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Abstract

The nervous system may be simulated as a network of model neurons as a means to un-

derstand the function of the brain. Complex as the mammalian nervous system is, such

simulations of any signiVcant scale are computationally and energetically expensive.

SpiNNaker is a computer architecture designed to advance the feasible scale of neural

tissue models using Vfty thousand chips, each containing eighteen low-power proces-

sors, to model one billion neurons and one trillion synapses in real-time. This disserta-

tion demonstrates the success of prototype hardware with detailed models of the rodent

somatosensory cortex. Simulations are built from neuroanatomical data on a host com-

puter using a simple declarative library of functions, and are executed on SpiNNaker

atop an event-driven programming interface that neatly abstracts the intricate details

of the machine. Comparisons with reference simulators show that SpiNNaker correctly

reproduces established results, and power readings report that each chip draws just

one watt during execution. A model of the whisker barrel, derived from the literature,

exhibits key responses to simulated stimuli, and a model of the wider barrel cortex,

comprising 105 neurons and 7·107 synapses, demonstrates real-time, massively parallel

simulation across 360 processors on 23 chips. Ultimately, SpiNNaker is shown to be an

eUective architecture for the correct and eXcient simulation of neural tissue.
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Chapter 1

Introduction

The brain is a computer unlike any other. In animals, exquisite networks of nerve cells

synthesise every experience and drive every action. In humans uniquely, brains have

long attempted to understand their own function, from the Vrst inquiries into cognition

and the self to contemporary descriptions of nervous anatomy and physiology. The

electrochemical operation of neurons and synapses is now well characterised, and the

structures in which they reside are being mapped in great detail. Yet we still under-

stand very little about the emergent function of these circuits; the cerebral cortex is

the substrate of high-level sensory processing and motor control in the brain, and there

exists no sound theory of the fundamental computations that take place within. This

dissertation presents advances in technology for simulating neural tissue as a means to

understand the function of the brain, in the form of large-scale models of the rodent

barrel cortex executed on the SpiNNaker computer architecture.

Understanding the function of neural circuits in vivo is immensely diXcult. The

circuits are extremely noisy, and their components are micrometres in size and wired

stochastically in three dimensions. In the rodent somatosensory cortex, eighteen thou-

sand neurons in a 200µm3-volume of tissue process signals from a single whisker. It is

impossible to record simultaneously the activity of even one percent of these cells using

current electrophysiological techniques, so the view of cortical information processing

remains very hazy. Chapter 2 discusses the best understanding of neural function in

light of such limited observability, from the basic mechanisms of neural signalling to

the current literature regarding cortical anatomy and physiology.

Simulation of neural tissue is a promising alternative methodology for investigating

the function of the brain. Neurons may be modelled in terms of their electrophysiolog-

ical dynamics and simulated in networks with topologies drawn from anatomical data.

21



22 Chapter 1. Introduction

If a network model can be shown to reproduce observable in vivo phenomena, it may

then be used to describe the computations that take place in the simulated tissue. Sim-

ulations have signiVcant advantages over biological experiments, in that the former

aUord greater observability, experimental control and reproducibility. Furthermore, if

the mechanisms of neural computation are to be understood then the immense com-

plexity of the nervous systemmust be represented by abstract models that are amenable

to quantitative analysis.

The feasible scale and speed of simulations is currently limited by the enormous

parallelism and power disparities between biological and silicon computers. The mam-

malian brain comprises many billions of neurons and trillions of synapses operating

in parallel, whereas supercomputers contain only tens or hundreds of thousands of

processors. One processor may simulate very many neurons, but the power require-

ments of these two computation substrates are still hugely disproportionate: the entire

mammalian brain runs on just a few watts, whereas the projected cost of brain-scale

simulations on current silicon technology is on the order of gigawatts. Chapter 3 sur-

veys simulation technologies and their limitations, discusses methodologies for eXcient

simulation, reviews notable simulation studies, and introduces SpiNNaker.

SpiNNaker is a computer architecture designed to simulate up to one billion neu-

rons and one trillion synapses in real-time using little electrical power. The architecture

mimics the structure of neural computation with one million low-power processors and

a novel interprocessor communication mechanism. Each processor simulates up to one

thousand neurons in discrete time and sends and receives simulated action potentials

through a local communications controller. The communications controller, in turn,

interacts with a packet-switched network that may be programmed to emulate intri-

cate nervous wiring between processors. This dissertation argues that SpiNNaker is

an eUective simulation technology in terms of Wexibility, performance and power, and

demonstrates that a signiVcant part of the rat barrel cortex can be modelled on proto-

types of the platform.

Massively parallel hardware presents particular software challenges to conVgura-

tion, run-time programming and simulation speciVcation. For a machine to be useful, it

is essential that these tasks are completed correctly and eXciently, and that researchers

are able to use the technology without intimate knowledge of the hardware. Chapter

4 discusses the conVguration protocols (Sharp et al., 2011a) that are used to boot-up

and maintain a SpiNNaker machine, presents an application programming interface

(Sharp et al., 2011b) that provides a software abstraction layer for programmers, and
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introduces the PyNN and PACMAN interfaces (Galluppi et al., 2012) through which

anatomical and physiological data are compiled into SpiNNaker simulations.

SpiNNaker is designed to simulate large models more quickly and eXciently than

current technologies. To verify that the hardware meets these design criteria, chapter

5 presents validation, power and performance data. Observations of the boot protocols

show that a full-scale machine can be conVgured in less than one second (Patterson

et al., 2012). Comparisons with reference simulators show that SpiNNaker correctly

reproduces established results, and performance proVles of the machine- and host-side

software explain how the SpiNNaker also outperforms the reference platforms (Sharp

and Furber, 2013). Power readings taken during simulation of the cat visual cortex

report that each chip consumes a single watt, and so Vfty-thousand-chip simulations of

a billion neurons are power-feasible (Sharp et al., 2012).

Simulation remains a tentative methodology for research into the brain. To prove

the validity of the approach, plausible models of neural tissue must Vrst reproduce

activities observed in vivo. The rodent barrel cortex is an ideal candidate for such mod-

elling, in that it is exceptionally well characterised anatomically and physiologically.

Chapter 6 draws upon the tools and methodology in previous chapters to present simu-

lations of the barrel cortex on SpiNNaker. A series of preliminary experiments attempt

to construct biologically plausible networks from a review of data in the literature, with

limited success. A coarse model of the whisker barrel reproduces stimulus-responses

observed in vivo and a model of the broader barrel cortex, comprising 105 neurons 7·107

synapses, demonstrates real-time, massively parallel simulation across 360 processors

on 23 chips. The principal Vndings of this chapter are that large-scale, detailed models

of the cortex are executable on SpiNNaker, but that biological plausibility must be com-

promised to ensure the dynamical stability of such models (Sharp, Petersen and Furber,

in preparation).

The application of computational methods to neuroscience promises enormous ad-

vances in the understanding of the brain. Already, automated techniques are recon-

structing cells and circuits in three dimensions, and high-performance computers are

decoding and interpreting observed activity in the cortex. This dissertation suggests

that simulation of neural tissue is also a viable computational methodology for in-

vestigating brain function. The hardware and software of SpiNNaker accepts model

descriptions from the biological literature and executes large-scale simulations quickly

and eXciently. On these foundations a greater understanding of cortical computation

may be built: models of neural tissue allow for much freer experimentation that the
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living tissue itself, so subsequent experiments may begin to characterise the essence

of cortical function in terms of boolean logic, signal processing, Bayesian inference or

whichever computational paradigm appears apt. Chapter 7 concludes this dissertation

with a review of the presented work, an evaluation of the methodologies employed

and the modelling assumptions made, and a discussion of the potential for simulation

studies to contribute to neuroscience.

·

The principal contributions of this dissertation are large-scale, biologically inspired

simulations of the cerebral cortex that demonstrate the capabilities of SpiNNaker, and

the design, implementation and testing of the software upon which these demonstra-

tions are based. Much of this work was conducted in collaboration with other re-

searchers, and parts have been published or submitted for review.

The boot software documented in chapter 4 was developed with Cameron Patter-

son; the experiments regarding these protocols in chapter 5 were designed, executed

and reported upon by the author for presentation at the 2011 International Joint Con-

ference on Neural Networks (Sharp, Patterson and Furber). Partial results of these ex-

periments also appear as a small contribution to a publication in Journal of Parallel and

Distributed Computing (Patterson, Garside, Painkras, Temple, Plana, Navaridas, Sharp

and Furber, 2012).

The application run-time kernel and the application programming interface were

designed and implemented in collaboration with the SpiNNaker group and Luis A.

Plana respectively. Chapter 4 reproduces work on this topic that was prepared by the

author and presented at the 2011 International Conference on Neural Information Pro-

cessing (Sharp, Plana, Galluppi and Furber).

The initial PyNN implementation for SpiNNaker was conceived and developed by

Francesco Galluppi; a subsequent iteration of this software, brieWy discussed in chapter

4, was prepared by the author to accommodate the large scale of simulations considered

here. Further details appear in a submission to the 2012 International Conference on

Computing Frontiers (Galluppi, Davies, Rast, Sharp, Plana and Furber), to which the

author made only modest contributions.

The correctness, performance and power requirements of the aforementioned soft-

ware as executed upon SpiNNaker are examined in chapter 5. A paper accepted to the

2013 International Joint Conference on Neural Networks discusses the former concerns

(Sharp and Furber) and another published in Journal of Neuroscience Methods exam-
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ines the latter (Sharp, Galluppi, Rast and Furber). In each case, the experiments were

designed, conducted and reported upon by the author.

The models of the barrel cortex presented in chapter 6 were conceived, researched

and simulated by the author. Rasmus Petersen provided considerable guidance through

the neuroscientiVc literature, proposed modelling methodologies and experimental pro-

tocols, and assisted in the analysis of results. A paper on the Vndings of these experi-

ments is in preparation.

In all cases, the contributions of the SpiNNaker group and the supervision of Steve

Furber are acknowledged.

·
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Chapter 2

The Nervous System

The nervous system is an intricate network of cells that allows an animal to sense

and interact with its environment. The central nervous system aggregates, processes

and stores information from the sensory organs of the peripheral nervous system, and

returns signals to the periphery to control the muscles and viscera. The mammalian

central nervous system is broadly divided into the brainstem, cerebellum, diencephalon

and the cerebral hemispheres. The pathways of the rodent vibrissal system, with which

this thesis is primarily concerned, arise in the whiskers and traverse the peripheral

nervous system, brainstem and diencephalon to terminate in the cerebral cortex. The

latter is a computer that processes sensory stimuli and controls voluntary motor action,

and is of signiVcant interest in research into the high-level function of the brain.

The current understanding of the cortical function of somatosensation is presented

at the end of this chapter, and is preceded by a review of the neuroanatomical litera-

ture on cortical structure. The chapter begins with an introduction to the fundamental

aspects of neural signalling: the electrochemical operation of neurons and synapses.

2.1 Neural signalling

The neuron, like all animal cells, is essentially a lipid membrane that encloses a nucleus

of genetic data, mitochondria, and various other organelles for controlling cell function.

The neuron is distinguished, however, by a membrane that is adapted to the electro-

chemical signalling mechanism of the action potential. The typical neuron, depicted in

Vgure 2.1, is formed of a tree of dendrites that receives synaptic currents from aUerent

neurons, a cell soma that integrates such inputs and generates action potentials, and an

axon that conveys those signals to eUerent neurons (Nolte, 2007).

27
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Figure 2.1: Depiction of a typical neuron (Piękniewski, 2013).

2.1.1 Membrane potential

The animal cell membrane is largely impermeable to ions and organic compounds, and

thereby maintains an electrochemical gradient between the cytoplasmic and extracel-

lular Wuids (Kandel et al., 2000). A chemical concentration of Potassium within the

cell, and Sodium without, is established by the active transport of ions across the mem-

brane by specialised proteins. Ions also traverse the membrane via protein channels,

according to their respective chemical concentration gradients and the overall electri-

cal potential gradient. Considering a single ion species, these currents are balanced at

the transmembrane equilibrium potential, which is found by the Nernst equation

Eion =
RT

zF
ln

[ion]o
[ion]i

whereR is the universal gas constant (8,315mJ/(K◦Mol)), T is the temperature in degrees

Kelvin, F is Faraday’s constant (96,480C/Mol), z is the ion valence, and [ion]i and [ion]o

are the concentrations of the ion within and without the cell, respectively (Izhikevich,

2007). Table 2.1 lists the chemical concentrations of Sodium and Potassium in the giant

axon of the squid, and the resulting equilibrium potentials at 25◦C.

Considering multiple ion species, the overall resting membrane potential is a func-

tion of both the concentrations of and membrane permeability Pion to each species,

which is represented in the Goldman equation

Vrest =
RT

F
ln
PK[K+]o + PNa[Na+]o
PK[K+]i + PNa[Na+]i

.

Evaluating the equation with the parameters in table 2.1 gives a resting membrane

potential of -60mV: a hyperpolarised state that is signiVcantly closer to the equilibrium
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Ion species [ion]i [ion]o Eion Pion

K+ 400 20 -75 1.00

Na+ 50 440 +55 0.04

Table 2.1: Electrochemical properties of the squid axon (Kandel et al., 2000).

potential of Potassium than of Sodium, due to the greater permeability of the membrane

to the former. However, Pion varies for each ion species as a function of both membrane

potential and time, such that a slight inWuence from an external current source may

cause a rapid, radical change in conditions.

2.1.2 The action potential

The action potential is a brief, transient depolarisation of the cell membrane, caused by

synaptic currents or artiVcial stimulation. In describing these dynamics, it is useful to

represent the constituent ionic currents in the equivalent-circuit form

Iion = gion(V − Eion)

where instantaneous current for a particular ion species is given by the diUerence be-

tween the equilibrium and membrane potentials, multiplied by the membrane conduc-

tance gion, which is proportional to permeability. Membrane potential dynamics may

then be represented as a sum of ionic currents

C
dV

dt
= −gK(V − EK)− gNa(V − ENa) + I

where C is the membrane capacitance, approximately 1.0µF/cm2 with cell membrane

area on the order of 0.1mm2, and I is an external current source (Izhikevich, 2007).

Hodgkin and Huxley (1952) observe that the time- and voltage-dependent (in)activation

of transmembrane channels varies membrane conductances and thereby gives rise to

the action potential, which is ultimately described as

C
dV

dt
= −ḡKn4(V − EK)− ḡNam3h(V − ENa)− gL(V − EL) + I

where ḡion is the maximum membrane conductance, n4 is the proportion of K+-con-

ductant proteins that are activated (open), m3 denotes the same for Na+, and h is the
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proportion of Na+-conductant proteins that are deinactivated (not blocked). gL(V −EL)

denotes a leak current of Chloride, for which conductance is constant. The activation

variables are in turn dynamic

dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

and depend on the empirically tuned functions

αn = 0.01
10− V

exp
(

10−V
10

)
− 1

βn = 0.125 exp

(
−V
80

)

αm = 0.1
25− V

exp
(

25−V
10

)
− 1

βm = 4 exp

(
−V
18

)

αh = 0.07 exp

(
−V
20

)
βh =

1

exp
(

30−V
10

)
+ 1

with typical equilibrium potentials and maximum conductances of

EK = −77mV gK = 36mS/cm2

ENa = 55mV gNa = 120mS/cm2

EL = −54.4mV gL = 0.3mS/cm2

Figure 2.2 shows the response of the Hodgkin-Huxley neuron model to a small,

brief depolarising current, and provides the basis for a qualitative description of the

model dynamics. The input current at t = 2ms (top, I) increases membrane poten-

tial, which causes fast activation and slow inactivation of Sodium channels (middle,

rising m and falling h). In the brief interval between activation and inactivation, con-

ductance to Sodium increases sharply at t = 4ms (bottom, gNa) so that membrane

potential moves towards ENa = 55mV, in accordance with the Goldman equation. The

consequent inWux of Sodium to the cell down the electrochemical gradient increases

V , which further increases gNa, and from this positive feedback a membrane potential

‘spike’ (top) rapidly follows. Positive membrane potential activates Potassium channels
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Figure 2.2: Response of the Hodgkin-Huxley model to a brief depolarising current.
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Action potential arrival.
Presynaptic Calcium influx.

Vesicle-membrane fusion.
Neurotransmitter efflux.

Receptor binding.
Postsynaptic Sodium influx.

Figure 2.3: Chemical signalling in the synapse. Adapted from Kandel et al. (2000).

around t = 6ms (middle, rising n) and the eYux of the ion from the cell down the elec-

trochemical gradient, in conjunction with the inactivation of Sodium channels, repo-

larises the membrane. The cell then undergoes a refractory period, during which it may

not spike, as the activation variables return to their resting values. Finally, although not

represented in this model, Sodium that diUuses across the membrane at a particular site

carries a charge that also Wows along the membrane through the cytoplasm, thereby

depolarising neighbouring areas of membrane. Thus, an action potential formed in the

soma regeneratively propagates down the axon, without loss of signal power. A math-

ematical description of this process and further details of the Hodgkin-Huxley model

are presented by Dayan and Abbott (2001).

2.1.3 Synaptic signalling

The synapse is a junction between neuron membranes that may form when axons and

dendrites pass within some micrometres of one another. As the axon of one neuron

terminates upon the synapses of others, so do its action potentials.

Figure 2.3 shows the response of an excitatory synapse to an action potential. Upon

arrival, the action potential opens Calcium channels in the presynaptic membrane ter-

minal, and Ca2+ Wows into the cell. Consequently vesicles containing neurotransmit-

ters are drawn and fused to the presynaptic terminal, and their contents are released

into the synaptic cleft. The transmitters bind to receptors on Sodium channels in the

postsynaptic terminal, which open to permit and inWux of Na+ and thereby cause a

postsynaptic depolarisation, or excitatory postsynaptic potential. An analogous pro-
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Figure 2.4: Stained coronal section of macaque brain (brainmaps.org, 2013).

cess, using diUerent transmitters and channels, occurs across inhibitory synapses that

induce postsynaptic hyperpolarisations. Kandel et al. (2000) detail these chemical pro-

cesses, discussion of which is omitted here for brevity.

The sum of all such postsynaptic currents forms the inputs to a neuron, represented

by I in the Hodgkin-Huxley model. Synaptic currents therefore determine the outputs

of neurons, which in turn form the inputs to other neurons, and so on ad mortem. So,

activity in the nervous system depends upon extrinsic input, the dynamics of neurons

and synapses and, crucially, the intrinsic system structure.

2.2 Cortical anatomy and physiology

The cerebral cortex is the corrugated husk of the cerebral hemispheres, and is the struc-

tural substrate of high-level computation in the brain. Figure 2.4 shows a coronal sec-

tion of the macaque brain, with the purple-stained sulci and gyri of the auditory cortex

on the right and, across the white matter, subcortical structures including the ventral

posteromedial nucleus (VPM) of the thalamus on the centre-left. Sensory stimuli arrive

at the cortex via the axonal projections of thalamic neurons, which are in turn driven

by the sensory organs via the trigeminal nucleus. Pathways from the sensory organs to

the thalamus are neither visible in Vgure 2.4 nor signiVcantly featured in the following

chapters, but Bosman et al. (2011) oUer a comprehensive review of those involved in

the rodent whisker system.
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In the sensory cortices, neurons are arranged into a macroarchitecture of six layers

parallel to the cortical plane, numbered in ascending order from external to internal.

Layer 4 is termed the granular layer, and the remaining layers are described relatively:

layers 1, 2, and 3 comprise the supragranular layers, and layers 5 and 6 are the infra-

granular layers. The axonal projections of excitatory cells dictate the Wow of informa-

tion in the thalamocortical loop: thalamic axons primarily innervate the granular layer,

which in turn makes projections into the supragranular layers; cells in these layers

project laterally within the layer and radially to the infragranular layers, which project

through the white matter to other (sub)cortical areas; all layers make recurrent excita-

tory projections, and the level of excitatory activity is controlled by local networks of

inhibitory cells (Thomson et al., 2002; Thomson, 2003; Thomson and Lamy, 2007).

2.2.1 Methodology

The microarchitecture of the cortex is immensely complex. A cubic millimetre of tissue

contains on the order of 105 neurons and 108 synapses (Wimmer et al., 2010; Meyer

et al., 2010a;b). This complexity impedes a complete cartography of the cortex, and

the best understanding of its wiring is currently obtained by inference from somewhat

sparse observations.

Cell counts for diUerent areas and layers are made in vitro from tissue that is Vxed,

sliced and stained. Braitenberg and Schüz (1991) provide an early statistical description

of cortical tissue through manual counts of cell somata, upon which Oberlaender et al.

(2011) improve with automated computer vision techniques applied to rodent whisker

barrel slices. Such techniques are also capable of reconstructing complete morphologies

of individual cells from successive slices, which oUers some insight into cell physiology

and potential connectivity; Binzegger et al. (2004), for example, draw an extremely

detailed map of cat visual cortex by inferring synaptic connectivity from the overlap of

reconstructed axons and dendrites.

Electrode recordings in vivo and in vitro supplement static maps with vital data

on the physiology of functioning neural tissue. Single electrode recordings are used to

investigate membrane properties in current- and voltage-clamp experiments like those

used by Hodgkin and Huxley (1952) and paired- or multielectrode recordings are used

to describe the synaptic connectivity of cells by inducing a spike in a presynaptic can-

didate and looking for a postsynaptic potential in others (Lefort et al., 2009). In vivo

multielectrode techniques have the advantage of reporting deVnite synaptic connectiv-

ity and postsynaptic potential properties in behaving animals, both of which are lacking
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in the inferred-connectivity data of Binzegger et al. (2004).

Optical stimuli may be substituted for presynaptic electrodes in these experiments.

Packer and Yuste (2011) genetically modiVed mice to express light-sensitive inhibitory

neurons in the cortex, and used a scanning light source on tissue slices to identify the

presynaptic partners of target cells recorded with electrodes. With such techniques, the

sampling of presynaptic candidates is precisely controlled, and successive candidates

may be examined without repetitive adjustment of a presynaptic electrode. Optogenet-

ics oUers unparallelled spatial and temporal resolution in the control of tissue, and is

likely to become a fundamental technique in future neurophysiology.

2.2.2 Data

All anatomical and physiological techniques applied to the cortex involve painstaking

experiments to build dense maps of small tissue volumes or sparse maps of larger sam-

ples. Considered in conjunction, these studies provide a broader picture of the lateral

(planar) and radial (transplanar) microarchitecture of the cortex.

Lateral organisation

There is a great deal of contention over the form of lateral connectivity in the cortex.

Studies that report discrete patches of neurons with common stimulus-response prop-

erties, or receptive Velds, suggest the existence of distinct functional columns, but no

structural analogue of the column has been clearly identiVed.

Mountcastle (1956) provides evidence for cortical columns, on the basis of data

from single-electrode experiments. Penetrations perpendicular to the surface of the

somatosensory cortex recorded from cells with common receptive Velds at all depths,

and tangential penetrations recorded from neurons with diUerent receptive Velds at

diUerent depths. On the basis of these Vndings, Mountcastle posits that neurons in the

cortex are organised into radial columns, each with particular receptive Velds. However,

da Costa and Martin (2010) argue in agreement with Horton and Adams (2005) that no

structural basis for the column has been deVnitely observed in the cortex. da Costa

and Martin note that the apical dendrites of pyramidal neurons do form radial bundles

that may be described as minicolumns, but the basal dendrites show no such grouping

and neurons within these putative minicolumns are as likely to be connected to cells

in neighbouring minicolumns as their own. Indeed, the proximal synaptic clusters of

the identiVed pyramidal cells span distances over which many diUerent receptive Velds



36 Chapter 2. The Nervous System

are recorded, and the distal clusters have been shown to innervate dendrite bundles of

cells with similar receptive Velds (Binzegger et al., 2007). This diUuse-local and speciVc-

distal connectivity clearly contrasts with the notion of hard boundaries in the lateral

organisation of the cortex.

Alonso and Swadlow (2005) address the question of how, then, receptive Velds are

synthesised, with respect to layer 4 neurons of the visual and somatosensory cortices.

Certain mammals have extremely high visual resolution, which suggests that there

must be a strong correlation between the spiking of retinal, thalamic and cortical cells.

Thalamic neurons receive input from just a few retinal cells, each layer 4 excitatory

neuron receives only around thirty thalamic aUerents, and connected thalamic and

excitatory cells do exhibit strongly correlated receptive Velds. In contrast, inhibitory

neurons receive inputs from thalamic cells of numerous diUerent sensory Veld recep-

tivities, and respond to a broader range of stimuli as a result. So, Alonso and Swadlow

argue that distinct receptive Velds arise dynamically from the response of speciVc exci-

tatory cells to their respective thalamic innervators, and that broadband inhibitory cells

provide contrast in the cortical receptive Veld by suppressing activity in populations of

oU-stimuli excitatory cells.

Lateral structure, however, is unambiguously apparent in the barrel cortex of whisk-

ing animals (Woolsey and der Loos, 1970; Petersen, 2007). Here, discrete barrels in the

granular layer correspond one-to-one with whiskers, and are clearly visible under ap-

propriate staining; Vgure 2.5 shows a coronal slice of rat brain in which Wuorescent dye

in thalamic axons clearly identiVes the thalamus at the bottom right, and barrels at

the top left (Wimmer et al., 2010). Furthermore, composition and connectivity within

the barrel appears to be laterally homogeneous, and the anatomical and physiological

parameters of the tissue are well characterised (Lefort et al., 2009). The rodent barrel

cortex is therefore an ideal candidate for simulation.

Radial organisation

The barrel column is the notional projection of the whisker barrel into the supra- and

infragranular layers. Wimmer et al. (2010) present the dimensions of the rat barrel col-

umn in terms of the thalamocortical projection domain, which was mapped in vitro

by virus-mediated expression of diUerent Wuorescent proteins in axons from the ventro

posteromedial (VPM) and posteriomedial (POm) nuclei. The data show that columnar

innervation domains are formed by the VPM axons that target barrels, and by the POm

axons that target interbarrel septa, although separation is less clear in the infragranular
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Figure 2.5: Barrels in rodent cortex. Adapted from Wimmer et al. (2010).

layers. DeVned by these thalamocortical projections, the average column has a tangen-

tial area of 0.12 millimetres squared and a depth of 1.84 millimetres. In a sequential

article, Meyer et al. (2010a) report the number of neurons in the average barrel column:

an exhaustive automatic count of all somata in slices of a 1.5 millimetre-cubed volume

of cortex identiVed 17,560 ± 399 neurons per column, of which 0.15× are thought to

be inhibitory. As reported in the Vnal article of the series, Meyer et al. (2010b) used

these data to estimate the distribution of thalamic synapses upon the barrel column:

the authors automatically reconstructed the morphologies of eighty two cortical cells

from sliced tissue, and inferred synapse positions from neuron counts and the presumed

overlap of thalamic axons and cortical dendrites. In contrast to the classic thalamocor-

tical loop described by Thomson and Lamy (2007) Meyer et al. suggest that excitatory

neurons in all layers receive between one hundred and one thousand synapses from

the thalamus; nevertheless, the strongest pathway between thalamus and cortex does

appear to be, as expected, between VPM and layer 4 neurons. Oberlaender et al. (2011)

employ the same methods and data to further map the circuit between VPM and cortical

excitatory cells: somata in the thalamic nuclei were counted, and electrodes were used

to record the spiking properties of barrel cells in vivo before the tissue was sliced and

the axons and dendrites neurons reconstructed. The authors show that the dendritic
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trees of barrel cells precisely overlap the axonal arbours of the 285 ± 13 neurons iden-

tiVed in each VPM barreloid, and that dendrite morphology and VPM-synapse-count

correlates with, respectively, spontaneous and whisker-evoked spiking rates of barrel

cells. According to Bruno and Sakmann (2006) each excitatory cell in the granular layer

receives synapses from around half of the neurons in the corresponding barreloid.

Lefort et al. (2009) describe the physiology of the mouse barrel column in some de-

tail, using multiple simultaneous electrode recordings in the C2 barrel to map deVnite,

rather than inferred, synaptic connectivity. In 322 slices from 307 animals, 2,550 exci-

tatory neurons were tested for synaptic connections with one another. A total of 8,895

pairs were tested by eliciting presynaptic spikes and observing (the absence of) post-

synaptic potentials, and 909 synaptic connections were found. The study yields three

substantial datasets: the electrophysiological properties of excitatory neurons in each

layer, including resting membrane potentials, membrane resistances, membrane time

constants and action potential thresholds; the probabilities of synaptic connectivity be-

tween cells in each layer, which are in broad agreement with the classical thalamocor-

tical loop described by Thomson and Lamy (2007); and the time courses and amplitude

distributions of postsynaptic potentials, which are remarkable. The latter data show

that the postsynaptic potential amplitudes follow an exponential distribution: a small

number of synapses drive large postsynaptic potentials, but most synapses elicit little

postsynaptic response. Furthermore, the coeXcients of variation of postsynaptic poten-

tials across multiple trials also follow an exponential distribution: strong synapses elicit

potentials of a regular and reliable amplitude, but weak synapses cause highly variable

postsynaptic responses. The authors suggest that the many weak unreliable synapses

are an appropriate substrate for functional rewiring under activity-dependent synaptic

plasticity, and that the few strong reliable synapses are important for the propagation

of information in sparsely active networks. Avermann et al. (2012) continued this work,

with the aid of optogenetics, to map the supragranular inhibitory network of the barrel

column. They show that synapses between excitatory and inhibitory neurons are both

more probable and stronger than between excitatory neurons alone.

Sun et al. (2006) note that both excitatory and inhibitory neurons are activated by

thalamic stimuli, and hypothesise that strong inhibition is necessary to prevent hy-

peractive excitation and to discretise responses to sensory inputs. To examine the in-

hibitory circuits of the rat barrel column, the authors tested seventy pairs of cells in

vitro and found nine synaptic connections from excitatory to inhibitory neurons and

Vfteen in the opposite direction. In this small dataset, inhibitory postsynaptic potentials
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on excitatory cells have an amplitude of 6.3 ± 1.1 millivolts, which is almost six times

greater than the excitatory eUect on inhibitory cells. Furthermore, the decay time of

the average inhibitory potential is four times greater than its excitatory counterpart.

These data point to a strong system of inhibition that controls the excitatory response

to sensory stimuli, which is conVrmed by observations that excitatory neurons receive

signiVcant inhibition from just a few cells soon after thalamic stimulation.

Kätzel et al. (2011) present a more comprehensive survey of inhibitory networks in

all layers of the mouse somatosensory, visual and motor cortices. Optogenetic tech-

niques were used to elicit action potentials in inhibitory cells, and electrophysiological

recordings were made of postsynaptic potentials in excitatory cells. In Vfty four suc-

cessive trials in coronal slices of somatosensory cortex, an excitatory cell was identiVed

and voltage clamped. The slice was scanned by a laser in order to evoke spikes in

inhibitory cells, and the timing of inhibitory postsynaptic potentials in the excitatory

target was then used to infer the somatic location of each inhibitory source. The au-

thors Vnd that lateral inhibitory projections are constrained to a single barrel in the

granular layer, but extend up to Vve hundred micrometres in other layers, thereby per-

mitting interbarrel inhibition. Radial inhibitory projections are generally weak in the

somatosensory cortex, but there are some synapses from the granular to the supra- and

infragranular layers. Kätzel et al. Vnd signiVcant diUerences between the structure of

certain projections in the examined sensory areas, which contrasts with the notion of

a canonical microcircuit that is invariant throughout the cortex (Binzegger et al., 2004;

Izhikevich and Edelman, 2008).

Packer and Yuste (2011) further examine the lateral extent of inhibition in the supra-

and infragranular layers, using similar optogenetic techniques. In coronal slices of

mouse cortex 350 micrometres thick, monosynaptic connections from inhibitory to

excitatory neurons were characterised in terms of latency, amplitude and time con-

stant. Results show that local connectivity is extremely dense, such that half of all

cell pairs within two hundred micrometres are synaptically connected. The probabil-

ity of connection decays exponentially, with a decay constant of 124 micrometres in

the supragranular layers and 183 in the infragranular. There is no correlation between

the interconnectivity of excitatory cells and the probability of inhibitory synapses upon

them, but there are spatial patterns of connectivity such that, for example, inhibitory

synapses onto excitatory cells in the supragranular layers are more likely to originate

from cells closer to the pia. Packer and Yuste report a greater synaptic density than

previous publications, but are conVdent that their methodology gives an accurate pic-
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ture of connectivity. Thus, the authors argue that inhibitory cells eUectively provide

‘blanket inhibition’ on all nearby excitatory cells.

Miscellanea

The work of Binzegger et al. (2004) is noteworthy in the literature on cortical anatomy.

The authors present an extremely detailed map of cat visual cortex using an inferential

technique that has since been employed to signiVcant eUect by Meyer et al. (2010b)

amongst others. Binzegger et al. made three-dimensional reconstructions of thalamic

axons and thirty nine neurons in slices of cat visual cortex, and classiVed the cells

according to soma location and dendrite morphology. The average dendrite length of

cells in each class was surmised from the reconstructions, and synapses on a sample

of axons were counted under an electron microscope. These data were used to infer

a cortical map on the assumption that axonal synapses distribute uniformly across the

dendrites in the volume of tissue through which they pass. A variant of Peters’ rule

(Peters and Feldman, 1976) was used to determine the average number of synapses s̄uij
formed in layer u upon each neuron of class i by all neurons of class j

s̄uij = (1− ρuj )Suj
dui∑
k nkd

u
k

+ ρujS
u
j

δui
Nu

where ρuj is the proportion of synapses formed by neurons of class j directly upon cell

bodies; Suj is the total number of synapses formed by neurons of class j in layer u,

which is the product of the number of neurons nj and the average number of synapses

s̄uj formed in layer u by each neuron; dui is the average length of dendrite formed in

layer u by neurons of class i;
∑

k nkd
u
k is the total length of dendrites in layer u; δui is 1

if the cell soma of neuron class i resides in layer u and 0 otherwise; and Nu is the total

number of neurons in layer u. Binzegger et al. took nj from the literature, and found

s̄uj and d
u
i by the methodology described above. The resulting data describes the typical

thalamocortical loop, but also suggests that a signiVcant proportion of the 5,651± 3,120

synapses formed on a neuron come from many weak, disparate sources.

It is worth observing that Perin et al. (2011) Vnd signiVcant structures in the cortex

that are not represented in the data of, for example, Lefort et al. or Binzegger et al.. The

latter implicitly assume that, for a given source and target population, the probability

of a synapse existing between any cell pair is conditionally independent. However,

Perin et al. show that the synaptic probability between a cell pair is proportional to the

number of common neighbours, so pyramidal neurons in the cortex form small-world
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networks with neural clusters comprising tens of cells. They suggest that these clusters

may form computational primitives from which higher-order structures are build, and

Tomm (2012) conVrm that such structure is signiVcant in the computational function of

cortical models.

There are innumerable further anatomical studies that cannot be considered here.

However, it should be noted that Thomson (2003) discusses interlaminar synapses in

the cortex in some detail, and Thomson and Lamy (2007) oUer a comprehensive review

and tabulation of corticoanatomical data from diUerent areas and animals; Gupta et al.

(2000) elaborate on the arrangement of inhibitory neurons in the cortex; and Stepa-

nyants et al. (2008) propose another inferred-connectivity metric that derives from the

proximity of axons and dendrites, which they argue varies less over time than the pres-

ence of individual synapses.

2.3 Cortical function

Distinct areas of the cortex perform functions of vision, audition, language and motor

control, amongst others. Beyond the basic responsibilities of each area, little is known

about how the cortex uses action potentials for computation, but the cortical response

to sensory stimuli is best understood in the rodent whisker system.

Rodents brush their whiskers rhythmically across surfaces in their environment to

build a spatial map. Signals from each whisker are conveyed via discrete barreloids in

the thalamus to discrete barrels in the granular layer of the somatosensory cortex. Uni-

tary whisker stimuli only have parameters of deWection amplitude, speed and direction,

so in the barrel cortex it is possible to precisely correlate cortical activity with particular

sensory input.

Simons and Carvell (1989) investigate the response of the rat cortical barrel to de-

Wection of its one principal and four adjacent whiskers. In successive trials with anaes-

thetised rats, the authors recorded 135 cells in a thalamic barreloid, and 242 excitatory

and 16 inhibitory cells in the corresponding barrel. The principal and adjacent whiskers

were deWected and the responses were observed. The authors describe four transfor-

mations between the responses of thalamic and excitatory barrel neurons: thalamic

cells have greater levels of spontaneous spiking than excitatory cells; excitatory cells

respond with diUerent numbers of spikes to the onset and oUset of whisker deWection,

whereas thalamic cells do not; excitatory cells respond weakly to deWection of an ad-

jacent whisker, unlike thalamic cells; and the response of excitatory cells to principal
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whisker deWection is suppressed if it is immediately preceded by deWection of an adja-

cent whisker, despite homogeneous thalamic responses. Inhibitory barrel cells, in con-

trast, do not exhibit these response transformations, and behave similarly to thalamic

cells. This has the eUect that stimulation of an adjacent whisker raises inhibitory Vring

in the barrel, such that the excitatory response to subsequent stimulation of the prin-

cipal whisker is suppressed. The activity of the barrel cortex may therefore represent

the time diUerence of deWections to neighbouring whiskers, from which spatial proper-

ties of the environment can be inferred using knowledge of whisker position. Simons

and Carvell hypothesise that this function arises from four organisational principles:

nonlinear stimulus-responses of excitatory and inhibitory neurons; greater responsive-

ness of inhibitory neurons to input; intrabarrel connections between cortical cells; and

concurrent stimulation of both excitatory and inhibitory cells by the thalamus.

Bruno and Sakmann (2006) describe exactly how the thalamus conveys signals to

the cortex. The question is particularly interesting because projections from the tha-

lamus comprise only 0.15× of all synapses upon excitatory neurons in the granular

layer. It has been hypothesised that thalamocortical synapses must be particularly

strong to drive cortical activity, or that recurrent connections in the cortex amplify

thalamic signals (Binzegger et al., 2009). Bruno and Sakmann argue, to the contrary,

that individual thalamic synapses are weak, and that it is their convergent and syn-

chronous innervation of granular cells that makes information transmission possible.

The authors recorded simultaneously from cells in the rat thalamus and cortex, and

stimulated whiskers with small periodic deWections. The properties of unitary and to-

tal postsynaptic potentials were inferred from multiple recordings, and the structural

connectivity between thalamus and cortex was established. Their data show that single

whisker stimulus causes an immediate Vfteen millivolt Wuctuation in cortical neuron

membrane potential, and that one thalamic synapse contributes just half a millivolt to

this Vgure. The cortical response is too fast to be a consequence of recurrent ampliVca-

tion, so it must driven by the synchronous Vring of around thirty thalamic cells. There

are approximately two hundred cells in one thalamic barreloid, and Bruno and Sak-

mann Vnd seventeen of forty thalamocortical pairs connected, so eighty Vve synapses

are expected to contact each cortical cell. The authors consider this number to be ap-

proximately in line with their predictions, and consequently state that thalamus alone

can drive a cortical sensory response.

de Kock et al. (2007) further investigate the cortical response to thalamic stimula-

tion, aiming to characterise the layer and cell-type responses to single whisker deWec-
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Figure 2.6: Barrel cortex stimulus-response (Arabzadeh et al., 2003).

tions in the rat. The authors recorded juxtasomatically from seventy seven excitatory

cells in all cortical layers, and performed post hoc reconstructions to identify cell mor-

phologies and laminar positions. The stimulus-response in all layers was characterised

as the diUerence between evoked and spontaneous activity in a post-stimulus window

of one hundred milliseconds. Contrary to the view that the thalamus primarily in-

nervates the granular layer, de Kock et al. report immediate responses in all layers:

supragranular cells responded with .11 ± .14 action potentials per stimulus, granular

cells with .41 ± .41, infragranular layer 5 slender-tufted cells with .15 ± .35, infragran-

ular layer 5 thick-tufted cells with .64 ± .47, and infragranular layer 6 cells with .31 ±
.35 action potentials per stimulus. The strong responses of particular infragranular cells

suggest that the thalamus indeed targets these layers. The authors also show that the

response magnitude in the higher layers is proportional to the spontaneous spiking in

these layers: the granular layer, which has high spontaneous activity, responds more

strongly than the supragranular layer, which is largely quiescent in the absence of input.

The inverse relationship is found between response latency and spontaneous spiking,

suggesting that spontaneous activity primes membrane potentials close to threshold for

a fast, strong response to stimuli. Ultimately, the authors infer that each stimulus is rep-

resented sparsely by less than one action potential per neuron in a layer- and cell-type

speciVc manner.

Arabzadeh et al. (2003; 2004) describe what is represented by the cortical response to

continuous whisker stimuli. The authors delivered sinusoidal vibrations with seven am-
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plitude (A) and seven frequency (f ) variations to individual whiskers of anaesthetised

rats, and recorded activity in the granular layer of the corresponding barrel. The num-

ber of spikes per second in a post-stimulus window of Vve hundred milliseconds were

counted and plotted against the stimulus parameters, as in Vgure 2.6. The results show

that barrel spiking correlates with neither dimension independently, but rather corre-

sponds to the product of the stimulus parameters Af . This implies that the rat barrel

represents only the speed of whisker motion during exposure to textured surfaces, and

is therefore unable to discriminate between two stimuli A1f1 = A2f2 that are equal in

this regard. Adibi et al. (2012) corroborate these results with experiments on behaving

rats. An environment was created with a nose-poke hole bordered on the left and right

by vibrating pads and corresponding water tubes; when the rats poked their noses into

the hole, the left and right pads vibrated at some speed (Alfl, Arfr) and a reward was

oUered at the water tube on the side of greater amplitude. Adibi et al. show that rats

become quite competent at detecting the higher amplitude and receiving the reward

when fl is equal to fr. However, when the increased amplitude of, say, the left pad

is oUset by an increased frequency in the right, such that Alfl = Arfr, the rats’ dis-

criminatory performance falls to chance. The authors therefore conVrm that the barrel

cortex represents surface textures in terms of the compound parameter Af , which is

proportional to whisker vibration speed.

2.4 Summary

Neural computation is rather remarkable in both form and function. Neural signalling

is an intricate electrochemical process that exploits the selective ionic permeability of

cell membranes to transmit pulses of information between cells. In the cortex these

cells are wired into exquisite synaptic circuits that are structured at varying degrees

of scale. The cortical plane is divided laterally into areas responsible for vision, audi-

tion, language, somatosensation and motor control, but all sensory areas clearly exhibit

a common laminar structure: signals arrive into the granular layer from the sensory

organs via the thalamus, and follow a typical loop through the supra- and infragranu-

lar layers, before laterally traversing or leaving the cortex. In the rodent cortex, clear

barrels in the granular layer correspond one-to-one with individual whiskers, and so

whisking animals are ideal subjects for investigating the relationship between tissue

structure and function. Studies of anaesthetised and behaving rodents suggest that

the barrel cortex represents environmental space through diUerential responses to suc-
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cessive deWections of principal and adjacent whiskers, and represents the texture of

encountered surfaces by a Vring rate corresponding to the product of whisker vibration

amplitude and frequency.
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Chapter 3

Simulating the Nervous System

Simulation of neural tissue is a promising methodology for research into the function

of the brain. Indeed, if the mechanisms of neural information processing are to be

understood at all, the immense complexity of the nervous system must be represented

by abstract models that are amenable to quantitative analysis. One such approach is to

model membrane potentials and synaptic currents as diUerential equations that, when

simulated as a network of cells, emulate the collective dynamics of their biological

counterparts. This approach aUords perfect tissue observability, experimental control,

and reproducibility, which cannot be said of experiments in vivo.

This chapter introduces mathematical abstractions of neurons and synapses, and

methodologies for their simulation. Section 3.2 makes a comprehensive review of ex-

isting simulation technologies, including SpiNNaker, and section 3.3 discusses notable

simulations of the visual and somatosensory cortices.

3.1 Simulating neurons and synapses

Hodgkin and Huxley (1952) present the Vrst detailed model of action potential gene-

sis and propagation in the neuron. Solved numerically, the model equations precisely

describe observed current Wows in the giant axon of the squid. However, in capturing

the detailed biophysics of the action potential, the model is extremely computation-

ally expensive. Around one thousand operations are required to simulate one neuron

for one millisecond (Izhikevich, 2004) so the Hodgkin-Huxley formalism is unsuited to

large-scale experiments.

47
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The leaky integrate-and-Vre neuron (LIF) model represents the cell membrane rather

more simply as a single constant leak conductance and an input current

cm
dV

dt
= −gL(V − EL) +

I

A

where A is the membrane area, cm = Cm

A
is the speciVc membrane capacitance, gL is

the leak conductance, EL is the equilibrium potential, and I is the input current (Dayan

and Abbott, 2001). The equation may be multiplied through by the speciVc membrane

resistance rm = 1
gL

to give

τm
dV

dt
= EL − V +RmI (3.1)

since the membrane time constant τm = cmrm and membrane resistance Rm = rm
A
. As

shown in Vgure 3.1 the membrane integrates input current until some threshold VΘ is

reached, at which point the neuron spikes and the membrane potential is held in reset

for some refractory period; in the absence of input, the charge across the membrane

leaks until the equilibrium potential is reached. The LIF model thereby captures the es-

sential dynamics of the Hodgkin and Huxley model, with much reduced computational

complexity. The synaptic response to an aUerent spike at time ts is typically modelled

as an exponential current of the form

τs
dI

dt
= −I + wδ(t− ts) (3.2)

where τs is the synaptic-current time constant, w is the peak current amplitude or

weight of the synapse, and δ(x) is the discrete-time Dirac delta function, which returns

1 when x = 0 and 0 otherwise. Thus, the current from all spikes onto all synapses with

a common time constant is given by

τs
dI

dt
= −I +

n∑
i=0

wi

mi∑
j=0

δ(t− tij)

where tij is the time of the jth spike onto the ith synapse. Synaptic responses to spikes

may also be modelled as any function of any model variable; common approaches

include Dirac delta functions of currents and exponential functions of conductances.

The abstract nature of the LIF neuron allows model parameters to be derived an-

alytically from cell electrophysiology with relative ease. The membrane resistance of
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Figure 3.1: Current integration and leak in the LIF neuron model.

a neuron may be found by injecting a constant current into the cell and recording the

membrane potential. Near the asymptote dV/dt ≈ 0, so equation 3.1 may be rewritten

V (t) = EL +RmI

and rearranged to obtain Rm; the equilibrium potential may be likewise ascertained

using a nil current. Also using constant current injection, the analytical form of the LIF

model given by Dayan and Abbott (2001) can be rearranged to Vnd the membrane time

constant in terms of the asymptotic membrane potential and the observed membrane

potential at some time t:

V (t) = EL +RmI −RmIe
−t/τm

ln
(
V (t)− EL −RmI

)
= ln

(
−RmI

)
− t

τm

t

τm
= ln

(
−RmI

V (t)− EL −RmI

)
.

Electrophysiological data often describe observed postsynaptic potentials, such as

those at t = 750 in Vgure 3.1. To reproduce these results in simulation, the weights and
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time constants of the causative synaptic currents must be derived from these descrip-

tions. The time constants of time-varying synaptic currents may be found from the

analytical form of the LIF model given by Brunel and Sergi (1998)

V (t) = EL + wτs
Rm

τm − τs
(
e−t/τm − e−t/τs

)
(3.3)

which considers a single postsynaptic potential initiated at t = 0. The derivative of the

equation at the postsynaptic potential peak, where dV/dt = 0, is

0 = wτs
Rm

τm − τs

(
e−t/τm

τm
− e−t/τs

τs

)
that can be rearranged to a form in which binary search may be used to Vnd an appro-

priately precise value of τs
e−t/τs

τs
=
e−t/τm

τm
.

Finally, this τs may be substituted into equation 3.3 to Vnd the synaptic weight w, given

an observed membrane potential at some time t.

The LIF model captures the essence of spike genesis, but it is insuXciently com-

plex to express plausible subthreshold dynamics or phenomena such as bursting and

spike-frequency adaptation. Izhikevich (2007) makes a dynamical-systems analysis of

these activities, and so derives a computationally eXcient model with a fast membrane

potential variable v and a slow recovery variable u

dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u)

if v ≥ 30mV: v ← c, u← u+ d

where a, b, and d are dimensionless variables that control spike-frequency adaption and

refractory period, and c is the post-spike reset value of the membrane potential. Varying

these parameters results in a wide range of dynamics, as demonstrated with constant

current input in Vgure 3.2, but the relationship between the biophysical properties of

the neuron and a, b, c, and d is not readily apparent. For this reason, the Izhikevich

model is somewhat more diXcult to employ in biologically plausible simulations.
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Figure 3.2: Four possible spiking patterns of the Izhikevich model.

3.2 Simulating many neurons and synapses

Neural computation appears to emerge from the parallel operation of many thousands

or millions of neurons, which is extremely diXcult to observe in any detail due to the

scale and complexity of neural circuits. Simulation of neural tissue is a promising alter-

native methodology for elucidating the mechanisms of neural information processing.

In this approach, neurons are simulated in networks derived from anatomical data, and

the resultant activity is recorded in its entirety.

Most simulators employ an essentially common mode of operation: a network of

neurons is speciVed by a user and compiled into simulation data structures; the simu-

lation is executed in discrete time by one or more processors, each of which computes

the state of one or more neurons based on intrinsic dynamics and external inputs; when

neurons reach the membrane potential threshold, spikes are emitted and conveyed be-

tween processors; and, on completion, simulation data is returned to the user.

Neural information processing is characterised by massive computational paral-

lelism, signiVcant component heterogeneity, diUuse and speciVc communication pat-

terns, and extreme energy eXciency (Atwell and Laughlin, 2001). The brain is a su-

perlative computer that has yet to be fully replicated in silicon, and designers of neural

simulators must be content with some trade-oU in the achievable characteristics. Dif-

ferent simulation technologies therefore occupy particular regions of the design space,

deVned in terms of achievable parallelism, model Wexibility and power consumption.

3.2.1 Software simulators

Software simulators are hardware-agnostic programs written in high-level languages,

which are neither enhanced nor constrained by the executing computer. A great many

software simulators exist, each with adaptations to diUerent model types. The long-

established NEURON simulator (Skrzypek, 1994; Hines and Carnevale, 2001; 2006) is

primarily intended to model tens or hundreds of cells with complex morphologies at

ion channel resolution, whereas Brian (Goodman and Brette, 2008) is orientated to-
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wards simpler, point-neuron models in larger, thousand-cell networks. NEST (Gewaltig

and Diesmann, 2007) is designed for yet greater model scale: the simulator comprises

a front-end API for specifying models and a highly optimised, parallelised back end

written in C++ for computing the states of tens of thousands of neurons (Plesser et al.,

2007). Many custom programs have also been written in C, C++ and MATLAB to ac-

commodate model features that are not represented in the established simulators (Hines

et al., 2004). This multiplicity of technologies is somewhat uniVed by the simulator-

independent PyNN language (Davison et al., 2009) in which models may be speciVed

for simulation on any platform that implements the PyNN programming interface.

Software simulators are cheap and easy to implement, obtain, maintain and modify.

These programs are readily available by download from the authors’ websites, and the

source code or run-time environment is easily adaptable to newmodels that incorporate

recent discoveries in neuroscience. Existing software simulators are almost certainly

the appropriate platforms for quick deployment of small-scale models.

Models that comprise many millions of synapses, however, require considerable

computational resources (Izhikevich and Edelman, 2008; Ananthanarayanan et al., 2009).

Such resources are only available in massively parallel computer architectures, which

general-purpose hardware-agnostic simulators struggle to exploit eXciently. Parallel

processing inevitably involves serial steps or interprocessor communication, and the

proportion of a program taken up with these operations deVnes an asymptotic bound on

the execution speedup that is possible with increasing numbers of processors (Amdahl,

1967). Therefore, parallel programs must be carefully tuned to minimise the time spent

in the communication channels of a particular architecture. Both NEURON (Hines

and Carnevale, 2007) and NEST (Brette et al., 2007) have been adapted for parallel ex-

ecution, but neither platform has yet been used for meganeuron simulations across

many processors. This may be because of a fundamental mismatch between patterns

of neural wiring and current interprocessor communication standards; the common

MPI standard (Gabriel et al., 2004) is designed to transmit kilo- or megabytes of data,

and is therefore ill suited to conveying the binary pulses of action potentials. Ulti-

mately, hardware-agnostic software simulators are useful platforms for small-scale and

exploratory simulations, but may not scale to very large simulations of neural tissue.

3.2.2 Supercomputers

Simulations of the mammalian cortex have been conducted most successfully with cus-

tom software on conventional supercomputers. Markram (2006) describes the hardware
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and software architecture of The Blue Brain Project, which intends to use 217 proces-

sors in an IBM Blue Gene/L computer to simulate ten thousand cortical neurons and

their Vfty million synapses. Markram argues that detailed simulation of all neuron

membrane conductances is necessary to produce a valid model of the cortex, against

which Izhikevich (2007) argues that membrane potential dynamics may be accurately

represented by a simple system of coupled diUerential equations. Izhikevich and Edel-

man (2008) exploit the eXciency of this approach to simulate a million-neuron, billion-

synapse thalamocortical system on sixty processors of a Beowulf (Sterling et al., 1995)

cluster. Ananthanarayanan et al. (2009) use 216 processors in an IBM Blue Gene/P ma-

chine to simulate a billion Izhikevich neurons and ten trillion synapses, and argue that

this portends full-scale real-time simulations of the human cortex.

General-purpose supercomputers oUer both model Wexibility and signiVcant paral-

lelism, but may suUer from overwhelming power requirements. To assess the claim of

Ananthanarayanan et al., the power requirements of full-scale real-time simulations of

the human cortex using current technology may be coarsely estimated as

P = Pm ·
Sc
Sm
· Tm

where Pm is an estimate of the power drawn by the published work, Sc and Sm are

the number of neurons in the cortex and the published model respectively and Tm is

the number of real seconds taken to complete one second of simulation time. The latter

term reWects a generous assumption that the time to compute a second of simulation

time is inversely proportional to power expenditure (Salapura et al., 2005).

Gara et al. (2005) report that the Blue Gene/L processor consumes ten watts during

operation, and it is reasonable to assume that its successor, Blue Gene/P, has similar

speciVcations. Ananthanarayanan et al. used 216 such processors in simulation, sug-

gesting a value Pm = 10W · 216 ≈ 655kW. They simulated 1.6 · 109 of the ≈ 1010

neurons in the cortex (Braitenberg and Schüz, 1991, Sc

Sm
≈ 10) at a rate of “643 seconds

for one second of simulation per Hz of [spiking] activity” implying Tm = 1,286 at a

plausible global average 2Hz neural spiking rate (Neymotin et al., 2011). Consequently

P ≈ 655kW · 10 · 1, 286 ≈ 8.4GW

which is orders of magnitude more power than a research institution may feasibly draw

(Dongarra et al., 2011). This gross estimate says nothing of the biologically Vdelity of

the simulation, but even the simplest spiking neuron models are no more than three
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times more computationally eXcient than the Izhikevich (2004) equations. Likewise,

details of synapse models and dendritic compartments are overlooked, because they

do not address the fundamental issue: the size of the power problem is such that the

promises of Moore’s law, which states that transistor size and power requirements de-

crease exponentially over time, do not permit power-feasible brain-scale simulations

on conventional supercomputers before transistor dimensions reach atomic limits.

3.2.3 Field-programmable gate arrays

Customised processors may signiVcantly outperform general-purpose processors in spik-

ing neuron simulations. Such hardware may be prototyped in Veld-programmable gate

arrays (FPGAs) that allow designs to be tested without the diXculty and cost of mak-

ing application-speciVc integrated circuits (ASICs). Pearson et al. (2005), Rice et al.

(2009) and Cassidy et al. (2011) implemented custom processors in FPGAs and the lat-

ter achieved real-time simulation of one million neurons. FPGAs may also be used as a

reconVgurable substrate for arbitrary axonal wiring between processors, which would

address the signiVcant problem of routing the outputs from one simulated neuron to

the inputs of another.

However, the typical connectivity degrees of neurons in biological networks are

vastly greater than those of logic gates in silicon circuits, and FPGAs are not designed

for such wiring densities. Furthermore, as Cassidy et al. admit, an ASIC implementa-

tion of any processor design will show signiVcantly better computational performance

and energy eXciency than its FPGA counterpart. Indeed, the reconVgurability of FP-

GAs is generally detrimental to their material cost, computational performance and

power requirements. So, although they are a useful exploratory tool, successful proto-

types should be fabricated as regular ASIC processors.

3.2.4 Graphics processing units

Simulations of neural tissue exhibit signiVcant data parallelism, in that an identical

stream of arithmetic instructions is used to compute the membrane potential of ev-

ery neuron. Graphics processing units (GPUs; Fatahalian and Houston (2008) give an

overview) currently contain tens or hundreds of arithmetic units that may execute a sin-

gle instruction stream on many data elements simultaneously, thereby computing the

state of many neurons in parallel. The capabilities of GPUs have generated signiVcant

interest in the neural modelling community (Nageswaran et al., 2009; Bhuiyan et al.,
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2010; Fidjeland and Shanahan, 2010; Han and Taha, 2010; Pallipuram et al., 2011; Nere

et al., 2012) and almost all researchers report 10x to 1,000x improvement in simulation

performance on GPUs over conventional central processing units (CPUs). However,

evaluations of GPU performance typically suUer from methodological shortcomings

and expose quietly reported limitations in the GPUs themselves.

Lee et al. (2010) assess the claim of fantastic GPU performance by running fourteen

common scientiVc algorithms on a multicore CPU and a GPU. When each algorithm is

carefully optimised for both platforms, the GPU performs on average only 2.5x better

than the CPU, despite the fact that the former is more than three times more powerful

in terms of data-parallel operations per second.

Memory bandwidth dictates the rate at which data may be read from or written

to memory, and bandwidth limitations present a signiVcant problem to GPUs due to

the immense rate at which the numerous arithmetic units consume or produce data.

Nageswaran et al. (2009) report that the memory bottleneck is the ultimate performance

limitation of their work; Pallipuram et al. (2011) note that certain computations cannot

be usefully performed on the GPU because of the cost of transferring data from the

CPU; Bhuiyan et al. (2010) show that the examined GPU only outperforms comparable

multicore processors when the number of instructions executed greatly exceeds the

number of bytes transferred from or to memory; and Han and Taha (2010) Vnd that a

cluster of sixteen GPUs achieves only a 14× speedup over a single GPU, presumably

due to the cost of communicating spikes between neurons.

GPUs are cheap commodity platforms that show excellent performance on certain

algorithms, particularly those with high ratios of computation to communication. How-

ever, simulation of neural tissue has the opposite property, so the parallelism available

in GPUs cannot be applied to the task. Reports of GPUs’ superlative performance be-

side CPUs either fail to control for diUerences in peak performance or omit the cost of

data transfer between the two units.

3.2.5 Analogue circuits

Digital computers simulate neural dynamics by numerical approximation, but neurons

can also be emulated by analogue integrated circuits that use subthreshold transistor

states to mimic transmembrane ion channels (Mead, 1989; Indiveri et al., 2011). Ana-

logue circuits typically require few transistors and little power per neuron or synapse,

and may compute many tens or thousands of simulated seconds in a single real sec-

ond, greatly outperforming their digital counterparts in most regards. However, digital
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computers are typically programmable, in that they execute instructions from a muta-

ble memory, whereas the operation of analogue hardware is largely determined during

fabrication. This may be a problem in the absence of a universal deVnition of neural

dynamics because the design and tooling costs of integrated circuits are enormous, so

the manufactured neurons must be correct according to both current and future under-

standings of neural operation.

This problem is partially addressed by neural models that can reproduce many

known spiking activities (Brette and Gerstner, 2005) but the problem of spike transmis-

sion, which so frustrates FPGAs and GPUs, has typically limited analogue implementa-

tions to a handful of emulated neurons connected by a crossbar switch. The BrainScaleS

project intends to address this problem by combining analogue circuitry for neural em-

ulation with digital packet-switched routers for spike transmission (Schemmel et al.,

2008; 2010). As with most integrated circuits, some hundreds of chips will be manufac-

tured on a single silicon wafer but, in radical contrast to the usual process of slicing the

wafer and packaging each chip separately, a communications fabric will be deposited

directly on the wafer to form a single package. Interwafer communication will be han-

dled by a backplane to which multiple wafers may be connected. This approach oUers

large-scale simulations that run many times faster than real-time and consume little

power, but also presents a problem in conVguring arrays of analogue components that

are exquisitely sensitive to both manufacturing and environmental conditions. The sig-

niVcant promise of the BrainScaleS hardware depends on the solution to this problem.

3.2.6 SpiNNaker

SpiNNaker is a computer architecture designed to simulate very many neurons and

synapses in real-time. By emulating the structure and function of neural computation

(Furber and Temple, 2006) the architecture is intended to address the Grand Challenge

of understanding the brain and mind (Hoare and Milner, 2005). This has motivated

design of a machine which contains up to 216 multiprocessor chips, connected by a

Wexible asynchronous communications network (Plana et al., 2007) that conveys simu-

lated action potentials.

Processing

A SpiNNaker chip, as shown in Vgure 3.3, contains eighteen homogeneous processors: a

monitor for administration, sixteen application processors for simulation, and one spare
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to account for faults in the other seventeen. Each application processor is responsible

for computing the dynamics of some number of neurons and their associated synapses,

and has 32 kilobytes of instruction memory in which programs are stored and 64 kilo-

bytes of data memory that contain program and neuron states. Synapse states and any

other simulation data are stored in a 128-megabyte oU-chip memory. Each processor

has a communications controller through which neural spikes are communicated to

and from the on-chip router, a direct memory access controller with which to read and

write oU-chip memory, and a timer peripheral that generates periodic signals to prompt

computation of neuron states.

Data memory

Instruction memory

run-time kernel
application callbacks

Processor

neuron and synapse
state computations

kernel state
neuron states

stack and heap

RAM port

synapse states
activity logs

Router

routing tables
spike packet routing
system comms.

Figure 3.3: View of the SpiNNaker chip, labelled with key components.

SpiNNaker is an unusual high-performance architecture, in that it uses many low-

performance processors to achieve great computational power. A microprocessor dis-

sipates static power as a function of supply voltage and transistor leak current and

dynamic power as a function of supply voltage and transistor switching (clock) fre-

quency. High clock frequencies permit high computational throughput, but they also

call for high dynamic power dissipation and are only achievable with low-threshold

high-leakage transistors that suUer signiVcant static power dissipation. Consequently,

for workloads that may be eXciently shared, multiple low-performance processors may

outperform a single high-performance processor in terms of both power consumption

and computational throughput. For this reason, SpiNNaker uses ARM968 processors

clocked at a relatively slow two hundred megahertz, and eschews complex integer di-

vision and Woating-point arithmetic circuits to reduce static power dissipation.
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Figure 3.4: SpiNNaker production board.

Communication

Each chip contains a packet-switched router that forms links with all eighteen proces-

sors on-board and the routers of six neighbouring chips: North, South, East, West,

North-East and South-West. The chips arranged on the 48-chip SpiNNaker board,

shown in Vgure 3.4, thus form a plane through which packets may be communicated.

Multiple production boards may also be connected through the board-to-board serial

links, shown top-left and -right, and the expanded plane may be rolled into a toroid to

ensure that the average interchip distance is constant throughout the machine. Ethernet

ports, shown bottom-left, link the board to a host computer.

The on-chip routers may be programmed to emulate axons along which action po-

tentials are transmitted. Procedurally: each neuron is uniquely identiVed by a 32-bit

routing key; when a processor simulates an action potential, it sends the correspond-

ing neuron’s routing key to the on-chip router; the router compares this key against a

routing table and delivers duplicate keys to one or more of the neighbouring routers or

on-board processors; neighbouring routers repeat the process of look-up and delivery
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according to their own routing tables; and, Vnally, each receiving processor induces

synaptic currents in a subset of its own neurons selected according to the presynap-

tic neuron identiVed by the routing key. In this manner, SpiNNaker is specialised to

communicate action potentials from any neuron to any subset of neurons in the ma-

chine. Routers are capable of processing packets at a rate which promises scalability to

billion-neuron simulations (Navaridas et al., 2009; 2010).

The routers also contain three further subsystems for maintenance: the nearest-

neighbour system facilitates communication of 32- or 64-bit packets between the mon-

itor processors of adjacent chips; the Vxed-route system delivers marked packets to the

nearest Ethernet port; and the point-to-point system, once conVgured, conveys packets

comprising a 32-bit header and 32-bit payload between any pair of monitor processors,

with the aid of dedicated routing tables in each chip.

3.3 Notable simulations

An enormous body of literature exists regarding the simulation of neural tissue. At the

time of writing, the online ModelDB (Hines et al., 2004) lists more than seven hundred

examples and is by no means comprehensive.

Douglas et al. (1989) are amongst the Vrst to simulate a signiVcant volume of neural

tissue, albeit at coarse granularity. They represented excitatory cells of the cortex as

two Vring-rate-coded units corresponding to cells in the supra- and infragranular lay-

ers, and represented inhibitory cells in all layers as one further unit. Such a network

is capable of reproducing the in vivo activity of the visual cortex under thalamic stim-

ulation. A paucity of anatomical data made the construction of more detailed models

diXcult, until a collaboration with Binzegger et al. (2004) produced the detailed map of

cat visual cortex discussed in the previous chapter. Twenty years after the initial model,

Binzegger et al. (2009) simulated cat visual cortex in unprecedented detail as nineteen

populations of rate-coded leaky integrator neurons. Parameters were set in accordance

with biological data: for a given synaptic current, inhibitory neurons were set to Vre

more readily than excitatory; the synaptic weights of the inhibitory projections were

set to be stronger than those of the excitatory projections; and the majority of synapses

in the model were distributed between excitatory populations, particularly in recurrent

projections of the supragranular layer. The authors show that network dynamics are

dominated by these supragranular projections and argue, in opposition to Bruno and

Sakmann, that such recurrence ampliVes weak thalamic signals to cortex. They suggest
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that such ampliVcation is selective of input features that match particular patterns of

synaptic weights in the supragranular projections; thus, the cortex may fundamentally

be a processor that selects, strengthens and relays preferred sensory signals.

The quantitative map of cat visual cortex produced by Binzegger et al. has pre-

cipitated numerous further simulations based upon the data. Haeusler and Maass

(2006) treat the circuit as a binary classiVer, and demonstrate that the laminar topol-

ogy outperforms a structureless counterpart with otherwise identical statistical prop-

erties. Haeusler et al. (2009) extend this work to compare the performance of circuits

based upon data from Binzegger et al. and Thomson and Lamy (2007). Wagatsuma

et al. (2011) consider the attentional properties of the circuit and show that it is capa-

ble of reproducing biological phenomena of response to attended stimuli. Neymotin

et al. (2011) demonstrate that biologically plausible oscillations may be induced in sim-

ulation of a small volume of cortex, and Izhikevich and Edelman (2008) demonstrate

similar properties in a scaled-down model of the entire human cortex.

Izhikevich and Edelman present a model of the cortical plane comprising one mil-

lion neurons, wired intracortically according to Binzegger et al. (2004). Intercortical

connectivity was determined by original data on white-matter tracts generated by dif-

fusion tensor imaging. Cells were simulated with detailed morphologies using the Vrst

author’s simple model of spiking neurons (2003) and synapses were simulated with

complex current and weight dynamics according to presynaptic cell type. Baseline ac-

tivity was induced in the network using small artiVcial postsynaptic potentials, and

the Vring-rate power spectrum of each area was observed. The simulations show that

synaptic-weight plasticity is a homeostatic mechanism that modiVes the functional

topology of the network, which then forms a substrate for the characteristic activity of

the cortex. During a half-hour period of artiVcial stimulation, the network is adjusted

under synaptic plasticity such that stable neural activity persists following the removal

of the external drive. Furthermore, the power spectra of this activity correspond area-

by-area to that observed in human electroencephalogram recordings, despite the struc-

tural homogeneity of the simulated cortical plane. This suggests that corticocortical

signals through the white matter dynamically shape the function of each cortical area.

The visual cortex has been the focus of signiVcant interest in biological and com-

putational experiments (Hubel and Wiesel, 1962; Binzegger et al., 2009) although it

presents certain challenges to the investigation of cortical function. The retina of seeing

animals has a great density of photoreceptors, so the amount of information transmit-

ted to the cortex about a visual scene is large. Furthermore, visual stimuli are contin-
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uous rather than discrete, visual information is preprocessed by the retina, and there

is no clear mapping from retinal output to the cortical plane (da Costa and Martin,

2010). Consequently, it can be diXcult to associate particular information in the sen-

sory stimulus to particular neural activity in the cortex. In contrast, each whisker in the

rodent somatosensory system is associated with exactly one barrel in the cortex, and

whiskers may be perturbed by both discrete and continuous stimuli. For these reasons,

Arabzadeh et al. (2004) are able to apply methods from information theory to precisely

quantify the relationship between stimulus parameters and Vring rates in the granular

layer. This quantity is important if models of neural tissue are to be validated against

their biological counterparts.

Kyriazi and Simons (1993) present exemplary simulations of thalamocortical re-

sponse transformations in the rat barrel. As discussed in the previous chapter, Simons

and Carvell (1989) hypothesise that sensitive inhibitory and nonlinear excitatory re-

sponses to synaptic currents enable cortical representations of whisker deWections that

are not evident in the thalamic inputs. Kyriazi and Simons captured these principles in

a one-hundred-cell model of barrel cortex, in which seventy neurons were excitatory

and thirty were inhibitory. The output spikes of each neuron were generated proba-

bilistically as a sigmoid function of membrane potential, and each spike was followed

by a refractory period. Excitatory neurons were tuned to be highly nonlinear in their

response to input, such that they spiked vigorously at high membrane potentials and

were quiescent otherwise, and inhibitory neurons were tuned to be more broadly re-

sponsive, as shown on the left of Vgure 3.5. The barrel was stimulated with spike

trains recorded directly from the rat thalamus during single whisker and adjacent-

then-principal deWections. Upon carefully tuning thalamic and intracortical synaptic

weights, the authors show that the simulated barrel accurately reproduces the strong

on- and weak oU-response of the rat barrel. More compellingly, they demonstrate that

the same set of parameters may be used to reproduce the other three thalamocortical

response transformations observed by Simons and Carvell, including cross-whisker re-

sponse suppression. Kyriazi and Simons Vnd that severing intracortical axons in the

model undermines this response transformation, and so argue that inhibition is a key

factor in determining, rather than simply regulating, cortical information processing.

The thalamus produces similar numbers of spikes in response to whisker deWection

onset and oUset, but the synchrony and peak rate of the spike trains vary. Pinto et al.

(2003) review research on the stimulus parameters that are reWected in the cortical re-

sponse, and present a novel dynamical-systems analysis of the rodent whisker barrel.
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Figure 3.5: Example barrel response curves and thalamic stimuli.

Pinto et al. (1996) model the barrel using the same principles as Kyriazi and Simons,

with the net Vring rates of each population represented by a diUerential function of

recurrent and extrinsic synaptic currents. The model was stimulated with a battery of

spike trains with varying amplitudes and onset rates, as depicted on the right of Vgure

3.5, and the Vring rates of the cortical populations were recorded. The results show

that the model, like its predecessor, is capable of reproducing all four thalamocortical

response transformations and that the response magnitude of the barrel is primarily de-

termined by the onset rate, or synchrony, of the simulated thalamic stimuli. Pinto et al.

(2000) corroborate these Vndings with animal experiments, which show that whisker

deWection speed determines the spiking synchrony of the thalamus that in turn cor-

relates with the level of Vring in the barrel cortex. Finally, Pinto et al. (2003) apply

dynamical-systems analysis to their 1996 model in order to explain the mechanisms

underlying the thalamocortical response transformations. Figure 3.6 shows the phase

plane with the Vring rates of the excitatory and inhibitory populations on the x and y

axes respectively, the excitatory nulcline in red, the inhibitory nulcline in blue, and the

derivative of the excitatory Vring rate in the background colour map. Increased thala-

mic drive moves the Vring rate equilibrium away from the resting state: in the case of

slow-onset stimulus, shown top, Vring-rate derivatives remain small and the network

state tracks closely with the moving equilibrium; in the case of fast-onset stimulus,

shown bottom, the equilibrium moves rapidly from the resting state and the deriva-
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Figure 3.6: Phase plane analysis of barrel activity. Adapted from Pinto et al. (2003).

tives become large, so that the network state signiVcantly overshoots the equilibrium

and makes a wide orbit of the phase plane. The authors argue that this orbit is possible

because of the strong supralinear response of excitatory neurons to synaptic input, but

also note that the ultimate eUect of intracortical synapses is an inhibitory damping of

the response to weak or unsynchronised inputs. Since the synchrony of thalamic Vring

is proportional to the speed of whisker deWection, Pinto et al. argue that the rodent

barrel cortex essentially acts to translate this quantity into a Vring-rate code.

As Pinto et al. show, recurrently connected networks of neurons are dynamical

systems, which may become hyper- or inactive depending on network parameters.

Izhikevich and Edelman (2008) ensure stable, persistent network activity by a synaptic

plasticity rule that modiVes the functional topology of the model according to ongoing

Vring. Brunel (2000) approaches the problem of determining stable network activity an-

alytically, by considering the balance of excitatory and inhibitory synaptic currents in

a network. He simulates an externally driven, recurrently connected network of leaky

integrate-and-Vre neurons, of 0.8× excitatory cells and 0.2× inhibitory cells, in which

every neuron receives a synapse from every other with equal probability. Excitatory

synapses therefore outnumber inhibitory synapses four to one, and Brunel elegantly

demonstrates that network activity depends on the ratio g of inhibitory to excitatory

synaptic weights: when g is less than four, excitation dominates and the network is

hyperactive; when g is greater than four, inhibition dominates and the network is prac-

tically inactive; and when g is approximately four a biologically plausible state of ir-

regular, asynchronous, low-frequency Vring is achieved. In this and other publications

(1998; 1999; 2003) the author goes on to demonstrate various dynamical properties of
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recurrent model architectures. This analytical description of network activity is partic-

ularly important, because many simulation studies achieve network stability through

haphazard tuning of network parameters and such an approach calls into question the

validity of the resulting model (Kyriazi and Simons, 1993; Haeusler et al., 2009; Wagat-

suma et al., 2011; Neymotin et al., 2011; Phoka et al., 2012; Sharp et al., 2012).

An exhaustive review of the simulation literature is clearly intractable, but a num-

ber of further studies are worthy of note: Maass and Markram (2006) present the liquid

state machine as a possible model for computation in cortical circuits; Helmstaedter

et al. (2007) review the motivations and techniques for simulating detailed models of

individual cortical columns; Lang et al. (2011) actually do so, using data presented by

Oberlaender et al. (2011); Johansson and Lansner (2007) argue that an abstract model of

cortical columns may be used to simulate the entire human cortex; Symes and Wennek-

ers (2009) examine the spatiotemporal dynamics of intercolumnar activity in a sheet of

supragranular layer cells; Yger et al. (2011) further characterise the relationship between

connectivity and activity in such a sheet; and Phoka et al. (2012) examine the changing

response of a detailed barrel model with synaptic plasticity to successive stimuli.

3.4 Summary

Simulation of neural tissue appears to be a viable methodology for investigating brain

function. Simple abstractions of neurons, such as the leaky integrate-and-Vre and

Izhikevich models, capture the essential electrophysiological properties of neural mem-

branes and their signalling activities. Numerous technologies have been developed in

order to simulate many such neurons, but all have signiVcant limitations: portable

general-purpose software simulators are unable to eXciently exploit the computational

parallelism required for large-scale simulations; massively parallel machines consume

too much power to be viable brain-modelling platforms; current experiments with

GPUs and FPGAs do not demonstrate the necessary communications bandwidth to

convey action potentials in intricate cortical networks; and current analogue hardware

is diXcult to program. Nevertheless, million-neuron simulations of the visual cortex

have been achieved, and smaller simulations have produced concise theories regarding

the function of the barrel cortex. The SpiNNaker project aims to advance the scale

and detail of these simulations, using many low-power processors and neuromorphic

communications hardware.
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The SpiNNaker Software Stack

Novel computer architectures require novel software stacks. The SpiNNaker archi-

tecture presents particular software challenges by virtue of its scale and communica-

tions infrastructure: boot software must conVgure a million-processor machine without

the aid of dedicated command and control hardware; run-time software must oUer a

managed abstraction of hardware resources to user-deVned computational tasks; and

host-side software must translate neural tissue descriptions into machine-readable data

structures for simulation. Ultimately, a SpiNNaker machine must be easily exploitable

by researchers, without intricate knowledge of the architecture or the pitfalls of real-

time parallel programming.

This chapter describes a novel software architecture for SpiNNaker. Section 4.1

reproduces the work of Sharp, Patterson and Furber regarding the boot-up and con-

Vguration procedures, presented at the 2011 International Joint Conference on Neural

Networks. Section 4.2 explains event-driven computation on SpiNNaker and the as-

sociated application programming interface, drawing upon work presented by Sharp,

Plana, Galluppi and Furber to the 2011 International Conference on Neural Informa-

tion Processing. Section 4.3 brieWy describes the PyNN interface to SpiNNaker through

which models are speciVed from the anatomical literature, as presented by Galluppi,

Davies, Rast, Sharp, Plana and Furber at the 2012 International Conference on Comput-

ing Frontiers, although the majority of this work must be credited to the Vrst author.

4.1 Boot-up and conVguration

SpiNNaker is a homogeneous mesh of chips, which at boot-up are undiUerentiated

by unique addresses and unable to probe their environment. Architectures such as

65
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Figure 4.1: Flood-Vll reception control.

the Blue Gene/L use dedicated hardware to conVgure machines (Haring et al., 2005)

but SpiNNaker eschews such systems in favour of topological Wexibility and reduced

complexity, so management must be done in software. This software must initialise

hardware, load an operating system, set up an address map for the machine, and provide

support for simulations (Khan et al., 2009; Sharp et al., 2011a; Patterson et al., 2012).

4.1.1 Boot-up

Each processor in a chip is initially booted by a program stored in on-chip read-only

memory (ROM). The ROM is immutable so program correctness is paramount, and for

this reason the ROM code is limited in functionality to hardware testing and reception,

but not retransmission, of more general software.

At power-on, each processor copies the ROM program into instruction memory

and executes it. The program begins with tests on processor peripherals such as the

communications and direct memory access (DMA) controllers; in the event of a failure,

an error code is recorded and the processor disables itself. Processors that pass testing

then race to access a system register that decides a monitor processor, which is thereon

responsible for chip administration; the remaining cores become application processors,

responsible for running simulations, and wait for messages from the monitor. Finally,

the monitor tests chip peripherals such as the router and shared memories, disabling

the chip in the event of failures, and enters a wait state.

A program is transmitted, by a mechanism discussed subsequently, to a chip via

nearest-neighbour packets over the interchip links. Receipt of each packet raises an

interrupt in the monitor, which calls a handling function according to the contents the

packet key. Figure 4.1 shows the state machine that controls program loading. The

process is initiated by a START packet that signals the number of blocks in which the



4.1. Boot-up and conVguration 67

Figure 4.2: Representation of Wood-Vll in a toroidal topology.

impending program is to be transmitted. Subsequently, a BLOCK_START packet precedes

one or more BLOCK_DATA packets, which each carry four bytes of program code that

are stored by the monitor in shared RAM. A BLOCK_END packet concludes a block and

carries a 32 bit cyclic redundancy checksum for validating the block; in response, the

monitor uses the DMA engine to generate a new checksum for comparison, whilst

copying the block from shared RAM to a data memory location determined by the

block ID. Finally, following a number of blocks depending on the image size, a CONTROL

message prompts the monitor to run a routine in ROM that copies the program binary

from data memory to instruction memory and begin execution.

4.1.2 System conVguration

Following boot-up, a small operating system is loaded into the machine. The operat-

ing system is responsible for self propagation through the machine, establishing chip

addresses and communication channels, and loading simulation programs and data.

Propagation

The operating system is Vrst transmitted to an Ethernet-connected monitor processor

on SpiNNaker using a block-wise protocol similar to the one described above, with triv-

ial adaptations to the medium. To distribute the program to the rest of the machine, the

monitor immediately retransmits the instruction memory contents in all directions over



68 Chapter 4. The SpiNNaker Software Stack

the nearest-neighbour fabric, thereby fulVlling the role of the anonymous transmitter

in the previous section. This Wood-Vll process, repeated iteratively by the monitor pro-

cessor of each chip, is the mechanism by which system software is distributed from the

host to all monitors of a SpiNNaker machine.

Figure 4.2 illustrates Wood-Vll commencing from an Ethernet-connect seed chip,

depicted in red, and proceeding across the nearest-neighbour network to a distance of

four links. The Wood-Vll wavefront in this toroidal topology touches upon 6d chips,

where d is the number of links traversed. Consequently a Wood-Vll extending across n

links from the seed aUects
∑n

i=0 6i = 6n(n+1)
2

chips. Assuming that transmission time

across each link is invariant in the size of the wavefront, the time required for Wood-

Vll is a root term of the number of chips in the machine. This suggests that Wood-Vll

is an eXcient mechanism for distribution of homogeneous binaries across large-scale

SpiNNaker machines, as demonstrated in chapter 5.

Machine mapping

The toroidal topology of a SpiNNaker machine allows each chip to be uniquely iden-

tiVed by a two-dimensional coordinate. To establish a machine map, an arbitrary

Ethernet-connected chip is assigned the origin address (0, 0) and is informed of the

selection by the host machine. The monitor processor of the origin chip computes its

neighbours’ relative addresses (the northern neighbour, for example, is (x, y + 1) and

the southwestern neighbour is (x−1, y−1) all modulo the dimensions of the machine)

and informs them of these coordinates via nearest-neighbour packets. Each monitor re-

peats this process until every chip has received an address.

With an address map established, it is then possible to conVgure the point-to-point

routing system that allows packets to be sent between arbitrary pairs of monitor proces-

sors. To do so, an analog of the distance-vector routing protocol is employed. BrieWy de-

scribed: each monitor creates a hop-count table hc with entries for every other monitor

initialised to inVnity; at regular intervals every monitor transmits a nearest-neighbour

packet, containing in the payload the source address (x0, y0) and a hop-count h = 1,

to the set of neighbours C(d = 1) = {(x, y) | hops((x0, y0), (x, y)) = d}; each re-

ceiving monitor processor in C(d = 1) checks if h < hc((x0, y0)), that is, if the packet

represents a new shortest route to the source, and if so sets the point-to-point route to

(x0, y0) to be the link upon which the nearest-neighbour packet arrived; and Vnally,

upon the same condition, each monitor in C(d = 1) increments h and retransmits

the packet to chips in C(d = 2), which repeat the process. By this mechanism, the
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Figure 4.3: SDP transmission control.

shortest possible route between any pair of chips is found, in a process that is robust to

permanently- or transiently broken interchip links.

Control and communications

The SpiNNaker datagram protocol (SDP) provides a control and communications in-

frastructure that is absent from the hardware. SDP messages consist of source- and

destination-processor addresses, a command Veld, three arguments, and a variably

sized payload, which may collectively be used to upload programs and data, trigger

execution, and download results. In communication between the host machine and the

Ethernet-connected monitor processor, these datagrams may be carried in the payload

of a UDP packet; for transmission between the host and distal chips, the datagrams

must be broken up and transmitted over the point-to-point network. This requires that

both the transmitter and receiver maintain some state in software regarding the data-

gram, and that each transmitted packet includes some metadata with which the state is

modiVed. Figure 4.3 shows the state machine of the software protocol used to transmit

SDP messages as a series of point-to-point messages: the transmitter opens a connec-

tion with the receiver, transmits the m packets of the datagram with ID metadata, and

waits for the receiver to acknowledge those received; any packets not acknowledged

by the receiver are retransmitted, and when receipt is Vnally conVrmed the connection

is closed. The receiver implements a complementary state machine, and in both cases
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Figure 4.4: Events and corresponding tasks in a typical neural simulation.

an unexpected delay in receipt of a packet may cause the connection to be terminated.

Finally, on receipt of a complete SDP message, the receiver uses the command and ar-

gument Velds to determine the operation, such as program execution or fulVlment of a

memory-load request, that should be performed on the payload.

With the operating system loaded, the machine conVgured, and the control and

communications infrastructure set up, SpiNNaker is ready to execute simulations.

4.2 Event-driven computation

SpiNNaker simulations are event-driven in that all computational tasks follow from

events in hardware, as shown in Vgure 4.4 (Sharp et al., 2011b). On each processor,

neuron states are computed in timesteps initiated by a local timer event with a pro-

grammable period; at each timestep, usually a millisecond in length, processors eval-

uate the membrane potentials of all of their neurons given prior synaptic inputs and

deliver a packet to the router for each neuron that spikes. Spike packets are routed to

all processors that model neurons eUerent to the spiking neuron. Receipt raises a packet

event that prompts the eUerent processor to retrieve the appropriate synaptic weights

from oU-chip RAM using a background direct memory access (DMA) transfer. The

processor is then free to perform other computations during the DMA transfer and is

notiVed of its completion by a DMA event, which prompts calculation of the synaptic

inputs to subsequent membrane potential evaluations. Should additional packets arrive

while a DMA transfer is in progress, they are placed into a software buUer and are con-
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Figure 4.5: Control and data Wow between the scheduler and dispatcher threads.

sumed one-by-one as each prior DMA completes. In the absence of events, processors

go into a passive wait state to conserve power. It should be noted that, in this context,

events should not be confused with those discussed by Brette (2006) and Hanuschkin

et al. (2010) in the solution of membrane potential equations.

4.2.1 The ARK

Each application processor executes an instance of the application run-time kernel

(ARK) which is responsible for providing computational resources to the tasks arising

from events. Figure 4.5 shows the two ARK threads of execution that share proces-

sor time: following events, control of the processor is given to the scheduler thread that

queues tasks; upon its completion, the scheduler returns control to the dispatcher thread

that dequeues tasks and executes them. In terms of Vgure 4.4 a timer event schedules a

neuron update task that is dispatched upon returning from the scheduler.

Tasks have priorities that dictate the order in which they are executed by the dis-

patcher. The scheduler places each task at the end of the queue corresponding to its pri-

ority and the dispatcher continually executes tasks from the highest-priority nonempty

queue. Priority zero tasks are nonqueueable and are executed by the scheduler directly,
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precluding any further scheduling or dispatching until the task is complete; priority

minus one tasks are preemptive and are executed in a dedicated processor mode, which

disregards the scheduler and interrupts all other operations until complete.

The ARK also records certain data about the execution of a program. Packet coun-

ters are read from the router hardware and stored in a diagnostic block, along with

software counts of task and DMA queue overWows. At the end of a simulation, a user-

level program built on the application programming interface may read the diagnostic

block and append any further recordings, before oUering the results to the host.

4.2.2 The API

The SpiNNaker application programming interface (API) allows a user to specify the

tasks that are executed following an event. A user may write callback functions in C

that encode the desired tasks, and register them with the ARK against particular events.

At this point, it is illustrative of the API to derive a program that simulates the leaky

integrate-and-Vre (LIF) neuron with exponential-current synapses.

As discussed in the previous chapter, the subthreshold membrane potential V (t) of

the LIF neuron is determined by

V (t) = EL +RmI − (EL +RmI)e−t/τm

where τm is the membrane time constant, EL is the equilibrium potential, Rm is the

membrane resistance and I is a time-invariant input current. On exceeding the thresh-

old VΘ the membrane potential is set to Vreset and held there for some refractory period

refrac. Where time-varying excitatory and inhibitory currents Ie, Ii occur the LIF

neuron is typically presented as a dynamical system

τm
dV

dt
= EL − V +Rm

(
Ie − Ii

)
in which a presynaptic spike induces an instantaneous rise of wi (the weight of the

synapse between the pre- and postsynaptic neurons) in a synaptic current that then

decays exponentially according to the time constant τI

τI
dI

dt
= −I +

n∑
i=0

wi

mi∑
j=0

δ(t− tij)

Here, I stands for the excitatory or inhibitory current, tij is the time of the jth spike on
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the ith synapse, and δ is the Dirac delta function that is nonzero only when t = tij .

Jin et al. (2008) propose a methodology for solution of the Izhikevich (2003) equa-

tions on SpiNNaker, which generalises to arbitrary neuron models. Following this, the

LIF equations are solved at millisecond intervals according to the diUerence equations

V (t+ 1) = V (t) + λm

(
EL − V (t) +Rm

(
Ie(t)− Ie(t)

))
(4.1)

I(t+ 1) = I(t) + λI
(
− I(t) +

n∑
i=0

wi

m∑
j=0

δ(t− tij)
)

(4.2)

where λ = 1/τ . V (t) is computed exclusively by the timer callback; I(t) is incremented

by the DMA callback in response to each aUerent spike and is decayed by the timer

callback in response to each timer tick. Thus, the cost of modelling exponential-current

synapses is constant per neuron, rather than a function of the number of input spikes.

Real numbers are represented in SpiNNaker as 32-bit values with a decimal point

Vxed, by software convention, after the 16th bit; this aUords an approximate range and

precision of ±104 and 1
104

respectively, which tentative simulations suggest is mini-

mally necessary for accurate neuron-state evaluation. Numbers are therefore repre-

sented in the machine as the product of the value x and a scaling factor P = 216, and

multiplication of two such numbers must be followed by a right-shift to maintain the

correct scale of the result. In C code, the operation Pz = PxPy
P

is implemented

// Given int x, int y
long long temp = x * y;
int z = (int) (temp >> LOG_P);

Division by numbers other than powers of two must be avoided due to the lack of hard-

ware support for the operation in the ARM968 processor. Fortunately, it is possible to

precompute the reciprocals of the divisors in the LIF model and substitute multiplica-

tion for division, as in equations 4.1 and 4.2.

Listings 4.1 and 4.2 show the SpiNNaker implementation of the LIF neuron (edited

for clarity) upon which subsequent experiments are based. The main function of the

application conVgures the hardware and registers callbacks for each of the tasks shown

in Vgure 4.4 and a timer callback function computes the LIF equations. Omitted here

for brevity, the packet callback receives input spikes and initiates DMA transfers of

synaptic weights into local memory, and the DMA callback translates these weights

into input currents to their respective neurons.
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int main() {
// Set time period , load sim. data and configure run -time code
spin1_set_timer_tick (1000); // microseconds
load_simulation_data ();
configure_simulation_environment ();

// Register callbacks using an API function and start simulation
spin1_callback_on(PACKET_EVENT , packet_callback , PRIORITY_1);
spin1_callback_on(DMA_DONE_EVENT , dma_done_callback , PRIORITY_2);
spin1_callback_on(TIMER_EVENT , timer_callback , PRIORITY_3);
spin1_start ();

}

Listing 4.1: The main function of the SpiNNaker LIF implementation.

void timer_callback(uint ticks , uint null) {
long long psc_e , psc_i , psc , psp , dv , di;

// Iterate over each neuron in the processor
for(uint i = 0; i < num_neurons; i++) {

// Handle the spiking condition
if(neuron[i].v >= neuron[i]. v_thresh) {

uint key = spin1_get_chip_id () << 16 | spin1_get_core_id () << 11 | i;
spin1_send_mc_packet(key , NULL , NO_PAYLOAD);
neuron[i].v = neuron[i]. v_reset;
neuron[i]. refrac_clock = neuron[i]. refrac_tau;

}

// Compute the membrane potential , if not in a refractory period
if(neuron[i]. refrac_clock == 0) {

psc_e = neuron[i]. psc_e[ticks ];
psc_i = neuron[i]. psc_i[ticks ];
psp = (psc_e - psc_i) * neuron[i]. v_resistance;
psp = psp >> LOG_P;
dv = neuron[i]. v_decay * (neuron[i]. v_rest - neuron[i].v + psp);
dv = dv >> LOG_P;
neuron[i].v = (int) (neuron[i].v + dv);

}
// Else decrement the refractory clock
else {

neuron[i]. refrac_clock --;
}

// Compute synaptic -current decay (inhibitory current omitted)
di = psc_e * neuron[i]. exci_decay;
di = di >> LOG_P;
neuron[i].psc_e[ticks + 1] += (int) (psc_e - di);

}
}

Listing 4.2: The timer callback of the SpiNNaker LIF neuron implementation.
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Figure 4.6: Simulation of a single LIF neuron.

Figure 4.6 shows a trace from a single LIF neuron, as simulated on a SpiNNaker chip

and recorded in the corresponding oU-chip memory. Each presynaptic spike causes an

instantaneous rise and exponential decay in postsynaptic current (bottom) that is inte-

grated by the membrane (top) such that the fourth spike raises the membrane potential

to the threshold and elicits an output spike.
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Figure 4.7: Simulation of a single Izhikevich neuron, with varying synapse models.

The API, however, allows arbitrary neuron and synapse dynamics to be simulated.

Any model may be encoded in standard sequential C code, as in listing 4.2, and reg-

istered against the timer event. Figure 4.7 traces an Izhikevich neuron stimulated by

delta-current, exponential-current, and exponential-conductance synapse models: the

main function of this simulation registers the timer callback for the Vrst model with the



76 Chapter 4. The SpiNNaker Software Stack

ARK; after two hundred milliseconds, the Vrst callback reregisters the second by the

same spin1_callback_on function call, resulting in a change in membrane potential

dynamics; after a further two hundred milliseconds, the second callback registers the

third, causing another, slighter, variation. This is an unusual usage of the SpiNNaker

application programming interface, but it serves to demonstrate the great Wexibility of

the software, which is of paramount importance in the exploratory research of neural

simulations (Furber and Brown, 2009).

4.3 PyNN and PACMAN

SpiNNaker is designed to simulate many millions of neurons and billions of synapses.

The PyNN application programming interface (Davison et al., 2009) is used to specify

these components, and the SpiNNaker partitioning and conVguration manager (PAC-

MAN) translates such speciVcations into machine-orientated data structures. PyNN

allows researchers to build models from a library of components, currently including

the leaky integrate-and-Vre and Izhikevich neurons in the SpiNNaker implementation,

without concern for the underlying simulation technology. Consequently, models writ-

ten in PyNN are portable across simulators, which is particularly useful for verifying

the results obtained from SpiNNaker against those of established platforms.

80 excitatory cells 20 inhibitory cells

p = 0.2
w = 0.1nA

p = 0.2
w = -0.1nA

p = 0.1
w = 0.1nA

I = 0.401nA

Figure 4.8: Simple network with recurrent projections.
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Simulations are speciVed as populations of homogeneous neurons and projections

of synapses with homogeneous dynamics and variable weights. The simple network of

excitatory and inhibitory neurons in Vgure 4.8, for example, is built by the Python pro-

gram in listing 4.3: Vrstly, the simulator module is imported and initialised; secondly,

two populations are created with the parameters speciVed by the lif dictionary, and

neurons of the excitatory population are set to receive an input current; thirdly, projec-

tions are built, such that a synapse with weight w is created with probability p between

each pair of cells in the source and target populations; and Vnally, the simulation is run,

and the results are retrieved and plotted (code not shown) as in Vgure 4.9.

# Import the SpiNNaker PyNN implementation and initialise the simulator
import pyNN.spinnaker as pynn
pynn.setup()

# Declare LIF parameters , populations , and input current
lif = {"v_rest":-70.0, "v_reset":-70.0, "v_thresh":-50.0, # mV

"tau_m":40.0, "tau_syn_E":20.0, "tau_syn_I":20.0 , # ms
"cm":40.0/50.0 , "tau_refrac":1.0, "i_offset":0.0} # nF, ms, nA

exci = pynn.Population (80, pynn.IF_curr_exp , lif)
inhi = pynn.Population (20, pynn.IF_curr_exp , lif)
exci.set("i_offset", .401)

# Declare projections
e_e_conn = pynn.FixedProbabilityConnector(p=.1, w= .1)
e_i_conn = pynn.FixedProbabilityConnector(p=.2, w= .1)
i_e_conn = pynn.FixedProbabilityConnector(p=.2, w=-.1)
e_e_proj = pynn.Projection(exci , exci , e_e_conn , target="excitatory")
e_i_proj = pynn.Projection(exci , inhi , e_i_conn , target="excitatory")
i_e_proj = pynn.Projection(inhi , exci , i_e_conn , target="inhibitory")

# Enable spike recording , run the simulation and retrieve the results
exci.record ()
inhi.record ()
pynn.run (1000)
esp = exci.getSpikes ()
isp = inhi.getSpikes ()

Listing 4.3: A PyNN speciVcation of a simple network.

PACMAN implements the PyNN API in the form of the pyNN.spinnaker module,

and thereby records references to each population and projection that is instantiated

when a PyNN program is executed. On a call to pynn.run(), PACMAN maps the

simulation entities to hardware: Vrstly, populations are split into subpopulations ac-

cording to size and neuron model complexity, and the subpopulations are allocated

to processors; secondly, routes for the speciVed projections are found between the al-
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Figure 4.9: Spiking activity of the simple network in Vgure 4.8.

located processors; thirdly, data structures representing neurons, routes and synapses

are built and uploaded to the target machine; and Vnally, the simulation is triggered.

Following a simulation, recorded data may be retrieved with Population.get_v()

and Population.get_spikes(), and pynn.get_diagnostics() may be called to

retrieve the diagnostic data recorded by the API. Jin et al. (2010), Galluppi et al. (2010;

2012) and Davies et al. (2012) describe successive revisions of PACMAN, which follow

broadly the same structure, in greater detail. However, for the purposes of this thesis, a

small, custom implementation of PACMAN was written that deviates in some respects

from the cited works for the purposes of Wexibility and performance.

4.4 Testing

SpiNNaker depends upon a large software stack that spans both the host machine and

the SpiNNaker chips. To ensure consistent correctness of simulations during further

software development, a set of regression tests were developed. These tests execute

deterministic simulations of increasing complexity, compare the results against against

reference data, and report any discrepancies. Although it is impossible to declare the

absence of all bugs, a baseline level of correctness is guaranteed by running the regres-

sion tests and checking the results after each modiVcation to the software. To a limited
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extent, this ensures that interesting simulation results are not simply the artifacts of

programming errors. Figure 4.10 shows correct execution of the Vrst six regression

tests, which demonstrate from left to right and top to bottom: superimposed mem-

brane potential traces of one hundred LIF neurons on each processor of a machine,

all receiving some constant input current; postsynaptic potential traces of seventy Vve

neurons distributed across three processors, all receiving periodic input spikes from an-

other simulated neuron but with incremental synaptic weights; stacked postsynaptic

potential traces of one LIF neuron on each processor of a machine, all receiving peri-

odic input spikes from another simulated neuron; spike times of one hundred neurons

on each processor of a machine (results from only one processor shown) all receiving

some periodic input spikes from another simulated neuron; spike times of one hun-

dred neurons split across two processors, receiving input spikes from an artiVcial spike

source; and spike times of a Vogels-Abbott network benchmark speciVed by Brette et al.

(2007).

4.5 Summary

Novel, massively parallel computer architectures are typically diXcult to conVgure and

program, especially for nonexpert users. SpiNNaker is designed for computational neu-

roscientists wishing to model large, complex volumes of neural tissue, so it is excep-

tionally important that the event-driven, parallel nature of the hardware is disguised.

The presented software stack does exactly this: the event-driven programming inter-

face supports arbitrary neural dynamics written in standard sequential C code, and the

PyNN interface allows models to be speciVed in terms of neural populations and synap-

tic projections with no knowledge of the underlying hardware or software architecture

whatsoever. As such, the signiVcant power of a massively parallel SpiNNaker machine

is made available to a wide audience of researchers.
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Chapter 5

SpiNNaker Performance

SpiNNaker is expected to simulate large-scale models correctly, quickly and eXciently.

To do so, the software must accurately evaluate neurons and synapses within the real-

time constraints imposed by the hardware timer tick, and each chip must operate within

its share of the energy budget of a full-scale machine. A series of experiments were

conducted to sketch performance and power proVles of the software and hardware, and

to compare results obtained on SpiNNaker with those from reference platforms.

This chapter demonstrates that SpiNNaker satisVes the design criteria regarding

performance, power and correctness of simulation results. Section 5.1 reproduces a

small contribution to the work of Patterson, Garside, Painkras, Temple, Plana, Navari-

das, Sharp and Furber (2012) in Journal of Parallel and Distributed Computing, which

shows that the low-level boot and conVguration software is suitable for managing a

full-scale, million-processor machine. Section 5.2 presents simulations of increasing

complexity and shows for each that SpiNNaker accurately reproduces the output of ref-

erence simulators, while section 5.3 shows that SpiNNaker outperforms the reference

platforms and presents a detailed execution proVle; these data comprise an accepted

submission by Sharp and Furber to the 2013 International Joint Conference on Neural

Networks. Section 5.4 demonstrates the superlative power eXciency of SpiNNaker us-

ing detailed simulations of the cat visual cortex, which have been previously published

by Sharp, Galluppi, Rast and Furber (2012) in Journal of Neuroscience Methods.

5.1 Low-level software behaviour

A series of experiments were conducted on SpiNNaker test chips, containing just two

processors, to verify the correctness and performance of the boot ROM and operat-

81
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Figure 5.1: Flood-Vll times along a chain of chips.

ing system protocols. The experiments aimed to determine that a large-scale SpiN-

Naker machine could be booted by Wood-Vll in tractable time, and that data could be

transferred to and from a running machine likewise. These properties of the low-level

software are important if the high performance of SpiNNaker is to be exploited: the

advantage of a real-time simulator is negated if the conVguration time outweighs that

of computation. In these simulations, the processors were run at 150 megahertz and the

the router, system bus and oU-chip memory were run at 100 megahertz.

5.1.1 Flood-Vll time

A number of four-chip test boards were arranged to create a chain of interchip links

spanning seven chips, and an Ethernet connection was made between the proximal

chip and the host. An oscilloscope probe was placed on one general-purpose input-

output pin of each chip. A minimal version of the operating system was compiled that

contained routines to switch the GPIO pin on start-up, functions for self propagation

according to the protocol described in section 4.1.2, and varying amounts of padding.

The host machine seeded this version of the operating system into the proximal chip,

and the program then self propagated, link-by-link, to the distal chips. The time taken

for propagation across each link was recorded.

Figure 5.1 shows propagation time for varying program sizes over varying numbers

of links from the proximal chip. A 32 kilobyte program, the largest that can be accom-
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Figure 5.2: Transmission rate of SpiNNaker datagrams.

modated in instruction memory, takes approximately thirty milliseconds to cross each

link and smaller programs take a linear proportion of this time. Repeated trials saw no

deviation in transmission times, hence the omission of error bars. The results support

the assumption, made in the previous chapter, that propagation time is invariant in

the number of hops from the proximal chip, so the time required to Wood-Vll an entire

machine may be estimated:

Navaridas et al. (2009) give the longest direct path between any two chips in an

n-by-n triangular mesh as b2n
3
c. A full-scale SpiNNaker machine, n = 256, should

therefore boot from a single Ethernet connection in around Vve seconds. This Vgure is

reduced to 150 milliseconds in the presence of an Ethernet port on each 48-chip board,

which may be driven in parallel by broadcast Ethernet frames from the host.

5.1.2 Data transfer rate

The test boards were then rearranged to form the conventional triangular mesh of links

between chips, in order to proVle the SpiNNaker datagram protocol described in section

4.1.2. This arrangement limited the maximum distance between chips to three hops. In

successive trials, arbitrary binary Vles of sixteen megabytes in size were transmitted by

the host to chips at incremental distances from the Ethernet link as a series of 214 load

memory datagrams. The time between transmission and receipt of an acknowledge-

ment was recorded. Figure 5.2 shows an average data rate of 0.9 megabytes per second
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Figure 5.3: Transmission rate of SpiNNaker datagrams, with background traXc.

to the proximal chip and 0.63 megabytes per second to distal chips, largely invariant of

the distance from the Ethernet connection. Again, repeated trials saw no variance.

The same arrangement of test boards was used to investigate the data rate that

might be achieved during simulation. One-kilobyte datagrams were transmitted one

thousand times over three interchip links, and unused processors were used to generate

background traXc of up to 222 packets per second in order to approximate seventeen

thousand neurons per chip Vring at 10Hz, as expected by Jin et al. (2008). The time

taken to transmit and acknowledge each datagram was recorded. Figure 5.3 shows the

achieved rates: the control, in which background traXc was silenced, shows a slightly

reduced data rate over the previous experiment due to the proportionally increased

overhead of smaller payload sizes; the tests, in which background traXc was set to be-

tween 211 and 222 background packets per second, show no strong correlation between

data rate and router load. This suggests that an ongoing simulation with a high rate of

router traXc should not adversely aUect the online retrieval of intermediate results.

5.1.3 Discussion

These experiments conVrm that Wood-Vll is fast enough to distribute homogeneous code

and data to a large SpiNNaker machine. A single Ethernet port is suXcient to boot 216

chips in Vve seconds, or a 48-chip board in 150 milliseconds.
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Parameter Unit Value

EL mV -70

Vreset mV -70

VΘ mV -50

τm ms 40

Rm MΩ 50

Refrac. period ms 1

τse ms 20

τsi ms 5

Table 5.1: LIF model parameters for the experiments in section 5.2.

The distribution of heterogeneous data presents a greater problem. Although SDP

is appropriate for transmitting small quantities, it is clearly unsuited to uploading giga-

bytes of synapse structures or downloading similar amounts of simulation traces. This

problem is inherent in the use of massively parallel computers for simulation of neu-

ral tissue and is not unique to SpiNNaker: the volumes of data created and consumed

present signiVcant challenges to their transmission, genesis and analysis, regardless

of architecture. Indeed, increasing communication bandwidth to, for example, enable

speedy transfer of simulation traces from the simulator to the host only moves the prob-

lem of data analysis to a less capable computer. The solution is for the host computer to

only deal in high-level representations of simulations: models to be simulated would be

speciVed in a language such as PyNN, and this speciVcation would be loaded onto the

machine and exploded into the full neuron and synapse data structures online; analysis

of simulation activity would likewise be computed online, and only statistics such as

Vring frequency or membrane potential correlations would be returned to the host.

5.2 Simulation accuracy

A series of experiments were performed on SpiNNaker production chips to test the

function of the API and to verify the accuracy of the leaky integrate-and-Vre model

implementation. Experiments of increasing complexity were designed in PyNN (v0.7)

and repeated on the SpiNNaker, Brian (v1.3.1) and NEST (v2.1) simulators for compari-

son. The LIF model was consistently instantiated with the parameters in table 5.1.
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Figure 5.4: Response of an LIF neuron to rheobase current.

5.2.1 Response to rheobase current

Rheobase current is deVned as the minimum constant input required to elicit a spike in a

neuron. The rheobase of a biological neuron is found with a sharp electrode by applying

some current for a few hundred milliseconds, checking for a spike, and repeating as

necessary. The abstract nature of the LIF neuron allows for a more rigorous deVnition,

by evaluating the analytical form as t tends to inVnity

lim
t→∞

V (t) = EL +RmI −RmIe
−t/τm

= EL +RmI

and simply setting V (t) = VΘ and solving for I

I =
VΘ − EL
Rm

.

To elicit a spike in Vnite time, I was incremented by one picoamp.

A single neuron was simulated for ten seconds under rheobase current to compare

error in membrane potential computations, in terms of spike times, between the three

simulators and an analytical solution described by Dayan and Abbott (2001). Figure 5.4

shows the membrane potential traces from each simulator around the Vrst spike and
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Figure 5.5: Response of an LIF neuron to regular spikes.

the cumulative error in spike times with respect to the analytical solution. It is appar-

ent that NEST adheres to the analytically derived spike times, while a small drift in the

computations performed by SpiNNaker and Brian cause Vring two and three millisec-

onds early respectively. This drift is curtailed by the occurrence of spike, which resets

the membrane potential to the common value of Vreset, so the timing error is discretised

and successive spike times diverge linearly. In the absence of such spikes, membrane

potential computations may drift more signiVcantly; the subsequent experiment sought

to test this hypothesis.

5.2.2 Response to postsynaptic currents

To evaluate computation drift over longer intervals, and to test the computation of post-

synaptic currents, a single neuron was simulated under input spikes from one excitatory

and one inhibitory presynaptic neuron. The interspike intervals and synaptic weights

of the presynaptic neurons were tuned to ensure that postsynaptic membrane potential

remained subthreshold throughout the simulation. The output of the three simulators

was compared to an analytical solution presented by Brette et al. (2007) that, unlike the

solution given by Dayan and Abbott, accounts for time-varying postsynaptic currents.

The absence of output spike times for comparison required that membrane potentials

were compared directly using the Pearson correlation coeXcient over a sliding window
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Figure 5.6: Response of an LIF neuron to random spikes.

of width equal to quarter of the input interspike interval.

Figure 5.5 shows that the membrane potential traces from all three simulators closely

match the analytical solution even after ten seconds of simulation. Contrary to the

hypothesis, the correlation between computed membrane potentials is strong and peri-

odic, with a frequency equal to that of the combined input spike trains. Furthermore,

the computations are robust to perturbation: Vgure 5.6 shows that particular patterns

of input spikes may be used to elicit an erroneous output spike on certain simulators,

but membrane potential traces quickly reconverge regardless.

Results from diUerent simulators converge in this experiment because the state vari-

ables are exponentially stable and output spikes do not aUect the timing of subsequent

input spikes. However, in networks with recurrent projections, output spikes do con-

tribute to subsequent inputs, which suggests that simulations of such networks on dif-

ferent platforms may produce greatly diUering results.

5.2.3 Response to recurrent projections

To examine the eUect of recurrent projections on spike times, the simple network of

excitatory and inhibitory neurons shown in Vgure 4.8 was simulated. Excitatory neu-

rons received rheobase current input, and projection probabilities and synaptic weights

were chosen solely to cause simple oscillatory activity in the network. Although the
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projections were speciVed probabilistically, the synapses of each projection were chosen

deterministically to ensure that identical networks were deployed across all simulators.

Figure 5.7 shows the spike times and Vring rates obtained from simulation on each

platform. Excitatory activity is represented in blue, inhibitory activity in red, and dif-

ferent simulators are represented on separate axes. As expected, the results produced

by each simulator diUer; spikes may be easily identiVed that occur in one simulator and

not in either of the others. Indeed, after the Vrst Vve hundred milliseconds it is prac-

tically impossible to identify any spike that is common to all three simulators because

the dynamics of recurrently connected networks are chaotic and, consequently, a quan-

titative comparison of spike times from diUerent simulators is futile (Hanuschkin et al.,

2010). Qualitatively, some correlation can be observed in the Vring rates of the three

simulators in the Vrst 150 milliseconds of activity, although SpiNNaker then deviates

from the other two.

Networks are rarely simulated under such unstructured input. To examine Vring

rate correlations under more more likely input, structured stimulation was delivered to

the network by an artiVcial spike source. A set of eighty spike trains was targeted upon

the excitatory population, with a projection probability of 0.1 and synaptic weights

of 0.1 nanoamps. The Vring times of the spike trains was determined by a Poisson

process, in which Vring rate varied sinusoidally with a period of 200 milliseconds and

an amplitude of 20 hertz. The PyNN interfaces to both Brian and NEST contained

bugs that made such simulations impossible; for the purposes of this experiment, the

PyNN-NEST interface was Vxed and Brian was disregarded.

Figures 5.8 and 5.9 show key comparisons (Brette et al., 2007) of the simulation

results obtained from SpiNNaker and NEST. The former shows the Pearson’s correlation

coeXcient for both the excitatory and inhibitory Vring rates, calculated with a sliding

window of 25 milliseconds. The latter shows the histogram of excitatory interspike

intervals, taken with bin sizes of approximately Vve milliseconds. Both metrics show

strong similarities in the outputs of the two simulators: Vring rates remain strongly

correlated, with only periodic divergences, after Vve full seconds of simulation; the

interspike intervals clearly follow a similar bimodal distribution.

Brunel (2000) simulates a recurrently connected, externally driven network of leaky

integrate-and-Vre neurons with delta-current synapses in order to understand the fun-

damental properties of such models. He Vnds that the Vring rate depends primarily on

the ratio of excitatory to inhibitory synaptic currents in the network, which is a func-

tion of the number of synapses of each type and their weight. In the network discussed,
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Figure 5.8: Firing-rate correlations in a simple recurrent network.

0 20 40 60 80 100 120 140 160
Interspike interval (ms)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

C
ou

nt
s 

(n
or

m
al

is
ed

)

NEST
SpiNNaker

Figure 5.9: Interspike intervals in a simple recurrent network.



92 Chapter 5. SpiNNaker Performance

0.00 0.77 1.55 2.32 3.10 3.87 4.65 5.42 6.19 6.97 7.74
g

0

10

20

30

40

50

60

70

80

90

E
xc

ita
to

ry
 fi

rin
g 

ra
te

(s
pi

ke
s/

se
co

nd
/n

eu
ro

n)
SpiNNaker
NEST

Figure 5.10: Firing rate as a function of inhibitory-to-excitatory weight ratio.

excitatory synapses outnumber inhibitory synapses four to one, so synaptic currents

balance when the inhibitory-to-excitatory weight ratio g is four. When g is less than

four, the network is hyperactive; when g is greater than four, the network is hypoactive.

Simulations were conducted to reproduce the Vndings of Brunel on NEST and SpiN-

Naker, using leaky integrate-and-Vre neurons with exponential-current synapses. A

model was constructed of eight hundred excitatory and two hundred inhibitory cells,

in which every cell received a synapse from every other with a probability of 0.1 in

addition to synapses from one hundred external drivers spiking at 25 hertz. Refractory

periods were set to ten milliseconds to limit maximum spiking frequency. Excitatory

weights were Vxed at 0.1 nanoamps and inhibitory weights were varied with a value

of g ranging from zero to eight in successive trials. The average Vring rate across all

excitatory cells was recorded.

Figure 5.10 shows the Vring rates achieved by SpiNNaker and NEST, in their usual

colours, as a function of the weight-ratio coeXcient g. The simulators produce results

in agreement with both Brunel and one another, in that Vring rate varies sigmoidally

as a function of g from near-maximum to near-minimum.

5.2.4 Discussion

These experiments show that SpiNNaker simulations are faithful to results obtained

from established simulators. Under constant current input current, SpiNNaker evalu-
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ates neuron equations almost as accurately as NEST and more so than Brian. The same

may be said for periodic exponential synaptic currents, where there is is no long-term

divergence in results from each simulator. Under asynchronous nonrecurrent synap-

tic inputs, SpiNNaker may emit a spike and reset membrane potential where NEST

does not, but the exponentially stable neuron equations soon reconverge. Recurrent

synaptic connections, however, amplify any diUerences in membrane potential eval-

uation, so spike-by-spike comparison of results across simulators becomes impossible

(Hanuschkin et al., 2010). This also manifests in higher-order observations of activity,

in that there is little correlation between the Vring rates of recurrently connected net-

works under unstructured input simulated on SpiNNaker, NEST and Brian. However,

under structured input, networks simulated on SpiNNaker and NEST show strongly

correlated Vring rates and qualitatively similar distributions of interspike intervals. In

parameter-sweeping experiments, these simulators agree with both one another and the

literature that network Vring rate is a function of the ratio between inhibitory and ex-

citatory synaptic-current amplitudes. So, taking NEST as a reference point, SpiNNaker

appears to be a reliable and correct simulator of recurrently connected networks.

5.3 Performance proVle

A series of experiments were conducted to sketch a performance proVle of SpiNNaker

hardware and software (Sharp and Furber, 2013). Each SpiNNaker processor has a

core thread for executing software and a DMA thread for transferring data between

memories. Simulations of neural tissue comprise neuron state computations that are

performed exclusively by the core thread and synapse state computations that are per-

formed by a pipeline through the core and DMA threads. As shown in Vgure 4.4 the

three-stage packet-processing pipeline begins with receipt by the core of a spike packet

from the router, proceeds with a DMA transfer of corresponding synaptic weights to

processor-local data memory, and concludes with translation by the core of synaptic

weights into input currents to neurons. It is apparent a priori that this pipeline dom-

inates core time: computing each neuron state costs approximately 27 instructions,

responding to each synaptic event, deVned as one spike innervating one synapse, re-

quires 25 instructions; each processor must handle 27 neuron state computations and

213 synaptic events per millisecond, so the latter clearly dominate. The most important

performance proVle for SpiNNaker, therefore, is that of the packet-processing pipeline.

A simple PyNN network was constructed in which a source population on one
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processor projected to target populations on one or more processors of the same chip.

In each trial, the source population was conVgured to emit some number of spikes

in every millisecond, which innervated some number of synapses on each of the target

populations. At the start of each millisecond, each target processor counted and Wushed

the excess packets that were left unprocessed from the previous millisecond; these data

were reported to the host at the end of the simulation. From the parameters and excess

counts of each trial, it was possible to infer the pipeline throughput.

Jin et al. (2008) set a per-processor performance target of 1,024 optimised Izhikevich

neurons with delta-current synapses and ten thousand synaptic events per millisec-

ond. The leaky integrate-and-Vre neurons with exponential-current synapses used here

are fourfold as costly, so only 256 cells are simulated per processor. Successive trials

explored a parameter range of 0 to 128 presynaptic spikes and 0 to 512 postsynaptic

synapses, in steps of 16 and 32 respectively. The former parameter controlled the num-

ber of DMA transfers to be made and processed, and the latter controlled the size of

each transfer and the consequent cost of processing. In order to examine each stage of

the pipeline, the simulated network was contrived to oUer three modes of processing

each spike: immediately discarding the spike; performing a DMA transfer of synaptic

weights to data memory then discarding the transfer results; and performing a DMA

transfer of synaptic weights to data memory then processing the transfer results into

postsynaptic currents, as in a conventional simulation. Checks were performed to en-

sure that no packets were lost in transit between processors and that callback queues

did not overWow. Callback priorities were chosen as simply as possible, such that the

packet callback was priority minus one (preemptive) and all others were priority one

(queueable); this ensured that packets were cleared from the communications controller

immediately upon receipt and other callbacks were executed in the order in which their

causative events occurred. The DMA callback was set to process the weights of the

causative DMA transfer before setting up the next transfer; the term pipeline should

not be interpreted, as in the Veld of computer processor design, to mean that each

stage was utilised in parallel. The processors were run at 200 megahertz and the router,

system bus and oU-chip memory were run at 133 megahertz.

5.3.1 Packet processing cost

The Vrst stage of the packet-processing pipeline accepts a spike packet from the com-

munications controller and looks up the address of the corresponding synaptic weights

in oU-chip memory; if none are found, the packet is simply discarded.
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A projection was contrived between the source and target populations in which all

synapse lookups failed immediately, thereby testing the Vrst stage of the processing

pipeline alone. Under these conditions, no excess packets were observed in any trial.

5.3.2 Direct memory access cost

In the second stage of the packet-processing pipeline, a DMA transfer is committed on

the basis of the lookup results and the DMA engine copies weights while the processor

is free to perform other computations.

A projection was created in order to commit a DMA transfer on receipt of a spike

then dispose of the copy results on completion, thereby testing the Vrst two stages of

the processing pipeline in isolation. Figure 5.11 shows the worst observed excesses

from all processors in each trial, superimposed with the constant product xy = 104

that represents the architectural target of ten thousand synaptic events per millisecond.

DMA bandwidth is clearly suXcient for a single processor to work far in excess of the

architectural target, and is almost suXcient to service Vfteen processors in parallel.

Considering the latter case and the data point of twenty spikes innervating Vve hun-

dred synapses, each of the Vfteen processors retrieves ten thousand four-byte synapses

per millisecond, which makes for a total throughput of six hundred megabytes per

second. This observation of maximum DMA throughput is in direct agreement with

results obtained by Painkras et al. (2012). Note that excesses are considerably greater at

the other end of the target curve: although the number of synaptic events under con-

sideration is the same, the greater number of input spikes and DMA transfers makes for

a signiVcant increase in overhead.

Ultimately, it is clear that DMA bandwidth is a signiVcant determinant of pipeline

throughput. According to Painkras et al. each processor may retrieve around two hun-

dred megabytes per second via DMA, so three processors operating at their maximum

transfer rates will saturate the data bus. If four or more processors access the bus con-

currently, they must share the available bandwidth and will therefore see a diminished

throughput. Thus, the throughput observed in the right panel of Vgure 5.11 is the max-

imum achievable by the packet-processing pipeline.

5.3.3 Postsynaptic computation cost

In the Vnal stage of the packet-processing pipeline, the copied weights are read itera-

tively and processed into postsynaptic currents for their target neurons.
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Figure 5.11: Packet excesses without postsynaptic currents.

A projection was created in order to commit a DMA transfer on receipt of a spike

and then process the copied synaptic weights as normal, thereby testing the entire

pipeline. Figure 5.12 again shows the worst packet excesses in comparison to the ar-

chitectural target. Performance in both the single- and Vfteen-processor cases drops

to well below the curve, to almost exactly the same value. This suggests that postsy-

naptic computation so dominates the packet-processing pipeline that the cost of DMA

transfers is negated.

A coarse estimate of processor utilisation during the millisecond simulation cycle is

telling of the results obtained here. A processor running at 200 megahertz may execute

200,000 single-cycle instructions in a millisecond. According to the disassembled sim-

ulation code, each leaky integrate-and-Vre neuron requires approximately 128 of these

processor cycles and each synaptic event needs around 32. Simulation of 256 neurons

consumes 30,000 cycles, which leaves approximately 170,000 cycles for handling synap-

tic events. As such, it should be possible to process around 5,000 synaptic events per

millisecond; this curve is plotted in green on Vgure 5.12 and agrees with the observed

excesses remarkably well, barring the overhead-asymmetry discussed previously.

The packet-processing pipeline throughput appears therefore to be deVned entirely

in terms of core-thread performance. This explains why performance does not diUer

between the single- and Vfteen-processor cases, but it raises the question as to why
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Figure 5.12: Packet excesses with postsynaptic currents.

DMA-transfer time does not factor in the results. The DMA-transfer and postsynaptic-

processing stages occur consecutively in the packet-processing pipeline, so the time

to complete the former step must be vanishingly small if it is not to manifest in the

performance data. Indeed, a transfer of n four-byte synapses at two hundred megabytes

per second will take
4nB

2 · 108B/s
= 2n · 10−8s

while processing the same quantity will take

32nC
2 · 108C/s

= 16n · 10−8s

where C denotes processor cycles. As such, the DMA stage of the packet-processing

pipeline takes only around a tenth of the total time, which is well within the error

margins of the coarse utilisation estimates above. This explains why the performance

of one processor, achieving the maximum DMA throughput, may be deVned almost

entirely in terms of processor utilisation. To explain the similar performance of the

Vfteen-processor case, it must be considered that only one tenth of each processor’s

time is spent making DMA transfers; on average only two of the eighteen processors

are making transfers at any time, so both see their full two-hundred-megabytes-per-

second throughput without saturating the data bus. This argument boldly assumes that
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Figure 5.13: Actual and expected excesses in a controlled network simulation.

DMA transfers are uniformly distributed throughout the millisecond; this cannot be

proven from the data but it is a likely interpretation of the results.

5.3.4 Validation

A Vnal experiment was conducted to validate the results above. A single population of

trial-varying size was conVgured such that each neuron Vred at ten hertz, and initial

membrane potentials were distributed so that Vring was uniformly spread through time.

The N neurons in each trial were split across d N
256
e processors. A recurrent projection

was made from the population onto itself with probability p = 0.1 and synaptic weight

0, in order that received spikes would induce postsynaptic-current computations but

have no aUect on the established regular spiking. Each processor therefore computed

256pN ·10−3 synaptic events per millisecond.

Figure 5.13 shows the mean and variance in excesses across all processors as a func-

tion of population size N . The blue line shows the expected number of packet excesses

according to the results in Vgure 5.12. Although the standard deviations are large, the

means of the observed results are in agreement with those expected, which suggests

that the earlier experiments accurately model the packet-processing pipeline in simula-

tions of recurrent networks.
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5.3.5 Execution time

A complete SpiNNaker system consists of the core and DMA threads of each proces-

sor, which have been proVled above, and a host thread that constructs and controls

simulations. As such, the total execution time of a simulation is a function of both

host and chip performance. SpiNNaker simulations typically run in real-time, but the

host machine may spend additional time generating and uploading data structures and

downloading and processing results. The performance proVle of the system as a whole,

and its relation to comparable simulators, is therefore of signiVcant interest.

The Vogels-Abbott benchmark is a network of excitatory and inhibitory neurons,

much like that simulated in section 5.2, that is conveniently encoded in a PyNN script

by Brette et al. (2007). The benchmark was run on SpiNNaker and NEST (v2.1) with

parameters ranging from 29 to 213 neurons and 22 to 26 simulated seconds. The SpiN-

Naker benchmarks used one host processor to control simulations and d N
256
e SpiNNaker

processors to execute them; the NEST benchmarks were run Vrstly on one core of the

host machine, and then repeated on a high-performance multicore machine. The host

machine was based upon a triple-core AMDAthlon-II X3-445 processor clocked at three

gigahertz served by four gigabytes of memory; the multicore machine was based upon

a machine with 130 gigabytes of memory and 4 12-core AMD Opteron 6174 processors

clocked at 2.2 gigahertz; the SpiNNaker board contained four chips, totalling 72 pro-

cessors, with processor clocks set to 200 megahertz and router, system bus and oU-chip

memory clocks set to 133 megahertz. The Python cProfilemodule was used to record

the execution proVle of each simulation. The underlying simulation engine of NEST is

written in C++ and is signiVcantly faster than the Python-based Brian simulator; as

such, Brian was not included in the performance comparisons.

Figure 5.14 shows execution time of a 32-second simulation on NEST using the host

machine and on SpiNNaker, as a function of neuron count. SpiNNaker beats NEST in

all cases beyond 1,024 neurons. Run time on SpiNNaker remains a constant 32 seconds,

and time to prepare data structures, load them and dump simulation results grows with

model size. Figure 5.15 shows execution time of a 4,096-neuron model as a function

of simulation time. Here, SpiNNaker beats NEST in all cases. Run time on SpiNNaker

grows as the identity of simulation time, preparation and loading time remains con-

stant, and dump time grows with simulation time.

The performance proVle of SpiNNaker is easily explained. Simulations execute in

real-time, so run time is consistently equal to the simulation period. Preparation and

load times are a quadratic function of model size: synapse structures comprise the ma-
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Figure 5.14: Execution time of the 32-second Vogels-Abbott benchmark.

jority of data to be generated and sent to the machine, and a recurrently connected

network of size N with projection probability p forms pN2 synapses. Dump time com-

prises the cost of retrieving and sorting spikes from the simulation, and is some function

of model size, Vring rate and run time. However, both the bandwidth and software exist

for spikes to be dumped via Ethernet in parallel with the simulation, as shown in the

prior and subsequent experiments respectively, so this cost may be entirely disregarded.

Performance comparisons between simulators are often complicated by vast diUer-

ences in peak hardware throughput; as argued in section 3.2.4 achieving 2.5× speedup

from an architecture that is 3× more powerful than its counterpart is rather unremark-

able. The sixteen application processors of a SpiNNaker chip have a combined total

throughput of 3.2·109 operations per second, which is similar to the 3·109 operations

per second available to one core of the host processor. Naturally, there are innumer-

able diUerences in the hardware and software architectures of the two platforms, some

favourable to one and some to the other, but neither excels purely in terms of arithmetic

throughput. The 4,096-neuron simulations presented in Vgure 5.15, which use sixteen

processors, are therefore a reasonably fair comparison of SpiNNaker and NEST. Disre-

garding dump time, as justiVed above, the former achieves a sixfold speedup over the

latter at all points beyond 4-second simulations.

Figure 5.16 reports the run time of NEST for 32-second, 8,192-neuron simulation
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Figure 5.15: Execution time of the 4,096-neuron Vogels-Abbott benchmark.

as a function of the number of threads used on the high-performance machine, along-

side the execution proVle of the same simulation on two SpiNNaker chips. On a single

thread, NEST is Vve times slower than SpiNNaker, disregarding dump time. The appli-

cation of two threads to NEST simulation provides an almost 2× speedup but further

speedup is sublinear in terms of the number of threads, such that NEST is incapable of

bettering SpiNNaker with any number of processors. Furthermore, NEST draws upon

approximately three times the computational resources and Vfty times the power of

SpiNNaker: two SpiNNaker chips draw two watts to provide six gigaops per second,

whereas the 12 processors of an Opteron chip draw 115 watts to provide approximately

20 gigaops per second (AMD, 2013).

5.3.6 Discussion

These experiments build a detailed performance proVle of SpiNNaker simulations at

both the processor and system levels. Results show that each processor may simu-

late 256 neurons with complex synaptic currents in real-time while processing 5,000

synaptic events per millisecond. A 32-second simulation of an 8,192-neuron network

may be completed in less than 100 seconds, six times faster than NEST running on a

single processor. A 64-second simulation of 4,096 neurons completes in a similar time

with a similar speedup. The performance of NEST improves with additional threads
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Figure 5.16: Execution time of the 32-second Vogels-Abbott benchmark.

but suUers sublinear scaling, such that it is unable to better SpiNNaker even with the

application of Vve times the computational resources and Vfty times the power.

Examination of the packet-processing pipeline shows that a processor can handle

5,000 synaptic events per millisecond. Stromatias et al. (2013) somewhat support these

results with network simulations, not tuned for peak throughput, that span a full board

of 768 processors to generate at least 1.5 gigaevents per second, thereby averaging two

megaevents per second per processor. The results are also comparable to those of Fidje-

land and Shanahan (2010) who simulate networks of increasing size in order to under-

stand the achievable synaptic-event throughput of the NeMo simulator on an Nvidia

Tesla C1060 graphics processing unit (GPU). Figure 5.17 reproduces the best results in

Vgure 3 of the referred work and plots SpiNNaker performance for comparison accord-

ing to the equation

y = 5 · 106 · x

256

where the fraction is the number of processors used to simulate x neurons, assum-

ing 256 neurons per processor, and the coeXcient is the synaptic-event throughput

per second per processor; the equation assumes linear throughput scaling with pro-

cessor count, since the experiments above show that processors enjoy contentionless

access to memory and because interprocessor communication bandwidth is eUectively

inexhaustible (Navaridas et al., 2009). NeMo simulates small networks faster than real-
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Figure 5.17: SpiNNaker performance versus GPU (Fidjeland and Shanahan, 2010).

time (see reference for simulation methodology) and thereby outperforms SpiNNaker

on these scales, but the platform suUers sublinear throughput scaling with increasing

network size and, regardless, is limited to thirty thousand neurons on one GPU. SpiN-

Naker overtakes the GPU-based simulator at around 24k neurons, which is equivalent

to around one hundred SpiNNaker processors. However, one hundred SpiNNaker pro-

cessors clocked at two hundred megahertz oUer twenty gigaops per second of compu-

tational throughput on a budget of less than ten watts, and are therefore signiVcantly

more eXcient than the C1060 GPU that provides approximately one teraWop per second

at the expense of almost two hundred watts (Nvidia, 2013).

The performance data in Vgures 5.11, 5.12 and 5.13 accurately describe the maxi-

mum processor throughput and clearly identify the pipeline bottleneck to be optimised.

Unfortunately, the loop that dominates processor time is only 32 instructions long, so

there is little room for improvement; careful programming may save three or four in-

structions and improve performance by one tenth to one eighth. The ARK may be op-

timised to reduce overhead in the many-spikes-few-synapses domain, but this involves

diXcult programming and further proVling; eUort would be better spent on exploiting

the abundant parallelism of the production SpiNNaker boards, and minute optimisa-

tions should not be considered until every available processor is fully utilised.

The API allows callbacks to be registered against the ARK with arbitrary priorities.
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Tangential experiments to those reported upon here show that the priorities used in

the performance proVles are in-fact necessary for correct simulation of neural tissue.

The packet-received callback must be preemptive to ensure that processors immedi-

ately clear packets from the communications controller, which will otherwise clog the

routers. The DMA callback must not be set to greater priority than the timer call-

back, lest a regular excess of packets cause the former to dominate processor time and

indeVnitely postpone the latter; both should be set to equal, queueable priority.

The execution proVle of the Vogels-Abbott benchmark shows that SpiNNaker out-

performs NEST in all nontrivial simulations. Simulation of 4,096 neurons on SpiNNaker

draws upon similar computational resources as the same simulation on NEST using one

host processor, yet the former shows a sixfold speedup over the latter. NEST perfor-

mance improves with additional threads, but suUers sublinear scaling such that it is

unable to better SpiNNaker even with overwhelming computational resources. The

SpiNNaker results demonstrate that load time becomes signiVcant as models scale up,

as predicted by earlier experiments, so high-bandwidth channels and data compression

will be required to fuel larger simulations. Dump time increases likewise, but subse-

quent simulations show that results may be extracted from the machine in real-time,

which comprehensively solves the problem. The NEST simulation kernel is written

in C++, which the cProfile is unable to report upon in detail, so further analysis of

performance is not possible. However, the data is suXcient to show that SpiNNaker

signiVcantly accelerates simulation of models on the order of thousands of neurons.

Furthermore, the data suggest that the performance gap between the two simulators

will continue to grow linearly as models scale into tens of thousands of neurons.

5.4 Power proVle

A series of experiments were performed to draw a power proVle of simulations on SpiN-

Naker (Sharp et al., 2012). The availability and cost of electrical power is a signiVcant

constraint on the volume of neural tissue that may be modelled, so it is important to

understand the power requirements of any large-scale simulation platform. Each SpiN-

Naker chip should consume around one watt (Furber and Brown, 2009) so a full scale

machine should consume less than 105 watts. To investigate this prediction, a common

model of the cortex was simulated across four SpiNNaker chips and detailed observa-

tions of power consumption were made. The processors were run at 150 megahertz and

the the router, system bus and oU-chip memory were run at 100 megahertz.
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Population Neurons Synapses

nb1 150 24,150

p2/3 2,600 1,666,599

b2/3 310 103,850

nb2/3 420 116,760

ss4(L4) 920 401,120

ss4(L2/3) 920 331,200

p4 920 430,560

b4 540 114,479

nb4 150 37,500

p5(L2/3) 480 221,760

p5(L5/6) 130 98,540

b5 60 15,780

nb5 80 21,040

p6(L4) 1,360 522,240

p6(L5/6) 450 125,100

b6 200 22,000

nb6 200 22,000

Total 9,890 4,284,568

Table 5.2: Neurons and synapse counts in visual-cortex model populations.

5.4.1 Model of the visual cortex

Amodel of the cat visual cortex was constructed according to composition and connec-

tivity data by Binzegger et al. (2004), as reproduced by Izhikevich and Edelman (2008,

supporting material). These data were chosen for their complexity and prevalence in

the simulation literature, as discussed in chapter 3, such that the model should be com-

parable to existing studies and suXciently intricate to stress SpiNNaker.

The model was constructed of ten thousand neurons and four million synapses, dis-

tributed across seventeen populations. The proportional sizes of the populations were

governed by the data, as were the proportions of synapses received by each population

from each population. The absolute numbers of synapses on each neuron were not pre-

served as they would form absurdly dense connectivity in a circuit of just ten thousand

neurons. Consequently, the synapses counts listed by Izhikevich and Edelman were

translated into projection probabilities pij from population j to population i for use in
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PyNN according to

pij = c · Sisij
Nj

where Nj is the number of neurons in the jth population, Si is the total number of

synapses received by a neuron in the ith population, sij is the proportion of those

synapses received from neurons in the jth population, and c = 0.1 is an arbitrary sparsi-

Vcation coeXcient. Where data were listed for multiple dendritic compartments of the

same cell, the values were summed to represent a single compartment. Projections with

a probability of less than 0.01 were pruned. Table 5.2 lists the total numbers of neurons

and synapses in the model and table 5.3 contains the matrix of projection probabilities

between populations. Layer identiVers in brackets indicate the primary target of inner-

vation for that population thereby distinguishing, for example, layer 5 pyramids that

project into layers 2 and 3 from those that project into layers 5 and 6.

Neurons were simulated using the Izhikevich (2003) model

dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u)

if v ≥ 30mV: v ← c, u← u+ d

where a, b, c and d were chosen to determine appropriate spiking dynamics for the

neuron types in each population: excitatory pyramidal cells (denoted pl for pyramids in

layer l) and stellate cells (ssl) were simulated as regular spiking neurons, and inhibitory

basket cells (bl) and nonbasket (nbl) cells were simulated as fast spiking neurons.

The postsynaptic spike-response was simulated as an exponential current, with am-

plitude w and time constant τ for each type of synapse. Synapse parameters are listed

in table 5.4. As with synaptic sparseness, synaptic weights were chosen ad hoc to en-

sure stable network activity; time constants, however, were in accordance with those

suggested by Thomson et al. (2002).

To induce spiking activity in the network, background synaptic currents were sim-

ulated using a gross approximation of an Ornstein-Ohlenbeck process inspired by Des-

texhe et al. (2001). Each neuron received a time-varying background current Ib(t)

which was computed as

Ib
(
t+ 1

)
= ĪCb + τ

(
Ib(t)− ĪCb

)
+ A · U

(
− 0.5,+0.5

)
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Pre

Exci. Inhi.

Post
Exci. w = 0.05, τ = 30 w = 0.05, τ = 30

Inhi. w = 0.20, τ = 15 w = 0.10, τ = 15

Table 5.4: Synapse parameters of the visual cortex model.

where ĪCb is the mean background current for cell class C, τ is proportional to the pro-

cess time constant, and A is the amplitude of the Wuctuations drawn from the uniform

random distribution U . Mean background currents were set to Īpb = 2.8 for pyramids,

Ībb = 2.8 for baskets, ¯Inbb = 0.5 for nonbaskets. The process time constant and am-

plitude Wuctuations were set to τ = 0.9 and A = 0.85. Pseudorandom numbers were

drawn from U using a software linear feedback shift register (ARM, 1995). Again, ĪCb
was chosen for stable network activity, not to reWect known values of biological neu-

rons. Thus, ĪCb eXciently approximates the stimulus method employed by Izhikevich

and Edelman (2008) and Phoka et al. (2012) in which network activity is induced by

random, spontaneous excitatory potentials on every synapse.

5.4.2 Experimental protocol

The cortical microcircuit was simulated on a four-chip test board. PACMAN allocated

neural populations to Vfty processors and assigned a further four, one on each chip,

to aggregate spikes from neighbouring processors and forward them via the monitor

processors to the host in real-time; the remaining application processors were left idle.

The average processor load of two hundred neurons was intentionally made light to

exploit the abundant available parallelism, rather than labouring to squeeze all possible

performance from fewer cores.

An oscilloscope was used to record the power consumed during simulation. Resis-

tors of 0.1 Ohms were placed on the 1.2 volt and 1.8 volt power rails, which supply the

SpiNNaker chips and the oU-chip memories respectively. The voltage drop across these

resistors was measured with the oscilloscope and the dynamic power consumption was

computed. The oscilloscope could only store 45,000 samples per trial, so the simulation

was observed for 45 milliseconds with a one microsecond sampling period.

A series of experiments were conducted to determine the particular power costs of

simulation in an arbitrarily chosen period from t = 5,100 milliseconds to t = 5,145 mil-

liseconds. In the Vrst experiment, the simulation was run as normal and the power
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Figure 5.18: Power traces from full and simpliVed simulations.

consumption was recorded. In the second and third experiments, respectively, the

transmission of spikes and the computation of synaptic currents was disabled; thus,

the activity in these two experiments was identical, but the former only drew power

to compute neuron states, which allowed the additional power consumed by the latter

to be attributed to synaptic activity. It was then possible to derive the key metrics of

energy per neuron per simulation tick and energy per synaptic event.

5.4.3 Power consumption

With all spikes transmitted and all synaptic currents computed, the hardware draws

an average of 1.95 watts over the observed period. The simulation draws 1.88 watts

with synaptic currents disabled, and 1.1 watts with spikes disabled. So, it is possible

to estimate the energy required by SpiNNaker to simulate one of the ten thousand

Izhikevich neurons in the model for one stimulation tick as

1.096W · 10−3s
10, 000 neurons

≈ 100nJ / neuron / tick

Of the power consumed, 1.882W − 1.096W = 0.786W can be attributed to spikes

and synaptic events, of which there are 1,954 and 816,584 respectively in the observed
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50ms

20mV

Figure 5.19: Example membrane potentials of neurons in the visual-cortex model.

period. This gives an energy per synaptic event of

0.786W · 45 · 10−3s
816, 584 s.e.

= 43nJ / s.e.

Figure 5.18 shows power consumption traces in the three experiments, smoothed

by a Vrst-order low-pass Vlter with a time constant of twenty microseconds. Processor

activity is clearly driven by the millisecond timer event that prompts neuron states to

be computed: when spikes are not transmitted (green trace) this short period of activity

is followed by a passive state in which almost one watt of power is consumed between

the four chips; in the other two experiments (without weights in red, full simulation in

blue) this period is signiVcantly longer as packet and DMA events interrupt to demand

attention from the processor, and overall power consumption is increased by ongoing

DMA transfers. Full simulation consumes more power than simulation without weights

as a result of the greater number of spikes caused by recurrent excitation. The excep-

tion is in millisecond 5,100, as a trough in full-simulation Vring rates coincides with a

random peak in Vring rates in the simulation without weights.

5.4.4 Network activity

The cortical model was simulated primarily to understand the power requirements of

biologically plausible simulations on SpiNNaker. Nevertheless, recordings of simulation

activity were made to demonstrate the model sanity and hardware capabilities. Figure
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Figure 5.20: Spiking of the visual-cortex model, stratiVed by population.
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5.19 shows one second of membrane potential traces from three spiny stellate cells

(blue) and three basket cells (red) in layer 4. Figure 5.20 displays one second of spike

recordings from all cells in the network, stratiVed by the populations listed in table

5.2; the data clearly show the increased spiking rates of inhibitory cells with respect

to excitatory cells, and the weak oscillations that arise from competing excitation and

inhibition. Trivial analysis of these data show, as in Vgure 5.21, that the global-average

Vring rate oscillates around 4Hz, but that the majority of cells Vre at the biologically

plausible frequency suggested by Neymotin et al. (2011).

5.4.5 Discussion

These experiments show that SpiNNaker is capable of simulating complex models drawn

from detailed anatomical data and demonstrate the power eXciency of the architecture.

Recordings show that four chips consume two watts to simulate, in real-time, 10,000

neurons Vring at four hertz into 4·106 synapses. These Vgures break down into key

energy metrics of 100nJ per neuron per simulation tick and 43nJ per synaptic event.

The power consumption reported here is lower than expected for the architecture.

This may be because of the low clock speeds and light processor loading used in the

experiments. Processors were run at 150 megahertz and peripherals at 100; execution

at the architectural targets of 200 and 133 megahertz would undoubtedly increase both

power consumption and performance. Increasing processor loads from 200 to 1,000 neu-

rons would also increase power consumption, although the signiVcant power overhead

of a running processor would then be shared between a greater number of neurons. It

should also be noted that power recordings were made directly from the supply rails to

the chips and memories; it is reasonable to expect an equal amount of power to be lost

in voltage regulation, cooling and other infrastructure (Hölzle and Barroso, 2009).

According to these data, a Vfty-thousand-chip, million-processor machine should

consume Vfty kilowatts to simulate 108 neurons. This is Vve times short of the architec-

tural goal of simulating 109 neurons using one hundred kilowatts. Increasing the pro-

cessor load Vvefold would certainly close this gap signiVcantly, as the increased power

requirements per processor would be oUset by the diminished power overhead per neu-

ron. So, although these data only allow a coarse estimate, it would appear that the

power consumption of fabricated SpiNNaker hardware is close to the architectural tar-

gets. This implies that real-time simulation of billion-neuron, trillion-synapse models

is power-feasible using SpiNNaker. As such, SpiNNaker represents an unprecedented

step towards very large-scale simulations of neural tissue.
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Figure 5.21: Firing rate statistics of the visual-cortex model.
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5.5 Summary

SpiNNaker is a novel architecture designed to simulate large-scale models of neural

tissue correctly, quickly and eXciently. The architecture does not contain hardware

for Woating point operations or for measuring performance or power consumption, so

executing simulations and verifying that the fabricated chips meet the design criteria

are nontrivial tasks. This chapter has presented a series of experiments of varying

novelty to show that SpiNNaker meets or approaches its architectural targets and is

therefore an eUective large-scale simulation platform.

SpiNNaker correctly simulates neural populations with recurrent projections and

external input, although comparing results with reference simulators is not easy. There

exists no published standard for the numerical solution of model diUerential equations,

so no two simulators return precisely the same results in even the most simple simula-

tions, as Vgure 5.4 shows. Nevertheless, section 5.2.3 demonstrates that the outputs of

SpiNNaker and NEST do signiVcantly correlate in established comparison metrics.

Performance and power data from prototype hardware suggest that SpiNNaker is

a fast, energy-eXcient simulator of neural tissue, although comparing results with ref-

erence platforms is again diXcult. There are no published Vgures for the power con-

sumption of neural-tissue simulations on any digital hardware other than SpiNNaker.

Section 3.2.2 estimates the power requirements of simulation on superscale BlueGene

hardware, but it would be inappropriate to compare those Vgures with the results pre-

sented here: the estimate is necessarily very coarse and the scale and parameters of the

BlueGene and SpiNNaker simulations diUer greatly. Comparisons are also complicated

by the presence of the host machine, which contributes signiVcant computational re-

sources to the simulation and consumes signiVcant amounts of power. The eUects of the

host have been disregarded in the above experiments for two reasons: the proportional

contributions and requirements of the host tend to zero as SpiNNaker machines scale

towards many thousands of chips; and the host may be a low-power dumb terminal if

the hard work of generating simulation data structures and analysing results is done on

the SpiNNaker machine itself. With these caveats, the experiments above suggest that

SpiNNaker is a promising architecture.

The performance proVle of the simulation software shows that each processor may

model 256 leaky integrate-and-Vre neurons with exponential synaptic currents in real-

time while handling 5,000 synaptic events per millisecond. So, the platform meets the

performance goals set by Jin et al. (2008) to simulate 1,024 Izhikevich neurons with delta

synaptic currents, which are approximately one quarter as computationally expensive.
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However, Jin et al. set a target of handling 10,000 synaptic events per millisecond on

the assumption that the processing loop would consist of approximately twenty instruc-

tions, whereas it actually contains nearer forty. Nevertheless, the proVling methodology

developed here informs both subsequent code optimisations and correct load-balancing

of simulations across processors.

The performance proVle of the whole software stack shows that SpiNNaker sig-

niVcantly outperforms NEST using similar computational resources to simulate 4,096

neurons. Futhermore, SpiNNaker recruits additional processors and maintains a con-

stant run time as model scale increases; only the load and dump times increase, and

these may be ameliorated by on-chip generation and analysis of simulation data. The

beneVts of rapid simulation are numerous and signiVcant: as run-time grows, so do

the notes required to record the purpose of the experiment; the same may be said for

the eUort required to debug program code and models; the inverse may be said for the

number of trials that can be performed in the pursuit of statistically signiVcant results;

and, Vnally, a running simulation represents dead time for a researcher that cannot be

usefully Vlled by switching attentional focus to some other task, due to the overhead

involved in doing so. SpiNNaker holds the promise that a simulation of ten seconds

of neural activity will take almost exactly ten seconds, and should thereby increase

researcher productivity.

The power proVle of the hardware shows that it is most energy-eXcient. Around

104 neurons may be simulated on four chips, which collectively consume around two

watts. Assuming that loss through voltage regulation, cooling and other infrastructure

brings total power consumption to one watt per chip, Vfty-thousand-chip simulations

of 108 neurons appear readily feasible. This economy is achieved in circuits of a 130

nanometre geometry, and scaling the chips to 45 or 22 nanometre technology may yet

oUer a tenfold improvement. Digital silicon technology is orders of magnitude more

power-hungry than the nervous system, so the energy usage of simulators will become

a signiVcant concern as neural tissue models grow to incorporate billions of neurons.

This chapter suggests that the SpiNNaker approach of using very many low-power,

simple processor cores is appropriate for this scale of simulation.
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Hardware Processing Memory OS

Host
AMD Athlon-II X3-445

3 processors 4GB Ubuntu 11.10

3GHz clock

Multicore
AMD Opteron 6174

48 processors on 4 chips 130GB CentOS 5.6

2.2GHz clock

SpiNNaker
SpiNNaker chip 32KB code per processor

16n processors on n chips 64KB data per processor N/A

conVgurable clock speed 128MB data per chip

Table 5.5: Hardware platform summary.

Software Version Notes

Python 2.7 with NumPy 1.5.1 and SciPy 0.9.0

NEST 2.1

Brian 1.3.1

PyNN 0.7 with minor bug Vxes on the NEST interface

SpiNNaker SVN rev. 2269 latest revision of all experiments

Table 5.6: Software component summary.



Chapter 6

Real-Time Million-Synapse Simulation

of Cortical Tissue

The nervous system is a powerful and intricate computer, which appears to process in-

formation by the genesis and propagation of action potentials amongst billions of neu-

rons. The function of the animal brain may be investigated using models that mimic

this mode of information processing, although enormous computational resources are

required to do so. The feasible scale and speed of neural-tissue simulations have so far

been limited by the parallelism and power disparities between biological and silicon

computers, such that it has been impossible to usefully model even million-neuron cir-

cuits. The preceding chapters have argued that SpiNNaker addresses these problems,

and so portends mega-scale models of neural tissue; this chapter presents simulations

towards that end. Data from the biological literature on the rodent somatosensory cor-

tex is tabulated, and experiments are conducted to analytically and empirically establish

the correct parameters for a model of the superior barrel column. Basic thalamocortical

response transformations, observed both in vivo and in simulation, are reproduced in a

scale model of the whisker barrel. Multiple barrel columns are instantiated and laterally

connected to form hundred-thousand-neuron, seventy-million-synapse models that are

simulated in real-time across 360 parallel processors on more than 20 SpiNNaker chips.

117
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6.1 Motivation

There is strong evidence that the action potential is fundamental to rapid information

processing in the brain. Spikes traverse distinct pathways in the central nervous system

at speeds of many metres per second. DiUusive chemical processes provide homeostatic

and developmental support to these tissues, but operate too slowly over large distances

to participate in immediate computations. So, it is reasonable to assume that the cortical

response to sensory stimuli is primarily a function of action potentials, and that the

cortex can therefore be simulated as a network of spiking neuron models. Thorpe et al.

(1996) show that humans respond to visual cues so rapidly that information must be

conveyed to the cortex by a barrage of action potentials along parallel axons in the optic

nerve. Simons and Carvell (1989) demonstrate clear correlations between deWections of

rodent whiskers and characteristic Vring in the corresponding barrels. The functions

of both tissues have been captured by models in which spikes are the sole means of

interneuron communication (Thorpe et al., 2001; Kyriazi and Simons, 1993).

The rodent barrel cortex is an ideal tissue of which to build models of neural in-

formation processing, in that the anatomy and physiology of the whisker system is

exceptionally well characterised. Current models of the rodent whisker barrel accu-

rately reproduce the thalamocortical response transformations observed by Simons and

Carvell (1989) but use very few neurons (Kyriazi and Simons, 1993) or reduce the ac-

tivity of whole populations to a single Vring-rate state variable (Pinto et al., 2003). In

doing so, these models may fail to demonstrate important principles of spike-based

information processing that are present in vivo. The structural and functional dispar-

ities between organic and silicon computers may be to blame for these limitations in

simulation studies: the architectures of conventional high-performance computers are

quite diUerent from the enormous parallelism, immense energy-eXciency and dense,

intricate communication patterns of cortical tissue.

SpiNNaker is designed to emulate the structure and function of neural tissue, with

very many low-power processors and an interprocessor communication mechanism in-

spired by axonal arbours. These adaptations aUord suXcient computational power and

communication bandwidth to simulate every neuron of the barrel column in real-time

on a single four-chip board. However, the true computational power of the whisker sys-

tem arguably arises from multicolumn processing (Contreras and Llinás, 2001; Civillico

and Contreras, 2005; Higley and Contreras, 2005; Civillico and Contreras, 2006) and

larger 48-chip boards promise resources to simulate the half-million neurons of the

entire barrel cortex. Such models may oUer unprecedented insight into how spikes
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perform computations in neural tissues and why these tissues are so exquisitely struc-

tured. This chapter presents advances in the feasible scale of simulation, with models

of increasing scale from one barrel column to nine.

6.2 Simulation methodology

All simulations were run on SpiNNaker, using the hardware described in section 3.2.6

and the software described in chapter 4. Models that spanned fewer than 64 processors

were simulated on four-chip circuit boards, and larger models were simulated on 48-

chip boards. Each processor was used to host up to 256 neurons, so each n-neuron

population was split across d n
256
e processors. Multiple four-chip boards were often used

in parallel to repeat experiments with varying parameters; the small boards functioned

as multiple cheap, energy-eXcient simulation accelerators.

All models were speciVed in PyNN. Upon a call to run() PACMAN automatically

compiled the necessary data structures on the host and uploaded them to SpiNNaker,

which executed the simulations in real-time and returned the results to the host. As

such, the mechanisms of compilation and simulation were entirely hidden from the

user-level PyNN script and do not warrant repeating. However, some small additions

were made to both PACMAN and the on-chip software, which should be described.

A model was created to generate Poisson spike trains on chip. This model is in-

stantiated in PyNN as a SpikeSourcePoisson population of size n and is supplied

with a parameter dictionary containing a list of (time, probability) tuples. Each tuple

denotes the probability of each cell Vring in each millisecond from time onwards. For

example, a list [(100, .05), (300, .025)] denotes no Vring from t = 0 to t = 99, an average

of Vfty hertz Vring from t = 100 to t = 299, and an average of twenty Vve hertz Vring

from t = 300 to the end of the simulation. The on-chip model software interprets the

parameter list to generate spike trains: in each millisecond t, the Vring probability p is

determined from the tuple list; then for each neuron i, the processor draws a pseudo-

random number x from a uniform distribution over the interval [0, 1) using a software

linear feedback shift register (ARM, 1995); if x < p, a spike is emitted for neuron i. The

spike-train generator may be provided with a seed, or it may generate its own sequence

of incrementing seeds over repeated trials. This allows the host to retrigger simulations

many times, in order to compile results from many trials, without having to regenerate

and reload spike trains.

A trivial addition was made to the activity-recording software on chip in order
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to save Vring rates of populations. A function record_fr() was added to the PyNN

Population class, which simply sets a Wag that prompts the on-chip software to record

the number of spikes generated by the population in each millisecond. On a call to

get_fr() the host retrieves this record, divides each millisecond entry by the number

of cells in the population, and multiplies each entry by 103 to produce the population-

average Vring rate in terms of spikes per second. Since downloading and sorting spikes

is slow, this method expedites the process of calculating population Vring rates.

6.3 Modelling the barrel cortex

The rodent barrel cortex processes mechanical stimuli to facial whiskers. Like the other

sensory cortices, the barrel cortex is radially organised into the granular, supragranular

and infragranular layers. Axonal projections from the ventral posteromedial nucleus of

the thalamus, which convey sensory signals from the whiskers, primarily innervate the

granular layer. Broadly, the granular layer innervates the supragranular layers that in

turn project down into the infragranular layers. Unlike other sensory cortices, however,

the rodent somatosensory cortex exhibits clear lateral organisation of discrete barrels in

the granular layer that correspond one-to-one with the whiskers. The notional projec-

tion of the barrel column into the supra- and infragranular layers forms a convenient

unit for modelling. The average rat column contains 17,560 neurons in a tangential area

of 0.12 millimetres squared and a depth of 1.84 millimetres (Meyer et al., 2010a).

The barrel column is well deVned anatomically, compared to the visual cortex for

example, and the functional relationship between whiskers and barrels is clear. Yet, like

any other volume of cortex, each barrel column is profoundly complex. The boundaries

between layers are fuzzy and there are no clear septa between columns in the supra- and

infragranular layers. The neurons of these hazily deVned populations are heterogeneous

in terms of morphology, physiology and synaptic connectivity; Oberlaender et al. (2011)

and Binzegger et al. (2004) alone identify numerous classes of excitatory and inhibitory

cells in each layer based on these criteria. Synapses adapt to spiking activity on a range

of time scales, so observed synaptic currents vary markedly between experiments in

vivo and in vitro and with diUerent stimulation protocols.

This complexity presents signiVcant challenges to modelling and simulation: the

literature does not contain data for every parameter of a spiking model of the barrel

column; detailed, many-parameter models inevitably require arbitrary tuning to repro-

duce biological function; and verbatim models of tissue, if at all possible, are no better
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L2/3E L2/3I

L4E L4I

Thalamus

Figure 6.1: Architecture of the superior barrel column model.

for explaining fundamental computational principles than the living cortex itself. One

solution is to form hypotheses about which features of the tissue are computationally

signiVcant and to then disregard all others.

As such, speciVc attention was paid to information processing in the superior lay-

ers of the barrel column. A model was constructed to examine the stimulus-response

of the granular-layer barrel and the propagation of activity between columns in the

supragranular layers. The populations and projections of the model, henceforth called

the superior barrel column, are depicted in Vgure 6.1. The supragranular layers L2 and

L3 were represented by a single layer L2/3, as they commonly are in the literature;

supragranular layer 1 is very cell-sparse and was ignored. Each layer contained one

excitatory and one inhibitory population, which were connected both recurrently and
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Population Exci. Inhi. Source

Layer 2/3 4,507 795 Meyer et al. (2010a)

Layer 4 3,471 613 ibid.

Thalamus 285 — Oberlaender et al. (2011)

Table 6.1: Barrel column neuron counts.

to one another. The thalamus fed simulated whisker signals to both populations of the

granular layer, and the excitatory granular neurons relayed signals to the supragranular

layers. In models of multiple columns, supragranular populations formed lateral pro-

jections between one another. Synapses from the thalamus to L2/3 were not modelled,

despite evidence that they exist in rodents (Meyer et al., 2010b). Nonuniform distribu-

tions of synaptic weights, connection probabilities and connectivity motifs were disre-

garded, despite evidence that they may be signiVcant (Tomm, 2012; Perin et al., 2011).

Data from diUerent rodent species were combined into one model due to the scarcity

of literature on any particular species.

Parameter Unit L2/3E L4E

EL mV -72 -66

Vreset mV -72 -66

VΘ mV -40 -40

τm ms 30 35

Rm MΩ 190 300

Refrac. ms 10 10

τse ms 5 5

τsi ms 15 15

Table 6.2: Barrel column neuron physiology (Lefort et al., 2009).

The literature provides data on the size of populations, the probability of projec-

tions and the physiology of both. Table 6.1 lists population sizes for the thalamus and

the cortex, which were found by Oberlaender et al. (2011) and Meyer et al. (2010a) us-

ing automated counts of NeuN-positive cells in slices and the assumption that 0.15× of

cortical neurons are inhibitory. Table 6.2 presents physiological properties of the model

neurons, according to results of sharp electrode recordings performed by Lefort et al.

(2009); synaptic-current time constants were taken from Kyriazi and Simons (1993) and
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Pre
Po

st
L2/3E L2/3I L4E L4I Thal. Sources

L2/3E .121 .552 .131 — — 1Lefort et al. (2009)

L2/3I .402 .602 ? — — 2Avermann et al. (2012)

L4E — — .241 .213 .674 3Sun et al. (2006)

L4I — — .133 ? .674 4 Meyer et al. (2010b)

Thal. — — — — —

Table 6.3: Barrel column connectivity.

Sun et al. (2006). Equivalent data for inhibitory neuron physiology does not exist. Table

6.3 lists projection probabilities according to four studies: Lefort et al. (2009) investigate

excitatory connectivity in all layers with paired electrode experiments in vitro; Aver-

mann et al. (2012) use optogenetic techniques in vitro to map excitatory and inhibitory

connectivity in the supragranular layers; Sun et al. (2006) use paired electrodes to test

the same connectivity in vitro in the granular layer, albeit with very small (n ≈ 70

cell pairs) sample sizes; and Meyer et al. (2010b) count thalamocortical synapses in 3D

reconstructions of Vxed tissue. These authors variously describe synapse physiology in

terms of postsynaptic potential latencies, amplitudes and distributions but these data

cannot be usefully employed in models, as later argued. The nature or existence of

the projection from granular excitatory neurons to supragranular inhibitory neurons is

unknown and not modelled.

The thalamic and cortical response to ramp-and-hold whisker stimuli is well char-

acterised in vivo and in simulation by Simons and Carvell (1989), Kyriazi and Simons

(1993) and Pinto et al. (2003). The whisker barrel exhibits four response transforma-

tions on thalamic input, namely: thalamic neurons have greater levels of spontaneous

spiking than cortical excitatory neurons; cortical excitatory neurons respond with dif-

ferent numbers of spikes to the onset and oUset of whisker deWection, whereas thalamic

neurons do not; cortical excitatory neurons respond weakly to deWection of an adjacent

whisker, unlike thalamic neurons; and the response of excitatory neurons to principal

whisker deWection is suppressed if it is immediately preceded by deWection of an adja-

cent whisker. The simulated barrel was expected to reproduce the Vrst and second of

these response transformations in order to validate the model. Each thalamic neuron

was set to generate Poisson spike trains at a mean rate of six hertz (Bruno and Sakmann,

2006) in the absence of stimuli. Pinto et al. show that the thalamic response to onset and
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oUset stimuli diUers in terms of Vring synchrony or onset rate, and the Vring rate of the

thalamic spike trains was varied to mimic this eUect: onset stimuli triggered a stimulus

triangle rising from six hertz to thirty hertz in Vve milliseconds and then decaying back

to six hertz in thirty milliseconds; oUset stimuli triggered a stimulus triangle of equal

amplitude and opposite rise and decay times. These stimuli are visible in Vgure 6.8.

6.4 Construction of biologically plausible models

In a model composed of excitatory and inhibitory neural populations, Vring-rate dy-

namics are largely determined by the synaptic connectivity of the network (Brunel,

2000). Should the number and strength of excitatory synapses outweigh those of in-

hibitory synapses, for example, recurrent excitation will dominate and the network

will become hyperactive. Should inhibition dominate, the network will become inac-

tive. Between these two pathological states a great variety of rich dynamics are possible.

In the animal nervous system the health and computational abilities of neural tissue are

presumably maintained by some homeostatic mechanism. This mechanism has yet to

be described in detail, so modellers must use either empirical or analytical methods to

Vnd the parameters of synaptic connectivity that elicit biologically plausible activity.

The former method typically entails time-consuming guesswork that does not lead to a

reasoned understanding of the model. The latter method, developed by Brunel (2000), is

demonstrably eUective but it is currently only applicable to simple models. A series of

experiments were conducted in an attempt to extend the latter methodology to address

more detailed models of neural tissue, in order to lay foundations for a biologically

plausible model of the superior barrel column.

6.4.1 Asynchronous networks

Brunel considers a model comprising Ne excitatory and Ni inhibitory leaky integrate-

and-Vre neurons, driven by some external input, where every neuron receives a synapse

from every other neuron with equal probability p. The number of synapses formed

within the network is p(Ne + Ni)
2 so the ratio of excitatory to inhibitory synapses

is simply Ne/Ni. Given some arbitrary excitatory synaptic weight we, a signiVcant

relationship to the inhibitory weight wi is described by

wi = bwe
Ne

Ni

(6.1)
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where b is a balance coeXcient. Brunel plots model Vring rate as a function of b and

shows that excitation drives hyperactivity when b is less than one, that inhibition causes

hypoactivity when b is greater than one, and that the two forces counterbalance when

b is exactly one. Furthermore, the balanced network (b = 1) exhibits irregular, asyn-

chronous Vring akin to that observed in cortical networks.

The whisker barrel is an ideal model with which to reproduce the Brunel experi-

ments, since it has been described as two populations, one excitatory and one inhibitory,

driven by a sole thalamic input (Kyriazi and Simons, 1993; Pinto et al., 2003). How-

ever, in contrast to the Brunel model, the barrel exhibits signiVcant heterogeneity in

neuron and synapse physiology and projection probabilities: excitatory neurons have

longer membrane time constants than inhibitory (Simons and Carvell, 1989), inhibitory

synapses have longer current-decay time constants than excitatory (Sun et al., 2006),

and projection probabilities between the two neuron types vary signiVcantly (Lefort

et al., 2009; Avermann et al., 2012). Equation 6.1 implicitly describes excitatory-to-

inhibitory balance in terms of the type, number and eXcacy of synaptic events that

occur in the network; when these parameters are not equal for the excitatory and in-

hibitory populations, the equation must be extended.

The charge imparted by an exponential postsynaptic current with amplitude w and

time constant τs is ∫ ∞
0

w exp(−t/τs) dt = wτs

so currents in a network with diUerent excitatory and inhibitory synaptic time con-

stants balance when

Neτsewe = Niτsiwi

The average number of excitatory synapses in a network with heterogeneous projection

probabilities is

Ne(peeNe + peiNi)

where pee and pei are the probabilities of excitatory-to-excitatory and excitatory-to-

inhibitory projections; the number of inhibitory synapses is determined likewise. So,

synaptic currents balance in a network with varying projection probabilities when

Ne(peeNe + peiNi)τsewe = Ni(piiNi + pieNe)τsiwi

The Vring rate of the leaky integrate-and-Vre neuron is inversely proportional to the
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membrane time constant τm so the Brunel-equation extensions are completed with

1

τme
Ne(peeNe + peiNi)τsewe =

1

τmi
Ni(piiNi + pieNe)τsiwi

The balance coeXcient can be reintroduced, and the equation rearranged for wi

wi = bwe
Ne(peeNe + peiNi)τseτmi
Ni(piiNi + pieNe)τsiτme

(6.2)

which reduces to equation 6.1 if time constants and projection probabilities are equal.

6.4.2 Methodology

A model of the whisker barrel was simulated to reproduce the Brunel experiments re-

garding balance of excitatory and inhibitory currents. Thalamic and cortical neurons

were simulated as Poisson spike trains and leaky integrate-and-Vre neurons respec-

tively. Population sizes and neuron physiologies were determined by tables 6.1 and

6.2. The remaining parameters were varied in successive experiments, from a model

with homogeneous population physiologies and projection probabilities, to one that in-

corporated the heterogeneity evident in the literature. Each experiment sought to Vnd

the relationship between the balance coeXcient b and the average Vring rate of the ex-

citatory neurons. The excitatory synaptic weight was Vxed at 0.1 nanoamps and the

inhibitory weight was determined by equation 6.2, with b varying from 0.1 to 10 in

successive trials. In each trial the model was instantiated and loaded once and then

simulated ten times with varying seeds for the Poisson spike source; the average ex-

citatory Vring rate during each one-second simulation was recorded, and the ultimate

result of the trial was the mean and standard deviation of these ten numbers.

Three model forms were simulated. In all forms, excitatory and inhibitory neuron

parameters were as listed for layer 4 cells in table 6.2. In the homogeneous form, all

intracortical projection probabilities were 0.1 and inhibitory synaptic time constants

were the same as excitatory, as in the original Brunel experiments. In the τs form,

synaptic time constants varied true to table 6.2. In the P form, probabilities of the

four intracortical projections varied in accordance with table 6.3. The forms thereby

progressed from a simple model of the barrel to a biologically plausible one, although

varying membrane time constants were not incorporated for reasons described below.

Each form was simulated under two diUerent thalamocortical projection probabili-

ties. A plausible projection with probability 0.67 (Meyer et al., 2010b) was initially used.
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Figure 6.2: Barrel Vring rate under plausible input as a function of balance.
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Figure 6.3: Hypersynchronised Vring in the barrel under plausible input.
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When this was found to produce hypersynchronous Vring in the barrel, an implausible

projection with probability 0.25 was used. In both cases, synaptic weights were chosen

to be the minimum required to elicit Vring in a model without intracortical projections.

6.4.3 Results

Figure 6.2 shows excitatory Vring rate in the barrel as a function of the balance coef-

Vcient, under stimulus from the plausible thalamic projection. The homogeneous and

τs forms follow the expected curve precisely: as b sweeps from less than to greater

than one, the Vring rate transitions from near-maximum to near-minimum through a

tight sigmoid curve centred upon b = 1. The P form shows unexpected deviation and

variance, in that the Vring rate curve drops oU before b = 1 and the standard deviation

around that point is large.

Figure 6.3 shows that the spike times of the P form at b = 1 are clearly not irreg-

ular and asynchronous, but rather are hypersynchronised. The number of hypersyn-

chronous bursts varied from trial to trial (data not shown) which accounts for the large

standard deviation in Vring rate. The other forms suUered similar pathological Vring

patterns (data not shown) and it was hypothesised that the highly divergent thalamic

connectivity was responsible.

Figure 6.4 shows the results of the same experiment performed with the implausi-

ble thalamic projection. Again, the homogeneous- and τs forms follow the expected

curve, with notably smaller standard deviations than before. And again, the P form

deviates unexpectedly, in that the Vring rate curve is nonmonotonic and peaks at b =

1. To investigate the nature of this peak, ten barrel models were instantiated with the

parameter b = 1 and each was simulated ten times.

Figure 6.5 shows the distribution of average excitatory and inhibitory Vring rates

across these hundred trials. The Vring rates are biologically plausible in most trials

but are hyperactive in a small number. This makes the P form unsuitable for reliable

simulations of the barrel column, and further experiments with varying membrane

potential time constants would likely be futile. It appears that the extended Brunel

equations do not adequately describe the competing eUects of excitatory and inhibitory

synaptic events in P form.

The extended equation does correctly describe the behaviour of the τs form, and

may be used as a basis for an empirical search for the correct parameters of the barrel

model. Figure 6.4 suggests that the τs form under implausible input should Vre at Vfty

hertz in an irregular asynchronous regime at b = 1. This result was conVrmed by sim-
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Figure 6.4: Barrel Vring rate under implausible input as a function of balance.
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Figure 6.5: Distribution of the trial-average Vring rates of the barrel P form.
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ulating such a model (data not shown) and the experiment was repeated speculatively

with a coeXcient of 1.5 on the inhibitory-to-excitatory weight to produce the result in

Vgure 6.6.

The biological plausibility of this ultimate network activity is debatable. The exci-

tatory neurons appear to Vre irregularly, in that the average coeXcient of variation of

interspike intervals is 0.99±0.37, suggesting plausible Poisson-like activity (Softky and

Koch, 1993). Also, the Vring rates of the thalamic, excitatory and inhibition popula-

tions and approximately correct in relation to one another. However, the distribution

of average Vring rates of excitatory cells is not log-normal, as expected by Roxin (2011);

rather, Vring rates are exponentially distributed, as shown in Vgure 6.7. It appears that

signiVcant further work would be required to produce a network with both balanced,

irregular spiking and the correct Vring-rate distribution.

6.4.4 Discussion

Neural tissue is so intricate that even small models are necessarily complex in topol-

ogy and dynamics, which makes dynamical-systems analysis of stability or stimulus-

response extremely diXcult. This is a principal problem in the Veld of neural-tissue

simulation, in that no methodology currently exists to understand the fundamental

properties of the models under examination here. In the absence of analytical tech-
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Figure 6.6: Spiking of the ultimate barrel model.
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Figure 6.7: Proportions of neurons at each Vring rate in the ultimate barrel model.

niques one must revert to empirical methods of construction and tuning, which are

extremely time-consuming and may not elucidate the important properties and param-

eters of the ultimate model.

This dissertation was conceived, in part, with the expectation that neuroanatomical

data could be transcribed directly into models of the cortex, which may then be used

to investigate the higher functions of the brain. This expectation is resolutely false. In

an early experiment, a model of the barrel column was built that included all available

data on the anatomy and physiology of the tissue, down to the weight distributions

of each synaptic projection; the model completely failed to function like its biological

inspiration and many weeks were spent tuning it to do so. A more reasoned approach

to designing simulations of the cortex is clearly necessary, and this section is the modest

result of eUorts to that end.

Brunel (2000) deals comprehensively with the dynamics of homogeneous networks

of spiking model neurons. A simple equation describes the stability of the asynchronous

state found at the balance of excitation and inhibition in such networks, and extensions

were made here to the equation to consider the eUects of heterogeneity in synapse

physiology and projection probabilities. These extensions appear to be invalid, in that

they do not adequately describe the balance of forces required to establish the desired

irregular, asynchronous Vring in a model of excitatory and inhibitory neurons. As
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projection probabilities between populations were varied, the Vring rate of the network

became an unpredictable function of the balance coeXcient b.

The Brunel balance equations are based upon the assumption that the desired Vring

results from equality in the number and eXcacy of excitatory and inhibitory postsy-

naptic currents in a network. The number of excitatory (inhibitory) currents that occur

in some period is the product of the Vring rate of the excitatory (inhibitory) neurons

and the number of synapses that they make. The former is clearly a dynamical parame-

ter and it appears that those dynamics are limited in homogeneous networks, such that

the Brunel equation adequately describes the balance of excitation and inhibition. In

heterogeneous networks where recurrent excitation is signiVcantly stronger than other

projections, as in the whisker barrel, larger excitatory dynamics may undermine the

balance equations. This would explain why the P form has a tendency to become hy-

peractive. A dynamical-systems approach, perhaps drawing upon the analyses by Pinto

et al. (2003) and Izhikevich (2007), to further work may be more fruitful.

6.5 Large-scale simulation of the barrel cortex

The barrel cortex is an ideal tissue upon which to base large-scale simulations. Al-

though biologically plausible models of the tissue are apparently diXcult to build, ab-

stract representations of the barrel are useful units with which to construct scalable

networks. Where one barrel column is simulated, many may be simulated in parallel

with lateral connections between supragranular populations. Such models are useful

for exploring the capabilities of SpiNNaker. A series of experiments were conducted

to reproduce the basic function of a single barrel and to observe the operation and

performance of large-scale barrel-Veld models on SpiNNaker.

6.5.1 Barrel-Veld models

A model of the superior barrel column was constructed according to the anatomical

data, modelling assumptions and Vndings of the model-building experiments above.

Figure 6.1 shows the overall architecture of the model. Thalamic and cortical neurons

were simulated as Poisson spike trains and leaky integrate-and-Vre neurons respec-

tively. Population sizes and neuron physiologies were determined by tables 6.1 and

6.2. Within each layer, projection probabilities were set to 0.1, the excitatory synaptic

weight was set to 0.1 nanoamps, and the inhibitory synaptic weight was determined

automatically according to equation 6.2; the inhibitory-to-excitatory weight was also
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multiplied by 1.5, as discussed above. Between layers, projection parameters were tuned

to elicit the desired activity: the projection probability from the excitatory granular

neurons to both supragranular populations was set to 0.1, and the synaptic weight of

both projections was set to 0.2 nanoamps. Between columns, lateral projections were

formed between excitatory populations of the supragranular layers, with probability 0.1

and synaptic weight of 0.1. To reiterate the stimulus parameters: thalamic neurons Vred

at a baseline rate of six hertz, and responded to simulated ramp-and-hold whisker de-

Wections with Vring-rate triangles of thirty-hertz amplitude and onset and oUset times

of Vve and thirty milliseconds; these are apparent in Vgure 6.8. Following from the

Brunel experiments, which demonstrated that building models directly from anatomi-

cal data is inordinately diXcult, the pretence of biological plausibility was abandoned

in favour of demonstrating the large-scale simulation capabilities of SpiNNaker.

Each superior column contained approximately 9,000 neurons. To explore the capa-

bility of SpiNNaker, a chain of Vve columns and a grid of nine were simulated. In both

cases, one column was stimulated and the signal propagation through the supragran-

ular layers was observed. However, Vrstly an experiment was conducted to reproduce

basic thalamocortical response transformations in the barrel model.

6.5.2 Thalamocortical response transformations

The granular layer was simulated alone under thalamic input to examine thalamocor-

tical response transformations in the model. The two transformations under consider-

ation were the lower Vring rate of excitatory neurons with respect to thalamic neurons

and the diUerential response of excitatory neurons to onset and oUset stimuli. Whisker

deWection onset and oUset was modelled by thalamic Vring rate triangles, as discussed

above. A stimulus battery was deVned as one whisker deWection onset and one oU-

set separated by 150 milliseconds, preceded by a 500-millisecond rest period. Ten barrel

models were instantiated in succession and 25 stimulus batteries were delivered to each.
Figure 6.8 shows the spike times resulting from one stimulus battery and the aver-

age Vring rates across all of the 25 batteries to all ten model instances. For aesthetic

reasons the stimulus battery is centred in the Vgure. The barrel model clearly repro-

duces the two response transformations under consideration: excitatory neurons Vre

with asynchronous irregularity at frequencies much lower than thalamic neurons, and

onset stimuli elicit greater excitatory responses than oUsets. The Vring rates of the exci-

tatory and inhibitory neurons are not in precise agreement with biological observations

(Neymotin et al., 2011) but they are correct in relative proportion to one another.
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Pinto et al. (2003) hypothesise that the thalamocortical response transformation to

whisker deWection is a function of inhibitory response: when stimulus onset is slow,

inhibitory Vring increases gradually with the stimulus and suppresses excitation; when

stimulus onset is fast, both cell classes respond simultaneously and excitation rises to

greater levels before inhibition has an eUect. This certainly seems to be the case in

Vgure 6.8 but Pinto et al. argue that it is a consequence of the shorter membrane time

constants of inhibitory neurons; the time constants of both cell classes are equal in

this experiment, which suggests otherwise. The response transformation may more

generally result from a greater inWuence of inhibitory neurons on the network; in this

case it is the increased inhibitory-to-excitatory synaptic weight, whereas in the case of

Pinto et al. it may be the diUerent excitatory and inhibitory membrane time constants.

6.5.3 Barrel-column chain

Civillico and Contreras (2006) observe that activity in the supragranular layers prop-

agates between columns via a lateral spread of excitatory axons. A chain of barrel

columns was constructed in order to simulate such activity and to develop the large-

scale modelling capability of SpiNNaker. Five columns were instantiated and laterally

connected in the supragranular layer with reciprocal projections. Thus, the model con-

sisted of approximately Vfty thousand neurons and Vfty million synapses simulated

across 200 processors on 13 chips. A stimulus battery was deVned as Vve whisker oscil-

lations at ten hertz, preceded by a 500-millisecond rest period; the battery was delivered

25 times to the leftmost column while the others received only baseline stimulus, and

the Vring rates of the thalamic and excitatory cortical populations were recorded.

Figure 6.9 shows the average peristimulus time histogram in spikes per second per

neuron across all stimulus-presentations, again centred upon the stimulus battery. The

top, middle and bottom panels represent the supragranular, granular and thalamic pop-

ulations respectively, and the Vve traces in each panel from bottom to top represent the

Vve columns from left to right; note the varying y-scale bars on each panel. The tha-

lamic stimulus is visible in the bottom trace of the bottom panel, and the eUect on the

corresponding granular neurons is evident in the middle panel; note that the thalamic

and granular neurons of the other columns show no response. The activated granular

layer relays signals to the corresponding supragranular layer, from which the Vring

clearly propagates along the chain of columns. It would be bold to presume that this

experiment precisely reproduces some function of the barrel cortex, but it does serve to

demonstrate simulated activity spreading across a massively-parallel machine.
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6.5.4 Barrel-column grid

By way of further demonstration, a grid of barrel columns was simulated on SpiNNaker.

Nine columns were instantiated in a three-by-three grid, and unidirectional projections

were formed as shown in Vgure 6.10; a full grid of reciprocal connections was initially

attempted but uncontrollable hyperactivity resulted. The same stimulus as before was

presented to the central barrel, and the spread of activity was observed.

Figure 6.10 shows activity in the supragranular layer emanating from the central

column. The Northerly, Southerly, Easterly and Westerly columns show increased, syn-

chronised activity as a function of their dual inputs from their barrels and the central

column; this eUect is yet more apparent in the South-Easterly population, which re-

ceives two lateral projections. The South-Westerly, North-Westerly and North-Easterly

columns exhibit only baseline activity, driven by their corresponding granular popula-
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tions. The activity is rather implausible and the model is no basis for investigation into

neurocomputational function. However, the simulation is signiVcant as a raw demon-

stration of feasible scale: the model consists of approximately ninety thousand neurons

and seventy million synapses, simulated across 360 processors on 23 chips. And the

feasible scale may yet be increased with improvements to the supporting software:

Figure 6.11 shows the execution proVle of the simulation, including time spent in

host-side programs. The run time consists, as expected, of the 25 one-second stimu-

lus presentations plus one leading and one following second to allow the model and

the machine respectively to settle. Each of the other proVle components signiVcantly

outweighs this cost. The synaptic intricacy of the circuit requires the host to spend

more than a minute building half a gigabyte of data structures, which then take more

than twenty minutes to load. The 25-second Vring-rate trace takes 150 milliseconds to

retrieve from each processor, so the dump time is almost a minute in total. Clearly

then, SpiNNaker itself is an eUective simulator of large-scale models of neural tissue,

although improvements to the host-side tools and loading protocols are required.

6.6 Summary

The elementary function of the cortex is arguably best understood in the rodent whisker

system. The responses of individual barrels to whisker stimuli has been examined in

vivo (Simons and Carvell, 1989) and reproduced in simulation (Kyriazi and Simons,

1993; Pinto et al., 2003) to a greater and more plausible degree than any other tis-

sue. This chapter demonstrates that SpiNNaker can model this classic barrel activity

and that of multiple barrel columns in parallel, so to further investigate the response

transformations of multiple-whisker stimuli in the somatosensory cortex (Civillico and

Contreras, 2006).

The anatomy and physiology of the barrel is well characterised, but constructing

biologically plausible models of the tissue is nontrivial. Models with recurrent synaptic

projections are extremely sensitive to parameters of excitability and connectivity, which

makes establishing a balance of excitation and inhibition by empirical methods diXcult.

Section 6.4 considers analytical techniques developed by Brunel (2000) for Vnding such

a balance in simple models, and attempts to extend them to accommodate some of the

complexity of the cortex. These extensions appear to be invalid, in that they do not

engender the desired irregular, asynchronous Vring in a model of the barrel. However,

the original Brunel equation does inform such activity, and forms the basis for full-scale
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but somewhat implausible models of the superior layers of the barrel column.

Initial experiments with these models show that the barrel reproduces thalamo-

cortical response transformations observed in vivo. Pinto et al. (2003) observe that the

thalamus represents whisker deWection onset and oUset as barrages of spikes with equal

amplitude and varying synchrony, between which the cortex can discriminate. Simu-

lated spike trains of this form were delivered to a barrel model, and excitatory cells

were shown to respond more keenly to the onset of whisker deWection than the oUset.

This is an important validation of both full-scale modelling of the barrel cortex and the

SpiNNaker simulator.

Civillico and Contreras (2006) observe that activity in the superior layers propagates

between columns via a lateral spread of excitatory axons. Chains and grids of barrel

columns were constructed in order to simulate approximately such activity and to ex-

amine the large-scale modelling capability of SpiNNaker. Figure 6.9 shows the eUect

of thalamic stimulus upon one barrel and the spread of this activity into and across

the supragranular populations. Figure 6.10 shows similar eUects in a grid of barrel

columns, as simulated in real-time on 360 processors across 23 SpiNNaker chips. The

scale and execution-speed of this experiment represents a signiVcant advancement in

the technology for neural tissue simulation.

The current limitation to further scaling beyond simulations of 108 synapses on

SpiNNaker is simply the build and load time of the data structures. This problem may
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be trivially addressed by on-board generation of connectivity data; processors aboard

SpiNNaker may build their own synapses, and do so in parallel. Considering a projec-

tion of probability p from a source population of size n to a destination population of

sizem, a processor must draw nm uniformly distributed random numbers from the in-

terval [0, 1] and generate a synapse for each one that is less than p; ifm is greater than

the single-processor capacity of 256 neurons then the destination population is split

across multiple processors that operate in parallel. Build time for one projection may

be estimated from approximate instruction counts of each operation: uniform pseudo-

random numbers may be drawn from [0, 1) on the ARM architecture in Vve instructions

(ARM, 1995); the loop guards over the ranges i = 1..n and j = 1..m may take another

Vve; and the operations to write out each synapse that hits may take a further Vve. So,

the time required is approximately

t(n, p) =
256n(10C + 5pC)

20 · 106C/s

where C denotes processor cycles and the denominator represents an operating fre-

quency of 200 megahertz. Since each processor may generate synapses in parallel,

build time for an entire machine is equal to the sum of the projection-build-times of

the most loaded processor; this is in contrast to host-side building and loading, the time

for which grows linearly with the number of synapses in the model. The processors

that simulate the supragranular excitatory population of the South-Easterly column in

Vgure 6.10 receive Vve projections, each of probability 0.1, from a total of 18,000 source

neurons, so they build their synapses in

t(18,000, 0.1) ≈ 0.25 seconds.

All other processors complete in equal or lesser time. So, assuming that the time for

loading projection descriptions to processors is trivial, this approach entirely amelio-

rates the cost of building and loading synapse data and thereby further accelerates

simulation of large-scale models.
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Conclusions

The brain is a computer of incomparable power, eXciency and complexity, the under-

standing of which is a foremost concern in science, medicine and engineering. Sim-

ulation of neural tissue is a promising but tentative methodology to this end. This

dissertation has presented signiVcant advances in technology for simulating large vol-

umes of the cortex, but has also identiVed fundamental problems with such modelling

methods. It appears that fast, energy-eXcient simulation is feasible on the SpiNNaker

architecture, but that construction and operation of biologically plausible models is a

diXcult open problem.

SpiNNaker is a massively parallel, real-time computer architecture that employs

very many low-power processors and novel communications hardware in mimicry of

the structure and function of the nervous system. This design aUords extreme compu-

tational power and eXciency to the simulation of neural tissue, but presents signiVcant

challenges to programmability. Parallel and real-time programming techniques are no-

toriously diXcult, and are no less so when combined. The principal contributions of

this dissertation are large-scale, biologically inspired simulations of the cerebral cortex

that demonstrate the eXcacy of SpiNNaker, and the design, implementation and testing

of the software upon which these demonstrations are based.

Real-time simulation is driven on SpiNNaker by events from which computational

tasks must follow. In each processor, periodic timer events prompt numerical solution

of neuron states and packet-received events trigger calculation of synaptic currents.

The handling of these events and consequent scheduling of tasks must be carefully

orchestrated if correct and real-time operation is to be achieved. The application pro-

gramming interface (API) and run-time kernel (ARK) presented in chapter 4 serve this

purpose. The API allows arbitrary user functions to be registered at certain priorities

141
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with the ARK, and the latter calls these functions in priority order in response to each

event. In this paradigm, neuron and synapse models may be speciVed for simulation

in standard C code, and the execution-order of tasks arising from concurrent events

may be controlled. Both of these properties are essential: the ideal abstraction of the

neuron is unknown, so any simulator of neural tissue must be able to model arbitrary

voltage and current dynamics; and temporal control over the scheduling of tasks must

be carefully exercised if none is to unduly dominate the processor. The performance

and power consumption of simulation code built atop the API is examined in chapter

5, and results show that SpiNNaker is an eUective architecture. Processors are ca-

pable of simulating between 256 and 1024 neurons in real-time while handling 5,000

synaptic events per millisecond, and the ARK and API routines incur very little over-

head. Sixteen-processor chips draw approximately one watt each during simulation, so

million-processor models are comfortably power-feasible. A single chip outperforms

NEST running on an equivalently powerful machine, and SpiNNaker simulations par-

allelise and scale easily across many chips.

Models of neural tissue are speciVed for SpiNNaker simulation in PyNN as popula-

tions of neurons and synaptic projections between the former. PyNN is a Python-based

programming interface that is simulator-agnostic, and is therefore useful for hiding the

complexities of massively parallel hardware and for comparing the results produced

by diUerent simulators. The latter point is demonstrated in chapter 5, which shows

that SpiNNaker correctly reproduces results from the established simulators Brian and

NEST. The former point is exhibited in chapters 5 and 6 with models of the cerebral

cortex drawn from the biological literature; in these examples PyNN is used to design

and execute simulations of the cat and rat cortices with no regard for the architecture of

the underlying simulator. Thus, the implementation of PyNN for SpiNNaker completes

a software stack that allows researchers in computational neuroscience to exploit high-

performance hardware to simulate models of neural tissue without any knowledge of

parallel programming.

The rodent whisker system is an ideal candidate for biologically plausible mod-

elling. The structure and function of the barrel cortex is relatively well understood, so

simulations of this area may be built from and validated against biological data. Chap-

ter 2 presents a comprehensive survey of the relevant literature, and the tools that are

discussed in chapters 4 and 5 ultimately drive the simulations, presented in chapter 6,

that aim to reproduce the function of the barrel cortex in large-scale, data-based mod-

els. These experiments achieve mixed success. The essential function of the barrel can
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be reproduced on SpiNNaker, and a model of nine columns comprising 7·107 synapses

may be simulated in real-time across 360 processors; these results represent a signiV-

cant advance in the feasible scale and speed of neural-tissue simulations. However, the

barrel-column model used in both experiments is rather implausible.

Networks of spiking neurons are dynamical systems that are extremely sensitive

to parameters of excitability and connectivity. The parameters that maintain irregular,

asynchronous Vring in vivo are not captured by current physiological techniques. Con-

sequently, any model constructed entirely from data in the literature will simply fail

to function as expected, usually suUering from hyperactivity, hypersynchrony, hypoac-

tivity, unresponsiveness to stimuli or some other pathological state. This is evident in

the models in chapters 5 and 6, which were conceived as tools for investigating cor-

tical function but were, after necessary parameter tweaking that destroyed biological

plausibility, repurposed as demonstrations of SpiNNaker. The approaches to Vnding

model parameters for correct function are either empirical or analytical; the former en-

tails time-consuming guesswork that does not lead to a reasoned understanding of the

model, and the latter is limited to rather simple networks with homogeneous neuron

parameters and projection probabilities. Chapter 6 presents developments to the ex-

isting analytical methodology that attempt to account for the heterogeneity in cortical

tissue, and puts forward a hypothesis about why these developments are not successful.

So, ultimately, the primary contributions of this dissertation are large, fast simulations

of coarse cortical models on novel hardware and software.

·

Simulation of neural tissue remains a tentative methodology in neuroscience be-

cause of uncertainty about the plausibility and potential of modelling techniques. Ab-

stract models that are amenable to quantitative analysis are clearly vital if the essential

function of the nervous system is to be explained, but the appropriate degree of abstrac-

tion is contended. This dissertation has assumed throughout that spiking neurons are

fundamental to cortical function, but numerous studies have argued the same of, for

example, postsynaptic potential integration in complex dendritic trees or aggregated

Vring frequencies of entire populations. The arguments against either end of the spec-

trum are that too much detail in a model obfuscates its fundamental properties, and

that too little severs the connection between the model and the modelled. In favour

of the former argument, chapter 6 shows that classic response transformations can be

reproduced in an implausible model that does not incorporate heterogeneous projection
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probabilities between excitatory and inhibitory neurons. In favour of the latter argu-

ment, one might ask why the cortex contains such heterogeneity at all if its function

may be reproduced in far simpler models of tissue.

There are also practical issues in simulation studies that warrant diversion from

the philosophical. The principal challenges in cortical-scale simulations are power con-

sumption and interprocessor communication: neural tissue is many orders of magni-

tude more energy-eXcient than silicon technology and conventional communications

hardware is ill suited to conveying multicast action-potential pulses. SpiNNaker is

carefully adapted to these requirements and demonstrates signiVcant success in both

areas, but these achievements come at the sacriVce of auxiliary hardware and synaptic

plasticity algorithms.

SpiNNaker does not contain hardware for boot-up, data transfer, simulation con-

trol, debugging, proVling or Woating-point computations. Some of these tasks may

be handled entirely by software, some would be signiVcantly enhanced by additional

hardware, and some are simply impossible without; examples include, respectively, on-

board generation of data structures that avoids transmission of large binaries, proVling

of simulation programs at run-time, and single-step debugging of simulations across

multiple processors. Auxiliary hardware may increase chip-design cost and reduce

performance, but certain additions may enormously accelerate the pace of software de-

velopment and debugging. The correct balance between performance and programma-

bility is not obvious, but SpiNNaker may err slightly in favour of the former.

The hardware that SpiNNaker does contain is optimised for a model of simulation in

which spikes innervate synapses that in turn drive neural activity. Processors compute

membrane potentials and synaptic currents, and the communications and memory sys-

tems serve solely to retrieve data with which to feed these computations. The modiVca-

tion and storage of synaptic weights, required for learning through activity-dependent

synaptic plasticity, are therefore cumbersome operations on SpiNNaker. In particu-

lar, processors are insuXciently powerful to compute weight modiVcations for every

inbound synapse, and the latency of the oU-chip memory is such that spike-induced

read-modify-writes on scattered synapses are impractically slow. However, SpiNNaker

is not unusual in this regard: synaptic plasticity algorithms are inherently expensive

and present signiVcant challenges to million-synapse simulations on any architecture.

·

Computer engineering has enjoyed apparently inexorable progress since the devel-

opment of the integrated circuit. The future oUers ever greater computational resources
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and iterations of the SpiNNaker architecture that should improve performance and re-

solve the technical problems noted here. The volumes of neural tissue that can be

feasibly modelled will certainly continue to grow. But the philosophical concerns with

the methodology will require speciVc attention: what is the correct level of abstraction

for models of neural tissue, how might plausible, functional models be constructed, and

what are these models intended to explain?

Neural computation takes place on a continuum of spatial and temporal scales, and

modelling techniques will vary according to the particular scale of interest. This dis-

sertation has considered the immediate cortical response to sensory stimuli in terms

of spikes amongst networks of neurons. The level of abstraction here is neurons and

synapses with simple dynamics that, respectively, generate and respond to action po-

tentials. These components are composed into networks according to an assemblage of

biological data, and are empirically tuned to produce the desired activity. The resulting

models bear little semblance to the tissue, and are consequently limited in explanatory

power as to why, say, certain neuron types have particular physiologies or why they

connect to one another with the synaptic properties observed in vivo. Developments in

both biology and mathematics are required to advance from this position.

Current models of the cortex are necessarily incomplete because no extant dataset

describes the complete composition and connectivity of any cortical area. If plausible

models of the cortex are to be devised, the target tissue must be completely mapped

with a consistent set of techniques and the resulting data must be presented in machine-

readable form. However, any degree of abstraction precludes a pure transliteration from

data to model; an analytical understanding of the dynamics of spiking neural networks

is required if biological observations are to be translated into valid simulations.

Should these developments take place, simulation methodology may produce sig-

niVcant advances in the understanding of the brain. In the process of building valid

models of neural tissue from biological data, with analytical descriptions of the desired

dynamics, we may come to understand the relationships between neural structure and

function that engender the enormous capabilities of the cortex. In simulating such

models, we may reproduce, observe, permute and ultimately explain the fundamental

computations that take place within.
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