
MEMORY INTERCONNECT

MANAGEMENT ON A CHIP

MULTIPROCESSOR

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

By

Shufan Yang

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14

1.1 On-chip communication model . 15

1.2 SoC design constraints . 17

1.3 Research aim . 18

1.4 Assumptions and limitations . 19

1.5 Definitions . 20

1.6 Thesis contributions . 21

1.7 Publications . 22

1.8 Structure of the thesis . 24

2 On-chip interconnect 26

2.1 On-chip interconnect architecture 26

2.1.1 Interconnect structures . 27

2.1.2 Switching techniques . 30

2.1.3 Qualitative relationship . 30

2.2 Commercial chip-multiprocessor memory access NoCs 31

2.3 GALS interconnect . 34

2.4 Flow control . 36

2.4.1 Credit-based flow control 38

2.5 Service guarantees . 39

2

2.5.1 The user’s view . 40

2.5.2 Design techniques . 40

2.5.3 Service guarantee protocols 43

2.6 Existing NoC architectures . 46

2.6.1 Summary . 53

2.7 Chapter summary . 54

3 The SpiNNaker project 55

3.1 Neural communication . 55

3.2 Neural modelling hardware platform 56

3.3 Architecture overview . 57

3.4 On-chip communication network 59

3.4.1 Communication NoC . 60

3.4.2 System NoC . 61

3.5 CHAIN: delay-insensitive communication 62

3.5.1 The CHAINworks tool . 65

3.6 Features of the SpiNNaker project 66

3.7 Chapter summary . 70

4 A token-managed admission control scheme 71

4.1 Motivation . 71

4.1.1 Application requirement 71

4.1.2 Asynchronous arbitration 72

4.1.3 Network interface . 75

4.2 Token-managed admission control strategy 76

4.2.1 Admission control . 76

4.2.2 Fair bandwidth allocation guarantee 78

4.3 Interface structure . 79

4.3.1 Interfaces . 79

4.3.2 Token transactions . 81

4.4 Chapter summary . 82

5 Fairness using a centralised TMAC 83

5.1 Introduction . 85

5.2 Implementation . 87

5.2.1 Round-robin arbiter . 88

3

5.2.2 Design block view . 89

5.2.3 Cost analysis . 89

5.2.4 Scalability issues . 90

5.3 Evaluation . 90

5.3.1 Evaluation platform . 91

5.3.2 Evaluation criteria . 92

5.3.3 Latency analysis . 93

5.3.4 Bandwidth analysis . 94

5.4 Comparative study of other schemes 96

5.5 Chapter summary . 97

6 QoS using a centralised TMAC 98

6.1 Introduction . 98

6.1.1 QoS criteria . 99

6.1.2 QoS scheme . 99

6.1.3 Principle of operation . 100

6.2 Implementation . 101

6.2.1 Area overhead . 104

6.3 Evaluation . 105

6.3.1 Latency analysis . 105

6.3.2 Bandwidth analysis . 107

6.3.3 Comparison with other existing designs 108

6.4 Chapter summary . 110

7 Fairness using a distributed token-managed admission control 112

7.1 Introduction . 113

7.1.1 System model . 114

7.1.2 System analysis . 115

7.2 MATLAB model . 119

7.2.1 Principle of operation . 121

7.2.2 Verification of Matlab model 122

7.3 Implementation . 123

7.3.1 Floating-point behavioural model 124

7.3.2 Fixed-point model . 125

7.3.3 Area estimation . 126

7.4 Evaluation . 126

4

7.4.1 Evaluation platform . 126

7.4.2 Latency analysis . 127

7.4.3 Bandwidth analysis . 127

7.4.4 Fairness criteria . 129

7.4.5 Comparison of centralised with distributed TMAC 131

7.5 Chapter summary . 131

8 The SpiNNaker System NoC 133

8.1 Introduction . 133

8.2 Test chip . 134

8.2.1 Organisation . 136

8.2.2 Hierarchy . 137

8.2.3 Test chip evaluation . 138

8.2.4 Area & layout . 140

8.3 Final chip . 141

8.4 The proposed admission control 143

8.5 Chapter summary . 146

9 Conclusions 147

9.1 Advantages . 149

9.1.1 Extensible for packet-switched on-chip network 149

9.1.2 Implementation of soft service guarantees 149

9.2 Disadvantages . 150

9.2.1 Hard real-time requirements 150

9.3 Improving TMAC . 150

9.3.1 Re-configurable priority 150

9.3.2 Physical implementation 150

9.3.3 Fabric capacity . 150

9.3.4 Service guarantee . 151

9.3.5 Multiple targets . 151

9.3.6 Network load . 151

9.3.7 Performance metrics . 152

9.4 Future research directions . 152

Bibliography 154

5

List of Tables

2.1 A comparison of the silicon area and reference frequency of dis-

tributed and centralised Æthereal NoCs [RGR+03] 47

2.2 A comparison of the silicon area and reference frequency of QNoCs

(adapted from [RRA09]) . 48

2.3 A summary of NoC architectures 53

4.1 TMAC signals . 81

5.1 Area estimation of TMAC with fairness service vs number of ini-

tiators . 90

5.2 Results of comparison of systems without TMAC 95

5.3 Results of comparison of systems with TMAC 95

6.1 Area estimation of TMAC with QoS provision vs number of initiators104

7.1 Comparison of the system latency with the distributed admission

control model developed with the Matlab and Verilog models . . . 123

7.2 Comparison between system with and without admission control . 127

7.3 Results of comparison of systems with TMAC 129

7.4 Comparison between centralised and distributed admission control 131

8.1 The traffic requirements of the various test modes 139

8.2 Experimental results in application mode 140

8.3 Area report from DC . 140

6

List of Figures

1.1 The micro-network reference stack 16

2.1 Bus interconnect model . 27

2.2 Indirect interconnect models . 28

2.3 Direct interconnect models . 29

2.4 The scalability and performance of various SoC architectures . . . 30

2.5 OpenSPARC T2 architecture . 32

2.6 Nehalem architecture . 33

2.7 Two flip-flop synchroniser . 34

2.8 A parallel path synchronisers [PBF+08] 35

2.9 A simple stop-and-wait protocol 37

2.10 A simple sliding window flow control protocol 37

2.11 Credit-based flow control applied on each link of a virtual channel

in an ATM network [KBC94] . 38

2.12 A conceptual view of a virtual channel router 41

2.13 Credit control messages . 43

2.14 Token forwarding example . 45

2.15 A conceptual view of the combined Æthereal GS-BE router 46

2.16 A conceptual view of the QNoC router 48

2.17 The MANGO router . 49

2.18 Example of a Xpipes router with a 4*4 switch 50

2.19 Abstract view of asynchronous logic to support QoS 51

2.20 A conceptual view of the DSPIN router 52

3.1 A neuron and its different parts (adapted from [BLKK02]) 56

3.2 The SpiNNaker multiprocessor architecture (from [PFT+07]) . . . 57

3.3 The SpiNNaker chip from [SP08] 58

3.4 SpiNNaker processor node from [SP08] 59

7

3.5 The Communication NoC (from [BF04]) 60

3.6 System Network-on-Chip (NoC) 61

3.7 A CHAIN link in the early version 63

3.8 A CHAIN link in the current design 63

3.9 A CHAIN packet . 64

3.10 CHAIN network connectivity . 66

3.11 The CHAINworks design flow . 67

3.12 The abstract floor plan of the final SpiNNaker chip 68

4.1 Basic architecture of a system with two clients C1 and C2 accessing

a common resource CR (from [Kin07]) 72

4.2 Low-complexity interconnect example 73

4.3 Results of 3-initiator-to-1-target example 74

4.4 Conceptual view of the centralised token management 77

4.5 Distributed admission control system overview 78

4.6 TMAC principle of operation . 80

4.7 TMAC timing diagram . 81

5.1 Dynamic asynchronous arbiter organisation 83

5.2 Ring channel structure . 84

5.3 Abstract token flow of admission control for guaranteed service . . 86

5.4 Admission control read transaction timing diagram for fair band-

width . 87

5.5 The round robin protocol . 88

5.6 Admission controller organisation for fair service 89

5.7 End-to-end latency of each initiator vs simulation time with 4-word

bursts . 93

5.8 End-to-end latency of each initiator vs simulation time with 8-word

bursts . 94

6.1 Admission control read transaction timing diagram for QoS service 102

6.2 Priority logic block diagram . 103

6.3 Priority logic block diagram . 103

6.4 Latency analysis of QoS traffic . 105

6.5 Latency analysis of BE traffic . 106

6.6 Mean end-to-end latency vs bandwidth utilisation 107

8

6.7 Mean end-to-end latency vs bandwidth utilisation with 2-outstanding

commands . 108

6.8 Mean end-to-end latency vs bandwidth utilisation with 2-outstanding

commands . 109

6.9 Bandwidth allocations in 4-word burst mode and 8-word burst mode110

7.1 Abstract token flow of distributed admission control 113

7.2 A basic admission control model with negative feedback loop . . . 114

7.3 Plot with Ki = 0.04 and Kp = 0.001 121

7.4 Plot with Ki = 0.04 and Kp = 0.01 121

7.5 Read transaction snapshot for fair service 122

7.6 A top-down design flow . 124

7.7 A basic admission control model 126

7.8 End-to-end latency of each initiator VS simulation time with 4-

word bursts . 128

8.1 Test chip SystemNoC architecture 134

8.2 System NoC data path . 136

8.3 The fabric design hierarchy of the System NoC in the SpiNNaker

test chip. The blue octagons form the command fabric. The white

octagons form the response fabric. Each processor node has two

separate paths: one is to the SDRAM interface; the other is to

other system components and the router. 137

8.4 The layout of the SpiNNaker test chip 141

8.5 An interconnect example . 142

8.6 This trace shows the 20 initiators accessing one SDRAM model

through a 16-bit link fabric. The label P0 i.axi arready means

the ready signal of initiator in read command channel. Label

P1 i.axi arready means the ready signal of initiator1 in the read

command channel. Label md.axi arvalid is the valid signal of the

SDRAM model read command channel. Md.axi arvalid indicates

the command arrival interval. 144

9

Abstract

Asynchronous Networks-on-Chip (NoCs) are emerging as an solution for man-

aging global wiring resources in complex System-on-Chip (SoC) integrated cir-

cuits. Asynchronous arbitration has speed and efficiency advantages that can

be exploited in asynchronous NoC system designs. However, the adoption of

asynchronous arbiters raises the potential problem of unfair sharing of network

resources. In addition, simple asynchronous NoCs do not provide any form of

service guarantee.

One way to manage the unbalanced resource allocation resulting from the use

of asynchronous arbiters is to increase the network capacity by adding buffers,

but this is not economical since large buffers require a large silicon area. The

research presented in this thesis shows how the fair service problem can be solved

by controlling the traffic in the fabric to avoid saturation in critical areas and to

maintain equilibrium in the allocation of resources. The research also shows how

a Token-Managed Admission Control (TMAC) scheme operating at the edge of

the fabric can provide service guarantees using a token mechanism to schedule

packets onto the fabric. Two TMAC schemes are described: a centralised scheme

and a distributed scheme. Both schemes can support Quality-of-Service (QoS)

and fair service guarantees, providing latency and throughput bounds to the

traffic transmitted through the fabric.

Simulation results show that the proposed TMAC architecture provides time-

related guarantees at low cost compared with other schemes such as virtual chan-

nels or the inclusion of large buffers within the fabric. The dual-core test chip

and 18-core final chip developed within the SpiNNaker project are used as case

studies and show that the TMAC scheme simplifies the design of the test chip

and provides a practical solution for the final chip.

10

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

12

Acknowledgements

I am grateful to my supervisor, Prof. Steve Furber, first and foremost, for giving

me invaluable source of inspiration and continuous support in every aspect of this

work. I could not hope for a better supervisor.

Thanks: to my colleagues, especially Viv Woods, Luis Plana, Jim Garside,

Kim Jarvis, Lilian Janin, Wei Song not necessarily in that order, for being there

when I needed advice, help, encouragement; to my husband, without whose en-

couragement and support I could not pursue higher studies; to my son, for bring-

ing amounts of joy to my life; to my parents for constant support whenever I

need.

13

Chapter 1

Introduction

In a setting up high-performance computing environment, many processing ele-

ments are interconnected as nodes in a network. The kind of network used to

connect the nodes can be classified according to its physical scale:

• A telephony network or computer network is geographically distributed and

designed for open systems running varied applications.

• A parallel-machine network is a local board-based network developed for

multiprocessors.

• An on-chip network is a multiple-switch or multiple-hop interconnection

network integrated onto a single chip.

For any network, the efficiency of the communication services is critical for

overall system performance. For instance, a telephony network must deliver good

service to ensure that customer demands are met.

An on-chip network has significant differences from a general telecommunica-

tion network and a parallel-machine network. Firstly, an on-chip network only

works as an interconnect among different components in one single chip. The

computing and memory resources of a System-on-chip system (SoC) are more

limited than those of telecommunication networks. Secondly, the traffic charac-

teristics of an on-chip network in an SoC is usually known and well-defined at

design time.

With shrinking feature sizes, integrated circuits can contain billions of tran-

sistors on one chip [itr07]; this brings new possibilities to implement advanced

14

1.1. ON-CHIP COMMUNICATION MODEL 15

SoCs. Advanced SoCs represent high-complexity, high-value semiconductor prod-

ucts that incorporate “IP blocks” from multiple sources: in particular, general-

purpose fully programmable processors, co-processors, digital signal processors,

dedicated hardware accelerators, memory blocks, I/O blocks. (In this thesis, “IP

block” is used in a broad sense, referring to both external and internal sources of

design blocks to be integrated into a System-on-Chip.)

However, highly-intensive integration on a single chip is becoming more and

more difficult because of global wire delay. As the feature size shrinks, a wire’s

cross-sectional area becomes small. RC wire delays dominate logic delay in ad-

vanced SoC design. Managing on-chip interconnection is becoming the most im-

portant challenge in high performance and high functionality integrated circuit

design [GM09].

Network-on-chip (NoC) technology is a new approach to the design of the

communication subsystem of an SoC to meet those challenges mentioned above.

NoC-based systems can accommodate the multiple asynchronous clocking that

many of today’s complex SoC designs use. They are emerging as an effective

solution for managing global wiring resources in complex SoC integrated circuits.

The research presented in this thesis shows how to provide end-to-end com-

munication services for NoC-based SoCs. The potential benefits include:

• support for centralized and distributed communication service provision;

• the provision of bounded bandwidth and latency guarantees;

• low area-overhead logic design.

Supporting arguments for these claimed benefits are presented later. As an

illustration of the feasibility of end-to-end communication service, chapters 5, 6

and 7 describe various traffic management mechanisms for chip-multiprocessors

systems. The dual-core test chip and 18-core final chip developed within the

SpiNNaker project are used as case studies and illustrate a practical solution for

communication services; this is summarised in chapter 8.

1.1 On-chip communication model

An on-chip communication model is a multiple-switch or multiple-hop intercon-

nect network integrated onto a single chip [BM02], which is called a micro-network

model in this thesis.

1.1. ON-CHIP COMMUNICATION MODEL 16

The ISO OSI layer stack communication model [Zim80] is the canonical model

for a general communication network. We use it as a base point to propose micro-

network models for on-chip communication. The stack of a micro-network model

differs from the OSI model because of some distinctive features of the micro-

network, such as low power constraints, small area overhead and hardware logical

determinism. Instead of copying the general communication model, the micro-

network model is a protocol stack tailor-made to satisfy the application-specific

requirements.

Physical layer

switch switch switch

network

transport

software

network

transport

P1 P2 P3 P4 P5 Pn

Peer entities

Network and control layer

Figure 1.1: The micro-network reference stack

A micro-network layered structure (Figure 1.1) has been proposed which de-

composes the communication problem into more manageable components at dif-

ferent hierarchical layers; each designed to solve one part of the problem. Thus

the features of the electrical, logical, and functional properties can be abstracted

away from the layer above.

Figure 1.1 shows how a layered structure can capture the functionality of an

on-chip interconnect. The physical layer is the physical implementation of the

communication channels. Parameters of the wires, such as length, width and

separation, affect the speed of signal propagation and the coupling between the

wires. The network layer is a data transmission layer, which can be customised

1.2. SOC DESIGN CONSTRAINTS 17

by the choice of switching and routing algorithms. The transport layer deals

with the decomposition of messages into packets from source to destination and

provides some additional communication services. The software layers comprise

system-level and application-level software. The system software is critical for

a NoC paradigm shift, especially in managing multiple tasks and understanding

communication-related costs and enabling peer entities to communicate transpar-

ently.

The services offered by the transport layer are independent of the network im-

plementation; this is a key ingredient in achieving the decoupling between service

guarantees and physical micro-network implementations. At the transport level,

the services offered are end-to-end communication between IP modules, decou-

pled from network internals such as topology and routing schemes. Therefore,

the services elaborated in this thesis are the transport layer of the micro-network

reference model. A traffic management system provides services at the transport

layer.

A hardware implementation of a micro-network stack imposes a much lower

latency overhead compared to a software implementation. The focus of the work

presented in this thesis is on the design of a transport layer NoC platform with

service guarantees in hardware.

1.2 SoC design constraints

System-on-Chip technology can support multiple functional modules on a single

silicon chip combining the advantages of data processing parallelism on a multi-

processor and plug-and-play integration. The performance of an SoC system

depends not only on the computational capabilities of the on-chip processors,

but also on the communication technologies, for example, the bandwidth, delay

and area overhead of the interconnect. The communication issues should be

taken into consideration early in the design process. A reliable, low-power and

high-performance SoC depends upon the following communication issues [TJ03,

Wol04, BM06].

• Bandwidth

As the number of on-chip components increases, contention-related delays

also increase, which affects the communication performance of NoC-based

1.3. RESEARCH AIM 18

SoCs. Multiple data-flows which compete for communication resources may

struggle to reach the maximum data bandwidth, thus creating a bottleneck

as SoCs move beyond billion transistor chips.

• Low-power

Reducing power consumption using techniques such as voltage scaling leads

to lower performance in a uniprocessor system [ESP06]. However these tech-

niques do not account for power consumed when wires are driven through

idling processors in a multiprocessor system [KFJ+03]. Power dissipation

in SoCs is a major concern for mobile consumer electronics such as mobile

phone handsets. Most power is used to drive wires as Very-Large-Scale-

Integration (VLSI) device feature sizes shrink. SoCs should be designed us-

ing architectures that are “power conscious”, using design techniques which

reduce overall power consumption.

• Real-time operation

A real-time application requires a predictable performance to respond to

real world events. A network that introduces unpredictable latency will not

meet the requirements of real-time applications.

• Area overhead

An SoC system is composed of three basic fabrics: logic, memory and com-

munication. Logic blocks perform arithmetic operations; memory blocks

store data for later retrieval; communication blocks move data between

logic blocks and memory or from one logical block to another. The num-

ber of blocks which can be assembled on a single chip is limited by the die

area; a large die is expensive to manufacture. More communication blocks

may reduce the number of logic blocks which can be assembled on a chip.

If a large proportion of the chip area is used for interconnect, the silicon

resource may be under-utilised.

1.3 Research aim

The previous sections listed some requirements for a hardware implementation

of a micro-network and highlighted some design challenges. Hence, this thesis

1.4. ASSUMPTIONS AND LIMITATIONS 19

focuses on the hardware implementation of traffic management on a transport

layer with a low area cost.

Using the SpiNNaker chip (described in chapter 3) as a case study, this re-

search aims to find an optimal solution to the provision of a service guarantee for

real-time neural network simulation. Moreover, the applicability of the low-cost

traffic management mechanism presented here is not limited to the SpiNNaker

chip and should provide guidelines for designers of industry-relevant Systems-on-

Chip (SoCs).

1.4 Assumptions and limitations

The traffic management schemes proposed in this thesis are based on the SpiN-

Naker platform, a massively-parallel multiprocessor based on a high-performance

Global Asynchronous Local Synchronous (GALS) on-chip interconnect (described

in section 2.3). The mission of the SpiNNaker project is to build a digital system

for large-scale spiking neural modelling. There are some assumptions made in

the work described in this thesis:

• The on-chip interconnect focus is on processor-to-memory operation in this

thesis, and read transactions dominate system performance in typical ap-

plications (they are three times more frequent than write transactions in

general applications). Thus, the design of the traffic management system

has been driven by read transactions and the experimental results presented

in this thesis involve only read transactions.

• Packet loss is not meaningful in the context of a globally asynchronous,

locally synchronous (GALS) interconnect, given that the handshake mech-

anism guarantees that no packets are lost at the physical level.

• The experiments described in this thesis use a heavily-loaded traffic model.

It is assumed that all the on-chip clients are highly demanding.

• The on-chip interconnect described in this thesis has been developed using

a commercial tool, CHAINworks [Sil07]. The CHAINworks tool set is a

product from a company, Silistix, spun out from the Advanced Processor

Technologies (APT) group of the University of Manchester. Because the

interconnect generated by the tool is privileged Intellectual Property (IP),

1.5. DEFINITIONS 20

the details of the synthesised on-chip interconnect are unknown. However,

because the proposed traffic management system is topology independent,

this does not affect the results presented here.

• The traffic management scheme provides an effective service guarantee only

for a heavily-loaded fabric. The current SpiNNaker prototype integrates

only two processors on a single chip, which are not sufficient to saturate the

on-chip interconnect. Hence the benchmark results for a SpiNNaker proto-

type chip differ from those for experiments for exploring a low-cost traffic

management scheme. The research into the traffic management scheme will

be helpful for the final SpiNNaker product that implements 18 processors

on a single chip.

1.5 Definitions

The technical terms used in this thesis are defined as follows.

• bandwidth allocation refers to the proportion of time that a transmission

channel is used by each of the different on-chip clients averaged over a long

period of time.

• bandwidth guarantee is a service class that guarantees a minimum band-

width allocation to a particular client.

• active initiator is a client that is initiating a communication transaction to

send a request to a target.

• inactive initiator is a client that can initiate a communication transaction

to send a request to a target, but currently is not sending any such request.

• fairness is a metric which indicates how uniformly the performance of each

active initiator is affected by the network resource sharing.

• unfairness is a metric which indicates intuitively unfair bandwidth alloca-

tions in the sharing of network resource.

• outstanding command refers to the capacity of the network interface to

allow pending commands to be issued by a client before the data from the

first command are returned.

1.6. THESIS CONTRIBUTIONS 21

• tokens represent resource availability in the network. The admission control

mechanism schedules initiators through the issue of tokens.

1.6 Thesis contributions

SoC’s communication architectures create many new research opportunities in the

field of digital integrated circuit design. This thesis explores the communication

infrastructure of a packet-switched on-chip interconnect with service guarantees

as follows:

1. Abstracting, conceptualising, and analysing packet-switched on-

chip interconnect

NoC-based SoC designs need to consider communication services for opti-

mum performance provision. From the communication point of view, the

abstraction and conceptualisation of the features of a packet-switched net-

work provide a simple and intuitive communication-centric programming

model. Any master cores, such as processors, can request connections in

the network with guaranteed service, using a traffic management scheme.

Through abstracting the network model at system level, the complete sys-

tem model can be used as an effective prototyping toolkit.

2. Centralised and distributed admission control schemes

This thesis investigates the capability of a traffic management algorithm,

implemented in hardware, to support guaranteed and differentiated services

for packet-switched on-chip interconnect. The behavioural models of dis-

tributed and centralised schemes show expected results. The architecture

presented here is suitable for any packet-switched on-chip interconnect be-

cause of its independence from other network components.

3. Evaluating and investigating the communication performance of

the SpiNNaker prototype

The on-chip interconnect of the SpiNNaker chip described in this thesis

provides a concrete example of the implementation of a NoC-based SoC

design. The efficiency of a NoC implementation based on a partial crossbar

1.7. PUBLICATIONS 22

has been explored. The worst and average-case performance of the pro-

posed architecture have been investigated, and the results of post-synthesis

simulation and post-layout simulation have been compared and analysed.

4. Developing and optimising the on-chip interconnect for the final

SpiNNaker chip

The observations and understanding of provisions of service guarantees

should help the final SpiNNaker chip achieve the expected performance

with minimum design effort. A convenient solution is proposed which will

satisfy the application requirements for service guarantees without sacrific-

ing system performance.

1.7 Publications

The following papers have been published based on the work presented in this

thesis. The papers are listed in the order that they were published.

• L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, S. Yang, A

GALS Infrastructure for a Massively Parallel Multiprocessor, IEEE Design

& Test of Computers, vol 24, pages 454-463, Sept. 2007.

This paper gives an overview of the SpiNNaker chip and the GALS tech-

nology employed in its design. The author’s contribution is the part of the

manuscript giving the design details of the System NoC and addresses fu-

ture problems in real implementations. This part of the paper contributes

to chapter 3 of this thesis. It provides an overview of the SpiNNaker archi-

tecture and describes the organisation of the System NoC.

• A.D. Rast, S. Yang, M.M. Khan, S.B. Furber, Virtual synaptic interconnect

using an asynchronous network-on-chip, Proc. 2008 Intl Joint Conf. on

Neural Networks (IJCNN2008), June 2008.

This paper represents the System NoC on the SpiNNaker chip as a virtual

synaptic interconnect from an application point of view. The author con-

tributed the idea and design considerations for a hardware-efficient design

and also worked with the implementation and experiments. This part of the

work contributes to chapter 8 of this thesis, representing the implementa-

tion of the experiment and investigations into the support of the hardware

1.7. PUBLICATIONS 23

platform with biologically-realistic speed.

• S. Yang, S.B. Furber, Y. Shi, L.A. Plana, An Admission Control System for

QoS Provision on a Best-effort GALS interconnect, Proc 8th Conf on the

Application of Concurrency to System Design (ACSD 2008), Xi’an China,

2008.

This paper studies centralised admission control in the SpiNNaker chip.

Instead of costly guaranteed QoS provision based on switches, a novel end-

to-end admission control scheme is proposed. Experiments and physical

analysis show the efficiency of the scheme. The paper contributes to chap-

ter 6 of this thesis.

• S. Yang, S.B. Furber, Y. Shi, L.A. Plana, A token-managed admission con-

trol system for QoS provision on a Best-effort GALS interconnect, special

issue of Fundamentae Informaticae 95(2009),pages 1-20.

This paper was an invited paper for a special issue of the journal “Fun-

dametae Informaticae; it is an extended and updated version of the ACSD

paper above. Admission control with fair bandwidth allocation was in-

vestigated, this new feature delivers fair bandwidth allocation on a GALS

interconnect. Besides soft bandwidth guarantees, the admission control is

able to meet different application requirements; it can be configured for

different QoS modes, such as setup mode and normal execution mode in

the SpiNNaker system. The contribution of the paper is in chapter 5 of this

thesis.

• S. Yang, Network-on-Chip Traffic Management, ACACES 2009 5th Inter-

national Summer School, Spain, July 2009. Presented a poster of on-chip

traffic management for the SpiNNaker chip.

The author presented the token managed admission control as a poster

at the ACACES summer school. The poster shows how centralised and

distributed admission control works on a GALS on-chip interconnect.

• S. Yang, S.B. Furber, L.A. Plana, Adaptive admission control on SpiNNaker

MPSoC, Proceedings of the 22nd international SoC conference, September

2009.

1.8. STRUCTURE OF THE THESIS 24

This paper introduces an adaptive admission control mechanism to ensure

fair bandwidth allocation to each processing node on the SpiNNaker MPSoC

platform. The paper contributes to chapter 7 of this thesis.

1.8 Structure of the thesis

This chapter has given an overview of this thesis and highlighted the design

challenges in terms of communication-centric issues in NoC-based SoCs. The

remainder of the thesis is arranged as follows:

Chapter 2 provides an overview of the architecture of on-chip interconnects

described in the literature, and gives a systematic classification of popular on-chip

interconnect techniques. It includes a review of service guarantee techniques and

protocols. This chapter also analyses state-of-the-art NoC architectures that are

limited to NoC platforms with service guarantees.

Chapter 3 presents an overview of the final SpiNNaker chip. It provides de-

tails of the chip architecture, the Communication on-chip network, the System-

on-Chip network and the CHAIN tool technology. It also describes the neural

network simulation application and details of the application-level software re-

quirements of real-time neural modelling simulation.

Chapter 4 provides an overview of the policy of the Token-managed Admis-

sion Control (TMAC) and explains how it affects traffic management. It includes

details of the interface between the admission control system and its environment

and also describes the basic transactions between the admission control and the

network interconnect interface. It explains the centralised and distributed admis-

sion control protocols and the challenges faced when designing dedicated hardware

based on the admission control scheme.

Chapters 5, 6 and 7 provide detailed descriptions of the admission control

systems based on centralised and distributed approaches. The main architec-

tural differences between the centralised and distributed versions are discussed.

Design implementations made to provide bandwidth and latency guarantees and

differential service for QoS traffic are presented. The simulation and analysis are

provided to show expected results.

Chapter 8 presents the development of the on-chip network for the SpiNNaker

prototype and evaluates it using post-layout experiments. It also presents the

performance of the final SpiNNaker chip architecture using a synthetic test bench.

1.8. STRUCTURE OF THE THESIS 25

It investigates the relative performance of the final chip under high traffic volumes.

In addition, it foresees the problems of the final SpiNNaker chip and suggests

solutions.

Chapter 9 concludes the thesis with a performance analysis of the two SpiN-

Naker architectures and suggests future enhancements to the admission control

scheme in order to provide general methods for service guarantees. The problems

of developing GALS technology and new challenges for NoC are addressed.

Chapter 2

On-chip interconnect

This chapter provides an overview of on-chip interconnect architectures, how they

are used in SoC designs, and offers a general discussion of topologies and switch-

ing mechanisms. Global Asynchronous Local Synchronous (GALS) technology

is considered in this chapter as a way to achieve low-power and modular NoC

design [Cha84].

An NoC-based SoC can be designed in many different ways with various

topologies and switching schemes which influence traffic characteristics and sys-

tem cost. Real-time systems must deliver defined performance; it is therefore es-

sential for an on-chip network to support a service guarantee to provide bounded

bandwidth and latency. This chapter also gives a review of service guarantees.

The analyses of state-of-the-art NoC architectures addressed in this chapter are

limited to NoC platforms with service guarantees. All of the designs have been

taken through to physical implementation.

2.1 On-chip interconnect architecture

On-chip interconnect can be as straightforward as a bus between a processor and

its memory, or a point-to-point channel between two I/O peripherals. However

as the on-chip architecture becomes more complex such as a multi-core processor

with all cores sharing the same memory map [OKS+07], there are more choices

in building the system architecture.

26

2.1. ON-CHIP INTERCONNECT ARCHITECTURE 27

2.1.1 Interconnect structures

The design of an SoC must meet various performance requirements, and on-

chip interconnect architecture influences designs considerably. Commonly-used

architectures fall into three broad categories in terms of their communication

features.

Conventional on-chip communication structures include point-to-point and

bus-based architectures. Point-to-point communication connects components di-

rectly; it can provide good communication performance at the expense of ded-

icated links between all on-chip components. This approach is inefficient, how-

ever, because the large number of wires dramatically increases the silicon area.

Considering “one-to-many” connections, on-chip buses are the first step towards

building a structural interconnect system. Buses support multipoint connections

with minimal hardware requirements, in contrast to point-to-point interconnect;

they rely on shared communication channels and therefore suffer from power and

performance scalability limitations.

Network-on-chip (NoC) is a revolutionary approach to communication system

design and brings great improvement over conventional buses [DT01]. Proposed

NoC-based architectures abstract on-chip components into nodes, which are in-

terconnected by a network that provides scalable and concurrent connections.

As a new SoC paradigm, NoC architectures provide a structured framework for

managing these nodes and will readily scale up to large systems.

NoC research generally abstracts on-chip components, such as processors,

memories, I/O blocks, as generic nodes. On-chip interconnect defines the var-

ious paths that exist between a communication node and its destination node.

BUS

IP

blocks

IP

blocks

IP

blocks

IP

blocks

IP

blocks

Figure 2.1: Bus interconnect model

2.1. ON-CHIP INTERCONNECT ARCHITECTURE 28

• Shared bus

A shared bus is characterised by a single shared link for all on-chip com-

ponents, as shown in Figure 2.1. Bus interconnect is a mature technology,

so that it is cheap to manufacture. All on-chip IP blocks use bus-based

technologies with central arbiters for serialising bus access requests.

Buses have serious scalability problems, leading to critical performance

penalties and energy inefficiencies. Buses also create communication bot-

tlenecks because the bandwidth of the bus is shared by all the attached

components. Recent research shows that saturation easily happens as the

traffic load is increased in a traditional shared bus [AMC+06].

• Indirect network

4 X 4

switch

4 X 4

switch

4 X 4

switch

4 X 4

switch

4 X 4

switch

4 X 4

switch
4 X 4

switch

4 X 4

switch

IP IP IP IP IP IP IP IP IP IP IP IP IP IP IPIP

Fat tree

switch switch switch switch

switch switch switch switch

switch switch switch switch

switch switch switch switch

input

input

input

input

o
u

tp
u

t

o
u

tp
u

t

o
u

tp
u

t

o
u

tp
u

t
4X4 Cross bar

Figure 2.2: Indirect interconnect models

An indirect network is one where the routeing elements are separate from

the endpoints. Indirect networks forward packets using dedicated switches,

which perform only arbitration and routing functions. On-chip components

in the network are connected by indirect wires though these switches. Indi-

rect networks use multiple switches [DYL02] for on-chip interconnect. Some

examples of topology include crossbars and fat trees, as shown in Figure 2.2.

In an indirect network, packets are forwarded indirectly by means of dedi-

cated switches.

The advent of thin wires, in deep sub-micron processes, has made traditional

on-chip communication methods such as buses an increasing obstacle to

2.1. ON-CHIP INTERCONNECT ARCHITECTURE 29

the realisation of the full potential of SoC implementations. Increasing

integration and higher clock speeds make cross-chip wires relatively longer.

Thus the use of a centralized switch exchange can incur significant latency

penalities.

In current middle-scale systems, indirect networks offer good trade-offs be-

tween high bandwidth and low area. However, indirect networks require

long wires spanning the chip and incur layout issues in large-scale systems.

The global performance of an indirect network is significantly reduced by

the problems of wire resistance, size and routing.

• Direct network

router router router router

router router router router

router router router router

router router router router

IP IP

IP IP IP

IP IP IP

2D mesh

IP

IP

IP

IP

IPIPIPIP

router router router router

router router router router

router router router router

router router router router

Torus

IP IP IP

IP IP IP

IP IP IP

IP

IPIP

IP

IPIPIPIP

Figure 2.3: Direct interconnect models

Direct networks, as the name implies, connect neighbouring on-chip components

with direct wires. Routeing is performed integrally with communication nodes

while remote on-chip components are accessed using several hops [DYL02]. Direct

networks are more scalable than indirect networks as they can be laid out in

grids such as 2D mesh or torus (Figure 2.3), the 2D mesh and the torus are two

popular topologies used for direct interconnection. Here, a processing node in

a direct interconnection network has a direct interconnection element, called a

router. The router is an interconnection component that performs switching and

arbitration. By contrast, the indirect network has a subset of routers that are

not directly connected to any processing node.

The 2D mesh topology is convenient for physical layout [ODH+07]. Other

degrees of connectivity, for instance the octagon topology [KND01] as a proposed

2.1. ON-CHIP INTERCONNECT ARCHITECTURE 30

on-chip interconnect architecture for network processors, also belong to the direct

interconnect category because of the multi-hop routing mechanism.

2.1.2 Switching techniques

Switching techniques are critical for on-chip interconnect, since they determine

how data are forwarded between switches. Two switching techniques are used:

circuit switching and packet switching [DT04]. In a circuit-switched interconnec-

tion, the first operation is to allocate resources to form a channel from a source to

a destination, then send data along the channel. When no further data need to

be sent, the channel is de-allocated. Circuit switching incurs a high latency and

low bandwidth since a period of time is wasted establishing the channel before

sending a packet [WD03].

Packet-switched NoC offers flexibility to handle various traffic patterns. A

router is a key component for forwarding data through the network. The trade-

off between performance and cost should be carefully considered in a router de-

sign. Circuit-switched and packet-switched techniques can be used on both in-

terconnections. In this thesis, all the discussion will be based on packet-switched

techniques.

2.1.3 Qualitative relationship

Global system performance

Scalability

Indirect network

Direct network

Shared busShared

memory

Circuit-switched Packet-switched

Small-scale

middle-scale

large-scale

16 IP nodes

50 IP nodes

Figure 2.4: The scalability and performance of various SoC architectures

2.2. COMMERCIAL CHIP-MULTIPROCESSOR MEMORY ACCESS NOCS 31

The qualitative relationship between the architectural scalability and system

performance of the four classes of interconnect is shown in Figure 2.4. The x-axis

denotes the overall chip performance, the y-axis the scalability for SoC design.

Shared memory and shared bus architectures are economically viable for small-

scale systems that host fewer than 16 on-chip components on a single chip. The

indirect interconnect model is a practical solution for middle-scale systems that

host tens of cores on a single chip. Direct interconnect is the preferred model for

large-scale systems that host hundreds of cores on a single chip, given on-chip

area constraints and wiring availability [GK08].

In this thesis, the analysis of NoC structures is not a major focus of the work.

Most NoC architectures treat on-chip components as generic nodes. This work

mainly focuses on an application-specific NoC-based SoC design. In general,

the on-chip interconnects between on-chip components (i.e. processor-processor,

processor-memory and processor-I/O blocks) have different requirements. An

example of on-chip interconnect between processors and memory controllers is the

SpiNNaker System NoC (described in chapter 8). Typical connections between

a processor and memory controller require an inherently reliable network with

no packet loss, since memory requests and reply packets cannot be dropped.

The type of packet is also, in general, a long burst of data. Clearly, the choice of

interconnect structure may have an impact on the performance of the interconnect

according to current research reports [DT04].

2.2 Commercial chip-multiprocessor memory ac-

cess NoCs

This section addresses the on-chip communication connectivity to memory for

chip-multiprocessors such as SUN’s OpenSPARC T2, Tilera, and Intel’s Nehalem

[Tay00, How09, SM08] .

OpenSPARC T2 [Wea08] is a single chip multi-threaded processor. It contains

8 SPARC cores. The communication system uses a cache crossbar to connect

the 8 SPARC cores to the 8 banks of the L2 cache. The crossbar is divided

into two separate components: the processor to cache crossbar and the cache to

processor crossbar (see Figure 2.5). Since multiple sources can request access

to the same target, arbitration for a target is required. To maintain fairness,

requests appearing to the same target from multiple sources in the same cycle

2.2. COMMERCIAL CHIP-MULTIPROCESSOR MEMORY ACCESS NOCS 32

L2 Cache L2 Cache L2 Cache L2 Cache

On-Chip cross-bar interconnect

Core

0

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Core

7

DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM

Figure 2.5: OpenSPARC T2 architecture

are processed in a manner that does not consistently favour one source.

Tilera is a 64 tile architecture that contains 5 mesh networks, which is an

extension of the RAW tiled architecture [TKM+02]. It utilises the abundant

on-chip wires for enhanced communication in embedded applications [WGH+07].

It provides shared memory communication as well as dataflow based computa-

tion using an application protocol interface, which allows for customized data

placement and routing on the underlying network without the intervention of the

operating system. Each tile contains a pipelined processor with private L1 and

L2 caches, a DMA engine, and support for interrupts and virtual memory. Of the

five mesh networks, four are dynamic networks: the User Dynamic Network, the

Memory Dynamic Network, the I/O dynamic network and the Tile Dynamic Net-

work, and one static network. Communication over dynamic networks is through

packets that use a packet-switched dimension-order routing protocol to provide

ordering between any two communicating nodes. The static network on the con-

trary, do not use packets, but allow users to configure network so that it behave

as a circuit switched network and send and receive data streams on the set-up

routes.

The design from Tilera uses a mesh topology for the on-chip interconnect.

However, for some cases, the memory access will be unfair. Assume that four

tiles on a row all repeatedly transmit to a DRAM on the east side of the chip

on that same row. The tile closest to the DRAM will get 50% of the bandwidth,

because the bandwidth will be equally shared between a tiles processors west

ports, the next tile will get 25%, and the last two 12.5%.

2.2. COMMERCIAL CHIP-MULTIPROCESSOR MEMORY ACCESS NOCS 33

A buffer metering protocol has been proposed to solve the unfair access prob-

lem [Tay00]. This protocol basically allocates enough RAM at the network nodes

to store messages from each tile. Each network node is not allowed to block on

a network send unless it can guarantee that its input buffer can store all of a

message that it may receiving. The buffer metering scheme is an experimental

solution. It is likely that for larger arrays, separate request-reply networks com-

bined with an ample amount of buffering will lower the minimum I/O required

for programming RAW.

MC

1

MC

2

MC

3

Core 1 Core 2

Core 3 Core 4

DIMM DIMM DIMM

Socket 1

MC

1

MC

2

MC

3

Core 1 Core 2

Core 3 Core 4

DIMM DIMM DIMM

Socket 2

MC

1

MC

2

MC

3

Core 1Core 2

Core 3Core 4

DIMMDIMMDIMM

Socket 3

MC

1

MC

2

MC

3

Core 1Core 2

Core 3Core 4

DIMMDIMMDIMM

Socket 4QPI

Figure 2.6: Nehalem architecture

Nehalem is the latest microarchitecture from Intel, and features integrated

memory controllers supporting Non-Uniform Memory Access (NUMA). Specifi-

cally, memory controllers have been integrated on-chip, thus requiring an intra-

chip network. This network has a point-to-point topology called Quick Path

Interconnect (QPI) that not only connects the processor with the memory but

also connects directly several CPUs with one another, as shown in Figure 2.6. The

first processors with Nehalem microarchitecture are quad-core models and they

have a triple-channel memory controller supporting DDR3 SDRAM [SNB+09].

The main advantage of transferring the DRAM controller into the CPU is low-

ering of memory subsystem latency. These machines require the programmer to

2.3. GALS INTERCONNECT 34

properly map memory pages to the requesting sockets DRAM while also minimiz-

ing remote memory accesses. Careful program mapping can keep DRAM access

fair for most data-intensive applications.

2.3 GALS interconnect

As discussed in the previous chapter, with the increase in die size and clock fre-

quency, driving signals across a die is becoming increasingly difficult [ASD02] in

fully synchronous designs. GALS technology is a possible methodology for good

performance by managing multiple clock domains on a single die [MTRM02]. Us-

ing a GALS approach allows custom and off-the-shelf IP to be readily integrated

without significant timing-closure design effort and allows each IP block to run

in its own time domain with a self-timed interconnect between IP blocks.

A GALS fabric makes no assumptions about the delays in the on-chip in-

terconnect. For this reason, GALS communication is more robust than many

other styles, whose operation is based on worst-case constraints. Furthermore,

fabrics based on self-timed communication need no timing validation once they

are designed and are not constrained by layout timing issues.

Sender

DQ Q D

Clk

D D Q

Receiver

Q

Clk

Valid

Ready

Figure 2.7: Two flip-flop synchroniser

Data synchronisation and communication across clock domains is a major

challenge in designing a GALS system. The difficulty lies in providing interfaces

with robustness and high performance for crossing clock domains. Circuits that

perform this function are called synchronisers. Synchronisers are expected to

achieve high performance while maintaining correct data transfer.

A very common and simple synchronisation circuit is the two-flop synchroniser

as shown in Figure 2.7 [Gin03]. The first flip-flop samples the asynchronous

2.3. GALS INTERCONNECT 35

data and the second waits a full clock period before latching the synchronised

data. As shown in Figure 2.7, the synchronous sender sends data and asserts

the Valid signal. When the data is accepted, the receiver asserts Ready. This

is then synchronised with sender to allow to go on to the next data value. The

synchroniser completes the asynchronous to synchronous data transfer.

Unfortunately, a flip-flop may enter a metastable state, which is neither a

logic 1 or 0 but rather something in between. When a device enters a metasable

state and fails to produce a legal logic value, this is called synchronisation failure

[CR86]. Metastability may also occur in a synchronous system when an asyn-

chronous input does not satisfy the set-up and hold time requirement of clocked

flip-flop used to sample the input.

In asynchronous systems, the problem of metastability is integrated using

an alternative approach of waiting until the metastability has resolved and the

outputs have settled to a defined logic value, 0 or 1, before allowing the values

to pass into the rest of the system. For the two flip-flop synchronizer, in each

clock domain, one sender/receiver clock cycle is reserved for the metastability

resolution.

Figure 2.8: A parallel path synchronisers [PBF+08]

In resolving metastability the two-flop synchroniser incurs some latency over-

head. This is because only half of its data cycle (the time required to complete a

data transfer) contributes to the useful data transfer between two clock domains,

2.4. FLOW CONTROL 36

and the other half is used purely for resolving metastability. Consequently, the

bandwidth of data transmission is reduced as well. However, some strategies can

be used to overcome the disadvantage. For instance, in a packet, the second ele-

ment could be being synchronised whilst the first is latched. This depends on the

strategy allowed for flow control (see section 2.4). Alternatively several different

channels could be multiplexed (see below).

The parallel path synchroniser (as shown in Figure 2.8) is used to allow the

sending of data on every clock cycle of the sender without incurring the 2-cycle

latency of the synchroniser. Every new data symbol is steered to a different

path, allowing every path to complete its handshake, including synchronisation

latency, before being used again. Data is multiplexed from the three paths into

the asynchronous channel under control of the asynchronous circuitry and the

asynchronous acknowledge is steered to the corresponding path. In this way,

the bandwidth is increased by parallel data transmission and the overhead of

synchronization time is hidden (albeit at increased hardware cost). The strategies

increase the potential bandwidth at the cost of added complexity. They are also

affected by the flow control strategy at the flit level.

2.4 Flow control

Flow control protocols are used in many network systems. Flow control may be

defined as a set of protocols designed to protect the network from problems related

to overload and speed mismatches. Solutions to those problems are accomplished

by setting rules for the allocation of buffers at each node by properly regulating

and (if necessary) blocking the flow of packets. Flow control maybe applied at

the flit and packet level. In general a packet can be broken into smaller fixed size

data units called flits. Flow control strategies on the packet level are identified

and discussed in this thesis.

In data communication networks, the most frequently used flow control pro-

tocols are: stop-and-wait and sliding window [DYN03].

In stop-and-wait flow control, the receiver indicates when it is ready to re-

ceive more data after each packet. The sender transmits a single packet. Then

the receiver transmits an acknowledgment, as shown in Figure 2.9. The major

drawback of stop-and-wait flow control is only one packet can be in transmission

at a time. This leads to inefficiency if the propagation delay is much longer than

2.4. FLOW CONTROL 37

Sender Receiver
Wait time

Data

AC
K

Data

AC
K

End-of-packets

Transmission

delay

Time Time

Propagation

delay

Transmission

delay

Figure 2.9: A simple stop-and-wait protocol

the transmission delays (see Figure 2.9).

Sliding window flow control allows the transmission of multiple packets and

assigns each packet a k-bit sequence number. At any instant, the sender is per-

mitted to send packets with sequence numbers in a certain range (the sending

window). The receiver maintains a receiving window corresponding to the se-

quence numbers of packets that are accepted. The flow control is achieved by

controlling the size of the sending window. For instance, in Figure 2.10 the slid-

ing window size is seven. The transmitter sends the first three packets to the

receiver. Before the receiver sends an acknowledge back, the transmitter allows

only the remaining four packets to be sent. When the receiver sends the acknowl-

edge back, the size of the window in the transmitter increases to seven again.

0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3

Transmitter Receiver

D0

D1

D2

AC
K3

Figure 2.10: A simple sliding window flow control protocol

2.4. FLOW CONTROL 38

The basic difficulty with fixed window size flow control is that the average

delay per packet increases in proportion to the number of active flow controlled

processes. A solution would be to dynamically reduce window sizes as the number

of these process increases. Unfortunately, it is not easy to find a good way to do

this in practice [GK80]. For this reason, a flow control scheme based on input

rate adjustment was introduced in the 1980s. The input rates of flow controlled

processes are adjusted directly in response to traffic conditions inside the network,

for instance, deadlock or congestion. This input rate adjustment scheme also

needs to be combined with the optimal routing scheme [KKLL92].

In the on-chip network domain, flow control usually performs at flit level [DYL02].

It is tightly coupled with buffer management algorithms that determine how mes-

sage buffers are requested and released, and as a result determine how flits are

handled when blocked in the network. One example called buffered flow con-

trol [DT04]. In buffered flow control the router may store a full packet or a

number of its flits for more than a single cycle in a router. The flits or whole

packet are buffered in the router until it gets a control message indicating that

the required link to the successive router along the path can be allocated.

2.4.1 Credit-based flow control

host1

vc1

vc2

data

data

data
data

credit
host2

host3

credit

credit

credit

VC Buffer

Figure 2.11: Credit-based flow control applied on each link of a virtual channel
in an ATM network [KBC94]

One method of flow control, explored in detail in later chapters, is to use a

credit-based scheme. The scheme is not a new idea. It is extensively used in

Asynchronous Transfer Mode (ATM) networks [KM95, KBC94]. A credit-based

flow control method generally works over each flow-controlled virtual channel link.

A virtual channel is a unidirectional pipe made up from the concatenation of a

2.5. SERVICE GUARANTEES 39

sequence of connection elements. As illustrated in Figure 2.11, before forwarding

any data over the link, the sender (host 1) needs to receive credits for the virtual

channel via credit packets to the sender indicating availability of buffer space for

receiving data of the virtual channel. After having received credits, the sender is

eligible to forward some number of data packets through the virtual channel to

the receiver (host2 or host3) according to the received credit information. Each

time the sender forwards a data packet through a virtual channel, it decrements

its current credit balance for the virtual channel by one.

Credit-based flow control has been carried over into on-chip network domain,

as described in Dally’s book [DT04]. The scheme is a kind of stop-and-wait

flow control combined with a buffer management scheme at the flit level. A

sender keeps track of the number of available buffers at the receiver. The sender

maintains a count (credit) of the number of buffers at the receiver and decrements

a counter every time it sends a packet. The receiver on accepting the packet and

freeing the buffer sends a credit increment message to the sender. A more recent

flow control technique known as adaptive bubble flow control [PBG+99] relies on

ensuring that at least two packet buffers are free at the receiver before the packet

is sent by the sender.

The credit-based flow control schemes that perform at the flit level rely on

techniques for passing the buffer space availability information between adjacent

routers (switches). In this thesis, we apply the credit-based scheme at the end-to-

end packet level, where the credits relate to an entire packet transfer. Note that

this type of credit directly controls the amount of data injected into the on-chip

network and thus may directly affect the network load.

2.5 Service guarantees

A service guarantee is a commitment to provide a minimum communication ser-

vice to applications. The concept of a service guarantee is not limited to Quality-

of-Service (QoS) provision; it also includes offering predictable system behaviour

to the designated applications. For instance, in a real-time system, the worst-case

performance is of utmost importance and must be bounded.

2.5. SERVICE GUARANTEES 40

2.5.1 The user’s view

Real-time software programming requires the hardware platform to provide a

predictable, time-related performance in the worst case. In practice, many real-

time streaming applications are mapped into SoC architectures. For example,

wireless communication (802.11) [Rau08], multimedia (MPEG-4) [Chi07], digi-

tal broadcasting [dig05], and real-time neural modelling [FTB06]. The common

characteristic of these applications is that a continuous flow of data needs a guar-

anteed throughput and bounded latency in the worst case.

In this thesis, the service guarantees include three types of service: Best-

Effort (BE), Guaranteed Service (GS) and Differentiated Service (DS) for on-chip

packet-switched interconnections.

• Best-Effort: A best-effort service is a communication service that makes no

guarantees regarding the speed with which data will be transmitted in the

network. The best-effort traffic can share the remaining bandwidth resource

after high-priority traffic has been scheduled.

• Guaranteed Service: A guaranteed service refers to a guaranteed number of

bytes transmitted in a network within a preset period, such as a high peak

bandwidth and low latency.

• Differentiated Service: A differentiated service refers to a set up where

certain traffic always has highest priority in any circumstances.

A user expects applications to display certain behaviours. These behaviours

must be predictable, although those expectations may be low. For example,

best-effort traffic can tolerate low transmission speed. Guaranteed-service traffic

expects a bounded service based on overall system performance. The differenti-

ated service has the highest priority for network resource allocation.

2.5.2 Design techniques

Service guarantees can be implemented using various techniques. Generally, state-

of-the-art of NoC-based SoC designs use switch-to-switch, end-to-end (between

network interface devices) and virtual channel strategies to deliver service guar-

antees.

• Switch-to-switch

2.5. SERVICE GUARANTEES 41

A switch-to-switch QoS method provides a preferential service for a spe-

cific connection. To identify a QoS data packet, packet headers have to

contain information about the class of service that each packet requires.

Buffers in the switches provide mechanisms to meet traffic demands. Two

different management methods have been explored: blocking and non-

blocking [DT01]. A non-blocking switch allows packets to be discarded

if required. Few real applications permit a proportion of packets to be dis-

carded, most do not tolerate any loss of data. Instead, a blocking method

uses a mechanism to stop a sender issuing packets when a buffer is full, as

described in section 2.4.

• End-to-end

An end-to-end method implements service guarantees in the network inter-

face devices. The devices use a packet scheduling algorithm to prioritise an

input packet according to the level of service required. The nature of the

scheduling mechanism can greatly impact the service guarantees that can

be provided by the network. Most switch-to-switch service guarantees are

integrated with an end-to-end strategy to form a complete solution.

• Virtual channel

input0

Crossbar

switch
input1

input0

output0

output1

output2

Virtual channel

scheduler
Crossbar scheduler

Figure 2.12: A conceptual view of a virtual channel router

The concept of a virtual channel was originally proposed by Dally [Dal92]. A

virtual channel is a way to multiplex independent communications over the

same physical links [Dal92]. This switching technique can be implemented

2.5. SERVICE GUARANTEES 42

on circuit switching or packet switching architectures. In circuit switching

architectures, the virtual channel can create virtual circuits by multiplexing

different data streams over the same link using time slots. Because of

the multiplexing at the physical layer it is important that packets are not

blocked occupying the physical channel. Buffers must therefore be present

to allow maximum use of bandwidth and allow packets to overtake within

the switches. The number of virtual channels that can be supported by the

link depends on the number of buffers at each end of the link [CSC08].

In a packet switching architecture, the use of Virtual Channels (VCs) pro-

vides an alternative way of organizing the internal buffers in the router. In

virtual channel, a buffer is assigned to the incoming packet when the header

flit arrives, and will be reserved until the trailer flit has been transmitted.

Figure 2.12 describes one popular architecture of an input queued router

with virtual channel flow control. It consist of independent input queues

per port and virtual channels, a fully connected crossbar with the number

of input and output ports equal to the number ports of the router and

two allocators: a virtual channel scheduler and a crossbar scheduler. The

request and acknowledge lines between the queues and schedulers are not

included in the figure.

The individual flits of a packet will arrive from one of the input links. Each

flit is accompanied with its virtual channel identifier, which is used to store

the flits in a specific input queue. The allocation of an output virtual chan-

nel and physical channel’s bandwidth is performed by the virtual channel

scheduler and crossbar scheduler respectively. A new packet will request a

virtual channel on an output link from the virtual channel scheduler using

the routing information caried by its header flit. The output link is as-

signed depends on the type of routing algorithm used. The output link is

determined by the routing scheme.

The virtual channel scheme is able to give fair bandwidth shares to specific

connections by decoupling the priority scheme from the physical link restric-

tion. On a single link, the round-robin arbitration in the virtual channel

can decide which virtual channel and corresponding physical link should

be used. However, the local round-robin policy of the arbitration does not

translate into a globally fair policy.

2.5. SERVICE GUARANTEES 43

The implementation of virtual channels results in an area, power, and

possibly latency overhead. As the number of virtual channels increases,

the multiplexing becomes more complicated, requiring additional hardware

complexity and potentially increasing latency. Furthermore the sharing of

router bandwidth may also increase latency and decrease effective through-

put. If one of the physical links along the path is shared by virtual channels,

that link becomes a bottleneck and the effective throughput of the entire

path is divided by the number of packets traversing the shared link.

2.5.3 Service guarantee protocols

The principle of a service guarantee is to determine whether the current traf-

fic characteristics of the network will allow a new connection to be established.

When a particular traffic stream has a special requirement, the traffic manage-

ment system may has to achieve the goal by rerouteing other traffic. This thesis

identifies three conceptually different approaches to service guarantees: credit-

based, acknowledge-communication based and admission-control based.

• Credit-based service guarantee

deadline

expiration

priority

length

Scr. ID

Dest. ID

credit

Scr. ID

Dest. ID

(a) Credit request (b) Credit reply

Figure 2.13: Credit control messages

2.5. SERVICE GUARANTEES 44

A credit-based scheme allocates credit (as described in section 2.4) for dif-

ferent clients according to their needs. This limits their maximum band-

width by limiting their occupancy of any intermediate buffers. The credit-

based scheme reserves credit (available time slots for requiring network re-

source) for different clients for access to the communication fabric. One

approach based on credit, which offers a bounded communication latency,

is to make reservations of network resources, such as bandwidth and buffer

space. Based on the QNoC platform [WCGK07], Walter et al. proposed a

credit-based distributed access regulation technique to allocate access rights

fairly. Here, credit is a resource quota to each client. However, allocating

a quota of bandwidth to each source incurs a large area overhead in the

design.

The scheme uses a special control message to regulate data packets access-

ing the fabric. Figure 2.13(a) illustrates the credit request message and

Figure 2.13(b) illustrates a credit reply packet. A deadline field indicates

the requested completion time in credit request packets. An expiration

field indicates that the requests can be ignored if they are not serviced by

a certain time. A credit field states the number of credits granted in the

credit reply packets. This credit related message (in Figure 2.13) should

be embedded in the fields of the request data packets, which is not easily

applied on general on-chip interconnect because it will change the fabric

infrastructure fundamentally.

• Communication-based service guarantee

Communication-based schemes exchange control information between neigh-

bouring clients to gain knowledge of the state of the communication system.

Based on that knowledge, a control mechanism will provide various network

resource scheduling.

The MANGO NoC [Bje05] uses a control message as a communication

medium. When a new virtual-channel packet has been transferred from

an output port (see Figure 2.17), the control message indicates that vir-

tual channels have become locked. Further packets are not allowed to pass

across the network until the packet has arrived, and a downstream message

will be sent back to the source. The control message is a communication to

indicate to upstream communication nodes that a resource is available.

2.5. SERVICE GUARANTEES 45

Kumar et al. [KPJ08] propose a mechanism to regulate the packet popula-

tion in a network by defining special control information, which indicates

the network resource availability to neighbouring nodes. In this paper the

control information is called a “token”. Each IP block in the network sends

out tokens in its fixed local neighbourhood of several hops to disseminate

information about network resources such as buffers and virtual channels.

Figure 2.14 demonstrates token forwarding for a particular input port Node2

has available buffer and virtual channels at its west input port. It turns on

an Etoken for that input port to its west neighbour that its East input di-

rection is not congested. Node1 then forwards this Etoken by broadcasting

it to its neighbours (except in the East direction) by appending the received

token with their own token. For instance, if the north input port is avail-

able, node1 sends NE toke to its North neighbour node3. If the west input

port is available, Node1 sends WE token to its west neighbour. All nodes

which receive tokens from node1 do similar forwarding to their neighbours

by appending its own tokens. This continues for Dmax hops in the network,

thus allowing each node to gather knowledge about resource availability at

all other nodes with its Dmax vicinity. The tokens are used to choose less

congested paths in the network. This allows packets potentially to skip

congested routers along their path from source to destination, approaching

the communication delay guarantee. Clearly, this mechanism involves a lot

of message communication and adds extra communication overheads.

Node3

Node4 Node1 Node2

EtokenWE token

N
E

 to
k
e
n

Figure 2.14: Token forwarding example

• Admission control service guarantee

Admission control [VGGG94, BKS+00] was initially used on telecommuni-

cation networks. The principle of admission control is to decide whether

a new request can be admitted without compromising the requirements of

the traffic already being served. Admission control mechanisms have not

been widely considered in the field of NoC-based SoC design, except that

2.6. EXISTING NOC ARCHITECTURES 46

a flit admission scheme was proposed as an early form of admission con-

trol. The flit is the smallest flow control unit handled by the network.

The first flit of a packet is the header flit and the last is the tail flit. The

Nostrum NoC platform employs a flit admission scheme in the input and

output buffering in wormhole switches [LJ04]. Flit admission queues bind

with output physical channels. The flit admission scheme uses an adaptive

policy that maintains a certain number of packets without contention in a

switch-to-switch based technology. This approach is designed to minimize

the complexity of wormhole switches without sacrificing performance. The

study of flit admission is not aiming at high level packet admission control

for real-time traffic.

2.6 Existing NoC architectures

Service guarantees influence how communication services are managed and indi-

cate to designers the costs of this service. An efficient service guarantee depends

on certain facts: area cost, routing implementation and guarantee provision. In

this section, contemporary NoC architectures are analysed. The range of the

analysis is limited to NoC designs with service guarantees.

Æthereal

Guaranteed-

service

Router

Best-effort

Router

Control path

Buffers Data path Switch

pre-empt program

input

output

Figure 2.15: A conceptual view of the combined Æthereal GS-BE router

The Ethereal NoC, developed by Philips, aims to achieve composability and

predictability in system design and eliminate uncertainties in interconnects. It

2.6. EXISTING NOC ARCHITECTURES 47

has been successfully demonstrated on consumer electronics products, such as a

high-end (digital) TV SoC system [SDN+06].

The Æthereal NoC provides guaranteed service by combining two techniques:

end-to-end time division multiplexing (TDM) and switch-to-switch service guar-

antees [GDR05]. The Æthereal router uses a contention-free routing mechanism

to send independent packets on the same physical links, which have two paths for

supporting Guaranteed Service (GS) and Best Effort (BE) traffic (Figure 2.15).

The router has a configurable table which switches the GS traffic to the correct

output while avoiding contention on the physical link.

The 6-port Æthereal router is implemented on a 130nm CMOS technology.

Table 2.1 shows the area and frequency of a distributed router and a centralised

router. The distributed router uses a dedicated look-up table for congestion-free

routing and a reconfiguration unit for dynamically allocating/deallocating GS

traffic. Thus the distributed router is larger than the centralised router [GDR05].

The Æthereal NoC architecture is an efficient way to deliver GS traffic. It

use a Time Division Multiple Access (TDMA) scheme to divide network resource

accessing into unique time slots. The storage of BE and GS packets is indepen-

dent, GS traffic does not share the same slots. The allocation of GS traffic is

established in a similar way to that used in circuit switching technology. Since

the Æthereal router requires dedicated hardware FIFOs [RGR+03] and routing

slots, trade-offs are involved between throughput and area. The router design is

parameterised and consequently the optimisation of the back-end implementation

is time-consuming. Another drawback of the Æthereal router is that the total

area of the router plus the network interface block is too large for large-scale SoC

design. The average communication cost is above 30% of the total functional area

on 130nm technology [RDGP+05].

Method Area Frequency
Distributed architecture 0.24 mm2 500 MHz
Centralised architecture 0.13mm2 500 MHz

Table 2.1: A comparison of the silicon area and reference frequency of distributed
and centralised Æthereal NoCs [RGR+03]

2.6. EXISTING NOC ARCHITECTURES 48

Crossbar

Control

routing
credits

Inputs

Control

routing
credits

Inputs

vc1

vc2

vc3

vc4

Control

routing

Output

credits

Control

routing

OutputOutput

credits

CRT

vc1

vc2

vc3

vc4

CSIP

CSIP

vc1

vc2

vc3

vc4

vc1

vc2

vc3

vc4

CRT

Figure 2.16: A conceptual view of the QNoC router

Quality-of-Service NoC (QNoC)

A customized Quality-of-Service NoC (QNoC) architecture has been developed

by the Israel Institute of Technology. It attempts to modify a generic network

architecture with a Quality of Service (QoS) and cost model for communications

in Systems on Chip (SoC) by exploring the NoC design process.

QNoC supports an irregular-topology NoC platform with QoS support[RRA09].

Figure 2.16 shows a block diagram of the QNoC router. Each router input port is

connected through a demultiplexer to 4 queues that map onto four classes of QoS

traffic. The Current Routing Table (CRT) and Currently Serviced Input Port

(CSIP) modules control crossbar allocation. The storage elements and credit

counters reserve credits for specific traffic. Those credits are sent using dedicated

wires to neighbouring routers.

Routers Cell area Number of Latches
Synchronous Router (1-SL) 0.210 mm2 195
Synchronous Router (2-SL) 0.960 mm2 880
Asynchronous Route (1-SL) 0.093 mm2 130
Asynchronous Route (4-SL) 0.470 mm2 620

Table 2.2: A comparison of the silicon area and reference frequency of QNoCs
(adapted from [RRA09])

The differential service on QNoC is guaranteed by pre-emption. Once a higher

2.6. EXISTING NOC ARCHITECTURES 49

priority packet appears on one of the input ports, the transmission of the cur-

rent packet is pre-empted and the higher priority packets get through. The

lower priority packet is resumed only after all higher priority packets have been

served [BCGK04]. The synthesis of the QNoC architecture on a 0.35µm CMOS

technology results in a compact and fast implementation of the QNOC router,

as shown in table 2.2. The asynchronous router with 4 storage elements (SL)

occupies a silicon area of 0.47mm2.

The main weakness of this architecture is that low priority traffic can be

stalled by other traffic and this policy can result in starvation at low priority

targets.

MANGO

The MANGO NoC is a message-passing asynchronous Network-on-Chip providing

guaranteed services over open core protocol (http://www.ocpip.org/) interfaces

developed at the Technical University of Denmark [Bje05]. The central goal

addressed with the MANGO NoC is the realisation of a modular and scalable

design flow for complex SoC designs. This was a PhD project that has not been

used on commercial application-specific SoC design.

The MANGO NoC has a 2D mesh topology with asynchronous routers. A

MANGO router consists of a BE router, a GS router and link arbiters (Fig-

ure 2.17). The GS router is a multiplexer that allocates buffers to a virtual

channel. These virtual channels are allocated by a circuit-switched technology.

Special messages are used to allocate and deallocate the GS virtual channels on

the routers.

Guaranteed-

service

Router

Best-effort

Router

Inputs
Output

vc1

vc2

vc3

vc4

Programming interface

L
in

k
 a

rb
ite

r

Figure 2.17: The MANGO router

The MANGO architecture uses separate Virtual Channels (VC) for GS and

2.6. EXISTING NOC ARCHITECTURES 50

BE traffic. Consequently, it is possible to meet hard constraints on latency and

bandwidth for the GS traffic. However, this architecture cannot serve traffic

equally because of the side-effects of the share-based VC approach. When there

is a GS traffic request, the link arbiter (Figure 2.17) limits the allocation to the

physical channels.

According to the MANGO NoC design report, the total area of the router and

network interface is too large because it requires many multiplexers, for example,

a 5 * 5 IP-core design requires 40 4-input to 1-output multiplexers [Bje05]. As a

demonstration of the MANGO architecture, a 5 * 5 33-bit MANGO router was

implemented using 130nm CMOS standard cells. The router supports 7 inde-

pendently buffered GS connections on each of the four network ports in addition

to connectionless BE source-routing, with 4-flit-depth BE buffers on each input

port. The total reported area of the router is 0.277mm2 [Bje05]. The clear disad-

vantage brought about by VCs is the almost linear area increase with the number

of VCs per link.

Xpipes

Flow

control

Input0

Input1

Input2

Input3

Data
Flow control signal

to upstream

4X4

Arbiter

Output0

Output1

Output2

Output3

Flow control signal

from downstream

Data

Figure 2.18: Example of a Xpipes router with a 4*4 switch

Xpipes, developed at the University of Bologna, aims to provide high perfor-

mance and reliable communication on complex SoCs. The Xpipes research group

considers the implementation of an MPEG4 decoder to explore the NoC-based

communication design process [DBG+03].

The Xpipes NoC [DBG+03] is a scalable NoC architecture, is highly parame-

terised, and provides reliable and latency-insensitive operation. An Xpipes router,

as shown in Figure 2.18, includes an arbiter, four inputs and four outputs. The

router uses wormhole switching techniques to reduce switch memory requirement

2.6. EXISTING NOC ARCHITECTURES 51

and achieve low-latency communication. It uses control signals in the switches

to feed channel information back to the upstream switches. This design needs

careful trade-offs to balance the size of buffering and the system performance.

The service guarantees are provided through a handshake flow control. If

the downstream router has available buffer space, it accepts the flit and sends

an acknowledgement to the upstream router. Otherwise, the downstream router

drops the flit and sends a negative acknowledgement. The virtual channels are

implemented using a pipeline shift register to decouple channel data input rates

from the throughput of physical links.

The disadvantage of Xpipes is its low efficiency in transmission since arriving

flits may remain stored in the buffers waiting for an acknowledgement.

Asynchronous router

Input Flow

control

output

scheduler

Crossbar

Output

vc1

vc2

vc3

vc4

flow control signal

to upsteam

flow control signal

from downstreamscheduling signal
scheduling signal

Figure 2.19: Abstract view of asynchronous logic to support QoS

An asynchronous router was developed in the Advanced Processor Technolo-

gies Group at the University of Manchester as a PhD project; this project in-

vestigated the feasibility of asynchronous logic providing Quality-of-Service for

Network-on-Chip.

The asynchronous router is a full-custom self-timed circuit with QoS sup-

port [Fel04]. The router employs a virtual channel architecture together with a

priority-based scheduler to provide time-related guarantees. Figure 2.19 shows

that the asynchronous QoS router distinguishes four traffic classes: real-time

traffic (vc1), read-write (vc2), block transfer (vc3), and best-effort (vc4). The

2.6. EXISTING NOC ARCHITECTURES 52

real-time class has the highest priority and the block-transfer class has the low-

est. The router implements virtual channels to assign buffer space to particular

packets, and a priority-based scheduling algorithm to allocate network bandwidth

to the connections sharing the same channel.

The disadvantage of this scheme is that the complexity of the hardware grows

rapidly with the number of virtual channels. In addition, the fixed priority ar-

biters may result in starvation on low priority channels.

DSPIN

4X4

switch

North input

East input

South input

West input

GS VC

BE VC

GS VC

BE VC

GS VC

BE VC

GS VC

BE VC

local

input

GS

BE
North output

GS

BE
East output

GS

BE
South output

GS

BE
West output

Local

output

Figure 2.20: A conceptual view of the DSPIN router

The DSPIN NoC, developed in STMicroelectronics, is a NoC architecture with

service guaranteed using a virtual channel technique with a buffer per virtual

channel. The application selected to validate the architecture is a SISO-MC-

CDMA data streaming application called Matrice [BCV+05].

The DSPIN NoC provides a service guarantee to cope with the GALS (Glob-

ally Asynchronous Locally Synchronous) paradigm [MPG07]. The architecture

of DSPIN is a scalable programmable integrated network with GS support. A

DSPIN router is not a centralised macro-cell: it is split into 5 separate inputs

(North, East, South, West & Local) that are physically distributed on the clus-

ter border (Figure 2.20). Each cluster can contain one or many processors. A

cluster is the building block of the DSPIN architecture. Each cluster contains

two DSPIN routers, one network interface controller, one local interconnect, and

some computing units.

2.6. EXISTING NOC ARCHITECTURES 53

To provide guaranteed service, DSPIN uses a Virtual Channel (VC) technique

with a buffer per virtual channel; locally the independent channels share the same

physical channels. Each router has two virtual channels for two traffic classes (BE

traffic and GS traffic), and uses the same routing algorithm and packet format.

The GS traffic is sent to the GS port. It then travels across the network through

the GS FIFOs and exits the network through a GS output port. The optimisation

of the DSPIN architecture is to use a virtual channel with a buffer per channel

to avoid global synchronisation.

The main disadvantage of DSPIN is that collisions between different GS traffic

types cannot be avoided in the GS sub-network, although the author assumes

that there should never be conflicts on GS channels. An alternative approach

is to require the embedded software application to manage a global table for all

existing GS paths. The global table will keep record of all GS paths information.

2.6.1 Summary

Table 2.3 summarises the network features of the interconnect architectures de-

scribed above.

Architecture Logical Applications Service
structures guarantee

Æthereal direct stream-oriented credit-based
application admission control

Xpipes indirect N/A communication-based
credit-based

QNOC direct N/A credit-based

MANGO direct N/A credit-based
communication-based

Nostrum direct N/ A credit-based
admission control

Asyn. router direct N/A communication-based

DSPIN indirect stream-oriented communication-based
application credit-based

Table 2.3: A summary of NoC architectures

Table 2.3 shows several choices of on-chip interconnect that support some

form of service guarantee scheme. It should be noted that some examples of

2.7. CHAPTER SUMMARY 54

NoC design listed here, for instance, Xpipes, QNOC and Nostrum, are purely

research projects and aim at achieving composability and predictability in NoC

design. However, the design exploration on those service-guarantee-enabled net-

works shows the necessity of combining various schemes to keep the efficiency of

service guarantee. We believe that the actual implementation for service guar-

antee applies to one or more aspects of the service process. The Æthereal and

DSPIN NoCs have been applied in stream-oriented applications in practice. The

silicon area overheads of the Æthereal and DSPIN routers listed above are large,

which significantly affects the overall SoC area. This indicates that further re-

search to lower NoC communication area overhead is needed.

Existing research into service guarantees has concentrated on switch-based

control and virtual channel schemes. In the SpiNNaker chip, the self-timed fabric

is generated by the CHAINworks tool. Since the fabric is fixed, any service-

guarantee method that requires the routing scheme to be changed is not ap-

plicable. Thus implementing a communication based service is not suitable for

this research. In this case, service guarantee mechanisms based on end-to-end

techniques will be strong candidates for the SpiNNaker chip.

2.7 Chapter summary

This chapter examined various interconnect structures and the quantitative rela-

tionship between those structures. The growing interest in NoC research is mainly

concerned with a generic node structure. For an application-specific design, the

specific function of the on-chip components should be considered. This chapter

also provided an overview of flow control mechanisms and some service guaran-

tee techniques in network technologies. A service guarantee clarifies what the

application-level software can expect from a service, and what a hardware imple-

mentation will do to rectify the situation if the service does not meet expectations.

Despite growing interest in NoC research topics, research into application-specific

service guarantees has been limited. This thesis aims to provide a wider under-

standing of the roles of service guarantees in managing services on NoC-based

SoC system in realistic designs.

The next chapter introduces the SpiNNaker System-on-Chip, its system archi-

tecture and simulator platforms for investigating traffic management approaches

and design constraints on the SpiNNaker SoC.

Chapter 3

The SpiNNaker project

The SpiNNaker massively-parallel computing system is an experimental hard-

ware platform to facilitate understanding of brain architecture. This chapter

introduces concepts from neural computation that will be referred to in later

chapters.

The architecture of the SpiNNaker system is also described, along with the

SpiNNaker chip, the two on-chip interconnect fabrics, and the application require-

ments to support large-scale neural simulations. CHAIN technology, a delay-

insensitive communication technology, is introduced to design the network infras-

tructure of both on-chip interconnect fabrics [BF04].

The SpiNNaker chip provides a complete, verified and practical platform for

GALS experiments and is fabricated on a 130nm silicon process.

3.1 Neural communication

Neurons are involved in information processing in the brain; their functionality

is defined by their microstructure and connectivity to other neurons. There are

many different types of neuron based on their size, shape, and physiological prop-

erties. However, many features of neurons can be generalised to almost all types

of neuron.

Like all other cells in a living organism, neurons have a cell body called the

soma. It consists of the nucleus and other substances required to maintain the

metabolic activities of the cell. The soma is surrounded by a shell, called the

membrane.

Figure 3.1 shows the structure of neural connection. The dendrites are thin

55

3.2. NEURAL MODELLING HARDWARE PLATFORM 56

Figure 3.1: A neuron and its different parts (adapted from [BLKK02])

fibres extending from the soma, and are often highly branched so as to form a

dendritic tree (Figure 3.1). The primary function of the dendrite is to receive and

integrate information. Each neuron has only one axon as an output terminal to

other neurons. A synapse is a highly specialised structure to carry out the task

of intercellular information transfer. The neuron which transmits information

from its axon terminals is termed “pre-synaptic”, while the neuron receiving the

signal at its dendritic terminal is termed “post-synaptic”.

Pioneering work done by Adrian [Adr28] showed that the response of a neuron

can be measured by counting the number of spikes in a fixed time window. He

also observed that a neuron encodes information about a stimulus by varying its

rate of firing in response to the stimulus. The neural network carries a series of

spikes, information is encoded in their firing times. The input spikes are weighted

by the strength of their synaptic weights and then passed via the dendrites to be

summed in the soma. The output spike is conveyed via the synaptic output to

other neurons via the neuron’s axon.

3.2 Neural modelling hardware platform

The SpiNNaker chip is used to simulate spiking neural networks. Neural models

running on the SpiNNaker system communicate using spike events which occur

when a neuron is stimulated beyond a given threshold and fires [RWdRSB97].

At run time, each processing core might implement 1000 neurons each with 1000

synapses.

3.3. ARCHITECTURE OVERVIEW 57

Each processor has a dedicated local tightly-coupled memory (TCM), which

contains neural state information. Additionally, each synapse requires 2-4 bytes

to store its weight and other information so that each processor (see section 3.3)

needs at least 106 words (4Mbytes) of storage, which is not feasible using local

memory alone; a large, concurrently accessed global memory is thus required for

long-term synaptic weight storage [FT07]. The global memory employed is an

off-chip mobile DDR SDRAM with 128Mbyte capacity.

3.3 Architecture overview

Figure 3.2: The SpiNNaker multiprocessor architecture (from [PFT+07])

Figure 3.2 illustrates the basic SpiNNaker architecture. Every SpiNNaker

node comprises a 18 ARM968 processor system and a memory chip [PFT+07].

The SpiNNaker nodes are connected in a grid using six bidirectional links which

support a total of 6 Gbit/s of bandwidth into and out of the SpiNNaker node.

With a 200 MIPS integer embedded ARM9 processor, a system of 100*100 SpiN-

Naker nodes will deliver a total of 40 teraIPS.

The SpiNNaker chip (Figure 3.3) is a homogeneous multiprocessor system,

which contains a number of synchronous ARM9 processor cores. Each ARM9

can model a number of individual neurons (up to 1000), and a packet-switched

network is implemented to carry spike events to other ARM9 processors on the

3.3. ARCHITECTURE OVERVIEW 58

2Gb/s

Comms NoC
(Input) (Output)

Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

PL340 SDRAM I/F

1GB DDR SDRAM

2of7
Enc

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Dec

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

2of7
Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

ROM

System System

Ctlr
Ethernet

Ether MII

System

RAM

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG
Debug

10MHzTestReset
IRQ

Router
control

Decode

Packet Routing Output

Engine Select

I/O Port

AXI Slave AXI Slave AXI SlaveAXI SlaveAXI Slave

Packet Router

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlr

AXI Slave

CommCtlr

Input

Links

Output

Links

AXI Master

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClk

Figure 3.3: The SpiNNaker chip from [SP08]

same or other chips. During the setup period one of the processors is nomi-

nated as the Monitor processor, thereafter performing management tasks. The

packet router (Figure 3.3) is responsible for routing neural spike events packets

between processor cores spreading all over the network, and is clocked at around

200MHz [PBF+08]. In addition to the primary function blocks, in Figure 3.3,

additional resources are shown which are available for full chip functions, such

as system RAM, system ROM, Ethernet, system controller and shared off-chip

SDRAM. The sharing of SDRAM is an implementation convenience rather than

a functional requirement, because large on-chip memory is expensive.

The processing node (Figure 3.4) is formed around an ARM968E-S core with

its dedicated Instruction Tightly-Coupled Memory (ITCM) and Data Tightly-

Coupled Memory (DTCM).

The ARM968E-S is from the ARM9E family and was chosen for its high

instruction throughput and low power consumption [ARM06]. To support the

complete programming model, each processor node is provided with peripher-

als, such as a timer, an interrupt controller, a communication controller and a

3.4. ON-CHIP COMMUNICATION NETWORK 59

32KB

ITCM

DTCM

64KB

CpuClk

(~200MHz)
Clock

Buf/Gen
AXIClk

DMAClk

AHBClk

ARMClk

CCClk

Timer / Counter

Controller
Interrupt

Communications

Controller

ARM968E−S

AHB−Lite M

Controller

System NoC

Comms NoC

CHAIN Gateway

DMA

AHB M AHB S

AHB S

AHB2

AHB S

IRQ

TClk

ARM IRQ/FIQ

ARMClk

AHBClk

AXIClk

DMAClk

CCClk

AXI Master

JTAG

AHB1AHBClk

AHBClk

AHBClk

Figure 3.4: SpiNNaker processor node from [SP08]

DMA controller, connected via an AMBA High-performance Bus (AHB). The

ARM vectored interrupt controller (VIC) provides 16 vectored interrupts so that

the processor can directly read the address of the interrupt handling code from

the vector address register. The communication controller forms packets before

sending them to other processors, and decomposes incoming packets. The DMA

controller provides a bridge to access the chip’s resources over its on-chip inter-

connections.

3.4 On-chip communication network

The SpiNNaker chip utilises two distinct networks-on-chip (NoCs). The Commu-

nication NoC supports on-chip and off-chip message-passing [SP08]. The second,

the System NoC, is for system interconnection.

3.4. ON-CHIP COMMUNICATION NETWORK 60

CCCCCCCC

Output NoC fabric

S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A S−>A

A−>S A−>S A−>S A−>S

TX TXTX TX TX TX

INTER−CHIP LINKS ON−CHIP PROCESSORS

RX RXRX RX RX RX CC CC CC CC

Input NoC fabric

A−>S

S−>A S−>A S−>AS−>A

INTER−CHIP LINKS ON−CHIP PROCESSORS

BUFBUFBUFBUF BUFBUF BUFBUFBUFBUF

ROUTER

100 M
H

z
200 M

H
z

100 M
H

z

Figure 3.5: The Communication NoC (from [BF04])

3.4.1 Communication NoC

The Communication NoC provides the packet switching fabric for the synchronous

router and on-chip processor nodes. It has the primary role of carrying neural

event packets between processors, which can be located on the same or different

chips. The Communication NoC operates in a GALS fashion, decoupling all the

modules’ clocks and eliminating any phase alignment requirements for the clock

signals.

The synchronous router in the Communication NoC transmits packets to 18

on-chip processing nodes and the six outwards links connecting to other chips.

The on-chip processors access the NoC through their Communication Controllers

(CC) which are similar to UARTs in that they serialise and deserialise packets.

The Communication NoC supports three types of packet: Multicast (MC), Point-

to-Point (P2P) and Nearest-Neighbour (NN). MC packets are used to support

spike communication among the neurons in each processing core, P2P and NN

packets are used mainly for system management and diagnostic/configuration

purposes.

Figure 3.5 shows the organisation of the Communication NoC divided into

input and output sections. For the input section, the inter-chip links (labelled

RX) and the on-chip processors pass packets to the router. The output section

of the Communications NoC located at the bottom of the figure includes the

3.4. ON-CHIP COMMUNICATION NETWORK 61

inter-chip link outputs (labelled TX) and the on-chip processors. This figure also

shows that synchronisers are used both at the synchronous inputs to the fabric

(labelled S->A) and at the synchronous output (labelled A->S) that lead to the

router and the on-chip processor. More details are available elsewhere [PBF+08].

3.4.2 System NoC

The primary function of the System NoC is to connect the processor nodes to the

SDRAM interface. It is also used to connect the Monitor Processor to system

control and test functions, and for a variety of other purposes.

Figure 3.6: System Network-on-Chip (NoC)

Figure 3.6 shows that the System NoC is used to connect the 18 ARM9 cores

and the router to a small number of slave devices, the most significant of which

is the off-chip SDRAM. The System NoC operates in a self-timed fashion with a

command fabric for transmitting commands and a response fabric for transmitting

response data back.

This thesis is concerned with research problems in the implementation of the

System NoC and service guarantee provision on this NoC. The details are in the

following chapters.

3.5. CHAIN: DELAY-INSENSITIVE COMMUNICATION 62

3.5 CHAIN: delay-insensitive communication

The two on-chip interconnection fabrics use GALS technology. The GALS tech-

nology makes it easy to meet timing requirements by allowing each of the syn-

chronous blocks to run in its own timing domain.

In the SpiNNaker chip, the on-chip interconnections are based on CHAIN

(CHip Area INterconnection) technology [BF04]. CHAIN, a delay-insensitive

on-chip interconnect fabric, was created by the University of Manchester using

self-timed technology.

A number of basic components are used in the CHAIN technology to form a

flexible interconnect topology. The component units are described below. Note

that the CHAIN technology has been developing and there are two different ver-

sions we will discuss in this section. The early version refers to the paper [BF04].

The current version used in the SpiNNaker chip is still an unpublished work.

Links

The primitive communication channel for CHAIN is the link between components.

CHAIN uses Delay-Insensitive (DI) communication which makes no assumptions

about the delays in the interconnection fabric. For this reason, delay-insensitive

communication is more robust than other styles, such as synchronous communi-

cation, whose operation is based on worst-case constraints.

The early CHAIN consisted of 6 signals, including 4-data signals, an acknowl-

edge signal and an end-of-packet (eop) signal, as shown in Figure 3.7. The data

signals use a 1-of-4 encoding. The acknowledge signal is used by the receiver to

indicate to the sender that the current data signal or eop has been accepted.

The 1-of-4 coding is one of the simplest 1-of-N delay-insensitive (DI) codes

[Ver88]. To eliminate delay assumptions, the DI code uses extra information to

communicate timing issues. Here, N wires are used to encode N values, and

at most one of the wires is allowed to have a “1” value at any time. Origi-

nally CHAIN used 1-of-4 coding, but this can be varied depending on require-

ments [BF01]. M-of-N coding is another type of DI code which optimises wiring

cost [BTEF03]. A 3-of-6 code has 20 possible symbols, in which 16 symbols can

be used for 4-bit binary data.

Figure 3.8 shows the primitive CHAIN channel in the current CHAIN version.

Current CHAIN technology implemented in the SpiNNaker chip uses 3-of-6 coding

3.5. CHAIN: DELAY-INSENSITIVE COMMUNICATION 63

tr
a
n
s
m

it
te

r

re
c
e
iv

e
r

D0

ackack

End of packet

D1

D5

D4

D3

D2

Figure 3.7: A CHAIN link in the early version

tr
a
n
s
m
it
te
r re

c
e
iv
e
r

D0

ackack

end of packet

gap

normal

ack

D1

D5

D4

D3

D2

data

channel

control

channel

rte

ack

route

channel

Figure 3.8: A CHAIN link in the current design

for the data channel, 1-of-3 coding for the control channel and a separate route

channel for routing information. The data channel comprises 6 data signals with

an acknowledge signal; the control channel comprises 3 control signals (end-of-

packet, gap, normal) with an acknowledge signal; the route channel comprises a

route signal with an acknowledge signal.

Packets

The previous version of a CHAIN packet is shown in Figure 3.9. The implemen-

tation in this version accommodates variable-length packets through the explicit

End-of-Packet (EOP) signalling. Every packet carries routing information for

route setup at its head. The packet format is made up of a number of symbols,

there are three different types [BF01]:

• Route symbols

3.5. CHAIN: DELAY-INSENSITIVE COMMUNICATION 64

Route EOPPayload

Figure 3.9: A CHAIN packet

Each route symbol contains routing bits at the start of the packet, which

are used to set up the route of the packet to its destination. Once a routing

bit has been consumed, it is removed from the symbol and when there are

no more routing bits, the packet has arrived at its destination.

• Payload symbols

Each payload symbol carries data messages and header information. The

header identifies the sender and receiver of the packet by their unique

system-identifiers.

• EOP symbol

An EOP symbol indicates end-of-packet and causes the route to be torn

down to release the switching resource for other traffic.

Current CHAIN technology implemented in the SpiNNaker chip uses a dif-

ferent structure of packet from the previous one. The current CHAIN uses three

separate channels to improve transmission efficiency. In the routing channel,

packets only contain route symbols. In the data channel, packets only contain

data payload symbols. In the control channel, packets only contain control sym-

bols, such as end of packet, gap, and ‘normal’ signal.

Initiators

The Initiator is a special component in CHAIN and is not part of the CHAIN

interconnect. It is any device on the network that generates traffic, for instance,

a processor or a DMA controller. All initiators require interface adapters to

translate between the protocol used by the initiator and that used by the CHAIN

network.

Targets

Targets are devices that respond to requests from initiators. Targets require

interface adapters to translate from the protocol used by the device into the

CHAIN protocol.

3.5. CHAIN: DELAY-INSENSITIVE COMMUNICATION 65

Routers

The basic router unit has one input and two outputs. Routers accept symbols

from the input, then set one of the two output links as active and forward the

rest of the packet through the currently active output link.

Merges

A merge performs the opposite function to the router. The basic merge has two

inputs and one output and accepts symbols, passing a whole packet at a time

from one of its two inputs and forwarding it through its output. Once it has

started accepting a packet from one input, it accepts only from that input until

the complete packet has passed as indicated by EoP.

Network connectivity

Two parallel interconnect fabrics are used: one to transmit commands from the

initiators to the targets and one to transmit responses back from the targets to

the initiators.

As shown in Figure 3.10, the two dedicated communication fabrics are the

command and the response fabrics. The command fabric is used by initiator

devices (e.g. processors and DMA controllers) to initiate a communication trans-

action and to send requests to the targets. The response link is used by targets,

such as the SDRAM controller, to respond to transaction requests [BF04]. In read

transactions, the command fabric transmits read addresses and read requests and

the response fabric sends read data back. In write transactions, the command

fabric transmits write requests, addresses and data, and the response fabric sends

write responses back.

3.5.1 The CHAINworks tool

The CHAINworks tool suite (CHAINworks-2008.0912) [Sil07] is a commercial

tool that supports the development of a self-timed CHAIN-style network-on-chip

interconnect using industry standard design and tool flows. This set of tools

allows digital designers to create customised on-chip interconnect with self-timed

technology.

The Silistix CHAINworks software accepts a system specification in the Con-

nection Specification Language (CSL) to build and analyse an SoC system.

3.6. FEATURES OF THE SPINNAKER PROJECT 66

Initiator

Initiator

Initiator

Command

fabric

Response

fabric

Target

Target

Target

Figure 3.10: CHAIN network connectivity

Figure 3.11 illustrates the complete Silistix CHAINworks design flow, starting

from design specification using the CSL language to the final SoC design. The

CSL source file describes the connections and traffic characteristics of the multiple

IP cores in the SoC design. In order to integrate into a standard synchronous

design flow, CHAINworks generates a structural netlist containing synthesisable

code to connect other IP blocks to CHAIN network gateways. After synthesis,

the scripts generated by CHAINworks can be used for further analyses of the

performance of the SoC design using the structural netlist.

CHAINworks allows users to perform quick iterations of hardware designs,

allowing area and speed trade-offs and architecture exploration. The technology

library combines pre-implemented hard macros to provide highly-accurate area,

timing and power reports. By analysing these reports generated by the CHAIN

network, the user can compare various implementation trade-offs.

In the case of this work the tools were still under development. We designed

the SpiNNaker System NoC fabric manually and used the tools to generate the

structural fabric.

3.6 Features of the SpiNNaker project

1. Chip-level error recovery

One objective of the SpiNNaker project is to learn the principles of fault-tolerant

systems from biology. From the design point of view, the SpiNNaker system

3.6. FEATURES OF THE SPINNAKER PROJECT 67

CSL file

Silistix CHAINarchitect Library

Generate Verilog

Verilog

Testbench
Scripts

Verilog

Model

Synthesis

Place and route

Layout

(GDSII)

Verilog simulator

Static timing

analysis

Figure 3.11: The CHAINworks design flow

provides redundant resources to support error recovery from chip component

failures. At run time, if a processor does not respond because of a hardware

failure, the Monitor processor records its state and chooses a backup to be an

application processor. The Monitor processor will then configure the routing table

to dump all relevant data to the new application processor. In this scenario, the

Monitor processor should be given a high priority to request shared network

resources.

2. Memory bottleneck

Each processor has sufficient local memory to hold real-time application code for

interrupt service routines and neural dynamics. The local memory is sufficient to

hold neural state information and a lookup table to request the relevant synap-

tic data from the shared SDRAM as required. The shared SDRAM holds the

synaptic information associated with each dendritic link to the on-chip neurons.

With around sixteen processors performing a spiking neural simulation, the

shared SDRAM access is a system bottleneck. An efficient scheme is required to

3.6. FEATURES OF THE SPINNAKER PROJECT 68

optimise the throughput of this bottleneck.

Approximately 2 to 4 bytes are required to store the synaptic weight and

axonal delay along with the index of the respective neuron in the chip. If a spike

is targeted to all (1000) simulated neurons in a processor, 4Kbytes of data are

brought from the SDRAM on each spike. At run time, the processors access

SDRAM with a bounded bandwidth to support real-time spiking neural network

simulation.

3. Low area overhead

Due to the limited area resources available on the chip, the area of the System

NoC must be kept as small as possible.

Pads

Pads

P
a
d
s P

a
d
sProcessor nodes

64.8 mm2

Communication NOC

7.2 mm2

System NoC

9.85 mm2

PLL

debug

0.5 mm2

Figure 3.12: The abstract floor plan of the final SpiNNaker chip

Figure 3.12 shows the abstract floorplan of the final SpiNNaker chip. The final

SpiNNaker chip targets a 130nm UMC process and will use a 100mm2 die [SP08].

An ARM968 with 32k byte I-RAM and 64kbyte D-RAM occupies 3.3mm2 of sil-

icon area. The total processor node, including the DMA and communication

interfaces occupies 3.6mm2. The total area of 18 processor nodes is 64.8mm2.

The total available die area is around 88.6mm2, allocating 11.4mm2 for the pad

ring. The Communication NoC including router will occupy 7.2mm2 and the

clock generation and debug area overhead will be 0.5mm2. Eventually the Sys-

tem NoC including System AHB (SystemRAM, RoM, Ethernet, PL340, System

3.6. FEATURES OF THE SPINNAKER PROJECT 69

Controller), will be around 9.85mm2, estimated from the taped out SpiNNaker

test chip. Even when guaranteed services are introduced, the area overhead of

the System NoC should be below to 10mm2 to keep the project in budget.

4. Memory latency tolerance

Neurons are event-sensitive cells which change their state over their life span [Tra02,

MB98]. Each neuron can receive input spikes on its dendrites and send an output

spike through its axon to multiple dendrites of other neurons. These input and

output events cause the neuron state to change on a millisecond time scale. From

a real-time neural modelling point of view, the modelled neuron should display an

accurate neural state at millisecond granularity with correct input/output spike

activity. This is a very relaxed performance at the technology level, compared

with the capability of digital circuits which are measured with gate speeds in

picoseconds.

5. Fairly-shared network resources

The typical SoC design flow follows a top-down application-specific flow. It is

crucial to capture the key behaviour of the application in the early design stages

to have confidence in the predicted results.

In the SpiNNaker chip, each processing node has a local memory for storing

activation information corresponding to the neurons of the neural network. The

SDRAM stores the synaptic weights for the processing nodes, providing access

via the System NoC. To use computing resources fairly, each processing node

requires the asynchronous NoC to coordinate bandwidth allocation to SDRAM

in such a way as to ensure fair sharing.

The coordination of computing resource is non-trivial because, since the NoC

is packet-switched and not a circuit-switched network infrastructure, and packets

have different physical transmission paths. The CHAIN-style interconnect does

not directly provide service guarantees.

The SpiNNaker chip has two different service requirements in terms of read

transactions when running a real-time neural model. In one mode, one of the

processors runs complex algorithms to update management information and this

Monitor processor is expected to use more than its usual share of the bandwidth.

In the other “execution” mode, applications are expected to share SDRAM peak

bandwidth fairly.

3.7. CHAPTER SUMMARY 70

In the SpiNNaker platform, a 200 MIPS integer embedded ARM9 processor

is able to model 1,000 neurons, each with 1,000 inputs firing on average at 10Hz.

The minimum processing throughput requires 40M Byte/s of SDRAM bandwidth

(with 32 Byte burst size). Theoretically, the 50M Byte/s average memory band-

width share (1G Byte/s PL340 SDRAM peak bandwidth between 18 processing

nodes) is sufficient for neuron modelling. However, the binary-tree interconnec-

tion comes with a fairness problem (see section 4.1.2). In the worst case, one

of the initiators would only get half of the average peak bandwidth because of

imbalance in the binary tree, which is 50MBytes/s
2

= 25MBytes/s. The bandwidth

allocation will show variations between processor nodes, which is not acceptable

in real-time applications. For an SoC designed for real-time applications, the

fairness problem is a fundamental problem which must be solved.

3.7 Chapter summary

This chapter discussed the architectural design of the SpiNNaker System-on-Chip

with a brief overview of the system architecture, the on-chip network design and

the interesting features of the SpiNNaker system. It serves as a precursor to the

following chapters that discuss the implementation of service guarantees on the

SpiNNaker chip.

Chapter 4

A token-managed admission

control scheme

This chapter proposes a Token-Managed Admission Control (TMAC) scheme

for service guarantee in the SpiNNaker chip. It also examines the framework

of a token-managed admission control scheme. The token-managed admission

control (TMAC) aims to provide service guarantees for GALS interconnection.

Focusing on this framework encourages the chip designer to identify a proper

balance between the demands of the application and the overhead of the hardware.

4.1 Motivation

A token-managed admission control scheme (TMAC) is a traffic management

technique which can provide end-to-end communication with bounded bandwidth

and latency guarantee. Tokens are a limited resource which are granted to allow

an endpoint to initiate a transaction. A TMAC is attractive here because the

TMAC scheme has arisen particularly from the application level requirement,

the side effects of asynchronous arbitration and the disadvantages of network

interfaces without service guarantees.

4.1.1 Application requirement

The richness of on-chip computational devices places tremendous demands on the

communication resources. The basic requirement of a communication service is

to be able to meet end-to-end performance bounds as required by the application.

71

4.1. MOTIVATION 72

Generally, the communication demands of different on-chip functions show large

variations since the applications vary greatly.

Fairness assumptions have a great impact on the correctness and the time

complexity of SoC systems because unfair treatment could, in principle starve one

of competing sources. A key objective of SoC platform communication modelling

is to ensure that a set of parallel processing elements is guaranteed to make

efficient use of the available resources by ensuring fair communication services.

In the SpiNNaker chip the target application is to run a real-time spiking

neural network simulation. An off-chip SDRAM in the SpiNNaker chip stores

the synaptic weights for the processing nodes. Each processing node requires the

asynchronous NoC to coordinate bandwidth allocation to the SDRAM in such

a way as to use computing resources fairly. Thus the SpiNNaker requirement is

to manage access to a single resource (the off-chip SDRAM); this is not typical

of other applications which may require the management of access to multiple

shared resources.

4.1.2 Asynchronous arbitration

Client 1

Client 2

Arbiter

C1req

C1gr

Common

resource

Creq

Crgr

C2req

C2gr

Figure 4.1: Basic architecture of a system with two clients C1 and C2 accessing
a common resource CR (from [Kin07])

The on-chip interconnect in the SpiNNaker chip is based on two-to-one asyn-

chronous arbitration. Asynchronous arbitration has speed and efficiency advan-

tages that can be exploited in asynchronous NoC system designs. However, the

adoption of asynchronous arbiters raises the potential problem of unfair sharing

of network resources.

4.1. MOTIVATION 73

An asynchronous arbiter is a key component for building an asynchronous

NoC. The arbiters can allocate resource dynamically in response to requests from

clients [SF01]. The simple two-way arbiter is based on a MUTEX [Kin07]. Con-

sider a typical two-way arbiter situation when the choice is made between two

clients, who request a shared recourse CR, Figure 4.1 represents this situation.

The signals C1req and C2req indicate that clients C1 and C2 are issuing re-

quests to the arbiter. They have to be ordered in time in such a way that only

one of them is granted. A MUTEX element can be used to decide between two

asynchronous requests and produce two mutually exclusive signals.

A 2-way arbiter using a MUTEX element, built of CMOS transistors, is known

to be free from oscillations [Kin07]. It can easily be adapted into a multiway

arbitration system using a request-grant-acknowledge protocol. Priority arbiters

have also been developed for asynchronous interconnect [BKY00, FBF03]; their

structure depends on the system topology. Unfortunately, their priorities are

fixed, so it is not feasible to use them in a dynamic system. Furthermore, large-

scale priority arbiters can be slow and are, inevitably, centralised; this makes

them unattractive in a complex, distributed network

Figure 4.2 shows a simple network topology with three initiators accessing

one target. For example, the initiators could be processors and the target could

be a shared memory. The on-chip interconnect has two dedicated communication

links, based on CHAIN technology: the command link is used by the initiators to

initiate a communication transaction, and the response link is used by the targets

to respond to transaction requests.

Response linksCommand links

Init0

Init1

Init2

25%

25%

50%

fabric

Hot link

Sub-link1

Sub-link2

50%
target

shared

memory

arbiter1

arbiter2

Figure 4.2: Low-complexity interconnect example

In steady state, a sequence of burst read requests may create congestion in

the “hot” command link. Ultimately the 2-way asynchronous arbiters, which

4.1. MOTIVATION 74

merge the requests from the initiators into a sequenced stream, will transfer the

congestion back-pressure to all incoming links. When the fabric is saturated, the

interconnect will behave unfairly, as a direct result of the binary tree arbitration

structure.

Three initiators in Figure 4.2 will not be served equally because asynchronous

arbiters will alternate their grants under continuous requests from both sides.

Here arbiter2 grants 50% of the bandwidth to sub-link1 and 50% to sub-link2

similarly, arbiter1 will grant half of the sub-link1 bandwidth to initiator0 and

half to initiator1. The bandwidth allocation to each of initiator0 and initiator1 is

25% of the total, whereas that allocated to initiator2 is 50% of the total, leading

to an imbalance of the system towards initiator2.

0

1

2
0
100

200

300

400

500

600

700

800

4-FIFOs

8-FIFOs

 4-FIFOs
 8-FIFOs

nu
m

be
r o

f t
ra

ns
ac

tio
ns

Initiator

Figure 4.3: Results of 3-initiator-to-1-target example

Figure 4.3 shows the results of the bandwidth allocation example based on

the 3-initiator-to-1-target fabric (as shown in Figure 4.2). In this experiment,

each initiator is allowed 4 outstanding commands and 800 read transactions are

requested by each initiator. When initiator2 finishes its 800 transactions, the

other two initiators have only finished around half this number. Note that the

bandwidth allocation varies with the size of the buffers in the target side. If

the target has an 8-command FIFO, the system delivers a mildly asymmetric

bandwidth allocation when the initiators are all heavily-loaded. This is because

4.1. MOTIVATION 75

the target FIFO increases the capacity of the fabric to absorb commands and

thereby reduce congestion. As the network capacity is increased, the competition

among initiators in the arbitration tree is reduced. Increasing the target buffer

size sufficiently can solve the fairness problem altogether, but in practice the large

buffers required can be expensive in terms of area.

This unfair bandwidth allocation does not happen only in an asymmetric

binary tree topology. Even for a symmetric binary tree the problem still exists.

Considering sixteen initiators connected to one target using a symmetric binary

tree, the sixteen initiators will not all actively send requests to the target at all

times.

For example, fifteen initiators may need to send requests and one may be idle,

under which circumstances the symmetric tree will dynamically change into an

asymmetric tree. This indicates that simply changing the binary topology does

not solve the fundamental unfair bandwidth allocation problem.

4.1.3 Network interface

Network interfaces generated by the CHAINworks tools decouple computation

from communication. This enables IP modules and interconnect to be designed in

isolation and integrated easily. They use a transaction-based protocol to achieve

backward compatibility with bus protocols such as AMBA AHB [ARM04a],

AMBA AXI [ARM04c], and AMBA APB [ARM04b]. The master IP modules

issue request messages (e.g. read and write commands at an address), the ad-

dressed slave modules then respond to those requests using response messages.

In NoC-based design, the network interface must provide a smooth transi-

tion from the bus to the NoC, enabling the reuse of existing IP modules. For

example, the AMBA AXI (Advanced eXtensible Interface) is targeted for high-

performance, high-frequency system designs [ARM04c]. The AXI device has five

independent channels: the read address, write address, read data, write data, and

write response channels. The read address, write address and write data channels

are initiated by the initiator device through a command link in the fabric. The

read data and write response channels are driven by the target device through

a response link in the fabric. The five separate communication channels im-

prove communication performance using out-of-order transactions and multiple

outstanding commands.

However, it should be noted that the local communication protocol (AXI)

4.2. TOKEN-MANAGED ADMISSION CONTROL STRATEGY 76

limits asynchronous physical communication functions. AMBA AXI IP cores

are unaware of the topology. If all initiators request at the same time, the initia-

tors allocated bandwidth may decrease. For example, if all initiators issue read

requests, the response link will easily saturate although the command link still

has spare bandwidth. That means different traffic patterns will result in different

saturation states of the response link and the command link.

4.2 Token-managed admission control strategy

An admission control mechanism is a set of methods to determine whether the

current traffic characteristics of the network allow a new connection to be es-

tablished. An admission control mechanism will accept a new connection only

when there are sufficient network resources available to accommodate the con-

nection. A new connection may compromise the level of communication service

of the existing connections. However, in some cases, it may not compromise the

existing connections. The decision will depend on the types of service guarantee.

In any case, when the connection has been accepted, the network has to make

sure that the traffic generated by the connection stays within the boundaries of

the agreement.

In this thesis, the proposed admission control strategy aims to deliver service

guarantees for dedicated links through the use of tokens. A token gives permission

to send a request to the network resource. Once a client owns a token, the

token can be considered to represent a pending command for access to a network

resource. The total number of tokens represents the network capacity such that,

when they are all allocated, unfair bandwidth allocation still cannot happen.

The token-managed admission control aims to meet the following goals:

• provide an end-to-end fair service for bandwidth allocation;

• provide flexible differential services for QoS traffic;

• have a low area-cost implementation.

4.2.1 Admission control

This thesis explores two control methods: centralised and distributed token-

management.

4.2. TOKEN-MANAGED ADMISSION CONTROL STRATEGY 77

Centralised management

Self-timed Interconnect

Memory

Token-managed admission control

re
tu

rn
g

ra
n

t

re
q

u
e

s
t

initiator

g
ra

n
t

re
q

u
e

s
t

re
tu

rn

g
ra

n
t

re
q

u
e

s
t

re
tu

rn

initiatorinitiator

Figure 4.4: Conceptual view of the centralised token management

Centralised token management uses a central scheduler to manage traffic

through the use of tokens. Figure 4.4 illustrates the conceptual view of cen-

tralised token management, where each initiator has an individual interface to

the admission control. When the interconnect fabric is operational, all initiators

with pending requests compete for free tokens. An initiator that has a token is

able to send a request and when the transaction is finished the token is sent back.

The centralised admission control and a N-input arbiter have a similar inter-

face. They both use the same hand-shaking scheme via request and grant lines.

There is no direct connection between the arbitration and the resource. The

resource is represented by a token, which is granted actually.

In the case of an N-input arbiter, each request can collect a token, without

releasing it until all requesters are in possession of a token. Here, regardless of

the relative timing and priority of the request, after a finite number of arbitration

cycles all requesters will be granted tokens

The centralised admission control, however, has a fixed number of tokens.

When all available tokens have been granted, the admission control waits for a

token to be returned (indicating that a read transaction has completed) before

it will grant any further request. This is the essential feature that allows the

controller to limit the number of requests granted at any time to below the number

that will cause the fabric to congest to the level that results in unfair bandwidth

allocation.

4.2. TOKEN-MANAGED ADMISSION CONTROL STRATEGY 78

Distributed management

Self-timed Interconnect

Memory

AC

re
tu
rn

g
ra
n
t

re
q
u
e
s
t

initiatorinitiator

g
ra
n
t

re
q
u
e
s
t

re
tu
rn

g
ra
n
t

re
q
u
e
s
t

re
tu
rn

TMAC TMAC TMAC

initiator initiator

Figure 4.5: Distributed admission control system overview

A distributed admission control senses the overall traffic situation in the fabric.

The distributed admission control regulates the traffic injection rates using a feed

back control system. This will be discussed in more detail in chapter 7.

Figure 4.5 illustrates the conceptual view of distributed management where

each initiator has an individual interface to its local TMAC. The admission con-

trol is responsible for scheduling tokens according to a negative feedback control

scheme, the total number of tokens represents the capacity of the interconnect.

All traffic sources can dynamically be assigned different numbers of tokens but

the total numbers of tokens is upper bound limited. The total number of tokens

represents the fabric capacity.

4.2.2 Fair bandwidth allocation guarantee

The centralised TMAC uses a round-robin algorithm to keep the total number of

tokens under a threshold to avoid on-chip interconnect saturation. With a limited

number of outstanding commands and one target, the bounded end-to-end latency

means that the peak bandwidth of a target is shared equally. Although the strict

time-related metric may not be fully met, analysis based on the token mechanism

is feasible and can achieve a bounded service guarantee (refer to section 5.3.3 and

section 7.4.2).

Figure 4.6 illustrates a central and important concept of the token-management

admission control. The x-axis in figure 4.6(A) represents the number of tokens in

4.3. INTERFACE STRUCTURE 79

the fabric. As the number of tokens in the fabric increases, the total bandwidth

of the fabric increases but then levels-off at a certain point, because there is only

one target on the fabric and the on-chip initiators have a certain fixed number

of outstanding commands. As described in section 4.1.2, at time Ti the fabric

will enter an unfair scenario, since the command links have become saturated.

The y-axis in Figure 4.6(B) shows the average end-to-end latency, the black line

is the theoretical value of mean latency. At time Ti the latency increases with

the number of tokens in the fabric; in region C the latency increases and the

system is in an unfair state. At time Tk, the fabric load increases into saturation

and in region B the system is in a fair state and the bandwidth of the system

is fully utilised. In region A the system is under-loaded and still in a fair state.

The objective of the token-managed admission control is to control the traffic

input to remain in region B and avoid entering region C, which avoids the unfair

bandwidth allocation but gives a full utilisation of the target bandwidth.

The understanding of the TMAC scheme helps the admission control achieve

the goal of fully utilised and fairly shared bandwidth. Fairness is achieved over

a significant operating region, and this gives the TMAC the ability to maintain

the fabric within the fair region.

A Token-Managed Admission Control (TMAC) can provide QoS service for

a initiator which require high priority bandwidth allocation. The QoS algorithm

is responsible for deciding which initiator has priority access to tokens. By con-

trolling the proportion of granted tokens, TMAC allocates the shared network

resource to high priority initiators that request QoS traffic.

4.3 Interface structure

4.3.1 Interfaces

For consistency, the interfaces between the centralised and distributed admission

controllers and the local IP cores use the same signal definitions. A definition of

each signal is given in table 4.1.

Table 4.1 shows that the admission control has three signals: request, grant

and return.

4.3. INTERFACE STRUCTURE 80

Tokens in fabric

Bandwidth

Tokens in fabric

End-to-end

latency

T
k

T
i

UnfairnessFairness

A

B

C

(A) Bandwidth utilization vs tokens in fabric

(B) System latency vs tokens in fabric

Under load

Accepted

Over load

Figure 4.6: TMAC principle of operation

4.3. INTERFACE STRUCTURE 81

Signal Function
request request from an initiator
grant grant token to the initiator
return the initiator ends a transaction

Table 4.1: TMAC signals

4.3.2 Token transactions

There are two basic token transactions, as follows:

• token assignment: when an initiator requests access to the fabric, the ad-

mission control mechanism grants the request if there are tokens available.

Then, the initiator can send a communication transaction to the fabric.

Otherwise, the initiator should hold the request until there is a token avail-

able.

• token return: once the initiator completes the transaction, it returns the

token to the admission controller.

Figure 4.7: TMAC timing diagram

A timing diagram of the operation of TMAC, in Figure 4.7, illustrates both the

token assignment and return behaviours. As shown in Figure 4.7, when request0

goes high, if there are free tokens, the grant0 signal will go high (labelled 2)

and accordingly the request0 signal will be reset. After return0 is set (labelled

3), which indicates the end of the read transaction, the token count increments

4.4. CHAPTER SUMMARY 82

by one. Request1 illustrates the case when no free token is available. Although

request1 has been driven high, it must wait for an available token. When a token

is free, request1 will be granted (labelled 4).

Note that if the TMAC scheme is extended into a GALS system, the token re-

turn transaction needs a second acknowledge signal to complete the asynchronous

handshake. For token assignment, the current request and grant can handle the

complete handshake. For simplicity, the experiments described in chapters 5, 6

and 7 will use a fully synchronous implementation.

4.4 Chapter summary

CHAIN-based GALS techniques ease timing requirements by providing a delay-

insensitive communication fabric [BF04]. However they are best-effort intercon-

nects and are not designed to meet application performance requirements at all

times. Real-time applications demand hardware guarantees on the performance

of the data communication on the SpiNNaker platform.

This chapter described the strategy of admission control using a token mecha-

nism. The basic Token-Managed Admission Control (TMAC) mechanism and the

design issues of the interface architecture have been discussed. The significance

of the TMAC scheme is to find a solution to the fairness problem that results

from the use of a two-way arbiter in an asynchronous NoC. The chapter mentions

two kinds of service: fair service and QoS, both of which are kinds of commu-

nication service that make guarantees regarding the speed with which data will

be transmitted. Both services are provided by the centralised and distributed

management systems described in this chapter.

The next chapter will illustrate some low-level design issues of the centralised

admission control with fair service. Chapter 6 will introduce design implemen-

tations to provide bandwidth and latency guarantees for QoS traffic. Chap-

ter 7 will provide detailed descriptions of the admission control systems based

on distributed approaches and the main architectural differences between the

centralised and distributed versions are discussed.

Chapter 5

Fairness using a centralised

TMAC

For practical chip design, the 2-way arbiter is a highly-efficient asynchronous

component that can easily be adapted into a middle-scale system. However,

interconnect based on standard arbiters does not guarantee balanced service at

all times.

Recent studies have presented designs of asynchronous priority arbiters that

overcome the fairness problem [BKY00, FBF03, Kin07]. The structure of con-

ventional asynchronous priority arbiters depends on the relative position of the

modules. For example, the disadvantage of a daisy-chain arbiter is that a low-

priority device may be locked out indefinitely because of the fixed system topol-

ogy [Kin07]. Recent studies also have attempted to design reconfigurable dynamic

asynchronous priority arbiters [BKY00], as shown in figure 5.1. The dynamic pri-

ority example uses dedicated priority buses to receive priority information from

clients. The dynamic priority design requires n-request analyzer blocks and n-

priority comparator blocks to handle n-requests.

Control and Interface

requests

Priority bus

grant
Priority

Logic

R
e

q
u

e
s
t

lo
c
k

 r
e

g
is

te
r

Figure 5.1: Dynamic asynchronous arbiter organisation

83

CHAPTER 5. FAIRNESS USING A CENTRALISED TMAC 84

Another form of multi-way arbiter is the ring-based arbiter [Kin07], which in

principle is more suited to a distributed implementation. The general principle of

the ring-based arbiter is that a ‘token’ is circulated in a ring around the various

competing initiators from where it may be claimed as it passes a particular device

(mutexes in figure 5.2). Individual devices allow the requests to intercept the ring

at any point. In some forms the ring structure reflects the round-robin allocation.

This form of arbiter is easy to extend to allow multiple grants by inserting the

requisite number of tokens into the ring. This also has the potential advantage

of reducing the mean latency when waiting for a token. The disadvantages of

this scheme are incapable of limiting the number of arbitration grants at any

time. As we discussed in chapter 4, the key issue of admission control is to allow

the controller to limit the number of requests granted at any time to below the

number, because beyond that limitation will cause the fabric to congest to the

level that result in unfair bandwidth allocation.

MUTEX

r1 g1

MUTEX

r2 g2

MUTEX

r3 g3

Figure 5.2: Ring channel structure

Recent studies have attempted to design priority arbiters to overcome the fair-

ness problem. The structure of priority arbiters depends on the system topology,

however, and the priorities are fixed, so it is not feasible to use them in large-scale

system.

In this chapter, after investigating the congestion problem of a fabric based on

2-way arbiters, we use a centralised token-managed admission control (TMAC)

to impose the desired degree of fair service on the shared memory resources

by scheduling requests. This approach provides a practical solution to the un-

balanced bandwidth allocation of the intrinsic structure of 2-way asynchronous

arbiters. The proposed scheme not only leads to a fair loading but also offers an

efficient fabric congestion solution.

In the design of an interconnect with service guarantees, a trade-off between

area overhead and performance is inevitable. To demonstrate the feasibility and

effectiveness of the proposed scheme, simulation and analysis are presented.

5.1. INTRODUCTION 85

5.1 Introduction

When initiators request admission to the fabric, the centralised TMAC decides

whether or not to grant access based on the available tokens. When the controller

runs out of tokens, the request will be held. When a transaction is finished, the

token is sent back to the token-managed admission controller. As discussed in

section 4.2, if the total number of tokens in the fabric is under the fabric capacity,

the fabric will be in a fair state. Thus we define the total number of tokens as

a value that equals the fabric capacity. By tracking the mechanism of token

assignment for the packet-switched interconnect, this method yields a solution to

guarantee fair service.

An illustrative experiment is shown in Figure 5.3 to show the memory trace

with token-managed admission control and without token-managed admission

control. The scenario has 3 active and 2 inactive initiators and is based on a

5-initiator-to-1-target fabric. Initiator0 (init0) issues commands labelled A; ini-

tiator1 (init1) issues commands labelled B and initiator4 (init4) issues commands

labelled C. A typical memory trace without the centralised admission control is

shown in Fig. 5(a) Memory 1. Because asynchronous arbiters alternate their

grants, with a binary tree topology, the requests from each initiator will not be

served equally. The numbers of requests from initiator4 that have been authorized

are double the number from initiator0 and initiator1 at time k.

In the case that the competition for a common resource is resolved by a round-

robin algorithm in the centralised admission control, the ideal memory trace is

shown in Figure 5.3 Memory 2. At time k, initiator0, initiator1, and initiator4

are grant token in a round-robin way, so the centralised admission control can

guarantee fair memory bandwidth sharing.

Figure 5.4 illustrates a screen shot of a simulation with 3 active initiators on

a 5-initiator-to-1-target fabric. The read transactions requested from initiator0,

initiator1, and initiator4 are labelled as init0 grant, init1 grant, init4 grant, and

the initiators are all greedy. The tokens are allocated using a round-robin schedul-

ing algorithm, the admission control moves to a round-robin state by recording

the last grant position. In stage A (as shown in Figure 5.4), the first token has

been used, initiator1, initiator4, initiator0 are then granted 2nd, 3th, 4th tokens

respectively, and then initiator1 gets the 5th token. If no tokens have been re-

turned, initiators must then wait until a token is returned. At label B initiator0

does return a token, so initiator1 can be granted a token at that point.

5.1. INTRODUCTION 86

time K

Sum(Ti) < Network capacity

C1

C2

C3

C4

A1

A2

A3

A4

B1

B2

B3

B4

Initiator0 initiator1 initiator4

Memory_1 without admission control

C4A2B1C1 B2C2A1 C3

time 0

B3C3B1C1 B2C2A1 A2

Memory_2 with admission control

(a) Abstract token flow

(b) Topology

Figure 5.3: Abstract token flow of admission control for guaranteed service

5.2. IMPLEMENTATION 87

Figure 5.4: Admission control read transaction timing diagram for fair bandwidth

5.2 Implementation

TMAC is fully synthesisable using standard cells and is easily implemented using

a synchronous digital flow. A fair arbiter provides equal service to the different

requests; the design is based on strong fairness using a round-robin arbiter.

In terms of the strong fairness protocol, in each clock cycle the initiator that is

in the round-robin order has the highest priority for accessing network resources.

If the initiator does not need resources in this cycle, the initiator with the next

highest priority can be granted if there are free tokens in the fabric. Whatever the

numbers of active requesters the priority will cycle around the active requesters.

Figure 5.5 illustrates the meaning of the equal round-robin protocol. The

requests for round-robin turns are labelled r0, r1, r2, r3, and r4. The round-robin

grants are labelled g0, g1, g2, g3, and g4. If signal g0 is asserted, it indicates r0

has been granted. In the first clock cycle, requests r0, r1, and r2 request a round-

robin turn, and the round-robin arbiter grants each request. In the twelfth clock

cycle, the requests r0, r1, r2, r3, and r4 are asserted; the round-robin arbiter

grants first to g3 because request r2 was granted in the last cycle. The next

request has the highest priority to be granted. So the sequence of grants is g3,

g4, g0, g1, g2.

5.2. IMPLEMENTATION 88

Clk

r0

r4

r1

g1

g2

g3

g4

g0

r2

r3

A

B

Figure 5.5: The round robin protocol

5.2.1 Round-robin arbiter

The implementation of a round-robin arbiter is not difficult. However, there is a

trade-off between area and time. The parallel hardware design reduces the time

cost for an initiator waiting for a token. However, if it is implemented using a

look-up table, as the number of possible grants increases, the area required for

the look-up table grows exponentially. The look-up table forms the index into

the table from the requests from all of the input ports, and the table contents

form the output grants. Other solutions may have roughly linear overhead with

the number of inputs.

The round-robin arbiter operates on the following principle: a request that

was just served should have the lowest priority on the next round of arbitra-

tion [DT04]. This can be accomplished by generating the next priority vector

from the current grant.

The 5-bit round-robin priority encoder is implemented in RTL Verilog. To

keep the state of grant that was issued on the current cycle, one of the g[i]

vectors will be asserted, causing one of the flag vector p[i] to go high on the next

cycle. This causes the request receiving the grant to have the lowest priority

for the next grant. If no grant is asserted on the current cycle, the round-robin

priority generator holds its present state. If the requester that has the current

round robin turn does not have a pending request, the round robin turn will shift

to the next requester.

5.2. IMPLEMENTATION 89

R
o
u
n
d
-ro

b
in

 a
rb

ite
r

Token counter

Token counter

Token counter

demux

B
u

s
 d

e
c
o

d
e

r

grantrequest

return

Figure 5.6: Admission controller organisation for fair service

5.2.2 Design block view

Four components contribute to the design of the admission controller for fair-

ness service: The round robin arbiter, the token counter, the bus decoder and a

demultiplexer.

Figure 5.6 illustrates a block diagram of the admission controller organised

into three functional phases. The first phase checks the round-robin turns to

determine the current request allocated. An available request will be passed to

the second phase. The controller will identify the possible free tokens for the

initiator. The token counter is pre-set to be under a threshold, an experimental

value based on the fabric capacity. The content of the register is writable by the

return signals so that it is able to collect used tokens. The third phase keeps the

state of the grants.

5.2.3 Cost analysis

To look more closely at the trade-off between area and latency, we look just at

the register holding the round robin information.

Table 5.1 illustrates the reported area from the synthesis tool. The first col-

umn is the number of initiators connected to the single target. The third column

of the table is calculated as the cell area divided by the area of NAND2X1. When

the number of on-chip components is scaled up, the admission control allows N

parallel initiator connections which results in a register of log2(N) bits, giving

rise to an O(log2(N)) area cost.

5.3. EVALUATION 90

Number of initiators TMAC area Estimated gate count
(mm2) (Kgates)

5 0.004 2.66
10 0.016 3.10
15 0.018 3.99
20 0.020 4.43

Table 5.1: Area estimation of TMAC with fairness service vs number of initiators

5.2.4 Scalability issues

Though the centralised admission control may not follow the scalability fashion

in Network-on-Chip design [TMG+05], such as a fully-distributed control mech-

anism, TMAC is a scalable scheme for middle-scale systems (from 10 cores to 50

cores in a single chip). The current design can easily be adapted to operate on

complex systems (e.g. 18 processing nodes on a chip). This only requires enough

interfaces and the initialisation of the pre-set threshold for the estimated fabric

capacity.

For instance, in the worst case, the latency of token assignment for 18 proces-

sors is 18 clock cycles. If TMAC runs at 100MHz, in the worst case, the latency

overhead of token assignment will be 200ns. The worst round trip latency of the

fabric is around 300ns to 400ns depending on the gate level delay, so the latency

overhead of token assignment does not negatively impact the chip performance.

The TMAC mechanism provides benefits and improvements over other service

guarantee mechanisms, both in area and performance for mid-scale systems.

The mechanism has potential scalability problems due to the latency of access

to the centralised admission control. The latency for token assignment increases

as the number of processors scales up. The latency overhead of token assignment

increases linearly as the system is scaled, as a result of serial token allocation.

5.3 Evaluation

In this section, we show that the TMAC scheme meets our design goals in some

expected edge cases by evaluating the performance of the proposed scheme. These

edge cases with extremely heavily loaded traffic demonstrate how fair bandwidth

allocation is achieved and how congestion is prevented at the ingress of the fabric.

5.3. EVALUATION 91

5.3.1 Evaluation platform

Application-driven workloads can be hard to develop and control. Furthermore,

there are currently no public simulation tools available to aid SoC designers

to generate extensive and varied regular patterns of application-oriented traf-

fic. Most current performance evaluations on NoC-based interconnects are based

on packet generation from an infinite source queue. When each packet is gener-

ated, the packet latency includes time spent in the source queue, which can not

be accurately measured for on-chip interconnect end-to-end latency. Instead, we

use a synthetic traffic pattern whose traffic profiles are built manually using a

fixed burst mode (e.g. a 4-word burst and an 8-word burst).

To measure and present the performance of the SpiNNaker System NoC, we

use a “closed-loop” measurement system, where the fabric influences the traffic;

this is useful for measuring overall system performance. In contrast to closed-loop

measurement, the “open-loop” measurement enables the traffic to be controlled

independently of the fabric itself [DT04]. The system may attempt to inject one

packet at a time when the fabric is unable to accept traffic. Because our goal is

to evaluate the overall system, we used closed-loop measurements for bandwidth

and latency in the following sections.

For example, initiators waiting for memory responses will make fewer requests

due to limits on the number of outstanding requests. For greater measurement

accuracy, the initiator should be replaced by simulations run on ARM968 proces-

sors. However, at the start of the experiments, the simulations of ARM968 were

not ready so, for simplicity, we built a simple AXI model.

The experimental case has five initiator devices connected to one target de-

vice and the number of outstanding commands that an initiator can issue is

constrained by the capability of the interconnect interface. Currently the net-

work interfaces of the on-chip interconnect are able to support a maximum of 8

outstanding commands, and they all use the AXI protocol.

The following evaluation model is used:

A 5-initiator-to-1-target GALS interconnect netlist generated by CHAIN-

works [Sil07];

Five Verilog models of AXI initiator devices running at 100MHz;

5.3. EVALUATION 92

One Verilog model of an AXI target device running at 133MHz. Assuming

the target command buffer depth is 4, the target produces one beat of data

(64 bits of data) in one clock cycle;

The stimuli files (uniform, random 4-word-burst and 8-word-burst read

transactions);

The System Verilog test bench.

Data production

Data production occurs at the initiator and target sides of the fabric. The initiator

issues commands and addresses to which the target must respond. An initiator

produces commands for read transactions. For simplicity, this evaluation platform

assumes that the initiator and target produce data without any delay. The rate at

which an initiator and target produce data depends upon the initiator’s operating

frequency and the transfer data width.

Data consumption

Data consumption, like data production, happens at the initiator and target

side. During a read operation, the target consumes the commands produced by

the initiator. Data consumption is dictated by the initiator’s or target’s operating

frequency, data width and burst length. For simplicity, the target and the initiator

consume data without any delay.

5.3.2 Evaluation criteria

To guide our design decisions for meeting the fair service requirements, we intro-

duce two simple metrics to estimate performance: end-to-end latency and band-

width allocation. Latency measures are computed from the start and finish times

of completed read transactions. Bandwidth allocation measures are computed

from the response data counts collected at initiators during the simulation.

In this measurement, we are interested in measuring steady-state performance

of the 5-initiator-to-1-target fabric. Steady-state performance means the perfor-

mance of the fabric with a stationary traffic source after it has reached equilib-

rium. The steady-state measurements are meaningful because the states of the

process do not change over time.

5.3. EVALUATION 93

Ideally the measurement should start only from the steady-state. However,

in our test bench, due to implementation difficulties, we cannot detect the length

of the rise-time. The packets are calculated from the simulation start time.

5.3.3 Latency analysis

Figure 5.7 shows a plot of the average end-to-end latency of each initiator with

4-word bursts. We observe that the network becomes saturated when the traffic

load is heavy. After the rise-time period, this behaviour is choked back because

of the influence of TMAC. This, in turn, can result in improvements in the aver-

age system latency of overall system. Finally, Figure 5.7 demonstrates that the

admission control provides bounded end-to-end latency.

Figure 5.7: End-to-end latency of each initiator vs simulation time with 4-word
bursts

Figure 5.8 shows the system latency with 8-word bursts. At the beginning,

initiator2 and initiator3 suffer long end-to-end latency. The average latency in-

creases sharply and then returns to a level which is slightly higher than the 4-word

burst case. With the same influence of the admission controller, the mean latency

of each initiator is stable.

The rise time for 8-word bursts is slightly longer than that for 4-word bursts

5.3. EVALUATION 94

Figure 5.8: End-to-end latency of each initiator vs simulation time with 8-word
bursts

because an 8-word burst has a longer response time in the response link. The

steady-state period simulation shows that the centralised admission control ap-

proach has many possibilities for performance improvement, and the centralised

TMAC guarantees bounded end-to-end latency.

As described in chapter 2, the synchronization between different clock domains

will introduce a latency overhead. However, this synchronization overhead is

small in comparison with the fabric round-trip latency, because the worst round

trip latency of the fabric is around 300ns to 400ns depending on the gate level

delay, Furthermore, in a busy fabric the synchronization time will only delay (by

a small amount) the access to the fabric, which just means that the packet will

join the input queue a little later but it will not delay the data packet’s return.

The synchronisation latency does not negatively impact the chip performance.

5.3.4 Bandwidth analysis

Bandwidth is the rate at which packets are delivered by the fabric; it is mea-

sured by counting the read transactions completed over a simulated time on the

assumption that all transactions carry the same volume of data.

5.3. EVALUATION 95

Input Without TMAC
4-word burst 8-word burst

B/W (MByte/s) B/W (MByte/s)
Initiator0 210 211
Initiator1 210 211
Initiator2 107 109
Initiator3 107 108
Initiator4 210 212

Table 5.2: Results of comparison of systems without TMAC

Input With TMAC
4-word burst 8-word burst

B/W (MByte/s) B/W (MByte/s)
Initiator0 186 194
Initiator1 186 194
Initiator2 186 194
Initiator3 191 198
Initiator4 191 198

Table 5.3: Results of comparison of systems with TMAC

In this work, the fabric has only one target and the bandwidth allocation is to

be constrained by the target peak bandwidth. If the traffic continues to increase,

the fabric eventually reaches saturation point, which is the peak bandwidth to

the target. So, when the fabric is stable, the bandwidth allocation levels off.

As shown in Table 5.2 and Table 5.3, simulation shows that TMAC restrains

unfair bandwidth allocation. The second column, showing the data bandwidth

of each initiator, is measured based on a 4-word burst traffic pattern. The third

column, again showing the data bandwidth of each initiator, is measured using

an 8-word burst traffic pattern. The results with TMAC show its impact on

both traffic patterns. Note that because the waiting time for available tokens is

included in the round-trip delay, the performance of the 4-word burst test case

is worse than that of the 8-word case. In real applications, measured over a

long period, fair bandwidth allocation is much more significant than the slight

performance loss.

A noticeable bandwidth decrease is observed in Table 5.3. This is because

the average bandwidth of each initiator is limited by the target peak bandwidth,

5.4. COMPARATIVE STUDY OF OTHER SCHEMES 96

indicating that the improving fairness does not increase the total bandwidth.

To demonstrate the efficiency of the fairness service support in the GALS in-

terconnect, we use an “all-to-one” uniform traffic pattern. The shared memory in

the SpiNNaker chip is currently an off-chip SDRAM with 128MB capacity [FT07].

It is easy to expand available global memory using a larger memory device, how-

ever, the competition among initiators for SDRAM bandwidth allocation will not

be relieved. This “all-to-one” example is a useful indicator of the likely perfor-

mance in a real scenario.

5.4 Comparative study of other schemes

Many different credit-based flow control mechanisms have been proposed over

the years [KBC94, KM95]. In data communication networks, a popular credit-

based scheme is the hop-level flow control mechanism. In this mechanism, the

downstream switch of every hop manages a buffer for each session on each hop.

Whenever a cell (a small unit) is sent downstream out of the buffer, a credit

(message) is sent upstream to inform the previous upstream switch that it may

send forward one more cell of this session. The main disadvantage of the credit-

based scheme is its implementation complexity, more specifically the necessity of

a separate queue for each connection in each hop.

Another style of credit-based flow control is an end-to-end based mecha-

nism using per-VC (virtual circuit) flow control, which is popular in ATM net-

work [KM95] . Before forwarding any data packets over the link, the sender needs

to receive credits for the virtual circuit from the receiver. After having received

credits, the sender is eligible to forward some number of data packets of the vir-

tual circuit to the receiver according to the received credit information. Each

time the sender forwards a data packet from a virtual circuits, it decrements its

current credit balance for the virtual circuit by one. The main disadvantage of

the credit-based scheme is its long control loop delay. After issuing a flow control

command to the sender, the receiver will start to manage the traffic according

to the new conditions of the network only after the control loop delay. Effective

control is not ensured if the control loop delay cannot be bounded.

The scheme we use in this chapter is similar to the end-to-end virtual circuit

style credit-based scheme. Both schemes collect all information about the network

and the user’s requirements in a central facility. However, in our scheme, the

5.5. CHAPTER SUMMARY 97

overall credit has been reserved in the admission control based on experimentally-

established values, and the control loop delay is much less than that of end-to-end

admission control.

5.5 Chapter summary

This chapter illustrated a token-managed admission control system (TMAC) for

fair service support using a centralised method on the SpiNNaker chip. This

work is mainly concerned with fair bandwidth allocation with high volumes of

demand. The goal of TMAC is that lightly-loaded initiators will all get equal

bandwidth allocations. The experiments evaluate the performance of this low-

cost fairness service support mechanism and demonstrate the effectiveness of this

strategy. The TMAC scheme is a significant contribution to end-to-end service

guarantee support with low-complexity logical design made possible by optimising

for one shared resources. This chapter shows that the long-neglected centralised

approach has much potential for on-chip networks and, in many cases, provides

a better alternative.

Chapter 6

QoS using a centralised TMAC

6.1 Introduction

In the context of a GALS interconnect, Quality-of-Service (QoS) is a communi-

cation service that makes guarantees regarding the speed with which data will

be transmitted to the target [BM06]. However, best-effort GALS interconnects

are unlikely to meet QoS policy objectives in terms of bandwidth and latency

guarantees without additional resources [RGR+03].

In this chapter, we introduce a TMAC mechanism for QoS to satisfy the

communication demands of the applications. This strategy is valid for all packet-

switched interconnections for specific performance requirements. The admission

control system enables the fabric to meet the bandwidth and latency requirements

specified by the top-level application. The method also addresses the potential

data starvation problem and ensures an appropriate allocation of the data transfer

resource.

The concept of “QoS” is widely used in the field of communication networks

and refers to the ability of the system to provide different types of priority to

applications, users, or data flows. Generally, QoS traffic indicates that the se-

lected traffic has a higher service guarantee than other traffic. In this thesis, QoS

specifically refers to differential resource reservation control.

98

6.1. INTRODUCTION 99

6.1.1 QoS criteria

Service guarantees can be classified into hard and soft categories. For instance,

the MPEG-video application [BDT+96], is characterised by soft service guar-

antees, which imply that occasionally missing deadlines is perfectly acceptable

for application software. Automotive or safety-critical systems request different

service guarantees, characterised by hard service guarantees. Hard service guar-

antees make sure that the communication requirements are always met and are

required only by critical, real-time applications. Soft service guarantees relax

the guarantees, as soft requirements can be established in terms of a desired de-

lay bound and a maximum percentage of packets arriving no later than a given

threshold. Most proposed QoS support schemes are hard service guarantees and

incur large area costs.

For SpiNNaker system, however, the potential application is neural appli-

cations, as discussed in section 3.6. Those applications are intrinsically fault-

tolerant and so can tolerate the occasional violation of hard real-time constraints.

So it is not worth paying so high a price, and a soft service guarantee is adequate.

Soft guarantees can be quantified in terms of performance parameters such

as bandwidth, latency and loss probability. There are three types of bound for

soft guarantee support: low-bound bandwidth (ideal bandwidth), upper-bound

latency of the worst-case traffic patterns and loss bounds for reliable transmis-

sion [VBC05]. The loss bound is not meaningful in the context of our GALS

interconnect, given that the handshake mechanism introduced earlier guarantees

that no transactions are lost.

In the SpiNNaker chip, a real-time spiking neural network simulation is the

target application. In this application, the modelled neuron should display an

accurate neural state at millisecond granularity with correct input/output spike

activity. This is a relaxed performance at the technology level compared with the

longest round-trip fabric latency that is well under a microsecond. For these rea-

sons, we focus on a low-bounded bandwidth and upper-bound latency guarantee

to provide adequate QoS support in the SpiNNaker chip.

6.1.2 QoS scheme

TMAC assigns priority to QoS packets while the rest of the resource goes to

best-effort packets, where it is directed towards prioritising the likelihood of QoS

6.1. INTRODUCTION 100

packets reaching their destination. The mechanism is applied at the ingress edges

of the fabric using tokens to allocate dynamic network resources and prevent

network saturation. The central TMAC provides QoS by controlling the priority

of token requests, but the possibility of bandwidth reservation depends on how

many tokens are preserved for each initiator.

For example, if there are 3 valid tokens in a five-initiator to one target system,

the initiator that has the QoS requirement will get a 1/3 bandwidth guarantee as

a result of the priority granting of a token; other initiators will share the remaining

2/3 bandwidth. If the fabric can accommodate more transactions without heavy

congestion, TMAC can be configured with one more token. In that case, it will

give a lower bandwidth guarantee compared with the previous case, because the

priority initiator would own only 1/4 of the bandwidth allocation.

Another scenario is where an initiator can be allowed to send 2 outstanding

commands, being granted 2 tokens in a 3 token system. In this case, the initiator

will get a 2/3 bandwidth allocation. In a real design, the flexibility of band-

width allocation allows the designer to manage the proportion of bandwidth by

allocating different numbers of tokens.

It is clear that this mechanism is valid for “soft guarantees”, where the soft

requirements can be established in terms of a desired delay bound and a maximum

proportion of packets arriving later than a given threshold. If the QoS traffic does

not use its allocated bandwidth fully, any unused capacity can be used by the

best-effort traffic. In this case, the QoS traffic is assumed to be heavily loaded so

that the bandwidth guarantee approaches the desired value.

6.1.3 Principle of operation

The soft latency and bandwidth guarantee are demonstrated by the QoS traffic.

In this experiment, we assume that initiator0 is issuing QoS traffic. We use

bandwidth utilisation to refer to the percentage link utilization over a specified

simulation time. The bandwidth utilisation of initiator0 is higher than the others

since initiator0 can be granted tokens as long as it needs them. The mean end-

to-end latency accounts for different cases of uniform traffic. For QoS traffic, the

mean latency of the QoS traffic is less than that of the other traffic, since it can

be served more frequently than others.

The timing diagram of an admission control read operation, shown in Figure

6.1, illustrates both the token assignment and the token return behaviour; the

6.2. IMPLEMENTATION 101

QoS traffic is issued by initiator0 (init0). The area labelled A in Figure 6.1

shows a successful transaction by initiator init0 : the request signal is set when

the initiator issues a request. If there are free tokens, the grant signal goes high,

the request signal is reset accordingly and the read transaction (a 4-word burst)

takes place. The completion of the read transaction is indicated by return going

high and then a free token becomes available.

Note that Figure 6.1 is a snapshot of a simulation of a 4-initiator case. Ini-

tiator0 has the highest priority to own a token and to issue read commands.

Initiator1, initiator2 and initiator3 share one token allocated by a round-robin

method. The area labelled B in Figure 6.1 also illustrates what can happen when

tokens are not available. Although initiator1 and initiator3 request have been

driven high to request a token, it must wait for an available token and a round-

robin turn. In Figure 6.1, the round-robin turn is for initiator2, so initiator2 is

granted. Although initiator1 and initiator3 issue requests, there is no free token.

So both initiator must wait for an available token. When initiator2 returns one

token, and the round-robin turn is for initiator3 and there is an available token,

initiator3 can be granted. The initiator0 still waits for a free token. When initia-

tor3 returns one token and the round-robin turn is for initiator1, initiator1 can

be granted.

As shown in Figure 6.1, although multiple initiators may simultaneously re-

quest tokens, the token management assigns one token in each clock cycle. As

discussed in section 5.2, it is realised that supporting parallel assignment is not

cost-effective. The performance of the QoS support decreases very little by as-

signing a single token on every clock cycle, because the fabric propagation is much

longer than the time overhead of traffic generated. Furthermore, time-critical ap-

plications normally have predictable performance demands. Avoiding high levels

of congestion on the fabric is more important than slight latency overheads in

TMAC.

6.2 Implementation

The TMAC architecture has been designed to be synthesisable using standard

cells and easily implemented using a synchronous digital flow.

Design re-use is an effective means to achieve a fast design turnaround. Re-

use of designs from a library of parts rather than designing from scratch has a

6.2. IMPLEMENTATION 102

Figure 6.1: Admission control read transaction timing diagram for QoS service

clear advantage in reducing design time. Synopsys provides a very efficient and

flexible mechanism to build a library of re-usable components [PK03]. We use the

Synopsys DesignWare [Syn09] predesigned IP block to integrate into our design.

By including the Synopsys packages, the IP code can be read into the Design

Compiler [Syn08] successfully.

The scheme provides a programmable arbitration mechanism at design time

for handling multiple accesses to a shared target. With the static fixed priority

scheme, one of the initiators connected to the arbiter is assigned a high priority.

Figure 6.2 shows a block diagram view of the priority decoder. All the input

requests from the arbiter clients are assumed to be synchronised to the arbiter

clock signal clk. The arbiter provides locked flags to indicate the status of the

arbiter. A lock signal indicates that an initiator has an exclusive grant for the

duration of the corresponding lock input, despite requests from other clients.

After the initiator receives the grant, it can lock out other initiators from the

arbitration process by setting the corresponding lock input.

The implementation of the arbiter with a round robin priority scheme imple-

mentation follows the design rules of Round-robin Arbiter Generation [SMR02].

This form of round robin arbiters are fair only when all initiators request all the

6.2. IMPLEMENTATION 103

Input

Stage

Flag logic

Arbitration

Engine

Output

Registers

Request

Prior

lock

rst_n

grant

locked

clk

Figure 6.2: Priority logic block diagram

Figure 6.3: Priority logic block diagram

time. At each subsequent event the next higher numbered initiator has the high-

est priority until the highest initiator has been serviced, and the algorithm starts

over.

Figure 6.3 shows the block diagram of the TMAC with bandwidth and latency

guarantee for QoS traffic. The diagram represents the scenario with five initiators.

The priority encoder can be programmed to choose any initiator to have privileged

bandwidth allocation. It implements two common schemes: round robin and

priority arbitration. For QoS traffic, the priority initiator provides locked flags

to indicate the status of the arbiter. Other requests from BE traffic are granted

in round-robin order. The round-robin function is realised by rotating a one-hot

pattern in a shift register. In Figure 6.3, the token counter holds the number of

free tokens. Only if there is a token available can a request be granted; otherwise

the request will be denied until there is a free token.

6.2. IMPLEMENTATION 104

6.2.1 Area overhead

Considering a scenario with five initiators, the TMAC scheme implements two

common schemes: round robin and priority arbitration. The priority encoder is

programmable to choose any initiator to have privileged bandwidth allocation.

For QoS traffic, the priority initiator is serviced by a priority scheme, so the prime

initiator can claim as many tokens as it requires. Other requests from BE traffic

are granted in round-robin order. The token counter holds the number of free

tokens. Only if there is a token available can a request be granted; otherwise the

request will be denied until there is a free token.

For the QoS bandwidth guarantee function, it is interesting to note the in-

fluence of the number of initiators on the TMAC size. We have run several

experiments using CHAIN GALS interconnection with multiple initiators and

one target, which have been analysed using a UMC 130nm process. The TMAC

implementation runs at 100 MHz and the initiators also run at 100 MHz. The tar-

get (an SDRAM controller model) runs at 166 MHz, which is a standard SDRAM

clock frequency supported by the ARM PL340 [ARM07]. A standard synthesis

tool was used to estimate the area from the RTL netlist of TMAC. The reported

area results are given in Table 6.1, where the first column shows the number of

initiators connected to the single target and the second shows the TMAC cell

size. The results of the gate count presented in the third column of Table 6.1

are based on the area units of a 2-input-NAND gate (NAND2X1) in this process

technology. Clearly, the TMAC cell size increases slowly with the number of ini-

tiators. Gate count estimation using NAND gate sites is typically useful to find

an estimate of the size of the target device needed to implement a design.

Number of initiators TMAC area Estimated gate count
(mm2) (Kgates)

5 0.029 6.43
10 0.032 7.10
15 0.035 7.77
20 0.043 9.54

Table 6.1: Area estimation of TMAC with QoS provision vs number of initiators

6.3. EVALUATION 105

6.3 Evaluation

We use the same experimental platform as described in section 5.3.1. The traffic

profiles are built manually using a fixed burst mode (e.g. a 4-word burst and an

8-word burst). A uniform workload model implements read transactions between

five initiators and one target. The simulation shows that the initiator with the

high priority gets what it requests, and the remainder receive an equally balanced

service.

6.3.1 Latency analysis

The end-to-end latency metric focuses on the mean end-to-end latency of packets

through the fabric. There are two possible waiting times within the latency in

addition to the GALS fabric delay: the first is waiting for a token to be assigned,

the second is the response time of the target device. The following elaborates on

the experimental analysis of read transactions.

Our system contains two packets classes; one supports QoS traffic, another

class, best-effort traffic. To ensure that the QoS traffic maintains its bound

latency requirements, it is given absolute priority over best-effort traffic.

clk

address

token_req

token_grant

axi_arready

axi_arvalid

Latency0

Figure 6.4: Latency analysis of QoS traffic

Figure 6.4 shows that the latency overhead of token assignment for QoS traffic

is 4 clock cycles. Latency1 in Figure 6.5 shows that the latency overhead of token

assignment for BE traffic will be 8 clock cycles, where extra clock cycles are spent

6.3. EVALUATION 106

clk

address

token_req

token_grant

axi_arready

axi_arvalid

Latency1

Figure 6.5: Latency analysis of BE traffic

waiting for token assignment. The worst latency overhead is 4 clock cycles plus

one for each on-chip initiator.

Figure 6.6 shows a comparison of the end-to-end latency of QoS traffic from

initiator0 with best effort (BE) traffic from initiator1, initiator2, initiator3 and

initiator4. As seen in Figure 6.6, best effort traffic is noticeably affected by the

traffic mode when bandwidth utilisation is above 50%. When the maximum

fabric utilisation is approached, the end-to-end latency of the BE traffic varies

significantly compared with the QoS traffic. This shows that TMAC guarantees

the latency for the one initiator that has a QoS requirement.

The significance of a latency guarantee is that the QoS traffic sees a very

lightly loaded fabric. Hence, it experiences very little contention delay. Although

TMAC introduces an extra time overhead, it is an efficient way to avoid fabric

congestion thereby providing a latency guarantee for the high priority traffic.

However, different burst modes affect the latency guarantee slightly because of

the bottleneck of the one target, as shown in Figure 6.6, where the latency of QoS

traffic using an 8-word burst is more than that of traffic using a 4-word burst.

This is one of the reasons why the TMAC scheme provides only a soft latency

guarantee.

Figure 6.7 illustrates the situation when initiator0 can issue two outstanding

commands, which means that before a new transaction starts, two pending com-

mands can be issued by initiator0 (representing the QoS traffic). As shown in

6.3. EVALUATION 107

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500
(A) a comparison of mean latency in QoS traffic and BE traffic

bandwidth utilisation (%)

m
ea

n
en

d−
to

−
en

d
la

te
nc

y
(

ns
)

4−word−burst BE traffic

4−word−burst QoS traffic

8−word−burst BE traffic

8−word−burst QoS traffic

Figure 6.6: Mean end-to-end latency vs bandwidth utilisation

Figure 6.7, results are as expected, initiator0 obtains a bandwidth allocation of

approximately 50%. Note that the bandwidth utilisation of the BE traffic shown

in the graphs is the total of the other four initiators.

Figure 6.8 illustrates the situation of 2 outstanding commands with an 8-

word burst. The long burst data mode indicates the long data transmission. The

worst case of end-to-end latency is worse than that of the 4-word mode, but the

bandwidth allocation is not affected. This shows that the admission control can

be used in the various different traffic modes.

6.3.2 Bandwidth analysis

This admission control system appropriately allocates data transfer resources for

BE and QoS traffic. As described more fully below, this method facilitates a

sliding scale between high priority and fair resource allocation. The higher the

bandwidth selected for QoS traffic, the less “fair” the memory resource allocation

6.3. EVALUATION 108

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700
a comparison of mean latency in BE traffic and QoS traffic with 2 outstanding commands

bandwidth utilisation (%)

m
ea

n
en

d−
to

−
en

d
la

te
nc

y
(

ns
)

4−word−burst BE traffic

4−word−burst QoS traffic

Figure 6.7: Mean end-to-end latency vs bandwidth utilisation with 2-outstanding
commands

will ultimately be.

As shown in Figure 6.9, the bandwidth allocation of init0, as the source of QoS

traffic, is more than double to the bandwidth of the other initiators. Init1, init2,

init3 and init4 have the same bandwidth allocation. The bandwidth allocation

for QoS traffic is slightly changed with the different burst sizes. The 8-word

burst mode of init0 is worse than the 4-word burst mode, and the 8-word burst

mode of init3 is worse than the 4-word burst mode. This is because we are

sampling a random process, which naturally introduces some sampling error; by

increasing the simulation time, the impact of sampling error on measurements

can be minimized at the cost of a long Verilog simulation time.

6.3.3 Comparison with other existing designs

It is sensible to make a comparison between TMAC and other methods in the

literature. TMAC works on the ingress edge of the interconnect instead of being

6.3. EVALUATION 109

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900
A comparison of mean latency in BE traffic and QoS traffic with 2 outstanding commands

bandwidth utilisation (%)

m
ea

n
en

d−
to

−
en

d
la

te
nc

y
 (

ns
)

8−word−burst QoS traffic

8−word−burst BE traffic

Figure 6.8: Mean end-to-end latency vs bandwidth utilisation with 2-outstanding
commands

a mechanism based on a routing scheme, the comparisons are on a general basis.

The MANGO NoC adopts a message-passing scheme to provide a guaranteed

service. Using 180nm technology, for above 50% bandwidth allocation (8 virtual

channels) the cell size is 0.91mm2. In QNoC the QoS router is measured by the

number of flip-flops. If we use a UMC130 process, the total cell size is around

0.145mm2 for one QoS router. Æthereal makes use of a time slot for QoS support.

The cell size dramatically increases as the scale of fabric increases since its QoS

architecture includes routers and reconfiguration units. It is estimated that for

above 50% bandwidth reservation the cell size will be approximately 0.26mm2 for

one QoS router. Our TMAC scheme combined with a CHAIN BE router could

easily be scaled, as the cell size never depends on the percentage of bandwidth

6.4. CHAPTER SUMMARY 110

B
a
n
d
w

id
th

 (
M

B
/S

)

Figure 6.9: Bandwidth allocations in 4-word burst mode and 8-word burst mode

reservation. For QoS support the average cell size is 0.019mm2.

In terms of area overhead, our TMAC is better than the above options: this

is expected because of the low control complexity (see table 6.1) and because the

design does not employ any buffering technique.

6.4 Chapter summary

The objective of the experiments in this research is to evaluate the performance

of this low-cost QoS mechanism and demonstrate the effectiveness of this token-

based strategy. Although the wire delay from an initiator to the fabric is extended

because of the centralized admission control, this extension does not impact the

overall performance. This is because the round-trip latency in a read transaction

is much larger than the centralised admission control token assignment latency.

When the fabric is busy the command will end up at the same place in the

command queue, so although it joins the queue a little bit later it gets serviced

no later.

In this chapter TMAC provided QoS by controlling the priority of token as-

signment, but the possibility of bandwidth reservation depends on how many

tokens are reserved for each initiator. This scheme allows the percentage of

bandwidth reservation to be managed by allocating different numbers of tokens.

However, with central coordination, the centralised TMAC will potentially

6.4. CHAPTER SUMMARY 111

cause complicated layout in systems with hundreds of processor nodes. A dis-

tributed admission control will be efficient and flexible for larger-scale systems.

The following chapter explains such a scheme in detail.

Chapter 7

Fairness using a distributed

token-managed admission control

The previous chapters illustrated how a fair service and a QoS service can be

provided using centralised coordination. In this chapter, we propose a distributed

TMAC to achieve fair bandwidth allocation.

In telecommunication and computer network, virtual circuit communications

are connection oriented, where data is delivered in correct order and signaling

overhead is required during a connection establishment phase. The asynchronous

transfer mode (ATM) technology developed in the mid 1980s used virtual circuits

to provide guaranteed service. When an ATM circuit is setup each switch on the

circuit is informed of the traffic class of the connection. Fair guaranteed rates

can be setup as a type for describing the connection. A network must establish

a connection before two nodes can send packets to each other.

A virtual circuit network is able to provide fairness in a distributed manner

using dynamic virtual circuits [AMS95, Hen96]. In the virtual circuit network,

after circuit setup, all packets from the same virtual circuit travel along the same

path. A dynamic virtual circuit supports connection-based adaptive routing.

Circuits can be torn down from intermediate nodes without involving the source

nodes and re-routed due to link congestion in one part of the circuit. Another

distributed virtual circuit scheme offers packet transmission slots to the link user

by polling them in round-robin order [AL97] . However, a distributed implemen-

tation results in a message overhead for management traffic.

112

7.1. INTRODUCTION 113

7.1 Introduction

Since our communication model is “all-to-one”, the token consumption rate is

limited by the “hot” link. All initiators together can generate enough traffic

to saturate the “hot” link. When it is saturated, bandwidth will be allocated

unfairly. The previous chapters described how the centralised token management

system controls the token assignment to maintain fair service in the fabric. An

alternative approach is a distributed token management. A distributed token

management system can balance production rates and keep the system within a

fair state.

Init0 AD

Init1 AD

Init2 AD

Time0

Time1

Time2

target

tokens in fabric

Hot link

Figure 7.1: Abstract token flow of distributed admission control

Figure 7.1 shows an abstract token flow for a distributed TMAC, where a

number of initiators can generate requests for the target. The admission control

management schedules the time intervals between the commands so that the

token production rate equals the token consumption rate at any moment.

Using distributed admission control to sense this overall traffic situation may

be very difficult. A simple way to achieve this is by fixing each initiator’s demand

for shared resource. If each token-managed admission control (TMAC) system

attached to each initiator holds a fixed number of tokens, the total number of

tokens will be fixed; this is an inefficient method, however, because when one

initiator becomes idle, the other initiators are unable to use those tokens even if

they are very busy.

7.1. INTRODUCTION 114

We propose a distributed TMAC to regulate traffic injection rates, where the

distributed TMAC works as a local scheduler by sensing global system latency.

The local admission control regulates the packet injection rate at source to keep

the latency under a predefined threshold. This threshold is the mean system

latency in a system when all initiators have an equal share of the full bandwidth

of the SDRAM controller interface. If some initiators are not using their full

bandwidth share, the system latency will reduce and other busy initiators can

increase their demands on the fabric to exploit the additional capacity available

to them.

The system is effective because there is a region of operation where the target

bandwidth is fully utilized but the command fabric is unsaturated and the global

arbitration therefore fair. The role of the distributed TMAC is to hold the system

within this region whatever the number of active initiators.

7.1.1 System model

controllercontroller processprocess

measurementmeasurement

-

reference

measured

error

measured

output

system

input

system

output

Figure 7.2: A basic admission control model with negative feedback loop

The distributed TMAC is a conventional feedback control system as illustrated

in Figure 7.2. The system is a set of units working together to deal with the dy-

namics of the on-chip interconnect, where the desired reference is the threshold of

system latency. The output of the system is the packet injection rate. Each local

admission controller measures the latency of local transactions to estimate the

traffic load on the network fabric; this is computed using the difference between

the reference and the local measured transaction latency. The difference feeds

back to the admission control loop to regulate the local traffic input rates.

7.1. INTRODUCTION 115

Figure 7.2 shows a negative feedback loop, where the measured output is

subtracted from the reference to create the error signal that is amplified by the

controller; the controller then uses the error signal to modify the process to

eliminate the errors. This closed-loop control system has the merit of being

able to match required values. A problem can arise, however, if there are delays

in the system. Such delays cause the corrective action to be taken too late and

can lead to oscillation and instability. To accommodate the delay in the feedback

loop, a filter is used to reduce high-frequency noise and to help the system settle

into a steady state.

A stable response is required for any combination of control system condi-

tions. For example, if the system latency is smaller than the reference point, the

controller will then increase the traffic input rate. Because of the delay, some

time will elapse before the local admission control senses any change. The result

will be that the controller will continue to increase the input data rate and the

system latency will draw past the reference point. Then, the controller will de-

crease the traffic input rate according to the measured error. Again because of

the delay, before the local admission control senses the system latency will draw

under the reference point. The controller will then increase the traffic inputs

rates. This process is described by conventional control theory and, depending

on the time delays and loop gain, the system may be over-damped, critically-

damped, under-damped or unstable [Hea67]. The details will be discussed in the

following section.

7.1.2 System analysis

Instability is an undesirable product of closed loop control. An unstable system

does not require an input to start oscillation, the effect of closed-loop feedback

or small disturbance is sufficient. There are a number of techniques available

for analysing the stability of a closed-loop system [Hea67]. This section deals

with determining whether our system is stable or unstable using a differential

equation.

We introduce a differential equation to represent the dynamic characteristic

of a two-processor system.

let U0 be the token input rate under local admission control on the initiator0

processing node;

7.1. INTRODUCTION 116

let U1 be the token input rate under local admission control on the initiator1

processing node;

let N be the number of tokens present in the fabric;

let L be the system latency.

The speed of token input can be transformed into equation 7.1. Note that

one token indicates one pending command. The token input rates represent the

actual packets input.

Ṅ = U0 + U1 − K1 (7.1)

Where K1 is the rate at which the target consumes tokens.

The system latency is linearly dependent on the number of tokens in the

system. It is described by equation 7.2.

L = K2 ∗ N + C (7.2)

Here, we assume the fabric is always heavily loaded. The mean congestion

cost, K2, is a constant. C is the fabric propagation latency.

When we look at generic closed-loop feedback control mechanisms, which are

widely used in industrial control systems, proportional integral derivative (PID)

control is the common feedback control.

However, in our system, the derivative can be a bad thing with a noisy signal.

A proportional controller uses just the error signal multiplied by a constant to

feed out to the drive, and controls the output to increase or decrease to a new

value that is proportional to the error. Proportional control alone cannot bring

the system to the correct set point; it only limits the size of error. The integral

can be added to the proportional action to ramp the output at a particular rate

thus bringing the error back towards zero. Thus the control function is as in

equation 7.3, 7.4.

Ui = K4 · Mi +

∫
Mi · K3 (7.3)

Where,

7.1. INTRODUCTION 117

Ui is the input token rate of the ith processing node;

Mi is the error measured by the ith local admission control;

K4 is the proportional gain;

K3 is the integral gain.

Mi = (θ − L̂) ∗ Di (7.4)

Where,

θ is the threshold of system latency;

Di is the demand of the ith processing node;

L̂ is estimated system latency.

When modelling the control parameters in system-level simulation, we find

that the unpredictable delay in the feedback loop prevents the timely estimation of

the network status, so the system oscillates. As discussed earlier (see section 3.6),

neurons are event-sensitive cells which change their state over 1 millisecond. A

small overshoot is acceptable in SpiNNaker, but over 20% overshoot is a hazard

to the system performance, as it can introduce 1 millisecond latency for a read

transaction. In this case, this will result in an application-level software failure

because the period of real-time neuron firing is 1millisecond.

To mitigate this problem, we propose an estimator that relies on the historic

latency tendency. If sufficient hardware is available, the estimation can be used

directly to estimate the conditional mean values. However, for SoC design, the

area overhead should be kept as small as possible, and for this reason, we use

equation 7.5 to predict the current system latency.

Equation 7.5 shows the estimate of system latency based on the rate of change

of system latency.

L̂ = L + L̇ ∗ K5 (7.5)

Thus, Mi is substituted by Mi = (θ− L̂)∗Di. Each local admission controller

in a processing node updates its measured error using equation 7.5. The second-

order system in equation 7.6 represents the two processing nodes accessing one

7.1. INTRODUCTION 118

shared memory.

α · N̈ + β · Ṅ + γ · N = ε (7.6)

Where α = K2 ·K4 ·K5 ·D− 1; β = (K2 ·K4 · −K2 ·K3·)D; γ = −K2 ·K3 ·D;

ε = K3 ·(θ−C)·D. Here, D indicates the sum of two processing nodes demanding

D1 and D2.

Let’s substitute :

P = N −
ε

γ
(7.7)

We find , on substitution

α · P̈ + β · Ṗ + γP = 0 (7.8)

In the case b2 − 4c > 0 , where

b = β
α
;

c = γ
α
;

The general solution of equation 7.6 is

N = H1.e
−b+

√

b2−4c

2
.t + H2 · e

−b−

√

b2−4c

2
.t (7.9)

This is an over-damped case, since equation 7.9 is the sum of two decreasing

exponential.

The alternative form of the solution of equation 7.6 in the case where b2−4c <

0

N = J · e−
rt

2 sin(ωt + Φ) +
β

γ
(7.10)

This is an under-damped case, since equation 7.10 is a decreasing sin function.

The third form of the solution of equation 7.6 in the case where b2 − 4c = 0 is

N = (B + Ct)e−
b

2
t +

β

α
(7.11)

where B, C are arbitrary constants. This is the critically-damped case, since

equation 7.11 is an exponential decaying function.

The coefficients α and β need to be determined from given initial conditions,

but it should be noted that the form of solution 7.10 and solution 7.11 are decaying

functions when b2−4c ≤ 0. Thus, this system will converge rapidly when b2 < 4c.

7.2. MATLAB MODEL 119

7.2 MATLAB model

We used Matlab to construct a discrete-time model [HLR01]. The results from

the Matlab simulation enable to understand the effects of resource constraints on

the system. A Matlab model for the centralised TMAC is unnecessary because

the centralised management is easily determined with a round-robin algorithm.

However, the system with the distributed TMAC is a negative feedback loop,

which means that the control gains can be determined by proper modelling. Sim-

ulation of this system also enables us to visualise the characteristics of control

gains.

We model the admission control system as a proportional integral (PI) control

system [DB98] as illustrated in section 7.1.2. Our aim is to find a balance between

response time and stability. As in equation 7.1 in the section 7.1.2, the discrete

mode for a system with 5 initiators is:

N(t) = N(t − 1) +
5∑

i=1

Ui(t − 8) − min([N(t − 1), K1]) (7.12)

Where:

N(t) is the number of tokens in the fabric in the current clock cycle;

N(t − 1) is the number of tokens in the last clock cycle;

Ui(t−8) is the initiator input data rates 8 clock cycles previously; (the rea-

son for sampling the data after 8 clock cycles is because the fabric minimum

round-trip latency is 8 clock cycles based on Verilog gate-level simulation.)

min([N(t − 1), K1] is the target consumption rate.

The token input rate is:

Ui(t) = min([IUi(t) + KUi(t), Di]); (7.13)

Where,

KUi(t) is the proportional part of the controller; represented in equa-

tion 7.14;

IUi(t) is the integral part of the controller, represented in equation 7.15 ;

7.2. MATLAB MODEL 120

Di(t) is the demand of the ith initiator.

KUi(t) = (TH − Le(t)) ∗ Di ∗ Kp (7.14)

IUi(t) = IUi(t − 1) + (TH − Le(t)) ∗ D2 ∗ Ki (7.15)

Where,

Ki is the integral control gain;

Kp is the proportional gain of the controller;

TH is the pre-defined set point for the average end-to-end latency;

Le(t) is the estimated average end-to-end latency.

The most efficient way to estimate latency is based on the finite impulse

response (FIR) or infinite impulse response (IIR) filter. Both FIR and IIR filters

are candidates for the filter in the feedback loop. Of these the FIR implementation

requires more memory to achieve a given filter response characteristic, so we chose

IIR.

Le(t) = Le(t − 1) + 0.02 · (L(t − 1) − Le(t − 1)) (7.16)

Where,

Le(t − 1) is the end-to-end latency at the previous clock cycles;

0.02 is feedback filter coefficient;

Lt can be calculated by the number of tokens in the fabric.

L(t) = K2 · N(t) + C (7.17)

The resulting simulated dynamics of the system latency with two different

proportional control gains are shown in Figure 7.3 and Figure 7.4. It is clear that

the proportional gain affects the speed of the response: a larger proportional gain

improves the response time of the system, the steady-state error decreases and

the overshoot increases. The Matlab model allows the effect of different gains to

7.2. MATLAB MODEL 121

be determined. For the 5-initiator-to-1-target case, a proportional gain around

0.01 and integral gain at 0.04 gives a good balance between responsiveness and

stability.

Figure 7.3: Plot with Ki = 0.04 and Kp = 0.001

Figure 7.4: Plot with Ki = 0.04 and Kp = 0.01

7.2.1 Principle of operation

The timing diagram of an admission control read operation illustrates how traf-

fic input rates are adjusted. The traffic is issued by initiator0 (init0), initiator1

(init1), initiator3 (init3) at all times. The area (labelled A) in Figure 7.5 shows

the initiator issuing commands when the admission control has not started work-

ing because it is waiting for sample data. The area (labelled B) in Figure 7.5

shows a successful adjustment.

7.2. MATLAB MODEL 122

Figure 7.5: Read transaction snapshot for fair service

7.2.2 Verification of Matlab model

We must ensure that our model is accurate for the range of input conditions under

which the system will operate. To do this, we acquired experimental data from

a 5-initiator-to-1-target fabric with a heavy traffic load, which we will discuss in

section 7.4. To account for potential differences across the whole simulation, we

chose 16 monitor points and compared our test data with results from simulation

on the Matlab model under the same ramp inputs. The differences between these

values and the Verilog experimental results are calculated. The absolute error

(err) of the two models is defined according the following formula:

err(t) = Latencym(t) − Latencyv(t) (7.18)

Where Latencym is the system latency we measured in the Matlab model;

Latencyv is the mean end-to-end system latency across all initiators; t is the

number of clock cycles of simulation time.

Another criterion of model accuracy is mean relative error, Rerr

Rerr(t) =
1

n

∑
i=1

|Latencym(t) − Latencyv(t)|

Latencyv(t)
× 100% (7.19)

Table 7.1 shows the difference between the two models. The absolute errors

of our Matlab model are relatively small, ranging from -8 to 6 cycles. The mean

relative error is below 0.09 and gives a 90% confidence of accuracy for steady

state. So it is acceptable for our application.

7.3. IMPLEMENTATION 123

No. Latencyv (cycles) Latencym(cycles) Absolute Relative Test
init0 init1 init2 error error(%) steps (cycles)

1. 55 54 46 46 6 12 60
2. 61 46 51 47 6 12 68
3. 65 42 53 46 -7 15 76
4. 50 47 42 50 -4 7 84
5. 57 51 40 52 -3 5 92
6. 51 51 40 52 -5 9 100
7. 46 47 41 48 -3 7 108
8. 40 42 41 49 -8 16 116
9. 48 41 50 52 -6 10 124
10. 46 40 42 51 -8 16 132
11. 43 41 50 49 -4 8 140
12. 43 42 47 49 -5 10 148
13. 52 51 51 46 5 10 156
14. 54 52 52 51 2 4 164
15. 53 53 52 51 2 4 172
16. 54 53 54 52 2 4 180

Table 7.1: Comparison of the system latency with the distributed admission
control model developed with the Matlab and Verilog models

7.3 Implementation

A successful hardware implementation of the distributed TMAC must deliver

bounded latency and fair bandwidth allocation with a low area overhead. Typ-

ically, proportional and integral (PI) control is implemented with floating-point

hardware, which simplifies the program but is expensive to implement. It is pos-

sible, however, to implement proportional control with fixed-point hardware by

choosing byte fractional formatting (see section 7.3.2) that eliminates floating-

point calculations.

A basic approach to the design of a digital controller is to start with a well-

know continuous-time model, then transform the model into its discrete-time

equivalent using one of the well known transformation techniques [LL95].

The approach for our digital admission control is based on conventional control

theory [DB98]. We develop a discrete-time model of the system described in the

last section. We take into account the cycle-based action and treat the input as

a sampled-data system that leads naturally to a discrete-time model.

7.3. IMPLEMENTATION 124

System model

Differential equations

Model

correct

Algorithmic definition

structure floating-point

model

Fixed-point model

Model

correct

Key architecture step

fixed-point conversion

N

Y

Gate level net list

Logic synthesis

Y

N

Figure 7.6: A top-down design flow

Figure 7.6 illustrates the design procedure for distributed admission control

using our top-down design methodology. The process starts with a conception of

what algorithm we will implement. We take this algorithm and create a floating-

point model. The hardware implementation of these algorithms relies on fixed-

point approximations. Once the fixed-point model is confirmed, a model with

RTL Verilog HDL code creates a ASIC implementation. At this stage, functional

verification of the design can be performed. From the fixed-point model, it is

possible to use synthesis tools to create a gate-level netlist.

7.3.1 Floating-point behavioural model

We model the distributed admission control with double-precision floating-point

in a Verilog behavioural model. This behavioural Verilog model uses accurate

timing information, so it can evaluate the modelling correctness of the function

descriptions.

The following code shows the distributed admission control algorithm. The

controller calculates the time interval of the next grant according to the measured

request interval. The comparator will compare the calculated time interval with

7.3. IMPLEMENTATION 125

the current time interval of the request (labelled Tgrant) with the sampled request

interval (labelled Treq). The grant signal (labelled gntD) can be set if the current

state of fabric is not saturated.

if(Treq > Tgrant) gntD <= 1; // the current state of fabric is not saturated

else if (Treq < Tgrant) gntD <= 0; // the current state of fabric is saturated

else if (Treq == Tgrant) gntD <= 1; // the current state of fabric is at the

point of saturation

end

7.3.2 Fixed-point model

In this design, the process of moving from floating-point to fixed-point is a manual

process. To get a fixed-point system, real time must be converted to the value of

a counter. Only after the conversion, can the performance of the whole system

be evaluated. This conversion requires the determination of a fixed-point data

width representing each floating-point number. Specifically, decisions must be

made relating data width, truncation and overflow used for every calculation.

We use a 16-bit fixed-point format with an 8-bit unsigned integer part and an

8-bit fractional part to get a precision of two decimal places in our calculation.

Fixed-point addition is like normal addition, the sum will have the same format.

Fixed-point multiplication yields a 16-bit integer part and a 16-bit fractional

part. We can reduce the integer from 16-bits to 8 bits using saturation arith-

metic. For the fractional part, to get better results, we round up 2 digits to get

a precision of two decimal places. The hardware implementation of fixed-point

multiplication uses shifting and addition to multiply by powers of 2. Division can

be implemented using shift and subtract.

Another important aspect of a control system is data sampling and the choice

of sampling intervals. With electronic controllers that emulate continuous time

algorithms, the best approach is to use very small sampling intervals. However,

too rapid sampling is wasteful. Here, our sample interval is the fabric propagation

round-trip latency, which is 16 clock cycles.

7.4. EVALUATION 126

7.3.3 Area estimation

Fig. 7.7 illustrates the functional blocks in the distributed admission control de-

sign. Each input port is the clocked handshake signals with the local IP block.

The shift register is for sampling the requests. The delay counter keeps the last

time delay record. The controller model calculates the predicted time interval of

grants according to the measured error. Then the comparator enables a grant if

the current request interval is larger than the computed value.

We run the Synopsys DC synthesis tool [Syn08] to determinate the area over-

head. The estimated area is 0.02mm2 based on UMC130nm technology. This

area cost comprises one fixed-point multiplier, an adder, and a 32x32-bit ROM.

7.4 Evaluation

With distributed control, we need to simulate the entire system to have functional

verification. In this section we evaluate the distributed admission control strategy

at RTL level. We have developed structural Verilog code for the asynchronous

interconnect using the CHAINworks tool [Sil07] and RTL code for the admission

controller.

Delay

counter

Delay

counter

request

sampling

request

sampling comparatorcomparator

shift

register

shift

register

adderadder multipliermultiplier ROM

request

return

grant

req grant

set-point err

Figure 7.7: A basic admission control model

7.4.1 Evaluation platform

The simulations we present are based on a 5-initiator-to-1-target fabric. The

experimental scenarios we have explored are: five initiator devices using the

7.4. EVALUATION 127

AXI [ARM04c] protocol connected to one target device using the AXI proto-

col. We use the same evaluation platform as in section 5.3.1. The traffic profiles

are built manually using a fixed 4-word burst for each transaction. From the

experiment on the centralised TMAC, we observe that the different burst sizes

do not impact on bandwidth allocation. For simplicity, we test the distributed

TMAC only with 4-word bursts.

7.4.2 Latency analysis

Table 7.2 shows that the distributed admission control approach shows significant

latency reduction. When the traffic load is the maximum achievable throughput,

the average and maximum latency in the uncontrolled fabric are found to be

323ns and 570ns respectively. For the system with admission control, the average

transaction latency becomes 232ns. This reduction in latency is mainly due to

the proposed admission control regulating the data rates into the fabric directly.

As a result, the maximum latency in the system with admission control drops

from 570ns to 299ns, which is close to a 50% reduction.

Scheme Average Maximum
types system latency system latency

With admission control 232ns 299ns
Without admission control 323ns 570ns

Table 7.2: Comparison between system with and without admission control

To better understand the effects of the admission control system, we analyse

the mean end-to-end latency. The mean latency in the network is plotted in

Figure 7.8. This figure demonstrates that the admission control provides bounded

end-to-end latency. We observe that the network becomes saturated when traffic

load is heavy. Because the initiator waits for the distributed TMAC to take action

after sampling the input data request, the rise time period is longer than the case

in the centralised TMAC. After the rise time, this behaviour is choked back to

the steady state. This, in turn, results in significant improvements in the average

system latency, although overshoots happen, ranging from -7% to 12%.

7.4.3 Bandwidth analysis

In our Verilog simulation we estimate bandwidth allocation by measuring the

total number of transactions completed by each initiator over a given period of

7.4. EVALUATION 128

Figure 7.8: End-to-end latency of each initiator VS simulation time with 4-word
bursts

7.4. EVALUATION 129

Input Without TMAC With distributed TMAC
4-word burst 4-word burst

B/W (MByte/s) B/W (MByte/s)
Initiator0 219 171
Initiator1 219 171
Initiator2 108 179
Initiator3 108 178
Initiator4 219 171

Table 7.3: Results of comparison of systems with TMAC

time. In Table 7.3, the second column presents the results from a system without

distributed admission control, this shows unfair allocation of bandwidth. The

third column shows the bandwidth of each initiator in the same system with our

admission control, this reduces bandwidth allocation unfairness to low level.

7.4.4 Fairness criteria

In a communication network with many nodes and many source-destination pairs,

different data flows may pass through the same node and share the same outgo-

ing link. The issue of fairness arises naturally. However, a general, unambiguous

definition of fairness is not always possible in a distributed resource sharing en-

vironment [Kwi89]. Generally, fairness means to use flow control procedures to

regulate network inputs so as to grant each session a fair throughput rate.

The most popular notions for fairness are proportional fairness and max-min

fairness. Proportional fairness was popularized by Kelly [KMT98]. Proportional

fairness is a compromise between fairness and throughput. Kelly describes a

model for elastic traffic in which the user’s rate is determined by the network

according to a proportional fairness criterion [Kel97] . He argues that bandwidth

should be shared so as to maximize an objective function representing the overall

utility of the flows in progress [DKS89]. Assuming a logarithmic utility function,

where the value of a flow increases with allocated bandwidth λ in proportion to

log λ, results in proportional fairness [DKS89]. The max-min fair flow control

criterion defines that the smallest session rate in the network must be as large

as possible. If the network uses max-min fair allocation, no client rate can be

increased without decreasing an already smaller rate.

There is a tradeoff between fair throughput and maximum throughput, and

7.4. EVALUATION 130

often the fairness definition is chosen based on analytical convenience, application

or is just arbitrary [MR99] . The problem of choosing a good fairness measure in

network rate allocation is still an open area for much discussion.

In this research, we focus on fair bandwidth allocation with high demand from

a dynamic number of active nodes and no demand from inactive nodes. This is

different from the proportional fairness criterion which is based on fixed nodes.

Unlike max-min fairness, which puts emphasis on maintaining high values for the

smallest rates, we focus on the fair rate allocation for high volumes of demand. In

this research, fair bandwidth allocation means that all heavily-loaded initiators

get equal rate allocations.

This section attempts to formulate the fairness notion to define fairness in a

way which scales with the number of competing initiators under the distributed

admission control. Here, the fairness criteria are mainly concerned with fair

bandwidth allocation with high volumes of demand.

Here, we define the bandwidth fairness. Let THsharei be the bandwidth

of initiator i when it is executing with other initiators. Assuming the number

of active initiators is n, ideal fairness is achieved if the following condition is

satisfied:

THshare1 = THshare2 = THshare3 = ... = THsharen (7.20)

We quantify fairness using the following equation:

Fair =
n∑

i=1

|Xi − X̄|, whereXi = THsharei, (7.21)

X̄ is the mean value of sets of numbers X1...Xn. A low value of Fair indicates

good bandwidth fairness.

Another test bench is used to simulate active initiators with a uniform spatial

distribution. These traffic profiles are built manually using a random active

interval with a fixed burst mode (e.g. a 4-word burst and an 8-word burst).

The traffic has a certain time interval and spatial area. Each initiator ran-

domly sends the packets to the target with the same burst size. The spatial

distribution governs the spatial property of a traffic pattern: who is active during

a period of time. The following spatial distributions are covered:

• the probability of each initiator issuing a request is uniform;

7.5. CHAPTER SUMMARY 131

• the probability of each initiator becoming idle is uniform;

• the traffic uses a fixed burst mode.

The fairness values (Fair) for a 5-initiator-to-1-target system in above test

bench is 10.3 and the fairness values of a distributed TMAC with the same system

is 5.2. The proposed method improves fairness. Fairness improves with the

TMAC method especially for traffic loads with all heavily-loaded initiators.

7.4.5 Comparison of centralised with distributed TMAC

Distributed admission control has no central coordination and relies on a local

closed-feedback control loop. The earlier scheme, proposed in chapter 5, be-

haves as a centralised control. Compared with the centralised admission control,

distributed admission control suffers longer rise times. That is because the dis-

tributed admission control needs the waiting time for data sampling.

Table 7.4 shows that a reasonable performance guarantee is achieved and a

small area overhead is obtained with the centralised admission control.

This leads us to conclude that the centralised scheme outperforms the dis-

tributed one. However, the centralised scheme will cause potentially complicated

layout in the system with tens of processor nodes. In addition, the distributed

scheme reduces the load and processing of the interface between the admission

control and initiator model. Thus, there is a trade-off between the centralised

and distributed schemes.

Scheme Area performance
types per initiator guarantee

Centralised 0.001 mm2 99%
Admission Control

Distributed 0.0015 mm2 92%
Admission Control

Table 7.4: Comparison between centralised and distributed admission control

7.5 Chapter summary

By fixing each initiator’s demand for shared resource, an equal share of the band-

width at high load can be achieved. However, this simple solution is unable to

7.5. CHAPTER SUMMARY 132

allocate spare resource for a lightly loaded fabric. In a real-time application,

the fabric load depends on the real-time traffic pattern. Some initiators require

more bandwidth, while others may be idle or less demanding. Using the TMAC

scheme, all of the available bandwidth can be used by those initiators with high

demands. The flexibility to allocate unused bandwidth provides the capability

of maximum utilization of hardware resources. In a multiple-processor SOC de-

sign, the trade-off between hardware resource and system performance is a hard

decision. In Chapter 8, we will discuss how this simple solution is used in the

SpiNNaker MPSoC.

The proposed distributed admission control management maintains fairness

through the use of a closed-loop feedback system. By properly optimising the

parameters we are able to obtain an approach that can dynamically converge to

a fair bandwidth allocation and prevent potential network saturation problems.

So the distributed TMAC satisfies the communication demands of applications

running on the SpiNNaker chip.

We introduced distributed admission control to ensure fair bandwidth allo-

cation to each processing node on our GALS on-chip interconnection. Based on

closed-loop feedback, the admission decision can be made in real time and with-

out much computational effort, and the admission control works effectively. The

simulation results show that the proposed method substantially improves the sys-

tem performance and guarantees fairness with a small area overhead. This leads

us to speculate that distributed admission control may be efficient and flexible

for larger-scale system.

Chapter 8

The SpiNNaker System NoC

8.1 Introduction

In previous chapters, we observed that any interconnection becomes saturated

when the average traffic load reaches a point called the saturation threshold. At

this point, communication latency becomes unpredictable and increases expo-

nentially. A well-known solution to improve the network saturation threshold is

to grow the buffering capacity of the fabric. However, extra buffering capacity

means extra area overhead. We explore the SpiNNaker System NoC implementa-

tion by understanding the relation between network saturation and unbalanced

bandwidth allocation.

The concept of token-managed admission control provides a practical solution

to the communication infrastructure in the SpiNNaker chip. We present the chip

design in considerable detail in order to present the context of the research, al-

though much of the detail is not relevant to the token-managed admission control

research itself.

We explore the SpiNNaker System NoC implementation by understanding

the relation between network saturation and unbalanced bandwidth allocation.

The concept of token-managed admission control provides a practical solution to

the communication infrastructure of packet-switched on-chip interconnect with

service guarantees.

The SpiNNaker project is producing two chips: the test chip and the final

chip. The test chip is for testing functionality and evaluating the ASIC design

work flow. It has been designed for a 5*5mm die and incorporates 2 processor

nodes because of area constraints. The total die area of the final chip is 10*10mm

133

8.2. TEST CHIP 134

and should accommodate 18 processor nodes on a single chip.

The SpiNNaker System NoC described in this chapter provides a concrete

example of an implementation of a network-on-chip (NoC). This chapter is pre-

sented in three parts:

• The on-chip communication technology on the SpiNNaker test chip and the

basic physical interconnects;

• The architecture of the System NoC on the final chip showing the admission

control applied to a real situation;

• An overview of the System NoC performance pointing towards further in-

vestigations of the on-chip communication service.

8.2 Test chip

Self-timed interconnectionSelf-timed interconnection

AXI M AXI M AHB M AHB S

AXI M APB3 S AHB S

CPU0

AXI 64

CPU1

AXI 64

Router

AHB 32 AHB 32

PL340 AHB S->M

SysRAM SysROM Ethernet SysCtl watchdog

AXI 64 APB 32
AHB 32

Figure 8.1: Test chip SystemNoC architecture

Figure 8.1 illustrates the test chip System NoC architecture. It provides a

packet-switched infrastructure for connecting two ARM968 processing nodes to

a SDRAM controller PL340, a router configuration interface and other system

components such as Ethernet, system RAM, system control, watchdog and system

ROM. The processor nodes have initiator interfaces which connect to the System

8.2. TEST CHIP 135

NoC. The target interface of the router is used by any of the on-chip processor

nodes to configure the router and initialise routing tables. The router is a system

initiator in the SpiNNaker chip, which allows processors in neighbouring chips to

be interconnected. Processors in a neighbouring chip can send specially formatted

messages through the Communications NoC [PBF+08].

The System NoC is implemented using the standard AMBA3 [ARM04c] AXI

(AMBA Advanced eXtensible) Interface, allowing seamless high performance in-

tegration of the ARM processing cores and the SDRAM controller. The APB

interface on the PL340 target is used to configure the SDRAM controller. The

rest of the system components and the router configuration are implemented us-

ing AMBA3 AHB [ARM04a] interfaces. The Silistix adapters [Sil08] provide a

range of AMBA standard interfaces to the external devices, facilitating the use

of available IP blocks. The network adapters designed with the CHAINworks

tool suite deal with mapping the AMBA protocol to the Chain Gateway Proto-

col (CGP). The adapters connect current AMBA IP cores to the asynchronous

fabric [ARM04c][Sil07].

Within a small die area, low logical complexity is very important especially in

the test chip. The following features show the effort made in the implementation

of the System NoC.

• The System NoC implementation in the test chip uses uniform link widths

to reduce silicon area. If the fabric uses different types of link, buffers are

added between the different types of link to ensure that the full capacity of

the widest link is used. Thus different link widths would sacrifice area for

these buffers. In contrast, uniform links do not need such buffers.

• Support for multiple outstanding commands increases the area of the net-

work interfaces significantly. The present design uses one outstanding com-

mand for all initiators to minimise the total area of the System NoC.

• The choice of one outstanding command has an impact on fabric data load-

ing, since the limitation introduces a long resulting latency for a completed

read transaction. An initiator with a single outstanding command reduces

the offered traffic bandwidth.

• The implementation of the boundary between synchronous and asynchron-

ous logic is in the network interfaces allowing the self-timed fabric to be

8.2. TEST CHIP 136

placed as hard macros. The network interfaces use a mixed design, with

gate-level asynchronous and RTL code. During place&route, the network

interfaces are attached to their respective IP blocks to achieve timing clo-

sure.

• AXI’s advanced transaction features provide for parallel accesses. The AXI

protocol has separate handshake and payload channels for address and data.

It is highly desirable to retain AXI’s support for CHAIN-style interconnect.

This builds on the many benefits of extending the performance and flexi-

bility of AMBA protocol-based systems.

8.2.1 Organisation

Figure 8.2: System NoC data path

Figure 8.2 illustrates the fabric data path between the on-chip blocks; it in-

cludes two major components: the Network Interface Modules (NIMs) and the

Silistix CGP network. The NIMs include Silistix adaptors and self-timed compo-

nents: TX (transmit) and RX (receive). An initiator IP initiates a transaction;

the network adapter converts this request into an internal form called Protocol

Mapping Format (PMF) which enables transparent transactions between different

IP interface standards. These PMF packets tunnel through the CHAIN Gateway

Protocol (CGP) to the Silistix CGP Network. The initiator adapter also decodes

the address for any transaction so that packets are correctly routed to the appro-

priate target. The addressed target responds to commands sent by the initiator

IP, its response returns as PMF packets through the Silistix CGP network. The

initiator adapter converts these PMF packets into the standard protocol of the

local IP.

8.2. TEST CHIP 137

Although the on-chip IP blocks are synchronous, all traffic over the Silistix

Network-on-Chip is self-timed and packet-switched. The Silistix NIM provides

all the necessary data protocol conversion and formatting.

8.2.2 Hierarchy

P0. iaxi P1. iaxi

TX0 TX1RX0 RX1

Processor (200MhZ) Router (200MhZ)

Router.iahb

TX6 RX6

SDRAM. taxi
SDRAM_C. iaxi

RX3 TX4TX3 RX4

SDRAM (166 MhZ) Router (200MhZ)

Router.tahb

TX5

System components (200MhZ)

Sb.tahb

RX2
RX5 TX2

rt0

mg0

mg2

rt1

mg1 mg3

rt3

rt2

rt4

mg6

rt6

rt5

mg5

rt8

mg7

rt7

mg4

mg8

Figure 8.3: The fabric design hierarchy of the System NoC in the SpiNNaker test
chip. The blue octagons form the command fabric. The white octagons form
the response fabric. Each processor node has two separate paths: one is to the
SDRAM interface; the other is to other system components and the router.

Figure 8.3 illustrates the hierarchy of the System NoC. The initiators are at

the top and the targets are at the bottom. The transmiter (TX) and receiver

8.2. TEST CHIP 138

(RX) modules are self-timed components for asynchronous fabric communica-

tion. This figure shows that the CHAIN Route and Merge components can be

combined to obtain the desired fabric topology. In this topology one processing

node can communicate with the global memory while another processing node

communicates with other system components.

The test chip fabric uses an indirect on-chip interconnect. The on-chip com-

ponents do not communicate directly; instead they communicate using special

switches, called merges and routers.

The use of an indirect on-chip interconnect instead of a conventional syn-

chronous bus provides additional benefits. The topology selected for the System

NoC, although somewhat more expensive in area than a direct bus replacement,

allows two concurrent transactions to take place. This increases the utilisation of

the available bandwidth.

8.2.3 Test chip evaluation

A workload-generating performance benchmark was employed to estimate the

performance of the test chip System NoC using the CHAINworks tool set. In

order to guarantee that the design meets the specified bandwidth and latency

requirements, test cases based on a synthetic traffic pattern were created.

Table 8.1 illustrates the four exclusive operation modes of the System NoC:

P0asMonitor, P1asMonitor, Application and Setup.

• P0asMonitor mode

processor0 operates as a Monitor processor and processor1 works as an

application processor;

• P1asMonitor mode

processor1 works as Monitor processor and processor0 works as an applica-

tion processor;

• Application mode

The two processors both work as application processors.

• Setup mode

Each processor and the router are initialised using a boot program from

system ROM.

8.2. TEST CHIP 139

Attribute Description Read Write
Bandwidth Bandwidth

P0asMonitor p0 to sb.t 10Mbytes/s 10Mbytes/s
p1 to md.t N/A 60Mbytes/s
p1 to md 64MBytes N/A

P1asMointor p1 to sb.t 10Mbytes/s 10Mbytes/s
p0 to md.t N/A 60Mbytes/s
p0 to md.t 64Mbytes/s N/A

application p1 to md.t 64Mbytes/s N/A
p1 to md.t N/A 60Mbytes/s
p0 to md.t 64Mbytes/s N/A
p0 to md.t N/A 60Mbytes/s

setup p0 to mc.t 6Mbytes/s 6Mbytes/s
p1 to mc.t 6Mbytes/s 6Mbytes/s
p1 to rt.t 6Mbytes/s 6Mbytes/s
p0 to rt.t 6Mbytes/s 6Mbytes/s
rt.t to mc.t 6Mbytes/s 6Mbytes/s
rt.t to sb.t 6Mbytes/s 6Mbytes/s

Table 8.1: The traffic requirements of the various test modes

Network traffic was generated based on operating modes declared in an appli-

cation description file and the connections defined within each mode representing

a distinct, exclusive operating mode. This model further assumes that all trans-

actions between initiators and targets happen exclusively within the mode; there

is no interaction between initiators and targets operating in another mode.

Post-synthesis simulations were carried out using special structural Verilog

code along with synthesised RTL code. The back-annotation file is generated by

Synopsys Design Compiler (DC) [Syn08].

The main performance concern is the bandwidth offered between each pro-

cessor and the SDRAM interface at run time, which means in the application

mode. Table 8.2 illustrates the experimental results in the application mode.

The resulting read and write bandwidth shows that the performance will achieve

64Mbyte/s in application mode, which is acceptable for real-time neural mod-

elling (see section 3.6).

8.2. TEST CHIP 140

Traffic read bandwidth write bandwidth
pattern MB/s MB/s

p0.i to md.t read 64 N/A
p0.i to md.t write N/A 60
p1.i to md.t read 64 N/A
p1.i to md.t write N/A 60

Table 8.2: Experimental results in application mode

8.2.4 Area & layout

The NIMs module of the System NoC block has been synthesised using the Syn-

opsys Design Compiler (DC) Version:X-2005.9 using the scripts adapted by a

Silistix engineer. The NIMs design is translated into an optimised gate-level

netlist and mapped to UMC130nm technology library by DC. Note that the RX

and TX modules have not been analysed by DC.

Table 8.3 illustrates the results as reported by DC for the System NoC. In

the back-end implementation of the GALS interconnect, the main concern is

the problem of clock boundaries. The asynchronous components of the System

NoC were built from unique hard macro cells which are asynchronous circuits

generated manually. Standard EDA tools are able to embed the hard-macros

into the synchronous design flows. These hard macros are designed onto a specific

process technology and have the advantage of deterministic timing and area. They

can easily be plugged into a standard synchronous design flow. Most of the units

that comprise the self-timed transport network are hard macros.

modules Adaptor cell area mm2

P0-i AXI initiator 0.112
P1-i AXI initiator 0.112
Rt-i AHB initiator 0.030
Mc-t APBs target 0.071
MD-t AXI target 0.040
Rt-t AHB target 0.034
Sb-t AHB target 0.034
fabric N/A 0.085
total N/A 0.521

Table 8.3: Area report from DC

Figure 8.4 shows a die plot of the SpiNNaker test chip layout with an overlay

8.3. FINAL CHIP 141

Figure 8.4: The layout of the SpiNNaker test chip

describing the location of the System NoC and other major system components.

The interfaces between the self-timed fabric and the synchronous blocks (such

as the processor nodes and the SDRAM controller) are called XNIM (Network

Interface Module). The XNIM includes the RTL design and self-timed TX (Trans-

mitter) and RX (Receiver) modules. In the floor plan, all the NIMs are placed

within the IP blocks to give clear boundaries for the asynchronous fabric. In

Figure 8.4, the NIMs are shown as black blocks and are distributed in the IP

blocks.

Figure 8.4 also shows the detail of the asynchronous blocks in the System NoC.

There are 18 hard macros for the asynchronous fabric placed side by side. The

purple square in the screen shot of the System NoC layout shows the 8 merges

(labelled Mrg) and 8 routers (labelled Rt).

8.3 Final chip

The SDRAM peak bandwidth is shared by just two processing nodes in the

SpiNNaker test chip, so congestion and saturation are unlikely, for this reason

traffic management is unnecessary. However, the final SpiNNaker chip will host

18 processor nodes on a single chip and the off-chip memory will be shared by

8.3. FINAL CHIP 142

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1617 18

layer1

layer2

layer3

layer4

layer5

target Intermediate router

Figure 8.5: An interconnect example

the 18 processors. Congestion and saturation are likely to happen and traffic

management is necessary.

Figure 8.5 illustrates the design hierarchy of the 18 processors connected to a

single target. The interconnect forms a balanced binary tree with processors at

the leaf nodes. The 18 processor nodes are in groups of 5 processor nodes each.

Each group is a mirror reflection of its neighbour group.

As discussed earlier, the unbalanced nature of 2-way arbiters demands a care-

fully designed topology. A symmetrical topology will mitigate the asymmetrical

bandwidth allocation to some extent, as long as all processors have similar be-

haviours. However, as discussed in chapter 4, the unfairness problem still exists

if the target does not have a 18-command FIFO to absorb the 18 read commands

from each initiator.

We investigate the performance of the System NoC topology and propose an

admission control scheme for the final chip design. All experiments in this section

use pre-synthesis simulation.

In the successful tape out experience with the test chip, the on-chip intercon-

nect of the System NoC is based on a 16-bit link fabric. Figure 8.6 shows the

resulting trace of 20-processors-to-1-target under pre-synthesis simulation. The

20 processor nodes run at 200MHz while the target that models the SDRAM

controller runs at 166MHz. Label A in Figure 8.6 shows the first read commands

are simultaneously issued from the 20 processors. Label B in Figure 8.6 indicates

that the SDRAM is under-loaded. This figure shows the idle periods between

8.4. THE PROPOSED ADMISSION CONTROL 143

transfers as a consequence of the 16-bit link width. Clearly using only a 16-bit

link does not achieve full bandwidth utilisation of the target.

In theory using a 32-bit link fabric could achieve around 2GBytes/s band-

width using a 130nm process technology [BF04]. Assuming that all processors are

highly demanding, the fabric with 32-bit links could achieve full target utilisation

(1GByte/s is the peak bandwidth of PL340). However, the current CHAINworks

tool does not generate a 32-bit fabric and at the time of writing this thesis a

solution to this problem is awaited from the Silistix engineers.

8.4 The proposed admission control

For the SpiNNaker chip, the two goals of service guarantee on the System NoC

are to fully utilise the bandwidth available at the SDRAM interface and to keep

all initiators equally served to achieve fair bandwidth allocation. These two goals

are key objectives to achieve maximum efficiency in the neural modelling.

The final SpiNNaker chip is in design while this thesis is being written. The

test chip is being used for preliminary system-level verification. The SpiNNaker

test chip was signed-off without any traffic management mechanism because only

two processors are incorporated in a single chip.

There are two observations which simplified the SpiNNaker test chip design.

Firstly, each initiator can demand more bandwidth than its average share of the

peak bandwidth. However, this introduces the possibility of unfairness. By simply

limiting the number of outstanding commands, the on-chip initiator will have

fixed upper bound to its bandwidth demand. In this case, the total bandwidth

demand of all of the initiators does not saturate the command link even though

it exceeds the maximum system bandwidth capacity, so the fabric still operates

in a fair mode. For the 20- initiator-to-1-target case, the fixed upper bound

bandwidth demand of each initiator is bigger than its share of the average peak

bandwidth of the target. The objective of fairly sharing the peak bandwidth of

the target is achieved.

For some real-time applications, when all initiators are not fully loaded, the

admission control scheme presented here can provide flexibility in the bandwidth

allocation that would not be available if all initiators were simply constrained to

operate within their pro rata share of the full system bandwidth.

Secondly, the one outstanding command adds delay so that under the same

8.4. THE PROPOSED ADMISSION CONTROL 144

Figure 8.6: This trace shows the 20 initiators accessing one SDRAM model
through a 16-bit link fabric. The label P0 i.axi arready means the ready sig-
nal of initiator in read command channel. Label P1 i.axi arready means the
ready signal of initiator1 in the read command channel. Label md.axi arvalid is
the valid signal of the SDRAM model read command channel. Md.axi arvalid
indicates the command arrival interval.

8.4. THE PROPOSED ADMISSION CONTROL 145

circumstance the bandwidth utilisation of the SDRAM will be impacted. In the

worst case, if some processors are idle, SDRAM bandwidth will be wasted.

However, the final SpiNNaker chip will have more extensive on-chip traffic

since 18 processors are integrated on to a single chip. The 18 processors will

increase the on-chip interconnect traffic. Then, traffic management will be nec-

essary to provide optimal performance. The admission control in the SpiNNaker

final chip can be approached in three different ways:

1. As long as the SDRAM is fully utilised and all processors access the fab-

ric with the same frequency, the fabric will be fair to every processor and

the one outstanding command protocol works as a self-disciplined admission

control. When the traffic pattern with 18 processors is not fairly distributed,

the bandwidth of an idle initiator should be used by busy initiators. Admis-

sion control could be used to grant the access to whichever active initiator

request it unless the command link is saturated.

2. When the SDRAM is not fully saturated, multiple outstanding commands

could be used for some low-priority nodes. The number of outstanding

commands linearly increases the area overhead of the System NoC. Two

outstanding commands create a trade-off between performance and area.

As shown in Figure 8.5, the nodes located at the last layer in the binary

tree have low priority. Assume those nodes are set to use two outstand-

ing commands. If the fabric still not saturated, the two goals of fairness

and fully utilised bandwidth allocation could be achieved. However, as

the two outstanding commands should be introduced, admission control

should be used to guarantee that the command link will not saturate. With

centralised admission control, the 18 processors can be balanced. The cen-

tralised TMAC can satisfy those requirements to maximise the final chip

performance.

3. In the case where the SpiNNaker final chip is moved to a new process

technology, it could perhaps accommodate more than 30 processor nodes.

A distributed admission control could be implemented to impose a fair

bandwidth allocation and fully utilise the SDRAM bandwidth utilisation.

8.5. CHAPTER SUMMARY 146

8.5 Chapter summary

This chapter has introduced an asynchronous System Network-on-Chip (NoC) for

the SpiNNaker chip and evaluated the function of the System NoC connecting the

processors and system components. All of the simulations used in this chapter

were performed using the VCS simulation from Synopsys [Syn00]. The next

chapter summarises the traffic management techniques which have been presented

in the thesis.

Chapter 9

Conclusions

The CHAIN-style asynchronous interconnect defines an architecture well suited

to Globally Asynchronous Locally Synchronous (GALS) on-chip interconnect.

However, this architecture does not provide any service guarantee.

The work described in this thesis has identified asynchronous arbitration fair-

ness problems on GALS on-chip interconnect and has provided solutions for ser-

vice guarantees. Based on an investigation into the fairness problems of asyn-

chronous arbiters, we have used Token-Managed Admission Control (TMAC)

schemes to provide QoS service and fair service. The centralised TMAC scheme

is convenient for small-scale systems; the wiring of the interface between on-chip

components and the centralised TMAC may become a bottleneck, however, in

large-scale systems. Meanwhile, the distributed TMAC scheme is suitable for

large-scale systems, which require only local interfaces.

The TMAC scheme should be of benefit in designing packet-switched commu-

nication infrastructures of future SoCs. These findings can be used as guidelines

by digital designers to make decisions on an industry-relevant SoC design.

In particular, this thesis has explored three main aspects of network-on-chip

hardware implementation.

• 1. GALS interconnect implementation

A GALS on-chip interconnect was implemented to investigate the TMAC

schemes, which demonstrated the possibilities of implementing GALS in-

terconnect using standard EDA tools.

Asynchronous implementation of GALS technology provides benefits for

147

CHAPTER 9. CONCLUSIONS 148

SoC design, but does not automatically offer performance gains. GALS-

based design techniques require a stable and reliable design flow. The Silis-

tix tools (http://www.silistix.com) offer a way to cope with GALS design

flow issues but there are still quite a few customised, manual steps. Dur-

ing the GALS interconnect implementation, additional standard cells were

made for mutual exclusion and C-elements and the self-timed fabric was

placed as hard macros.

• 2. asynchronous arbitration fairness

The fairness problem of asynchronous arbitration in 5-initiator-to-1-target

and 20-initiator-to-1-target fabrics was investigated. This work demon-

strated how communication services to each initiator may be unbalanced

and how the fairness problem impacts on the SpiNNaker chip.

Two-to-one asynchronous arbiters [Kin07] are known to be free from oscilla-

tions . The generalised case of a multi-way arbiter with many clients maybe

composed from two-way arbiters, however, a two-way arbiter system incurs

a fundamental fairness problem. Because of the saturation of the ‘hot’ link

in the fabric, two-way arbiters transfer congestion back-pressure to all com-

mand links. When the ‘hot’ link becomes saturated, the interconnect will

become unfair as a direct result of the binary tree arbitration structure.

In Verilog simulation, the fabric can maintain a fair state by carefully con-

trolling tokens in the fabric to keep the network below the saturation point.

It offers a simple solution for the asynchronous arbitration fairness problem

and allows simplification of the hardware design and decreases unnecessary

hardware overheads.

• 3. Implementation of service guarantees

In this thesis, a GALS interconnect was successfully implemented using

the CHAIN technology. This GALS interconnect makes no strong service

guarantees on packets, however, as it is a best-effort interconnect. This

work shows how TMAC schemes provide a service guarantee with bounded

latency and bandwidth allocation.

Two service guarantees (fair service and QoS) are discussed in this thesis.

In terms of QoS, network traffic is divided into best-effort and QoS traffic.

TMAC allocates tokens based on two service classes allowing QoS traffic

9.1. ADVANTAGES 149

to have a higher level of service guarantee. In terms of fair service, pack-

ets travelling toward a common destination see roughly the same level of

communication service: similar latency and similar bandwidth allocation.

Those two service guarantees given by TMAC meet general application re-

quirements while at the same time using low-complexity design.

9.1 Advantages

9.1.1 Extensible for packet-switched on-chip network

The token-managed admission control is an end-to-end traffic management scheme.

The experiment shows that it is possible for GALS interconnect to maximise

both the flexibility and performance of the interconnect without extensive use of

buffers. TMAC schemes are applied at the ingress edges of the fabric using tokens

to allocate dynamic network resources. For any packet-switched on-chip network,

the mechanism may also be efficient because it only needs to control the input

traffic rates. This allows system designers to select the optimum interconnect for

their specific requirements.

9.1.2 Implementation of soft service guarantees

In this thesis, a GALS interconnect was successfully implemented using the

CHAIN technology. This GALS interconnect makes no strong service guaran-

tees on packets; however, as it is a best-effort interconnect. This work shows how

TMAC schemes can provide a soft service guarantee with bounded latency and

bandwidth allocation.

The soft service guarantee also provides fairness with the possibility of one

initiator receiving a higher priority than the others. In this case, the network

traffic is divided into QoS traffic (from one initiator) and best-effort traffic (from

the other initiators). TMAC allocates as many tokens to one initiator as is

required and the other initiators share the remaining tokens in a round-robin

fashion.

Although only one QoS initiator has been considered here, it is straightforward

to see how the scheme could be extended to a number of QoS initiators by giving

them priority access to tokens according to their bandwidth requirements.

9.2. DISADVANTAGES 150

9.2 Disadvantages

9.2.1 Hard real-time requirements

TMAC schemes provide only soft bounded latency guarantees. With regard to the

centralised admission control scheme, tokens in the fabric represent only command

packets. Furthermore, the burst size and the way the SDRAM controller responds

may vary. Hence, the real bandwidth which can be achieved is only soft bounded.

9.3 Improving TMAC

The TMAC schemes achieve a bounded latency and bandwidth, allowing im-

plementation on various packet-switched interconnects. The implementation of

admission control can be improved in a number of ways including the following:

9.3.1 Re-configurable priority

The TMAC scheme could be extended to provide reconfigurable priority based

on the pre-setting of priority registers. The priority of each initiator can be

configured, either at design time or dynamically at run time, by making the

configuration register writable.

9.3.2 Physical implementation

The TMAC design is a synthesisable RTL design which has not yet gone through

back-end physical implementation. The physical implementation such as floor

plan and place & route should be straightforward to implement using a standard

synchronous design flow.

9.3.3 Fabric capacity

The value of the fabric capacity is crucial for the TMAC mechanism. The exact

fabric capacity will be found experimentally as determined by simulation envi-

ronment parameters such as wire latency, ratio of initiator clock to target clock,

average burst size, destination FIFO depth and the total storage distributed in

the network. For instance, some buffers are likely to be inserted into critical paths

during the final layout, which will increase wire delays. Wire delay information

9.3. IMPROVING TMAC 151

from the final design should be fed back through the system because the fabric

capacity will change slightly. Consequently, further evaluation and investigation

post-layout should be carried out.

9.3.4 Service guarantee

For simplicity, the current design does not combine both service schemes (QoS and

fair service). In the general case, the two schemes can simply be incorporated

into a single integrated circuit. Moreover, the interface of the TMAC can be

modified to make it fully configurable to support configuration setting, which

will involve devising control algorithms and support for application mapping.

Those designing new changes can control the bandwidth reservation dynamically

and achieve various classes of services.

9.3.5 Multiple targets

Current TMAC schemes support only a single target in the fabric. It maybe pos-

sible to extend the centralised TMAC scheme to multiple-target systems because

a crossbar-based on-chip interconnect allows initiators to access multiple targets

with independent routing, so a centralised TMAC can grant transactions based

on the availability of dedicated tokens for each target. If a free token is available

for one target but unavailable for the other targets, the initiators are allowed only

to access the target that has available tokens.

However, the distributed TMAC is unlikely to be extended to multiple targets

since it has to measure end-to-end latency from initiator to targets, and this would

significantly increase the complexity and area cost of the distributed TMAC.

9.3.6 Network load

Network load has a very strong influence on the performance evaluation of token-

managed admission control (TMAC). In this thesis only a uniform distribution of

traffic patterns has been considered. In the future we can evaluate TMAC using

the traffic patterns produced by real applications.

9.4. FUTURE RESEARCH DIRECTIONS 152

9.3.7 Performance metrics

When presenting network performance plots, Chaos Normal Form (CNF) format

could be preferred to analyse bandwidth as a function of applied load [gra01]. In

CNF graphs, the X-axis corresponds to applied load and the y-axis is bandwidth.

Because of the limitation of the test bench, the applied load cannot be measured;

consequently CNF format graphs cannot be used. With improvements to the

current test bench, it may be used in future.

9.4 Future research directions

The research presented in this thesis has shown that TMAC schemes are capable

of providing effective traffic management on a packet-switched network-on-chip

for a specific traffic pattern. For a large-scale system with complex applications,

more research into traffic management is necessary.

Key to the successful operation of traffic management is the functionality

provided for real-time monitoring requirements in large-scale systems. An efficient

way of traffic management could be represented as an in-depth hardware/software

NoC monitoring system. This mixed system offers run-time monitoring of traffic

in NoC and supports system-level software management.

Such a mixed system could be based on hardware probes attached to NoC

components and system-level control software to appropriately map application

tasks into the NoC platform. Hardware probes could measure various real-time

traffic parameters such as latency and congestion-level; the system-level software

could store traces in a dedicated local trace memory after attaching time-stamps

using a global timer. During the operation of a specific application, all monitoring

results could be stored, and the software management system could report the

monitoring information and the analysis of monitoring results. The visualised

management information could show under-utilised resources, which are available

to take more loads.

The feasibility of a monitoring system depends on the run-time overhead. If

the additional monitoring traffic is much lower than the raw bandwidth offered by

the NoC system, the monitoring overhead is relatively low. Furthermore, a mixed

traffic monitoring system can be implemented as a dedicated on-chip component

so that only limited resources are allocated to the on-line monitoring system. As

a result, a cost-efficient and high-performance NoC design could be possible with

9.4. FUTURE RESEARCH DIRECTIONS 153

some extra information produced by the traffic monitoring system.

Furthermore, the full management system includes a set of diagnostic func-

tions which increase flexibility and explore efficiency and resilience. The hardware

probes also provide application debugging. This monitoring system may make

it possible to extend the management model to a general multiprocessor system.

It will be a viable and promising low-overhead method to manage and control

large-scale systems with efficient traffic management.

Bibliography

[Adr28] Edgar Adrian. Basis of Sensation: The Action of the sense organs.

London:Christophers, 1928.

[AL97] Nikolaos Anerousis and Aurel A. Lazar. A framework for pricing

virtual circuit and virtual path services in atm networks. In in

ITC-15, pages 791–802, 1997.

[AMC+06] Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini,

and Luigi Raffo. Contrasting a noc and a traditional interconnect

fabric with layout awareness. In DATE ’06: Proceedings of the

conference on Design, automation and test in Europe, pages 124–

129, 2006.

[AMS95] C. Alaettinoglu, I. Matta, and A.U. Shankar. A scalable virtual cir-

cuit routing scheme for atm networks. Computer Communications

and Networks, International Conference , 1995.

[ARM04a] ARM Ltd. AMBA AHB-lite Protocol specification. Technical Re-

port ARM IHI 0023B, http://www.arm.com, 2004.

[ARM04b] ARM Ltd. AMBA APB Protocol specification. Technical Report

ARM IHI 0024B, http://www.arm.com, 2004.

[ARM04c] ARM Ltd. AMBA AXI Protocol specification. Technical Report

ARM IHI 0022B, http://www.arm.com, 2004.

[ARM06] ARM Ltd. ARM968E-S technical reference manual. Technical

Report ARM DDI 0311D, http://www.arm.com, 2006.

[ARM07] ARM Ltd. PL340 technical report. Technical Report ARM

DDI0331E, http://www.arm.com, 2007.

154

BIBLIOGRAPHY 155

[ASD02] Bowman K. A., Duvall S.G., and Meindl J. D. Impact of die to

die and within die parameter fluctuations on the maximum clock

frequency distribution for gigascale integration. Journal of solid-

state circuits, 2002.

[BCGK04] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny.

QNoC: QoS architecture and design process for network on chip.

Journal of Systems Architecture, 50:105–128, 2004.

[BCV+05] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An

asynchronous NoC architecture providing low latency service and

its multi-level design framework. In ASYNC ’05: Proceedings of

the 11th IEEE International Symposium on Asynchronous Circuits

and Systems, pages 54–63, 2005.

[BDT+96] Andrea Basso, Ismail Dalgi, Fouad A. Tobagi, Christian J. van den

Branden Lambrecht, Christian J. Van Den Br, and En Lambrecht.

Study of mpeg-2 coding performance based on a perceptual quality

metric. In In Proceedings of PCS96, pages 263–268, 1996.

[BF01] John W. Bainbridge and Steve B. Furber. Delay insensitive

system-on-chip interconnect using 1-of-4 data encoding. Proceed-

ing ASYNC 2001, pages 118–126,2001.

[BF04] John W. Bainbridge and Steve B. Furber. Chain: a delay-

insensitive chip area interconnect. IEEE Micro., 22:16–23, Sept

2004.

[Bje05] Tobias Bjerregaard. The MANGO Clockless Network-on-Chip:

Concepts and Implementation. PhD thesis, Technical University

of Denmark, 2005.

[BKS+00] Lee Breslau, Edward W. Knightly, Scott Shenker, Ion Stoica, and

Hui Zhang Y. Endpoint admission control: Architectural issues

and performance. In In Proceedings of ACM Sigcomm 2000, pages

57–69, 2000.

[BKY00] A. Bystrov, D. J. Kinniment, and A. Yakovlev. Priority arbiters.

In Proc. International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems, pages 128–137, 2000.

BIBLIOGRAPHY 156

[BLKK02] Irwin B. Levitan and Leonard K. Kaczmarak. The Neuron: Cell

and Molecular Biology. Oxford University Press, 2002. ISBN 0-19-

514522-4.

[BM02] Luca Benini and Giovanni De Micheli. Networks on chips: A new-

SoC paradigm. Computer, 35(1):70–78, Jan. 2002.

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A survey of research

and practices of network-on-chip. ACM Computing Surveys, 38(1),

2006.

[BTEF03] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B.

Furber. Delay-insensitive, point-to-point interconnect using m-of-

n codes. Proceedings of the Ninth International Symposium on

Asynchronous Circuit and System (ASYNC’03), 2003.

[Cha84] D.M. Chapiro. Globally Asynchronous Locally Synchronous Sys-

tems. PhD thesis, Stanford University, 1984.

[Chi07] Leonardo Chiariglione. The MPEG home page, 2007. url

http://www.chiariglioneorg/mpeg, 2007.

[CR86] E.R. Cortes-Ramos. Metastability and the synchronization failure:

a theoretical and experimental analysis. PhD thesis, Tufts Univer-

sity, Dept. of Electrical Engineering, January 1986.

[CSC08] Kuei-Chung Chang, Jih-Sheng Shen, and Tien-Fu Chen. Tailoring

circuit-switched network-on-chip to application-specific system-on-

chip by two optimization schemes. ACM Trans. Des. Autom. Elec-

tron. Syst., 13(1):1–31, 2008.

[Dal92] W. J. Dally. Virtual-channel flow control. IEEE Transactions on

Parallel and Distributed Systems, 3(2):194–204, March 1992.

[DB98] Rihard C. Dorf and Robert H. Bishop. Modern Control Systems,

chapter 13, pages 753–786. Addison Wesley Longman InC., 1998.

[DBG+03] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide

Bertozzi, and Luca Benini. Xpipes: a latency insensitive parame-

terized network-on-chip architecture for multi-processor SoCs. In

BIBLIOGRAPHY 157

ICCD ’03: Proceedings of the 21st International Conference on

Computer Design, page 536, 2003.

[dig05] Digital radio mondiale (drm) system specification. Technical re-

port, European Telecommunication Standard Institute (ETSI),

Sophia Antipolis, France, 2005.

[DKS89] Alan Demers, Srinivasan Keshavt, and Scott Shenker. Analysis

and simulation of a fair queueing algorithm. Computer Communi-

cations Review, 1989.

[DT01] William J. Dally and Brian Towles. Route packets, not wires: On-

chip inter connection networks. DAC’01. Proceedings of Design

Automation Conference, 2001.

[DT04] W. J. Dally and B. Towles. Principles and Practices of intercon-

nection networks, chapter 8, pages 221–230. Morgan Kaufmann,

2004.

[DYL02] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnec-

tion Networks An Engineering Approach, chapter 1, pages 12–24.

Morgan Kaufmann Publishers Inc. 2002.

[DYN03] Jos Duato, Sudhakar Yalamanchili, and Lionel M. Ni. Intercon-

nection Networks An Engineering Approach. Morgan Kaufmann,

2003.

[ESP06] Noel Eisley, Vassos Soteriou, and Li-Shiuan Peh. High-level power

analysis for multi-core chips. In CASES ’06: Proceedings of the

2006 international conference on Compilers, architecture and syn-

thesis for embedded systems, pages 389–400, 2006.

[FBF03] Tomaz Felicijan, John W. Bainbridge, and Steve B. Furber. An

asynchronous low latency arbiter for quality of service (QoS) ap-

plications. In Proceedings of the 15th International Conference on

Microelectronics (ICM’03), Cairo, Egypt, pages 123–126, Decem-

ber 2003.

BIBLIOGRAPHY 158

[Fel04] Tomaz Felicijan. Quality-of-Service (QoS) for Asynchronous On-

Chip Networks. PhD thesis, Dept. of Computer Science, University

of Manchester, 2004.

[FT07] Steve B. Furber and Steve Temple. Neural systems engineering.

Journal of The Royal Society Interface, 4(13):193–206, 2007.

[FTB06] Steve B. Furber, Steve Temple, and Andrew D. Brown. On-chip

and inter-chip networks for modelling large-scale neural systems.

ISBN 0-7803-9390-2, May 2006.

[GDR05] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthe-

real network on chip: Concepts, architectures, and implementa-

tions. IEEE Design and Test of Computers, 22(5):414–421, Sept-

Oct 2005.

[Gin03] Ran Ginosar. Fourteen ways to fool your synchronizer. In Inter-

national Symposium on Asynchronous Circuits and Systems, pages

89–96, May 2003.

[GK80] M. Gerla and L. Kleinrock. Flow control: A comparative survey. In

IEEE Transactions on Communications COM-28, pages 553-574,

1980.

[GK08] B. Grot and S.W. Keckler. Scalable on-chip interconnect topolo-

gies. CMP-MSI: 2nd Workshop on Chip Multiprocessor Mem- ory

Systems and Interconnects, In conjunction with the (ISCA-35),

35th International Symposium on Computer Architecture, 2008.

[GM09] Daniel Greenfield and Simon Moore. Implications of electronics

technology trends for algorithm design. The Computer Journal,

April 2009.

[gra01] GNF graph. http://www.cs.washington.edu/research/projects,

2001.

[Hea67] Martin Healey. Principles of Automatic Control. The English uni-

versities press LTD, 1967.

BIBLIOGRAPHY 159

[Hen96] Ngoh Lek Heng. A direct atm multicast service with quality-of-

service guarantees. Multimedia Computing and Systems, Interna-

tional Conference on, 1996.

[HLR01] Brian R. Hunt, Ronald L. Lipsman, and Jonathan M. Rosenberg. A

guide to MATLAB: for beginners and experienced users. Cambridge

University Press, 2001.

[How09] Paul G. Howard. Next generation intel microarchitecture nehalem.

Technical report, Microway Inc., 2009.

[itr07] International technology roadmap for semiconductors. Technical

report, http://public.itrs.net, 2007.

[KBC94] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-based

flow control for atm networks: credit update protocol, adaptive

credit allocation and statistical multiplexing. In SIGCOMM ’94:

Proceedings of the conference on Communications architectures,

protocols and applications, pages 101–114, 1994.

[Kel97] Frank Kelly. Charging and rate control for elastic traffic. European

Transactions on Telecommunications, 1997.

[KFJ+03] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M.

Tullsen. A multi-core approach to addressing the energycomplex-

ity problem in microprocessors. In In WCED 2003:Workshop on

Complexity-Effective Design, 2003.

[Kin07] David J. Kinniment. Synchronization and Arbitration in Digital

Systems, chapter 11. John Wiley & Sons, Ltd, 2007.

[KKLL92] Yannis A. Korilis, Yannis A. Korilis, Aurel A. Lazar, and Aurel A.

Lazar. Why is flow control hard: Optimality, fairness, partial and

delayed information. In In Proc. 2nd ORSA Telecommunications

Conference, 1992.

[KM95] H.T. Kung and Robert Morris. Credit-based flow control for atm

networks. IEEE Network Magazine, March 1995.

BIBLIOGRAPHY 160

[KMT98] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for com-

munication networks: Shadow prices, proportional fairness and sta-

bility. The Journal of the Operational Research Society, 49(3):237–

252, 1998.

[KND01] F. Karim, A. Nguyen, and S. Dey. On-chip communication ar-

chitecture for oc-768 network processors. In Proceedings of 38th

Design Automation Conference, pages 678–683, June 2001.

[KPJ08] Amit Kumar, Li-Shiuan Peh, and Niraj K. Jha. Token flow control.

In Proceedings of 41st International Symposium on Microarchitec-

ture (MICRO), November 2008.

[Kwi89] M. Z. Kwiatkowska. Survey of fairness notions. Inf. Softw. Tech-

nol., 31(7):371–386, 1989.

[LJ04] Zhonghai Lu and Axel Jantsch. Flit admission in on-chip

wormhole-switched networks with virtual channels. In Proceedings

of the International Symposium on System-on-Chip, pages 21–24.

Tampere, Finland, 2004.

[LL95] Naomi Ehrich Leonard and William S. Levine. Using MATLAB

to analyze and design control systems, chapter 3. The benjam-

in/Cummings Publishing Company Inc., 1995.

[MB98] Wolfgang Maass and Christopher M. Bishop. Pulsed Neural Net-

works. MIT Press, Cambridge, Massachusetts, 1998.

[MPG07] I. Miro-Panades and A. Greiner. Bi-synchronous FIFO for syn-

chronous ciruit communication well suited for network-on-chip in

gals architectures. In first International Symposium on Network-

on-chip, pages 83–94, 2007.

[MR99] L. Massouli and J. Roberts. Bandwidth sharing: Objectives and al-

gorithms. In IEEE/ACM Transactions on Networking, pages 1395–

1403, 1999.

[MTRM02] Robert Mullins, George Taylor, Peter Robinson, and Simon Moore.

Point to point GALS interconnect. In ASYNC ’02: Proceedings

BIBLIOGRAPHY 161

of the 8th International Symposium on Asynchronus Circuits and

Systems, 2002.

[ODH+07] J. D. Owens, W. J. Dally, R. Ho, D.N. Jayasimha, S.W. Keck-

ler, and L. Peh. Research challenges for on-chip interconnection

networks. IEEE Micro, 27(5):96108, 2007.

[OKS+07] Heikki Orsila, Tero Kangas, Erno Salminen, Timo D. Hämäläinen,

and Marko Hännikäinen. Automated memory-aware application

distribution for multi-processor system-on-chips. J. Syst. Archit.,

53(11):795–815, 2007.

[PBF+08] Luis A. Plana, John Bainbridge, Steve B. Furber, Sean Salisbury,

Yebin Shi, and Jian Wu. An on-chip and inter-chip communications

network for the SpiNNaker massively-parallel neural net simulator.

In the Second ACM/IEEE International Symposium on Networks-

on-Chip, pages 215 – 216, April 2008.

[PBG+99] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato,

and C. Izu. Adaptive bubble router: A design to improve perfor-

mance in torus networks. In ICPP ’99: Proceedings of the 1999

International Conference on Parallel Processing, 1999.

[PFT+07] Luis A. Plana, Steve B. Furber, Steve Temple, Mukaram Khan,

Yebin Shi, Jian Wu, and Shufan Yang. A GALS infrastructure

for a massively parallel multiprocessor. IEEE Design & Test of

Computers, 24(5):454–463, Sept. 2007.

[PK03] Taher Abbasi Pran Kurup. Logic synthesis using Synopsys, chap-

ter 1, pages 9–13. Lluwer Academic Publishers, 2003.

[Rau08] Gerard K. Rauwerda. Multi-Standard Adaptive Wireless Commu-

nication Receivers. PhD thesis, University of Twente, Enschede,

The Netherlands, January 2008.

[RDGP+05] Andrei Rădulescu, John Dielissen, Santiago González Pestana,

Om Prakash Gangwal, Edwin Rijpkema, Paul Wielage, and Kees

BIBLIOGRAPHY 162

Goossens. An efficient on-chip network interface offering guaran-

teed services, shared-memory abstraction, and flexible network pro-

gramming. IEEE Transactions on CAD of Integrated Circuits and

Systems, 24(1):4–17, January 2005.

[RGR+03] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meer-

bergen, P. Wielage, and E. Waterlander. Trade-offs in the design

of a router with both guaranteed and best-effort services for net-

works on chip. IEE Proceedings: Computers and Digital Tech-

niques, 150(5):294–302, September 2003.

[RRA09] Dobkin Rostislav (Reuven), Ginosar Ran, and Kolodny Avinoam.

Qnoc asynchronous router. Integr. VLSI J., 42(2):103–115, 2009.

[RWdRSB97] Fred Rieke, David Warland, Rob R. de Ruytervan Steveninck, and

William Bialek. Spikes: Exploring the Neural Code. MIT Press,

1997. Paper back edition 1999.

[SDN+06] Frits Steenhof, Harry Duque, Björn Nilsson, Kees Goossens, and

Rafael Peset Llopis. Networks on chips for high-end consumer-

electronics tv system architectures. In DATE ’06: Proceedings of

the conference on Design, automation and test in Europe, pages

148–153,2006.

[SF01] Jens Sparsø and Steve B. Furber, editors. Principles of Asyn-

chronous Circuit Design: A Systems Perspective. Kluwer Academic

Publisher, 2001.

[Sil07] Silistix Ltd. Building and Analyzing On-Chip Networks using

CHAINarchitect. Technical Report V1.0, http://www.silistix.com,

DEC 2007.

[Sil08] Silistix Ltd. Chain network adapter user guide. Technical Report

V1.1.2, AUG 2008.

[SM08] Sun Microsystems Inc. Opensparctm t2 system-on-chip (soc) mi-

croarchitecture specification. Technical report, 2008.

[SMR02] Eung S. Shin, Vincent J. Mooney, III, and George F. Riley. Round-

robin arbiter design and generation. In ISSS ’02: Proceedings of the

BIBLIOGRAPHY 163

15th international symposium on System Synthesis, pages 243–248,

2002.

[SNB+09] Subhash Saini, Andrey Naraikin, Rupak Biswas, David Barkai, and

Timothy Sandstrom. Early performance evaluation of a ”nehalem”

cluster using scientific and engineering applications. In SC ’09:

Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, pages 1–12, 2009.

[SP08] The SpiNNaker Project. Spinnaker - a chip multiprocessor for

neural network simulation. Technical report, The University of

Manchester, Dec 2008.

[Syn00] Synopsys Inc. Synopsys vcs/vcsi tutorial, ug108 (v1.0). Technical

report, 2000.

[Syn08] Synopsys Inc. Design compiler command-line interface guide, ver-

sion b-2008.09. Technical report, 2008.

[Syn09] Synopsys Inc. Designware ip.

http://www.synopsys.com/ip/Pages/default.aspx, 2009.

[Tay00] Michael Taylor. The raw prototype design document, 2000.

[TJ03] Hannu Tenhunen and Axel Jantsch. Networks on Chip, pages 61–

69. Lluwer Academic Publishers, 2003.

[TKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,

Fae Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-

Wook Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski,

Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Ama-

rasinghe, and Anant Agarwal. The raw microprocessor: A compu-

tational fabric for software circuits and general-purpose programs.

IEEE Micro, 22(2):25–35, 2002.

[TMG+05] Leonel Tedesco, Aline Mello, Diego Garibotti, Ney Calazans, and

Fernando Moraes. Traffic generation and performance evaluation

for mesh-based nocs. In SBCCI ’05: Proceedings of the 18th annual

symposium on Integrated circuits and system design, pages 184–

189, 2005.

BIBLIOGRAPHY 164

[Tra02] Thomas P. Trappenberg. Fundamentals of Computational Neuro-

science. Oxford University Press, New York, 2002.

[VBC05] Praveen Vellanki, Nilanjan Banerjee, and Karam S. Chatha.

Quality-of-service and error control techniques for mesh-based

network-on-chip architectures. Integration, 38(3):353–382, 2005.

[Ver88] Tom Verhoeff. Delay-insensitive codes—an overview. 3(1):1–8,

1988.

[VGGG94] Harrick M. Vin, Pawan Goyal, Alok Goyal, and Anshuman Goyal.

A statistical admission control algorithm for multimedia servers.

In In Proceedings of the ACM Multimedia’94, pages 33–40, 1994.

[WCGK07] Isask’har Walter, Israel Cidon, Ran Ginosar, and Avinoam

Kolodny. Access regulation to hot-modules in wormhole nocs. In

NOCS ’07: Proceedings of the First International Symposium on

Networks-on-Chip, pages 137–148,, 2007.

[WD03] D. Wiklund and L. Dake. Socbus: switched network on chip for

hard real time embedded systems. In Proceedings of the Interna-

tional Parallel and Distributed Processing Symposium (IPDPS’03),

2003.

[Wea08] David L Weaver. Opensparc internals. Sun Microsystems, Inc,

2008.

[WGH+07] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao,

Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao,

John F. Brown III, and Anant Agarwal. On-chip interconnection

architecture of the tile processor. IEEE Micro, 27(5):15–31, 2007.

[Wol04] Wayne Wolf. The future of multiprocessor systems-on-chips. In

DAC, pages 681–685, 2004.

[Zim80] H. Zimmermann. Osi reference model - the ISO model of archi-

tecture for open systems interconnection. IEEE Transactions on

Communications, 28(4):425–432, 1980.

