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Abstract

This thesis evaluates the capabilities and limitations of the syntax-directed ap-

proach to synthesise high-performance asynchronous systems and proposes a num-

ber of optimisations to improve the performance of the synthesised circuits.

The first part of this work explores new methods for improving the perfor-

mance of asynchronous circuits synthesised from syntax-directed descriptions,

targeting handshake circuits and using the Balsa synthesis system as the research

framework. This includes investigating description styles and the use of language

constructs that result in faster circuits. A number of new peephole optimisations

based on the previous observations are also presented.

The second part investigates the performance of a new, token-flow based syn-

thesiser for the Balsa language called Teak. A set of optimisations based in

circuit transformations and buffering strategies are proposed in order to improve

the performance of Teak circuits. These optimisations have been automated and

incorporated into the Teak synthesiser.

All optimisations target dual-rail, quasi-delay-insensitive implementations as

this is a robust approach that helps to reduce the impact of the timing closure

problem within modern fabrication processes variability. The techniques and

optimisations presented here has been tested in a set of non-trivial examples in-

cluding a 32-bit RISC processor.

The use of the proposed techniques result in optimised compositions of hand-

shake circuits and Teak components that generally synthesise into faster cir-

cuits.
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Chapter 1

Introduction

1.1 Motivation

Asynchronous design has regained interest in recent years due to its potential

advantages over its synchronous (clocked) counterpart. Synchronous digital sys-

tems, which are the basis of most of today’s digital designs, are based on two

major assumptions: all signals are binary and time is discrete, defined by the sys-

tem’s clock signal which controls all communication and event sequencing. These

assumptions simplify greatly the task of design but also lead to clock distribution

and clock skew problems, increased power consumption, coherent electromagnetic

emissions and forcing all parts of the circuit to work at the same (worst-case) rate.

Unlike synchronous systems, asynchronous systems do not rely on a global

clock signal. Instead, these systems use a form of local communication that

comprises handshake signals to request (initiate) the start of an operation and

acknowledge (indicate) to determine its completion.

Asynchronous circuits have some potential advantages over their synchronous

counterparts that make them attractive to use in large VLSI designs. These

include: no clock distribution or clock skew problems, better modularity and

composability, less coherent electromagnetic emissions, automatic power man-

agement, average-case performance and robustness towards variations in supply

voltage, temperature and fabrication process parameters [91, 107, 35, 48, 37, 39].

Synchronous design has the advantage of being a mature technology supported
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by many commercially available Computer-Aided Design (CAD) tools and imple-

mentation alternatives, which cannot be used or provide little support for asyn-

chronous design. The increased interest in asynchronous design has led to the de-

velopment of several methodologies and CAD tools targeted specifically at asyn-

chronous design. Among these, Balsa [5] and TiDE�(formerly Tangram) [23, 83]

are fully-automated systems that have successfully synthesised large-scale circuits

using a process called syntax-directed synthesis. Although these tools greatly im-

prove the design time for a complex system, there is evidence that shows that

this is done at the cost of reduced performance when compared to manual, full-

custom design approaches [36, 84, 11]. If the performance penalty imposed by

the syntax-directed synthesis could be reduced, then this asynchronous design

methodology could be used in performance-demanding, real-world applications.

These applications could then benefit from some of the potential advantages of

asynchronous circuits.

This thesis explores new methods for improving the performance of asyn-

chronous circuits synthesised using the syntax-directed approach. In this work,

the Balsa synthesis system has been used as the research framework. The work

includes investigating description styles and language constructs that result in

faster circuits, new peephole optimisations based on these observations, and the

analysis and optimisation of a novel token-flow implementation for the Balsa lan-

guage, using a new system called Teak, introduced initially in [6]. The synthesis

targets dual-rail, quasi-delay-insensitive implementation (QDI – see section 2.5.3)

as this is a robust approach that helps to reduce the impact of increasingly diffi-

cult timing closure within modern fabrication processes variability.

1.2 Syntax-directed synthesis

The syntax-directed approach to synthesise asynchronous circuits is based in the

compilation of descriptions written in a high-level language into a communicating

network of pre-designed modules. The compilation process performs a mapping

of each language construct into the network of modules that implements it. This

mapping gives a high degree of transparency in the design as incremental changes

to the specification generates predictable changes in the resulting circuit. This

transparency allows the designer to optimise the circuit, in terms of performance,
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power or area, at the language level. The compiled network of components con-

stitutes an intermediate representation that can subsequently be expanded into

gate netlists.

Currently there exists two fully automated CAD systems that use this ap-

proach for the synthesis of asynchronous systems: Timeless Design Environment

(TiDE [23] formerly Tangram [10, 8]) a proprietary system developed at Philips

Research Laboratories, and Balsa [5, 29], an open-source system developed at the

University of Manchester that closely follows the Tangram philosophy.

1.2.1 Tangram and TiDE

Tangram uses a CSP-like description language (the language is also called Tan-

gram), but with a syntax more similar to traditional programming languages

than CSP. Tangram has been used to successfully develop complex asynchronous

chips [39, 105, 58]. The Tangram synthesis system has evolved into TiDE, and

the new version of the Tangram language is now called Haste since the Tangram

system began to form part of the product portfolio of Handshake Solutions [23].

1.2.2 Balsa

Balsa is an open-source package and is freely available from [4]. The Balsa

system is still under development and, from version 3.5.1, incorporates a GUI

user interface with facilities such as project management, editor and behavioural

graphical simulator. Balsa is the name for both the framework for synthesising

asynchronous circuits and the language used to describe such systems. The Balsa

language has support for parameterisation and recursive procedures, records and

symbolic enumerated types, has greater expressiveness than Tangram and is also

more “human readable”.

In both Tangram and Balsa approach to syntax-directed synthesis, the re-

sulting communicating network of components interact using handshake signals.

These networks of handshake components are called handshake circuits.

1.2.3 Handshake circuits and handshake components

A handshake circuit is a communicating network of handshake components (hand-

shake modules) connected point-to-point using handshake channels (see section 2.3).

Each channel connects exactly one passive port of a handshake component to an
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active port of another handshake component. An active port is a port that ini-

tiates the communication by sending a request signal to a passive port. When

ready, the passive port will respond with the acknowledge signal. The handshake

can involve the transfer of data or control to synchronise two processes.
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Figure 1.1: A Handshake Circuit composed of a Transferrer (→) and a False-
Variable (FV) handshake components.

Figure 1.1(a) shows details of a handshake circuit composed of two hand-

shake components: a Transferrer (→) and a FalseVariable (FV) component with

two read ports. In the figure, the components are represented by larger circles,

passive ports by small unfilled circles, and active ports by small filled circles.

Data-less control channels are composed of a request and an acknowledge pair of

wires. Data are represented by thick arrows signalling the direction of data. In

figure 1.1(a), data wires using binary signalling are bundled together with the req

and ack pair to form a bundled-data channel.
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Handshake circuits are not normally represented at the level of detail in fi-

gure 1.1(a). A simplified diagram as shown in 1.1(b) is preferred, where the chan-

nels carrying data are represented as a single arc with an arrowhead signalling

the direction of data; the control (synchronisation) channels are represented by

single arcs. Control direction is implied by the type of port involved.

The circuit operation is as follows:

i. The circuit starts its operation when a request is made to the Transferrer

component on its upper (activate) passive port. Upon receiving this, the

Transferrer issues a request to its environment connected to its active, left

port. This left port is an example of a pull data channel (data flows from

the passive port to the active port). The right port of the Transferrer is

an example of a push data channel (data flows from the active port to the

passive port).

ii. Eventually, the environment will respond with the data and the acknowl-

edgement. The Transferrer in turn passes it as a request to the FalseVari-

able component at its right.

iii. The FalseVariable receives this request and issues a request on its syn-

chronisation signal port, indicating that another process can safely read

data from the read ports until the handshake in the signal port has been

acknowledged.

iv. The environment connected to the read and signal ports may read the data

zero or more times and when done, sends an acknowledgement on signal.

v. After receiving the acknowledgement on signal, the FalseVariable sends

back an acknowledgement to the Transferrer which in turn passes it to the

activate channel.

vi. The environment connected to the activate will eventually remove the re-

quest, which in turn causes the Transferrer to finish the handshake in its

left channel, terminating the transfer. Note that the handshake on the ac-

tivation port of the Transferrer encloses full handshakes on its input and

output ports.

As an example of syntax-directed translation into handshake circuits, consider

the Balsa specification for a simple 1-place buffer (register) shown in figure 1.2(a).
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The specification is parameterised in the type of data the register can hold. The

register has an input channel inp and an output channel out. The variable v

stores the data and the operation consists of an infinite repetition (loop) of two

actions: transfer of data (<-) from channel inp into v sequenced (;) with the

transfer (->) of data stored in v to the channel out.

procedure buffer 

(

  parameter DataType : type;

  input inp  : DataType;

  output out : DataType

) is

  variable v : Datatype

begin

      loop

        inp -> v

        ;

        out <- v

    end

end

activate

inp out

control

datapath

*

buf

21

;

(a) (b)

Figure 1.2: 1-place buffer: (a) Balsa description, (b) handshake circuit.

Figure 1.2(b) shows the handshake circuit generated by Balsa from the code

in 1.2(a). A Transferrer component (→) connects the input channel to the write

port of the Variable component (v) that acts as the variable v of the description.

The read port of v is connected to the output using a second Transferrer. A

Sequencer (;) is used to sequence the writing to and the reading from v, and a

Loop (∗)component activates the Sequencer repeatedly. Given that many hand-

shake components have simple implementations (for instance, a Transferrer can

be implemented using only wires and the Loop using a NOR gate), the resulting

synthesised circuit is not complex.

1.3 Optimising handshake circuits

As stated before, the syntax-directed syntax paradigm is attractive in terms of

flexibility and compilation simplicity, but these come at the cost of low to mod-

erate performance. In general, Balsa/Tangram translation generates a datapath

section together with a control tree which mirrors the control flow of the lan-

guage description as shown in figure 1.2(a). For this reason, the translation is
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also described as control-driven. The overhead of this control-driven approach has

been identified as one of the major causes of performance penalty in handshake

circuits.

Previous work in handshake circuits optimisation include peephole optimisa-

tions [83], more concurrent designs for handshake components [85] and control

resynthesis [19, 33]. The following sections introduce recent work on the optimi-

sation of handshake circuits.

1.3.1 Push data-driven handshake circuits

In an attempt to reduce this penalty, Taylor [100] introduced a novel data-driven

circuit style, together with a new description language and compiler, which pro-

duced significant performance increases in the synthesised circuits compared to

those generated by conventional Balsa/Tangram. This approach is based on re-

ducing the control overhead by using the following techniques:� all control is activated in parallel.� sequencing is localised to storage elements (variables). This ensures that

storage elements are not concurrently read and written and allows the read

and write sections of control to operate in parallel.� data processing makes use of push-only structures and operations are spec-

ulatively executed to allow control and data sections to operate in parallel.

The techniques above are enforced by a more restrictive description language

syntax. In particular, variables have a write-once, read-once behaviour, which

means that they must be read every time they are written and they must be

written before they can be read. Also, conditional multicasting of a channel

value is replaced by speculative broadcasting to all possible destinations together

with a rejection mechanism to discard unwanted data at the places where the

condition states that data is not required. These and other restrictions make

the generation of very small, localised control trees, possibly reducing the control

overhead and improving performance. However, this is done at the expense of

significantly larger area, energy use and reduced flexibility at the description level.
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1.3.2 Automated source-to-source transformations

In [47] Hansen and Singh describe a series of automated “source-to-source” trans-

formations that optimises syntax-directed descriptions using a variety of concur-

rency enhancing optimisations. Although considerable speed-ups are claimed,

some of the examples used start with extremely näıve code sequences, so it is

easy to obtain significant improvements. Also, their proposed approach is limited

to slack elastic [64] systems descriptions only (a slack elastic system preserves

correct operation even if extra pipeline buffer stages are introduced in any chan-

nel). This limitation reduces the usefulness of an “automated” approach as it is

frequently necessary for the designer to understand the nature of the transfor-

mations to ensure they are safe, which may represent a considerable extra design

effort to the user.

1.3.3 Behavioural synthesis of asynchronous circuits

In another recent work, Nielsen et al. [75, 76] presented a method for automatic

behavioural synthesis of asynchronous circuits using syntax-directed translation

as backend. The initial development was based on the Balsa framework but

the final automated tool targets the Haste/TiDE design flow. Input to the tool

is a behavioural description in the Haste language (both Haste and Balsa are

behavioural languages). From this description, the tool extracts a Control Data

Flow Graph, CDFG [1] (a directed graph that does not contain cycles and in

which a node can be either an operation node or a control node and edges carry

data and reflect dependencies between computations).

The CDFG representation of the original description is then used as the in-

put to the behavioural synthesis which performs scheduling (time slot alloca-

tion), allocation (finding the minimum required hardware resources) and bind-

ing (mapping of operators and variables into the different resources available).

The behavioural synthesis targets an architecture consisting of a datapath and a

controller, similar to that used in synchronous synthesis but the architecture is

constructed entirely from asynchronous handshake components. The final step is

the mapping of the generated architecture into a new optimised Haste descrip-

tion. The overall effect is a source-to-source translation of the original description

guided by either minimum area (by limiting the available resources) or minimum

latency constraints. An interesting feature of this approach is the possibility of
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performing constraint-driven automated design-space exploration.

Average area reductions of 30% and average speed-ups of 40% are reported

when applied to a series of digital filter designs. However, it is also reported

in [75] that “the origin of this large improvement lies in the fact that the source

code is written for code maintainability, which is usually far from the optimal

execution of operations”. In common with the previous approach, the quality of

the input description will influence the results of the optimisations.

1.4 Teak

Teak[6] is a data-driven implementation for the Balsa language, which uses a new

target component set and synthesis scheme. Teak replaces the data-less activa-

tion channel (used to enclose the behaviour of description fragments in handshake

circuits synthesis) with separate go and done channels. Control/datapath interac-

tions using components which exploit signal-level event interleaving are replaced

by the forking/rendezvous of control and data channels with local handshaking to

complete control interactions. This separation of go and done makes Teak much

more like the Macromodules system [93] than Handshake Circuits, albeit with

more flexibility in the elimination of control channels through merging with data

channels. Explicit buffering is used to decouple one component from another and

to introduce the desired degree of token storage to enable the circuit to function

and, looking beyond this work, to allow more transforming synthesis methods to

increase circuit parallelism.

buf
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Figure 1.3: Teak circuit for the 1-place buffer.

Figure 1.3 shows the buffer example in 1.2 constructed from Teak components.

Notice that, rather than a composition of enclosing control components the Loop
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... end construct has become a loop comprised of a Merge (M ) to introduce the

‘go’ token, a Join (J ) to meet incoming data, and a Fork (F ) to return a token

back around the loop after the output command. The aim of Teak is to provide

a path for future performance increases in Balsa by exploiting high performance

pipelined asynchronous circuit styles. More details on the Teak system will be

introduced in chapter 5.

1.5 Aims of this research

The aim of this research is to explore new alternatives to increase the perfor-

mance of synthesised circuits using the syntax-directed synthesis paradigm. This

work targets dual-rail, quasi-delay-insensitive implementation as this is a robust

approach that helps to reduce the impact of increasingly difficult timing closure

within modern fabrication processes variability [14, 52].

Having a highly expressive, high-level description language like Balsa or Haste

can result in näıve, poor performance descriptions for a novice or even a medium-

experienced designer due to the directness of the synthesis method. Furthermore,

it is always claimed that in this approach, an experienced designer could make

performance/power/area trade-offs. This task would be easier if the designer

could have some insight of the impact of a particular construct or coding style.

In contrast with other optimisation approaches, the approach used in the first

part of this work is to help the designer select a coding style that results in more

concurrent, faster implementations, while providing insight about the trade-offs

made. The coding techniques presented here could also serve as a source for

future optimising compilers. This work also explores further optimisations on

circuits synthesised from highly optimised Balsa code and proposes some circuit

transformations and new peephole optimisations that help to increase further the

benefits of the performance-oriented coding style.

The second part of this work analyses the circuits generated by the new data-

driven based Teak synthesis scheme as a more flexible alternative to implement

data-driven circuits. A set of optimisations based on circuit transformations and

buffering strategies are proposed in order to improve the performance of Teak

circuits. These optimisations have been automated and incorporated into the

Teak synthesiser.
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The increase on performance of the above mentioned techniques and optimi-

sations are demonstrated using substantial Balsa designs written by both novice

and experienced users. The examples include a 32-bit RISC processor, a forward-

ing unit for this processor, a 32-bit Booth’s multiplier, a Viterbi decoder and a

wormhole router. Although area and power are not considered as an optimisation

target, area/power savings or penalties are shown for the evaluated examples and

proposed optimisations.

1.6 Contribution of this research

The research work presented in this thesis contributes to the field of synthesis of

asynchronous circuits in several aspects, including:� An evaluation of the synthesis of high-performance asynchronous systems

using the syntax-directed synthesis approach targeting handshake circuits.� Performance-oriented language techniques that can be used to describe

asynchronous systems within a syntax-directed synthesis framework and

their evaluation. These techniques can also serve as the basis for develop-

ing optimising syntax-directed compilers targeting handshake circuits.� New performance-oriented handshake circuits peephole optimisations and

their evaluation.� An evaluation of the performance of the new Teak synthesis system and a

set of automated circuit optimisation rules that increase the performance

of the Teak-generated circuits.� An automated set of rules to implement latch insertion in the Teak synthesis

system.� The evaluation of a number of substantial examples using the techniques de-

veloped during the course of this research and that can be used as reference

for future research.

1.7 Thesis organisation

This thesis is organised as follows:
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Chapter 2 presents an overview of the asynchronous design methodologies

including commonly used handshake protocols, synthesis of QDI datapaths, syn-

thesis of control circuits and major asynchronous synthesis tools.

Chapter 3 presents an introduction to the Balsa Synthesis System and the

Balsa language.

Chapter 4 introduces and analyses a set of description-level performance-

oriented techniques for the Balsa language, which target handshake circuits syn-

thesis. A number of new peephole optimisations that increase the performance

of the synthesised circuits are presented.

Chapter 5 introduces the Teak synthesis system and component set, together

with a number of circuit-level optimisations that have been incorporated in the

Teak synthesis tools. This chapter also discusses the impact of description-level

styles in the performance of the Teak-synthesised circuits.

Chapter 6 introduces a range of latching strategies currently implemented in

the Teak system. An analysis on the complexity of the latching strategies and

resulting performance is also presented.

Chapter 7 describes a number of design examples that have been developed to

evaluate the impact on performance of the techniques proposed in this research.

Simulation results of these examples for both Balsa an Teak styles are presented

and discussed.

Chapter 8 present the conclusions and summary of this research work and

discusses future work.
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Chapter 2

Background

2.1 Introduction

This chapter presents an overview of basic concepts of asynchronous digital cir-

cuits and the most common handshake protocols used in asynchronous design.

The chapter also introduces the various delay models used in the design of asyn-

chronous circuits and the concepts of indication, speed-independency, delay in-

sensitivity and quasi-delay insensitivity (QDI). Finally, the chapter presents an

overview of the tools and methodologies most commonly used for the synthesis

of asynchronous circuits.

2.2 Asynchronous Circuits

Asynchronous systems do not rely on a global clock signal to control communica-

tions and event sequencing. Instead, communication between two asynchronous

components is implemented as a handshake protocol using handshake signals to

request (initiate) the start of an operation and acknowledge (indicate) to deter-

mine its completion.

There are several properties of asynchronous circuits that make them attrac-

tive to use in large VLSI designs, including:� No clock distribution or clock skew problems: It is well known that dis-

tributing a clock across the chip whilst both minimising the area, power

used and the skew between clock arrival at different points of the system is

one of the major problems in synchronous design. Eliminating the global

32
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clock signal, automatically eliminates these problems.� Better modularity and composability: As communication between modules

depends only on the handshake interface compatibility and not on global

timing constraints, modules can be reused and composed as long as their

interfaces are compatible [66, 71, 8]. This can be very attractive to modern

System On Chip (SoC) and reconfigurable processors.� Lower electromagnetic interference (EMI): Synchronous circuits switch at

fixed frequencies, generating a spectrum with relatively higher localised

energy at multiples of the clock. Asynchronous circuits only switch during

information exchange and the local switching frequency is less coherent,

generating a broader emissions spectrum [11, 79, 9].� Lower power consumption: In synchronous circuits, the clock global clock

forces to switch all latching stages, unless complex clock gating circuitry

is added to enable clocking only to stages where useful work is done. In

asynchronous circuits, switching occurs only where the circuits are compu-

ting, there is no power wastage in unnecessary switching if the circuits are

idle [9, 74].� Average-case performance: In a clocked system, the clock period of the

system is dictated by the slowest unit, hence the system operates at worst-

case. In asynchronous circuits each unit operates at its own speed, giving

the possibility of average-case operation [69, 113].� Robustness towards variations in supply voltage, temperature and fabrica-

tion process parameters: In asynchronous circuits, the circuit can be insen-

sitive to wires and gates delays, apart from some localised and easy to meet

delay assumptions, reducing the effect of variations on the correct operation

of the circuit [68, 74]. Variability has become a major issue in modern fab-

rication technologies and quasi-delay insensitive asynchronous circuits (see

section 2.5.3) are being seen as an attractive solution to this problem.

However, asynchronous design has also some disadvantages, which include:� Increased area and circuit complexity: In order to provide the local hand-

shaking, it is necessary to add circuitry to each asynchronous module. The
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solutions to this problem translate into area, power and performance over-

heads. In contrast, synchronous circuits just use the global clock as the

communications control.� Lack of design tools: Modern VLSI circuits cannot be designed without the

support of CAD tools for the synthesis, simulation, testing and validation

processes. Synchronous design is a mature methodology fully supported

by industry CAD tools which have little or no support for asynchronous

methodologies. Only recently has TiDE� [23], a fully-automated commer-

cial tool for asynchronous design with capabilities similar to those present

in synchronous tools, been made available. There are also some academic

tools like Balsa (freely available) and CAST (not available outside Caltech),

but in general they are still far from the maturity and industrial acceptance

of today’s synchronous tools.� Learning curve: Designers used to thinking “synchronously” will need to

learn an arguably more difficult design methodology in order to exploit the

benefits of asynchronous design. The lockstep, deterministic behaviour of

synchronous designs is simpler to understand than the concurrent, non-

deterministic behaviour of true asynchronous circuits.

2.3 Handshake protocols and data encoding

In circuits that communicate using handshake channels (composed of handshake

signals), the unit that initiates (requests) the communication is called the active

party and the unit that responds is referred to as the passive party. If, as in

figure 2.1(a), the sender of data is the active party the channel is called a push

channel. In figure 2.1(b) it is the receiver who initiates the communication and

this channel is called a pull channel. In abstract diagrams, it is common to

identify the active end of a channel using a black dot.

There are several common asynchronous handshake protocols named accord-

ing to the encoding used for handshake and data signals. This section describes

the most common of them.
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Figure 2.1: Bundled-data channels.

2.3.1 Bundled-data protocols

In bundled-data protocols there are separate wires for req and ack signals which

are bundled with binary data wires to form the channel, as shown in figure 2.1.

Because in this protocol data is encoded using one wire per bit, it is also called

single-rail.

Two-phase bundled-data

Figure 2.2 shows a timing diagram of a two-phase bundled-data handshake pro-

tocol. The active party initiates the handshaking phase by transitioning the req

signal. The other party terminates the handshake by transitioning the ack signal

and takes the channel to the quiescent (idle) phase and data becomes invalid

until a new request is generated by the active party. In the figure, invalid data

is shown as hashed lines and implicit signal causality is shown with dashed lines.

This implicit signal ordering must be enforced in bundled-data circuits by us-

ing delay matching. Two-phase protocols are also known as Non-Return-to-Zero

(NRZ) protocols.

(a) push channel

ack

req

data

ack

req

data

(b) pull channel

Figure 2.2: Two-phase bundled-data protocol.
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Two-phase protocols are very efficient in time because there are no redun-

dant phases, but normally require more complex circuits to implement than the

four-phase protocol described in next section. The overhead due to the circuits’

complexity often reduces the advantages of not having redundant phases.

Four-phase bundled-data

In four-phase protocols, the request and acknowledge signals are level-encoded.

Figure 2.3(a) shows a timing diagram for a push channel using a four-phase

protocol. In this example, the active party first issues the data and then initiates

the handshake by setting the req signal high. The passive acknowledge the data

by setting ack high. Upon receiving the acknowledge, the active party returns

the req signal to zero. finally, the receiver detects the return to zero of req and

acknowledges this by taking ack low, allowing a new handshake to start.

(a) push channel

data

ack

req

(b) pull channel

data

ack

req

Figure 2.3: Four-phase bundled-data protocol.

Due to presence of the return to zero phases these protocols are also known

as Return-To-Zero (RTZ) protocols. Depending on the interval that valid data

is available there are a number of different data-valid conventions for this pro-

tocol [83]. Figure 2.4 shows the data-valid schemes for a push channel. In the

figure, the early data scheme uses req ↑ as the data validity event and ack ↑ as

the data release event. The broad scheme uses req ↑ as data-valid and ack ↓ as

data-release. In the late scheme, req ↓ is the data-valid signal and ack ↓ is the

data-release.

For a pull channel, figure 2.5 shows that the early data scheme uses ack ↑ as

the data validity signal and req ↓ as the data release signal. The broad scheme

uses ack ↑ as data-valid and req ↑ (of the next handshake) as data-release. In

the late scheme, ack ↓ is the data-valid signal and req ↑ of the next handshake

is the data-release. Analysis and comments on the advantages and disadvantages

of each of these schemes when used in real systems can be found in [83, 5, 17].
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Figure 2.4: Four-phase data-validity schemes for a push channel.
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Figure 2.5: Four-phase data-validity schemes for a pull channel.
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Compared to two-phase bundle-data protocols, four-phase bundled-data pro-

tocols have the advantage of using simpler circuits which result in smaller and

faster designs, despite requiring more transitions per handshake (which results in

more energy consumption).

Delay matching

Bundled-data protocols rely on the timing assumption that the order of events

in the sender is preserved at the receiver. For instance, in a push channel data

must always be valid before req ↑. Delays in control and data wires must be

matched adequately to make sure that the order of events is preserved at the

sender and receiver ends. For instance, in the protocol diagram of figure 2.3,

valid data must precede the req signal in order to guarantee correct operation.

This implicit causality is showed with dotted lines in figures 2.2 and 2.3.

A physical implementation of a circuit that uses these protocols must take

this into account to avoid operational failures. Controlled placement and rout-

ing of wires, buffer insertion to adjust delays, and use of safety margins at the

receiver’s end, are possible solutions to this problem. These timing closure prob-

lems are similar to those in synchronous circuits, making bundled-data protocols

unattractive to use with deep sub-micron fabrication processes affected by large

variability in the parameters of the transistors. An alternative to these is to use

a more robust class of protocols that are insensitive to wire delays, such as the

dual-rail protocols.

2.3.2 Dual-rail protocols

These protocols make use of the dual-rail code to transmit both data and data

validity indication on the same set of wires, eliminating the timing assumptions.

The dual-rail code is a member of the family of delay-insensitive codes [110]. This

encoding method allows a reliable communication between two parties regardless

of the delay in the wires.

Dual-rail code

In a dual-rail code the data is encoded using two wires per bit, d.t for signalling a

logic 1 (true) and d.f for signalling a logic 0 (false). The pair of wires {d.t, d.f}

form a code whose codewords are shown in table 2.1.
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d.t d.f meaning

0 0 Empty

0 1 Valid ”0”

1 0 Valid ”1”

1 1 Not used

Table 2.1: Dual-rail encoding for 1-bit

This encoding scheme can be easily extended to an n-bit channel. An n-

bit channel is formed by concatenating n bits coded in dual-rail as above. For

a codeword to be valid, every pair of wires must hold a valid code. Similarly,

the empty codeword (also referred to as spacer or NULL) occurs when all bit

pairs contain the empty code. In this way, when data changes from empty to

valid (or vice versa) no intermediate value is valid. This property makes dual-

rail encoding a more robust option that helps to reduce the impact of the timing

closure problem caused by process variability, despite the fact of using more wires.

The price to be paid for this advantage is some extra complexity, area, energy

and performance penalties (see section 2.5.3).

The four-phase dual-rail protocol

In this protocol either the request signal and data (push channel) or the acknowl-

edge signal and data (pull channel) are encoded together using the dual-rail code.

Figure 2.6 shows a 1-bit push channel using the four-phase dual-rail protocol.

sender receiver

d.t

d.f

ack

(a)

ack

Valid Empty ValidEmpty{d.t, d.f}

data

(b)

Figure 2.6: Four-phase dual-rail protocol. (a) push channel, (b) timing diagram.

Assuming that initially all signals are low, request is indicated by issuing a

valid codeword on the data wires. Before another request can be made, the data

wires must assume the empty value. The receiver identifies that data is valid

when all bit pairs have become valid, then reads the data and issues ack ↑. The

sender detects the acknowledgement and changes the bits to the empty state .
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The receiver then identifies when all the bits have become empty and responds

with ack ↓, allowing the sender initiate a new handshake. Figure 2.7 shows a

simplified timing diagram of this operation for an n-bit push channel.

1

3

2 4

sender receiver
0{d.t, d.f}

ack

n−1{d.t, d.f}

1

0

All Empty

All Valid

data

ack

time

time

(b)

(a)

Figure 2.7: n-bit four-phase dual-rail protocol in a push channel.

The Two-phase dual-rail protocol

This protocol also uses two wires per bit but the information is encoded as tran-

sitions instead of logic levels. On an n-bit channel, a new codeword is received

when exactly one wire per bit has made a transition. In this case there is no empty

value: a valid codeword is acknowledged and the sender can change one wire per

bit again to send another codeword. Figure 2.8(b) shows a timing diagram of a

2-bit push channel using this protocol.

2.4 Operation modes

Operation modes specify the restrictions the circuit is subject to when commu-

nicating with the environment in order to operate correctly. The most common

operation modes for asynchronous circuits are described below.
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d.f

d.t

d.f

ack

0

0

1

1

d.t

Data value: 10 0000 01

Figure 2.8: Two-phase dual-rail protocol in a 2-bit push channel.

2.4.1 Fundamental Mode Circuits

Circuits having this model are also called Huffman circuits after D.A. Huffman,

who was the developer of many theoretical concepts about these circuits. The

design method of fundamental mode circuits is similar to the method used for

designing synchronous circuits (finite state machine approach). However, as there

is no clock to indicate when the signals are valid, the following constraints to the

environment apply:

i. only one external input can change at a time.

ii. the environment must wait until the whole circuit settles into a stable state

(as a result of a previous input change) before changing one of the inputs.

These strong restrictions help to make the design process easier at the expense

of increasing the response time. This method is not practical for complex designs

with a large number of state variables due to the exponential increase in the

number of possible states.
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2.4.2 Burst-Mode circuits

This model was developed by Nowick, Youn and Dill [77, 78, 117]. The model

relaxes the restriction of fundamental mode by allowing a group of inputs (input

burst) to change in order to move from one state into another. The following are

the restrictions used in the burst-mode model:

i. the inputs in a burst are allowed to change in any order but the machine

will not react until the entire group of inputs has changed.

ii. after the burst has occurred, the machine generates the specified output

burst.

iii. new burst is allowed only after the machine has completely stabilised after

reacting to the previous input burst.

Several tools exist to synthesise circuits using burst-mode. Minimalist [34],

developed at Columbia University, is one of the more sophisticated examples.

Chelcea et al. [19] developed a burst-mode oriented back-end for the Balsa Syn-

thesis System.

2.4.3 Input-output mode

In this model, the environment cannot excite a circuit until it has responded to the

previous excitation by changing the value of the output. Note that no assumption

is made with respect to the settling of the internal signals. The environment is

also allowed to change at any time the values of inputs that do not excite the

circuit. The implied causality of the input and output transitions results in more

relaxed constraints on the environment connected to input-output mode circuits,

but also in more complex interfaces. Different synthesis tools are based on input-

output mode, making use of Petri-nets(see section 2.6.1) techniques to facilitate

the modelling of circuit interfaces.

2.5 Delay models

Together with the operation mode, in the design of asynchronous circuits some

timing assumptions are used, generating a number of delay models. These as-

sumptions allow simplifications to the modelling of the systems. Delay models

fall into two main categories: bounded-delay and unbounded-delay.
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In a bounded-delay model, the propagation delay of circuit components and

wires is bounded. Bounded-delay models are used in the datapath of bundled-data

handshaking, and in fundamental mode and burst-mode circuits. Synchronous

circuits also make use of a bounded-delay assumption because the maximum delay

cannot exceed the length of the clock period.

An unbounded-delay model circuit, the propagation delay of all or some of the

circuit components is unbounded. The most common unbounded-delay models

include Speed-Independent, Delay-Insensitive and Quasi-Delay-Insensitive.

2.5.1 Speed-independent (SI) circuits

The speed-independent model is based on the theory developed by David Muller [71].

A circuit that is speed-independent assumes positive, unbounded delays for the

elements of the circuit (gates) and zero or negligible delay in the wires. In this

model, gates are modelled as Boolean operators and, at any given time, each gate

of the circuit can be in one of two states:� stable: The output of the gate is consistent with the value implied by the

values of its inputs; its “next output” is the same as its “current output”.� excited: The inputs of the gate have changed but the corresponding output

change is about to occur; its “next output” is different from its “current

output”

When an excited gate finally changes its output after some arbitrary delay

and becomes stable, the gate “fires”. This in turn may excite other gates which

will eventually fire and so on. The requirements for a circuit designed in this way

are that once excited, a gate must fire and remain in that state until its inputs

change again. This removes any hazards and guarantees monotonic transitions.

Modelling SI circuits requires a state variable for each node of the circuit making

the space state very large even for small circuits. Some of the synthesis techniques

for SI make use of Signal Transition Graphs (STGs – see section 2.6.1) as an

efficient way of representing all possible firing sequences.

2.5.2 Delay-insensitive (DI) circuits

In delay-insensitive circuits all wires and circuit elements can have positive, un-

bounded delay. With this assumption, an element that receives an input signal is
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forced to indicate (acknowledge) to the sender when it has received the informa-

tion. This is known as the principle of acknowledgement [91]. No new changes

can occur at the input before receiving the acknowledge signal.

Consider for instance a two-input AND gate: If both inputs are high, the

output is high and, in this case, a change in any of the inputs will generate a

change in the output (the output acknowledges (or indicates) the change at the

input). In the case when both inputs were low, a change in any input would

not be indicated by the output. A similar situation will occur with other input

combinations or by using a different basic gate. This analysis can be easily

extended to any basic gate with n-inputs and a single output (n ≥ 2).

The DI model is a very robust model, however, it has limitations if applied

to general circuit design due to its heavy restrictions. It is trivial to show that

the basic single output gates AND, NAND, OR, NOR or XOR cannot indicate

all the possible transitions that can occur at their inputs. For this reason, they

cannot be used to build a DI circuit.

The only n-input, single-output gate that can be safely used in DI circuit must

be one that only allows transitions on all of its inputs before generating a new

transition on its output. This class of gate is called the Muller C-element [71].

Due to this restriction, the class of delay-insensitive circuits happens to be very

limited. It has been demonstrated that only circuits composed of C-elements

and inverters can be delay insensitive [67]. Figure 2.9 shows the symbol and the

specification for a two-input C-element.

 a     b     output

 0     0        0

 0     1    no change

 1     0    no change  

 1     1        1

a

b outputC

Symbol Function Table

Figure 2.9: The Muller C-element.

2.5.3 Quasi-delay insensitive (QDI) circuits

This model uses the DI assumptions with the addition of isochronic forks [65].

Isochronic forks are forking wires where the difference in delays between the

destinations is negligible. This allows a signal that is routed to different places

to be safely acknowledged by only one of the ends, simplifying the design of the
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circuits. Using this restriction, a QDI circuit is equivalent to an SI circuit if the

wire delays are lumped into the unbounded-delay gates.

It is possible to extend the isochronic fork assumption to the output of the

gates driven by the fork (extended isochronic fork) [109]. This assumption can

be extended through more than one level of gates at the cost of making the

circuit less robust. The type of circuits that uses the extended isochronic fork are

referred to as QnDI.

2.6 Asynchronous synthesis

With the level of complexity in today’s designs, high-level modelling and synthesis

is a necessary requirement. The use of of a high-level based synthesis can also re-

duce the design time compared to full-custom, hand-made designs. Asynchronous

designers have today a set of automated and partially-automated synthesis tools

available that allow the description and synthesis of complete systems including

control and datapath elements (also referred to as functional blocks). This

section briefly introduces some of the most popular approaches and synthesis

tools available for the design of asynchronous circuits.

2.6.1 Synthesis of SI control circuits

Control circuits are required within an asynchronous environment in order to

generate the events that guarantee the correct sequence of operation for other

components. In the SI approach the designer must specify all possible sequences

of input and output signal transitions that describe the restrictions on the cir-

cuit environment. This specification can be done using Signal Transition Graphs

(STGs) [20], [21]. STGs belong to the family of models called Petri Nets [72].

A brief introduction to Petri Nets and STGs are given below, followed by an

introduction to the STG-based synthesis tool Petrify [25].

Petri nets

A Petri net is a graph composed of directed arcs and two types of nodes: transi-

tions and places. Arcs can only run between places and transitions. The places

from which an arc runs to a transition are called the input places of the transi-

tion; the places to which arcs run from a transition are called the output places
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of the transition. Places may contain any number of tokens. A distribution of

tokens over the places of a net is called a marking. A Petri Net model can be

“executed by” firing transitions. A transition is enabled to fire if there are tokens

in all of its input places. When a transition fires, it consumes the tokens from

its input places, performs some processing task, and places a specified number

of tokens into each of its output places. This is done atomically, in one single

non-pre-emptive step. During the execution, multiple transitions can be enabled

and they will fire at any time, and it is also possible for an enabled transition

not to fire at all. This non-deterministic behaviour makes Petri nets to be well

suited for modelling the concurrent behaviour of distributed systems.

Timing diagram

Left Right

Petri net

T−element

STG

T−element and its dummy environments

Or+

Oa+

Or−

Oa−Ia−

Ir−

Ia+

Ir+

Oa−

Or−

Oa+

Or+

Ir

Ia Oa

Or Ir

Ia

Or

Oa

Ir+

Ia+

Ir−

Ia−

Figure 2.10: A T-element connected to left and right “well behaved” environments
and its specification in the form of a timing diagram, a Petri net and an STG.
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As an example of Petri-nets usage, consider the specification of an auto-

sweeping module [73], (most commonly called a T-element) shown in figure 2.10.

T-elements are used in handshake control circuits that implement handshake en-

closure (the handshake of the right side is enclosed within the handshake of

the left side), parallelisation and sequencing of operations, with concurrent RTZ

phases [73, 89, 57, 82].

In the Petri net of figure 2.10, signal transitions are represented by horizontal

bars and places with circles. Tokens are represented by black dots inside a place.

A transition from 0 to 1 in signal x is represented by x+; similarly, a transition

from 1 to 0 is represented by x−. The graph is marked with a token in the input

place of the Ir+ transition. The T-element is connected to a “well behaved”

dummy environments on the left and right hand sides that allow changes on the

inputs only after the T-element has changed its output responding to a previous

request. In this situation, the Ir+, Or+ Oa+ transitions must fire in sequence.

After the firing of Oa+, a token is placed in the input place of Ia+ transition

and another token is placed in the input place of the Or− transition, allowing

these transitions to fire and so on. Note that the execution of Ia+ followed by

Ir− is allowed to occur concurrently with the execution of Or− followed by Oa−.

Signal Transition Graphs

An STG is a Petri net with the following characteristics [91], [48]:

i. Input free choice: The selection among alternatives must only be controlled

by mutually exclusive inputs.

ii. 1-bounded : There must never be more than one token on an arc.

iii. Liveness : the STG must be free from deadlocks. That means that from

every reachable marking, every transition can eventually be fired.

iv. Consistent state assignment : The transitions of a signal must strictly alter-

nate between + and −.

v. Persistence: For all arcs a∗ → b∗ in the STG (where t∗ means transition t+

or t−), there must be other arcs that insure that b∗ fires before the opposite

transition of a∗ occurs.
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vi. Complete state coding (CSC): Two or more different markings of the STG

must not have the same signal values (i.e., correspond to the same state).

If this is not the case, it is necessary to introduce extra variables such that

different markings corresponds to different states.

STGs represent synthesisable circuit implementations. Figure 2.10 shows the

STG specification of a T-element equivalent to the Petri-net at its left. Compared

to a Petri net diagram, in an STG, labelled transitions are replaced with its label,

and places with a single input and output are omitted. As shown in the figure, the

tokens in these omitted places are placed on the corresponding arcs. Transitions

corresponding to inputs are distinguished by underlines. In the example, the

original Petri-net is 1-bounded with no choice, hence a circuit implementation

may be synthesised.

Petrify

Petrify [25] is a public domain synthesis tool for manipulating Petri nets and for

synthesising SI control circuits from STG specifications. STG descriptions for

Petrify are written in plain text. Petrify can solve CSC violations by automati-

cally inserting state variables. From the STG specification Petrify can produce

either a complex-gate circuit, a generalised C-element circuit or map the circuit

onto a gate library supplied by the user.

2.6.2 Communicating Hardware Processes (CHP) and the

Caltech Asynchronous Synthesis Tool (CAST)

The CHP synthesis system was developed at Caltech by A.J. Martin[66]. CHP

language has a syntax similar to the concurrent programming language Commu-

nicating Sequential Processes (CSP) [50], using various special symbols. Design

flow in CHP starts with a specification of the system in the CHP language. The

first step is to reduce complex control structures found in the specification into

combinations of simple processes. In a second step, these processes are then

expanded into four-phase handshake protocols (handshake expansion - HSE) to

convert them into sets of transitions. In order to distinguish ambiguous states,

reshuffling and variable insertion is performed and, finally, production rule sets

(PRS) are generated, which can be mapped into a physical circuit realisation,

targeting a specific building block called PHCB (precharge half-buffer). Many



Section 2.6 Asynchronous synthesis 49

of the above steps require user intervention and guidance and this may have a

significant impact in the performance and area of the synthesised circuit.

The Caltech Asynchronous Synthesis Tool (CAST) is a suite of design tools

based in CHP that provides modules to refine CHP descriptions, translate CHP

descriptions into HSE, HSE into PRS and mapping PRS into PHCB circuit net-

works. CAST has been used to synthesise complex chips, including the MIPS

R3000 [69] and the Luthonium 18 (a 8051 clone) [70], but these rely on sig-

nificant manual intervention in the synthesis flow to achieve the most effective

program transformations. Another issue is that the automatic program trans-

formations used in CAST are not behaviour preserving and are only correct for

designs that meet particular requirements, which may not be straightforward to

an inexperienced designer. CAST tools are currently only available internally at

Caltech.

TIMA Asynchronous digital systems Synthesis Tool (TAST)

TAST (Tool for Asynchronous circuits SynThesis)[104] is a compiler/synthesis

tool that synthesises asynchronous systems from a specification written in CHP.

The compiler analyses the given specification and transforms it into an internal

format based on Petri Nets and Data Flow Graphs. From this intermediate form

the user can generate:� a functional VHDL description of the model for simulation purposes.� an RTL VHDL description, which can be used to target ASICs or FPGAs

technologies by means of standard CAD tools.� an asynchronous circuit. However, in this case, CHP descriptions must

be written using the Data Transfer Level (DTL) style subject to certain

rules to ensure a correct mapping [28]. If the mapping is possible, a gate

netlist is produced. The gate netlist can either be simulated using standard

CAD tools or used to implement the circuit through a technology mapping

process that requires a specialised TAST cell library.



50 Chapter 2 Background

2.6.3 Macromodular based synthesis

The Macromodular methodologies make use of pre-designed blocks (the macro-

modules)that communicate asynchronously using handshake channels. Macro-

modules were first proposed by Clark in Washington University [22] during the

late 1960’s. More recently, Brunvand introduced a macromodular synthesis sys-

tem [18], making use of the channel-based, CSP-like programming language Oc-

cam [63] to describe circuits. Descriptions are automatically synthesised into com-

positions of control, variable read/write and datapath macrocells implemented

with 2-phase signalling with bundled data. Plana [87] describes a system of

macromodules to construct asynchronous circuits that communicates using pulse-

mode [56] handshaking. The macromodules are described using petri-nets with

signal pulse labelled transitions. The examples of pulse-mode circuits given by

Plana were constructed by hand but they are specified using a pseudo-code that

could be the basis for a synthesis system.

The handshake circuits paradigm proposed by van Berkel for use in the Tan-

gram tool is another approach to macromodular synthesis. Tangram TiDE and

Balsa synthesis tools are all based in the transparent compilation and the hand-

shake circuits paradigm (c.f 1). They use CSP-like description language but with

a syntax more similar to traditional programming languages than CHP. TiDE and

Balsa are currently the major fully-automated synthesis systems for asynchronous

design.

Due to its relevance to the work in this thesis, a more complete introduction

to the Balsa synthesis system will be presented in chapter 3. Details of Teak[6],

a novel data-flow implementation for the Balsa language, will be introduced in

chapter 5.

2.6.4 Desynchronisation methods

Desynchronisation methods rely on the use of a synchronous design methodology

and commercial CAD tools and then convert the resulting circuits into asyn-

chronous designs. The flow described in [26] targets bundled data implementa-

tion whereas the one presented in [61] targets QDI circuits and uses the NCL X

approach. In these approaches, synchronous CAD tools are used for datapath syn-

thesis and asynchronous control synthesis tools are used to produce controllers

that replace the global clock.
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The advantages of this approach are that designers need little specialist knowl-

edge of asynchronous techniques and the synthesis uses well-known commercial

tools. However, as the design is targeted at a synchronous implementation, some

potential advantages of asynchronous techniques are not exploited, such as: (a)

the fine-grained concurrency that can be possible in asynchronous design, (b) the

possibility for asynchronous designs to use data-dependent delays instead of the

worst-case delays used in synchronous design. Two popular approaches used in

the desynchronisation method are briefly described below.

Null convention logic (NCL)

In order to reduce the complexity in QDI functional blocks, Theseus Logic Inc. [32]

proposed the Null Convention Logic approach. In NCL data is DI encoded (using

dual-rail encoding or other 1 of N code) and uses a 4-phase protocol. Data changes

from the empty (NULL) value to a valid codeword (Data) in the set phase and

then back to NULL in the reset (RTZ) phase. To implement this operation, NCL

makes use of m-of-n threshold gates with hysteresis. An hysteresis threshold gate

is a logic gate which will set its output high when the sum of the weights on the

inputs exceeds a fixed gate threshold (m inputs for an m-of-n threshold gate).

The output of the gate will return to low when all inputs become low. Notice

that, in applying this idea, a C-element is an n-of-n hysteresis threshold gate and

an OR gate is a 1-of-n threshold gate.

Synthesis of NCL circuits from logical descriptions can be performed by map-

ping two level Boolean implementations of those functions into minterms imple-

mented with C-elements and OR gates to implement the AND and OR levels

using Delay Insensitive Minterm Synthesis (DIMS) [71]. The C-elements and

OR gates of DIMS can then be mapped onto their threshold gate analogues.

Simple hysteresis threshold gates can then be optimised into threshold gates with

more complicated input weightings. This is the key part of the synthesis process,

however, these optimisations are not easily automated.

Figure 2.11 shows an optimised NCL implementation of a dual-rail 1-bit adder.

In this figure, the number inside the gate corresponds to the value of the threshold.
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Figure 2.11: A dual-rail full adder using NCL gates.

NCL with explicit completeness (NCL X)

In order to reduce the area and energy of NCL circuits, Kondratyev and Lwin [61]

proposed NCL X, a different approach based on the idea of “separate implementa-

tions for functionality and delay insensitivity” allowing independent optimisations

of each. In NCL X, after obtaining the optimised Boolean implementation of the

functional block, the circuit is mapped into unate gates (gates that implement

a positively unate function - all inputs in such functions are used without inver-

sions). This is done by using two different variables, x.t and x.f for direct and

inverse signals of x. The obtained network implements rail “1” (t) of a dual-rail

circuit for the functional block. The dual-rail expansion is completed by creating

a corresponding dual gate in the rail “0” (f) network for each gate in the rail

“1” network. Finally, delay insensitivity is achieved by providing local comple-

tion detectors (OR gates) on each pair of dual gates and connecting them into a

multi-input C-element to generate the done signal. In NCL X for each dual-rail

primary input of a block, there must be a signal go that indicates the state of

the input (go = 0 → NULL, go = 1 → Valid).

The claimed benefits of both NCL and NCL X methodology is that they can

make use of existing electronic design automation (EDA) tools developed for

synchronous synthesis. In [61] it was reported that, compared to NCL, NCL X

circuits reduce significantly the area overhead, are faster and have a similar power

consumption. It was also noted there that compared to synchronous circuits,

NCL X are 2 to 2.5 times larger and consume more energy, with the benefits

being on lower EMI and improved security and reliability.



Section 2.7 Summary 53

2.7 Summary

Asynchronous circuits have some attractive advantages over their synchronous

counterparts. By eliminating the clock, some major problems associated with it

could be alleviated. In particular, reduced EMI and robustness towards fabrica-

tion process variability are nowadays their most attractive characteristics.

Delay-insensitive encoding and quasi-delay insensitive asynchronous circuits

have been proposed as an alternative to alleviate the complex problem of timing

closure in modern sub-micron fabrication technologies. However, their robustness

comes at the price of more complex, slower and expensive circuits when compared

to synchronous implementation. Some approaches towards the synthesis of QDI

datapath circuits have been proposed with different complexity/robustness trade-

offs to reduce the inherent penalties of the QDI approach.

Research in asynchronous synthesis has resulted in the development of var-

ious synthesis techniques and tools available for the design of large scale asyn-

chronous circuits, some based in pure asynchronous methodologies such as the

various macromodular methods (including the handshake circuits approach used

in Balsa) and other recent approaches based in synchronous methodologies plus

a “desynchronisation” process.



Chapter 3

The Balsa synthesis system and

language

3.1 Introduction

This chapter presents a brief introduction to the Balsa synthesis system and the

Balsa language, which is also the input language for the Teak synthesis system

described in chapter 5. Some small examples are included to highlight the direct-

ness of the compilation scheme and the most common input and control structures

used in Balsa circuits.

3.2 The Balsa synthesis system

Balsa is the name for both the framework for synthesising asynchronous circuits

and the language used to describe such systems. Balsa uses the syntax-directed

compilation approach to generate handshake circuits from a description written

in the Balsa language.

Originally introduced by van Berkel [108], a handshake circuit is a commu-

nicating network of handshake components connected point-to-point using hand-

shake channels (see 2.3). Each channel connects exactly one passive port of a

handshake component to an active port of another handshake component. As

mentioned in section 2.3, an active port is a port that initiates the communi-

cation by sending a request signal to a passive port. When ready, the passive

port will respond with the acknowledge signal. The handshake can involve the

transfer of data or simply synchronisation (control) using a dataless sync channel

54
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(a channel conveying the request and acknowledge signals only).

3.2.1 Balsa design flow

As shown in figure 3.1, in order to synthesise a circuit from its description the

Balsa system uses a compiler (balsa-c) that generates a handshake circuit de-

scribed in an intermediate netlist format (Breeze). A Breeze description can be

processed using balsa-netlist to produce a structural Verilog netlist of the cir-

cuit for a chosen target cell library, asynchronous protocol implementation style

and data encoding described in the selected back-end library. This file can then

be processed using commercial layout tools for simulation, validation, and fabri-

cation.

The system also features a behavioural simulation tool, breeze-sim, that

works at the handshake component level, and an area cost estimator: breeze-cost.

From version 3.5, Balsa includes balsa-mgr, a graphical front-end that provides

project management facilities. More detailed information on Balsa and the Balsa

language can be found in the Balsa Manual [30].

The Balsa synthesis system has been used successfully to synthesise the 32-

channel DMA controller for the DRACO chip [40], an asynchronous MIPS pro-

cessor [118], and the G3Card smartcard System-on-Chip. Those designs together

with more recent work [89, 85] have demonstrated the potential of Balsa and its

synthesis approach to generate efficient asynchronous systems for complex, real

world applications.

3.3 The Balsa language

This section briefly introduces the Balsa language. Details of the language and

compilation scheme not relevant to this work have been omitted. Detailed infor-

mation on the language features and a complete language syntax reference can

be found in the Balsa Manual [30]. Extensive details on the compilation process

and handshake circuits used with Balsa can be found in [108, 29, 89, 82]. The

description of the language features are accompanied with example code and,

where relevant, the resulting handshake circuit generated by the compiler.
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Figure 3.1: Balsa design flow.

3.3.1 The structure of a Balsa description

A description in Balsa is composed of one or more files that have a structure

similar to the example shown in figure 3.2. In this figure the main parts of a

Balsa description are indicated. Balsa descriptions are divided into a number of

procedures. Each procedure has an implicit activation port (that activates the

circuits within the procedure) and any number of input, output or sync (dataless)

ports that must be explicitly declared. Within the procedure, channels and

variables can be declared with local scope. Channels are used to communicate

between procedures or between concurrent actions (commands). Each channel
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must have at least one source (producer) and one sink (consumer). Variables are

used as temporary storage for values. Writes and reads on the same variable must

be sequenced.

1 -- This is a comment in Balsa. 
2 -- Block comments use the (-- COMMENT --) pair
3 -- imports (dotted notation to specify path. 
4 -- Extension '.breeze' assumed
5 import [Path.And.Name]
6 -- Global declarations (types, constants & procedures)
7 -- Examples of type declarations
8 type word is 16 bits         -- unsigned type
9 type sword is 16 signed bits -- signed type

10 --
11 -- Other global declarations ...
12

13 -- A procedure declaration
14 procedure exampleProc
15 -- port declarations are separated by ';'
16 (

17   -- 'someType' must have been declared previously
18   input a    : someType; 
19   output out : sword;  
20   sync z
21 ) is
22     -- local declarations (types, constants, procedures)
23     -- local declarations (variables & internal channels)
24     variable var : someType
25     channel c : otherType
26

27 begin -- exampleProc body
28   (--
29   Commands and procedures composed with "||"  or ";" operators
30   --)
31 end -- end of exampleProc body

Figure 3.2: The structure of a Balsa description.

Procedures consist of one or more commands composed using control opera-

tors. A command may consist of:� a basic read or write action on a channel or variable.� an iteration construct.� a conditional construct.� another instantiation of a procedure.� a sequential or parallel composition of commands.
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A command makes used of channels to communicate internally with other

local commands using the declared channels or externally using the procedure’s

ports. Channels and variables can be read or write, input ports are read-only

channels and output ports are write-only channels.

Balsa supports modular compilation: a description can be divided into mul-

tiple files which are included using import statements. These must always be

located at the beginning of the file preceding any other declaration. The files to

be imported must be pre-compiled handshake circuits in Breeze format. Con-

stants and user-defined data types can be declared afterwards inside or outside

the procedures. In order to use any type/constant/procedure in Balsa, this has

to be declared previously within the file or imported files, as Balsa follows the

same “declare before use” rule of C and Modula [30].

3.3.2 Data Types

Balsa is a strongly typed language with data types based on bit vectors. Re-

sults of expressions must be guaranteed to fit within the range of the underlying

vector representation [30]. Balsa supports global and local type and constant

declarations. Balsa supports the following data types:

Numeric types

Bit vectors of width bits that can be signed or unsigned. Examples:type word is 16 bits (unsigned type with range [0, 216 − 1])type sword is 16 signed bits (unsigned type with range [−215, 215 − 1])

Enumerated types

This type consists of named numeric values. The numeric values are given incre-

mentally starting at zero, with explicit values resetting the counter, for example:type MyEnum is enumeration
mmmmmmmmZERO, ONE, FIVE=5, OTHER
mmmmend
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In the above example the following values are assigned: ZERO=0, ONE=1,

FIVE=5, OTHER=6. The values require 3 bits, hence this type is 3 bits wide. Note

that values 2,3,4 and 7 are not bound to names.

Record types

Bit-wise composition of named elements of possibly different (pre-declared) types.

for example:type SignMagnitude is re
ord
mmmmmmmmMagnitude : MyEnum;
mmmmmmmmSign : bit;
mmmmend

In this example, a value of type SignMagnitude will have a width of 4 bits

with the Magnitude field occupying the first three least significant positions and

Sign occupying the most significant position. Referring to a field within a record

is accomplished with the usual dot notation.

Array types

Numerically (or enumerated) indexed compositions of values of the same type.

For example:type RegisterBank : array 0..15 of word
3.3.3 Basic transfer commands

Balsa provides two basic commands to transfer information: channel read and

channel write; these generate handshake data transfers within the involved chan-

nels.

a -> b reads channel a and writes channel to b. a can be either an input

port or an internal channel. b can be either a variable, an internal channel or an

output port.

d <- c transfers the value of variable/expression c to the output port or

internal channel named d.
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3.3.4 Dataless handshakessyn
 a generate a handshake in the dataless channel a. Further actions can only

occur after the handshake on a completes.

3.3.5 Variable assignment

var := expression transfers the result of expression to the variable var. Balsa

allows variable auto-assignment, where an expression includes the target variable.

However, the resulting circuit will contain an invisible auxiliary variable, whose

contents will be written back to the programmer’s variable after being assigned

the result of f(x). The type of a result must agree with that of the variable to

be assigned. In cases when these types may differ, the user can truncate/expand

the width of the result by explicit casting. For instance, if x is a variable of type

byte, the following statement is invalid:

x := x + 1 -- invalid, result may require an extra bit

The correct statement should look like:

x := (x + 1 as byte) -- the result is truncated to 1 byte.

3.3.6 Control operators

Balsa has two control operators to form composed commands: Concur || and

Sequence ; .

<command1> || <command2> composes the two commands so that they ope-

rate concurrently. However, both commands must terminate before the composed

command is completed. Concur generates a rendezvous point when both com-

mands complete.

<command1> ; <command2> sequences the execution of the two commands:

the first must terminate before the second can proceed.

The || operator has a higher precedence than ; . This precedence can be

overridden by creating groups of commands using either square brackets ( [ ] )

or the pair of keywords begin ... end to enclose a command. For instance:
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-- 'x' is written first, sequenced by the concurrent write

-- of variable 'y' and channel 'z'

x := 10 ; y := 20 || z <- 30
-- here, 'x' is written first sequenced by the writing of 'y'.

-- These two actions are concurrent with the writing of 'z'

[ x := 10 ; y := 20 ] || z <- 30

When composing commands, care must be taken to avoid introducing de-

pendencies that may lead to a deadlock. As a very simple example, consider

the program in figure 3.3. The program consist of an infinite repetition of two

compound commands (lines 9 and 11), which in turn are composed with the ||
operator, effectively creating two execution threads.

1 procedure deadlock

2 ( 

3   output out : byte
4 ) is
5     channel a, b  : byte
6     variable v1, v2 : byte
7 begin 
8     loop
9         [ a -> v1 ; out <- v1 || b <- v1 ]   -- command 2 

10         ||
11         [b -> v2 ;  a <- (v2 + v2 as byte) ]  -- command 1
12     end
13 end

Figure 3.3: Example of deadlocking code.

Upon activation, a transfer from channel a into variable v1 is activated (first

action in line 9). Concurrently, in the second group, a transfer from channel b

into variable v2 is also activated. However, the circuit deadlocks because the

read from channel a can complete only after the write to channel a completes

but this last action can only start after the read from channel b completes (and

that requires the completion of the read from channel a). In this simple example

deadlock is eliminated by swapping the sequenced actions in one of the composed

commands.

Invalid compositions

In order to avoid some potential deadlock situations or unsafe operations, the

Balsa compiler will fail (and the user will get the relevant feedback on the error)

when it encounters the following compositions within a description:� A write sequenced with a read on the same channel or a read sequenced
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with a write on the same channel. These will result in a deadlock because

the first action cannot complete until the second action completes and the

second action cannot start until the first completes.� Commands composed with the Concur operator that: (i) write and read

from the same variable, (ii) write to the same channel, (iii) write to the

same variable. Concurrent occurrence of these actions are unsafe and causes

malfunction. When any of these conditions occur in a description, the com-

pilation will fail. However, from version 3.5.1 Balsa introduced the exper-

imental “permissive” Concur (||!) which leaves to the user the responsi-

bility of making sure that those conditions will not actually occur during

operation. This operator can be used (with care!) to exploit the designer’s

knowledge on the operation of the circuit, as will be described below.Continue and halt commands

The continue command is used to implement “no operation” (always acknowl-

edges any activation request it receives). When the execution of a process thread

reaches a halt command, this thread deadlocks (no further actions occur).

3.3.7 Iteration and conditional constructs

An unbounded repetition in Balsa uses the loop <command> end construct as

shown in the example in figure 1.2(a). Bounded repetitions use the construct:

loop (<command0>) -- command0 is optional 
while guard1 then <command1>
     |guard2 then <command2>
     |.
     |.
     |guardN then <commandN>
end

This construct allows the specification of repetitive loops equivalent to for,

repeat ... until and do ... while found in other languages. However,

Balsa allows the specification of multiple guard conditions. If multiple guards

are used, they are evaluated in order. If more than one guard is satisfied, only

the command associated with the guard that appears earlier in the list will be

activated.
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The following are code examples of loop constructs:

variable x : byte
channel inp, out : byte
-- infinite loop

loop
    inp -> x ;
    out <- x
end
--

--

-- for (x=0; x<10; x++) <command> equivalent

x := 0 ; -- initialisation
loop
while x < 10 then
    print "value of x is: ", x ;
    x := (x + 1 as byte) -- autoassignment
end 
--

--

-- repeat <command> until x<10 equivalent

loop
    print "value of x is: ", x ;
    x := (x + 1 as byte) -- autoassignment
while x < 10
end 
--

--

-- multiple guards: 0 to 9 counter with autowrap

-- Note 1: guards are evaluated in order.

-- Note 2: the loop is infinite unless initially x > 9

loop while 
  x <  9 then x := (x + 1 as byte)
| x = 9 then  x := 0
end

Balsa features the if ... then ... else and the case ... of ... else

constructs for conditional execution. The former can have multiple guards which

makes it equivalent to nested if ... else statements found in other languages

and, similarly, the else clause is optional. Multiple guard evaluation is similar to

that of the loop ... while construct. The syntax of the if ... then ... else

and the case ... of ... else constructs is as follows:
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if condition1 then <command1>
| condition2 then    <command2>
|.
|.
| conditionN then <commandN>
else <commandDefault> -- optional clause
end 

case expression of
  guardList1 then <command1>
| guardList2 then <command2>
|.
|.
| guardListN then <commandN>
else <commandDefault> -- optional clause
end 

The guardList can be either a single expression of a comma-separated list of

expressions whose values must be resolvable at compile time. All guard values

must be disjoint from one another. As the reader could easily prove, the if and

case constructs can be used to implement equivalent conditional behaviours. The

if construct is more flexible as it allows the use of expressions for guards and

guards do not need to be disjoint. In the case construct, guards must be disjoint

and either explicitly given or written as expressions resolvable at compile time.

However, in general, the case construct generates faster circuits (see section 4.5).

3.3.8 Data processing operators

Balsa provides basic unary and binary bit-wise logic (not, and, or, xor) and

arithmetic operators (+, -), as well as Boolean and comparison operators (=,

/=, >, <, >=, <=) to construct expressions. There are not shift operators but

these can be implemented with the contatenation (@) and smash (#) operators.

A complete table can be found in Appendix A. Other operators like multiply,

divide and remainder (*, /, %), log and exponentiation (^) can only be used in

constant expressions.

3.3.9 Input enclosure

Balsa features two constructs that allow the handshake of one or more input

channels to be held open until a command or a group of composed commands

complete: (i) passive-input enclosure with choice with the select command

and (ii) active-input enclosure with the <channels> -> then <command> end
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construct. The “enclosed” commands can read the value of the channels as many

times as required (or even not read at all) without the need of variables to hold

those values. Within the enclosure construct, enclosed channels act like variables

for reading purposes.

Input enclosure can generate area benefits and help to produce simpler de-

scriptions. However, there are performance implications: the tree of handshakes

connected to the enclosing inputs cannot themselves complete until the enclosed

actions complete. These implications will be discussed in section 4.4.2.

Passive-input enclosure

The syntax for this type of enclosure is as follows:

select 
  groupOfChannels1 then command1
| groupOfChannels2 then command2
.

.

.

| groupOfChannelsN then commandN
end --select

The select statement allows selection between groups of input channels by

waiting for data on any of the groups to arrive. The arrival of data among

each group must be guaranteed to be mutually exclusive. This also means that

a channel can only be part of exactly one group. The enclosed commands are

activated only after all the inputs involved arrive. This type of enclosure generates

passive ports for the inputs as opposed to the active-ported circuits that Balsa

normally generates.

It is recommended that the use of select is restricted to only cases where

input choice is genuinely required and that the faster active-input enclosure is

used instead in other cases. Another reason for using passive-input enclosure is

if the interface of a design requires passive (push) inputs.

Active-input enclosure

This enclosure has the following syntax:
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groupOfChannels -> then
    command

end

Similar to the select construct, the enclosed commands are activated only

after the arrival of all input channels. In contrast, this type of enclosure does not

allow choice and generates active (pull) inputs.

Eager input enclosures

Balsa also features eager variations of the passive and active enclosures using

their “banged” variants:sele
t! channels then command end
channels ->! then command end.
In its eager variant, the select cannot be used with input choice. As stated

previously, in the standard enclosures the activation of the enclosed commands

occur only after all of the involved inputs have arrived. In the eager enclosures,

the enclosed commands are activated as soon as the control activates the inputs,

without waiting for the data to arrive. This has performance benefits, because

the control is given a head start, hence reducing the control overhead. However,

any enclosed command that does not depend on the arrival of data may occur

before the data arrives and, if not used carefully, this could result in incorrect

operation.

The eager variants still guarantee that the command will not complete un-

til input data has also completed. Details on the implementation of the eager

enclosure construct were introduced in [89].

To illustrate the use and behaviour of both types of enclosure, let us consider

the following examples:

a, b -> then
    out1 <- (a + b as byte)
 || out2 <- b
 || out3 <- 10
end -- a,b -> 

In the previous code active enclosure is used. Writing to the channels out1,

out2 and out3 can only occur after the arrival of inputs a and b, despite out2
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being independent of a and out3 being independent of both inputs.

a, b ->! then
    out1 <- (a + b as byte)
 || out2 <- b
 || out3 <- 10
end -- a,b -> 

In this example, eager active enclosure is specified. Here the command that

writes to channel out3 starts as soon as the control reaches the enclosure com-

mand, without waiting for the arrival of a and b. Furthermore, if b arrives earlier,

the command that writes to out2 starts without waiting for input a. However, all

commands will complete only after both inputs complete. An example of the use

of eager active inputs that results in incorrect operation will be given in section

3.3.12, example 5.

3.3.10 Arbitration

Balsa features the arbitrate command when choice is required among two non-

mutually exclusive inputs (or groups of inputs). Its syntax is similar to that of

the select command:

arbitrate
    groupOfChannels1 then command1
  |    groupOfChannels2 then command2
end

Upon arrival of every input in one of the groups, the associated command is

activated. Similar to the select construct, the command will be enclosed within

the handshakes of the inputs and these can be read as described previously. Both

of the two groups of inputs may arrive, but the control will be passed only to

the command enclosed by the group that arrives first. If the two groups arrive so

close in time, in such a way that the first arriving group cannot be discerned, an

arbitrary decision is made.

If more than two events require arbitration, an arbiter tree can be constructed

using the arbitrate construct. An example of a parameterised arbiter tree can

be found in the Balsa Manual.
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3.3.11 Permissive Concur

The permissive Concur (||!) permits the parallel composition of the potentially

unsafe operations described previously. This relaxation can be used when the de-

signer knows that the unsafe conditions will never occur, leading to either smaller

or faster circuits and, in some cases, to more compact descriptions. Consider for

instance a situation where two concurrent processes P1 and P2 write to a com-

mon channel c. If the operation is such that the writes are guaranteed to be

mutually exclusive, there is more than one way to implement the access to chan-

nel c. The more straightforward implementation would be the use of the select

command described earlier. Another option would be to use a (previously gener-

ated) selection data channel that signals which process is the next to write, and

then use it as the guard of a conditional construct that selects the appropriate

source to pass to the destination channel. However, because the potential conflict

will not occur, P1 and P2 can be composed using the permissive Concur which

will allow them to access the common channel. An example that illustrates its

use will be given in section 3.3.12, example 6.

3.3.12 Compilation examples

This section presents some simple program examples and their resulting hand-

shake circuits in order to familiarise the reader with the structures generated

by the use of different Balsa constructs and their operation. Details of the

compilation of a simple 1-place buffer have already been given in section 1.2.

A brief description of the handshake components used in the examples can be

found in Appendix B. Extensive details on the compilation process can be found

in [108, 29, 89, 82].

Example 1: passive enclosure

The code for a two-input, uncontrolled multiplexer (merge) is shown in figure 3.4.

Inputs a and b must be mutually exclusive. The resulting handshake circuit

showing the translation of this construct is shown in figure 3.5. In this and the

subsequent handshake circuit figures, regions of different colours show the boun-

daries of the commands. Control tree elements are embedded in a darker shade of

the command area colour. Thick arrow lines connect datapath components and

thin lines represent control (dataless) channels. Passive ports are represented by
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small unfilled circles, and active ports by small filled circles.

1 procedure merge2 

2 ( 

3   parameter DataType: type;

4   input a, b : DataType;

5   output o   : Datatype 

6 ) is

7 begin
8     select 

9       a then
10         o <- a
11     | b    then
12         o <- b
13     end -- select
14 end -- merge2

Figure 3.4: An uncontrolled multiplexer (merge).

FV

FVa

b

DW

o

CallMux

signal

signal

activate

o<−a

o<−b

select a | b

Figure 3.5: Handshake circuit of the uncontrolled multiplexer.

The DecisionWait component (DW ) synchronises the activation signal with

one of its inputs coming from the signal outputs of the FalseVariable components

(FV ), and activates the corresponding decision output. As its name suggests, an

FV does not have storage: it simply provides passive read ports and a control

output signal (the active port on the top) to indicate arrival/removal of data.

The FV activates its signal output as soon as the least significant bit (bit 0) of

the data input arrives. The reader can refer to [89] and Appendix C for details

on the operation and current implementation of this component.

The outputs of the DW are used to pull data from the selected data channel,

using a Transferrer(->) component, through the read port of its associated False-

Variable. Finally, a CallMux (>-->) (mixer/merger) component is used to merge

the source channels into the output o. In this particular example, everything but
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the mixer is overhead, as will be explained later in example 6 with the use of the

permissive Concur.

Example 2: active enclosure and operators

The code for a simple adder using active enclosure is shown in figure 3.6. The

resulting handshake circuit showing the translation of the various constructs is

shown in figure 3.7. Notice that the circuit features pull (active) channels at the

I/O data interfaces.

1 procedure adder

2 ( 

3   input a, b : dtype;
4   output o   : dtype;
5 ) is
6 begin

7     a, b -> then

8         o <- (a + b as dtype)

9     end -- a, b ->

10 end -- adder

Figure 3.6: The description of a simple two-input adder.

+

FV

FV

a

b

o

Fork Synch

activate

signal

signal

(a+b)

a,b −> then

o <− expr

o <− (a+b as dtype) end

^ (s)

Figure 3.7: Handshake circuit of the adder code in figure 3.6.

On top of figure 3.7, a Fork component is used to fork the activate signal

to the two Transferrer components. Upon activation, these transfer the inputs

to the two FalseVariable components (FV ). The signal outputs of the FVs are

connected to a Synch (synchroniser) component, which activates its output when

both input signals indicate the arrival of data. The Synch output activates the

transfer on channel o through another Transferrer, which pulls the result from

the addition operator (+). This pull action results in the reading of both FVs.
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Eventually, the environment connected to channel o will acknowledge the

transfer and this is passed to the Synch, which in turns indicates this to the FVs

through their signal port. Upon receiving the acknowledge, the FVs acknowledge

the inputs and the Transferrer components pass it to the forked activation. The

activating control will eventually respond initiating the RTZ phase and a set of

RTZ events will propagate in similar fashion to what has been described until the

four-phase handshakes complete.

Example 3: conditional execution and active eager inputs

Figure 3.8 shows the code for a circuit that reads input channel i and, depending

on the value of the s signal, passes the constant 10 or the value of i to the output

channel o. The resulting circuit is shown in figure 3.9.

procedure condInput

( 

  input i  : byte;
  input s  : bit;
  output o : byte 

) is

begin

    s, i ->! then

        if s then 

            o <- i

        else

            o <- 10

        end -- if s

    end -- s, inp ->!

end

Figure 3.8: Example of conditional execution.

The description is made using active eager inputs, but other descriptions

are also possible. Note that on this occasion activeEagerFalseVariable (aeFV )

components are used. An aeFV has an active input port and a trigger port

to activate it. Unlike a FV, its signal output activates as soon as the trigger

is activated, without waiting for data arrival. For details of its operation and

current implementation, please refer to Appendix C.

The Case (@) component is essentially a decoder that activates only one of its

control outputs at a time depending on the value on its input channel, allowing

the transfer of either the value of channel i (in the bottom aeFV ) or the value

10 from the Constant component. A CallMux component is used to merge the
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10

aeFV

aeFV

o

activate

s

i

01

Case

Constant

signal

trigger

CallMux

@

s,i −>! then if s then .. else .. end end

o <− 10

o<−i

^ (s)

Figure 3.9: Handshake circuit of the code in figure 3.8.

source channels. The Case component guarantees the required mutual exclusivity

at the inputs of the CallMux.

As stated earlier, the use of active eager inputs has the benefit of allowing the

control section to proceed without waiting for the data. Thus, when data arrives,

control signals are already in place resulting in faster operation [89]. This early

start of the control section also allows the outputs that do not depend on all

inputs to be generated without waiting for all the inputs to arrive. Its use relies

on the assumption that such early data generation will not cause interference

further down in the pipeline. In the above example, if s = 0, the constant value

will be sent to the output even if input i has not arrived. This implies that, in

the pipeline, it must be safe to send a token to output o before receiving tokens

from both inputs in the conditional block. Example 5 examines a case when the

use of active eager enclosure leads to incorrect operation.

Example 4: control operators, composed commands and finite iteration

The code in this example implements a special kind of one-place buffer that stores

and duplicates the data until a tail flag located in the MSB (M ost S ignificant

B it) of the input data signals the last transfer. When the tail flag is zero, the

loop terminates and control is returned to the activating party. Figure 3.10 shows

the code and figure 3.11 the resulting handshake circuit. The # in line 14 of the

code is the smash operator: a piece of syntactic sugar that provides the bit-array
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casting required to access the MSB bit.

1 type hdata is 9 bits -- hdata [8] = tail flag
2 procedure dupbuf 
3 (

4   input i       : hdata;
5   output o1, o2 : hdata
6 ) is
7     variable buf : hdata
8 begin
9     loop

10         i -> buf                -- buffer data
11       ;
12         o1 <- buf || o2 <- buf    -- relay & duplicate
13         -- until tail flag signals the last transfer

14     while (#buf[8] as bit) = 1 then continue
15     end
16 end

Figure 3.10: An example of a finite loop and command composition.

buf[8]

while

buf

activate

o1

o2

i

2 1

1 2

Call

||

;

;

while buf[8]

loop i −> buf o1<−buf||o2<−buf;

Figure 3.11: Handshake circuit of the code in figure 3.10.

The implementation is effectively a repeat ... until loop. As in the pre-

vious examples, figure 3.11 shows the different constructs with different shadings.

The Sequencer (;) component at the top is required to generate the first itera-

tion of the repeat loop before checking the exit condition. The other Sequencer

corresponds to the operator in line 11 in the code that sequences the writes and

reads of the variable buf.
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Notice that in the figure the While component implements the control for the

conditional loop. Upon receiving a handshake on its activation port (located at

the top), this component holds the activation handshake open and performs two

sequenced actions: first it reads the guard value through the active input at its

left and, if it is a 1’, the next action is a handshake in the passive output port.

If the guard is 0, theWhile component completes the activation handshake and

control returns to the activating party. Notice how in this example the control tree

is relatively more complex because of the composition of Sequence and Concur

operators inside the loop.

Example 5: Pitfalls in the use of active eager inputs

To illustrate a case where incorrect operation may occur as a result of the use

of active eager inputs, let us consider the segment of code corresponding to a

simplified description of a processor’s execution unit, shown in figure 3.12. The

code describes the operations involved to generate the value to be written to the

channel registerWrite2. The operation is as follows:

The instruction type and the result from the ALU are read (line 22) and, de-

pending on the instruction type, either a value is read from memory into channel

memDataIn (line 25) or the ALU result is sent through channel statusIn to gen-

erate a new status word (line 27). The description of the status word generator

is shown in lines 2 - 12. For simplicity, this unit simply appends four zeros to

the lower 8 bits of the input and casts the result into a value of type Datapath.

Notice that active eager enclosures are used to read the inputs in both the status

generator (line 8) and inside the loop implementing the condition (line 22).

Because the conditional construct guarantees mutual exclusivity in the gener-

ation of the values for channels memDataIn and statusOut, the select construct

can be used to merge these channels into channel registerWrite2. As illustrated

in line 37 of the example code, this could be achieved by using an instantiation of

the merge2 module shown in figure 3.4. However, the mutual exclusivity assump-

tion does not hold in the given description as a consequence of using eager active

inputs in the module genNewStatus: inside this module, the (constant) lower four

bits of channel statusOut are eagerly generated, without waiting for the input,

as soon as the control activates the module (in parallel with the conditional and

merge loops).

As previously explained, the select construct uses the arrival of bit 0 of the
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1 -- new status generation unit definition 

2 procedure genNewStatus (

3   input statusIn : Datapath;
4   output statusOut : Datapath
5 ) is
6 constant SUFFIX = 0b0000 : 4 bits
7 begin
8     statusIn ->! then
9         -- new status is {i[7:0], 0000}

10         statusOut <- (#SUFFIX @ #statusIn[7..0] as Datapath)
11     end
12 end
13

14 -- declaration of a merge2 module of type Datapath

15 procedure merge2_Datapath is merge2(Datapath)
16  .

17  .

18 procedure Execute(
19 -- I/O declarations

20 ) is
21 -- some local declarations (not shown)

22 .

23 .

24 -- interesting segment of Execute stage:

25     -- select operation    

26     loop
27         aluResult, instrType ->! then
28             case instrType of 
29               MEMREAD then
30                 getDataFromMem(aluResult, memDataIn)

31             | SETSTATUS then
32                 statusIn <- aluResult
33             end
34         end
35     end ||
36     -- generate new status word

37     loop
38          genNewStatus(statusIn, statusOut)

39     end ||
40     -- Merge values to write in second register bank port

41     loop
42         merge2_Datapath(memDataIn, statusOut, registerWrite2)

43     end
44     .

45     .

46 end -- Execute

Figure 3.12: Example of unsafe use of active eager enclosure.

input channels to determine which channel will be selected. The early arrival

of the eagerly generated lower four bits of channel statusOut will activate too

early its side of the DW. If the operation to be executed is a read from memory,
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both inputs of the DW will end up activated. In this situation, the DW will

erroneously activate the transfers on the two inputs of the CallMux generating

interference on its output (the incomplete dual-rail codeword from statusOut will

be merged (ORed) with the dual-rail codeword from channel registerWrite2).

This interference will result in a deadlock, either because of the generation of

invalid dual-rail codewords or the impossibility of completing the RTZ phase on

channel registerWrite2.

In summary, within an active eager enclosure, every data generation construct

that involves concatenation (like the @ operator, record construction and casting

to unsigned wider data types) can be potentially dangerous. If the use of the

result data further down the pipeline relies on a mutual exclusivity assumption

and some portions of the concatenated data can be generated unconditionally (as

within the genNewStatus module of the example) the non-eager active enclosure

must be used.

Example 6: permissive Concur

If, in the previous example, non-eager active enclosure is used in the genNew-

Statusmodule, the mutual exclusivity of channels memDataIn and newStatus will

be guaranteed. In this situation, it is possible to use the permissive Concur oper-

ator (||!) between the loop of the conditional construct and the genNewStatus

instantiation to allow these operations to write to the common channel register-

Write2, eliminating the need for a merge module, as shown in figure 3.13, lines

25 and 33. The ||! operator implicitly introduces a CallMux to merge writes to

the same channel within the composed commands.

Figure 3.14 shows a simplified handshake circuit for the corrected version of the

code in figure 3.12 (no active eager enclosure in line 8) and figure 3.15 shows the

circuit for the new version. Because all of the parallel-composed commands are

unbounded loops, the Balsa compiler inserts a cheaperWireFork (Wˆ) component

instead of a Concur. The WireFork simply forks the activation signal to each of

the Loop components and, just like the Loop component themselves, never returns

an acknowledgement. PassivatorPush ( r) components are used to connect active

inputs and outputs as will be explained in section 3.3.13. In both circuits, only the

merge section has been detailed to highlight the benefits of using the permissive

Concur.

Comparing both circuits, it is clear that the new circuit is simpler: The whole
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19 -- segment of Execute stage:
20     -- select operation    
21     loop

22         aluResult, instrType ->! then
23             case instrType of 
24               MEMREAD then
25                 getDataFromMem(aluResult, registerWrite2)

26             | SETSTATUS then
27                 statusIn <- aluResult
28             end
29         end
30     end ||!
31     -- generate new status word
32     loop
33         genNewStatus(statusIn, registerWrite2)

34     end
35     -- Now merge is implicit when using the same channel and ||!
36     .

37     .

38     .

Figure 3.13: Using the permissive Concur with mutually exclusive writes.
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DW
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operation

instrType

choose

statusOut

memDataIn
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merge2_Datapath

registerWrite2

PassivatorPush

activate

Figure 3.14: Example of merging channels using the select construct.

merge2 Datapath module has been replaced with a single CallMux. The new cir-

cuit benefits from having less datapath latency (the FV s have been removed and

there is no control for the merge section). The reduction in components results

in smaller area and lower energy as additional benefits. Finally, the resulting

description is simpler.
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***
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Figure 3.15: Example of merging channels using the permissive Concur operator.

The benefits on performance and expressiveness allowed by the (||!) operator

were exploited in the design of the Forwarding Unit for the nanoSpa processor

that will be described in section 7.4.

3.3.13 Interconnecting Balsa modules

Balsa circuits generally have active inputs and outputs, that is, the synthesised

modules have pull-push input-output interfaces. To connect an active output

port with an active input, a component that synchronises requests from both

sides before acknowledging them is used: the Passivator (PassivatorPush in the

case of data channels). Figure 3.16 shows the use of this component to connect

two Balsa procedures (modules) using one control and two data channels and the

implementation of a 1-bit dual-rail PassivatorPush.

3.4 Summary

This chapter introduced the Balsa Synthesis System and the Balsa language.

Details of the compilation scheme targeting handshake circuits were presented

with the aim of highlighting the mapping of the main set of language constructs

that will be used in the next chapter. This chapter also presented some previously
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Figure 3.16: (a) Interfacing of two Balsa modules with active ports using Passi-
vators. (b) A 1-bit dual-rail PassivatorPush.

undocumented features of the language, namely, the use of active eager enclosure

and its implications on the expected operation of the circuit, and the use of the

permissive Concur operator, illustrating in both cases their potential benefits.
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Optimising Balsa circuits

4.1 Introduction

The syntax-directed synthesis paradigm has been shown to be a powerful synthesis

approach. However, its control-driven nature results in significant performance

overhead [100, 101]. In an attempt to reduce this overhead, the following circuit-

level approaches have been previously reported:� Peephole optimisations : this technique is based on the identification of a

pattern of components that can be replaced with a faster alternative [106,

83, 19].� Control resynthesis : this technique consists on clustering sections of control

trees and replacing these with an optimised controller that implements the

same behaviour [19, 60, 88].� Component optimisation: this is based on finding alternative designs for the

handshake components that result in more concurrent, faster operation [85].

An orthogonal alternative to the above is to exploit the directness of the syn-

thesis method at the description level. Highly expressive, high-level description

languages like Balsa and Haste can result in näıve descriptions with poor perfor-

mance unless the designer has a good understanding of the underlying compilation

process. Furthermore, it is often claimed that in this approach, an experienced

designer could make performance/power/area trade-offs. This task would be eas-

ier if the designer could have some insight into the impact of a particular construct

or coding style.

80
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This chapter explores the effects of directness in the performance of Balsa

synthesised circuits and proposes coding techniques and optimisations that result

in more concurrent, faster implementations. The chapter begins with the descrip-

tion of a set of language-level techniques for increasing the performance of Balsa

circuits. Finally, new peephole optimisation and handshake circuits that further

improve the performance of the designs are described.

4.2 Related work

In [85], Plana et al. used Balsa to demonstrate the impact on performance of some

description-level techniques combined with the introduction of more concurrent

handshakes components when applied to the synthesis of a RISC processor. In

particular, true asynchronous operation of the processor pipeline, a data-driven

coding style and the use of speculation within the execution stage are presented

as performance-driven description techniques. In this thesis, those techniques are

revisited and further investigated together with new techniques introduced here,

using various design examples.

In a recent work, Hansen and Singh [47] describe a series of automated “source-

to-source” transformations that optimise syntax-directed descriptions using a va-

riety of concurrency-enhancing optimisations including: automatic parallelisa-

tion, automatic pipelining using pipeline variables, arithmetic optimisation and

reordering of channel communication. The proposed transformations target Haste

descriptions. Although considerable speed-ups are claimed, some of the example

designs start with extremely näıve code sequences (with all operations initially

sequenced), where significant improvements can be easily obtained. The trans-

formations proposed here target both sequential and parallel compositions, make

use of explicit buffering as an alternative to pipeline variables and do not use

speculation to optimise conditionals.

The approach proposed in the mentioned work is limited to slack elastic [64]

systems descriptions only (a slack elastic system preserves correct operation even

if extra pipeline buffer stages are introduced in any channel). This limitation

reduces the usefulness of an “automated” approach as it is frequently necessary

for the designer to understand the nature of the transformations to ensure they are

safe, which may represent a considerable design effort for the user. Furthermore,

automatic code generation frequently needs to be used in conjunction with manual
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optimisation because there may be some code that needs to be hand-crafted

to meet specific design constraints. In contrast to the ones presented in the

mentioned work, the examples used in this thesis are more complex and non-

slack elastic: they contain Merges (uncontrolled multiplexers), like the processor

and the router.

The approach used here is more general and attempts to give the designer a

clearer understanding of the source of performance inefficiencies, the techniques

available to reduce it and the trade-offs made. As an additional and important

benefit, manual optimisation techniques can be applied to exploit the designer’s

knowledge about the behaviour of the system. This knowledge is something that

is more complex to automate because it cannot be inferred by analysing the code.

This work is complementary to the approaches presented above and to the

circuit-level optimisation techniques. The techniques presented here could also

serve as a source for optimising compilers or to enhance automated source-to-

source transformations.

4.3 The data-driven description style

In Balsa/Haste it is relatively easy for a user to write a working, but most likely

low-performance, description of a system due to their similarities with C and

Verilog language. One of the major challenges for an asynchronous designer is to

learn to think in terms of concurrent processes, instead of the easier to understand

sequential processing found in imperative languages. An imperative, sequential

description generates a large control tree that directs the flow of data in the

datapath. This large control tree results in performance penalties that tends to

increase with the complexity of the description.

As an example, consider the simplified description of the EXECUTE stage

of the SPA processor given in [85], which is reproduced in figure 4.1(a). Here,

all actions are explicitly sequenced and in every “step” the control tree activates

the Fetch components (->) to guide the data through the required unit. Due to

this lockstep mode, the control tree guarantees mutual exclusivity of the results,

allowing the use of a simple CallMux (|) to write the results into the register

write-back. The resulting simplified handshake circuit is shown in figure 4.1(b).

However, it is possible to describe a more concurrent operation by using a

data-driven description style, that is, a description in which the arrival of data
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    doRegisterRead

   ;
    case instruction of
     ADD then
        doShift

       ;
        doAlu

    | MUL then
        doMul

    | LDR, STR then
        doMemAccess

    end
  ;
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Figure 4.1: The simplified control-driven SPA EXECUTE stage [85].

activates the units. In the data-driven style the description of a circuit is divided

into simpler, concurrent actions that communicate using channels. Given the

asynchronous nature of the circuits, these actions are activated immediately by

the data arriving at their inputs, process the information and generate outputs

to activate the next unit.

This strategy is used in the alternative description of the SPA’s EXECUTE

stage shown in figure 4.2(a). Instead of providing an explicit sequencing of actions

(with its associated large, slow control tree), the actions are composed concur-

rently, with incoming data used as the activation. The resulting control tree is

generally small and local to the modules implementing the actions. To guide the

data, steer (demultiplexing with optional multicasting) and multiplexer units are

added. Control for these units comes directly from the decoder and does not

involve any sequencing. Notice that this steering and multiplexing is a specific

requirement of the example, not a general feature of data-driven descriptions.

The simplified handshake circuit is shown in figure 4.2(b).

Key to implementing data-driven circuits is an adequate partitioning of the

circuit into actions/groups of actions that source and consume data. Internal

channels will connect these actions. The partitioning also involves determining

the group of actions that will necessarily require sequencing, as unnecessary se-

quencing is a well-known source of overheads. Sequencing is normally associated

with the use of variables but also may be required to prevent deadlocks. Every
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    doMemAccess ||
    multiplexResults ||
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Figure 4.2: The simplified data-driven SPA EXECUTE stage [85].

variable that has a write-then-read access pattern inside each iteration of a group

of actions can be substituted by a channel write and an enclosing read (where the

value can be read as many times as required). Only variables that store a value

required in the next iteration need to be left in the description.

4.3.1 Control driven to data driven example

Consider the description of a branch metric unit (BMU) for a soft-decision-based

Viterbi decoder like the one described in [16]. This unit takes two 3-bit quantities

(a,c) which are soft-coded representations of the two received bits in a Viterbi

decoder. For each input, 000 (0) denotes the reception of a strong zero and 111

(7) indicates a strong 1.

The task of the BMU is to calculate the distance (branch weight) between the

received pair and the ideal branch pattern symbols (0,0), (0,7), (7,0), (7,7), as

shown in figure 4.3(a). The distance to be calculated is the Manhattan distance,

as this turns out to be equivalent to the Euclidean distance squared in this ap-

plication [91]. The required branch weights are: d00 = a+ c, d01 = a+ d, d10 =

b+ c, d11 = b+ d, where b = 7− a and d = 7− c.

The linear weights are further minimised (reduced) by subtracting the x and

y distance to the nearest ideal point, so the smallest linear metric is always made

zero. This can be done by finding the smallest linear metric and then subtracting

this value from every metric. Figure 4.3(b) depicts the BMU algorithm.

An almost direct translation of the branch metrics algorithm into Balsa is
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d00

d01

d10

d11

0,0 7,0

7,70,7

b

c

d

a

input (a,c) ;

b � 7 - a ;

d � 7 - c ;

d00 � a + c ;

d01 � a + d ;

d10 � b + c ;

d11 � b + d ;

smallestM � smallest(d00, d01, d10, d11);

bm00 � d00 - smallestM ;

bm01 � d01 - smallestM ;

bm10 � d10 - smallestM ;

bm11 � d11 - smallestM ;

output(bm00, bm01, bm10, bm11)

(a) (b)

Figure 4.3: Branch metric computation for a Viterbi decoder [91].

shown in figure 4.4. This description is very similar to the one that a novice Balsa

user wrote for this unit in [42], although it is not a completely fully-sequential

näıve description: values for b, d and d00 are calculated concurrently, and after

that, the remaining metrics are calculated. To find the smallest metric, they are

compared in pairs (concurrently) and two are discarded. The process is then

repeated to get the final result. The four reduced metrics (outputs) are also

calculated in parallel by subtracting this value. Figure 4.5 shows the compiled

handshake circuit (the diagram was generated using the breeze-sim-ctrl tool).

In the circuit, the highlighted control tree shows the six-way sequencer used

to activated each group of concurrent commands labelled (1) to (6) at the right

side of the given code. The control tree reflects the use of ; and || commands

in the description.

An examination of the algorithm reveals that all variables have a write-then-

read pattern, so instead of using variables, we could use channels to pass data

directly from sources to the commands that make the processing. The processing

commands will use active enclosure to read from channels.

For instance, consider the first three groups of actions in the above description

(lines 15 to 23) which are reproduced in figure 4.6(a). The two input reads can be

changed into an active input enclosure of the actions (2) and (3) as both actions

require the value of the input channels ia and ic. In this particular case, the

enclosure requirements are relaxed (the results can be generated in any order as

soon as the inputs are available) and we can use eager active enclosure.
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1 -- A Branch Metric Unit for soft-decision

2 -- Viterbi decoder with 3-bit quantisation

3 type TInp is 3 bits
4 type TOut is 4 bits
5 procedure BMU(
6   input ia, ic : TInp;
7   output bm00, bm01, bm10, bm11 : TOut
8 ) is
9   variable a, c : TInp

10   variable b, d : TOut
11   variable d00, d01, d10, d11 : TOut
12   variable tempA, tempB, smallestM : TOut
13 begin
14     loop
15         [ ia -> a || ic -> c ] ; -- read inputs    (1)

16         -- first batch of calculations          (2) 

17         [ b   := (7 - a as TOut)  ||
18           d   := (7 - c as TOut)  ||
19           d00 := (a + c as TOut) ] ; 
20         -- compute the other metrics            (3)

21         [ d01 := (a + d as TOut)  || 
22           d10 := (b + c as TOut)  || 
23           d11 := (b + d as TOut) ] ;
24         -- now find the smallest metric            (4)

25         if d00 < d01 then
26             tempA := d00
27         else
28             tempA := d01
29         end ||
30         if d10 < d11 then
31             tempB := d10
32         else
33             tempB := d11
34         end ;
35         -- resolve which is the smallest        (5)

36         if tempA < tempB then
37             smallestM := tempA
38         else
39             smallestM := tempB
40         end ;
41         -- generate the reduced outputs            (6)

42         [ bm00 <- (d00 - smallestM as TOut) ||
43           bm01 <- (d01 - smallestM as TOut) ||
44           bm10 <- (d10 - smallestM as TOut) ||
45           bm11 <- (d11 - smallestM as TOut) ]
46     end
47 end

Figure 4.4: Initial BMU description.

Inside the enclosure, variables b and d are replaced by local channels that are

written during action (2) and concurrently read during action (3) using another

active enclosure. Inside this last enclosure, variables d01 to d11 are replaced in a
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Figure 4.5: Handshake circuit of the BMU.

similar fashion. Because the values are now available in channels, the ; operators

are replaced by || operators increasing the concurrency of the actions. These

modifications are shown in figure 4.6(b).

        [ ia -> a || ic -> c ] ; --     (1)
        -- first batch of calculations    (2) 

        [ b   := (7 - a as TOut)  ||
          d   := (7 - c as TOut)  ||
          d00 := (a + c as TOut) ] ; 
        -- compute the other metrics      (3)

        [ d01 := (a + d as TOut)  || 
          d10 := (b + c as TOut)  || 
          d11 := (b + d as TOut) ]

        ia, ic ->! then -- read inputs      (1)

            -- first batch of calcs      (2)

            b   <- (7 - ia as TOut)  || 
            d   <- (7 - ic as TOut)  || 
            d00 <- (ia + ic as TOut) ||
            -- compute the other metrics (3)

            b, d ->! then    
                d01 <- (ia + d as TOut) || 
                d10 <- (b + ic as TOut) || 
                d11 <- (b + d as TOut)
            end 

        end

(a) (b)

Figure 4.6: First operations of the BMU: (a) original, (b) Data-driven.

The replacements and active enclosure use described above can be applied to

the remaining actions, resulting in the optimised code shown in figure 4.7. The

compiled handshake circuit is shown in figure 4.8. The activeEagerFalseVariable

(aeFV) components associated with each enclosure are light coloured, grouped and

labelled for illustrative purposes. Notice how the six-way Sequence in the initial

circuit has been replaced by a two-way Concur plus separated small controllers

for each group of enclosed actions.
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1 -- A Branch Metric Unit for soft-decision

2 -- Viterbi decoder with 3-bit quantisation

3 type TInp is 3 bits
4 type TOut is 4 bits
5 procedure BMU(
6   input ia, ic : TInp;
7   output bm00, bm01, bm10, bm11 : TOut
8 ) is
9   channel a, c : TInp

10   channel b, d : TOut

11   channel d00, d01, d10, d11 : TOut

12   channel tempA, tempB, smallestM : TOut

13 begin
14     loop
15         ia, ic ->! then -- read inputs                 (1)

16             -- first batch of calculations             (2)

17             b   <- (7 - ia as TOut)  || 
18             d   <- (7 - ic as TOut)  || 
19             d00 <- (ia + ic as TOut) ||
20             -- compute the other metrics            (3)

21             b, d ->! then    
22                 d01 <- (ia + d as TOut) || 
23                 d10 <- (b + ic as TOut) || 
24                 d11 <- (b + d as TOut)
25             end 
26         end ||  
27         d00, d01, d10, d11 ->! then 
28         -- now find the smallest metric                (4)

29             if (d00 < d01) then
30                 tempA <- d00
31             else
32                 tempA <- d01
33             end ||
34             if (d10 < d11) then
35                 tempB <- d10
36             else
37                 tempB <- d11
38             end || -- resolve which is the smallest    (5)

39             tempA, tempB ->! then
40                 if (tempA < tempB) then
41                     smallestM <- tempA
42                 else
43                     smallestM <- tempB
44                 end 
45             end || 
46             smallestM ->! then
47             -- generate the reduced outputs            (6)

48                    bm00 <- (d00 - smallestM as TOut) ||
49                 bm01 <- (d01 - smallestM as TOut) ||
50                 bm10 <- (d10 - smallestM as TOut) ||
51                 bm11 <- (d11 - smallestM as TOut)
52             end
53         end
54     end
55 end

Figure 4.7: Optimised BMU description.
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Figure 4.8: Handshake circuit of the optimised BMU.

A quantitative evaluation demonstrates that the smaller, concurrent control

trees increase the performance at the cost of some area penalty, as shown in

the simulation results presented in table 4.1. The results are from pre-layout,

transistor-level simulation using a 180 nm cell library. The energy results pre-

sented throughout this thesis correspond to dynamic energy only. The experimen-

tal setup consisted on processing 1000 random pairs of soft-coded symbols (a,c)

provided by an eager environment. The figure of merit is the average processing

time (tprocess) of a symbol pair.

Device tprocess (ns) Relative Area Relative Relative
speed (transistors) area energy

BMU Original 9.152 1.00 9663 1.00 1.00
BMU Optimised 6.906 1.33 10898 1.13 1.22

Table 4.1: BMU Simulation results.

Thanks to the directness of the compilation method and the availability of

different constructs, there is no a single way of writing data-driven descriptions.

Pipelining and paralellising descriptions can be done in different fashions as will

be demonstrated in the next sections.
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4.4 Optimising data-driven descriptions

In this section different performance-optimised data-driven description techniques

will be introduced. To give a clearer idea of the effects in the code, a simplified

version of the BMU (without the linear weight minimisation step) will be used

here for code and handshake circuit examples. That is, the body of the ref-

erence data-driven description will be the code in figure 4.6(b) embedded in a

loop ... end construct.

As an initial evaluation of the performance gains and trade-offs made, this

section also presents pre-layout, transistor-level simulation results for the com-

plete BMU example using the proposed techniques. Results for more complex

designs (including the complete Viterbi decoder) will be presented and discussed

in chapter 7.

4.4.1 Separating actions into concurrent loops

The example code in figure 4.9(a), which is already split in two groups of actions,

can be split into two concurrent enclosed groups instead of having two nested

enclosures. Furthermore, the outer unbounded loop can be split into two con-

current unbounded loops, where any value of the original enclosure required in

the second loop must be passed using new internal channels. In this example,

the values of ia and ic required in the second group are transferred together

with b and d, as shown in figure 4.9(b). In general, this “splitting” can continue

until all grouping possibilities are exhausted, according to the dependencies of

the commands. Notice the use of active eager enclosures in the description.

The resulting circuits are shown in figure 4.9(c) and (d). After the splitting

process the datapath will be a pipelineable description without pipeline registers.

On the control side, the control tree in the middle has been split and now the

control for the second round of computations runs concurrently with the control

of the input section. The new description results in the addition of two extra

aeFV s (for the copies of ia and ib passed to the bottom loop). The four aeFV s

decouple the RTZ phases of the control of the two loops, without adding any

latency.

The results for the BMU description that uses this technique are labelled “Lopt

non-eager” “Lopt eager” in the graphs of figure 4.10. These correspond to the

use of normal and eager active enclosures respectively. All results are normalised
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to those of the BMU original design presented earlier in table 4.1. Let us refer for

now to the first group of bars labelled “no ch. broadcast” in figure 4.10 (the other

groups of results will be introduced later). From the graphs, the performance gain

using the technique just introduced is ∼1.5 for the eager version (compare to the

previous 1.33 in table 4.1 which also uses eager enclosures), with a relative area

and energy of ∼1.3 and ∼1.5 respectively. Notice that the non-eager version does

not produce any significant performance improvement, it is included in the results

to highlight the benefits of the active eager enclosure.

    loop
        ia, ic ->! then
            b   <- (7 - ia as TOut)  || 
            d   <- (7 - ic as TOut)  || 
            d00 <- (ia + ic as TOut) ||
            -- compute the other metrics

            b, d ->! then    
                d01 <- (ia + d as TOut) || 
                d10 <- (b + ic as TOut) || 
                d11 <- (b + d as TOut)
            end 
        end
    end 

    loop
        ia, ic ->! then
            b   <- (7 - ia as TOut)  || 
            d   <- (7 - ic as TOut)  || 
            d00 <- (ia + ic as TOut) ||
            ta  <- ia ||
            tc  <- ic
        end
    end ||
    loop -- compute the other metrics
        ta, tc, b, d ->! then    
            d01 <- (ta + d as TOut) || 
               d10 <- (b + tc as TOut) || 
            d11 <- (b + d as TOut)
        end
    end 
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Figure 4.9: Example of separating actions into concurrent loops (first steps).
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An important remark with respect to the level of granularity of this technique

is that the throughput will depend on the slowest stage and increasing the pipeline

depth will increase the latency. Indiscriminate loop splitting (either manually or

automatically) by just analysing precedences and/or dependencies may end up

being suboptimal. The designer must take into account the balancing of the

pipeline, the nature of the data and the behaviour of the environment among

other factors. Being able to express the designer’s knowledge about the circuit is

an advantage but also a challenge in syntax-directed descriptions.
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Figure 4.10: Simulation results of different optimisations applied to the BMU.
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4.4.2 Broadcasting values

Often within a pipeline, a value from a channel is required unconditionally and

concurrently by more than one stage in the pipeline, as noticed previously with

ia and ic. Enclosure provides a means for multicasting values but it may prevent

finer grain concurrency and deeper pipelining. For instance, in the code of figure

4.6(a) the groups of actions (2) and (3) are within the same enclosure, hence

no new token can be processed by action (2) until action (3) has finished. A

solution for this, shown previously in the loop splitting example (figure 4.9(b)),

relied on duplicating the values required by the next group of actions inside the

active enclosure, but more concurrent solutions for broadcasting are possible. In

Balsa, there are two ways of specifying multiple concurrent receivers for the same

channel:

i. Using implicit broadcasting : In the description, the channel is read in every

place that it is required. In this case, the reads are fully synchronised:

the data will be available to the reading processes only after every read

request has been received. Similarly, data withdrawal will begin only after

all reading processes have signalled the consumption of data.

ii. Using explicit duplication of the channel by means of enclosure. This

method provides more decoupling between processing and the RTZ phases

of the reads, as every request will be granted independently of the arrival

of the others.

The code in figure 4.11 show these two forms of broadcasting in the simplified

BMU example. This technique further improves concurrency, which results in

higher performance at the cost of some area and energy penalties. The bins

labelled “ch. duplicate” and “ch. broadcast” in the graphs of figure 4.10 shows

the results for the complete BMU design when these techniques are applied.

Referring to the “Lopt eager” columns, the increase in performance is now ∼2.1

(slightly larger for the broadcast method). The relative area and energy are ∼1.45

and ∼1.65 when using channel duplication and a bit smaller (∼1.35 and ∼1.50)

when using implicit broadcasting.

In this particular example, the synchronisation penalty imposed by the im-

plicit broadcasting is not apparent because the design has balanced threads: all

four outputs are generated using similar operations and the simulation environ-

ment generate inputs and consumes outputs eagerly. In designs with this balanced
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    loop
        ia, ic ->! then
            b <- (7 - ia as TOut) ||
            d <- (7 - ic as TOut)
        end
    end ||
    -- ia and ic reuse in next loop

    -- creates implicit broadcasting

    loop
        ia, ic, b, d ->! then
            d00 <- (ia + ic as TOut)|| 
            d01 <- (ia + d as TOut) || 
            d10 <- (ic + b as TOut) || 
            d11 <- (b + d as TOut)
        end
    end

    loop -- make two copies of ia explicitly
        ia ->! then  a1 <- ia || a2 <- ia end 
    end ||
    loop -- make two copies of ic explicitly
        ic ->! then c1 <- ic || c2 <- ic end
    end  ||
    loop
        a1, c1 ->! then
            b <- (7 - a1 as TOut) ||
            d <- (7 - c1 as TOut)
        end
    end ||
    loop
        a2, c2, b, d ->! then
            d00 <- (a2 + c2 as TOut)|| 
            d01 <- (a2 + d as TOut) || 
            d10 <- (c2 + b as TOut) || 
            d11 <- (b + d as TOut)
        end
    end
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Figure 4.11: Broadcasting: (a,c) Implicit broadcasting. (b,d) Explicit duplication.

behaviour, broadcasting has the advantage of less area and energy penalties. How-

ever, in designs with more complex, unbalanced thread execution patterns, like a
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processor, thread decoupling provided by explicit duplication allows a head start

for some of the threads required to complete an instruction, resulting in fully

asynchronous operations and better performance.

In common with the previous technique, it is difficult to predict the places

or levels of granularity to apply efficiently this technique by only analysing the

operation precedences or data dependencies without input from the designer’s

knowledge about the system.

4.4.3 Adding pipeline registers

To increase its throughput, a pipelined description requires inter-stage pipeline

registers to decouple them. These can be added in two ways:

i. Using pipeline variables within the stage instead of the active enclosure, as

presented in [47].

ii. Using explicit pipeline buffer modules (like the one described in section 1.2.3)

between stages, as presented in [85].

These two styles are shown in the example codes of figure 4.12. Use of pipeline

variables adds a Sequencer to the control tree and results in lower performance

than the use of explicit pipeline buffers. Results in the graphs of figure 4.10 reveal

this performance penalty. However, pipelining using variables is cheaper in terms

of area and energy because no extra FalseVariable and Passivator components

are required.

Results for the design that uses pipeline variables are labelled “Lopt non-eager

+ pipeline var”. Results for the designs that use explicit buffering are labelled

“Lopt non-eager + pipeline buf.” and “Lopt eager + pipeline buf.” (with active

eager inputs). Notice how in the latter case, the synchronisation imposed by

channel broadcasting has limited the effectiveness of the decoupling.

A detailed look at the results in figure 4.10 reveals that adding pipeline regis-

ters when using broadcasting or channel duplication has not noticeably increased

the performance, but has increased the area and energy penalties. There are two

reasons for this: Firstly, the BMU stages are very simple and have low latency

(four bit adders/comparators), the extra latency of the pipeline registers reduces

their possible benefits. Secondly, as seen in the previous examples (figure 4.9), the

use of active inputs requires PassivatorPush components to interface with active
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    -- Pipeline variables :

    -- va, vc,

    -- vta, vtc, vb, vc

    loop 
        [ ia -> va || ic -> vc ] ;
        [ b <- (7 - va as TOut) ||
          d <- (7 - vc as TOut) ||
          ta <- va || tc <- vc ]
    end ||
    loop
        [ ta -> vta || tc -> vtc ||
          b -> vb || d -> vd ] ;
        [ d00 <- (vta + vtc as TOut)|| 
          d01 <- (vta + vd as TOut) || 
          d10 <- (vtc + vb as TOut) || 
          d11 <- (vb + vd as TOut) ]
    end

    -- procedure buf3 is buf(TInp)

    -- procedure buf4 is buf(TOut)

    buf3(a, pa) || buf3(c, pc) ||
    loop
        pa, pc ->! then
            b <- (7 - pa as TOut) ||
            d <- (7 - pc as TOut) ||
            ta <- pa || tc <- pc
        end
    end || 
    buf3(ta, pta) || buf3(tc, ptc) ||
    buf4(b, pb) || buf4(d, pd) ||
    loop
        pta, ptc, pb, pd ->! then
            d00 <- (pta + ptc as TOut)|| 
            d01 <- (pta + pd as TOut) || 
            d10 <- (ptc + pb as TOut) || 
            d11 <- (pb + pd as TOut)
        end 
    end
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Figure 4.12: Pipelining: (a,c) using variables. (b,d) using explicit pipeline buffers.
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outputs. When using dual-rail or other DI encoding these interface components

require storage in the form of C-elements as shown in figure 3.16(b) Hence, the

PassivatorPush acts as a simple half latch [91, 17]. (a half latch allows the active

output to withdraw the data after synchronising with the active input request

while the other side is in the processing phase). Each time a channel is du-

plicated using active enclosure, a half latch is added to the pipeline, providing

decoupling between stages. Inserting explicit pipeline registers in this case will

only contribute to increase the latency and area of the circuit.

In summary, the implicit storage added to the channels when specifying active

inputs serves in some cases as a pipeline register which, when combined with the

optimised control of the active eager inputs, efficiently implements decoupling

between pipeline stages.

4.5 Optimising guards

Another common source of inefficiencies when coding in Balsa is related to the

implementation of the guard expressions for conditional loops and for the case

and if constructs. These conditional constructs require the use of handshake cir-

cuits that generate control channels from the datapath, like the Case component

in figure 3.9 and the While component in figure 3.11. In many cases, the designer

can optimise these datapath-generated control by evaluating the guards before

their use in the construct, as will be demonstrated here.

input (a, b);
while a 6= b do

mmmmif a > b then a← a− b;
mmmmmmmmmmmmmmelse b← b− a;
output (a);

Figure 4.13: A pseudo-code specification of GCD [91].

Consider the GCD algorithm example, that computes the greatest common

divisor of an integer. Figure 4.13 shows a specification of the GCD algorithm.

Figure 4.14(a) shows a direct implementation of the algorithm in Balsa. In the

implementation, the two guards (va /= vb and va > vb) are evaluated only after

the control reaches each conditional structure, resulting in an unnecessary delay.

The code also exhibits the common “problem” of auto-assignment, which in most

cases introduces additional performance penalties (see section 3.3.5).
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The performance-optimised description of the GCD shown in figure 4.14(b)

illustrates how to solve the above problems: Firstly, to avoid auto-assignment,

two additional variables (tva and tvb) are used as temporary storage. Secondly,

the two required guards are evaluated in parallel and stored using 1-bit variables

neq and gt. The resulting handshake circuits are shown below the code.

Notice in the circuit at the left how the body of the loop ... while (high-

lighted) contains four sequenced operations:

i. Evaluate the guard expression for the loop ... while construct and pro-

ceed accordingly.

ii. Evaluate the guard expression for the if construct and make the decision.

iii. Update one of the auxiliary variables (labelled only for variable b in the

circuit).

iv. Update one of the variables (labelled only for variable b in the circuit).

In the optimised circuit at the right the loop has only three sequenced opera-

tions:

i. Read the guard expression for the loop ... while construct and proceed

accordingly.

ii. Read the guard expressions for the if construct and update one of the

auxiliary variables.

iii. Evaluate and store both guards, and update both variables.

Table 4.2 shows the simulation results for the two circuits above. The table

compares the average processing time required to calculate the GCD of two 8-bit

numbers. Area and energy results are also given.

Device tprocess(ns) Relative Area Relative Relative
speed (transistors) area energy

GCD Original 181.68 1.00 6856 1.00 1.00
GCD Optimised 133.26 1.36 6991 1.02 1.14

Table 4.2: GCD Simulation results.
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type dtype is 8 bits
procedure gcd
(

  input a, b : dtype;
  output gcdout : dtype
) is
  variable va, vb : dtype
begin
   loop
      [ a -> va || b -> vb ] ;
      loop
      while va /= vb then

         if va > vb then

            va := (va - vb as dtype)

         else

            vb := (vb - va as dtype)

         end

      end ;

      gcdout <- va

   end

end

type dtype is 8 bits
procedure gcd
(

  input a, b : dtype;
  output gcdout : dtype
) is
  variable va, vb, tva, tvb : dtype
  variable neq, gt : bit
begin
   loop
      [ a -> tva || b -> tvb ] ;
      loop
         neq := tva /= tvb ||
         gt := tva > tvb ||
         va := tva ||
         vb := tvb
      while neq then

         if gt then

            tva := (va - vb as dtype)

         else

            tvb := (vb - va as dtype)

         end

      end ;

      gcdout <- va

   end

end

(a) (b)
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Figure 4.14: Two implementations of the GCD algorithm in Balsa and their
compiled handshake circuits.

As the reader may have already noticed, in this example area and energy are

being traded for speed. On each iteration, there is a redundant update operation
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of the variable that does not change and two 1-bit variables are used. The design

with the optimised guard is 36% faster at the cost of 14% extra energy and

negligible area increase.

4.5.1 Encoding multiple guards

In situations where multiple guards are required, it is better to encode the guards

into a multi-bit variable and use a case construct instead of the more straight-

forward (but slower) multi-guarded if construct. Consider the example code in

figure 4.15 adapted from the description of the input buffer of a sliced-channel

wormhole router designed in Balsa [90]. Each router has five I/O ports, namely,

Local, North, South, East and West. The code shown corresponds to the South

input buffer and has been simplified for clarity: only the operations over the data-

less sync channels that generate the request to the destination ports are detailed.

The first value received at input d in[0] is the header flit. It contains the

XY destination addresses that will be compared with the addresses of the router

addrX and addrY. The destination is chosen accordingly to the comparisons and

the order of priority specified in the description. The optimised code is shown

in figure 4.16. In this new description, instead of using the if construct, all

guards are evaluated and stored in parallel with the buffering of the input value

within an active enclosure. The four bits generated by these evaluations are then

joined and used as the guard expression of a case construct. Also, in this new

construct the encoding of the guards reflect the priority expressed in the original

description.

Simulation results for the wormhole router, which are detailed in section 7.5.3,

indicate that the guard encoding technique contributes to an increase of 10% in

speed and a reduction of the area to 86% of the original, at the cost of 7% increase

in energy consumption.

4.6 New peephole optimisations

The previous sections showed how to write optimised Balsa code targeting high

performance. In general, the circuit derived from an optimised data-driven de-

scription will consist of small clusters of control components which reduces the

possibility of further optimisations using control resynthesis.
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1 type Destination is enumeration
2   WEST, NORTH, EAST, LOCAL
3 end
4

5 procedure input_buf_south
6 (

7   array 4 of input d_in : 9 bits;
8   array 4 of sync req;
9   array 16 of output d_out : 9 bits

10 ) is
11   variable buf : array 4 of 9 bits
12   constant addrX = (2 as 4 bits)
13   constant addrY = (2 as 4 bits)
14

15 begin
16   loop
17     d_in[0] -> buf[0]; 
18     -- NOTE: buf[0][4..7] = X, buf[0][0..3] = Y

19     if (#(buf[0])[4..7] as 4 bits) < addrX then sync req[NORTH] 
20         -- data transfer commands ommited

21     |  (#(buf[0])[0..3] as 4 bits) > addrY then sync req[EAST] 
22         -- data transfer commands ommited

23     |  (#(buf[0])[0..3] as 4 bits) < addrY then sync req[WEST] 
24         -- data transfer commands ommited

25     else sync req[LOCAL] 
26     -- data transfer commands ommited

27     end
28   end
29 end

Figure 4.15: Simplified description of the South input buffer of a sliced-channel
wormhole router [90].

Part of this research work focused on analysing these optimised circuits and

looking for further optimisation opportunities using component substitutions or

redesign. This section introduces some new peephole optimisations and compo-

nents aimed to increase the performance of the synthesised circuits. Datapath

optimisations include the removal and substitution of FalseVariable components

and the use of a more concurrent Fetch component. Optimisations for the con-

trol of unbounded active input enclosures and unbounded read-then-write actions

over a variable are also presented.

The optimisations introduced in this section were manually applied to some

of the design examples presented in this thesis, as they are not yet incorporated

into the Balsa design flow. Modifying the Balsa compiler to automate these

was considered more a time-consuming exercise on compiler development than a

contribution to the objectives of this research.
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type Destination is enumeration
  WEST, NORTH, EAST, LOCAL
end

procedure input_buf_south 
(

  array 4 of input d_in : 9 bits;
  array 4 of sync req;
  array 16 of output d_out : 9 bits
) is
  variable buf : array 4 of 9 bits
  constant addrX = (2 as 4 bits)
  constant addrY = (2 as 4 bits)
  channel n, e, w : bit -- guard variables
  channel d_in0 : 9 bits

begin
  loop
  -- NOTE: d_in[0][4..7] = X, d_in[0][0..3] = Y

    d_in[0] ->! then
      n <- (#(d_in[0])[4..7] as 4 bits) < addrX ||
      e <- (#(d_in[0])[0..3] as 4 bits) > addrY ||
      w <- (#(d_in[0])[0..3] as 4 bits) < addrY
      d_in0 <- d_in[0] -- replicate d_in required
    end
  end ||
  loop
    n, e, w ->! then
      case (#w @ #e @ #n as 3 bits) of
       0b1xx then sync req[NORTH]
        -- data transfer commands ommited

      |0b01x then  sync req[EAST]
        -- data transfer commands ommited

      |0b001 then  sync req[WEST]
        -- data transfer commands ommited

      else sync req[LOCAL]
        -- data transfer commands ommited

      end
    end
  end
end

Figure 4.16: Optimised, simplified description of the South input buffer.

4.6.1 Removing redundant FalseVariables

As demonstrated previously in section 3.3.12, active input control can be used in

Balsa when there is no input choice. In this case, Fetch and FalseVariable (or

just activeEagerFalseVariable) components are used to implement the construct.

In cases when the input channels are unconditionally read only once and the

control simply transfers the value to a consumer module in the datapath, the
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FalseVariable can be removed safely. This can also be done with the activeEa-

gerFalseVariable component.

+
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b

o

Fork Synch

activate

signal

signal

(a+b)

a,b −> then

o <− expr

o <− (a+b as dtype) end

^ (s)

(a)

+
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FVa

b

o

activate

(s)^

(a+b)

a,b −> then

o <− expr

o <− (a+b as dtype) end

(b)

Figure 4.17: Handshake circuit for example in figure 3.6, (a) original, (b) opti-
mised.

As an example, consider the Balsa code for a simple adder shown previously in

figure 3.6 where two input channels, a and b, are read and then added to produce

the output o. For convenience, the resulting handshake circuit is reproduced again

in figure 4.17(a). In this case, because the two input channels are unconditionally

read just once, both FV s and the Synch are redundant: the control can initiate

the read operation by directly triggering the transferrer at the output, which can

then immediately start pulling the values from the input channels through the

(+) operator. Figure 4.17(b) shows the optimised circuit.

The above transformation results in both latency and area reduction, yet

preserving the external behaviour of the circuit. The control tree is reduced to
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just the activation channel and the two FV s are removed from the datapath. In

general, in order to apply this optimisation, the single read of the FalseVariables

must not be activated through the use of a conditional component (Case, While

or DW ). For instance, figures 3.5 and 3.9 are examples of circuits where this

optimisation cannot be applied.

4.6.2 Control of active enclosures

When two or more channels are used as inputs in an active enclosure, Balsa in-

troduces a Fork component to broadcast the activation to the Fetch components

that push data into the FalseVariables. See for instance figure 4.17(a). With

active eager inputs, this signal is passed to the trigger inputs of the activeEager-

FalseVariables, as shown in figure 3.9.

In both cases, the signal control channels of all inputs are synchronised using

a Synch component, which activates the command that reads from the enclo-

sure once all signal requests have been received. Figure 4.18 shows the circuit

implementations of the Fork and Synch components. It can be seen that these

components have mirrored circuits. The Synch implementation guarantees that,

for every input Ii, Iireq occurs before Oreq. Mathematically, Iireq ≺ Oreq. Equiv-

alently in the Fork, for every output Oi, Oiack ≺ Iack. The Fork synchronises all

the transferrer/trigger acknowledges before acknowledging the activating party.

C C

out1.ack

out1.req

out2.ack

out2.req

outN.req

outN.ack

in.ack

in.req

in1.req

in1.ack

in2.req

in2.ack

inN.req

inN.ack

out.ack

out.req

(a) (b)

Figure 4.18: (a) Fork implementation. (b) Synch implementation.

A Permanent procedure is a procedure activated using a Loop component

that is either connected directly or through nothing other than WireForks to the

global circuit activation, like the circuit shown in figure 4.19(a). In these cases

the synchronisation of acknowledges imposed by the Fork is redundant: the Loop

component does not acknowledge its activation to the caller, hence each aeFV

/Fetch may be activated independently with separated Loops.
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The Synch component in the enclosure structure guarantees that only one

token from each FV or aeFV is allowed during each execution of the enclosed

command. Each Loop can issue a new token only after the enclosing command

completes. Eliminating the Fork reduces the latency of the control and increases

the concurrency at the inputs. Figure 4.19(b) shows the optimised circuit. The

WireFork is required to fork the activation request to all the control loops. Note

that the aeFV and its activating Loop could be amalgamated into a single com-

ponent.

aeFV

aeFV

*

Command

activate

i1

i2

(s)^ * *

aeFV

aeFV

i1

i2

activate

Command

W^

(s)

(a) (b)

Figure 4.19: Permanent active eager input: (a) original, (b) with optimised con-
trol.

4.6.3 Unbounded read-then-write on variables

This section introduces an optimisation of the handshake circuit required to per-

form unbounded read followed by write actions in variables, based in the unfold-

ing of the first read operation and the use of the optimised sequencer introduced

in [89].

Performance of sequenced operations

In synchronous circuits, the sequencing of events is straightforward: event A is

sequenced with event B if they occur at different clocking events, that is, a full

clock pulse, a clock level or a clock transition. In an asynchronous environment,
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sequencing is more complicated and generally includes extra control overhead.

Sequencing of handshake events must follow the protocol rules in order to avoid

data or control hazards that may cause malfunction and deadlock.

Depending on the degree of handshake overlapping allowed, Balsa generates

two types of sequencers based on the S-element and T-element respectively [89].

Figure 4.20 presents a block diagram of such components with their respective

STGs (see section 2.6.1). Figure 4.21 shows the implementations of the Balsa

sequencers and their respective STGs as introduced in [89].
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Figure 4.20: (a) S-element. (b) T-element. (c) S-element STG. (d) T-element
STG.

Notice that in the sequencer based on the T-element, the RTZ phase of the first

command overlaps with the processing phase of the second command and the RTZ

of the activation, which results in a more concurrent operation. Unfortunately,

it is not always possible to use this type of overlapping due to the possibility of

introducing write-after-write (WAW) and write-after-read (WAR) hazards. For

a complete discussion of these issues, the interested reader can refer to [89].

A performance penalty occurs in designs where repeated read-then-write ope-

rations occur on the same variable. An unbounded repetition of this type can be

described in Balsa as shown in the piece of code in figure 4.22(a), where processes

rd proc() and wr proc() access the common variable V. Figure 4.22(b) shows

the resulting handshake circuit. It is necessary in this case the use of a sequencer

based on the S-element because the use of the T-element based sequencer may

introduce a WAR hazard. This hazard is caused by the RTZ phase of the first

command trying to close the variable read port concurrently with the second
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Figure 4.21: Balsa sequencers: (a) based on the S-element, (b) based on the
T-element [89].

command trying to write new data. If the new data arrives first it will appear at

the output of the read port before it closes, potentially altering the result of the

first command [89].

If the first read operation is taken out of the loop construct (the first read

operation is unfolded), as the code shown in figure 4.23(a), the behaviour will

remain the same, but now the operation inside the loop is a write-then-read,

which does not have WAR hazards. In Balsa, a write-then-read sequence to

a local variable within a procedure will generate a Sequencer based in the T-

element. However, if the write and read processes reside in separate modules

running in parallel, the Balsa compiler is conservative, as the level of allowed

overlapping in communications is unknown, and inserts a safe sequencer based

on the S-element. Performing this optimisation at the source code level requires

the use of multiplexers in the datapath to merge the reads and duplicate blocks

(larger area, energy and latency) as shown in the resulting circuit of figure 4.23(b).
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-- other declarations

variable V : someType
-- other declarations

begin

    loop

       rd_proc(rd_args) ;

       wr_proc(wr_args)

    end

end

control

activate

*

wr_proc() V rd_proc()
some_output

2 1

;

(a) (b)

Figure 4.22: Read-write loop: (a) code, (b) handshake circuit.

-- other declarations

variable V : someType

-- other declarations

begin

    rd_proc(rd_args) ;

    loop
       wr_proc(wr_args) ;
       rd_proc(rd_args)

    end
end

control

activate

*

wr_proc() V

rd_proc()

rd_proc()

|

some_output

2 1

21

;

;

(a) (b)

Figure 4.23: First-read-unfolded version of circuit in figure 4.22.

In order to avoid hardware duplication, Balsa allows the use of shared pro-

cedures with the limitation that local channels may not be accessed [5]. The

proposed solution is to substitute the loop-sequencer control structure obtained

for unbounded loop descriptions like the one in figure 4.22(b) by the optimised

control shown in figure 4.24(b). This new controller allows write and read RTZ

overlapping and does not have local channel accesses restrictions.

In dual-rail circuits, the time required to complete the RTZ phase increases

proportionally to the width of the data because the completion detection circuit

must check more bits. Table 4.3 shows transistor-level simulation results of first-

read-unfolded loops with different data widths. The simulated loop was a simple
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-- other declarations

variable V : someType
-- other declarations

begin
    loop

       rd_proc(rd_args) ;

       wr_proc(wr_args)

    end

end

control

activate

*

wr_proc()

|

V rd_proc()
some_output

2 1

21

;

;

(a) (b)

Figure 4.24: Optimised first-read-unfolded read-write loop.

read-then-write to a variable. These figures give an estimated upper bound for

the performance gain that can be obtained and show that for datapath widths

greater than 3 bits, the speed-up achieved by RTZ overlapping is greater than the

overhead of the merge required in the unfolded control tree of figure 4.24. Section

7.4 presents the design of a Forwarding Unit that makes use of this optimisation

technique.

width (bits) 1 2 3 4 8 16 32 64

speed-up (%) -11.8 -2.5 -1.0 5.0 7.2 9.0 8.8 11.4

Table 4.3: Influence of data widths in first-read-unfold of read-write unbounded
repetitions

4.6.4 Fetch component with concurrent RTZ

The Balsa dual-rail Fetch component, shown in figure 4.25(a), consists of wires

only, with broad data validity in both data ports. The signal transition graph

(STG) in figure 4.25(b) shows how the RTZ phases of the activation, input and

output are fully sequenced.

In [81], Peeters described two single-rail transferrers with concurrency in the

data channels, the par-ser and the ser-par, but its implementation in dual-rail

would require completion detection inside the Fetch. The Fetch proposed here,

focuses on the concurrency of RTZ phase of data and activation channels: if

the handshake on the activation channel is itself enclosed within the handshake
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of a wide data channel, the RTZ of that channel will delay unnecessarily the

RTZ of the input data channel. In Balsa circuits, this situation occurs when

the activation is generated by a Case component whose input data port has a

considerable number of bits, as found in the implementation of the Decode stage

of the nanoSpa processor [89, 95] or in the write index for arrayed variables with

many entries. A more concurrent operation can allow the RTZ on the activation

channel to occur in parallel with the RTZ on the data channels. Figure 4.26 (a)

shows the new circuit for the dual-rail fetch and the resulting STG.
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The new control interface now features a T-element which provides the desired

decoupling. In order to obtain performance benefits, substitution of the wires-

only Fetch should only be made when the Case component that activates it has

a slower RTZ than the delays introduced by the controller in the new Fetch, but

this threshold can be easily tunable in the compiler. The nanoSpa processor and

the Viterbi decoder presented in chapter 7 are used as design examples to evaluate

this optimisation.

4.6.5 Summary

This chapter has presented a number of description-level optimisations together

with their effects in performance, resulting circuit structures and trade-offs made.

First, the data-driven description style was introduced as a technique that, using

the arrival of data to activate the processing units, results in faster circuits with

smaller and localised control sections.

Description level techniques that result in faster data-driven descriptions were

introduced and analysed. These included: separation of actions within un-

bounded loops to increase concurrency, broadcasting styles and stage decoupling

techniques. The effects of the use of active eager enclosures with these techniques

were also analysed. The reduced control tree achieved with these optimisation

techniques combined with the head start of the control provided by the active ea-

ger enclosure contribute to the increase in performance of the circuit. The effects

on the performance of the circuits clearly depend on the nature of the operations

implemented. However, usually there will be some energy and area penalty as

shown in the results for the running example.

Early evaluation of guards and encoding of multiple guards for conditional

loops and case constructs were also presented as a way of increasing the per-

formance. Because the structures that implement the loop and case constructs

generate control signals from the datapath, optimising the decision-making cir-

cuit speeds up the control. Finally, some new peephole optimisations for the

resulting optimised handshake circuits were proposed. These include the removal

of single-write with unconditional single-read FalseVariables, the optimisation of

the control of the active input structures, the optimised control for unbounded

write-then-read operations and a more concurrent version of the Fetch compo-

nent. The techniques and optimisations presented here will evaluated and further

discussed in chapter 7 using a number of substantial examples.



Chapter 5

Optimising Token-flow circuits

and descriptions

5.1 Introduction

In chapter 3 the Balsa synthesis system was introduced along with examples of

handshake circuit implementations of synthesised circuits. The components pro-

duced are similar to those produced by the Tangram system, the precursor of

Handshake Solutions’ TiDE system [23]. Balsa was developed to allow optimi-

sation opportunities in handshake circuit designs to be explored. In particular,

the FalseVariable component and input-enclosure language construct [5] have al-

lowed pipelined descriptions with alternating latch and combinatorial handshake

processing stages to be more naturally described.

The Teak system was proposed by Bardsley [6] as part of his research work

within the APT Group at The University of Manchester. The Teak system ex-

tends the degree to which the Balsa language can sympathetically be used to

describe pipelined systems by proposing a new set of components, synthesis rules

and compiler. The aim of the Teak system is to provide a path for future per-

formance increases in Balsa synthesis by exploiting high performance pipelined

asynchronous circuit styles. The author of this thesis has contributed to the Teak

System with:

i. the optimisations ideas presented in section 5.3 and their automation.

ii. automatic latch insertion strategies presented in section 6.4.

iii. the description-level optimisations presented in section 5.4.2.

112
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iv. the evaluation of Teak using many of the design examples presented in

chapter 7.

Some of the contents of this section are based in [6], a paper written by the

author and Andrew Bardsley.

5.2 The Teak system

Teak replaces the dataless activation channel (used to enclose the behaviour of

program fragments in handshake circuit synthesis) with separate go and done

channels. Control/datapath interactions using components which exploit signal-

level event interleaving are replaced by the rendezvous/forking of control and data

channels with local handshaking to complete control interactions. This separation

of “go” and “done” makes Teak much more like the Macromodules system [93]

than handshake circuit systems. However, the ability to merge control and data

channels gives the Teak system more flexibility.

Treating control channels in this way allows all the optimisation techniques

usable with pipelined asynchronous systems (i.e. those with input-enclosing-

output processing stages and decoupling latching stages) to be used on Teak

circuits whilst still allowing local sequenced behaviour by using control channels.

Explicit pipeline latch insertion (also referred to as buffering in this chapter)

is used to decouple one component from another and to introduce the desired

degree of token storage to enable the circuit to function and, looking beyond the

work presented in this thesis, to allow more transforming synthesis methods to

increase circuit parallelism.

5.2.1 Teak components

There are currently eight Teak components (as shown in figure 5.1):

Steer (S): conditional steer of input to exactly one output. Parameterised

with disjoint match conditions for each output and bit ranges to carry to

outputs. With 0 bits carried to outputs, Steer works like the Balsa Case

component.

Fork (F): unconditional n-way fork. Fork can be parameterised by which

(if any) bits of the input are carried to each output. A two-way Fork of n

and 0 bits can be used to generate a control token from moving data.
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Merge (M ): input on one of the input ports is multiplexed towards the

output. Inputs must be mutually exclusive. In some configurations, Merge

may have to cope with second input arrival during first input activity.

Arbiter (A): merge with arbitration between inputs.

Join (J ): unconditional n-way join. Concatenates data bits of arriving

inputs.

Variable (V ): persistent storage. Separate write and read sections allow

arbitrary control ordering/conditionality of reads. Variables allow compli-

cated control activity without incurring the cost of always moving data

along with control around a circuit. ‘wg/wd’ and ‘rg/rd’ (go/done) pairs

make all writes data initiated and control token completed, all reads control

token initiated and data delivery terminated.

Operator (O): any and all data transforming operations. Inputs are

formed into a single word. Internally an Operator is organised into in-

terconnected terms allowing Operators to be amalgamated or separated to

allow cheaper implementation or Latch insertion.

Latch (L): data storage and channel handshake decoupling.

All of the components, except Latch, can be implemented with any chosen

degree of input to output channel coupling (i.e. concurrency of handshaking

events). Latch must provide at least some decoupling so that it can be used to

separate pipeline tokens. In this way, Teak components resemble the components

of other elastic token pipeline systems.

The Variable is included in this component set in order to allow sequential,

storage-centric descriptions to be mapped directly into hardware. This is in con-

trast to other token flow approaches to asynchronous synthesis [116] [103] which

perform single assignment analysis on the input language to allow variables to

be eliminated in favour of pipeline buffers. This decision was made to allow the

exploration of the possible power and area implications of retaining ‘fixed’ vari-

ables. Also, pipeline buffer-only approaches find it difficult to handle descriptions

of persistent register banks without messy ‘register refreshing’ loops [100].

Figure 5.2(a) shows the one-place buffer example from Section 1.2.3 con-

structed from Teak components using synthesis rules from Section 5.2.2. The
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Figure 5.1: Teak components.

handshake circuit for this example is reproduced here in figure 5.2(b) for com-

parison.

Notice that the Loop component has become a loop comprised of a Merge (to

introduce the ‘go’ token), a Join (to meet incoming data), and a Fork (to return

a token back around the loop, through the Merge, after the output command)

rather than a composition of enclosing control components.

5.2.2 Teak synthesis

Teak synthesis is initially syntax directed. Optimisations can then be performed

on the generated Teak component netlists (Teak circuits). Each command in a

Balsa description is mapped into components with dangling ‘go’ and ‘done’ control

channels (a few commands never terminate and have no ‘done’). Expressions,
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Figure 5.2: (a) Teak circuit for 1-place buffer, (b) Handshake circuit for 1-place
buffer.

channel accesses and assignment left-hand sides similarly have a pair of dangling

channels: one bearing data and the other a control initiating/completion channel.

Control can be sequenced by joining commands ‘done’ to ‘go’ in a chain. Data

and control usually meet with Fork and Join components.

As with Balsa intermediate Breeze netlists, there are many possible choices of

data encoding and signalling protocols on the channels between components. As

Teak deals with the flow of tokens rather than enclosing handshakes, Teak com-

ponent implementations also have choices of the degree of interleaving between

input to output handshakes, the use of weak-condition behaviour and storage

within components. The Teak synthesis system consists of a single front-end pro-

gram called teak. There are a number of switches that allow technology mapping

to be specified and various plotting options and optimisations.

Channels

Channels in Balsa have no capacity. Inputs and outputs on a channel form a syn-

chronisation where either party can delay the transaction until both are ready for

data to be transferred. In Balsa, the select command (which allows choice based

on order of arrival of data on a number of channels) and the ‘enclosed’ channel

input command can be used to exploit the non-atomic nature of asynchronous

channel construction to allow latch-less implementations of data processing stages

to be described. In such stages, data processing and outgoing channel outputs
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are enclosed within the input handshake, as described in section 3.3.9. Alternat-

ing such stages with latch-containing pipelining stages allows push pipeline-like

structures to be built.

J

F

EXPR

w

done done

CHAN −> VAR

0

n

VAR

0

n
of variable
write portion

go

0
−− one output
CHAN <− EXPR

go

0−− one input

Figure 5.3: Balsa-style channel implementation.

Figure 5.3 shows a single output, single input Balsa-style channel implemented

using Teak components. The pair of data and acknowledging (“done”) channels

between output and input commands form a synchronisation and limit to a single

token the capacity of the loop formed from output command (as data), through

input command and back to the output command (as an acknowledging “done”).

Note the use of Forks and Joins between data and control.

Unfortunately, Balsa’s channel implementation does not allow the capacity of

buffered Teak channels to be exploited. Instead, the semantics of Balsa channel

has been changed to make writes “fire and forget”. Channel outputs and inputs

are no longer synchronised and enclosure inside a sending handshake can no

longer be relied upon. In practice, this reduces the utility of the select language

construct but allows descriptions to be formed which exploit (or possibly rely

upon) non-zero channel capacity. This introduces an incompatibility with the

Balsa system’s interpretation of descriptions.

Figure 5.4 shows how channel read and write commands are combined to

form a complete Teak style language-level channel. The i and j constant-valued

Operator components “tag” the request channels from different input/output

commands so that once those requests are merged, with the following Merge

component, the source of the request is encoded on the Merge output. This com-

mon request is then Joined to a token Forked from the outgoing data Merge (or,
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for inputs, the incoming data itself) and Steered to provide the local command

acknowledgements.

The combination of taggingOperators, the followingMerge and the Join/Steer

combination (the two shaded boxes in figure 5.4) plays a similar role to the Balsa

DecisionWait [3] Handshake Component. This involves steering an incoming

token (in this case the acknowledgement from the data-bearing merge) to the

correct output based on the arrival of a single token on one of a group of input

tokens (in this case, the choice of output command site). In Teak, the compo-

nent parts of the DecisionWait are separated, rather than provided as a single

component, to allow for flexibility of Latch insertion.

In cases where acknowledgement tokens need not be steered (e.g. where there

is only one read or write to a channel in the description) much of the control/data

interaction can be optimised away (as shown in figure 5.5). This implementation

is similar to that of figure 5.3, but without the sequencing of variable write to

the output command’s “done”.
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Figure 5.5: Channel component optimisation.
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Commands

Figure 5.6 shows sequential and parallel composition of commands. Command

“go” and “done” channels can be connected in series to form sequencing, so

no explicit Sequence component is required. Parallel composition requires two

components (Fork and Join) in contrast to Balsa’s Concur component which

contains both functions in one component. Figure 5.6’s presentation of command

composition is very similar to that used in non-return-to-zero (2-phase) signalled

handshaking, as is illustrated by Brunvand [18]. Note, however, that here we are

using handshake channels rather than individual wire signals for each of “go” and

“done”. On a channel, the token recipient can stall a handshake (by denying an

acknowledgement) and so the token capacity of a string of commands is not nec-

essarily limited to one (i.e. the strict alternation of “go”, “done” events between

between all commands). Where resources are not shared between sequentially

composed commands, this property allows pipelining to naturally arise.

CMD2CMD1
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CMD1
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0 0

0

0

0

0

0

done

go

CMD1 || CMD2CMD1 ; CMD2

go

done

go

go

done

done

donedone

go go

Figure 5.6: Sequential/parallel composition.

Figure 5.7 shows the structure of a loop ... while command. The Steer

component provides the control choice at the top of the loop. Note that the loop

formed by the Merge and Steer components must have at least some buffering to

prevent deadlock. Insertion of Latches will, obviously, affect circuit performance.

Section 6 discusses different strategies for buffering and presents those currently

available in the Teak System.

A non-terminating loop may be implemented by using the “done” of CMD1 to

close the loop and removing the Steer, the COND and the CMD2 blocks. This is

illustrated in figure 5.2(a).
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Figure 5.7: While loop implementation.

Expressions

Expressions are compiled by adding pairs of “rg” (read go) and “rd” (read done)

ports on variable components, and Operator components to process the read data.

Reading from channels within expressions (when within select commands or en-

closed input commands, e.g. chan -> then var := chan + 1 end) is achieved

by inserting Variable components to capture channel read data, and then using

read port pairs on those variables to use that data. These variables can often be

removed if data is unconditionally used within the body command.

5.3 Optimising Teak circuits

This section introduces some optimisations for Teak circuits by exploiting the

properties of components both individually and in groups. Optimisations are

presented using simplified practical descriptions extracted from the design exam-

ples used in chapter 7. The plots of all Teak circuits shown in the following

sections were generated automatically using the Teak System.

5.3.1 Variables

In cases where reads from a channel occur unconditionally after every write, the

Variable can be removed (for single-read channels) or replaced by a cheaper and

faster Fork component (for multiple-read channels), provided the Variable compo-

nents are not used to enforce sequencing. Figure 5.8 shows a single-write followed

by unconditional single-read channel structure before and after optimisation.

As an example, consider the Balsa description of an n-bit full adder whose

output is separated into sum and carry-out portions shown in figure 5.9. The

resulting circuit will contain Variable components implementing the inputs on a

and b and the channel cs as described in section 5.2.2.
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Figure 5.8: Variable single read-after-write optimisation.

1 procedure adder (
2   input a, b   : N bits;
3   output sum   : N bits;
4   output carry : bit
5 ) is
6    channel cs : N+1 bits
7 begin
8     loop
9         a, b -> then

10             cs <- (a + b as N+1 bits)
11           end ||
12           cs -> then
13             sum <- (#cs[0..N-1] as N bits) ||
14              carry <- (#cs[N] as bit)
15         end
16     end
17 end

Figure 5.9: Balsa code for n-bit full adder.

For simplicity, let us consider only the part of the synthesised circuit that

provides the sum and carry outputs as shown in figure 5.10(a), which corresponds

to lines 12-15 in the source code.

The Variable that implements the channel cs has a single write port and two

read ports (for sum and carry). Reads are initiated as soon as the cs Variable ‘wd’

(write done) port indicates that new data has been stored. The Fork component

at the top provides tokens for both read ports. As a write operation is directly

followed by a read, this Variable can be substituted by a Fork that provides ‘sum’,

‘carry’ and ‘done’ results as shown in figure 5.10(d). An additional benefit of this

type of optimisation for dual-rail circuits is that the forked channels would only

need to wait for the arrival of those input bits that will be carried to the output.

The above optimisation can be viewed as a 3-step process:

i. The Fork labelled 1 is displaced ‘downstream’ in the datapath, after the

Variable cs, leaving a single write, single read Variable, as shown in fi-

gure 5.10(b).

ii. Variable cs can be removed as a write is directly followed by a read and
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Figure 5.10: Variable substitution example.

the three Forks can be merged into a four-way Fork, leading to the circuit

in figure 5.10(c).

iii. Now, the Join component in figure 5.10(c) is redundant because both inputs

come from the same fork. The inputs of the Join can be merged and the

final circuit is shown in figure 5.10(d)

Similar kinds of optimisations based in component displacement will be pre-

sented in the following sections.
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5.3.2 Fork displacement

In some circumstances, Fork components can also be displaced ‘upstream’ in a

data or control path to allow for more concurrent operation. Consider the segment

of code in figure 5.11 where the results generated by the two output commands

must be written sequentially to a common channel out.

1 procedure tenFifteen (
2    output out : 4 bits
3 ) is

4 begin

5    loop

6       out <- 10 ; -- exprA

7       out <- 15   -- exprB

8    end

9 end

Figure 5.11: Sequential write to a channel.
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Figure 5.12: Sequenced channel write example: (a) original, (b)after Fork dis-
placement.

The resulting circuit is shown in figure 5.12(a). Note how the Forks labelled

U fork the result of exprA and exprB to generate the output and the “tag” con-

stants ( cA and cB ). As explained in section 5.2.2, those constants indicate which
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of the expressions will be output in the next iteration via the Steer component.

If those Forks are moved upwards through the expression generators, as in fi-

gure 5.12(b), the constant that steers the control for the next iteration will be

generated concurrently with the output. This kind of displacement can be done

through any data transforming operation or even single-input command blocks.

5.3.3 Fork-Merge-Join and Steer-Merge

Another target for optimisation are Fork-Merge-Join and Steer-Merge composi-

tions. In Teak circuits, Forks are used in a datapath to generate a control token

from a data token, to either synchronise or sequence operations. Sometimes all

the Forked control tokens from a set of mutually exclusive data results need to be

Merged into a single token. At some point further down in the pipeline this new

control token will rendezvous in a Join with a second data or control token. If the

second token is derived from the merging of the aforementioned set of mutually

exclusive data sources, the Fork-Merge-Join composition for the control tokens

can be simplified.

Consider the segment of code in figure 5.13(a) which is a simplified version of

a “sign adjust” unit for the multiplicand input of the Booth’s multiplier in the

nanoSpa processor [95]. The circuit takes an N bit input word b and, depending

of the type of multiplication specified by the mType input, either appends M

zeroes after the most significant bit of input b or sign-extends it to N +M bits

to generate the adjusted output ba. For clarity, let N = 8 and M = 3 in this

example.

The unoptimised circuit is shown in figure 5.13(b). In this figure, the dotted

blocks labelled inB and inM, contain the implementation of the two input channels

reads and writes. The Fork-Merge-Join optimisation will be applied to the shaded

the block of figure 5.13(b), labelled BOut. In this block, the output data from

Operators zE (zeroExtend) and sE (signExtend) are forked to produce control

(thin lines) and data (wide lines) tokens. The data tokens are merged and then

forked again to produce the output ba and a new control token (Merge and Fork

labelled c0 ).

The control tokens from the top Forks in block BOut generate tag values

(constant Operators 2’d1 and 2d’2 ) required to steer the control to the correct

source in the next iteration (components labelled c1 ). As both data tokens are
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1 loop
2   mType, b -> then
3     case mType of 

4     MUL, UMULL, UMLAL then

5     -- unsigned, pad with 0s

6       ba <- zeroExtend (8, 11, b)

7     else

8       -- signed, sign-extend

9       ba <- signExtend (8, 11, b)

10     end

11   end

12 end

BOut

inB

inM

M
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J SJ

go

mType w0 r0 b w0 r0 r1

J j0
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M

M
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FF

2’d1 2’d2

ba

c2

c2

c1

c1c0

c0

sE zE

mType b

(a) (b)

Figure 5.13: ‘Sign adjust” example.

derived from a common source, the outputs of the Steer are the only inputs to

the Merge that generates the control token for the next iteration (components

labelled c2 ). The simplification steps are:

i. The bottom Steer-Merge in figure 5.13(b) can be simplified into a single-

output Fork which acts as an adaptor that generates a control token from

a data token as shown in figure 5.14(a).

ii. As the generation of the control token in the new Fork is independent of

the data value, the data channels that carry the constants can be simplified

into control channels, making the constant blocks redundant. These are

simplified in figure 5.14(a).

iii. Now the control tokens forked from the outputs of zE and sE are redundant

because each one will always synchronise with its sibling data token at the
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Join c1 , hence those Forks and the Merge and Join with labels c1 can be

reduced. The new single-input Fork inserted in step (i) can also be removed.

The final circuit is shown in figure 5.14(b).
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Figure 5.14: “Sign adjust” circuit: (a) first optimisation steps, (b) final circuit.

5.3.4 Removing “go” cycles

In Teak circuits, “go” cycles (loops) occur when the description specifies loop

constructs (as in figures 5.2(a), 5.7, 5.12 and 5.13). A single initial “go” control

token is introduced through a Merge component and the subsequent “go” tokens

are locally generated when the circuit produces its outputs.

In the case of unbounded repetition loops, this control cycle can be removed

if it does not contain a Steer-Merge (conditional) composition. This means that

new “go” tokens for the loop are generated unconditionally.
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Consider the example of the N -bit full adder introduced in section 5.3.1 whose

code is shown in figure 5.9, and its optimised Teak circuit shown in figure 5.15(a).

Clearly, the generation of the next “go” token is unconditional in this circuit. The

components used to reinsert the “go” token can then be removed safely, leading

to the circuit shown in figure 5.15(b). In this particular case, the circuit consist

only of data channels. In fact, the optimised circuit ends up having the structure

of a fully data-driven pipeline.

go

ab

sum carry

({0,in[7:0]} + {0,in[15:8]})

M

J

F

F

J

ab

sum carry

({0,in[7:0]} + {0,in[15:8]})

F

J

(a) (b)

Figure 5.15: Teak circuit of the N-bit adder: (a) Optimised, (b) With the “go”
cycle removed.

If a cycle contains a Steer-Merge composition, there is a possibility of inserting

tokens in the wrong order through theMerge if the number of tokens in the cycle is

not limited by the “go” circuitry. This is so because, as explained in section 5.2.1,

channels in Teak are allowed to have any amount of storage and components can

be implemented with any degree of input to output channel coupling. The circuits

with conditionals inside a loop construct of the previous sections (e.g. figures 5.12

and 5.13) are examples of circuits with irremovable “go” cycles. In these cases,

the number of tokens is limited to one and they are referred to as single-token

cycles in the rest of this thesis.
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5.4 Description-level optimisations

Teak synthesis use a different set of components and composition strategies than

those used in Balsa. It is not therefore surprising that not all of the description-

level strategies presented in chapter 4 will be as effective in Teak. In this section,

Teak-specific optimisations will be introduced and their impact on the resulting

circuit will be analysed.

5.4.1 Commonalities with Balsa optimisations

Teak descriptions also benefit from the data-driven style description introduced

in section 4.3, and the following optimisations also apply to Teak: separation of

actions into concurrent loops, adding pipeline registers, explicit duplication, and

guard optimisation. However, the enclosure techniques (based on pull structures)

used widely to speed-up Balsa descriptions may result in poor performance when

compiled into Teak push-based circuits.

5.4.2 Description techniques to remove Variables

Variables in Teak are used for implementing both permanent storage and channels

(see section 5.2.2). They are the most complex and expensive component in

Teak, but allow sequential, storage-centric descriptions to be mapped directly

into hardware, avoiding some of the restrictions of not having such a component,

as explained in section 5.2.1.

Variables with unconditional reads can be removed as described in section 5.3.1.

However, Variables used in the implementation of channels with conditional reads

cannot be removed, although in some cases descriptions may be rewritten to avoid

conditional reads and therefore allow the variables to be removed.

Avoiding Variables associated with conditional reads

Conditional channel reads occur when a channel access encloses a conditional

construct within which the channel’s value is used. Figure 5.16(a) shows an

example description of a two-output demultiplexer. In the example, the (write)

access to channel i encloses two conditional reads on this channel. In the resulting

Teak circuit, in figure 5.16(c), the write and read sections of channel variable i are

separated by a Steer and cannot be optimised because of the conditional reads.
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1 procedure dmux (

2   input ctl : bit;
3   input i   : N bits;
4   output z0, z1  : N bits

5 ) is

6 begin

7    loop

8       i, ctl -> then

9          if ctl then

10             z1 <- i

11          else

12             z0 <- i

13          end

14       end

15    end

16 end

1 procedure dmux (

2   input ctl : bit;
3   input i   : N bits;
4   output z0, z1  : N bits

5 ) is

6 begin

7    loop

8       ctl -> then

9          if ctl then

10             i -> then z1 <- i end

11          else

12             i -> then z0 <- i end

13          end

14       end

15    end

16 end

(a) (b)

J

S

F

M

F

r0 r1

r2

w0

ctl

go

z0 z1

i

i−ctl

i−ctl

i−ctl i−ctl

S

J

M

J

S

FF

M

2’d2 2’d1

go

ctl

z1 z0

i

Tag generator

(c) (d)

Figure 5.16: Avoiding Variables associated with conditional reads.

If the target were a Balsa handshake circuit, this description would have the

advantage of triggering the control to access the pull channel i early. In Teak

push channels, the arrival of valid data initiates the handshake and so no early
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activation can occur.

In Teak it is more advantageous to access channel i inside the conditional

block, as shown in the code of figure 5.16(b). In this description, paired write and

read accesses to channel i are not separated by a conditional and the variable

implementing i can be removed. The Teak circuit is shown in figure 5.16(d).

Input i is tagged according to the value of ctrl before it is Steered to the

required destination.

The cost associated with this style is the extra Steer-Operator(constant)-Merge

structure required to generate the tags, but in general the benefits of not having

Variables compensates this overhead, as will be shown next and in the examples

of chapter 7.

Discarding inputs conditionally

A similar situation can occur when inputs need to be conditionally discarded

(that is, the data token is consumed but not used in any operation). Consider the

description of a two-input multiplexer shown in figure 5.17(a). The specification

is such that both inputs are always expected and one of them must be discarded.

The description in figure 5.17(a) has been optimised to generate optimised Balsa

handshake circuits. In the following, this coding style will be referred to as Balsa-

optimised.

In Balsa handshake circuits, the resulting input structure ensures that all

inputs have arrived before completing the enclosing handshake, although the

output is generated as soon as the selected input is present. The unused input

is implicitly discarded by the input control structure. However, when compiled

into Teak circuits as shown in figure 5.17(c), this Balsa-optimised style generates

conditional channel reads that prevent the removal of the associated channel

Variables.

In the description optimised for Teak circuits shown in figure 5.17(b) the in-

puts are read (and discarded) inside the conditional block. This creates channel

Variables that may be removed. The resulting optimised circuit without chan-

nel variables is shown in figure 5.17(d). This style of description targeting the

optimisation of Teak circuits will be referred as Teak-optimised.

Notice in the Teak-optimised circuits that, because all read accesses to channel

i are now done inside the conditional construct, it has been necessary to generate

steering tags for each input (to tag them with either “pass” or “discard”). Finally,
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1 procedure mux2 (

2   input ctl : bit;
3   input i0, i1 : N bits;
4   output z  : N bits

5 ) is

6 begin

7    loop

8       i0, i1, ctl ->! then
9          if ctl then

10             z <- i1

11          else

12             z <- i0

13          end

14       end

15    end

16 end

1 procedure mux2 (

2   input ctl : bit;
3   input i0, i1 : N bits;
4   output z  : N bits

5 ) is

6 begin

7    loop

8       ctl -> then

9          if ctl then

10             i1 -> z ||
11             i0 -> then
12                continue

13             end

14          else

15             i0 -> z ||
16             i1 -> then
17                continue

18             end

19          end

20       end

21    end

22 end

(a) (b)
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Figure 5.17: Discarding inputs conditionally in Teak: (a, c) Balsa-optimised style;
(b, d) Teak-optimised style.
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another steering tag is generated from the “passing” value to rendezvous the token

from the “discarded” item.

Another possible optimisation is shown in figure 5.18(a): before using the in-

puts inside the conditional block, they are explicitly joined into the single channel

i01 (lines 8 - 11). Inside the conditional structure and, for each condition, the

relevant bits of this channel are passed to the output.

1 procedure mux2 (

2   input ctl : bit;
3   input i0, i1 : N bits;
4   output z  : N bits

5 ) is

6   channel i01 : 2*N bits
7 begin
8   loop
9     i0, i1 -> then

10       i01 <- (#i0 @ #i1 as N bits)
11     end
12   end ||
13   loop
14     ctl -> then
15       if ctl then
16         i01 -> then 
17           z <- (#i01[0..N-1] as N bits)
18         end
19       else
20         i01 -> then 
21           z <- (#i01[N..2*N-1] as N bits)
22         end
23       end
24     end
25   end
26 end

F

z

M

F

F

J

J

M

J

i1 i0

S

M

ctl go

(a) (b)

Figure 5.18: Joining inputs to reduce the tagging circuitry.

Figure 5.19 shows speed (processing time), area and dynamic energy compar-

isons for the three multiplexer designs presented above, for different data widths

(the fourth, dotted bar in each series, labelled Circuit-level, will be introduced

later in this section). In all the simulation results presented in this section the

circuits are connected to an environment that is always ready to provide data

in all the inputs simultaneously. Random data values were generated for data

inputs whereas select control values were generated such that all options were

equally exercised.

The results in the graphs of figure 5.19 show that, for data widths ≥ 4,
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the joined-inputs optimisation delivers the fastest speed with area and energy

consumption smaller or comparable to that of the Teak-optimised style. The

results also show that, compared to the Balsa-optimised, the Teak-optimised

style is advantageous for wider datapaths, when the overhead of tagging is smaller

compared to the cost of the wider Variables (their associated completion detection

circuitry becomes larger and slower as the number of bits increase). For the

optimised circuits, the speed-up is directly proportional to the data width whereas

area and energy penalties are inversely proportional.

The joined-inputs optimisation is less effective in circuits where there is a

large difference in the arrival time of the inputs because in order to generate an

output, both inputs must be present. In the first optimisation an output may

be produced with only one input present and so input synchronisation is only

required for the RTZ phase.

Duplicating values to avoid conditional channel reads

In cases when multiple, non-mutually exclusive conditional reads can occur, it is

necessary to explicitly duplicate some of the channels to get rid of the Variables.

The SteerAlu module from the nanoSpa Execute stage is shown in figure 5.20.

This module multicasts the ALU result to a set of destinations depending

on the bits of the ctrl input. The set of destinations may be empty, in which

case the ALU result is discarded. The Balsa-optimised description is shown in

figure 5.20(a) and the resulting Teak circuit in figure 5.21.

The Teak-optimised version is shown in figure 5.20(b) and the resulting circuit

in figure 5.22. In this case, to avoid the conditional channel reads, the input has

been explicitly duplicated (one copy for each condition) and, in a similar way

to the demultiplexer example, each copy is either passed or discarded but it is

always read.

Figure 5.23 shows speed(processing time), area and dynamic energy compar-

isons for the two steerAlu descriptions, using various data widths. It can be

seen in the graphs that the Teak-optimised circuits are ∼ 30% to 60% faster,

more energy efficient and with an area penalty inversely proportional to the data

width. As explained earlier, as the data width increases, the overhead of a wider

Variable becomes larger compared to that of the tagging circuitry.

It is clear from the examples that the overhead of the tag-and-steer mechanism

will increase with the number of inputs and conditions involved. In fact, when
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Figure 5.19: Simulation results for different optimised versions of the mux exam-
ple.

complex nested conditions occur, a variable-free description may result in a large,

nested tag-and-steer circuitry which will result in area overhead with insignificant

speed-ups. In such cases, it is not advisable to apply the above techniques.
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1 type Datapath is N bits
2 type AluSelect is 6 bits
3

4 procedure steerAlu (
5   input a : Datapath;
6   input ctrl : AluSelect;
7   array 6 of output o : Datapath
8 ) is
9 begin

10   loop
11     ctrl ->! then
12       a ->! then
13          for || i in 0..5 then
14            if (#ctrl[i..i] as bit) then
15              o[i] <- a
16            end
17          end
18       end
19     end
20   end
21 end

1 type Datapath is N bits
2 type AluSelect is 6 bits
3

4 procedure steerAlu (
5   input a : Datapath;
6   input ctrl : AluSelect;
7   array 6 of output o : Datapath
8 ) is
9   array 6 of channel aC : Datapath

10 begin
11   -- generate six duplicates of input

12   loop
13     a -> then
14       for i in 0..5 then
15         aC[i] <- a
16       end
17     end
18   end || 
19   loop
20     ctrl ->! then
21       for || i in 0.. 5 then
22         if (#ctrl[i..i] as bit) then
23           aC[i] -> o[i] -- steer
24         else 
25           aC[i] -> then
26             continue  -- discard
27           end
28         end
29       end
30     end
31   end
32 end

(a) (b)

Figure 5.20: steerAlu example: (a) original, (b) channel duplication to avoid
conditional reads.

A circuit-level approach to remove conditional channel reads

The above description-level optimisation examples have shown that in order to

remove Variables in conditional structures (i) tags derived from the guard token

must be added to each data token and (ii) copies of each data token must be

produced for each non-mutually exclusive conditional read. The result is always

a number of tagged data tokens that will be Steered accordingly.

The optimised structures suggest a new circuit-level optimisation opportunity

to get rid of the Variables without having recourse to the directness of the compi-

lation. This new optimisation is based on the data steering property of the Steer

component: Steer uses a subset of the input bits as the output selector and it

passes a subset of the input bits to the matching output. Instead of appending

a tag generated from the guard, it is possible to append the actual guard and

modify the Steer specification to use directly this value, simplifying the Teak
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Figure 5.23: Simulation results for the steerAlu example.

network. The cost of this approach is in the increased complexity of the Steers

required and in the complexity of the rules to determine situations where the

transformation may be applied.

To illustrate the proposed mechanism, let us revisit the circuit for the two-

input multiplexer, reproduced again in figure 5.24(a). In this figure, channels i0,
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i1 and ctrl are joined and stored into the channel Variable i0-i1-ctrl. The

wd (write done) token generated by the w0 portion activates the read portion r2,

which provides the bits corresponding to the ctrl guard only.

The Steer that implements the conditional generates zero-width control tokens

to activate one of the read portions r1 or r0, which provide the values of i1 or

i0, respectively. If these portions are displaced upstream through the Steer, they

can be combined with portion r2 into a single read portion that will provide all

of the bits of the composite channel i0-i1-ctrl. The specification of the Steer

must be modified accordingly to accept this wider value at its input and to steer

the required portions to its outputs.

The above modifications are shown in the circuit of figure 5.24(b). In this

circuit, Variable i0-i1-ctrl is unconditionally read and can be removed, as

shown in figure 5.24(c).

Notice that the new optimisation does not require the tagging circuitry, but

the specification of the Steer will be more complex. In this particular case, the

resulting Steer-Merge combination cannot be removed because the offsets of the

two Steer outputs are different (they correspond to the i0 and i1 sections in the

composite channel i0-i1-ctrl).

If the write and read portions of a variable are separated by a Fork, as in

the steerAlu example of figure 5.21, a further combination is required when the

individual portions are displaced through the Fork, which in turn must also be

modified accordingly. This is the equivalent of the duplication mechanism used

before at the description level. Figure 5.25 shows the resulting optimised circuit

for the steerAlu example. Again, no tagging circuitry is required but the Steers

will end up being more complex.

Simulation results for these hand-applied transformations on the multiplexer

and steerAlu examples are shown in figures 5.19 and 5.23 under the key Circuit-

level (dotted bars). The results show that this optimisation produces circuits

that are considerably faster (∼ 30% to 50%) and more energy efficient (∼ 5% to

∼ 50%) than the circuits produced with the description-level optimisations.

Notice in figure 5.23(a) how the more complex Steers used in the steerAlu

example increase the area penalty as the data width increases.

The rules for the above transformations must check a number of conditions

of the components surrounding the write and read portions, some of which have

been highlighted in the examples:
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Figure 5.24: Circuit-level conditional reads removal.� the write portions of two different variables must be separated by a channel

or by Joins.� the write and read portions must be separated by a channel or by Forks. In

the latter case, the Fork outputs must be modified accordingly to accom-

modate the read portions.� the read portions that provides the selection must be separated from the

selected read portions by Steers.

Variables with multiple write portions will make the transformation rules even

more complex because a larger window of components will need to be checked.

Furthermore, it is not always desirable to get rid of variables because they may

form part of the specified behaviour. The procedure-level mechanism for passing

optimisation options in section 6.5 is useful for this purpose, although a finer,
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structure-level mechanism is envisaged. The proposed transformations demon-

strates that there is still room for further optimisation of Teak networks.

5.4.3 Summary

This chapter has introduced Teak as a novel approach towards the synthesis of

asynchronous circuits using a token-flow approach together with a set of optimi-

sation techniques for the resulting networks. The basis of this system is a small

set of components that provide basic datapath operations. Teak shares the push-

only data style of the data-driven style proposed by Taylor [100], although Teak

compiles Balsa descriptions and is more similar to the Macromodules system [93]

than handshake circuits. Another difference with the data-driven handshake cir-

cuits is the availability of “real” Variables as permanent storage elements that

permits flexible read and write accesses.

The properties of the Teak components and its compositions were used as the

basis for optimisation techniques which are based in (i) circuit transformation,

like the Fork, Operator and Join displacement, (ii) pattern-matching and replace-

ment (like the loop removal and the Variable substitution, or (iii) a combination

of transformation and substitution, like the Steer-Merge-Join optimisation.

Description-level techniques aimed specifically to this approach were also pre-

sented. In particular, it was noted that the enclosure technique used to opti-

mise Balsa handshake components implementation may introduce performance

overhead in Teak circuits. The description-level techniques target the removal

of channel Variables with conditional accesses. The principle of these techniques

were used as the basis to a more efficient circuit-level transformation that exploits

the data-steering property of the the Steer component.

As will be seen in the chapter 7, for large and complex designs like the nanoSpa

processor, implementations of Teak circuits currently have worse performances

than those of Balsa circuits. This is unfortunate but not unexpected. The imple-

mentations for Teak components are at an early stage of development. However,

there is a lot of headroom within the Teak approach as its small, regular com-

ponent set allows the freedom to merge and split data and control much more

naturally than in handshake components.

There is still much work that can be done to improve the optimisation of

Teak-generated circuits. This includes: improved component implementations,

the implementation of components with different data encodings (e.g. one-hot
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codes running up to Steer inputs) as well as extensions to the current optimisation

and automation of the optimisation described in section 5.4.2. The important

optimisation issue of latch insertion in Teak circuits is considered in the next

chapter.



Chapter 6

Latch insertion in Teak circuits

6.1 Introduction

Teak channels can be buffered to decouple components and to introduce the de-

sired degree of token storage. In the Teak system, Latch components are used for

buffering purposes. The Latch components used in the circuits presented in this

thesis are implemented as half latches [91, 17]. Although other implementations

are possible, the half latch implementation was selected for its simplicity.

The Teak synthesis algorithm does not introduce any buffering initially, this

allows optimisation techniques to explore different buffer placement strategies.

When the network contain cycles (also referred to as rings or loops in the related

literature) buffers must be inserted in order to prevent deadlock. Latches may be

inserted into any circuit to decouple processes and increase throughput.

A simple insertion strategy is to add a Latch to every channel. This will

add enough token storage to prevent any circuit from deadlock but has a high

penalty. To optimise the circuit’s latency and throughput more elaborate buffer

insertion strategies must be used. In [115, 114], Williams and Horowitz introduced

some basic concepts and metrics to characterise the performance of asynchronous

pipelines and rings. Based on their work, some approaches have been proposed

to increase the performance of pipelined asynchronous circuits through latch in-

sertion and slack matching [7, 45, 46]. Those approaches target iterative circuits

with cycles that may contain more than one token and that can benefit from

pipelining inside the cycle.

This chapter introduces a range of latching strategies currently implemented in

the Teak system. The strategies target cycle structures that can hold a maximum

144
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of one token (single-token cycles) commonly present in Teak circuits and that do

not benefit from cycle pipelining. The aim of the strategies proposed here is solely

to provide a more efficient alternative to the exhaustive insertion mechanism,

although some analysis on the complexity and resulting performance is presented.

The strategies are based on:

i. the identification and minimum latching of cycles.

ii. separation of tokens to avoid WAR hazards between portions of Variable

components.

iii. the correct decoupling of control tokens in parallel and sequential composi-

tions.

Optimal latch insertion targeting area/speed and pipeline slack matching is

outside of the scope of this work.

6.2 Buffering cycles

Cycles in Teak circuits occur when the description specifies loop constructs, but

also when modules are connected together in a ring fashion. In order to allow

the circuit to progress, each cycle must have always enough buffering for a lead

token to move forward and leave space for the following token. This translates

into having a minimum of three half latches in a cycle [114, 91].

The most common single-token cycle structure in Teak circuits is the Merge -

Logic Block - Fork circuit shown in figure 6.1, which can be clearly seen in some

of the previous examples. Often, within the logic block of such structures there

will be some latches required to separate the read and write tokens of Variable

components.

F
OUT

M
go

Logic Block

internal latches

Figure 6.1: The Teak single-token loop Merge - Logic block - Fork structure.
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6.2.1 Detecting cycles

In the first step of the analysis the circuit is mapped into a directed graph, where

the edges are ordered pairs (s, d), connecting a source vertex to a destination

vertex, as in figure 6.2(a). Within the graph each Teak component is mapped

into a vertex and each channel into an edge. For Variable components, write and

read sections are mapped into separate vertices.

A B

DC E

F G H

back

forward

cross

tree

A B

DC E

F G H

(a) (b)

Figure 6.2: (a) A directed graph and (b) a depth-first forest of the graph.

The resulting graph is then analysed using techniques based on depth-first

search (DFS) [59, 98, 24] to obtain a classification of the edges. Initially all of

the vertices of the graph are set to “unvisited”. The DFS algorithm begins by

choosing one unvisited vertex (a root) and exploring an edge leading to a new

vertex. The algorithm continues in this fashion until it reaches a vertex which

has no edges leading to unvisited vertices. The algorithm will then backtrack to

the previous vertex and continue from the latest vertex that does lead to new

unvisited vertices.

After DFS has visited all the reachable vertices from a particular root vertex,

it chooses one of the remaining unvisited vertices as a new root and continues

the search. The DFS process creates a set of depth-first trees that constitute a

depth-first forest. The edges of the resulting forest are classified as tree edges

(edges which lead to unvisited vertices), forward edges (edges which connect an-

cestors with descendants in a particular tree), back edges (the ones that connect

descendants with ancestors), and cross-edges (which connect vertices across the

forest). Figure 6.2(b) shows one possible DFS forest and the different classes of

edges of the directed graph at its left.
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The interesting class of edges for cycle detection are the back edges, because

each back edge closes one or more cycles. Typically there are many valid depth-

first forests for a given graph, depending on the (arbitrary) selection of the initial

root and subsequent unvisited root vertices. There are therefore many different

(and equally valid) resulting classifications for the edges. In Teak networks, the

best candidates for root vertices are the components connected to the “go” and

input ports, in that order of priority. This selection and priority is based in the

following observations derived from compiled circuits:

i. A Teak network with a “go” port will always map into a connected graph (a

graph such that there exists at least one path between all pairs of vertices).

Using the component connected to “go” as a root vertex will ensure that

all vertices are visited. It also ensures that the channel that returns the

control token for the next iteration will be classified as a back edge. This

is the most “natural” classification for such channel and also prevents the

selection of a wider data channel as the back edge of the cycle, which would

be more expensive to buffer.

ii. An optimised Teak network without a “go” port may map into a discon-

nected graph, consisting of two or more connected sub-graphs. Selecting

vertices connected to input ports as root vertices will ensure that all ver-

tices will be visited.

iii. If the description contains explicit ring structures, selecting the modules

connected to the input ports as root vertices will ensure that the outputs

that feed back and complete the ring will be classified as back edges.

Figure 6.3 shows the Teak circuit of figure 5.12(b) and its mapping into a

directed graph. Notice that input and output channels are not included in the

graph, but they are used in the selection of vertices as explained above.

Figure 6.4 shows the forest that results from applying a DFS analysis to the

graph in figure 6.3. The graph has three back edges, {(L,A), (G,I), (J,K)}. These

generate four cycles, namely, {A, B, D, H, J, K, L}, {A, B, E, I, K, L}, {C, F, H, J, K, L}

and {C, G, I, K, L}. Each cycle c comprising vc vertices has ec = vc + 1 edges. In

this example, the cycles have 7, 6, 6 and 5 edges, respectively.



148 Chapter 6 Latch insertion in Teak circuits

go S

M

M

2’d22’d1

M

4’d154’d10

F

FF

out

J

B C

D E F G

I

J K

L

H

A

go

out

L

A B C

D E F G

H I

J K

(a) (b)
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6.2.2 Complexity of finding the optimum latch insertion

points

For the simple example above it is not difficult to find by observation that the

minimum set of edges that guarantees at least three latches within each cycle is:
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{(L, A), (L, C), (I,K), (J,K), (K,L)}. However, in order to obtain the best possible

location of the latches (targeting either minimum area or latency) each edge of

the graph must be assigned a cost function depending on the type of components

connected by the edge and the channel width. All possible arrangements of three

latches within each cycle must then be enumerated and a cost assigned to each.

The number of possible arrangements for three latches in a cycle is given by

the combinatorial number lc =
(

vc
3

)

. For the previous example, the total number

C of different arrangements to be examined would be:

C =

(

7

3

)(

6

3

)(

6

3

)(

5

3

)

= 140 000

In practice, for medium or large circuits, the number of components and cycles

in a circuit makes an exhaustive analysis to find the optimum insertion points

infeasible. Added to the complexity of finding all possible arrangements for the

three latches, is that of finding all the cycles. In [99], Tarjan demonstrated that

the complexity of finding all the cycles (referred to as elementary circuits in his

work) in a graph with v vertices, e edges and c cycles is O(v· e(c + 1)). An

optimised algorithm [53] reduces this complexity to O((v + e)(c + 1)). However,

the optimisation excludes cases that may occur in Teak circuits, like self-loops

(edges of the form (v, v)) and multiple edges between the same vertices.

As it can be seen in the previous examples, Teak circuits normally comprise

Fork-Join and Steer-Merge “diamonds”. Each n-branch diamond located inside

a cycle multiplies the number of possible cycles by n. This implies that for

large circuits, the complexity of finding all cycles is too high, not to mention

the combinatorial explosion of finding all possible latch placements. Consider for

instance the optimised Teak circuit for the GCD shown in figure 6.5, derived from

the description previously shown in figure 4.14(b). The directed graph from this

circuit will have 41 vertices, 51 edges and 36 cycles, resulting in a complexity of

O(77 367) for finding cycles, which appears manageable. However, determining

the best latch placements is more complex.

The GCD circuit has 8 cycles with 15 edges, 16 cycles with 16 edges and

8 cycles with 17 edges, hence, the number of possible combinations for latch

placement is:

C =

(

15

3

)8(
16

3

)16(
17

3

)8

≃ 7.85× 1087
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In order to efficiently determine latch placements, heuristics are required to

reduce the complexity of the problem. At present, the approach implemented in

Teak is to use simpler strategies to latch token-limited cycles with the minimum

three latches located in places that guarantee a deadlock-free cycle and a fast

decoupling of the cycle outputs.

In the current implementation of Teak, as well as the insertion of three latches

in every cycle, the user can specify the insertion of an arbitrary number of latches

to decouple Operators, read sections of Variables, placed in forked control tokens,

or placed in every channel. These latching strategies can be specified for the whole

design or in a module-by-module basis. The next section will discuss issues related

to the strategy used to automatically latch token-limited cycles.

6.3 Buffering single-token cycles

Using the DFS analysis together with the root selection rules described in section

6.2 ensures that the channel used to return the control token in a cycle is classified

as a back edge. This is the result of selecting the vertex connected to the “go”

(a Merge) as the first root. Because every cycle contains at least one back edge,

inserting one latch in the following places will ensure that all the cycles containing

the back edge (si, di) will have at least three latches:� every back edge (si, di)� every edge ending at si� every edge beginning at di

The insertion is optimised to avoid inserting multiple latches in the same edge.

This strategy is illustrated in figure 6.6 using the circuit for the GCD. The above

heuristics reduce the complexity of the latching to the complexity of the DFS

used to find the back edges, which is O(v + e) [59], plus the processing of each

back edge, resulting in a complexity of O(v + e + b), where b is the number of

back edges in the graph.

This approach efficiently solves the problem of combinatorial explosion, but

it does not guarantee the optimal placement for performance or minimum area.

Depending on the topology of the circuit, some extra latches may be added and
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some cycles may end up having more than three latches, as shown in figure

6.6. However, some of the additional latches can be used to fulfil other latching

requirements, such as the token separation latches for read and write sections of

Variables.

Two variants of this approach will be analysed in the next section. Although

the strategies target single-token cycles (those generated by loop constructs),

they also serve to guarantee deadlock-free operation for multi-token cycles. In

any case, the most important parameter is the time elapsed between iterations

(the cycle time).

6.4 Two simple latching strategies for Teak cir-

cuits

This section analyses and compares two strategies to arrange three latches in

single-token cycles. The strategies use the heuristics of attempting to place the

latches as close as possible to the inputs and outputs to provide them with fast

decoupling. These two strategies are:

i. placing a latch in the back link and after each back link successor, and

before each predecessor. This arrangement is shown in figure 6.7(a). This

strategy will be called “A”.

ii. distributing the three latches so that the delay of the logic block is evenly

split among smaller blocks, as shown in figure 6.8(a). This is strategy “B”.

The figure of merit to evaluate each strategy is the cycle time, which will be

determined by using a dependency graph analysis [91, 114]. A dependency graph

represents the dependencies between signal transitions in a circuit. The vertices

of such a graph represent rising or falling transitions and the edges represent

dependencies between the signal transitions. In the analysis presented here, de-

pendencies are represented as directed arcs and transitions are represented with

boxes annotated with an internal label denoting the transition name and an ex-

ternal label denoting the delay associated with the transition.

Figure 6.7(b) and (c) shows the logic circuit and the corresponding depen-

dency graph for the strategy “A”. Similarly, figure 6.8(b) and (c) shows the logic

circuit and the corresponding dependency graph for the strategy “B”. In the di-

agrams, ti, tc and tcd represent the latencies of an inverter, a C element and an
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n-bit completion detector respectively. To simplify the analysis, the following

assumptions have been made:

i. all circuit components have symmetric delays for rising and falling transi-

tions.

ii. there are N −1 latches inside the logic block which evenly split the delay of

the block by N . These are the latches associated with the read and write

decoupling of Variable components inside the block.

In the current dual-rail implementation, Operator components have zero back-

ward latency (the latency for the acknowledge), whereas other Teak components

have some backward latency depending on the data width (Merge) or the number

of outputs (Steer, Fork). The forward and backward latency of the logic blocks

are labelled tlbf and tlbr respectively. The latency of the environment (typically

another Teak circuit connected to the outputs) has been included in the circuits

and graphs and is denoted as tenv.

6.4.1 Analysis of the latching strategies

The longest simple cycle for the latching strategy “A” has been highlighted in

the dependency graph of figure 6.7(c). Starting from transition R1 ↑ at the left

of the graph, and following the highlighted path, the cycle time is:

tcycleA = 2ti + (N + 1)tc +N(
tlbf
N

) + tenv + 6tc + 4ti + tcd

tcycleA = 6ti + (N + 7)tc + tcd + tenv + tlbf (6.1)

Assuming that the latency tc of a C-element is equivalent to two inversions,

tcycleA = (N + 10)tc + tcd + tenv + tlbf (6.2)

Similarly, for strategy “B”, starting from transition Req1 ↑ at the left of the

graph in figure 6.8(c), the cycle time is:

tcycleB = (N + 1)tc +N(
tlbf
N

) + tenv + 4tc + 4ti + 2tcd +
1
N
)tlbf +

1
N
tlbr

tcycleB = 4ti + (N + 5)tc + 2tcd + tenv + (1 + 1
N
)tlbf +

1
N
tlbr
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Assuming that the latency of a C-element is equivalent to two inversions,

tcycleB = (N + 7)tc + 2tcd ++tenv + (1 + 1
N
)tlbf +

1
N
tlbr (6.3)

For tcycleA to be the shortest, tcycleB − tcycleA > 0. From Eqs. 6.2 and 6.3,

(N + 7)tc + 2tcd ++tenv + (1 + 1
N
)tlbf +

1
N
tlbr

− ((N + 10)tc + tcd + tenv + tlbf ) > 0

−3tc + tcd +
1
N
tlbf +

1
N
tlbr > 0

tcd +
1
N
(tlbf + tlbr) > 3tc (6.4)

The inequality 6.4 will hold for all cases where there is at least one latch

inside the logic block. The inequality is independent of the environment latency.

Looking closely at the path in figure 6.7(c), it can be noticed that the latch in

the back edge decouples the logic block during the RTZ phase (the path does not

go through the logic block), reducing the cycle time.

In cases when the logic block contains no internal latches (that is, no vari-

ables), inequality 6.4 no longer holds. In these cases, if the strategy “B” is used,

the second inserted latch (L2 in figure 6.8) will split the logic block into two

halves, forcing N = 2 in equation 6.3. However, for strategy “A”, N will be

equal to 1 because the inserted latches are always outside the logic block. With

these conditions, there will be another longest cycle candidate for strategy “A”

(the “eight” shaped dotted line in figure 6.7). Starting from transition Req1 ↑

and following this new path,

tcycleA1 = 5tc + 2tcd +
2
N
tlbf +

2
N
tlbr

tcycleA1 = 5tc + 2tcd + 2tlbf + 2tlbr (6.5)

Substituting N = 2 in equation 6.3 and performing the required operations

(again, assuming tcycleA to be the shortest):

tenv > 1
2
tlbf +

3
2
tlbr − 5tc (6.6)

In this case, strategy “A” will produce a faster circuit unless inequality 6.6

does not hold, that is, when the environment is faster than the delay through the
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logic block. As an example, let us consider the situation when the logic block has

the equivalent latency of two adders ( addition is the slowest operation in Teak).

Substituting tenv = tcd, tlbf = 2tadder and tlbr = 0 in Eq. 6.6, the condition for

strategy “A” delivering the faster circuit is:

tcd > tadder − 5tc (6.7)

Figure 6.9 shows a plot of both sides of inequality 6.7 as a function of the

data width. The values shown are based on a worst-case longest carry chain of

width/2. This is a conservative scenario, as in practice, the average carry chain

length is less than width/2 [41, 62]. Figure 6.9 compares the left and right sides of

inequality 6.7. The results are for a library with 2 and 3-inputs C-elements. The

plot shows that, in this scenario, the inequality 6.7 will hold for width > 16 bits.
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Figure 6.9: Comparison of both sides of inequality 6.6 for different data widths.

Experience with medium and large design examples used in this thesis have

shown that complex, slow logic blocks with no variables are uncommon. In sum-

mary, the analysis presented in this section shows that, for practical cases, it is

safe to assume that strategy “A” will produce a circuit with smaller cycle time.

This is the strategy currently used in Teak. An additional benefit of using this

strategy is that decomposition of the logic blocks into two equal parts when it

contains no latches is not required.
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6.5 Specifying latching and optimisation options

in Teak

The Teak system provides two mechanisms to specify latching and optimisation

options: (i) a command-line mechanism to specify the global, default options

and (ii) a coarse-grained mechanism to specify local optimisations, at procedure-

level, that overrides the global options. These mechanisms provide a flexible way

of specifying and exploring the optimum set of options for a design.

The current implementation of the procedure-level mechanism is an extension

to the Balsa language. If desired, local options can be passed enclosed in the

(* *) pair, after the port declarations, as illustrated in line 5, figure 6.10. The

opts label is used to pass optimisation options and the latches label is used for

latching options. Options are separated by a colon (:). In figure 6.10, trim-vars

specifies Variable removal and move-fork-tos is a Fork displacement optimisa-

tion. The latching option l1 specifies the insertion of three single latches on each

cycle of the circuit.

1 procedure adder (

2   input a, b   : N bits;
3   output sum   : N bits;
4   output carry : bit
5 ) (* opts="trim-vars:move-fork-tos" latches="l1" *)
6 is
7    channel cs : N+1 bits

8 begin

Figure 6.10: Example of passing options at procedure-level.

6.6 Summary

The problem of inserting latches in Teak circuits has been introduced in this

chapter. An estimation of the complexity of efficiently buffering circuits to avoid

deadlock was presented. The estimation was based on the number of cycles

presented in the circuit, which require at least three half-buffers to allow the

circuit to progress. In order to find the cycles, the Teak circuits are mapped

into directed graphs and then analysed using a depth-first search technique that

makes use of some properties of the Teak networks.
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Two techniques that implement a minimum latching scheme for the single-

token cycles (that results from the synthesis of the loop construct) were intro-

duced and analysed. The techniques are presented as a more efficient alternative

to the exhaustive latch insertion. The techniques make use of simple heuristics

(fast decoupling of input and output ports) in order to reduce the complexity

of the latch placement problem. The described techniques are the basis of the

automatic latching insertion available in the Teak system.

Efficient buffering of Teak circuits targeting performance remains an open

issue, as more heuristics based on the structure of Teak networks are required.

The aim of the work presented in this chapter was solely to provide the Teak sys-

tem with a minimum latching strategy to allow the circuits to operate. Latching

insertion targeting performance or area/energy efficiency are considered future

work.



Chapter 7

Design Examples and Evaluation

This chapter presents the descriptions and simulation results of a series of substan-

tial design examples that were used to evaluate the different techniques presented

in this work. The examples include:� A 32-bit processor core: Nan’s.� A Viterbi decoder.� A 32×32 radix-8 Booth multiply-accumulate (MAC) unit.� A new result forwarding unit for the nanoSpa processor.� A sliced-channel wormhole router.

All of the above designs were evaluated using the Balsa synthesis system. In

Teak, the nanoSpa processor, the Viterbi decoder and the multiplier were used as

evaluation examples. The forwarding unit and the router were not used as Teak

examples because they rely on constructs and operations based on sequencers

whose timing assumptions are not easily translatable into the Teak approach

without a complete rewrite of the most complex parts of their descriptions.

All results given in this chapter were obtained using pre-layout, transistor-

level simulations, using a 180 nm technology.

7.1 The nanoSpa processor

The nanoSpa processor [85] is an updated specification of the SPA processor [84],

an asynchronous implementation of the 32-bit ARM v5T ISA [51] fully synthe-

sisable using the Balsa system. The nanoSpa uses highly optimised Balsa code

161
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targeting higher performance as opposed to SPA, whose description focused on

security.

The initial version of nanoSpa [85] shares the same architecture organisation as

SPA: an ARM-style 3-stage Fetch-Decode-Execute pipeline with a Harvard-style

memory interface. The initial version had the following functional differences

with respect to SPA:� no support for Thumb instructions, interrupts, memory aborts or coproces-

sors.� only the supervisor and user operation modes were available.� no support for multiply operations.� no support for half-word data transfers.

The new nanoSpa specification includes major changes in the organisation

of the Decode and Execute pipeline stages, oriented to achieve its performance

goal. These new features will be described in the next sections. The author has

contributed to develop this new version with the following enhancements:� implementation of the modified Decode stage.� support for all ARM multiply instructions with the 32x32 MAC unit de-

scribed in section 7.3.� support for all ARM modes of operation.� support for half-word data transfers.� a branch control mechanism to reduce branch shadow penalties.� the result forwarding unit described in section 7.4

Figure 7.1 shows a diagram of the 3-stage nanoSpa pipeline.

7.1.1 The Fetch stage

The Fetch stage fetches instructions from memory and implements the changes

to instruction address flow generated by branches. This unit is very similar to

the SPA fetch unit and has not had major changes. Like in SPA, the origin of the
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Figure 7.1: The 3-stage nanoSpa pipeline showing details of the Decode stage.

fetch address must be arbitrated between the local generated sequential address

and the branch target address. This is the only place where arbitration is required

in nanoSpa.

7.1.2 The Decode stage

The Decode has been redesigned as a two-level modular decoder as shown in

figure 7.1.

Decode shell

This module receives the fetched instruction and performs an initial decoding of

the instruction, generating the control signals which are common to all instruction

types. It also selects the appropriated fields from the instruction to be used by

the next level: the decode core.
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Decode core and decoding modules

The decode core classifies the instruction according to its type and activates the

related decoding module. There is one decoding module for each instruction

type. These modules expand the instruction into the control and register selects

required by the execute stage. The modules for multi-cycle instructions (such

as load and store of multiple registers) unroll the instructions and issue all the

required signals multiple times to the execute unit. In Balsa, each decoding

module is described as an individual procedure. This modular approach makes it

easier to either modify the decoding modules or add new ones, as any additions

or changes are almost transparent to the rest of the already decoded signals.

Branch control counter-flow

The decoder receives branch control information from the execute unit, allowing

it to discard any fetched instructions that are not within the new instruction flow

established by the execution of a branch (those instructions are said to be in the

shadow of a branch). The branch control from the Execute to the Decode unit

is especially important in this design because the execute unit features specula-

tive operation. In this way, instructions already in the pipeline that would be

discarded after execution because they are in the shadow of a branch are now

discarded earlier, increasing the performance and saving power.

7.1.3 The Execute stage

This stage has been redesigned to implement both data-driven and speculative

operation, which has improved significantly its performance. The multiplier unit

has also been redesigned and it is implemented using a modified radix-8 Booth

algorithm customised to support signed and unsigned operands. A complete

description is given in section 7.3. Figure 7.2 shows a simplified version of the

nanoSpa execute stage. Data-driven and speculative operation in nanoSpa has

been presented previously [85]. A brief description of these is given below.

Data-driven operation

In nanoSpa, all units inside the execution stage are activated in parallel: they

wait until data arrives, process it and sends the result out without explicit se-

quencing. Steering and multiplexing units are added to guide the data and are
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Figure 7.2: Simplified nanoSpa Execute stage.

controlled directly by control signals from the decoder, without any sequencing

or synchronisation with data.

Speculative operation

In the ARM instruction set all instructions are conditional, i.e., they can be ex-

ecuted or skipped depending on the condition codes. In nanoSpa, the evaluation

of the condition codes and the execution of the instruction are carried out con-

currently to allow an early start of the instruction. If the condition code fails, the

instruction is discarded at strategically located checkpoints without any result

being written back, but ensuring that handshaking on all channels is completed

Figure 7.2 shows how kill modules (labelled ”K”) are used to implement these

checkpoints. In nanoSpa, data-processing instructions are started speculatively

whereas data memory instructions are not, because of the extremely high penal-

ties in power and performance that could derive from them. Speculative execution

will only increase performance if the percentage of executed instructions is high,

but this is usually the case.
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7.1.4 Results

This section presents the simulation results for the nanoSpa processor using both

the Balsa and Teak synthesis systems. The source description used with both

synthesis tools was practically the same, apart from some minor modifications

because of the “fire and forget” behaviour of Teak channels explained in section

5.2.2. All simulations results were obtained by running the Dhrystone benchmark.

Balsa

Table 7.1 shows the performance, area and energy results of different versions

of the nanoSpa processor. The original version is called nanoSpa0 in table 7.1.

The device nanoSpa1 includes the redesigned Decoder stage described in section

7.1.2 with the branch control counter-flow mechanism. The device nanoSpaRef

(DD) is a description-level optimised and enhanced version of the nanoSpa1 with

added support for all the ARM modes, half-word and byte memory transfers, and

the MSR and MRS instructions, which read and write the current and saved status

registers. A finer grained separation of actions in concurrent loops and explicit

duplication optimisation techniques were applied to this description.

The results in table 7.1 serve to differentiate the sources of performance im-

provement. From the table, the architectural enhancements have improved the

performance by 8.92%. The description level optimisations improves the perfor-

mance close to 27%. Therefore, the description level optimisations have increased

the performance of the nanoSpa1 design by 16%.

nanoSpa DMIPS † Area Energy ‡

device absolute ∆ (%) elements ratio nJ ratio

nanoSpa0 57.98 — 485 108 1.00 460 1.00
nanoSpa1 63.15 8.92 622 884 1.28 358 0.78
nanoSpaRef (DD) 73.54 26.84 662 734 1.37 361 0.79
† Dhrystone MIPS

‡ per Dhrystone loop

Table 7.1: Performance, area and energy for three different versions of nanoSpa.

An interesting side-effect of the optimised architecture of the nanoSpa1 is the

reduction in energy consumption. The sources of this reduction are the more

efficient design of the decoder and the branch control counterflow mechanism
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which discards instructions that fall in a branch shadow at the decoder stage.

Area penalties are the result of the enhanced features.

Table 7.2 shows the performance, area and energy results of different source-

code and peephole optimisations presented earlier in chapter 4. The following is

a key to the devices included:� DD : the reference design. Corresponds to the nanoSpaRef (DD) optimised

data-driven description presented in table 7.1.� DDO : description-level optimisation of theDD design, with optimised guards

and the addition of explicit duplication in some modules of the Execute unit.� DD/DDO + CF : the DD/DDO description with the use of the concurrent

Fetch component in the register bank.� DD/DDO + nRFV : the DD/DDO description with removal of redundant

FalseVariables applied.� DDO + nRFV + CF : the DDO description with the use of the concur-

rent Fetch component in the register bank and the removal of redundant

FalseVariables applied.� DDP (Taylor): the results for the original nanoSpa0 architecture presented

in [101] using the push-only data-driven synthesis methodology. The de-

scription is written in the new input language proposed by Taylor in his

PhD thesis [100].

The results show that the different optimisations increased the performance

between 2.6% to 6% when applied individually, and more than 11% when com-

bined. Also notice that the description-level optimisations are the largest con-

tributor to the performance increase, at 6%. Comparing the DDO results with

the nanoSpa1 in table 7.1, the description-level optimisation increased the per-

formance by around 24%. The results also show that, apart for the negligible

area increase when using the concurrent Fetch, the optimisations result in area

and energy reductions o less than 10%.

The DDP device was included to compare the trade-offs of having a full data-

driven synthesis against the optimisations techniques proposed here. The descrip-

tion used in this thesis is an enhanced implementation of the one used by Taylor.

Despite the differences in architecture, the larger overheads in area and energy
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Optimisation DMIPS † Area Energy ‡

applied absolute ∆ (%) elements ratio nJ ratio

DD 73.54 — 662 734 1.00 361 1.00
DD+nRFV 75.45 2.60 661 651 1.00 361 1.00
DD+CF 75.99 3.34 664 006 1.00 359 0.99
DDO 77.96 6.00 611 793 0.92 355 0.98
DDO+nRFV 79.47 8.06 610 361 0.92 356 0.99
DDO+CF 80.30 9.18 612 337 0.92 352 0.98
DDO+nRFV+CF 81.74 11.14 609 817 0.92 339 0.94

DDP (Taylor) 85.21 15.87 956 753 1.44 824 2.28
† Dhrystone MIPS

‡ per Dhrystone loop

Table 7.2: Balsa nanoSpa performance, area and energy results.

of the push-only data-driven implementation is clear from the results. Also, the

push-only implementation is only 4% faster than the optimised description-level

implementation. It can be argued that using the improved architecture, a push-

only implementation will achieve even higher performance, however, the added

complexity of the new description will also increase the area and energy overheads.

The performance-oriented techniques (based in a pull-push style) proposed here

offer better performance trade-offs.

Teak

The nanoSpa processor is the largest and most complex design synthesised by

Teak to date. The source description was practically the same as used to syn-

thesise the nanoSpaRef design. The only source of incompatibility was the use

of the select construct in some small modules, but the construct was relatively

easy to replace, maintaining the original architecture. Table 7.3 shows the per-

formance, area and energy results when the following optimisations were applied

to the description:� VFJ : removal of redundant Variables, and Fork and Join consolidation and

displacement (used in this work as the basic set of optimisations).� VFJ+SMJ : the above plus the optimisation of Steer-Merge-Join composi-

tions.
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to remove channel variables as described in section 5.4.2.

All of the above designs used the three-latches per cycle insertion technique

described in section 6.4 to allow the circuit to progress.

Optimisation DMIPS † Area Energy ‡

applied absolute ∆ (%) elements ratio nJ ratio

VFJ 24.78 — 2096 953 1.00 1 365 1.00
VFJ+SMJ 27.87 12.46 1 619 302 0.77 803 0.59
VFJ+SMJ+DL 41.08 65.79 1 674 134 0.80 777 0.57
† Dhrystone MIPS

‡ per Dhrystone loop

Table 7.3: Teak nanoSpa performance, area and energy results.

The results shows that the optimisation of Steer-Merge-Join compositions

has improved the speed by 12.46% and significantly reduced the area and energy

overheads. Adding the description-level optimisations to remove channel variables

increases the performance close to 66% with a small increase in area and decrease

in energy. These optimisations target conditional constructs.

These results highlight the potential headroom for optimisation that still exist

in Teak circuits as conditional structures can be identified as one of the main

targets for future optimisations. The results of the circuit-level optimisation

technique proposed in section 5.4.2 (shown in figure 5.23) demonstrate that the

overhead of the conditional structures in speed, area and energy may be reduced

even further.

Table 7.4 shows the comparative performance, area and energy results for the

best Balsa and Teak implementations of nanoSpa. The Balsa nanoSpa is 87%

faster than its Teak counterpart, which is also 150% larger and consumes 115%

more energy.

One potential source of improvement still to be exploited is the circuit-level

optimisation presented in section 5.4.2. which targets conditional structures com-

monly found in all three stages of the nanoSpa pipeline. This optimisation is not

yet automated and its manual application was infeasible due to the complexity

of the nanoSpa design. It is expected that by applying this optimisation together

with a better design of the components and better latching insertion mechanism,
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Teak will reach its goal of providing mechanisms to exploit high performance

pipelined asynchronous circuit styles using the Balsa language.

The Balsa Synthesis System is a more mature system that has gone through

a series of iterations, whereas Teak is in its initial stages of development. The

contribution of this work to the development of Teak is twofold: (i) a proof

of concept for the synthesis methodology through the use of a highly complex

demonstrator, and (ii) a means to evaluate the performance of the resulting

circuits and identify potential sources for their improvement.

Decoder DMIPS † Area Energy ‡

device absolute ovh elements ovh nJ ovh

Balsa 73.54 — 662 734 — 361 —
Teak 41.08 1.79x 1 674 134 2.52x 777 2.15x
† Dhrystone MIPS

‡ per Dhrystone loop

Table 7.4: Comparison of the Balsa and Teak nanoSpa implementations.

7.2 An asynchronous Viterbi decoder

The design presented here is based in an initial description written by Gavant [42].

The description was optimised using the techniques presented in previous chapters

and synthesised with the Balsa and Teak synthesis systems.

7.2.1 Introduction

Viterbi decoders [111] are used today in many digital communication applica-

tions to decode convolutional codes as part of a forward error correction (FEC)

mechanism. The design of the decoder presented here is largely based in the

architecture proposed by Brackenbury et. al [15] for an asynchronous Viterbi

decoder aimed at a low power implementation.

Unlike the full-custom reference design, the approach in Gavant’s work was

to create a synthesisable decoder using the Balsa language to facilitate the explo-

ration of different approaches to reduce the power consumption. However, in line

with the objectives of this thesis, the original description was optimised for per-

formance and no considerations were made to the resulting power consumption.
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7.2.2 Viterbi decoder algorithm

Convolutional encoding

A convolutional encoder takes the last k bits of data arriving from a v-bit input

stream and generates a n-bit output codeword (n ≥ v) for each new v-bit input

data word. The codeword is generated by combining the k bits using modulo-2

(XOR) operations. The number k is called the constraint length of the code. The

ratio of the code is the fraction v/n. Figure 7.3 shows a convolutional encoder

with k = 3, v = 1 and n = 2 ( ratio = 1/2).

i

n

n−1

n n−1 n−2i i

o

o

Figure 7.3: A convolutional encoder with k = 3 and code ratio = 1/2.

A convolutional encoder is a finite state machine with 2k−1 states. All possible

transitions of the encoder can be represented using a trellis diagram. Figure 7.4

shows the trellis diagram for the encoder in figure 7.3. In this figure the circles

represent states, a solid arrow indicates a transition when the input is 1 and a

dashed arrow a transition when the input is 0. Each arrow is labelled with the

output of the encoder. The highlighted path represents the state transitions for

the input stream 1101, starting at state “00”.
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Figure 7.4: Trellis diagram for the encoder in figure 7.3.
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Decoding process

The Viterbi decoding algorithm is based on finding the most likely sequence of

states (path) in the decoder that would have generated the received data. This is

done by calculating, for each possible state the decoder can be in, a branch metric

(BM) that reflects how close is the received data from the error-free data that

the decoder would generate. These measures are combined with a state metric

(SM) (based on previous observations) that represents the likelihood the encoder

was in each state. The combinations of state and branch metrics are called path

metrics (PM).

The higher of the PMs for each state represents the most likely starting point

for the next decoding cycle. This PM is saved and becomes the new SM for that

state in the next cycle. The identity of the path that has the highest PM (called

the local winner) is also saved for use later in the reconstruction of the path the

encoder took through the trellis. This process is called backtracing.

When the received voltage for each bit is quantised using more than 2 levels,

the decoder is said to use soft-decision decoding.

7.2.3 Architecture of the asynchronous Viterbi decoder

The decoder consist of three units as shown in the block diagram of figure 7.5: the

The Branch Metric Unit (BMU), the Path Metric Unit (PMU) and the History

Unit (HU). The parameters of the decoder are the following: code rate = 1
2
,

constraint length k = 3 (four states), 3-bit soft-decision decoding and 16 slots

of backtracing memory. A brief description of the units in the decoder follows.

Extensive details about the principle of operation and the architecture can be

found in [111, 15, 16].

Branch

Metric

Unit

Local Winners

Global Winner

receiver
input from

branch metrics Path

Metric

Unit

History

Unit

decoded output

Figure 7.5: Architecture of the asynchronous Viterbi decoder.
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The Branch Metric Unit

The Branch Metric Unit (BMU) receives the error-containing data from the re-

ceiver and computes the distances between the ideal branch pattern symbols and

the received data (branch weights). The distance to be calculated is the Man-

hattan distance, as this is equivalent to the Euclidean distance squared in this

application [15]. The branch weights are then passed to the Path Metric Unit.

Details of the BMU implementation can be found in section 4.3.1.

The Path Metric Unit

The Path Metric Unit (PMU) is the core of the Viterbi decoder. Here accu-

mulative weight information relating to each possible encoder state (or node) is

maintained.

The PMU, shown in figure 7.6, is composed of 3 main parts:� the Add-Compare-Select (ACS) units, which compute the weight additions

and determine the lowest weight between two previous states. This gives

the direction (local winner) for the next branch, upper or lower.� the PMU Memory, where the weights are stored.� the Global Winner Generator, which determines the lowest weight of all the

states already selected. The global winner is valid when the lowest weight

is unique.
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0BM
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1

n−2

n−1

Local Winner

Local Winner
0

1

Local Winner
n−2

Local Winner
n−1

Global Winner

Global Winner

valid

Figure 7.6: The Path Metric Unit.
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The History Unit

The History Unit (HU) performs the backtracing. This is done only when a valid

global winner is transmitted. With the local winner information, the previous

state is computed and updated in the Global Winner Memory (GWM). This

operation is repeated until the global winner computed is the same as in the

GWM, which indicates that the backtracing has already been at that point. There

are two memories, one the local winner (upper or lower) and one to store the global

winner. The oldest state in the GWM is the current output of the decoder. Figure

7.7 shows a block diagram of the HU.

Global winner of current

traceback time slot

Global Winner
Memory

Output

logic

address

data out

Local Winner Memorydata in

traceback logic

from PMU
Local Winners

Global Winner
from PMU

Local winner out

data
decoded

Figure 7.7: The History Unit.

Each unit in the architecture of the Viterbi decoder presents particular pipeline

features. The BMU is a linear pipeline, the PMU is composed of a set of single-

token rings and the HU is a single-token ring that performs multiple iterations

over a token (a repeat-until loop). This unit is heavily control-dominated. As

opposed to the nanoSpa pipeline, The Viterbi decoder pipeline has a fixed input-

to-output token ratio.

7.2.4 Results

Balsa

The BMU was used as one of the running examples in chapter 4 of this thesis

to demonstrate many of the description-level optimisations proposed here and

some performance results were given. In this section performance results for the

whole decoder will be given. The experimental set-up for the decoder consisted of

decoding a stream of 1000 symbols with additive Gaussian white noise (AGWN)
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and a signal-to-noise ratio Eb/No = 2dB. The parameter used to measure the

performance is the average output data rate. Table 7.5 shows the performance,

area and energy results for the following versions of the decoder:� VD : the original unoptimised description.� VDO : the description-level optimised version of VD.� VDO+CF+nRFV : the VDO description with the use of the concurrent

Fetch component and the removal of redundant FalseVariables optimisa-

tions.

Decoder data rate Area Energy
device Msps ∆ (%) elements ratio nJ ratio

VD 31.59 — 58 815 1.00 145 1.00
VDO 64.75 200.5 80 640 1.37 218 1.50
VDO+CF+nRFN 66.98 212.0 68 595 1.17 159 1.10

Table 7.5: Performance, area and energy results for the Viterbi decoder in Balsa.

The results indicate that fully description-level optimised version (VDO)

achieves more than twice the performance of the original description. It is worth

comparing this result with the 16% obtained by the more complex nanoSpa de-

scription in section 7.1.4. There are two reasons for this difference: firstly, the

base design was written by a less experienced Balsa user and secondly the dif-

ference in complexity between the designs makes it easier to improve the critical

path with the applied optimisations.

After applying the peephole optimisations to the optimised design (VDO+

CF+nRFN ), there is an extra increase in performance of 12%, (which translates

into 3% when compared to the VDO version). In this case, the results are similar

to those obtained with nanoSpa. As in the case of nanoSpa, the peephole opti-

misations target only small parts of the whole design, possibly not all belonging

to the critical path, hence the smaller increments in speed.

Teak

The Viterbi decoder was directly compiled in Teak from the optimised source

code used for the Balsa synthesis. Table 7.6 shows the performance, area and

energy results when the following optimisations were applied to the description:
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idation and displacement and Steer-Merge-Join optimisation. A simple,

one-latch per link latching strategy was used here.� VFJ+SMJ : The above optimisations but with the used of three-latches per

cycle insertion technique.� VFJ+SMJ+JI : the above design plus the input-join description-level opti-

misation described in section 5.4.2 applied inside the BMU and PMU.� VFJ+SMJ+JI+DL: the above plus the description-level optimisation tech-

niques to remove channel variables described in section 5.4.2.

Decoder data rate Area Energy
device Msps ∆ (%) elements ratio nJ ratio

VFJ+SMJ (1L) 52.30 — 124 656 1.00 269 1.00
VFJ+SMJ 60.76 16.18 106 462 0.85 207 0.77
VFJ+SMJ+JI 62.22 19.97 104 880 0.84 197 0.73
VFJ+SMJ+JI+DL 54.02 3.30 108 744 0.87 215 0.80

Table 7.6: Performance, area and energy results for the Viterbi decoder in Teak.

The results in table 7.6 show that the more elaborate three-latches per cycle

strategy improves the performance by 16% and reduces area an energy consump-

tion by 15% and 23%, respectively, for this example.

The technique of joining inputs takes the performance improvement to 19%

with further reductions in area and energy. Finally, notice that including the

removal of channel Variables results in performance, area and energy penalties in

this case. These results further support the observations of section 5.4.2. In the

Viterbi decoder, the datapaths are narrow (3 to 6 bits) and the overhead of the

tagging circuitry generated by the coding style overshadows the potential benefit

of removing the Variables. In contrast, this technique was very effective in the

nanoSpa design because of the widths of the datapaths within the design.

Table 7.7 compares the best Teak and Balsa implementations of the Viterbi

decoder. The results shows a small performance overhead for the Teak imple-

mentation. However, the Teak implementation could be further optimised using

the circuit-level optimisation of section 5.4.2, whereas the Balsa counterpart has

already been fully optimised at both the description and circuit levels.
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Decoder data rate Area Energy
device Msps ovh % elements ovh % nJ ovh %

Balsa 66.98 — 68 595 — 159 —
Teak 62.22 7.65 104 880 52.90 197 34.52

Table 7.7: Comparison of the Viterbi decoder in Balsa and Teak.

7.3 A 32×32-bit radix-8 Booth MAC

The Booth algorithm [13] is an efficient multiplication algorithm that is com-

monly used to implement the multiplication of two signed binary numbers in

hardware. A number of bundled-data asynchronous multiplier have been de-

scribed that implement the modified Booth algorithm, in which the number of

iterations is fixed [54, 55, 94]. A bundled-data implementation of the original

Booth algorithm, which skips consecutive chains of zeroes and ones leading to a

number of iterations that depends on the operands, is described in [31].

The multiply-accumulate unit described here was designed to support all the

variations of the ARM multiply instructions in the nanoSpa core, replacing the

shift-and-add multiplier used in the SPA processor. Figure 7.8 shows the archi-

tecture of the nanoSpa multiplier.

The unit is a 32×32 multiplier with 32-bit accumulation. It is implemented

as a radix-8 (Booth-3) modified Booth’s algorithm [13, 27]. This implementation

was selected after comparing it with a radix-4 (Booth-2) implementation as a

good performance-area trade-off: for an increase of 2.5% in the total nanoSpa

processor area, the multiplier performance increases by 25% [95].

In figure 7.8, A and B are the multiplicands, and C is the optional 32-bit

accumulate. The result is delivered as one or two 32-bits words (depending on

the type of multiplication), H being the most-significant 32 bits and L the least

significant 32 bits. The unit also calculates the zero (Z ) and negative (N ) flags.

The multiplier consists of the following units:

Bypass and Merge: To support the speculative operation of the nanoSpa

Execute stage, the multiplier is wrapped within the Bypass and Merge units.

These units facilitate the early termination of the multiplication when the

condition code of the instruction fails. If this is the case, the Bypass section

generates a constant result of zero and discards the operands. In this way,

the handshake is completed in the operand channels, the Booth loop is not
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Figure 7.8: Architecture of the nanoSpa multiplier unit.

executed, and a result data is sent down the datapath to be discarded and

to quickly finish the instruction. The Merge section passes either the zero

results generated by Bypass or the actual multiplication and flags results

to the output channel.

Sign Adjust: In order to accommodate the algorithm requirements, and

the signed and unsigned operations specified in the ARM instruction set,

this unit either sign-extend or zero-fill the operands A, C. For operand B, a

zero is added at the least significant position (to complete the bit encoder

bit grouping) and two bits are added at the most-significant positions (to

save the carry out and to set the unsigned operands as positive numbers).

This unit also passes the accumulate operand or zero if no accumulation is

required.

Booth-3: This unit carries out the actual multiply-accumulate (MAC)



Section 7.3 A 32×32-bit radix-8 Booth MAC 179

operation This block consists of a Booth-3 decoder that selects the partial

product to be added to the multiplicand, two arithmetic 70-bit shifters

(one for the Carry-Save bits and one for the sum bits), a 32-bit Carry-Save

Adder (CSA) to speed up the addition in the loop, a controller unit, and a

32-bit Carry-Propagate Adder (CPA). Together, the decoder, the shifters,

the controller, and the CSA implement the Booth iteration. The shifter is

initialised with the sign-extended multiplicand sB in its lower 35 bits and

with the value of the accumulate, sC in its upper 35 bits (to add it on

the first iteration). The sign-extended multiplier operand sA is passed to

the Booth encoder to generate the required partial products to be added.

The controller initiates and stops the iterations and, after the last iteration,

steers the CSA output and the 32 bits of the shifter containing the lower

32 bits of the result of the loop to the CPA. The CPA recodes the lower 32

bits by adding the lower halves of the two shift registers. It also recodes the

upper 32 bits by adding the outputs of the CSA. In order to save hardware,

these two recoding operation use the same CPA sequentially.

7.3.1 32-bit Multiply with 64-bit accumulation

Given that MAC operations with 64-bit accumulation are not very common, in

order to perform a full 64-bit accumulation, nanoSpa executes any long multiply-

and-accumulate in two cycles: the first cycle executes a MAC with 32 bit ac-

cumulation and then executes an ADD operation with the upper 32 bits of the

MAC result and the upper 32 bits of the accumulate register. This architectural

decision contributes to reducing the area overhead of the multiplier.

7.3.2 Results

The Booth-3 unit (the core of the multiplier) is a control-dominated circuit as can

be seen in the “X-ray” picture of its Handshake Circuit, show in figure 7.9. The

parameter used to measure the performance was the average cycle time of signed

multiply-and-accumulate operations. The design was synthesised in Balsa and

Teak from an already optimised source, however some of the new optimisations

were also applied. This design was used to further compare Balsa and Teak

synthesis styles using a medium-complexity control-dominated example.



180 Chapter 7 Design Examples and Evaluation

;

||

||

^||

||

>−

;

do

||

X X X X

X X

XXXX X X XX

X X

XX

X

X X

X

ctrl[0..3]

>− −>

vph[0..31]

vpl[0..31]

va[0..34] v2a[0..34]

v3a[0..34]

v4a[0..34]

nva[0..34] nv2a[0..34]

nv3a[0..34]

nv4a[0..34]

crh[0..34] crl[0..35]rl[0..35]

rhp[0..34]

>− −>

crhp[0..34]

>− −>

crlp[0..35]

>− −>

rlp[0..35]

>− −>

go[0..0]

>− −>

vmlength[0..0]

vmacc[0..0]

vZ[0..0]

vN[0..0]

>− <− >− <−

>− −>

>− −>

>− −>

−>

−>

aeFV

.

.

.

−>−>

~

−>

<<>>

0

−>

<<>>

0

−> −>

Adapt

.(s)

^

aeFV aeFV

−>

aeFV

||

−>−>

~

aeFV

||

−>−>

~

aeFV

||

−>−>

~

aeFV

−> −>

−>

−>

0

−>

0

−>

−>−>−> −>

.. .

−>

−>

−> −> −>

>− −>

@

−>

−> −> −>−> run

@

−>

−>

Adapt

−> −>−>−> run

^

aeFVaeFV aeFV

−> −>

Adapt

−>

Adapt

−>

Adapt

<<>>

aeFV

−>

−> −>

aeFV aeFV

−>−> −>−>

==_#

@

−>

>− −>

>− −>

>− −>

−>

<<>>−>

−>

aeNA aeFV

−>

−>

−>

@

−>

−>

−>

&

==_# −>

−>

−>

−>

<<>>

<<>>

<<>>

<<=>>

<<>>

<<>><<=>>

Enc

nanoMBoothR3rolled
*

rh[0..34]

|| || ||

^

;

.(s)

||

.(s)

||

||

.(s)

Enc

Figure 7.9: An “X-ray” picture of the Booth-3 Handshake Circuit revealing its
control tree.

Balsa

Table 7.8 shows the performance (average delay time of 32-bit multiply and ac-

cumulate operations), area and energy results for the following versions of the

multiplier:� MAC : the original description.� MAC+DL : the MAC. with description-level optimised case guards and

explicit duplication in the Booth encoder block.� MAC+DL+AEC : the above plus the optimisation of the control of active

enclosures described in section 4.6.2.

The results show that, despite the small room available in this very optimised

control-dominated design, some performance increase can be achieved with the

new optimisations: The description-level optimisations delivered 2.35% perfor-

mance increase, which together with the optimised control results in an extra

3.57% with a 5% of area overhead.
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Multiplier delay Area Energy
device ns ∆ (%) elements ratio nJ ratio

MAC 90.60 — 115 680 1.00 80 1.00
MAC+DL 88.60 2.36 120 900 1.05 78 0.98
MAC+DL+AEC 87.48 3.57 120 961 1.05 80 1.00

Table 7.8: Performance, area and energy results for the MAC unit in Balsa.

Teak

Table 7.9 shows the performance, area and energy results when the following

optimisations were applied to the MAC description:� VFJ+SMJ (1L): removal of redundant Variables, Fork and Join consolida-

tion and displacement, and Steer-Merge-Join optimisation. A simple, one

latch per link latching strategy was used here.� VFJ+SMJ : The above optimisations but with the use of three latches per

cycle insertion technique.� VFJ+SMJ+JI : the above design plus the input-join description-level opti-

misation described in section 5.4.2.

Multiplier delay Area Energy
device ns ∆ (%) elements ratio nJ ratio

VFJ+SMJ (1L) 147.88 — 249 070 1.00 153 1.00
VFJ+SMJ 133.66 10.64 179 242 0.72 98 0.64
VFJ+SMJ+JI 129.34 14.33 180 972 0.73 93 0.61

Table 7.9: Performance, area and energy results for the MAC unit in Teak.

The results in table 7.9 show that the three-latches per cycle strategy has

improved the performance by 10% and has reduced the area by 30% and the

energy consumption by 36%. These results are similar to those obtained for the

Viterbi decoder.

The technique of joining inputs improves the MAC performance by 14% with

a small increase in area, but smaller energy consumption. In this design it was

impractical to use the description-level technique to remove the channel Variables

due to its heavily sequenced and iterative architecture.
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Finally, table 7.10 compares the best Teak and Balsa implementations of the

MAC unit. In this control-dominated case, the Teak overhead in performance is

larger, mainly because the design heavily relies on the use of variables.

Multiplier delay Area Energy
device ns ovh % elements ovh % nJ ovh %

Balsa 87.48 — 120 961 — 80 —
Teak 129.34 47.85 180 972 49.61 93 16.15

Table 7.10: Comparison of the MAC implementations using Balsa and Teak.

7.4 The nanoSpa Forwarding Unit

This section presents the description of a synthesisable result forwarding unit for

the nanoSpa asynchronous microprocessor, using the syntax-directed synthesis

approach and targeting a robust QDI implementation. The author has published

a paper based on this work [96].

7.4.1 Introduction

Result forwarding [49] is a method used in pipelined microprocessors to reduce

the penalty caused by inter-instruction data dependencies. The forwarding mech-

anism can also be used to allow partial overtaking of (normally slow) memory

operations by faster instructions, whilst making sure that the instructions com-

plete in the same order as they appear in the instruction stream. Figure 7.10

depicts some potential performance benefits of the result forwarding mechanism.

In synchronous systems, the problem of result forwarding can be easily solved

because the clock signal serves as a reference that allows synchronisation between

result producing and consuming units. In an asynchronous environment, the

problem of implementing a result forwarding mechanism is more complicated due

to the lack of synchronisation between producers and consumers. In this case,

one cannot rely on a control signal that indicates which cycle an instruction is in

as this requires a lockstep operation of the pipeline that would heavily penalise

the performance.

An efficient, full-custom solution to the problem of result forwarding within

an asynchronous environment was proposed and implemented in the Amulet3



Section 7.4 The nanoSpa Forwarding Unit 183

ADD  R1, R1, R2

CMP  R1, R0

fetch read exec write

fetch read exec write

ADD  R1, R1, R2

CMP  R1, R0
fetch read exec write

exec writeforwfetch discard
read &

Without forwarding

With forwarding

time

Figure 7.10: Potential performance benefits of result forwarding in a 4-stage
pipeline.

asynchronous processor [43, 44, 36], targeting a bundled-data implementation,

with the consequent limitations on design-space exploration, technology porta-

bility due to its full custom design, and with similar timing closure problem as

synchronous designs. In order to overcome such limitations and reduce the im-

pact of increasingly difficult timing closure within modern fabrication process

variability, it is desirable to have a synthesisable asynchronous description which

can be mapped into a quasi-delay-insensitive implementation.

The following sections introduce relevant related work and discusses the im-

plementation of a forwarding mechanism designed to be used in the nanoSpa

processor described earlier in section 7.1.

7.4.2 Related work

Earlier asynchronous techniques for resolving dependencies include: the register

locking mechanism for the Amulet1 processor [80, 35], register locking plus “last

result” register used in the Amulet2 processor [37, 112], the last result bypass

mechanism of the Caltech asynchronous MIPS [69], the scoreboard-like Data Haz-

ard Detection Table (DHDT) of the SAMIPS processor [118], the CounterFlow

Pipeline Processor architecture (CFPP) proposed in [92] and the asynchronous

“queue” FIFO [43] for the Amulet3 processor [38]. The ARM996HS processor

by Handshake Solutions is a commercially-available synthesisable asynchronous

32-bit CPU that was implemented using the TiDE tools [23]. The processor

ARM996HS core is a five-stage asynchronous pipeline and so may benefit from

result forwarding but no information has been published about the dependency
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avoidance technique used. As with Amulet3, its implementation uses bundled-

data encoding.

The Amulet3 asynchronous “queue” FIFO (AQF from herein) was used as the

reference model for the nanoSpa forwarding unit (nFU). The AQF is a circular

buffer that acts both as a forwarding unit and a reorder buffer. The AQF stores

the results and their register destinations from previous instructions. Figure 7.11

shows a diagram of the AQF process model. The queue operation consist of 5

processes: Lookup, Allocation, Forward, Arrival and Writeout [44, 43].

Processing
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Figure 7.11: AQF process model.

Lookup: This process receives the source register names for instruction

operands from the decoder, examines the queue to see if they are present,

and returns a bit mask indicating the possible data source positions in the

queue. This is performed using a CAM (Content Addressable Memory)

that holds the previously allocated destination registers.

Allocation: After obtaining the lookup source mask, the instruction’s own

destination address can be written into the CAM. The writing position is

allocated cyclically within the circular buffer structure.

Forward: Concurrently with Allocation, this process receives the mask

generated during Lookup, examines each of the possible sources (starting

at the most recent), waits until the data is present and then checks for
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validity. Valid data is forwarded to the required places, otherwise the pro-

cess examines the next most recent possibility. If all the possibilities are

exhausted (or if there were no data sources) the forwarding process gives

up and the default value, read from the register bank, is used.

Arrival: Results arriving at the queue carry their allocated queue ad-

dress. The allocation process guarantees non-conflicting allocations even in

the event of multiple writes. When the data allocated to a particular slot

arrives, the previous data in the slot will have been written back to the

register and so can be overwritten without conflict. If the instruction was

abandoned due to conditional execution then the result will be marked as

invalid.

Writeout: This process copies valid results back to the register bank.

It examines the queue locations cyclically and waits until the valid result

arrives then copies the data to the register bank and marks the location as

“empty” so it can be reallocated.

In order to improve the speed of the Lookup process, the Amulet3 AQF uses

a small CAM to hold the information about the registers written in the buffer.

Speculative read of the default value from the register bank is also performed in

case the source operand is not present in the buffer. The AQF has a centralised,

token-passing asynchronous control and features three read ports for forwarding

and two write ports for arrival.

7.4.3 The target processor: nanoSpa

In a new experimental description of nanoSpa, the pipeline depth has been in-

creased to enhance the performance. Figure 7.12 shows a simplified version of

the new 5-stage nanoSpa pipeline.

7.4.4 Architecture of the nanoForward Unit

The nFU has the same number of read ports (3) and write ports (2) as the AQF,

but as the current nanoSpa architecture does not execute instructions out of

order, the nFU is not used as a reorder buffer.
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Figure 7.13 shows the architecture of the nFU and its location within the

new nanoSpa pipeline. The figure shows details of the communication interface

between the various processes, the queue and the processor units.

The decode stage generates sequenced values of allocation pointers (allocPtr)
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that steer the allocation and arrival data and guarantee mutual exclusivity in

the allocation of queue cells. There are two allocation pointers, because some

instructions can generate up to two results. The queue cells communicate using a

token-passing mechanism to avoid cell reallocation when successive two-result in-

structions appear in the pipeline. Also, each queue cell handles its communication

with the other processes independently.

7.4.5 Implementation issues

In ARM processors any instruction can be executed conditionally, which adds

extra complexity to the result forwarding mechanism. In order to improve the

efficiency of the pipeline in both the AQF and the nFU, allocation is done regard-

less of whether the instruction is conditional. If a conditional instruction fails its

condition code tests, a token is sent through the pipeline to indicate that the

instruction has been processed and the allocated queue slots are marked as in-

valid. This introduces some wasted slots in the queue, however, figures reported

in [43] give 90% of queue utilisation for typical ARM programs by using this

unconditional allocation strategy.

Synchronisation between processes

To guarantee correct operation, on each instruction the nFU must perform several

operations sequentially as shown in figure 7.14. An initial nFU description was

based on the use of sync channels as a token-passing mechanism to synchronise

the processes but this caused a large performance penalty due to its reliance on

the use of Sequencers so alternatives were looked for.

Forward Allocate

Lookup

Arrival

Writeout

Figure 7.14: Inter-process dependencies in the nFU.
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A solution that dramatically reduced this penalty was to perform synchroni-

sation using data instead of sync tokens: to decouple Forward from Arrival, the

queue contents are read speculatively and sent through data channels to the For-

ward process. Lookup and Allocation were decoupled using an “allocation mask”

that blocks the reading of the queue locations that are about to be modified

by the allocation/arrival process during the current instruction. This masking

mechanism has two drawbacks: (i) the effective length of the queue is reduced in

one or two locations, depending on the number of results to be written (one or

two), and (ii) it dissipates more power and requires larger area.

Another alternative is to implement a less concurrent operation by grouping

the processes according to the information that they read or write: Lookup;Allocate
are sequenced as they read;write the register names and the valid flag. Similarly,

Forward;Arrival are sequenced because they read;write results. In this way,

Lookup;Allocation can now run concurrently with Forward;Arrival. Synchro-

nisation between Lookup and Forward is done with data tokens carrying the

lookup result. Allocation and Arrival completion must be synchronised and this

information triggers the Writeout process.

Optimising sequenced operations

One performance problem that arises with the grouping scheme presented ear-

lier is that, as explained in section 4.6.3, read-then-write operations require the

use of non-RTZ-overlapped sequencers based on the S-element in order to avoid

the risk of WAR hazards. To allow a more concurrent operation with decou-

pled RTZ phases, the processes can be rearranged as Allocation;Lookup and

Arrival;Forward. This write-then-read operation permits the safe use of a se-

quencer based on the T-element but requires an initial empty token to be sent

to Allocate and Arrival before the nFU begins to process instructions.

In Balsa, a write-then-read sequence to a variable inside a procedure generates

a sequencer based on the T-element. However, because in the nFU the write and

read processes reside in separate modules (with multiplexed/demultiplexed ac-

cesses to a global variable) the Balsa compiler inserts a safe non-RTZ-overlapped

sequencer. An improvement to the above solution is to take advantage of the

unbounded repetition of read-then-write actions over common variables and use

the read-then-write optimisation describe in section 4.6.3.
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Lookup CAM and forward process implementation

In the Amulet3 AQF, the Lookup process uses a small, very fast custom CAM to

determine if the source registers of the decoded instruction are written or have

been allocated in the buffer. Balsa does not provide a way to describe a CAM

and generate an efficient circuit structure. The Balsa synthesised circuit used to

replace the CAM consists of a number of logic comparators that, despite being

relatively simple, do not perform as well as an optimised CAM, resulting in some

performance penalty for the Lookup process.

In the Amulet3 AQF the Forward process iteratively examines the possible

data sources until valid data is found or, if all possibilities are exhausted, the

default value read form the register bank is used. This operation was efficiently

implemented at the signal-level. As Balsa is a behavioural language, no signal-

level operations can be described and attempting to replicate this behaviour in

the nFU would require extensive use of sequenced operations that penalise per-

formance.

The implemented solution is to wait for the data validity flag during the

allocation process and to attach this information to the register number before

writing it to the nFU CAM substitute. In this way the CAM substitute will

report nothing or the single most recent valid source to the forwarding process,

avoiding the need for iteration.

7.4.6 Use of the permissive Concur

The composition of concurrent actions in the nFU allows the use of the permissive

concur to enhance the performance. The operations in the nFU were grouped

into two concurrent groups of actions: (Lookup;Allocate) and (Forward;Arrival).
These actions read and write from the same set of variables (the Queue buffer).

The allocation pointer and token passing mechanism guarantees mutual exclusi-

vity of these read and write actions allowing the use of the permissive concur.

Outputs of these processes can be merged without the use of the select construct

acting as a data driven merge.

For the case of the queue, the guaranteed mutual exclusivity allows the Allo-

cation and Arrival processes of each cell to be composed with permissive concurs

leading to similar benefits. Figure 7.15 shows the composition of the different
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processes using the permissive concur inside the description of the nFU. For clar-

ity, the I/O signals have been removed in the code. The complete source code

can be found in Appendix G.

    -- Lookup/Allocate group

    loop

        -- Lookup (one for each read port)

        for || i in 0..READPORTS-1 then
            lookup(i, ...)

            )

        end 
      ;
        -- steer Allocate information to allocation subcells

        steerAlloc_1(...) ||!
        steerAlloc_2(...)

        )

    end ||!
    -- Forward/Arrival group

    loop
        -- forward (one for each read port)

        for || i in 0..READPORTS-1 then
            forward (i, ...)

        end
      ;
        -- Steer arrival requests

        steerArrival_1(...)

        ) ||!
        steerArrival(...)

        )

    end ||!
    -- Cell allocation subprocesses

    for || i in 0..ROBSIZE-1 then
        allocCell( i, ...)

        )

    end ||!
    -- Cell arrival & writeout subprocesses

    for ||! i in 0..ROBSIZE-1 then
        arrCell( i, ...) 

    end

Figure 7.15: Composition of actions with the permissive Concur inside the nFU.

7.4.7 Results

After a series of pre-layout, transistor level simulations it was found that the

optimum queue size is 4. Different architectures of the nFU were tested and

compared running the Dhrystone benchmark program. Tables 7.11 and 7.12

show that performance increases were 10%, with area and energy overheads of

13%. These results also show that the techniques used for desynchronising the
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processes achieve close to 40% increase in performance relative to the use of sync

channels. Results show that the first-read-unfold technique described in section

4.6.3 is a key factor for the performance gain in the nFU, contributing more than

50% of the speed-up.

nanoSpa device DMIPS speed-up (%) area overhead (%)

no nFU 78.37 0.00 0.00
nFU (sync signals) 61.22 -28.80 5.20
nFU (allocation mask) 82.03 4.67 15.71
nFU (grouping) 81.86 5.86 11.20
nFU (grouping + unfolding) 86.27 10.08 11.21

Table 7.11: Performance results for nanoSpa using the nFU

nanoSpa Energy for a overhead
device Dhrystone loop(µJ) (%)

no nFU 0.360 0.00
nFU (allocation mask) 0.491 36.23
nFU (grouping) 0.393 8.90
nFU (grouping + unfolding) 0.408 13.33

Table 7.12: Energy results for nanoSpa using the nFU

Unfortunately, it is not possible to make a relative comparison of the perfor-

mance gain with respect to the Amulet3 AQF, because there are no published

figures with and without the AQF. Pre-implementation, simulation results in [44]

suggest that the AQF in Amulet3 would increase its performance by 22.5% when

running the Dhrystone benchmark. Notice also that the Amulet3 pipeline has a

decoupled memory stage and this feature is not currently present in nanoSpa.

7.5 A sliced-channel wormhole router

This section presents the architecture of a novel sliced-channel wormhole router

proposed by Wei Song [90] and the results of some optimisations applied to its

Balsa description. Details of the implementation and operation can be found in

the reference given.
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7.5.1 Introduction

Network-on-chip (NoC) is new on-chip communication paradigm. Asynchronous

NoCs are attractive because they are power efficient and robust to process varia-

tion. As opposed to the store-and-forward routing scheme used in macronetworks,

in NoC the prevailing scheme is wormhole routing [12]. In store-and-forward

routing the node stores the complete packet and forwards it based on the infor-

mation within its header. In wormhole routing, the packet is decomposed into

into smaller units called flits (flow control digits). The network node looks at

the header of the packet to determine its next hop and immediately forwards it.

The subsequent flits are forwarded as they arrive, causing the packet to worm its

way through the network possibly spanning a number of nodes. The advantages

of wormhole routing are low latency and the avoidance of area costly buffering

queues [12].

In wormhole routing each packet is decomposed into three types of flits: (i)

the head flit, which conveys the routing information (destination address) for the

subsequent flits; (ii) a variable number of data flits, which carry the payload and

(iii) the tail flit, which is used to close the connection.

7.5.2 Architecture of the sliced-channel wormhole router

In order to meet bandwidth requirement, state-of-the-art asynchronous routers

broaden their channels by synchronising multiple sub-channels [12, 2, 86]. The

new router architecture proposed in [90] and described here uses multiple inde-

pendent sub-channels to transmit data. Since some synchronization is removed,

the cycle period of all sub-channels are reduced, speeding up the network.

Figure 7.16(a) shows the simplified datapath of a wormhole NoC using syn-

chronized channels. If, for instance, the asynchronous channel between routers

is formed by four sub-channels, a four input C-element tree is required to gener-

ate the ack signal on each port. All sub-channels are merged into one channel

and traverse the router through the multiplexer controlled by an arbiter. To re-

move the C-element tree, the data path could be restructured as shown in figure

7.16(b). The four sub-channels still go through the multiplexer together but each

of them has its own ack line and can run independently.
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Figure 7.16: Wormhole NoC datapath [90].

The sliced-channel wormhole router

The implemented sliced-channel wormhole router has five 32-bit ports. To avoid

separating the address in the head flit, the data width of a sub-channel in the

router is set to 8 bits, allowing the header to address a 16×16 mesh. Consequently,

the 32-bit channel is divided into four 8 bit sub-channels. The wire count is

increased to 76 because the sub-channels now have their own set of end-of-frame

and ack wires. In contrast, a conventional router having the same number of

channels requires 67 wires: 64 data wires, two wires for the end-of-frame bit and

one ack wire.

The architecture of the new router is shown in figure 7.17. The router com-

prises five input buffers, five output buffers and five multiplexers controlled by

five arbiters. The depth of all buffers is one bit.

In this design example the dominating structures in the Balsa description are

the data-dependant conditional structures that implements the input buffers and

crossbar (multiplexers and demultiplexers). The control consists of the arbiters

that select the routes and iterative loop .. while structures (localised at each

input and output buffer) that detect the end (tail) of the packets entering/leaving

the router.
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Figure 7.17: Sliced-channel wormhole router with four sub-channels [90].

7.5.3 Results

The experimental set-up consisted of sending packets of random lengths from

every port to randomly selected port/destination and measuring the average

throughput of the whole router (sum of the throughput of all ports). Random

lengths and destinations were pre-generated and the same set was used for all de-

signs. Table 7.13 shows the performance, area and energy results for the following

versions of the router:� WR: the original unoptimised description.� WR+DL: the description-level optimised version of WR. In particular, the

guard optimisation and guard grouping were used in the input buffers and

crossbar.� WR+DL+AEC : the above plus the optimisation of the control of active

enclosures described in section 4.6.2.� WR+B+DL: the WR+DL plus data broadcasting in the output buffers.� WR+B+DL+AEC : the above plus the optimisation of the control of active

enclosures

Results show that the description-level optimisation of guards has increased

the performance by 7.3% with a reduction in area of 14% of the original and a
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Router Throughput Area Energy
device Mflits/s ∆ (%) elements ratio pJ/flit ratio

WR 712 — 103 251 1.00 11.64 1.00
WR+DL 764 7.3 88 762 0.86 12.49 1.07
WR+DL+AEC 784 10.1 88 768 0.86 12.51 1.08
WR+DL+B 786 10.4 117 850 1.14 15.51 1.33
WR+DL+B+AEC 836 17.4 117 856 1.14 15.40 1.32

Table 7.13: Balsa wormhole router simulation results.

penalty of 7% in energy. Adding the peephole optimisation of the active eager

inputs increases the performance by 10% with negligible penalties. Applying a

more aggressive optimisation in the output buffers increases the performance by

17.4% at the expense of larger area and energy penalties.

7.6 Summary

This chapter has presented the evaluation of the performance-oriented techniques

introduced in this thesis on a set of medium-to-large complexity designs de-

scribed in the Balsa language. The impact on performance for the different

techniques varies depending of the operational complexity of the circuit, with

control-dominated circuits having smaller performance increases.

7.6.1 Balsa

The combined use of description-level optimisations obtained performance gains

that range in percentage from 5-10% for the control-dominated MAC to 200%

for the Viterbi decoder. The Viterbi example is interesting because the source

description was written by an inexperienced Balsa user, highlighting the fact that

the expressiveness of the language can lead to functional but poor implementa-

tions. In contrast, the source description of the nanoSpa processor (by far the

most complex example investigated) was written by a highly experienced user,

leaving less room for improvement.

New peephole optimisations were applied to highly optimised code where they

can be more effective. However, as they target more localised sections of a circuit,

the performance increase obtained is limited.
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In general, the description-level optimisations result in small area and en-

ergy penalties. However, some of the large speed-ups are associated with larger

overheads. The combined use of the two types of optimisations compares very

favourably to a more aggressive push-only data-driven style, achieving similar lev-

els of performance increases at relatively very low cost in overheads. This result

suggests that a combination of push-only data-driven style and the optimisations

introduce here might yield larger improvements at lower overhead costs.

7.6.2 Teak

Three designs were used as evaluation for Teak: the nanoSpa, the Viterbi decoder

and the MAC unit. The circuit-level optimisations proposed for Teak corresponds

to the initial set of optimisations derived for Teak circuits and, in contrast to the

Balsa examples, a reference design was not available. In spite of this, some sets of

the optimisations were applied separately to highlight the potential optimisation

headroom available. In particular, the optimisation of conditional structures that

results in compositions of Steer-Merge-Join components were evaluated, showing

these structures as an excellent target for optimisation. The other optimisation

highlighted in the examples was the latch insertion mechanism proposed in section

6.4. The results demonstrate its effectiveness in speeding up the circuit, saving

area and energy as a side effect.

The proposed description level optimisations targeting the elimination of chan-

nel variables effectively improved the performance of the designs, resulting in

speed-ups directly proportional to the width of the datapaths involved.

The evaluation examples demonstrated that the Teak methodology is capable

of synthesising large complex circuits that operate correctly, but currently the

performance overhead of Teak circuits for complex designs (like nanoSpa) or for

control-dominated circuits (like the multiplier) is too large. The structures used

to provide conditional access to channels and the sequencing of operations were

identified as one the main sources of overhead. For the conditional access to

channels, the circuit-level optimisation described in section 5.4.2 appear to be a

promising source of improvement but is yet to be automated.



Chapter 8

Conclusions and future work

8.1 Balsa

The syntax-directed synthesis approach targeting handshake circuits used in Balsa

is a flexible method that allows the synthesis of complex asynchronous VLSI cir-

cuits. The flexibility for making design trade-offs at the description-level has been

claimed to be one of its major advantages. The major drawback of the method

is the poor performance of the synthesised circuits and different techniques have

been proposed to optimise them.

This thesis has proposed and evaluated a series of description-level and peep-

hole optimisations to increase the performance of circuits synthesised using the

syntax-directed approach. The synthesis and the optimisations presented here

target dual-rail, quasi-delay-insensitive implementation as this is a robust ap-

proach that helps to reduce the impact of increasingly difficult timing closure

within modern fabrication process variability.

This work has contributed to the knowledge of the asynchronous design me-

thodologies by proposing and analysing a set of description-level techniques that

result in faster compositions of the target structures used in the handshake cir-

cuits approach. The techniques are based on the data-driven style of description

in which the arrival of data activates the operations of the circuits, as opposed

to the more traditional and straightforward control-driven style. The overall ef-

fect of the proposed description techniques is the splitting of the tree of control

elements of the synthesised circuits into smaller clusters, resulting in a reduction

of the associated overhead.

Another contribution is a new set of peephole optimisations targeting Balsa

197
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handshake circuits that further increase the performance of the synthesised cir-

cuits. In general, the description-level optimisations result in small area and

energy penalties and in some cases, they even improve area and energy consump-

tion. However, large speed-ups are associated with increased area and energy

overheads. The peephole optimisations presented here have negligible overheads.

The performance gains obtained by using the different optimisations depends

on the original input source code. For sources written by experienced designers,

performance increases of 15-24% were achieved with area and energy penalties

of less than 17% in most cases. The peephole optimisations achieved limited

performance increases (of the order of 5-10% for the examples analysed) because

they target smaller sections of the system.

The combined use of the two types of optimisations compares very favourably

to a more aggressive push-only data-driven style, achieving similar levels of perfor-

mance increases at relatively very low cost in overheads. This was demonstrated

using a large and complex design example. The result suggests that it may be

possible to obtain higher performances at a lower cost with an adequate mixture

of both techniques. This will be discussed in the future work section.

A final contribution of this work is a varied set of highly optimised designs (and

their corresponding simulation results) that can be used in further investigations.

8.2 Teak

This work has also evaluated a novel token flow-based asynchronous synthesis

approach and techniques for increasing the performance of the resulting circuits

were proposed and analysed. Although sharing the same input language as Balsa,

the synthesis method is different to both Balsa and Haste, hence different opti-

misation methods had to be devised. Three designs were used as evaluation for

this novel token-flow approach: the nanoSpa, the Viterbi decoder and the MAC

unit.

The proposed optimisations for Teak fall into circuit-level and description-

level categories. Circuit-level optimisation rely on the properties of the Teak

components and its compositions and comprise circuit transformations, pattern-

matching and substitution, or a combination of transformation and substitution.

Description-level techniques target the removal of channel Variables with condi-

tional accesses.
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Two main targets for optimisation were identified: Steer-Merge-Join composi-

tions and conditional read accesses to channels. The optimisation of Steer-Merge-

Join compositions is achieved using circuit transformations and substitutions

whilst conditional read accesses to channels were optimised using description-level

techniques. Furthermore, a circuit-level optimisation was proposed for conditional

read accesses that could further improve the performance of Teak circuits.

Teak circuits need latch insertion to prevent deadlock within circuits with

cycles. An automatic latch insertion mechanism based on the minimum token

storage required in a cycle was proposed, analysed and incorporated in the syn-

thesis system.

The evaluation examples demonstrated that the Teak methodology is capa-

ble of synthesising large complex circuits. However, further optimisations are

necessary to obtain competitive levels of performance with Balsa circuits.

8.3 Future work

The optimisations presented here can contribute in several ways to further im-

prove existing tools used in the synthesis of asynchronous circuits and to create

new ones. The work conducted on the Teak synthesis is just one of the first steps

towards the implementation of a mature synthesis tool for this novel synthesis

approach.

8.3.1 Description-level optimisations

The circuit structures that result from the optimised descriptions can serve as a

reference to create the mappings in an optimisation step of the compiler or can be

incorporated as rules for automated source-to-source transformation tools. As an

example, the optimisations of the guards evaluation and the encoding of multiple

guards look like excellent candidates for automation.

8.3.2 Peephole optimisations

The peephole optimisations proposed for the Balsa handshake circuits can be

incorporated into the Balsa compiler and further evaluations performed on them.

With some of the more complicated situations which are difficult to match with
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a template, such as the read-then-write sequencing, the optimisation could be

incorporated as a “pragma” in the source code.

8.3.3 Synthesis using hybrid style

Balsa normally generates modules with active input ports (pull inputs) and active

output ports (push outputs) with a mixture of active and passive inputs at the

handshake component level. In contrast the data-driven synthesis proposed in

[101], which uses push-only handshake components (passive inputs and active

outputs), provide faster performance but poorer area and energy consumption.

The fact that the description-level optimisations have closed the gap between

Balsa and the push-only style suggests that there may be inefficiencies with the

push-only approach that could be exploited by using pull structures in key places

of the handshake circuits. Clearly there will be more than one way of mixing

these styles, either importing push-style modules to replace slower Balsa mixed-

style modules or incorporating the more efficient push-style components in Balsa

or vice versa. Investigating these inefficiencies and the best way of implementing

this hybrid style is a challenging future research topic.

8.3.4 Teak

Teak is still a project under development. The evaluation carried out during this

work was part of the initial proof of concept for the methodology, and this work

has opened a series of paths to continue its development.

The automation of the proposed circuit-level approach to remove Variables

associated with conditional channel reads is required to provide further enhance-

ments in the performance, area and energy of the synthesised circuits.

The optimisation of the three latches per cycle is necessary to reduce the

number of redundant latches due to the overlapping of cycles. This is an NP,

non-trivial problem that opens a good research opportunity. The use of heuristics

based on the structure of the Teak networks could serve as the basis for an

optimised latch insertion mechanism.

At the component-level there is much to do on the design of optimised versions

of Teak components, and some work on this has already started. The methodo-

logy allows the components to be designed with any chosen degree of channel
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coupling, and there are good research opportunities in investigating better de-

grees of channel decoupling that can be embedded inside each component. It is

even possible to have different versions for each component and select the one

that provides the best performance depending on the construct, the neighbour

components or datapath width.

Circuit transformations and peephole optimisations for Teak circuits can be

described in a language external to the compiler to facilitate its description, com-

position and application to the circuits. There is already some work in progress

within the APT group to develop this idea.
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Appendix A

List of Balsa operators

The following table show the operators available in Balsa, in order of decreasing

precedence:

Symbol Operation Valid types Notes

. record indexing record

# smash any
takes value from any type and reduces
it to an array of bits

[] array indexing array
non-constant index possible, can gener-
ate lots of hardware

^ exponentiation numeric only constants

not, log,

- (unary)
unary operators numeric

log only works on constants, returns the
ceiling: e.g. log 15 returns 4.
- returns a result 1 bit wider than the
argument

*, /, %
multiply, divide,
remainder

numeric only applicable to constants

+, - add, subtract numeric
results are 1 or 2 bits longer than the
largest argument

@ concatenation arrays

<,>,<=,>= inequalities
numeric
enumerations

=, /= equals, not equals all
comparison is by sign extended values
for signed numeric types

and bitwise and numeric
Balsa uses type 1 bits for if/while

guards so bitwise and logical operators
are the same

or, xor bitwise or, xor numeric

Table A.1: Balsa binary/unary operators [30].
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Appendix B

Balsa handshake components

This appendix provides a brief description of the handshake components available

in the Balsa Synthesis System that appear in the example circuits of this thesis.

For details on the implementation and formal description, the reader can refer

to [5] and the Balsa Manual [30].

Balsa handshake components can be divided into three categories, according

to its interaction with data and control signals.

Control components use only sync (dataless) ports. Their operation is trig-

gered through the activate port. Their output sync channels are connected to

the activation ports of other components.

Datapath components have only data channels. They are used for storing,

processing, merging and splitting data channels.

Control to datapath interface components control the movement of data through

the datapath. They have one or more sync ports used to communicate with con-

trol components as well as data channel ports. Some of them initiate handshakes

on data channels in response to activation. Others generate an activation in

response to the arrival of data.

B.1 Control components

B.1.1 Loop

Loop implements unbounded repetition. After receiving an activation on its pas-

sive port, it produces an infinite number of activations on its active port.
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#

activate

activateOut

B.1.2 Concur

Produces an activation on all of its output ports following an input activation.

All the output activations are begun at the same time but then operate indepen-

dently.

| |

activate

activateOut

B.1.3 Fork

Produces an activation on all of its output ports following an activation on its

input. All outputs synchronise between the processing and RTZ phases.

activateOut

activate

B.1.4 WireFork

Produces an activation on all of its output ports following an activation on its

input, but never returns an acknowledgement. WireFork effectively forks the ac-

tivation request to all of its outputs.

activateOut

activate

W^
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B.1.5 Sequence

Upon receiving and activation, its output activations are produced one at at time

in sequence.

;

activate

activateOut

B.1.6 Call

Call passes a handshake on one of its input ports to the output port. The inputs

must not occur concurrently.

out

inputs

B.1.7 Sync

Synchronises the request on all of its inputs before passing these handshakes to

the output.

inputs

out

(s)

B.1.8 Arbitrate

Passes handshake on inA to outA or a handshake on inB to outB. If both inA

and inB are activated concurrently it makes a non-deterministic decision as to

which to pass first.

arb
outB

inA

inB

outA
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B.1.9 DecisionWait

Synchronises an activation with one of its inputs and then passes this handshake

to the corresponding output. The inputs must be mutually exclusive.

DWinputs outputs

activate

B.2 Datapath components

B.2.1 Unary function

Implements single-operand operations such as invert. The The handshake is sim-

ply passed through the component with the modified data.

op outin

B.2.2 Binary function

Implements two-operand operations such as addition, subtraction, comparisons

and bit-wise boolean functions. The output request is forked to both inputs. The

input acknowledges are synchronised and passed to the output.

op
inB

inA
out

B.2.3 CallMux

CallMux is used as a merge element in datapaths. Multiple push input channels

can are merged onto a single output channel. The inputs must be mutually ex-

clusive.

inputs out
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B.2.4 SplitEqual

Splits the data on its input port to multiple chunks of the same width, one chunk

being sent on each output.

>>=<<
in outputs

B.2.5 CaseFetch

When CaseFetch receives a request on its output, it pulls an index and uses this

to decide which of its input ports to pull data on and then passes this data to

the output port.

@inputs

index

out

B.2.6 PassivatorPush

Used to connect an active output port from one process to the active input port

of another process. See also section 3.3.13.

outin

B.2.7 Variable

The Variable component has a single write port and multiple read ports. It stores

data that it receives on the write port and provides it to the read ports on request.

Reads and writes must not occur concurrently.

Vwrite reads
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B.3 Control to datapth interface components

B.3.1 Fetch

Upon activation, the Fetch component pulls data on its input port and then

pushes it on the output.

in out

activate

B.3.2 While

Implements the guarded loop language construct. When it is activated the While

component pulls a single bit data item from its guard port. If the guard is true

then While produces an output activation. When this activation has been ac-

knowledged, While pulls another guard and repeats the process until a guard

that is false is received.

while
guard

activateOut

activate

B.3.3 Case

Upon activation, the Case component pulls a guard on its data port. It then

activates one of its outputs based on the data that was received. Multiple values

can be mapped to each output. If some values are not mapped to an output they

will result in no output activation.

@data

activate

activateOut
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B.3.4 FalseVariable

Upon activation, the FalseVariable pulls data on its write port. It then holds

this handshake open and activates the signal port. The FalseVariable acts as a

Variable component, supplying, on request, the data from the write port to a

set of read ports. When the signal handshake is completed (by the activated

command), the write data is released.

signal

write read portsFV

B.3.5 activeEagerFalseVariable

The activeEagerFalseVariable has an active input port and a trigger port to acti-

vate it. As opposed to a FalseVariable, its signal output activates as soon as the

trigger is activated, without waiting for data arrival.

FV

activate

signal

write read ports



Appendix C

FV and aeFV implementations

The following pages show the implementation and STG of the FalseVariable (FV )

and activeEagerFalseVariable (aeFV ) components.
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Read
port

Read
port

: Isocronic fork

RDa[0]

RDr[0]

RDa[1]

RDr[1]
WDr

WDa
WDr
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Read
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=
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Figure C.1: FalseVariable: (a) Implementation, (b) STG.
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Read
port

Read
port

: Isocronic fork

trigger

RDa[0]

RDr[0]

RDa[1]

RDr[1]
WDr
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Read
port
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port
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Figure C.2: activeEagerFalseVariable: (a) Implementation, (b) STG.



Appendix D

Optimised Viterbi decoder Balsa

description

The following pages show the Balsa source files for this design.
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VD.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Viterbi Decoder r=1/2, k=3 (4 states)

6 -- Author: Luis Tarazona (based on original description by Fabien Gavant)

7 -- 10/09/2008

8 -- Viterbi decoder top level

9

10 import[balsa.types.basic]
11 import[BMU] -- name of the file
12 import[PMU]
13 import[HU]
14 import[def_2]
15

16 procedure ViterbiDecoder_k2(
17   input in_a : 3 bits;
18   input in_c : 3 bits;
19   output Out_state : State;
20   output out_o : 1 bits
21 )is
22

23 array 0..3 of channel data_BMU_PMU : nibble
24 channel data_PMU_HU : Bundle_PMU_HU
25

26 begin
27     BMU (
28         -- Input

29         in_a,

30         in_c,

31         -- Output

32         data_BMU_PMU ) ||
33     PathMetricUnit (

34         -- Input

35         data_BMU_PMU,

36         -- Output

37         data_PMU_HU ) ||
38     HistoryHunit (

39         -- Input

40         data_PMU_HU,

41         -- Output

42         Out_state,

43         out_o )

44 end -- ViterbiDecoder_k2
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def_2.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Viterbi Decoder r=1/2, k=3 (4 states)

6 -- Author: Luis Tarazona (based on original description by Fabien Gavant)

7 -- 10/09/2008

8 -- data types

9

10 import[balsa.types.basic]
11

12 type bit3 is 3 bits -- new type for the input: 0 to 7
13

14 type State is enumeration 
15     S0, S1, S2, S3
16 end
17 type trellisState is enumeration 
18     LS0, LS1, LS2, LS3,
19     US0, US1, US2, US3
20 end
21

22 type Bundle_BMU_PMU is record 
23 a_c : nibble; -- 4 bits
24 a_d : nibble;
25 b_c : nibble;
26 b_d : nibble
27 end
28

29 type Bundle_PMU_HU is record
30 Global_winner_found : 1 bits;
31 Global_winner : State;
32 dir_S0 : 1 bits;
33 dir_S1 : 1 bits;
34 dir_S2 : 1 bits;
35 dir_S3 : 1 bits
36 end
37

38

39



229

BMU.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Viterbi Decoder r=1/2, k=3 (4 states)

6 -- Author: Luis Tarazona (based on original description by Fabien Gavant)

7 -- 10/09/2008

8 --  Branch Metric Unit

9

10 import[balsa.types.basic]
11 import[def_2]
12

13 procedure smaller (
14   input  x : nibble;
15   input  y : nibble;
16   output o : nibble
17 ) is
18 begin
19     x, y ->! then
20         if (x < y) then
21             o <- x
22         else
23             o <- y
24         end -- if
25     end -- x,y ->!
26 end -- procedure smaller
27

28 procedure BMU(
29   input a : bit3; -- 3bits
30   input c : bit3;
31   array 0..3 of output Out_BMU : nibble -- Bundle_BMU_PMU
32 --output a_c : nibble; -- 4bits

33 --output a_d : nibble;

34 --output b_c : nibble;

35 --output b_d : nibble

36 ) is
37     constant a_c = 0 : 2 bits
38     constant a_d = 1 : 2 bits
39     constant b_c = 2
40     constant b_d = 3
41

42 --local

43     channel b : nibble
44     channel d : nibble
45 -- temp values

46     channel ta_c : nibble
47     channel ta_d : nibble
48     channel tc_b : nibble
49     channel tb_d : nibble
50 -- copy of temp values

51     channel ta_c1 : nibble
52     channel ta_d1 : nibble
53     channel tc_b1 : nibble
54     channel tb_d1 : nibble
55 -- comparators outputs

56     channel c0 : nibble
57     channel c1 : nibble
58     channel smallest : nibble
59

60 begin
61     loop
62         a, c ->! then
63             b <- (7 - a as nibble) ||
64             d <- (7 - c as nibble) ||
65             b,d ->! then
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BMU.balsa 2

66                 ta_c <- (a + c as nibble) || 
67                 ta_d <- (a + d as nibble) || 
68                 tc_b <- (c + b as nibble) || 
69                 tb_d <- (b + d as nibble)
70             end -- b, d ->! then
71         end -- a,c ->!
72     end || -- loop
73     loop
74         ta_c, ta_d, tc_b, tb_d ->! then
75             ta_c1 <- ta_c ||
76             ta_d1 <- ta_d ||
77             tc_b1 <- tc_b ||
78             tb_d1 <- tb_d ||
79             smaller(ta_c1, ta_d1, c0) ||
80             smaller(tc_b1, tb_d1, c1) ||
81             smaller(c0, c1, smallest) ||
82             smallest ->! then
83                 Out_BMU[a_c] <- (ta_c - smallest as nibble) ||
84                 Out_BMU[a_d] <- (ta_d - smallest as nibble) ||
85                 Out_BMU[b_c] <- (tc_b - smallest as nibble) ||
86                 Out_BMU[b_d] <- (tb_d - smallest as nibble)
87             end -- smallest ->!
88         end -- ta_c ... tb_d ->!
89     end -- loop
90 end -- procedure BMU
91
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PMU.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Viterbi Decoder r=1/2, k=3 (4 states)

6 -- Author: Luis Tarazona (based on original description by Fabien Gavant)

7 -- 10/09/2008

8 -- Viterbi decoder four-state Path Metric Unit (PMU unit)

9

10 import[balsa.types.basic]
11 import[def_2]
12

13 type word32 is 32 bits
14 type word5 is 5 bits -- 0 to 31
15 type word6 is 6 bits -- 0 to 63
16

17 constant lower=0
18 constant upper=1
19

20 procedure smaller6 (
21   input  x : word6;
22   input  y : word6;
23   output o : word6
24 ) is
25 begin
26     loop
27         x, y ->! then
28             if (x < y) then
29                 o <- x
30             else
31                 o <- y
32             end -- if (x < y)
33         end -- x,y ->!
34     end -- loop
35 end -- procedure smaller
36

37 procedure ACSUnit (
38     input WState_A : word6;
39     input BMU_A : nibble;
40     input WState_B : word6;
41     input BMU_B : nibble;
42     output WState_O : word6;
43     output direction : bit;
44     output isZero    : bit
45 )is
46

47 channel WA : word6 -- Weight result A
48 channel WB : word6 -- Weigt result B
49

50 begin
51     loop
52         WState_A, BMU_A, WState_B, BMU_B -> then
53             WA <- (WState_A + BMU_A as word6) ||
54             WB <- (WState_B + BMU_B as word6) ||
55             WA, WB ->! then
56                 if(WA <= WB) then
57                     WState_O <- WA     ||
58                     direction <- lower ||
59                     isZero <- (WA = 0)
60                 else
61                     WState_O <- WB     ||
62                     direction <- upper ||
63                     isZero <- (WB = 0)
64                 end -- if(WA < WB)
65             end -- WA, WB -> then
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66         end -- WState_A, BMU_A, WState_B, BMU_B -> then
67     end -- loop
68 end -- procedure ACSUnit
69

70 procedure reduction(
71     array 0..3 of input WMSa   : word6;
72     array 0..3 of input WMSb   : word6;
73     array 0..3 of output NWMS : word6
74 ) is
75

76 local
77     channel smallest, smallest1, smallest2  : word6
78

79 begin
80     smaller6(WMSa[0], WMSa[1], smallest1)    ||
81     smaller6(WMSa[2], WMSa[3], smallest2)    ||
82     smaller6(smallest1, smallest2, smallest) ||
83     loop
84         smallest, WMSb[0], WMSb[1], WMSb[2], WMSb[3] ->! then
85             for || i in 0..3 then
86                 NWMS[i] <- (WMSb[i] - smallest as word6)
87             end -- for || i
88         end -- smallest ... WMSb[3] ->!
89     end -- loop
90 end -- procedure reduction
91

92 procedure trellis (
93 (--    input WMS0 : word6 -- Weight MemState 0
94     input WMS1 : word6 -- Weight MemState 1
95     input WMS2 : word6 -- Weight MemState 2
96     input WMS3 : word6 -- Weight MemState 3
97 --)
98   array 0..3 of input wMS : word6;
99 (--

100     input a_c : nibble
101     input a_d : nibble
102     input b_c : nibble
103     input b_d : nibble
104 --)
105   array 0..3 of input bM : nibble;
106

107   array 0..3 of output wmA : word6; 
108   array 0..3 of output wmB : word6; 
109   array 0..3 of output bmA : nibble; 
110   array 0..3 of output bmB : nibble
111 )is
112

113 begin
114     loop
115         wMS[0] ->! then
116             wmA[0]  <- wMS[0] ||
117             wmA[1]  <- wMS[0]
118         end
119     end ||
120     loop
121         wMS[1] ->! then
122             wmA[2]  <- wMS[1] || 
123             wmA[3]  <- wMS[1]
124         end
125     end ||
126     loop
127         wMS[2] ->! then
128             wmB[0]  <- wMS[2] || 
129             wmB[1]  <- wMS[2]
130         end
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131     end ||
132     loop
133         wMS[3] ->! then
134             wmB[2] <- wMS[3] ||
135             wmB[3] <- wMS[3]
136         end
137     end ||
138     loop
139         bM[0] ->! then -- a_c
140             bmA[0]  <- bM[0] || 
141             bmB[1]  <- bM[0]
142         end
143     end ||
144     loop
145         bM[1] ->! then -- a_d
146             bmA[2]  <- bM[1] ||
147             bmB[3]  <- bM[1]
148         end
149     end ||
150     loop
151         bM[2] ->! then  -- b_c
152             bmB[2]  <- bM[2] ||
153             bmA[3]  <- bM[2]
154         end
155     end ||
156     loop
157         bM[3] ->! then -- b_d
158             bmB[0]  <- bM[3] || 
159             bmA[1]  <- bM[3]
160         end
161     end
162 end -- procedure trellis
163

164 procedure pmBuff(
165   input  i  : word6;
166   output oa : word6;
167   output ob : word6
168 ) is
169   variable b : word6
170 begin
171     oa <- 0 || -- initial value
172     ob <- 0 ;   -- initial value
173     loop
174         i -> b  ;
175         oa <- b ||
176         ob <- b
177     end
178 end -- procedure pmBuff
179

180 procedure globalWinner(
181   array 0..3 of input isZero : bit;
182   output globalWinner : State;
183   output globalWinner_found : bit
184 ) is
185 begin
186     loop
187         isZero[0], isZero[1], isZero[2], isZero[3] ->! then
188             case (#(isZero[0]) @ #(isZero[1]) @
189                   #(isZero[2]) @ #(isZero[3]) as 4 bits) of
190             0b0001 then
191                 globalWinner <- S0      ||
192                 globalWinner_found <- 1
193             |0b0010 then
194                 globalWinner <- S1      ||
195                 globalWinner_found <- 1
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196             |0b0100 then
197                 globalWinner <- S2      ||
198                 globalWinner_found <- 1
199             |0b1000 then
200                 globalWinner <- S3      ||
201                 globalWinner_found <- 1
202             else
203                 globalWinner <- S0      ||
204                 globalWinner_found <- 0
205             end -- case
206         end -- isZero ->!
207     end -- loop
208 end -- procedure GlobalWinner
209         

210 procedure PathMetricUnit( 
211   array 0..3 of input Out_BMU : nibble;
212   output Out_PMU : Bundle_PMU_HU
213 )is
214     -- trellis to ACS i/f
215   array 0..3 of channel wmA : word6 
216   array 0..3 of channel wmB : word6 
217   array 0..3 of channel bmA : nibble 
218   array 0..3 of channel bmB : nibble 
219   -- ACS to output i/f
220   array 0..3 of channel direction : bit
221   -- ACS to buffer i/f
222   array 0..3 of channel WState_O : word6
223  -- ACS to globalWinner i/f
224   array 0..3 of channel isZero : bit --for global winner check
225  -- buffer to reduction i/f
226   array 0..3 of channel WState_Oa : word6
227   array 0..3 of channel WState_Ob : word6
228  -- reduction to trellis i/f
229   array 0..3 of channel WState : word6
230

231   channel globalWinner : State
232   channel globalWinner_found : bit
233

234 begin
235     trellis(WState, Out_BMU, wmA, wmB, bmA, bmB) ||
236     for || i in 0..3 then
237         ACSUnit(wmA[i], bmA[i], wmB[i], bmB[i], 

238                 WState_O[i], direction[i], isZero[i])

239     end ||
240     globalWinner(isZero, globalWinner, globalWinner_found) ||
241     for || i in 0..3 then
242         pmBuff(WState_O[i], WState_Oa[i], WState_Ob[i])

243     end ||
244     reduction(WState_Oa, WState_Ob, WState) ||
245     loop
246         globalWinner, globalWinner_found,

247         direction[0], 

248         direction[1], 

249         direction[2], 

250         direction[3] ->! then
251             Out_PMU <- {globalWinner_found, 
252                         globalWinner, 

253                         direction[0], 

254                         direction[1], 

255                         direction[2], 

256                         direction[3]}

257         end -- globalWinner ->!
258     end -- loop
259 end -- procedure PathMetricUnit



235

HU.balsa 1

1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Asynchronous Viterbi Decoder r=1/2, k=3 (4 states)
6 -- Author: Luis Tarazona (based on original description by Fabien Gavant)
7 -- 10/09/2008
8 -- Viterbi decoder History Unit (HU unit)

9

10 import[balsa.types.basic]
11 import[def_2]
12

13 type A4_t is array 4 of bit
14 type testbit is bit
15

16

17 procedure HistoryHunit(
18     input In_HU : Bundle_PMU_HU;
19

20     output Out_state : State;
21     output Data_out : bit
22 )is
23

24 variable Temp: Bundle_PMU_HU
25

26 variable Global_Winner_Valid : array 0..15 of bit
27 variable Global_Winner : array 0..15 of State
28 variable Global_Winner_Head : State
29 variable DL_Winner : array 0..15 of 4 bits -- Direction_Local_Winner
30

31 variable Head, pHead, nHead : 4 bits -- Head of the current time slot
32 variable Child, pChild   : 4 bits -- for the reconstruction of the path
33 variable Parent, pParent : 4 bits -- for the reconstruction of the path
34 channel GW_single : 2 bits -- State 2 bits S0=00, S1=01, S2=10, S3=11
35 variable Temp_state : State
36 variable Token : bit
37 channel Return_direction : array 0..3 of bit
38

39 variable Var_div1 : State
40 channel  Var_div2 : State
41 -- for start with valid value

42 variable Start, doLoop : bit
43

44 variable Safeguard, nSafeguard : 4 bits  -- for the begining
45 variable i : 4 bits
46

47

48 begin
49     -- initialisation

50     Head := 0
51  ||
52     pHead := (0 - 1 as 4 bits)
53  ||
54     Start := 0
55  ;
56     loop
57         Child := pHead
58      ||
59         Parent := Head
60      ||
61         Token := 0
62      ||
63         i := (0 - 1 as 4 bits)
64      ||
65         -- generates the output state when start is ready 



236 Chapter D Optimised Viterbi decoder Balsa description

HU.balsa 2

66         --- (good value to release)
67         if Start then 
68             Out_state <- Global_Winner_Head
69          ||
70             Data_out <- ((Global_Winner_Head as array 2 of bit)[0]
71                           as testbit)
72         else
73             Safeguard := Head
74         end 
75      ||
76         In_HU ->! then -- read data & control
77              -- store data on the memory

78             DL_Winner[Head] := (A4_t {In_HU.dir_S0,
79                                       In_HU.dir_S1,

80                                       In_HU.dir_S2,

81                                       In_HU.dir_S3} as 4 bits)
82          ||
83             -- I update all the data

84             Global_Winner[Head]:= In_HU.Global_winner
85          ||
86             Global_Winner_Valid[Head] := In_HU.Global_winner_found
87          ||
88             doLoop := In_HU.Global_winner_found
89         end
90      ; 
91         if doLoop then
92             loop -- reconstruction of the path
93                 -- save the GW

94                 GW_single <- (Global_Winner[Parent] as 2 bits) 
95              || -- load the direction of the Local_Winner
96                 Return_direction <- ((DL_Winner[Parent] 
97                                       as array 4 of bit)) 
98              ||
99                 GW_single, Return_direction ->! then

100                     case (#GW_single @ #(Return_direction[GW_single]) 
101                           as trellisState) of
102                      LS0, LS1 then
103                         Var_div2 <- S0
104                     |LS2, LS3 then
105                         Var_div2 <- S1
106                     |US0, US1 then
107                         Var_div2 <- S2
108                     |US2, US3 then
109                         Var_div2 <- S3
110                     end
111                 end
112              ||
113                 Var_div2 ->! then
114                     if (Var_div2 = Global_Winner[Child] 
115                                    and Global_Winner_Valid[Child] = 1 
116                                    or Child = Head) then
117                         Token := 1
118                     else
119                         Var_div1 := Var_div2
120                     end
121                 end
122              ||
123                 pParent := Child
124              ||
125                 pChild := (Child - 1 as 4 bits)
126             while (Token = 0 and Safeguard /= i) then     -- Condition
127                 i := (i + 1 as 4 bits)
128              ||
129                 Child := pChild
130              ||
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131                 Parent := pParent
132              ||
133                if not Token then
134                     Global_Winner[pParent] := Var_div1
135                end
136             end --loop while
137         end -- if doLoop
138      ||
139         pHead := Head
140      ||
141         nHead := (Head + 1 as 4 bits)
142      ;
143         Head := nHead
144      ||
145         if nHead = 15 then
146             Start := 1
147         end --if Head=15
148      ||
149         Global_Winner_Head := Global_Winner[nHead]
150     end --loop
151 end -- HistoryHunit



Appendix E

Optimised 32x32 bit Booth

multiplier Balsa description

The following pages show the Balsa source files for this design.
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nanoMultiplier.balsa 1

1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Radix-3 Booth's multiplier for nanoSpa/aviSpa processor in Balsa

6 --

7 -- Author: Luis Tarazona tarazonl@cs.man.ac.uk

8 -- v1.0 20/04/2007 -tarazonl

9 --

10

11 import [balsa.types.basic]
12 import [nanoMulTypes]
13 import [nanoMultSupport]
14 import [nanoMBoothR3rolled]
15

16 procedure CSAdder_DP2 is CSAdder(Datapath_2)
17 procedure CPadder  is fullCPadder(Datapath)
18

19 procedure nanoMultiplier
20 ( 

21   input bypass  : bit;
22   input bypassH : bit;
23   input mType : MulType;

24   input a   : Datapath;

25   input b   : Datapath;

26   input c   : Datapath;

27   output mpH: Datapath;

28   output mpL: Datapath;

29   output mZ : bit;
30   output mN : bit
31 ) is
32     -- length and multiply-acummulate control words

33     channel mlength : bit
34     channel macc    : bit
35     -- sign adjust I/F input

36     channel ba  : Datapath
37     channel bb  : Datapath
38     channel bc  : Datapath
39     channel bmType : MulType
40     -- sign adjust I/F input

41     channel sa  : Datapath_2
42     channel sb  : Datapath_3
43     channel sc  : Datapath_2
44     -- CS adder I/F

45     channel opA  : Datapath_2
46     channel opB  : Datapath_2
47     channel cs   : Datapath_2
48     channel cin : Datapath_2
49     channel res : Datapath_2
50     -- CP adder I/F

51     channel raA  : Datapath
52     channel raB  : Datapath
53     channel rac0 : bit
54     channel raS  : Datapath
55     channel racN : bit
56     -- multiplier iteration control

57     channel load : bit
58     channel done : bit
59

60     -- bypass interface

61     channel pH  : Datapath
62     channel pL  : Datapath
63     channel z   : bit
64     channel n  : bit
65     channel bpH  : Datapath
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66     channel bpL  : Datapath
67     channel bz   : bit
68     channel bn  : bit
69     channel bH, bL : bit
70 begin
71     CSAdder_DP2(opA,opB,cs,cin,res)

72   ||CPadder(raA,raB,rac0,raS,racN)
73   ||nanoMBoothR3rolled(cin,res, sa, sb, sc, mlength, macc, 
74                        load,done,opA,opB,cs,raA,raB,rac0,raS,racN,pH,pL,z,n)

75   ||mControl(10,load,done)
76   ||signAdj(bmType, ba, bb, bc, sa, sb, sc, mlength, macc)
77   ||bypassMul(bypass, bypassH, a, b, c, mType, ba, bb, bc, bmType, bH, bL) 
78   ||doByPass(bH, bL, pH, pL, z, n, mpH, mpL, mZ, mN)
79 end
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1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Radix-3 Booth's multiplier for nanoSpa/aviSpa processor in Balsa

6 --

7 -- Author: Luis Tarazona tarazonl@cs.man.ac.uk

8 -- v1.0 20/04/2007 -tarazonl

9 --

10 -- reduced nanoSpaTypes file for nanoMultiplier only

11

12 type signedByte is 8 signed bits

13 type HalfWord is 16 bits

14 type signedHalfWord is 16 signed bits

15 type Address is 32 bits

16 type Datapath is 32 bits

17 type signedDatapath is 32 signed bits

18

19 type Flags is record

20     V : bit;

21     C : bit;

22     Z : bit;

23     N : bit

24 end -- type Flags

25

26 -- multiplier types

27 type MulType is enumeration

28     MUL=0,   -- multiply (32-bit result)

29     MLA=1,   -- multiply-accumulate (32-bit result)

30     MUND2=2,  -- undefined code

31     MUND3=3,  -- undefined code

32     UMULL=4, -- unsigned multiply long

33     UMLAL=5, -- unsigned multiply-accumulate long

34     SMULL=6, -- signed multiply long

35     SMLAL=7  -- signed multiply-accumulate long

36 over 3 bits

37 constant length = sizeof Datapath

38 constant xlength = sizeof Datapath + 3

39 constant tbits = log (sizeof Datapath)

40 type cntType is tbits bits

41 type Datapath_1 is length+1 bits

42 type Datapath_2 is xlength bits

43 type Datapath_3 is xlength+1 bits

44

45 type sDatapath is length signed bits

46 type sDatapath_1 is length+1 signed bits

47 type sDatapath_2 is xlength signed bits

48 type sDatapath_3 is xlength+1 signed bits
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1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Radix-3 Booth's multiplier for nanoSpa/aviSpa processor in Balsa

6 --

7 -- Author: Luis Tarazona tarazonl@cs.man.ac.uk

8 -- v1.0 20/04/2007 -tarazonl

9 --

10 -- support modules for multiplier

11

12 import [balsa.types.basic]
13 import [nanoMulTypes]
14

15 procedure signAdj
16 ( 

17   input mType : MulType;
18   input a   : Datapath;
19   input b   : Datapath;
20   input c   : Datapath;
21   output aa : Datapath_2;
22   output ba : Datapath_3;
23   output ca : Datapath_2;
24   output mlength : bit;
25   output macc    : bit
26 ) is
27 begin
28     loop
29         mType,a,b,c ->! then
30             -- Handle signed/unsigned in a,b operands, 

31             -- also add 0 to lsb of multiplier (b operand)

32             case mType of MUL,UMULL,UMLAL then 
33             -- unsigned, always fill with zeroes 

34                 aa <- (a as Datapath_2)
35              ||
36                 ba <- (#0b0[0..0] @ #b[0 .. length-1] as Datapath_3)
37             else  -- signed, extend sign
38                 aa <- (((a as sDatapath) as sDatapath_2) as Datapath_2)
39               ||
40                 ba <- (((#0b0[0..0] @ #b[0 .. length-1] 
41                         as sDatapath_1) as sDatapath_3) as Datapath_3)
42             end -- case mCode 
43             -- Handle accumulate. 

44             -- `c' operand does not need sign extension, fill with zeroes

45           ||
46             ca <- (c as Datapath_2)
47           ||
48             mlength <- (#mType[2..2] as bit) -- long = 1 / short = 0
49           ||
50             macc    <- (#mType[0..0] as bit) -- acc = 1 
51         end -- mType ->
52     end -- loop
53 end -- procedure signAdj
54

55 procedure doByPass(
56     input  bH        : bit;
57     input  bL        : bit;
58     input  bpH           : Datapath;
59     input  bpL           : Datapath;
60     input  bmZ           : bit;
61     input  bmN          : bit;
62     output mpH           : Datapath;
63     output mpL           : Datapath;
64     output mZ           : bit;
65     output mN          : bit
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66 ) is
67 begin
68     loop
69         bH, bL ->! then
70             if bL then
71                 mpL <- 0
72              ||
73                 mZ <- 0
74              || 
75                 mN <- 0
76              ||
77                 if bH then
78                     mpH <- 0
79                 end -- if bypassH
80             else
81                 bpL -> mpL
82              ||
83                 bmZ -> mZ
84              || 
85                 bmN -> mN
86              ||
87                 if bH then
88                     bpH -> mpH 
89                 end -- if bypassH
90             end
91         end
92     end
93 end
94

95 -- bypasses multiplier if kill order is sent

96 procedure bypassMul(
97     input  bypass         : bit;
98     input  bypassH        : bit;
99     input  mulOpA         : Datapath;

100     input  mulOpB         : Datapath;
101     input  mulOpC         : Datapath;
102     input  mulType        : MulType; 
103     output  mulOpAo       : Datapath;
104     output  mulOpBo       : Datapath;
105     output  mulOpCo       : Datapath;
106     output  mulTypeo      : MulType;
107     output  bH            : bit;
108     output  bL            : bit
109 ) is
110 begin
111     loop
112         bypass, bypassH, mulType ->! then
113             mulOpA, mulOpB ->! then
114                 if bypass then
115                     case mulType of MLA, UMLAL, SMLAL  then -- accumulate
116                         mulOpC ->! then
117                             continue
118                         end
119                     else
120                         continue
121                     end
122                 else
123                     mulOpAo <- mulOpA
124                  ||
125                     mulOpBo <- mulOpB
126                  ||
127                     mulTypeo <- mulType
128                  ||
129                     case mulType of MLA, UMLAL, SMLAL  then -- accumulate
130                         mulOpC ->! then
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131                             mulOpCo <- mulOpC
132                         end
133                     else
134                         mulOpCo <- 0
135                     end
136                 end -- if bypass
137             end --  mulOpA mulOpB ->!
138          ||
139             bL <- bypass
140          ||
141             bH <- bypassH
142         end -- bypass, bypassH, mulType ->!
143     end --loop
144 end -- procedure bypassMul
145

146

147 -- carry save adder

148

149 procedure CSAdder
150 ( parameter DataType : type;
151   input     a : DataType;
152   input     b : DataType;
153   input     cs : DataType;
154   output    cout: DataType;
155   output    s : DataType
156 ) is
157 local
158  begin
159     loop
160         a,b,cs ->! then
161             s  <- a xor b xor cs
162           ||
163             cout <- (a and b) or (cs and a) or (cs and b)
164         end
165     end
166 end -- procedure CSAdder
167

168 -- carry propagate adder

169

170 procedure fullCPadder
171 ( parameter DataType : type;
172   input a   : DataType;
173   input b   : DataType;
174   input c0  : bit;
175   output s  : DataType;
176   output cN : bit
177 ) is
178 local
179   constant DTLength = sizeof DataType
180   type eDataType  is DTLength + 1 bits
181   type eeDataType is DTLength + 2 bits
182   channel ea, eb : eDataType
183   channel es : eeDataType
184

185 begin
186     loop 
187         a,b,c0 ->! then
188         ea <- (#c0[0..0] @ #a[0..DTLength-1] as eDataType)
189       ||
190         eb <- (#c0[0..0] @ #b[0..DTLength-1] as eDataType)
191         end
192       ||
193         ea,eb ->! then
194             es <- (ea + eb as eeDataType)
195         end -- ea,eb ->!
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196       ||
197         es ->! then
198             s <- (#es[1..DTLength] as DataType)
199           ||
200             cN<- (#es[DTLength+1 .. DTLength+1] as bit)
201         end -- es ->!
202     end --loop
203 end -- procedure fullCPadder
204

205 -- shift register that controls iteration

206 procedure mControl
207 ( parameter cLength : cardinal;
208   input  load : bit;
209   output done : bit
210 ) is
211

212 variable t   :  bit
213 variable c0  :  cLength bits
214 variable c1  :  cLength bits
215

216 begin
217     loop
218         load ->! then
219             t := load
220         end -- load ->
221       ;
222         if t then
223             c0 := (2^(cLength-1) - 1 as cLength bits)
224           ||
225             done <- 1
226         else
227             done  <- (#c0[0..0] as bit)
228           ||
229             c1    := (#c0[1..cLength-1] as cLength bits)
230           ;
231             c0 := c1
232         end --if t
233     end -- loop
234 end  -- procedure mControl
235

236 procedure mControl10 is mControl(10)
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nanoMBoothR3rolled.balsa 1

1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Radix-3 Booth's multiplier for nanoSpa/aviSpa processor in Balsa

6 --

7 -- Author: Luis Tarazona tarazonl@cs.man.ac.uk

8 -- v1.0 20/04/2007 -tarazonl

9 --

10 --    Rolled Radix-3 Booth's algorithm (11 iteration cycles)

11

12 import [balsa.types.basic]
13 import [nanoMulTypes]
14

15 procedure nanoMBoothR3rolled
16 ( 

17   input cin     : Datapath_2;
18   input res     : Datapath_2;
19

20   input a       : Datapath_2;
21   input b       : Datapath_3;
22   input c       : Datapath_2;
23   input mlength : bit;
24   input macc    : bit;
25

26   output load   : bit;
27   input  done   : bit;
28

29   output opA    : Datapath_2;
30   output opB    : Datapath_2;
31   output cs     : Datapath_2;
32

33   output raA    : Datapath;
34   output raB    : Datapath;
35   output rac0   : bit;
36   input  raS    : Datapath;
37   input  racN   : bit;
38  

39   output pH     : Datapath;
40   output pL     : Datapath;
41   output z      : bit;
42   output n      : bit
43 ) is
44 local
45     channel sout    : Datapath_2
46     channel csout   : Datapath_2
47     channel c0      : bit
48

49     variable ctrl   : 4 bits
50     variable  vph   : Datapath
51     variable  vpl   : Datapath
52     variable va     : Datapath_2
53     variable v2a    : Datapath_2
54     variable v3a    : Datapath_2
55     variable v4a    : Datapath_2
56     variable nva    : Datapath_2
57     variable nv2a   : Datapath_2
58     variable nv3a   : Datapath_2
59     variable nv4a   : Datapath_2
60     variable crh    : Datapath_2
61     variable crl    : Datapath_3
62     variable rh     : Datapath_2
63     variable rl     : Datapath_3
64     variable rhp    : Datapath_2
65     variable crhp   : Datapath_2
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66     variable crlp   : Datapath_3
67     variable rlp    : Datapath_3
68     variable go     : 1 bits
69     variable vmlength : bit
70     variable vmacc    : bit
71     variable vZ       : bit
72     variable vN       : bit
73

74 begin
75     loop --main
76

77         a,b,c,mlength, macc ->! then
78             vmlength := mlength
79           ||
80             vmacc := macc
81           ||
82             va  := a
83           ||
84             v2a := (#0b0[0..0] @ #a[0 .. xlength-2] as Datapath_2)
85           ||
86             v4a :=  (#(0b00 as 2 bits)[0..1] @ 
87                      #a[0 .. xlength-3] as Datapath_2)
88             -- calculate 3A= 2A + A

89           ||
90             raA <- (#a[1 .. length] as Datapath)  -- a without b0
91           ||
92             raB <- (a as Datapath) -- 2a without b0
93           ||
94             rac0<- 0
95           ||
96             raS,racN ->! then
97                  v3a := (#a[0..0] @#raS[0..length-1] @ 
98                          #racN[0..0] @ #a[length..length]  as Datapath_2)
99             end

100           ||
101             rlp := b 
102           ||
103             rhp := c
104           ||
105             ctrl:= (#b[0..3] as 4 bits)
106           ||
107             crhp := (0b0 as Datapath_2)
108           ||
109             crlp := (0b0 as Datapath_3)
110         end -- a,b,c,mlength -> 
111       ;
112             nva := not va
113           ||
114             nv2a := not v2a
115           ||
116             nv3a := not v3a
117           ||
118             nv4a := not v4a
119       ||
120         load <- 1  
121       ; 
122         loop --iterate
123             opA <- rhp
124           ||
125             cs  <- crhp
126           ||
127             res -> sout
128           ||
129             cin -> csout
130           ||
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131             c0 <- (#ctrl[3..3] as bit)
132           ||
133             case ctrl of
134             0b0001,0b0010 then --sout <- (rhp + va as Datapath_2)
135                 opB <- va
136             | 0b0011,0b0100 then --  sout <- (rhp + v2a as Datapath_2)
137                 opB <- v2a
138             | 0b101,0b0110 then --  sout <- (rhp +  v3a  as Datapath_2)
139                 opB <- v3a
140             | 0b0111 then --  sout <- (rhp + v4a as Datapath_2)
141                 opB <- v4a
142             | 0b1000 then --  sout <- (rhp + nv4a + 1 as Datapath_2)
143                 opB <- nv4a
144             | 0b1001,0b1010 then -- sout <- (rhp + nv3a + 1 as Datapath_2)
145                 opB <- nv3a
146             | 0b1011,0b1100 then -- sout <- (rhp + nv2a + 1 as Datapath_2)
147                 opB <- nv2a
148             | 0b1101,0b1110 then -- sout <- (rhp + nva + 1 as Datapath_2)
149                 opB <- nva
150             else
151                 opB <- (((ctrl as 4 signed bits) 
152                           as sDatapath_2) as Datapath_2)
153             end -- case 2
154             -- shifter:

155           ||
156             sout,csout,c0 ->! then 
157                 --shift 2 times (rh arithmetic, but rl logic)

158                 crh := csout
159               ||
160                 crl := (#crlp[3..xlength-1] @ 
161                         #c0[0..0] @ #csout[0..1] as Datapath_3)
162               ||
163                 rh := (((#sout[3..xlength-1] as xlength-3 signed bits) 
164                           as sDatapath_2) as Datapath_2)
165               ||
166                 rl := (#rlp[3..xlength-1] @ #sout[0..2] as Datapath_3)
167             end -- sout ->
168           ||
169             done ->! then
170                go := done 
171             end   
172         while go then-- while counter /= (length/2 + 1 as tbits bits)
173             crhp := (#crh[2..xlength-1] @ #crh[xlength-1..xlength-1] @ 
174                      #crh[xlength-1..xlength-1] as Datapath_2)
175           ||
176             crlp := crl
177           ||
178             rhp  := rh
179           ||
180             rlp  := rl
181           ||
182             ctrl := (#rl[0..3] as 4 bits)
183           ||load <- 0 
184         end --loop iterate
185       ; -- calculate pL
186         raA <- (#rl[2..length+1] as Datapath)
187       ||
188         raB <- (#crl[2..length+1] as Datapath)
189       ||
190         rac0 <- 0 
191       ||
192         raS,racN ->! then 
193             vpl:= raS
194           ||
195             go := racN  -- save carry for pH
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196           ||
197             vN := (#raS[31] as bit)
198           ||
199             vZ := (raS = 0 as bit)  
200         end
201       ;
202         if vmlength then -- calculate pH and produce two results + flags
203             raA <- (#rl[length + 2..length+2] @ 
204                     #rh[0..length-2] as Datapath)
205           ||
206             raB <- (#crh[1..length] as Datapath)
207           ||
208             rac0 <- go 
209           ||
210             raS,racN ->! then 
211                 vph := raS --(#raS[0..length-1] as Datapath)
212             end -- raS, raN ->!
213           ; 
214             pH <- vph 
215           ||
216             pL <- vpl
217           ||
218             if vmacc then 
219                 z <- vZ
220             else
221                 z  <- (vph = 0 as bit) and vZ
222             end
223           ||
224             n  <- (#vph[31]as bit)
225         else -- only produce pL & flags
226             pL <- vpl
227           ||
228             z   <- vZ
229           ||
230             n   <- vN
231         end -- if vmlength
232     end --loop main
233 end



Appendix F

Optimised sliced-channel

wormhole router Balsa

description

The following pages show the Balsa source files for this design.

250



251

router.balsa 1

1 -- The University of Manchester
2 -- School of Computer Science
3 -- Advanced Processors Technology (APT) group
4 --
5 -- Asynchronous Wormhole router

6 -- Author: Luis Tarazona 

7 -- (based on original description by Wei Song songw@cs.man.ac.uk)

8 -- 10/09/2009

9 -- Router top level

10

11 import [balsa.types.basic]
12 import [arbiter]
13 import [input_buf]
14 import [crossbar]
15

16 procedure router (
17     array 20 of input d_in : 9 bits;
18     array 20 of output d_out : 9 bits
19 ) is
20

21 array 64 of channel data_m : 9 bits
22 array 16 of sync req
23 array 3 of channel cfg_lwe : 2 bits
24 array 2 of channel cfg_sn : 1 bits
25 begin
26         input_buf_south(d_in[0..3], req[0..3], data_m[0..15])

27     ||  input_buf_west(d_in[4..7], req[4..5], data_m[16..23])
28     ||  input_buf_north(d_in[8..11], req[6..9], data_m[24..39])
29     ||  input_buf_east(d_in[12..15], req[10..11], data_m[40..47])
30     ||  input_buf_loc(d_in[16..19], req[12..15], data_m[48..63])
31     ||  arbiter_sn({req[6], req[12]}, cfg_sn[0])
32     ||  arbiter_lwe({req[0], req[7], req[10], req[13]}, cfg_lwe[0])
33     ||  arbiter_sn({req[1], req[14]}, cfg_sn[1])
34     ||  arbiter_lwe({req[2], req[4], req[8], req[15]}, cfg_lwe[1])
35     ||  arbiter_lwe({req[3], req[5], req[9], req[11]}, cfg_lwe[2])
36     ||  crossbar(data_m, cfg_lwe, cfg_sn, d_out)
37 end
38
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arbiter.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Wormhole router

6 -- Author: Luis Tarazona 

7 -- (based on original description by Wei Song songw@cs.man.ac.uk)

8 -- 10/09/2009

9 -- Arbiters

10

11 import [balsa.types.basic]
12

13 procedure sub_arb_low (
14     array 2 of sync req;
15     output winner : 1 bits
16 ) is
17 begin
18     loop
19         arbitrate req[0] then winner <- 0
20         |         req[1] then winner <- 1
21     end
22 end
23 end
24

25 procedure sub_arb (
26     array 2 of input req : 1 bits;
27     output winner : 2 bits
28 ) is
29 constant one = (1 as 1 bits)
30 begin
31     loop
32         arbitrate req[0] then winner <- (req[0] as 2 bits)
33         |         req[1] then winner <- ((#(req[1]) @ #one) as 2 bits)
34         end
35     end
36 end 
37

38 procedure sub_arb_sync (
39     parameter Wi : byte;
40     parameter Wo : byte;
41     parameter Ds : byte;    -- the data when sync is selected
42     input in0 : Wi bits;
43     sync in1;
44     output cfg : Wo bits
45     ) is
46 begin
47     loop
48         arbitrate in0 then cfg <- (in0 as Wo bits)
49         |         in1 then cfg <- (Ds as Wo bits)
50         end
51     end
52 end
53

54 procedure arbiter_lwe (
55     array 4 of sync req;
56     output cfg : 2 bits
57 ) is
58

59 array 2 of channel arb_dir_sub : 1 bits
60

61 begin
62         sub_arb_low(req[0..1], arb_dir_sub[0])

63     ||  sub_arb_low(req[2..3], arb_dir_sub[1])
64     ||  sub_arb(arb_dir_sub, cfg)
65 end
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input_bufv2.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Wormhole router

6 -- Author: Luis Tarazona 

7 -- (based on original description by Wei Song songw@cs.man.ac.uk)

8 -- 10/09/2009

9 -- Input buffers

10

11 import [balsa.types.basic]
12

13 procedure input_buf_south (
14     array 4 of input data_in : 9 bits;
15     array 4 of sync req;
16     array 16 of output data_out : 9 bits
17 ) is
18     variable buf : array 4 of 9 bits
19     constant addrx = (2 as 4 bits)
20     constant addry = (2 as 4 bits)
21     

22     procedure ibuf_demux (
23         parameter X : byte;
24         input data_in : 9 bits;
25         input steer   : 3 bits;
26         array 4 of output data_out : 9 bits
27     ) is
28     variable steerV : 3 bits
29     begin
30         loop
31             steer -> steerV;
32             loop
33                 data_in -> buf[X];
34                 case steerV of
35                 0b1xx then
36                     data_out[0] <- buf[X]
37                 | 0b01x then
38                     data_out[1] <- buf[X]
39                 | 0b001 then
40                     data_out[2] <- buf[X]
41                 else
42                     data_out[3] <- buf[X]
43                 end
44             while (#(buf[X])[8] as 1 bits) /= (1 as 1 bits)
45             end
46         end 
47     end
48     

49     array 4 of channel steer : 3 bits
50     channel n,e,w : bit
51     channel data_in0 : 9 bits
52     variable isTail : bit
53

54 begin
55     loop
56         data_in[0] ->! then
57             n <- (#(data_in[0])[4..7] as 4 bits) < addrx
58          || e <- (#(data_in[0])[0..3] as 4 bits) > addry
59          ||    w <- (#(data_in[0])[0..3] as 4 bits) < addry
60           || data_in0 <- data_in[0]
61         end ;
62         loop
63             data_in[0] ->! then
64                 data_in0 <- data_in[0]
65              || isTail := #(data_in[0])[8]
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66             end
67         while not isTail 
68         end
69     end
70  ||
71     loop
72         n,e,w ->! then
73             for || i in 0..3 then
74                 steer[i] <- (#w @ #e @ #n as 3 bits)
75             end
76          || case (#w @ #e @ #n as 3 bits) of
77              0b1xx then sync req[1]
78             |0b01x then sync req[2]
79             |0b001 then sync req[0]
80             else 
81                 sync req[3]
82             end
83         end
84     end
85  || 
86     for || i in 1..3 then
87         ibuf_demux(i, data_in[i],steer[i], 

88                      {data_out[i+4], data_out[i+8], 
89                       data_out[i],data_out[i+12]})    
90     end
91  ||
92     ibuf_demux(0, data_in0, steer[0], 

93                  {data_out[4], data_out[8], 

94                   data_out[0],data_out[12]})

95 end
96

97 procedure input_buf_west (
98     array 4 of input data_in : 9 bits;
99     array 2 of sync req;

100     array 8 of output data_out : 9 bits
101 ) is
102     variable buf : array 4 of 9 bits
103     constant addrx = (2 as 4 bits)
104     constant addry = (2 as 4 bits)
105

106     procedure ibuf_demux (
107         parameter X : byte;
108         input data_in : 9 bits;
109         input steer   : 1 bits;
110         array 2 of output data_out : 9 bits
111     ) is
112     variable steerV : 1 bits
113     begin
114         loop
115             steer -> steerV;
116             loop
117                 data_in -> buf[X];
118                 case steerV of
119                 0b1 then
120                     data_out[0] <- buf[X]
121                 else
122                     data_out[1] <- buf[X]
123                 end
124             while (#(buf[X])[8] as 1 bits) /= (1 as 1 bits)
125             end
126         end 
127     end
128     

129     array 4 of channel steer : bit
130     channel e : bit
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131     channel data_in0 : 9 bits
132     variable isTail : bit
133

134 begin
135     loop
136         data_in[0] ->! then
137             e <- (#(data_in[0])[0..3] as 4 bits) > addry
138           || data_in0 <- data_in[0]
139         end ;
140         loop
141             data_in[0] ->! then
142                 data_in0 <- data_in[0]
143              || isTail := #(data_in[0])[8]
144             end
145         while not isTail 
146         end
147     end
148  ||
149     loop
150         e ->! then
151             for || i in 0..3 then
152                 steer[i] <- e
153             end
154          || case e of
155              0b1 then sync req[0]
156             else 
157                 sync req[1]
158             end
159         end
160     end
161  || 
162     for || i in 1..3 then
163         ibuf_demux(i,data_in[i],steer[i], {data_out[i], data_out[i+4]})    
164     end
165  ||
166     ibuf_demux(0, data_in0, steer[0], {data_out[0], data_out[4]})

167 end
168

169 procedure input_buf_north (
170     array 4 of input data_in : 9 bits;
171     array 4 of sync req;
172     array 16 of output data_out : 9 bits
173 ) is
174     variable buf : array 4 of 9 bits
175     constant addrx = (2 as 4 bits)
176     constant addry = (2 as 4 bits)
177     

178     procedure ibuf_demux (
179         parameter X : byte;
180         input data_in : 9 bits;
181         input steer   : 3 bits;
182         array 4 of output data_out : 9 bits
183     ) is
184     variable steerV : 3 bits
185     begin
186         loop
187             steer -> steerV;
188             loop
189                 data_in -> buf[X];
190                 case steerV of
191                 0b1xx then
192                     data_out[0] <- buf[X]
193                 | 0b01x then
194                     data_out[1] <- buf[X]
195                 | 0b001 then
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196                     data_out[2] <- buf[X]
197                 else
198                     data_out[3] <- buf[X]
199                 end
200             while (#(buf[X])[8] as 1 bits) /= (1 as 1 bits)
201             end
202         end 
203     end
204     

205     array 4 of channel steer : 3 bits
206     channel s,e,w : bit
207     channel data_in0 : 9 bits
208     variable isTail : bit
209

210 begin
211     loop
212         data_in[0] ->! then
213             s <- (#(data_in[0])[4..7] as 4 bits) > addrx
214          || e <- (#(data_in[0])[0..3] as 4 bits) > addry
215          ||    w <- (#(data_in[0])[0..3] as 4 bits) < addry
216           || data_in0 <- data_in[0]
217         end ;
218         loop
219             data_in[0] ->! then
220                 data_in0 <- data_in[0]
221              || isTail := #(data_in[0])[8]
222             end
223         while not isTail 
224         end
225     end
226  ||
227     loop
228         s,e,w ->! then
229             for || i in 0..3 then
230                 steer[i] <- (#w @ #e @ #s as 3 bits)
231             end
232          || case (#w @ #e @ #s as 3 bits) of
233              0b1xx then sync req[0]
234             |0b01x then sync req[2]
235             |0b001 then sync req[1]
236             else 
237                 sync req[3]
238             end
239         end
240     end
241  || 
242     for || i in 1..3 then
243         ibuf_demux(i,data_in[i],steer[i], {data_out[i], data_out[i+8], 

data_out[i+4],data_out[i+12]})    
244     end
245  ||
246     ibuf_demux(0, data_in0, steer[0], {data_out[0], data_out[8], 

data_out[4],data_out[12]})

247 end
248

249 procedure input_buf_east (
250     array 4 of input data_in : 9 bits;
251     array 2 of sync req;
252     array 8 of output data_out : 9 bits
253 ) is
254     variable buf : array 4 of 9 bits
255     constant addrx = (2 as 4 bits)
256     constant addry = (2 as 4 bits)
257     

258     procedure ibuf_demux (
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259         parameter X : byte;
260         input data_in : 9 bits;
261         input steer   : 1 bits;
262         array 2 of output data_out : 9 bits
263     ) is
264     variable steerV : 1 bits
265     begin
266         loop
267             steer -> steerV;
268             loop
269                 data_in -> buf[X];
270                 case steerV of
271                 0b1 then
272                     data_out[0] <- buf[X]
273                 else
274                     data_out[1] <- buf[X]
275                 end
276             while (#(buf[X])[8] as 1 bits) /= (1 as 1 bits)
277             end
278         end 
279     end
280     

281     array 4 of channel steer : bit
282     channel w : bit
283     channel data_in0 : 9 bits
284     variable isTail : bit
285

286 begin
287     loop
288         data_in[0] ->! then
289             w <- (#(data_in[0])[0..3] as 4 bits) < addry
290           || data_in0 <- data_in[0]
291         end ;
292         loop
293             data_in[0] ->! then
294                 data_in0 <- data_in[0]
295              || isTail := #(data_in[0])[8]
296             end
297         while not isTail 
298         end
299     end
300  ||
301     loop
302         w ->! then
303             for || i in 0..3 then
304                 steer[i] <- w
305             end
306          || case w of
307              0b1 then sync req[0]
308             else 
309                 sync req[1]
310             end
311         end
312     end
313  || 
314     for || i in 1..3 then
315         ibuf_demux(i,data_in[i],steer[i], {data_out[i], data_out[i+4]})    
316     end
317  ||
318     ibuf_demux(0, data_in0, steer[0], {data_out[0], data_out[4]})

319 end
320

321 procedure input_buf_loc (
322     array 4 of input data_in : 9 bits;
323     array 4 of sync req;
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324     array 16 of output data_out : 9 bits
325 ) is
326

327     variable buf : array 4 of 9 bits
328     constant addrx = (2 as 4 bits)
329     constant addry = (2 as 4 bits)
330     

331     procedure ibuf_demux (
332         parameter X : byte;
333         input data_in : 9 bits;
334         input steer   : 3 bits;
335         array 4 of output data_out : 9 bits
336     ) is
337     variable steerV : 3 bits
338     begin
339         loop
340             steer -> steerV;
341             loop
342                 data_in -> buf[X];
343                 case steerV of
344                 0b1xx then
345                     data_out[0] <- buf[X]
346                 | 0b01x then
347                     data_out[1] <- buf[X]
348                 | 0b001 then
349                     data_out[2] <- buf[X]
350                 else
351                     data_out[3] <- buf[X]
352                 end
353             while (#(buf[X])[8] as 1 bits) /= (1 as 1 bits)
354             end
355         end 
356     end
357     

358     array 4 of channel steer : 3 bits
359     channel s,n,e : bit
360     channel data_in0 : 9 bits
361     variable isTail : bit
362

363 begin
364     loop
365         data_in[0] ->! then
366             s <- (#(data_in[0])[4..7] as 4 bits) > addrx
367          || n <- (#(data_in[0])[4..7] as 4 bits) < addrx
368          ||    e <- (#(data_in[0])[0..3] as 4 bits) > addry
369           || data_in0 <- data_in[0]
370         end ;
371         loop
372             data_in[0] ->! then
373                 data_in0 <- data_in[0]
374              || isTail := #(data_in[0])[8]
375             end
376         while not isTail 
377         end
378     end
379  ||
380     loop
381         s,n,e ->! then
382             for || i in 0..3 then
383                 steer[i] <- (#e @ #n @ #s as 3 bits)
384             end
385          || case (#e @ #n @ #s as 3 bits) of
386              0b1xx then sync req[0]
387             |0b01x then sync req[2]
388             |0b001 then sync req[3]
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389             else 
390                 sync req[1]
391             end
392         end
393     end
394  || 
395     for || i in 1..3 then
396         ibuf_demux(i, data_in[i],steer[i], 

397                       {data_out[i], data_out[i+8], 
398                        data_out[i+12],data_out[i+4]})    
399     end
400  ||
401     ibuf_demux(0, data_in0, steer[0], 

402                   {data_out[0], data_out[8], data_out[12],data_out[4]})

403 end
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crossbarv2.balsa 1

1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Asynchronous Wormhole router

6 -- Author: Luis Tarazona 

7 -- (based on original description by Wei Song songw@cs.man.ac.uk)

8 -- 10/09/2009

9 -- Crossbars & output buffers

10

11 import [balsa.types.basic]
12

13 procedure obuf_mux2 (
14     array 2 of input data_in : 9 bits;
15     array 2 of input tail : bit;
16     input steer   :  bit;
17     output data_out : 9 bits
18 ) is
19 variable steerV : bit
20 variable buf : 9 bits
21 variable isTail : array 0..1 of bit
22 begin
23     loop
24         steer -> steerV;
25         case steerV of
26          for i in 0..1 then
27             loop
28                 tail[i] -> isTail [i]
29              || data_in[i] -> data_out
30             while not isTail[i] end
31         end
32     end 
33 end
34

35 procedure obuf_mux4 (
36     array 4 of input data_in : 9 bits;
37     array 4 of input tail : bit;
38     input steer   : 2 bits;
39     output data_out : 9 bits
40 ) is
41 variable steerV : 2 bits
42 variable buf : 9 bits
43 variable isTail : array 0..3 of bit
44 begin
45     loop
46         steer -> steerV;
47         case steerV of
48          for i in 0..3 then
49             loop
50                 tail[i] -> isTail [i]
51              || data_in[i] -> data_out
52             while not isTail[i] end
53         end
54     end 
55 end
56

57 procedure outbuffer (
58     input data_in : 9 bits;
59     output tail : bit;
60     output data_out : 9 bits
61 ) is
62     variable buf : 9 bits
63 begin
64     loop
65         data_in -> buf;
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66         data_out <- buf || tail <- (#buf[8] as bit)
67     end
68 end
69

70 procedure sub_crossbar_lwe (
71     array 16 of input data_in : 9 bits;
72     input cfg : 2 bits;
73     array 4 of output data_out : 9 bits
74 ) is
75     -- variable cfg_m : 2 bits

76     array 4 of channel cfg_m : 2 bits
77     array 16 of channel tail : bit
78     array 16 of channel bdata_in : 9 bits
79 begin
80     loop
81         cfg ->! then
82             for || i in 0..3 then
83                 cfg_m[i] <- cfg
84             end
85         end
86     end
87  || for || i in 0..3 then
88         obuf_mux4( 

89             { bdata_in[i], bdata_in[i+4], bdata_in[i+8], bdata_in[i+12] },
90             { tail[i], tail[i+4], tail[i+8], tail[i+12]},
91             cfg_m[i],

92             data_out[i]

93         )

94     end
95  || for || i in 0..15 then
96         outbuffer(data_in[i], tail[i], bdata_in[i])

97     end
98 end
99

100 procedure sub_crossbar_sn (
101     array 8 of input data_in : 9 bits;
102     input cfg : bit;
103     array 4 of output data_out : 9 bits
104 ) is
105     -- variable cfg_m :  bit

106     array 4 of channel cfg_m : bit
107     array 8 of channel tail : bit
108     array 8 of channel bdata_in : 9 bits
109 begin
110     loop
111         cfg ->! then
112             for || i in 0..3 then
113                 cfg_m[i] <- cfg
114             end
115         end
116     end
117  || for || i in 0..3 then
118         obuf_mux2( 

119             { bdata_in[i], bdata_in[i+4]},
120             { tail[i], tail[i+4]},
121             cfg_m[i],

122             data_out[i]

123         )

124     end
125  || for || i in 0..7 then
126         outbuffer(data_in[i], tail[i], bdata_in[i])

127     end
128 end
129

130 procedure crossbar (



262 Chapter F Optimised sliced-channel wormhole router Balsa description

crossbarv2.balsa 3

131     array 64 of input data_in : 9 bits;
132     array 3 of input cfg_lwe : 2 bits;
133     array 2 of input cfg_sn : 1 bits;
134     array 20 of output data_out : 9 bits
135     ) is
136     

137 begin
138         sub_crossbar_sn(data_in[24..27] 

139                         @ data_in[48..51], cfg_sn[0], data_out[0..3])
140     ||  sub_crossbar_lwe(data_in[0..3] @ data_in[28..31] 
141                          @ data_in[40..43] @ data_in[52..55], 
142                            cfg_lwe[0], data_out[4..7])

143     ||  sub_crossbar_sn(data_in[4..7] 
144                         @ data_in[56..59], cfg_sn[1], data_out[8..11])
145     ||  sub_crossbar_lwe(data_in[8..11] @ data_in[16..19] 
146                          @ data_in[32..35] @ data_in[60..63], 
147                            cfg_lwe[1], data_out[12..15])

148     ||  sub_crossbar_lwe(data_in[12..15] @ data_in[20..23] 
149                          @ data_in[36..39] @ data_in[44..47], 
150                            cfg_lwe[2], data_out[16..19])

151 end
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1 -- The University of Manchester

2 -- School of Computer Science

3 -- Advanced Processors Technology (APT) group

4 --

5 -- Forwarding unit fo the nanoSpa processor

6 -- NOTE : requires substitution of `;' by unfolded ';' in the

7 --        [Lookup ; Allocate] & [Forward ; Arrival ] groups

8 -- 

9 -- Author: Luis Tarazona 

10 -- 

11 -- 24/01/2009

12 -- 

13

14 import [balsa.types.basic]
15 import [nanoSpaTypes]
16

17 procedure nanoForwardUnit
18 (

19   -- Allocation pointers 

20   input allocPtr1 : allocPtrType;
21   input allocPtr2 : allocPtrType;
22   input arrPtr1  : WROBSIZE bits;
23   input arrPtr2 : WROBSIZE bits;
24   -- allocatio/arrival control

25   array 2 of input doAlloc   : bit;
26   array 2 of input doArrival : bit;
27   array 2 of input invalidIn : bit;
28   -- results from Execute

29   input wrdata0  : Datapath;
30   input wrdata1  : Datapath;
31   -- destination

32   array 2 of input wraddr  : RegSpec;
33   -- lookup interface

34   array READPORTS of input readIn : bit;
35   array READPORTS of input raddr  : RegSpec;
36 -- register read interface

37   array READPORTS of output readReg  : bit;
38 -- forward interface

39   array READPORTS of output fwfound  : bit;
40   array READPORTS of output fwdata : Datapath;
41 -- writeback interface

42   output wbaddr  : RegSpec;
43   output wbdata  : Datapath
44 ) is
45     -- the buffer cells

46     -- the buffer data structure

47     variable bvaddr   : array ROBSIZE of RegSpecExt
48     variable bdata   : array ROBSIZE of Datapath
49     variable bpos    : array ROBSIZE of bit
50     -- extended reg addresses for lookup

51     array READPORTS of channel addr : RegSpecExt
52     -- lookup-forward i/f

53     array READPORTS of channel posMask : 4 bits
54     array READPORTS of channel foundMask : 4 bits
55     --

56     -- steerAlloc - mux allocCells i/f

57     array ROBSIZE of channel  age1   : bit
58     array ROBSIZE of channel  aAddr1 : RegSpec
59     -- steerAllocX - mux allocCells i/f

60     array ROBSIZE of channel  age2   : bit
61     array ROBSIZE of channel  aAddr2 : RegSpec
62     array ROBSIZE of channel  invalid2 : bit
63     --

64     -- mux allocCells - allocCells i/f

65     array ROBSIZE of channel  ageM   : bit
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66     array ROBSIZE of channel  aAddrM : RegSpec
67     array ROBSIZE of channel  invalidM : bit
68     --

69     --- mux arriveCells - arriveCells i/f

70     array ROBSIZE of channel  wbdataM   : Datapath
71     -- arriveCells network i/f

72     array ROBSIZE+1 of channel Tin   : bit
73     array ROBSIZE+1 of channel Tout  : bit
74     -- arriveCells - mux writeback i/f

75     array ROBSIZE of channel  wbdataC : Datapath
76     array ROBSIZE of channel  wbaddrC : RegSpec
77     --

78     -- writeback network

79     array ROBSIZE+1 of channel wbToken : bit
80     array ROBSIZE+1 of channel allocToken : bit
81     array ROBSIZE of channel allocT : bit
82     -- internal forward & register read control

83     array READPORTS of channel doFwd : bit
84     array READPORTS of channel read : bit
85

86 procedure forward (
87   input  doFwd     : bit;
88   input  foundMask : 4 bits;
89   input  posMask   : 4 bits;
90   output fwfound   : bit;
91   output readReg   : bit;
92   output fdata    : Datapath
93 ) is
94 begin
95     -- do the comparison and generate outputs

96     doFwd ->! then
97         if doFwd then
98         foundMask, posMask ->! then
99             case (#posMask @ #foundMask as 2*ROBSIZE bits) of

100             0b0000_xxxx then -- nothing found
101                 continue -- fdata <- 0 
102             | 0bxxx1_0001, 0bxxx1_1110, 
103               0bxx01_001x, 0bxx01_110x,

104               0bx001_01xx, 0bx001_10xx,

105               0b0001_0000, 0b0001_1111 then
106                 fdata <- bdata[0]
107             | 0bxx1x_001x, 0bxx1x_110x, 
108               0bx01x_01xx, 0bx01x_10xx,

109               0b001x_0000, 0b001x_1111,

110               0b0010_0001, 0b0010_1110 then
111                 fdata <- bdata[1]
112             | 0bx1xx_01xx, 0bx1xx_10xx,
113               0b01xx_0000, 0b01xx_1111,

114               0b01x0_0001, 0b01x0_1110,

115               0b0100_001x, 0b0100_110x then
116                 fdata <- bdata[2]
117             | 0b1xxx_0000, 0b1xxx_1111,
118               0b1xx0_0001, 0b1xx0_1110,

119               0b1x00_001x, 0b1x00_110x,

120               0b1000_01xx, 0b1000_10xx then
121                 fdata <- bdata[3]
122             end -- case (#posMask @ #foundMask as 2*ROBSIZE bits)
123          ||
124             readReg <- (foundMask /= 0)
125          ||
126             fwfound <- (foundMask /= 0)
127         end -- foundMask, posMask ->! then
128         end --if doFwd
129     end -- doFwd ->!
130 end -- proceudure
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131

132 -- Lookup unit, returns position (age) mask and found mask

133 procedure lookup(
134   input  read : bit;
135   input  addr : RegSpecExt;
136   output posMask : 4 bits;
137   output foundMask : 4 bits
138 ) is
139 begin
140     read ->! then
141         if read then
142             addr ->! then 
143                 foundMask <- (maskArray {(bvaddr[0] = addr),
144                                             (bvaddr[1] = addr), 
145                                             (bvaddr[2] = addr), 
146                                             (bvaddr[3] = addr)
147                                         } as 4 bits
148                               ) ||
149                 posMask <- (maskArray { bpos[0], bpos[1], bpos[2],bpos[3] } 

as 4 bits)
150             end
151         end
152     end
153 end
154

155 -- Cell's allocation interface module

156 procedure allocCellT(
157   parameter N  : cardinal;  
158   input  Tin : bit;
159   input  age1   : bit;
160   input  waddr : RegSpec;
161   input  invalid : bit;
162   output Tout  : bit;
163   output allocT : bit
164 ) is 
165   variable vallocT : bit
166   constant INVALID_BIT = sizeof RegSpec
167 begin
168     Tin ->! then continue end || 
169     age1, waddr, invalid ->! then
170         bvaddr[N] := (#waddr @ #invalid as RegSpecExt) ||
171         bpos[N]   := age1
172     end;
173     allocT <- 1 || 
174     Tout <- 1
175 end
176

177 -- steers the allocation info to destination cell

178 procedure steerAlloc(
179   input doAlloc : bit;
180   input allocPtr1 : allocPtrType;
181   input addrIn : RegSpec;
182   input invalidIn : bit;
183   array ROBSIZE of output age1 : bit;
184   array ROBSIZE of output aAddr1 : RegSpec;
185   array ROBSIZE of output invalid : bit
186 ) is
187 begin
188     addrIn, invalidIn, allocPtr1, doAlloc ->! then
189         if doAlloc then
190             case (allocPtr1.index as WROBSIZE bits) of
191              0b00 then
192                 age1[0]   <- allocPtr1.cy ||
193                 aAddr1[0]  <- addrIn ||
194                 invalid[0] <- invalidIn
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195             |0b01 then
196                 age1[1]   <- allocPtr1.cy ||
197                 aAddr1[1]  <- addrIn ||
198                 invalid[1] <- invalidIn
199             |0b10 then
200                 age1[2]   <- allocPtr1.cy ||
201                 aAddr1[2]  <- addrIn ||
202                 invalid[2] <- invalidIn
203             |0b11 then
204                 age1[3]   <- allocPtr1.cy ||
205                 aAddr1[3]  <- addrIn ||
206                 invalid[3] <- invalidIn
207             end
208         end -- if doAlloc
209     end -- ->!
210 end --procedure steerAlloc
211

212 -- steers the arrival information to cells

213 procedure steerArrival(
214   input doAlloc : bit;
215   input arrPtr1  : WROBSIZE bits;
216   input data    : Datapath;
217   --input fwDone  : bit;

218   array ROBSIZE of output wdata : Datapath
219 ) is
220 begin
221     doAlloc, arrPtr1 ->! then
222         if doAlloc then
223             case arrPtr1 of
224              0b00 then
225                 data -> wdata[0]
226             |0b01 then
227                 data -> wdata[1]
228             |0b10 then
229                 data -> wdata[2]
230             |0b11 then
231                 data -> wdata[3]
232             end
233         end -- if doAlloc
234     end -- ->!
235 --end --loop

236 end --procedure steerArrival
237

238 -- arrival interface to cells

239 procedure arrCellNAA2(
240   parameter N  : cardinal;  
241   input  allocT  : bit;
242   input  Tin   : bit;
243   input  data  : Datapath;
244   output Tout  : bit;
245   output wdata : Datapath;
246   output waddr : RegSpec
247 ) is 
248   constant INVALID_BIT = sizeof RegSpec
249 begin
250     loop
251         allocT ->! then
252             continue
253         end ||
254         data ->! then
255                 bdata[N] := data
256         end ;
257         Tin -> then -- no active eager (->!) allowed here !!!!!
258             if (not (#(bvaddr[N])[INVALID_BIT] as bit)) then
259                 wdata <- bdata[N] || 
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260                 waddr <- (#(bvaddr[N])[0..INVALID_BIT-1] as RegSpec)
261             end 
262         end;
263         Tout <- 1
264     end
265 end
266

267 -- allocation/arrival initiator

268 procedure arrCellH(
269   input  Tin   : bit;
270   output Tout  : bit
271 ) is 
272 begin
273     Tout <- 1 ;
274     loop
275         Tin -> Tout
276     end
277 end 
278

279 begin --nanoForwardUnit
280     -- initialise buffer

281     for || i in 0..ROBSIZE-1 then
282         bpos[i] := 0b0
283       ||
284         bvaddr[i] := 0b1_00000 -- invalidate all entries
285     end
286   ;
287     -- Lookup i/f

288     for ||! i in 0..READPORTS-1 then
289         loop
290             raddr[i] ->! then
291                 addr[i] <- (#(raddr[i]) @ #0b0 as RegSpecExt) -- invalid = 1
292             end
293         end ||
294         loop
295             readIn[i] ->! then
296                 read[i]  <- readIn[i] ||
297                 doFwd[i] <- readIn[i]
298             end
299         end
300     end ||
301     -- [Lookup ; Allocate] group

302     loop
303         for ||! i in 0..READPORTS-1 then
304             lookup( read[i],

305                     addr[i],

306                     posMask[i],

307                     foundMask[i]

308             )

309         end ; -- This `;' MUST be substituted by unfolded ';'
310         -- Allocate

311         steerAlloc( doAlloc[0],

312                     allocPtr1,

313                     wraddr[0],

314                     invalidIn[0],

315                     ageM,

316                     aAddrM,

317                     invalidM

318         ) ||!
319         steerAlloc( doAlloc[1],

320                     allocPtr2,

321                     wraddr[1],

322                     invalidIn[1],

323                     ageM,

324                     aAddrM,
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325                     invalidM

326         )

327     end ||!
328     for ||! i in 0..ROBSIZE-1 then
329         loop
330             allocCell( i, 

331                         allocToken[i], 

332                         ageM[i], 

333                         aAddrM[i], 

334                         --wbaddr, 

335                         invalidM[i], 

336                         allocToken[i+1], 
337                         allocT[i])

338         end
339     end ||!
340     -- [Forward ; Arrival] Group

341     loop
342         for ||! i in 0..READPORTS-1 then
343             forward ( doFwd[i],

344                       foundMask[i],

345                       posMask[i],

346                       fwfound[i],

347                       readReg[i],

348                       fwdata[i]

349             )

350         end ; -- This `;' MUST be substituted by unfolded ';
351         -- arrival

352         -- Steer arrival requests

353         steerArrival( doArrival[0],

354                       arrPtr1,

355                       wrdata0,

356                       wbdataM

357                 ) ||!
358         steerArrival( doArrival[1],

359                       arrPtr2,

360                       wrdata1,

361                       wbdataM

362                     )

363     end ||!
364     -- arrival cells

365     for ||! i in 0..ROBSIZE-1 then
366         arrCellNAA2( i,

367                      allocT[i],

368                      wbToken[i],

369                      wbdataM[i],

370                      wbToken[i+1],
371                      wbdata,

372                      wbaddr

373         ) 

374     end ||!
375     -- arrive cell initiators

376     arrCellH(wbToken[ROBSIZE], wbToken[0]) ||!
377     arrCellH(allocToken[ROBSIZE], allocToken[0])
378 end


