
Native Code Execution Within a JVM

A thesis submitted to the University of Manchester for the

degree of Master of Science in the Faculty of Science and

Engineering.

2004

Richard George Matley

Department of Computer Science

1

Contents

List of Figures 6

List of Tables 8

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

The Author 13

1 Emulation and Dynamic Binary Translation 14

1.1 Introduction . 15

1.2 Dynamic Binary Translators . 16

1.2.1 Terminology . 16

1.2.2 Types of Dynamic Binary Translators 16

2

Contents 3

1.3 This Project in Context . 18

1.3.1 The Need for Another Emulator 18

1.3.2 Jamaica . 18

1.3.3 The Jikes RVM as the Basis for an Emulator 19

1.3.4 Other PowerPC Emulators . 19

1.3.4.1 QEMU . 20

1.3.4.2 PearPC . 20

1.3.4.3 SoftPear . 20

1.4 The Jikes RVM . 21

1.5 Summary . 22

2 Emulating the PowerPC Architecture 23

2.1 PowerPC/Linux as a Subject Environment 24

2.2 The Architecture of the PowerPC . 24

2.2.1 Overview . 24

2.2.2 Register Set . 25

2.2.3 The Instruction Set . 28

2.2.4 Addressing Modes . 29

2.2.5 Instruction Format . 29

2.3 Emulation . 30

2.4 The Process Space Object . 31

Contents 4

2.4.1 Overview . 31

2.4.2 Methods . 32

2.5 Loading an ELF Binary . 34

2.5.1 Executable and Linkable Format 34

2.5.2 Loading into Memory . 35

2.6 Summary . 37

3 The PearColator Dynamic Binary Translator I 39

3.1 Introduction . 40

3.2 Structure . 40

3.3 Translating an Instruction . 42

3.3.1 System Calls . 43

3.4 PearColator’s Modes of Translation . 43

3.5 Jikes RVM High-Level Intermediate Representation 44

3.6 A Very Simple Example Program . 45

3.7 Summary . 54

4 The PearColator Dynamic Binary Translator II 56

4.1 Introduction . 57

4.2 Improved Code Modularity and Structure 57

4.3 Lazy Evaluation of Condition Codes 57

4.4 Execution Traces . 58

Contents 5

4.5 Adaptive Compilation . 60

4.6 Optimisation of Register Handling . 61

4.7 Summary . 61

5 Evaluating the Performance of PearColator 62

5.1 The Testing Regime . 63

5.2 Early Version . 63

5.3 Later Version . 65

5.3.1 Trace Lengths . 65

5.3.2 Comparison with the Old Version 67

5.4 Comparison with Other Emulators and Native Execution 68

5.5 Summary . 70

6 Conclusions and the Future of PearColator 72

6.1 Overview . 73

6.2 Completing the Instruction Set and System Calls 73

6.3 Dynamic Linking . 73

6.4 Parallelisation . 74

6.5 Other Optimisations . 74

6.6 Adaptation to Other Subject Architectures 75

6.7 Summary . 75

References 76

List of Figures

1.1 Three different types of dynamic binary translators. 17

1.2 Translation by the Jikes RVM. 21

2.1 An example D-Form instruction, addi. 29

2.2 An example XO-Form instruction, addex. 30

2.3 The PPC ProcessSpace class. 31

2.4 The setInt method. 33

2.5 An ELF file. 34

2.6 The layout of a process in PearColator’s process space. 36

2.7 Initial process stack. 37

3.1 Structure of PearColator. 40

3.2 Decoding a PowerPC instruction. 42

3.3 Simple example program. 46

3.4 Translation of part of the example program into HIR. 48

3.5 The control flow graph for the first trace in the example program. . . 49

6

List of Figures 7

3.6 Final stage translation from the example program. 54

5.1 Performance of the early version of PearColator: translation modes. . 64

5.2 Performance of the early version of PearColator: optimisation levels. 65

5.3 Effect of optimisation level 0 trace length (1). 66

5.4 Effect of optimisation level 0 trace length (2). 67

5.5 Effect of optimisation levels 1 and 2 trace length. 68

5.6 Dhrystone benchmark performance of the current PearColator. . . . 69

5.7 Comparison of PearColator with other emulators and with native ex-

ecution. 70

List of Tables

2.1 Condition register field CR0 values (integer instructions). 26

2.2 Condition register field CR1 values (floating-point instructions). . . . 26

2.3 Condition register field values set by compare instructions. 27

2.4 Definitions of the bits of the XER. 27

8

Abstract

A project is presented which has developed an emulator, PearColator, to execute

programs compiled for the PowerPC instruction set architecture [1]. It is written

in Java and runs as a component of the IBM Jikes Research Virtual Machine. This

enables it to take advantage of the sophisticated optimising compiler and adaptive

compilation architecture of the RVM.

This work was carried out as part of the Jamaica project which is designing a chip-

multiprocessor architecture. The long term goal of PearColator is to use the parallel

compilation and execution capabilities of the Jikes RVM (on which work is also

being done by the Jamaica group) to offer much better execution of legacy programs

on this type of architecture than current emulators which are better suited to current

single processor technology.

The performance of PearColator is evaluated and compared with other PowerPC

emulators and with execution of a program on actual PowerPC hardware. PearCo-

lator was used to run a benchmark on a 2.16 GHz AMD AthlonXP processor and

the same benchmark was run on a 600 MHz G3 PowerPC processor. PearColator

was found to be approximately seven times slower.

The PearColator project is ongoing, so the last chapter discusses the future work to

be done.

9

Declaration

No portion of the work referred to in this thesis has been submitted in support of

an application for another degree or qualification of this or any other university or

other institute of learning.

10

Copyright

1. Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions

given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made

in accordance with such instructions may not be made without permission (in

writing) of the Author.

2. The ownership of any intellectual property rights which may be described

in this thesis is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

3. Further information on the conditions under which disclosures and exploita-

tion may take place is available from the Head of the Department of Computer

Science.

11

Acknowledgements

To my supervisor Prof. Ian Watson and to the indispensable Dr. Ian Rogers. To all

the people who have worked on the Jikes RVM without which this project would

never have happened.

To my family for putting up with me spending another year as a student.

This dissertation was produced under SuSE Linux using LATEX, xfig, and GLE1; as

such I am indebted to Donald Knuth, Leslie Lamport, Linus Torvalds, the GNU

project and many others.

1Graphics Layout Engine, http://glx.sourceforge.net.

12

The Author

Having graduated from the University of Manchester with a BSc in Physics I then

joined the Nonlinear and Condensed Matter Physics Group and gained my PhD re-

searching convection in liquid helium. After this I decided on a change of direction

and began the MSc Computer Science course. The latter part of this has been the

work described in this dissertation, undertaken as part of the Jamaica Project in the

Advanced Processor Technologies Group.

And now that I’ve introduced myself, I should like to have some

idea of what’s going on.

Major General Stanley; The Pirates of Penzance,

W. S. Gilbert

13

Quidquid latine dictum sit, altum viditur.

(Whatever is said in Latin seems profound.)

Anonymous

Emulation and Dynamic Binary

Translation 1
14

1.1 Introduction 15

1.1 Introduction

An emulator is a system that allows a computer to execute programs which are in a

machine code native to a different platform.1 Commonly this is an interpreter, which

analyses a program one instruction at a time and immediately executes the required

action. This is potentially very slow, particularly in that one instruction may be

executed many times during the course of a program and must be interpreted each

time.

An alternative approach is binary translation which translates machine code from

one instruction set architecture (ISA) to another. This new machine code is natively

compatible with the hardware on which it is to be executed, and can be run repeat-

edly, if necessary, with no further translation needed.

There are two types of binary translation: static binary translation translates a whole

binary file into a different ISA; dynamic binary translation translates ‘on the fly’, trans-

lating only those instructions which are actually needed in the flow of the program2.

The process of static binary translation has problems of incompleteness due to is-

sues of self-modifying code, dynamic linking, and discovery of code to be trans-

lated. Static binary translators usually require some human intervention during

translation or some model which attempts to describe how compilers generate code

from the original high level language. The dynamic approach overcomes this, but

there is a trade-off between the time spent translating and the time spent executing

the translated code. A better translation may reduce code execution time, but the

extra time spent translating should not be allowed to outweigh this benefit [2].

1i.e. in an instruction set architecture other than that of the computer on which they are running
2Or at least making a sensible attempt to avoid translating code which will not be executed.

1.2 Dynamic Binary Translators 16

1.2 Dynamic Binary Translators

1.2.1 Terminology

The architecture on which a binary executable program was compiled to run is

called the subject machine. The dynamic binary translator presents a subject environ-

ment. This may replicate the hardware of a raw subject machine directly, or provide

an operating system environment with linking/loading and emulation of system

calls.

The dynamic binary translator itself runs within the target environment. A program

executed in the subject environment is called a subject program. The DBT translates

subject code into target code [3].

Note that this use of the terms subject and target is not universal, sometimes the

terms client and host are used, while target can be used in the sense that subject is

used here.3

1.2.2 Types of Dynamic Binary Translators

As is illustrated in figure 1.1, there are multiple possibilities for the relationship

between the translator and the operating system(s) present.

In the first type, there is an operating system running in the usual way on top of

the hardware, and the dynamic binary translator runs as a process on top of the OS.

This requires the DBT to provide a subject environment which replicates the oper-

ating system which the running program expects, not necessarily the same as that

which is actually present on the hardware. System calls must be passed through to

the operating system or emulated in some suitable way.

In the second, the DBT is executed directly by the hardware and provides a subject

3For example in reference 4.

1.2 Dynamic Binary Translators 17

Above−OS Below−OS Between−OSs

Su
bj

ec
t E

nv
ir

on
m

en
t

T
ar

ge
t E

nv
ir

on
m

en
t

ProgramProgram

DBT

Program

DBT DBT

HardwareHardwareHardware

OSOS

OS OS

Figure 1.1: Three different types of dynamic binary translators.

environment which replicates different hardware. An operating system is run on

top of the DBT, and is itself translated by it. This approach is commonly used by

translators built into the hardware. Both AMD Athlon and Intel Pentium processors

translate IA-32 instructions into simpler instruction sets used internally [5, 6].

The third configuration has one operating system running on the hardware, a DBT

executing as a process within it, and a second operating system running in trans-

lation on the DBT. This second OS is then responsible for running application pro-

grams [3].

Possibly the best known dynamic binary translator is FX!32, which was produced

by Digital Equipment Corporation [7]. It is an above-OS DBT which allows MS

Windows programs for the Intel IA-32 architecture to run under Windows NT on

Digital’s Alpha architecture, as an aid to users migrating from the Intel to the Alpha

platform.

The approach taken is that the first time a program is executed using FX!32, it is

interpreted. This is slow but allows a profile to be built of the sections of code

1.3 This Project in Context 18

which have been emulated. After the user exits from the program, the translation

is performed as a background task, translating only the code which was actually

executed during the interpreted phase, or which can be reached by simple branches.

In future executions of the same program, the stored translator output code is used,

falling back into interpretation if an untranslated area of code is entered. These

areas are then translated after execution has finished. Since only 32-bit Windows

applications are supported, FX!32 can trap system calls and they are executed by

the underlying Windows NT/Alpha operating system.

1.3 This Project in Context

1.3.1 The Need for Another Emulator

Many dynamic binary translators already exist (FX!32 has been mentioned and a

few others will be discussed shortly), so the question is raised: why write another

one?

The answer lies in the particular needs of projects such as Jamaica and in the use of

the IBM Jikes Java Research Virtual Machine (formerly Jalapeño) as the basis of the

translation [8, 9].

1.3.2 Jamaica

The Jamaica project exists to develop a new chip-multiprocessor architecture with

hardware support for light-weight threads, and the necessary software environ-

ment for its use [10]. Conventional dynamic binary translators do not support the

parallel execution needed to take advantage of this type of architecture. Other work

within the research group is investigating advanced techniques of parallelisation

within the Jikes RVM. An emulator which runs as part of the RVM will be able

to take full advantage of this, and the existing optimisation work which has been

1.3 This Project in Context 19

incorporated into the RVM.

1.3.3 The Jikes RVM as the Basis for an Emulator

The Jikes RVM is designed as a testbed for virtual machine technology. It was orig-

inally written to execute Java byte-code by dynamically translating (rather than in-

terpreting) into machine code. It includes an optimising compiler which performs

many stages of optimisation to give high performance.

PearColator adapts the Jikes RVM to translate not byte-code but rather machine

code in an ISA not native to the hardware platform on which the RVM is running.

This allows a dynamic binary translator to be written which takes advantage of the

existing and ongoing work on optimisation, particularly parallelisation. Conven-

tional dynamic binary translators are not usually as sophisticated as virtual ma-

chines. Another advantage of the whole emulator, including its memory access,

being in Java is that of improved security (such as in array access) [1].

The DBT is of the above operating system type. It creates a PowerPC/Linux sub-

ject environment. As it is based on the Jikes RVM, it can run in any of the target

environments supported by the RVM. The one used to develop the project is Intel

IA-32/Linux. Since the RVM can run on AIX and OS X operating systems on Pow-

erPC hardware, PearColator could be used to execute Linux programs on these

platforms.

1.3.4 Other PowerPC Emulators

PowerPC emulators currently existing (or in development) include QEMU, PearPC,

and SoftPear [11–13]. Unlike the Jikes RVM based PearColator DBT, all these are

written in C or C++. The performance of two of these emulators is compared with

that of PearColator in chapter 5.

1.3 This Project in Context 20

1.3.4.1 QEMU

QEMU is a dynamic binary translator which can emulate several CPU architectures,

including PowerPC [11]. It has two modes of operation [4]. Full system emulation

which is what is referred to as a between-OSs DBT in figure 1.1, emulating a full

system of a computer and peripherals. User mode emulation is an above-OS type

DBT allowing Linux programs compiled for one architecture to run on another.

The operating principle of its translator is to break down each subject code instruc-

tion into a few simpler instructions. Each of these is implemented in C code. The

object code resulting from compiling this set of simple instructions is used to make

a dynamic code generator which concatenates the simple instructions to build up a

full instruction. A pass is made through the generated simple instructions to find

cases where condition codes are set by an instruction but never used. In these cases

the code setting is eliminated.

1.3.4.2 PearPC

The PearPC project is developing a between operating systems emulator of the

PowerPC hardware running on various target environments [12]. It can be used

to run an Apple operating system on Intel IA-32 hardware. It uses both an inter-

preter and a dynamic binary translator.

1.3.4.3 SoftPear

The specific goal of the SoftPear project is to enable programs for the Apple OS X

operating system to run on Intel IA-32 hardware, rather than its intended PowerPC

platform [13]. SoftPear runs on a target operating system with the OS X user inter-

face and libraries running on top of it, to enable OS X applications to be run.

1.4 The Jikes RVM 21

1.4 The Jikes RVM

PearColator is written as an addition to IBM’s Jikes Research Virtual Machine [14,

15].

The RVM has two compilers. The

BC−HIR
Translator

HIR−LIR
Translator

Translator
LIR−MIR

MIR−MC
Translator

Byte−code

Machine IR

Machine code

Low−Level IR

Machine IR

Machine code

PowerPC code

PPC−HIR
Translator

MIR−MC
Translator

Translator
LIR−MIR

HIR−LIR
Translator

Low−Level IR

High−Level IR High−Level IR

Figure 1.2: The Jikes RVM optimising

compiler translates (left) from Java byte-code

into machine code in stages. PearColator re-

places (right) the first translation stage.

baseline compiler translates from Java

byte-code directly into machine code

for execution. It is intended to give code

which is correct, quickly generated,

but not necessarily fast in execution.

PearColator uses the optimising

compiler, which has a much

more complicated translation

mechanism, giving code which executes

quickly. This is illustrated in figure 1.2.

Java byte-code is translated

into the Jikes RVM’s own High-Level

Intermediate Representation (HIR).

This is a format which is independent

of the architecture on which the RVM is

executing. From here it is transformed

through stages of Low-Level

and Machine-Specific Intermediate

Representations (LIR and MIR),

becoming increasingly specific to the target architecture, finally reaching machine

code. This machine code is then executed.

The figure is a great simplification of the working of the translator. Each of the

stages shown can include many steps of optimisation [8, 9]. An optimisation plan is

followed which determines which steps are to be taken to optimise the generated

1.5 Summary 22

code.

The PearColator approach takes advantage of all this existing technology to achieve

a high performance translator. The first translation stage is replaced by one which

takes PowerPC machine code as its input. The rest of the process happens exactly

as it does when running byte-code.

The performance obtained using PearColator is discussed in chapter 5, where it is

compared with that of other PowerPC translators.

1.5 Summary

• Emulation allows a computer to execute programs compiled to machine code

for an architecture other than its own.

• There are a number of approaches to this. This project developed a dynamic

binary translator, PearColator, which executes PowerPC programs.

• PearColator is written as a part of the Jikes Research Virtual Machine. This

enables it to take advantage of the RVM technology currently existing or being

developed, in particular techniques of parallelism with a view to use on future

multiprocessor architectures.

Q: How many IBM CPUs does it take to do a logical right shift?

A: 33. 1 to hold the bits and 32 to push the register.

Q: How many IBM CPUs does it take to execute a job?

A: Four; three to hold it down, and one to rip its head off.

Unknown, from the fortune program

Emulating the PowerPC

Architecture 2
23

2.1 PowerPC/Linux as a Subject Environment 24

2.1 PowerPC/Linux as a Subject Environment

The PowerPC/Linux platform has a number of features which make it a good

choice of (initial1) subject environment for PearColator. The PowerPC is a load-store

RISC architecture enabling the transfer of data to and from the (emulated) memory

to be separated from the instructions which act upon data held in registers.

Linux executable binary files are in the ELF format which has a simple layout and is

therefore straightforward to load into memory [16]. Additionally, unlike the format

used by OS X, binaries can be statically linked. Consequently it has been possible to

write the initial versions of PearColator to handle only statically linked binaries. It

is intended that support will be added later for dynamic linking using the program

ld.so, just as the Linux kernel does (see section 6.3).

2.2 The Architecture of the PowerPC

2.2.1 Overview

The architecture exists in 32 bit and 64 bit implementations; PearColator emulates

the standard 32 bit version and the following discussion relates to this implemen-

tation.

There are three levels within the PowerPC architecture. PearColator emulates the

one to which user level programs conform—User Instruction Set Architecture (UISA).

This defines the user-level instruction set and registers, data types, and memory

and programming model [17].

The standard byte-ordering is big-endian, and PearColator uses this ordering.

Within a value, the most significant bit is denoted bit 0.

1The design of PearColator is intended to make it possible to add further subject environments

in the future.

2.2 The Architecture of the PowerPC 25

Memory access instructions can operate on word (32 bit), half word or byte val-

ues. Multiple byte values do not need to be aligned to natural boundaries, unlike

on some architectures including, in one mode, the POWER architecture of which

PowerPC is a development.

The floating-point arithmetic follows the IEEE-754 standard for 32 bit single preci-

sion and 64 bit double precision values.

2.2.2 Register Set

The UISA architecture model includes the following registers:

• 32 general purpose registers (GPRs) holding 32 bit integer values,

• 32 floating-point registers (FPRs) holding 64 bit double precision values,

• five special purpose registers:

– the condition register (CR),

– the floating-point status and control register (FPSCR),

– the XER register (XER),

– the link register (LR),

– the count register (CR).

General Purpose Registers These are used as the source and destination

operands for integer instructions.

Floating-Point Registers These are used as the source and destination operands

for floating-point instructions. They hold double precision values, and load and

store instructions are provided in the instruction set to transfer double precision

2.2 The Architecture of the PowerPC 26

Bit Meaning

0 LT—set when result is negative.

1 GT—set when result is positive (non-zero).

2 EQ—set when result is zero.

3 SO—summary overflow, a copy of the SO bit of the XER at the com-

pletion of the instruction.

Table 2.1: Condition register field CR0 values (integer instructions).

Bit Meaning

0 FX—floating-point exception.

1 FEX—floating-point enabled exception.

2 VX—floating-point invalid exception.

3 OX—floating-point overflow exception.

Table 2.2: Condition register field CR1 values (floating-point instructions, other than

compare). All bits are copies of the similarly named bits of the XER at the completion of the

instruction.

values without conversion. There are also instructions which convert a double pre-

cision value to single precision and store it as a 32 bit value in memory, or load a 32

bit value and convert to double precision.

Condition Register This holds flags indicating result conditions and is used for

testing and branching. It is divided into eight fields, each of four bits (CR0–CR7,

with CR0 being the first four bits of the register). When an integer instruction sets

a condition code based on its result, it uses CR0, with codes as in table 2.1.

When a floating-point instruction (other than floating point compare) sets a condi-

tion code, CR1 is used, with codes as in table 2.2.

Compare instructions can set any field of the condition register, with the codes as

in table 2.3.

2.2 The Architecture of the PowerPC 27

Bit Meaning

0 Less than or floating-point less than.

1 Greater than or floating-point great than.

2 Equal or floating-point equal.

3 Summary overflow (copy of SO bit of XER) or floating-point un-

ordered (if either operand is a Not a Number).

Table 2.3: Condition register field values set by compare instructions.

Bit Meaning

0 SO—Summary overflow, set whenever an overflow is generated,

stays set until explicitly cleared.

1 OV—Overflow, set whenever an overflow occurs.

2 CA—Carry, set or cleared by instructions which specify carrying.

25–31 Byte count, number of bytes to be transfered by load/store string

word instructions.

Table 2.4: Definitions of the bits of the XER.

Floating-Point Status and Control Register Bits 16–19 hold another copy of

the condition codes, for an explanation of the meanings of the other bits see ref-

erence 17.

XER Register Few of the bits of this register are used, and these are defined in

table 2.4.

Link Register This contains the target address for branch conditional to link reg-

ister instructions. When a branch and link instruction causes a branch to occur, the

link register is set to the address of the next instruction after the branch. This is the

mechanism for entering and returning from a section of code (function/method call

and return).

2.2 The Architecture of the PowerPC 28

Count Register This can be used to hold a loop count which is decremented by

the execution of a branch instruction containing a code to indicate this. It can alter-

natively be used to hold a branch target address.

2.2.3 The Instruction Set

The PowerPC is a load/store RISC architecture. The only instructions which access

memory are load and store instructions; all others act only on the contents of reg-

isters. All instructions are of 32 bit length. An instruction can specify up to three

registers, two for source operands and one as the destination. This allows a binary

operation (one with two source parameters) to be performed in a single instruction.

Alternatively an immediate value can be given as a source operand, encoded in the

instruction.

The instruction set can be divided into the following groups of instructions [17]:

Integer These comprise arithmetic, compare, logical, rotate, and shift instructions.

Floating-Point This group includes arithmetic, compare, and move instructions.

Load/store Instructions exist to load and store integer and floating-point values

from/to memory. Multiple integers can be transfered using a single instruction.

Flow control These include branch instructions and those which perform logical

operations on the condition register.

Other instructions Synchronisation, memory/cache control, external device con-

trol.

2.2 The Architecture of the PowerPC 29

2.2.4 Addressing Modes

The following addressing modes are supported for memory access and branching:

• Register indirect: the address is given in a register,

• Register indirect with immediate index: the address is the sum of a value from a

register, plus an offset given as an immediate value,

• Register indirect with index: the address is the sum of the values from two reg-

isters.

2.2.5 Instruction Format

Each instruction is identified by a primary opcode represented by the first six bits of

the instruction. In some cases a set of instructions have the same primary opcode

and are distinguished by the secondary (or extended) opcode (the last eleven bits in

these instructions). Each instruction can be broken down into parts, representing

opcode(s), operands, and sometimes signals to update the condition and/or XER

registers.

There are several different instruction forms which define how the various bits of the

instruction should be interpreted.

For example, the addi (add immediate instruction) is a D-Form instruction (one

which contains an immediate value) and its bits are interpreted as shown in fig-

ure 2.1 [17].

0 5 6 10 11 15 16 31

14 D A SIMM

Figure 2.1: An example D-Form instruction, addi.

In this case, the opcode is 14, bits 6–10 give the number of the register to be used as

the destination operand (rD), bits 11–15 give the number of the register to be used

2.3 Emulation 30

as one of the source operands (rA) and bits 16–31 give an immediate value which is

the other source operand. The value in rA is added to the immediate value (which is

treated as a 16-bit signed value and is sign extended to give a 32-bit representation

of the same number2); the result is stored in rD. Note that in this instruction and

many others, if rA is given as 0, this is interpreted as the value zero, rather than as

register r0.

A more complicated format is the XO-Form (X-Form instructions having three reg-

ister operands, and the ‘O’ indicating overflow signalled in the XER register), of

which an example is shown in figure 2.2. This instruction is adde, adde., addeo, or

addeo. depending on bits 21 and 31.

0 5 6 10 11 15 16 3120 21 22 30

31 D A 138B OE Rc

Figure 2.2: An example XO-Form instruction, addex.

This has the primary opcode 31 and secondary opcodes given by bits 21–31. Here

D and A have the same meanings as in the previous example; the second source

operand is the register rB. If the Rc bit is set, the condition register field CR0 is

updated (and the instruction mnemonic contains ‘.’). If the OE bit is set, the XER is

updated (and the mnemonic contains ‘o’).

The effect of this instruction is to add the contents of rA and rB, plus the carry flag

(CA bit of the XER), putting the result into rD.

2.3 Emulation

Before the actual translation of PowerPC instructions can begin, it is necessary to

set up a subject environment within which the subject program will run, replicating

that of real PowerPC hardware running Linux.

2i.e. bits 0–15 of the 32-bit value are set equal to bit 16 (the sign bit of SIMM).

2.4 The Process Space Object 31

The main issues here are:

• A process space must exist covering the 4 GB of virtual memory address range

accessible to a Linux process, including code, heap, and stack areas.

• Variables are used to store the values which, on a real PowerPC, would be

held in its registers.

• System calls must be handled.

2.4 The Process Space Object

2.4.1 Overview

A new class has been added to the Jikes RVM called

com.ibm.JikesRVM.ppcEmulator.PPC ProcessSpace.

General−Purpose
(Integer) Registers

Floating−Point Status
and Control Register

1023
...
2
1
0

Program Counter

Space)

0
1
2
...

1048575

0
1
2
...
1023

Floating−Point
Registers

Condition Register

Count Register

User Instruction Set Architecture Registers

r0

r31

r1
...

f0

f31

f1
...

cr

ctr

Memory

fpscr

Link Register

xer
XER Register

lr

pc
(4 GB Address

Figure 2.3: The PPC ProcessSpace class emulates the 4 GB address space in which a

program executes, the program counter, and those registers used in UISA mode.

As illustrated in figure 2.3, the memory space is emulated by an array of 220 page

arrays, each of 1024 integers; this gives the required 4 GB total. The individual page

2.4 The Process Space Object 32

arrays are allocated when needed using the method PPC ProcessSpace.mmap()

which replicates the semantics of the Linux mmap system call.

All the registers used in the User Instruction Set Architecture (UISA) model are

emulated by Java integer variables, except the floating-point registers, which are

of 64-bit size, so are Java type double. Although the PowerPC architecture has no

program counter register, a variable is included in this class to hold the address of

the current instruction.

2.4.2 Methods

In addition to the mmap() method, there is a corresponding munmap(). To support

memory mapping, methods are provided to locate a suitable region of unallocated

memory and to keep a record of which memory regions have been allocated (using

another class com.ibm.JikesRVM.ppcEmulator.PPC MemoryRegion).

Several methods are provided to read and write the contents of the memory array.

The PowerPC instruction set requires word (32 bit), half word, and byte access, with

the larger types not necessarily aligned to word/half word boundaries. This adds a

little complexity since it is often necessary to access two consecutive integers from

the array and read/write some bytes from each, leaving other bytes unchanged,

resulting in misaligned access being slower than aligned access3

For example, suppose we wish to write the value 0x12345678 to address 0xffd. This

word will be written to the four bytes at addresses 0xffd, 0xffe, 0xfff, and 0x1000.

The first three of these addresses are the last three bytes of the first memory page;

the other is the first byte of the second page. The process whereby these bytes are

set while leaving the neighbouring bytes unchanged is shown in figure 2.4.

Each memory page contains 4096 bytes (1024 Java integers), so this spans the last

word of the first page (memory[0][1023]) and the first of the second page

3As can be the case with real PowerPC hardware, and other architectures which allow misaligned

access [17, 18].

2.4 The Process Space Object 33

0xaaaaaaaa
0xbb123456

0x78cccccc

0xdddddddd

0xbb000000

0x00cccccc

memory[0][1022]
memory[0][1023]

Memory page 0

Memory page 1

0x78cccccc

0xbb123456

0x00123456

0x78000000

0x12345678
3

4
6

memory[1][1]
memory[1][0]

memory[0][1022]
memory[0][1023]

Memory page 0

Memory page 1

memory[1][0]
memory[1][1]

5

0xaaaaaaaa
0xbbbbbbbb

0xcccccccc

0xdddddddd

1
2

7
8

Figure 2.4: The setInt method is used to write a value of 0x12345678 to the address 0xffd

(4093).

(memory[1][0]). The stages involved are 1,2: retrieve the two words and clear

those bits to which we must write; 3: shift the word value which is to be stored

right, to extract the part to be stored in the earlier word; 4: shift it left to extract the

remaining part; 5,6: bitwise OR the results of stages 1 and 3, and of 2 and 4;

7,8: write back to memory. It can be seen that the word value 0x12345678 has been

stored as required, leaving the neighbouring bytes unchanged.

Fortunately (in terms of the speed of the emulator) it has been found that memory

access is usually aligned and most commonly in whole words, hence accessing the

array of integers is simple and efficient.

It should be noted that these load/store methods in the PPC ProcessSpace are not

the usual way that PearColator handles memory. Usually the memory array is ac-

cessed directly from the HIR instructions generated by the translator. However, to

handle misaligned access, similar algorithms are needed.

2.5 Loading an ELF Binary 34

2.5 Loading an ELF Binary

2.5.1 Executable and Linkable Format

The standard binary format used for programs by Linux (and some other UNIX

type operating systems) is the Executable and Linkable Format (ELF)4 [16, 19].

As figure 2.5 shows, an ELF file has a dual nature. One view is used by compilers,

assemblers, and linkers. This regards the file as a set of sections with an ELF header

at the start and a section header table (listing the sections) at the end; if a program

header table is present after the ELF header, it is ignored. The second is used for

execution of a program. Here the file is considered to be composed of segments,

each typically corresponding several sections, with a program header table (listing

the segments) following the ELF header. The section header table, if any, is ignored.

At this stage PearColator runs statically compiled binaries and is interested only in

the execution view.

ELF Header

Section Header Table

Section 1
Section 2
...

Program Header Table

ELF Header

Program Header Table

Section Header Table

Segment 1

Segment 2

...

Linking view Execution view

Figure 2.5: An ELF file can be viewed in different ways for compiling/assembling/linking

purposes and for execution purposes [16].

4Or ‘. . . Linking . . . ’ in some references.

2.5 Loading an ELF Binary 35

2.5.2 Loading into Memory

PearColator has a class, com.ibm.JikesRVM.ppcEmulator.PPC ELFBinary, which

is used to read an ELF binary from a file and load it into the memory array, mapping

it into the virtual address space as it would be if running natively on the intended

PowerPC platform. Classes have also been written to hold the information from the

ELF header and program header table.

The ELF header contains, amongst other information, the following [19]:

• The magic number identifying an ELF file.

• The address size, 32/64 bits.

• The byte order.

• The file type: relocatable, executable, shared object, core.

• The architecture type.

• The entry point, if executable.

• The positions in the file of the program header table and/or section header

table.

• The size of each entry and number of entries in each of these tables.

Each ELF program header contains:

• The segment type, such as code or data.

• Its offset within the file.

• The virtual address to which to map the segment.

• The size of the segment in the file.

2.5 Loading an ELF Binary 36

• Its size in memory (possibly larger than the file size, to allow space for unini-

tialised data).

• Read/write/execute flags.

• Required alignment.

Using this information the

0x10000000
0

0x80000000(2 GB)

Uninitialised data
Uninitialised data

Initialised data
Code

Stack

Figure 2.6: The layout of a process in PearCo-

lator’s process space.

ELF loader can correctly map

the various segments into

memory, copying code and

initialised data and allocating the

required space for uninitialised data.

Figure 2.6 shows the layout

of the segments in memory

for a simple program. There are four

regions of memory used: one for the

code, one for the initialised data and

the beginning of the uninitialised

data (up to the next memory page

boundary), one for the remainder of

the uninitialised data, and one for the stack.

Once this has been done, the process stack is set up, and the address of the start of

the stack placed into general purpose register r1. [20–22]

Figure 2.7 shows the contents of the initial stack: it contains the command line

arguments to the running program, a set of environment variables and the auxiliary

vector [20].

Since PearColator is written as part of the Jikes RVM which runs on several operat-

ing systems, it cannot be assumed that the host OS will have suitable environment

variables for use by the program executing within the emulator. For this reason a

2.6 Summary 37

set of values are provided by the PPC ELFBinary class. As PearColator develops,

facilities can be added to enable these to be customised.

The auxiliary vector is a series of

r1

2 GB

Information block
(arguments, environment

variables, auxiliary information)
(variable size)

Unspecified

AT_NULL auxiliary vector entry

Auxiliary vector
(2 words per entry)

Zero word

Environment pointers
(1 word each)

Zero word

Argument pointers
(argc words)

Argument count (argc)

Figure 2.7: The initial process stack, at the

top of the user mode memory space [20] (i.e. the

lower 2 GB of the total 4 GB).

key-value word pairs. The meanings

of the different items within

the vector are given in references

20 and 21; they include the user

and group ID of the user running

the program, and some details of the

CPU (here an emulated PowerPC)

and cache; these are also given

suitable values by PPC ELFBinary.

Also in the auxiliary vector are some

values relating to where the binary

is loaded into memory; these are

taken from the ELF program header.

Once the process space has been cre-

ated, the binary file loaded, and the

stack initialised, the program is ready

to be translated.

2.6 Summary

• The PowerPC platform and Linux operating system are good choices for an

environment to be emulated offering a load/store architecture with constant

length instructions and a binary file format which is simple to load into mem-

ory.

• General purpose, floating-point and special purpose registers have been em-

ulated, to the level of the User Instruction Set Architecture.

2.6 Summary 38

• PowerPC instructions are of several forms, with up to three operands and

there are three addressing modes for the operands.

• The class PPC ProcessSpace provides the environment in which the PowerPC

program is executed: registers, memory address space, and emulation of sys-

tem calls.

• Before a program can be translated, it is loaded from file into this emulated

memory, and the process stack is initialised.

For every complex problem, there is a solution that is simple, neat,

and wrong.

H. L. Mencken

The PearColator Dynamic

Binary Translator I 3
39

3.1 Introduction 40

3.1 Introduction

This chapter discusses the PearColator DBT as it existed in the early stages of its

development. The next chapter will cover the improvements that have been made

and which have resulted in very substantial improvements in the performance of

the translator.

3.2 Structure

Figure 3.1 demonstrates how the PearColator translator is structured and the inter-

face between the new work and the existing Jikes RVM.

PPC to
HIR

Hashtable

Optimising
Compiler

dynamic
BridgeTo() Loop

Runtime

PPC
Executable

Process
Space

data

new pc

M
C

HIR

MC (to run)MC (to run)

MC (from
translator)

data/syscalls

PPC instructions

pc (instruction
to translate)

code/data

Figure 3.1: The structure of the PearColator dynamic binary translator. The parts de-

veloped in this project are shown in blue. The green parts are sections of the existing Jikes

RVM. The program being executed is shown by the yellow box. The data/code flows shown

as arrows are explained in the main text.

In addition to the PPC ProcessSpace object which was described previously, the

main features of PearColator are:

• A runtime system which controls the translation process (class

PPC EmulatorRuntime).

3.2 Structure 41

• The actual translator (class PPC2IR).

• A Hashtable containing blocks of machine code output from the translator.

The sequence of events involved in translating and executing a PowerPC program

is (in its simplest form):

• Load the PowerPC code into the process space (see section 2.5).

• Repeat, under control of the runtime loop:

– Search the hashtable for a block of machine code (MC) translated from

the PowerPC instruction at the current program counter (pc).

– If any is found, execute it using the method

VM Magic.dynamicBridgeTo(), the Jikes RVM’s method of calling

compiler output code, which returns the address of the next instruction

to be translated/executed.

– If not, this PowerPC instruction has not been translated yet, so:

∗ Call the PowerPC translator, passing the program counter.

· The translator reads the instruction in PowerPC machine code

(PPC) from the process space memory emulation.

· The PowerPC code is translated into Jikes RVM HIR, and passed

on to the other translation and optimisation stages (standard

parts of Jikes RVM).

· The resulting (platform-native) machine code is passed back to

the runtime system which stores it in the hashtable.

∗ The newly translated code is executed.

∗ The new program counter value indicates the next instruction.

3.3 Translating an Instruction 42

3.3 Translating an Instruction

The PowerPC to HIR translator takes an instruction from the executable which has

been loaded into the process space. From this 32 bit value it must decode the in-

struction and plant HIR instructions which give the same behaviour.

Figure 3.2 shows the decoding of one particular example instruction.

0 5 6 10 11 15 16 31

14 D A SIMM

Add immediate
addi

rD rA + EXTS(SIMM)

0011 1001 0110 1010 1010 0100 1000 0100

primary opcode=14

0011 1001 0110 1010 1010 0100 1000 0100

rD=11 rA=10 SIMM

addi r11, r10, −23420 Disassembly

Machine Code

Machine Code

Instruction Set
Specification

Figure 3.2: Decoding a PowerPC instruction.

Examination of the first six bits extracts the primary opcode value of 14, which iden-

tifies the instruction as addi. The format of this instruction is shown in the figure,

together with the definition of the instruction. The last 16 bits of the instruction

are interpreted as a signed immediate value. This is made into a 32 bit number by

filling the first 16 bits with sign bits (bit 16). This is added to the contents of general

purpose register rA and the result placed into register rD. In this case there is no

further action; some instructions have the added complication of setting condition

codes. In this example the source register is r10, the destination register is r11 and

the immediate value is −23420.

3.4 PearColator’s Modes of Translation 43

3.3.1 System Calls

Some dynamic binary translators handle system calls by passing them through to

the underlying operating system. This can be suitable for use in the case where

the subject and target environments have the same operating system, but different

architecture (although even in this case there can be differences in the layout of

data structures involved which adds complication). PearColator, however, can run

on a variety of operating systems, and is written in Java which, due to its platform-

independence, cannot access (operating system specific) system calls directly.

The result of this is that PearColator must emulate system calls. A method is pro-

vided in the PPC ProcessSpace class, called doSysCall(). When a PowerPC sc in-

struction is encountered, a call to doSysCall() is planted in the HIR. The method

performs the necessary action, written in Java code.

Some of the system calls can be emulated very simply. For example, a (write) sys-

tem call directed to standard output is mapped to System.out.println(). The read

and write system calls applied to files are emulated by the use of Java’s Rando-

mAccessFile class. An array of these objects exists and the file descriptor numbers

used in the programs being executed by PearColator act as array indices.

So far, just over twenty system calls have been implemented.

3.4 PearColator’s Modes of Translation

In section 3.2, a sequence of events was given in which PearColator translates one

instruction of a PowerPC program, executes it, then looks for a translation of the

next instruction. In addition to this single-instruction mode of translation, PearCo-

lator has two other modes which translate a group of instructions into a block of

machine code. This reduces the frequency with which control moves between the

runtime system, the translator, and actual execution of translated code.

3.5 Jikes RVM High-Level Intermediate Representation 44

One of these translates a block of instructions. The translator reads in a PowerPC

instruction, translates it into HIR and then does the same to the next instruction,

building up a longer set of HIR instructions. When a branch instruction is reached,

control is passed back to the runtime system, giving it the address of the next in-

struction needed (either the branch target or the next in order, in the case of a con-

ditional branch for which the condition is not satisfied).

The last of the modes builds up a trace through the program. When an uncon-

ditional branch is encountered, translation continues uninterrupted with the tar-

get instruction. Conditional branches backwards to an earlier instruction within

the trace are also handled without returning to the runtime system. Translation is

stopped at a conditional branch to any instruction which is not earlier in the current

trace. At this point control returns to the runtime system, which then searches the

hashtable of code for an existing translation for the appropriate instruction.

In the next chapter, the development of PearColator beyond this initial version is

described. Substantial changes have been made to the trace building procedure.

3.5 Jikes RVM High-Level Intermediate Representa-

tion

The essence of what PearColator does is to translate PowerPC machine code into

the Jikes RVM’s HIR, which is then translated in stages to platform-native machine

code by the existing Jikes system. In this section the process of planting HIR in-

structions is explained in a little detail. The next section illustrates this with an

example.

In the original Jikes RVM, a group of Java byte-code instructions corresponding to a

Java method is translated into a group of HIR instructions. In PearColator, a single

PowerPC instruction, a block of instructions, or a trace is translated. The resulting

HIR is divided into basic blocks, each of which has a set of HIR instructions which

3.6 A Very Simple Example Program 45

are to be executed in order.1

Any instruction which branches to another point in the code must be the last in-

struction in its block. Due to such branches, the order of execution of the basic

blocks is not necessarily that in which they are ordered within the code. To handle

this, whenever a new basic block of HIR instructions is created, two things must be

specified: the position in code order, and the position in the control flow graph.

Code order is simply a linear sequence giving the order in which the basic blocks

appear in a listing of the HIR. When execution reaches the end of a basic block,

unless a branch is taken, it proceeds to the next block in code order.

The control flow graph reflects all the possible execution paths through the basic

blocks. Each block is a node in the graph and each path from one block to any other

which can be executed immediately following it is an edge. So, for example, if a

block has no branch instruction at the end of it, control must pass to the next block

in code order. If there is a conditional branch at the end of a block, it will have two

‘out’ edges, one to the next block in code order and one to the branch target.

3.6 A Very Simple Example Program

In this section an example program is presented, with the resulting translation.

Usually the programs run on PearColator are compiled from C, which links with

the C library, giving a large executable. For simplicity an example written in assem-

bly language has been selected: it does not do anything very useful, just sums the

integers 1 to 5. PearColator has a debugging mode enabling register contents to be

examined to show that it works properly. Figure 3.3 shows the code.

The first two instructions set registers r10 and r11 to zero. Instructions 3–6 form a

loop which increments r10, adds its new value to r11 and branches back to the start

of the loop as long as the value in r10 is less than 5. Instructions 7 and 8 make the

1Or rather, translated to machine code instructions which are then executed.

3.6 A Very Simple Example Program 46

.text
.globl _start

_loop:

_start:
10, 0
11, 0

10, 10, 1
11, 11, 10

10, 5
_loop

0, 1

5

1
2

3
4

6

7
8

li
li

addi
add
cmpwi
blt

li
sc

Figure 3.3: Simple example program.

system call to exit the program.

When PearColator translates this program, it can form a trace up to and including

instruction 6. The following high level intermediate representation is generated:

-13 LABEL0 Frequency: 0.0

-2 EG ir_prologue l0i(Lcom/ibm/JikesRVM/

VM_CodeArray;,d), l1i(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;,x,d) =

-1 bbend BB0 (ENTRY)

0 LABEL2 Frequency: 0.0

-1 int_move t3i(I) = 0

-1 bbend BB2

0 LABEL4 Frequency: 0.0

-1 int_move t4i(I) = 0

-1 bbend BB4

0 LABEL5 Frequency: 0.0

-1 int_add t3i(I) = t3i(I), 1

-1 bbend BB5

0 LABEL6 Frequency: 0.0

-1 int_add t4i(I) = t4i(I), t3i(I)

3.6 A Very Simple Example Program 47

-1 bbend BB6

0 LABEL7 Frequency: 0.0

-1 getfield t6i(I) = l1i(Lcom/ibm/

JikesRVM/opt/PPCProcessSpace;), -408, <mem loc:

Lcom/ibm/JikesRVM/opt/PPCProcessSpace;.xer>,

<TRUEGUARD>

-1 int_ushr t5i(I) = t6i(I), 31

-1 int_cond_move t8i(I) = t3i(I), 5, <, 8, 4

-1 int_cond_move t7i(I) = t3i(I), 5, ==,

2, t8i(I)

-1 int_or t9i(I) = t5i(I), t7i(I)

-1 getfield t11i(I) = l1i(Lcom/ibm/

JikesRVM/opt/PPCProcessSpace;), -144, <mem loc:

Lcom/ibm/JikesRVM/opt/PPCProcessSpace;.cr>, <TRUEGUARD>

-1 int_and t10i(I) = t11i(I), 268435455

-1 int_shl t12i(I) = t9i(I), 28

-1 int_or t11i(I) = t10i(I), t12i(I)

-1 bbend BB7

0 LABEL8 Frequency: 0.0

-1 int_move t16i(I) = 1

-1 int_and t14i(I) = t11i(I), -2147483648

-1 int_ushr t15i(I) = t14i(I), 31

-1 int_cond_move t17i(I) = t15i(I), 1, ==, 1, 0

-1 int_add t18i(I) = t16i(I), t17i(I)

-1 putfield t3i(I), l1i(Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;), -56, <mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.r10>, <TRUEGUARD>

-1 putfield t4i(I), l1i(Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;), -60, <mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.r11>, <TRUEGUARD>

-1 putfield t11i(I), l1i(Lcom/ibm/

3.6 A Very Simple Example Program 48

JikesRVM/opt/PPCProcessSpace;), -144, <mem loc:

Lcom/ibm/JikesRVM/opt/PPCProcessSpace;.cr>, <TRUEGUARD>

-1 putfield t6i(I), l1i(Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;), -408, <mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.xer>, <TRUEGUARD>

-1 int_move t2i(I) = 268435596

-1 int_ifcmp t19v(GUARD) = t18i(I), 2, ==,

LABEL5, Probability: 0.99

-1 bbend BB8

0 LABEL9 Frequency: 0.0

-1 bbend BB9

0 LABEL3 Frequency: 0.0

-1 goto LABEL1

-1 bbend BB3

-14 LABEL1 Frequency: 0.0

-3 return t2i(I)

-1 bbend BB1

Figure 3.4: Translation of part of the example program into HIR.

It can be seen that there are ten basic blocks, each beginning LABELn and ending

bbend BBn.2 Basic blocks 2 and 4–8 correspond to instructions 1–6 in the PowerPC

program (figure 3.3). Terms in the HIR like t3i(I) are temporary representations

of register values (in this example an integer). The first four blocks contain HIR

very similar to the PowerPC instructions. Block 7 sets the (temporary copy of the)

condition register according to the result of the comparison of register r10 with the

value 5. Block 8 examines the condition register for the code representing less than,

the required condition. The penultimate instruction in this block sets the tempo-

rary register t2i(I) to the address of the next instruction (number 7 in figure 3.3),

2The numbering of the blocks reflects the order in which they were created, starting with the

prologue and epilogue, this does not need to correspond to code order.

3.6 A Very Simple Example Program 49

which will be executed if the condition for branching is found to be false. The final

HIR instruction in this block causes a branch back to basic block 5, subject to the

result of the condition register testing done earlier in the block.

When the translation of the trace is executed, backward branching occurs at this

point as long as the condition is satisfied, without returning control to the runtime

loop. When it is no longer true the remaining basic blocks of the trace are executed.

Blocks 9 and 3 are effectively empty (and so are eliminated during optimisation),

while the last block returns control to the runtime loop, passing the address of the

next instruction.

In basic block 8 there are several putfield instructions; these write the values from

the temporary registers back into the PPC ProcessSpace object, in preparation for

returning to the runtime loop (in case the condition for the backwards branch is not

satisfied).

Figure 3.5 illustrates the control flow graph for this trace.

It can be seen that there is a sequential
BB2 BB4BB0(ENTRY)

BB5 BB6 BB7 BB8

BB1BB9 BB3 EXIT1

Figure 3.5: The control flow graph for the

first trace in the example program.

path through the basic blocks in

code order, but also a backward branch

from BB8 to BB5. The actual flow of

control following BB8 is determined by

the (translation of the) blt instruction.

Of course the computer on which

PearColator is run does not execute

Jikes RVM HIR directly; it must be

translated into the correct machine code

for the architecture. During this, many optimisations are carried out.

These stages, from HIR to machine code are carried out by existing parts of the

Jikes RVM with no new PearColator code being needed. Figure 1.2 illustrates this

in simple form; in reality, depending on the optimisation setting chosen for the

3.6 A Very Simple Example Program 50

RVM, there can be over 140 steps in the process [9].

With an optimisation level of 1 chosen, the example trace under consideration leads

eventually to the following IA-32 assembly language (after more than 50 stages of

translation and optimisation):

-13 LABEL0 Frequency: 1.0

-1 ia32_cmp AF CF OF PF SF ZF = esp(I),

<[PR(I)]+-80>DW

-1 ia32_jcc LE, LABEL4, <unused> AF CF OF

PF SF ZF

-1 bbend BB0 (ENTRY)

-1 LABEL5 Frequency: 1.0

0 ia32_push <[PR(I)]+-92>DW

0 ia32_mov <[PR(I)]+-92>DW = esp(I)

0 ia32_push 15542

0 ia32_mov <[esp(I)]+-20>DW = ebx(I)

0 ia32_mov <[esp(I)]+-16>DW = edi(I)

0 ia32_mov <[esp(I)]+-12>DW = ebp(I)

0 ia32_mov eax(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;,x,d) = edx(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;)

0 ia32_add esp(I) AF CF OF PF SF ZF

<-- -20

-1 ia32_cmp AF CF OF PF SF ZF = <[PR(I)]

+-72>DW, 0

-1 ia32_jcc NE, LABEL7, Probability: 0.0

AF CF OF PF SF ZF

-1 bbend BB5

0 LABEL6 Frequency: 1.0

-1 ia32_mov edx(I) = 0

-1 ia32_mov ecx(I) = 0

3.6 A Very Simple Example Program 51

-1 bbend BB6

0 LABEL1 Frequency: 100.0001

-1 ia32_cmp AF CF OF PF SF ZF = <[PR(I)]

+-72>DW, 0

-1 ia32_jcc NE, LABEL9, Probability: 0.0

AF CF OF PF SF ZF

-1 bbend BB1

0 LABEL8 Frequency: 100.0001

-1 ia32_inc edx(I) AF OF PF ZF <--

-1 ia32_mov <[eax(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;)]+-56>DW (<mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.r10>, <TRUEGUARD>) = edx(I)

-1 ia32_add ecx(I) AF CF OF PF SF ZF

<-- edx(I)

-1 ia32_mov <[eax(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;)]+-60>DW (<mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.r11>, <TRUEGUARD>) = ecx(I)

-1 ia32_mov ebx(I) = <[eax(Lcom/ibm/

JikesRVM/opt/PPCProcessSpace;)]+-408>DW (<mem loc:

Lcom/ibm/JikesRVM/opt/PPCProcessSpace;.xer>, <TRUEGUARD>)

-1 ia32_mov <[eax(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;)]+-408>DW (<mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.xer>, <TRUEGUARD>) = ebx(I)

-1 ia32_cmp AF CF OF PF SF ZF = edx(I), 5

-1 ia32_mov edi(I) = 4

-1 ia32_mov ebp(B,+) = 8

-1 ia32_cmov edi(I) <-- ebp(B,+), LT CF OF

PF ZF

-1 ia32_cmp AF CF OF PF SF ZF = edx(I), 5

-1 ia32_mov ebp(I) = 2

-1 ia32_cmov ebp(I) <-- edi(I), NE CF OF PF

3.6 A Very Simple Example Program 52

ZF

-1 ia32_shr ebx(I) AF CF OF PF SF ZF

<-- 31

-1 ia32_or ebx(I) AF CF OF PF SF ZF

<-- ebp(I)

-1 ia32_shl ebx(I) AF CF OF PF SF ZF

<-- 28

-1 ia32_mov edi(I) = <[eax(Lcom/ibm/

JikesRVM/opt/PPCProcessSpace;)]+-144>DW (<mem loc:

Lcom/ibm/JikesRVM/opt/PPCProcessSpace;.cr>, <TRUEGUARD>)

-1 ia32_and edi(I) AF CF OF PF SF ZF

<-- 268435455

-1 ia32_or edi(I) AF CF OF PF SF ZF

<-- ebx(I)

-1 ia32_mov <[eax(Lcom/ibm/JikesRVM/opt/

PPCProcessSpace;)]+-144>DW (<mem loc: Lcom/ibm/JikesRVM/

opt/PPCProcessSpace;.cr>, <TRUEGUARD>) = edi(I)

-1 ia32_mov ebx(I) = edi(I)

-1 ia32_and ebx(I) AF CF OF PF SF ZF

<-- -2147483648

-1 ia32_shr ebx(I) AF CF OF PF SF ZF

<-- 31

-1 ia32_cmp AF CF OF PF SF ZF = ebx(I), 1

-1 ia32_set$b ebx(Z) = EQ AF CF OF PF SF ZF

-1 ia32_movzx$b ebx(I) = ebx(Z)

-1 ia32_inc ebx(I) AF OF PF ZF <--

-1 ia32_cmp AF CF OF PF SF ZF = ebx(I), 2

-1 ia32_jcc EQ, LABEL1, Probability: 0.99

AF CF OF PF SF ZF

-1 bbend BB8

0 LABEL2 Frequency: 1.0

3.6 A Very Simple Example Program 53

-1 ia32_cmp AF CF OF PF SF ZF = <[PR(I)]

+-72>DW, 0

-1 ia32_jcc NE, LABEL11, Probability: 0.0

AF CF OF PF SF ZF

-1 bbend BB2

-10 LABEL10 Frequency: 1.0

-3 ia32_mov eax(I) = 268435596

-3 ia32_mov ebx(I) = <[esp(I)]>DW

-3 ia32_mov edi(I) = <[esp(I)]+4>DW

-3 ia32_mov ebp(I) = <[esp(I)]+8>DW

-3 ia32_add esp(I) AF CF OF PF SF ZF

<-- 24

-3 ia32_pop <[PR(I)]+-92>DW =

-3 ia32_ret 8, eax(I), <unused>

-1 bbend BB10

-1 LABEL4 Frequency: 0.0

-1 EG ia32_int <STACK OVERFLOW>

-1 ia32_jmp LABEL5

-1 bbend BB4

0 LABEL7 Frequency: 0.0

0 EG ia32_call AF CF OF PF SF ZF =

<0+1124082056>DW (<mem loc: JTOC @8132>, <TRUEGUARD>),

static"com.ibm.JikesRVM.opt.VM_OptSaveVolatile.

OPT_threadSwitchFromPrologue ()V"

-1 ia32_jmp LABEL6

-1 bbend BB7

0 LABEL9 Frequency: 0.0

0 EG ia32_call AF CF OF PF SF ZF =

<0+1124082064>DW (<mem loc: JTOC @8140>, <TRUEGUARD>),

static"com.ibm.JikesRVM.opt.VM_OptSaveVolatile.

OPT_threadSwitchFromBackedge ()V"

3.7 Summary 54

-1 ia32_jmp LABEL8

-1 bbend BB9

-10 LABEL11 Frequency: 0.0

-10 EG ia32_call AF CF OF PF SF ZF =

<0+1124082060>DW (<mem loc: JTOC @8136>, <TRUEGUARD>),

static"com.ibm.JikesRVM.opt.VM_OptSaveVolatile.

OPT_threadSwitchFromEpilogue ()V"

-1 ia32_jmp LABEL10

-1 bbend BB11

Figure 3.6: Final stage translation from the example program.

It can be seen that the sequence of basic blocks has been changed significantly and

that all the instructions are now specific to the IA-32 architecture. This is then as-

sembled into a block of IA-32 machine code which the runtime environment places

into its hashtable and executes. It remains in the hashtable during execution of the

program in case the same code is to be executed again.

3.7 Summary

• The main components of PearColator are the process space, runtime system,

hashtable of translated code, and the actual translator.

• The translator operates on single instructions, or on a block or trace of instruc-

tions.

• The hashtable keeps all the translations for future use.

• The instructions are translated into Jikes High-Level Intermediate Represen-

tation, which is then translated and optimised through many stages by the

standard Jikes classes.

3.7 Summary 55

• The HIR is organised into basic blocks and the flow of control through them

described by a flow control graph.

Every program has at least one bug and can be shortened by

at least one instruction—from which, by induction, one can de-

duce that every program can be reduced to one instruction which

doesn’t work.

Anonymous

The PearColator Dynamic

Binary Translator II 4
56

4.1 Introduction 57

4.1 Introduction

The previous chapter described the first version of PearColator; this one covers the

improvements which have been made to date. A great improvement in perfor-

mance has been obtained, as will be shown in the next chapter.

4.2 Improved Code Modularity and Structure

As PearColator was originally written, the translation of a PowerPC instruction into

HIR was done inside a very large switch statement in the class PPC2IR. This has

now been rewritten to use a class PPC InstructionTranslator, which has a subclass

for each individual instruction in the PowerPC set.

The superclass has a method to translate each of the instruction forms (see sec-

tion 2.2.5). These methods should never actually be called so they throw errors.

Individual instruction subclasses override the method which is appropriate to their

form with one which does the actual translation. Only these overriding methods

should be called; the superclass methods are simply there in case a programming

error leads to the a method being called for the wrong form.

Lookup tables are used to find the appropriate form and translator class for a given

primary opcode. Where a secondary opcode exists, a second lookup table is used

by the extended instruction translator, which in turn calls the translator for the par-

ticular instruction.

4.3 Lazy Evaluation of Condition Codes

Many instructions set a field of the condition register depending upon the result of

the instruction (see the tables in section 2.2.2). Subsequently, this can be tested by a

conditional branch instruction or moved to some other location.

4.4 Execution Traces 58

In order to emulate this behaviour exactly, a fairly complex set of HIR instructions

is necessary (basic blocks BB7 and BB8 in figure 3.4). This is slow because it in-

volves making the comparison and setting CR bits accordingly, then later interpret-

ing these in terms of comparison conditions.

To avoid this, PearColator uses lazy evaluation of the condition register. Instead

of calculating the condition code following an arithmetic or compare instruction,

variables are used to hold the values which are being compared (for a compare

instruction), or the instruction result and the number zero (for instructions with the

record (Rc) bit set).1

When a condition test is needed, it can be made using these values directly. It is nec-

essary to know what type of comparison must be performed: signed, unsigned, or

floating point. This is represented by a value in an object of class PPC2IR.Laziness.

If it is desired to set the actual CR this can be also be done from these values.

If the condition code has been calculated and set in a field of the condition register,

the Laziness object reflects the fact that lazy evaluation is not currently in use for

that field. This is of importance at the start of a new trace or following a system call,

since it is possible for the condition register to have been set to a value which does

not follow the standard meanings of the bits, and so is not properly represented by

the lazy state.

4.4 Execution Traces

Previously, HIR was generated by looping through a set of PowerPC instructions

and translating each one until a point was reached where translation was stopped.

This varied according to the translation mode (single-instruction, block or trace, see

section 3.4).

The new PearColator is more sophisticated. A method is used,

1Comparison of the result with zero is the test for negative, positive, or zero.

4.4 Execution Traces 59

PPC2IR.translateSubTrace(). For each instruction the appropriate translator is

called, via look up tables. This plants the appropriate HIR and returns a value,

usually the address of the next instruction, which is then translated. Alternatively

a value of -1 may be returned to indicate that translation should stop (typically in

these cases, the next instruction is not known at this point).

A mapping is maintained from a key formed from the program counter value and

the lazy evaluation state to an HIR block (previously only the pc was used as the

key for the mapping, since there was no laziness), and a count is kept of the number

of instructions which have been translated in the current trace.

Conditional branch instructions are translated by planting HIR to evaluate the con-

dition and jump to appropriate blocks of HIR. If no suitable HIR block exists for

a jump target, this fact is registered, storing the instruction, program counter, and

lazy state at the branch point. In the case of branch and link instructions, a list is

kept of all the places in the code from which a branch can be made to any given

target: this is used to guide the translation of return instructions. The return value

from the translator method is the next instruction address (which will be executed

if the branch is not taken), except in two cases:

• If the bits are set in the instruction to indicate ‘branch always’, in this case -1

is returned, to stop translation.

• If the instruction is a branch and link, and the number of instructions in the

trace exceeds a certain value (dependent on the optimisation level): this is to

prevent translating deeply into a region of code which might not actually be

executed, depending on the result of the condition testing. In this case the

return value to be passed back to the runtime system is set, the CR lazy state

resolved, and the trace finished.

When translation is stopped by one of these possibilities, branch targets which have

been registered as not yet translated can be resolved. The method translateSub-

Trace() is called again to translate these targets.

4.5 Adaptive Compilation 60

Whenever translateSubTrace() is called, it tests whether or not the number of in-

structions translated in the current trace has exceeded the same limit (dependent

on the optimisation level) as in the case above. If it has, the trace is finished, with

control passing back to the runtime system. Testing the number of instructions at

this point ensures that traces end only at branch points, such as calls and returns.

The intention is to generate traces which approximate to the methods in the original

subject program.

4.5 Adaptive Compilation

One feature of the Jikes RVM which was not used by the earliest version of PearCo-

lator is adaptive compilation [9]. Whenever a method is found to be executed fre-

quently the RVM estimates the cost and benefit to execution speed of recompiling

at a higher optimisation level. If the result favours recompilation, it is performed, in

parallel with code execution in a separate thread. This recompilation of the hottest

(most frequently used) code regions is based on the conventional assumption of

temporal locality—most of the execution time is spent in a small fraction of the

total code.

PearColator has now been modified to allow recompilation of PowerPC code in

a similar way. It is possible to configure the emulator to use optimisation level 0

initially and to compile at higher levels those code regions which are frequently

used.

The trace length after which translation of a new subtrace is not started can be set

independently for each of the optimisation levels. Tests have been conducted to

find the optimum lengths. The results are presented in section 5.3.1.

4.6 Optimisation of Register Handling 61

4.6 Optimisation of Register Handling

At the start of each trace, all the register values are loaded into Jikes RVM tempo-

rary registers from the process space. At the end they are spilled back again. This

involves unnecessary operations if, as is generally the case, not all are used.

To avoid this, an optimisation phase has been added. A record is kept of which

registers are actually used, and the filling and spilling of the unused registers is

eliminated during this optimisation phase.

4.7 Summary

• A number of modifications have been made to the original system described

in the previous chapter.

• The code has been re-structured to improve its modularity.

• The condition codes are lazily evaluated.

• Unnecessary register spill/fill operations are eliminated.

• The formation of traces through the code has been improved to allow more

sophisticated branching within a trace. It is possible to build traces through

thousands of PowerPC instruction.

• The Jikes RVM’s adaptive compilation system can be used.

Calvin: ”I like to verb words.”

Hobbes: ”What?”

Calvin: ”I take nouns and adjectives and use them as verbs. Re-

member when ’access’ was a thing? Now it ’s something you do.

It got verbed.”

Calvin: ”Verbing weirds language.”

Hobbes: ”Maybe we can eventually make language a complete

impediment to understanding.”

Calvin and Hobbes cartoon strip, Bill Watterman

Evaluating the Performance of

PearColator 5
62

5.1 The Testing Regime 63

5.1 The Testing Regime

The performance of PearColator has been investigated using the Dhrystone integer

benchmark [23]. Tests were carried out on the early version of PearColator (de-

scribed in chapter 3) and the improved system (chapter 4).

The benchmark performs a fixed set of integer operations a user-specified number

of times. This number of executions was varied to allow a distinction to be made be-

tween the fixed1 overhead of translation and the time take to execute the translated

code (dependent on the number of loop executions).

During most of the tests (except those in section 5.3.1), PearColator was run on a

computer with an AMD AthlonXP 2700+ CPU with a clockspeed of 2.16 GHz and

256 kB cache, running Linux kernel 2.6.4. For comparison the same benchmark was

run (natively, without translation) on an Apple iBook computer with a 600 MHz G3

PowerPC processor.

5.2 Early Version

All three modes of translation available were tested—single-instruction, block, and

trace. As was hoped, the more sophisticated modes, translating multiple instruc-

tions together, gave significantly better performance than was obtained by translat-

ing instructions one at a time. The Jikes RVM was run at optimisation level 2 for

these tests; this uses a large number of optimisation stages.

Figure 5.1 shows the results for the three modes.

It can be seen that when the number of Dhrystone loops executed is small, the

Dhrystones/second figure (D) is approximately proportional to the total number of

loop executions (N). The total execution time of the benchmark is constant for all

small numbers of loops, because it is dominated by the time take to translate the

1Independent of the number of loop executions.

5.2 Early Version 64

0 1 2 3 4 5 6 7
log10(N)

-2

-1

0

1

2

3

4

5

6

lo
g 1

0(
D

)

Single instruction
Block
Trace
iBook (600 MHz)

Figure 5.1: Dhrystone benchmark performance of the early version of PearColator run-

ning on a 2.16 GHz PC. The data plotted shows the number of Dhrystone loops per second

as a function of the total number of loops executed for the three translation modes. Also

shown is the performance of a 600 MHz iBook (too fast to give reliable measurements at

small N).

code. At high N, however, the number of Dhrystones/second is almost constant: in

this case the time taken in the actual execution of the translated code is dominant.

Further tests were done to measure the effect of varying the level of optimisation

performed by the Jikes RVM on the generated HIR. The trace translation mode was

used for this and the results are shown in figure 5.2.

It can be seen that reducing the number of optimisation stages reduces the N-

independent time due to the translation overhead (seen at small values of N) but

that there is no significant variation in the execution time per loop iteration (the

limiting value at large N).

5.3 Later Version 65

0 1 2 3 4 5 6 7
log10(N)

-1

0

1

2

3

4

5

6

lo
g 1

0(
D

)

2
1
0
iBook (600 MHz)

Figure 5.2: Dhrystone benchmark performance of the early version of PearColator at

different optimisation levels.

5.3 Later Version

5.3.1 Trace Lengths

As explained in section 4.4, when the method translateSubTrace() is called it stops

translation if the number of instructions already translated in the trace has exceeded

a value which depends on the optimisation level. Results are presented here of the

tests to find the optimum values of these limits.

The first stage test was carried out with adaptive compilation disabled and the op-

timisation level fixed at 0. This allowed the optimum trace length to be found for

this level. Figure 5.3 shows the variation of the performance of PearColator with

the trace length setting. The benchmark was 1 million runs of the Dhrystone loop.

A different computer was used for the trace length tests from the one described

above, having a 3 GHz Intel Pentium 4 processor with 1 MB cache.

5.3 Later Version 66

0 200 400 600 800 1000
T, Trace length for possible stop

0

10000

20000

30000

40000

50000

60000

70000

D
,D

hr
ys

to
ne

s/
se

co
nd

......
.....
....
...
....
......
..
.......
............
.........
.
.....................

.

.

.

.

............
.
.
.
.
.....
..
..
.
........
.

..
.
..
...
..
.
....
......
...
.
..
...
.
.
....
.
........
.
....
..
.
.
....
..
....
..
...
.
..
.
.
.
.
....
...
..
..
...
.
.
.
.
.
.
.
.
.
...
..
.
.
..............
.
...
..
.
.
.
.
...
.
.......
.
...
.
..........
.
..

..

Figure 5.3: Effect of trace length with optimisation level of 0 on performance of PearCo-

lator. Adaptive compilation was disabled. At each trace length setting, 1e6 iterations of the

Dhrystone loop were performed. A sixth order polynomial least squares fit is shown.

It can be seen that the performance peaks for a trace length of approximately 250

instructions.

A further test was conducted around this range of trace length. In each case several

runs were conducted with the same trace length setting, each of 10 million Dhrys-

tone loops, and the mean benchmark result plotted in figure 5.4.

This shows that in a small range around 250 instructions, there is little variation in

the benchmark result. A ‘round’ figure of 256 was decided to be a suitable length to

use.

A second stage of testing was conducted with adaptive compilation enabled. The

initial optimisation level was set to 0 and the trace length for possibly stopping

when at this level was set to 256 instructions. The trace length for levels 1 and 2 was

varied, but in each case was the same for level 2 as level 1. To improve the accuracy

5.3 Later Version 67

235 240 245 250 255 260 265 270 275 280
T, Trace length for possible stop

61000

62000

63000

64000

65000

66000

D
,D

hr
ys

to
ne

s/
se

co
nd

.

.
.

.
.

Figure 5.4: Effect of trace length with optimisation level of 0 on performance of PearCola-

tor. Adaptive compilation was disabled. Each point shows the mean and standard deviation

of several runs of 1e7 Dhrystone loop iterations.

of the results, each test was conducted several times and the mean benchmark value

calculated.

It can be seen in figure 5.5 that there is very little variation at all; note that the

vertical scale is much enlarged. The error bars show the standard deviation: in

some cases all runs gave the same result, so no deviation.

5.3.2 Comparison with the Old Version

Figure 5.6 shows the performance of the current PearColator on our standard test

system, for comparison with the results in section 5.2. The trace lengths for possi-

bly stopping translation were 256 instructions at optimisation level 0 and 1536 at

the higher levels. Tests were conducted with adaptive compilation (with an initial

optimisation level of 0) and without.

5.4 Comparison with Other Emulators and Native Execution 68

0 500 1000 1500 2000 2500 3000
T, Trace length for possible stop

65700

65800

65900

66000

66100

66200

66300

66400

66500

66600

66700

D
,D

hr
ys

to
ne

s/
se

co
nd

Figure 5.5: Effect of optimisation levels 1 and 2 trace length on performance of PearCola-

tor. Adaptive compilation was enabled, with an initial optimisation level of 0.

It can be seen that there is an extremely good improvement in the benchmark values

(a factor of ten) . However the use of adaptive compilation does not currently offer

any significant benefit.

5.4 Comparison with Other Emulators and Native Ex-

ecution

In this section, the performance of PearColator is compared with existing PowerPC

emulators and with native execution of the Dhrystone benchmark on PowerPC and

IA-32 hardware. There also exists a Java version of the benchmark and this is in-

cluded in the comparison, running on the Jikes RVM and on the HotSpot virtual

machine.

Figure 5.7 compares the Dhrystone results for PearColator with two other PowerPC

5.4 Comparison with Other Emulators and Native Execution 69

5.0 5.5 6.0 6.5 7.0 7.5
log10(N)

0

1

2

3

4

5

6

lo
g 1

0(
D

)

Without adaptive compilation
With adaptive compilation
iBook (600 MHz)

Figure 5.6: Dhrystone benchmark performance of the current PearColator. At smaller

values of N, execution was too fast for reliable timing.

emulators, all running on the AthlonXP 2700+ test system. Also shown are the

benchmark values obtained running Dhrystone compiled for native execution on

this computer and on the 600 MHz G3 system. Lastly results are presented for the

Java version of Dhrystone running on virtual machines on the AthlonXP.

It can be seen that all three emulators are much slower than native execution on

the same hardware (AthlonXP). Although PearColator is the slowest currently, its

performance is similar to that of PearPC. It is hoped that further improvements can

be made to PearColator to increase its speed.

These results also show that the Java Dhrystone benchmark can be faster than the

C original. This results from the use of compiler optimisations within the virtual

machine which were not enabled in the C compiler (standard Dhrystone testing

conditions).

5.5 Summary 70

PearColator

PearPC

QEMU

G3 600 MHz

AthlonXP 2700

Jikes RVM

HotSpot client

HotSpot server

3333333.2

2503755.0

3661662.0

5753739.0

101010.1

140845.1

714285.7

500000.0

Figure 5.7: Comparison of PearColator with other emulators and with native execution,

Dhrystones per second for 1e7 iterations of the benchmark loop.

5.5 Summary

• Considerable improvements have been made to the performance of PearCo-

lator.

• The threshold trace length at optimisation level 0 has a significant effect on

the benchmark performance. Approximately 256 instructions was found to

be the optimum length. No significant variation was found with the length

of traces at the higher optimisation levels, showing that there is currently no

benefit from the use of the adaptive system by PearColator.

• Using the Dhrystone benchmark, it is 28% slower than PearPC, and (when

running on an AthlonXP 2700+) about seven times slower than native execu-

tion on a 600 MHz G3 PowerPC, but. . .

– It is hoped that further improvements can be obtained.

– On future chip-multiprocessor architectures, the PearColator approach

should be much more suitable for parallel compilation and execution

than traditional dynamic binary translators.

5.5 Summary 71

– PearColator has security advantages over many other emulators, includ-

ing safeguards on memory access.

It is very difficult to prophesy, especially when it pertains to the

future.

Patrick Kurzawe

Conclusions and the Future of

PearColator 6
72

6.1 Overview 73

6.1 Overview

The approach to dynamic binary translation, using a virtual machine, taken by this

project has been shown to be viable. Performance results have been achieved which

are close to those of the PearPC emulator for the Dhrystone benchmark.

Although PearColator has achieved some very satisfying results, there is plenty

of scope for further development of the project. These should enable PearColator

to execute a wider range of PowerPC programs and it is hoped that there will be

continued improvements in the performance obtained.

6.2 Completing the Instruction Set and System Calls

So far there remains a part of the instruction set which has not been implemented.

In particular many of the floating point instructions are not yet provided with trans-

lators. Finishing this should simply be a routine matter of taking the time needed

to write the translations.

Only a small number of system calls have been implemented—those needed to run

the Dhrystone benchmark and few other programs. Eventually it will be neces-

sary to implement the rest for PearColator to provide a complete PowerPC/Linux

subject environment.

6.3 Dynamic Linking

So far PearColator requires the subject program to be statically linked against all

necessary library code. This is not convenient as it is usual for Linux programs to

be dynamically linked against shared libraries. The program ld.so is used by Linux

to accomplish dynamic linking and PearColator will have this incorporated into it.

When the Linux kernel attempts to load an ELF binary file which identifies itself as

6.4 Parallelisation 74

being dynamically linked, it actually loads and executes ld.so. A reference to the

dynamically linked program is passed on the stack, so it can be loaded and linked

by ld.so [19]. There should be no major difficulty involved in adapting PearColator

to use this mechanism.

6.4 Parallelisation

It is intended that the main advantage of the approach used by PearColator over

conventional dynamic binary translators will be its ability to take advantage of fu-

ture multiprocessor architectures. Separately from the PearColator project, work is

being carried out to include novel parallelisation features in the Jikes RVM. When

these are available, PearColator can be made to operate using many threads for

compiling and executing code.

6.5 Other Optimisations

It is hoped that PearColator will be able to take advantage of the adaptive system

and its on-stack-replacement capability. This enables the replacement of a block of

code with a better translation (if one exists) part way through execution.

There are plans to improve the trace building to improve the finding of those sec-

tions of code which will actually be used (rather than those which merely could be

reached by conditional branches). Focusing on the order of compiling branch re-

turn targets and branch directions (forward or backward in code) is expected to be

useful here.

6.6 Adaptation to Other Subject Architectures 75

6.6 Adaptation to Other Subject Architectures

In the more distant future it is possible that PearColator could be adapted to trans-

late programs for other subject environments.

One such environment would be the OS X operating system on the PowerPC. Since

PearColator already translates this instruction set, the necessary work would be to

load programs in a different binary format (which does not support static linking),

and to replace the handling of Linux system calls with something suited to this

different operating system.

Translating another instruction set architecture would require much larger changes.

If it were also of the load-store RISC type, the existing structure of PearColator

should be portable to it. The most complicated development would be to adapt

PearColator to an architecture such as IA-32, in which arithmetic and logical in-

structions can access memory directly and in which instructions are of varying

length.

6.7 Summary

• There are still PowerPC instructions and Linux system calls which need to be

implemented.

• Dynamic linking will be facilitated using ld.so.

• Enhanced performance is hoped for from better use of the adaptive system

and more sophisticated setting of priorities in the translation of code.

• Major performance benefits are expected when PearColator is used with fu-

ture parallel technology.

• The PearColator approach can be extended to other emulation subjects.

References

[1] Ian Rogers, Richard Matley, and Ian Watson. Dynamic binary translation with

a Java Virtual Machine. Submitted to 2005 International Symposium on Code

Generation and Optimization, 2004.

[2] Mark Probst. Fast machine-adaptable dynamic binary translation. In Workshop

on Binary Translation, 2001.

[3] Ian A. Rogers. Optimising Java Programs Through Basic Block Dynamic Compila-

tion. PhD thesis, The University of Manchester, 2002.

[4] Fabrice Bellard. QEMU internals. http://fabrice.bellard.free.fr/qemu/qemu-

tech.html, July 2004.

[5] AMD. Software Optimization Guide for AMD Athlon64TMand

OpteronTMProcessors, September 2003.

[6] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed,

Z. Sperber, and R. C. Valentine. Intel Centrino mobile technology. Intel Technical

Journal, 7(2), 2003.

[7] Jim Turley. Alpha runs x86 code with FX!32: Digital’s emulation strategy could

help boost Alpha/NT system sales. Microprocessor Report, 10(3):11–14, March

1996.

[8] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,

Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John

76

References 77

Whaley. The Jalapeño dynamic optimizing compiler for Java. In ACM Java

Grande Conference, San Francisco, California, June 1999.

[9] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive opti-

mization in the Jalapeño JVM. In ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages, and Applications (OOPSLA ’00), Minneapolis,

Minnesota, October 2000.

[10] The Jamaica project. http://www.cs.man.ac.uk/apt/projects/jamaica/.

[11] QEMU CPU Emulator. http://fabrice.bellard.free.fr/qemu.

[12] PearPC PowerPC Architecture Emulator. http://pearpc.sourceforge.net.

[13] The Softpear Project. http://softpear.sourceforge.net.

[14] Jikes Research Virtual Machine. http://www-

124.ibm.com/developerworks/oss/jikesrvm/.

[15] IBM. The Jikes Research Virtual Machine User’s Guide 2.3.1, December 2003.

[16] Tool Interface Standards. Executable and Linkable Format (ELF) 1.1.

http://www.skyfree.org/linux/references/ELF Format.pdf.

[17] Motorola, Denver, Colorado. Programming Environments Manual For 32-Bit Im-

plementations of the PowerPC Architecture, 2001.

[18] John L. Hennessy and David A. Patterson. Computer Architecture a Quantitative

Approach. Morgan Kaufmann, San Francisco, California, third edition, 2003.

[19] John R. Levine. Linkers & Loaders. Morgan Kaufmann, San Francisco, Califor-

nia, 2000.

[20] Free Standards Group. Linux Standard Base Specification for the PPC32 Architec-

ture 1.3, 2002.

[21] Steve Zucker and Kari Karhi. System V Application Binary Interface PowerPC

Processor Supplement. SunSoft, IBM, September 1995.

References 78

[22] SCO, AT&T. System V Application Binary Interface 4.1, March 1997.

[23] R. P. Weicker. Dhrystone: A synthetic systems programming benchmark. Com-

munications of the ACM, 27(10):1013–1030, 1984.

Index 79

Index

A page number in bold type indicates the most important section relating to the

entry. A page number in italics indicates the position of the definition of a term.

auxiliary vector, 36

baseline compiler (Jikes RVM), 21

basic blocks, 44

binary translation, 15

dynamic, 15

static, 15

block translation, 44

code order, 45

control flow graph, 45

Dhrystone, 63

dynamic binary translator

types of, 16

dynamic binary translators

FX!32, 17

others for PowerPC, 19

dynamic linking, 24

Emulation

of PowerPC, 30

emulator, 15

Executable and Linkable Format

(ELF), 34

High-Level Intermediate Representa-

tion (HIR), 21

instruction forms, 29

interpreter, 15

Jamaica project, 18

Jikes Research Virtual Machine

as basis for emulator, 19

baseline compiler, 21

High-Level Intermediate

Representation (HIR), 21, 44

optimising compiler, 21

Jikes Research Virtual Machine

(RVM), 21

lazy evaluation of CR, 57

mmap(), 32

munmap(), 32

optimisation plan, 21

optimising compiler (Jikes RVM), 21

PearColator

improvements, 57

interface with Jikes RVM, 40

Index 80

modes of translation, 43

performance, 63

compared with other emulators,

68

early version, 63

improved version, 65

process space, 31

runtime system, 40

structure, 40

translation, 41

PearPC, 20

PowerPC

addressing modes, 29

architecture, 24

as emulation subject, 24

byte ordering, 24

emulation, 30

instruction format, 29

instruction set, 28

translating, 42

memory access, 25

memory alignment, 25, 32

registers, 25

condition register (CR), 26

process space, 31

QEMU, 20

single-instruction translation, 41

SoftPear, 20

subject code, 16

subject environment, 16

subject machine, 16

subject program, 16

target code, 16

target environment, 16

trace of execution, 58

optimising size, 60, 65

trace translation, 44

User Instruction Set Architecture

(UISA), 24

