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Abstract

This thesis describes a novel method of synthesising asynchronous circuits

based upon the Handshake Circuit paradigm used in the Balsa synthesis sys-

tem but employing a data-driven style, rather than the control-driven style of

conventional Balsa. This approach attempts to combine the performance ad-

vantages of data-driven asynchronous design styles with the handshake circuit

style of construction for synthesising large circuits.

The integration into the existing Balsa design flow of a compiler for de-

scriptions written in a new data-driven language is described along with the

implementation of a number of new handshake components to support the

new style.

The method is demonstrated using a significant design example — a 32 bit

microprocessor. This example shows that the data-driven circuit style does

indeed provide better performance than conventional control-driven Balsa cir-

cuits. Some qualitative discussion on the relative merits of the new description

language when compared with conventional Balsa is also presented.
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Chapter 1

Introduction

In recent years there has been increased interest in asynchronous or ‘self-timed’

techniques for digital circuit design [SF01, BJN99, BRD95]. In contrast to nearly

all circuits currently designed, asynchronous circuits do not rely on the pres-

ence of a global clock. Many possible advantages are put forward for asyn-

chronous techniques including the avoidance of problems related to clock dis-

tribution and clock skew [Fri01]. Additionally, increased modularity [SKC+99],

increased robustness in the face of environmental and process variation [NS94,

NSJ90, MBL+89], lower power consumption [GBvB+98, BBK+94], low electro-

magnetic noise [FGT+97, GBvB+98, PDF+98], improved security [MAC+02,

PRB+03], and high performance [Bre06, MLM+97, WPS95, FGG98] are all

claimed as possible advantages. There is perhaps more evidence to support

some of these claims than others. It is not intended that this thesis should argue

specifically for the advantages, or any particular advantage of asynchronous

techniques over their synchronous counterpart.

The vast majority of synchronous circuits are synthesised partly or entirely

using computer-aided design (CAD) tools. It is clear that if asynchronous tech-

niques are to gain more widespread acceptance, then robust and efficient syn-

thesis tools are a necessity. Balsa is one such tool, designed for high-level syn-

thesis of asynchronous circuits from algorithmic language descriptions. Balsa

23
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has demonstrated that it is robust and flexible, and can be used for the rapid

development of large designs. However, this speed and flexibility is achieved

at the cost of performance in the resulting circuits. Competitive performance

must be demonstrated before any other potential advantages of asynchronous

techniques will be seriously considered by the synchronous design commu-

nity.

This aim of this thesis is to contribute to knowledge in the field of syn-

thesising large asynchronous circuits with the specific objective of improving

performance. Area and power are not considered relevant factors though, on

occasion, some small consideration is made where it was possible with mini-

mal additional effort.

1.1 Asynchronous synthesis methods

Existing asynchronous synthesis methods may be broadly grouped into four

categories. The first of these groups is restricted to the synthesis of small-

scale asynchronous control circuits. Most of these methods use either Petri

nets [CKK+97] or burst-mode machines [FNT+99] as specifications for asyn-

chronous control circuits. This work in this thesis is aimed at the synthesis of

large circuits inclusive of both control and datapath. Therefore, these controller

synthesis methods are of limited interest although Petri nets are appropriated

as a convenient method of specifying handshake component behaviour (see

section 2.2).

The methods that target synthesis of large-scale circuits are described in the

following three sections.

1.1.1 De-synchronisation based methods

This method involves converting conventional synchronous design descrip-

tions into asynchronous designs [CKLS06, KL02]. Typically existing CAD tools
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are used for much of the datapath synthesis and asynchronous control synthe-

sis tools are used to produce controllers that replace the global clock. This

approach has the advantage that designers need little specialist knowledge of

asynchronous techniques. A drawback is that by using a design targeted at

a synchronous implementation, potential advantages of asynchronous tech-

niques are not exploited. For example, concurrency is restricted to the syn-

chronous pipeline structure and so the fine-grained concurrency possible in

asynchronous design is not exploited. It is also difficult to exploit the possi-

bility for asynchronous designs to use data-dependent delays instead of the

worst-case delays of synchronous design.

1.1.2 CHP based methods

The CSP[Hoa85]–based Communicating Hardware Processes (CHP) language

is the basis of some asynchronous synthesis systems [Mar90, RVR99, TAS].

These systems use manual or automatic program transformations to refine a

design into a more concurrent version. The final program is then translated

into a production-rule set which is used to generate a transistor implementa-

tion of the design.

The Caltech synthesis tools (CAST) have been used to produce some high

performance circuits [MLM+97] but these rely on significant manual interven-

tion in the synthesis flow to arrive at the most effective program transforma-

tions and also rely on the use of the PCHB (precharge half-buffer) circuit style.

This circuit style is not widely used and requires a specialised cell library.

The automatic program transformations employed in CAST are not be-

haviour preserving and are only correct for designs that meet particular re-

quirements. An inexperienced designer may struggle to understand and meet

these requirements.
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1.1.3 Macromodular based methods

The term macromodular originates from the Macromodules system developed

at Washington University [Cla67]. This was a system of large rack-mounted

modules that were physically connected by hand. Current macromodular sys-

tems are somewhat smaller but share the basic concept of composing small

pre-designed modules to produce large systems. Two prominent asynchronous

synthesis tools use the handshake circuit paradigm first proposed by Van Berkel

[Ber93] as the intermediate representation for the asynchronous circuits com-

piled from the language Tangram1. The Balsa synthesis system is heavily based

on Tangram and uses the same paradigm. Balsa offers a few different features

to Tangram but largely differs only in small details. The work in this thesis is

based on Balsa and so the remainder of this section will describe the synthesis

method of Balsa in some detail although the description is equally valid for

Tangram.

Balsa is a framework for high-level synthesis of asynchronous circuits. Balsa

is also the name given to the main language in which circuit descriptions are

written. These descriptions are compiled into networks of communicating

handshake components called handshake circuits. Handshake circuits are an

attractive paradigm as they offer a level of abstraction above any particular

implementation style or technology. Handshake circuits exploit the modular-

ity of asynchronous techniques in the synthesis of large-scale systems. Each

handshake component is straightforward to construct in isolation. By com-

posing the components, very large systems may be robustly constructed. The

translation employed by Balsa from language description to handshake circuit

is described as syntax-directed. This means the structure of the resulting cir-

cuit is based on the syntax of the source code. This provides the advantage that

the resulting circuit may be optimised for power, area or performance at the

1latterly renamed as Haste
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language level. The translation is also described as control-driven. The hand-

shake circuit network features a control tree which mirrors the control flow of

the language description. The overhead of this control-driven approach is a

major factor in restricting the performance of this style of handshake circuit.

The work in this thesis is based upon the handshake circuit method of con-

struction and the syntax-directed method of translation. In place of the control-

driven approach, a novel style of handshake circuit is proposed, based much

more on data-flow rather than control-flow. This approach is described as data-

driven.

1.2 Aims of this research

The aim of this research is to improve the performance of large synthesised

asynchronous circuits. The focus of the approach is on a handshake circuit

representation of the circuit; that is to say, an abstract representation of the

structure of the circuit which is independent of technologies, protocols, data-

encodings or any other details of the actual circuit implementation. The prob-

lem of control overhead in the conventional control-driven style of handshake

circuit synthesis is identified as a major obstacle to performance. Data-driven

asynchronous design styles are much less prone to the problem of control

overhead and so the approach of this research is to combine the benefits of

a data-driven style with the convenience and flexibility of the handshake cir-

cuit paradigm which allows the robust synthesis of large circuits. To this end,

the handshake circuit structures of the control-driven Balsa synthesis method

have been examined and data-driven alternatives are proposed. To generate

these structures, a data-driven description style is proposed and a compiler

has been developed to compile these description into a handshake circuit rep-

resentation. This compiler is integrated into the Balsa design flow enabling the
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use of existing Balsa tools for moving from the handshake circuit representa-

tion to a gate-level circuit.

The benefits of the new style are successfully demonstrated by the manual

translation of an existing high performance Balsa design of significant size and

complexity directly into the data-driven style.

1.3 Contributions of this thesis

The contributions made by this thesis can be summarised as follows:

• A novel synthesis method for asynchronous circuits combining the per-

formance benefits of data-driven design styles with the handshake circuit

paradigm for constructing large circuits.

• A hardware description language that is specifically tailored for syntax-

directed translation into the data-driven circuit style.

• Demonstration of the use of the synthesis method in a significant design

example (a microprocessor).

• Analysis of the performance improvements gained by using the data-

driven method over conventional control-driven handshake circuit syn-

thesis.

1.4 Thesis structure

The remainder of this thesis is divided into five chapters as follows:

Chapter 2 gives background information on asynchronous design funda-

mentals and on the existing Balsa synthesis system.
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Chapter 3 presents the main work of this thesis: a data-driven handshake

circuit style and language from which this circuit style is compiled. This is

preceded by a discussion of the control overhead of conventional Balsa circuits

and the manner in which the data-driven style is less acutely affected by this

problem.

Chapter 4 contains a range of information and ideas on the implementation

and usage of the data-driven style. Some ideas for future work are briefly

discussed.

Chapter 5 describes the implementation of a data-driven implementation of

the nanoSpa processor. This implementation is compared with the control-

driven original in an effort to evaluate the strengths and weaknesses of the

proposed data-driven approach.

Chapter 6 summarises the work presented herein and offers suggestions for

future work.

A number of appendices offer supplementary information of a more detailed

nature:

Appendix A gives the grammar of the data-driven language.

Appendix B gives the implementations of new handshake components in-

troduced to the Balsa component set to support the data-driven style.

Appendix C gives code for selected modules of the data-driven nanoSpa

description.
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Finally, appendix D gives very brief descriptions of the handshake compo-

nents in the Balsa component set. These descriptions are intended to act as a

reminder of the component behaviours.

1.5 Publications

The author has contributed to the following papers while conducting the work

described in this thesis.

• Luis Plana, Doug Edwards, Sam Taylor, Luis Tarazona and Andrew

Bardsley. Performance-driven syntax-directed synthesis of asynchronous

processors. In Proc. International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, (CASES), September 2007.

• Luis A. Plana, Sam Taylor, and Doug Edwards. Attacking control over-

head to improve synthesised asynchronous circuit performance. In Proc.

International Conf. Computer Design (ICCD), pages 703-710. IEEE Com-

puter Society Press, October 2005

• Sam Taylor and Doug Edwards. Control localisation as a means of im-

proving handshake circuit performance. In Seventeenth UK Asynchronous

Forum, pages 1-4.



Chapter 2

Background

This chapter contains the background information upon which the work de-

scribed later in the thesis is based. The principles of asynchronous handshak-

ing are briefly described followed by more specific background on the Hand-

shake Circuit paradigm and the Balsa synthesis system.

2.1 Handshaking

The basis of nearly all asynchronous design techniques is the concept of hand-

shaking to provide synchronisation between communicating modules. This

synchronisation is frequently used to facilitate the transfer of data between the

modules. Multifarious technologies and protocols exist for the implementa-

tion of these handshakes but conceptually all rely on the exchange of a request

and acknowledge signal between communicating modules. One module initi-

ates a handshake by sending a request (req) signal and the other, when ready,

responds with an acknowledge (ack). For systems that wish to abstract away

the detail of the implementation of the handshake it is common to combine

the control for signalling the req and ack, together with any accompanying

means of transferring data, in a single conceptual unit known as a channel. The

channel therefore forms a point-to-point link between the two modules that it
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Figure 2.1: Push data channel
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Figure 2.2: Pull data channel

connects, either for the purpose of making data transfers, or simply to allow

the modules to synchronise.

Data channels can be divided into two types: where the data moves in the

same direction as the request and where the data moves in the same direction

as the acknowledge (see figures 2.1 and 2.2). These two possibilities are named

push and pull respectively.

2.1.1 Handshake protocols

Much of this thesis is concerned with the handshake circuit structures of Balsa

and of the new data-driven style. The handshake circuit paradigm provides a

level of abstraction that is neutral as to which technologies and handshake pro-

tocols may be used to implement the final circuit. However, in order to imple-

ment the handshake components and produce real circuits, issues of protocol

must be addressed.

The two most widely used handshaking protocols are known as two-phase
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Figure 2.3: Four-phase handshake protocol

or transition signalling and four-phase or level-sensitive. A two-phase proto-

col is conceptually more straightforward in that each handshake consists of a

single request event and single acknowledge event. For example, two wires

may be used, one for the request and one for the acknowledge. A transition on

the request wire indicates a request and a transition on the acknowledge wire

indicates an acknowledge. A two-phase scheme is perhaps most notably em-

ployed in the Micropipelines style [Sut89]. Unfortunately, it is often difficult

to implement efficient circuits using a two-phase protocol due to the complex-

ity of detecting transitions on wires compared with detecting levels. This is

particularly true when using a multiple-wire encoding scheme (see the next

section) although it has been applied in some applications [FES00].

Four-phase handshaking uses the level of wires to indicate signals so, for

example, a high request wire indicates a request and a high acknowledge wire

indicates an acknowledge. Each handshake must then return the request and

acknowledge to their original state before the next handshake may begin. The

four-phase protocol can therefore be considered as having two sub-phases: the

processing phase and the return-to-zero (RTZ) phase (see figure 2.3).

2.1.2 Data encoding

Two broad categories of design style are commonly employed in asynchronous

design. These are known as bundled-data and delay-insensitive. Bundled-data

designs nearly always employ traditional single-rail data encoding where one
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Figure 2.4: Push data validity protocols

wire represents each bit. Most commonly, additional request and acknowl-

edge wires are bundled with the data although techniques exist that use a

single wire for both request and acknowledge [BB96]. When using bundled

data it is necessary to define a data validity protocol that determines where

in the handshake the data is valid. For two-phase there is little option as to

the data validity protocol, as there are only two events. For four-phase there

are several options for the period that data must be valid. Figures 2.4 and 2.5

show the common data-validity protocols for push and pull channels respec-

tively. The standard bundled-data Balsa back-end uses the four-phase broad

protocol for push channels. For pull channels the broad protocol is less con-

venient as the data validity must be maintained until the request goes up in

the following handshake. For this reason, the reduced broad protocol is used

for pull channels. In theory, there is little to distinguish the reduced broad and

early protocols as once the receiver has lowered its request then the acknowl-

edge could be lowered and data changed immediately. In practice, the ack and

data will not change immediately and so it is possible to assume a small ex-

tra period of validity will exist after the request is lowered and exploit this in

component implementations.
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Delay-insensitive systems use multiple wire data encodings; most prevalent

of these is the dual-rail encoding where two wires are used to encode each bit.

A delay-insensitive encoding allows the data to signal when it is valid and the

data itself signals either the request (for push channels) or acknowledge (for

pull channels). One additional wire is used for the signal that is not encoded

with the data. See figure 2.6 for an example of the handshakes for one-bit dual-

rail push and pull channels using a four-phase RTZ protocol. One of the two

wires carrying the data is used in each handshake. One wire indicates a zero

is being sent (req0 or ack0) and the other indicates a one is being sent (req1 or

ack1). It is uncommon to use an extra wire to request or acknowledge every

bit in a data channel carrying multiple bits. Instead a single extra wire is used

for the channel and it is then necessary to use completion detection to check that

all the bits have arrived and have gone away before transitioning the request

or acknowledge signal.
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Figure 2.6: Four-phase dual-rail handshakes

2.2 Signal Transition Graphs

Signal Transition Graphs (STGs) are a specific form of Petri net — a well estab-

lished formalism for modelling concurrent systems. STGs are used as an in-

put format to some asynchronous synthesis systems such as Petrify [CKK+97].

These methods rely on state-space exploration and so are only suitable for the

synthesis of small controllers as for large designs the state-space quickly ex-

plodes to an unmanageable size. In this thesis STGs will be employed as a

convenient method of specifying the behaviour of handshake components.

A Petri net is made up of places and transitions connected by directed arcs.

Transitions indicate events in the system; in the case of circuit design these are

signal transitions. Places can hold a number of tokens. Each transition may

have a number of inputs and outputs which are the places that are connected

to and from the transition. The operation of the Petri net proceeds by firing

transitions. Transitions are enabled when all of their inputs have at least one

token. When a transition fires a token is removed from each of its inputs and

a token added to each of its outputs. This may then enable further transitions.

The number of tokens at each place in the system at any given time is called

the marking.

An STG is a Petri net with two specific restrictions. An STG must be one-

bounded which means that at all times only one token is allowed at each
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place. Only inputs may be used as transitions where choice is involved and

the signal transitions represented by such inputs must be mutually exclusive.

Where choice occurs, a single place has multiple transitions that could fire and

consume a token. The signal transitions in the implementation must provide

means of deciding which transition should fire.

Figure 2.7 shows the STG for the Balsa Call component in order to demon-

strate the graphical representation of an STG. Places are drawn as circles but

are usually omitted between transitions that are directly connected through a

single place. A line connecting two transitions directly therefore has an im-

plicit place in the middle. The initial marking of the circuit is shown using

a filled circle either drawn within a place or next to an arc that has an im-

plicit place. Note particularly the representation of choice between the input

requests. Either req+ transition may consume the same token. As the input

requests to the component are input signals and are mutually exclusive, it is

possible to choose the correct transition.

The figure also shows the convention that will be used in STGs and circuit

diagrams throughout this thesis for showing the expansion of channels into

their constituent parts. For example, the channel out is expanded to out.req

and out.ack. The upward transition on out.req is represented by out.req+ and

the downward transition by out.req-.

2.3 Balsa design flow

An overview of the Balsa design flow is shown in figure 2.8. There are two

synthesis stages in this flow that are handled by tools in the Balsa framework.

The first is the compilation from a Balsa code description into the handshake

circuit representation using the Balsa compiler. This is frequently called the

front-end. The breeze format is in essence simply a list of channels and hand-

shake components. The compilation is modular and each procedure in the
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Figure 2.8: Balsa design flow

language is compiled into a breeze ‘part’. The compiler will import breeze de-

scriptions when a procedure from another file is instantiated in order to ensure

the interface is correctly generated.

The second stage (or back-end) is the replacement of each handshake com-

ponent with a gate-level implementation in the chosen design style and tech-

nology performed by the balsa-netlist tool. The back-end produces a gate-level

netlist which can be processed by commercial place and route tools for layout

to silicon or possibly to an FPGA.

This thesis is mainly concerned with the first synthesis stage — from lan-

guage description into handshake circuit. The conventional Balsa compila-

tion process is described in some detail in the following section. This thesis

describes a new compilation approach that complements the existing Balsa

compiler in this design flow. The additions to the flow will be discussed in

section 4.1 on page 115.

To implement the new data-driven style, many existing handshake com-

ponent implementations are re-used, but in addition several new components
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are added to the Balsa handshake component set. Section 2.6 gives some back-

ground on common techniques that have been employed in implementing

these components. The next two sections give more detail on the handshake

circuit paradigm and the front-end compilation of Balsa source descriptions

into handshake circuits.

2.4 Handshake Circuits and Balsa

The handshake circuit is a network of small components connected by chan-

nels. The network is generated by a compiler (frequently called the front-end)

that translates a high-level language description into a handshake component

network. The compilation involves converting each language feature into a

small structure of handshake components which implements that feature and

composing these smaller structures based on the syntax of the written descrip-

tion. This approach is often described as ‘syntax-directed’ or ‘transparent’

compilation as there is a fixed relationship between language descriptions and

the circuit that they generate. Small changes in the description will produce

small and predictable changes in the resulting circuit. Furthermore the direct

compilation allows the construction of large-scale designs and is one of only a

few proven methods for doing so in an asynchronous style.

2.4.1 Handshake circuit diagrams

Figure 2.9 illustrates the diagrammatic representation of a small handshake

circuit. Handshake components are usually rendered as a circle containing a

symbol that indicates the type of component. Each component has one or more

ports to which channels are connected. The sense of the port indicates whether

it initiates communication (sends the request) or responds to communication

(sends the acknowledge). The active port, drawn as a small filled circle, sends



2.4. Handshake Circuits and Balsa 41

#

;

V

ack
req

req

ack

activate

i o

Sequence component

passive port
active port

sync (activation) channel channel label

req

ack

push channel pull channel

data channel

Variable component

Loop component

Fetch component

Figure 2.9: Handshake circuit diagram

the request and the passive port, drawn as a small open circle sends the ac-

knowledge. (Example requests and acknowledges are shown in the figure but

are not usually shown.) A channel always connects an active port from one

component to a passive port from another. Channels are represented by lines;

arrows are added to the lines to indicate data channels where the direction of

the arrow indicates the direction in which the data flows. Data channels can

be further divided into two types: push channels where data flows in the same

direction as the request and pull channels where data flows in the direction of

the acknowledge.

Channels without data are called sync channels, or often activation channels,

as they are in the most part used for the purposes of activating components in

the circuit.
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2.5 Balsa language and compilation

The Balsa language is fully described in the Balsa Manual[EBJ+06]. A brief

overview will be presented here with much detailed information that is not

directly relevant to this thesis being omitted. Accompanying the language de-

scriptions are examples of the handshake circuit structures produced when the

language constructs are compiled. Copious information on the compilation

and handshake components employed therein may be found in [BE97, Bar00,

PTE05].

Balsa descriptions are divided into procedures. Each procedure has an im-

plicit activation port that activates the circuit described within the procedure.

In addition, each procedure may have any number of input, output, or sync

(non data carrying) ports. These ports are the external interface to the proce-

dure. From within the procedure, ports are used as if they were channels but

they are read-only for input ports and write-only for output ports. In addition

to ports, procedures provide scope for local channel and variable declarations.

Channels in this context are a language feature and do not normally corre-

spond to an individual channel in the handshake circuit.

The body of a procedure consists of commands, composed using control

structures. Each command or structure is compiled into a small network of

handshake components with an activation channel that is used to control when

the command operates. The compilation connects the small network to the

overall handshake circuit network by attaching the activation, and any input

and output channels to the appropriate points in the overall handshake circuit.

2.5.1 Data types

Balsa supports global and local type and constant declarations. Basic numeric

types in Balsa can all be considered as bit vectors of a given width and can

be signed or unsigned. Array, enumeration and record types are supported.
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Ports, channels and variables are all declared as having a specific type.

Details of data types will in general be omitted from examples in this thesis

as the primary interest is in the structures of the handshake circuits. The width

of data involved is rarely significant to the structures, which are applied in the

same fashion to data of any given width.

2.5.2 Basic commands

There are four basic commands in Balsa: channel reads, channel writes, con-

tinue and halt.

A channel read is used to write the data from a channel into a variable. It

is written using the -> operator, e.g. chan -> var. It is compiled to a Fetch

component as shown in figure 2.10. A channel read may also be used to write

the data to another channel in place of the variable (e.g. chan1 -> chan2).

A channel write is used to read data from a variable and output it to a

channel. It is written using the <- operator, e.g. chan <- var. It is also

compiled to a Fetch component as shown in figure 2.11.

The continue command is used to perform no operation and is compiled to
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a component that simply acknowledges any activation request it receives. The

halt command never acknowledges an activation so that the circuit deadlocks

at the point where the halt occurs. (Other independent parts of the circuit may

continue operating so the entire circuit may not deadlock.)

The assignment command (:=) is also available in Balsa. It is in reality

a compound command made up of a channel write and a channel read but

the channel is implicit. For example, the following two code fragments are

equivalent:

variable a, b

-- this assignment is implicitly...
a := b

-- the same as this...
channel c

c <- a || c -> b

The handshake circuit generated for both fragments is the same and, due

to a small optimisation, does not use two Fetch components but only a single

Fetch component as shown in figure 2.12.

2.5.3 Parallel and Sequence control

The basic commands may be composed using the concur (||) and sequence

(;) operators to form compound commands. A single-place buffer may be

described by composing a channel read and write in sequence as shown below.
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procedure buf (input i : byte; output o : byte) is
variable V : byte

begin
loop

i -> V ;
o <- V

end
end

Figure 2.9 shows the handshake circuit for this example. The Sequence com-

ponent sequentially activates its active ports so the channel read is activated

first and upon its completion the channel write is activated.

The parallel operator is similar but produces a Concur component in place

of the Sequence. This component activates its active ports in parallel and waits

for them to complete before acknowledging on its passive port.

2.5.4 Conditional control

Conditional control is provided by the case and if structures. If is funda-

mentally the same as case so this discussion will use case as an example. The

case construct is written as follows:

case <expression> of
<guard0> then <command0>

| <guard1> then <command1>
.
.
.

<guardN> then <commandN>
else

<else_command>
end

The guards may consist of a comma-separated list and must be resolvable

at compile time. They must also be disjoint in that no value may be matched by

more than one guard. The else clause is used to match any values not covered

by the guards and is optional in Balsa even if the guards do not exhaust all
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Figure 2.13: Balsa case example

possible values of the expression. If the else is omitted then the behaviour is

the same as if the body of else were a continue command.

The case command is compiled to the Case component. The Case compo-

nent has a passive activation port which when activated initiates the evalua-

tion of the expression. The result of the expression is used to determine which

of the output activation ports will be activated. For example the following

code uses a case structure to select which of three channels (a, b, c) the data

from variable v should be written to. This is compiled into the handshake

circuit shown in figure 2.13.

case ctrl of
0 then

a <- v
| 1 then

b <- v
| 2 then

c <- v
end
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while
guard

activate

activateOut

Figure 2.14: Balsa While component

2.5.5 Iterative control

Balsa has two iterative structures, loop and while. Loop is very straightfor-

ward as it simply repeats the command given in its body indefinitely. It is

compiled to the Loop (#) component as shown in figure 2.9. This component,

upon receiving an activation, repeatedly handshakes on its output activation

port and never acknowledges the input.

The second structure, while, provides finite iteration as found in most im-

perative programming languages. It is written as follows:

loop while <expression> then
<command>

end

The result of the expression must be a single bit. This while loop is com-

piled using the While component (figure 2.14). Upon activation the component

pulls on its guard port to get the result of evaluating the expression. If the re-

sult is 1 then the output activation is sent to activate the body of the loop and

when this is completed another guard is fetched. When the result of the guard

is 0 then the while loop terminates and acknowledges its activation.

2.5.6 Input enclosure

Input enclosure allows the handshake on one or more input channels to be held

open while a command is activated. This allows the value on the channel(s) to
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Figure 2.15: Balsa input enclosure example

be read as many times as desired by the enclosed command. The input chan-

nel(s) will only be released when the command has completed. For example

the case construct shown in the conditional control section above may be used

with channels instead of variables by using input enclosure as follows:

chan, ctrl -> then
case ctrl of

0 then
a <- chan

| 1 then
b <- chan

| 2 then
c <- chan

end
end

Figure 2.15 shows the handshake circuit produced by this code. The False-

Variable (FV) component is used to implement the enclosure. Upon receiving

an activation, the FV pulls the data from the required channel but it does not

complete the handshake on this port. It then activates its ‘signal’ port to ini-

tiate the enclosed command. In this example there are two enclosed inputs
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so the activation is forked to two FVs and the signals are then synchronised

to ensure both inputs have arrived before activating the enclosed case com-

mand. The FV provides passive read ports, much like a Variable component,

on which the data can be read zero, one or many times. Within the enclosed

command the channel is treated as if it were a variable. When the enclosed

command completes the FVs complete the handshake on the input channels

and acknowledge their activations.

2.5.7 Arbitration

The arbitrate construct is used to implement conditional control based upon

the arrival of communications on input channels. The syntax is as follows:

arbitrate <list of channels> then
<command>

| <list of channels> then
<command>

end

Two guards comprising a lists of channels are provided. If every channel

in one of the lists have a communication pending, then that guard is true and

the command for that list will be activated. If both guards become true very

closely in time then it may not be possible to determine which occurred first.

In this case an arbitrary decision is made. The command that is activated is

enclosed by its input channels as discussed in the previous section, allowing

any data on those channels to be read by the command.

2.5.8 Data processing

Balsa features a number of operators that may be used to build expressions

in the language. A number of operators may be compiled into hardware but

several others are provided that may be used with compile-time constants but

have no ‘run-time’ implementation.
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Figure 2.16: Balsa data processing example

Expressions are used with channel write commands to generate data pro-

cessing logic. For example the following code produces a tree of data process-

ing components as shown in figure 2.16 and a Fetch component to initiate the

processing.

a -> then
c <- a and not b or b and c

end

Expressions are also used as the input to case and while structures where

the Case and While components are the initiators in place of Fetch.

Note how the data processing structure is always a pull structure and, as

a consequence of this, a single activation can be used to initiate the pulling of

the data through the tree of data processing components.

2.5.9 Miscellaneous connection components

The final few components to be mentioned do not correspond to any partic-

ular language structure but are used where multiple connections are made to

a particular channel or variable. It has already been implied that the Variable

component has a parameterisable number of read ports allowing the variable

to be read from multiple locations in the code. Similarly the FalseVariable is
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Figure 2.17: Balsa variable write from multiple possible sources

used to allow a channel to be read from multiple places. A variable and chan-

nel may also be written from multiple locations, providing they do not both

attempt to perform a write concurrently. The CallMux component is used to

merge multiple writes to a single channel or to a channel that connects to the

write port of a variable. In the following code, a case statement is used to pick

one channel (a, b or c) to write to variable v. The handshake circuit for this code

is given in figure 2.17 which shows how the CallMux is used to merge the three

possible write sources to the single write input to the Variable component.

case ctrl of
0 then

a -> v
| 1 then

b -> v
| 2 then

c -> v
end

The Fork component is sometimes used in place of Concur to fork an ac-

tivation to two components where the overhead of a Concur is unnecessary.

In a four-phase protocol a Concur component allows independent return-to-

zero phases on each of its outputs whereas the Fork component synchronises
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following the processing phase of all the outputs before proceeding with the

return-to-zero phase of all the outputs. Figure 2.18 illustrates the distinction

between the two components by means of STGs. An example of the use of

Fork is shown in figure 2.15 where it is used to fork the activation to each Fal-

seVariable used for the handshake enclosure. As the two sides of the fork are

symmetric, there is little advantage to be gained from having an independent

return-to-zero phase in this instance.

The Sync component may also be encountered, often nearby a Fork as in fig-

ure 2.15. The Sync component is used to join several activations to produce

a single activation that is triggered when all of the input activations have ar-

rived.

The Call component (see figure 2.7) is used to merge several activations. An

activation on any of the inputs is propagated to the output. The inputs must

be mutually exclusive.

It can be seen in this section, that Balsa generates circuits with active inputs

and active outputs. It is, of course, frequently necessary to connect an output

from one process to the input of another. The PassivatorPush component (fig-

ure 2.19) is the used to accomplish this. PassivatorPush has a passive input

and a passive output allowing data to be transferred from a push channel to a

pull channel.

2.6 Implementing handshake components

The handshake circuit representation is independent of any particular imple-

mentation style or technology. However, in order to get meaningful results it

is necessary to produce real circuits and so a particular implementation style
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C
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Figure 2.20: C-element with two inputs

A B Z Z’
0 0 X 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 X 1

Table 2.1: C-element behaviour

must be selected. Tangram was originally proposed with a dual-rail imple-

mentation but a single-rail back-end is now commonly used [Pee96]. Balsa has

several available back-end styles but the most commonly used are a four-phase

broad bundled-data style and a dual-rail style. The broad bundled-data style

in fact uses a broad protocol for push channels but a reduced broad protocol

for pull channels. These two styles will be used in this thesis.

This remainder of this section introduces the asynchronous circuit elements

that are used in the implementation of Balsa handshake components.

2.6.1 Control elements

C-element

The Muller C-element [Mul62] is a ubiquitous asynchronous component. It is

sometimes considered as performing an and of signal transitions rather than

of logic levels as in a regular and gate. The output of the C-element only tran-

sitions when all of the inputs have reached the same logic level.

The symbol for the C-element is shown in figure 2.20 and the behaviour is

show in table 2.1. C-elements are often used for synchronising signals. For
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Figure 2.21: Sync component implementation
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Figure 2.22: Asymmetric C-element

example, the Sync component described in section 2.5.9 may be implemented

using a C-element as shown in figure 2.21.

The basic C-element can be extended by adding inputs that only affect tran-

sitions in one direction. Figure 2.22 shows an example asymmetric C-element

and table 2.2 shows its behaviour. Inputs connected to the plus (+) symbol

must be high for the output to transition from low to high while inputs con-

nected to the minus (–) symbol must be low for the output to transition from

high to low.

S-element

The S-element is a common component found in several handshake compo-

nents. If the inputs and outputs are connected to the request and acknowledge
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A B C Z Z’
0 X 0 X 0
0 X 1 0 0
0 X 1 1 1
1 0 X 0 0
1 0 X 1 1
1 1 X X 1

Table 2.2: Asymmetric C-element behaviour
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Figure 2.23: S-element implementation

signals of channels then it implements handshake enclosure; that is the hand-

shake on one side (the output handshake) of the component occurs within the

handshake of the other (input handshake) side. See the STG in figure 2.24 and

the implementation in figure 2.23.

For example, consider the control of the bundled data FalseVariable com-

ponent used to implement input enclosure as described in section 2.5.6. The

handshake on the write port of the FV must enclose the handshake on the sig-

nal port. This is accomplished as shown in figure 2.25.

T-element

The S-element was originally used exclusively in Balsa component implemen-

tations. In later revisions it was realised that often the S-element is more
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Figure 2.27: T-element STG

sequential than necessary [PTE05]. The T-element [NUK+94, KPWK02] im-

plements a form of enclosure similar to the S-element but the return-to-zero

phases of the handshakes are overlapped allowing more concurrent opera-

tion. The standard FalseVariable design now uses a T-element in place of the

S-element shown in figure 2.25.

2.6.2 Dual-rail elements

It is often convenient to generalise a variable width data bundle by drawing

the entire bundle as a single arrow. A few symbols are used to show how this

data is processed.
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Figure 2.28: Read Port

Figure 2.29: Merge

Read port

The symbol in figure 2.28 is used to represent a set of and gates, one for each

wire in the data. The enable signal is distributed to all the and gates allowing

the output of data to be controlled.

Merge

The symbol in figure 2.29 is used to represent a merging of multiple bundles

of the same width. The corresponding wires from each bundle are passed

through an or gate. In dual-rail it is imperative that data is not present on

more than one input.

Decode

Decode (figure 2.30) is used to convert data into a one-hot code based on the

value of the input data. In Balsa, this is achieved by specifying the values of

the input data that correspond to each output wire. The specification is passed

to the logic minimiser Espresso [BSVMH84, Esp] to generate an efficient circuit

implementation.



60 Chapter 2. Background

Decode

one−hot code

data

Figure 2.30: Decode

SR−>DR

dem
ux

data

req

data

req1

req0

req
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Single to dual-rail converter

This element converts single-rail data to dual-rail. This is sometimes useful,

for example in order to provide a dual-rail input to the decode element. Fig-

ure 2.31 shows the implementation of the converter for each data bit.

2.6.3 Completion Detection

The arrival of a single bit in dual-rail encoding is detected by an or of the two

data wires. To detect the completion of a wider bundle of data a C-element is

used to combine the completion of each individual bit.

Completion detection is shown as a single element on schematics as shown

in figure 2.32.

Sometimes it is not necessary to use completion detection for the arrival of
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complete RTZ complete

Figure 2.32: Completion Detection

data but only to check that it has returned to zero. This allows the implemen-

tation to be simplified as or gates may be used in place of the C-elements. A

downward pointing arrow is added to the CD element to indicate this variety

of completion detection.

2.7 What does ‘performance’ mean in an asyn-

chronous circuit

It is important to distinguish what is meant by the term ‘performance’ which

will be used throughout this thesis. In general the term is used to mean through-

put rather than latency, but of course these are not unrelated.

It is easy to determine the performance of a synchronous circuit. The la-

tency of the worst-case delay (critical path) through the logic of the circuit

determines the fastest possible clock speed. Or in practice, a target clock speed

is chosen and used to determine the maximum latency of the critical path. A

design is usually partitioned into pipeline stages in order to reduce the latency

of the critical path. The completion of every stage is determined by the global

clock and so every stage is restricted to operating at the speed of the slowest.

The throughput is determined by the clock cycle.

In an asynchronous system there is no external clock to determine the com-

pletion of logic. Instead, each stage is free to individually determine when

it completes. Each stage may have a fixed delay but, more often, the delay

is data-dependent – the delay varies depending upon the operation being per-

formed. In a synchronous design, each stage produces a result on a clock signal

and begins the next operation on that same signal. In an asynchronous system
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the handshake signalling means that the cycle time is not determined solely

by the latency of producing a result but also of acknowledging that result and

resetting the stage back to a state where the next operation can begin.

In this thesis the throughput of an asynchronous circuit will usually be de-

termined by measuring the average cycle time of the circuit while repeatedly

performing an operation. The cycle time is the delay between producing con-

secutive results in the repeated operation. For modules whose operation can

vary depending on data, a number of different operations will be performed

to determine the variation in cycle time.
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Data-driven Circuit Style

3.1 Control overhead

Section 2.4 gave a brief introduction to the compilation of Balsa into hand-

shake circuits. The resulting circuit may be roughly split into two sections:

control and datapath. The datapath consists of Variable components, data pro-

cessing structures and data channels. The control consists of a tree of control

components connected with sync channels, which direct the movement of data

around the datapath by activating interface components such as Fetch, False-

Variable, and While. This style of translation is described as control-driven

meaning that the control tree is responsible for initiating all datapath opera-

tions. This approach is robust and flexible but there is a significant drawback:

the overhead of the control. The control is nearly always slower than the data

and as control and data are frequently synchronised, the data is frequently

stalled waiting for the control to catch up.

An example will now be given that attempts to demonstrate how the control-

driven structure contributes to control overhead. Figure 3.1 generalises the

structure of a control-driven procedure which produces an output (O) and re-

quires an input (A). Internally the process uses two variables (V0 and V1). The

63
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Figure 3.1: General control-driven structure
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operation of this structure is extremely sequential. Firstly the portion of con-

trol labelled write is activated. The control decides whether to write some data

to the Variable components. Once any data is written, it can be considered as

being available for reading from the Variable components. However, the con-

trol must then complete its handshake before the right-hand side of the tree is

activated.

As well as data stored in variables, data from channels may also be used

by means of input enclosure. The control (here labelled input) must activate

the pulling of any such data to the FV component. The input control waits for

the signal from the FV indicating the arrival of the data. Once again, it is not

unlikely that this data has been available for some time on channel A which is

awaiting synchronisation at the PassivatorPush in order to deliver it.

All the required operands for the data processing operations have now

been collected. The control may then initiate data processing operations. It

may be necessary to decide what operations should be performed based on

some of the data (e.g. a if a case construct is used). Therefore the control may

initiate some data processing operations using a Case component for the pur-

pose of making conditional choices. Following this, the final data processing

operations that actually produce the outputs are initiated. These outputs are

are written to variables or communicated on output channels.

When the variable writes and/or output communications are complete, the

data in the Variables and on input channels may be considered as being no

longer required. However, all the handshaking in the control for inputs, con-

ditionals and outputs must be completed before the write control is even acti-

vated again to begin the process of deciding whether to overwrite the data in

the Variables.

Note that for different processing operations, only a subset of the inputs

may be required but all the inputs are synchronised with each other and the

control before any operations begin. Furthermore, no inputs are released until
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after all data operations have completed, even though some may not be re-

quired after some operations have completed. If data were released sooner

then other parts of the circuit will be allowed to proceed sooner as well.

The three principal problems in the structure of the handshake circuit that

contribute to the control overhead are:

• All inputs are synchronised with each other before any further opera-

tions are begun. Data is available in Variable components before the read

control is even activated. After it is activated, the control then synchro-

nises with all channels that are used as inputs before the control begins to

decide what operations to perform. If control were operating in parallel

with the arrival of data, then data may not be stalled as long while the

control decides what to do. The control may even have resolved itself

before the data arrives. If there were no need to synchronise all inputs

before any operation can proceed then processing, and control that relies

on part of the data, can get a head start and operate concurrently with

the arrival of the remaining data.

• The sequential activation of the read and write ‘halves’ of the control tree.

This sequencing is needed to ensure the variable is not written and read

concurrently. However, the location of the sequencing in the control tree

is far away from the Variable leading to sequential operation of the two

‘halves’ of the control tree. More concurrent operation of the two halves

of the tree should increase performance.

• Data processing operations only begin after the control initiates them due

to the pull style of operation. If the data processing were to operate in

parallel with the control then the overhead of the control should have a

reduced impact.
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3.1.1 Balsa features to combat control overhead

Several modifications have been made to the existing Balsa system in an effort

to reduce the impact of control overhead.

Control re-synthesis

Attempts have been made to apply control re-synthesis to the control of both

Tangram [KVL96] and Balsa [CNBE02, CN02]. Control re-synthesis attempts

to improve the performance of the control tree by clustering sections of the

control tree, determining the overall behaviour, and synthesising a new con-

troller to implement this behaviour using a controller synthesis tool [CKK+97,

FNT+99]. By removing the communications between clusters of components,

the resulting controller should improve performance over the original control

tree.

Control re-synthesis is effective but limited. Improving the speed of the

control tree will obviously help reduce control overhead but only so much

improvement can be gained. The control still synchronises with data at the

same points and so the sequential operation of the control-driven structure is

still maintained. Control re-synthesis is complementary to other approaches

to improving control overhead including the data-driven style introduced in

this thesis.

In addition to re-synthesis it has been suggested [CN02] that the direction

of the data processing in Balsa may be reversed from a pull to a push im-

plementation to enable concurrent operation of control and data processing.

However, this assumes that a Variable component will be written and read in

every ‘cycle’ of operation. This is not usually the case in conventional Balsa as

the control may only conditionally activate the read or write. The data-driven

style does not offer Balsa-style variables in order to avoid this problem; data-

driven variables are read and written in every cycle and therefore support a

push data processing structure.
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Concurrent sequencer

This technique specifically addresses the second of the three issues identified

above by applying concurrent sequencing [PN98]. The original Balsa Sequence

component has been enhanced to include concurrent sequence behaviour. The

concurrent sequencer allows some overlapping between the write and read

halves of the control. The read half of the control may be activated at the start

of the return-to-zero phase of the write half, instead of waiting for the entire

handshake to complete. This allows the write RTZ phase to operate concur-

rently with the read control. Unfortunately this cannot be done if the control

is reversed so that reads precede writes as a write-after-read (WAR) hazard

would be inserted [NUK+94]. In some situations a write-after-write (WAW)

hazard may also prevent the use of concurrent sequencing. The Balsa com-

piler has been modified to automatically insert concurrent sequencing where

it is safe to use it [PTE05]. Concurrent sequencing provides performance im-

provements but it is limited in where it can be safely applied and only allows

partial overlapping of the sequenced operations.

‘Eager’ inputs

Eager inputs use modified FalseVariable components that activate the control

without waiting for the data to arrive. The control is able to proceed up until

the point where synchronisation with the data is required and there it stalls

until the data does arrive [PTE05]. Since the original publication, further work

has shown that there are more conditions than originally thought where eager

inputs may not be used, although these conditions do not occur in the nanoSpa

processor used as an example design in chapter 5. There is the possibility of

automatically detecting when it is safe to use eager inputs, or allowing the

designer to decide where they should be used by modifications to the source

language, or a mixture of both these options. At this time, neither of these

options have been fully integrated into the design flow so eager inputs have
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not been used in the Balsa nanoSpa used in chapter 5.

While eager inputs allow control to get a head start before the arrival of

data, it is still necessary to synchronise all the data and control before releas-

ing the data. Data-driven style inputs allow early control activation without

suffering from having to synchronise before releasing the data either.

Source description style

This is technically not a particular feature in the synthesis system but is an

important factor in the performance of conventional Balsa designs. The trans-

parent compilation from language to handshake circuit structures gives the

designer flexibility at the language level to optimise the resulting circuit. The

nanoSpa processor which will be used as an example in chapter 5 has been

specifically designed to try and achieve the best possible performance from

conventional Balsa. The techniques used in the source description are interest-

ing. The use of variables, in most cases, is restricted to the pipeline registers

of the processor. The pipeline registers are implemented using the simple one-

place buffer circuit shown in figure 2.9 on page 41. This is a very small hand-

shake circuit with the Sequencer located as close as possible to the Variable

and, when combined with the concurrent sequencing, the performance of the

pipeline register compares favourably to highly optimised controllers [Liu97].

The logic within the pipeline stages is split into small modules that oper-

ate concurrently. Each module, therefore, has a relatively small control tree

which helps to reduce control overhead. The control tree of each module has a

Loop component at the head and so operates independently from other mod-

ules. Each module waits for data on its inputs, processes it and produces out-

puts. Instead of using a large monolithic control tree to direct the movement of

data, small steering and merging modules are used to direct the flow of data.

Apart from when modules must synchronise on channels to exchange data,

they operate in parallel with one another. Essentially, within the constraints of
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Figure 3.2: General data-driven structure

the control-driven system, an experienced Balsa developer attempts to reduce

control overhead by describing a system that is data-driven [PET+07].

At least for an experienced designer, the data-driven style introduced in

this thesis is probably more suitable for describing what is desired than the

control-driven style.

3.1.2 Data-driven style design aims

The data-driven style has been designed to reduce the impact of all three of

the problems identified above. This is achieved by three particular facets of

the design style:

• Data-driven control activation. Control is all ‘activated’ in parallel, syn-

chronising with data only when it is absolutely necessary and releasing

it as soon as it has been used.

• Localised sequencing. Sequencing is located local to the variable compo-

nent. The read and write sections of control can thereby operate entirely

in parallel as the localised sequencing ensures that the variable is not

concurrently read and written.
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Figure 3.3: Control-driven vs. data-driven
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• Speculation. Data processing operations are speculatively executed so

they may operate in parallel with the control.

The data-driven equivalent to the structure in figure 3.1 might be pictured

as in figure 3.2. Figure 3.3 attempts to give a very rough example of how

the data-driven structure enables much greater concurrent operation than the

control-driven one. Note how consecutive cycles of operation are overlapped

due to localised sequencing and how speculation enables processing to begin

earlier as it does not need to wait for the control to activate it. Note also that

the periods where data is stored in variables but no use is being made of it

are much shorter. This figure is not based on real timings or drawn to an ac-

curate scale and is probably too optimistic but it shows, in general, how the

data-driven style aims to reduce the impact of control overhead.

The next two sections summarise the major reasons for the adoption of the

proposed approach. Section 3.4 summarises the drawbacks of the proposed

approach. Following these sections the data-driven circuit style is introduced.

3.2 Why a data-driven approach?

• A data-driven approach is more commonly used in asynchronous cir-

cuit design styles. There are several examples of high performance data-

driven style circuits such as the AMULET microprocessors [FGT+97] (also

see section 5.1) which were based on the Micropipeline paradigm and

the Caltech MIPS [MLM+97] which used the CAST synthesis system (see

section 1.1.2).

• The data-driven approach should suffer from less control overhead than

the control-driven style of Balsa for the reasons outlined in the preceding

section. More parallelism is exploited between data and control by a
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data-driven style as there is less synchronisation between control and

data.

3.3 Why a handshake circuit style approach?

• The handshake circuit approach is not specific to any particular imple-

mentation style. A wide variety of possible back-end implementations

are possible. The compilation does not map direct to transistors or use

unusual circuits such as PCHB so it is much more flexible than some syn-

thesis approaches. Standard-cell implementations are possible.

• Transparent compilation allows the designer to modify properties of the

final circuit at the source level. This direct synthesis approach is relatively

straightforward to understand. Any valid language description can be

compiled into an implementation and there are no complex restrictions

placed on the designer.

• The new data-driven style fits into an existing, proven design flow. This

saved time and effort in the development of the style as existing tools and

components are re-used. It allows integration of the control-driven and

data-driven styles allowing the designer to select an appropriate style for

different parts of a design.

3.4 Why not a data-driven approach?

• Due to the more restrictive data-driven style, data-driven descriptions

are less flexible than those of conventional Balsa. In particular, the nature

of Balsa variables means they can be used in a fairly standard fashion

familiar to most programmers but data-driven variables cannot. Addi-

tionally, no conditional iterative control structure is available in the data-

driven style although these are less frequently used. This reduction in
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flexibility is counter-balanced by the considerable gains in performance

achievable if these features are removed.

• Circuits in the data-driven style are likely to require more area and to

consume more energy. The localised control of the data-driven style con-

sumes more area than the control-driven tree as instead of appearing

once, the control is distributed in many places. This effect is exagger-

ated in delay-insensitive implementations where an increased amount of

completion detection is required and the implementation of push-style

variables is particularly expensive. However, the increased concurrency

in this distributed control is a major factor in the increased performance.

Energy consumption due to switching can also be expected to increase

as a result of the increase in concurrent activity. Speculation can also

be expected to have an impact on energy consumption as this involves

extra switching activity in the datapath that need not occur in the control-

driven style.

3.5 Data-driven circuit structures

The data-driven circuit style will be introduced in this section by compari-

son with the conventional Balsa handshake circuit style. The data-driven style

was largely developed by examining and adapting Balsa handshake circuit

structures so comparison provides the most instructive method of introduc-

tion. General knowledge of the function of handshake components in the

Balsa component set is assumed by the following descriptions. Background

on the function of many of these components and references to more detailed

descriptions can be found in section 2.5. Some new handshake components

are introduced and brief descriptions of their operation are given at the appro-

priate point. Full details of these new components can be found in section 4.2

and appendix B.
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Figure 3.4: Balsa input structure

3.5.1 Input

The conventional Balsa input structure is shown in figure 3.4. This structure is

produced by the active enclosure construct shown below.

a, b -> then
<body - a used once, b used twice>

end

The activation of the input command, is used to initiate pulling data from

the environment on the input channels, (a and b). The FalseVariable (FV) com-

ponent is used to implement multicast on the input channels. The body of the

structure is activated following the the signal ports of the FalseVariable com-

ponent being synchronised at the Sync component. This activation indicates

the availability of the data for the body to then pull it from the read ports of

the FV when required.

The data-driven style makes use only of push structures. Instead of using

the FV to implement multicast, an alternative push structure must be used.

As the input channels are now push channels, there is no need to pull the

input data. For inputs that are used in only one place, the data can be pushed
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Figure 3.5: Data-driven input structure

V readswrite

Figure 3.6: Variable component with three read ports

directly to the body. For inputs that are used more than once, a duplicate of the

data must be sent to all the required places. The Duplicate (Dup) component is

used to implement this broadcast behaviour. See figure 3.5 for the data-driven

version of the circuit example shown in figure 3.4.

An advantage of this approach is that the input channels do not need to

be synchronised before activating the body as the body no longer needs an

activation to indicate the availability of the data; the data will be pushed to the

required places at some point.

The obvious drawback with this approach is that, as the original structure

implemented multicast, the body was free to select which read ports, if any,

of the FV to use. Where conditional structures are used, the data is only con-

ditionally required. In the broadcast structure, the data is sent to all possible

destinations whether they need it or not. The resolution of this problem is

discussed in section 3.5.4.
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V readswrite

Figure 3.7: VariablePush component with three read ports

3.5.2 Variables

Variables provide data storage within the Balsa language. They are imple-

mented by the Variable handshake component (figure 3.6). This component

has a passive input known as the write port and one or more passive outputs

known as the read ports. This component allows variables to be very flexible.

The control-driven approach allows data to be written to the Variable compo-

nent by pushing to the write port and read from the variable by pulling from

the read ports. The language ensures that the variable is not written at the

same time it is read. To the designer, a Balsa variable therefore looks very

much like a variable found in most imperative programming languages.

In the data-driven style pull structures are not used so this type of variable

is not available. The replacement storage component is called the VariablePush

and has active push ‘read’ ports (figure 3.7). Unlike the original Variable com-

ponent, this component has a write-once, read-once behaviour; each time a

data value is written it is automatically pushed on all read ports and the hand-

shake on all read ports must then complete before the next write data is ac-

cepted. Instead of a conventional variable, this makes a data-driven variable

much more akin to a channel that has storage, thereby allowing each end of

the ‘channel’ to complete independently. This restricted behaviour is a major

factor in the somewhat reduced flexibility of the data-driven descriptions over

conventional Balsa.

In common with the input structure from the previous section, the draw-

back of this approach is that the data that is pushed on the read ports of the

variable may not actually be required by the destination. If conditional struc-

tures are used then the data being pushed on any given read port may not be
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Figure 3.8: Balsa data processing structure

required. The resolution of this problem is discussed in section 3.5.4 which

describes the implementation of conditional structures.

3.5.3 Data processing

The original Balsa data-processing structure is a pull structure implemented

using the Fetch component to initiate a read of the required data from the

required Variable or FalseVariable components, pull it through pass-through

data components, and then push it to the destination. The following Balsa

code produces the example handshake circuit structure shown in figure 3.8.

a, b -> then
o1 <- a + b ||
o2 <- b

end

This code sends the sum of a and b to the destination channel o1 and sends

b to channel o2.

As shown in the preceding sections, in conventional Balsa, Variables and

FalseVariables had passive read ports whereas in the data-driven style data
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Figure 3.9: Data-driven data processing structure

is always pushed to all places where it may be required. In the data-driven

style this data is pushed straight through the push datapath components to

the destination as shown in figure 3.9. In this example, both operations are

unconditional so there is no need for any synchronisation with control at all

and the results are pushed directly to their destinations.

The handshake circuit graph for the data-driven circuit is certainly a lot

smaller but what impact does it have on the control part of the circuit? Fig-

ures 3.10 and 3.11 show the control for the standard bundled data implemen-

tation and 3.12 and 3.131 show the dual-rail implementations. A detailed

analysis of these circuits is beyond the scope of this discussion but it is clear

in both cases, and particularly the dual-rail, that the data-driven circuits are

both smaller and faster. Note how in the dual-rail example, the and gates

are opened early (quite probably before the arrival of data) allowing the data

to proceed directly through the datapath logic (the adder in this case). No

synchronisation is required between the inputs before they can be processed

through the datapath logic and furthermore, the remaining significant control

path dealing with the return-to-zero on the inputs has been substantially re-

duced.
1Note that for simplicity the reset has been omitted from the Dup component in this figure.
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Figure 3.11: Single-rail data-driven processing control circuit
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3.5.4 Conditionals

Conditional execution is supported by the case and if structures in Balsa.

This section will take the case construct as an example as it is more commonly

used than if, and the implementation of if is fundamentally the same as that of

case with a few extensions.

The following Balsa code is an example of the use of the case construct. The

control input c is used to determine whether to send the sum of a and b or just

b to the output o1. This code is compiled into the handshake circuit shown in

figure 3.14.

a, b, c -> then
case c of

1 then
o1 <- a + b

else
o1 <- b

end
end

As usual, the handshake circuit operates by requesting the three inputs,

synchronising on their arrival and then activating the body. The body pulls c

from the FalseVariable into a Case component that decides which of its sync

outputs to activate based on the value of the control data that has been input.

The standard data-processing structure is then used to pull the required data

and send it to the output. Additionally in this example, the CallMux com-

ponent merges the two possible sources for output o1 onto a single output

channel. As the Case component will only activate one of its outputs at any

time the CallMux will only receive an input on one input channel at a time,

thereby avoiding any hazards.

The data-driven equivalent of this circuit is shown in figure 3.15. The dif-

ference between the data-driven style and the pull style is that as all inputs

are pushed (see sections 3.5.1 and 3.5.2), all the data processing operations are

initiated, even though the result may not be required. In order for the circuit
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Figure 3.15: Data-driven conditional structure
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to operate correctly these extra results must not be allowed to propagate. The

FetchReject component is introduced to ‘reject’ the unwanted data. FetchReject

is so named because it is rather like a push version of the Fetch component.

Instead of pulling data and sending it to the output, it waits for pushed data to

arrive on the input and then either passes it through to the output or completes

on the input channel without sending anything on the output, thereby ‘reject-

ing’ the data. Two sync ports are provided on the component, the activation

port which is used to instruct that the data should be passed and the reject port

which is used to instruct that the data should be rejected.

Once the FetchReject components are in place, all that remains is to connect

the activation and reject ports to the correct outputs of the Case component.

In this simple example, one is activated while the other is rejected. This ar-

rangement allows the CallMux component to be used as in the original Balsa

circuit because concurrent input handshakes are avoided by correctly using

the FetchReject components.

As the data-driven style does not require synchronisation of the inputs,

there is potential for performance improvements over the control-driven cir-

cuit. The logic in the Case component is able to proceed as soon as the control

data arrives, and in parallel with the data processing rather than always hav-

ing to complete before initiating the pull data processing. However, the data-

driven style is essentially speculating on needing the results of all operations.

When using a conditional structure the unwanted results must be rejected and

the overhead of this operation may harm performance. However, it is believed

that generally this overhead should rarely be significant for the following rea-

sons.

As the rejection will often occur in parallel with other useful operations,

its effect on the overall performance should be limited. Only where the reject

takes longer than useful processing will it reduce the overall performance as

both must be completed before the next ‘cycle’ of the operation. The reject
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operation itself is quite efficient but if the arrival of the data is slow then the

overall impact may be greater.

In cases where there is no operation in parallel with the reject, it may often

be the case that the data will arrive in advance of the reject signal and the re-

jection will therefore be concluded quite swiftly. Note that in the Balsa circuit,

it is still necessary for all the inputs to arrive before the operation can complete

even if no data processing is actually performed. Furthermore, in the Balsa

circuit, the logic in the Case component does not begin evaluating until all the

inputs have arrived whereas in the data-driven approach the evaluation can

occur in parallel with the arrival of the inputs and so the FetchReject may have

received the reject by the time the data arrives so it will at least be immediately

rejected, albeit following a possible additional delay through some data pro-

cessing logic. In the conventional Balsa case, all the inputs must arrive before

the process of deciding what to do with them can begin.

Even so, it may be the case that unbalanced datapaths could cause a prob-

lem. Consider the example shown in figure 3.15. Here one of the operations is

an addition while the other is simply passing through the data from input b un-

changed. The addition is most likely to incur a significantly longer delay than

the pass-through operation. If the second operation is selected frequently, and

assuming the environment can supply inputs and consume outputs quickly

enough, there is the potential for the rejection of the add operation to reduce

the throughput of the overall circuit.

However, experience in designing with Balsa has shown that the delay of

the control nearly always exceeds that of the datapath so it is reasonable to be

optimistic that many datapath delays incurred as a result of speculation will

be entirely masked by the delay of the control that works out whether or not to

reject. Additionally, the inputs needed for the datapath operation may arrive

earlier than those for the control allowing the datapath to complete before the

control signals arrive at the FetchRejects.
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Finally, it is always possible to communicate to the experienced designer

information to assist them in avoiding generating situations that may degrade

performance. Section 4.3 presents an example of source level optimisation to

avoid speculative operations.

3.5.5 Conditional input

Conditional inputs may occur in Balsa code when an input is made as part of

the body of a conditional structure. For example, in the code below, channel b

is a conditional input in the else clause of the case construct.

a, c -> then
case c of

1 then
o1 <- a

else
b -> o1

end
end

During the operation of this code, data is only pulled on input channel b if

the else clause is activated. Otherwise no communication occurs on channel b.

This code is compiled into the handshake circuit shown in figure 3.16.

The important thing to notice when this circuit is converted to the data-

driven style is that when data arrives on input b, it is always used; there is no

need to reject any data if the else clause of the case is not executed, as the input

never arrives. Of course, in a data driven style there may be a request pending

on channel b but this should be acknowledged by a subsequent cycle of the cir-

cuit when the else clause is executed. It is important that, until the else clause

is taken, this request is not propagated too far as a conflict may be caused. To

avoid this possibility the FetchPush component is used. This component can

be considered as a push version of Fetch, or a version of FetchReject without a

reject.

To further explain the above, consider the example in figure 3.17 which
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Figure 3.16: Balsa conditional input structure

is the data-driven equivalent of the example in figure 3.16. The FetchPush

component is used on channel b to ensure any request on b is not passed to the

CallMux component before the Case has decided that operation should occur.

This ensures the inputs to the CallMux cannot occur concurrently.

Due to the pull nature of conventional Balsa handshake circuits and the

use of the FalseVariable component, following the arrival of inputs (whether

conditional or unconditional), these inputs can then be read and combined in

any desired fashion. In the data-driven style this flexibility is not so readily

available. Consider the following code example, only a small modification to

the last example given above.
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Figure 3.17: Data-driven conditional input structure

b, c -> then
case c of

1 then
o1 <- b

else
a - > then

o1 <- a + b
end

end
end

This code presents no problem for the Balsa compiler but a data-driven

equivalent is more difficult to derive. If the approach given to this point is

followed for this example then input b will be duplicated and sent on a direct

path to o1 and through the adder with a and then to o1. If the else clause is

executed then there is no problem. However, if the else clause is not executed

then what should be done? Where input a was also unconditional, a reject was

used to kill the unwanted data after the addition had occurred (see figure 3.15).

In this example, if the else is not taken then there will be no data on a to reject,

or more accurately, any data that is pending on a is not to be rejected. In gen-

eral, this problem will occur any time conditional inputs are combined in an

expression with unconditional inputs.
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Figure 3.18: Combining conditional and unconditional inputs

In order to avoid this problem, a complex scheme could be devised to re-

ject the unconditional inputs (if they are not required) before they are com-

bined with the conditional inputs. For example, a circuit similar to the one in

figure 3.18 could be used. However, such a scheme reverses part of the advan-

tage of adopting a push style as the datapath operations are once again stalled

waiting for control to decide whether the result of the operation is required, in-

stead of control and datapath operating in parallel. Furthermore this scheme

presents additional complexity in compilation as the placing of rejections is

now much less straightforward.

For these reasons, such a scheme has not been used. Instead, combinations

of conditional and unconditional inputs within expressions are considered in-

valid by the compiler, avoiding the need to produce an implementation at the

expense of some reduction in flexibility. However, the user is still able to im-

plement this scheme in the source description if they choose. See section 3.6.8

for an example of this.



3.5. Data-driven circuit structures 91

3.5.6 Nested conditionals

Conditional structures in Balsa can be nested within one another as demon-

strated by the following code.

c, d -> then
case c of

1 then
case d of
1 then

<body X>
end

else
e -> then

case e of
1 then

<body Y>
end

end
end

end

In the control-driven style the output activations from one conditional struc-

ture are simply used to activate the nested conditional. In the data-driven style,

the evaluation of the logic in all Case components proceeds concurrently, but

the output activations of nested conditionals must be delayed pending an acti-

vation from the outer structure as shown in figure 3.19. This example demon-

strates the use of the CasePush and CasePushR components.

CasePush is used where it is necessary to synchronise with an activation

before output activations are made from the Case component. This is the case

for the Case component whose input is channel e as data will only arrive on e

when it is required.

It may be necessary to reject the input to a CasePush if data will arrive that

is not required, as in this example with the Case component whose input is

channel d. CasePushR is simply a CasePush with a reject input that upon ac-

tivation will discard the input data without activating any outputs. The reject
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Figure 3.19: Data-driven nested conditional structure

port is then activated on all conditions where the activate port is not.

3.5.7 Arbitration

The nature of asynchronous design means that it is sometimes necessary to use

arbitration to determine the order of arrival of independent inputs. The arbi-

trate construct is used in Balsa to generate a circuit that will arbitrate between

two sets of inputs. The following code gives an example of its use.

arbitrate a then
o <- a

| b then
o <- b

end

In this code, the first section of the arbitrate is activated if input a arrives

and the second section if input b arrives. If both inputs arrive concurrently

then it will arbitrarily select one as having arrived first and activate the appro-

priate section. The Balsa implementation of this code is already partly data-

driven as the inputs are push rather than pull.

This code is compiled into the handshake circuit in figure 3.20. As usual,
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Figure 3.20: Balsa arbitration structure

the FalseVariable components are used to receive inputs but in this case the in-

puts are push rather than pull so a FalseVariable with a passive input is used.

The signals from the FalseVariables are used as the inputs to the Arbitrate (arb)

component. The Arbitrate component passes through handshakes on its pas-

sive ports to the corresponding active port but ensures that output handshakes

are mutually exclusive. Should both inputs arrive concurrently then a non-

deterministic decision will be made as to which to pass first. The outputs of

the Arbitrate are used to feed a DecisionWait (DW) component which synchro-

nises with the activation from the control tree before activating the appropriate

output.

The data-driven equivalent shown in figure 3.21 is very similar to the origi-

nal Balsa handshake circuit. The only difference is that the FalseVariables have

active push outputs and conversely the Fetch components must be replaced by

FetchPush with a passive input.

This structure is a variety of conditional structure so inputs that are not part

of the arbitration but are used in the body of the arbitrate need to be rejected

from the DecisionWait. However, note that all inputs to an arbitrate are used,

even if the other side of the arbitrate is activated first, so no reject is neces-

sary for these. Therefore, the inputs being arbitrated are conditional and the

same restriction on combining them with unconditional inputs as described in
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Figure 3.21: Data-driven arbitration structure

section 3.5.5 applies here also.

3.5.8 Arrayed variables

In Balsa, variables that are declared as having an array type may be imple-

mented in two principal ways. The first is used when the entire array is writ-

ten at the same time and elements are not written individually. For example,

consider the code fragment below.

input i : array 0..3 of 2 bits
input c : 3 bits
output o : 2 bits

variable v : array 0..3 of 2 bits

loop
i -> v ;
c -> then

case c of
0b1xx then

o <- v[(#c[0..1] as 2 bits)]
| 0b0xx then

o <- v[0]
end

end
end



3.5. Data-driven circuit structures 95

V
@

|

@
FV

;

#

activate

i
o

c

Figure 3.22: Balsa single-write array variable structure

This code is implemented by the handshake circuit in figure 3.22. This code

demonstrates writing a single value to the entire array and then reading in-

dividual elements. The code also shows how elements may be specified with

a constant index or by a non-constant run-time index. (Of course, the entire

array may also be read in one go.)

In this instance a single Variable component is used to implement the vari-

able. To support reading the variable with a constant index, a read port is

placed that provides the correct bits from the array. To support reading the

variable with a run-time index, a read port is generated for each element in

the array. The CaseFetch component is then used to select the correct element

based on the index.

It is relatively easy to derive a data-driven equivalent for this type of ar-

rayed variable structure. Figure 3.23 shows a data-driven equivalent of the

circuit in figure 3.22. The new component used in this circuit to implement the

run-time index is the Mux. This component receives an index and uses this
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Figure 3.23: Data-driven single variable array structure

to select one of its inputs to pass it to the output, discarding the other inputs.

The SplitEqual component is used to generate the individual array elements as

adding multiple read ports to the variable would incur a significant overhead

that can be avoided in this situation where the destination of all the data is to

be the same place.

The second type of variable is that where elements in the array are written

individually. This situation introduces significant added complexity as the ex-

ample code below and circuit in figure 3.24 demonstrate.
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input i : array 0..3 of 2 bits
input c : 3 bits
input d : 2 bits
output o : 2 bits
output p : array 0..3 of 2 bits

variable v : array 0..3 of 2 bits

i -> v ;
loop

c -> then
case c of
0b1xx then

o <- v[(#c[0..1] as 2 bits)]
| 0b0xx then

d -> v[#c[0..1] as 2 bits)]
end

end
;
p <- v

end

This code demonstrates the full flexibility offered by Balsa for using arrayed

variables. Firstly, a single value is written to the entire array, then an individual

element is read or written, and then the entire array is read as a single value.

The strategy adopted by Balsa is to implement the arrayed variable using

multiple Variable components, one for each element in the array. The control

can then initiate reads and writes of the passive ported Variables individually

or as a group, splitting the write data and combining the read data as required.

A data-driven equivalent of this circuit structure presents substantial prob-

lems. Once the Variables have been converted to VariablePush components, it

is necessary to write to each VariablePush before it is read. After writing to a

single element in the array, only that element would be available to read. This

behaviour could be adopted by the data-driven approach but it would create

difficulties for a compiler. When compiling a read from the array it cannot be
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assumed that all the elements will be being pushed so it is not possible to sim-

ply reject the remaining elements. An option is to leave the management of

the structure to the user, who must only attempt to read elements of the array

that are written. Alternatively the user could be restricted to always writing to

every element if they wish to use run-time indexing.

Alternatively, an elaborate scheme to write-back the original data to those

variable elements that are not written could be devised. This would ensure

that every time any element in the array is written, all the other elements are

also written (with unchanged data). To the read side, the arrayed variable

always appears as if the entire array has been written, enabling use of the read

structure shown earlier (figure 3.23).

Neither of these suggestions have been fully adopted in the data-driven

style though the first option has been adopted in part. Instead, two different

types of arrayed variable are provided. The first produces a single Variable-

Push component that must be written in its entirety but allows individual el-

ements to be read as in figure 3.23. The second generates multiple, essentially

independent, VariablePush components, very much as arrays of channels are

available in Balsa (and the data-driven style). These may only be written us-

ing constant indices; run-time indexing cannot be used for writes. Run-time

indexing may be used for reads but where it is used it will be assumed that all

elements will be available to select from. The user must therefore ensure that

all elements are written when using a run-time index.

This second type of variable can be used by the user to generate a fairly

close approximation of the functionality of the multi-variable Balsa structure

by implementing, in the source description, the second of the schemes offered

above. Although the functionality may be similar, the area used is substan-

tially greater. For an example of code that generates this structure, see sec-

tion 3.6.6 and the register bank of the nanoSpa in section 5.4.3.
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Figure 3.25: Sequenced sync structure

3.5.9 Sync channels

Sync channels are available in the data-driven style and are implemented in

the same fashion as in Balsa. It is expected that there will be little use in a

data-driven style for data-less channels, but they are notable in that the sync

command is the only command in the data-driven style that may be explicitly

sequenced. For example, the following code is compiled to precisely the same

structure in Balsa and data-driven programs; the structure being a Sequence

component (figure 3.25).

sync a ;
sync b

Sync channels may be used as ‘inputs’ to the arbitrate structure.

3.6 New input language

In the preceding sections the new data-driven circuit structures were described.

This section will describe the high-level language that is translated in a syntax-

directed fashion into those circuit structures. The language is designed to re-

semble conventional Balsa wherever possible. Therefore the description below

attempts to highlight the differences and where it remains silent it can be as-

sumed that the Balsa solution has been directly adopted.

Unlike Balsa where a circuit consists of commands linked by sequential or

parallel control, the data-driven approach consists of lists of commands that

operate independently and in parallel. Unlike the control-driven approach,
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Figure 3.26: Data-driven one place buffer

control sections of the circuit do not wait for an activation but proceed as far

as they are able, pausing only when awaiting data.

3.6.1 Hello World!

The equivalent of a Hello World program in Balsa is the one place buffer. This

serves equally well here as an initial introduction to the data-driven language.

-- One place buffer
procedure buf (input i : 1 bits;

output o : 1 bits ) is
variable x : 1 bits

begin
input i
output x
during

x <- i
end

input x
output o
during

o <- x
end

end

It can be seen from this small example that much of the language is very

similar to conventional Balsa. The declaration of the procedure and the input

and output ports is identical. Unlike conventional Balsa, the procedure input

ports will always be passive due to the push style of implementation. Inter-

nally to the procedure the input ports are treated as read-only channels and

the output ports as write-only channels.
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The main new feature in evidence here is the division of the procedure

into blocks consisting of input and output declarations and a body containing

the commands that use the inputs and generate the outputs. Unlike Balsa, the

control structures of the circuit are largely implicit. Blocks implicitly operate in

parallel, as do the list of commands within the block. The only synchronisation

between the two blocks in this example takes place at the variable; the read

must complete before the next write can overwrite the data in the variable.

This allows the variable reads and writes to overlap to the largest possible

extent.

Incidentally, for comparison with figure 2.9 on page 41, the handshake cir-

cuit for this buffer is simply a VariablePush component (see figure 3.26).

3.6.2 Variables

The control-driven style of Balsa allows variables to be accessed in a very gen-

eral fashion, so as to appear very similar to variables in a standard program-

ming language. Variables can be read and written in any arbitrary sequence.

The Variable component has passive read and write ports and the control tree

initiates communication on these as required. In the data-driven approach, the

VariablePush immediately pushes any data written to it out of its active ‘read’

ports. This means that a variable must always be read after it has been written.

Variables therefore resemble less those of standard programming languages

and are much more similar to channels. In fact, it may be more helpful to think

of a variable in the data-driven style as a channel that contains storage, or even

as a type of channel which each communicant can use at different times, rather

than having to synchronise like a normal channel.

Reflecting this, variables are specified as inputs and outputs (to blocks –

procedure ports only connect using channels) in precisely the same fashion as

channels. In the following discussion use of the term channel generally implies

a channel or variable except where otherwise stated.
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3.6.3 Input ‘control’

As all inputs are passive, it is not necessary to generate requests to pull the

inputs as in Balsa. Apart from this, the semantics of the input are similar to

the ‘eager’ inputs described in section 3.1.1 in that the ‘control’ is activated

early. However, in the eager semantics, it was still necessary for the control

and data to synchronise to release the data once all required reads had been

completed on the channel. As reads are now to be pushed, this synchronisation

is unnecessary as the release of all the ‘read’ ports will indicate that all reads

on the channel are completed.

In the data-driven approach, therefore, inputs are merely specified as arriv-

ing at some point during the operation of the commands; the control waits for

the arrival of inputs at any points where they are read (if they have not arrived

already).

3.6.4 Write command

The write command (<-) is used to output the result of an expression to an

output channel (or variable). The channels written to must have been declared

as an output from the block.

Compilation of the write command involves compiling the expression into

appropriate push datapath components and connecting the result to the des-

tination. This may be a direct connection or it may be through a FetchPush

or FetchReject depending on whether the command is conditionally executed

and whether a rejection is required to discard the result if it is not required.

3.6.5 Arrays

Channels and variables can be arrayed in a similar fashion to Balsa. How-

ever there are some differences in the semantics of variable arrays. In Balsa,

a variable declared as having an array type will generate a separate variable
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for each item in the array, but a single read and write structure allowing access

to only one item in the array at a time. A similarly declared variable in the

data-driven language generates a single variable that holds an entire value of

the array type. The whole of the array must therefore be written to at one time.

Variables can also be declared in a similar fashion to arrayed channels pro-

ducing multiple variables in the implementation. Each of these variables must

be written individually; the whole array may not be written by a single com-

mand (with the exception of writing the same value to every item in the ar-

ray using the all keyword as described in the next section). Furthermore,

if a non-constant index is used to access the array then it is assumed by the

compiler that all elements of the array will be available to select the correct

element from. Therefore, a write must be made to all elements in the array

where a non-constant index is used to read from the array or a deadlock may

be shortly anticipated.

In addition to the above usage, this type of array may be used as a set of

essentially independent variables accessible by constant indices. This is a par-

ticularly useful feature when used with structural iteration as demonstrated in

the next section.

3.6.6 Structural iteration

Structural iteration is a very useful language feature especially when combined

with arrayed channels and variables. Essentially it allows the same code to be

compiled multiple times with different channel and variable connections. For

example, the following code is a simplified excerpt from the register bank of

the nanoSpa processor (see also section 5.4.3).
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constant REGNUM = log REGCOUNT bits

array REGCOUNT of variable reg_usrw
array REGCOUNT of variable reg_usrr

input reg_usrr
output reg_usrw
during

for i in 0..REGCOUNT - 1
reg_usrw[i] <- reg_usrr[i]

end
end

input reg_usrw, wc, wd
output reg_usrr, reg_svcr
during

foreach i in reg_usrr
case wc of
(i as REGNUM) then

reg_usrr[i] <- wd
else

reg_usrr[i] <- reg_usrw[i]
end

end
end

The above code generates REGCOUNT instances of the circuit in figure 3.27.

(The position of the channels that take data to the read ports are indicated on

the diagram but the code for the read ports is not given above.)

Effectively this code generates a register ‘cell’ for each register. In each ‘cy-

cle’ of operation the write control (wc) and data (wd) is duplicated to each cell

and that cell compares the register address in the control against its own index.

If they match then the write back data is written to that register, otherwise the

original value from the register is written.

Three forms of structural iteration are supported. The for and foreach

constructs are demonstrated in the above example. For allows iteration over

a given range and foreach allows the range to be specified as the size of a
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Figure 3.27: Simplified register cell

given arrayed variable/channel.

The final form allows an array to be the target of a write command by

prefixing the command with the all keyword. This provides shorthand for

allowing writing of the same value to an arrayed member. For example the

following two code fragments are equivalent functionally.

-- This code is functionally the same as ...
foreach i in an_arrayed_output

an_arrayed_output[i] <- an_expression
end

-- ... this code
all an_arrayed_output <- an_expression

The all keyword allows for the possibility of a smaller implementation as

any datapath components in the expression need only be generated once with

the result being passed through a Dup component to send the result to each

variable in the array.
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3.6.7 Initialisation

A special init block may be included in each procedure; its purpose being

to initialise variables to a particular value and alter the usual behaviour of the

variable so it first pushes this value before accepting a write. The init block

simply consists of a list of write commands with a variable as the target of

the write and an expression that can be evaluated at compile-time. The all

keyword (see section 3.6.6) may also be used to load all items in an arrayed

variable with the same value.

This initialisation should not be confused with the initialising of a variable

to a value in Balsa. Variables must only be initialised if it is desired to read from

them before writing to them. In Balsa it is acceptable to initialise a variable to

a value just in case it is read before the first time it is written, or even if it is

always written before the first time it is read (although it is not sensible to do

so in the latter case).

3.6.8 Restrictions

Combining inputs

A conditional input is an input that is part of the body of a conditional struc-

ture. As explained in section 3.5.5, such inputs cannot be combined with un-

conditional inputs in any expression. So the following code will produce a

compiler error as the operation a + b cannot be used where the input of a is

conditional and b is not.
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input b, c
output o1
during

case c of
1 then

o1 <- b
else

input a during
o1 <- a + b

end
end

end

This restriction can be worked around by declaring another channel and

making both inputs to the expression conditional as follows:

channel t

input b, c
output o1, t
during

case c of
1 then

o1 <- b
else

t <- b
input a, t during

o1 <- a + t
end

end
end

Note that by using this technique, less advantage is taken of the speculation

as the case must be resolved before the channel t is written and the expression

begins evaluation. Note also however, that the speculative evaluation of the

addition is avoided in the case where the else clause is not chosen. This may

be exploited for the purposes of improving performance or reducing energy

consumption.
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All inputs and outputs must be used

All inputs and outputs that are declared must appear in the body of the block.

(They must also be declared if they appear.) It is only necessary for the pos-

sibility to exist for each output to be produced. It is not necessary for every,

or indeed any, output to actually be produced by the block when it is operat-

ing. Once an input is declared it will be assumed that a value will arrive from

that channel or variable, but declaring an output declaration means only that

the block is the one that writes to the channel/variable, not that a value will

definitely be written in any particular ‘cycle’ of the block.

Output to input dependencies must not be disjoint

An output depends on an input if the input must arrive before the output can

be produced. For example in the following code o1 depends on c and a, t

depends on c and b and o2 depends on a and t.

channel t

input a, b, c, t
output o1, o2, t
during

case c of
1 then

o1 <- a
else

t <- b
end

o2 <- a + t
end

This gives three sets of input dependencies for each output: {c,a}, {c,b},

{a,t}. These are not disjoint as c appears in the first two and a appears in the

first and third. This code is therefore valid.

The following code is not valid:
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channel t

input a, b, c, t
output o1, o2, t
during

case c of
1 then

o1 <- b
else

t <- b
end

o2 <- a + t
end

The sets of input dependencies for this code are: {c,b}, {c,b} and {a,t}. The

set containing a and t is disjoint from the other two sets. A separate block

should be used to produce o2:

channel t

input b, c
output o1, t
during

case c of
1 then

o1 <- b
else

t <- b
end

end

input a, t
output o2
during

o2 <- a + t
end

This rule helps to ensure the design is understandable as each block has a

single ‘cycle’ of operation due to the fact that all inputs are synchronised some-

where, though not necessarily with all others. For example, if the following
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code were valid then its meaning would be open to question but presumably,

following the method of operation so far defined, o1 will be written every time

a arrives, o2 would be written every time b arrives and there would be no

synchronisation between the two operations.

input a, b
output o1, o2
during

o1 <- a
o2 <- b

end

In Balsa, if one were to write: o1 <- a || o2 <- b, then there is an

explicit synchronisation that takes place in the control. The data-driven style

is designed to avoid making such synchronisations. In Balsa, there will be

one communication on o1 and one on o2 before another takes place on either

channel. In the data-driven style there could be infinite communications on

o1 before any occur on o2 or vice-versa. This could make designs much more

difficult to understand.

3.7 A note on temporal iteration

As described in section 2.5.5, Balsa features a conditional while loop structure

that is similar to constructs found in most imperative programming languages.

The control-driven style allows this control structure to be implemented eas-

ily. The data-driven style is based on data flow rather than explicit control

structures and so cannot implement temporal iteration in the same manner.

A couple of points are worth noting about the conditional looping structure.

Firstly, it is not particularly common – the Balsa nanoSpa design contains only

two while loops, both of which are related to the decode of multi-cycle instruc-

tions (see section 5.4.2 on page 139). Secondly, it is inefficient (see section 5.4.2

on page 139 and tables 5.1 and 5.3 on pages 152 and 154).
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The advantage of the control-driven iterative structure is that it is possible

to read from a variable many times while the iterative process is operating. It

is, however, perfectly possible to implement such iteration in the data-driven

style but it must be described in a data-flow fashion. For example, consider a

loop that generates some outputs based on the values of two variables, a and

b. This can be implemented by code along the lines of that given below. The

variables la and lb are used to ‘feed-back’ the values of a and b to each iteration

of the loop.

variable a, b
variable la, lb

input a, b, ...
output la, lb, ...
during

la <- <expression (maybe using a and b)>
lb <- <expression (maybe using a and b)>
<produce other outputs using a and b>

end

input la
output a
during

a <- la
end

input lb
output b
during

b <- lb
end

init
a <- <initial_val>
b <- <initial_val>

end

A simple example of the use of this structure might be a for loop with a

counter that determines the number of iterations of the loop. In this example,
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the ‘body’ of the loop will simply output the counter which decrements from

the value supplied on the input (newcount) down to zero.

variable count, lcount

input count
output lcount, o

case count of
0 then

input newcount
during

lcount <- newcount
end

else
lcount <- count - 1

end
o <- count

end

input lcount
output count

count <- lcount
end

init
count <- 0

end

See the nanoSpa decode unit (section 5.4.2 and code in appendix C) for a

more complex example of this sort of structure in practice.
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Chapter 4

Using the data-driven style

This chapter contains a number of largely unrelated sections with further in-

formation about the implementation of the data-driven style and ideas about

its uses.

Section 4.1 discusses the modifications made to the existing Balsa design

flow to incorporate the data-driven style.

Section 4.2 discusses the back-end implementation of the new components.

Section 4.3 gives an interesting example of source-level optimisation in the

data-driven style.

The possibility of automated optimisation of conventional Balsa into the

data-driven style is briefly considered in section 4.4.

4.1 Integration into Balsa design flow

Figure 4.1 highlights the additions made to the Balsa design flow to support

the data-driven style. (The original flow was shown in figure 2.8 on page 39.)

The principal addition is the new data-driven compiler which compiles data-

driven code into handshake circuits represented in the breeze format. The

compilers may import breeze produced by the new compiler or the conven-

tional compiler allowing integration of the two styles at the procedure (or part)

115



116 Chapter 4. Using the data-driven style

Handshake Circuit
(Breeze netlist)

Gate−level netlist
Gate−level simulation

Layout simulation

Behavioural simulation

(breeze−sim)
Behaviour

Function

Layout

Commercial
layout tools

Timing

Data−driven code Balsa code

Balsa compiler
re

−
us

eData−driven
compiler

behaviour descriptions
new component

gate−level descriptions
new component balsa−netlist

Design refinement (manual process)

Figure 4.1: Additions to Balsa design flow

level. This makes it very easy to create designs that mix data-driven and con-

ventional styles.

The preceding chapter introduced a number of new handshake compo-

nents to support the data-driven style. The other additions to the design flow

involve adding these components to the back-end and simulation environ-

ment.

The present compiler implementation allows mixing of conventional Balsa

and data-driven code at the procedural level. A possible area of future work

is to add support for even tighter integration of the two styles. This might

present opportunities to exploit the benefits of both styles at a more fine-grained

level. Data-driven and conventional Balsa code could be connected by local

channels within a procedure. There is also nothing to prevent push style vari-

ables being written by conventional Balsa code. Data-driven code could then

be inserted in-line with conventional Balsa to handle the ‘reads’ from the vari-

able. It is not immediately clear whether this tighter integration will add value
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for the designer but it is an interesting area for future exploration.

4.2 Back-end implementations

In order to evaluate the data-driven style, two Balsa back-end implementations

have been extended with the new components. These are the broad bundled-

data and dual-rail implementations. Many existing components are re-used

without modification. Pull datapath components have been re-used to create

push versions where the only modification is to reverse the direction of the

protocol. This means that in this implementation, the datapath logic of the

two styles is the same. The new component implementations are given in ap-

pendix B.

The new components that have been added provide correct operation but

may not be optimal. For example, the data-driven style uses the conventional

Balsa Concur component in order to generate parallel activations. This com-

ponent is implemented using T-elements to allow the output activation hand-

shakes to complete independently. The new Dup component is implemented

rather like a Concur except with data channels instead of sync channels. It

is possible that these implementations may be too heavyweight in certain cir-

cumstances. If the logic of the output activations or data channels is fairly

balanced, there may be little advantage in using Concur-style components to

avoid synchronising between processing and RTZ phases. It is not known

whether it is always safe to remove the T-elements from the Concur and Dup

components. In Balsa, it is possible that one output from a Concur must com-

plete before another can complete. Therefore synchronising between the pro-

cessing and RTZ phases is not possible. In the data-driven style, it is possible

that a number of concurrent activities are used to produce only a single output

and the other paths are speculative and will be rejected. In this case, it would
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not affect correctness if the handshakes were synchronised between phases in

the manner of a Fork. There is an opportunity for future work around ques-

tions of component implementation such as this.

Conventional Balsa handshake circuits did not require a reset signal to ini-

tialise components. This is sometimes considered an advantage of the ap-

proach, but is really of minimal importance. The Balsa back-end already had

the ability to use a reset signal and distribute it throughout a design and the

data-driven components have been designed using this feature. It would not

be straightforward to implement some components such as an initialised Vari-

ablePush without a reset signal as setting the storage in the component to a

particular value without a reset is problematic. In Balsa, the handshake circuit

itself is used to initialise variables by sequencing variable writes to occur first,

and then activating the main operation of the circuit. This solution is clearly

not possible in the data-driven style and is somewhat inefficient anyway as

it may lead to the introduction of a CallMux component on the Variable input

which adds latency during the main operation simply to support initialisation.

It is also worth pointing out that all synchronous circuits use a reset signal; it

is hardly a new issue that asynchronous design has introduced.

4.3 Source-level optimisation

An often quoted advantage of Balsa is that, due to the direct compilation, the

designer is able to optimise for performance, area, or power consumption at

the source code level. The direct compilation of the data-driven style allows

for very much the same thing.
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4.3.1 The example

The following data-driven description (design A) will be used to demonstrate

this by example.

-- design A
input ctrl, a, b
output o
during

case ctrl of
1 then

o <- a -- pass
else

o <- a + b -- add
end

end

This code writes either a or the sum of a and b to the output o depending

on the value of ctrl (which will be assumed to be 1 bit). These two alternative

operations will be called pass and add. The add operation is a convenient choice

for the slower operation as the delay can be easily modified by adjusting the

inputs to alter the length of the carry chain (the default adder used is a basic

ripple-carry adder). Figure 4.2 shows the resulting handshake circuit.

In section 3.5.4 it was noted that a description such as this, where one of the
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conditional operations is potentially much slower than the other, could lead to

reduced throughput, particularly if the pass operation is frequently selected.

Additionally, if energy consumption is a consideration then speculating on the

add operation when it is not required is likely to increase the energy require-

ment of the circuit. This is especially true in delay-insensitive implementations

where, as the request is encoded with the data, if no add takes place then no

transitions will occur in the adder.

The graph in figure 4.4 shows the results of simulating this circuit using the

dual-rail back-end and unit gate delays. The test-bench used for the simulation

has zero delay so the inputs are supplied as quickly as they can be accepted and

the output is consumed as quickly as it is produced. The width of the adder

is 16 bits. It can be seen in the graph how the cycle time for pass operation

increases as the length of the carry chain increases due to the speculative add

operation being performed, even though it is not required.

Note that as the environment has zero delay, the results here represent the

worst possible case in terms of the impact of the speculative operation. If the

data on channels a and b were to arrive earlier than that of ctrl then the impact

of the speculation on the throughput might be reduced.

4.3.2 Avoiding speculative operation

Either from a desire for throughput, or reduction in energy use, it may there-

fore be desirable to avoid performing the slow operation (add) unless it is ac-

tually required. The description given on the next page (design B) performs

the same operation but does not speculate on the add operation. The addition

is now contained within its own block. The control is used to supply the in-

puts to the add operation only when the result is actually required. The result

is then only produced when required so it becomes a conditional input to the

block that generates o.
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-- design B

channel addA, addB, pass
channel addR
channel ctrl0
channel ctrl1

input addA, addB
output addR
during

addR <- addA + addB
end

input ctrl
output ctrl0, ctrl1
during

ctrl0 <- ctrl
ctrl1 <- ctrl

end

input ctrl0, a, b
output addA, addB, pass
during

pass <- a
case ctrl0 of

0 then -- supply the operands for the
addA <- a -- addition only when they are
addB <- b -- required

end
end

input ctrl1, pass
output o
during

case ctrl1 of
1 then

o <- pass
else -- the add result is

input addR during -- only produced
o <- addR -- when required

end
end

end
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Figure 4.3: Speculative operation avoided (B)

See figure 4.3 for the circuit produced for design B. As well as increasing

the latency of the add operation, the additional drawback of this design is

that the area is a little larger than the original. See table 4.1 and figure 4.5 for a

comparison of the area. The clear advantage of design B, as shown in figure 4.4,

is that when doing the pass operation the throughput is significantly improved

and constant irrespective of the latency of the slower operation.

Which design is then to be preferred, A or B? Clearly this depends on the

difference in the delays of the two operations, the specific requirements of the

designer and the anticipated usage pattern of the circuit (i.e. how many add

operations are performed compared with pass operations). Assuming the av-

erage delay of the slow operation is the add with a carry chain length of 4 then

the graph in figure 4.6 shows that if in approximately 75% or more cycles the

add operation is selected, then design A provides better throughput overall.

However, if the add operation is selected less than 75% of the time then design

B will have better overall throughput.
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4.3.3 Adding pipelining

What if the best of both worlds is required? Can anything be done to fur-

ther improve the throughput? As design B contains two stages of operation,

there is an obvious opportunity to increase the throughput by pipelining these

two stages. Unlike the control-driven style of conventional Balsa, in the data-

driven style it is straightforward to add pipelining. By using design B but

changing the channels ctrl1, pass, addA, and addB to variables the circuit in

figure 4.7 (design C) is produced. The only changes to the code for design B are

in the first five lines where some channel declarations are changed to variables:

-- design C

variable addA, addB, pass
channel addR
channel ctrl0
variable ctrl1
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Figure 4.4 shows how the pipelining improves the throughput of both op-

erations in comparison to A and B. Figure 4.6 confirms that design C provides

better throughput regardless of the pattern of usage of the two operations.

The cost of the new design is the extra VariablePush components which signif-

icantly increase the area over that of designs A and B (see figure 4.5).

Design Pass gates/cycle Add gates/cycle Transistor count
A 33 35 4090
B 25 38 5015
C 23 31 8563

(carry chain length: 4)

Table 4.1: Source-level optimisation example results
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4.3.4 Discussion

This example is not intended to suggest that a designer would, or indeed

should, use an analysis of this depth for every module in their design. In many

cases it may be that knowledge of the anticipated operation is sufficient to in-

tuitively make design decisions. For instance, in this example, if it is known

that the add operation will be uncommon then designers with some experience

should realise that they should avoid supplying operands to the operation ex-

cept when it is definitely required. In general, it is difficult to draw conclusions

on what may or may not be intuitively obvious to any given designer. Exactly

the same statement may of course be made with respect to conventional Balsa.

The claim being made here (if any) is that the data-driven style benefits from

the same advantage that is claimed for conventional Balsa. That is, that the

direct compilation allows a designer to make source-level optimisations that

will have a predictable effect on the resulting circuit. At the very least, the

benefit of a high-level synthesis approach is that it allows for rapid prototyp-

ing and testing of alternative designs where it is not immediately clear which

is preferable.

4.4 Data-driven style as a target for optimising

Balsa

The work in this thesis resulted from looking at conventional control-driven

Balsa handshake circuits and attempting to overcome the overheads inherent

in the control-driven structure. This result is a new style of handshake circuit

and a new description language in which to describe these structures. Another

possible approach that was examined was to automate transformations to ex-

isting handshake circuits to produce more efficient structures, similar to those
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of the data-driven style. This work was abandoned, in large part, due to un-

certainty as to what the resulting structure of the transformations should be.

The data-driven style was subsequently developed, in part, to explore what

the possibilities and limitations of such a style might be.

The possibility of using the data-driven style as a target for optimisations

to Balsa circuits now presents itself as an area for future work. A requirement

of any optimisation strategy is that while the internal behaviour of a circuit

may be modified, the external behaviour should remain the same. Any en-

vironment in which the original circuit was deployed should be able to take

advantage of the optimised version without requiring any modification.

This requirement is not easy to meet as understanding the behaviour of a

large design made up of many communicating processes is not trivial. Exist-

ing approaches do exist for generating data-driven style circuits from CSP-like

descriptions. For example, the Caltech synthesis tools which use data-driven

process decomposition [WM01] to decompose a sequential program written

in CHP into a number of smaller processes. However, this decomposition is

only correct where the design conforms to particular requirements. A similar

approach using Haste as the input language is being developed as part of the

CLASS project [CLA]. Both of these techniques involve pipelining sequential

operations which will result in different external behaviour.

For example, consider an environment that has two ports, one for control

and one for data. The environment requires that control is communicated fol-

lowed by data and the data communication must be completed before another

control communication occurs. A Balsa description structured similarly to the

following might be used to implement this interface:

loop
<generate C and V>
;
<generate D using V>

end
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Figure 4.8: Balsa process example

The handshake circuit structure is shown in figure 4.8. It is clear from this

structure that a communication will take place on C, followed by any com-

munications on D before returning to C. This process might be ‘decomposed’

along the lines of the methods mentioned above into the following two data-

driven processes (see figure 4.9):

output C, V
during

<generate C and V>
end

input V
output D
during

<generate D using V>
end

These two processes do not necessarily behave in the same manner as the

original. The order of communications may now feature a second commu-

nication on C, during the communication on D. This is because the explicit

sequencing in the control-driven process is not replicated in the decomposed
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V
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D

Figure 4.9: Data-driven process transformation

processes. The first process could produce a second communication on C even

though it is blocked writing to V while the second process uses it, whereas the

Sequencer prevents this in the Balsa implementation.

It is possible to give the programmer responsibility for ensuring that the

behavioural changes made by any optimisation scheme do not create errant

operation. This is the approach adopted in data-driven process decomposi-

tion of CHP, where the programmer must ensure the program is ‘slack elastic’

[MM98]. It is unclear how this complex requirement might be communicated

to a user who is not already familiar with the techniques being employed in

transforming the program. As automated process decomposition does not pro-

duce results that are nearly as effective as can be achieved manually [WM03],

an expert user may prefer to design in a data-driven style anyway. In this case,

the data-driven language introduced in this thesis should prove more applica-

ble than conventional Balsa.

Despite these reservations, some method along the lines of process decom-

position could prove very effective in optimising Balsa descriptions. As an au-

tomated optimisation approach it is important that the resulting circuit must

continue to do what the designer originally wrote with respect to the environ-

ment.

A possible area for future work is applying some analysis to determine

the external behaviour of a given circuit. This can then be used to ensure that
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optimisations preserve the correct behaviour; or to generate a wrapper that en-

sures the correct external behaviour is preserved, while allowing optimisation

of the internal workings of the circuit. Determining the behaviour could prove

a challenging problem. It is relatively straightforward to see what the possible

behaviour of a single process in isolation is. It is not so straightforward to see

what the external behaviour of a number of communicating processes might

be.

Adding assertions to the design that would allow optimisations to take ad-

vantage of knowledge of the environment in determining permissible modifi-

cations to behaviour is also an interesting possibility for future work.



Chapter 5

Design Example

The last two chapters introduced the data-driven handshake circuit style and

description language. This chapter will attempt to demonstrate the benefits

and drawbacks of the style by means of a large design example. The example

design, known as nanoSpa, is a 32-bit microprocessor which implements what

is essentially a slightly cut-down version of the ARM instruction set[SJ00].

5.1 Manchester Asynchronous ARMs

The nanoSpa is part of a series of asynchronous ARM implementations devel-

oped by the AMULET (latterly, APT) Group at the University of Manchester.

The first three processors were named AMULET and developed primarily us-

ing hand designed logic [FDG+93, FGT+97, FGG98].

The final processor was named SPA[PRB+03] and was fully synthesised

using Balsa. The objective of the SPA project was to investigate asynchronous

logic as a means of increasing resistance to differential power analysis (DPA) in

a smart card application. Performance was therefore not a major requirement

for the application or the objectives of the project which turned out to be just

as well.

The handshake components implementations, and architecture of the SPA

131
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were designed to operate in such a way that a balanced power usage would be

seen regardless of the data being operated on. For this reason, the performance

was deliberately impaired as all logic was designed to take worst-case time

rather than average.

However, even considering the security features, the performance of the

SPA was somewhat disappointing. This can mainly be attributed to the inex-

perience of the designers in using Balsa and the limited time available due to

the project imposed deadline for production of the chip. It should be pointed

out that the SPA was 100% ARM compatible and operated almost flawlessly

first time in silicon in single and dual-rail implementations, both entirely syn-

thesised from the same Balsa source description.

Since the SPA, and using the experienced gained therein, the nanoSpa has

been gradually developed with the sole objective of making a Balsa synthe-

sised asynchronous ARM of the maximum possible performance. Develop-

ment has not reached the stage where the processor implements the entire in-

struction set but most of the main features are present and benchmark pro-

grams can be run in simulation to produce a good idea of the performance

(which is almost ten times that of the original SPA). This makes it an excellent

example in demonstrating whether a data-driven circuit can offer performance

improvements over the best available conventional Balsa circuit.

5.2 Objectives of this example

1. To demonstrate that the data-driven synthesis flow can be used to con-

struct a significant design.

2. To compare the performance of a high performance Balsa design with the

closest possible equivalent in the data-driven style.

3. To demonstrate the integration into the existing Balsa design-flow and

the use of mixed Balsa and data-driven designs.
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4. To attempt some level of qualitative comparison between the features

and flexibility offered to the designer in both description styles. In par-

ticular, it is believed, that this example demonstrates that the data-driven

description differs very little from the style of Balsa code that an ex-

perienced Balsa developer would write. Indeed, converting the Balsa

nanoSpa into a data-driven description provided very few challenges.

5.3 The nanoSpa

nanoSpa utilises a Harvard architecture and a classical three-stage ARM pipeline;

the stages being fetch, decode and execute. Figure 5.1 shows this basic struc-

ture.

Unfortunately this does not lead to a balanced pipeline and the complexity

of the execute stage causes it to dominate the performance of the overall pro-

cessor. However, extending the length of the pipeline has proved difficult to

achieve in Balsa due to the increased requirements on the design of the register

bank. This will be further elaborated in section 5.4.3.

The description consists of approximately 3000 lines of Balsa. The follow-

ing ARM features have not been implemented at the time of writing. This is

due to time constraints rather than any anticipated difficulty in implementing
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these features.

• Multiply instructions

• RRX shift operation

• Half word/signed byte load/store

• Only two operating modes are implemented: system (privileged mode)

and user.

• Memory protection

• Interrupts.

• Memory aborts.

• Thumb compressed instruction set.

• Co-processor interface

5.4 Data-driven nanoSpa

The data-driven nanoSpa has been written by the author in the data-driven in-

put language. The description is roughly the same length as the Balsa original.

As far as possible, the micro-architecture of the processor has been precisely

copied from the Balsa description. As a consequence, most of the synthesised

datapath logic is the same as the Balsa nanoSpa, and the control contains most

of the significant differences. The intention is to attempt to explore the ad-

vantage gained by using the data-driven style in describing a design that is

as close as possible to a Balsa description, rather than by tailoring the design

specifically to suit the data-driven style.

The two major exceptions where it was necessary to make significant changes

to the architecture are in the decode unit, due to its use of (temporal) iteration,
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and the register bank, due to its reliance on Balsa-style variables. These issues

will be discussed in more detail in the appropriate sections below.

Code for selected modules of the data-driven nanoSpa is presented in ap-

pendix C.

5.4.1 Fetch

The fetch unit is relatively small compared to the other two pipeline stages

and it is therefore just about possible to view the entire handshake circuit in

one figure. Figure 5.2 shows the original Balsa generated handshake circuit

and figure 5.3 shows the circuit generated from the data-driven description.

The most problematic aspect of the fetch unit is interrupting the default

sequential fetching of instructions with a new program counter value from a

‘branch’1 instruction. As in synchronous implementations, pipelining means

that additional instructions after the branch will be fetched before the branch

is actually executed. This branch ‘shadow’ is deterministic in a synchronous

design but in an asynchronous implementation the number of additional in-

structions fetched is often non-deterministic.

In nanoSpa this non-determinism is handled using the so-called colour mech-

anism, originally used in the AMULET processors. Each instruction fetched is

associated with a one bit colour. The execute unit maintains the current oper-

ating colour of the processor. When a branch instruction is executed the colour

is inverted and the fetch unit is informed of the change of colour. The colour

of subsequent instructions fetched in the shadow of the branch will not match

the colour in the execute unit and are therefore discarded. When the fetch unit

updates the program counter following the branch, the subsequent (correct)

instructions are associated with the new colour.

Unfortunately, if the number of instructions fetched in the branch shadow

1note that in ARM many instructions in addition to the actual branch instruction may be
used to update the program counter and are here considered as branch instructions.
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Figure 5.2: nanoSpa fetch Balsa handshake circuit
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Figure 5.3: nanoSpa fetch data-driven handshake circuit
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is too great then the overhead of discarding them can have a significant effect

on the performance of the processor. This problem is manifest in both imple-

mentations of nanoSpa but to a larger degree in the data-driven version. As

the cycle time of sequential fetches is improved in the data-driven version, the

number of instructions in the branch shadow is frequently also increased. As

these instructions require extra time to be discarded, the overall performance

of the processor is actually reduced by improving the fetch unit!

There are two obvious methods of reducing the impact of this problem.

1. Decrease the overhead for discarding instructions. At the time of writing,

several architectural features are currently being examined to reduce the

overhead of discarding instructions but these were not developed suffi-

ciently for inclusion in the thesis. In any case, modifications to the archi-

tecture are outside of the scope of this thesis.

2. Somewhat ironically, the second solution is to deliberately make the fetch

unit slower in order to obtain a more balanced pipeline and reduce the

average length of branch shadows. Essentially this means making a trade-

off between between the throughput of the sequential operation and the

latency of interrupting this operation with a branch. The optimal solu-

tion in this trade-off is to some extent dependent on the program which

is running. In an extreme case, a program containing no branches would

suffer no impediment from using the fastest possible sequential through-

put. On the other hand, a program consisting entirely of branches would

be most efficient if the fetch unit was so slow as to prevent there being

any branch shadow at all.

In order to provide as fair a comparison as possible between the two ver-

sions of nanoSpa the following approach has been adopted:

Where the fetch unit is being considered in isolation, the original full speed

fetch unit will be used. Where the fetch unit is being used as part of the proces-

sor, delays in the sequential fetch operation will be introduced to both designs.
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These delays will be manually tuned so that the version in question delivers

the maximum performance when running the Dhrystone benchmark program.

The need for this manual intervention is a product of architectural defi-

ciencies, not the synthesis method. The data-driven style will, by improving

the performance of the fetch unit, decrease the overall performance by length-

ening the branch shadow. The most equitable comparison that can be readily

achieved for the overall processor is to tune each implementation so it achieves

its best possible performance for the same program. In any case, it is probably

more instructive to compare the performance of individual units in the design

thereby reducing the impact of architectural issues, but some indication of the

overall performance is also desirable.

5.4.2 Decode

Unusually for a RISC-style processor, the ARM instruction set contains sup-

port for multi-cycle load and store instructions. These load and store multiple

(ldm/stm) instructions allow any given subset of registers to be loaded from or

stored to contiguous words in memory using a single instruction. The nanoSpa

implements these instructions in the decode stage by simply generating and

issuing multiple single memory transfer operations to the execute unit. The

general structure used is illustrated in figure 5.4. A huge case construct is used

to select either the decode for regular instructions, or the ldm/stm iterative

decode. As both sides of the case are not activated concurrently, they can both

produce the same outputs destined for the execute unit. The Balsa compiler

generates CallMux components to merge equivalent pairs of outputs into a

single channel.

Attempting to replicate this structure presents some difficulty in the data-

driven style. The iterative decode for ldm/stm instructions makes use of the

Balsa while loop structure to repeatedly generate memory transfer operations.
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Figure 5.4: nanoSpa decode structure

In the control-driven style the handshake for the inputs to the decode can en-

close all of this iterative operation allowing the inputs to be read repeatedly by

each iteration.

An iterative structure of this nature is not available in the data-driven style.

Providing more language support for generating this sort of operation is a sub-

ject for future work. However, it is quite straightforward to re-arrange the

structure of the decode, based on the example given in section 3.7 (page 111),

to implement the multi-cycle instructions as shown in figure 5.5. In this struc-

ture the ldm/stm decode is no longer itself iterative. Instead the whole decode

can be viewed as iterative with regular instructions simply being a special case

requiring only a single iteration. When an instruction arrives at decode it is

passed through the multiplexor to the decode logic. If the instruction is an
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ldm or stm the necessary data for the next iteration is passed back to the multi-

plexor and the control signal is set so as to re-inject the data as the next instruc-

tion. When the ldm/stm is finished, or after a single ‘cycle’ if the instruction is

a regular instruction, the multiplexor is signalled to inject the next instruction

being sent from fetch.

Although this may not be the most efficient implementation, it has the im-

portant advantage that the two decode blocks (for regular or ldm/stm instruc-

tions) which basically consist of a large number of case structures (one for the

generation of each output) can be translated directly to the data-driven de-

scription. This means that the code which generates the grey shaded area on

figure 5.5 (i.e. the bulk of the decode unit) was basically copied directly from

the Balsa description without any significant modification saving a great deal
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Figure 5.6: Balsa nanoSpa register write structure

of time and effort.

Unfortunately, the overhead of this decode structure means the perfor-

mance improvements for regular decodes are not as large as those seen in some

other modules. However, it is still sufficiently fast as to have no overall effect

on the speed of the entire processor. The new structure does significantly im-

prove performance for multi-cycle decodes.

5.4.3 Register Bank

In the three-stage ARM pipeline the execute stage reads the register bank, pro-

cesses the data and then writes back to the register bank. Three read ports are

required as several ARM instructions require three operands. Load instruc-

tions may write-back to two registers, one to load the register from memory

and one for an addressing mode with write-back. These two writes are se-

quenced in nanoSpa so only a single write port is required.

As the register bank is contained in a single pipeline stage, it is possible

to sequence the three reads (which occur in parallel) with the two writes. In

order to lengthen the pipeline it would be necessary to split the read and write
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Figure 5.7: Simplified nanoSpa Balsa register bank

phases of the register bank so that they can occur in parallel. It is also neces-

sary to employ some mechanism to ensure the correct value is read from a reg-

ister on which there is a write outstanding (to avoid write-after-read hazards).

In the AMULET processor series this was achieved first by register locking

[PDF+92] and then by a re-order buffer[GG97]. No method has yet been found

to efficiently describe these mechanisms in Balsa or the data-driven style and

no alternative has yet been proposed.

The Balsa nanoSpa register bank uses the general read and write structure

for variable arrays discussed in section 3.5.8 (page 94). The passive ported
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Figure 5.8: Data-driven nanoSpa register write structure

Variable component allows reads and writes to occur to variables in any ar-

bitrary order. Figure 5.6 attempts to illustrate the structure for writing to the

registers in the Balsa register bank. (Only four registers are shown.) A single

write control block is used to steer the incoming write data to the appropriate

register. The read control is similarly straightforward; each read port simply

pulls the required data from the required register. Each ‘cycle’ of operation in

the register bank consists of a read phase where up to three values can be read

in parallel on three read ports, and a write phase where two writes can occur.

See figure 5.7 for a simplified handshake circuit of the Balsa register bank.

As discussed in section 3.5.8 (page 94), when using push style variables it

is not so easy to provide this general structure. In order to read from any vari-

able, it is necessary for that variable to push its data. Therefore, in order to

implement the register bank in the data-driven style it is necessary to write to
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Figure 5.9: Data-driven register ‘cell’

every variable (i.e. register) during every cycle. The data-driven register bank

write structure is illustrated in figure 5.8. The write control and data are here

duplicated to individual write control units belonging to each register. These

individual units decide whether to write the data to their respective register. If

they do not write the data, they recycle the existing value and write this to the

register instead. The subsequent read phase may therefore pick the appropri-

ate data from any register as all registers will push data.

The data-driven register bank structure results in an individual ‘cell’ for

each register that controls the writes to that particular register (see figure 5.9

for the handshake circuit). A ‘read unit’ is generated for each read port (see

figure 5.10). This structure results in improved performance but also signifi-

cantly increases the area over the Balsa counterpart. It will also significantly
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Figure 5.10: Data-driven register read ‘unit’

increase the energy consumption as every register is written on every cycle.

5.4.4 Execute

The execute unit is complex and a description of even moderate detail is be-

yond the scope of this thesis. The unit is made up of a number of small

modules that operate independently. Some modules process data while oth-

ers ‘steer’ and merge the data to direct it around the modules as required to

execute the decoded instruction. Control inputs to these modules come either

from the decode unit, or from the ExecuteControl unit. The function of a few

modules is briefly summarised below. These modules include the main func-

tional modules and examples of a steering and merging module.
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ALU

The ALU is fairly self explanatory. Depending on a control input, it performs

addition, subtraction, a logical operation, or a move. It also calculates new

values for the processor status flags based on the result of the operation (Carry,

Overflow, Zero and Negative).

ExecuteControl

In the ARM instruction set every instruction is conditionally executed. The Ex-

ecuteControl module is responsible for determining whether each instruction

will be executed or not. This decision is based on the condition code of the

instruction, the status flags of the processor and on the colour of the instruc-

tion and the current operating colour. (See section 5.4.1 on the fetch unit for an

explanation of the colour mechanism.)

ExecuteControl produces a number of outputs that are used to determine

the operation of other units in execute. Precisely which outputs are produced

and their values is dependent on the instruction type and whether it is to be

executed or not.

mux3

This simple module is used to merge inputs to the ALU which may come from

either the register bank, an immediate value or from a feed back loop from the

previous result of the ALU (to support load and store multiple instructions).

The module has a control input that determines which of its three inputs is to

be forwarded to the output.

steerDi

This module is used to direct data being read from memory to the correct des-

tination. If the destination of a load is the program counter then the data must
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with overlapping
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Figure 5.11: Overlapping processing and RTZ

be directed to the fetch unit instead of the register bank. This unit is also re-

sponsible for selecting the correct byte from the 32-bit word that is read from

memory when a load byte instruction is used.

5.4.5 Pipelining issues

The issues related to pipelining in asynchronous systems are complex and a

full discussion is beyond the scope of this thesis. Pipelining in this context,

is used, not only to refer to the pipeline structure of the processor but also

the additional fine-grained pipelining found within stages. This fine-grained

pipelining is not present in synchronous designs but asynchronous designs

usually feature it to some extent. A significant motivation for this pipelining

is to reduce the overhead of the handshaking by the overlapping of the phases

of the handshake.

Without overlapping, an entire pipeline stage must first go through the pro-

cessing stage and then the return-to-zero phase. If the processing stage is split

into two, then it is possible to overlap the return-to-zero of the first stage with

the processing of the second stage. See figure 5.11 for an illustration of this

idea. In order to perform this overlapping it is necessary to buffer the data

between stages so that the data will not be made invalid by the RTZ phase of

the first stage while the second stage is processing it. In the latest versions

of Balsa, the overlapping and storage is implemented by the PassivatorPush
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component (see section 2.5.9). This is unfortunate as the placing of the Passi-

vatorPush is not explicitly specified in the source description and so it is not

straightforward to identify where the overlapping is being implemented. This

makes it more challenging to translate to the data-driven style.

Additionally, the particular control used in the PassivatorPush is not avail-

able in the data-driven style, so even once the required location is identified

there is no way of implementing exactly the same overlapping. In the data-

driven style, the VariablePush has been used to implement the overlapping.

This implements overlapping but it also goes further in that it does not just

overlap processing with return-to-zero but fully decouples the two stages, al-

lowing concurrent operation of the entire handshakes.

The structure of the fine-grained pipelining of the execute unit is therefore

not precisely replicated in the data-driven style. This will have an effect on

overall performance. The nature and extent of this is extremely difficult to

analyse and beyond the scope of this thesis. It should be noted that no such

analysis has been performed on the Balsa nanoSpa either and the pipelining

structure has been developed by a mixture of intuition and trial-and-error. It is

certainly not, therefore, the best possible solution for the original Balsa design.

The optimal solution is specific to any given design, so even if the best possible

solution for the original design were known it may not be the best for the data-

driven design. It has been necessary to use some intuition and trial-and-error

to attempt to replicate the original nanoSpa pipeline structure as closely as

possible in the data-driven style.

An effect of this additional pipelining, related to the discussion in section 5.4.1,

is that the maximum depth of branch shadows is increased. The additional

pipelining means that more than one instruction may enter the execute unit

at one time, allowing more instructions to be fetched following a branch than

might be immediately expected. It is vital to exploit this asynchronous style of
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operation to improve performance but it does make reasoning about the oper-

ation of the pipeline a great deal more challenging than in synchronous design.

At the time of writing, it is not actually known for certain how deep the maxi-

mum branch shadow is for either nanoSpa design! Providing more assistance

for the designer in analysing and improving the pipelining and overlapping

properties of a design is an interesting area for future work.

5.5 Simulation results

The results of simulations of the control-driven and data-driven nanoSpa pro-

cessors are presented here. More instructive than simulating the entire proces-

sor is to examine the results for simulating individual modules from within

the processor. This avoids issues associated with the pipelining and proces-

sor architecture and demonstrates the performance improvements gained by

using the data-driven logic style. The fetch, decode and execute units have

all been simulated. Additionally, some individual modules from the execute

unit have also been simulated. These modules were simulated, where appro-

priate, with varying input data to demonstrate the data-dependent variation

in performance. The environments used in the test benches for these simula-

tions all have zero delay. Generally, this favours the control-driven approach

as, for example, the cost of synchronising inputs that all arrive simultaneously

is minimal. The results then, show (to a close approximation) the minimum

improvement achieved by the data-driven style. In realistic operation, the fact

that the data-driven style does not synchronise all inputs before beginning the

operation and does not wait until the operation is complete before releasing

them can potentially further improve performance.
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All these simulations are performed at gate-level using fixed gate delays.

This does not provide a highly accurate estimate of absolute performance al-

though experience has shown that the results of these simulations closely ap-

proximate transistor-level simulations in a 180nm technology. As a relative

measure for the comparison of the two styles this level of simulation is more

than sufficient. The control-driven nanoSpa has previously been simulated at

transistor-level and both bundled data and dual-rail implementations achieve

approximately 55 Dhrystone MIPS. It can be seen from the results in the next

sections that the gate-level simulations slightly under-estimate the transistor

level performance.

Although the existing Balsa framework is being used for the back-end,

some additional work is required to generate a transistor-level netlist that can

be compared with equivalent simulations for the control-driven nanoSpa. This

is because the example cell library used has been designed locally and only

contains transistor level models for the precise cells needed to implement orig-

inal Balsa components. Some data-driven components use cells that are not

currently provided and these would need to be added to the cell library. This

task has not been possible in time to provide results here. It is not believed that

these results would yield any greater insight in the context of this thesis apart

from giving a more accurate absolute performance estimate of the processor.

5.5.1 Dual-rail

The dual-rail control-driven nanoSpa achieves 50 Dhrystone MIPS. The data-

driven version achieves 79 Dhrystone MIPS, an improvement of 1.6 times the

original. The results for individual modules are shown in table 5.1. Area is

compared in table 5.2.

It is clear that in general, the throughput of the data-driven modules is

greater than the conventional Balsa equivalents. Interestingly, Balsa does well
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Gates/cycle
Module Test Balsa Data-driven Improvement
Fetch 59 29 2.0
Decode regular 52 39 1.3

ldm/stm (5 registers) 604 254 2.4
Register bank 1 write 134 69 1.9

2 writes 182 74 2.5
ALU and 74 41 1.8

add 0 carry 85 74 1.1
add 5 carry 86 74 1.2
add 32 carry 107 65 1.6
sub 1 carry 87 74 1.2
sub 5 carry 88 65 1.4
sub 32 carry 109 65 1.7
mov 77 57 1.4

ExecuteControl non-memory 44 24 1.8
memory store 57 30 1.9
memory load 64 32 2.0

mux3 23 16 1.4
steerDi load word 29 30 0.9

load byte 53 54 0.9
Execute nop 83 58 1.4

and 93 58 1.6
and with shift 133 65 2.0
ands (update flags) 95 58 1.6
ldr/str 116 65 1.8
branch 92 74 1.2

Table 5.1: Dual-rail module results
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Module Balsa transistor count DD transistor count
Fetch 7595 16757
Decode 62870 264200
Register bank 67036 370368
Execute

ExecuteControl 4949 5578
ALU 38295 52296
Shifter 28503 82603
mux3 741 2590
steerDi 5951 10762
Other execute 47075 105635
Total execute 141846 259464

Other 36026 27880
Total 315373 938669

Table 5.2: Dual-rail nanoSpa area

with the steerDi module (see section 5.4.4) – the only module where the through-

put is not improved in the data-driven version. It is not immediately clear why

this should be the case. The nature of the module is unusual in that it takes a

single input and selects which output to send it to. Speculation is not likely

to have a positive effect in this case as there is really no data-processing to

be performed. The data-driven control is large and as the operation is highly

balanced, the use of T-elements to permit concurrent return-to-zero phases is

probably not exploited and therefore the latency of the control has a significant

impact on the throughput. However, further investigation is required to fully

explain this result.

As expected the area is significantly increased. As anticipated, a significant

proportion of this increase is found in the register bank. If the increase in reg-

ister bank area is ignored, then the data-driven nanoSpa is roughly twice the

size of the original Balsa version. The area overhead for dual-rail is particu-

larly large. As noted in section 3.4 (page 73), this is mainly due to the large

size of the VariablePush component and the increased number of completion
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Gates/cycle
Module Test Balsa Data-driven Improvement
Fetch 47 33 1.4
Decode regular 79 76 1.0

ldm/stm (5 registers) 578 311 1.9
Register bank 1 write 82 61 1.3

2 writes 99 61 1.6
ALU and 57 33 1.7

add 0 carry 75 42 1.8
add 5 carry 83 52 1.6
add 32 carry 137 106 1.3
sub 1 carry 75 42 1.8
sub 5 carry 85 52 1.6
sub 32 carry 139 106 1.3
mov 56 32 1.8

ExecuteControl non-memory 41 32 1.3
memory store 46 32 1.4
memory load 50 32 1.6

mux3 18 14 1.3
steerDi load word 24 22 1.1

load byte 35 36 0.9
Execute nop 70 56 1.3

and 91 59 1.5
and with shift 129 63 2.0
ands (update flags) 91 59 1.5
ldr/str 150 106 1.4
branch 88 56 1.6

Table 5.3: Bundled data module results

detectors. Note that no attempt has been made to optimise the back-end com-

ponent implementations for area so there is future potential for reducing the

area overhead although given the magnitude of the performance gains, the

area overhead is not excessive.

5.5.2 Bundled data

The bundled data control-driven nanoSpa achieves 52 Dhrystone MIPS. The

data-driven version achieves 81 Dhrystone MIPS, an improvement of 1.5 times
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Module Balsa transistor count DD transistor count
Fetch 4725 4837
Decode 36382 58471
Register bank 30480 79480
Execute

ExecuteControl 2779 3358
ALU 9079 11142
Shifter 13405 25105
mux3 919 926
steerDi 1807 2833
Other execute 27813 27436
Total execute 55802 70800

Other 20172 9795
Total 147561 223383

Table 5.4: Bundled data nanoSpa area

the original. The results for individual modules are shown in table 5.3. Area is

compared in table 5.4.

The improvements in throughput of the individual modules are fairly simi-

lar to those shown in the dual-rail implementation. Again steerDi is the excep-

tion to the general trend which will be due to the same reason as in dual-rail.

The decode of regular single-cycle instructions is also not improved signifi-

cantly and this is explained in the section on the decode unit above. An in-

teresting property can be seen in the ExecuteControl unit where the impact of

speculation can be clearly observed in the data-driven results which are equal

for all three different operations.

The difference in area for the bundled data implementation is much smaller

than that for dual-rail. Again, much of the increase is in the register bank. If

the increase in register bank area is ignored then the data-driven design is only

approximately 18% larger. When compared with the magnitude of the perfor-

mance improvement, this area overhead can be considered as insignificant.
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5.6 Register bank hybrid design

The register bank has been highlighted as a particular problem in terms of area

and energy consumption. A possible solution that may be easily implemented

is to use the conventional Balsa register bank in place of the data-driven reg-

ister bank. As the interface to both register bank designs is the same and the

two design styles are integrated into the same flow, it is trivial to produce this

hybrid design.

This provides an excellent example of how designs with mixed Balsa and

data-driven modules can be used. The lower area and energy requirements

of the control-driven style can be exploited for non-critical modules, while the

performance of the data-driven style is exploited for others.

The new hybrid design achieves 62 MIPS in dual-rail and uses 637,119 tran-

sistors. In bundled data the performance is 67 MIPS and the size is 175,635

transistors. Performance has been traded for reductions in area and energy

consumption.
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Conclusions

This thesis has described contributions in the field of asynchronous digital cir-

cuit synthesis. The existing Balsa synthesis method has been examined and

performance has been identified as a major weakness. The overhead of the

control-driven style of compilation has been identified as a significant con-

tributing factor to the shortcomings in performance of the existing synthesis

method. However, the handshake circuit paradigm is attractive because it is

both flexible and robust, independent of any particular implementation style,

straightforward to understand, and the transparent compilation allows source-

level optimisation.

A data-driven style of circuit would seem to offer potential for increased

performance. Therefore an alternative data-driven style of handshake circuit

structure has been proposed along with a language from which this circuit

style may be compiled. The compiler to translate this language into hand-

shake circuits has been implemented and integrated into the existing Balsa

framework.

The data-driven style has been successfully demonstrated by the imple-

mentation of a complex 32-bit microprocessor design. The potential perfor-

mance improvements over the control-driven style have been convincingly

demonstrated by comparison of this design with the equivalent control-driven

157
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implementation.

The increased area and energy requirements of the data-driven style have

been briefly noted but these are unlikely to be disproportionate to the perfor-

mance gains and could be decreased by further work on modified or alterna-

tive back-end implementation styles.

A drawback of the data-driven style is that the descriptions are arguably less

flexible and not as familiar to a general hardware designer as those that are

possible in Balsa. It is difficult to draw conclusions about the reaction of any

given designer when encountering a particular tool and language for the first

time as such judgements are highly subjective. The experience of translating

the nanoSpa design would indicate that, at least for Balsa code written for

performance, the reduced flexibility is not a significant impediment with the

one particular exception of the register bank. Of course, the Balsa nanoSpa was

already written in a fashion that was essentially data-driven anyway.

Due to the variables and sequential and iterative control structures, it is

possible in Balsa to write a naive sequential program that appears very sim-

ilar to a conventional programming language. Such a program will compile

and produce a functioning (but slow) circuit. In the data-driven style, it is

arguably necessary for the programmer to think in a different, more ‘asyn-

chronous’ manner as such sequential descriptions are not possible. It is also

similarly necessary to do so when using conventional Balsa if good perfor-

mance is required. The rewards of adopting a data-driven style with respect

to performance are clear but the method introduced herein, being intention-

ally designed to be data-driven, is clearly superior to adopting a data-driven

approach with control-driven compilation. By using the handshake circuit

paradigm, it is straightforward to combine both styles in the same design-flow

and so greater flexibility is offered to the designer. For example, a possible

scenario is that, in a large system, some critical parts of a design might be
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implemented data-driven by a more experienced designer, while less critical

parts are implemented control-driven by a less experienced designer.

The data-driven style has addressed the issue of the structure of handshake

circuits and control overhead. This is a very useful contribution but is by

no means the end of the story. In general, the performance of synthesised

asynchronous circuits is still not competitive with their synchronous counter-

parts. More work is required at all levels of the design-flow before competitive

performance is achieved. The next section will discuss some ideas for future

work arising immediately from the data-driven handshake circuit style and

the nanoSpa example design.

6.1 Future work

The possibilities for work extending, using and based upon the data-driven

circuit style and language are innumerable. During the course of the last two

chapters, a number of areas for future work have been identified. This section

collects these ideas and adds a few additional ones.

6.1.1 Language and compiler

There is much potential for developing and extending the data-driven lan-

guage and compiler. A few ideas are briefly presented here.

More concise syntax

Sometimes the data-driven language is quite verbose. For example it is not

uncommon to write the following block:
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input a
output b
during

b <- a
end

Syntactic shortcuts for some code patterns could be added to the language.

For example, a -> b, could be offered as a quick shortcut for the above block.

Iteration

Conventional Balsa contains the while construct to support temporal iteration.

The data-driven language contains no explicit temporal iterative structure. The

control-driven style allows for this control structure to be implemented easily

but it is very poor for performance as demonstrated by the nanoSpa decode

unit when decoding multi-cycle instructions (see section 5.4.2 on page 139 and

tables 5.1 and 5.3 on pages 152 and 154). The data-flow style implementation

of the data-driven nanoSpa decode unit is a much more efficient implemen-

tation of iteration. It would seem likely that this type of structure will recur

and so an idea for future work is to add some convenient construct to the lan-

guage that will allow it to be generated easily. Ideally this could be done in

a manner that closely resembled the while loop structure of Balsa and other

common languages. The structure used in the decode unit is probably obvi-

ous to an experienced asynchronous designer but a less experienced designer

would probably benefit from a more familiar control-type language construct

that is compiled into the efficient data flow structure.

Fine-grained integration

In section 4.1 (page 115), the possibility of tighter integration between the two

design styles was discussed. The nanoSpa design has highlighted areas where

such integration or perhaps even more fine-grained integration might prove



6.1. Future work 161

useful. The register bank is a clear problem in the data-driven style. Not only is

the area requirement significantly larger but the energy required to write every

register in every cycle probably makes this design infeasible. Balsa style vari-

ables are clearly more suited to the register bank application but the control-

driven logic means the performance of the Balsa register bank is limited. Using

the Variable component in the data-driven style is difficult as the explicit se-

quencing control structures that prevent concurrent reads and writes to the

variable are not available.

Is there some way in which Variable components could be used with data-

driven style logic with the addition of some control-driven elements to ensure

that concurrent read and write hazards do not occur at the Variable? How

might this be expressed in the language?

Automated translation

The idea of automatically translating Balsa handshake circuits into the data-

driven style was discussed quite extensively in section 4.4 (page 126). This

is a particularly interesting idea as it would allow some of the performance

benefits of the data-driven style to be exploited by conventional Balsa descrip-

tions written using the more familiar sequential and iterative structures found

therein.

6.1.2 Back-end and components

There is scope for optimisations at the back-end stage of compilation and in

component implementations. These may be targeted at performance, area,

power or a combination of all three.
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Control re-synthesis

The technique of control re-synthesis was discussed in section 3.1.1 (page 67)

and this could be applied to the control sections of data-driven circuits just as

easily as to control trees.

Improved components

In section 4.2 (page 117), the possibility that some component implemen-

tations may implement too much concurrency for certain circumstances was

mentioned. This may have be demonstrated by the steerDi module from the

nanoSpa execute unit (section 5.4.4) although this requires further investiga-

tion. The possibility of using modified components in certain circumstances

is worthy of future investigation. This may be possible by so-called ‘peep-

hole’ style optimisation where a pattern of components is identified and re-

placed with an alternative. It may also require more complex analysis of the

behaviour of the circuit.

Reduce area overhead

The nanoSpa example has shown that the data-driven style generally uses

more area than conventional Balsa circuits. This is particularly true in delay-

insensitive implementations. Reducing this overhead is a possible area of fu-

ture work. For example, it might be possible to reduce the number of com-

pletion detectors required by re-using other completion detectors in some cir-

cumstances. The data-driven style adds a completion detector at every point

where data may be rejected, but there is also another completion detector for

the same data later in the datapath for the case where it is not rejected. Is it

possible to combine these in some fashion to save area?
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Combining with other techniques

It has been previously noted that most asynchronous design techniques are

in general data-driven rather than control-driven. Many asynchronous de-

sign styles are based on the pipeline approach of Sutherland’s Micropipelines

[Sut89]. High-performance asynchronous pipeline implementations is an ac-

tive area of research[SN01, YBA96, AML97]. The data-driven handshake cir-

cuit style is also essentially a pipeline approach. Therefore the possibility exists

to implement back-ends to the data-driven style using other high-performance

pipeline style techniques.

Other research in the asynchronous field is also more suited for use with

the data-driven style and could be combined with it to further improve perfor-

mance. For example, early output logic [Bre06] could be combined very easily

with the dual-rail back end and should help to further improve performance.

6.1.3 nanoSpa

Although the nanoSpa processor itself is not the focus of this thesis, a couple

of issues have been touched upon in this context that expose general issues for

future work.

Register banks

In section 5.4.3 (page 142), the requirements for the register bank of nanoSpa

were discussed. It was noted that an architecture with a longer pipeline than

three stages would require a register bank where reads and writes can occur

concurrently, and a mechanism to prevent hazards. An area of future work lies

in finding some suitable method of synthesising this register bank, either with

the presently available features of the synthesis system, or more likely with

extensions to the synthesis system.
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Pipeline analysis and optimisation

Section 5.4.5 (page 148) highlighted the issue of pipelining in asynchronous

designs. Pipelining is an important factor in the performance of asynchronous

designs. Clearly, a more systematic approach to analysis and optimisation than

those presently used in Balsa or data-driven synthesis would be very useful.

Tool support for such analysis and optimisation would greatly assist the de-

signer. There are existing approaches to this problem including ‘Slack Match-

ing’ [PM06] and ‘Blame Passing’ [Bre06]. An opportunity for future work is to

examine the possibility of integrating these or other techniques into the syn-

thesis flow.

6.2 Summary

A data-driven style of circuit clearly suffers from less control overhead than the

control-driven style of Balsa. This thesis has shown that a data-driven style

can be compiled using the handshake circuit paradigm in a syntax-directed

fashion. It has been necessary to reduce somewhat the flexibility of the source

description language compared to the conventional Balsa language. However,

it has been demonstrated that the new handshake circuit style can be used to

construct a significant design example. Results show that the new handshake

circuit structure produces circuits with significantly increased throughput over

those of Balsa, even in conditions favourable to the Balsa circuits.

The data-driven style is not an end in itself but hopefully offers a useful

contribution towards the main goal of producing an asynchronous synthesis

method that can construct large-scale designs and that will offer performance

competitive with synchronous methods.
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Language Grammar

The grammar of the data-driven language is presented here in an extended

BNF form. The following conventions are used:

• Terminals are denoted by bold type.

• ( a )* denotes zero or more repetitions of a.

• ( a )+ denotes one or more repetitions of a.

• ( a )? indicates that a is optional.

file = ( outer )* eof

outer = ( ( proc ) | ( type dec ) | ( constant ) )

type dec = type id is ( ( type )
| ( record ( id : type ( ; | , )? )+ ( ( end ) | ( over type ) ) )
| ( enumeration

( id ( = expression )? ) ( , id ( = expression )? )*
( ( over type ) | ( end ) ) ) )

constant = constant id = expression ( : type )?

proc = procedure id ( ( ( proc spec )
is declarations begin body end )

| ( is call ) )

165
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proc spec = proc param spec proc ports spec

proc param spec = ( ( parameter id : ( ( type ) | ( type ) ) ( ; | , )? ) )*

proc ports spec = ( ( ( array range of )? ( ( ( input | output ) id : type )
| ( sync id ) ) ( ; | , )? ) )*

declarations = ( ( declaration ) | ( type dec ) | ( constant ) )*

declaration = ( ( array range of )? ( ( channel identifiers : type ) |
( sync identifiers ) | ( variable identifiers : type ) ) )

body = ( ( ( block ) | ( init ) | ( call ) | ( iterative call ) ) )*

init = init block body end

block = ( input subject list )? ( output subject list )?
( ( during block body end ) | ( always always body end ) )

call = id ( proc actuals ) ( (
( ( ( channel spec ) | ( { ( channel spec ( , )? )* } ) )
( , )? )* ) )?

iterative call = for id in range ( then )? ( call )+ end

proc actuals = ( ( ( expression ( ( bits ) | ( signed bits ) )? ) |
( array range of type ) ) )

( , ( ( ( expression ( ( bits ) | ( signed bits ) )? ) |
( array range of type ) ) ) )*

channel spec = id ( [ range ] )?

subject list = channel spec ( , channel spec )*

block body = ( ( case | if | write | for | foreach | arbitrate | ( continue ) ) )+

always body = ( ( case | if | write | for | foreach
| arbitrate | sync | ( continue ) ) )+

write = ( all )? channel spec <- expression

case = case expression of expressions then inbody
( | expressions then inbody )* ( else inbody )? end

if = if expression then inbody ( | expression then inbody )*
( else inbody )? end
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arbitrate = arbitrate subject list then inbody
| subject list then inbody end

inbody = ( ( case | if | write | for | foreach
| arbitrate | sync | subject in | ( continue ) ) )+

subject in = input subject list during block body end

sync = sync channel spec ( ( ; ) sync channel spec )*

for = for id in range ( then )? block body end

foreach = foreach id in channel spec ( then )? block body end

type = ( ( expression ( ( signed )? bits )? )
| ( array range of type ) )

identifiers = id ( , id )*

range = ( ( expression ( .. expression )? ) | ( over type ) )

expressions = expression ( , expression )*

expression = bitwise exp

bitwise exp = and exp ( ( or | xor ) and exp )*

and exp = equal exp ( and equal exp )*

equal exp = comp exp ( ( = | ( /= | <> ) ) comp exp )*

comp exp = concatenation ( ( <= | >= | < | > ) concatenation )*

concatenation = numeric exp ( @ numeric exp )*

numeric exp = term ( ( + | - ) term )*

term = unary exp ( ( * | / | % ) unary exp )*

unary exp = ( unary operator )? sizeof

sizeof = ( sizeof )? exponentiation

exponentiation = array index ( ˆ array index )*
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array index = smashed ( ( [ range ] ) ( . id )* )*

smashed = ( # )? record access

record access = primitive ( . id )*

func args = ( ( expression ( ( signed )? bits )? )
| ( array range of type ) )

( ( , ) ( ( expression ( ( signed )? bits )? )
| ( array range of type ) ) )*

primitive = ( ( id ( ( ’ id ) | ( expressions ) |
( ( ( func args )? ) ) )? ) | literal | string |
( ( bitwise exp ( as type )? ) ) | ( { expressions } ) )

unary operator = ( - | not | log )

literal = ( int | octal | hex | binary )



Appendix B

New Handshake Components

This appendix contains details of the implementations of the new handshake

components used in the data-driven style. Push equivalents for original dat-

apath components are not shown as these implementations differ from the

original pull versions only in the reversing of the protocol. For each compo-

nent an STG is given to describe the behaviour and circuits are shown for both

bundled-data and dual-rail implementations.

In the case of bundled-data implementations, usually only the control part

of the circuit is shown. Where this is so, it can be assumed that the data path

is simply wires from input to output, forking if necessary to feed multiple

outputs.

Parameterisable component implementations are shown expanded with a

particular specification which is given in each case. Hopefully, it is clear how to

extend each implementation to implement any specification of the parameters.

Note that no claim is made that these implementations are the most suitable

or efficient in terms of performance, area or power, although a desire for per-

formance was considered during the design process. The principal motivation

was to produce designs that would enable working circuits to be synthesised

and simulated. It is intended that the dual-rail and bundled-data control cir-

cuits are quasi delay insensitive but this has not been formally verified.
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B.1 VariablePush

V
w

r[1]
r[0]

r[0].req+

r[0].ack+

r[0].req−

r[0].ack−

r[1].req+

r[1].ack+

r[1].req−

r[1].ack−

VariablePush

VariablePushInit

Initial Markings
w.req+

w.ack+

w.req−

w.ack−

Figure B.1: VariablePush STG

VariablePush is a component of significant complexity. The STG in fig-

ure B.1 gives the STG for the external behaviour in the dual-rail implemen-

tation with two read ports. Two different initial markings are given; one for

standard VariablePush and one for the initialised version.

The single-rail implementation (figure B.2) is based on a fully-decoupled

four-phase micropipeline-style latch controller [Liu97].

The dual-rail implementation (figure B.3) is based on the standard Muller

Pipeline [Mul62] and internally uses bit-level completion detection to avoid

large C-element trees to perform completion detection across the entire width

of the data. The circuit shown is for a width of two bits and two read ports.

When parameters of a greater magnitude are used the figure soon becomes

very large.
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w.req
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r[0].data

r[1].data

w.data

Figure B.2: VariablePush bundled data circuit
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C

C

C
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C
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C

C

w.ack
r[1].req0(0)

r[1].req1(1)

r[0].req1(0)

r[0].req0(0)

r[0].req0(1)

r[0].req1(1)

w.req0(0)

w.req1(0)

w.req0(1)

w.req1(1)

r[0].ack

r[1].ack

r[1].req1(0)

r[1].req0(1)

Figure B.3: VariablePush dual-rail circuit



B.2. Dup 173

B.2 Dup

o[1].req+

o[1].ack+

o[1].req−

o[1].ack−

o[0].req+

o[0].ack+

o[0].req−

o[0].ack−

dup
i

o[1]
o[0]

i.req+

i.ack+

i.req−

i.ack−

Figure B.4: Dup STG

Dup is used to ‘duplicate’ the communication on one input channel to mul-

tiple output channels. The term duplicate is used to differentiate the operation

from a fork. Dup allows the handshakes on each output channel to operate

independently. In a four-phase implementation, a fork would typically force

synchronisation between the processing and return-to-zero phases of all hand-

shakes.
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T

T

C

i.req

i.ack

o[0].req

o[0].ack

o[1].req

o[1].ack

dup
i

o[1]
o[0]

Figure B.5: Dup bundled-data control circuit
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i.ack
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o[1].ack

o[0].req

o[1].req

dup
i

o[1]
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Figure B.6: Dup dual-rail circuit
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B.3 FVPush

i.req+

i.ack+

i.ack−

i.req−

o[1].req+

o[1].ack+

o[0].req+

o[0].ack+

o[0].ack− o[1].ack−

o[1].req−o[0].req−

sig.req+

sig.ack+

sig.req−

sig.ack−

FV
i

o[1]
o[0]

sig

Figure B.7: FVPush STG

FVPush is essentially the same as a Dup with the addition of a sync signal

port that is used to indicate arrival of the input data.
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i.req

i.ack

o[0].req
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o[1].req
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sig.req

sig.ack

Figure B.8: FVPush bundled-data control circuit
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Figure B.9: FVPush dual-rail circuit
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B.4 FetchPush

in out

act

in.req+ act.req+

out.req+

out.ack+

in.ack+

in.req−

out.req−

out.ack−

in.ack−

act.req−

act.ack+

act.ack−

Figure B.10: FetchPush STG

FetchPush is used to synchronise data and control where it is not possible

for data to continue without indication from the control that it is safe to do so.

The data arriving on the input port is synchronised with the activation before

being passed to the output port.
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act

act.req

out.req

act.ack

in.req

in.ack out.ack

Figure B.11: FetchPush bundled-data control circuit
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Figure B.12: FetchPush dual-rail circuit
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B.5 FetchReject

r
in out

act rej

in.req+

P+

P−

in.ack−

out.ack+

out.req+
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in.ack+

in.req−

act.req+ rej.req+

rej.ack−

rej.req−

rej.ack+

act.ack−

act.req−

act.ack+

out.req−

out.ack−

R−

Figure B.13: FetchReject STG

FetchReject is similar to FetchPush with the addition of a ‘reject’ port that

allows the input data to be discarded instead of passed. Handshakes on the

activation and reject ports must be mutually exclusive.
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Figure B.14: FetchReject bundled-data control circuit
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Figure B.15: FetchReject dual-rail circuit
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B.6 CasePush

@

inp.req+

actOut[X].req+

actOut[X].ack+elseAck+

elseAck−

d[X]−

d[X]+else+

else−

activate.ack+

activate.req−

inp.ack+

inp.req−

activate.req+

actOut[X].req−

actOut[X].ack−

inp.ack− activate.ack+
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actOut[0] actOut[2]

activate

actOut[1]

Figure B.16: CasePush STG

CasePush is used to implement nested conditional structures. Only one

output activation will be produced for each input that arrives. The output

activation will not be produced until the control indicates it is safe to do so by

activating the component.
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Figure B.17: CasePush bundled-data circuit
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Figure B.18: CasePush dual-rail circuit
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B.7 CasePushR
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actOut[1]

Figure B.19: CasePushR STG

CasePushR is very similar to CasePush. In addition to the activation, a

reject port is provided, allowing the control to discard the input data without

activating an output. Handshakes on the activate and reject ports must be

mutually exclusive.
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Figure B.20: CasePushR bundled-data circuit
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Figure B.21: CasePushR dual-rail circuit
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B.8 Mux
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Figure B.22: Mux STG

Mux is used to implement run-time array indexing. It will pass one of its

input ports to the output based on the value of the sel(ection) input. The data

on all other input ports is discarded. The implementations have been designed

to output the required data early, in that not all the inputs must arrive before

the output is produced.
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Figure B.23: Mux bundled-data circuit
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d
o
L
r
,
d
o
C
o
l
o
u
r
,

d
o
B
y
p
a
s
s
,
d
o
S
h
i
f
t
C
t
r
l
,
d
o
S
h
a
m
t
,

d
o
A
l
u
C
t
r
l
,
d
o
S
a
l
u
,
d
o
S
a
l
u
3
,
d
o
S
a
l
u
0
,
d
o
S
r
d
s
,

d
o
S
e
t
F
l
a
g
s
,
d
o
S
e
t
M
o
d
e
,
d
o
S
a
v
e
M
o
d
e
,

d
o
W
p
c
,
d
o
S
p
c
,
d
o
S
a
b
,
d
o
S
a
b
2
,
d
o
S
t
p
,
d
o
S
t
p
2
,

d
o
M
e
m
C
t
r
l
,
d
o
M
e
m
O
p
,
d
o
W
m
e
m
,
d
o
S
d
i
,

d
o
C
C
,
d
o
I
m
m
,
d
o
M
c
a
,
d
o
M
c
b
,
d
o
M
c
r
,
d
o
M
c
s
,
d
o
M
c
p
c
,

w
a
o
,
w
a
c
o
,
x
i
P
c
,
x
i
C
o
l
o
u
r
,

m
e
m
A
c
c
e
s
s
[
0
]
,
m
e
m
M
o
d
e
[
0
]
,
m
e
m
D
i
[
0
]
,
m
e
m
D
o
[
0
]
,

m
e
m
A
b
o
r
t
[
0
]
,
d
r
a
o
,
d
r
c
o
,
e
r
b
,
e
r
a
,
e
r
c
,
r
d
i
,

w
r
b
,
w
r
a
,
w
c
,
w
d
)

n
a
n
o
R
e
g
B
a
n
k
(
e
r
b
,
e
r
a
,
e
r
c
,
w
r
b
,
w
r
a
,
w
c
,
w
d
,
r
d
i
)

p
i
p
e
R
e
g
_
A
d
d
r
e
s
s
(
x
i
P
c
,
x
o
P
c
)

p
i
p
e
R
e
g
_
C
o
l
o
u
r
(
x
i
C
o
l
o
u
r
,
x
o
C
o
l
o
u
r
)

e
n
d

p
r
o
c
e
d
u
r
e
n
a
n
o
F
e
t
c
h
(

o
u
t
p
u
t
m
e
m
A
c
c
e
s
s

:
M
e
m
A
c
c
e
s
s
;

o
u
t
p
u
t
m
e
m
M
o
d
e

:
M
e
m
P
r
o
c
M
o
d
e
;

i
n
p
u
t

m
e
m
D
i

:
M
e
m
D
a
t
a
;

i
n
p
u
t

m
e
m
A
b
o
r
t

:
M
e
m
A
b
o
r
t
;

-
-
t
h
e
d
e
c
o
d
e
r
i
/
f
:

o
u
t
p
u
t
f
P
c

:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
f
C
o
l
o
u
r

:
C
o
l
o
u
r
;

o
u
t
p
u
t
f
I
n
s
t
r

:
I
n
s
t
r
u
c
t
i
o
n
;

-
-
t
h
e
e
x
e
c
u
t
e
i
/
f
:

i
n
p
u
t

x
P
c

:
D
a
t
a
p
a
t
h
;

i
n
p
u
t

x
C
o
l
o
u
r

:
C
o
l
o
u
r

)
i
s

t
y
p
e
I
n
s
t
r
S
y
n
c
i
s
r
e
c
o
r
d

p
c

:
D
a
t
a
p
a
t
h

i
n
s
t
r
:
I
n
s
t
r
u
c
t
i
o
n

e
n
d

v
a
r
i
a
b
l
e
p
c
,
n
e
x
t
P
c

:
D
a
t
a
p
a
t
h

v
a
r
i
a
b
l
e
i
n
s
t
r

:
I
n
s
t
r
u
c
t
i
o
n

v
a
r
i
a
b
l
e
c
o
l
o
u
r
,
n
e
x
t
C
o
l
o
u
r
:
C
o
l
o
u
r

v
a
r
i
a
b
l
e
g
o
S
e
q

:
b
i
t

c
h
a
n
n
e
l

i
n
s
t
r
s
y
n
c

:
I
n
s
t
r
S
y
n
c

s
y
n
c
s
e
q

b
e
g
i
n i
n
p
u
t

p
c
,
i
n
s
t
r

o
u
t
p
u
t
m
e
m
A
c
c
e
s
s
,
n
e
x
t
P
c
,
i
n
s
t
r
s
y
n
c

d
u
r
i
n
g
m
e
m
A
c
c
e
s
s
<
-
(
{
R
E
A
D
,
(
p
c
a
s
A
d
d
r
e
s
s
)
,
W
O
R
D
,

0
,
1
,
G
R
E
E
N
}
a
s
M
e
m
A
c
c
e
s
s
)

i
n
s
t
r
s
y
n
c
<
-
(
{
p
c
,
i
n
s
t
r
}
a
s
I
n
s
t
r
S
y
n
c
)

n
e
x
t
P
c

<
-
(
p
c
+
4
a
s
D
a
t
a
p
a
t
h
)

e
n
d

i
n
p
u
t

i
n
s
t
r
s
y
n
c

o
u
t
p
u
t
f
P
c
,
f
I
n
s
t
r

d
u
r
i
n
g
f
P
c

<
-
i
n
s
t
r
s
y
n
c
.
p
c

f
I
n
s
t
r
<
-
i
n
s
t
r
s
y
n
c
.
i
n
s
t
r

e
n
d

o
u
t
p
u
t
m
e
m
M
o
d
e

a
l
w
a
y
s
m
e
m
M
o
d
e
<
-
(
P
R
I
V
I
L
E
G
E
D
a
s
M
e
m
P
r
o
c
M
o
d
e
)

e
n
d

i
n
p
u
t
m
e
m
A
b
o
r
t

d
u
r
i
n
g
c
o
n
t
i
n
u
e

e
n
d

i
n
p
u
t

m
e
m
D
i
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o
u
t
p
u
t
i
n
s
t
r

d
u
r
i
n
g

i
n
s
t
r
<
-
(
m
e
m
D
i
a
s
I
n
s
t
r
u
c
t
i
o
n
)

e
n
d

i
n
p
u
t

n
e
x
t
P
c
,
g
o
S
e
q

o
u
t
p
u
t
p
c

d
u
r
i
n
g

c
a
s
e
g
o
S
e
q
o
f

1
t
h
e
n

p
c
<
-
n
e
x
t
P
c

|
0
t
h
e
n

i
n
p
u
t
x
P
c
d
u
r
i
n
g
p
c
<
-
x
P
c
e
n
d

e
n
d

e
n
d

i
n
p
u
t

c
o
l
o
u
r

o
u
t
p
u
t
f
C
o
l
o
u
r
,
n
e
x
t
C
o
l
o
u
r
,
g
o
S
e
q

d
u
r
i
n
g

f
C
o
l
o
u
r
<
-
c
o
l
o
u
r

a
r
b
i
t
r
a
t
e
s
e
q
t
h
e
n

g
o
S
e
q
<
-
1

n
e
x
t
C
o
l
o
u
r
<
-
c
o
l
o
u
r

|
x
C
o
l
o
u
r
t
h
e
n

g
o
S
e
q
<
-
0

n
e
x
t
C
o
l
o
u
r
<
-
x
C
o
l
o
u
r

e
n
d

e
n
d

i
n
p
u
t

n
e
x
t
C
o
l
o
u
r

o
u
t
p
u
t
c
o
l
o
u
r

d
u
r
i
n
g

c
o
l
o
u
r
<
-
n
e
x
t
C
o
l
o
u
r

e
n
d

o
u
t
p
u
t

s
e
q

a
l
w
a
y
s

s
y
n
c
s
e
q

e
n
d

i
n
i
t
p
c

<
-
(
0
a
s
D
a
t
a
p
a
t
h
)

c
o
l
o
u
r
<
-
(
0
a
s
C
o
l
o
u
r
)

e
n
d

e
n
d

p
r
o
c
e
d
u
r
e
n
a
n
o
D
e
c
o
d
e
(

-
-
t
h
e
f
e
t
c
h
i
/
f
:

i
n
p
u
t

f
P
c

:
A
d
d
r
e
s
s
;

i
n
p
u
t

f
C
o
l
o
u
r
I
n
:
C
o
l
o
u
r
;

i
n
p
u
t

f
I
n
s
t
r
I
n

:
I
n
s
t
r
u
c
t
i
o
n
;

-
-
t
h
e
e
x
e
c
u
t
e
i
/
f
:

i
n
p
u
t

i
n
c
I

:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
i
n
c
O

:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
d
P
c

:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
d
L
r

:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
d
C
o
l
o
u
r

:
C
o
l
o
u
r
;

o
u
t
p
u
t
b
y
p
a
s
s

:
b
i
t
;

o
u
t
p
u
t
s
h
i
f
t
C
t
r
l
:
S
h
i
f
t
T
y
p
e
;

o
u
t
p
u
t
s
h
a
m
t

:
5
b
i
t
s
;

o
u
t
p
u
t
a
l
u
C
t
r
l

:
A
l
u
C
t
r
l
;

o
u
t
p
u
t
s
a
l
u

:
A
l
u
S
e
l
e
c
t
;

o
u
t
p
u
t
s
a
l
u
3

:
2
b
i
t
s
;

o
u
t
p
u
t
s
a
l
u
0

:
2
b
i
t
s
;

o
u
t
p
u
t
s
r
d
s

:
b
i
t
;

o
u
t
p
u
t
s
e
t
F
l
a
g
s

:
b
i
t
;

o
u
t
p
u
t
s
e
t
M
o
d
e

:
b
i
t
;

o
u
t
p
u
t
s
a
v
e
M
o
d
e

:
b
i
t
;

o
u
t
p
u
t
w
p
c

:
b
i
t
;

o
u
t
p
u
t
s
p
c

:
P
c
S
e
l
e
c
t
;

o
u
t
p
u
t
s
a
b

:
b
i
t
;

o
u
t
p
u
t
s
a
b
2

:
1
b
i
t
s
;

o
u
t
p
u
t
s
t
p

:
b
i
t
;

o
u
t
p
u
t
s
t
p
2

:
1
b
i
t
s
;

o
u
t
p
u
t
d
M
e
m
C
t
r
l

:
M
e
m
C
t
r
l
;

o
u
t
p
u
t
m
e
m
O
p

:
b
i
t
;

o
u
t
p
u
t
w
m
e
m

:
b
i
t
;

o
u
t
p
u
t
s
d
i

:
2
b
i
t
s
;

o
u
t
p
u
t
c
c

:
C
o
n
d
i
t
i
o
n
C
o
d
e
;

o
u
t
p
u
t
i
m
m
e
d
i
a
t
e
:
D
a
t
a
p
a
t
h
;

o
u
t
p
u
t
m
c
a

:
a
B
u
s
S
e
l
e
c
t
;

o
u
t
p
u
t
m
c
b

:
b
B
u
s
S
e
l
e
c
t
;

o
u
t
p
u
t
m
c
r

:
b
i
t
;

o
u
t
p
u
t
m
c
s

:
b
i
t
;

o
u
t
p
u
t
m
c
p
c

:
b
i
t
;

-
-
t
h
e
r
e
g
i
s
t
e
r
b
a
n
k
i
/
f
:

a
r
r
a
y
R
E
A
D
P
O
R
T
S
o
f
o
u
t
p
u
t
r
a
:
R
e
g
N
u
m
;

a
r
r
a
y
R
E
A
D
P
O
R
T
S
o
f
o
u
t
p
u
t
r
c
:
b
i
t
;

a
r
r
a
y
2
o
f
o
u
t
p
u
t
w
a

:
R
e
g
N
u
m
;

a
r
r
a
y
2
o
f
o
u
t
p
u
t
w
c

:
b
i
t

)
i
s

v
a
r
i
a
b
l
e
s
e
n
d
L
r

:
b
i
t

v
a
r
i
a
b
l
e
n
o
s
h
i
f
t

:
b
i
t

v
a
r
i
a
b
l
e
i
n
c
I
n

:
D
a
t
a
p
a
t
h

v
a
r
i
a
b
l
e
i
n
c
O
u
t

:
D
a
t
a
p
a
t
h

v
a
r
i
a
b
l
e
i
n
c
O
p

:
D
a
t
a
p
a
t
h

v
a
r
i
a
b
l
e
l
s
m
M
w

:
6
b
i
t
s

v
a
r
i
a
b
l
e
l
s
m
M
r

:
6
b
i
t
s

c
h
a
n
n
e
l

l
s
m
M

:
6
b
i
t
s

v
a
r
i
a
b
l
e
r
B
a
s
e
M
w

:
R
e
g
N
u
m

v
a
r
i
a
b
l
e
r
B
a
s
e
M
r

:
R
e
g
N
u
m

c
h
a
n
n
e
l

r
B
a
s
e
M

:
R
e
g
N
u
m

v
a
r
i
a
b
l
e
r
e
g
D
e
s
c

:
R
e
g
D
e
s
c
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v
a
r
i
a
b
l
e
r
e
g
C
o
u
n
t

:
R
e
g
C
n
t

c
h
a
n
n
e
l

r
e
g
C
o
u
n
t
S
:
R
e
g
C
n
t

v
a
r
i
a
b
l
e
r
e
g
C
o
u
n
t
w
:
R
e
g
C
n
t

v
a
r
i
a
b
l
e
r
e
g
C
o
u
n
t
r
:
R
e
g
C
n
t

v
a
r
i
a
b
l
e
r
e
g
N
u
m

:
R
e
g
N
u
m

v
a
r
i
a
b
l
e
l
a
s
t

:
b
i
t

v
a
r
i
a
b
l
e
i
s
F
i
r
s
t

:
b
i
t

v
a
r
i
a
b
l
e
g
o
A
g
a
i
n

:
1
b
i
t
s

v
a
r
i
a
b
l
e
i
n
c
S
e
l

:
1
b
i
t
s

v
a
r
i
a
b
l
e
f
I
n
s
t
r

:
I
n
s
t
r
u
c
t
i
o
n

v
a
r
i
a
b
l
e
f
I
n
s
t
r
w

:
I
n
s
t
r
u
c
t
i
o
n

v
a
r
i
a
b
l
e
f
C
o
l
o
u
r

:
C
o
l
o
u
r

v
a
r
i
a
b
l
e
f
C
o
l
o
u
r
w

:
C
o
l
o
u
r

b
e
g
i
n i
n
i
t
f
I
n
s
t
r
w

<
-
(
0
a
s
I
n
s
t
r
u
c
t
i
o
n
)

f
C
o
l
o
u
r
w

<
-
(
0
a
s
C
o
l
o
u
r
)

l
s
m
M
w

<
-
(
0
a
s
6
b
i
t
s
)

r
B
a
s
e
M
w

<
-
(
0
a
s
R
e
g
N
u
m
)

r
e
g
C
o
u
n
t
w
<
-
(
0
a
s
R
e
g
C
n
t
)

g
o
A
g
a
i
n

<
-
(
0
a
s
1
b
i
t
s
)

e
n
d

i
n
p
u
t

g
o
A
g
a
i
n
,
f
I
n
s
t
r
w
,
f
C
o
l
o
u
r
w
,

l
s
m
M
w
,
r
B
a
s
e
M
w
,
r
e
g
C
o
u
n
t
w

o
u
t
p
u
t
f
I
n
s
t
r
,
f
C
o
l
o
u
r
,
l
s
m
M
r
,
r
B
a
s
e
M
r
,

r
e
g
C
o
u
n
t
r
,
i
s
F
i
r
s
t
,
r
e
g
D
e
s
c

d
u
r
i
n
g
c
a
s
e
g
o
A
g
a
i
n
o
f

1
t
h
e
n

f
I
n
s
t
r

<
-
f
I
n
s
t
r
w

f
C
o
l
o
u
r

<
-
f
C
o
l
o
u
r
w

l
s
m
M
r

<
-
l
s
m
M
w

r
B
a
s
e
M
r

<
-
r
B
a
s
e
M
w

r
e
g
C
o
u
n
t
r
<
-
r
e
g
C
o
u
n
t
w

i
s
F
i
r
s
t

<
-
(
0
a
s
b
i
t
)

|
0
t
h
e
n

i
n
p
u
t
f
I
n
s
t
r
I
n

d
u
r
i
n
g

f
I
n
s
t
r
<
-
f
I
n
s
t
r
I
n

l
s
m
M
r
<
-
(
#
f
I
n
s
t
r
I
n
[
2
0
.
.
2
4
]
@

#
f
I
n
s
t
r
I
n
[
1
5
.
.
1
5
]
a
s
6
b
i
t
s
)

r
B
a
s
e
M
r
<
-
(
#
f
I
n
s
t
r
I
n
[
1
6
.
.
1
9
]
a
s
R
e
g
N
u
m
)

c
a
s
e
(
#
f
I
n
s
t
r
I
n
[
2
5
.
.
2
7
]
a
s
3
b
i
t
s
)
o
f

0
b
0
0
x
,
0
b
0
1
x
,
0
b
1
0
1
,
0
b
1
1
x
t
h
e
n
-
-
n
o
t
l
d
m
/
s
t
m

r
e
g
C
o
u
n
t
r
<
-
(
0
a
s
R
e
g
C
n
t
)

|
0
b
1
0
0
t
h
e
n

r
e
g
D
e
s
c
<
-
(
#
f
I
n
s
t
r
I
n
[
0
.
.
1
5
]
a
s
R
e
g
D
e
s
c
)

i
s
F
i
r
s
t
<
-
(
1
a
s
b
i
t
)

i
n
p
u
t
r
e
g
C
o
u
n
t
d
u
r
i
n
g

r
e
g
C
o
u
n
t
r
<
-
r
e
g
C
o
u
n
t

e
n
d

e
n
d

e
n
d

i
n
p
u
t
f
C
o
l
o
u
r
I
n
d
u
r
i
n
g

f
C
o
l
o
u
r
<
-
f
C
o
l
o
u
r
I
n

e
n
d

e
n
d

e
n
d

i
n
p
u
t

f
I
n
s
t
r
,
f
C
o
l
o
u
r
,
n
o
s
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Appendix D

Balsa Handshake Components

This appendix provides a very brief summary of the components from the

conventional Balsa component set that are featured in this thesis. The intention

is to provide a key to the symbols and an informal description of the behaviour.

The Balsa component set can be roughly split into three categories.

Control components use only sync ports. They feature an Activation port

that is used to start the operation of the component. Output sync channels are

then connected to the activation ports of other components.

Datapath component deal only with channels carrying data. They are used

for storing, processing, merging and splitting data channels.

Control / datapath interface components are used to control the movement

of data through the datapath. They have one or more sync ports used to com-

municate with control components as well as data channel ports. They initiate

handshakes on data channels in response to activations or issue activations on

receipt of data.

209



210 Appendix D. Balsa Handshake Components

D.1 Control components

D.1.1 Loop

#

activate

activateOut

The Loop component is used to implement infinite repetition. Once activated

it produces an infinite sequence of activations on its output port.

D.1.2 Concur

| |

activate

activateOut

The Concur component produces an activation on all of its output ports fol-

lowing an input activation. All the output activations are begun at the same

time but then operate independently.

D.1.3 Fork

activateOut

activate

The Fork component produces an activation on all of its output ports follow-

ing an input activation. In a four-phase protocol, all the outputs synchro-

nise between the processing and return-to-zero phases. See also figure 2.18

on page 52.
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D.1.4 Sequence

;

activate

activateOut

The Sequence component is similar to the Concur component but its output

activations are produced one at at time in sequence.

D.1.5 Call

|

out

inputs

The Call component passes a handshake on one of its input ports to the output

port. The inputs must not occur concurrently.

D.1.6 Sync
inputs

out

The Sync component synchronises the request on all of its inputs before pass-

ing these handshakes to the output.

D.1.7 Arbitrate

arb outB
inA
inB

outA

Arbitrate passes a handshake on inA to outA or a handshake on inB to outB.

If both inA and inB are activated concurrently it makes a non-deterministic

decision as to which to pass first.
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D.1.8 DecisionWait

DWinputs outputs

activate

DecisionWait synchronises an activation with one of its inputs and then passes

this handshake to the corresponding output. The inputs must be mutually

exclusive.

D.2 Control / datapath interface components

D.2.1 Fetch

in out

activate

Upon activation the Fetch component pulls data on its input port and then

pushes it on the output.

D.2.2 While

whileguard

activateOut

activate

The While component is used to implement the guarded loop language con-

struct. When it is activated the While component pulls a single bit data item

from its ‘guard’ port. If the guard is true then While produces an output ac-

tivation. When this activation has been acknowledged, While pulls another

guard and repeats the process until a guard that is false is received.
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D.2.3 Case

@data

activate

activateOut

Upon activation, the Case component pulls a guard on its data port. It then ac-

tivates one of its outputs based on the data that was received. Multiple values

can be mapped to each output. If some values are not mapped to an output

they will result in no output activation.

D.2.4 FalseVariable

FV

activate

signal

write read ports

Upon activation, the FalseVariable pulls data on its write port. It then holds

this handshake open and activates the signal port. Then FalseVariable acts as

a Variable component, supplying, on request, the data from the write port to

a set of read ports. When the signal handshake is completed, the write data is

released.

D.2.5 UnaryFunc

op outin

Implements single-operand operations such as invert. The handshake is sim-

ply passed through the component with the modified data.
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D.2.6 BinaryFunc

opinB
inA

out

BinaryFunc is used to implement two-operand operations such as addition,

subtraction, comparisons and bit-wise boolean functions. The output request

is forked to both inputs. The input acknowledges are synchronised and passed

to the output.

D.2.7 CallMux

|inputs out

CallMux is used as a merge element in datapaths. Multiple push input chan-

nels can are merged onto a single output channel. The inputs must be mutually

exclusive.

D.2.8 SplitEqual

>>=<<
in outputs

SplitEqual splits the data on its input port to multiple chunks of the same

width, one chunk being sent on each output.

D.2.9 CaseFetch

@inputs

index

out

When CaseFetch receives a request on its output, it pulls an index and uses

this to decide which of its input ports to pull data on and then passes this data

to the output port.
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D.2.10 PassivatorPush

outin

PassivatorPush is used to connect an active output port from one process to

the active input port of another process.

D.2.11 Variable

Vwrite reads

The Variable component has a single write port and multiple read ports. It

stores data that it receives on the write port and provides it to the read ports

on request. Reads and writes must not occur concurrently.
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