implementing the native model in JikesRVM by

using the POSIX pthread library. We described some major portion of native threading

such as how we can bind Java threads to kernel threads, synchronization: mutual

exclusion, cooperation and implementation of yield method.

* processes are heavier than threads.

CHAPTER 5. NATIVE THREAD MODEL

 75

 In addition, we discussed the clean approach for thread cancellation and termination and

how we can stop and resume the threads in thread scheduling.

We also discussed the fundamental details of contention scope of threads (process and

global) and also stated some specific details about the pthread attributes such as priority,

scope and policy. At the end of the chapter, we gave some distinctions between native

thread and green thread models. Furthermore, we also specified how we can add system

calls in the JikesRVM as we are intending to use system calls for passing the flow from

Java classes to pthread library.

 76

CHAPTER 6

6.1 Conclusions

In this dissertation we have shown how the direct mapping of Java threads to Operating

System�s thread in one-to-one fashion and passing the control to operating system�s

scheduler in order to improve the performance of the JikesRVM�s threading model.

Furthermore, by introducing the native model, JikesRVM�s threading model can exploit

the SMP platform efficiently with the cooperation of underlying operating system.

This dissertation explained the main features and key information of Jikes Research

Virtual Machine; particularly bootstrapping, object model, magic mechanism and other

main subsystems of JikesRVM including runtime core services, memory management,

garbage collection, compilers. Then, it provided substantial information about the

existing threading model followed by a number of issues that we experienced.

Specifically, the third chapter described how threads were scheduled by m:n green thread

scheduling and also some details about thread synchronization, JikesRVM�s thread

queues and states, and thread switching. It also described load balancing among virtual

processors.

Furthermore, this research work introduced a new native threading model by

refactorization of existing thread model into two threading models (green and native).

The fifth chapter has shown the design and implementation indication for new native

threading model by using POSIX pthread library. Later, we can evaluate the performance

improvement of this model over JikesRVM�s existing green thread model, particularly

when the users run the CPU intensive applications.

In essence, our refactorization gives the flexibility to users for choosing either of thread

models according to the nature of their application. Furthermore, user applications can

obtain the underlying operating system�s support for fast execution in SMP environment.

CHAPTER 6. CONCLUSIONS

 77

6.2 Future work

As we contributed the source code for this refactorization into the JikesRVM�s new

release, there is a substantial amount of work remaining in this direction for future. First

and foremost work is to bring the native pthread design model into the implementation.

After the implementation of this native thread model for Linux operating system, we also

intend to implement the native model for windows operating system with support of

window native thread library (win32 thread library) so that windows users can also

benefit from JikesRVM�s fast threading models.

Furthermore, efforts are required to introduce new locking algorithm called �Lock

Reservation� [21] in the JikesRVM�s threading models. In this strategy, we will evaluate

the ways to reserve the lock for threads. The advantage of the lock reservation is to

reduce the cost of subsequent lock operations by the thread because when lock

reservation is made by a thread, the runtime system will allow the thread to acquire the

lock with a few instructions involving no atomic operation [21].

 78

7. APPENDICES

Appendix A

Thread Switching in JikesRVM at code level

7. APPENDICES

 79

Appendix B

build.xml

 <condition property="thread.filter" value="-DRVM_WITH_GREENTHREAD=1">
 <equals arg1="${thread.model}" arg2="greenthread"/>
 </condition>
 <condition property="thread.filter" value="-DRVM_WITH_PTHREAD=1">
 <equals arg1="${thread.model}" arg2="pthread"/>
 </condition>

<condition property="pp_RVM_WITH_GREENTHREAD" value="true" else ="false">
 <equals arg1="${thread.model}" arg2="greenthread"/>
 </condition>
 <condition property="pp_RVM_WITH_PTHREAD� value="true" else ="false">
 <equals arg1="${thread.model}" arg2="pthread"/>
 </condition>

<filter token="_RVM_WITH_GREENTHREAD_"
value="${pp_RVM_WITH_GREENTHREAD}"/>
 <filter token="_RVM_WITH_PTHREAD_"
value="${pp_RVM_WITH_PTHREAD}"/>

Running the RVM - command line

// for green thread model

[root@cspool125 jikesrvm]# rvm -vmt HelloWorld

// for pthread model

[root@cspool125 jikesrvm]# rvm -pt HelloWorld

 80

8. BIBLIOGRAPHY

1. Bil Lewis & Daniel J. Berg (1998) Multithreaded Programming with

PTHREADS, 2nd ed., Prentice Hall PTR

2. Bowen Alpern, John J. Barton, Ton Ngo, Janice C. Shepherd, Mark Mergen &

Derek Lieber, et al. (1999) Implementing Jalapeno in Java. IBM Systems Journal

2000, VOL 39, p. 211-238

3. Mezini, M. Walkthrough of a Java VM: JikesRVM, Software Technology Group,

Technische Universität Darmstadt

4. JikesRVM, 2007, Source code VM_Statics.java, Revision 13393, viewed 20

September 2007,

<http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/trunk/rvm/src/org/j

ikesrvm/runtime/VM_Statics.java?revision=13393&view=markup>

5. The Jikes Research Virtual Machine (RVM) 2000, Introductory, Independently

developed as part of the Jalapeno research project at Thomas J. Watson Research

Center, IBM Corporation, viewed 22 September 2007,

<http://www.ibm.com/developerworks/java/library/j-jalapeno/#author>

6. Memory Manager Toolkit (MMTk), Jikes Research Virtual Machine, viewed 10

September 2007, <http://jikesrvm.org/MMTk >

7. Thread Management, Jikes Research Virtual Machine, viewed 01 September

2007, < http://jikesrvm.org/Thread+Management>

8. BIBLIOGRAPHY

 81

8. Hind M. & Attanasio D, Jalapeno�s support for Memory Management,

International Conference on Parallel Architectures and Compilation Techniques,

2001, p. 5-8

9. Stephen J. Fink & Feng Qian, Design, Implementation and Evaluation of

Adaptive Recompilation with On-Stack Replacement (2003). In Proceedings of

the International Symposium on Code Generation and Optimization (CGO'03),

San Francisco, California, IEEE Computer Society Washington, DC, USA,

2003, p. 241-252

10. M. L. Scott & W. N. Scherer (2001). Scalable QueueBased Spin Locks with

Timeout. ACM SIG{\-}PLAN Notices, Volume 36, Issue 7, p. 44 - 52

11. David F. Bacon, et. al. Thin locks: featherweight synchronization for Java, In

Proceedings of the ACM SIGPLAN 1998 conference on Programming language

design and implementation, Montreal, Quebec, Canada, ACM Press New York,

NY, USA, 1998, p. 258-268

12. JikesRVM, 2007, Source code VM_ThinLock.java, Revision 13632, viewed 28

August 2007,

<http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/trunk/rvm/src/org/j

ikesrvm/scheduler/VM_ThinLock.java?revision=13401&view=markup>

13. JikesRVM, 2007, Source code VM_Lock.java, Revision 13699, viewed 08

September 2007,

<http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/trunk/rvm/src/org/j

ikesrvm/scheduler/VM_Lock.java?revision=13699&view=markup>

14. Uninterruptible Code, Jikes Research Virtual Machine, viewed 22 September

2007, < http://www.jikesrvm.org/Uninterruptible+Code >

8. BIBLIOGRAPHY

 82

15. E. Gamma, R. Helm & R. Johnson & J. Vlissides (1995), Design Patterns:

Elements of Reusable Object-Oriented Systems, p. 107-116 Addison-Wesley.

16. MxN Threads on HP-UX 11i: Consequences and Implications, Hewlett-Packard

site, viewed 19 September 2007,

<http://h21007.www2.hp.com/portal/download/files/unprot/hpux/MXN.pdf>

17. Amit, G., Caspi, Y., Vitale, R., Pinhas, A.T., et al. Scalability of Multimedia

Applications on Next-Generation Processors, Multimedia and Expo, 2006 IEEE

International Conference on, 2006, p. 17-20

18. Scott Oaks & Henry Wong (1999), Java Threads, 2nd ed. O�Reilly & Associates

Inc.

19. Linux man page help, Signaling Condition Variable, viewed 27 September 2007

20. Brian Goetz, et al (2006), Java Concurrency in Practice, Addison Wesley

21. Kiyokuni Kawachiya, Akira Koseki & Tamiya Onodera. Lock reservation: Java

locks can mostly do without atomic operations, In Proceedings of the ACM

OOPSLA Conference, Seattle, Washington, USA ACM Press New York, NY,

USA, 2002, p. 130-141

