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1. INTRODUCTION

“Attention, the Universel! By kingdoms, right wheel!” This prophetic phrase represents

the first telegraph message on record. Samuel F. B. Morse sent it over a 16 km line in

1838. Thus a new era was born: the era of electrical communication.

Now, over a century and a half later, communication engineering has advanced to

the point that earthbound TV viewers watch astronauts working in space. Telephone,

radio, and TV are integral parts of our life. Long-distance circuits span the globe car-

rying text, data, voice, and images. Computers talk to computers via intercontinental

networks. Wireless personal communication devices keep us connected wherever we

go. Certainly great strides have been made since the days of Morse.

This thesis describes the research work that has been done in order to improve the

power efficiency of the Viterbi decoder in digital communication systems. In particular,

a novel adaptive Viterbi decoder is presented plus, a lower power Path Metric Unit

(PMU) and Survivor Memory Unit (SMU) designs that have been developed. These

are discussed together with the results from testing them.

1.1 Digital communication and coding

It is remarkable that the earliest form of electrical communication, namely telegraphy

developed by Samuel Morse in 1837, was a digital communication system. Although

Morse was responsible for the development of the first electrical digital communication

system, the beginnings of what we now regard as modern digital communications sys-

tem from the work of Nyquist in 1924. His studies led him to conclude that for binary

data transmission (transmitting one of two numbers, 0 or 1) over a noiseless channel
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of bandwidth W Hertz, the maximum pulse rate is 2W pulses per second without any

cross symbol interference.

Hartley extended this work in 1928 to non-binary data transmission, while Kol-

mogorov and Wiener independently in 1939 and 1942, respectively, solved the problem

of optimally estimating a signal in the presence of additive noise. In 1948 Claude

Shannon established the mathematical foundation for information transmission and

derived fundamental limits for digital communication systems. His work can arguably

be considered as the true beginning of the information age.

Another important contribution to the field of digital communication is the work

of Kotelnikov in 1947, who provided a coherent analysis and consequently a principle

for optimal design of such systems. His work was later extended by Wozencraft and

Jacobs in 1965, leading to the principles used to design the communication systems of

today.

The work of Hamming in 1950 on error control coding to combat detrimental effects

of channel noise completes the classic contributions to modern digital communication

systems.

Of more modern contributions, the Viterbi decoding algorithm for trellis codes,

proposed by Andrew Viterbi in 1967 is now found in almost all wireless communication

systems. Efficient error control decoding makes mobile communication systems what

they are today. The latest significant leap forward for improvements of communications

systems was in 1993 with the discovery of the “turbo principle” by Berrou and Glavieux.

The special turbo codes developed based on these principles can be efficiently decoded

using a very powerful iterative signal processing approach. The resulting coding system

performs very close to fundamental limits for a range of different channels. In practical

terms, this leads to the most efficient use of bandwidth and power, which is very

important for portable wireless devices.

In practice, the subject of digital communications involves the transmission of in-

formation in digital form from a source that generates the information to one or more
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destinations. In particular, it includes the concepts of source coding including entropy

and rate-distortion, the characterization of communication signals and systems, opti-

mal receivers, carrier and symbol synchronization, channel capacity and coding, block

and convolutional codes, signal design for band-limited channels, adaptive equalization,

etc.

Theoretically, communication theory consists of two major domains: information

theory and coding theory.

1.1.1 Information theory

Information theory is the study of how the amount of content in a stream of data

may be evaluated, and how fast it may in principle be shipped from place to place

by a given communication channel [3]. The channel may need the data in a specific

form and may corrupt it by randomly introducing errors. The subject is thus built

on discrete probability theory as its mathematical base. It is somewhat high level in

hierarchy, giving bounds and existence proofs without always any explicit means of

implementation.

When discussing information theory it is hard not to mention Claude Elwood Shan-

non (April 30, 1916 - February 24, 2001), an American electrical engineer and mathe-

matician. He has been called “the father of information theory”, and was the founder

of practical digital circuit design theory. In 1948 Shannon published A Mathematical

Theory of Communication in two parts in the July and October numbers of the Bell

System Technical Journal. This work focused on the problem of how to best encode

the information a sender wants to transmit. In this fundamental work he used tools in

probability theory, developed by Norbert Wiener, which were in their nascent stages of

being applied to communication theory at that time. Shannon developed information

entropy as a measure for the uncertainty in a message while essentially inventing what

is now known as the dominant form of “information theory”.

One of the most fundamental results of this theory is Shannon’s source coding
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theorem, which establishes that on average the number of bits needed to represent a

random variable X which is given by the entropy H(X) and is defined as [4]:

H(X) = −
∑
x∈X

p(x)logp(x) (1.1)

where x and p(x) represent the possible values of X and their probability, respectively.

This equation plays a central role in information theory as measurements of infor-

mation, choice and uncertainty, reflecting the real life fact that an unusual message

contains more information than a normal one and thus may be more difficult for us

to understand. Therefore, more bits are required in order to describe it more clearly

than a normal message. Mackay [3] summarizes this theorem as: “ N independent

identically-distributed (i.i.d.) random variables each with entropy H(X) can be com-

pressed into more than NH(X) bits with negligible risk of information loss, as N tends

to infinity; but conversely, if they are compressed into fewer than NH(X) bits it is vir-

tually certain that information will be lost.” When applying the source coding theorem

to communications over a noisy channel, Shannon invented the noisy channel coding

theorem. This states that reliable communication is possible over noisy channels pro-

vided that the rate of communication is below a certain threshold called the channel

capacity. This is also called the Shannon limit or Shannon capacity [4].

Considering a simple communications process over a discrete channel, as shown in

Fig. 1.1: Simple communication system.
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Figure 1.1, here X represents the space of all possible values of the messages received,

and Y similarly is the space of all possible values of messages transmitted during a

unit time over this channel. The possible rate of information transmission, R, would

be obtained by subtracting the average rate of conditional entropy, Hy(x), from the

entropy of the source, H(x) [3].

R = H(x)−Hy(x) (1.2)

The conditional entropy Hy(x) measures the average ambiguity of the received signal.

The capacity C of a noisy channel is the maximum possible rate of transmission, i.e.,

the rate when the source is properly matched to the channel [3]:

C = MAX(H(x)−Hy(x)) (1.3)

The theorem formally states that for a source entropy of H, “if H ≤ C there exists a

coding system such that the output of the source can be transmitted over the channel

with an arbitrarily small frequency of errors (or an arbitrarily small equivocation). If

H > C it is possible to encode the source so that the equivocation is less than H−C + ε

where ε is arbitrarily small. There is no method of encoding which gives an equivocation

less than H − C” [4].

This Shannon’s information theory and his theorems have large impacts on the

modern communication world:

1. They suggest a methodology to quantize a piece of information;

2. They describe the correlation between the uncertainty of information and its

transmission speed;

3. They indicate the maximum transmission rate for a noisy channel at a certain

noise level.
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Nowadays, Shannon’s limit becomes the ideal objective for most designers of the com-

munication systems. Coding techniques are essential for a communication system to

achieve such target.

1.1.2 Coding theory

Coding theory is more practical compared with other theories in the information theory

domain. It is primarily concerned with finding the methods, called codes, for increasing

the efficiency and accuracy of data communication over a noisy channel as close to

the theoretical limit that Shannon proved as possible. These codes can be mainly

subdivided into source coding (Entropy encoding) and channel coding (Error correction

coding) [5]. A third class of codes are cryptographic ciphers [6], which implement

concepts from coding theory and information theory in cryptography and cryptanalysis.

This thesis is only concerned with channel coding, as it is widely used to improve the

reliability of communication on digital channels y detecting and correcting errors [5].

Although there are many forms of coding schemes, they all have two basic features in

common [7]. One is the use of redundancy. Coded digital messages always contain extra

or redundant symbols. In fact, these “redundant” symbols are not really redundant

as they contain the information to accentuate the uniqueness of each message so that

the channel disturbance is unlikely to destroy the message by corrupting enough of

the symbols in it. The second feature is noise averaging [7]. This is achieved by

making the redundant symbols depend on a span of several information symbols. This

means the redundant symbols not only make the sent message more distinctive but also

contain the information of the transmitted message itself. Therefore, each symbol of

the message actually contains less transmitted information and thus causes less damage

when it is corrupted by noise.

Two kinds of codes are mainly used in modern communication: block codes and

convolutional codes [5] [7]. This classification is based on the presence or absence of

memory in the encoders for these two codes. An encoder for a block code is memoryless
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as it maps a k -symbol input sequence into an n-symbol code words sequence. Therefore,

each n-symbol output only depends upon a specific input k -symbol block and the

encoder has no “memory” of other previous input symbols. For the block codes, there

is no correlation between the encoded output code words. In contrast, the output of

encoding a convolutional code is determined by the current input and a span v of

the preceding input symbols. Each input is memorized by the encoder for a certain

amount of the time span so that it affects not only the current output but also the

next v output code words.

Although, codes can also be classified as linear or nonlinear, almost all the coding

schemes used in practical applications are linear codes due to their significantly simpli-

fied mathematical representations. For this reason, the codes mentioned in this thesis

are all linear unless otherwise specified.

1. Block codes. A block code is normally specified by values of parameters n, k,

R = k/n, and dmin. These parameters indicate that the encoder encodes each k

symbols input block into a n symbols output block. Therefore, the code has a

rate of R equal to k/n. The minimum of Hammming distance, d, of the code is

defined as dmin.

dmin = min(d) (1.4)

The Hammming distance refers to the number of positions in which any two

binary sequences differ from each other [7].

There are many types within linear block codes, like parity codes, Repetition

codes [3], BCH (Bose, Ray-Chaudhuri, Hocquenghem) code [3], Hamming code

[8], Reed Solomon codes [9], Reed Muller codes [5], or Perfect codes [10], etc.

Parity codes (n, n − 1) were used in the early days. It was formed by using a

single overall parity check bit after the information sequence. For instance, a
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code word of a (4,3) parity code can be defined as a vector A, where

A = (a1, a2, a3, a1 + a2 + a3) (1.5)

The first three symbols in the vector, a1, a3, and a3, are the binary symbols

containing information; the last symbol is the parity check symbol, which is

the modulo-2 addition of the first three information symbols. As shown in this

example, each code word in a block code can be divided into two portions. The

first k symbols portion is always identical to the information sequence to be

transmitted. Each of the n − k symbols in the second portion is computed by

taking a linear combination of a predetermined subset of information symbols.

Parity checking is not very robust, since if the number of bits changed is even,

the check bit will be valid and the error will not be detected. Moreover, parity

does not indicate which bit contained the error, even when it can detect it. The

data must be discarded entirely, and re-transmitted from scratch. On a noisy

transmission medium a successful transmission could take a long time, or even

never occur. Parity does have the advantage, however, that it is the best possible

code that uses only a single bit.

In the 1940s Bell used a slightly more sophisticated code known as the two-out-of-

five code [3]. This code ensured that every block of five bits (known as a 5-block)

had exactly two 1s. The computer could tell if there was an error if in its input

there were not exactly two 1s in each block. Two-of-five was still only able to

detect single bits; if one bit flipped to a 1 and another to a 0 in the same block,

the two-of-five rule remained true and the error would not be discovered.

Another code in use at the time was to repeat every data bit several times in

order to ensure that it got through [3]. For instance, if the data bit to be sent

was a 1, an n = 3 repetition code would send “111”. If the three bits received

were not identical, an error had occurred. If the channel noise is low, only one
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bit will change out of three. Therefore, 001, 010, and 100 each correspond to a

0, while 110, 101, and 011 correspond to a 1, the majority identical bits within

these three indicating what the original bit was. A code with this ability to

reconstruct the original message in the presence of errors is known as an error-

correcting code [10]. Although the repetition code is virtually able to correct and

detect any number of errors, if the number of duplicate bits is large enough, it

is extremely inefficient, as the throughput drops drastically when increasing the

number of times each bit is duplicated in order to detect and correct more errors.

To identify errors, the transmitted bits just need to be arranged such that dif-

ferent incorrect bits produce different error results. Instead of repeating each

transmitted data bit, the extra bits can be more efficient so that it needs less

redundant bits.

During the 1940s Richard Hamming developed several encoding schemes that

were dramatic improvements on existing codes; this is now known as Hamming

Code [8] [3]. The key to his invention was to have the parity bits overlap, such

that they managed to check each other as well as the data. This was a major

milestone in coding theory, after which coding schemes become more complex

and powerful than before. The ideal of “overlapping” also becomes the major

principle of most coding schemes today [7]. A Hamming code is an (n, k) block

code with q ≥ 3 check symbols and

n = 2q − 1 k = n− q (1.6)

The code rate R is

R =
k

n
= 1− q

2q − 1
(1.7)

The minimum distance, dmin, of a Hamming code is independent of q and fixed
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at

dmin = 3 (1.8)

So it can be used for single-error correction or double-error detection [7].

Due to the “overlapping” feature, codes becomes more complex. Polynomials are

thus introduced in representing these codes [7]. An (n, k) code word of the form

(a0, a1, · · · , an−1) (1.9)

can now be represented as a polynomial in x,

f(x) = a0 + a1x + · · ·+ an−1x
n−1 (1.10)

where a0, a1, · · · , an−1 are the coefficients.

The BCH (Bose, Ray-Chaudhuri, Hocquenghem) codes are a generalization of

Hamming codes which allow multiple error correction [3]. They were first dis-

covered by A. Hocquenghem in 1959 and independently by R. C. Bose and D.

K. Ray-Chaudhuri in 1960. A t-error-correcting BCH code has the following

parameters:

n = 2m − 1, n− k ≤ mt, dmin ≥ 2t + 1, (1.11)

This BCH code is able to correct t and detect 2t errors.

Reed Solomon (RS) codes are a subset of BCH codes [9]. The code was invented

in 1960 by I. S. Reed and Gustave Solomon. It works by first constructing

a polynomial from the data symbols to be transmitted and then sending an

over sampled plot of the polynomial instead of the original symbols themselves.

Because of the redundant information contained in the over sampled data, it is

possible to reconstruct the original polynomial and thus the data symbols even
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in the face of transmission errors, up to a certain degree of error [7]. Today they

are used in disk drives, CDs, telecommunication and digital broadcast protocols.

Before discovering RS codes, I. S. Reed also contributed in discovering the Reed-

Muller (RM) codes, together with D. E. Muller. One of the important properties

of RM codes is that they form an infinite family of codes, and larger RM codes

can be constructed from smaller ones. RM codes were efficient and relatively

easy to decode at the time, especially the first-order codes. In 1972, a RM code

was used by Mariner 9 to transmit black and white photographs of Mars [11].

2. Convolutional Codes. Convolutional coding technique was first introduced by

Elias in 1955 [12]. A binary convolutional encoder is normally represented by the

values of three parameters: n, m, and k. The values of n and m indicates that

each n-bit input yields a m-bit output so that the code has a rate of R, where

R = n/m (1.12)

A convolutional encoder is considered as a finite-state machine. The parameter

k is called constraint length which equals the shift register stages of the encoder.

The principle of “overlap” is extensively used in convolutional codes. In a rate 1/2

convolutional code, for example, each input is “overlapped” with several previous

inputs to produce each pair of encoded symbols. It is not able to divide coded

sequence into blocks as each coded symbol pair is interlocked with its neighbours.

This provides convolutional codes with great distance and error correction fea-

tures. The Voyager program uses a convolutional code with a constraint length

k of 7 and a rate R of 1/2 [13]. Longer constraint lengths produce more powerful

codes, but the complexity of decoding operations increases exponentially with

constraint length, limiting these more powerful codes to deep space missions.

Mars Pathfinder, Mars Exploration Rover and the Cassini probe to Saturn use a

k of 15 and a rate of 1/6; this code performs approximately 2 dB better than the
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simpler k=7 code at an additional cost of 256 times in the decoding complexity.

3. Turbo Codes. Turbo codes are a new class of iterated short convolutional

codes [14]. The method was introduced by Berrou, Glavieux, and Thitimajshima

in their 1993 paper: “Near Shannon Limit error-correcting coding and decoding:

Turbo-codes” [14]. Unlike convolutional codes, turbo codes can be systematic so

that the message and parity bits are separate. The parity bits from the turbo

code encoder are generated in different ways. For instance, a rate 1/3 turbo code

encoder has two sets of parity bits. The first set is encoded with the original

message sequence; however the second uses the sequence randomly permuted

from the original message.

Two maximum a posterior (MAP) decoders can be used to decode a 1/3 turbo

code with the two sets of parity bits. The first decoder estimates the errors in the

received message and corrects some of them. The output from the first decoder

is then permuted to match the sequence used to encode the second set of parity

bits. The new sequence together with the received second set of parity bits is

used to identify errors. Because of this new sequence, some of the errors which

cannot be corrected by the first decoder can now be corrected. After the second

decoder, the received data has been actually decoded twice. This is referred to

as one iteration of the turbo code decoding process. By repeating the described

decoding process, the number of errors in the received data reduces every time.

In fact, for the 1/2 rate turbo code in [14], a bit-error-rate (BER) of 10−5 at

a signal-to-noise (Eb/No = 0.7dB) is achieved after 18 iterations. This result

closely approaches the limit defined by Shannon’s theorem. However, the main

drawbacks of turbo codes are the relative high decoding complexity and high

latency [14].
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1.2 Decoding Convolutional Codes

Convolutional coding techniques show significant error protection features over block

codes. The decoding techniques for convolutional codes, thus has become the subject

of much research interest. There are three basic methods for decoding convolutional

codes: maximum-likelihood decoding of Viterbi algorithm [15], sequential decoding [16],

and syndrome decoding [7].

The Viterbi decoding algorithm was first introduced by A. J. Viterbi in 1971 [17].

By estimating the most-likely received sequence, the Viterbi algorithm achieves its op-

timum performance in BER. Since the most-likely received sequence is a relative mea-

surement, then to achieve the most optimum performance, all possible code words need

to be compared. This requires extensive hardware computation and storage. Much re-

search work is therefore concerned with minimizing the computation complexity of the

Viterbi decoding while increasing its performance.

Shortly after Elias discovered convolutional codes, Wozencraft [16] devised a de-

coding technique which is called “sequential decoding”. It is a trial-and-error search

decoding technique that provides performance that can meet or exceed that of Viterbi

decoders. The Fano algorithm [18] and stack sequential decoding algorithm [19] are

two major sequential decoding techniques. The main difference between the Viterbi

algorithm and a sequential decoding algorithm is that the Viterbi algorithm is a “one-

direction” decoding process which computes all paths of code words, whereas the se-

quential decoding only retains a minimum number of code words for a path and needs

to “go back” if the path is not correct [18] [19]. Basically, a sequential decoder performs

the search in a sequential manner always operating only on a single path. Each time

the decoder moves forward a “trial” decision is made. If an incorrect decision is made,

subsequent extensions of the path will be wrong. When the decoder recognizes this

situation, it searches back and tries alternate paths until it finally decodes successfully.

The drawback thus is the substantial amount of computation required to try alterna-
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tive paths and recover the correct one. A major research topic, therefore, is to find

the optimum parameters to allow quick recognition of an incorrect decision and quick

recovery of the correct paths in order to minimize the computation problem [7].

Syndrome decoding sacrifices BER performance in exchange for simplified compu-

tation. One widely used syndrome decoding technique is table look-up feedback decod-

ing [7]. Instead of estimating the correct data, a syndrome decoder seeks the errors

in the received sequence. It calculates the syndrome which only contains the informa-

tion of the error patterns in the received data and uses it against the pre-computed

syndrome in a look-up table. Thus the corresponding error pattern can be identified

and the correct data can then be recovered. A syndrome decoder using a look-up table

requires simple hardware implementation. However, the drawback is the BER per-

formance degradation. Another major type of syndrome decoding technique is called

“threshold decoding”. It was discovered by Massey [20] and can achieve relatively higher

BER performance than table look-up feedback decoding while still requiring a simple

implementation.

1.3 Channel Coding Applications

There are many applications using channel encoding. For example, a typical music

CD uses a Reed-Solomon code to correct for scratches and dust. In this application

the transmission channel is the CD read out system. Mobile phones also use powerful

coding techniques to correct for the fading and noise of high frequency radio transmis-

sion. From data modems telephone transmission to NASA space programs, all of them

employ powerful channel coding to combat noise.

1.3.1 Channel coding application considerations

The aim of channel coding is to find codes which transmit quickly, contain many valid

code words and can correct or at least detect many errors. These aims are mutually
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exclusive however, due to the redundancy and channel capacity correlation illustrated

in Shannon’s theorems. Therefore, different codes are optimal for different applications.

The required properties of a code mainly depend on the probability of errors occurring

during transmission. Therefore, to examine the source and properties of errors in a

target implementation is essential for a coding application.

In a typical CD, the impairment is mainly dust or scratches and errors are mainly

bursty [21]. Thus codes are used in an interleaved manner. For the channel with high

continuous error probability, convolutional codes are widely used. Deep space commu-

nications are limited by the thermal noise of the receiver which is more of a continuous

nature than a bursty nature. Concatenated RS/Viterbi-decoded convolutional cod-

ing were and are used on the Mars Pathfinder, Galileo, Mars Exploration Rover and

Cassini missions to provide optimum BER performance [22]. The concatenated RS-

Convolutional codes are also extensively implemented in standard satellite digital video

broadcasting (DVB) systems [23]. Mobile phones are troubled by rapid fading. The

high frequencies used can cause rapid fading of the signal even if the receiver is moved a

few inches. Again convolutional codes are used to combat fading although it normally

requires shorter constraint lengths. In the future, NASA missions will use Turbo Codes

as standard to further enhance the quality of deep space communications [22].

For correcting continuous errors, block codes can also be used. The narrowband

modems are limited by the noise present in the telephone network and is also modelled

better as a continuous disturbance. Block codes are used instead of convolutional codes

however, as it requires simpler implementations [7].

1.3.2 Low power applications

The most widely used technique for correcting errors in wireless systems is Viterbi

decoded convolutional codes. In different forms, it is used in everything from V.3x-

series modems, GSM, the voice channels of 3G and satellite DVB. As the market

expands, more and more features, such as watching TV, receiving DVB etc., are being
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put into handheld devices. The leading standard for mobile TV, DVB-H (Digital

Video Broadcasting - Handhelds), has emerged from Nokia and been standardized

by the European standards group ETSI, as EN 302,304, etc. This requires powerful

error-correction codes be implemented. Viterbi decoder implementations are complex

and dissipate a large amount of power. With the proliferation of battery powered

mobile phones, power dissipation, along with speed and area, is a major concern in the

decoder design. The requirement for lower power dissipation and smaller complexity

has encouraged researchers to implement various power reduction techniques to decoder

designs in order to improve their power efficiency.

1.4 Objectives and summary of this work

The main target of this work is to develop new Viterbi decoder designs for minimizing

computation complexity and power consumption. This work examines the decoding

process of the Viterbi algorithm, the architecture of the decoder, and the implementa-

tions of its basic functions. This enables the design problems, leading to inefficiencies

and wasting the power consumption of the decoder, to be discovered. A variety of

low power design techniques are described and applied to the decoder design in order

to improve its power efficiency. The new designs are tested by simulations on both

software and hardware. The results give a clear view of the improvement of the modi-

fications and enable a novel general methodology for significantly reducing complexity

of decoding convolutional codes to be proposed.

1.5 Contributions of this work

The following results have been achieved in this research:

1. By analyzing the Viterbi decoding process, the error-independence property of

the Viterbi algorithm is identified as one of the major problems which affects
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the power efficiency of the Viterbi decoder design at a high level. More specifi-

cally, the Viterbi decoding process is error-independent which means the decoding

operation is applied on each one of the received code words without any consid-

eration of their error probabilities. In the situation when a block of received data

contains no error, the decoder power is wasted in trying to correct errors in the se-

quence. Therefore, to improve the power efficiency of a Viterbi decoder, a general

methodology is proposed which transforms the decoder from error-independent

to error-dependent.

2. To decode error-dependently means the decoder should run in an adaptive man-

ner. There are some existing adaptive decoding methods for convolutional codes.

Most of the adaptability is achieved by approximating the calculation of the like-

lihood measurement. In this work, a new adaptive algorithm is proposed which

can detect the sequence which has no error prior to the decoding. Thus the

Viterbi decoding operation can be avoided to save power. This adaptive tech-

nique has been implemented on a FPGA and demonstrates a significant power

saving at low noise levels.

3. In a Viterbi decoder, the Survivor Memory Unit (SMU) is a vital part of the

design. So far, classical implementations of the SMU employ the register exchange

or the trace back approaches. In the conventional trace back implementation,

a read-write RAM architecture is generally adopted. However, it suffers from

complex control circuits and speed penalty. In this research, a new approach

to implement the trace back algorithm targeted at low power applications is

proposed. The SMU design based on this new architecture is a mixed synchronous

and asynchronous circuit. However, it has no handshake overhead compared

to most asynchronous architectures. Post-layout simulation results on a .18µm

process show the new architecture saves more than 84% of the power dissipated

compared with a SMU design using a low power logic family.
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4. In the Viterbi decoder, the Path Metric Unit (PMU) consists of different function

units. Modifications, such as capping the branch and path metrics, are proposed

to improve the decoder power efficiency at the logical level.

1.6 Thesis Overview

In the next chapter, the convolutional code structure is introduced with a detailed

discussion of the distance properties and BER performance of convolutional codes.

Chapter three focuses on the principles of the Viterbi decoding algorithm and the de-

coding process is represented using a Markov model. Basic concepts related to the

Viterbi algorithm, such as hard/soft-decision decoding, punctured codes, etc., are also

introduced in this chapter. From chapter four to chapter seven, various low power

Viterbi decoder implementations are discussed. Chapter four describes the classical

3-block Viterbi decoder architecture and several existing lower power designs with a

power analysis. Chapter five discusses the proposed adaptive Viterbi decoding algo-

rithm and its implementation on a FPGA, while chapter six proposes a mixed syn-

chronous/asynchronous SMU design. In chapter seven, the low power modifications on

the PMU of the Viterbi decoder are discussed and analyzed with power simulations.

Finally, chapter eight gives some conclusions and indicates the directions that further

interesting work could take.



2. CONVOLUTIONAL CODING AND VITERBI DECODING

ALGORITHM

The development of convolutional codes is quite different from block codes. For block

codes, algebraic properties are very important criteria in constructing codes with good

error protection performance. This is not the case with convolutional codes. Most

convolutional codes with good error protection performance have been found by com-

puterized searches of large numbers of codes to locate those with good distance proper-

ties [7]. This chapter studies the detailed structure of convolutional codes and provides

significant insight into how the code properties influence BER performance when using

the Viterbi decoding algorithm.

2.1 Convolutional code structure

A convolutional encoder with constraint length k consists of a k-stage shift register.

A simple k = 3, R = 1/2 convolutional encoder is shown in Figure 2.1. Information

symbols are shifted in at the left and the two modulo-2 adders yield two coded sym-

bols which form a single code word. The connections between the shift register and

the modulo-2 adder can be represented by the coefficient of polynomials. The upper

and lower connections illustrated in Figure 2.1, for instance, can be described by the

polynomials g1(x) = 1 + x2 and g2(x) = 1 + x + x2, respectively. Similarly, the input

can also be represented as a polynomial I(x) = i0 + i1x + i2x
2 + · · ·+ ijx

j + · · · where

the coefficient ij is the binary information symbol at time j. With this representation,

the outputs of the convolutional encoder can be described as the multiplication of the

input polynomial I(x) and the connection polynomials. The upper and lower outputs
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Fig. 2.1: A simple R=1/2, k=3 convolutional encoder

in Figure 2.1, can thus be represented as T1(x) = I(x)g1(x) and T2(x) = I(x)g2(x).

Another way of representing the encoder is to use a generator matrix, G, since the

output of a convolutional encoder can also be thought of as the convolution of the

impulse response of the encoder with the input sequence [7]. For example, the encoder

in Figure 2.1 will produce a sequence of 11 01 11 00 00 . . . if a single one followed by

zeros is shifted into it. This sequence is thus the impulse response of a single one for

this encoder, and the generator matrix, G, can be constructed as

G =



11 01 11 00 00 00 · · ·

00 11 01 11 00 00 · · ·

00 00 11 01 11 00 · · ·
...


(2.1)

where each row of this matrix is the right-shifted version of the impulse response of

a single one. Thus, the encoded sequence, Y, can be represented by multiplying the

input vector X with G

Y = XG (2.2)

and the output sequence can be produced by modulo-2 adding the rows corresponding



2.1. Convolutional code structure 21

to the 1s in the input sequence. For instance, the output sequence corresponding to

the input sequence X = 1 0 1 0 0 . . . is obtained by adding rows 1 and 3 of G to give

Y = 11 01 00 01 11 00 . . ..

The convolutional codes can be either non-systematic or systematic depending on

the generator polynomial [7]. For example, if the generator polynomials g1(x) = 1 or

g2(x) = 1 for a rate 1/2 code, the information sequence would appear directly in the

output and the code becomes systematic. One of the advantages of a systematic code

is that it is simple to extract the information sequence for a decoder. The decoder only

needs to identify the error positions and flip the corresponding bits of the information

sequence within the received data. If the decoder estimates no error, the information

sequence can be used directly as the output. This may potentially save significant

decoding computations. However, the drawback for systematic codes is the reduced

noise-averaging feature. Since the original information sequence has no redundancy,

it has no protection over noise. Therefore, the information sequence contained in the

code words sequence will not help reduce any effect of the noise and the code is less

effective in correcting errors.

Conversely, a non-systematic convolutional code does not directly contain the in-

formation sequence and it is much harder for the decoder to estimate the information

digits without employing a complex decoding process. Wozencraft and Reiffen [24] have

shown that for any non-systematic code there is a systematic code with precisely the

same set of initial code words with the same minimum distance dm. This result indi-

cates that there is no advantage in using non-systematic codes where the decoder makes

the decoding decision based on the initial code word only, e.g. threshold decoding for

instance. However, for non-systematic codes with a sequential or maximum likelihood

decoder which examines received digits well beyond the initial code word before making

the decoding decision, then non-systematic codes show an inherent superiority in BER

performance over systematic codes [24].

Another feature of a convolutional code is the random length of the code words.
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The generator matrix shown in equation 2.1 is a semi-infinite matrix [7]. Thus, the

length of a code word depends on the length of the information sequence which may be

infinite. Tree and trellis diagram can be used to more clearly describe the relationship

between input and output sequences of infinite length.

2.1.1 Tree and trellis representation of convolutional codes

There are two major methods to describe how the convolutional code word progresses

with the possible input sequence. One of them is the code tree diagram as shown in

Figure 2.2. The diagram in Figure 2.2 illustrates the code words structure for the
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Fig. 2.2: Code tree for R=1/2, k=3 convolutional code.
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convolutional code described in Figure 2.1. In this diagram, each branch of the tree

represents a single input symbol where the upper branch corresponds to an input 0 and

the lower branch corresponds to an input 1; the nodes in Figure 2.2 indicate different

encoder states. Therefore, any input sequence can be traced through a path in this

diagram which forms the corresponding code word. This path can also be called the

code word path. For instance, a 1 0 1 0 0 input sequence representing the highlighted

path in Figure 2.2 and gives an 11 01 00 01 11 output code word path. By observing

this code tree diagram, it is clear that the number of possible code word paths grow

exponentially as the length of the input sequence increases. This is the source of one

major difficulty in decoding a convolutional code.

Although the code word paths may grow endlessly, they are not always different

from each other. In Figure 2.2, for example, at the 4th step, the upper half of this code

tree, which is marked as a dashed block, is identical to the lower half of the code tree.

For the code in Figure 2.2, which has a constraint length of 3, each input symbol affects

the output over 3 time steps. Therefore, the output becomes identical after three steps

if the following input symbols are the same. This fact indicates one of the merging

features of the convolution code and is the key to the Viterbi algorithm which will

be discussed later. Because of the merger of code word paths, the code tree can also

be represented in an alternative trellis structure with branches connecting a limited

number of states. Figure 2.3 shows the trellis for the convolutional code represented

in Figure 2.2. This trellis diagram is basically a state transition diagram over time

steps. For this code, there are four possible encoder states. The convention is that

each row of nodes representing the same state of the encoder at different time steps.

At every time step there are two branches output from each node where an input 0 to

the encoder corresponds to the upper branch and a 1 input to the lower branch. As in

the code tree, the input sequence 1 0 1 0 0 corresponds to the particular path, shown

with thick arrows, through the trellis.

A trellis diagram provides the best method of describing the Viterbi decoding al-
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Fig. 2.3: Trellis structure for R=1/2, k=3 convolutional code.

gorithm. The significance of the trellis diagram is that the number of nodes in the

trellis does not continue to grow as the length of the input sequence increases, because

the redundant portions of the code tree have been merged. Ideally, the best decod-

ing method for convolutional codes is to identify a code word path through the trellis

which minimises the actual number of information symbol errors [7]. However, for the

decoder to do so results in hardware that is hard to implement. More practically, it is

easier to choose the code word path which matches the received sequence as closely as

possible. The problem is that this procedure does not guarantee that by making the

code word error rate small it will also minimise the bit error rate for the information

sequence. In order to achieve the optimum BER performance, a convolutional code

should also has the property that the minimum number of errors in the code word path

also results in the minimum error number in the decoded information sequence. These

important properties can be referred to as the distance property of the convolutional

code and will be discussed later.
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2.1.2 Rate m/n codes

One of the major parameters for a convolutional code is the code rate R. In the

previous examples, a rate 1/2 code has been discussed. Code rates other than 1/2,

such as 1/3, 2/3 or 7/8 etc., are also used in many applications. Figure 2.4 shows the

encoder architecture for a rate 2/3, k = 4 convolutional code. Here two information

Fig. 2.4: Encoder structure for R=2/3, k=4 convolutional code.

symbols are shifted into two register lines at the same time, and three encoded symbols

are generated by the modulo-2 addition of current and previous input of these two

channels. The generator polynomial for this example can be defined by the matrix [7]

G(x) =

 1 + x 1 + x 1

0 x 1 + x

 (2.3)

Thus, the output vector is given by

[T1(x) T2(x) T3(x)] = [I1(x) I2(x)] G(x) (2.4)

The trellis structure for this code is shown in Figure 2.5. Compared with the R = 1/2

trellis in Figure 2.3, there are still four states since the number of shifter register in

the encoder is the same. However, there are four possible output branches from each
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node to represent the four possible combinations of every two input symbols.
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Fig. 2.5: Trellis structure for R=2/3, k=4 convolutional code.

In a generalised form, a R = m/n convolutional code with the constraint length

of k can be described in a trellis with 2k−m states where 2m branches come out of

each state. The key advantage of a convolutional code with a high code rate is the

increased data rate for transmission. For example, the information transmission rate

for a convolutional code of R = 7/8 is more than 2.5 times higher than a R = 1/3

convolutional code. The major drawback of a high rate convolutional code is the

reduced deocding accuracy and increased decoding complexity. The branch number

for each node in the trellis equals 2m which grows exponentially with an increase of m.

This makes the implementation of the decoding algorithm much more difficult.

For example, a rate 7/8 code has 128 branches out of every node. To decode this

code, the decoder has to choose one out of 128 branches compared with only one out

of 2 for a rate 1/2 code. This is a fairly serious implementation difficulty. To avoid this

problem, m needs to be minimised. In practice, a R = 1/n code is normally converted

into a R = m/n code by deleting (m− 1)n symbols from every mn encoded symbols.

This produces a R = m/n code. For instance, suppose every fourth encoder output is
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deleted from the R = 1/2, k = 3 code discussed before. This gives a new code of a

rate 2/3 and is often refers to as a R = 2/3 punctured code of a mother code R = 1/2,

k = 3. This code may still be decoded as a 2/3 code with an implementation difficulty

as described before; alternatively, as it is generated from a R = 1/2 code, it can also

be decoded as a R = 1/2 code with a dummy symbol within every other encoded

symbol pair. The equivalent R = 1/2 trellis structure of this punctured code is shown

in Figure 2.6. This trellis is the same as the R = 1/2 trellis in Figure 2.3 except one

Fig. 2.6: Trellis structure for R=2/3 punctured convolutional code with a mother code
R=1/2, k=3.

symbol is missing in every other branch and indicated by a X. Punctured codes have

been shown to offer nearly equivalent performance compared to the best code with the

same rate and thus are to be preferred in most cases because of their simplicity [25].

For a convolutional code, not only the code rate affects the capability of error protec-

tion; the type of decoding algorithm, the constraint length, the generator polynomials,

the specific hardware configuration, or even the error characteristics may all contribute

to the BER performance variation in a coding system design. It is, thus, impossible to

give an absolutely accurate error rate of a particular convolutional code. However, by

analysing the distance properties of the convolutional code a good estimation can be
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achieved [7].

2.2 Distance properties of convolutional code

For a block code, the distance property which determines the performance of the coding

is the minimum Hamming distance, dmin, between two finite code words. The concept

of dmin for a convolutional code is similar. Suppose two different code word paths of

a R = 1/2, k = 3 code are generated by two different input information sequences.

Here the term “two different code word paths” refers to two different code word paths

which start and terminate at the same state and have lengths equal or larger than a

minimum length, Lmin = k. To produce these two different paths at least one symbol

in the input sequences is different. Once a different input symbol is shifted into the

encoder, it affects the encoded output for 3 time steps, and thus gives a minimum

length Lmin = 3 for any two different code word paths. An example of two code word

paths, p0 and p1, with Lmin = 3 are shown in the trellis diagram in Figure 2.7. Since p0

Fig. 2.7: Trellis structure for R=1/2, k=3 code with two highlighted code word paths begin
and end in the same state.

is an all-zero path, the Hamming distance, d = 5, between p0 and p1 equals the weight

of p1. By observing this trellis, one can tell that d = 5 is also the minimum Hamming
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distance between the all-zero path and any other path which begins and ends in the

zero state. Since the code considered is a linear code, this result can be applied to any

two code word paths without loss of generality. It can be concluded that this R = 1/2,

k = 3 code has a minimum Hamming distance, dmin = 5. This dmin is also called the

free distance and formally defined in [7] as the weight of the minimum-weight path

which begins and ends in state zero.

To get the full set of the distance structure of a convolutional code is more difficult.

One method described in [7] is to use the generating function for computing the gain of

the state flow diagram. Figure 2.8 shows an example of the state transition diagram for

the R = 1/2, k = 3 code. Every node in the diagram indicates a state of the encoder

Fig. 2.8: State transition diagram of R=1/2, k=3 code. The input and output states are zero
state.

where the input and output nodes are both zero state. This diagram is a modified

version of the normal state transition diagram and is more appropriate to indicate the

state transitions for the path beginning and ending in zero state. In the diagram, the

gain of each branch is given by the product of LNWiDWo [7], where L, N , and D are

the indeterminates which represent the length of the input sequence, the weight of the

input sequence and the weight of the output sequence, respectively; Wi and Wo are

the values of the input and output weight for the particular branch. The generating

function for this diagram is given by [7] as
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T (D, L, N) =
D5L3N

1−DL(1 + L)N

= D5L3N + D6L4(1 + L)N2

+D7L5(1 + L)2N3 + · · ·

+D5+kL3+k(1 + L)kN1+k + · · · (2.5)

This shows the R = 1/2, k = 3 code provides one path of input weight 1, output weight

5 with a length of 3; two paths of input weight 2, output weight 6 with lengths 4 and

5; and so on.

For a convolutional code, the weight structure is determined by three parameters,

the code rate R, constraint length k, and generator polynomials g(x). On the basis of

the weight structure, the performance of a convolutional code with a specific parameter

set can be estimated. To achieve good error protection performance, the parameter set

of a code should be carefully chosen according to two major distance criteria. First,

a good code should have the free distance as large as possible. This makes each code

word path more distinctive and more difficult for the decoder to make a wrong choice.

Secondly, on the other hand, the distance between the input sequences, which produce

two minimum distance paths, should be kept as small as possible. Thus, even when the

decoder chooses a wrong path, the number of errors in the decoded data can still be

minimised. The second criterion is very important as the performance of a code could

be changed completely if this is not carefully complied with. One extreme case is the

so-called catastrophic error-propagating codes [26]. In the occurrence of catastrophic

error-propagation, a small number of errors in the received code word can result in

choosing another code word for which the corresponding input sequence yields infinite

number of errors.

In terms of generator polynomials, Massey and Sain [26] have obtained the condi-

tions resulting in such catastrophic codes. In terms of the encoder state diagram, this
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implies a state transition yielding a zero weight codeword (other than the self-loop of

zero weight around the state S0). For instance, consider the R = 1/2, k = 3 code with

generator polynomials g1 = (1+x) and g2 = (1+x2). Here an all-zeros input sequence

produces the output sequence 00 00 00 . . . while an all-ones input sequence gives the

output sequence 11 10 00 00 00 . . .. Thus, any two errors in the first three output

symbols will result in choosing the all-zeros sequence instead of the all-ones sequence

or choosing the all-ones sequence instead of the all-zeros sequence. This causes a ma-

jor failure in decoding and gives an estimated information sequence with an infinite

number of errors.

2.3 Viterbi decoding algorithm

The Viterbi decoding algorithm is a most-likelihood (ML) decoding algorithm for con-

volutional codes. A convolutional encoding is a discrete-time Markov process in which

the sequence of the encoder states can also be seen as a Hidden Markov Model. These

states are “hidden” and only the received code word sequences from the encoder are

observable to the decoder. Thus, the Viterbi algorithm decodes the transmitted infor-

mation by estimating the encoder states based on the received code word sequences.

2.3.1 Hard-decision Viterbi decoding algorithm

Considering the communication channel model in Figure 2.9, it describes the major

concept of ML decoding for a convolutional code. As this figure shows, a binary

information sequence {Xt} is encoded into a code word sequence {Yt}, which forms

a path p of length L, and sent to a discrete noisy channel. The channel noise cause

errors {Et} to be added to the transmitted data and gives the received sequence {Rt}

which forms a different code word path p′ of length L. To recover the transmitted

information sequence, the ML decoder performs two stages of operations. At the first

stage, the decoder compares the p′ with all possible code word paths by computing the
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Fig. 2.9: The communication channel model using a convolutional code and ML decoding.

Hamming distances between every one of these paths. These Hamming distances are

called path metrics (PM) and provide the measurements of the likelihoods for these

paths over the length L. Based on the likelihood information, at the second stage the

decoder chooses the most-likely path indicated by the smallest path metric. Thus, an

estimated output {X ′
t} can be generated from the selected path. Channel noise may

cause errors in p′ and gives a Hamming distance de between p′ and transmitted path

p. However, as long as the Hamming distance between p′ and p is smaller than all

other possible code word paths, the p will always be chosen. Therefore, errors can be

corrected in the decoded data.

This ML decoding approach seems extremely difficult to implement since the num-

ber of possible paths for comparing grows exponentially with the path length. By

investigating the trellis, one may discover the fact that although at first the number of

paths does grow with the length of an input sequence; however, because of merging, it

becomes possible to discard a number of paths at every node so that exactly balances

the number of new paths that are created. Thus, it is possible to maintain a relatively
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small number of paths that always contain the ML path. In 1967 Viterbi invented

a simple iterative process to implement this approach which is known as the Viterbi

algorithm [17].

The trellis in Figure 2.10 shows the Viterbi decoding process for the R = 1/2, k = 3

code. For the input symbols sequence 0 0 1 1 0 0 0 0 eight pairs of encoded symbols,
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Fig. 2.10: The trellis structure shows the Viterbi decoding process of a R=1/2, k=3 code.

00 00 11 10 10 11 00 00 are generated. Suppose errors occur at time t0 and t4. This

gives an incorrect code word sequence 10 00 11 10 00 11 00 00. At each time step, the

Viterbi algorithm computes the Hamming distance between the received symbol pair

and the expected symbol pair for every branch. This gives the weight of this branch

and is normally called the branch metric (BM). The BM of each branch is shown as

the number in the bracket. Although each state has two input branches, the Viterbi

algorithm (VA) only allows one which is selected as the survivor branch, indicated as

solid lines in the trellis. For each state, the VA makes a selection by adding the BM to

the PM from last time step and chooses the branch having the smaller accumulated PM

value. The PM of the survivor then becomes the PM of that state for the calculation

at the next time step. The accumulated PMs are shown as the underlined numbers

in this trellis. These operations for each time step can be summarised as an add-

compare-select (ACS) process which is the key of the Viterbi algorithm. This process

is continued each time a new branch is received so that the PMs of all survivor paths at
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time t7 are obtained. In order to form the output, the path with the smallest PM of 2,

which is highlighted in this figure, is traced back through the trellis. The information

sequence can thus be recovered without errors.

In fact, to produce the decoded information symbols it is not necessary to always

identify the most-likely path. Considering the trellis in Figure 2.11, which is the ex-
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Fig. 2.11: The convergence of the code word paths in the Viterbi decoding process.

tended trellis of Figure 2.10, it shows all the survivor paths at the end of the trellis

merge into a single path over the first 12 time steps. This is the result of ACS operations

over a large enough time span so that the branches propagated from the most-likely

path terminate all other paths. In this case, there is no need to identify the most-likely

path at the end of the trellis. The decoded output can be generated from the exclusive

merged path of the first 12 time steps. However, the overhead of this approach is

the increased length of the paths. It obviously requires extensive storage for the path

information compared with previous approach. This tends to be an important design

decision which affects the complexity of an implementation and will be discussed in

the next chapter.

2.3.2 Soft-decision Viterbi decoding algorithm

The likelihood measurement of the decoding process described before uses the Hamming

weight or the Hamming distance. In these measurements, the difference between two

symbols is quantized into a binary level and can be represented using a one bit binary
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number. This distance quantization method is in fact based on the assumption that

there is no difference between the errors caused by channel noise so that all errors can

be represented by the same level. However, this assumption is too simple to reflect real

communication channels.

In practice, the digital signal is still transmitted by analogue waveforms. Although

the noise applied to the transmission waveforms takes many forms, they are all analogue

in manner one way or the other. In communications, the additive white Gaussian noise

(AWGN) channel model is one in which the only impairment is the linear addition of

wideband or white noise with a constant spectral density (expressed as watts per hertz

of bandwidth) and a Gaussian distribution of amplitude. The model does not account

for the phenomena of frequency selectivity, interference, nonlinearity or dispersion.

However, it produces simple but more realistic mathematical models for many studies

and simulations of communication systems. In the AWGN channel, the noise signal

as a random variable x has a probability density function of the (Gaussian) normal

distribution with mean µ and variance σ2,

P (x; µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (2.6)

In this function, the variance σ2 is determined by the noise levels. Figure 2.12 shows

this probability function P (x) with the parameter set as µ = 0 and σ = 1, where x is

the noise variation and p(x) is its probability. This is also called the standard normal

probability distribution function and has the form

P (x) =
1√
2π

exp

(
−x2

2

)
. (2.7)

The plotted Figure 2.12 of the normal probability distribution function indicates the

fact that the strength of the random noise signal reduces as the probability grows, with

the highest probability when there is no noise at all. Therefore, for the communication

channel with AWGN, the closer to no noise the signal is the higher the probability of
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Fig. 2.12: The normal probability distribution of a random variable.

this occurring; in other words, the stronger the signal received the more likely it is

to be correct. This fact indicates that the level of a received signal also provide the

likelihood information. Therefore, each received signal is often quantized to Nq number

of regions where Nq is the number of quantization levels. This is called soft-decision

coding. The more the quantization levels of a signal, the more information of the signal

likelihood is given to the decoder and the more accurate the decision the decoder can

make. From an implementation point of view, however, it is desirable to make the

number of quantization levels relatively small. This minimizes the complexity of the

analogue-to-digital converter and also the number of bits involved in computing the

metrics in the Viterbi algorithm. In many applications, eight-level quantization is used

as a standard.

The soft-decision Viterbi algorithm is a simple modification of the hard-decision de-

coding process. The Hamming distance represented BM is replaced by the soft-decision

weight represented with more binary bits. All other decoding operations remain the

same. For an appropriate number of quantization levels, the increase of implemen-
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tation complexity is not significantly different from that of a hard-decision decoder.

This is a major advantage of the Viterbi algorithm [17]. The most significant factor

for a Viterbi decoder implementation however is the code constraint length k, as the

decoder complexity increases exponentially with k. This limits most Viterbi decoder

implementations to codes of relatively small constraint lengths.

2.4 Convolutional codes performance with Viterbi algorithm

To implement a convolutional coding system, the appropriate code parameters, R and

k, should be decided first. In addition, the design decisions for the decoding system,

such as the quantization levels etc., are also crucial. This requires a knowledge of

the code performance with the particular parameters. The most useful techniques for

estimating the performance of convolutional codes are union bounds and computer

simulation as explained in the following sections.

2.4.1 Error event and union bounds

When decoding a convolutional code with Viterbi algorithm, an error event occurs at

time i if the Viterbi decoder chooses an incorrect path which has a smaller Hamming

distance over the correct path. This is shown in Figure 2.13.

i

Fig. 2.13: The error event with Viterbi decoding.
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The probability of an error event, Pe, at time i is bounded by the sum of the error

probabilities for all possible paths beginning and ending in the correct path.

Pe <
∞∑

d=dfree

ndPd (2.8)

where nd is the number of possible paths of weight d merging with the all-zero path,

and Pd is their probability. The dfree is the minimum Hamming distance between two

paths which begin and end in the same state.

The union bound on the bit error rate, Pb, is obtained by summing the input

sequence weights wd corresponding to these paths, which is given by

Pb <
1

m

∞∑
d=dfree

wdPd (2.9)

for a R = m/n code [7]. In practice, a finite number of wd are computed to give an

approximated union bound value. The accuracy of this approximation depends on the

number of wd samples used. The more the samples the closer the approximation is to

the real value. Figure 2.14 compares the BER results from union bound calculation

and simulation for R = 1/2, k = 7 code with hard-decision Viterbi decoding. The line

marked with crosses shows the BER from the union bound approximation with seven

wd samples. The line marked with stars shows the BER from Monte Carlo simulations

with a maximum 100 errors. The simulation results were obtained from using Matlab

functions and the program is listed in Appendix A.1. This figure indicates that at high

Eb/No levels, the simulated BER is smaller than the union bound by as much as half at

Eb/No = 3.5 or 4.5dB. However, as the noise level goes down, e.g. for Eb/No higher

than 5dB, the union bound becomes close to the simulation result with an accuracy

within a small fraction of a decibel. The results suggest the approximation of union

bound can be used in estimating convolutional code BER performance, especially for

performance comparison where the BER difference other than the absolute BER value
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Fig. 2.14: Union bound and simulated BER for R=1/2, k=7 code with hard-decision Viterbi
decoding and QPSK (Quadrature Phase Shift Keying) modulation.

is the major concern. Therefore, the approximated union bounds are used to show the

possible BER performance of the convolutional codes with different parameters in the

following analysis.

2.4.2 Convolutional code performance

As discussed before, the performance of convolutional codes are determined by the

code rate R, the constraint length k, hard or soft decision, the quantization levels,

the generator polynomials and the decoding method. In practice, only the first three

parameters are of normal concern. To analyse the effects of these parameters, the union

bounds of the Viterbi algorithm with different parameter sets are compared.

Code rate R. The code rate of a convolutional code determines the entropy of

the encoded sequence and the distance properties, and thus affects the BER perfor-

mance. Figure 2.15 is obtained from the simulations using the Matlab program shown

in Appendix A.2 and compares the union bound with soft-decision of the code at rate

1/3, 1/2, and 2/3. These codes are produced by the encoders with the same amount
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of memory to give the same number of encoder states. This provides approximately

the same decoding complexity for each information symbol. As expected, the BER
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Fig. 2.15: Union bounds for R=1/3, 1/2, and 2/3, code with soft-decision Viterbi decoding
and QPSK modulation.

performance illustrates a drop as the rate increases. This indicates a tradeoff relation

between the information transmission rate and the BER performance. One fact shown

by this figure is that the differences of the BER figure of two codes are evenly dis-

tributed over Eb/No levels. This suggests the code rate or the average entropy of a

convolutional code has a constant influence on the error probability of the code; this is

because of the linear relationship of the redundancy with the distance properties. At

Eb/No = 3.5dB, the BERs are 1.9e−4 and 5.2e−4 for rate 1/3 and 1/2 codes, respec-

tively. The redundancy of rate 1/3 code is about 33% more than the 1/2 code. As the

BER of 1/3 code is 63% lower than 1/2, it gives an average BER improvement figure

of 2% for every percent increase in redundancy. The same figure can also be obtained

by comparing the 1/2 with 2/3 codes. Therefore, it may be concluded that for a con-

volutional code if the redundancy doubles, the BER performance will be improved by

around a factor of four.
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Constraint length k. Increasing the constraint length at a fixed code rate also

improves the BER performance. This is shown by Figure 2.16 which is from the

Matlab simulation in Appendix A.3. The interesting point shown by Figure 2.16 is that
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Fig. 2.16: Union bounds for R=1/2, k=3, 4, 5, 6, 7, and 8 code with soft-decision Viterbi
decoding and QPSK modulation.

the improvement of BER performance with a longer constraint length is not evenly

distributed over different Eb/No levels. This is very different comparing with the

Figure 2.15. For example, at Eb/No = 2.5dB, the BER of the k = 3 code is 6.1e−3

whereas the BER is 8.4e−4 for the k = 8 code. This indicates a 7 times better BER

performance of the k = 8 code. However, the performance of k = 8 code becomes

about 4×1010 times better than the k = 3 code at a Eb/No level as low as 10dB. This

is a very significant performance improvement. Therefore, a longer constraint length

is actually preferrable for a decoder design as long as the increased complexity is still

affordable.

Moreover, this result also shows that in terms of improving BER performance, to

increase the constraint length is much more efficient than simply adding more redun-

dancy to the code word. The key to an ideal, error free communication is the perfect
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constructing of the information inter-lock. The longer the constraint length the more

the information are inter-locked and protected by each other. Thus, the optimum error

protection capability can be achieved.

Hard or soft decision. Soft-decision provides significantly higher BER perfor-

mance for the decoding system with the same code. This result is obtained by the

simulation program in Appendix A.4 and shown in Figure 2.17. The BER of soft-

decision, R = 1/2 code gives a 4 × 104 times lower BER at Eb/No = 5.5dB than the

hard-decision as is shown in Figure 2.17. Since implementing soft-decision has relatively
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Fig. 2.17: Union bounds for R=1/2, k=7 code with both Soft and Hard decision Viterbi
decoding and QPSK modulation.

small impact on the decoder complexity, most of the decoding systems incorporate the

soft-decision capability.

2.5 summary

In this chapter, the convolutional code is discussed extensively from the basic concepts,

the code structures, and the distance properties to the BER performance. In terms



2.5. summary 43

of the distance properties, a good convolutional code has a dfree as large as possible

but keeps the distance between the corresponding input sequence as small as possible.

Influenced by the code rate, the constraint length and the generator polynomials, the

distance properties determine the performance of the convolutional code. The concept

of union bound provides a solution to estimate the code performance with the ML

decoding.

The Viterbi algorithm is a simple iterative process implementing the concept of ML

decoding. The code performance analysis in this chapter indicates a simple fact that

to improve one feature of the convolutional code there must be some losses in another

feature. Although increasing the constraint length gives superior BER performance, it

is not necessarily the best solution for lowering BER. For a coding system design, the

decoding complexity, the system power consumption, the delay, and the information

transmission rate, etc., should all be considered. The optimum design is the design

with a perfectly balanced position in terms of all these features as well as meeting the

design requirement. In the next chapter, the Viterbi decoder design is discussed with

a focus on its complexity and power consumption.



3. VITERBI DECODER AND ITS POWER DISSIPATION

Designing a Viterbi decoder involves many considerations, such as the decoding ac-

curacy, the design complexity, the power consumption, the throughput, the output

delay, etc.. To meet the requirements, the design has to be balanced in terms of these

features. This requires a fundamental knowledge of the characteristics of the standard

Viterbi decoder and how these characteristics change with the design.

3.1 Viterbi decoder design

The classical Viterbi decoder design is a straightforward implementation of the basic

processes of the Viterbi algorithm. The design consists of three functional units, as

shown in Figure 3.1.

BMU PMU SMU

BM0

BM1

BM2

BM3

Local Winner
0 to (n-1)

Global 
Winner

Decoded 
Data

Optional

Received 
Code words

Fig. 3.1: Classical three functional block of a rate 1/2 Viterbi decoder design.

1. The BM Unit (BMU) which calculates the BMs;

2. The Path Metric Unit (PMU) includes a number of Add Compare Select Units

(ACSU) which add the BMs to the corresponding PMs, compares the new PMs,
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and select the PMs indicating the most likely path; at the same time, the PMU

passes the associated survivor path decisions, called local winners, to the Survivor

Memory Unit (SMU);

3. The SMU which stores the survivor path decisions; then the accumulated history

in the SMU is searched to track down the most likely path so that the decoded

sequence can be decided.

3.1.1 BMU design

The BMU is the simplest block in the Viterbi decoder design. However, the operation

of BMU is crucial as it is the first stage of the Viterbi algorithm and the consequent

decoding process depends on all the information it provides. In a hard-decision Viterbi

decoder, the BMU design is straightforward since the BMs are the Hamming distances

between the received code words and expected branches. For a soft-decision Viterbi

decoder, the received code words are quantised into different levels according to the

signal strength then the BMU maps the levels of code words into BMs according to

their likelihood.

In hard-decision the Hamming weight of the code word is used as the branch metric,

which is simply the number of positions in which the received code word differs from

the ideal code word. The case of soft-decision can be derived from the generalised

unquantised (analogue) channel.

For an unquantised channel, assume binary antipodal signalling is used with a

convolutional code of rate m/n. If a code word S, which consists of n symbols, x0 x1

· · · xn−1, is transmitted through the channel, the decoder receives R which is a sequence

of n sampled actual voltages, r0 r1 · · · rn−1, from the filter. The conditional probability

of sending S and receiving R is [7]

P (S|R) = P (R|S)
P (S)

P (R)
. (3.1)
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If the transmitted code words have an equal probability, an optimum decoder identifies

the S which maximises P (R|S) so that the maximum P (S|R) can be achieved. Since

a code word has n symbols, for the Gaussian noise with zero mean and variance σ2 =

No/2 where No is the noise power spectral density, P (R|S) becomes the product of n

Gaussian density functions of each symbol. As given in [7]

P (R|S) =
n−1∏
i=0

P (ri|si) =

[
1

(π ×No)1/2

]n

× exp

[
−

n−1∑
i=0

(ri − si)
2

No

]
(3.2)

For a specific noise level, the P (R|S) is maximised when

d2 =
n−1∑
i=0

(ri − si)
2 (3.3)

is minimised, where d2 is the squared Euclidian distance between the hypothesized

sequence and the received signal. For an unquantised channel, d2 can be used as the

measurement of the unlikelihood of the code word branch, e.g. the branch metric,

since a minimum value of d2 indicates the most likely branch and its accumulated

value indicates the most likely path. This squared Euclidian distance is defined in [7]

as the generalised concept of the distance between the received and ideal code words.

For the received signal from the additive white Gaussian noise (AWGN) channel, the

signal level of each symbol is independent. Thus, a code word which consists of n

symbols forms an n-dimensional space. For instance, Figure 3.2(a) shows the distances

of the code word with 2 symbols, X and Y . There are four ideal code words, (0, 0),

(0, 1), (1, 0), and (1, 1), which are located at the four corners in this 2-dimensional

space. The received signal (x, y) are unquantised and represent the two received code

word symbols having the value range from 0 to 1. Due to the noise the received signals

do not correspond to any of the ideal points. Thus, the distance labelled with d00,

d01, d10, and d11 are the Euclidian distances; d, between (x, y) and the four ideal

points, where, for example, d002 = x2 + y2. In the 3-dimensional space formed by
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(a) The distance of a 2-symbol code word represented in a 2D
space.

(b) The distance of a 3-symbol code word represented in a 3D
space.

Fig. 3.2: The Euclidian distance between the hypothesised code word and the received signal.
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3-symbol code words, as shown in Figure 3.2(b), there are 8 Euclidian distances, d000,

d001, d010, d011, d100, d101, d110, and d111, for the received signals (x, y, z) and the

distance d000 becomes d0002 = x2 + y2 + z2.

In digital communication systems, it is not possible to process the actual analogue

voltages ri; instead, the sampled voltages are quantised into m-bit numbers. In hard-

decision, a signal is quantised into a one-bit binary number. In receiving the code word

00, for instance, the d112 = (1− 0)2 + (1− 0)2 = 1 + 1 = 2 and is consistent with the

Hamming distance described above. Other than single bit, three-bit quantisation is the

most commonly used scheme in communication system designs. Figure 3.3 illustrates

the three-bit quantisation for the 2-symbol code words. As shown in Figure 3.3, the

d00

d01
d11

d10

y

x

(x,y)

Fig. 3.3: Three-bit quantisation in a 2-dimensional space.

2-dimensional space is partitioned into 23 × 23 = 64 regions with the ideal code words

00, 01, 10, and 11, located at positions (0, 0), (0, 7), (7, 0), and (7, 7), respectively.

The actual voltage within each region is approximated to the point, marked in black

dots, with the smallest X and Y values. For example, the received signals within the
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shaded region in Figure 3.3 are approximated to the point (x, y). Then the squared

Euclidian distances for (x, y) can be used as the approximated distance of the received

signal. Although a squared Euclidian distance is a simple addition of numbers, it

still involves squares of the quantised signal values and causes engineering difficulties.

Fortunately, the squared Euclidian distances of (x, y) can be linearly transformed into

the Manhattan distance [7]

d00Mah = x + y

d01Mah = x + [(2m − 1)− y]

d10Mah = [(2m − 1)− x] + y

d11Mah = [(2m − 1)− x] + [(2m − 1)− y] (3.4)

by subtracting (x2 + y2), dividing by 2m − 1 and then adding x + y, where m is the

number of bits in the quantisation. Since the Viterbi algorithm is a linear process,

using the Manhattan distance yields no accuracy degradation compare to the squared

Euclidian distance, but simplifies the implementations. This can also be generalised

to the squared Euclidian distance of any n-symbol code word, so that the Manhattan

distance is used as the branch metric for a received code word.

Since the Manhattan distance is the addition of the distance in n independent direc-

tions, it can be further normalised in each direction. For the 2-symbol example shown

in Figure 3.3, all the Manhattan distances of the point (x, y), listed in equation 3.4, can

be simplified in the form dMah = dX +dY , where the dX and dY are distances on the X

and Y axis, respectively. Assuming x ≤ (2m−1−1) dX on the axis X can be subtracted

by x, then the normalised distance on axis X between the symbol X and ideal symbol

0 is always zero; whereas the normalised distance to ideal symbol 1 is (2m − 1) − 2x.

Similarly distances on Y axis can be normalised to be either 0 or (2m − 1)− 2y when

y ≤ (2m−1− 1). Based on this, the branch weight scheme for the 2-symbol, 3-bit quan-

tisation can be simplified as shown in Table 3.1. Therefore, a standard BMU design
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Tab. 3.1: Branch weight scheme for 2-symbol, 3-bit quantisation.
Quantised level Weight referenced to 0 Weight referenced to 1
0 (strongest 0) 0 7

1 0 5
2 0 3
3 0 1
4 1 0
5 3 0
6 5 0

7 (strongest 1) 7 0

assigns the weights to each symbol based on its quantised level and the weight scheme

and adds the weights of each symbol together to make the branch metric. Because of

its simple operation, the BMU in a Viterbi decoder is normally the simplest block and

consumes much less power than the PMU and SMU blocks.

3.1.2 PMU design

The major task of the PMU is to calculate the metrics of the selected paths. These

calculations are based on a generalised 2m-to-2m state transition diagram for a R = m/n

convolutional code encoder. Figure 3.4 shows the states transitions for a rate R = 1/2,

k = j code and is well known as the butterfly diagram. According to Figure 3.4, the

k-2

Fig. 3.4: The butterfly state transition diagram represents state transitions of a convolutional
encoder of constraint lenght k.

path metrics for states j and j + 2k−2 are added with two branch metrics to give two

pairs of possible path metrics candidates for states 2j and 2j + 1; the smaller ones of
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each path metrics pair are then kept as the survivor path metrics and used for the next

iteration of the calculations.

In a standard PMU, these add-compare-select operations are modular and per-

formed by ACS units shown in Figure 3.5. Figure 3.5 shows a pair of path metrics Si

Fig. 3.5: A rate 1/2, n states PMU architecture shows the recursively calculations of state
metrics value. The Global Winner Generator, shown in dashed lines, provides global
winners information for a trace back PMU.

and S(i+2k−2) at time T0 input to two ACS units representing the two candidates in the

butterfly interconnection of state transitions described in Figure 3.4. These are added

to the appropriate branch metric and compared. The selected new state metric is then

output from each ACS unit and is written back to the PMU memory to become the

current state metric in the next time slot, T1. As well as the new state metric, each

ACS also outputs a selection bit which indicates whether the selected branch was in

the upper or lower position. These are shown as the local winner signals in Figure 3.5.

The local winners are the most important information used for generating the output

in the SMU.

Optionally, a global winner generator, marked in dashed lines in Figure 3.5, can

be used in the PMU to identify the global winner which is the start point for a trace

back in the SMU. The global winner generator shown in Figure 3.5 normally consists
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of a comparator-tree structure which compares all state metrics and then outputs an

index of the state with the lowest state metric value. The conventional way of finding

the global winner is the major time overhead for the PMU design. However, from a

power saving point of view, starting the trace back from the global winner state is more

power efficient than starting from a random state, as far less time slots are required

to be stored in the memory in order to achieve the path convergence, as discussed in

section 2.3.1. Moreover, since starting trace backs at global winner states are likely

to just extend existing trace backs, less transitions can be expected and thus, this

reduces trace back power dissipation. For these reasons, the PMU design is important

for the power efficiency of the whole Viterbi decoder since it not only determines just

the power consumption of the PMU but also affects the power efficiency of the SMU.

3.1.3 SMU design

In the decoder, the SMU is the block which recovers the received data based on all

the information from the PMU. It also consumes a large amount of power. For a trace

back SMU with RAMs, up to 63% overall power is consumed [27] as it requires a large

memory to store the local and global winners information as well as complex logic to

generate the decoded data.

Two major types of SMU implementation exist: Register Exchange [28], [29], [30]

and Trace Back [29], [31], [32].

Register exchange approach

Figure 3.6 [28] illustrates the principle of a 4 state register exchange architecture. In

this architecture, a register is assigned to each state and contains decoded data for

the survivor path from the initial time slot to the current time slot. As illustrated in

Figure 3.6, the ideal path is indicated with bold arrows. According to the local winner

of each state, the register content is shifted into another state register and appended

with the corresponding decoded data. For instance, at time slot T1 the survivor branch
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Fig. 3.6: A 4-state register exchange implementation of the SMU design. The bold arrows
indicate the ideal path of the encoder states.

for state 1 is from state 0 at T0; therefore, the initial content of the state 0 register,

which is a ‘0’, is shifted into state 1 register at T1 and the corresponding decoded data

for the survivor branch, which is a ‘1’, is appended to it.

Registers on the ideal path, as shown in Figure 3.6, spread their contents to other

state registers as time progresses due to the nature of ACS process. Thus, at the end

of time slot T4, the state registers all contain the bit(s) from the same source registers,

which is the state 1 register at time T1. As shown in Figure 3.6, the two most significant

bits of each register at time slot T4 is “01”. Therefore, this is the decoded output for

timeslots T0 and T1.

The register exchange approach is claimed to provide high throughput [28], [30],

as it eliminates the need to trace back since the state register contains the decoded

output sequence. However, it is obviously not power efficient as a large amount of

power is wasted by moving data from one register to another. In addition as D-

type flip-flops rather than transparent latches need to be used to implement the shift

registers although the amount of data which needs to be held to determine the output

is identical to that required for trace back approach. This all leads to relatively high

power consumption.
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Trace back approach

The trace back approach is generally a lower power alternative to the register exchange

method. In trace back, one bit for the local winner is assigned to each state to indicate

if the survivor branch is from the upper or the lower position. Using this local winner,

it is possible to track down the survivor path starting from a final state and this search

is enhanced by starting from a global winner state as previously discussed.

Figure 3.7 shows a trace back SMU architecture adapted from the architecture

described in [1] which used global winner information. Here, local winners are stored

Data 
In

Data Out

Address

Fig. 3.7: A possible trace back SMU implementation using memory. It also requires global
winner information in order to reduce the trace back depth.

in the local winner memory. Trace back is started at the global winner from the PMU,

which is used as an address to read out the local winner of the global winner state.

Then, in the trace back logic the previous global winner in the trace back is produced

by shifting the current global winner one place to the right and inserting the read out

local winner into the most significant bit position; this arithmetic relationship between

parent and child states derives from the butterfly connection shown in Figure 3.4.

This new global winner can then be stored into the global winner memory to update

the global winner existing at that time slot. The process repeats with the updated

global winner reading out its local winner which is used to form the global winner for
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the previous time slot. This process continues until the global winner formed agrees

with that stored or it reaches the oldest time slot [1]. In the output logic, shown in

Figure 3.7, the decoded output can be obtained from the least significant bit of the

global winners stored in the global winner memory.

As described in the last section, local and global winners are stored in memory. So

for each trace back, local winners are repeatedly read out from the local winner memory

and new global winners are written back to the global winner memory. This results in

complex read/write control mechanisms. Furthermore, unless flip flop storage is used

then multi-port SRAM blocks are required as seen in previous implementations [33],

[34]. Moreover, it is preferable to run trace backs in parallel as an incorrect trace back

may damage a “good” path and it needs a new trace back to correct this as soon as

possible. It has been suggested in [35] that the read-write-based trace back also has a

serious speed overhead due to the need to access multiple memory pointers. Therefore,

reducing the complexity of the trace back logic and memory, increasing the trace back

throughput, and reducing the SMU power consumption are all current research issues

in Viterbi decoder designs [28], [33] and [34].

Many approaches have been proposed attempting to address these issues, e.g. in-

creasing the number of pointers for parallel trace backs, decreasing the memory access

time of the read operation, or increasing the access rate of the read operation in a time-

multiplexed method [29], [31], [36]. However, none of them change the fundamental

read-write architecture in the trace back implementations, so have only limited success

in solving these problems.

3.2 Power dissipation in the Viterbi decoder

Over the past 15 years, Complementary Metal Oxide Silicon (CMOS) technology has

played an increasingly important role and already occupies the major place in the

global integrated circuit (IC) industry [37]. Most new VLSI designs are implemented
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in CMOS technology because of its high performance, high packing density, low power

attributes, and relatively low cost.

3.2.1 CMOS Circuitry power dissipation

In a CMOS circuit, power dissipation is comprised of three major components [37] [38]:

Pavg = Pswitching + Pshort + Pleakage

= fCLV 2
dd + ISCVdd + ILKVdd (3.5)

The first two terms are the switching and short circuit power dissipation, Pswitching and

Pshort, that are known as the dynamic power dissipation caused by switching activity,

In equation 3.5 f is the switching frequency, CL is the load capacitance, ISC is the

short circuit current and Vdd is the supply voltage. The third term of the equation is

the leakage power consumption, known as the static power dissipation and is caused

by leakage current, ILK .

Switching power dissipation

A normal CMOS gate consists of two parts: a pull-up network made of PMOS tran-

sistors connected between the positive supply voltage and the output node, and a

pull-down network made of NMOS transistors connected between the output node and

ground [39]. Because of the advantage of PMOS in presenting logic ’one’ and the ad-

vantage of NMOS in presenting logic ’zero’, they together can build complementary

logic gates. In an inverter circuit, for example, as the output changes from logic ’zero’

to ’one’, current flows from power supply to various capacitances, which are CL in to-

tal, and charge them to Vdd. This charge consumes an energy of fCLV 2
dd, half of which

is stored in the output capacitor and half is dissipated in the resistance of the PMOS

transistor [38] [39]. When the output changes from logic ’one’ to ’zero’, the stored en-

ergy will be dissipated in the resistances of the NMOS transistors, although there is no
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energy drawn from the supply. If the frequency of the power consuming transitions (0

to 1) is f , the power drawn from the supply is fCLV 2
dd. The switching power dissipation

is the major part of the CMOS power consumption, so much research has been carried

out and numerous methods are suggested for minimising it. From a designer point of

view, therefore, reducing the switching power dissipation by minimising the switching

activity in the design is the major method of achieving power efficiency. Methods of

reducing switching power dissipation in the Viterbi decoder design are the emphasis of

this thesis.

Short-circuit power dissipation

The analysis in the previous section is based on the assumption that only one of the

transistors in the inverter circuit is conductive at any time. However, in practice there

is a short period of time during each transition (either 0 to 1, or 1 to 0) when both

PMOS and NMOS transistors are conducting; this is caused by the finite rise and fall

times of the input waveforms. This period is determined by the voltage of the input.

For the inverter circuit, when the condition Vtn < Vin < Vdd − |Vtp| holds for the input

voltages, where Vtn and Vtp are the NMOS and PMOS threshold voltages, the NMOS

and PMOS devices are simultaneously on and generate a conductive path between Vdd

and Gnd [40]. The short-circuit current, ISC , therefore, draws an energy of ISCVdd

from the supply.

Because the short-circuit currents are significant when the rise/fall time at the input

is much larger than the output rise/fall time, it is very important to minimise the

transition times of input signals, in order to minimise the short-circuit period. In the

case that input and output have equal edge times, the short-circuit power consumption

is normally less than 10% of the total dynamic power dissipation [37]. Furthermore, as

the short-circuit current occurs during each transition in a circuit, it is also important to

minimise the numbers of transitions of the input. An interesting point here is that if the

supply Vdd is lower than the sum of the thresholds of the transistors, Vdd < Vtn + |Vtp|,
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the short-circuit current will never occur because both NMOS and PMOS devices will

not be conductive at the same time for any value of input voltage [40].

Leakage power dissipation

Ideally, during the time when the state of the output, either zero or one, is unchanged,

there is no current in the circuit and thus no energy will be dissipated. In practice,

however, there are always small currents within the CMOS circuit even when devices

are off. Two types of leakage currents occur: reverse-bias diode leakage current, which

occurs due to parasitic diodes which form between areas of diffusion and the substrate

[37], and subthreshold leakage current which occurs due to carrier diffusion between

the source and the drain [40]. Although these power consumptions are relatively small

when circuits are fully active, in systems, such as mobile phones, where large amount

of time are spent in stand-by mode, the leakage power consumption can be a major

problem.

3.2.2 Design flow and power estimation

The switching power dissipation, fCLV 2
dd, also applies to the dynamic power consump-

tion in a FPGA. Since the dominant part of CMOS power dissipation is the switching

power dissipation, the estimated dynamic power consumption of a FPGA designs in-

dicates the relative switching power dissipation of the CMOS design and thus, can

be used for estimating the power consumption of Viterbi decoder designs with CMOS

technology.

In this research, designs are completed with the Integrated Software Environment

(ISE), which is a software suite developed by Xilinx that allows designers to take their

designs from design entry through FPGA device programming. The ISE manages and

processes a design through the following steps in the ISE design flow.

Design Entry

Design entry is the first step in the ISE design flow. During design entry, the design
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source files can be created based on the design objectives using a Hardware Description

Language (HDL), such as VHDL, Verilog, or ABEL, or using a schematic. Multiple

formats for the lower-level source files are also supported in design entry.

Synthesis

After design entry and optional simulation, Xilinx Synthesis Technology (XST), inte-

grated in ISE, synthesizes VHDL, Verilog, or mixed language designs to create Xilinx-

specific netlist files. Then they are accepted as input to the implementation step.

Implementation

After synthesis, ISE design implementation converts the logical design into a physical

file format that can be downloaded to the selected target device. The implementation

process includes four major steps: Translate , which merges the incoming netlists and

constraints into a Xilinx design file; Map, which fits the design into the available

resources on the target device; Place and Route , which places and routes the design

to the timing constraints; Programming file generation , which creates a bitstream

file that can be downloaded to the device

Verification

A design can be verified at several points in the design flow. The integrated ISE

simulator or ModelSim software can be used to verify the functionality and timing

of a design or a portion of the design. These simulators interpret VHDL or Verilog

code into circuit functionality and displays logical results of the described HDL to

determine correct circuit operation. In-circuit verification can also be carried out with

the Chipscope software, also provided by Xilinx, after programming the FPGA device.

Device Configuration

After generating a programming file, it is downloaded from a host computer to a Xilinx

device on a development board.

The XC4VSX35 FPGA device is used for in-circuit verification and BER testing.

This device belongs to the latest Virtex-4 FPGA family which is based on 90nm CMOS
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technology and featured with various techniques. The major features of the Virtex-4

SX class devices are listed in Table 3.2 [41]. The designing and testing flow are shown

Tab. 3.2: Features of the Virtex-4 SX class devices.
XC XC XC

Features \ Devices 4VSX25 4VSX35 4VSX55
Logic Cells 23,040 34,560 55,296

Block RAM/FIFO w/ECC (18 kbits each) 128 192 320
Total Block RAM (kbits) 2,304 3,456 5,760

Digital Clock Managers (DCM) 4 8 8
Phase-matched Clock Dividers (PMCD) 0 4 4

Max Differential I/O Pairs 160 224 320
XtremeDSP Slices 128 192 512

Configuration Memory Bits 9,651,072 14,476,608 24,088,320

in Figure 3.8.

Fig. 3.8: Design and verification process of the FPGA implementations

3.2.3 Testing framework and noise generator design

The author has developed a test framework for the FPGA in-circuit simulations of a

Viterbi decoder design. The top level of this test framework consisted of seven major

blocks: a convolutional encoder, a uniform distributed random number generator, an
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AWGN generator, an 8-level quantiser, a Viterbi decoder block and two error counters;

this is shown in Figure 3.9. In the test framwork design, a random binary information

{Rt}

{Xt} {Yt}

{X’t}

{Ut}

{Nt}

Euc

Evd

Fig. 3.9: The test framework of the FPGA implementaion.

sequence {Xt} is encoded into a code word sequence {Yt} and sent to a discrete noisy

channel at time t. In the channel, noise {Nt} is added to {Yt} which gives the received

signals. Then, an 8-level quantiser is used to produce the soft-decision {Rt}. Based on

the soft-decision code words sequence {Rt}, the Viterbi decoder produces the estimated

information sequence {X ′
t}. By comparing {Xt} and {X ′

t}, the number of the decoded

errors, Evd, is obtained. To verify the noise generator, {Yt} and {Rt} are compared to

give the number of the uncoded errors Euc. The AWGN generator design is described

in Appendix B.

3.2.4 Viterbi decoder power consumption

The power consumption of Viterbi decoder designs on the FPGA were estimated by

Xpower which offers detailed power analysis and estimation for programmable logic.

XPower is integrated in ISE and allows designers to analyze total device power, power
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per-net, routed, partially routed or unrouted designs. In a power test, the timing

simulation of the post place and route design is carried out first to provide the circuit

level transitions information, which is saved as a VCD file. Then, the design layout file

and VCD file are imported into Xpower to give the estimated power consumption.

Power simulation setup

The most important parameter of the power simulation is the number of test samples.

If the number of the decoded bits is too small, the estimated power of the decoder

will not be accurate enough to indicate the decoder power dissipation with a much

longer data sequence; if the number is too large, it will take an extremely long time

for Xpower to calculate the power figure. Therefore, a set of simulations was first

carried out with different numbers of test samples at a high noise level of Eb/No=0dB.

Two standard decoders of k = 3 and k = 7 were used in the simulations. The results

are shown in Figure 3.10(a) for the k = 3 decoder and Figure 3.10(b) for the k = 7

decoder. Figure 3.10(a) shows for the k = 3 decoder, the estimated total (Dynamic

and Quiescent) power increases from 106mW to 124mW when the number of samples

n < 10, 000; however, for n ≥ 10, 000, the estimated power keeps constant. It is

similar for the k = 7 decoder, as shown in Figure 3.10(b). The estimated power

rapidly grows to 543mW at n = 10, 000 and then it tends to reduce slowly. The tests

with both decoders indicate the optimum samples number for the power simulation is

10, 000 since this is the minimum number of samples with which the estimated power is

reasonably accurate. Thus, 10, 000 samples were used for all FPGA power simulations.

Viterbi decoder power dissipation

Eb/No test

Two standard Viterbi decoders of constraint lengths 3 and 7 are used in this test. Trace

backs in these two decoders are started from the optimum states and have a length of 36

time slots. The dynamic power consumption of these decoders are measured at different
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(a) The estimated total power consumption of the k=3 Viterbi de-
coder at 50MHz with different number of test bits at Eb/No=0dB.
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(b) The estimated total power consumption of the k=7 Viterbi de-
coder at 50MHz with different number of test bits at Eb/No=0dB.

Fig. 3.10: The optimum number of test bits for power simulations.
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Eb/No conditions, from 0dB to 10dB, and the results are shown in Figure 3.11(a) and

Figure 3.11(b). Both Figure 3.11(a) and Figure 3.11(b) indicate the dynamic power
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(a) The estimated dynamic power consumption of the k=3 Viterbi
decoder at different noise levels.
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(b) The estimated dynamic power consumption of the k=7 Viterbi
decoder at different noise levels.

Fig. 3.11: The Viterbi decoder power consumption at different Eb/No levels.

consumption of a standard Viterbi decoder decreases gradually with the noise strength.

For the decoder of constraint length 3, the dynamic power consumption reduces from

29mW to 26mW which gives a 10% reduction at 10dB. With a constraint length 7,

the dynamic power consumption of the decoder reduces from 457mW to 370mW and
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the reduction is 19% at 10dB. The reductions of the dynamic power consumption are

due to the reduced switching activities in the decoder (mainly in the SMU) and do not

suggest any changes in decoder power efficiency. To analyse the energy efficiency of

the Viterbi decoder, the power figures are averaged by the numbers of corrected errors

in each second; this gives the average energy that the decoder consumes in correcting

an error. Figure 3.12 illustrate the results of this efficiency analysis. It indicates the
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Fig. 3.12: Energy per corrected error of the Viterbi decoders of k=3 and 7.

exponential increase of energy consumption to correct a bit for both the Viterbi decoder

k=3 and 7 as the noise level decreases. This, therefore, suggests the energy efficiency

of a standard Viterbi decoder decreases significantly with the increase of Eb/No level.

This is due to the reduction of the number of errors. When Eb/No increases, the

number of errors falls dramatically. Although the power consumption reduces with the

increase of Eb/No, it is not as fast as the decrease of the errors number; therefore, as

Eb/No increases, more and more energy is wasted by the Viterbi decoder in processing

an error free sequence and this reduces the energy efficiency of the decoder. Moreover,

as Figure 3.12 indicates, for a longer constraint length decoder, the reduction of energy

efficiency is more significant and thus, it is less energy efficient.
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For the Viterbi algorithm, one issue which is commonly recognised by researchers

is the exponentially increasing complexity from increasing the constraint length. The

above analysis of the decoder energy efficiency reveals another major efficiency issue of

the Viterbi algorithm: the energy efficiency of the Viterbi decoder dramatically reduces

with the increase of Eb/No. This problem is actually caused by the noise independent

nature of the Viterbi algorithm and is rarely recognised by the research community.

Constraint length relationship to power

Viterbi decoders with constraint lengths 3, 4, 5, 6, 7 and 8 are used in the test. The

power consumptions are measured at Eb/No=2dB and the results are shown in Fig-

ure 3.13. Due to the exponentially increase of the complexity, as shown in Figure 3.13,
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Fig. 3.13: The estimated dynamic power consumption of the Viterbi decoder with different
constraint lengths at Eb/No=2dB.

the dynamic power consumption of the standard Viterbi decoder also increases expo-

nentially, i.e. with the constraint length 8, the power is increased by a factor of 23

compared with that for constraint length of 3. However, since the decoder with longer

constraint length can correct more errors, these power figures are not able to indicate

the decoder power efficiency. The energy per corrected bit, therefore, is used again to

analyse the decoder energy efficiency with different constraint lengths at Eb/No = 2dB;
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and the results are shown in Figure 3.14. Figure 3.14 indicates a decrease of the decoder
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Fig. 3.14: Energy per corrected error of the Viterbi decoder with different constraint lengths
at Eb/No=2dB.

energy efficiency as the constraint length increases, since the energy per corrected bit

increases exponentially with the constraint length. However, compared to the increase

of power consumption, the increase of energy per corrected bit is less significant, i.e.

with the constraint length 8, the energy per corrected bit is increased by a factor of 14

over constraint length 3.

Block power

The standard Viterbi decoder of a constraint length 7 is used to measure the power

consumed by the BMU, PMU and SMU at different Eb/No levels. Figure 3.15 shows

the results. The power consumption of the Viterbi decoder is dominated by the con-

sumptions of the PMU and SMU, which average 36.8% and 62.5% as Figure 3.15(a)

shows. The most power consuming block is the SMU. This is due to the complex trace

back logic and the memory (implemented as look up tables) it requires. The PMU also

consumes a significant amount of power due to the large number of ACS processors.

The BMU, on the other hand, is negligible in terms of power consumption. Therefore,

a low power design of a Viterbi decoder should target reducing the power dissipated in
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(a) The average percentage of the blocks power consumption.
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(b) The block dynamic power consumption at different noise levels.

Fig. 3.15: The blocks dynamic power consumption of a standard (R=1/2, k=7) Viterbi de-
coder.
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the PMU and SMU.

When the noise level changes, as shown in Figure 3.15(b), the BMU power con-

sumption remains constant. For the PMU, the power consumption tends to slightly

increase with the Eb/No between 0dB to 6dB and then decreases between 6dB to

10dB. The increase of the PMU power consumption is caused by the increase of the

path metric value. At a high noise level, most of the branch metric values are smaller

than 7 (a most-likely 1 or 0); thus, the accumulated path metric values are relatively

small. As the noise level decreases, the branch metric values are increased and cause

the increase of the computational activities of path metrics in the PMU, thus increas-

ing the power consumption. However, when the Eb/No are higher than 6dB, most of

the path metric values reach their maximum and are kept unchanged. The number

of switching activities is, therefore, reduced and this results in a decrease of the PMU

power consumption. For the SMU, the power consumption reduces gradually which

indicates a decrease of trace back activity in the SMU.

3.3 Summary

A standard Viterbi decoder design comprises 3 major blocks. The BMU evaluates the

received code words and produces the branch metrics; the PMU accumulates the path

metrics and selects the survivor paths. The SMU can be either implemented with the

shift register or trace back approaches. However, since the shift register approach is less

power efficient, most of the Viterbi decoder designs are now using trace back SMUs.

In a CMOS circuit, power dissipation is dominated by the switching power dis-

sipation. Therefore, the principle of low power design with CMOS technology is to

reduce the number of switching activities in the design. In order to measure the BER

and the power of the Viterbi decoder, the design is implemented on a FPGA device.

The dynamic power consumption of the FPGA implementation indicates the switching

power dissipation of the design with CMOS technology.
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In order to simulate the AWGN channel, a noise generator is designed based on the

Box-Muller algorithm. This is used to test the standard Viterbi decoder. The BER

figures are measured by in-circuit FPGA simulation running at 100MHz; whereas the

power figures are measured by using the Xilinx Xpower software tool.

The power consumption of the Viterbi decoders with different constraint lengths are

measured in the tests. The results indicate that the decoder power consumption reduces

gradually with the increase of Eb/No, but exponentially increases with the constraint

length. In order to analyse the power efficiency of the decoder with different constraint

length at different Eb/No levels, the power figures are averaged by the number of

corrected errors in one second. This gives an energy figure of the decoder in correcting

each error. This analysis shows that the energy efficiency of a standard Viterbi decoder

reduces dramatically with the increase of the Eb/No and constraint length. Based on

this analysis, the fundamental efficiency issue of the Viterbi algorithm can be revealed:

the Viterbi algorithm is noise independent so that computational effort could be wasted

in processing an error free sequence. In the power analysis of the blocks in the decoder,

the results indicate that the SMU and PMU consume 62.5% and 36.8% of the decoder

power. Therefore, a low power Viterbi decoder design should aim at reducing the power

dissipation in the PMU and SMU. This chapter indicates that much power is expended

processing an error free data stream. The next chapter considers an adaptive design

where the decoder is switched off if the data is error free.
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DECODER DESIGN

In the previous chapter, the power analysis has indicated that the major efficiency

issue of the standard Viterbi decoder is the error independency. To address this issue,

the decoder operations should be made to adapt to the variation of noise strength and

error probability of the received sequence.

4.1 T-algorithms and adaptive T-algorithm

Adaptive Viterbi algorithms were introduced with the goal of reducing the average

computation and path storage required by the Viterbi algorithm. In a typical adaptive

Viterbi algorithm [42] of constraint length k, instead of computing and retaining all 2k−1

possible paths, only those which satisfy certain path distance conditions are retained at

each stage. This is also known as T -algorithm and consists of two major process [42]:

1. A threshold T indicates that a path is retained if its path distance is less than

dm + T , where dm is the minimum distance among all surviving paths in the

previous trellis stage;

2. The total number of survivor paths per trellis stage is limited to a fixed number,

Nmax, which is pre-set prior to the start of communication.

The first criterion allows high-distance paths that likely do not represent the transmit-

ted data to be eliminated from consideration early in the decoding process. In the case

of many paths with similar cost, the second criterion restricts the number of paths to

Nmax. Careful calculation of T and Nmax is the key to effective use of the T -algorithm.
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If threshold T is set to a small value, the average number of paths retained at each

trellis stage will be reduced. This can result in an increased BER since the decision on

the most likely path has to be taken from a reduced number of possible paths. Alter-

nately, if a large value of T is selected, the average number of survivor paths increases

and results in a reduced BER. However, the increased decoding accuracy comes at the

expense of additional computation and a larger path storage memory. The maximum

survivor paths, Nmax, has a similar effect on BER as T . As a result, an optimal value

for T and Nmax should be chosen so that the BER is within allowable limits while

minimizing decoding complexity. Several power-sensitive implementations of adaptive

Viterbi algorithm architecture have been proposed [43] [44]. In [43], a high-level ar-

chitectural model of an adaptive Viterbi decoder is described. The threshold T and

truncation length of the decoder is varied based on the desired BER, SNR (signal to

noise ratio), and code transmission rate. In [44], a systolic architecture with a strongly-

connected trellis is used. This architecture provides storage for up to 2k−1 paths, but

only calculates and stores paths whose costs meet threshold T . Power savings are

achieved through reduced storage and computation.

Although there are differences between these implementations, they both have the

following problems:

1. The T or Nmax values are determined by BER or SNR thresholds; they are not

fully adaptable for small BER or SNR variations.

2. These algorithms do not take into account the received error patterns. Although

the BER or SNR may be the same, the effort needed for correcting errors could

be different depending on the characteristics of the errors.

3. All these algorithms yield performance degradations, especially at low SNR lev-

els [45]. The optimum T or Nmax is determined by simulation which may not

applicable to the operating conditions of a real implementation.
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Therefore, two fundamental research questions are raised. The first question is on

what the adaptive capability of the decoding algorithm should be based? This requires

finding a simple but efficient method to indicate an error and error probability of the

received code words. The second question is how to make the decoding algorithm

adaptive to the error variations; this involves finding the optimum decoding approach

in terms of the computing effort and decoding accuracy according to the error prob-

abilities. The answer to the second question depends on the first question, since the

variation of the decoding effort is based on the indication of the error probability which

is the solution to the first question.

4.2 A new adaptive Viterbi algorithm

An ideal approach to solve the research questions revealed in the last section is to apply

the appropriate level of computation so that the effort is just enough for correcting the

errors, while avoiding any computation when the received sequence contains no error.

This requires the knowledge of the error probability of the received sequence prior

to decoding. Although there are other decoding algorithms, such as the soft-output

Viterbi algorithm (SOVA) or the maximum a posteriori algorithm (MAP), available

which can provide an estimation of the error probability of the received data, they are

even more complex than the standard Viterbi algorithm and are not suitable for this

task. To decide the proper effort in decoding, a simple method of identifying the error

sequence is required.

4.2.1 Error pattern in Viterbi algorithm

As has been discussed in the second Chapter, the Viterbi algorithm maximises the

likelihood of the received information in terms of code words path however this may

not correspond to the true maximum likelihood of the data. Therefore, once an error

event occurs in the code words, a wrong path of length L is chosen and this could
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cause a sequence of several random errors in the subsequent decoded data. This is

shown in Figure 4.1. The first graph in Figure 4.1 shows the errors in the received

Fig. 4.1: The error pattern in the code words and the corresponding decoded data of a R=1/2,
k=7 Viterbi decoder at Eb/No=3dB.

coded words sequence whereas the second graph illustrates the errors in the decoded

sequence when this code words sequence is decoded by a Viterbi decoder. Before the

first 150 code words, the errors are all corrected by the decoder; however, around the

150th code word, errors with a higher density occur in the code words sequence which

cause an error event in the code words path. Thus, the wrong path leads to 4 random

errors in the decoded data after the 150th bit, as shown in Figure 4.1. Two features

are suggested by these error patterns correlation between a code words sequence and

the decoded data sequence:

1. Firstly, the code words path can be partitioned into subsections with or without

errors. Therefore, the Viterbi algorithm is not needed for decoding the sections

with no error in the received code words sequence;

2. Secondly, since the decoding process seeks for the maximum likelihood in terms

of code words path, if an error event occurs so a wrong path is selected with

the Viterbi decoding process, then this results in a random error sequence in

the decoded data. In this case, the Viterbi algorithm is not able to improve the

accuracy of the decoded data and is thus also not necessary.
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Based on these facts, one approach to adaptively decoding the convolutional code with

the Viterbi algorithm is to properly identify these two situation and avoid of using

Viterbi decoding algorithm. This can be achieved with a simple approach.

4.2.2 No-error code words path identification

As was revealed, to improve its power efficiency a Viterbi decoder should be adaptive

to the error variation in the received code words sequence, so that the decoder can be

switched off when there is no error in it. Therefore, a simple method of identifying the

error free code words sequence is required.

Before discussing the method of identifying a no-error code words sequence, the

term of “no-error” code words sequence needs to be defined. In fact, at the receiver

side it is not possible to tell if a code words sequence has an error or not. Instead,

however, one can predict if a code words sequence will be chosen by the decoder or

not based on the decoding algorithm. Thus, in this context, a “no-error” code words

sequence refers to the code words sequence which has a zero Hamming distance to an

encoded sequence with the same generator polynomial as in the convolutional encoder

at the transmitter side of the channel. Therefore, this received code words path will

be definitely chosen as the survivor path and used to generate the decoded data by the

decoder. In this case, the errors are invisible to the decoder and this sequence, in fact,

is treated as “no-error” by the decoder.

Consider the coded digital communication system model shown in Figure 4.2. Let

the input and the output of the (n, m, k) convolutional encoder of rate n/m and con-

straint length k be represented by the n-component vector:

Xt = (x
(0)
t , x

(1)
t , x

(2)
t , · · · , x

(n−1)
t ) (4.1)

and the m-component vector:

Yt = (y
(0)
t , y

(1)
t , y

(2)
t , · · · , y

(m−1)
t ) (4.2)
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Fig. 4.2: Simple convolutional coded digital communication system model.

for t ≥ 0, respectively. A binary information sequence {Xt} is encoded into a code

word sequence {Yt} and sent to a discrete noisy channel at time t. Channel noise cause

errors {Et} to be added to the transmitted data. At the receiver, the received sequence

{Rt} is input to the decoder to recover the information sequence {Xt}, where:

Rt = (r
(0)
t , r

(1)
t , r

(2)
t , · · · , r

(m−1)
t ) (4.3)

In the Viterbi decoder, the decoded data are recovered from the estimated path {Ŷt}

that has the smallest path metric to the received code words sequence {Rt} at time t,

where Ŷt can be defined as:

Ŷt = (ŷ
(0)
t , ŷ

(1)
t , ŷ

(2)
t , · · · , ŷ

(m)
t ) (4.4)

From this the decoded output {X ′
t} is generated.

In hard-decision, as discussed before, the branch metric of estimated code word Ŷt

is the Hamming distance between received code word Rt and Ŷt at time t which can

be denoted as d(Rt/Ŷt). The path Hamming distance, d({Rt}/{Ŷt}) between received

code word sequence {Rt} and estimated sequence {Ŷt} is simply the sum of the branch

Hamming distance from time 0 to t:
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d({Rt}/{Ŷt}) =
t∑

i=0

d(Ri/Ŷi) (4.5)

The optimum hard-decision Viterbi decoder determines the code sequence {Ŷt} that is

closest in Hamming distance to the received sequence {Rt} at time t as the most-likely

path. When the received sequence is error-free, {Rt} and {Yt} are identical and have

the minimum zero Hamming distance over all other possible code word sequences.

Therefore, the estimated path {Ŷt} is identical to {Yt} in order to have minimum

Hamming distance to {Rt}. On the other hand, if a code words path has a zero

Hamming distance, it will always be chosen by the Viterbi decoder and, thus, treated

as “no-error”.

In the Viterbi decoding process, the estimated path is identified by tracing back

through the path history. In [7], a length equal to 5 times the constraint length is

suggested as the minimum trace back depth needed to decode 1/2 codes. This implies

that for 1/2 rate, constraint length 7 decoding, if a zero Hamming distance code words

path {Ŷt} of length 5 times the constraint length is identified, it will definitely be taken

by the Viterbi decoder at time t. The decoder, therefore, can output one bit of decoded

data based on the estimated code word Ŷt−35 at previous time slot t − 35, as most of

the paths have merged at this point during the trace back process.

The simple convolutional inverse circuit introduced in [28] can be used to pre-

decode the data. By re-encoding the pre-decoded data and comparing it with the

delayed received code words sequence, the “no-error” path can be easily identified.

The architectural block diagram of this new approach, which applies on a rate 1/2 and

constraint length 7 code with 3-bit soft decision, is shown in Figure 4.3. The source

information sequence is defined by equation (4.6), where Xt is defined in (4.1) with

n = 1 and is the source information at time t:

X = {X0, X1, X2, · · · , Xt, · · · } (4.6)
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Fig. 4.3: Architecture to identify the zero Hamming distance path for a rate=1/2 and k=7
convolutional codes.

The generator polynomials of the convolutional encoder are expressed as follows, where

D denotes the delay operator and “+” denotes modulo-2 addition:

G(0) = 1 + D + D2 + D3 + D6 (4.7)

G(1) = 1 + D2 + D3 + D5 + D6 (4.8)

They are expressed as (171,133) in octal. For a m = 2 code, the encoded data at time

t, defined as Yt = (y
(0)
t , y

(1)
t ) in (4.2), has two components:

y
(0)
t = Xt + Xt−1 + Xt−2 + Xt−3 + Xt−6 (4.9)

y
(1)
t = Xt + Xt−2 + Xt−3 + Xt−5 + Xt−6 (4.10)

By defining hard-decision channel errors at time t as E
(0)
t and E

(1)
t for y

(0)
t and y

(1)
t ,

respectively, with the value of “1” when an error occurs, the most significant bits (MSB)

of the received code words Rt = (r
(0)
t , r

(1)
t ) at time t are expressed by (4.11) and (4.12):

r
(0)
t = y

(0)
t + E

(0)
t (4.11)
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r
(1)
t = y

(1)
t + E

(1)
t (4.12)

This approach first uses the pre-decoder, shown in Figure 4.3, to pre-decode the

source information from Rt. The pre-decoded source information X ′
t at time t can be

defined by (4.13) [28]:

X ′
t = (

4∑
i=0

r
(0)
t−i) + r

(1)
t−2 + r

(1)
t−4 = Xt−1 + E ′

t (4.13)

where

E ′
t =

4∑
i=0

E
(0)
t−i + E

(1)
t−2 + E

(1)
t−4 (4.14)

Then, the pre-decoded data is re-encoded by the convolutional encoder with the same

generator polynomials G(0) and G(1) as the encoder used for encoding the source infor-

mation. The re-encoded code words R′
t = (r

′(0)
t , r

′(1)
t ) at time t are:

r
′(0)
t = y

(0)
t−1 + y

′(0)
e,t (4.15)

r
′(1)
t = y

(1)
t−1 + y

′(1)
e,t (4.16)

where y
′(0)
e,t and y

′(1)
e,t are defined by (4.17) and (4.18) representing the convolutionally

encoded error sequence {E ′
t}:

y
′(0)
e,t = E ′

t + E ′
t−1 + E ′

t−2 + E ′
t−3 + E ′

t−6 (4.17)

y
′(1)
e,t = E ′

t + E ′
t−2 + E ′

t−3 + E ′
t−5 + E ′

t−6 (4.18)

Equations (4.17) and (4.18) from [28] can now be extended beyond. By delaying Rt

and if it is identical to the re-encoded data R′
t, then:

E
(0)
t−1 = y

′(0)
e,t (4.19)
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E
(1)
t−1 = y

′(1)
e,t (4.20)

Therefore, substituting E
(0)
t and E

(1)
t in (4.11) and (4.12), yields:

r
(0)
t = X ′

e,t + X ′
e,t−1 + X ′

e,t−2 + X ′
e,t−3 + X ′

e,t−6 (4.21)

r
(1)
t = X ′

e,t + X ′
e,t−2 + X ′

e,t−3 + X ′
e,t−5 + X ′

e,t−6 (4.22)

where X ′
e,t is the modulo-2 addition of the source information Xt at time t and error

data E ′
t+1 at time t + 1:

X ′
e,t = Xt + E ′

t+1 (4.23)

The equations (4.21) and (4.22) show that if received code word sequence {Rt} equals

the re-encoded sequence {R′
t}, {Rt} becomes a convolutionally encoded sequence of

{X ′
e,t}. Therefore, it is certainly a path having zero Hamming distance to the received

code words sequence. The path detector block in Figure 4.3 counts the symbol match

signal from current time t up to t − L. If all of the previous L symbols are identical,

the output is set to indicate that a zero Hamming distance path of length L is found.

4.2.3 A new adaptive Viterbi algorithm and decoder design

Based on the indication of a zero Hamming distance path, a new adaptive Viterbi

algorithm and decoder can be proposed. The adaptive algorithm stops the Viterbi

decoding process when a zero Hamming distance path occurs and is as follow:

1. Pre-decode and re-encode the received code words Rt;

2. Compare the re-encoded code word R′
t with the corresponding received code

words Rt; if they match, set flag f(t) to ‘1’, otherwise set f(t) to ‘0’;

3. In the case of f(t) = 1, countwrds = countwrds + 1, otherwise countwrds = 0;

4. If the countwrds = 5 ∗ Lc, where Lc is the constraint length of the code, set flag

ZPath(t− 5 ∗ Lc) to ‘1’, otherwise set it to ‘0’;
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5. If ZPath(t − 5 ∗ Lc) = 1 select the pre-decoded data X ′
t−5∗Lc

at time t − 5 ∗ Lc

as the decoded output, otherwise apply the Viterbi decoding process on the code

word Rt−5∗Lc and select the corresponding output from the Viterbi decoder as

the decoded data.

6. repeat steps (1) to (5) to decode all {Rt}.

The architectural block diagram of this new adaptive Viterbi algorithm applied on

a rate 1/2 and constraint length 7 code with 3-bit soft decision is shown in Figure 4.4.

The adaptive part of the decoder is identical to the architecture shown in Figure 4.3.

As Figure 4.4 shows, once a zero Hamming distance path is found by the path detector,

delay3

delay1

delay2

delay2

delay1

(0)
t

(1)
t

(1)
t

(0)
t

t

(1)
t

(0)
t

Fig. 4.4: Architecture of the proposed 3-bit soft decision adaptive Viterbi decoder for
rate=1/2 and k=7 code.

the Viterbi decoder can be stopped from decoding received code words at time t−5∗Lc

and the pre-decoded data can be selected as the decoded data by the valid signal from

the Viterbi decoder.

4.3 BER and power analysis of the proposed adaptive Viterbi decoder

The decoding performance and complexity of the adaptive Viterbi decoder has been

tested in Matlab and then implemented on a Field Programmable Gate Array (FPGA).



82 4. Low power adaptive Viterbi algorithm and decoder design

4.3.1 Matlab Simulation Results

Figure 4.5 shows the bit error rates of the decoded data from the adaptive Viterbi

decoder with a zero Hamming distance path of length L = 35. In the simulation,

0 0.5 1 1.5 2 2.5 3
10-4
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10-1

100

Eb/No (dB)
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Standard Viterbi algorithm
Adaptive Viterbi algorithm

Fig. 4.5: BER performance of the adaptive Viterbi algorithm with L = 35, R=1/2, k=7.

all decoded errors are identical to the Matlab conventional Viterbi decoder results

and there is no error in the selected pre-decoded data. This suggests the decoding

performance of the adaptive Viterbi decoder is comparable to the standard Viterbi

decoder.

The percentages of the received code words decoded by the Viterbi decoder or by

the pre-decoder are shown in Figure 4.6. As Figure 4.6 shows, when there is a high

noise level there is no zero Hamming distance path over 35 time slots long. Therefore,

no pre-decoded data is selected by the decoder as the decoded data when Eb/No is less

than 3dB; received code words are decoded by the standard Viterbi decoder and there

is no power saving. However, when Eb/No is higher than 3dB the number of valid

pre-decoded data increases as the noise level reduces. At an Eb/No level of 8dB, the

number of Viterbi decoder operations reduces to less than half of the overall number
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Fig. 4.6: Comparison of pre-decoding and Viterbi decoding operations, R=1/2, k=7.

of decoder code words, which indicates a factor of two reduction in overall Viterbi

decoder operations. As Eb/No increases further up to 13dB the pre-decoded circuitry

is increasingly used. At 13dB and above, most of the pre-decoded data are valid and

Viterbi decoder operations are avoided. At these Eb/No levels, the adaptive Viterbi

decoder works mostly as a pre-decoder, and the power consumption is kept very low.

The above results indicate that with L = 35, where L is the length of the zero

Hamming distance path for the adaptive algorithm, the adaptive Viterbi decoder can

save significant power at low Eb/No levels with no accuracy degradation. However,

at high noise levels, the reductions are very small. To further increase the saving, L

can be reduced so that more zero Hamming distance paths with shorter length can be

identified. However, these reductions are not free. As the lengths of the zero Hamming

distance paths decreases, they are more likely to be incorrect. Thus, this degrades

decoding accuracy.

The adaptive Viterbi decoder has been simulated with different value of L, from 4

to 28 at interval of 4. The BER results are shown in Figure 4.7. The decoder provides
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Fig. 4.7: BER performance of adaptive Viterbi algorithm with L from 4 to 28, R=1/2, k=7.

the least decoding accuracy at L = 4, and results in an increased BER of nearly a

factor of 6 compared to the standard Viterbi decoder at 3dB. The decoding accuracy

improves with the increasing L. For L larger than 16, the BER of the adaptive Viterbi

decoder is very close to the BER of the standard Viterbi decoder although an increase

in the accuracy degradation can be expected at higher Eb/No levels.

With a smaller L, the decoder saves more computations than with a higher L, as

shown in Figure 4.8. Lines named with PD in this figure shows that the number of

pre-decoding operations increases as the noise level reduces; lines named VD indicate

that the Viterbi decoding operations reduces with the noise level. The same saving of

Viterbi decoder operations, around 20%, can be achieved at 4dB with L = 4 as with

L = 28 at 6dB, which means further power savings can be made by sacrificing decoding

accuracy.
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Fig. 4.8: Percentages of pre-decoding and Viterbi decoding operations, R=1/2, k=7.

4.3.2 FPGA simulation results

In order to get more accurate BER figures and evaluate the compatibility of the adap-

tive algorithm with a standard Viterbi decoder, this new adaptive Viterbi decoder is

implemented on a Virtex4 XC4VSX35 FPGA. The post place and route design occu-

pies 2, 658 slices compared with 2, 443 slices of the standard Viterbi core and is 8.8%

larger. It runs at a maximum frequency of 165MHz which is the same frequency as the

standard one.

Monte Carlo simulations were used to get the BER results shown in Figure 4.9. This

figure shows the measured uncoded BER matches the theoretical result very well up to

11dB. This suggests the noise samples are valid in the simulations. Furthermore, the

BER from the adaptive Viterbi decoder exactly matches the standard Viterbi decoder

BER. Therefore, the adaptive Viterbi decoder provides the same decoding accuracy as

the standard Viterbi decoder and yields no accuracy degradation.
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Fig. 4.9: BER performance from FPGA tests, R=1/2, k=7.

4.3.3 Estimated power consumption

With the new adaptive Viterbi algorithm, the whole Viterbi decoder is stopped when

the pre-decoded data is valid. Therefore, there is no switching activity in the Viterbi

decoder, thus no dynamic power is consumed by the Viterbi decoder. Figure 4.10 shows

the dynamic power consumption of this design reduces from 404mW at 6dB to 2.15mW

at 13dB. The reduction is from 1.4% to 97%. This indicates that the proposed adaptive

Viterbi decoder saves significant power at low noise levels while still providing the same

decoding accuracy as a standard Viterbi decoder. However, at higher noise levels, no

power can be saved if the same decoding accuracy is maintained. In fact, around 2mW

power, which is about 3% of a normal Viterbi decoder power consumption, is consumed

by the pre-decoding and this represents the power overhead of this adaptive design.

4.3.4 Comparison of other low power designs

In [43], the proposed adaptive T-algorithm decoder saves 95% of the total energy of

a normal Viterbi decoder at 3.75dB. However, it gives a BER of 10−4 at this noise
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Fig. 4.10: Estimated dynamic power consumption of the adaptive Viterbi decoder on Virtex4
XC4VSX35, R=1/2, k=7.

level. Comparing this to the BER of 3× 10−6 from a standard Viterbi decoder [7], the

adaptive T-algorithm decoder is in fact 33 times worse in decoding accuracy. Therefore,

compared with the adaptive T-algorithm decoder, our decoder provides higher decoding

accuracy and still achieves significant power saving at low noise levels.

In [28], a scarce-state-transition (SST) system has been proposed. It reports a

power reduction of 40% at a BER of 10−4 when operating at an information rate of

25 Mbps. The benefit provided by the SST system is that the Viterbi decoder power

consumption can be saved without any decoding accuracy reduction. However, because

a SST system never stops the Viterbi decoder even when the noise level is very low,

the potential power saving is limited compared to our adaptive algorithm, which can

save up to 97% overall decoder power at low noise levels.

4.3.5 Possible applications

In practice, the adaptive Viterbi decoder can be used to save power in a system where

the BER of the input is lower than 10−4. This is the case in the read channel of
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optical storage systems. In a standard DVD player system [21], the BER of the read

out signal is between 4 × 10−4 to 4 × 10−6. To further improve the accuracy of the

read out data, the partial response maximum likelihood (PRML) scheme [46] can be

implemented with a Viterbi detector. By using a Viterbi detector modified using the

proposed adaptive technique instead of a conventional Viterbi detector, up to 73%

power can be saved when the BER of the input signal is at 4× 10−7.

Furthermore, the adaptive Viterbi decoder will also yield power efficient operation

for applications subject to error bursts. Here, the full Viterbi decoding will operate

around the error burst with the pre-decoding logic operating in the intervening inter-

vals. In these situations, using the adaptive Viterbi decoder would allow power gains

at much lower bit error rates. In a Turbo decoder, either parallel or sequential, two

soft-output Viterbi decoders can be used with the proposed adaptive algorithm. Since

the output from the first Viterbi decoder tends to be bursty, as indicated in Figure 4.1,

the second Viterbi decoder can save significant power with the adaptive approach in

each decoding interval.

4.4 Summary

The adaptive approach is one of the major methods for reducing Viterbi decoder power

consumption. Designs using this approach, however, are basically trading off the de-

coding accuracy with the power dissipation by approximating and limiting the path

metrics and paths number, such as the adaptive T-algorithm. From a decoding accu-

racy point of view, this is not efficient since the adaptive capabilities of these approaches

are objective and predetermined by the designer so that the decoding processes are not

varied subject to the real channel error conditions.

The ideal approach, which has been revealed in this chapter, is to transform the

Viterbi decoder from channel error independent to error dependent. More precisely,

the decoder should be stopped when there is no error in the received code words and
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restarted to correct errors otherwise. To achieve this, a simple method is required to

pre-decode and identify the no-error code words sequence. Based on the inverse circuit

in [28], a simple approach has been discovered for finding the zero Hamming distance

code words path. A new adaptive algorithm, therefore, can be proposed so that the

Viterbi decoder can be stopped from processing a zero Hamming distance path and the

pre-decoded data from the zero Hamming distance path can be used as the decoded

output instead.

Test results show that with the length of a zero Hamming distance path equal to

or larger than 5 times the constraint length, the decoding accuracy of the adaptive

algorithm is identical to the standard Viterbi algorithm with the same trace back

length. Potential reduction of the power consumption in the Viterbi decoder is from

1.4% to 97% as Eb/No increases from 6dB to 13dB. However, the power reduction is

small when the noise level is high (≤6dB). Moreover, the ideal of using pre-decoded data

from the zero Hamming distance path is decoder independent. Therefore, it should be

possible to be adopted in other convolutional decoding applications to minimize power

consumption.



5. LOW POWER SMU DESIGN

In chapter 3, it has been revealed that a SMU consumes more than half of a standard

Viterbi decoder power. Therefore, a low power Viterbi decoder design can be achieved

by minimising the power dissipation of the SMU.

5.1 Design of SMU

Two major approaches, Register Exchange and Trace Back, are commonly used to

implement the SMU. As has been discussed in chapter 3, the register exchange approach

is not power efficient as a large amount of power is wasted by moving data from one

register to another. On the other hand, the trace back approach is generally recognised

as the lower power alternative to the register exchange method. Therefore, for a low

power Viterbi decoder design, the trace back approach should be adopted.

The trace back process is fundamentally a recursive updating process. This process

requires the local winner decisions to be stored in a decision memory prior to tracing

back the survivor path. The trace back recursion estimates the previous encoder state

Sn−1 according to the current state Sn as

Sn−1 = Sn[m− 2 : 0]dS
n (5.1)

where m = (k− 1) and is the total bits of the state index Sn. For the common radix-2

trellis, the one bit local winner decision dS
n is read from the local winner memory located

by the state index Sn and time index n; the previous state Sn−1 is obtained by simply

discarding the most significant bit of Sn and appending dS
n as the least significant bit.
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5.1.1 Major SMU operations

In the SMU, operations can be divided into two major domains: the updating of new

local winner decisions and the trace back decoding operations. The operations of up-

dating the new local winner involve regularly writing the new branch selections into

the memory. Since the local winners are produced by the PMU synchronously, the

updating operations should also synchronise to the PMU operations. The trace back

operations in the SMU can be started at any state. The recursion shown in equa-

tion 5.1 is continuously repeated for at least 5k times (to avoid degradation in the

BER performance) during the trace back process so that the converged path can be

reached. Based on the rest of the converged path, the decoded data can be gener-

ated. Since trace backs in the SMU are based on the stored local winner they are

independent of the memory updating process. Therefore, trace back operations can

be performed asynchronously if desired. Currently SMU designs are implemented with

full synchronous or asynchronous timing techniques.

Synchronised SMU timing and design

In a synchronised SMU design the trace back is performed discretely. Therefore, during

each cycle of updating the new path metric, a trace back can only be performed in a

certain number of stages synchronously.

The most common synchronous trace back SMU design is the one-pointer architec-

ture [47]. Figure 5.1 shows the memory architecture of the one-pointer SMU design.

The cyclic local winner memory is partitioned into a write block of length D, a merge

block of length L and a read block of length D, as shown in Figure 5.1. In the decoding

process, the new local winner from the add-compare-select operations in the PMU are

written to the write region while the previous local winner decisions are traced and

read from the merge and read block, respectively. Once the data is read and decoded

from the read block, it becomes the write block for the next round of the decoding pro-

cess and the other block partitions are shifted accordingly [48]. During each memory
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D L D

Converged 
path

Fig. 5.1: Memory architecture of the one-pointer trace back SMU.

writing cycle one slice of the write block memory is updated by the new local winner

information while (1 + L
D

) cycles of trace back recursions are performed in the read

and merge block. Since the clock for the trace back operations is synchronised to the

memory write clock and (1 + L
D

) times faster, a trace back is finished as soon as the

write block is fully updated. The SMU can thus operate without any break. For the

synchronous trace back approach, the memory length D of the write block depends on

the trace back and the memory updating clocks frequencies, ftb and fw, as

D =
L

ftb/fw − 1
forftb/fw > 1. (5.2)

Although this synchronised one-pointer trace back architecture is simple to implement,

it requires a large memory due to the practical low trace back frequency (typically 2 to

3) caused by the delay of each trace back recursion [48]. Moreover, for the one-pointer

approach, if a trace back follows a wrong survivor path at high noise level, a block of

incorrect data will be decoded and this can not be corrected by the next valid trace

back. This, thus, limits the decoding accuracy of the SMU. The classical solution to
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this problem is to run multiple trace back processes concurrently which results in the

so called k-pointer trace back architecture [48] [49]. Generally, increasing the number

of trace back pointers reduces the required time interval for tracing back and reusing

the memory. Thus, it reduces the size of the required local winner memory [49] and the

time for correcting a wrong trace back; it thus increases the SMU decoding accuracy.

However, due to the overhead of the multiple pointer control logic, the reduction of

the design size and power consumption is limited. In fact, with multiple pointers, the

memory access rate is significantly increased thus an increase of SMU power dissipation

can be expected.

5.1.2 Asynchronised SMU timing and design

On the contrary to a synchronised design, the timing is individually scheduled in an

asynchronous system and there is no global timing reference for the state transitions.

In an asynchronous SMU design, the trace back is performed continuously controlled

by handshakes. Figure 5.2 illustrate the self-timed SMU architecture from [1] which

uses a four-phase bundled-data interface [50]. In this design, each trace back is started

by issuing an evaluate signal in Figure 5.2, which is then propagated asynchronously

through the control logic stages and enables the updating of the (k-1) bits local winner

address in each control block. One significant feature of this design is that it only

starts a trace back when there is a survivor path with a unique minimum path metric,

which is referred to as the global winner in [1]. Moreover, a trace back is forced to stop

when the path is merged so the repeated trace back operations as in the synchronised

design can be avoided. Since the path reconstruction is only undertaken if necessary

and for only as long as required, significant SMU operations are avoided, and this

reduces its power dissipation. In fact, with this asynchronous approach, the SMU can

have multiple trace back pointers as many as the number of the total memory length.

Therefore, the memory size can be minimised to be as small as only five times the

constraint length. This is impossible to achieve in synchronised designs. In spite of
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Fig. 5.2: The SMU architecture of the asynchronous design from [1].

these advantages, this asynchronous design has the overhead of handshake logic that

consumes extra power due to the trace back handshakes applied at each trace back

stage.

In the asynchronous design, the local winner memory is sourced from the PMU

and the timing of the memory updating depends on the handshakes between the PMU

and the SMU. However, the trace backs in the SMU are controlled by the handshakes

between control logic stages and are independent of the handshakes of the memory

updating operations. Since the data from each control stage, e.g. the addr and strobe

shown in Figure 5.2, and the local winner decisions from the PMU share the same local

winner memory, an error will occur when the trace back and the updating operations

are accessing the same local winner memory slice at the same time. In this design a

trace back has to be forcibly stopped if it is in danger of running into the head slot

where the trace back is started. This is resolved by arbiters. Any metastability occurs

internally to the arbiters with the outputs indicating ‘0’ until such time as the arbiter

resolves the inputs. The arbiters add additional delay to the trace back path.
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5.2 New Trace Back SMU design

The advantages indicated by the asynchronous SMU design revealed the fact that

trace back operations are more efficient implemented asynchronously. However, the

drawbacks of applying only asynchronous or synchronous technique to the SMU design

indicates it is ideal to achieve the design efficiency by implementing memory updating

operations synchronously while adopting asynchronous timing in the trace back process.

5.2.1 Timing feature of the trace back convergence

In general, the timing control in a VLSI design, either synchronous or asynchronous,

is used to guarantee the validity of the output data from a subsystem. In other words,

if the output data is always valid, the timing control can actually be avoided and this

applies to the trace back implementation. In the trellis diagram of Figure 5.3, the
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Fig. 5.3: The trellis structure shows the Viterbi decoding process of a R=1/2, k=3 code.

survivor paths from all states, shown as the highlighted lines, at the end of the trellis

converge into a single path at t7. Therefore, as the trellis extends as the time progresses,

the converged path will also extend and the previous section of the converged path

remains unchanged. Therefore, from the implementation point of view, once the merged
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path has been generated, it can be read out at any time regardless of the trace back

timing. In this case, trace backs are only required to continuously hold and extend the

converged path. This is a very important timing feature of the trace back algorithm.

Taking advantage of this feature, the timing control of a SMU design can be simplified.

5.2.2 Overview of the new SMU architecture

According to the timing feature of the SMU trace backs, an efficient mixed synchronous

and asynchronous SMU architecture can be proposed. Figure 5.4 illustrates the new

SMU top level architecture which is targeted at a Viterbi decoder for decoding 1/2 rate

convolutional codes with a constraint length of 7. To ensure the decoding accuracy,
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Fig. 5.4: The new R=1/2, k=7, 64-state SMU architecture, which consists of four major
blocks.

64 trace back stages are used in this SMU design. As shown in Figure 5.4, the design

consists of four major blocks: the Local Winner Memory, the Trace Back Path, the

Global Winner Distributor and the Output Generator. The Local Winner Memory, the

Global Winner Distributor and the Output Generator are synchronised to the global

clock whereas the Trace Back Path implements mixed synchronous and asynchronous

timing. The local winner memory block is implemented as 64 slots of 64-bit latches and
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is loaded synchronously from the system clock. The stored local winner decisions are

output straightaway and directly after being updated. This avoids the repeated mem-

ory read operations usually performed. Global winners from the PMU are distributed

by the Global Winner Distributor block so that the global winners at even and odd

time slots are sent to the Trace Back Path block on two different buses. The Trace

Back Path is a straightforward implementation of the radix-2 trellis and generates the

merged path by trace backs. The global winners from the merged path are produced

by combinational logic based on the local winner decisions and the new global winners

from the Global Winner Distributor. The Output Generator simply selects the global

winner from the converged path and synchronises the decoded data with a flip-flop

according to the global clock.

5.2.3 64-bit global winner encoding

In a normal SMU design, the global winner is encoded into (k−1) bits, as suggested in

equation 5.1, so that it can address all 2k−1 local winners in the memory. This approach

requires a decoding process in the memory to transform the global winner index into

a single bit read enable signal to access the target location. Also, to produce the

previous state Sn−1, as indicated in equation 5.1, Sn needs to be shifted and appended

by the read out local winner. Since these operations add extra stages to the trace

back operations, they introduce delay and timing uncertainty into the design. This,

thus, will cause glitches in the trace back process. As discussed before, trace backs are

required to constantly hold the converged path without any breaks so that the timing

control can be simplified. These glitches in a trace back operation, therefore, must be

avoided.

To avoid this, more bits are used so that a global winner is encoded into 2k−1 bits

with each bit representing whether a global winner appears at each state in the trellis.

Therefore, the global winner appearance of a previous state can be derived from the

global winner bit of current state and its corresponding bit of the local winner from the
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current state; this is computed for each state. With this approach, the global winner

encoding and decoding processes are avoided so that the timing control of the trace

back process can be largely simplified. Based on the 64-bit global winner encoding,

the trace back process can be implemented in a form of the trellis structure.

5.2.4 New trace back path architecture

The trace back path comprises 64 trace back units and is shown in Figure 5.5. Each

Fig. 5.5: Trace back path of the new SMU design.

trace back stage consists of a trace back unit and a multiplexer which selects the global

winner input from either the Global Winner Distributor or its predecessor trace back

unit. Each stage of the trace back path consists of both synchronous and asynchronous

timing.

1. Synchronised timing in the trace back path. The selection signal for each

multiplexer is synchronised to the updating of the local winner memory and the

global winner data from the Global Winner Distributor. When the selection

signal is high, the multiplexer of trace back stage n selects the new global winner

from the Global Winner Distributor so that the output of the multiplexer is
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used by the child trace back stage, stage (n − 1), to produce its output global

winner; When the selection signal returns low, the multiplexer then selects the

output from the trace back unit so that the global winner data produced by

current trace back unit can be sent to the child stages and propagated through

the rest of the trace back path as a new trace back. The multiplexers in the trace

back path work as both the starting points and the end points for new and old

trace backs so that the new trace backs are started and the old trace backs are

both stopped synchronously by these multiplexers. Although glitches may occur

due to the transition of the selection signal, with the overlapped global winner

updating scheme used the output of a trace back unit has two clock cycles to settle

down before it is selected by the multiplexer. A trace back can thus be started

without glitches. Moreover, as normal combinational multiplexers are used, the

synchronous and asynchronous data can be fully decoupled without causing any

metastability problem. As one of the major features of the new SMU design, the

multiplexer timing will be discussed later in section 5.2.6.

2. Asynchronous timing in the trace back path. Although trace backs are ini-

tialised by the synchronised multiplexers, they propagate asynchronously there-

after through the trace back path, as shown in Figure 5.5. One important feature

of this new asynchronous trace back approach is that there is no handshake to

control the propagation of a trace back. With the direct output from the local

winner memory, fixed survivor branch connections are established in each trace

back unit which form the survivor paths for back traces. Since the trace backs

are started continuously, the converged path can be held without any handshake

inbetween the trace back stages.

The multiplexer selection signal and the global winners from the PMU are syn-

chronised to the updating of the local winner memory. However, the global winner

from a predecessor trace back unit is asynchronous to this. If the multiplexer selection
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were to be switched just as a new output were generated then spurious transitions

would be propagated down the trace back chain. To avoid this, global winners from

the PMU update even trace back units on even timeslots, and odd trace back units on

odd timeslots. This overlapping enables trace backs to be started when the adjacent

global winner has become established and so avoids unnecessary switching transition

propagation and avoids additional uncertainty in determining the bit to output. The

timing of the multiplexer switching is shown in Figure 5.6. As can be seen, the tran-

TBouti

gwi gwi+2 gwi+4

TBouti+1

gwi-1 gwi+1 gwi+3 gwi+5

Seli-1

Seli

Seli+1

Global winner 
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Output from 
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Global winner 
T_odd

Output from 
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Selx controls the multiplexer selection between the Global winner from PMU and output from the predecessor TB unit, i.e. 
Selx is high, selecting the global winners from PMU; Selx is low, selecting the output from the predecessor TB unit.

Clock

Fig. 5.6: The timing of the trace back path multiplexer.

sitions of Sel signals in Figure 5.6 are synchronised to the clock. In the first clock

cycle, the selection signal Seli−1 of the trace back stage (i− 1) is set high so that the

global winner data at odd time slot Global winner T odd is selected as the output

of this stage. At the second clock cycle, the selection of the trace back stage i is set

high so that the global winner data at even time slot Global winner T even is selected

as the output from the trace back stage i, which is shown as TBouti in Figure 5.6.

Since the selection signal of the trace back stage (i − 1) is still high, TBouti and the

possible glitches will not propagate and affect the output of trace back stage (i−1) and

the stages thereafter. At the third clock cycle, Seli−1 returns low so that the output

from the trace back stage i can be selected and passed through. It then propagates
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asynchronously as a new trace back. Since there is one clock period for TBouti to

settle down, glitches caused by the selection signal Seli and the trace back logic are

prevented from being sent out as a trace back. In this way, the existing converged path

can be preserved by continuous trace backs started in an interval of one clock cycle.

In the trace back path, each trace back unit is a direct implementation of one stage

of the radix-2 trellis, as shown in Figure 5.7, so that the global winner at time slot

Ti is constructed based on the local winner selections and global winner at time slot

Ti+1 in a trace back unit. As shown in Figure 5.7, each bit of the global winner signal

Fig. 5.7: The one stage trellis structure of the Trace back unit.

is diverted by the selecting element (its function is indicated in Fig 5.7) according to

the local winner selection of that state. The survivor paths therefore are formed in the

trace back path as the established connections through trace back units. The global

winner signal from two different states are merged by an OR gate. The OR gate is

a simple but efficient way of implementing the path convergence as there is no extra
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logic required for detecting the convergence to stop a merged trace back as in the

handshaked asynchronous design. With this approach, a trace back propagation stops

once it ‘OR’ed with an existing trace back signal and no further transition occurs at

the OR gate output thus minimising the power dissipated in trace backs.

5.2.5 Local Winner Memory

The local winner memory is used to store the local winners from the PMU. This is a

circular buffer with a forward moving token in which one register is needed to record the

local winner of each state at every time slot. The moving of the token is synchronised to

the PMU clock. For a 64 state, 64 time slots SMU, 64×64-bit registers are required as

illustrated in Figure 5.8. Register Ri in Figure 5.8 holds the local winners of all states

64

64 64 64 64

Fig. 5.8: Local winner memory of the new SMU design. It uses latch registers to store local
winner information.

at time slot i, where i is 0 to 63. Instead of RAM or D-type flip-flops, transparent

latches are adopted in order to minimize the power dissipated when writing. Updating

of each register is controlled by synchronised enable signals so that the local winners

from the PMU fill successive registers as time progresses. This scheme is called selective



5.2. New Trace Back SMU design 103

update in [51]. When the ith data is received, only register Ri is enabled so that the

local winner of all the states at time slot i is recorded in the register. Since clocks

are disabled for other registers, this scheme can reduce switching activity to a minimal

level to save power [51].

Furthermore, instead of having a single 64-bit output, this local winner memory

has 64 64-bit outputs, shown as Ti in Figure 5.8. Therefore, there is no need for any

read operation compared with conventional SMU memory using RAM storage thus

reducing switching activity and unnecessary power dissipation.

5.2.6 Global Winner Distributor

In the Global Winner Distributor, the global winners from the PMU at even and odd

time slots are clocked alternately into Register A and Register B using a half-frequency-

clock and its inverse, see Figure 5.9; they are then distributed onto two global winner

buses, A and B. As shown in the timing of Figure 5.10, a ‘current’ and ‘previous’ global

Fig. 5.9: Global Winner Distributor of the new SMU design.

winner are held constant over two time slots on the global winner buses A and B. In

the Global Winner Distributor, look-ahead logic is used to trace forward and estimate

the global winner for time slot Ti+1 based on the global winner at Ti and the local

winner at Ti+1. This is only used in the case when the global winner from the PMU

is invalid, e.g. no state metric is zero; in this case, the Global Winner Distributor just

inserts the estimated global winners onto the global winner buses so that the trace
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Fig. 5.10: Timing of the global winner buses A and B

backs starting from these states can still extend and hold the existing converged path,

avoiding unnecessary transition changes. This is a simple solution which avoids of

using complex control logic or memory to keep the existing trace back status. With

this new trace back path design, multiple global winners can be injected into the trace

back path to start more than one trace backs simultaneously.

5.2.7 Output Generator

The output generator block simply selects and clocks the global winners of the oldest

time slot from the trace back path into a register, just before it is updated by the

PMU. The output generator block is synchronised to the global clock; thus, the input

and output of the new SMU are matched without using any buffer. The 64-bit global

winner information is then decoded into a single bit data with a ‘0’ output if the ‘1’

indicating the global winner is in an even state position and a ‘1’ output for an odd

state position. In the case of more than one global winner being indicated at the oldest

time slot, as a trace back can start with multiple global winners, the output could

either be ‘0’ or ‘1’ depending on the decoding logic design.

In this new SMU architecture, the global winner signals from the trace back path

are asynchronous with respect to the synchronizer flip-flop in the output generator.

Therefore, when the output generator clocks the global winners into its flip-flop registers

and produces the output, it synchronizes the global winners output with the global
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(a) Metastable state can be resolved into either ‘1’ or ‘0’.

(b) A synchronizer using cascaded flip-flops allows one clock period
for the data to resolve.

Fig. 5.11: Metastability and a simple flip-flop synchronizer.

clock. Metastability or glitches can thus occur when the global winner is changing at

or close to the system clock edge. The new data, therefore, may or may not be entered

in the output register due to different flip-flop set up and hold times. Furthermore,

flip-flops can enter a metastable state where a non-standard “half-level” is output as

shown in Figure 5.11(a). In the new SMU, a cascaded flip-flop synchronizer shown

in Figure 5.11(b) is implemented to save the asynchronous global winner information.

This allows one clock period for the data to resolve before being output and such

synchronizers minimize the effect of metastability. According to [52] [53] [54], the

mean time between failure (MTBF) of this synchronizer can be calculated using the

equation below [50].

MTBF =
et/τ

Tw × fd × fc

(5.3)

where fd and fc are the frequency of data and clock transitions; Tw is the time interval

between the clock and data transition giving rise to a non-zero resolving time; t is the

time allowed for resolving and τ is the time constant for leaving the metastable state.
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This equation indicates that the MTBF is exponentially proportional to both t and τ ;

thus, increasing t or minimizing τ are preferable in order to increase the MTBF. τ and

Tw are estimated using the simple set-reset latch shown in Figure 5.12. By violating the

Fig. 5.12: Metastability simulation circuit in measuring τ .

setup and hold time constraints for the set and reset signals, metastability is generated.

In the post layout simulation with .18 micron CMOS technology, τ is measured to be

from 14ps to 43ps and Tw is from 16ps to 21ps. Using the maximum τ and Tw, the

minimum MTBF of the flip-flop synchronizer is calculated to be 10,209 years for a

45MHz clock frequency and 1,087 years for a 100MHz clock frequency. Therefore,

using the flip-flop synchronizer of Figure 5.11(b) is sufficiently reliable. Although the

synchronizer may resolve to a random output, this will not affect the decoding accuracy.

The trace backs are rarely correct if they can reach the oldest time slot without merging

into the converged path. In most of the cases correct trace backs will merge together

considerably before reaching the oldest time slots in a frame. If a trace back runs back

to the oldest time slot the correct trace back is destroyed and this causes wrong data

to be decoded. Therefore, even if there is no synchronisation problem, the decoded

data from these long trace backs will still produce wrong output data. So, it is not

necessary to add extra logic to avoid the random errors caused by metastability at the

oldest time slot. This again simplifies the SMU architecture and minimizes its power

consumption.
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5.3 Timing in the new SMU design

Since there is no handshake to control the trace backs in this new SMU design, timing

skew could occur. However, timing skews do not always causes the failure in a design.

For a trace back, there are two types of timing skews which may occur in this new

SMU design and can be referred to as positive timing skew and negative timing skew.

5.3.1 Positive timing skew

At each time slot, a trace back is started by sending a logic ‘1’ signal from the global

winner state. Since the trace backs are travelling asynchronously in the trace back

path, the delay may cause the logic ‘1’ signal sent at time tn to propagate slower than

that sent at tn+1. This is referred as the positive timing skew since the new trace back

travels faster than the old one.

Figure 5.13(a) and Figure 5.13(b) show the trace back path status in the positive

timing skew situation at the time frame t2 and a short period after t2, at t2 + ∆. In

Figure 5.13, vertical lines illustrate the trace back stages in the new SMU design. The

solid lines in Figure 5.13 indicate the paths having a logic ‘1’ status which represent

the global winner states; the dashed lines indicate the path with logic ‘0’, i.e. non-

global winner status. At time t2, as shown in Figure 5.13(a), the logic ‘1’ signal, Tb2,

sent from Stg2 has reached Stg1. At the same time, Stg1 is still being updated by

the PMU and sending the logic ‘1’ signal, shown as Tb1, which holds and indicates

the converged path so that the decoded data can be generated. However, due to the

overlap of updating in the trace back path design, Tb2 is not allowed to pass through

Stg1 at t2.

Immediately after t2, Stg1 stops updating and allows the trace back signals to pass

through so that they can travel freely on the rest of the trace back path. Since the

path start at Stg1 and Stg2 is different, the non-global winner states indicated by logic

‘0’ signals at Stg2 will also pass through Stg1 simultaneously. These changes alter S0
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(a) Trace back status at time t2

Ng

(b) Trace back status at time t2 + ∆

Fig. 5.13: Trace back status in positive timing skew situation.
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to the non-global winner state so that there is still one global winner state at Stg1.

In the positive timing skew situation, as shown in Figure 5.13(b), since the trace back

signals from Stg2 travel asynchronously without any timing control, the logic ‘1’ signal

Tb2 is propagating faster than the logic ‘0’ signal Ng due to the different delay in each

path. However, because the decoded data is decided by the converged path and the

positive timing skew does not affect its existence as Tb1 and Tb2 merge together at

CP , as shown in Figure 5.13(b), there will be no decoding error caused by the positive

timing skew.

5.3.2 Negative timing skew

The timing skew illustrated in Figure 5.13 is one type of situation where a logic ‘1’

signal sent at time t travels faster than the one sent at (t − 1) so that it can always

catch up and merge with former ‘1’s. However, it may occur that the later logic ‘1’

signals may propagate slower than the former so that a gap forms in between. This is

referred to as negative timing skew of the trace backs and is illustrated by Figure 5.14.

The solid line from state S1 represents the global winner propagation with time and the

Fig. 5.14: Trace back gap caused by timing skew.

dotted line represents all the other ‘loser’ states. The slower propagation of the winner

means that the loser ‘0’ states can combine with a zero on the winner path from the

previous timeslot to indicate a period where no winner is indicated; this is indicated
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by the shaded region in Figure 5.14. Were this to happen at the time the decoded data

is clocked into the output flip flop then incorrect data would be decoded and output.

After loading a timeslot, the load pointer moves on forward and the trace back moves

in the reverse direction. Therefore, the trace back path design in the new SMU can be

(a) Trace back status at time tn+1 + τ

(b) Trace back status at time tn+2 + τ

Fig. 5.15: Trace back status at various time points.

simplified as shown by the trace back model in Figure 5.15. In Figure 5.15(a) the black

dots represent the trace back stages; together with the connections between stages they

form the circular trace back path implemented in the new SMU. The arrow Pout is the

pointer for clocking output data and is moving from StgL−2 to Stg0 where the L is

the total number of trace back stages; L− 2 arises from the timing of the switching of

the multiplexers in the trace back stages. Due to the overlapping of the global winner

update, the stage Stg(L−1) is updated by the new global winner while the trace back is

starting at stage Stg0. Therefore, the data is taken from the stage Stg(L−2) as shown
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in Figure 5.15.

Since the data is taken out periodically based on the clock, Pout can be considered

moving at a constant speed with a time interval equal to the clock period T between

two stages. Therefore, the data is taken out only at the time when Pout passes each

stage. The arrow Tb at Stg0 on the trace back path represents the trace back starting

from this stage. It moves towards Pout from Stg0 to StgL−1. Eventually, Pout and Tb

will meet each other, as shown in Figure 5.15(b), when they both arrive in Stgn at

the same time. The trace back Tb, thus, travels n stages in this time whereas the Pout

passes (L − 2 − n) stages as indicated in Figure 5.15(b). If the trace back delay per

stage is d and the clock time is T

n× d = (L− 2− n)× T (5.4)

It is the range of delay in a trace back unit that gives rise to the ‘zero’ gap that may

arise. To be more realistic and accurate, the flip-flop setup time tsetup and a possible

tolerance margin should be included which gives

n× d + (tsetup + β) = (L− 2− n)× T. (5.5)

where β is the tolerance of the clock. Based on this equation, the n of the Tb can be

obtained as a function

n =
(L− 2)× T

d + T
− tsetup + β

d + T
(5.6)

determined by L, d and T , where the tsetup is a constant and β depends on T . Post

layout measurements for the 0.18µm 1.8V process targeted reveal a variation between

dmin and dmax of 0.55ns to 0.615ns. The flip-flops setup time is 0.16ns according to the

manufacturer’s data and 20% tolerance is assumed. Taking a SMU path length L as

64 and using equation 5.6, the variation in n at different frequencies can be computed

and are as shown in Table 5.1. It can be seen that despite the delay variations to be
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expected in the trace back units, the output data is always within the same stage at

frequencies 10MHz, 100MHz, 125MHz and 200MHz. Therefore there will be correct

output over these frequencies. The results for 50 and 150MHz indicate that the output

Tab. 5.1: Minimum and maximum trace back stages at a 0.18µm geometry.
Frequency (MHz) Min Stages (nmin) Max Stages (nmax)

10 61.42 61.46
50 59.95 60.14
100 58.20 58.56
125 57.37 57.80
150 56.56 57.07
200 55.00 55.65

could fall in different stages and could therefore cause output errors.

5.3.3 Timing of the scaled new trace back design

As geometries scale down, the stage delay d will alter and the negative timing skew

may cause the trace backs to fail. According to the first-order ‘constant field’ MOS

scaling theory [37], scaling a process down by a factor α reduces the gate delay by the

same factor α while the wire delay remains the same. Based on this, the variation for

dmin and dmax is shown in Table 5.2. Equation 5.6 can be used to find the variation

Tab. 5.2: Minimum and maximum delays of each trace back stage for different geometries.
Geometry (nm) Min Delay (ns) Max Delay (ns)

180 0.550 0.615
130 0.400 0.465
90 0.275 0.340
60 0.183 0.248

in n at these geometries and this is shown for a 50MHz clock and 64 stages (= L)

in Table 5.3. As the results suggest, the output data is always within the same stage

and so will be correctly output at 50MHz over the range of geometries shown. The

results for 90nm in Table 5.4 indicate that the output may fall in different stages at

100MHz and could cause an output error. This can be avoided by either shifting the

output clock edge or by altering the number of trace back stages, according to the
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Tab. 5.3: Minimum and maximum trace back stages at 50MHz and L=64.
Geometry (nm) Min Stages (nmin) Max Stages (nmax)

130 60.39 60.58
90 60.76 60.95
60 61.04 61.23

Tab. 5.4: Minimum and maximum trace back stages at 100MHz and L=62.
Geometry (nm) Min Stages (nmin) Max Stages (nmax)

130 59.04 59.41
90 59.75 60.13
60 60.29 60.67

Equation 5.6. It does indicate that to achieve an efficient design without handshakes

is not without problems and that careful timing analysis and simulation is required at

the working frequencies and on the targeted process to verify correct operation.

5.4 Test results of the new SMU design

The Viterbi decoder design with this new SMU architecture is implemented in both

CMOS circuitry and a FPGA. Power simulations are used to estimate the power figures

of the CMOS and FPGA implementations. The BER of this new design is obtained

by running Monte Carlo simulations with the FPGA implementation.

5.4.1 CMOS implementation results

The new SMU operates at frequencies 45MHz and 100MHz; and uses a 0.18 micron

technology and a 1.8V supply voltage. The layout has been automatically generated

using a commercial tool from logic schematics comprising elements from an in-house

library of conventional CMOS logic circuits. This approach results in random delays in

the trace back path. Table 5.5 summarizes its characteristic with Figure 5.16 showing

its layout. The design has been tested by running Nanosim post-layout simulations.

In the post-layout tests, three different size (5k, 10k and 50k) of random data patterns

were generated and added with white Gaussian noise according to the signal noise
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Tab. 5.5: Characteristics of the new SMU core
Throughput 45Mbits/s and 100Mbits/s
Rate 1/2 (or punctured 2/3 to 7/8)
Trace back length 64
Core size 1.05× 1.05 = 1.10mm2

Transistors 241K
Technology .18µm standard cell

Control

Control

Local 
Winner 
Memory

Trace Back Path

Output Generator

Fig. 5.16: Post-layout of the new SMU core.

ratio in decibels. The resulting output bit error rate (BER) and power consumptions

for different signal to noise ratios for code rate 1/2 and punctured 2/3 are given in

Table 5.6 and Table 5.7. The output throughput is 45Mbit/sec in these simulations

which is equal to the throughput of the reference designs in [27] and [1]. It can be

seen that the power increases only relatively slowly with increasing input BER. This

suggests that trace backs in the new SMU consume only a small portion of the overall

SMU power.

The average power consumption and area of this new SMU design is compared in

Table 5.8 with low power Viterbi decoder designs from [27] and [1], which are imple-

mented with single-ended pass-transistor logic (SPL) and asynchronous logic respec-
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Tab. 5.6: New SMU BER and power consumption in decoding 1/2 codes
S/N (dB) Input BER Output BER Power(mW )

0.4 0.07335 0.01524 6.65
1.7 0.04234 0.00029 6.31
2.6 0.04234 < 4.85e− 5 6.24
3.5 0.01904 < 2.31e− 5 6.17

Tab. 5.7: New SMU BER and power consumption in decoding 2/3 codes
S/N (dB) Input BER Output BER Power(mW )

1.1 0.05720 0.01350 6.44
2.2 0.03595 0.00080 6.39
3.0 0.02494 < 6.25e− 5 6.20
3.7 0.01619 < 2.98e− 5 6.08

tively. Since the SPL design is implemented with the .35 micron CMOS technology

and a 3.3V supply voltage its power and area are scaled down by factors of 8 and 4

respectively. The power results have all been scaled (where required) to a 45Mb/s data

rate for a .18µm process running from 1.8V.

Tab. 5.8: The proposed SMU power consumption comparing with other low power SMU
designs at 1.8V and 180nm.

New SMU SPL [27] Asynch [1]
Decoder Area(mm2) N/A 1.64 1.96

SMU Area(mm2) 1.10 1.04 ∼ 0.98
No. of States 64 64 64

Avg. Power(mW ) of N/A 62.5 ∼ 18
Decoder @45Mb/s

Avg. Power(mW ) of 6.31 39.38 ∼ 9
SMU @45Mb/s

According to the comparison, the new SMU architecture only uses 16% of the

power dissipated in the low power design using SPL logic. In the asynchronous design

from [1], the overall decoder power consumption is also much less than the synchronous

SPL design from [27]. Comparing it to the power figure from the asynchronous design,

the new SMU architecture can provide a 29.8% power reduction. So, the new SMU

is the most power efficient design amongst these three. Also the significant power

saving in our new SMU and in the asynchronous design over the synchronous approach
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confirms that the asynchronous architecture is definitely beneficial for lowering power

dissipation in the SMU implementation. The layout for the SPL and asynchronous

SMU designs were done manually while the new SMU layout was generated by the

tools. Even so, the areas of all these three implementations are comparable indicating

that this proposed architecture is most suitable for trace back SMU implementations

which require low power consumption.

5.4.2 FPGA implementation results

Since the post-layout power simulation is extremely compute intensive, it does not

provide BERs that are accurate enough at low noise levels. The design has therefore

been transferred to a 90nm FPGA. Two Viterbi decoders, R = 1/2, k = 7 and R = 1/2,

k = 3, using this new SMU architecture were implemented on a Virtex4 XC4VSX35

FPGA board. The test framework includes a Viterbi decoder IP core from Xilinx

which is compatible with many common standards such as DVB, 3GPP2, IEEE802.16,

Hiperlan, and Intelsat IESS-308/309. The power figure is estimated by the Xpower tool

from Xilinx. The size of the post place and route design is larger than the Xilinx IP

core, as shown in Table 5.9. It shows the Viterbi decoder with the new SMU is 21% and

Tab. 5.9: Number of slices the Viterbi decoder occupied with the new SMU architecture
RAM Blocks Slices

VD with new SMU(k=3) 0 284
Xilinx IP(k=3) 2 224

VD with new SMU(k=7) 1 3,686
Xilinx IP(k=7) 5 2,423

34% larger than the Xilinx Viterbi decoder of constraint lengths 3 and 7, respectively.

All of the designs can operate at a frequency of 100MHz. Monte Carlo simulations were

used to get the BER results shown in Figure 5.17. It shows the measured BERs from

the Viterbi decoders with the new SMU match the standard Viterbi decoders BERs.

There are only small differences at high noise levels. This is due to the extremely

small difference between the trace back speeds in the new SMU and the Xilinx Viterbi
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Fig. 5.17: BER performance from FPGA tests.

decoder. This indicates the trace backs in the new SMU architecture provide the same

decoding accuracy as a standard Viterbi decoder at 100MHz and the timing skew, as

discussed before, yields no accuracy degradation. Further testing at 50MHz (where

timing skew may cause decoding errors according to the timing analysis) also results

in the same BER as the standard decoder at the same frequency. This suggests that

the negative and positive timing skew at different stages tend to cancel each other out

so that they will not affect the decoding accuracy in the real design.

The power simulations are run for 10k symbols at the Eb/No = 0dB with a 50MHz

clock. Only the dynamic power is considered since the quiescent power consumption

in CMOS circuitry is very small. The results are listed in Table 5.10. These power

Tab. 5.10: Dynamic power consumption of the Viterbi decoder with the new SMU Imple-
mented on FPGA

Trace back length Power(mW)
VD with new SMU(k=3) 48 20.3

Xilinx IP(k=3) 48 28.2
VD with new SMU(k=7) 48 428.3

Xilinx IP(k=7) 48 446.2
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figures indicate that for small constraint length, such as k = 3, the proposed new

SMU saves 28% dynamic power of a standard Viterbi decoder on the FPGA. However,

for k = 7, the saving becomes only 4%. This is due to the exponential increase in

the design complexity mainly from the increased number of trellis connections. For a

small constraint length, the increased power dissipation of these extra connections is

relatively small. However, as the number of the connections increases exponentially

with the constraint length, the power overhead becomes significant and reduces the

power saving of this new SMU. This effect is more obvious in FPGA implementations

since the connections in FPGA are not simply wires as in CMOS implementations.

For the k=7, L=48 design, further tests of a standard one-pointer synchronous

SMU show that by using the low power block RAM on the FPGA, the SMU power

dissipation can be reduced from 281mW to 274.8mW . This compares with 263.1mW

in the new SMU power consumption. So the new design saves only 4% SMU power

dissipation. Therefore, this proposed SMU architecture is best suited for low power

CMOS implementations of the Viterbi decoder with a relatively small constraint length.

5.5 Summary

In this chapter, a new trace back SMU design has been proposed. Based on the timing

analysis of synchronous and asynchronous SMU designs, the timing features of the

trace back algorithm have been identified. Due to the convergence of trace backs, the

timing control can be simplified as long as the converged path can be maintained by

trace backs.

To implement these features, in this new design data is entered into the SMU

synchronously while the tracing back to reconstruct the transmitted data is decoupled

from the data entry and free runs asynchronously. The trace back logic is entirely

combinational thus avoids the complex control and handshakes normally associated

with asynchronous design. In addition, the use of latches rather than RAMs for the



5.5. Summary 119

data entry avoiding power costly read accesses to the memory. All these measures

give the new design an equivalent bit error performance but at lower power than other

SMUs.

Potential problems, such as metastability glitch and timing skew, have been shown

to not significantly affect the accuracy of the decoding data compared with other more

conventional approaches. Although the trace back may fail due to the timing skew, it

can be fixed by either shifting the output clock edge or by altering the number of trace

back stages. This is confirmed by the measured BERs from the FPGA implementa-

tions. This indicates that to achieve an efficient SMU design without handshakes is

not without problems that careful timing analysis and simulation is required at the

working frequencies and on the targeted process to verify correct operation.

On CMOS circuitry, the new SMU architecture is more power efficient compared

with a low power design using SPL as it reduces the power dissipated in the SMU by

a factor of 6. Thus, this proposed architecture is believed to be suitable for low power

trace back SMU implementations. The FPGA power tests with a standard Viterbi

decoder and one-pointer SMU design show the new SMU provides the same decoding

accuracy as a standard design; however, the power saving could be significantly reduced

for larger constraint length due to the wire overhead. This indicates the proposed SMU

architecture is best suited for low power CMOS implementations of the Viterbi decoder

with a relatively small constraint length.
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The power analysis in Chapter 3 indicates that the conventional PMU design consumes

37% Viterbi decoder power. In order to achieve optimum power efficiency in a Viterbi

decoder, the PMU power consumption needs to be minimised.

6.1 Existing low power implementations of PMU

Some previous work has been done specifically targeted at lowering power dissipation

in the PMU. These works involve using non-discrete approach, e.g. analogue circuits

or modifying the ACS process. An analog design approach will be discussed first in

this section.

6.1.1 Analog design

Because of their high speed and low power nature, analogue CMOS and BiCMOS inte-

grated circuit technologies are becoming more and more popular [55] [56] in designing

many of today’s complex, high performance systems. Analogue circuits have already

been implemented in some Viterbi decoder designs, mostly in PMU designs [57] [58]

[59].

In [60] a mixed signal Viterbi decoder was proposed applying analogue circuits in

the BMU and PMU while implementing digital circuits in the SMU. In the BMU, the

voltage differences of the received and the ideal symbols are sampled on capacitors in

the first clock cycle; and then, in the second clock cycle the charge sharing across these

capacitors generates the sum of the voltage differences and gives the voltage outputs

as the Branch Metrics (BM). In the PMU, the block partitions of the analogue ACS
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processor is exactly the same as the digital ACS processor and every add-compare-

select operation is completed in one clock period as well. At first, the Path Metrics

(PM) are stored in the form of charges on the capacitors. Then, after the BM is added

into the PMs a comparator gives the decision bit while a selector chooses the biggest

metric which is then stored in the second clock cycle. To avoid overflow, the PMs are

normalised at each cycle by monitoring the largest of all metrics.

The analogue BM and PM in the mixed signal Viterbi decoder design means there

is an infinite number of quantization levels. Since there is no information loss during

quantization compared with the 3-bit quantization process in a normal digital Viterbi

decoder, ideally, an analogue Viterbi decoder should have the highest BER performance

due to its infinite resolution.

The ideal analogue Viterbi decoder, as indicated by the simulations from [61], does

outperform the digital Viterbi decoders of hard-decision and 2-bit or 3-bit soft-decision.

However, its performance is very close to the 4-bit soft-decision digital Viterbi decoder

suggesting the ideal analogue Viterbi decoder will not provide significantly better per-

formance than a digital Viterbi decoder using soft-decision of 4-bits or more.

Furthermore, the BER performance of the ideal analogue Viterbi decoder, in fact,

cannot be achieved in real hardware practice simply because of the noise and signal

distortion in the analogue circuits. In [61], these effects are summarised in three cate-

gories:

1. The nonlinear distortion of the branch metric transfer function.

2. The noise introduced by the analogue circuits.

3. The offset of the analogue comparator.

The simulation results from [61] suggest that under certain nonlinear distortion, noise

condition, or comparator offset, the analogue Viterbi decoder may provide better BER

performance than a 3-bit soft-decision Viterbi decoder. However, since these conditions
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may vary in a real hardware implementation, the analogue Viterbi decoder cannot

guarantee a better performance in comparison with a 3-bit soft-decision digital design.

The major feature of an analogue decoder is its low power dissipation. In [60],

50mW power dissipation is recorded for the k=7 analogue Viterbi decoder at 20MHz

clock frequency. In comparison with the SPL design in [27] of 92.5mW normalised

power consumption at the same decoding rate, more than 45.9% power can be saved by

the analogue circuits. Since the analogue decoder in [60] is implemented with 0.5µm

CMOS technology while the SPL is in 0.35µm, more power saving can be expected

when the analogue decoder is implemented in transistors of a smaller size. Therefore,

the analogue Viterbi decoder is obviously more power efficient than a normal digital

implementation.

However, there are major issues limiting the practice of implementing analogue

circuits in a real design [62].

1. Firstly, an analogue implementation has to be customised and it is difficult to

use CAD tools to synthesis or automatically route. Therefore, using analogue

circuits in the Viterbi decoder design will cost much more time and design effort

than only using digital circuits.

2. Secondly, each analogue design requires a precise model of implementation in

order to consider the effects such as the noise or the nonlinearity etc., while the

digital design only needs simple timing models for simulation and analysis. There-

fore, things are more likely to go wrong when the analogue design is implemented

due to the inaccurate modelling.

3. Finally, the dynamic range of the analogue implementation is limited by power

supplies and noise. Therefore, the analogue design is less flexible in terms of the

working condition and it is impossible to guarantee the performance.

To summarise, an implementation of an analogue Viterbi decoder requires much more

design effort and time. Although the analogue decoder can achieve a better power
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efficiency, it is less flexible in terms of the working condition and its performance is more

uncertain in comparison with the digital design. Therefore, few commercial designs are

implemented in analogue circuitry and this thesis will only consider improving the PMU

power efficiency with digital circuits.

6.1.2 Low power compare-select-add (CSA) design

In the PMU of a Viterbi decoder, the ACS process requires 4 adders and 2 comparators

in the butterfly ACS unit in the conventional architecture. This is shown in Figure 6.1.

This architecture can be modified by re-arranging the ACS operations to use less adders.

Fig. 6.1: The conventional architecture of the ACS unit.

In [2], a new architecture of the ACS unit is proposed using 2 adders, 2 comparators

and 1 subtractor, as shown in Figure 6.2. In this design, instead of adding the PMs

with the BMs to produce four candidate PM values, the differences of PMs and BMs

are pre-computed and compared so that the minimum of the four candidate PMs can be

decided without actually obtaining the values. This architecture from [2] is illustrated

in Figure 6.2. Then, based on the decision, the proper PMs and BMs are selected and
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Fig. 6.2: The low power ACS unit architecture proposed in [2].

added together to produce the new PM values. In general, this compare-select-add

(CSA) approach avoids the redundant add operations so that two adders can be saved

and the power dissipation can be reduced. In [2], 30% power saving is recorded from

the gate level simulation. Since the ACS units consume most of the power in the PMU,

one third of the PMU power saving can be expected.

The drawback of this CSA approach is the increased delay on the critical path.

As indicated in Figure 6.1, the critical path of ACS process includes an adder, a

comparator and a multiplexer. However the CSA process in Figure 6.2 involves a

subtractor, a comparator, a multiplexer and an adder. The extra subtractor increases

the maximum delay of the critical path, and thus reduces the maximum clock frequency

and throughput of the PMU implementation.

6.2 Low power design of the PMU

In the Viterbi decoding process, there is only one most likely path and most of the ACS

operations are calculating the PM values of the incorrect paths. Therefore, by properly
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setting a limit (cap) of the maximum PM value, the number of switching activities in

the ACS process can be minimised so that the power dissipated can be saved.

6.2.1 Performance analysis with BM and PM Capping

In the Viterbi algorithm, PMs are used to differentiate and classify the likelihood

of the code words paths. Setting a limit of the maximum PM value will not affect

the decoding accuracy when the correct path has a PM lower than this limit. The

accuracy only decreases when the PM of the correct path is equal or higher than

the maximum limit since the correct path may be disregarded randomly by the ACS

operation. Moreover, the overall decoding accuracy of the Viterbi decoder is also

dependent on the accuracy of BMs. Therefore, systematic simulations are performed in

order to reveal the optimum combination of the BM and PM in terms of performance

and efficiency. Figure 6.3 shows the BER performance of the R=1/2, k=7 decoder

1 15 20

Fig. 6.3: The BER performance variation of the Viterbi decoder with different BM and PM
capping levels at Eb/No of 3dB.

with different BM and PM capping levels in a 3D space. It indicates the BER reduces

dramatically with the increase of BM and PM capping levels and the minimum BER
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can be obtained with the BM and PM at the maximum of 14 and 70 respectively.

Performance analysis with BM capping variation

However, increasing BM capping level does not always result in the performance en-

hancement. As is shown in Figure 6.4, when the PM capping level is greater than 3, the
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Fig. 6.4: The BER performance of the Viterbi decoder with the variation of BM capping level
at Eb/No of 3dB.

BER will decrease first with the increase of the BM capping level; however the BER

increases after a certain point as the distance between the BM and PM capping levels

reduces. Therefore, it suggests that for each PM capping level there is an optimum

BM capping level, with which the optimum performance can be achieved; and when

the BM capping level is less than the optimum, the performance of the Viterbi decoder

will always improve with an increase of the BM capping level. Therefore, if capping
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the PMs in the Viterbi decoder design, the BMs have to be capped at a level equal or

less than the optimum BM capping levels; otherwise not only the power is wasted in

calculating larger BMs but also the BER performance is decreased.

For R=1/2 k=7 decoder, these optimum BM capping levels at various Eb/No ratios

are listed in Table 6.1. This table indicates that the optimum BM caps are determined

Tab. 6.1: The optimum BM caps for R=1/2, k=7 Viterbi decoder.
Max PM Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No
Values =3 =4 =5 =6 =7 =8 =9 =10

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 2 2 2 2 2 1 1 1
5 2 2 2 2 2 1 1 1
6 3 2 2 2 2 1 1 1
7 3 3 3 2 2 1 1 1
8 4 4 4 2 2 1 1 1
9 4 4 4 2 2 1 1 1
10 4 4 4 2 2 1 1 1
11 5 5 6 2 2 1 1 1
12 6 5 7 2 2 1 1 1
13 6 6 6 2 2 1 1 1
14 8 6 6 2 2 1 1 1
15 8 10 6 2 2 1 1 1
16 9 10 6 2 2 1 1 1
20 9 10 6 2 2 1 1 1
32 11 10 6 2 2 1 1 1
70 11 10 6 2 2 1 1 1

by the PM caps and the noise ratio: generally, a higher PM cap requires a higher opti-

mum BM cap to achieve better performance; however, at higher Eb/No ratios, smaller

BM caps are required with greater distances between BM and PM caps. Thus, it can

be summarised that the performance of the Viterbi algorithm is not only determined

by the absolute values of PMs or BMs but also by the distance between the maximum

PMs and BMs. Therefore, the performance of capping BMs and PMs at higher values

can also be achieved by capping them at lower values but with larger distances. For

example, as shown in Figure 6.4, the BER from capping PMs at 11 and BMs at 11 can
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also be achieved by capping PMs at 11 and BMs at 2 or capping PMs at 10 and BMs

at 9, or using even smaller values such as capping PMs at 5 and BMs at 2.

Performance analysis with PM capping variation

Although increasing the PM caps will always enhance performance, the decrease in

BER varies with different BM caps. This is shown in Figure 6.5 which indicates a

major feature of the BER performance variation. For a BM cap, the BER decreases
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Fig. 6.5: The BER performance of the Viterbi decoder with the variation of PM capping level
at Eb/No of 3dB.

with the increase of the PM cap. However, the increase of performance is bounded

at a certain PM capping level after which the BER keeps constant. For instance, if

capping the BM at 2, the BER decreases rapidly when increasing the PM caps up to
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5. After this, the BER remains constant regardless of the increase in the PM caps.

This is due to the loss of the likelihood information by the BM capping. In this case

increasing the PM beyond 5 is not efficient and thus needs to be avoided in a real

design. Table 6.2 lists the optimum PM capping levels for Viterbi decoder R=1/2,

Tab. 6.2: The optimum PM caps for R=1/2, k=7 Viterbi decoder.
Max BM Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No Eb/No
Values =3 =4 =5 =6 =7 =8 =9 =10

1 3 1 1 1 1 1 1 1
2 5 1 1 1 1 1 1 1
3 7 1 1 1 1 2 2
4 9 2 2 2 2 3 3
5 11 2 2 2 4 4
6 12 2 2 2 5 5
7 15 3 3 3 6
8 16 4 4 7 7

9-10 20 4 4 8
11-14 20 4 4 9

k=7. It can be concluded that in a Viterbi decoder design, if the BM is capped, the

efficiency of this design can be achieved by limiting the maximum value of PMs at the

values indicated in this table. Therefore, in order to achieve the best efficiency of a

Viterbi decoder the optimum BM and PM capping levels should be carefully chosen

for the PMU according to the target BER requirement.

6.2.2 Low power implementation of the PMU with PM and BM capping

According to the Digital Video Broadcasting (DVB) standard in [23], the BER of

2 × 10−4 is required from a Viterbi decoder in a DVB system at a Eb/No of 4.5dB.

Based on this requirement, the optimum BM and PM capping levels are 6 and 15

respectively according to the previously analysis; this gives a BER performance of

1.78× 10−4 at a Eb/No of 4dB according to the simulation.
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Low power PMU design using the new ACS architecture

Based on the analysis above, in the Viterbi decoder for the DVB application, the

maximum BM and PM values should be limited at 6 and 15 so that power dissipation

in the BMU and PMU can saved.

With this capping scheme, to minimise the amount of switching in the PMU the

adder inputs are frozen by disabling the input register when the input PM values are at

the maximum level. This architecture is shown in Figure 6.6 for a R=1/2, k=7 decoder.

In this architecture, a BM is limited to 3 bits with a maximum value of 7 while the

MUX

MUX

Reg

Reg

Max
detect SetPM

SetPM

Reg

Fig. 6.6: The architecutre of the BM and PM capping ACS unit.

PM is represented with 4 bits and have a maximum value of 15. However when the

input PM values are all larger than the PM capping level (15) the Maxdetect logic will

disable the registers to freeze the inputs to the 4 adders so that all the ACS operations

are avoided for the next clock cycle. Then, in the next clock cycle the PM outputs of

the ACS unit are set to the maximum by the SetPM logic without the ACS operation.

With this architecture, the ACS power dissipation can be reduced by minimising the

number of active bits in the PMs calculations and skipping the ACS process when the

PMs are at the maximum. However, the overhead are the extra registers for the BMs
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and the logic for monitoring and setting the PM values.

6.3 Test Results

The PMU with this proposed ACS architecture is implemented on a FPGA for R=1/2

k=7 decoder. The design has a maximum frequency of 87MHz and is tested at 50MHz.

Figure 6.7 illustrates the BER performance of the Viterbi decoder with the new pro-

3 3.5 4 4.5 5 5.5 6 6.5 7
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10-6

10-4
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Eb/No in dB

B
E

R

new ACS
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Fig. 6.7: The BER performance of the proposed low power ACS design.

posed ACS architecture in comparison with the normal Viterbi decoder. As is indicated,

the new ACS architecture provides lower decoding accuracy (with a BER = 2.5×10−3

at 3dB) compared with the standard decoder (with a BER = 7.8×10−4 at 3dB), which

is approximately 3 times worse. However, as the noise level decreases the difference

of the decoding accuracy between the new and the conventional ACS architectures is

also reduced. In fact, at the noise level of Eb/No=7dB, as shown in Figure 6.7, the

BER figure of the new ACS is very close to the BER of the conventional ACS and the

accuracy degradation becomes negligible. This is due to the probability decrease of a

correct path with the PM value higher than the capping level. As the noise level goes
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down, there are less correct paths being capped at the maximum value thus there are

less effects from the PM capping.

The simulated FPGA dynamic power dissipation of a PMU with the new ACS ar-

chitecture is listed in Table 6.3. The average power reduction of the new architecture is

Tab. 6.3: FPGA simulated power of a R=1/2 k=7 PMU with the new ACS architecture at
50MHz.

Eb/No (dB) Conventional ACS (mW) New ACS (mW) Saving (%)
0 154.6 143.2 7.4%
1 132.9 132.9 n
2 141.7 128.5 9.3%
3 171.7 130.1 24.2%
4 157.6 112.9 28.4%
5 163.7 109.8 32.9%
6 175.3 98.7 43.7%
7 142.8 103.2 27.7%
8 149.4 92.3 38.2%
9 140.4 86.4 38.5%
10 148.9 84.3 42.7%

26.6% compared with a conventinal decoder. Figure 6.8 illustrates the power dissipa-

tion in comparison with the conventional PMU. As indicated in Figure 6.8, the power

dissipation of the PMU decreases when the noise level reduces. This is because when

the noise level decreases the distances between the correct and incorrect paths are in-

creased. Therefore, the chances of the incorrect paths with the maximum PMs are also

increased so that more ACS operations can be skipped in the new ACS architecture;

thus more power can be saved.

6.4 Summary

In this chapter, the possible options for reducing the power dissipation in a PMU design

have been discussed. One of the options is to implement the PMU with analogue

circuits. With analogue CMOS circuits, more than 45% power saving can easily be

achieved. However, the design is less flexible with analogue circuits in terms of the

actual working condition. Moreover, its performance is more uncertain in comparison
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Fig. 6.8: The power dissipation of a PMU with the new ACS architecture.

with the digital design. Therefore, few commercial decoder designs are implemented

with analogue circuits and it is not a good approach for improving the PMU power

efficiency.

Another option for reducing the PMU power dissipation is to re-arrange the ACS

operations. Around 30% power can be save in the PMU in this architecture by re-

ducing the number of adders in the ACS unit. However, the overhead of this scheme

is the increased delay on the critical path which reduces the throughput of the PMU

implementation.

By analysing the effects over BER performance of the maximum allowed BM and

PM values, it reveals that to achieve a particular BER requirement, there is no need

to calculate the BM and PM at high values. The path with greater PM is actually less

likely to be the correct path. Thus, the ACS operations of a path with a large PM

should be avoided. This is achieved by properly capping the maximum values of BM

and PM.

Based on this principle, a new ACS unit architecture is proposed for the Viterbi
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decoder design for DVB applications. The ACS operations are minimised in two aspects

with this new design: the BM and PM are limited at the maximum values of 7 and 15

so that the number of active bits in the ACS operations is reduced; the ACS operations

are skipped when the inputs PM are at the maximum. All these measures result in an

average power saving of 26% from the PMU with the new ACS architecture. Although

this saving comes at the cost of a small loss in decoding accuracy, the performance

degradation reduces with the decrease of the noise level. Thus, the proposed ACS

architecture is a good technique for reducing PMU power at low noise levels.

In general, the PMU is the most critical part of Viterbi decoder design. It is

rather difficult to improve the power efficiency in the PMU since any modification in

it will dramatically affect the decoder BER performance. The fundamental method of

achieving the PMU power efficiency, as revealed in this chapter, is to carefully select

the maximum limits of BMs and PMs based on the BER requirement of the target

application. In principle, the efficiency of an IC design can only achieved when it is

specifically modified according to the target application.
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7.1 Conclusion

This thesis represents the research work of developing new approaches for implementing

Viterbi decoder designs to minimize computation complexity and power consumption.

This work examines the decoding process of the Viterbi algorithm, the architecture of

the Viterbi decoder, and the implementations of the basic functions. This enables the

design problems to be discovered. Then a variety of low power design techniques are

described and applied to the decoder design to improve its power efficiency.

The new designs are tested by simulations on both software and hardware. The

results give a clear view of the improvement of the modifications and enable a novel

general methodology for significantly reducing complexity of decoding convolutional

codes to be proposed.

7.1.1 Summary of proposed low power Viterbi decoder designs

In a CMOS circuit, power dissipation is dominated by the switching power dissipation.

Therefore, the principle of low power designs with CMOS technology is to reduce the

number of switching activities in the designs. In order to measure the BER and the

power of the Viterbi decoder, the design is implemented on a FPGA device. The dy-

namic power consumption of the FPGA implementation indicates the switching power

dissipation of the design with CMOS technology.
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Adaptive approach

The power consumption of the Viterbi decoders with different constraint lengths are

measured in the tests. The results indicate that the decoder power consumption reduces

gradually with the increase of Eb/No, but exponentially increases with the constraint

length. In order to analyse the power efficiency of the decoder with a different constraint

length at different Eb/No levels, the power figures are averaged by the number of

corrected errors in one second. This gives an energy figure of the decoder in correcting

each error. This analysis shows that the energy efficiency of a standard Viterbi decoder

reduces dramatically with the increase of the Eb/No and constraint length. Based on

this analysis, the fundamental efficiency issue of the Viterbi algorithm can be revealed:

the Viterbi algorithm is noise independent so that computational effort could be wasted

in processing the error free sequence.

The adaptive approach is one of the major methods for reducing Viterbi decoder

power consumption. Existing designs using this approach, however, are basically trad-

ing off the decoding accuracy with the power dissipation by approximating and limiting

the path metrics and paths number, such as the adaptive T-algorithm. This results

in degradation in the decoding accuracy. This is also not efficient since the adaptive

capabilities of these approaches are dependent on the method of estimating the error

probability of the received sequence and it is difficult to identify the real noise condition

and accurate error probability with a simple method.

The ideal approach, which has been revealed in chapter 4, is to transform the

Viterbi decoder from channel error independent to error dependent. More precisely,

the decoder should be stopped when there is no error in the received code words and

restarted to correct errors otherwise. To achieve this, a simple method is required

to pre-decode and identify the error free code words sequence. Based on the inverse

circuit in [28], a simple approach has been discovered for finding the zero Hamming

distance code word path. A new adaptive algorithm, therefore, was proposed so that
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the Viterbi decoder was stopped from processing a zero Hamming distance path and

the pre-decoded data from the zero Hamming distance path was used as the decoded

output instead.

Test results show that with the length of a zero Hamming distance path equal to

or larger than 5 times the constraint length, the decoding accuracy of the adaptive

algorithm is identical to the standard Viterbi algorithm with the same trace back

length. Potential reduction of the power consumption in the Viterbi decoder is from

1.4% to 97% as Eb/No increases from 6dB to 13dB. However, the power reduction is

small when the noise level is high (≤6dB).

Novel SMU architecture

In the decoder, the Survivor Memory Unit is the final block. It keeps a history of the

computations made on the input data stretching back over many time slots from the

current slot. This history enables the SMU to determine and output the most likely

data to have been sent out by the encoder at the earliest time slot held by the SMU.

A common approach of decoding the information held by the SMU is to trace back

the best path that can be computed based on the information held. In this case, the

computations performed may indicate that there are errors in the path(s) being pursued

and that the history held requires correction. This gives rise to two concurrent types

of activity in the trace back SMU. One is the synchronous inputting of history data

which is tied to the external clock and the other is the tracing activity which is best

performed asynchronously so that it can free-run as fast as it is able. Furthermore, since

tracing through the history time slots is initiated every time new data is received by

the SMU, adopting asynchronous timing enables trace back activity with several paths

being corrected in parallel if required. This can be perfectly supported by asynchronous

timing whereas synchronous timing in the trace back is tied to the clock and usually

needs to limit the number of parallel paths which can be traced back at any time.

Asynchronous timing for a SMU has previously been implemented [1] but had high
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performance and power overhead in the handshake control accompanying the bundled

data.

In chapter 5, a new trace back SMU design has been proposed. The timing analysis

of synchronous and asynchronous SMU designs revealed that the convergence of the

Viterbi algorithm paths through the timeslots provide the opportunity to remove the

storage along the handshake path to speed up the operation and lower power. To

implement these features, in the new design the local winner data is entered into

the SMU synchronously while the tracing back to reconstruct the transmitted data is

decoupled from the data entry and free runs asynchronously. The trace back logic is

entirely combinational and thus avoids the complex control and handshakes normally

associated with asynchronous design. In addition, the use of latches rather than RAMs

for the data entry avoids power costly read accesses to the memory. All these measures

give the new design an equivalent bit error performance but at lower power than other

SMUs. Potential problems, such as metastability glitch and timing skew, have been

shown to not significantly affect the accuracy of the decoding data compared with other

more conventional approaches.

Although the trace back may fail due to the timing skew, it can be fixed by either

shifting the output clock edge or by altering the number of trace back stages. This is

confirmed by the measured BERs from the FPGA implementations. This indicates that

to achieve an efficient SMU design without handshakes requires careful timing analysis

and simulation at the working frequencies and on the targeted process to verify cor-

rect operation. On CMOS circuitry, the new SMU architecture is more power efficient

compared with a low power design using SPL as it reduces the power dissipated in the

SMU by a factor of 6. Thus, this proposed architecture is believed to be suitable for

low power trace back SMU implementations. The FPGA power tests with a standard

Viterbi decoder and one-pointer SMU design show the new SMU provides the same

decoding accuracy as a standard design; however, the power saving could be signifi-

cantly reduced for a larger constraint length due to the wire overhead. This indicates
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the proposed SMU architecture is best suited for low power CMOS implementations

of the Viterbi decoder with a constraint length of seven or less.

Low power modifications of PMU

In order to reduce the power dissipation in the PMU, existing designs are either imple-

menting analogue circuitry or re-arranging the ACS operations. With analogue CMOS

circuits, more than 45% power saving can easily be achieved. However, the design

is less flexible with analogue circuits in terms of the actual working condition. With

re-arranging the ACS operations, around 30% power can be saved in the PMU by re-

ducing the number of adders in the ACS unit. However, the overhead is the increased

delay on the critical path which reduces the throughput of the PMU implementation.

By analysing the effects over BER performance of the maximum allowed BM and

PM values, it reveals that to achieve a particular BER requirement, there is no need

to calculate the BM and PM at high values. The path with greater PM is actually

less likely to be the correct path. Thus, the ACS operations of a path with a large

PM should be avoided. This is achieved by properly capping the maximum values of

BM and PM. Based on this principle, a new ACS unit architecture is proposed for the

Viterbi decoder design for DVB applications. The ACS operations are minimised in

two aspects with this new design: the BM and PM are limited at the maximum values

of 7 and 15 so that the number of active bits in the ACS operations is reduced; the ACS

operations are skipped when the inputs PM are at the maximum. All these measures

result in an average power saving of 26% from the PMU. Although this saving comes

at the cost of a small loss in decoding accuracy, the performance degradation reduces

with the decrease of the noise level. Thus, the proposed ACS architecture is a good

technique for reducing PMU power at low noise levels.

In general, the PMU is the most critical part of Viterbi decoder design. Therefore, it

is relatively difficult to improve the power efficiency in the PMU since any modification

in it will dramatically affect the decoder BER performance. The fundamental method
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of achieving the PMU power efficiency, as revealed in chapter 6, is to carefully select the

maximum limits of BMs and PMs based on the BER requirement of the application.

In principle, the efficiency of an IC design can only achieved when it is specifically

modified according to the desired application.

7.1.2 Contributions and new methods proposed for efficient decoding

In this thesis, the following results can be considered contributions to improve designing

and analysing the power efficient Viterbi decoder:

1. New method of evaluating decoder power efficiency. To compare the

power efficiency of decoder designs is rather difficult since different designs could

have different BER performance and throughput. With the measurement of

energy-per-corrected-bit used in this thesis, the power efficiency of different de-

signs can be easily compared.

2. Power efficiency issue of the Viterbi algorithm. By analyzing the Viterbi

decoding process, the error-independency property of the Viterbi algorithm is

identified as one of the major problems which affects the power efficiency of the

Viterbi decoder design at a high level. More specifically, the Viterbi decoding

process is error-independent which means the decoding operation is applied on

each one of the received code words without any consideration of their error prob-

abilities. In the situation when a block of received data contains no error, the

decoder power is wasted in trying to correct errors in this sequence. Therefore, to

improve the power efficiency of a Viterbi decoder, a general methodology is pro-

posed which transforms the decoder from error-independent to error-dependent.

3. A new adaptive Viterbi decoding approach. To decode data-dependently

means the decoder should run in an adaptive manner. There are some existing

adaptive decoding methods for convolutional codes. Most of the adaptability

is achieved by approximating the calculation of the likelihood measurement and
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correlating the level of decoding operations to the noise level. However, the exist-

ing adaptive decoding methods are not efficient due to the difficulty of measuring

the noise strength and error probability in practice. Therefore, a new adaptive

algorithm is proposed which can detect the sequence which has no error prior to

the decoding. Thus the Viterbi decoding operation can be avoided to save power.

This adaptive technique has been implemented on a FPGA and demonstrates a

significant power saving at low noise levels.

4. A new SMU architecture. In a Viterbi decoder, the Survivor Memory Unit

(SMU) is a vital part of the design. In the conventional trace back implemen-

tation, a read-write RAM architecture is generally adopted. However, it suffers

from complex control circuits and speed penalty. In this research, a new approach

to implement the trace back algorithm targeted at low power applications is pro-

posed. The SMU design based on this new architecture is a mixed synchronous

and asynchronous circuit. However, it has no handshake overhead compared

to most asynchronous architectures. Post-layout simulation results on a .18µm

process show the new architecture saves more than 84% of the power dissipated

compared with a SMU design using a low power logic family.

5. Systematic analysis of BM and PM correlation. In the Viterbi decoder,

the PMU consists of different function units. A systematic analysis has been

carried out to reveal the correlation between the BM and PM values in terms

of their effects on BER performance. Based on the results, modifications, such

as capping the branch and path metrics, are proposed to improve the power

efficiency in PMU.

6. An AWGN channel test frame has been implemented. In order to simulate the

AWGN channel, a noise generator is designed based on the Box-Muller algorithm.

This is used to test the standard Viterbi decoders.
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7.2 Future works

The review of the information and coding theory in this thesis indicates that encoding

the data is a major way of protecting the information in data communication. As more

and more research work is carried out in this area, the encoding and decoding process

are likely to become more and more complex in the future. The following issues and

future research topics have resulted from the research performed for this thesis:

1. According to information theory, to achieve high channel capacity requires more

redundancy or more complex computation to maximize code word distances of

the codes. However, the theory does not suggest that the decoding process should

also be more complex. Therefore, it is necessary to analyse the relationship of

channel capacity and decoding complexity. So that the optimum codes can be

discovered in terms of both BER performance and decoding complexity.

2. Information theory only quantises information and gives a possible quantity of

bits so that information in noise conditions can avoid errors. The theory does

not suggest the quantity of computation that is needed to achieve the no-error

transmission. Therefore, a theory is needed to give an estimation of the effort

used to process a certain amount of information. This could be used to estimate

the possible computing complexity of a decoding algorithm. It could also be

useful in designing a neuron network to estimate the number of nodes needed for

a certain task.

3. Since the maximum likelihood decoding process could be viewed as the classic

optimisation problem, it can also be solved using the Hopfield neuron networks.

By properly define the energy function of the code words path distance, the most

likely path can be identified by the revolving of the neuron network.

4. The ideal of using pre-decoded data from the zero Hamming distance path is

decoder independent. Therefore, it could be adopted in other convolutional de-
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coding applications, e.g. a Turbo decoder, to minimize power consumption.
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APPENDIX





A. MATLAB PROGRAMS

A.1 Matlab program for comparing union bound with simulated BER

of Viterbi decoding

function [ matrixBER ] = uboundvsSim(EbNo0, EbNo1)

% EbNo points

EbNo = EbNo0:.5:EbNo1;

linEbNo = 10.^(EbNo(:).*0.1);

% QPSK

M=4;

% set code parameters

codeRate = 1/2;

constlen = 7;

codegen = [171 133];

trellis = poly2trellis(constlen, codegen);

% get the uncoded BER

nonCodBER = berawgn(EbNo,’psk’,M,’nondiff’);

% get the union bound with the first 7 sample

dspec = distspec(trellis, 7);

expVitBER = bercoding(EbNo, ’conv’, ’hard’, codeRate, dspec);

% % run Monte carlo simulations

maxNumErrs=100;

maxNumBits=10e100;

simVitBer=[];

for i=1:length(EbNo)

[ber, numBits] = viterbisim(EbNo(i), maxNumErrs, maxNumBits)

simVitBer=[simVitBer ber];

end

matrixBER=[nonCodBER;expVitBER;simVitBer];

% plot
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semilogy(EbNo, nonCodBER, ’r’);

hold;

plot(EbNo, expVitBER, ’-+’);

% plot(EbNo, simVitBer, ’-*’);

xlabel(’Eb/No (dB)’); ylabel(’BER’);

title(’Union Bound and Simulated BER Performance for R=1/2, K=7

Conv. Code with Hard Decision Viterbi Decoding and QPSK

Modulation’);

grid on;

legend(’Uncoded’,’Union Bound’, ’Simulated BER’, 0);
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A.2 Matlab program for comparing union bounds of different code

rates

function [ matrixBER ] = rate_analysis(EbNo0, EbNo1, deci)

EbNo = EbNo0:.5:EbNo1;

linEbNo = 10.^(EbNo(:).*0.1);

M=4;

nonCodBER = berawgn(EbNo,’psk’,M,’nondiff’);

matrixBER=[nonCodBER];

semilogy(EbNo, nonCodBER, ’r’);

hold;

% R=1/3

codeRate=1/3;

constlen=5;

codegen=[37 33 25];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-+’);

% R=1/2

codeRate=1/2;

constlen=5;

codegen=[35 23];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-x’);

% R=2/3

codeRate=2/3;

constlen=[3 3];

codegen=[7 5 2; 6 1 5];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen(2));

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];
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% plot results

plot(EbNo, expVitBER,’-o’);

grid on;

xlabel(’Eb/No (dB)’); ylabel(’BER’);

title(’Union bounds for R=1/3, 1/2, and 2/3, Conv. Code with

Soft Decision Viterbi decoding and QPSK Modulation’);
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A.3 Matlab program for comparing union bounds of different

constraint lengths

function [ matrixBER ] = constlen_analysis(EbNo0, EbNo1, deci)

EbNo = EbNo0:.5:EbNo1;

linEbNo = 10.^(EbNo(:).*0.1);

M=4;

nonCodBER = berawgn(EbNo,’psk’,M,’nondiff’);

matrixBER=[expVitBER];

semilogy(EbNo, nonCodBER, ’r’);

hold;

% k=3

codeRate=1/2;

constlen=3;

codegen=[5 7];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-+’);

% k=4

codeRate=1/2;

constlen=4;

codegen=[15 17];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-x’);

% k=5

codeRate=1/2;

constlen=5;

codegen=[23 35];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];
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plot(EbNo, expVitBER,’-*’);

% k=6

codeRate=1/2;

constlen=6;

codegen=[53 75];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-s’);

% k=7

codeRate=1/2;

constlen=7;

codegen=[133 171];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-d’);

% k=8

codeRate=1/2;

constlen=8;

codegen=[247 371];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, deci, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-^’);

xlabel(’Eb/No (dB)’); ylabel(’BER’);

title(’Performance for R=1/2, k=3, 4, 5, 6, 7, and 8 Conv.

Code and QPSK with Soft Decision’);
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A.4 Matlab program for comparing union bounds of hard and soft

decision

function [ matrixBER ] = deci_analysis(EbNo0, EbNo1)

EbNo = EbNo0:.5:EbNo1;

linEbNo = 10.^(EbNo(:).*0.1);

M=4;

nonCodBER = berawgn(EbNo,’psk’,M,’nondiff’);

matrixBER=[expVitBER];

semilogy(EbNo, nonCodBER, ’r’);

hold;

% hard decision

codeRate=1/2;

constlen=7;

codegen=[133 171];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, ’hard’, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-+’);

% soft decision

codeRate=1/2;

constlen=7;

codegen=[133 171];

trellis = poly2trellis(constlen, codegen);

dspec = distspec(trellis, constlen);

expVitBER = bercoding(EbNo, ’conv’, ’soft’, codeRate, dspec);

matrixBER=[matrixBER;expVitBER];

plot(EbNo, expVitBER,’-*’);

xlabel(’Eb/No (dB)’); ylabel(’BER’);

title(’Performance for R=1/2, k=7 Conv. Code with Hard/Soft

Decision and QPSK Modulation’);



B. THE AWGN GENERATOR

B.1 The AWGN generator design overview

The AWGN generator is designed based on the Box-Muller algorithm [63], which gen-

erates random Gaussian variables by transforming two uniform random variables over

(0, 1]. It offers a predictable output rate and, in combination with the central limit

theorem, very good Gaussian modelling [64]. According to the Box-Muller method, by

given two independent realizations u1 and u2 of a uniform random variable over the

interval (0, 1] and a set of intermediate function f , g1, and g2 such that

f(u1) =
√
−ln(u1) (B.1)

g1(u2) =
√

2sin(2πu2) (B.2)

g2(u2) =
√

2cos(2πu2) (B.3)

the products,

x1 = f(u1)g1(u2) (B.4)

x2 = f(u1)g2(u2) (B.5)

provide two samples of Gaussian variables over (0, 1) [63].

The top level architecture of the AWGN generator can be partitioned into 4 stages,

as shown in Figure B.1.

The first stage involves implementation of the functions f , g1, and g2. A direct

look-up table implementation for f(u1) with sufficient resolution for u1 would require

a large number of samples, thus it is not realistic and efficient for our FPGA design.

Instead, a method modified from the two-step process in [64], based on nonuniform

piecewise linear approximation, is used to implement this function. More details about

this implementation are described in the next section.

The second stage involves a sample accumulation process that exploits the central

limit theorem to reduce the approximation errors. The accumulator (ACC(2) in Fig-

ure B.1) sums two successive random numbers to produce an output every other clock

cycle. The central limit theorem calls for a division by
√

2. Since computation of g1 and
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Fig. B.1: Architecture of the AWGN generator

g2 involve a multiplication by
√

2, this multiplication is cancelled by the subsequent

division, so it can be dispensed with in both places in the implementation.

The third stage involves a multiplexer based circuit to select one of the two ACC(2)

outputs in alternate clock cycles. Each ACC(2) produces one noise sample in every two

clock cycles and the multiplexor selects output between these two ACC(2) every clock

cycle. This enables producing an output every clock cycle, rather than two outputs

every two clock cycles.

At the last stage, the standard deviation σ, calculated from the specified Eb/No,

is multiplied with the noise sample which has the mean of 0 and standard deviation of

1. This produces a random noise sample at the specific Eb/No which has a standard

deviation of σ.
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B.2 The f function implementation

To effectively implement the f function is the most important part of this design.

In a normal approximation approach, the function value is uniformly divided into

segments with same x interval, shown in Figure B.2. As Figure B.2 shows, the greatest
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Fig. B.2: Uniform segementation of f(x)

nonlinearities of the f function occur in the regions close to zero and one. It is not

accurate to approximate segments close to zero and one as linear function with a

small number of segments. Therefore, if uniform segments are used, a large number

of small segments would be required to get accurate approximations in the nonlinear

regions. However, in the middle part of the curve where it is relatively linear, accurate

approximation can be obtained using relatively few segments. It will be efficient to use

small segments for the nonlinear regions and large segments for the linear regions. A

method has been suggested in [64] which can construct piecewise linear approximation

such that: 1) the segment lengths used in a given region depend on the local linearity,

with more segments deployed for regions of higher nonlinearity, and 2) the boundaries

between segments are chosen such that the task of identifying which segment to use

for a given input can be rapidly performed.

An example of approximating f with an 8-bit input using this approach can be

illustrated in Figure B.3 where the asterisks indicate the boundaries of this approxi-

mating approach. This approach uses segments that grow by a factor of 2 from 0 to

0.5 and segments that shrink by a factor of 2 from 0.5 to 1 in the horizontal axis of

Figure B.3. In the case of 8-bits input of x, the segment boundaries are at locations
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Fig. B.3: A example of 8-bit non-uniform segementation of f(x)

2n−8 for 0 < x < 0.5 and 1− 2−n for 0.5 < x < 1, where 0 ≤ n < 8. The 8-bits binary

numbers of the segment boundaries are listed in Table B.1. In our AWGN design, x is

a 32-bit random number and the f function is divided into 64 non-uniform segments

located by a 6-bit address. A 64 cell ROM is used to store the base value b and segment

interval c of f(x). The approximated results are calculated by multiplying the interval

c with a 10-bit random number and then adding it to the base b. This architecture is

shown in Figure B.4. The result is a two’s complement number with 8 bits precision.

Therefore, the minimum resolution is 0.00390625 in decimal.
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Tab. B.1: Non-uniform segment in 8-bit binary numbers.
Segment NO. Segments

1 00000000 - 00000001
2 00000010 - 00000011
3 00000100 - 00000111
4 00001000 - 00001111
5 00010000 - 00011111
6 00100000 - 00111111
7 01000000 - 01111111
8 10000000 - 10111111
9 11000000 - 11011111
10 11100000 - 11101111
11 11110000 - 11110111
12 11111000 - 11111011
13 11111100 - 11111101
14 11111110 - 11111111

f 

c b

Fig. B.4: f(x) architecture
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B.3 The AWGN generator design verification

The BERs of uncoded data are compared with theoretical BER for Eb/No from 0dB to

13dB. The results are closely matched up to 11dB, as shown in Figure B.5. The BER
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Fig. B.5: Comparison of the uncoded BER

from a standard Viterbi decoder is also tested by this AWGN generator. Figure B.6

shows the BER results from the tests which match the BER specification from the

datasheet from 0dB to 5dB. Because of the efficiency of the approximation, the AWGN

generator only occupies 11% area of a XC4VLX35 FPGA device, which is 25% smaller

than the final design in [64]. To test the Viterbi decoder (1/2 rate) running at 100MHz,

two AWGN generators are used in the test frame. Therefore the final design of this

test frame is running at 100MHz and occupies 32% of the XC4VLX35 FPGA. Together

with the Viterbi decoder, 63% of the total FPGA slices is required. Uncoded data tests

with Eb/No from 0dB to 13dB take 45 seconds to finish and the Viterbi decoder tests

with Eb/No from 0 to 5 dB take 50 seconds to finish. These are much faster than

software simulations.
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Fig. B.6: Comparison of the decoded BER


